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Preface

This volume contains the proceedings of the 8th International Conference on
Mathematics of Program Construction, MPC 2006, held at Kuressaare, Estonia,
July 3–5, 2006, colocated with the 11th International Conference on Algebraic
Methodology and Software Technology, AMAST 2006, July 5–8, 2006.

The MPC conferences aim to promote the development of mathematical prin-
ciples and techniques that are demonstrably useful and usable in the process of
constructing computer programs. Topics of interest range from algorithmics to
support for program construction in programming languages and systems.

The previous MPCs were held at Twente, The Netherlands (1989, LNCS
375), Oxford, UK (1992, LNCS 669), Kloster Irsee, Germany (1995, LNCS 947),
Marstrand, Sweden (1998, LNCS 1422), Ponte de Lima, Portugal (2000, LNCS
1837), Dagstuhl, Germany (2002, LNCS 2386) and Stirling, UK (2004, LNCS
3125, colocated with AMAST 2004).

MPC 2006 received 45 submissions. Each submission was reviewed by four
Programme Committee members or additional referees. The committee decided
to accept 22 papers. In addition, the programme included three invited talks by
Robin Cockett (University of Calgary, Canada), Olivier Danvy (Aarhus Univer-
sitet, Denmark) and Oege de Moor (University of Oxford, UK).

The review process and compilation of the proceedings were greatly helped
by Andrei Voronkov’s EasyChair system that I can only recommend to every
programme chair.

MPC 2006 had one satellite workshop, the Workshop on Mathematically
Structured Functional Programming, MSFP 2006, organized as a “small” work-
shop of the FP6 IST coordination action TYPES. This took place July 2, 2006.

Tallinn, April 2006 Tarmo Uustalu
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What Is a Good Process Semantics?
(Extended Abstract)

Robin Cockett

Dept. of Computer Science, University of Calgary,
2500 University Drive NW, Calgary, Alb. T2N 1N4, Canada

robin@cpsc.ucalgary.ca

Abstract. Current mathematical tools for understanding processes pre-
dominantly support process modeling. In particular, they faithully repre-
sent all the things that can go wrong (deadlock, livelock, etc.). However,
for the development of good programming abstractions in concurrent
(and other) setting it is important to focus on formal systems in which
things do not go wrong. So what are the formal models of processes
where nothing goes wrong?

For those involved in trying to understand the mathematics of program construc-
tion the new challenge is to understand the mathematics of concurrent programs.
The era of simple input/output computation has been completely superseded by
an expectation of connectivity from which there is no return.

After some four decades of intense effort to provide a good calculus of processes,
Robin Milner’s π-calculus [5, 6] and its variants have emerged as a core paradigm.
The π-calculus evolved directly from CCS and may be regarded as a response to
the desire to pass information between processes beyond the mere fact of com-
munication. To achieve this it was necessary to introduce the notion of a channel
along which information could be passed and this involved solving the syntactic
scope and substitution issues inherent in interaction along such channels.

A considerable portion of the theoretical effort which went into these ideas was
inspired by operational considerations. In particular, the underlying paradigm
for equality hinged on behavioural equivalence and the notion of bisimulation.
The preoccupation with how the solution of these local technical issues lead to a
coherent global notion of equality based on bisimulation seemed to an observer,
such as myself, to be in tension with the desire to understand the structure of
processes.

Of course, equality given through operational considerations as embodied
in notions of bisimulation is a crucial sanity check: without it the production
of an operational system is impossible. However, these operational considera-
tions do not of themselves lead to a well-clothed mathematical understanding
of processes. In particular, they do not directly inform us of what the manipu-
lations of processes should be or how these manipulations should be organized.
To make progress on this front it is necessary to turn to algebraic rather than
operational sources for guidance.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 1–3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 R. Cockett

The λ-calculus [1] is a basis for simple input/output computations and the
model of reduction in this calculus undoubtedly provided inspiration for re-
duction of the π-calculus. However, the λ-calculus transcended being a mere
mechanism to model computation and became intimately connected into math-
ematics when the Curry-Howard-Lambek isomorphism was established. Terms
of the typed λ-calculus correspond precisely to proofs of propositions which, in
turn, form a cartesian closed category.

Lambek’s contribution to this was the categorical end, but it was also really
much broader: for it was categorical proof theory itself [4]. He understood that
the cut-elimination process is the operational semantics of composition. Fur-
thermore he realized that there is a correspondence between proof theories and
categorical doctrines. While one of Lambek’s motivation was to use the reduc-
tion processes from proof theory to throw light on categorical coherence issues,
his observation opened up a connection through which ideas could flow in both
directions. Examples of categorical doctrines occur throughout mathematics and
they can (and have) been used as a rich source from which to develop a deeper
understanding of the corresponding proof theories.

So what is the categorical proof theory of processes? I will argue that it is,
in fact, an old and thorny friend: multiplicative additive linear logic. This is a
thorn friend as the coherence issues of this logic are still the subject of active
research [7]. Indeed, at this time, it is not clear that the definitive view of even
these most basic issue has yet emerged. Equality of proofs, however, is known
to be decidable [3]and one way to show this is to use a term logic reminiscent of
the π-calculus. These ideas go right back to Bellin and Scott’s early work [2].

Recalled the proof theoretic systems for typed λ-calculi are powerful enough to
secure good termination properties. However, these formal properties are bought
at a cost to expressiveness and consequently programmability. It is still open, for
example, whether the loss of expressiveness due to the imposed type discipline
can be successfully arranged in a manner to satisfy a significant programming
community.

To make the proof theory for concurrent processes usable as a language in
which reasonable concurrent problems can be programmed it is necessary to
add datatypes and value passing. Datatypes, in the process world, correspond
to protocols. The resulting type systems for the proof theory of linear logic
do actually secure all the good properties one wants: progressiveness, deadlock
freedom, and livelock freedom.

Unfortunately I do not claim to know (yet) how to turn this into something
which approaches a practical programming language! This is still seems a distant
goal. However, the motivation for formally based languages to support concur-
rent computation, when compared to that for simple input/output computations,
is much greater. This simply because so much more can go wrong. Furthermore,
the paradigms for expressing concurrent computation are still relatively crude
and this means there is much to be gained, even for todays programs, from
studying the mathematical structure of these formal systems.
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Refunctionalization at Work

Olivier Danvy

BRICS,
Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

danvy@brics.dk

Abstract. First-order programs are desired in a variety of settings and
for a variety of reasons. Their coming into existence in first-order form
may be unplanned or it could be the deliberate result of a form of “firs-
tification” such as closure conversion, (super)combinator conversion, or
defunctionalization. In the latter case, they are higher-order programs in
disguise, just as iterative programs with accumulators are often recursive
programs in disguise.

This talk is about Reynolds’s defunctionalization [1, 2]. Over the last
few years, we have observed that a number of existing first-order pro-
grams turn out to be in the range of defunctionalization, and therefore
they directly correspond to higher-order programs, even though they
were designed independently of any higher-order representation. Not all
first-order programs, however, are in defunctionalized form.

The goal of this talk is to refine our earlier characterization of what it
means to be in defunctionalized form [3], and to investigate how one can
tease a first-order program into defunctionalized form. On the way, we
present a variety of independently known programs that are in (or can
be teased into) defunctionalized form, and we exhibit their functional
counterpart—a process we refer to as ‘refunctionalization’ since it is a
left inverse of defunctionalization.

References

1. Reynolds, J. C.: Definitional interpreters for higher-order programming languages.
In: Proc. of 25th ACM Nat. Conf. ACM Press (1972) 717–740 // Reprinted in
Higher-Order and Symb. Comput. 11(4) (1998) 363–397

2. Reynolds, J. C.: Definitional interpreters revisited. Higher-Order and Symb. Com-
put. 11(4) (1998) 355–361

3. Danvy, O., Nielsen, L. R.: Defunctionalization at work. In Proc. of 3rd Int. ACM
SIGPLAN Conf. on Principles and Practice of Declarative Programming PPDP’01.
ACM Press (2001) 162–174
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Aspects and Data Refinement
(Extended Abstract)

Pavel Avgustinov1, Eric Bodden2, Elnar Hajiyev1, Oege de Moor1,
Neil Ongkingco1, Damien Sereni1, Ganesh Sittampalam1, and Julian Tibble1

1 Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

2 School of Computer Science, McGill University,
Montréal, Québec H3A 2A7, Canada

Abstract. We give an introduction to aspect-oriented programming
from the viewpoint of data refinement. Some data refinements are conve-
niently expressed via aspects. Unlike traditional programming language
features for data refinement, aspects conceptually transform run-time
events, not compile-time programs.

1 Introduction

Data refinement is a powerful tool in program construction: we start with an
existing module, adding some new variables related to the existing ones via a
coupling invariant, and possibly adding new operations as well. Next we refine
each of the existing operations so that the coupling invariant is maintained.
Finally, if any existing variables have become redundant, they are removed [1].

The idea is pervasive, and it is no surprise, therefore, that numerous re-
searchers have attempted to capture it in a set of programming language features.
An early example of this trend can be found in the work of Bob Paige, who ad-
vocated the use of a program transformation system to achieve the desired effect
[2]. The idea was again raised by David Gries and Dennis Volpano in their design
of the transform in the Polya programming language [3]. Very recently, Annie
Liu and her coworkers [4] breathed new life into this line of work by updating it
to the context of object-oriented programming.

All these systems are very powerful, and they are complete in that all data
refinements can be expressed, at least in principle. In another community, a set
of programming language features has been proposed that is less powerful, but
still suitable for direct expression of simple data refinements. These features are
collectively known under the name of ‘aspects’ [5].

In this talk, we shall examine some examples of data refinement expressed as
aspects. Conceptually aspects transform run-time computations, unlike the above
systems, which are all based on the idea of compile-time transformation. For ef-
ficiency, aspect compilers do as much transformation as possible at compile-time
[6], but that is an implementation technique, not the semantics. We argue that to
write reusable data refinements, which are independent of the syntactic details of
the program being refined, the run-time view offered by aspects is preferable.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 5–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



6 P. Avgustinov et al.

2 Data Refinement

Consider an interface in Java for bags (multisets) of integers; an example of
such an interface is shown in Figure 1. It includes an operation that returns an
iterator over the elements of a bag; the order of such an iteration is not further
specified.

interface Bag {
void add(int i);
void remove(int i);
java.util.Iterator iterator ();

}
Fig. 1. Bag interface in Java

Now suppose we wish to augment this interface, and all classes that implement
it, with an operation that returns the average of the bag of integers. A naive
implementation would be to re-calculate the average each time, but that requires
time proportional to the size of the bag.

To achieve a contant-time implementation of average, we introduce two new
variables via data refinement, namely sum and size. The coupling invariant is
that sum holds the sum of the abstract bag, and size the number of elements.

1 public aspect Average {
2 private int Bag.sum;
3 private int Bag.size;
4 public float Bag.average() {
5 return (size == 0 ? ((float)sum) / ((float)size) : 0);
6 }
7 after(Bag b,int i) returning() :
8 execution(void Bag.add(int)) &&
9 this(b) &&

10 args(i)
11 {
12 b.sum += i;
13 b. size += 1;
14 }
15 after(Bag b,int i) returning() :
16 execution(void Bag.remove(int)) &&
17 this(b) &&
18 args(i)
19 {
20 b.sum −= i;
21 b. size −= 1;
22 }
23 }

Fig. 2. Aspect for data refinement
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Once we have these two variables, it is easy to define an efficient implementation
of the average function, as it just returns their quotient (provided the bag is
not empty). Of course sum and size have to be kept up-to-date when add and
remove are called: these operations must be data-refined accordingly.

Figure 2 shows how to code this data refinement in AspectJ, an aspect-
oriented extension of the Java programming language [7]. First note how it in-
troduces the two new variables into all implementations of the Bag interface, on
Lines 2 and 3. Next we define the new average operation, on Lines 4 to 6. The
remainder of the aspect is devoted to refining the add operation (Lines 7–14)
and the remove operation (Lines 15–22). Let us examine the refinement of add
in a little bit more detail. It says that whenever we have completed executing
the body of add, on a bag b, with argument i, the sum should be increased by i
and the size should be increased by 1.

Note that the aspect is generic, in that it applies the data refinement to any
implementation of the Bag interface. Obviously this is a desirable property, as
we can now reuse the same piece of code without having to replay the same data
refinement each time a new implementation of bags is introduced.

3 Compile-Time Transformations

An obvious way to view aspects is as program transformations, which insert extra
code into an existing program. Indeed, that has been the prevailing view in all
previous works that sought to provide language support for data refinement.

The disadvantage of such a wholly syntactic approach is that it is very hard
to write reusable data refinements, that are independent of the implementation
details of the program being refined. To illustrate, consider changing the orig-
inal Bag interface by adding a method addAll(Bag c); this new method adds
all elements of another bag c to the given Bag. Formally, the call b.addAll(c)
implements the assignment (writing + for bag union)

b := b + c

Now consider how the aspect should be modified, if at all, to take account
of addAll. First observe that if we know that addAll is always implemented by
iterating over c, calling the b.add method, no changes to our aspect are necessary.
It is conceivable, however, that a more efficient implementation is used. For
instance, when both the collection and the bag happen to be stored as sorted
lists, a simple list merge would be cheaper than repeated element insertions.

It follows that for the aspect to remain reusable across all implementations of
the Bag interface, we need to implement the data refinement of the new addAll
method separately:

after(Bag b, Bag c) returning() :
execution(void addAll(Bag)) &&
this(b) &&
args(c)
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{
b.sum += c.sum;
b. size += c.size;

}
It is not enough to add this piece of code to our aspect, however. If addAll is
implemented via repeated calls to add, we would now add the sum of c twice
to that of b. The data refinement of add itself therefore needs to be amended.
Intuitively it is clear what amendment is required: when add is executed at
the top-level, we use the refined code described earlier, and when part of other
routines in Bag (such as addAll), the unrefined version of add is used. But this
is a run-time distinction and not a compile-time one.

4 Run-Time Transformations

Motivated by this type of example, the designers of AspectJ advocate that as-
pects are viewed as run-time observers, which intercept events based on their
run-time characteristics. In our running example, we only want to transform top-
level method executions: in particular, the data refinement should apply to add
when called on its own, but not when it is called from within another method of
Bag like addAll. To achieve that objective in AspectJ, we can add the conjunct

!cflowbelow(execution(∗ Bag.∗(..)))
to the pattern of Lines 8–10 in Figure 2. In words, it says the currently executing
method invocation is not properly nested inside another method of Bag. Speci-
fying the same behaviour as a compile-time transformation could be exceedingly
painful. The cflowbelow primitive requires, in general, run-time observation of
the state of the program, in particular the control stack. However, in practice
this can often be statically determined by control-flow analysis [8] for efficiency.

The view of a data refinement in this setting is that an aspect checks the
coupling invariant, and when the invariant may be violated, the aspect runs
some extra code to restore the invariant. Much remains to be done to arrive at
this point, however, and the challenges include:

Completeness. What class of data refinements can be expressed via aspects?
The example in this abstract only illustrates adding code before or after an
operation on an abstract data type, and on its own it is clearly not enough
to express all data refinements. What is a minimal set of aspect-oriented
features needed to achieve completeness?

Diminution. We have ignored the process of diminution, where auxiliary vari-
ables are removed from a data-refined program. While it is tempting to just
rely on mechanical dead-code elimination in a compiler, it is unlikely that will
always succeed. Aspects do offer a feature (so-called around advice) where
operations can be replaced by others, in particular by skip.

Semantic patterns. The patterns of interception should be less syntactic in
nature, instead expressing properties like: ‘the state of this object may have
changed’. Again this is important for aspects to be reusable.
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We are investigating these and other challenges related to the design and
implementation of aspect-oriented programming languages in the abc project
[9]. We hope others will join us in exploring this new area, and in developing a
rigorous basis for the use of aspects in program construction.

Acknowledgements. Richard Bird, Carroll Morgan, Jeff Sanders and Bernard
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Abstract. Instances of a polytypic or generic program for a concrete
recursive type often exhibit a recursion scheme that is derived from the
recursion scheme of the instantiation type. In practice, the programs ob-
tained from a generic program are usually terminating, but the proof
of termination cannot be carried out with traditional methods as term
orderings alone, since termination often crucially relies on the program
type. This problem is tackled by an adaption of type-based termination
to generic programming, and a framework for sized polytypic program-
ming is described.

1 Introduction

In the last decade, polytypic or generic programming has been explored for
functional programming languages [34, 7, 25, 28, 29, 30]. With polytypic program-
ming, many repetitive tasks, like writing a size-function for data structures of
type A, can be mechanized by writing a generic size-function which then can
be instantiated to all sorts of types A. Over the years, many useful examples
of generic programs have been put forth, like parsing and unparsing, map and
zip functions, and even finite maps for key type A. When generic programs are
defined by recursion on type A, then the resulting programs have often a re-
cursion structure that corresponds to the recursion structure of type A; and it
is the rule that they terminate, if applied to finite input. However, because of
the high degree of abstraction that generic programs usually involve, termina-
tion cannot be proven with conventional methods like term orderings or initial
algebras alone. It is the purpose of this article to outline a systematic solution
to the termination problem of many generic programs.

As an example, we take Hinze’s [24] generic definition of finite maps. If instan-
tiated to key type list of A, in Haskell syntax [a], we get the following definition
of a finite map:

data MapList f v = Leaf
| Node (Maybe v) (f (MapList f v))

� Research supported by the coordination action TYPES (510996) and thematic net-
work Applied Semantics II (IST-2001-38957) of the European Union and the project
Cover of the Swedish Foundation of Strategic Research (SSF).
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Herein, v is the range of the finite map, and f w represents the finite maps from
a to w. Instantiating a with Char and f w with Char→w, we would get finite
maps over strings. Such a finite map is either totally undefined (Leaf) or a pair
of maybe a piece of data associated with the current key (Maybe v) plus a finite
map for each extension of the current key by one character (f (MapList f v).

Merging finite maps is a completely generic operation. Again for the key type
of lists, we get the following instance. Let

comb :: (v -> v -> v) -> Maybe v -> Maybe v -> Maybe v

be a conflict resolution function for up to two candidate values of a finite map at
a certain key. Then the following Haskell program merges two finite maps over
lists:

mergeList ::
(forall w. (w -> w -> w) -> f w -> f w -> f w) ->
(v -> v -> v) ->
MapList f v -> MapList f v -> MapList f v

mergeList mergeF c Leaf t = t
mergeList mergeF c t Leaf = t
mergeList mergeF c (Node m1 t1) (Node m2 t2) =
Node (comb c m1 m2) (mergeF (mergeList mergeF c) t1 t2)

This function has an extraordinary recursion behavior: As a recursive “call”, the
whole function mergeList mergeF c is passed to one of its arguments, mergeF.
It is not immediately obvious that mergeList is a total function. Indeed, if we
disregard its type, we can create a non-terminating execution: Define

mf m t1 t2 = m (Node Nothing t1) (Node Nothing t2)

and run mergeList mf fst (Node Nothing t1) (Node Nothing t2)! However, mf
does not have the right type, and the polymorphic nature of the argument mergeF
is a critical ingredient for termination.

This example demonstrates that term-based termination arguments do not
suffice for generic programs. We need a method for establishing termination
which takes the type of a program into account. Such a method is type-based
termination, which has been developed by Hughes, Pareto, and Sabry [31], and
independently by Giménez [20] who advanced the pioneering work of Mendler
[37]. Since then, type-based termination has been considered by several authors
[1, 2, 8, 9, 14, 15, 18].

In this work, we show that type-based termination can be successfully applied
to generic programs. To this end, we have extended the approach to higher-order
data types, arriving at System Fω̂, which is the object of the author’s thesis [3].
We will briefly introduce the necessary concepts to the reader in Section 2 and
then outline a framework for total generic programming in Sect. 3. More related
work and directions for future research are discussed in Sect. 4.
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1.1 Preliminaries

We assume that the reader is firm in the higher-order polymorphic lambda-
calculus, System Fω (see Pierce’s text book [46]). Additionally, some familiarity
with generic programming would be helpful [29].

Generic programming takes a minimalistic view on data types: Each ground
type can be constructed using the unit type 1, disjoint sum type A+B, product
type A×B and recursion. The following terms manipulate these types:

() : 1
pair : ∀A∀B. A→ B → A×B
fst : ∀A∀B. A×B → A
snd : ∀A∀B. A×B → B
inl : ∀A∀B. A→ A + B
inr : ∀A∀B. B → A + B
case : ∀A∀B∀C. A + B → (A→ C) → (B → C) → C

Pairs pair r s are written (r, s). We assume the usual reduction rules, for instance,
fst (r, s) −→ r. Sometimes it is convenient to introduce abbreviations for derived
data constructors. For instance:

Nat = 1 + Nat
zero = inl ()
succ = λn. inrn

To improve readability, we will freely make use of the pattern matching notation

match r with p1 �→ t1 | · · · | pn �→ tn

for patterns pi generated from both elementary and derived data constructors.
Similarly, we use a non-recursive let p=r in t.

2 Sized Types in a Nutshell

We use sized types for type-based termination checking, as described by Hughes,
Pareto, and Sabry [31, 44] and Barthe, Frade, Giménez, Pinto, and Uustalu [8].
In comparison with the cited works, our system, Fω̂, also features higher-order
polymorphism and heterogeneous (nested) and higher-order data types. In this
section, we quickly introduce the most important features of Fω̂ [3].

Inductive types are recursively defined types which can only be unfolded fi-
nitely many times. The classical example are lists which are given as the least
fixed-point of the type constructor λX. 1 + A ×X , where A is the type of list
elements. If the type constructor underlying an inductive type is not covariant
(monotone), non-terminating programs can be constructed without explicit re-
cursion [37]. Therefore we restrict inductive types to fixed-points of covariant
constructors. We write
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∗ +→ ∗ or +∗ → ∗ for the kind of covariant,
∗ −→ ∗ or −∗ → ∗ for the kind of contravariant, and
∗ ◦→ ∗ or ◦∗ → ∗ for the kind of mixed-variant

type constructors, the last meaning constructors which are neither co- nor con-
travariant, or the absence of variance information. For example, λX.X → 1 is
contravariant, and λX.X → X is mixed-variant. The notion of variance is ex-
tended to arbitrary kinds and p-variant function kinds are written as pκ → κ′

or
κ

p→ κ′.

For instance, we have the following kindings for disjoint sum, product, function,
and polymorphic type constructor:

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

We assume a signature Σ that contains the above type constructor constants
together with their kinding, plus some base types 1, Char, Int . . . The signature Σ
is viewed as a function, so Σ(C) returns the kind of the constructor constant C.
A bit sloppily, we write C ∈ Σ if C is in the domain of this function, C ∈ dom(Σ).
Also, we usually write ∀X :κ.A for ∀κλX.A, or ∀XA, if the kind κ is inferable.

Sized Inductive Types. We write inductive types as μaF , where F is a covariant
constructor and a a constructor of special kind ord. This kind models the stage
expressions of Barthe et. al. [8], which are interpreted as ordinals, and has the
following constructors:

s : ord +→ ord successor of ordinal
∞ : ord infinity ordinal

The infinity ordinal is the closure ordinal of all inductive types considered, i. e.,
an ordinal big enough such that the equation

F (μ∞F ) = μ∞F

holds for all type constructors which are allowed as basis for an inductive type.
If F is first-order, i. e., does not mention function space, then the smallest infi-
nite ordinal ω is sufficient. However, if we allow higher-order datatypes like the
infinitely-branching μ∞λX.1 + (Nat→ X), higher ordinals are required.1

In the following, we will only make use of ordinal constructors that are either
∞ or ı+n, where ı is a constructor variable of kind ord and n a natural number
1 More details can be found in the forthcoming thesis of the author [3, Sect. 3.3.3].
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and a + n is a shorthand for prepending the constructor a with n successor
constructors s.

Sized inductive types are explained by the equation μa+1F = F (μaF ). View-
ing inductive types as trees and F as the type of the node constructor, it becomes
clear that the size index a is an upper bound on the height of trees in μaF . Hence,
inductive types are covariant in the size index, and their instances stand in the
subtyping relation

μaF ≤ μa+1F ≤ μa+2F ≤ · · · ≤ μ∞F.

Some examples for sized inductive types are:

Nat : ord +→ ∗
Nat := λı. μıλX. 1 + X

List : ord +→ ∗ +→ ∗
List := λıλA. μıλX. 1 + A×X

Tree : ord +→ ∗ −→ ∗ +→ ∗
Tree := λıλBλA. μıλX. 1 + A× (B → X)

Nata denotes the type of natural numbers < a, ListaA the type of lists of length
< a, and TreeaB A the type of B-branching A-labeled trees of height < a. For
lists, we define the usual constructors:

nil := inl () : ∀ı∀A. Listı+1 A

cons := λaλas . inr (a, as) : ∀ı∀A.A→ Listı A→ Listı+1A.

Heterogeneous Data Types. Nothing prevents us from considering inductive types
of higher kind, i. e., such μaF where F is not of kind ∗ +→ ∗, but, for instance,
of kind (∗ +→ ∗) +→ (∗ +→ ∗). For such an F we get an inductive construc-
tor, or a heterogeneous data type [6], in the literature often called nested type
[4, 11, 12, 13, 36, 22, 24, 26, 41, 42, 43]. In general, the least-fixed point constructor
μκ can be used on any F : κ

+→ κ where κ must be a pure kind, i. e., must not
mention special kind ord. Examples for heterogeneous types are:

PList : ord +→ ∗ +→ ∗
PList := λı. μı

+∗→∗λXλA.A + X (A×A)

Bush : ord +→ ∗ +→ ∗
Bush := λı. μı

+∗→∗λXλA. 1 + A×X (X A)

The type PLista A implements lists with exactly 2n elements of type A for some
n < a. The second type, bushy lists, is an example of a truly nested type. It is
well-defined since we can infer covariance of X (X A) in X from the assumption
that X is covariant itself.2
2 The constructor underlying Bush fails a purely syntactical covariance test, like the

test for strict positivity in Coq [32].
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Example 1 (A powerlist). Let a0, a1, a2, a3 : A and ı : ord. We can construct the
powerlist PListı+3 A containing these four elements as follows:

((a0, a1), (a2, a3)) : ((A×A)× (A×A)) =: A4

inl ((a0, a1), (a2, a3)) : A4 + PListı (A4 ×A4)
inl ((a0, a1), (a2, a3)) : PListı+1 A4

inr (inl ((a0, a1), (a2, a3))) : A× A + PListı+1 A4

inr (inl ((a0, a1), (a2, a3))) : PListı+2 (A× A)
inr (inr (inl ((a0, a1), (a2, a3)))) : A + PListı+2 (A×A)
inr (inr (inl ((a0, a1), (a2, a3)))) : PListı+3 A

Structural Recursion. Since we are considering a terminating programming lan-
guage, recursion cannot be available without restriction. In the following we give
a typing rule for structurally recursive functions. Herein, we interpret structurally
recursive in the context of sized types: A function is structurally recursive if the
recursive instance is of smaller size than the calling instance. As typing rule, this
definition reads:

ı :ord, f : A ı 
 t : A (ı + 1)
fix (λf.t) : ∀ı. A ı

Of course, the type A ı must mention the size variable ı in a sensible way; with
the constant type A ı = Nat∞ → Nat∞ one immediately allows non-terminating
functions. Barthe et. al. [8, 9] suggest types of the shape A ı = μıF → C where ı
does not occur in F and only positively in C. In this article, we want to consider
recursive functions that simultaneously descent on serveral arguments, and also
polymorphic recursion. Hence, we consider types of the shape

∀X1 . . .∀Xk. μıF → B1 → · · · → Bm → C,

where ı does not occur in F , index ı occurs only positively in C, and each of the
Bi is either ı-free or of the shape μıFi with Fi ı-free. More valid shapes for the
type A ı are described by Hughes, Pareto, and Sabry [31], in Pareto’s thesis [44],
my thesis [3] and previous work of mine [1].

To obtain a strongly normalizing system, unrolling of fixed-point has to be
restricted to the case

fixμs v −→ s (fixμs) v,

where v is a value (an injection, a pair, a λ-abstraction, an under-applied function
symbol). For convenience, we define the fixed-point combinator fixμ

n that takes
n non-recursive arguments before the first recursive argument:

backn := λgλt1 . . . λtnλr. g r t1 . . . tn
frontn := λgλrλt1 . . . λtn. g t1 . . . tn r
fixμ

n := λs. backn (fixμ (λf. frontn (s (backn f)))).

Example 2 (Merge sort). Assume a type A with a comparison function ≤: A→
A → Bool, a function merge : List∞A → List∞A → List∞A which merges two
ordered lists into an ordered output list and a function split : ∀ı. ListıA→ ListıA×
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ListıA which splits a list into two parts of roughly the same size. The type of split
expresses that none of the output lists is bigger than the input. We can encode
merge sort msorta as for non-empty lists consa as in Fω̂ as follows:

msort : ∀ı. A→ ListıA→ List∞A
msort := fixμ

1 λmsortλaλxs . match xs with
nil �→ cons a nil
cons b l �→ let (as , bs) = split l

in merge (msort a as) (msort b bs)

The recursive calls to msort are legal because of the typing of split. Indeed, we
can assign the following types:

msort : A→ Listı A→ List∞ A
a, b : A
xs : Listı+1 A
l : Listı A
as , bs : Listı A

The termination of msort depends on the fact that split is non size-increasing.
This information could have been established by other means than typing, e. g.,
by a term ordering as usual for termination of term rewriting systems. However,
for the generic programs we consider in the next section, the typing will be
essential for termination checking.

3 A Framework for Generic Programming with Sized
Types

Hinze [25] describes a framework for generic programming which is later ex-
tended by Hinze, Jeuring, and Löh [30] and implemented in Generic Haskell
[29]. In this framework, both types and values can be constructed by recursion
on some index type. The behavior is only specified for the type and constructor
constants like Int, 1, + and ×, and this uniquely defines the constructed type or
value. In the following we propose an extension by sized types, sized polytypic
programming, and demonstrate its strength by giving termination guarantees for
Hinze’s generalized tries [24].

Observe the following typographic conventions:

Capital Type〈A〉 a type Type indexed by type A
UPPERCASE TYPE〈κ〉 the kind TYPE of type Type

indexed by kind κ of type A
lowercase poly〈A〉 a polytypic program poly instantiated at type A
Capital Poly〈κ〉 the polykinded type Poly of program poly

instantiated at kind κ of type A
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3.1 Type-Indexed Types

In generic programming as proposed by Hinze, Jeuring, and Löh [30], one can
define a family Type〈A〉 indexed by another type A. For instance, one can define
the type Map〈A〉V of finite maps from A to V generically for all index types
A, by analyzing the structure of A. To this end, one specifies what Map〈A〉
should be for base types A0 and for the standard type constructors, e. g., + and
×. Then, Map〈A〉 is computed for a specific instance of A, where recursion is
interpreted as the infinite unfolding. We differ from this setting in that we deal
with inductive types instead of recursive types, thus, in our case, Map〈A〉 for an
inductive type A will be itself an inductive type. In general, a type-indexed type
Type〈A〉 will obey the following laws:

Type〈C〉 = user-defined for C ∈ {1,+,×, Int,Char, . . . }
Type〈X〉 = X
Type〈λXF 〉 = λX.Type〈F 〉
Type〈F G〉 = Type〈F 〉 Type〈G〉
Type〈μκ〉 = μ?

What should the kind index to μ be in the last equation? We can answer this
question if we look at the kind TYPE〈κ〉 of a type-indexed type Type〈F 〉. (Actu-
ally, the term constructor-indexed constructor would be more appropriate, but
we stick to the existing terminology.) The kind TYPE〈κ〉 depends on the kind
κ of constructor F . The given equations for abstraction and application dictate
the following laws for function kinds.

TYPE〈κ1
p→ κ2〉 = TYPE〈κ1〉 p→ TYPE〈κ2〉

The kind TYPE〈∗〉 has to be chosen such that Type〈C〉 : TYPE〈Σ(C)〉 for all
basic type constructors C ∈ Σ. (Of course, Type〈C〉 can be undefined for some
C, typically for C = → and C = ∀κ.) For instance, the kind MAP〈κ〉 for the
type of finite maps Map〈F : κ〉 is defined by MAP〈∗〉 = ∗ +→ ∗. We can now
complete the construction law for types indexed by inductive types.

Type〈μκ〉 = μTYPE〈κ〉

Remark 1. Note that the presence of polarities restricts the choices for Type〈C〉.
However, if index types are constructed in a signature without polymorphism
and function space, as it is usual in the generic programming community, all
function kinds are covariant and we do not have to worry about polarities.

We extend the framework to sized types by giving homomorphic construction
rules for everything that concerns sizes:

TYPE〈ord〉 = ord

Type〈s〉 = s
Type〈∞〉 = ∞
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Theorem 1 (Well-kindedness of type-indexed types). Let Σ be a signa-
ture of constructor constants. If Type〈C〉 : TYPE〈κ〉 for all (C : κ) ∈ Σ, and
X1 :p1κ1, . . . , Xn :pnκn 
 F : κ, then X1 :p1TYPE〈κ1〉, . . . , Xn :pnTYPE〈κn〉 

Type〈F 〉 : TYPE〈κ〉.
Proof. By induction on the kinding derivation.

Example Finite Maps Via Generalized Tries. Hinze [24] defines generalized tries
Map〈F 〉 by recursion on F . In particular, Map〈K :∗〉V is the type of finite maps
from domain K to codomain V . The following representation using type-level λ
can be found in his article on type-indexed data types [30, page 139].

MAP〈∗〉 := ∗ +→ ∗
Map〈Int〉 := λV. efficient implementation of Int→fin V
Map〈Char〉 := λV. efficient implementation of Char →fin V
Map〈1〉 := λV. 1 + V
Map〈+〉 := λFλGλV. 1 + F V ×GV
Map〈×〉 := λFλGλV. F (GV )

Well-kindedness of these definitions is immediate, except maybe for Map〈×〉
which must be of kind (∗ +→ ∗) +→ (∗ +→ ∗) +→ (∗ +→ ∗). For Map〈+〉 we have
used the variant of spotted products (or lifted products) which Hinze mentions
in section 4.1 of his article [24]. This way we avoid that certain empty tries have
an infinite normal form (see [24, page 341]) which requires lazy evaluation. The
constructor for finite maps over strings can now be computed as follows:

Map〈λı. Listı Char〉
= Map〈λı. μı

∗ λX. 1 + Char ×X〉
= λı. μı∗+→∗λX.Map〈+〉Map〈1〉 (Map〈×〉Map〈Char〉X)
= λı. μı∗+→∗λXλV. 1 + (1 + V )×Map〈Char〉 (X V )

The matching kind is

MAP〈ord +→ ∗〉 = ord +→ ∗ +→ ∗.
Note that the type Map〈λı. Listı Char〉 of sized, string-indexed tries involves a
higher-kinded inductive type μ∗+→∗. However, it is not heterogeneous, but homo-
geneous, meaning that X is always applied to the variable V . Thus, we have the
option to simplify it using λ-dropping and obtain an ordinary inductive type:

Map〈λı. Listı Char〉 = λıλV. μı
∗ λY. 1 + (1 + V )×Map〈Char〉Y )

It is easy to interpret this type as a trie for strings with prefix p: The trie is
either “()” (first 1), meaning that strings with this prefix are undefined in the
finite map, or it is a pair of maybe a value v (the value mapped to p) and of one
trie for strings with prefix p · c for each c ∈ Char. A trie for strings with empty
prefix is then a finite map over all strings.
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3.2 Type-Indexed Values

The key ingredient to generic programming are type-indexed values, meaning,
programs poly〈F 〉 which work for different type constructors F but are uniformly
(generically) constructed by recursion on F . Again, the user supplies the desired
behavior poly〈C〉 on base types and type constructors C, and the polytypic
program poly〈F 〉 is then constructed by the following laws:

poly〈C〉 = user-defined
poly〈X〉 = x
poly〈λXF : κ1 → κ2〉 = λx. poly〈F 〉
poly〈F G〉 = poly〈F 〉 poly〈G〉
poly〈μκ〉 = fix

(This definition is sensible if we consider all bound variables in F distinct and
require poly〈C〉 to be a closed expression.)

Hinze [27] has observed that type-indexed values poly〈F :κ〉 have kind-indexed
types Poly〈F, . . . , F : κ〉 : ∗ with possibly several copies of F , obeying the fol-
lowing laws:

Poly〈A1, . . . , An : ∗〉 = user-defined
Poly〈F1, . . . , Fn : κ

p→ κ′〉 = ∀G1 :κ . . .∀Gn :κ.
Poly〈G1, . . . , Gn : κ〉 → Poly〈F1 G1, . . . , Fn Gn : κ′〉

For example, three copies of F are required for a generic definition of zipping
functions [27, Sect. 7.2].

Hinze works in a framework where only covariant type constructors serve as
indices, i. e., p = + in the above equation. However, with polarity information
at hand, it is sometimes useful to depart from Hinze’s scheme. One example is
a generic map function (monotonicity witness, functoriality witness, resp.):

GMap〈A,B : ∗〉 := A→ B

GMap〈F,G : κ −→ κ′〉 := ∀X∀Y. GMap〈Y,X : κ〉 → GMap〈F X, GY : κ′〉
GMap〈F,G : κ

p→ κ′〉 := ∀X∀Y. GMap〈X,Y : κ〉 → GMap〈F X, GY : κ′〉
for p ∈ {+, ◦}

With this refined definition of kind-indexed type, a generic map function is
definable which also works for data types with embedded function spaces, e. g.,
Tree.

gmap〈1 : ∗〉 := λu. u

gmap〈+ : ∗ +→ ∗ +→ ∗〉 := λfλgλs. case s (λx. inl (fx)) (λy. inr (g y))
gmap〈× : ∗ +→ ∗ +→ ∗〉 := λfλgλp. (f (fst p), g (snd p))
gmap〈→ : ∗ −→ ∗ +→ ∗〉 := λfλgλhλx. g (h (f x))

For the main example we want to consider, generic operations for tries, types
Poly〈F : κ〉 indexed by a single constructor F are sufficient, hence, we will restrict
the following development to this case.
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In Fω̂, there is a second base kind, ord. Since ordinals are only used to increase
the static information about programs, not to carry out computations, the oc-
currence of kind ord in a kind which indexes a type should not alter this type.
Thus, the following laws are sensible:

Poly〈A :∗〉 = user-defined
Poly〈F :ord

p→ κ〉 = ∀ı :ord.Poly〈F ı :κ〉
Poly〈F :κ1

p→ κ2〉 = ∀G :κ1.Poly〈G :κ1〉 → Poly〈F G :κ2〉

Kinds suitable as indexes must fit into the grammar: κ ::= ∗ | ord p→ κ | κ1
p→ κ2.

Size expressions appearing in the type A of a generic program poly〈A〉 should
not influence the program. We only consider types A which are normalized and
contain size expressions only as index to an inductive type. Then we can refine
the generation laws for type-indexed programs as follows:

poly〈C〉 = user-defined
poly〈X〉 = x
poly〈λıF : ord→ κ〉 = poly〈F 〉
poly〈λXF : κ1 → κ2〉 = λx. poly〈F 〉 where κ1 = ord
poly〈F G〉 = poly〈F 〉 poly〈G〉
poly〈μa

κ〉 = fixμ
n for some n

In the last equation, n has to be chosen such that the nth argument to the
resulting recursive function is of an inductive type whose size is associated to
a. The choice of n depends on the definition of the type Poly〈A :∗〉 of the type-
indexed program given by the user. For the example of map lookup functions
(see below), the polytypic program is of type

Lookup〈K :∗〉 := ∀V. K → Map〈K〉V → 1 + V.

Hence, we set n = 0, because the recursive argument of the function that is
generated in case K = μaF is the first one, of type K. In the example of finite
map merging to follow, we will have the type

Merge〈K :∗〉 := ∀V. BinV → Bin (Map〈K〉V )

with BinV = V → V → V . Since Map〈K〉 is an inductive type for inductive K,
the second argument is the recursive one and we have n = 1.

Example Finite Map Lookup. In the following, we implement Hinze’s generic
lookup function in our framework. The definitions on the program level are
unchanged, only the types are now sized, and we give termination guarantees.
We use the bind operation �= for the Maybe monad λV. 1 + V . It obeys the
laws (inl() �= f) −→ inl() and (inr v �= f) −→ f v.
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Lookup〈K :∗〉 := ∀V. K → Map〈K〉V → 1 + V

lookup〈1〉 : ∀V. 1 → 1 + V → 1 + V
lookup〈1〉 := λkλm.m

lookup〈+〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A + B → 1 + (Map〈A〉V )× (Map〈B〉V )→ 1 + V

lookup〈+〉 := λlaλlbλabλtab. tab �= λ(ta, tb).
match ab with

inl a �→ la a ta
inr b �→ lb b tb

lookup〈×〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A×B → Map〈A〉 (Map〈B〉V )→ 1 + V

lookup〈×〉 := λlaλlbλ(a, b)λtab. la a tab �= λtb. lb b tb

All these definitions are well-typed, which is easy to check since there are no
references to sizes.

Example Lookup For List-Shaped Keys. The previous definitions determine the
instance of the generic lookup function for the type constructor of lists.

lookup〈List〉
: Lookup〈List〉
: ∀ı∀K :∗. Lookup〈K〉 → Lookup〈Listı K〉
: ∀ı∀K :∗. Lookup〈K〉 → ∀V. ListıK → Map〈ListıK〉 → 1 + V
: ∀ı∀K :∗. Lookup〈K〉 → ∀V. ListıK → (μıλY. 1 + (1 + V )× Y )→ 1 + V

lookup〈List〉
= lookup〈λıλK. μıλX. 1 + K ×X〉
= λlookupK . fixμ

0 λlookup. lookup〈+〉 lookup〈1〉 (lookup〈×〉 lookupK lookup)
= λlookupK . fixμ

0 λlookupλlλm.m�= λ(n, c).
match l with

nil �→ n
cons k l′ �→ lookupK k c�= λm′. lookup l′ m′

Note that the type of lookup〈List〉 mentions the size variable ı twice, as index to
both inductive arguments. This makes sense, since the length of the search keys
determines the depth of the trie. Welltypedness can be ensured on an abstract
level:

lookupK : Lookup〈K〉
lookup : Lookup〈ListıK〉
lookup〈×〉 lookupK lookup =: r : Lookup〈K × ListıK〉
lookup〈+〉 lookup〈1〉 r =: s : Lookup〈1 + K × ListıK〉

: Lookup〈Listı+1K〉
fixμ

0 λlookup. s : Lookup〈ListıK〉
Finally, the type Lookup〈ListıK〉 is valid for recursion with fixμ

0 , according to
criterion given in Sect. 2.
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Trie Merging. Hinze [24] presents three elementary operations to construct finite
tries: empty, single, and merge. In the following we replay the construction of
merge in our framework, since it exhibits a very interesting recursion scheme.

First we define the type BinV for binary operations on V and a function comb
which lifts a merging function for V to a merging function for 1 + V .

Bin : ∗ ◦→ ∗
Bin := λV. V → V → V

comb : ∀V. (V → V → V ) → (1 + V → 1 + V → 1 + V )
comb := λcλm1λm2. match (m1,m2) with

(inl(),_) �→ m2
(_, inl()) �→ m1
(inr v1, inr v2) �→ inr (c v1 v2)

The following definitions determine a generic merging function.

Merge〈K :∗〉 := ∀V. BinV → Bin (Map〈K〉V )

merge〈1〉 : Merge〈1〉
merge〈1〉 := comb

merge〈+〉 : ∀A.Merge〈A〉 → ∀B.Merge〈B〉 → ∀V.BinV →
Bin (1 + Map〈A〉V ×Map〈B〉V )

merge〈+〉 := λmaλmbλc. comb
λ(ta1, tb1)λ(ta2, tb2). (ma c ta1 ta2, mb c tb1 tb2)

merge〈×〉 : ∀A.Merge〈A〉 → ∀B.Merge〈B〉 → ∀V.BinV →
Bin (Map〈A〉 (Map〈B〉V ))

merge〈×〉 := λmaλmbλc. ma (mb c)

The instance for list tries can be computed as follows:

merge〈List〉
: Merge〈List〉
: ∀ı∀K.Merge〈K〉 → Merge〈ListıK〉
: ∀ı∀K. (∀V.BinV → Bin (Map〈K〉V )) →

∀W.BinW → Bin (Map〈ListıK〉W )

merge〈List〉
= merge〈λıλK. μıλX. 1 + K ×X〉
= λmergeK . fixμ

1 λmerge.merge〈+〉merge〈1〉 (merge〈×〉mergeK merge)
= λmergeK . fixμ

1 λmergeλc. comb
λ(mv1, t1)λ(mv2, t2). (comb c mv1 mv2, mergeK (merge c) t1t2)

[= λmergeKλc. fixμ
0 λmerge. comb

λ(mv1, t1)λ(mv2, t2). (comb c mv1 mv2, mergeK merge t1 t2)]

In the last step, we have decreased the rank of recursion by λ-dropping. Surpris-
ingly, recursion happens not by invoking merge on structurally smaller
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arguments, but by passing the function itself to a parameter, mergeK . Here,
type-based termination reveals its strength; it is not possible to show termination
of merge〈List〉 disregarding its type. With sized types, however, the termination
proof is again just a typing derivation, as easy as for lookup〈List〉. We reason
again on the abstract level:

mergeK : Merge〈K〉
merge : Merge〈ListıK〉
merge〈×〉mergeK merge =: r : Merge〈K × ListıK〉
merge〈+〉merge〈1〉 r =: s : Merge〈1 + K × ListıK〉

: Merge〈Listı+1K〉
fixμ

1 λmerge. s : Merge〈ListıK〉
The type Merge〈ListıK〉 is admissible for recursion on the second argument (the
first argument is of type BinV ): The whole type is of shape ∀V.BinV → μıF →
μıF → μıF for some F which does not depend on the size variable ı. Hence, the
type has the required shape.

Merging Bushy Tries. An even more dazzling recursion pattern is exhibited by
the merge function for “bushy” tries, i. e., finite maps over bushy lists.

Bush : ord +→ ∗ +→ ∗
Bush := λı. μı∗+→∗λXλK. 1 + K ×X (X K)

Map〈Bush〉 : ord +→ (∗ +→ ∗) +→ (∗ +→ ∗)
Map〈Bush〉 = λı. μı

(∗+→∗) +→(∗+→∗)λXλFλV. 1 + (1 + V )× F (X (X F )V )

The merge function for bush-indexed tries can be derived routinely:

merge〈Bush〉
= merge〈λı. μı λXλK. 1 + K ×X (X K)〉
= fixμ

2 λmergeλmergeK .
merge〈+〉merge〈1〉 (merge〈×〉mergeK (merge (merge mergeK )))

= fixμ
2 λmergeλmergeK
λc. comb λ(mv1, t1)λ(mv2, t2).

(comb c mv1 mv2, mergeK (merge (merge mergeK ) c) t1 t2)

The recursion pattern of merge〈Bush〉 is adventurous. Not only is the recursive
instance merge passed to an argument to the function mergeK , but also this
function is modified during recursion: it is replaced by (merge mergeK ), which
involves the recursive instance again! All these complications are coolly handled
by type-based termination!

4 Conclusions and Related Work

We have seen a polymorphic λ-calculus with sized higher-order data types, Fω̂,
in which all programs are terminating. This calculus is strong enough to cer-
tify termination of arbitrary instances of generic programs, provided the generic
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programs themselves do not use unrestricted recursion. A systematic method
to certify termination using the framework of sized polytypic programming has
been sketched. The approach of type-based termination we have seen can han-
dle convoluted recursion patterns that go far beyond schemes of iteration and
primitive recursion stemming from the initial algebra semantics of data types.
The recursion patterns of many examples for generic programming [28, 29] can
be treated in Fω̂, and I am still looking for sensible examples that exceed the
capabilities of Fω̂. It seems promising to pursue this approach further.

In this article, we have not addressed the problem of type-checking sized types.
However, some solutions exist in the literature: Pareto [44], Barthe, Gregorie, and
Pastawski [9], and Blanqui [15] have given constraint-based inference algorithms
for sized types.

System Fω̂ is strongly normalizing [3], as is its non-polymorphic predecessor
λ̂ [8]. More suitable for functional programming seems an interpretation of
types as sets of closed values or finite observations—this, however, is future
work. Hughes, Pareto, and Sabry [31] have presented a similar calculus, with
ML-polymorphism, and given it a domain-theoretic semantics. In my view, this
semantics has the flaw that it introduces undefinedness (⊥), only to show later
that no well-typed program is undefined. I would like to find a tailored semantics
that can handle infinite objects (coinductive types) but speaks of neither strong
normalization nor undefinedness.

Related Work on Termination. The research on size-change termination (SCT),
which is lead by Neil Jones, has received much attention. Recently, Sereni and
Jones have extended this method to higher-order functions [48]. Is SCT able
to check termination of the generic programs presented in this work? No, be-
cause SCT analyses only the untyped program, and without typing information
termination of, e. g., mergeList cannot be established, as explained in the intro-
duction (mergeList diverges on ill-typed arguments). Neither can the methods
developed for higher-order term rewriting systems, as for instance bundled in
the tool AProve [19], be applied to the generic program, since they disregard
typing. (According experiments were carried out by the author in Fall 2005.)

Related Work on Generic Programming. We have considered generic program-
ming in the style of Generic Haskell which has been formulated by Hinze, Jeur-
ing, and Löh [23, 25, 27, 28, 29, 30]. Another philosophy of generic programming
is rooted in in the initial algebra semantics for data types (see the introductory
text by Backhouse, Jansson, Jeuring, and Meertens [7]). Jansson and Jeuring
[33, 34, 35] present PolyP, a polytypic extension for Haskell which gives more
control in defining polytypic functions, for instance, “recursion” is a type con-
structor one can treat in a clause of the polytypic program, whereas in Generic
Haskell and our extension to sized types, recursion on types is always mapped
to a recursive program.

Pfeifer and Rueß [45] study polytypic definitions in dependent type theory
where all expressions are required to terminate. Termination is achieved by lim-
iting recursion to the elimination combinators for inductive types, which cor-
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respond to the scheme of primitive recursion or paramorphism. This excludes
many interesting generic programs we can treat, like merging of tries, that do
not fit into this scheme. Benke, Dybjer, and Jansson [10] extend the approach
of Pfeifer and Rueß to generic definition over inductive families. They also re-
strict recursion to iteration and primitive recursion. Altenkirch and McBride [5]
pursue a similar direction; they show that generic programming is dependently
type programming with tailored type universes. They construct a generic fold for
members of the universe of Haskell types, which allows to define generic iterative
functions (catamorphisms).

Norell and Jansson [39] exploit the type class mechanism to enable polytypic
programming in Haskell without language extensions. They also present an ap-
proach to generic programming using template Haskell [40]. Finally, Norell [38]
describes an encoding of generic programs in dependent type theory. None of
these works considers the problem of termination of the generated programs.

Generic programming within an intermediated language of a typed compiler
has been studied under the names intensional polymorphism and intensional
type analysis by Harper and Morrisett [21] and Crary, Weirich, and Morrisett
[17]. The gist of this approach is to have a type case construct on the level of
programs, in later developments even also on the level of types. This way, cer-
tain compiler optimizations such as untagging and unboxing can be performed
in a type-safe way. Crary and Weirich [16] even enrich the kind language by
inductive kinds and the constructor language by primitive recursion. Saha, Tri-
fonov, and Shao [47] consider intensional analysis of polymorphism. To this end,
they introduce polymorphic kinds. For our purposes, this would be contrapro-
ductive since a language with two impredicative universes on top of each other
is non-normalizing (Girard’s paradox).

Acknowledgments. The idea to apply type-based termination to generic program-
ming was born in discussions with Ralph Matthes. Thanks to the anonymous
referees for helpful comments which helped to improve the presentation.
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Abstract. Most previous work on the semantics of higher-order pro-
grams with local state involves complex storage modeling with pointers
and memory cells, complicated categorical constructions, or reasoning
in the presence of context. In this paper we show how a relatively sim-
ple relational semantics can be used to avoid these complications. We
provide a natural relational semantics for a programming language with
higher-order functions. The semantics is purely compositional, with all
contextual considerations completely encapsulated in the state. We show
several equivalence proofs using this semantics based on examples of
Meyer and Sieber (1988).

1 Introduction

Reasoning about higher-order programs with local state is an important and dif-
ficult problem that has garnered much attention over the years. Most previous
work involves complex storage modeling with pointers and memory cells or com-
plicated categorical constructions to capture the intricacies of programming with
state. Reasoning about the equality of such programs typically involves the no-
tion of contextual or observable equivalence, where two programs are considered
equivalent if either can be put in the context of a larger program and yield the
same value. Pitts [1] explains that these notions are difficult to define formally,
because there is no clear agreement on the meaning of program context and ob-
servable behavior. A common goal is to design a semantics that is fully abstract,
where observable equivalence implies semantic equivalence, although this notion
makes the most sense in a purely functional context (see for example [2, 3]).

Work in modeling local state dates back over thirty years. Early seminal work
by Meyer and Sieber [12] used the store model of Halpern-Meyer-Trakhtenbrot to
prove equivalence of ALGOL procedures with no parameters. Their goal was to
formalize informal arguments about the contextual equivalence of programs with
block structure. One of the most important contributions of their work was the
introduction of seven examples that exemplify the subtleties in reasoning about
programs with local state. These classical examples have become the preferred
standard against which to evaluate models that address the problem.

Much early attention focused on the use of denotational semantics to model
a set of storage locations [4, 5, 6, 7]. The inability to prove some simple program
equivalences using traditional denotational techniques led several researchers to
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take a categorical approach [8, 9, 10]. See [11] for more information regarding the
history of these approaches.

More recently, several researchers have investigated the use of operational
semantics to reason about ML programs with references. While operational se-
mantics can be easier to understand, their use makes reasoning about programs
more complex. Mason and Talcott [13, 14, 15] considered a λ-calculus extended
with state operations. By defining axioms in the form of contextual assertions,
Mason and Talcott were able to prove the equivalence of several examples of
Meyer and Sieber. Pitts and Stark [1, 16, 17, 18] also use operational semantics.

Others have used game semantics to reason about programs with local state
[19, 20, 21, 22]. Several full abstraction results have come from using game se-
mantics to represent languages with state and higher-order constructs.

In this paper, we wish to explore the extent to which relational seman-
tics can be used to avoid intricate memory modeling, category theory, and
the explicit use of context in program equivalence proofs. Relational semantics
combine the expressiveness of denotational semantics with the more intuitive un-
derstanding of operational semantics. Our objective is to define a notion of local
variable scoping, along with a purely compositional semantics based on binary
relations, such that all contextual considerations are completely encapsulated in
the semantics.

We provide a natural relational semantics for a programming language with
higher-order functions in Section 3. This treatment contrasts sharply with other
contemporary functional or denotational approaches (see for example [23, 24, 25]).
One distinguishing aspect of our approach is that functions and data are not con-
flated; we distinguish between expressions that can denote values and those that
can denote programs. This allows us to give a development that aligns more
closely with the procedural view of computation (computation as state manip-
ulation) without abandoning the functional view (computation as evaluation).
This is useful even for languages such as ML that are nominally functional. Our
semantics allows destructive updates, but no aliasing.

Fully compositional relational semantics have been quite popular for first-
order imperative programs (see for example [26] and references therein), but
to our knowledge this is the first attempt to provide semantics in this style to
higher-order programs.

We are ultimately interested in moving toward a more axiomatic treatment
of program equivalence and partial correctness for higher-order programs in the
style of Hoare logic or Kleene algebra with tests [27]. Our compositional pro-
gram operators are based on the Kleene algebra operators (see [27, 26]), which
have well-understood relational models and are simpler and more amenable to
axiomatic treatment than conventional programming constructs. We take some
initial steps in this direction in Section 4, in which we prove six of Meyer and
Sieber’s seven examples using relational semantics. The only example we cannot
handle is the one involving aliasing, since our semantics does not treat aliasing
at present.
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2 Syntax

2.1 Types

A type is either a base type denoting an individual element of the domain of
computation or a functional type of the form s → t, where s and t are types or
void. The notation void is to accommodate methods with no arguments and/or
no return value, but it is not itself a type. We assume the existence of infinitely
many variables of each type.

Expressions are either value expressions or program expressions. These two
sets of expressions are disjoint and are defined by mutual induction.

2.2 Value Expressions

Value expressions must be well-typed. Let Σ be a first-order signature consisting
of a collection of function, relation, and constant symbols. A value expression is
either

(i) a variable,
(ii) a symbol of the signature Σ,
(iii) a λ-term of the form λx.p, λx.p; e, λ().p, or λ().p; e, where x is a variable,

p is a program expression, and e is a value expression,
(iv) an application P (d), where P is a value expression of functional type with

non-void return type and d is a value expression of the appropriate input
type for P ,

(v) an application P (), where P is a value expression of functional type with
non-void return type and void input.

Evaluation of an expression of the form (i)–(iii) is immediate and without side
effects. In (iii), the forms λx.p and λ().p are for methods with no return value (or
return value void) and the forms λx.p; e and λ().p; e are for methods with return
value e. The forms λ().p and λ().p; e are parameterless methods. In general, the
process of evaluating a value expression (iv) or (v) can have side effects, which
manifest themselves as a change of state.

2.3 Program Expressions

Program expressions differ from value expressions in that they do not yield a
value. However, their execution generally results in a change of state.

Syntactically, a program expression is either

(i) an assignment x := d, where x is variable and d is a value expression of the
same type,

(ii) a test R(d), where R is a relation symbol of the signature Σ and d is a
value expression of the appropriate input type for R,

(iii) a nondeterministic choice p + q, where p and q are program expressions,
(iv) a sequential composition p ; q, where p and q are program expressions,
(v) an iteration p∗, where p is a program expression,
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(vi) an application P (d), where P is a functional expression with void return
type and d is a value expression of the appropriate input type for P ,

(vii) an application P (), where P is a functional expression with void input and
return type.

As mentioned, λx.p, λx.p; e, λ().p, and λ().p; e are only value expressions, not
program expressions. The application (λx.p)(d) is a program expression, but the
application (λx.p; e)(d) is a value expression.

In the presence of higher-order functions, we can encode let expressions by a
standard encoding:

let x = d in p end = (λx.p)(d)
let x = d in p; e end = (λx.p; e)(d).

3 Relational Semantics

The domain of computation is a first-order structure A of signature Σ. Each sym-
bol of Σ is interpreted as a function, relation, or constant of A of the appropriate
type.

3.1 Closure Structures

Before we can give the semantics, we must define what we mean by a state of
execution. Informally, a state is a structure that contains all the variable/value
bindings that have been created up to that point, along with specific rules for
lookup, new binding creation, and destructive update. We will call these closure
structures. Programs will be interpreted as relations on closure structures. The
definition is directly motivated by the operational semantics of ML, Scheme,
and other languages with static binding, in which the environment of a method
declaration is saved with the compiled method for the purpose of evaluating free
variables when the method is called; see for example [28, Ch. 10].

Formally, a closure structure is a triple σ = (T, α, s), where T is a tree, α is
a reference to a node in T , and s is a stack of references to nodes in T .

Each node of T (except the root) is an object containing

– a binding of the form x = c, where x is a variable and c is a value of the
same type, and

– a reference to its parent in T .

Distinct nodes are different objects, but may represent the same binding and
may have the same parent. We use α, β, . . . to refer to nodes of T and σ, τ, . . .
to refer to closure structures.

Every node α of T uniquely determines an environment, which is the list
consisting of α and all its ancestors back to the root of T . We denote this envi-
ronment also by α. This slight abuse of notation should cause no confusion, since
there is a one-to-one correspondence between nodes in T and the environments
they determine.
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It is important to note that we have not defined an environment as a list
of bindings. As distinct nodes can represent the same binding, so can distinct
environments represent the same list of bindings.

The root of T , denoted ε, represents the empty environment with no bindings.
It is the terminal node of all environments in T .

The empty closure structure is (ε, ε, [ ]), where ε is the root and [ ] is the
empty stack.

The environment α in a closure structure σ = (T, α, s) is called the active
environment of σ and is denoted actv(σ). In Section 3.4 below, we will describe
the operations of lookup and rebinding on closure structures. These operations
are always performed in the active environment.

The set of closure structures is denoted CS.

3.2 Values

The values c occurring in bindings are either

(i) elements and functions of the domain of computation A, or
(ii) pairs (t, β), where t is a λ-expression of the form λx.p, λx.p; e, λ().p, or

λ().p; e and β is a reference to a node in T .

Values of class (i) are called intrinsic values, and those of class (ii) are called
closures.

A closure (t, β) is created when the expression t is evaluated. The reference β
is included in order to recall the environment that was active at the time of the
evaluation. That environment will be used in future calls to interpret the free
variables of t. Although the bindings in this environment may change over the
lifetime of the object due to variable assignments, the reference β does not.

Symbols f, g, . . . range over intrinsic functions. Since we have postulated Σ
as a first-order signature, closures, which are of functional type, cannot be ar-
guments of intrinsic functions. All higher-order functions must be constructed
using λ-expressions.

The set of values is denoted Val.

3.3 Accessibility

A node of a closure structure is accessible if it is reachable starting from the active
environment or from a reference on the stack and following parent references or
references β in closures (t, β). Note that any descendant of an inaccessible node
is inaccessible. Two closure structures are considered equivalent if their accessi-
ble substructures are isomorphic; that is, if there is a one-to-one correspondence
between accessible nodes of their trees and between their stack entries and ac-
tive environments that preserves stack order and all reference relationships and
binding values (environment references in closures are mapped appropriately un-
der the isomorphism). Equivalence modulo accessibility can be viewed as a kind
of mathematical garbage collection, although we do not postulate any explicit
mechanism for garbage collection.
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The purpose of the stack is to ensure the persistence of nodes across compu-
tations in which those nodes might otherwise become inaccessible. We will give
a more precise explanation when we give the relational semantics below.

3.4 Operations on Closure Structures

Our relational semantics is defined in terms of the following low-level operations
on closure structures.

If x is variable, c is a value, and α is an environment in σ, then x = c : α
denotes the environment obtained by creating a new node with binding x = c
and prepending it to α. Whenever this occurs, a reference to α is available on
top of the stack of σ, along with a reference to γ in the case c is a closure (t, γ).
These references are popped (or just the reference to α, if c is an intrinsic value)
and a reference to the newly created node is pushed onto the stack.

If σ is a closure structure and β is an environment in σ, then β + σ denotes
the result of popping β off the stack (it will always be there when this operation
is applied), pushing the current active environment on the stack, and making
β the new active environment. Thus we can think of this operation simply as
switching the active environment with the environment on top of the stack.

These two operations are most commonly used in tandem to create a new
binding. In this case, (x = c : α)+σ denotes the closure structure obtained from
σ by creating a new node with binding x = c, prepending this node to α, then
making this the new active environment. Before this operation, references to α
and γ if c is a closure (t, γ) are available on top of the stack. In the special case in
which α = actv(σ), we abbreviate this by (x = c) + σ. The cumulative effect on
the stack is to pop one or two elements, depending on whether c was an intrinsic
value or a closure, respectively, and pushing the old active environment.

All evaluation of and assignment to variables is done in actv(σ), the active
environment of σ. When evaluating a variable x, the value is the one bound to
the first (most recently bound) occurrence of x in actv(σ). This value is denoted
σ(x). If x is not bound in actv(σ), then σ(x) is undefined. When assigning to a
variable x, we destructively rebind the first occurrence of x in actv(σ) to its new
value. It is important to note that this is done destructively, not functionally:
the list of nodes in actv(σ) is not changed, but only the value in the binding
of one of the nodes. We denote the result of rebinding x to the new value a in
closure structure σ by σ[x/a]. In addition, if a is a closure (t, β), then the stack
is popped; in this case the top element will always be β. If x is not bound in
actv(σ), the rebinding operator [x/a] has no effect.

In real life, any attempt to evaluate or assign to an undefined variable (one
that is not in the domain of the active environment) would result in a runtime
error. The relational semantics to be given below will ensure that there will be
no tuple in the relation corresponding to the program with that input state.

The value of a term t in the language of A in a closure structure σ is denoted
σ(t) and is defined by structural induction on t in the usual way. Note that σ(t)
is defined iff x is bound in actv(σ) for all variables x occurring in t.
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The operation rest(σ) just restores an earlier active environment by popping
the stack and setting the active environment to that value. The current active
environment is discarded. Curiously, rest(β + σ) is not necessarily equivalent to
σ, since β may no longer be accessible.

We give a skeleton implementation in the appendix for illustrative purposes.
Equivalence of closure structures modulo accessibility could be implemented by
a deep equality test, although care must be taken due to circularities that can
be introduced by destructive updates.

3.5 Semantics

Let CS denote the set of closure structures and Val the set of values. Each value
expression e denotes a binary relation

[e] ⊆ CS× (CS× Val) (1)

relating input states with (output state, value) pairs. We write (σ, (τ, c)) simply
as (σ, τ, c). Each program expression p denotes a binary relation

[[p]] ⊆ CS× CS (2)

relating input states with output states. The definitions are mutually inductive.
Value expressions e also denote binary relations of the form (2), but these are
derived immediately from (1) by projecting out the value:

[[e]]= {(σ, τ ′) | (σ, τ, c) ∈ [e]},

where τ ′ = τ if c is an intrinsic value, and is τ with the stack popped if c is a
closure (t, β). In the latter case, the value that is popped will always be β.

3.6 Value Expressions

(i) If x is a variable, [x] = {(σ, σ′, σ(x)) | σ ∈ CS, σ(x) is defined}, where
σ′ = σ if σ(x) is an intrinsic value, or σ with β pushed on the stack if σ(x)
is a closure (t, β).

(ii) If f is a symbol of the signature of A, [f]= {(σ, σ, fA) | σ ∈ CS}.
(iii) If t is a λ-expression of the form λx.p, λx.p; e, λ().p, or λ().p; e, then

[t]= {(σ, σ′, (t, actv(σ))) | σ ∈ CS},
where σ′ is σ with actv(σ) pushed onto the stack.

(iv) If P is a functional expression with non-void return type and d is a value
expression of the appropriate input type for P , then

[P (d)]= {(σ, rest(τ), b) | ∃ρ ∃υ ∃c ∃(λx.p; e, β)
(σ, ρ, (λx.p; e, β)) ∈ [P], (ρ, υ, c) ∈ [d],
((x = c : β) + υ, τ, b) ∈ [[p]]◦ [e]}

∪ {(σ, τ, f(c)) | ∃ρ (σ, ρ, f) ∈ [P], (ρ, τ, c) ∈ [d]}.
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(v) If P is a functional expression with non-void return type and no parameter,
then

[P ()]= {(σ, rest(τ), b) | ∃ρ ∃(λ().p; e, β)
(σ, ρ, (λ().p; e, β)) ∈ [P], (β + ρ, τ, b) ∈ [[p]]◦ [e]}

∪ {(σ, τ, f()) | (σ, τ, f) ∈ [P]}.
In (iv) and (v), the composition operator in the expression [[p]]◦ [e] is ordinary
binary relation composition; recall that [e] is officially a binary relation. Thus

[[p]]◦ [e]= {(σ, τ, c) | ∃ρ (σ, ρ) ∈ [[p]], (ρ, τ, c) ∈ [e]}.
The definition of [P (d)] in (iv) captures the following operational intuition.

Given an initial execution state described by a closure structure σ, the halting
states and output values are all those obtained as follows. First, we evaluate P
in the state σ to obtain a value, say (λx.p; e, β), consisting of a value expres-
sion λx.p; e and a reference β to the active environment at the time the value
(λx.p; e, β) was created. For instance, if P is a variable, we might previously
have executed an assignment P := λx.p; e, where β was the active environment
at the time of the assignment. We also obtain a new state ρ. In general the new
state may be different, since the evaluation of P might have had side effects.
There may be several possible values and states obtained in this way due to
nondeterminism in the evaluation of P , but the set of all such values and states
we might obtain are given by all elements of [P] with first component σ.

Then we evaluate the argument expression d in the resulting state ρ to obtain
a value c and an output state υ. The stack is used to preserve β across this
computation. We then create a new node with binding x = c, where x is the
formal parameter and c is the argument value just computed, and prepend this
binding to the environment β to obtain the environment x = c : β. This becomes
the new active environment, and the state is now (x = c : β) + υ. We run p; e
starting in this state until it halts, yielding an output state τ and value b. The
stack is then popped to restore the previous active environment, giving rest(τ),
and this is the final output state.

3.7 Program Expressions

(i) [[x := d]] = {(σ, τ [x/a]) | (σ, τ, a) ∈ [d], σ(x) is defined}. Recall that if a
is a closure, then the stack of τ is popped in the formation of τ [x/a].

(ii) [[R(d)]]= {(σ, τ) | (σ, τ, a) ∈ [d], RA(a)}.
(iii) [[p + q]]= [[p]]∪ [[q]].
(iv) [[p ; q]]= [[p]]◦ [[q]].
(v) [[p∗]]=

⋃
n≥0 [[p]]

n = the reflexive transitive closure of [[p]].
(vi) If P is a functional expression with void return type and d is a value ex-

pression of the appropriate input type for P , then

[[P (d)]]= {(σ, rest(τ)) | ∃ρ ∃υ ∃c ∃(λx.p, β)
(σ, ρ, (λx.p, β)) ∈ [P], (ρ, υ, c) ∈ [d],
((x = c : β) + υ, τ) ∈ [[p]]}

∪ {(σ, τ) | ∃ρ ∃f (σ, ρ, f) ∈ [P], (ρ, τ) ∈ [[d]]}.
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(vii) If P is a functional expression with void return type and no parameter,
then

[[P ()]]= {(σ, rest(τ)) | ∃ρ ∃(λ().p, β)
(σ, ρ, (λ().p, β)) ∈ [P], (β + ρ, τ) ∈ [[p]]}

∪ {(σ, τ) | ∃f (σ, τ, f) ∈ [P]}.

The Kleene algebra operators +, ; ,∗ have been used here for mathematical
simplicity. It is well known how to define more conventional programming con-
structs such as conditional branches and while loops from them; see for example
[27, 26].

3.8 Discussion

The shape of the tree can change during a computation, as new nodes can be
added or previously accessible nodes can become inaccessible. This is the reason
we must consider equivalence modulo accessibility. However, there are strong
invariants on the active environment and the stack:

– For [[p]], both the active environment and the stack are preserved from input
to output.

– For [p], the active environment is preserved from input to output. The stack
is also preserved if the output value is intrinsic. Otherwise, if the output value
is a closure (t, β), then the output stack consists of the input stack with a
reference to β pushed on top.

These can be verified by induction on the structure of p.
The stack is needed to preserve active environments across function calls. It

is also needed to preserve β across the evaluation of the argument d in 3.6(iv)
and 3.7(vi) when the function to be applied is a closure (t, β).

One might well ask: In the preservation of β across calls, why is it not necessary
to preserve t as well? This is certainly a legitimate question. The answer is that
it would be necessary in any real implementation. However, here we are only
trying to define a binary input/output relation, and the mathematical definitions
3.6(iv) and 3.7(vi) do this adequately without any explicit mechanism in closure
structures for remembering t.

So why then does the same argument not apply to β? In an earlier version
of this work, we thought that it did. However, there is a subtlety related to our
assumption regarding equivalence modulo accessibility. We must ensure that in
any triple (σ, ρ, (t, β)) ∈ [P], the node β is accessible in ρ and remains accessible
throughout the calculation (ρ, υ, c) ∈ [d]. Otherwise, the subsequent operation
(x = c : β) + υ would not make sense, since the formalism does not keep track
of the correspondence between nodes of ρ and those of υ. The value expression
let x = 0 in λ().x end provides an example of a P for which this is an issue.
The corresponding closure contains a reference to the binding x = 0, but this
node would be inaccessible after the evaluation of the expression if not for the
stack.
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3.9 Eliminating Context

The relational semantics presented in Sections 3.6 and 3.7 captures all contextual
information in the state, allowing us to reason about programs with local state
in a purely compositional way without considering their context. Formally, a
context C[-] is just a program or value expression with a distinguished free
program variable. It is easy to see that for any program expressions p and q,
[[C[p]]] = [[C[q]]] for all contexts C[-] iff [[p]]= [[q]]. For the direction (⇒),
take C[-] to be the trivial context consisting of a single program variable. The
converse follows from an inductive argument, observing that the semantics is
fully compositional, the semantics of a compound expression being completely
determined by the semantics of its subexpressions.

3.10 An Example

Consider the program

let y = 4
f = λz.(y := y + z ; x := y)

in f(1) ; x
end

(3)

where x, y, z, and f are all distinct variables. Translating this program into a
λ-expression, we obtain

λy.(λf.(f(1) ; x) λz.(y := y + z ; x := y)) (4)

First we give an operational account of the computation. Suppose the in-
put state is σ with active environment α. The expression is an application of a
function of type int → int, thus 3.6(iv) applies. We first evaluate the outermost
λ-expression t, which according to 3.6(iii) yields the value (t, α). Then the ar-
gument 4 is evaluated, giving value 4. The formal parameter y is bound to the
argument 4 and prepended to the environment α in the closure, giving a new
active environment y = 4 : α, which we call β. The old active environment α is
saved on the stack.

Next, we look at the body of the λ-expression t, namely

λf.(f(1) ; x) λz.(y := y + z ; x := y).

This is another application, but in this case, the argument is itself a function. We
prepend the binding f = (λz.(y := y + z ; x := y), β) to the active environment
β to get a new active environment γ.

The semantics of the body of the function we are applying is the composition
[[f(1)]] ◦ [x]. For f(1), we look up f in the active environment γ, retrieve its
value (λz.(y := y + z ; x := y), β), prepend the binding z = 1 to β to get
the environment δ, then evaluate the body in the environment δ. Note that
y and z are bound in δ but not f (unless f was bound in the original active
environment of σ). Now [[y := y + z ; x := y]] will rebind x and y in δ to the
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value 5, provided x was bound in the original active environment of σ. If not,
then there is no output state corresponding to σ. Let τ be the resulting state.
The active environment of τ is δ, so τ(x) = τ(y) = 5.

Now x has value semantics [x]= {(σ, σ, σ(x)) | σ ∈ CS}. One of these tuples
is (τ, τ, 5). Composing with [[f(1)]], we get an output state τ and corresponding
value τ(x) = 5. The stack is popped twice, yielding rest(rest(τ)) = σ[x/5] after
garbage-collecting the inaccessible bindings of f and y. The value semantics of
the entire program contains the tuple (σ, σ[x/5], 5).

Now we do the same thing calculationally, using the algebraic properties of
relations and properties of closure structures. Substituting

λy.(λf.(f(1) ; x) λz.(y := y + z ; x := y))

for P and 4 for d in 3.6(iv) and simplifying, we obtain

[λy.(λf.(f(1) ; x) λz.(y := y + z ; x := y)) (4)]
= {(σ, rest(τ), b) | ((y = 4) + σ, τ, b) ∈

[λf.(f(1) ; x) λz.(y := y + z ; x := y)]}.
(5)

Using the same rule with λf.(f(1) ; x) for P and λz.(y := y + z ; x := y) for d,
we obtain

[λf.(f(1) ; x) λz.(y := y + z ; x := y)]
= {(θ, rest(η), b) | (f = (λz.(y := y + z ; x := y), actv(θ))) + θ, η, b)

∈ [[f(1)]]◦ [x]}.
(6)

Now by 3.7(vi) and 3.6(i), we have

[[f(1)]]= {(σ, rest(τ)) | ∃(λx.p, β)
σ(f) = (λx.p, β), ((x = 1 : β) + σ, τ) ∈ [[p]]}

∪ {(σ, σ) | σ(f) exists and is intrinsic}
[x]= {(σ, σ, σ(x)) | σ(x) exists}.

Composing these two relations and using the distributivity of composition over
union, we have

[[f(1)]]◦ [x]= {(σ, rest(τ), rest(τ)(x)) | ∃(λx.p, β) σ(f) = (λx.p, β),
((x = 1 : β) + σ, τ) ∈ [[p]],
rest(τ)(x) exists}

∪ {(σ, σ, σ(x)) | σ(f) exists and is intrinsic, σ(x) exists}.

Combining this with (6) and simplifying yields

[λf.(f(1) ; x) λz.(y := y + z ; x := y)]
= {(θ, rest(η), b) | ∃ρ ∃τ η = rest(τ), b = rest(τ)(x),

ρ = (f = (λz.(y := y + z ; x := y), actv(θ))) + θ,
((z = 1 : actv(θ)) + ρ, τ) ∈ [[y := y + z ; x := y]]}.

(7)
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Using 3.7(i) and (iv),

[[y := y + z]]= {(σ, σ[y/σ(y) + σ(z)]) | σ(y), σ(z) exist}
[[x := y]]= {(σ, σ[x/σ(y)]) | σ(x), σ(y) exist}

[[y := y + z ; x := y]]= [[y := y + z]]◦ [[x := y]]

= {(σ, σ[y/σ(y) + σ(z)][x/σ(y) + σ(z)]) | σ(x), σ(y),
σ(z) exist}.

Using this, the last condition of (7) simplifies to

((z = 1 : actv(θ)) + σ, τ) ∈ [[y := y + z ; x := y]]

⇔ τ = ((z = 1 : actv(θ)) + σ)[y/θ(y) + 1][x/θ(y) + 1]), θ(x), θ(y) exist.

Plugging this into (7) and simplifying further, we obtain

[λf.(f(1) ; x) λz.(y := y + z ; x := y)]
= {(θ, θ[y/θ(y) + 1][x/θ(y) + 1], θ(y) + 1) | θ(x), θ(y) exist}.

This allows us to simplify the last condition of (5):

((y = 4) + σ, τ, b) ∈ [λf.(f(1) ; x) λz.(y := y + z ; x := y)]
⇔ τ = (y = 5) : (σ[x/5]), b = 5, σ(x) exists.

Finally, plugging this back into (5) and simplifying, we obtain the desired result:

[λy.(λf.(f(1) ; x) λz.(y := y + z ; x := y)) (4)]
= {(σ, σ[x/5], 5) | σ(x) exists}.

Although this calculation is much abbreviated, we have used nothing beyond
elementary logic, set theory, and relational algebra, along with a few self-evident
properties of closure structures.

4 Relational Semantics in Program Equivalence Proofs

In this section we prove six of the seven equivalences of Meyer and Sieber [12].
We begin with a general bisimulation result. Let σ, σ̂ be closure structures.

Let f : σ → σ̂ be a function mapping nodes in σ to nodes in σ̂ and stack entries
in σ to stack entries in σ̂. We say that f embeds σ in σ̂ if

– f is one-to-one on both nodes and stack entries,
– f(actv(σ)) = actv(σ̂),
– f preserves stack order,
– f preserves all reference relationships and node labels in the following sense:

• f(parent(α)) = parent(f(α)),
• f(root(σ)) = root(σ̂),
• if i is a stack entry of σ containing a reference to α, then f(i) contains

a reference to f(α),
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• if the node α contains the binding x = c and c is an intrinsic value, then
f(α) contains x = c,

• if the node α contains a binding to a closure x = (t, β), then f(α)
contains x = (t, f(β)).

Thus σ̂ contains an isomorphic copy of σ, possibly with some extra stack entries
and accessible nodes. However, the subtree of σ consisting of nodes accessible
from the active environment is isomorphic to that of σ̂, and this determines all
computational behavior from those input states. This intuition is captured in
the following bisimulation property.

Lemma 1. Suppose f embeds σ in σ̂. Let p be a program expression.

(i) If (σ, τ) ∈ [[p]], then there exist τ̂ and f ′ such that (σ̂, τ̂ ) ∈ [[p]] and f ′

embeds τ in τ̂ .
(ii) If (σ̂, τ̂) ∈ [[p]], then there exist τ and f ′ such that (σ, τ) ∈ [[p]] and f ′

embeds τ in τ̂ .

Moreover, in both cases f and f ′ agree on the stack (recall from Section 3.8 that
the stacks of σ and τ are the same, as are the stacks of σ̂ and τ̂).

Proof. The proof is by induction on p, with the induction hypothesis suitably
strengthened to include [e] for value expressions. We argue (i) for cases 3.7(i)
and (vii) explicitly.

For 3.7(i), suppose (σ, τ) ∈ [[x := a]]. Then there exist ρ and c such that
(σ, ρ, c) ∈ [a], σ(x) exists, and τ = ρ[x/c]. Then σ̂(x) exists, since σ and σ̂ have
isomorphic active environments. By the induction hypothesis on a, there exist
ρ̂ and an embedding f ′ : ρ → ρ̂ such that (σ̂, ρ̂, ĉ) ∈ [a], where ĉ = c if c is an
intrinsic value, and if c is a closure (t, β), then ĉ = (t, f ′(β)). Letting τ̂ = ρ̂[x/ĉ],
we have that f ′ embeds τ in τ̂ and (σ̂, τ̂ ) ∈ [[x := a]].

For 3.7(vii), suppose (σ, τ) ∈ [[P ()]]. Then there exist ρ and υ such that
(σ, ρ, (λ().p, β)) ∈ [P] (say), (β + ρ, υ) ∈ [[p]], and τ = rest(υ). By the in-
duction hypothesis on P , there exist ρ̂ and embedding f ′ : ρ → ρ̂ such that
(σ̂, ρ̂, (λ().p, f ′(β))) ∈ [P]. Form the new closure structure f ′(β)+ ρ̂ and extend
f ′ to an embedding β + ρ → f ′(β) + ρ̂ (the extension is uniquely determined),
which we still denote it by f ′. By the induction hypothesis on p, there exist υ̂
and embedding f ′′ : υ → υ̂ such that (f ′(β) + ρ̂, υ̂) ∈ [[p]]. Defining τ̂ = rest(υ̂),
we have (σ̂, τ̂ ) ∈ [[P ()]] and f ′′ an embedding of τ in τ̂ . �

The first two examples of Meyer and Sieber examine the inability of procedures
to access variables not in scope at the time of their declaration.

Example 1. For a procedure identifier P of type void→ void, x distinct from P ,
and c a constant, the following two programs are equivalent.

let x = c in P () end P ().

Proof. From 3.6(iii) and (iv), after simplification we have

[[let x = c in P () end]]= [[λx.P () c]]

= {(σ, rest(τ)) | ((x = c) + σ, τ) ∈ [[P ()]]}. (8)



42 K. Aboul-Hosn and D. Kozen

Similarly, from 3.7(vii) and 3.6(i), we have

[[P ()]]= {(σ, rest(τ)) | σ(P ) = (λ().p, β), (β + σ, τ) ∈ [[p]]} (9)
∪ {(σ, σ) | σ(P ) exists and is an intrinsic value}.

Substituting (9) in (8) and simplifying, we obtain

[[let x = c in P () end]]

= {(σ, rest(rest(η))) | σ(P ) = (λ().p, β), (β + (x = c) + σ, η) ∈ [[p]]} (10)
∪ {(σ, σ) | σ(P ) exists and is an intrinsic value}.

To show (9) and (10) are equal, it suffices to show that for all ρ, the following
two statements are equivalent:

∃η ρ = rest(rest(η)), (β + (x = c) + σ, η) ∈ [[p]],

∃τ ρ = rest(τ), (β + σ, τ) ∈ [[p]].

This follows directly from Lemma 1 once we have constructing an embedding
β + σ → β + (x = c) + σ. The embedding is the identity on the tree of σ and
maps the stack elements of β + σ to the stack elements of β + (x = c) + σ in
order, but skipping the top element, which is actv((x = c) + σ). �

Example 2. For a procedure identifier P of type void→ void, x distinct from P ,
and c a constant, the following two programs are equivalent.

let x = c
in P () ; u
end

let x = c
in P () ; (x = c) ; u
end

Proof. The equation asserts that the test x = c is redundant after the evaluation
of P (). The proof is similar to that of Example 1. After expanding the definitions
and simplifying, it comes down to showing that if σ(P ) = (λ().p, β), and if (β +
(x = c) + σ, ρ) ∈ [[p]], then ρ(x) = c. This follows from Lemma 1 by constructing
an embedding of β + σ in β + (x = c) + σ, giving a bisimilar computation that
cannot change the value of x. �

The next example demonstrates that the effect of a function does not depend
on the names of the arguments. This is a feature of the call-by-value parameter
passing mechanism.

Example 3. Let x, y, and Q be distinct variables and b, c constants. The following
two programs are equivalent:

let x = b, y = c
in Q(x)(y)
end

let x = c, y = b
in Q(y)(x)
end
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Proof. It suffices to show that both programs are equivalent to Q(b)(c); that is,
this is an instance of when call-by-value and call-by-name (β-reduction) give the
same result. We can do this in stages: to show the first program is equivalent to
Q(b)(c), it suffices to show that

let y = c in Q(x)(y) end = Q(x)(c)
let x = b in Q(x)(c) end = Q(b)(c).

Let us argue the former.
Suppose both Q and x are defined in σ, say σ(Q) = (λz.q; e, β) and σ(x) = b.

To calculate [[let y = c in Q(x)(y) end]], we expand the definition and simplify.
Prepending the binding y = c to actv(σ) and evaluating Q(x) in that environ-
ment, we would get (say)

((z = b : β) + (y = c) + σ, ρ, (λw.p, γ)) ∈ [q; e], (11)

and we wish to apply (λw.p, γ) to y in the active environment of rest(ρ).
The corresponding calculation for [[Q(x)(c)]] starts in state (z = b : β) + σ.

But there is an embedding of this state in (z = b : β) + (y = c) + σ that omits
the top stack element containing the binding y = c. By Lemma 1, we have

((z = b : β) + σ, υ, (λw.p, γ)) ∈ [q; e] (12)

with an embedding f : υ → ρ, and we wish to apply (λw.p, γ) to c in the active
environment of rest(υ). Now f restricted to rest(υ) is not an embedding in rest(ρ),
since the active environment is not mapped correctly; but it is an embedding in
rest(rest(ρ)). Moreover, the stack sizes of rest(υ) and rest(rest(ρ)) are the same,
so the embedding is an isomorphism. This says that rest(rest(ρ)) = rest(υ).
Furthermore, the value of y was not changed in (11), since there is a bisimilar
computation (12) in which it was not changed. This says that

rest(ρ) = (y = c) + rest(υ).

It remains to argue that the final application of (λw.p, γ) yields the same result
in both cases. Again we have an embedding and can apply Lemma 1. The two
expressions are

((w = c : γ) + (y = c) + rest(υ), θ) ∈ [[p]]

((w = c : γ) + rest(υ), η) ∈ [[p]]

with an embedding f : η → θ. The final output states are rest(rest(θ)) and
rest(η), which are isomorphic because f embeds rest(η) in rest(rest(θ)) and the
stack sizes are the same. �

The remaining examples look at the higher-order case in the presence of local
variables. The goal of these examples is to prove that procedures that have as
arguments procedures with private data cannot access that private data.

In this example, we look at a procedure with two local variables that only
alters one of them.
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Example 4. For distinct variables x, y,Q, and T , the following two programs are
equivalent:

let x = 0, y = 1, T = λ().y := 2y
in Q(T ) ; (x = 0) ; u
end

let x = 0, y = 1, T = λ().y := 2y
in Q(T ) ; u
end

Proof. Let

ρ = (y = 1) + (x = 0) + σ,

γ = actv(ρ),
ξ = (T = (λ().y := 2y, γ) + (y = 1) + (x = 0) + σ.

Starting in state σ, ξ is the state after binding x, y, and T in the let expression.
Suppose σ(Q) = (λR.p, β). This is also ξ(Q). After substituting the definitions
and simplifying, the proof comes down to showing that if

((R = (λ().y := 2y, γ) : β) + ξ, η) ∈ [[p]],

then η(x) = 0. By Lemma 1, removing all stack elements, there is a bisimilar
computation

((R = (λ().y := 2y, γ) : β) + ε, θ) ∈ [[p]],

where ε is an abbreviation for the empty closure structure. As β is a node of σ,
the only reference to the binding x = 0 in this closure structure is via the closure
(λ().y := 2y, γ). All that can be done with this object is to apply it or assign it to
a variable, and neither operation changes the value of x or changes the fact that
the only reference to x = 0 is via γ in the closure. This is clear for assignments.
An application R() in a state τ in which R is bound to (λ().y := 2y, γ) yields
output state rest(υ), where (γ + τ, υ) ∈ [[y := 2y]]. The value of x is unchanged
due to the form of the assignment, and the reference to γ on the stack during
this calculation is transitory. �

In the next example, we want to know that if an invariant on a local variable
is maintained by a function, then that invariant is maintained for the entire
program if the variable is only accessed through that function.

Example 5. For distinct variables x,Q, and A2, the following two programs are
equivalent:

let x = 0, A2 = λ().x := x + 2
in Q(A2) ; (x mod 2 = 0) ; u
end

let x = 0, A2 = λ().x := x + 2
in Q(A2) ; u
end

Proof. This example is very similar to the previous. In this case, we note that if
σ(x) mod 2 = 0 and (σ, τ) ∈ [[A2]], then τ(x) mod 2 = 0. �

The final example demonstrates that the behavior of a procedure is not affected
by the values of another procedure’s local variables.
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Example 6. Let x,Q,A1, and A2 be distinct variables. The following two pro-
grams are equivalent:

let x = 0, A1 = λ().x := x + 1
in Q(A1)
end

let x = 0, A2 = λ().x := x + 2
in Q(A2)
end

Proof. In this example, it is important to note that A1 and A2 have void return
type. The argument is very similar to the argument in Example 5. We use Lemma
1 to obtain bisimilar computations in which x is not accessible except via the
closures bound to A1 and A2, therefore can only be altered by calls to A1 and
A2. The execution of Q is always in a preexisting environment with no other
access to x. Finally, the bindings of x, A1 and A2 are discarded at the end,
leaving equivalent output states. �

The one example from Meyer and Sieber that our system cannot currently handle
deals with the inability of local variables to be aliased by variables declared
elsewhere. We currently have neither the means to alias a location nor to test
for aliasing.

5 Conclusion and Future Work

We have presented a compositional relational semantics that captures all contex-
tual information in the state, allowing us to reason about programs with local
state in an equational way without consideration of context. We have shown how
to reason in this framework by proving several benchmark examples of Meyer
and Sieber [12].

While we do not deal with the more intricate issue of aliasing, there is no
reason to believe our approach could not be extended to do so. We are cur-
rently attempting to expand the definition of closure structure to allow explicit
references as values.

Using relational semantics for higher-order programs does not solve problems
that many other methods cannot, it simply allows one to reason in a natural
equational style that is mathematically based, yet true to the underlying oper-
ational intuition.

Acknowledgments. We are grateful to Jules Desharnais, Matthew Fluet, Riccardo
Pucella, and three anonymous reviewers for their valuable input.
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Appendix Skeleton Implementation of Closure Structures

For illustrative purposes, we provide here a skeleton of a simple untyped im-
plementation of closure structures in ML that is faithful to the description in
Section 3. The type cs represents the active environment and stack of a closure
structure; the tree is implicit. The second component of a binding is declared
as a reference to allow destructive updates.

type var = string
type lambdaExpr = string

datatype value = Int of int | Closure of lambdaExpr * environment
withtype binding = var * value ref
and environment = binding list

type cs = environment * environment list

fun newCS () : cs = ([],[])

fun lookup (v:var) ((act,s):cs) : value option =
let fun lookup’ (v:var) (env:environment) : value option =
case env of [] => NONE

| (u,c)::t => if u=v then SOME (!c) else lookup’ v t
in lookup’ v act
end
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fun update (v:var) (d:value) ((act,s):cs) : unit =
let fun update’ (v:var) (d:value) (env:environment) : unit =
case env of [] => ()

| (u,c)::t => if u=v then c := d else update’ v d t
in update’ v d act
end

fun createBinding (v:var) (c:value) ((act,s):cs) : cs =
let val b = (v,ref c) : binding

val env = b::(hd s) : environment
in (env, act::(tl s))
end
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Abstract. Randomized algorithms are widely used either for finding
efficiently approximated solutions to complex problems, for instance pri-
mality testing, or for obtaining good average behavior, for instance in
distributed computing. Proving properties of such algorithms requires
subtle reasoning both on algorithmic and probabilistic aspects of the pro-
grams. Providing tools for the mechanization of reasoning is consequently
an important issue. Our paper presents a new method for proving proper-
ties of randomized algorithms in a proof assistant based on higher-order
logic. It is based on the monadic interpretation of randomized programs
as probabilistic distribution [1]. It does not require the definition of an
operational semantics for the language nor the development of a complex
formalization of measure theory, but only use functionals and algebraic
properties of the unit interval. Using this model, we show the validity of
general rules for estimating the probability for a randomized algorithm
to satisfy certain properties, in particular in the case of general recursive
functions.

We apply this theory for formally proving a program implementing a
Bernoulli distribution from a coin flip and the termination of a random
walk. All the theories and results presented in this paper have been fully
formalized and proved in the Coq proof assistant [2].

1 Introduction

Randomized algorithms are widely used either for finding efficiently approxi-
mated solutions to complex problems such as the primality test, or in order to
obtain good average behavior, for instance in distributed computing. Proving
properties of such algorithms requires subtle reasoning both on algorithmic and
probabilistic aspects of the programs. Providing tools for the mechanization of
reasoning is consequently an important issue.

Models. The first problem is to find an appropriate mathematical represen-
tation of a randomized algorithm. Methods for modeling randomized programs
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go back to the early work of D. Kozen [3, 4] which proposes to interpret ran-
domized imperative programs as measure transformers. This approach has been
studied further by A. McIver and C. Morgan [5] which extend the interpretation
to non-deterministic as well as probabilistic choices and define a refinement re-
lation. Using an extension of weakest-precondition computation to randomized
programs, they propose a method to analyze the probability for the result of
the program to satisfy a given property by simple rules on the structure of the
program and algebraic properties.

Studying the semantic foundations of probabilistic languages has been the
concern of many works. There are at least two different approaches.

The first one is an operational view using access to an arbitrary number of
independent random variables following a given distribution (which can be a
coin flip or a uniform distribution as in [6]). This interpretation is a monadic
transformation. If Ω denotes the type of infinite sequences of independent ran-
dom values, then a computation of type A will be interpreted as a function of
type Ω → A × Ω: it computes a value of type A and modifies the global state
of type Ω after consuming a finite prefix of the sequence of random values. Rea-
soning on randomized programs using this approach requires to model the base
probability distribution on Ω.

The second approach is to use directly the monadic structure of probability
distributions in order to interpret directly a randomized program of type A as
a distribution over the set of possible values in A. This is also a monadic inter-
pretation but with a different space: a probability distribution can essentially be
seen as a function from a set of subsets of A into the interval [0, 1], an alterna-
tive [1] is to use the monad corresponding to expectations which is a functional
which maps functions of type A→ R to R.

Proofs. The second problem is to reason about probabilistic programs. There
are few works on actually mechanizing the proofs in this area.

J. Hurd, A. McIver and C. Morgan designed a mechanization of the quantita-
tive logic for probabilistic guarded commands using the proof assistant HOL [7].

In the domain of distributed protocols, the group of M. Kwiatkowska in
Birmingham has designed a probabilistic model-checker PRISM [8], which uses
Markov’s chains as the underlying model and a probabilistic temporal logic for
queries. Reasoning in this framework requires complex computations.

In the domain of algorithms, J. Hurd [9, 10] showed how to model and prove
properties of randomized programs in the HOL proof assistant using a monadic
transformation of programs, where he assumes access to an infinite sequence of
independent coin flips.

Our work has the same goals as J. Hurd’s development, to provide tools for
interactive reasoning on probabilistic programs. We choose a different monadic
transformation of probabilistic programs, interpreting directly programs as mea-
sures. One good thing about this method is that it does not require a complicated
development within probability theory: the measure can be treated abstractly
as a function with algebraic properties. Also the framework does not rely on a
particular choice of a primitive randomized function, both discrete and uniform
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distributions can be manipulated. We propose an axiomatic semantics in the
spirit of the work of C. Morgan et al. [5] and prove the validity of rules with
respect to our semantics.

Outline. The paper is organized as follows. In section 2, we introduce the
input language and its semantics: an interpretation of programs as measures
using a monadic transformation. We analyze our monadic interpretation from
the functional point of view. In section 3 we introduce the basic Coq theories for
representing measures. In section 4, we show the derived rules for estimating the
probability for a randomized program to satisfy a given property. In section 5,
we apply our method to proofs of simple probabilistic properties of programs.

Remark. The possible interpretation of random functional programs as prob-
abilistic distributions using a monadic interpretation is not new, it appears in
many theoretical works on semantics, or more concretely for representing ran-
dom programs in Haskell in [1]. To our knowledge, however, the approach of
mechanizing reasoning on random functional expressions is new. In [1], the in-
terpretation does not cover general recursive programs and its inefficiency is
criticized, the authors propose instead an alternative method which only cover
discrete distributions. The possibility to cover recursion was however studied
in [11] and we shall take the same approach in this paper. That the interpreta-
tion can lead to inefficient or even unfeasible computations in practice will be
illustrated in section 2.6. Our work advocates that operational behavior is not
relevant, as our model allows anyway for abstract reasoning on programs, using
the general rules presented in section 4 and illustrated on examples in section 5.
This is to be related to Hoare rules for axiomatic semantics, which do not rely
on computations per se, but to denotational semantics. From this point of view,
we compare with Kozen’s second semantics in [3].

2 Monadic Interpretation of Randomized Algorithms

2.1 Randomized Programs as Measure Transformers

In works by D. Kozen [3, 4], G. Plotkin & C. Jones [12, 11], C. Morgan & A.
McIver [13] and others, the basic idea is to interpret randomized programs as
measure transformers instead of the usual interpretation of programs as state
transformers.

The intuitive idea is that a randomized algorithm introduces a form of non-
determinism in the sense that, for a given input state, it may produce different
output states. One is interested in the distribution of these output states. If
this distribution is known, given a property P on the state, we can compute the
probability for the result of the program to satisfy P . A randomized program uses
basic randomized primitives such as a random function which, given a natural
number n, produces a number between 0 and n with uniform probability 1

n+1 , or
a more basic flip function which produces true (resp. false) with probability
1
2 . Another classical operator is probabilistic choice P p+ Q which behaves like
the program P with probability p and as Q with probability 1− p.
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The implicit assumption is that any access to a random operator in the pro-
gram is independent of the others.

In this work, we start from a functional language. We do not have to consider
a global state: programs are functions which are computing values, and we want
to estimate the distribution of these values.

2.2 Representation of Distributions

In this section, we explain our choice for a mathematical representation of prob-
ability distributions. We introduce the notation [0, 1] for the set of real numbers
between 0 and 1.

The probability point of view. From the mathematical point of view, a
probability distribution on a set A is defined by a set of events E which is a set
of subsets of A with good closure properties, and a function Pr from E to [0, 1]
such that the following properties hold:

Pr(A) = 1
Pr(
⋃

i Ei) = ΣiPr(Ei) when (Ei)i is a denumerable set of disjoint sets

The measure point of view. A (positive) measure on a set A, is a linear
functional μ which given a (measurable) function f from A to R+, computes a
non-negative real number, its integral

∫
fdμ. In the following, we shall use the

notation μ(f) instead of
∫

fdμ.

Characteristic functions. If X is a subset of A, IX ∈ A → [0, 1] will denote the
characteristic function of X such that ∀x ∈ A, IX(x) = 0 ⇔ x ∈ X ∧ IX(x) =
1 ⇔ x ∈ X . We write simply I for the function which is 1 everywhere. If P (x)
is a formula with a free variable x, we write IP (.) for the characteristic function
of the set X such that x ∈ X ⇔ P (x). For instance, I.=k is the characteristic
function of the singleton {k}.

Measure and probability. There is a well-known correspondence between
measures and probability.

Given a probability Pr on a set A, the functional which, given a function
f : A→ R+, computes its expectation defines a measure.

For instance, if A is a finite set, the set of events can be generated by the
singletons {x} for x ∈ A. The expectation of a function f is defined by:

μ(f) = Σx∈Af(x)× Pr({x})

In the other direction, given a measure μ on a set A such that μ(I) = 1, one can
define an associated probability Pr. The events are subsets X of A, such that IX

is measurable and Pr(X) = μ(IX).

Our abstract notion of measure. In this development, probability distribu-
tions are represented as positive bounded measures.
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In order to define a probability distribution, it is sufficient to be able to
measure functions which take values in the unit interval [0, 1]. We can remark
that if ∀x.f(x) ∈ [0, 1] then μ(f) ∈ [0, 1] because a probability distribution is
bounded by one. Hence, a measure μ can be interpreted as a function of type
(X → [0, 1]) → [0, 1] satisfying some extra algebraic properties, to be precised
in section 3.2.

2.3 Basic Language for Randomized Programs

In the following, we shall be interested in a simple functional language with the
following constructions:

– Primitive constants and functions: c
– Conditional: if b then e1 else e2
– Local binding: let x = e1 in e2
– Abstraction: fun (x : τ) ⇒ e
– Application: (e1 e2)

The term τ in the abstraction denotes a type. We assume given a simple (non-
polymorphic) type system on this language, containing (at least) the base types
bool for boolean values and int for integer as well as function types τ1 → τ2.

A fixpoint construction will be introduced later in our language.
In order to deal with probabilistic programs, we add primitive functions to

this language, such as the random function which given a positive integer n,
computes with uniform distribution an integer k such that 0 ≤ k ≤ n and the
flip function which computes a boolean which is true with probability 1

2 .
In the following, we use the same language for expressions representing ran-

domized computations and terms representing their functional interpretation
instead to introduce a monadic meta-language as in [14] or [15]. There will be
in general no possible confusion.

For the sake of simplification, this paper assumes that abstraction and appli-
cation in programs are only done on objects in base (non-functional) types; in
a local binding as well, the introduced variable has a base type. In the meta-
theory and in the interpretation, however, we shall use the same notations for
higher-order functions, in particular when writing fixpoints.

2.4 Interpretation of Random Expressions

A (random) expression e in a base type τ actually represents a set of values of
type τ , as different evaluations of the expression will lead to different values in
general.

As pointed out above, for analyzing the distribution of these values, we inter-
pret e : τ as a measure on τ , i.e. a function of type (τ → [0, 1])→ [0, 1].

We write [e] to represent the measure associated to the expression e. If we
know [e], given a property Q on τ , it is possible to compute the probability
for the evaluation of e to satisfy Q, it is just [e](IQ), namely the application of
the measure associated to the expression e to the characteristic function of the
predicate Q, interpreted as a subset of τ .
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2.5 Monadic Transformation

The computation of the measure [e] is defined by case analysis on the structure
of the expression e, following a monadic transformation.

We extend the interpretation to expressions denoting functions and not just
expressions in base types. Each random expression representing a computation
of type τ is interpreted as a purely functional expression of type [τ ].

For a base type τ , [τ ] is defined as (τ → [0, 1]) → [0, 1] the type of measures
on τ . For a functional type τ = τ1 → τ2, we define [τ ] = τ1 → [τ2], as our study
is restricted to the first-order case where τ1 is a base type.

In the monadic approach, it is sufficient to define two operators

unit : τ → [τ ] bind : [τ ] → (τ → [σ]) → [σ],

and for each non-functional construction of type τ (for instance random), its
functional interpretation of type [τ ].

Then the interpretation of expressions follows naturally:

Computation p : τ Functional value [p] : [τ ]
let x = a in b (bind [a] fun (x : σ) ⇒ [b])
fun (x : σ) ⇒ t fun (x : σ) ⇒ [t]
(t u) (bind [u] [t])
if b then e1 else e2 (bind [b] fun (x : bool)⇒ if x then [e1] else [e2])

Definition of unit and bind. Given an expression e of base type τ , we want
[e] to be a measure, that is a functional object of type (τ → [0, 1])→ [0, 1]. The
transformation [e] is analogous to the monadic interpretation of continuations.
Assume τ and σ are base types, one defines:

unitτ : τ → [τ ]
= fun (x : τ) ⇒ fun (f : τ → [0, 1])⇒ (f x)

bindσ : [τ ] → (τ → [σ]) → [σ]
= fun (μ : [τ ]) ⇒ fun (M : τ → [σ]) ⇒

fun (f : σ → [0, 1])⇒ (μ fun (x : τ) ⇒ (M x f))

This definition obviously satisfies the expected monadic properties, for instance
(bind (unitτ x) M) = (M x) and (bind (bind μ M1) M2) = (bind μ (fun x ⇒
(bind (M1x) M2)). It is actually possible to extend these operators to functional
types:

unitτ1→τ2 : (τ1 → τ2)→ [τ1 → τ2]
= fun (f : τ1 → τ2)⇒ fun (x : τ1) ⇒ unitτ2(f x)

bindσ1→σ2 : [τ ] → (τ → [σ1 → σ2]) → [σ1 → σ2]
= fun (μ : [τ ]) ⇒ fun (M : τ → [σ1 → σ2]) ⇒

fun (y : σ1)⇒ bindσ2 μ (fun (x : τ) ⇒ (M x y))

Notice that, since we are only manipulating first-order programs in this paper,
these generalized operators will not be needed in the examples. Following the



Proofs of Randomized Algorithms in Coq 55

translation scheme, if f has type τ1 → τ2 → σ, the binary application ((f a) b)
should be translated into bindσ [b] (bindτ2→σ [a] [f ]) but it is always possible, and
probably more readable, to use the equivalent expanded form: bindσ [b] (fun (y :
τ2) ⇒ bindσ [a] fun(x : τ1)⇒ ([f ] x y)).

Interpretation. From the measure point of view, (unitτ x) is the Dirac measure
at point x. If x is an expression of type τ with no randomized construction then
it evaluates deterministically to a value v and the probability of the result to
satisfy P is one when P (v) is true and zero otherwise.

In the definition of bindσ, μ is a measure on τ , and M is a family of measures
on σ parameterized with x ∈ τ . Given a function f on σ, bind μ M measures
with μ the function which associates with x the measure of f given by (M x). For
example, assume a is a randomized expression of type τ and e is a function which
associates with x : τ a randomized expression of type σ. Given a property P on
σ, we want to evaluate the probability for (e a) to satisfy P . Interpreting e as a
parameterized measure M we can compute, for a given value x, the probability
for (e x) to satisfy P . Then if we integrate this function with respect to x, using
the measure associated with the expression a, we end up with the probability
for (e a) to satisfy P . That is exactly what bind is doing. This definition of bind
captures the independence of random choices done in f and a.

Interpretation of randomized constructions. For the additional primitives,
we get

random(n) : [int] = fun (f : int→ [0, 1])⇒ Σn
i=0

1
n+1 (f i)

flip() : [bool] = fun (f : bool→ [0, 1])⇒ 1
2 (f true) + 1

2 (f false)
e1 p+ e2 : [τ ] = fun (f : τ → [0, 1])⇒ p× ([e1] f) + (1 − p)× ([e2] f)

2.6 Functional Interpretation: An Example

Now that the monadic translation is defined, we can transform an expression
e which computes a value randomly into an expression [e] which does a deter-
ministic computation of the measure associated with the expression e. Before
looking at this interpretation for proofs, we can use it simply for computation,
in a functional language like Caml.

In this part, we introduce a fixpoint construction in our language (written let
rec f = e) with the idea that the interpretation [f ] of f will be a functional (still
named f) defined by let rec f = [e]. We shall come back on this interpretation
of fixpoints in section 3.3.

A basic example of a randomized algorithm is the primality test. The principle
of this algorithm is the following. We want to check whether a number p is prime.
There is a deterministic test (test) which applies to 1 ≤ k < p and p such that:

– If p is prime then (test k p) evaluates to true for all k
– If p is not prime then (test k p) evaluates to true for a limited number of

k, say N less than p−1
2 .
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We choose k randomly and run the test: if the answer is false, then p is not
prime; if the answer is true then p is not prime with a probability N

p−1 which
is less than 1

2 . Iterating the test improves the level of confidence, provided the
random choices of k are independent.

In our language, the function which iterates n times the primality test for p
can be written: 1

let rec prime test p n =
if n = 0 then true
else if test (random’ (p-1)) p then prime test p (n-1)
else false

Using the monadic transformation, and monadic simplification laws, we get the
functional computation of the associated measure:

let rec prime test fun p n =
if n = 0 then (unit true)
else bind (random’ (p-1))

fun a ⇒ if (test p a) then (prime test fun p (n-1))
else (unit false)

Now if we want to evaluate the probability for our program to give a correct
answer, we define the characteristic function of the correctness predicate, which
says that the result is true exactly when p is prime, and which is encoded as:

let prime correct p b = if b = exact prime p then 1. else 0.

One can now explicitly compute the probability that our program gives a correct
answer after n iterations:

let evaluate p n = prime test fun p n (prime correct p)

The function can be run in Caml and gives the following results.

# evaluate 23 1;;
- : float = 1
# [evaluate 9 0;evaluate 9 1;evaluate 9 2;evaluate 9 3];;
- : float list = [0.;0.75;0.9375;0.984375]

If the number is prime (example p = 23), then the result will be correct with
probability one. On the other hand, if p is not prime (example p = 9) then the
probability that the program gives a correct answer after 0 iteration is 0, after
1 iteration, we get the good answer 3 times out of 4 and it goes to more than
98% of good answers after 4 iterations.

One nice point is that we have been able to compute these probabilities with
a simple ML program without any specific knowledge on probability theory nor
number theory. On the other hand, if we analyze the program, we remark that
it is very inefficient:
1 We use a function random’ defined as random’ n = random (n − 1) + 1 in order to

get a number between 1 and n.
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– in order to build the characteristic function to be tested we need to know
(or to test) exactly if p is prime or not;

– because of the interpretation of random, the program is executed for all the
values of k between 1 and p − 1 before computing the average number of
good answers.

Furthermore, this computational approach does not work in all cases. Our pre-
vious program uses a structural recursion which always terminates. Many in-
teresting probabilistic programs only terminate with probability one, which is
a weaker requirement. For instance the following function flips a coin and re-
turns how many flips it took to get false, this is a typical example of a random
walk:

let rec walk x = if flip () then walk (x+1) else x

If we test this function in Caml several times, we get small number answers such
as 1, 2, 3. We may apply our translation scheme:

let rec walk fun x =
bind flip (fun (b:bool) ⇒ if b then walk fun (x+1)

else (unit x))

and measure the function which is 1 everywhere:

# walk_fun 1 (fun n -> 1.);;
Stack overflow during evaluation (looping recursion?).

it loops because our interpretation tests all the cases, in particular the one where
the result of flip is always true. . .

This example shows that, when general fixpoints are involved, we cannot any-
more use computation of the monadic interpretation for analyzing the probability
of events. We shall need to reason about these programs instead. For that, we
first define a Coq theory for representing distributions, then we prove several
theorem for analyzing programs.

3 Coq Representation of Randomized Programs

We present now our model of randomized programs in the proof assistant Coq.
We follow the ideas presented in the previous section in order to associate with
each program a measure and to reason directly on these measures.

3.1 The Set [0, 1]

Our model is based on measures seen as functionals of type (A→ [0, 1])→ [0, 1].
For constructing this model in Coq, we have chosen to axiomatize a type U
which corresponds to the interval [0, 1].
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Definitions. Let two special constants 0 and 1 in U . The basic operations are mul-
tiplication, addition and a special inversion function. The addition is bounded: it
gives the minimum of addition on reals and 1. The inversion function associates
1 − x with x. We have also two predicates on U , x ≤ y and x = y, with the
standard meaning.

For each natural number n, we introduce a special element 1
n+1 in U .

To deal with unbounded computations, we also need the least-upper bound
(lub) of any denumerable set of elements of U , represented as a function from nat
to U : we consequently adjoin a parameter lub with type (nat→ U) → U . If f is
an expression with a free variable n, we write lub(f)n instead of lub (fun n⇒ f).

Axioms. We have axioms which say that ∀x : U, 0 ≤ x ≤ 1 and that 0 = 1.
As expected, the previous operators come with the usual axioms stating that

addition and multiplication are symmetric and associative, with 0 and 1 as their
respective neutral elements, and so on.

Our inversion function enjoys good properties such as 1− (1 − x) = x. Some
properties of addition are only valid when there is no overflow during addition.
The non-overflow condition is expressed in our formalism as x ≤ 1 − y. For
instance, assuming x ≤ 1− y, we have:

(1−(x+y))+x = 1−y (x+y)×z = x×z+y×z x+y ≤ x+z ⇒ y ≤ z

The axioms for least upper bounds include the two basic properties of lubs and
the fact that lubs are compatible with addition and multiplication

lub ((f n) + k)n = lub f + k lub ((f n)× k)n = lub f × k

We also need two extra properties: ¬¬(x ≤ y)→ x ≤ y x ≤ y ∨ y ≤ x.
The first property is required because Coq implements an intuitionistic logic

in which ¬¬A ⇒ A is not satisfied for all propositions. The second property
states that the order is total.

The operation 1
n+1 satisfies the axiom 1

n+1 = 1− n× 1
n+1 where n× 1

n+1 is a
generalized sum defined by induction on n.

Finally the fact that U is archimedian is axiomatized by the property

∀x, x = 0⇒ ∃n,
1

n + 1
≤ x

Remarks. Our modeling of randomized programs does not depend on our par-
ticular axiomatization of [0, 1]. Our choices are somehow arbitrary, we tried to
find an axiomatization with a few number of operations and axioms such that
the theory could be easily instantiated by different representations of real num-
bers. We are interested in particular by constructive reals, and we are currently
investigating a possible encoding using the reals defined in [16] or the axioms
proposed for interval objects as described in [17]. We use the functor mecha-
nism of Coq in order to keep the axiomatization of [0, 1] as a parameter of the
theory.
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Derived operators. The usual minus operation x− y (which is zero when x ≤ y)
can be defined using our special inverse by: x−y = 1−((1−x)+y) The operator
max can be defined as (x − y) + y. It is also easy to define n× x and xn for an
integer n by induction on n. In [5], C. Morgan and A. McIver use an operator
x&y defined on non-negative real numbers as the maximum of 0 and x + y − 1.
The same operator can be defined in our theory using the inverse operator and
addition by x&y ≡ 1 − ((1 − x) + (1 − y)). It is the dual operation of addition
because we have (1−(x&y)) = (1−x)+(1−y) and (1−(x+y)) = (1−x)&(1−y).
This operator captures intersection of properties because IP∩Q = IP &IQ.

3.2 Definition of a Distribution

In the following, we extend in a standard way the operations and relations on U ,
to operations and relations on functions of type A→ U using the same notations:
f ≤ g will stand for ∀x, f x ≤ g x and f + g is the function fun x⇒ f x + g x.

Given a type A, we define a distribution on A to be a measure μ of type
(A→ U)→ U which furthermore satisfies stability properties, namely:

– monotonicity : ∀f g : A→ U, f ≤ g ⇒ μ(f) ≤ μ(g)
– compatibility with addition :
∀f g : A→ U, f ≤ 1− g ⇒ μ(f + g) = μ(f) + μ(g)

– compatibility with inverse : ∀f : A→ U, μ(1− f) ≤ 1− μ(f)
– compatibility with multiplication : ∀(k : U)(f : A→ U), μ(k× f) = k×μ(f)

In Coq, we use a dependent record type in order to introduce a type (distr A)
which contains the measure μ plus the proofs of compatibility properties for μ.

Remarks. Because the addition is bounded, the compatibility with respect to
addition is only assumed when there is no overflow in the addition of f and
g. We also need the extra condition of compatibility with respect to inversion
which is usually derived from linearity.

We allow a distribution to be a sub-probability with possibly μ(1 − f) <
1−μ(f) (i.e. μ(I) < 1). This is useful for interpreting non terminating programs.

Monotonicity could be replaced by compatibility with respect to equality
∀f g : A → U, (f = g) ⇒ μ(f) = μ(g). Assuming this property, monotonic-
ity comes from the fact that g = (g − f) + f and stability with respect to
addition.

Derived properties. From this definition, we can deduce further properties, such
as μ(fun x ⇒ 0) = 0, or μ(1 − f) = μ(I) − μ(f). The inequality μ(f + g) ≤
μ(f)+μ(g) is valid without extra non-overflow condition and, in a dual manner,
we have μ(f)&μ(g) ≤ μ(f&g).

Monadic operators. We define the monadic operators on distributions: Munit of
type ∀A,A → distr A and Mlet of type ∀A B, distr A → (A → distr B) →
distr B. These operations are based on the transformations unit and bind for
measures, while including extra proofs stating that these operations are stable
with respect to the expected properties of distributions.
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Properties. We can define an order and an equality on the type (distr A) by a
simple extensions of the relations on U . This leads to proofs of monadic equali-
ties, as well as monotonicity of the bind operation. In particular we prove [18]:

– ∀(μ : distr A), Mlet μ (fun (x : A) ⇒ Munit x) = μ
– ∀(μ : distr A) (M : A→ distr B) (N : B → distr C),

Mlet (Mlet μ M) N = Mlet μ (fun (x : A)⇒ Mlet (M x) N)
– ∀(μ1 μ2 : distr A) (M1 M2 : A→ distr B),

μ1 ≤ μ2 ⇒ (∀x, (M1 x) ≤ (M2 x)) ⇒ Mlet μ1 M1 ≤ Mlet μ2 M2

Random distributions. Following the interpretation of random primitives we gave
in section 2.5, we can define in Coq the corresponding distributions, we have to
formally prove the stability properties.

The primitive fliphas type (distr bool), randomhas type int→ (distr int)
and the choice operator has type U → (distr A)→ (distr A) → (distr A).

The framework is not limited to discrete distributions. While defining com-
pletely a measure on U could require the development of a non-trivial part of
analysis, it is already possible, for example as found in [6], to introduce as a
parameter a new distribution uniform of type (distr U) with the extra as-
sumption that for all a, b ∈ U , the measure of the interval [a, b] is equal to b− a,
i.e. (uniform Ia≤.≤b) = b− a.

Interpretation of simple programs. The constructors Mlet, Munit, flip, random
are sufficient for interpreting simple random programs. Following our general
monadic translation scheme, one can also define a conditional operation Mif of
type (distr bool)→ (distr A) → (distr A)→ (distr A) by

Mif μb μ1 μ2 ≡ Mlet μb (fun b⇒ if b then μ1 else μ2).

We use this operator for interpreting conditional programs:

[if b then e1 else e2] ≡ Mif [b] [e1] [e2]

3.3 Interpretation of Fixpoints

As expected, the difficult part is the interpretation of general fixpoints. This is
achieved through the following steps.

Limit of distributions. In order to interpret recursive functions, we need to take
limits of sequences of distributions.

We assume given a denumerable family of distributions (μn)n∈N of type
distr A, such that ∀n m, n ≤ m⇒ μn ≤ μm. Then we can define a new distri-
bution as the least upper bound of (μn)n. The associated measure, μlub(μn)n,
is defined by μlub(μn)n (f) ≡ lub (μn (f))n.

Fixpoints. Let us consider we want to define a function which satisfies the
equation

let rec f x = F f x
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where f is assumed to take an argument in type A, and returns a random value
of type B, so that it is interpreted as a function of type A→ distr B. Thus, F
will have type (A→ distr B) → A→ distr B, and we assume this functional
to be monotonic: f ≤ g ⇒ F f ≤ F g.

Let us define the sequence Mn of functions of type A→ distr B, by repeated
iterations of F from the null distribution:

M0 x = fun f ⇒ 0 Mn+1 x = F Mn x

The limit distribution Mfix is defined, for each given x, as the least upper bound
of the sequence which associates with n the distribution (Mn x):

Mfix F x ≡ μlub(Mn x)n

We can derive the inequalities

Mfix F x ≤ F (Mfix F) x and F (Mfix F ) x ≤ Mfix F x

The second inequality requires an extra hypothesis of continuity namely that for
all monotonic sequences (gn)n∈N of type A→ distr B,

F (fun y ⇒ μlub(gn y)n) x ≤ μlub(F gn x)n

However, as we will see in section 4.2, estimating programs built with fixpoints
can be done without using this rule.

4 Derived Rules for Reasoning on Programs

For reasoning about programs, it is convenient to use an axiomatic semantics
that provides rules by induction on the structure of the program, stating as usual,
how some post-condition is satisfied after execution, provided some precondition
holds. In fact, in the context of probabilistic programs, we are interested (see
also [4]) in deriving that the probability for a certain property to hold is greater
than a certain value.

Thus we look forward deriving judgements of the form k ≤ [e](f) where
k ∈ [0, 1], e is an expression of type A and f is a function of type A→ [0, 1].

The meaning of this judgement is that the measure associated with the pro-
gram e computed on the function f is no less than k. Usually f will be the
characteristic function IP of some predicate P of type A → bool. The judge-
ment k ≤ [e](IP ) therefore means that the probability for the result of e to
satisfy P is at least k.

4.1 Basic Rules

We can prove the following rule for application:

k ≤ [a](f) ∀x, f x ≤ [e x](g)
k ≤ [e a](g)

For the case of conditional, we can prove the rule:

k1 ≤ [e1](f) k2 ≤ [e2](f)
k1 × [b](I.=true) + k2 × [b](I.=false) ≤ [if b then e1 else e2](f)
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4.2 Rule for Fixpoints

We now justify the rule for estimating fixpoints which follows the ideas pre-
sented in [11]. We assume F has type (A → distr B) → A → distr B and
is monotonic. We take a monotonic sequence (pi)i of functions of type A → U
such that ∀x, p0 x = 0. The following rule is valid:

∀f : A→ distr B, (∀x, pn x ≤ [f x](q)) ⇒ (∀x, pn+1 x ≤ [F f x](q))
∀x, lub (pn x)n ≤ [fix F x](q)

No continuity condition on F is required to validate this rule. The sequence (pn)n

can be seen as a generalized invariant for randomized programs: assuming that
the recursive goal establishes a post-condition Q with probability at least pn,
we prove that one further iteration establishes Q with probability at least pn+1,
and we finally get that the recursive program establishes Q with a probability
which is at least the lub of (pn)n.

4.3 Other Rules

We can derive in our formalism useful schemes which generalize reasoning on
deterministic programs. For instance, if we have established that an expression
a satisfies a predicate P with probability 1, then it is possible to reason subse-
quently exactly as if P was true for the result of the computation of a.

This is stated in the following derivable rule:

1 ≤ [a](IP ) ∀x, (P x) ⇒ k ≤ [b](f)
k ≤ [let x = a in b](f)

5 Applications

We apply our approach for proving properties of simple randomized programs.

5.1 Probabilistic Termination

We return to our example of section 2.6, a random walk which illustrates prob-
abilistic termination.

let rec walk x = if flip() then walk (x+1) else x

We show that this program terminates with probability one. For that it is enough
to prove that:

∀x, 1 ≤ [walk x](I).

We shall apply the fixpoint rule with a functional F defined by

F f x ≡ Mif μflip (f(x + 1)) (Munit x)
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We introduce a sequence pi defined by p0 = 0 and pi+1 = 1
2pi + 1

2 . It is easy to
show that pn = 1 − 1

2n and that the least upper bound of the sequence (pi)i is
1. In order to prove 1 ≤ [Mfix F x](I), we use the fixpoint rule and show:

∀f, (∀x, pi ≤ [f x](I)) ⇒ ∀x, pi+1 ≤ [F f x](I)

We assume ∀x, pi ≤ [f x](I) and we simplify as follows

pi+1 ≤ [F f x](I) ⇔ 1
2pi + 1

2 ≤ [Mif μflip (f(x + 1)) (Munit x)](I)
⇔ 1

2pi + 1
2 ≤ 1

2f(x + 1)(I) + 1
2 I(x)

This is trivially true because pi ≤ f(x + 1)(I) by hypothesis and I(x) = 1.

5.2 The Bernoulli Distribution

We now apply our technique to the proof of an algorithm to simulate a Boolean
function following Bernoulli’s distribution (which is true with some probability
p and false with probability 1 − p) using only a coin flip. The algorithm which
is also taken as an example in [19] uses a simple idea : write p in binary form
Σ∞

i=1pi
1
2i , if we flip a coin and get a sequence (qi)i≥1 then the first time we get

qi = pi, we answer true when qi < pi and false otherwise. Now this function can
be expressed recursively. If p < 1

2 then p1 = 0 and the remainder of the sequence
corresponds to 2 × p = p + p. If 1

2 ≤ p then p1 = 1 and the remainder of the
sequence corresponds to 2 × p − 1 = p&p (using the special operation x&y we
introduced in section 3.1). Our Bernoulli program can be written as

let rec bernoulli p =
if flip() then if p < 1

2 then false else bernoulli (p & p)
else if p < 1

2 then bernoulli (p + p) else true

We directly translate this definition into a distribution, as was done in the case
of the random walk. In order to analyze this program, we use the fixpoint rule
and prove that

∀p, lubn (p− 1
2n

) ≤ [bernoulli p](I.=true).

Assuming ∀p, (p− 1
2n ) ≤ [bernoulli p](I.=true), we just simplify the expression

corresponding to the body of bernoulli. In case p < 1
2 , we have to show that

p− 1
2n+1 ≤

1
2
bernoulli(p + p)

and in case 1
2 ≤ p, we have to show that

p− 1
2i+1 ≤

1
2
bernoulli(p&p) +

1
2
× 1

this follows easily using the fixpoint rule hypothesis and algebraic properties.
The same reasoning allows to prove:

∀p, lubn ((1 − p)− 1
2n

) ≤ [bernoulli p](I.=false).
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Using the fact that I.=false = 1 − I.=true and the property of measures of
inverse functions, we conclude that [(bernoulli p)]I.=true = p.

Using I.=true+I.=false = I, we also have [(bernoulli p)]I = 1 which shows
that the process terminates with probability one.

5.3 Improving Precision

Another example is an abstract version of a program scheme where a randomized
program is executed twice in order to improve the probability of getting a correct
result. The implicit assumption is that given two runs on the program we can
choose the better of the two answers. In case of primality for instance, if one of
the test answers that p is not prime, we are sure that p is not prime; only when
the two programs assert that p is prime, we can still pretend (but with higher
confidence) that p is prime.

We want to compute a value in a type A which satisfies a property Q with
a certain probability. The hypotheses are that we have two programs p1 and p2
of type A, thus interpreted as objects of type distr A. We want to combine p1
and p2 in order to get a better program i.e. we want to improve the probability
that the result is correct.

We assume we have a function choice of type A→ A→ A such that (Q x) ⇒
Q (choice x y) and (Q y)⇒ Q (choice x y) are provable.

In case of a Boolean test for primality of p, we have (Q b) defined as (b =
true ⇔ p is prime) and (choice b1 b2) defined as (b1 and b2).

Now we build a new program p:

let x = p1 in let y = p2 in choice x y

We want to show that k1 ≤ [p1](IQ) and k2 ≤ [p2](IQ) implies k1(1− k2) + k2 ≤
[p](IQ). The new estimation k1(1 − k2) + k2 (also equal to k2(1 − k1) + k1) is
greater than both k1 and k2.

Actually we established a more general result, using an arbitrary function q
of type A → U instead of the characteristic function IQ of a predicate Q. We
assume that ∀x y, (q x) + (q y) ≤ q (choice x y) (with bounded addition). It is
easy to see that when q is the characteristic function IQ, then the assumptions
(Q x) ⇒ Q (choice x y) and (Q y) ⇒ Q (choice x y) are equivalent to
(IQ x) + (IQ y) ≤ IQ (choice x y). We also need the fact that both programs
p1 and p2 terminate with probability one, otherwise our choice function could
give a result which is not as good as p1 and p2. Now, the property to be shown
amounts to

k1(1− k2) + k2 ≤ [p1](fun x⇒ [p2](fun y ⇒ (q (choice x y))))

Using the fact that

(q x)× (1− (q y)) + (q y) ≤ (q x) + (q y) ≤ (q (choice x y))

the proof reduces to

k1(1 − k2) + k2 ≤ [p1](fun x⇒ [p2](fun y ⇒ (q x)× (1− (q y)) + (q y)))
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Algebraic properties of measures lead to simplification of the right-hand side:

[p1](q)× [p2](1− q) + [p2](q)

Because p2 terminates, we have [p2](1 − q) = 1 − [p2](q) (only the inequality is
true in general) so we have to show:

k1(1− k2) + k2 ≤ [p1](q)(1 − [p2](q)) + [p2](q)

which is true because k1(1−k2)+k2 = k2(1−k1)+k1 is monotonic with respect
to both k1 and k2.

This example illustrates the possibility to do abstract modular reasoning in
our framework.

6 Related Work

In [6], Park and al. propose a functional language, named λ© which extends
the ML functional kernel on the basis of the monadic metalanguage developed
by Pfenning and Davies [15]. It is a reformulation of Moggi’s monadic metalan-
guage (the let...in... construction) which augments the λ-calculus, consisting of
terms, with a separate syntactic category, consisting of expressions which denote
probabilistic computations. A term can be cast to a (random) expression. From
any expression E, the operator prob E builds the image measure. In our work,
both terms and (random) expressions are not distinguished, unit providing the
corresponding operator from terms to random expression. Besides, the current
bind operation is represented by sample x from M in E in λ©. The language
introduces a new constant S which denotes an expression, i.e. a random variable
which follows the uniform law on the real interval [0, 1]. The system is simply
typed, where types are limited to arrows and pairs, enriched with the monadic
construction ©A for each type A.

We do not have these two syntactic levels in our system where we chose to rep-
resent in Coq only the level of terms. The ©A type play the role of (distr A) in
our formalism and the value prob(E) corresponds to our definition of [E]. Their
formalism allows to build distributions on arbitrary types (possibly functional),
an extension we did not investigate yet.

λ© is mainly designed toward expressiveness as a programming language, for
which the paper provides a small steps operational semantics. This corresponds
to Kozen’s first semantics in [3], where any computation involved in a reasoning
step about a program requires the user to refer to the measurable space of
random streams over [0, 1]. As far as reasoning on programs is concerned, this
is not of great help, since axiomatic semantics relies on denotational semantics.
Therefore, examples developed with λ© are better analysed through simulation
techniques. Both approaches are complementary: we are not able to simulate
the programs as sampling functions but we can directly and easily reason on the
probabilistic properties of (a subset of) Caml expressions.

In [13], A. McIver and C. Morgan describe an axiomatic semantics for proba-
bilistic programs written in imperative style. The state-predicates in Hoare logic
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are replaced by so-called expectations which are functions from states to R+, to
be evaluated following the distribution defined by the program. An important
aspect of this work is to introduce in the language a non-deterministic (demonic)
choice p� q. The probability for a property P to hold after executing p� q is the
minimum of the probabilities that P holds after executing p and after executing
q. This operator is used to represent specifications and for defining a refinement
relation. In order to adapt our approach to the non-deterministic case, an idea
could be to relax the compatibility condition for addition in the definition of a
distribution into the weaker condition μ(f) + μ(g) ≤ μ(f + g). Developing the
corresponding theory still remains to be done. A mechanization of this calculus
using the HOL theorem prover is presented in [7]. In this work programs are in-
terpreted as functionals of type (α→ R

+
∞) → (α→ R+

∞) where R+
∞ ≡ R+∪{∞}

and α is the type of states. They propose a so-called deep-embedding where
the syntax of the language of guarded commands and the weakest-precondition
generator are explicitely encoded in the proof assistant, while we use a shallow
embedding where we directly use the semantics of the language. Their approach
allows to measure an arbitrary function with value in R

+ and not only [0, 1].
We choose to restrict ourselves to [0, 1] in order to simplify the formal devel-
opment in Coq and because it is sufficient for correctness. Measuring arbitrary
function can nevertheless be interesting in some cases. For instance, in the ran-
dom walk example, one could measure the average of the result of the function
(how many flips before we get false). It is possible to represent an element in
R

+ with a pair (n, x) with n ∈ N and x ∈ [0, 1] and reuse a large part of our
development in order to extend a measure of type (A → [0, 1]) → [0, 1] into a
measure of type (A → R

+) → R
+. We may introduce for each n ∈ N a func-

tion fn : A → [0, 1] such that fn(x) = y when f(x) = (n, y) and f(x) = 0
otherwise. We have f = Σ∞

n=0fn and we can define μ(f) as Σ∞
n=0μ(fn) when it

exists.
As already said in the introduction, our approach comes actually closer to

J. Hurd’s thesis, where formal verification of probabilistic programs is handled
with the HOL theorem prover. He uses a monadic translation based on a global
state with a stream of boolean values. Reasoning on programs required to define
within HOL an adequate distribution over this infinite structure, while we only
use simple mathematical constructions. It would be interesting to compare more
carefully the complexity of proofs of high-level programs in both systems.

7 Conclusion

We have studied the interpretation of probabilistic programs in a functional
framework using a monadic interpretation of programs as probability distribu-
tions represented by measures.

We have applied this technique for building an environment for reasoning
about probabilistic programs in the Coq proof assistant. We have developed an
axiomatization for the set [0, 1] which uses a few primitive operations : bounded
addition, multiplication and inverse (1− x).
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We have derived axiomatic rules for estimating the probability that programs
satisfy certain properties, following the structure of the program. The fixpoint
rule is especially useful for dealing with probabilistic termination of programs.
We use these rules for studying a few basic examples such as the computation
of a function following a Bernoulli distribution. The development and results
presented in this paper have been formally derived and checked in the Coq
proof assistant and are available as a contribution [18].

Future works include automatic translation from functional randomized pro-
grams to Coq terms representing the corresponding distribution. One possibil-
ity could be to use a monadic meta-language in the spirit of [6] on top of the
Coq proof assistant. Another possibility is to follow the approach of the Why
tool [20, 21], a generic environment for analysing non-purely functional programs.
It automatically generates verification conditions from the specification of pre
and post conditions plus a validation (the correctness proof in Coq obtained
from the monadic translation of the program).

We also plan to study advanced examples that certainly will require a more
sophisticated automation of proofs.

Acknowledgments. We thank A. McIver and C. Morgan for useful comments
on an earlier version of this paper. We also thank R. Lassaigne for stimulating
discussions on formal proofs for analyzing random programs.
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Abstract. The Eindhoven quantifier notation is systematic, unlike stan-
dard mathematicial notation. This has the major advantage that calcu-
lations with quantified expressions become more straightforward because
the calculational rules need be given just once for a great variety of dif-
ferent quantifiers.

We demonstrate the ease of calculation with finite quantifications by
considering a number of examples. Two are simple warm-up exercises,
using boolean equality as the quantifier. Three are taken from books of
challenging mathematical problems, and one is a problem concocted by
the authors to demonstrate the techniques.

1 Introduction

Quantifications, both logical ( ∀ , ∃ ) and arithmetic ( Σ , Π , etc.) abound in
program specifications, but the manipulation of quantified expressions is rarely
discussed in any detail. (An important exception is [1].) Moreover, many texts (in
mathematics and computing) adopt different (unsystematic) notations for dif-
ferent quantifiers, obscuring the commonalities in their properties. Even worse,
the dotdotdot (“ . . . ”) notation is often used, leading inevitably to mistakes1. In
contrast, the “Eindhoven” quantifier notation is a uniform notation for express-
ing quantifications over an arbitrary abelian monoid. It has been used since the
early 1970s [2, 3]. Initially, little or no explanation of the rules for manipulating
quantifiers was given, except for some of the most basic (like empty range and
range splitting [4]). Backhouse [5] compiled a list of rules for finite quantifica-
tions, partly based on the rules given by Knuth for summation [6]; these were
recently updated [7] bringing the naming of the rules into line with that used
elsewhere.

In this paper, we demonstrate the importance of manipulating quantifiers
using a number of exercises drawn from books about challenging mathematical
problems. Our calculations lead to straightforward solutions to the problems
1 The website “The most common errors in undergraduate mathematics”
www.math.vanderbilt.edu/~schectex/commerrs reports “many errors” in the use
of dotdotdot notation (“ellipses”). Of course, the error is the teacher’s use of the
notation, and should not be blamed on the student!

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 69–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and, in one case, to a new theorem. The calculations are goal-directed and, we
hope, may be of benefit to teaching the calculational method.

2 Warm-Up Exercises

A standard exercise is to prove that the parity of a sum of a finite bag of integers
is odd equivales the number of odd elements is odd. This is a nice warm-up
exercise in the use of the quantifier calculus:

even. 〈Σk ::nk〉
= { even distributes through summation }

〈≡k :: even.nk〉
= { trading, even.nk ≡ (odd.nk⇒ false) }

〈≡k : odd.nk : false〉
= { false ≡ even.1 }

〈≡k : odd.nk : even.1〉
= { even distributes through summation }

even. 〈Σk :odd.nk : 1〉 .

The calculation uses two quantifiers: the familiar sum ( Σ ) quantifier, and the
unfamiliar equivales (≡ ) quantifier. In general, the Eindhoven quantifier nota-
tion extends the binary operator, ⊕ say, of an abelian monoid to an arbitrary
finite bag of values, the bag being defined by a function (the term) acting on a
set (the range). The form of a quantified expression is

〈⊕ bv∈type : range : term〉

where
⊕

is the quantifier, bv is the dummy or bound variable and type is its
type, range defines a subset of the type of the dummy over which the dummy
ranges, and term defines a function on the range. The value of the quantification
is the result of applying the operator ⊕ to all the values generated by evaluating
the term at all instances of the dummy in the range.

Strictly, the type of the dummy should always be explicitly stated because the
information can be important (as in, for example, the stronger relation between
the less-than and at-most orderings on integers compared with their properties
on reals). It is, however, information that is often cumbersome to repeat. For this
reason, the information is omitted and a convention on the naming of dummies
(such as i , j and k denote integer values) is adopted. This means that the
most common use of the notation is in the form

〈⊕bv : range : term〉 .
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In addition, the range is sometimes omitted (again to avoid unnecessary repe-
tition in calculations). In this case the form of the quantification is

〈⊕bv :: term〉.

Formally, omitting the range is equivalent to a true range:

〈⊕bv :: term〉 = 〈⊕bv : true : term〉 .

A complete set of rules governing the manipulation of quantified expressions is
given in [7]. The example calculation has been chosen not only because it uses
an unfamiliar quantifier, but also because the steps involve possibly unfamilar
rules of manipulation.

In the first and last step, the distributivity of even over finite summation is
used. This is a consequence of two properties:

even.0 ≡ true,

(the unit of addition is mapped to the unit of equivales) and2

even.(m+n) ≡ even.m ≡ even.n

(binary addition is mapped to binary equivales). The second step uses the “trad-
ing” rule for equivales. There is a trading rule for every quantifier; the one for
equivales is like the trading rule for universal quantification. An implication,
P⇒ , in the term is “traded” into a conjunct, P ∧ , in the range. (Although we
don’t use it here, it is worth pointing out that the trading rule for inequivalence
is like the trading rule for existential quantification — a conjunct is traded with
a conjunct.)

Note that a special case for an empty bag does not need to be made. Even in
this case, all quantifications are well defined; an equivales-quantification over an
empty range is true .

It’s useful to take this example a little further. Note that 〈Σk :odd.nk : 1〉 is a
count of the odd numbers in the bag. Sometimes, we want to count the number
of values in a given finite range that satisfy a given property p . The following
is useful.

even.〈Σk :pk : 1〉
= { even distributes through summation }

〈≡k : pk : even.1〉
= { trading, even.1 ≡ false , (q⇒false)≡ q≡ false }

〈≡k :: pk ≡ false〉
2 Occurrences of the binary equivales symbol “≡ ” and, later, inequivales “ �≡ ” should

be read associatively. Occurrences of the equality symbol “ = ” should be read con-
junctionally.
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= { associativity and symmetry }
〈≡k :: pk〉 ≡ 〈≡k :: false〉

= { false ≡ even.1 , distributivity }
〈≡k :: pk〉 ≡ even. 〈Σ k :: 1〉 .

In summary,

even.〈Σk :pk : 1〉 ≡ 〈≡k :: pk〉 ≡ even. 〈Σk :: 1〉 . (1)

(In particular, pk can be instantiated to odd.nk .)
The equivales-quantifier will be used again later. Because it is unfamiliar, we

offer the following exercise relating it to the different-from ( ≡ ) quantifier (more
commonly known as exclusive-or).

The problem is to relate 〈≡k :: pk〉 to 〈≡k ::pk〉 . Noting the distributivity
laws: ¬(p≡ q)≡¬p ≡¬q , and ¬true≡ false , negation distributes through an ar-
bitrary finite equivales-quantification turning it into a different-from quantifica-
tion. So,

〈≡k :: pk〉
= { double negation, distributivity }

¬ 〈≡k ::¬pk〉
= { definition of negation }

〈≡k :: pk≡ false〉 ≡ false

= { associativity and symmetry of equivales }
〈≡k :: pk〉 ≡ 〈≡k :: false〉 ≡ false

= { 〈≡k::false〉 ≡ even. 〈Σ k :: 1〉 , odd is ¬even }
〈≡k :: pk〉 ≡ odd. 〈Σ k :: 1〉 .

We conclude that

〈≡k ::pk〉 ≡ 〈≡k :: pk〉 ≡ odd. 〈Σk :: 1〉 . (2)

3 Even Numbers of Even Differences

The following exercise was designed by the authors to illustrate manipulations
with quantifiers.

Suppose {nk | 0≤k<M} is a bag of integers. Consider the bag of differences

{nj−nk | j <k}.

(For brevity, we assume throughout that the type of dummies j and k is the
set of the first M natural numbers.) The question is: how can we evaluate, with
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minimal effort, whether the number of even differences is even? To resolve this
question, we try to simplify the specification:

even. 〈Σ j,k : j <k ∧ even.(nj−nk) : 1〉 .
We begin our calculation with a use of the warm-up exercises.

even. 〈Σ j,k : j <k ∧ even.(nj−nk) : 1〉
= { (1) with p := 〈j,k :: even.(nj−nk)〉 ,

distributivity of even over summation }
〈≡ j,k : j <k : even.nj ≡ even.nk〉 ≡ even. 〈Σ j,k : j <k : 1〉

= { distributivity of even over summation }
even. 〈Σ j,k : j <k : nj+nk〉 ≡ even.

〈
Σ j,k : j <k : 1

2+ 1
2

〉
.

We now calculate the value of 〈Σ j,k : j <k : nj+nk〉 . ( 〈Σ j,k : j <k : 1〉 is
easily seen to be the sum of the first M natural numbers, which is well known
to be 1

2 × (M−1)×M . It is amusing to note, however, that it is a special case of
the first summation, as made obvious by the way it has been written — “ 1

2+ 1
2 ”

is a particular case of “ nj+nk ”. The calculation below is an attractive way of
deriving the standard formula. )

〈Σ j,k : j <k : nj+nk〉
= { aiming to eliminate the awkward range restriction,

we exploit symmetry of addition }
1
2 ×〈Σ j,k : j <k ∨ k<j : nj+nk〉

= { j <k ∨ k<j ≡ ¬(j =k) , range splitting }
1
2 × (〈Σ j,k :: nj+nk〉 − 〈Σ j,k : j =k : nj+nk〉)

= { associativity and symmetry, one-point rule }
1
2 × (〈Σ j,k :: nj〉 + 〈Σ j,k :: nk〉 − 〈Σj :: 2×nj〉)

= { dummy renaming and distributivity }
1
2 ×2× (〈Σ j,k ::nj〉 − 〈Σj ::nj〉)

= { arithmetic, nesting and

associativity and symmetry }
〈Σj :: 〈Σk ::nj〉 − nj〉

= { distributivity (of product over addition) }
〈Σj :: nj × (〈Σk :: 1〉 − 1)〉

= { range of k is 0≤k<M , distributivity }
(M−1)× 〈Σj ::nj〉 .
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Consequently,

even. 〈Σ j,k : j <k : nj+nk〉 ≡ odd.M ∨ even. 〈Σj ::nj〉 .
Similarly, we have:

even. 〈Σ j,k : j <k : 1〉
= { above with nj = 1

2 , or standard formula }
even.(1

2 × (M−1)×M)

= { case analysis on even.M }
even.�M

2 �.
Substituting, we have determined that

even. 〈Σ j,k : j <k ∧ even.(nj−nk) : 1〉
≡ odd.M ∨ even. 〈Σj : odd.nj : 1〉 ≡ even.�M

2 � .

We conclude that, when M is even, the evenness of the number of even differ-
ences is determined by first determining whether the number of odd numbers is
even, and then comparing this boolean for equality with even.�M

2 � . That is, we
evaluate:

even. 〈Σj :odd.nj : 1〉 ≡ even.�M
2 �.

In the case that M is odd, the answer is independent of the numbers in the
bag; it is simply

even.�M
2 �.

An interesting feature of this example is that we have chosen to simplify summa-
tions rather than to use the equivales quantifier. The crucial step of eliminating
the awkward range restriction, j <k , exploits a property of addition that has no
counterpart for equivales. This extra degree of calculational freedom significantly
enhances the elegance of the calculation.

4 1906 Hungarian Contest Problem

Exercise [8, 3.4.8] is a special case of the following.
Suppose a bag of M numbers is given. Let a and b be both arbitrary

arrangements of the bag. Prove that, if M is odd, the product

(a1−b1)(a2−b2)(a3−b3) . . . (aM−bM )

is an even number. (In [8, 3.4.8], the bag is the set of numbers 1 , 2 , . . . , M .)
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The calculational solution is as follows.

even. 〈Πk ::ak−bk〉
= { even distributes through product and summation }

〈∃k :: even.ak≡ even.bk〉
⇐ { discussed below }

〈≡k :: even.ak≡ even.bk〉
= { (2) }

〈≡k :: even.ak≡ even.bk〉 ≡ odd. 〈Σk :: 1〉
= { associativity and symmetry of equivalence }

〈≡k :: even.ak〉 ≡ 〈≡k :: even.bk〉 ≡ odd. 〈Σk :: 1〉
= { a and b are rearrangements of the same bag }

odd. 〈Σk :: 1〉 .
The second step of this calculation is the most risky because it is a strengthening
step. It is suggested by the goal of separating the two operands of the equivalence
in the term of the quantification. Formally, the property used is that, for all
predicates p ,

〈∃k :: pk〉 ⇐ 〈≡k ::pk〉 (3)

In words, (3) is read as an inclusive-or is weaker than an exclusive-or. Its truth
is established by observing that the contrapositive law, 〈∀k :: pk〉 ⇒ 〈≡k :: pk〉
for all predicates p , is an immediate consequence of Leibniz’s rule. (Substitute
true for pk in the right side of the implication.)

A special case of (3) is

〈∃k :: even.nk〉 ⇐ even. 〈Σk ::nk〉 ∧ odd. 〈Σk :: 1〉 . (4)

(Take pk to be even.nk and use distributivity of even through summation and
(2). The property is better known in the contrapositive form: the sum of an odd
number of odd numbers is odd.) In this way, our proof is directly comparable to
Zeitz’s solution 2 [8, 3.4.8]. The difference is that Zeitz’s solution has a “rabbit”3:
an (implicit) proof by contradiction is used in order to replace multiplication by
addition. Our solution replaces disjunction by equivales, but the replacement is
suggested directly by the shape of the formulae.

5 Summing Absolute Differences

In this section and the next, we consider two problems taken from [9] that involve
sums of absolute differences. We present calculational solutions. Our calculations
lead to theorems that are stronger than those stated in [9].
3 Zeitz’s solution begins with the words “The crux move: consider the sum of the

terms”.
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It is useful to “lift” a binary operator ⊕ on numbers to sequences of equal
length by defining, for sequences a and c , each of length m ,

a⊕c = 〈i : 0≤ i<m : ai⊕ci〉 .

We extend unary operators to sequences (in particular, the absolute value oper-
ator) in the same way. Thus, |a−c| denotes the sequence of absolute differences

〈i : 0≤ i<m : |ai−ci|〉 .

Quantifiers are functions from sequences to values. For example, the sum quan-
tifier, “ Σ ”, maps a sequence of numbers to a number. Combined with lifting,
this gives the concise notation Σ |a−c| for 〈Σ i : 0≤ i<m : |ai−ci|〉 .

This section’s problem is as follows. The numbers 1 , 2 , 3 , . . . 2×N are
divided over two sequences a and b , each of length N , in such a way that a
is increasing and b is decreasing. Prove that

Σ |a−b| = N2.

The first step in the solution is to “disentangle” summation and absolute values.
Let a and b be arbitrary equal-length sequences of numbers. Then, denoting
maximum by the infix operator “ ↑ ” and minimum by “ ↓ ”,

Σ |a−b|
= { definition of absolute value }

Σ ((a↑b) − (a↓b))
= { associativity and symmetry of summation,

distributivity of negation over sum }
Σ(a↑b) − Σ(a↓b).

In summary, for arbitrary sequences a and b of equal length,

Σ|a−b| = Σ(a↑b) − Σ(a↓b). (5)

Except for their having equal length, the above calculation makes no assumption
about the sequences a or b . We now take into account the fact that a is
increasing, b is decreasing, and the sequences have no common elements.

Suppose i and j index elements of the sequences. Then

ai↓bi < aj↑bj

= { distributivity of ( <x ) over minimum,

and ( x< ) over maximum (for any x ) }
ai <aj ∨ ai <bj ∨ bi <aj ∨ bi <bj

= { a is increasing, b is decreasing }
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i< j ∨ (ai <bj ∨ bi <aj) ∨ j < i

⇐ { 〈∀k ::ak = bk〉 . I.e. 〈∀k :: ak <bk ∨ bk <ak〉 }
i< j ∨ i= j ∨ j < i

= { inequalities }
true.

The conclusion is that
〈∀ i,j :: ai↓bi < aj↑bj〉 (6)

where dummies i and j range over indices of a and b . The significance of
(6) is that Σ(a↑b) is the sum of the N largest elements in the concatenated
sequence a ++ b (where N is the common length of the sequences a and b ),
and Σ(a↓b) is the sum of the N smallest elements. Thus, combining (6) with
(5), we get the following theorem.

Theorem 1. Suppose 2×N distinct numbers are divided over two sequences
a and b , each of length N , in such a way that a is increasing and b is
decreasing. Then, Σ|a−b| is the difference between

– the sum of the N largest
and

– the sum of the N smallest

of the given numbers.

Applying this theorem to the case that the numbers are 1 , 2 , 3 , . . . , 2×N ,
using the well-known formula for the sum of 1 , 2 , 3 , . . . , n , we get that
Σ|a−b| is

(1
2×(2×N)×(2×N +1)− 1

2×N×(N+1)) − 1
2×N×(N+1),

which simplifies to N2 . (Note that N may be zero.)
Our calculation does not presuppose a knowledge of the answer. The most

crucial step is the first one, in which the arithmetic involved in calculating ab-
solute differences is disentangled from summation of a sequence. The symmetry
between minimum and maximum in (5) suggests the calculation that follows it.

6 A De Morgan-Like Theorem

For our final exercise, we consider the following problem [9].
An arbitrary set of m+n numbers is divided into two arbitrary groups a1 ,

a2 , . . . , am and b1 , b2 , . . . , bn , and the numbers in each group arranged in
ascending order

a1 <a2 < . . . <am, b1 <b2 < . . . < bn.

Then the same numbers are again divided into two arbitrary groups c1 , c2 , . . . ,
cm and d1 , d2 , . . . , dn , and the numbers in each group arranged in ascending
order
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c1 <c2 < . . . < cm, d1 <d2 < . . . <dn.

Prove the equality

|a1−c1|+ |a2−c2|+ . . . + |am−cm| = |b1−d1|+ |b2−d2|+ . . . + |bn−dn| .

Our solution to the problem involves identifying a novel theorem on ascending
sequences. We also eliminate the requirement that all the numbers are distinct.
This leads to novel applications (omitted here for brevity).

We assume that we are given a finite bag U , the elements of which are
(totally) ordered by the relation � . If c is a subbag of U , we use #c to denote
its size. The complement of c (in U ) is denoted c . For all i , 0≤ i<#c , the
i th element of c in the resulting ordered sequence is denoted by c.i . Formally,
we have, for all subbags c of U ,

〈∀ j,k : 0≤ j≤k<#c : c.j� c.k〉 . (7)

When U is a set (i.e. there are no duplicates in the bag), we have the stronger:
for all subsets c of U ,

〈∀ j,k : 0≤ j <#c ∧ 0≤k<#c : j <k ≡ c.j≺ c.k〉 . (8)

As in section 5, we “lift” operators to map sequences to sequences. In general,
it is not the case that the indexing function ( .i ), as defined above, distributes
through lifted operators. For example, |a−c|.i need not be equal to |a.i− c.i| . It
is the case, however, for minimum and maximum (with respect to � ), because
they are monotonic. This is important.

We are now in a position to reformulate the problem: An arbitrary bag U of
numbers is split into subbags a and a . The same bag U is split again into b
and b , where #a=#b . Prove that

Σ |a−b| = Σ |a−b|. (9)

Before beginning the calculation, we observe two complications:

– In general, the two sums range over different numbers of elements.
– Order (absolute value) and arithmetic (addition and subtraction) are heavily

entangled.

The first step is thus to improve the situation:

Σ |a−b| = Σ |a−b|
= { definition of absolute value }

〈Σ i :: a.i↑ b.i − a.i↓ b.i〉 =
〈
Σ i :: a.i↑ b.i − a.i↓ b.i〉

= { for all i , ( .i ) distributes through max and min,

associativity and symmetry of addition }
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Σ (a↑b) − Σ (a↓b) = Σ (a↑b) − Σ (a↓b)
= { arithmetic }

Σ (a↑b) + Σ (a↓b) = Σ (a↑b) + Σ (a↓b).
This is much better. Both sides have #U summands, and they differ only by
complementation. This suggests a seemingly bold4 step:

Σ (a↑b) + Σ (a↓b) = Σ (a↑b) + Σ (a↓b)
⇐ { Σ U = Σ (a↑b) + Σ (a↑b) = Σ (a↓b) + Σ(a↓b) }

a↑b = a↓b ∧ a↓b = a↑b.
We have thus reduced the original problem to establishing the following theorem
on increasing sequences.

Theorem 2 (“De Morgan’s Rule”). For all equal-length subbags a and
b of a totally ordered bag U :

a↑b = a↓b and a↓b = a↑b .

We first prove the theorem assuming that U is a set, and then show how to
extend the proof to bags. Clearly, it suffices to prove just the first conjunct. (The
second is obtained from the first by the replacements a,b :=a,b .)

We have:

a↑b = a↓b
= { #(a↑b) = #(a↓b) , complementation }〈∀ i,j :: (a↑b).i = (a↓b).j〉
= { monotonicity of min and max }〈∀ i,j :: a.i↑ b.i = a.j ↓ b.j〉 .

Now consider arbitrary i and j . We show that a.i↑ b.i = a.j ↓ b.j implies
false.

a.i↑ b.i = a.j ↓ b.j
= { a.i = a.j , b.i = b.j (because a and b are sets) }

(a.i � b.i = a.j � b.j)

∨ (b.i � a.i = b.j � a.j) .

By symmetry, it suffices to prove that just one of the two disjuncts implies false.
We proceed with the first.
4 The step is actually not that bold. It is suggested by the obvious fact stated in the

hint, and the similarity of the expressions in a and b.
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a.i � b.i = a.j � b.j

= { disentangling a from b }
a.i � a.j ∧ a.j = b.i ∧ b.i � b.j

= { a and a are disjoint, as are b and b }
a.i ≺ a.j ∧ a.j = b.i ∧ b.i ≺ b.j.

The next step is crucial. The property a.i ≺ a.j implies that (i+1)+ j ele-
ments of U are less than a.j ; similarly, the property b.i ≺ b.j implies that
(#b− (i+1))+(#b− j) elements of U are greater than b.i . Formally:

a.i ≺ a.j

= { (8) and transitivity of ≺ }
〈∀k : k≤ i : a.k≺a.j〉 ∧ 〈∀k : k<j : a.k≺a.j〉

⇒ { a and a are disjoint subsets of U }
〈Σk : U.k≺a.j : 1〉 ≥ (i+1)+ j.

Similarly,

b.i ≺ b.j

= { (8) and transitivity of ≺ }
〈∀k : i<k : b.i≺ b.k〉 ∧ 〈∀k : j≤k : b.i≺ b.k

〉
⇒ { b and b are disjoint subsets of U }

〈Σk : b.i≺U.k : 1〉 ≥ (#b− (i+1))+ (#b− j).

We now combine these two counts with the middle conjunct: a.j = b.i .

a.i ≺ a.j ∧ a.j = b.i ∧ b.i ≺ b.j

⇒ { above, Leibniz }
〈Σk : U.k≺ b.i ∨ b.i≺U.k : 1〉 ≥ (i+1)+ j +(#b− (i+1))+(#b− j)

= { arithmetic, #b+#b = #U }
〈Σk : U.k = b.i : 1〉 ≥ #U

= { b.i is an element of U }
false.

This completes the proof of theorem 2, assuming that U is a set. Given a bag U ,
this lemma can be applied to the sets of pairs ( U.i , i ) ordered lexicographically
by (x,i)" (y,j) equivales x# y∨ (x= y∧ i≥ j) .

It is interesting to compare our calculation with the argument given by
Savchev and Andreescu [9]. Their argument starts immediately with induction
and a subsequent case analysis. Our calculation is driven by heuristic principles,
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which lead to the discovery of the much more general De Morgan-like theorem.
Their argument has 10 lines of displayed formulae (including 16 occurrences
of ellipsis dots) and 20 lines of printed text. Ours is much more detailed, but
has just 16 calculation steps, and a similar amount of text (including the hints
accompanying calculation steps). Their argument assumes that U is a set, and
is split into non-empty subsets; our calculation assumes that U is a bag, that
is split arbitrarily.

7 Conclusion

Manipulating quantified expressions is an important calculational skill. Else-
where, Knuth, Patashnik and Graham [1] also emphasise its importance and
give several examples of non-trivial calculations with the Σ quantifier. We have
provided further evidence for the importance of the skill by tackling a number
of challenging mathematical exercises.

Acknowledgements. Thanks to Wim Feijen for bringing the problems in [9] to
our attention, to Jeremy Weissmann for comments on an earlier presentation of
section 5, and to the referees for their detailed and insightful comments.
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Abstract. Over the past twenty-five years or so Saddleback search has
been used as an paradigm of how methods of formal program construc-
tion can quickly lead to a simple and effective algorithm for searching an
ordered table. In this paper we revisit the problem and show that sad-
dleback search is not in fact the best algorithm when one dimension of
the table is much smaller than the other. The paper is structured in the
form of a classroom discussion involving a teacher and four very clever
students.

The setting is a class on algorithm design. There are four students: Anne, Jack,
Mary and Theo.

Teacher: Good morning class. Today I would like you design a function invert
that takes two arguments, a function f from pairs of natural numbers to natural
numbers, and a natural number z. The value invert f z is a list of all pairs
(x, y) satisfying f(x, y) = z. You can assume that f is strictly increasing in each
argument, but nothing else.

Jack: That seems an easy problem. Since f is increasing in each argument, we
know that f(x, y) = z implies x ≤ z and y ≤ z. Hence we can define invert by
a simple search of all possible pairs of values:

invert f z = [(x, y) | x← [0 .. z], y← [0 .. z], f(x, y) = z]

Doesn’t this solve the problem?

Teacher: Yes it does, but your solution involves (z + 1)2 evaluations of f .
Since f may be very expensive to compute, I would like a solution with as few
evaluations of f as possible.

Theo: Well, its easy to halve the number of evaluations. Since f(x, y) ≥ x + y
if f is increasing, the search can be confined to values on or below the diagonal
of the square:

invert f z = [(x, y) | x← [0 .. z], y← [0 .. z − x], f(x, y) = z]

Come to think of it, you can replace the two upper bounds by z − f(0, 0) and
z − x− f(0, 0). Then if z < f(0, 0) the search terminates at once.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 82–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Anne: Assuming it doesn’t matter in which order the solutions are found, I
think you can do better still. Jack’s method searches a square of size z + 1 from
the origin at the bottom left, and proceeds upwards column by column. We can
do better if we start at the top-left corner (0, z) of the square. At any stage
the search space is constrained to be a rectangle with top-left corner (u, v) and
bottom-right corner (z, 0). Let me define

find (u, v) f z = [(x, y) | x← [u .. z], y← [v, v − 1 .. 0], f(x, y) = z]

so that invert f z = find (0, z) f z. It is now easy enough to calculate a more
efficient implementation of find .

First of all, if u > z or v < 0, then clearly find (u, v) f z = [ ]. Otherwise,
we carry out a case analysis on the value f(u, v). If f(u, v) < z, then the rest of
column u can be eliminated since f(u, v′) < f(u, v) < z for v′ < v. If f(u, v) > z,
we can similarly eliminate the rest of row v. Finally, if f(u, v) = z, then we can
record (u, v) and eliminate the rest of both column u and row v.

Here is the my improved version of find :

find (u, v) f z
| u > z ∨ v < 0 = [ ]
| z′ < z = find (u + 1, v) f z
| z′ = z = (u, v) : find (u + 1, v − 1) f z
| z′ > z = find (u, v − 1) f z
where z′ = f(u, v)

In the worst case, when find traverses the square from the top-left corner to the
bottom-right one, it performs 2z + 1 evaluations of f . In the best case, when
find proceeds directly to either the bottom or rightmost boundary, it requires
only z + 1 evaluations.

Theo: You can reduce the search space still further since the initial square
with top-left corner (0, z) and bottom-right corner (z, 0) is an overly-generous
estimate of where the required values lie. Suppose we first compute m and n,
where

m = maximum (filter (λy → f(0, y) ≤ z) [0 .. z])
n = maximum (filter (λx→ f(x, 0) ≤ z) [0 .. z])

Then we can define invert f z = find (0,m) f z, where find has exactly the
same form that Anne gave, except that the first guard becomes u > n ∨ v < 0.
In other words, rather than search a (z + 1) × (z + 1) square we can get away
with searching a (m + 1)× (n + 1) rectangle.

The crucial point is that we can compute m and n by binary search. Let g be
an increasing function on the natural numbers and suppose x, y and z satisfy
g x ≤ z < g y. To determine the unique value m, where m = binary g (x, y) z,
in the range x ≤ m < y such that g m ≤ z < g (m + 1) we can maintain the
invariants g a ≤ z < g b and x ≤ a < b ≤ y. This leads to the program
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binary g (a, b) z
| a + 1 = b = a
| g m ≤ z = binary g (m, b) z
| otherwise = binary g (a,m) z
where m = (a + b) div 2

Since a + 1 < b ⇒ a < m < y it follows that neither g x nor g y are evaluated
by the algorithm, so they can be fictitious values. In particular, we have

m = binary (λy → f(0, y)) (−1, z + 1) z
n = binary (λx → f(x, 0)) (−1, z + 1) z

where we extend f with fictitious values f(0,−1) = 0 and f(−1, 0) = 0.
This version of invert takes about 2 log z+m+n evaluations of f in the worst

case, and 2 log z+min (m,n) in the best case. Since m or n may be substantially
less than z, for example when f(x, y) = 2x+3y, we can end up with an algorithm
that takes only O(log z) steps in the worst case.

Teacher: Congratulations, Anne and Theo, you have rediscovered an important
search strategy, dubbed Saddleback Search by David Gries, see [1, 2, 3]. I imagine
Gries called it that because the shape of the three-dimensional plot of f , with
the smallest element at the bottom-left, the largest at the top-right, and two
wings, is a bit like a saddle. The crucial idea, as Anne has spotted, is to start
the search at the tip of one of the wings rather than at the smallest or highest
value. In his treatment of the problem, Dijkstra [2] also mentioned the advantage
of using a logarithmic search to find the appropriate starting point.

Mary: What happens if we go for a divide and conquer solution? I mean, why
don’t we look at the middle element of the rectangle first? Surely it is reasonable
to investigate the two-dimensional analogue of binary search.

Suppose we have confined the search to a rectangle with top-left corner (u, v)
and bottom-right corner (r, s). Instead of looking at f(u, v) why don’t we inspect
f(p, q) where p = (u + r) div 2 and q = (v + s) div 2? If f(p, q) < z, then we
can throw away all elements of the lower-left rectangle ((u, q), (p, s)). Similarly,
if f(p, q) > z we can throw away the upper-right rectangle ((p, v), (r, q)). And if
f(p, q) = z, then we can throw away both.

I know that this strategy doesn’t maintain Anne’s property that the search
space is always a rectangle; instead we have two rectangles or an L-shape. But we
are functional programmers and don’t have to confine ourselves to simple loops:
a divide and conquer algorithm is as easy for us to implement as an iterative
one because both have to be expressed recursively.

Jack: You have to deal with the L-shape though. You can split an L-shape
into two rectangles of course. In fact you can do it in two ways, either with
a horizontal cut or a vertical one. Let me do a rough calculation. Consider a
m×n rectangle and let T (m,n) denote the number of evaluations of f required
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to search it. If m = 0 or n = 0 there is nothing to search. If m = 1 or n = 1 we
have

T (1, n) = 1 + T (1, %n/2&)
T (m, 1) = 1 + T (%m/2&, 1)

Otherwise, when m ≥ 2 and n ≥ 2, we can throw away a rectangle of size at least
�m/2�×�n/2�. If we make a horizontal cut, then we are left with two rectangles,
one of size �m/2� × %n/2& and the other of size %m/2& × n. Hence

T (m,n) = 1 + T (�m/2�, %n/2&) + T (%m/2&, n)

If we make a vertical cut, then we have

T (m,n) = 1 + T (%m/2&, �n/2�) + T (m, %n/2&)
I don’t immediately see the solutions to these recurrence relations.

Theo: If you make both a horizontal and a vertical cut, you are left with three
rectangles, so when m ≥ 2 and n ≥ 2 we have

T (m,n) = 1 + T (%m/2&, �n/2�) + T (%m/2&, %n/2&) + T (�m/2�, %n/2&)
I can solve this recurrence. Set U(i, j) = T (2i, 2j), so

U(i, 0) = i
U(0, j) = j
U(i + 1, j + 1) = 1 + 3U(i, j)

The solution is U(i, j) = 3k(|j− i|+1/2)− 1/2 where k = min (i, j), as one can
check by induction. Hence if m ≤ n we have

T (m,n) ≤ 3log m log(2n/m) = m1.59 log(2n/m)

That’s better than m + n when m is much smaller than n.

Jack: I don’t think the three-rectangle solution is as good as the two-rectangle
one. Following your approach, Theo, let me set U(i, j) = T (2i, 2j). Supposing
i ≤ j and making a horizontal cut, we have

U(0, j) = j
U(i + 1, j + 1) = 1 + U(i, j) + U(i, j + 1)

The solution is U(i, j) = 2i(j−i/2+1)−1, as one can check by induction. Hence

T (m,n) ≤ m log(2n/
√

m)

If i ≥ j we should make a vertical cut rather than a horizontal one; then we
get an algorithm with at most n log(2m/

√
n) evaluations of f . In either case, if

one of m or n is much smaller than the other we get a better algorithm than
saddleback search.
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Anne: While you two have been solving recurrences I have been thinking of a
lower bound on the complexity of invert . Consider the different possible outputs
when we have a m× n rectangle to search. Suppose there are A(m,n) different
possible answers. Each test of f(x, y) against z has three possible outcomes, so
the height h of the ternary tree of tests has to satisfy h ≥ log3 A(m,n). Provided
we can estimate A(m,n) this gives us a lower bound on the number of tests that
have to be performed. The situation is the same with sorting n items by binary
comparisons; there are n! possible outcomes, so any sorting algorithm has to
make at least log2 n! comparisons in the worst case.

It’s easy to estimate A(m,n): each possible list of pairs (x, y) in the range
0 ≤ x < n and 0 ≤ y < m with f(x, y) = z is in a one-to-one correspondence
with a step shape from the top-left corner of the m×n rectangle to the bottom-
right corner, in which the value z appears at the inner corners of the steps. Of
course, this step shape is not necessarily the one traced by the function find .
The number of such paths is (m+n

n ), so that is the value of A(m,n).
Another way to see this result is to suppose there are k solutions. The value z

can appear in k rows in exactly (
m
k ) ways, and for each way there are (

n
k) possible

choices for the columns. Hence

A(m,n) =
m∑

k=0

(
m
k

)(
n
k

)
=
(
m + n

n

)
since the summation is an instance of Vandermonde’s convolution, see [4]. Taking
logarithms, we obtain the lower bound

logA(m,n) = Ω(m log(1 + n/m) + n log(1 + m/n))

This estimate shows that when m = n we can’t do better than Ω(m + n) steps.
But if m ≤ n then m ≤ n log(1 + m/n) since x ≤ log(1 + x) if 0 ≤ x ≤ 1. Thus
A(m,n) = Ω(m log(n/m)). Jack’s solution does not quite achieve this bound
because he obtains only an O(m log(n/

√
m)) algorithm in the case m ≤ n.

Mary: I don’t think that Jack’s divide and conquer solution is really necessary;
there are other ways of using binary search to solve the problem. One is simply to
carry out m binary searches, one on each row. That gives an O(m logn) solution.
But I think we can do better and achieve the optimal asymptotic O(m log(n/m))
bound, assuming m ≤ n.

Suppose, as before, we have confined the search to a rectangle with top-left
corner (u, v) and bottom-right corner (r, s). Thus there are r − u columns and
s−v rows. Furthermore, assume v−s ≤ r−u so there at least as many columns as
rows. Suppose we carry out a binary search along the middle row, q = (v+s)div2
in order to determine a p such that f(p, q) ≤ z < f(p+ 1, q). If f(p, q) < z, then
we need continue the search only on the two rectangles ((u, v), (p, q+1)) and ((p+
1, q−1), (r, s)). If f(p, q) = z we can cut out column p and can continue the search
only on the rectangles ((u, v), (p−1, q+1)) and ((p+1, q−1), (r, s)). The reasoning
is dual if there are more rows than columns. As a result, we can eliminate about
half the elements of the array with a logarithmic number of probes.
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Here is the algorithm I have in mind: we implement invert by

invert f z = find (0,m) (n, 0) f z
where m = binary (λy → f(0, y)) (−1, z+1) z

n = binary (λx→ f(x, 0)) (−1, z+1) z

where find (u, v) (r, s) f z, given in Figure 1, searches a rectangle with top-left
corner (u, v) and bottom-right corner (r, s):

find (u, v) (r, s) f z
| u > r ∨ v < s = [ ]
| v−s ≤ r−u = row (binary (λx→ f(x, q)) (u−1, r+1) z)
| otherwise = col (binary (λy → f(p, y)) (s−1, v+1) z)

where
p = (u+r) div 2
q = (v+s) div 2
row p = if f(p, q) = z

then (p, q) : find (u, v) (p−1, q+1) f z ++ find (p+1, q−1) (r, s) f z
else find (u, v) (p, q+1) f z ++ find (p+1, q−1) (r, s) f z

col q = if f(p, q) = z
then (p, q) : find (u, v) (p−1, q+1) f z ++ find (p+1, q−1) (r, s) f z
else find (u, v) (p−1, q+1) f z ++ find (p+1, q) (r, s) f z

Fig. 1. The revised definition of find

As to the analysis, again let T (m,n) denote the number of evaluations re-
quired to search an m× n rectangle. Suppose m ≤ n. In the best case, when for
example each binary search on a row returns the leftmost or rightmost element,
we have T (m,n) = logn + T (m/2, n) with solution T (m,n) = O(log m× logn).
In the worst case, when each binary search returns the middle element, we have
T (m,n) = logn + 2T (m/2, n/2). To solve this, set U(i, j) = T (2i, 2j). Then we
have

U(i, j) =
i−1∑
k=0

2k(j − k) = O(2i(j − i))

Hence T (m,n) = O(m log(n/m)), which is asymptotically optimal by Anne’s
lower bound.

Teacher: Well done the four of you! It is surprising that in the twenty-five
years or so that Saddleback search has been presented as a paradigm of formal
program construction, none of the presenters has seemed to notice that it is not
asymptotically the best algorithm for searching.

Afterword: The real story behind the paper was that I decided to use saddle-
back search as an exercise when interviewing candidates for entry to Oxford this
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year. They were given a two-dimensional array of numbers, increasing along each
row and up each column and asked for a systematic way to spot all occurrences
of a given number. My aim was to get them to realise that searching from the
top-left or bottom-right was a good strategy. But those candidates who had done
some computing at school kept wanting to use binary search, either by going for
the middle of each row, or for the middle element of the rectangle. Being aware
of what Backhouse [1] had written,1 I steered them away from pursuing this
thought. Only afterwards did I wonder whether they might have had a point.

Apart from describing a new algorithm for an old problem, I think that two
other methodological aspects are worthy of note. Firstly, formal program cal-
culation is heavily influenced by the available computational structures of the
target language. Mary’s final program, while not particularly elegant, is simple
enough given recursion and list concatenation as basic constructs, but would be
more difficult to express given just arrays and loops. Secondly, as algorithm de-
signers fully appreciate, formal program calculation has to be supplemented by
insight into possible directions for improving efficiency. Such insight is provided,
in part, by solving recurrence relations and determining lower bounds. That is
why the paper’s subtitle is ‘A Lesson in Algorithm Design’.

One of the referees of the paper wrote: “Complexity brings with it its own
efficiency overheads, which are so often neglected in the sort of analyses included
in the paper. If the author really wants to convince us that his algorithms are
better than Gries’s, then he should show some concrete evidence. Run the al-
gorithm for specific functions on specific data, and compare the results.” The
following two tables provide such evidence. Five functions were chosen almost
at random:

f0 (x, y) = 2y(2x + 1)− 1
f1 (x, y) = x2x + y2y + 2x + y
f2 (x, y) = 3x + 27y + y2

f3 (x, y) = x2 + y2 + x + y
f4 (x, y) = x + 2y + y − 1

Table 1 lists the exact number of evaluations of fi required in the computation of
invert fi 5000 using Anne’s initial version of saddleback search, Theo’s version
(with binary search to compute the boundaries), and Mary’s final version. Table 2
lists absolute running times in seconds under GHCi. The close correspondence
with the first table shows that the number of evaluations is a reasonable guide
to absolute running time:

The classroom style of the paper may not be to everyone’s taste but I quite
like it, and it is the third paper in this style that I have written. After it was
composed it was road-tested at a meeting of the Oxford Algebra of Programming
Group. I would like to thank Ian Bayley, Sharon Curtis, Jeremy Gibbons, Geraint
Jones, Clare Martin, and Bruno Oliveira, whose contributions were included in

1 “When first confronted with this problem many students immediately think that
binary search is applicable. This betrays a lack of preliminary investigation into the
properties of the supplied data.”(page 175)
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Table 1. Number of evaluations

Algorithm f0 f1 f2 f3 f4

Anne 7501 5011 6668 5068 9989
Theo 2537 38 1749 157 5025
Mary 121 42 445 181 134

Table 2. Absolute running times

Algorithm f0 f1 f2 f3 f4

Anne 0.42 0.40 0.17 0.15 0.54
Theo 0.06 0.01 0.05 0.01 0.15
Mary 0.01 0.01 0.02 0.02 0.01

a second draft. I also thank the referees for pointing out typos and making other
suggestions.
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Abstract. A loopless algorithm is a procedure for generating a list
of values under two restrictions: the first element should be produced
in linear time and each subsequent element in constant time. Loopless
algorithms arise in the enumeration of combinatorial patterns such as
permutations or subsequences. The elements of the generated list de-
scribe transitions that determine how the next combinatorial pattern
is to be determined from its predecessor. Loopless algorithms were in-
troduced in a procedural setting, and many clever tricks, such as focus
pointers, doubly-linked lists and coroutines, have been used to construct
them. This paper explores what a purely functional approach can bring
to the subject, and calculates loopless functional versions of the Gray
code algorithm, the Koda-Ruskey algorithm for listing the prefixes of a
forest, and the Johnson-Trotter algorithm for generating permutations.
The functional algorithms are completely different from their procedural
counterparts, and rely on nothing more fancy than lists, trees and queues.

1 Introduction

The idea of a loopless algorithm was first introduced by Ehrlich in [2]. Given is an
element x of some data type for which it is required to produce an enumeration
of certain combinatorial patterns associated with x . For example, if x is a list
one might want to enumerate all the permutations or all the subsequences of
x . It is supposed that each pattern can be obtained from its predecessor in the
enumeration, except the very first, by applying an appropriate transition. For
permutations one possible kind of transition is a single integer i meaning “swap
the item in position i with the item in position i − 1”. For subsequences a
transition i could mean “insert/delete the item at position i”. An algorithm for
producing a complete list of such transitions is called loopless if

– The first transition is produced within O(n) steps, where n is the size of x ;
– Each subsequent transition is produced within O(1) steps.

Note that the idea of a loopless algorithm is defined as one of generating the
transitions between combinatorial patterns, not the patterns themselves. This
is because producing a pattern itself may not be possible within constant time.
Clearly, it takes n steps simply to write down a permutation of n items.

Loopless algorithms were formulated in a procedural setting, but it is possible
to capture the essential idea in a purely functional one. To do so we make use

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 90–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of the standard Haskell function unfoldr . First, recall the Haskell standard type
Maybe:

data Maybe a = Nothing | Just a

The function unfoldr is defined by

unfoldr :: (b → Maybe (a, b)) → b → [a]
unfoldr step b = case step b of

Just (a, b′)→ a : unfoldr step b′

Nothing → [ ]

For our purposes, a loopless algorithm is one that is expressed in the form
unfoldr step ·prolog, where step takes constant time and prolog takes time linear
in the size of the input. In a lazy language like Haskell the work done by prolog
is distributed throughout the computation of unfoldr step, and not concentrated
at the beginning. Therefore for true looplessness we should really interpret the
composition operator (·) as being fully strict, meaning that prolog is evaluated
fully before unfoldr step begins. Although it is not possible to define a general
fully-strict composition operator in Haskell, we will take pains to ensure step
takes constant time under a strict as well as a lazy semantics.

A number of loopless algorithms for generating combinatorial patterns appear
in Knuth’s web-published drafts of three sections of Volume 4 of The Art of
Computer Programming [5]. These “pre-fascicles” contain references to much
of the literature on looplessness. The loopless algorithms described by Knuth
involve subtle programming techniques, including focus pointers, doubly-linked
lists, coroutines, and so on. Our aim in this paper is to see what a functional
approach can bring to the topic. In particular, we will give loopless functional
versions of an algorithm for generating Gray codes, the Koda-Ruskey algorithm
for generating the prefixes of a forest, and the Johnson-Trotter algorithm for
generating permutations. Bear in mind though that as far as the total execution
time is concerned, a loopless algorithm may well be less efficient that a non-
loopless alternative. To quote from [4]:

“The extra contortions that we need to go through in order to achieve
looplessness are usually ill-advised, because they actually cause the total
execution time to be longer than it would be with a more straightforward
algorithm. But hey, looplessness carries an academic cachet. So we might
as well treat this task as a challenging exercise that might help us to
sharpen our algorithmic wits.”

Change the penultimate word to ‘calculational’ and you will appreciate the point
of this paper.

2 Warm-Ups

As a first warm-up, consider the function concat :: [[a]] → [a] that concatenates
a list of lists together. One could argue that the standard definition of concat ,
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viz foldr (++) [ ], meets the two criteria listed in the Introduction, at least in a
lazy functional language like Haskell, but it is instructive to give a definition
based on unfoldr :

concat = unfoldr step · filter (not · null)
where step [ ] = Nothing

step ((x : xs) : xss) = Just (x , consList xs xss)

The subsidiary function consList conses only nonempty lists onto a list of lists:

consList xs xss = if null xs then xss else xs : xss

The function step clearly takes constant time. Empty lists have to be filtered out
of the input, otherwise this time bound would be violated. For example, consider
an input of the form [[1], [ ], [ ], . . . , [ ], [2]] in which there are n empty sequences
between the first and last singleton lists. After producing the first element 1, it
takes n steps to produce the second element 2 of the final list.

Sea lawyers might claim that the given definition of concat is overkill, since
the alternative

concat = unfoldr step · foldr (++) [ ]
where step [ ] = Nothing

step (x : xs) = Just (x , xs)

is also loopless. Here the real work is done in the prolog, unfoldr step merely
being an elaborate way of writing the identity function on lists. Though a valid
criticism for concat , the idea of putting all the work into the prolog would not
work for functions whose output has length not linear in the size of the input.

As a second warm-up, consider the preorder traversal of a forest of rose trees:

data Rose a = Node a [Rose a]

A forest is a list of trees and the preorder traversal of a forest can be cast in the
form

preorder :: [Rose a] → [a]
preorder [ ] = [ ]
preorder (Node x xrs : yrs) = x : preorder (xrs ++ yrs)

This definition of preorder takes time linear in the size of the forest. Furthermore,
preorder = unfoldr step, where

step [ ] = Nothing
step (Node x xrs : yrs) = Just (x , xrs ++ yrs)

The function step is not constant time but we can make it so by processing lists
of forests, elements of [[Rose a]], instead of forests. The revised definition of step
reads:

step :: [[Rose a]] → Maybe (a, [[Rose a]])
step [ ] = Nothing
step ((Node x xrs : yrs) : zrss) = Just (x , consList xrs (consList yrs zrss))
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Now we have preorder = unfoldr step ·wrapList , where wrapList xrs = [xrs ]. This
is a loopless algorithm for preorder . Of course, it suffers from the same defect as
concat ; since the length of the output is proportional to the size of the input we
could equally well have done all the work in the prolog.

For the third and final warm-up consider the inorder traversal of a binary
tree:

data Tree a = Null | Fork (Tree a) a (Tree a)

The function inorder is defined by

inorder Null = [ ]
inorder (Fork xt x yt) = inorder xt ++ x : inorder yt

To convert inorder into a loopless algorithm, consider the function spines that
converts a tree into a list of its spines, namely the list of pairs of labels and
spines of right subtrees along the path from the leftmost node to the root. We
can use a forest of rose trees for spines and define spines by

spines :: Tree a → [Rose a]
spines Null = [ ]
spines (Fork xt x yt) = spines xt ++ [Node x (spines yt)]

In the worst case, when all the right subtrees are Null , evaluation of spines takes
quadratic time in the size of the tree. This can be reduced to linear time with
the help of a suitable accumulating parameter. Define addspines by

addspines xt xrs = spines xt ++ xrs

Then spines xt = addspines xt [ ]. It is straightforward to synthesise the following
recursive definition of addspines :

addspines Null xrs = xrs
addspines (Fork xt x yt) xrs = addspines xt (Node x (addspines yt [ ]) : xrs)

The function addspines takes linear time in the size of the tree.
The inorder traversal of the binary tree is now given by the preorder traversal

of the forest of rose trees. Specifically,

inorder = unfoldr step · wrapList · spines

where step was given above. The result is a loopless algorithm for inorder .

3 Mixing

Many combinatorial enumeration algorithms involve running up and down one
list in between generating successive elements of another list. To capture this
idea, consider the following function mix :

mix :: [a] → [a] → [a]
mix [ ] ys = ys
mix (x : xs) ys = ys ++ x : mix xs (reverse ys)
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For example, mix [3, 4, 5, 6] [0, 1, 2] = [0, 1, 2, 3, 2, 1, 0, 4, 0, 1, 2, 5, 2, 1, 0, 6, 0, 1, 2].
Thus mix runs through the second list, generates the next element of the first
list, runs backwards through the second list, and so on.

The function mix is associative with [ ] as identity element. The proof of this
not totally obvious fact is left to the diligent reader. The given definition of mix
mixes ‘from the right’, but we could equally well have defined a similar version
that mixes from the left, as in

mixl xs [ ] = xs
mixl xs (y : ys) = xs ++ y : mixl (reverse xs) ys

Either definition will serve our purpose, and we have chosen the former.
The function mixall :: [[a]] → [a] is defined by mixall = foldr mix [ ]. Since

mix is associative we could just as well have defined mixall = foldl mix [ ]. For
a list of length n of lists each of length m, the output of mixall has length
(m + 1)n − 1, which is exponential in mn, the total length of the input.

As we will see, the function mixall can be used to good effect in the con-
struction of a number of combinatorial algorithms, including Gray codes, the
Koda-Ruskey algorithm and the Johnson-Trotter algorithm, all of which gen-
erate a list of transitions for enumerating certain combinatorial objects. For
example, the function gray, where

gray n = mixall [[i ] | i ← [n−1,n−2 .. 0]]

returns a list of transitions to change the bits in an n-tuple (an−1, an−2, . . . , a0)
of bits so that the result is the binary Gray code. Transition i means “swap the
parity of the bit ai”. In particular,

gray 4 = [0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0]

Starting with the pattern 0000, the corresponding Gray code is as follows, read-
ing columns downwards from left to right:

0000 0110 1100 1010
0001 0111 1101 1011
0011 0101 1111 1001
0010 0100 1110 1000

The Gray code example explains why we have chosen to mix from the right:
conventionally the least significant bit is on the right, so that is where the action
is. We will return to Gray codes later on. Our aim in this section is simply to
derive a loopless algorithm for mixall .

3.1 Fusion and Fission

It is easy to cast mixall into loopless form: simply take prolog = foldr mix [ ] and
define step so that unfoldr step is the identity function on lists. Then we have
mixall = unfoldr step · prolog. But, of course, prolog takes exponential time.
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The way to make progress lies in the fusion law for foldr . Recall that this law
states that f · foldr g a = foldr h b provided f is strict, f a = b and f ·g x = h x · f .
Fusion is one of the fundamental laws of functional programming. The twist here
is that we seek to apply it in the “anti-fusion” or “fission” direction, breaking
up a fold into two components.

Suppose we represent elements of [a] by elements of some type T a under an
abstraction function abst :: T a → [a]. Suppose also that tmix is a function with
type tmix :: [a] → T a → T a satisfying the condition

abst · tmix xs = mix xs · abst (1)

Provided T a contains a constructor Null for representing the empty list, so
abst Null = [ ], we now have enough ingredients to apply fission, resulting in

mixall = abst · foldr tmix Null

If we can arrange that abst takes the form unfoldr step for a constant time
function step, and prolog = foldr tmix Null takes linear time, then we have a
loopless algorithm for mixall .

Let us see what information we can derive from (1) by doing a case analysis
on xs . First, we calculate

abst (tmix [ ] yt)
= {equation (1)}

mix [ ] (abst yt)
= {definition of mix [ ]}

abst yt

This suggests we define tmix [ ] yt = yt . Second,

abst (tmix (x : xs) yt)
= {equation (1)}

mix (x : xs) (abst yt)
= {definition of mix}

abst yt ++ x : mix xs (reverse (abst yt))
= {supposing ty is such that abst ty = reverse (abst yt)}

abst yt ++ x : mix xs (abst ty)
= {equation (1)}

abst yt ++ x : abst (tmix xs ty)

The last expression looks very similar to the recursive case of the inorder traversal
of a binary tree. It suggests that we take T = Tree, where Tree is the type of
binary trees defined in the warm-up section, and abst = inorder . Supposing
reflect :: Tree a → Tree a is such that inorder · reflect = reverse · inorder , the
above calculation gives

inorder (tmix (x : xs) yt) = inorder yt ++ x : inorder (tmix xs (reflect yt))
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All this suggests the following definition of tmix to satisfy (1):

tmix [ ] yt = yt
tmix (x : xs) yt = Fork yt x (tmix xs (reflect yt))

It is easy to define reflect :

reflect Null = Null
reflect (Fork xt x yt) = Fork (reflect yt) x (reflect xt)

Now we have mixall = inorder · foldr tmix Null .
So far, so good. However, foldr tmix Null cannot serve as our prolog because

it suffers from the same defect as foldr mix [ ]: it takes exponential time in the
total length of its input. The reason is that foldr tmix Null produces a tree of
exponential size, so reflecting it takes exponential time.

3.2 Tupling

The way to make progress is to avoid invoking reflect . The idea is to tuple the
computation of foldr tmix Null with the computation of reflect · foldr tmix Null ,
thereby computing both a tree and its reflection without invoking the function
reflect explicitly.

Two steps are required, the first of which is another application of the fusion
law. Suppose we can find a function, ximt say, so that

reflect · foldr tmix Null = foldr ximt Null

Given ximt , the second step is an application of the tupling law for foldr , another
fundamental law of functional programming. The tupling laws states that

fork (foldr f a, foldr g b) = foldr h (a, b)

where fork (f , g) x = (f x , g x ) and h x (y, z ) = (f x y, g x z ). In particular,

fork (foldr tmix Null , reflect · foldr tmix Null) = foldr pmix (Null ,Null)

where pmix xs (yt , ty) = (tmix xs yt , ximt xs ty).
Let us see what tupling says about mixall . Define pair f (x , y) = (f x , f y).

Then

pair inorder · foldr pmix (Null ,Null)
= {above expression for foldr pmix (Null ,Null)}

pair inorder · fork (foldr tmix Null , reflect · foldr tmix Null)
= {since pair f · fork (g, h) = pair (f · g, f · h)}

pair (inorder · foldr tmix Null , inorder · reflect · foldr tmix Null)
= {since inorder · reflect = reverse · inorder}

pair (inorder · foldr tmix Null , reverse · inorder · foldr tmix Null)
= {as mixall = inorder · foldr tmix Null}

pair (mixall , reverse ·mixall)
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Hence

pair (mixall , reverse ·mixall) = pair inorder · foldr pmix (Null ,Null)

Returning to the first step, fusion is possible if we can establish the fusion con-
dition

reflect · tmix xs = ximt xs · reflect (2)

Equivalently, ximt xs = reflect · tmix xs · reflect . It is now straightforward to
calculate a recursive definition of ximt :

ximt [ ] ty = ty
ximt (x : xs) ty = Fork (ximt xs (reflect ty)) x ty

We can also calculate a direct recursive definition of pmix . Under the assumption
that ty = reflect yt , we have

pmix (x : xs) (yt , ty)
= {definition}

(tmix (x : xs) yt , ximt (x : xs) ty)
= {definitions}

(Fork yt x (tmix xs ty),Fork (ximt xs yt) x ty)
= {with (zt , tz ) = (tmix xs ty, ximt xs yt)}

(Fork yt x zt ,Fork tz x ty)

Hence
pmix [ ] (yt , ty) = (yt , ty)
pmix (x : xs) (yt , ty) = (Fork yt x zt ,Fork tz x ty)

where (zt , tz ) = pmix xs (ty, yt)

Now foldr pmix (Null ,Null) takes linear time in the total length of the input.
The resulting pair of trees each have exponential size, but they are constructed
in linear time because subtrees are shared and there is no call on reflect . In
reality we are constructing an acyclic directed graph rather than a tree.

3.3 From Trees to Forests

The next step is to deal with inorder . Recall from our warm-up exercises that
inorder = preorder · spines , where spines converts a binary tree into a forest
of rose trees. The loopless algorithm preorder = unfoldr step · wrapList was
constructed in Sect. 2. Hence

pair (mixall , reverse ·mixall) = pair (preorder · spines) · foldr pmix (Null ,Null)

The game now is to fuse pair spines with foldr pmix (Null ,Null). Specifically,
suppose smix satisfies

pair spines · pmix xs = smix xs · pair spines (3)
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Then, since pair spines (Null ,Null) = ([ ], [ ]) another application of the fusion
law gives

pair spines · foldr pmix (Null ,Null) = foldr smix ([ ], [ ])

It remains to determine smix . It is easy to calculate from (3) that

smix [ ] (yrs, sry) = (yrs , sry)

For the recursive case, suppose (yrs, sry) = pair spines (yt , ty). Then

smix (x : xs) (yrs, sry)
= {fusion condition (3)}

pair spines (pmix (x : xs) (yt , ty))
= {definition of pmix , with (zt , tz ) = pmix xs (ty, yt)}

(spines (Fork yt x zt), spines (Fork tz x ty))
= {definition of spines}

(spines yt ++ [Node x (spines zt)], spines tz ++ [Node x (spines ty)])
= {with (zrs , srz ) = pair spines (zt , tz )}

(yrs ++ [Node x zrs ], srz ++ [Node x sry])

Summarising,

smix [ ] (yrs , sry) = (yrs, sry)
smix (x : xs) (yrs, sry) = (yrs ++ [Node x zrs ], srz ++ [Node x sry])

where (zrs , srz ) = smix xs (sry, yrs)

For example, foldr smix ([ ], [ ]) [[1, 2, 3], [4, 5]] produces the two forests
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We are nearly there, but unfortunately foldr smix ([ ], [ ]) does not take linear
time: adding to the end of a list is not a constant-time operation. And invoking
an accumulating parameter won’t help. It’s time to introduce queues.

3.4 Introducing Queues

First, recall the definition of step from Sect. 2:

step [ ] = Nothing
step ((Node x xts : yts) : tss) = Just (x , consList xts (consList yts tss))
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Observe that step removes elements from the front of a list. So in order to
make smix efficient without making step inefficient we want a data structure in
which both adding to the end of a list and removing an element from the front
are constant-time operations. In other words, a queue. Fortunately, Okasaki’s
implementation of queues [7] provides a type Queue a for which the following
operations all take constant time:

insert :: Queue a → a → Queue a
remove :: Queue a → (a,Queue a)
empty :: Queue a
isempty :: Queue a → Bool

To install queues, we need to redeclare the type Rose a so that the children of
a node constitute a queue of trees rather than a list of trees. The translation is
then completely straightforward and the complete code is given in Fig. 1.

data Qrose a = Qnode a (Queue (Qrose a))

mixall :: [[a]]→ [a]
mixall = unfoldr step · prolog

prolog :: [[a]]→ [Queue (Qrose a)]
prolog = wrapQueue · fst · foldr smix (empty , empty)

smix :: [a]→ (Queue (Qrose a),Queue (Qrose a))→
(Queue (Qrose a),Queue (Qrose a))

smix [ ] (yrq , qry) = (yrq , qry)
smix (x : xs) (yrq , qry) = (insert yrq (Qnode x zrq), insert qrz (Qnode x qry))

where (zrq , qrz) = smix xs (qry , yrq)

wrapQueue :: Queue a → [Queue a]
wrapQueue xq = consQueue xq [ ]
consQueue xq xqs = if isempty xq then xqs else xq : xqs

step :: [Queue (Qrose a)]→ Maybe (a, [Queue (Qrose a)])
step [ ] = Nothing
step (xr : xrs) = Just (x , consQueue yq (consQueue zq xrs))

where (Qnode x yq , zq) = remove xr

Fig. 1. A loopless algorithm for mixall

So, finally, we have a genuine 24-carat loopless algorithm for mixall . As a
bonus, we can compute reverse · mixall by a virtually identical algorithm; the
only change is to replace fst by snd in the definition of prolog.

Another way to make mixall loopless is to dispense with queues and use cyclic
lists instead. Although the result is a somewhat faster algorithm, the derivation
requires a number of Knuth’s “extra contortions”, so details are omitted.
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4 The Gray Code

Since gray = mixall [[i ] | i←[n−1,n−2..0]] we now have a loopless algorithm for
gray. But for this example, everything is simplifiable: the two generated forests
of rose trees are essentially the same in that they have exactly the same preorder
traversals. Therefore we need keep only one and the definition of prolog in Fig. 1
can be replaced by the much simpler

prolog n = (wrapQueue · foldr smix empty) [n−1,n−2 .. 0]
smix n xrq = insert xrq (Node n xrq)

In fact there is an even simpler loopless algorithm for gray, which dispenses with
queues and uses a cyclic list instead, but we won’t go into details.

5 The Koda-Ruskey Algorithm

The Koda-Ruskey algorithm is a method for enumerating the prefixes of a given
forest of rose trees. An arbitrary prefix of a forest can be obtained by pruning
each tree in the forest. A tree is pruned by removing zero or more subtrees.
In the literature on this problem the prefixes of a forest are also known as the
“principal sub-forests” and the “ideals of a forest poset”.

The idea can also be explained in terms of colourings. A colouring consists
of marking every node as either Black or White, with the constraint that all
descendants of a White node are also coloured White. Thus the nodes coloured
Black form a prefix of the given forest.

As part of the problem specification, the enumeration has to be in Gray-code
order, meaning that two consecutive colourings have to differ in the colouring
of exactly one node. Thus the transition between one colouring and the next
can be given by naming a single node, meaning “change the colour of the node”.
Ingenious loopless algorithms for this problem are described in [6, 4, 5]. Recently,
Filliatre and Pottier [3] gave a non-loopless functional algorithm for the problem
based on continuations.

It is very easy to give an efficient functional program for prefix colouring.
Given a forest in which every node is labelled with a unique label, the following
function koda does the job:

koda :: [Rose a] → [a]
koda xrs = mixall [x : koda yrs | Node x yrs ← xrs ]

It is surely impossible to improve on this one-liner, certainly in brevity of expres-
sion and perhaps also in speed of execution. The algorithm is conceptually quite
simple: beginning with an all-White colouring, interleave the individual colour-
ings of the subtrees using the function mixall . Each tree is coloured by colouring
the root node Black, and again interleaving the colourings of its subtrees. For
example, the forest
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produces the koda sequence

586878 0 878685 3 586878 4 878685 2 586878 4 878685 3 586878 1
878685 3 586878 4 878685 2 586878 4 878685 3 586878

The way to make koda loopless is breathtaking in its simplicity and we shall
state the result before deriving it: simply change the function smix of Fig. 1 to
a function kmix defined by

kmix (Node x xrs) (yrq, qry)
= (insert yrq (Qnode x zrq), insert qrz (Qnode x qry))

where (zrq, qrz ) = foldr kmix (qry, yqr) xrs

With this change we have koda = unfoldr step · prolog. The prolog takes time
linear in the size of the given forest, so this is a loopless algorithm.

It is astounding that such a simple change works and, to speak personally for
a moment, it took me over eight months of hard work to find it. For most of that
time I followed a false trail, the instructive details of which are given in Sect. 6.

Having seen the solution, it remains to justify it. First, it is necessary to revisit
the derivation of the loopless program for mixall , going back to the point just
before we introduced queues. In effect, we calculated that

pair (mixall , reverse ·mixall) = pair preorder · foldr smix ([ ], [ ])

where the definition of smix was given by

smix [ ] (yrs, sry) = (yrs, sry)
smix (x : xs) (yrs, sry) = (yrs ++ [Node x zrs ], srz ++ [Node x sry])

where (zrs , srz ) = smix xs (sry, yrs)

In a short while we will need a somewhat messy technical result about the form
of smix , which we will call the substitution lemma. Suppose we define amix and
bmix by the equations

amix [ ] (yrs, sry) = (yrs, sry)
amix (x : xs) (yrs, sry) = (yrs ++ [Node x zrs ], srz ++ [Node x sry])

where (zrs , srz ) = cmix xs (sry, yrs)
bmix [ ] (yrs, sry) = (yrs, sry)
bmix (x : xs) (yrs, sry) = (yrs ++ [Node x zrs ], srz ++ [Node x sry])

where (zrs , srz ) = dmix xs (sry, yrs)

where cmix and dmix two further functions. Abbreviating pair preorder to pp,
we claim that

pp (foldr amix ([ ], [ ]) xss) = pp (foldr bmix ([ ], [ ]) xss)
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for all finite lists xss , provided pp (yrs, sry) = pp (yrs ′, sry ′) implies

pp (cmix xs (yrs, sry)) = pp (dmix xs (yrs ′sry ′))

for all values of the five variables xs , yrs, sry, yrs ′ and sry ′.
The proof is by induction on the argument xss . Concentrating just on the

recursive case (x : xs) : xss , let (yrs, sry) = foldr amix ([ ], [ ]) xss . We reason:

pp (amix (x : xs) (yrs, sry))
= {definition of amix with (zrs , srz ) = cmix xs (sry, yrs)}

(preorder (yrs ++ [Node x zrs ]), preorder (srz ++ [Node x sry]))
= {property of preorder}

(preorder yrs ++ x : preorder zrs , preorder srz ++ x : preorder sry)

On the right-hand side, let (yrs ′, sry ′) = foldr bmix ([ ], [ ]) xss , so

pp (yrs, sry) = pp (yrs ′, sry ′)

by the induction hypothesis. Reasoning in a similar fashion, we have:

pp (bmix (x : xs) (yrs ′, sry ′))
= {definition of kmix with (zrs ′, srz ′) = dmix xs (sry ′, yrs ′)}

(preorder (yrs ′ ++ [Node x zrs ′]), preorder (srz ′ ++ [Node x sry ′]))
= {property of preorder}

(preorder yrs ′ ++ x : preorder zrs ′, preorder srz ′ ++ x : preorder sry ′)

The two sides yield identical results under the given assumption.
Let us now return to the definition of koda. It is convenient to introduce

ruskey :: Rose a → [a]
ruskey (Node x xrs) = x : koda xrs

so that koda = mixall ·map ruskey. A third basic law of functional programming
is the fold-map fusion law, which states that foldr f e · map g = foldr (f · g) e.
Using this law, we obtain

foldr smix ([ ], [ ]) ·map ruskey = foldr kmix ([ ], [ ])

where kmix = smix · ruskey. Since kmix (Node x xrs) = smix (x : koda xrs) by
the definition of ruskey, we have

kmix (Node x xrs) (yrs, sry) = (yrs ++ [Node x zrs ], srz ++ [Node x sry])
where (zrs , srz ) = smix (koda xrs) (sry, yrs)

We now focus on the function smix (koda xrs). It is clear that

smix (koda [ ]) = smix [ ] = id
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where id denotes the identity function. In the case of a nonempty list of trees
we reason:

smix (koda (xr : xrs))
= {definition of koda}

smix (mixall (ruskey xr : map ruskey xrs))
= {definition of mixall}

smix (mix (ruskey xr) (mixall (map ruskey xrs)))
= {definition of koda}

smix (mix (ruskey xr) (koda xrs))

Here we seem to be stuck. Fortunately help, of a kind, is at hand:

pp · smix (mix xs ys) = pp · smix xs · smix ys (4)

This surprising identity is proved below. It would be certainly be simpler if we
had smix (mix xs ys) = smix xs ·smix ys , but this identity doesn’t hold: each side
can produce a different forest. Nevertheless, the preorders are the same and this
is just sufficient. Using (4), we can therefore conclude that

pp · smix (koda (xr : xrs)) = pp · kmix xr · smix (koda xrs)

Now comes the payoff. Suppose we define dmix by the equations

dmix [ ] = id
dmix (xr : xrs) = kmix xr · dmix xrs

An easy proof by induction shows that, with cmix = smix · koda the condition
of the substitution lemma holds, namely if pp (yrs, sry) = pp (yrs ′, sry ′) then

pp (smix (koda xrs) (yrs, sry)) = pp (dmix xrs (yrs ′sry ′))

Consequently, we can replace the definition of kmix by

kmix (Node x xrs) (yrs, sry) = (yrs ++ [Node x zrs ], srz ++ [Node x sry])
where (zrs , srz ) = dmix xrs (sry, yrs)

But look again at the two equations defining dmix . They are sufficient for us to
express dmix xrs in terms of foldr , for if f [ ] = id and f (x : xs) = g x · f xs , then
f xs e = foldr g e xs for any e. The proof is a simple consequence of the recursive
definition of foldr . Hence

dmix xrs (yrs, sry) = foldr kmix (yrs, sry) xrs

and, apart from reinstalling queues, we are done.
It remains to prove the magic (4). The crucial fact on which it depends is that

mix is associative. This property can be expressed in functional form:

mix (mix xs ys) = mix xs ·mix ys
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In order to exploit it we need to go back and recall all the essential steps in
Sect. 3.1 out of which the definition of smix was constructed. Specifically, recall
the fusion conditions (1), (2) and (3), the definition of pmix , and the relationship
between inorder , reflect and reverse, all repeated again now for convenience:

inorder · tmix xs = mix xs · inorder
ximt xs = reflect · tmix xs · reflect
smix xs · pair spines = pair spines · pmix xs
pmix xs = cross (tmix xs, ximt xs)
inorder · reflect = reverse · inorder

In the definition of pmix we have used cross (f , g) (x , y) = (f x , g y) just to be
able to express pmix xs at the function level.

The proof of (4) is in pieces. We first show that

inorder · tmix (mix xs ys) = inorder · tmix xs · tmix ys

Here is the calculation:

inorder · tmix (mix xs ys)
= {since inorder · tmix xs = mix xs · inorder}

mix (mix xs ys) · inorder
= {associativity of mix}

mix xs ·mix ys · inorder
= {since inorder · tmix xs = mix xs · inorder}

inorder · tmix xs · tmix ys

A similar calculation yields

inorder · ximt (mix xs ys) = inorder · ximt xs · ximt ys

Next we have

pair inorder · pmix (mix xs ys) = pair inorder · pmix xs · pmix ys

The calculation is:

pair inorder · pmix (mix xs ys)
= {since pmix xs = cross (tmix xs, ximt xs)}

pair inorder · cross (tmix (mix xs ys), ximt (mix xs ys))
= {since pair f · cross (g, h) = cross (f · g, f · h)}

cross (inorder · tmix (mix xs ys), inorder · ximt (mix xs ys))
= {first two pieces}

cross (inorder · tmix xs · tmix ys, inorder · ximt xs · ximt ys)
= {since cross (f , g) · cross (h, k) = cross(f · h, g · k)}

pair inorder · cross (tmix xs, ximt xs) · cross (tmix ys, ximt ys)
= {definition of pmix}

pair inorder · pmix xs · pmix ys
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Next, we show

pp · smix (mix xs ys) · pair spines = pp · smix xs · smix ys · pair spines

by calculating

pp · smix (mix xs ys) · pair spines
= {since smix xs · pair spines = pair spines · pmix xs}

pp · pair spines · pmix (mix xs ys)
= {since pair f · pair g = pair (f · g)}

pair (preorder · spines) · pmix (mix xs ys)
= {since inorder = preorder · spines}

pair inorder · pmix (mix xs ys)
= {second step}

pair inorder · pmix xs · pmix ys
= {reversing previous steps}

pp · smix xs · smix ys · pair spines

Finally, (4) is established from the last identity since spines is a bijection: the
function unspines defined by

unspines [ ] = Null
unspines (ts ++ [Node t vs ]) = Fork (unspines ts) x (unspines vs)

satisfies spines · unspines = id and unspines · spines = id . Hence, composing
both sides with pair unspines , and using pair id = id , we obtain (4).

6 Mixing with Implicit Lists

Before proceeding to our final application, let us first ask the question: What
can we say if the argument to mixall is not given as a list of explicit lists, but
as a list of lists each generated by a loopless algorithm? More precisely, can
we define mixall · map loopless as a loopless algorithm, assuming loopless is a
loopless algorithm? Note carefully that what is wanted is a prolog that takes
time linear in the length of the input, not in the length of concat ·map loopless.
Without this restriction we can do it easily using the above loopless algorithm
for mixall . It turns out that such a generalisation seems to be needed for the
final application, the Johnson-Trotter algorithm.

In this section we will give a positive answer to the question but only under
the following restrictions. Firstly, both loopless and reverse · loopless are given
by loopless algorithms:

loopless = unfoldr fstep · fprolog
reverse · loopless = unfoldr rstep · rprolog



106 R.S. Bird

Secondly, ll = length · loopless can be evaluated in constant time. It may be
possible to relax these conditions, but we don’t know how, so it is a topic for
future research.

In order to answer the question, it seems necessary to go back to the very
beginning of our story, and derive another loopless algorithm for mixall , one in
which the use of reverse appears explicitly.

6.1 Another Loopless Program for mixall

Recall that mixall = foldr mix [ ]. If we can find a function, xim say, satisfying
the fusion condition

reverse ·mix xs = xim xs · reverse (5)

then we have reverse ·mixall = foldr xim [ ]. Use of the tupling law then yields

fork (mixall , reverse ·mixall) = foldr mixp ([ ], [ ])

where mixp xs (ys , sy) = (mix xs ys, xim xs sy).
Since (5) is equivalent to xim xs = reverse ·mix xs · reverse, one definition of

xim is easily obtained:

xim [ ] sy = sy
xim (x : xs) sy = xim xs (reverse sy) ++ x : sy

We essentially made use of this definition in Sect. 3.1, though on trees rather
than lists –see (2). But another definition of xim also does the job. It is easy to
see with a parity argument that

reverse (mix xs ys) = if even (length xs) then mix (reverse xs) (reverse ys)
else mix (reverse xs) ys

Consequently, xim can be defined in the following way to satisfy (5):

xim xs sy = if even (length xs) then mix (reverse xs) sy
else mix (reverse xs) (reverse sy)

Unlike the former definition, xim is now expressed as an instance of mix .
With sy = reverse ys, and using the second definition of xim, we have

mixp xs (ys , sy) = if even (length xs) then (mix xs ys,mix sx sy)
else (mix xs ys,mix sx ys)
where sx = reverse xs

At this point, we need to make an observation about mix that we could have
made much earlier: the original definition of mix xs ys gives rise to an inefficient
program since ys is reversed at each step. Better is the following version in which
ys is reversed only once:

mix xs ys = mixg xs (ys , reverse ys) (6)
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where
mixg xs (ys , sy) = ys ++ concat (zipWith (:) xs sys)

where sys = sy : ys : sys

The definition of mixg makes use of the standard function zipWith and an infinite
list of lists. This version is faster than the previous one because the function
reverse is invoked only once.

The point about introducing mixg is that we can use it in another expression
for mixp:

mixp xs (ys , sy) = if even (length xs) then (mixg xs (ys , sy),mixg sx (sy, ys))
else (mixg xs (ys , sy),mixg sx (ys , sy))
where sx = reverse xs

As in the previous development, the next step is to apply fission to the function
foldr mixp ([ ], [ ]). However, unlike Sect. 3.1, which used binary trees and inorder
traversal as the abstraction function, we will now use forests of rose trees and
preorder traversal.

To apply fission we require a function mixf satisfying

pair preorder ·mixf xs = mixp xs · pair preorder (7)

Then we obtain

foldr mixp ([ ], [ ]) = pair preorder · foldr mixf ([ ], [ ])

We simply state the definition of mixf , leaving the verification of (7) to the
reader:

mixf xs (yrs, sry) = if even (length xs)
then (mixg xs (yrs, sry),mixg sx (sry, yrs))
else (mixg xs (yrs, sry),mixg sx (yrs, sry))
where sx = reverse xs

where mixg is redefined to read

mixg xs (yrs, sry) = yrs ++ zipWith Node xs sys
where sys = sry : yrs : sys

Computation of mixg xs (yrs, sry) takes time proportional to the length of yrs
plus the length of xs , but we can make it take time proportional to xs alone by
once again introducing queues. Specifically, the above definition of mixg can be
replaced by

mixg xs (yrq, qry) = foldl insert yrq (zipWith Qnode xs sys)
where sys = qry : yrq : sys

The function foldl insert appends a list of rose trees to a queue of rose trees,
taking time proportional to the appended list. The complete program for mixall
is given in Fig. 2.
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data Qrose a = Qnode a (Queue (Qrose a))

mixall = unfoldr step · prolog

prolog = wrapQueue · fst · foldr mixf (empty , empty)

mixf xs (yrq , qry) = if even (length xs)
then (mixg xs (yrq , qry),mixg sx (qry , yrq))
else (mixg xs (yrq , qry), mixg sx (yrq , qry))
where sx = reverse xs

mixg xs (yrq , qry) = foldl insert yrq (zipWith Qnode xs sys)
where sys = qry : yrq : sys

wrapQueue xq = consQueue xq [ ]
consQueue xq xqs = if isempty xq then xqs else xq : xqs

step [ ] = Nothing
step (xq : xqs) = Just (x , consQueue yq (consQueue zq xqs))

where (Qnode x yq , zq) = remove xq

Fig. 2. A second loopless algorithm for mixall

The essential difference between the two loopless programs for mixall is that
the second one uses reverse explicitly (in the definition of mixf ), while the first
one uses it only implicitly. In fact, the second loopless algorithm for mixall
was the version I derived first. It seems a shame then that the Koda-Ruskey
algorithm couldn’t be based on it; at least, substantial effort couldn’t show me
how. I couldn’t see how to construct efficiently a forest whose koda sequence was
the reverse of the koda sequence of a given forest.

On the other hand, the second version seems to be necessary to answer the
question posed at the outset of this section.

6.2 A Generalised Version

Let us now return to the main point,which is how to make mixall ·map loopless
loopless, given

loopless = unfoldr fstep · fprolog
reverse · loopless = unfoldr rstep · rprolog

and a constant time function ll = length · loopless.
Here is a reasonably obvious way of modifying the code in Fig. 2 to solve the

problem. Start with the list intro, defined by

intro xs = [(ll x , fprolog x , rprolog x ) | x ← xs ]

and replace prolog by

prolog = wrapQueue · fst · foldr mixf (empty, empty) · intro
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Elements of intro give the length of loopless x , and the starting values, fprolog x
and rprolog x , for the unfolding phase for each x in xs . The functions mixf and
mixg are modified to read

mixf (n, a, b) (yrq, qry) = if even n
then (mixg fstep a (yrq, qry),mixg rstep b (qry, yrq))
else (mixg fstep a (yrq, qry),mixg rstep b (yrq, qry))

mixg f a (yrq, qry) = foldl insert yrq (zipWith Qnode (unfoldr f a) sys)
where sys = qry : yrq : sys

Essentially all we have done is to replace the explicit list xs by unfoldr fstep a
and reverse xs by unfoldr rstep b. The problem, of course, is that mixf may now
take exponential time, and therefore prolog may take exponential time.

The solution is to delay evaluation of the unfolding phase, letting step do the
work. This is what happens implicitly with a lazy functional language but, as
we said at the outset, we will not allow ourselves to exploit laziness.

We will need a new data type to represent delayed evaluations, and we take

data Delay a b
= Hold (a → Maybe (b, a)) b a (Queue (Delay a b),Queue (Delay a b))

The first argument of Hold is a step function used in the unfolding; the second
argument is an output value; the third argument is a starting value for the next
unfolding; and the final value is a pair of delayed queues.

Now, we replace mixg once again by

mixg f a (ydq, qdy) = case f a of
Nothing → ydq
Just (x , b) → insert ydq (Hold f x b (ydq, qdy))

The function mixg takes a step function, a seed and a pair of queues of delayed
elements and adds a new delayed element to the end of the first queue.

Finally, we replace step by

step [ ] = Nothing
step (xdq : xdqs)

= Just (x , consQueue (mixg f b (qdy, ydq)) (consQueue zdq xdqs))
where (Hold f x b (ydq, qdy), zdq) = remove xdq

The revised functions mixf and step take constant time assuming both fstep and
rstep do. The complete program is summarised in Fig. 3.

7 The Johnson-Trotter Algorithm

The Johnson-Trotter permutation algorithm produces a sequence of all permu-
tations of a given list in which the transition from one permutation to the next
is accomplished by a single transposition of adjacent elements. A description of
a loopless algorithm for this problem was the main topic of [2].
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data Delay a b = Hold (a → Maybe (b, a)) b a
(Queue (Delay a b),Queue (Delay a b))

gmixall = unfoldr step · prolog

prolog = wrapQueue · fst · foldr mixf (empty , empty) · intro
intro xs = [(ll x , fprolog x , rprolog x) | x ← xs]

mixf (n, a, b) (yrq , qry) = if even n
then (mixg fstep a (yrq , qry),mixg rstep b (qry , yrq))
else (mixg fstep a (yrq , qry), mixg rstep b (yrq , qry))

mixg f a (ydq , qdy) = case f a of
Nothing → ydq
Just (x , b) → insert ydq (Hold f x b (ydq , qdy))

step [ ] = Nothing
step (xdq : xdqs) = Just (x , consQueue (mixg f b (qdy , ydq))

(consQueue zdq xdqs))
where (Hold f x b (ydq , qdy), zdq) = remove xdq

wrapQueue xq = consQueue xq [ ]
consQueue xq xqs = if isempty xq then xqs else xq : xqs

fstep, rstep, ll = . . .
fprolog , rprolog = . . .

Fig. 3. gmixall - a generalised loopless algorithm for mixall

The Johnson-Trotter transitions for a list of length n > 1 is defined in terms
of the transitions for a list of length (n − 1). Label the elements of the list with
positions 0 through (n − 1) and let the list be denoted by xs ++ [x ]. Begin with
a downward run [n−1,n−2, . . . , 1], where transition i means “interchange the
element at position i with the element at position (i −1)”. The effect is to move
x from the last position to the first, resulting in the final permutation [x ] ++ xs .
For example, the transitions [3, 2, 1] applied to abcd result in the following three
permutations:

abdc adbc dabc

Now, suppose the transitions generating the permutations of xs are [j1, j2, . . .].
Apply the transition (j1 + 1) to [x ] ++ xs . We have to increase j1 by 1 because xs
is now one step to the right of the “runner” x . Next, run x upwards again to the
last position by applying the transition sequence [1, 2, . . . ,n − 1]. This results
in a final permutation ys ++ [x ], where ys is the result of applying transition j1
to xs . For example, the transitions [3, 1, 2, 3] applied to dabc result in four more
permutations

dacb adcb acdb acbd
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For the next step, apply the second transition j2 for xs and run x down again.
We don’t have to modify the transition j2 after upward runs because the relevant
permutation is to the left of x . Continue in the same fashion, interleaving runs of
x downwards and upwards, with the transitions for (n−1). Here is the complete
list of the permutations of abcd, in which the table is to be read by columns
from left to right:

abcd dacb cabd dcba bcad dbac
abdc adcb cadb cdba bcda bdac
adbc acdb cdab cbda bdca badc
dabc acbd dcab cbad dbca bacd

The above description codes quite easily in Haskell using the function mix :

jtcode :: Int → [Int ]
jtcode 1 = [ ]
jtcode n = mix (bump 1 (jtcode(n − 1))) [n−1,n−2 .. 1]

The function bump k adds k to every item in even position (counting from 0):

bump k [ ] = [ ]
bump k [a] = [a + k ]
bump k (a : b : ns) = (a + k) : b : bump k ns

Because mixall is the only loopless weapon we have, our task is to express jtcode
in terms of mixall . To do so we have to generalise the problem slightly and
express code in terms of mixall , where

code (k ,n) = bump k (jtcode n)

In particular, jtcode n = code (0,n). The first task is to construct a direct recur-
sive definition of code. We will omit detailed calculations and sketch only the
main steps.

First, it is fairly easy to see that

bump k (xs ++ y : ys) = if even (length xs) then bump k xs ++ bump k (y : ys)
else bump k xs ++ y : bump k ys

Consequently, we have

bump k (mix xs ys) = if even (length ys) then mix (bump k xs) (bump k ys)
else mix xs (bump k ys)

Finally, after a little calculation, we obtain

code (k , 1) = [ ]
code (k ,n) = if odd n then mix (code (k + 1,n − 1)) (bumpdown (k ,n))

else mix (code (1,n − 1)) (bumpdown (k ,n))
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The function bumpdown is defined by

bumpdown (k ,n) = bump k [n−1,n−2 .. 1]

Assume now that for some suitable definition of list we have

code = mixall ·map bumpdown · list
We can determine list from the definition of code. Assuming n > 1 is odd, we
reason

code (k ,n)
= {definition of code in the case n > 1 is odd}

mix (code (k + 1,n − 1)) (bumpdown (k ,n))
= {assumed form for code}

mix ((mixall ·map bumpdown · list) (k + 1,n − 1)) (bumpdown (k ,n))
= {since mix (mixall xss) xs = mixall (xss ++ [xs ])}

mixall((map bumpdown · list) (k + 1,n − 1) ++ [bumpdown (k ,n)])
= {definition of map}

(mixall ·map bumpdown) (list (k + 1,n − 1) ++ [(k ,n)])

If n is even, similar reasoning gives

code (k ,n) = (mixall ·map bumpdown) (list (1,n − 1) ++ [(k ,n)])

Hence we obtain an explicit recursive definition of list :

list (k , 1) = [ ]
list (k ,n) = if odd n then list (k + 1,n − 1) ++ [(k ,n)]

else list (1,n − 1) ++ [(k ,n)]

Evaluation of list (k ,n) takes O(n2) steps, but we can reduce it to O(n) steps
with the following alternative:

list (k , 1) = [ ]
list (k ,n) = if odd n then zip twoones [2 .. n−2] ++ [(k + 1,n − 1), (k ,n)]

else zip twoones [2 .. n−2] ++ [(1,n − 1), (k ,n)]
where twoones = 2 : 1 : twoones

The proof that these two definitions of list are equivalent is left to the reader.
Note that in the case k = 0 the two branches of the conditional are the same, so
we obtain

jtcode = mixall ·map bumpdown · list
where

list 1 = [ ]
list n = zip twoones [2 .. n−2] ++ [(1,n − 1), (0,n)]

where twoones = 2 : 1 : twoones
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This nearly gives us a loopless algorithm for jtcode, except that evaluation of
the prolog map bumpdown · list takes quadratic time under a strict semantics.

Fortunately we have already prepared for the final hurdle: bumpdown can
itself be cast as a loopless algorithm, so we can invoke the function gmixall of
the previous section. To make bumpdown loopless we use “bump instructions”.
A bump instruction consists of a direction and three integers:

data Direction = Down | DownSkip | Up | UpSkip
type BumpInst = (Direction, Int , Int , Int)

It is reasonably straightforward to define fstep, fprolog, rstep and rprolog so that

bumpdown = unfoldr fstep · fprolog
reverse · bumpdown = unfoldr rstep · rprolog

We have fprolog (k ,n) = (Down, k ,n − 1, 1) and

rprolog (k ,n) = if even n then (Up, k , 1,n − 1)
else (UpSkip, k , 1,n − 1)

We take rstep = fstep and define fstep by

fstep (Down, k ,m,n) = if m < n then Nothing
else Just (m + k , (DownSkip, k ,m − 1,n))

fstep (DownSkip, k ,m,n) = if m < n then Nothing
else Just (m, (Down, k ,m − 1,n))

fstep (Up, k ,m,n) = if m > n then Nothing
else Just (m + k , (UpSkip, k ,m + 1,n))

fstep (UpSkip, k ,m,n) = if m > n then Nothing
else Just (m, (Up, k ,m + 1,n))

Finally, length (bumpdown (k ,n)) = n − 1, so ll = length · bumpdown is certainly
constant time. Installing these functions in Fig. 3 we obtain

jtcode = gmixall · list
This is a loopless algorithm for Johnson-Trotter.
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Abstract. This paper studies the compositional definition and behav-
iour of properties that arise in pointer structures. A pointer structure is
represented as a (pointer) graph. A pointer property is a set of pointer
structures. A parameterised binary combinator is defined that enables
important properties (like acyclicity, canonicity and reachability) to be
defined in a compositional manner. The technique of parameterising a
combinator derives from the definition of parallel-by-merge in ‘Unifying
Theories of Programming’. It is applied here to the study of disjointness
combinators that extend the separating conjunction of Separation Logic.
A case study is provided to demonstrate how these ideas are used, in
the form of rules of Hoare logic, to verify the correctness of an Object-
Oriented program.

1 Introduction

The advances in software engineering due to techniques from Object Orienta-
tion (OO), at both the programming and design levels, have revealed a lack
of support for the relevant formal reasoning. At stake is our understanding of
modularisation and the way it interacts with abstraction, the software engineer’s
two primary weapons against complexity [11]. Indeed with the use of shared mu-
table modules, where OO methods currently prevail, an implementation passes
addresses and so is based on pointers. The immaturity of the appropriate formal
methods is reflected in the largely graphical techniques by which we teach OO
design and pointer programming. Much of the effort has been spent on semantic
models of OO, with scant regard for modularisation and abstraction. But recent
advances in resource-bound logics, and Separation Logic in particular, have made
it possible to augment graphical reasoning with program annotations, written
using separating conjunction of domain disjointness [11,15].

The present paper is devoted to the study of general disjointness combinators
(those useful for reasoning about pointer graphs) and to the means of construct-
ing new combinators from those already existing. Our purpose is to promote the
success of Separation Logic further. For example, we obtain a compositional char-
acterisation of general acyclic pointer graphs without assumption on the number
(and names) of attributes in each object; and we construct a new combinator
(from those existing) to factorise any pointer graph uniquely into garbage and
non-garbage parts.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 115–139, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



116 Y. Chen and J.W. Sanders

The setting for this paper is the general one in which a pointer structure is
viewed as a labelled directed graph called a pointer graph. For each vertex in such
a graph, the outgoing edge with a particular label is unique (i.e. determinism).
This reflects the fact that every attribute of each object at an address is linked
to the address of a unique object. Here each vertex represents an address (or a
constant value as a deadend in the graph), and the outgoing labelled edges from
the vertex represent the attribute names of the object stored at the address. The
current paper does not deal with ‘pure’ pointers, which may immediately point to
other pointers without doing so via an attribute. This assumption is sometimes
made by mentioning ‘references’ instead of ‘pointers’; we simply adhere to the
term ‘pointer structure’ to avoid ambiguity.

The semantic model of Separation Logic consists of a store (a mapping from
global program variables to their address or constant values) and a heap (a map-
ping from addresses to objects stored there). Such a model directly corresponds
to a pointer graph in which the global programs variables become the immediate
edges from a root vertex (see Section 2.2 for more details).

The separating conjunction of Separation Logic is surprisingly effective for
combining various pointer structures and has been applied successfully to rea-
soning about many pointer algorithms [11]. However, the expressiveness of this
combinator is still limited. For example, by combining with arbitrary additional
pointer structures, arbitrary attributes can be added, but the domain disjoint-
ness operator requires that the added attributes be located at only the added
addresses. In graph theory, the property of acyclicity is defined as the freedom
from cycles, that is, “there exists no cycle contained in (or extendable to) the
whole graph”. It is because the edges may be added from either vertices lying
on the cycle or from other vertices that separating conjunction is inadequate
for expressing that property. Fortunately, this property can be easily expressed
with an edge-disjointness operator that combines two pointer structures if they
do not share any address (i.e. entry) and an attribute name (i.e. edge) at that
address at the same time. If we already know the rough pointer structure (for
example to assume that every address locates only two attributes left and right),
then the acyclicity of such a special structure is expressible inductively in Sep-
aration Logic using the separating conjunction. The general acyclicity without
such assumptions is, however, not expressible with the separating conjunction.

As is clear from [15], Separation Logic used in that way is low level: to be
employed at the level of code, where a state is modelled as the combination of a
store and a heap. For the higher reaches of specification and derivation (where
far more abstraction is to be expected), and for formal methods to scale up, more
expressive techniques are needed. We need to understand better how to reason
in a high-level and compositional manner. But that requires the identification
of key properties and the combinators for composition of properties. Separation
Logic, by comparison, is based entirely on domain-disjoint composition. This
motivates us to explore other possible disjointness combinators and study them
in a general framework. Modularisation and abstraction can only be achieved
if we employ the right combinators at the right places. It is also important to
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understand how different combinators are related to each other and how new
combinators can be constructed from those existing.

An important influence in our approach has been the parameterised com-
binator, parallel-by-merge, that arose from the Unifying Theories of Program-
ming work [6] as a generalisation of the parallel composition from process algebra
[5,10]. The merge relation controls the way in which two processes synchronise.
In the extreme case it does so by forcing the process behaviours to be disjoint,
so that in parallel they do not interact at all; in more typical cases it does so by
starting with disjoint copies and then quantifying the manner of interaction [6]
(Section 7.2). Chen [3] has defined a more general such combinator, parallel-
via-medium not restricted to sequential processes. He introduces as parameter a
3-way relation linking two properties by combining their behaviours and produc-
ing the composed behaviour via that relation. In the present paper we introduce
a special parameterised combinator which checks the consistency between two
pointer graphs using a binary-relation parameter before joining them together
in one pointer graph.

Graph Logic [2] is designed for reasoning about graph properties. Its basic
combinator corresponds to disjoint union (of edges). Separation Logic can be
viewed as a special Graph Logic (with additional axioms) in which any graph is
deterministic (uniqueness of attributes), and the disjointness combinator main-
tains determinism by disjoining the sources of the edges.

Compared with Graph Logic, the basic formalism of this paper employs a
binary relation as a parameter of the binary modalities. The parameter can be
constructed from some basic ones. This difference is analogous to the difference
between Propositional Dynamic Logic [4] and Propositional Modal Logic. Such
parameterisation is particularly useful in practice as we need combinators of
unique decomposition, a property not shared by the common basic combinators.

Unique decomposition is the main conceptual innovation of this paper. It turns
out to have a wealth of relevant application. A decomposition of a pointer graph
into two parts with respect to a combinator is unique if the combined choice of
the two disjoint parts is unique. The same intuition applies to the decomposition
of properties on pointer graphs. Accordingly, this notion has a simple algebraic
characterisation as a distributivity law for combined conjunction. Combinators
of unique decomposition play a key role in compositional reasoning. For example,
given a unique decomposition, we can always uniquely factorise a pointer-graph
property into the weakest left and hand-part one. Unique composition also allows
an external safety property to distribute into a structural composition and hence
supports compositional reasoning.

None of the common basic combinators is a unique decomposition. For exam-
ple, the separating conjunction of Separation Logic may arbitrarily decompose a
graph as long as the source vertices are separated. Some combinators derivable
from more basic combinators are unique decompositions. A typical example is
the combinator that separates the garbage part from the non-garbage part. The
garbage of a pointer graph contains all edges whose sources are not reachable
from a particular root vertex. The separation between the garbage and the rest
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of a pointer graph is unique. A combinator that represents this kind of separa-
tion can be derived from the basic ones. Such creation of new combinators is
not supported by Graph Logic, which fixes the axioms of a combinator from the
beginning.

We have chosen to present our model algebraically, via its laws, after intro-
ducing the model with respect to which the laws are sound. It is largely a matter
of taste whether that is replaced by an axiom system in the same style as, for
example, separating conjunction.

Further theoretical background of our approach is that of the (canonical) trace
model [7]. The idea is that since the behaviour of a pointer program does not
depend on the exact location of addresses, and since the programmer is deliber-
ately abstracted from specific addresses in order to make programming simpler,
a formal theory should reflect such abstraction and simplicity: the naming of the
vertices in a pointer graph must be unimportant. Technically, a pointer model
that is sensitive to vertex names is not fully abstract with respect to upper-level
reasoning about program correctness. Full abstraction may be achieved by one
of two means in upper-level reasoning: by using nondeterminism or by choosing
a representative of the equivalence class of isomorphic pointer graphs over which
that nondeterminism is permitted. The former approach requires the upper level
to allow all possible naming-insensitive isomorphic copies of a pointer graph; the
latter leads to canonical models.

In the trace model Hoare and He represent each vertex of the pointer graph
by the set of all traces of edge-labelled paths from a root vertex through the
vertex. Thus the naming of each vertex, as a set of traces, in a given pointer
graph is unique. However it may be complicated. For example the resulting
representation of a finite graph may be infinite. As a result Hoare and He’s hope
for a Hoare-logic axiom system based on their model has remained unrealised.

The canonical model may be simplified by imposing an extra condition on
paths, resulting in the so-called navigation paths [13]. We might choose to con-
sider only acyclic paths. Or we might consider only shortest paths, an idea on
which we elaborate in the present paper by representing each vertex as the lex-
ically smallest of the minimal paths from the root. Other paths can then be
recovered from such a canonical representation by navigation from the root.
The compositional technique mentioned above is used to provide an abstract
definition of canonicity.

The biggest difference between canonical and non-canonical models is the
treatment of garbage. Automatic garbage collection is an important feature of
most contemporary OO programming languages, and so it is equally important
that our model supports it. A canonical pointer graph does not represent garbage
and so may be more convenient for OO computation with automatic garbage
collection. This is a feature we inherit from path-canonical models. In the Hoare-
logical reasoning of our case study, we will assume that the state of the program
is canonically represented as a pointer graph.

Section 2 introduces pointer graphs and graph-theoretic properties includ-
ing canonicity. Section 3 introduces basic properties, the techniques to com-
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pose them and the notion of unique decomposition. Section 4 introduces the
notion of unique decomposition. Section 5 studies some derived properties and
the laws they satisfy; a number of unique decompositions are identified in this
section. Section 6 studies assertional reasoning. Section 7 studies a pointer search
algorithm.

2 Pointer Graphs and Minimum-Path Canonicity

2.1 Pointer Graphs

A pointer structure in memory can be represented as a directed graph (see
Figure 1(a)). Each vertex represents a memory address at which can be stored
an object with several attributes. Each attribute is represented as a labelled edge.
The entry (i.e. the source) is the address and the exit (i.e. the target) is the value
(either address or constant) stored for the attribute. We do not consider isolated
vertices and assume that from any address each attribute leads to a unique
value.

x y

a bc d

1 2

34 5

(a)

x y

a bc

x y

xaxc

(b)

Fig. 1. A pointer graph and its canonical representation

Let A be the set of all atoms including names and constants which are as-
sumed to be totally ordered, C the set of all constants which are assumed to
be the smallest atoms in the total order, S =̂ A∗ the set of all finite sequences
on A , and S3 the set of all triples of such sequences.

We use a, b, x, y, 1, 2, · · · to denote atoms and v, u, w, · · · to denote sequences.
Let ε be the empty sequence, which usually stands for the root vertex. For
convenience, we do not distinguish an atom and a sequence of length 1. Let |v| be
the length of a sequence, v.u sequence concatenation (assuming ε.w =w.ε=w),
v �u the prefix order, and v(u the lexical order after comparing the lengths
(i.e. shorter length or the same length but lexically smaller). For example, if
we assume the total order of A is alphabetical, then we have d.e(a.b.c , but
a.b.c(a.c.b . The front atoms are compared first.

Each triple (v, w, u)∈S3 is called an edge from the entry v to the exit u via
label w . The denotation of a vertex is a sequence of atoms, because we will use
paths (i.e. sequences of atoms) to address vertices in the canonical representation.
This will become clear later in the paper.

In this section, we adopt a set representation of graphs. Each graph is a set
of edges. A pointer graph is a subset of S3 in which the label of every edge is
an atom, and from an entry there is a unique exit for any specific label:
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Definition 1. A set G ⊆ S3 is a pointer graph if, for any (v, w, u), (v, w, u′)∈G ,
we have |w|= 1 and u=u′.

Let Π(S) denote the space of all pointer graphs. We use a triple (v, a, u) to
denote an edge labelled with a from vertex v to vertex u. For example, the
pointer graph in Figure 1(a) is a set:

{(0, x, 1), (0, y, 2), (1, a, 3), (1, c, 4), (2, b, 3), (5, d, 2)}
in which A⊇{1, 2, 3, 4, 5, x, y, a, b, c, d}. Pointer graphs may contain cycles, sha-
ring of exits, deadends (from which there are no edges), deadheads (to which
there are no edges) and so on. These will be formalised later.

The above definition covers any pointer structure. In fact the constants can be
incorporated into pointer graphs. Let C = {0, 1, 2, · · ·} be the set of all constants.
We can add an edge (ε, n, n) for each constant n . For example, if n is the value
of an attribute x of an object stored at v , then there is an edge (v, x, n) in the
set representation. In the reasoning about program states, we assume that every
constant is a deadend and every deadend is a constant.

Some common graph-theoretic notions can be defined as follows.

Definition 2. Let G be a pointer graph. A sequence w = a0.a1 · · ·an is a path
from v to u in G, if there exist v1, v2, · · · , vn such that (v, a0, v1) , (vn , an, u) ∈
G and for any 1 � i <n we have (vi, ai, vi+1)∈G. A path w is minimum if w
is a path from ε to the vertex w and, if a sequence w′ is a path from ε to w ,
then w(w′ .

2.2 Minimum-Path Canonical Representation

A pointer graph can be used to denote a state of an OO program. We assume
the existence of a root vertex ε that denotes the entry point of any memory
access by the program. For example, the program may keep the current object
in a ‘global program variable’ this . So there is an edge (ε, this, v) from the
root to the address v of the object. No edge is allowed to reach the root. This
requirement is called rootedness. So the root vertex is a deadhead. We assume
that any constant c∈C is linked to the root, and every constant is a deadend.
For example, that the attribute x of an object stored at vertex v has a constant
value c is represented as an edge (v, x, c). So the value stored at the exit of
any edge is either a constant or an (non-constant) object. An object must have
at least one attribute. Thus the constants are the only deadends. There can be
infinitely many constants in the set representation of a state, but the rest of
the pointer graph must contain a finite number of edges. This property is called
finiteness. Finally, the observable behaviour of the program does not depend on
the exact locations of the addresses (i.e. pointers). Thus, for all pointer graphs
with isomorphic structures ignoring the names of the vertices, we adopt a unique
naming scheme. We assume that the pointer graph of a program state is always
the result of such a naming scheme. This property is called canonicity.

A directed graph provides redundant information for representing a pointer
structure. There are two possible solutions. One is to introduce nondeterminism
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at a higher-level to ignore the choice of vertex naming. The other is to identify
a representative in each bisimulation class. We follow the latter approach in this
paper. The collection of such representatives provides the so-called canonical
representation. There are different schemes for choosing representatives. Under
a particular scheme, the representative for the class of isomorphic pointer graphs
is unique.

The canonical representation in [7] identifies each vertex as the set of all
traces passing that vertex from a root vertex. So a canonical graph is a set of
sets of traces of labels. The naming then becomes unique and dependent on only
the topological structure of the pointer graph. Garbage is naturally abstracted
from the representation, which is more convenient for OO computation with
automatic garbage collection. As the lengths of the traces are unbounded, the
representation of a finite graph is a set of infinite sets. This complexity has
limited the applicability of the approach. There are several ways to simplify the
representation.

– We may identify each vertex as the set of all acyclic navigation paths reaching
(instead of passing) the vertex from the root. If the graph is finite, this
representation is finite. The method has been taken in several works [13].

– We may further restrict the navigation paths to include only the shortest
paths.

– All these representations identify each vertex as a set. In this paper, we
further simplify the representation by choosing a minimum path as a repre-
sentative. The minimum path is the alphabetically smallest path among the
shortest paths to a vertex. The order used here is ( .

We use the empty sequence ε to represent the root of a canonical pointer graph.
For example, the canonical representation of Figure 1(a) is shown in Figure 1(b):
{(ε, x, x), (ε, y, y), (x, c, xc), (x, a, xa), (y, b, xa)} . Note that the edge (5, d, 2) in
the original graph is ignored as garbage in the canonical representation.

The advantage of the simplified representation is that the resulting model is a
normal model. It does not require promotion to a “higher order” representation
of vertices.

Definition 3. A pointer graph G is canonical if, for every edge (v, a, u)∈G ,
the sequences v and u are minimum paths from the root to v and u respectively.

Every edge of a canonical pointer graph is reachable from the root through a
path.

A program state is a combination of rootedness, constants (as the only dead-
ends), finiteness and canonicity. The smallest such graph contains the edges from
the root to all constants.

Definition 4. A program state is a canonical pointer graph in which the root ε
is a deadhead, each constant c∈C is linked from the root via an edge (ε, c, c) ,
the constants are deadends and the only deadends of the graph, and the number
of edges not from the root to the constants is finite.
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Note that we assume constants are smaller than other names in the total order
of atoms. Thus the naming of the constant vertices remains invariant in any
program state.

2.3 Comparison with Separation Logic’s Store and Heap

The underlying model of Separation Logic [15] consists of two parts: a store and
a heap. The store is a mapping from program variables to addresses in the heap.
The heap is a mapping from addresses to the values stored. A value can be either
an address or a constant. The canonical approaches including that of Hoare and
He [7] and that of this paper integrate the store and the heap in one graph. The
program variables are represented as the immediate edges from the root. Note
that no edge leads to the root.

The biggest difference between canonical and non-canonical models is the
treatment of garbage. Canonical pointer graphs do not represent garbage and
can be more convenient for OO computation with automatic garbage collection.

In an OO program, the update to the state may be through a long path deep
in the nested pointer structure. If an update is not directly to a global variable
in the store, the distinction between the store and heap will not make the update
simpler. In short, the combination of global variables and the state in a pointer
graph is conceptually integrated and no more difficult to manipulate for general
OO programs.

3 Basic Abstract Properties for Pointer Graphs

The aim of this paper is to support high-level compositional reasoning for pointer
graphs. The intention is to define abstract properties like acyclicity and canon-
icity as predicates. We start from basic properties first.

3.1 Unary Properties

A unary property P on a pointer graph is a unary predicate P = P (X) where X
is a logical variable denoting a pointer graph. We use %G& =̂ (X =G) to de-
note the lifted property that is true only on the pointer graph G . Conjunction
P ∧Q and negation ¬P are allowed. A property may have sequences as para-
meters. For example, a property %{(v, a, u)}& allowing only one edge has three
parameters v , a and u. A parameter can be quantified for a property ∃v ·P . A
property is called constant if it is related to the parameters but not the logical
variable X . The property is true for any pointer graph if the combination of
the parameters satisfy the property; otherwise it allows no pointer graph. For
example, v ∈C is a constant property; so are True and False . We use P0, Q0
to denote arbitrary constant properties. Let FP(P0) denote the set of all free
parameters in a constant property P0. For example, FP(v ∈C) = {v}. Some
simple properties are defined in the following table:
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True any graph
False no graph

Empty =̂ %{ }& the empty graph
Edge(v, a, u) =̂ %{(v, a, u)}& one edge (v, a, u)

EdgeFromTo(v, u) =̂ ∃a ·Edge(v, a, u) one edge from v to u
EdgeFromV ia(v, a) =̂ ∃u ·Edge(v, a, u) one edge from v via a

EdgeFrom(v) =̂ ∃u ·EdgeFromTo(v, u) one edge from v
EdgeTo(u) =̂ ∃v ·EdgeFromTo(v, u) one edge to u

Edge =̂ ∃v ·EdgeFrom(v) one edge
CycEdge =̂ ∃v · (EdgeFrom(v) ∧EdgeTo(v)) one cyclic edge

AcycEdge =̂ Edge ∧ ¬CycEdge one acyclic edge.

3.2 Binary Properties

A binary property r relating two pointer graphs is a binary predicate r =
r(X,Y ) . Again, we allow connectives r ∧ s , ¬ r and quantifiers ∃v ·r. Unfortu-
nately, the set union (as a binary property) of two pointer graphs, may not be
a pointer graph by violating the uniqueness of exits, even if their set represen-
tations are disjoint. Before joining (i.e. taking the union of) two pointer graphs,
we need to check their consistency first.

The following table lists a number of binary properties for consideration. Let
A*B =̂ (A∩B = ∅) denote the set disjointness, G0 =̂ {(v, w) | ∃u · (v, w, u)∈G}
be the set of pairs of entries and labels, •G =̂ {v | ∃wu · (v, w, u)∈G} be the
set of all entries, and G• =̂ {u | ∃vw · (v, w, u)∈G} be the set of all exits.

-(X,Y ) =̂ X0 * Y 0 entry and label disjointness
�(X,Y ) =̂ (•X * •Y ) entry disjointness (from sepration logic)
�(X,Y ) =̂ (X• * Y •) exit disjointness
�(X,Y ) =̂ (•X * Y •) no edge from Y to X
�(X,Y ) =̂ (X• * •Y ) no edge from X to Y
�(X,Y ) =̂ (•X = •Y ) entry sharing
�(X,Y ) =̂ (X• =Y •) exit sharing
�(X,Y ) =̂ (X•\•X = •Y \Y •) sharing deadends of X and deadheads of Y
�(X,Y ) =̂ (•X\X• = Y •\•Y ) sharing deadheads of X and deadends of Y .

The binary property - provides the basic consistency checking before joining two
pointer graphs (in set union). The binary property � , implying - , corresponds
to the operator ∗ in Separation Logic. Other binary properties must be checked
together with - to ensure a safe composition. Figure 2 illustrates the decompo-
sition of a pointer graph in Figure 1(a) by different decompositional methods.
Note that these are compositions and decompositions of pointer graphs. We will
study the composition and decomposition of properties on pointer graphs in the
next subsection.

The basic properties satisfy some simple laws.
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Fig. 2. Comparison of binary properties for composition and decomposition

Law 1. (1) P r Empty ⇒ P
(2) Empty is the left and right unit of -,�,�,�,� .
(3) P � Empty = P � Empty = P ∧ Empty.

We introduce a notation 〈P, r,Q〉 for constructing a binary property from two
unary properties and a binary one in conjunction:

Definition 5. 〈P, r,Q〉 =̂ P (X) ∧ r(X,Y ) ∧ Q(Y ) .

Let P 2 denote 〈P, true, P 〉 .

3.3 Parameterised Composition of Unary Properties

We also need operators to compose and decompose higher-level properties. The
disjoint composition P r Q of two unary properties P and Q via a binary
property r is a unary property:

Definition 6.
P r Q =̂ ∃Z0Z1 · (P (Z0) ∧ Q(Z1) ∧ r(Z0, Z1) ∧ -(Z0, Z1) ∧ X =Z0 ∪ Z1) .

Each pointer graph allowed by the composition is the union of two graphs allowed
by P and Q . Before taking the union, the two graphs must satisfy r and - .
Because of the compulsory checking of - , the resulting composition is always a
property only on pointer graphs. Inconsistent properties result in false.

This definition is a special case of parallel-by-merge [6] and parallel-via-
medium [3] in particular. The similarity between pointer compositions and
parallel compositions has been noticed by many researchers and regarded as
a motivation for BI [8]. In parallel-by-merge, the final result is produced by
combining the behaviours of the two computations through a 3-way relation,
which becomes a parameter of the composition. In the above definition, the bi-
nary relation r has a similar role to relate X1 and X2 , but the final result X
is always produced as the set union of X1 and X2 . The combinator satisfies the
following laws.
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Law 2. (1) P r False = False r P = False
(2) %G& r %H& = (G r H) ∧ (G - H) ∧ %G ∪H&
(3) P0 ∧ (P r Q) = (P0 ∧ P ) r Q = P r (P0 ∧ Q)
(4) P r Q = P (- ∧ r) Q
(5) P r Q = True 〈P, r,Q〉 True
(6) (P1 ∨ P2) r Q = (P1 r Q) ∨ (P2 r Q)
(7) P r (Q1 ∨Q2) = (P r Q1) ∨ (P r Q2)
(8) P (r1 ∨ r2) Q = (P r1 Q) ∨ (P r2 Q)

We furthermore assume universal disjunctivity in Law 2(6)(7)(8). The existen-
tial quantifier can be viewed as general disjunction and satisfies similar left/right
distributivity laws. The combinators -,�,�,�,� are commutative and asso-
ciative, while the combinators �,�,�,� are only associative. In general the
following theorem holds.

Theorem 1. If r is commutative (or associative), so is P r Q .

The general composition P r Q of unary properties P and Q has a weak
inverse operator denoted by R/rQ, which is the weakest predicate A such that
(A r R) ⇒ P . It can be characterised as a Galois connection:

Definition 7. A ⇒ R/rQ iff (A r Q) ⇒ R for any predicate A .

The weak inverse satisfies the following laws of Galois connection:

Law 3. (1) R ⇒ ((R r Q)/r Q) (2) (R/rQ) r Q ⇒ R
(3) R/r (P ∨Q) = (R/rP ) ∧ (R/r Q)
(4) (R1 ∧R2)/r Q = (R1/rQ) ∧ (R2/rQ) .

3.4 More Expressiveness Compared to Separation Logic

We informally illustrate that these new combinators are not expressible in gen-
eral using the separating conjunction of Separation Logic. The following table
shows that the relational compositions can be combined to specify any topolog-
ical structures of two arbitrary acyclic edges in Figure 3. Note that we assume
conjunction when placing the combinators together. Both sharing and disjoint-
ness can now be specified. Cyclic edges can be treated similarly.

AcycEdge r AcycEdge (a) (b) (c) (d) (e) (f)

r = ���� �� �� �� �� ��

The separating conjunction P ∗Q in Separation Logic corresponds to P � Q,
which is stronger than our most basic composition P - Q. The separating im-
plication Q−∗R turns out to correspond to R/�Q (and also R\�Q for sym-
metry). For example, the properties (Edge - True) and (Edge � True) are
not equivalent. The former allows any non-empty graph (with at least one edge),
while the latter allows any graph that contains at least one vertex from which
there is only one edge. Separation Logic does not generate the singleton graph
property for a graph Edge(u, a, v) - Edge(u, b, w) with only two edges from the
same entry vertex u. Replacing - with � would result in false.
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(a) (b) (c) (d) (e) (f)

Fig. 3. Topological structures of two arbitrary acyclic edges

4 Unique Decomposition

Sometimes, the decomposition of a pointer graph is unique. For example, for any
given pointer graph, we can decompose it into two parts: one part that is reach-
able from a given vertex v and another part that is not. Such a decomposition
is always unique, if we separate edges so that the reachable edges do not lead to
the entries of the unreachable edges.

Definition 8. A binary property r is a unique decomposition, if for any pointer
graph G, there exist pointer graphs G1, G2 ∈ Π(S) such that %G1& r %G2& =
%G& , and for any G′

1, G
′
2 ∈ Π(S) such that %G′

1& r %G′
2& = %G&, we have

G1 =G′
1 and G2 =G′

2.

For example, for any pointer graph G , the binary property 〈%G&,-, T rue〉 is
a unique decomposition, since the choice on the left-hand side is unique. A
related notion is that of “precise predicate” [9] for distributivity of conjunction
when one side is fixed like the above example. This is only sufficient but not
necessary to guarantee unique decompostionality. More interesting examples of
unique composition will be discuessed in the next section. The following theorem
characterises the above notion algebraically.

Theorem 2. A binary property r is a unique decomposition iff, for any pointer
graphs P1, P2, Q1, Q2 ∈ Π(S) , we have

(P1 ∧ P2) r (Q1 ∧Q2) = (P1 r Q1) ∧ (P2 r Q2).

Proof. This is essentially the equivalence between (relational) determinism of
the combined choices on both sides and distributivity of the combinator over
conjunction. �.
Corollary 3. If r is a unique decomposition, so are

1. the converse of r ,
2. and any binary property r′ such that r′ ⇒ r .

5 Derived Abstract Properties

We are now ready to define interesting abstract properties. We use P↑=P -
True to denote arbitrary extension with edges.



Compositional Reasoning for Pointer Structures 127

5.1 Cones

The following table lists some properties for cone-shaped pointer graphs (i.e. ar-
bitrarily many edges from or to a vertex):

From(v) =̂ EdgeFrom(v) � True edges from v
To(u) =̂ EdgeTo(u) � True edges to v

AtLeastT o(V ) =̂ ∀v ∈V ·To(v)↑ at least to vertices
OnlyTo(V ) =̂ ∀v · (To(v)↑ ⇒ v ∈V ) only to vertices

ExactlyT o(V ) =̂ AtLeastT o(V ) ∧OnlyTo(V ) exactly to vertices
AtLeastFrom(V ) =̂ ∀v ∈V ·From(v)↑ at least from vertices

OnlyFrom(V ) =̂ ∀v · (From(v)↑ ⇒ v ∈V ) only from vertices
ExactlyFrom(V ) =̂ AtLeastFrom(V ) ∧OnlyFrom(V ) exactly from vertices.

Theorem 4. The following binary properties form unique decompositions:

1. 〈From(v),�, T rue〉
2. 〈To(v),�, T rue〉.

Note that 〈From(v),-, T rue〉 is not a unique decomposition as arbitrary edges
from v may be added; neither is 〈To(v),-, T rue〉 for a similar reason.

5.2 Cycles, Deadends and Constancy

The following table lists some properties about cycles, deadends and constancy:

CycEdges =̂ ∃v · (From(v) ∧ To(v)) cyclic edges on a vertex
Cycles =̂ ¬ (AcycEdge � True)∧

¬ (AcycEdge � True)
every edge in some cycle

Rooted =̂ ¬ To(ε)↑ root vertex as a deadhead
IsolatedEdges =̂ ¬∃v · (To(v)↑ ∧ From(v)↑) only deadends and deadheads

ConstIsDeadend =̂ True / AtLeastT o(C) any constant is a deadend
DeadendIsConst =̂ True / OnlyTo(C) any deadend is a constant

Const =̂ True / ExactlyT o(C) constants as only deadends.

where / =̂ 〈True,��, IsolatedEdges〉 . Obviously we have CycEdge⇒Cyc−
Edges and CycEdges⇒Cycles.

We can always decompose a pointer graph into a part with all the deadends
and a part that reaches into the deadend part (and hence not containing any
deadend):

Theorem 5. The binary property / is a unique decomposition.

For example, a program state requires all constants to be deadends and to be
the only deadends.
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5.3 Finiteness

The following table defines the property for finiteness:

Finite(0) =̂ Empty empty graph
Finite(n + 1) =̂ Edge - Finite(n) graph with n edges

Finite =̂ ∃n∈N ·Finite(n) finite graph.

Finiteness satisfies the following laws:

Law 4. (1) Empty ⇒ Finite
(2) (Edge - Finite) ⇒ Finite
(3) Finite = Finite - Finite
(4) (Finite r F inite) ⇒ Finite .

5.4 Paths

The following table lists some properties of paths where w = a0.a1. · · · .an :

Path(v, w, u) =̂ Edge(v, a0, v1) - Edge(vn, an, v)
- ⊎n−1

i=1 Edge(vi, ai, vi+1)
a path w from v to u

Path(v, u) =̂ ∃w ·Path(v, w, u) a path from v to u
PathFrom(v) =̂ ∃u ·Path(v, u) a path from v

PathTo(u) =̂ ∃v ·Path(v, u) a path to u
Cycle =̂ ∃v ·Path(v, v) a cycle
Acyc =̂ ¬ (Cycle - True) acyclic graph.

For example, The property PathFrom(v) � PathFrom(v) describes two non-
overlapping paths from v. The above definitions correspond to their graph-
theoretic definitions directly. They also have constructive definitions as recursion,
which alternatively becomes the following laws.

Law 5. (1) Path(v, (w1.w2), u) = Path(v, w1, w) � Path(w,w2, u)
(2) Path(v, a, u) = Edge(v, a, u)

The following theorem holds because the exit is unique for any label, and hence
the middle vertices visited by a path are determined in a pointer graph.

Theorem 6. The binary property 〈Path(v, w, u),-, T rue〉 is a unique decom-
position.

We have Cycle⇒Cycles. Acyc is the least fixpoint of equations Law 6(3)(4),
i.e. the least fixpoint in the complete lattice ordered by implication with False
as the bottom.

Law 6. (1) Acyc = Acyc � Acyc
(2) Acyc = Acyc / True
(3) Acyc = Empty ∨ (AcycEdge � Acyc)
(4) Acyc = Empty ∨ AcycEdge ∨ (Acyc � Acyc)



Compositional Reasoning for Pointer Structures 129

The two recursive definitions actually suggest different ways of checking acyclic-
ity: by recursively removing acyclic edges or by decomposing a graph in two with
only one-directional links between them.

The separation of an explicit path is unique, reflecting the determinism of
the edges in pointer graphs. Decomposing a pointer graph into an acyclic part
and a part with only cycles is unique, if the interaction between the two parts
is one-directional:

Theorem 7. The following binary properties form unique decompositions:

1. 〈Acyc,�, Cycles〉
2. 〈Acyc,�, Cycles〉 .

Some common acyclic pointer structures can be defined recursively. For example,
a list of values (either pointers or constants) can be defined as a (unique) fixpoint:

Definition 9.
List(v, [u]∧α) =̂ ∃w · ((Edge(v, data, u) - Edge(v, next, w)) � List(w,α))
List(v, [ ]) =̂ (v = nil).

Note that a list only contains edges labelled as next or data. The composi-
tion (List(v, α) � True) extends the list with new vertices, but it differs from
(List(v, α) - True), which allows arbitrary additional edges from the list nodes.
A list is acyclic and hence has the unique decompositionality property according
to Theorem 7:

Law 7. (1) IsolatedEdges ⇒ Acyc (2) List(v, α) ⇒ Acyc .

5.5 Reachability

The following table lists some properties of path reachability:

ReachableFrom(v) =̂ ∀u = v · (From(u)↑ ⇒ Path(v, u)↑)
ReachableFromEdge(v, a) =̂ Empty ∨ ∃u · (Edge(v, a, u) - ReachableFrom(u)) .

ReachableFrom(v) is the least fixpoint of the following equation:

Law 8. ReachableFrom(v) = Empty ∨ From(v) ∨ (ReachableFrom(v) �
True).

The following table introduces some important binary properties. They will be
used for the decomposition of program state in assertion-based reasoning.

�v =̂ 〈¬ From(v)↑,�, ReachableFrom(v)〉 reachability
dominated decomposition

�v =̂ 〈¬ From(v)↑,�, ReachableFrom(v)〉 non-reachability
dominated decomposition

�v,a =̂ 〈¬ From(v)↑,�, ReachableFromEdge(v, a)〉 edge reachability
dominated decomposition

�v,a =̂ 〈¬ From(v)↑,�, ReachableFromEdge(v, a)〉 non-edge reachability
dominated decomposition
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The separation of a part reachable from a given vertex or a given edge is
unique, if the rest of the pointer graph is not accessible from the reachable part.

Theorem 8. The binary properties �v,�v,�v,a,�v,a form unique decomposi-
tions.

Thus the binary property �ε is a unique decomposition. That means the sepa-
ration is unique between the non-garbage part reachable from the root and the
garbage not reachable from the non-garbage part.

The following laws identify some properties which distribute the above unique
decompositions:

Law 9. (1) Acyc = Acyc r Acyc
(2) Finite = Finite r F inite
(3) Edge(v, a, u)↑ = True r Edge(v, a, u)↑
(4) DeadendIsConst = DeadendIsConst r DeadendIsConst

where r = �v,�v,�v,a,�v,a .

5.6 Canonicity

The following table lists some properties related to canonicity:

MinPath(v, w, u) =̂ Path(v, w, u)↑∧
∀w′ · (Path(v, w′, u)↑ ⇒ w(w′)

Canonical =̂ ∀vu · (EdgeFromTo(v, u)↑ ⇒
MinPath(ε, v, v) ∧MinPath(ε, u, u))

State =̂ Canonical ∧ Rooted ∧ Const.

Any vertex of a canonical pointer graph is reachable from the root. The ab-
stract property allows exactly all the canonical graphs and is the least fixpoint of
the equation in Law 10(2). The recursion suggests a method of checking canon-
icity by removing vertices one after another. The removed vertex (as a sequence)
is always the minimum path to the vertex and no other vertex is represented
as a smaller sequence. Such a choice of removal never changes the minimum-
path representation of other vertices in a canonical graph and always leaves a
smaller canonical pointer graph and can be repeated until the graph is emptied.
State is the property of all states of an OO program (with automatic garbage
collection).

Law 10. (1) Canonical ⇒ ReachableFrom(ε)
(2) Canonical = Empty∨

∃v · MinPath(ε, v, v)
∧ ∀u ·EdgeTo(u)↑ ⇒ u( v
∧ (Canonical � To(v)) � From(v)
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6 Reasoning with Hoare Logic

In this section we begin the programme apparently hoped for in [7] of using
the canonical model to provide sound laws of Hoare logic for reasoning about
programs involving pointers. We exploit the properties defined in the current
paper to provide Hoare-logical rules for reasoning about pointer swing.

6.1 Relating Assertions at Different Locations of a Program

The standard technique to link two assertions is to introduce an arbitrary con-
stant: con c � {P } code {Q} . The annotation is valid if for any arbitrary
constant, the inner annotation {P } code {Q} is valid.

Separation Logic [15] explicitly identifies the pointers as integers. When link-
ing two assertions at different locations of a program, the corresponding pointers
must be the same integer. However the naming of the pointers (i.e. the addresses
or vertices in a pointer graph) is irrelevant to the external behaviour of a pro-
gram as long as the pointer graphs in new states of the program are (partly)
isomorphic to the original state. In practice, the operating system may move
memory blocks during the execution of a program without affecting its behav-
iour. The model of Separation Logic is not fully abstract on the renaming of
vertices.

Some properties, however, are insensitive under such renaming. For example,
if the property Acyc is true for a part of the state before a program and the
part is not modified by the code, then we can expect Acyc to be true in the
state after the program.

In general, if a property does not mention vertices as explicit parameters, it
is insensitive under renaming. We use a function to capture such insensitivity
by estimating the set of the free vertex parameters in a property. Note that we
assume every program state to be a canonical pointer graph. The set C is the
set of constants in every such graph. The set φP estimates the free parameters
occurring in a property P .

Definition 10. φP0 = FP(P0) \ C
φTrue = { }
φEdge(v, a, u) = {v, u} \ C
φ¬P = φP
φ (P ∧Q) ⊆ (φP ∪ φQ)
φ (∃v ·P ) = φP \ {v}
φ (P r Q) ⊆ φP ∪ φQ

If a property P has no free vertex parameters i.e. φP = { }, then it is insensitive to
isomorphic renaming of the vertices. For example, φP0 returns all non-constant
free parameters of a constant property, φAcyc= { } but φ (v =u)= {v, u} . Note
that the above definition is semi-syntactical. For example, it allows us to calculate
φ (P ∧¬P ) as { } instead of φP . Explicit parameters for labels and paths are
not counted. For example, φPath(v, w, u) = {v, u} . Constants are not free
vertex parameters as they remain unchanged in our canonical model.
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Vertex parameters must not be left free in assertions. When vertices are needed
in reasoning, they can be identified through path navigation. We now introduce
a notation ∂v:w ·P to turn a vertex parameter v in P to a path parameter w
denoting path reachability from the root to the vertex:

Definition 11. ∂v:w ·P =̂ ∃v · (Path(ε, w, v)↑ ∧ P ) .

The following laws can be used for reasoning about it:

Law 11. (1) ∂v:w ·P ∨ ∂v:w ·Q = ∂v:w · (P ∨Q)
(2) ∂v:w ·P ∧ ∂v:w ·Q = ∂v:w · (P ∧Q)
(3) ∂v:w ·P ∧ ∂u:w ·Q = ∂v:w ∂u:w · (v = u ∧ P ∧Q)
(4) ∂v:w ·P = ∂v:w ·P [u/v] (u ∈ φP ).

We have φ (∂v:w ·P ) = φP \ {v} . Law 11(2) holds because, in any pointer
graph, the vertex reachable through a specific path is unique.

6.2 A General Rule for Pointer Swing

The behaviour of pointer programs can be characterised as Hoare-logical rules.
Note that every assertion P must satisfy φP = { } for insensitivity with respect
to renaming of vertices.

The effect of an assignment statement on the program state is complicated.
We start from the most general and accurate rule and then try to identify its
less accurate but simpler approximations. For example, a typical assignment in
OO languages is (this.x := this.x.a) where this points to the current object
whose address may vary at runtime. Such manipulation of nested environments
is common in OO. If this is represented in the model of Separation Logic, the
variable this will be located in the store, while the actual assignment happens
in the heap. The separation between the store and the heap is convenient for C-
style imperative pointer programming but has not made OO pointer assignments
any simpler. Canonical models do not make such a distinction.

v

(a)

u

w w'

a

QP P

v

(b)

u

w

a

Fig. 4. Pointer swing w.a :=w′ (accurate and simplified decompositions)

In general, a pointer assignment has the form: (w.a := w′) where w and w′

are navigation paths, i.e. sequences of attribute labels. This statement assigns
the attribute a of an object stored at program variable w to a value stored
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at program variable w′. Any garbage is automatically disposed. Figure 4(a)
illustrates the operation. The entire cone represents the whole canonical pointer
graph, which can be (uniquely) decomposed into three parts for consideration:
the smaller right-hand cone that represents the reachable part from u , which
vertex is reachable from the root through path w′; the left-hand cone denoting
the garbage resulting from this pointer swing as the part reachable from the
edge (included) from vertex v with label a but not reachable from u or the root
without navigating via v ; and the rest of the pointer graph. The properties of the
first and the third parts in the state before the assignment are preserved, while
the second part is automatically disposed of as garbage. A new edge is established
from w to w′ via a . Caution is required here. In assignments like w.a :=w.a.b ,
the original path w.a.b is lost due to the pointer swing. Fortunately, we can still
reach the vertex through the new path w.a . The following annotation is valid
and captures all the changes:

Rule 1. {∂v:w ∂u:w′ · ((P �v,a True) �u Q)}
w.a := w′

{∂v:w ∂u:(w.a) · ((P �v,a Edge(v, a, u)) �u Q)}
Note that we can strengthen the precondition by replacing True with another
property R , which will be ignored in the postcondition for automatic garbage
collection. That is equivalent to the strengethening of the precondition in the
above annotation for monotonicity.

6.3 Frame Rule of Separation Logic Implied

Rule 1 can be simplified if we do not consider so accurately the result on the
right-hand side of the assignment. This may be the result when the value of the
right-hand expression is unknown in static analysis. In Figure 4(b), the pointer
graph is (uniquely) decomposed into the part of potential garbage in the smaller
cone, which is reachable from the edge with label a from vertex v but not
reachable from the root if not via v and the rest of the pointer graph that satisfies
the property P . If an edge can be reached from the root not via v , the edge
must not be garbage; on the other hand if it is only reachable from v , whether it
is garbage depends on the whether the pointer is changed to somewhere reaching
it. In short, as the exact location of the new pointer is ignored in this simplified
decomposition, we simply treat the small cone as potential garbage as a whole
and obtain the following simplified rule:

Rule 2. {∂v:w · (P �v,a True)}
w.a := exp

{∂v:w ∂u:exp · (P �v,a Edge(v, a, u)↑)}
where exp is an expression and the potential garbage is turned into the arbitrary
extension of the new edge Edge(v, a, u) . It is an arbitrary extension because
some part of the potential garbage might be preserved after the assignment.

The above annotation can be further simplified if we ignore the formation of
the new edge (i.e. functionality of code):
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Rule 3. {∂v:w · (P �v,a True)} code(w.a) {∂v:w · (P �v,a True)}.
where code(w.a) is a (terminating) program that only modifies the variable
w.a . The rule allowing the modification of multiple variables has a similar form.

Let w = ε . We then obtain a simpler rule for pointer swing adjacent to the
root vertex (corresponding to modification of global variables):

Rule 4. {P �ε,a True} code(a) {P �ε,a True}.
Note that the empty path can reach only the root in a canonical pointer graph.
If we have shown, with some other rules, that {Q} code(a) {R} , then we
have {Q ∧ (P �ε,a True)} code(a) {R ∧ (P �ε,a True)} . This rule actually
corresponds to the frame rule in Separation Logic. Note that the program state is
rooted. The unique decomposition ensures that the conjunction of two assertions
will pair the corresponding properties for the same part of the pointer graph (see
Theorem 8), which has a function similar to the separating conjunction in the
frame rule.

7 Example: Searching a Constant in an Acyclic Sub-graph

We consider a simple pointer algorithm under the presence of automatic garbage
collection. The purpose of this case study is to demonstrate the compositional
reasoning methods at work.

Let this be the variable pointing to the current value (either an object or a
constant) in an OO program. As a precondition, the attribute x of the object
stores an acyclic sub-graph whose deadends are some constants. The requirement
is to find one of the constants in the sub-graph. The nondeterministic algorithm
is very simple: if the current value is an object then we choose an attribute and
follow the link and repeat the process; if the current value is a constant then the
iteration stops:

con D : { }⊂D⊆C �

{∂v:this.x · True �v (Acyc / ExactlyT o(D\{v})}
do []a∈A exist(this.x.a) → this.x := this.x.a od

{∂v:this.x · v ∈D}.
When the pointer this.x moves ahead, cells left behind may be garbage-collected
automatically. Note that the above program manipulates pointers entirely within
the current object and does not use any temporary global variable immediately
associated with the root to point to the sub-graph. In general, relying on global
pointer variables is unrealistic in OO programming, because methods may be
invoked recursively. That means in the model of Separation Logic, the reasoning
for an OO program involves as complicated heap decomposition as that in canon-
ical models. The divide between store and heap does not simplify the reasoning
for OO programs in general, as the frame rule cannot be applied for similar
partitioning in the heap.
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In the precondition of the above program, the set D (introduced as a constant
variable in Hoare Logic) is a non-empty set of constants. The pre and post
conditions are linked via D. The precondition assumes that the reachable part
from the vertex at the end of path this.x is acyclic, and either contains constant
deadends or is empty when v must be a constant itself such that D = {v}. The
postcondition guarantees to point this.x at one of the constants in D . To reason
about the correctness of the above program, we introduce a loop invariant:

Inv =̂ ∂v:this.x · (True �v (Acyc / ∃E : { }⊂E⊆D ·ExactlyT o(E\{v})).
The invariant states that there exists a non-empty subset E of D , the part
reachable from the vertex at the end of path this.x is acyclic, and either con-
tains constant deadends or is empty when v must be a constant itself such that
{v}=E⊆D. The whole annotation is as follows:

con D : { }⊂D⊆C �

{∂v:this.x · True �v (Acyc 
 ExactlyTo(D\{v})}
{Inv}
do

[]a∈A exist(this.x.a) →
{Inv ∧ ∂v:(this.x) ·EdgeFromV ia(v, a)↑}
this.x := this.x.a �

{Inv}
od

{Inv ∧ ∂v:this.x · (True �v Empty))}
{∂v:this.x · v ∈D}.

In the above annotation, EdgeFromV ia(v, a)↑ checks the existence of an at-
tribute a from the vertex v . If no such edge exits for any label, the vertex v
must be a deadend, and hence the reachable part from v must be empty, and
this forces v to be one of the constants in D according to the loop invariant.
The loop must terminate as the size of the reachable part is strictly reduced
because of acyclicity and finiteness.

Figure 5 illustrate the function of the body of the loop. The outmost cone
represents the whole canonical pointer graph reachable from ε ; the middle-
sized cone represents the garbage reachable from v (a vertex reachable through
path this.x ) but not reachable from either ε or u (a vertex initially reach-
able through path this.x.a ) without going via v ; the smallest cone is the part
reachable from u , which becomes the new location of this.x . Eventually the
smallest cone will become empty, and v becomes one of the constants in D.
Rule 1 is used for the safety of the assignment statement as the target area of
pointer swing must be preserved and not treated as garbage.

In the annotation, the property for the non-reachable part from v is True.
In fact, it can be any property, as the program modifies only this.x . According
to Rule 3, we have
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Fig. 5. Pointer swing along the edge a from v

{∂v:this.x · (P �v,a True)} code(this.x) {∂v:this.x · (P �v,a True)} ,
where code(this.x) is the searching program that only modifies this.x . The
safety rule can be conjoined with the annotation for the program with prop-
erties paired according to the unique decomposition. The effect is the same as
replacing True with P in the program annotation, just as the frame rule does
in Separation Logic. Remember that constant property v ∈D distributes the
decomposition. This explains how unique decomposition achieves the function
of the frame rule.

8 Related Work

Separation Logic has been successful in providing (Hoare-logic-style) program
annotations [12,15] at the level of abstraction of algorithms operating on data
structures consisting of a store and heap. In view of the intricacy of such algo-
rithms, and since software engineers who design and write such algorithms have
lacked support for rigorous reasoning, Separation Logic has thus provided a sub-
stantial advance. Proof rules for modularised reasoning have been developed: in
[11] the vital frame rule is given, phrased in terms of the concept of a precise
predicate that determines which heap cells are accessed (an idea that goes back
to [1]). The former has been influential in our Rule 4 for pointer swing and the
latter in our concept of unique decomposition (Definition 8 and Theorem 2).

What more might be done so that formal support for reasoning about object-
orientated structures draws level with support for reasoning about simpler tradi-
tional algorithms expressed in say the guarded-command language? Support must
also be provided for the step-wise reasoning about program correctness that al-
lows data representation as well as the algorithm refinement covered by program
annotations. For then the assertional method can be used for abstract algorithms
whose state is far more general than store-plus-heap, even though that is the form
of its ultimate implementation several derivation steps later. Recently a theory
of data refinement for the situation in which the invoking program shares store
with the module it invokes, has been proposed [9] the interaction between the in-
voking program’s use of space and that of the invoked procedure; for then the re-
sulting notion of refinement is robust against ‘allocation-status testing’ (i.e. use of
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memory allocation followed by pointer comparison to tell, though nondetermin-
istically, which cells are used internally by a module).

With such theory in place there is, in principle, nothing to stop us from
reasoning about pointer algorithms just as we do for standard algorithms. So
what is the reluctance to do so? The only examples we have been able to find are
derivational correctness proofs of the Schorr-Waite marking algorithm [17,16].
The reason seems to be that the relevant theory of data refinement has not been
complemented by appropriate notation for hierarchical, modularised reasoning.
We have seen in this paper the sort of concepts and notations that might be
useful, by showing in the example how an algorithm can be verified by annotation
at a level of abstraction above that of store-plus-heap. Subsequent steps of data
refinement, ending with a pointer program, are by comparison more routine
using the techniques of data refinement referred to above.

Another solution to the these limits of Separation Logic has been relational
Separation Logic [16]. There a relational calculus has been introduced specifically
to support the practice of program derivation, using Hoare quadruples, and
shown at work on the Schorr-Waite algorithm. This calculus is strong, due to
the strong assumptions it makes concerning the cells that may be accessed by
a computation, as indicated by the quadruples’ ‘pre-relation’. So it seems most
useful at the stages of derivation closer to code.

Complementing the direction we have taken is work [14] that provides the predi-
cates appearing in an abstract description with a notion of scope in order to control
their access. ‘Predicates with scope’ move the abstraction into the logical frame-
work, so that the expansion (and contraction) of a predicate definition is controlled
by scope. It is hoped that those presented in the present paper and those deriving
from Graph Logic [2], enabling Formal Methods to be replayed successfully in the
context of OO. But convincing realistic examples are to date lacking.

We have applied the theory to reason about an OO program. From the mod-
elling of program states, we have adopted the approach of the canonical models
[7] to achieve full abstraction so that the naming of vertices is unique for pointer
structures isomorphic to each other. Subsequent work [13] has simplified that
of [7] and we have built upon it here with the minimum-path representation.
Note that most techniques of this paper are applicable to either canonical or
non-canonical representations.

9 Conclusion

The main technique of this paper has been the general composition of properties
over pointer graphs. It has been shown how a binary property can be used as
a parameter to combine two unary properties, in such a way that the result
satisfies pleasing general laws.

We have also identified nine useful combinators as examples. The separat-
ing conjunction (or entry disjointness in our terms) of Separation Logic is one
of them and cannot express the other eight combinators. Several combinators
may be used together (in conjunction). The necessity of these operators is illus-
trated in Figure 3 where each topological relationship between two acyclic edges
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corresponds to the conjunction of specific combinators. The weakest combinator
- clearly behaves differently from entry disjointness. For example, some proper-
ties such as general acyclicity (without assumption on the number of attributes
in each object) cannot be specified with the entry disjoint combinator, since we
sometimes need edge-wise composition instead of vertex-wise composition. This
shows the value of our extra combinators over that of Separation Logic.

The combinators of reachability decomposition turn out to be extremely useful
in program reasoning: they enable the behaviour of pointer swing to be captured
precisely and compositionally using a Hoare triple. Furthermore, garbage can be
pinpointed exactly. The rule has simpler but less accurate special cases, one of
which is the frame rule in Separation Logic.

The main technical contributions of this paper have been the concept of unique
decomposition and the identification of useful candidates for reachability decom-
position. The algebraic characterisation of unique decomposition proves to be the
key to compositional reasoning in this approach. For example, we have seen that
the frame rule in Separation Logic is a consequence of those rules based on the
unique decomposition of reachability.

Because the canonical models ignore garbage, the representation we use is
most suitable for Java-like languages which support automatic garbage collec-
tion. We have followed that route because it is the more challenging one. The
integration of program variables and object attributes in one pointer graph is
convenient for general OO programming and design, which may involve reason-
ing for deeply nested environments.

Our solution to linking two canonical states at different locations of a program
has been to turn explicit vertex parameters of assertions into path parameters so
that every assertion is insensitive to the naming of vertices (important because
naming may change dramatically after pointer swing).

We have deliberately chosen to define concepts first and identify their least-
fixpoint recursive definitions as laws. This demonstrates that the formalism may
be used at different levels of abstraction. The recursive definitions we view as
more concrete and closer to actual implementations that check properties.

The choice between algebraic and logical presentations is one of little essence;
we have chosen to favour the former and exploit the concept of weak inverse from
the theory of Galois connections. The algebraic approach can be axiomatised as
can the logical.
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Abstract. We present some techniques to obtain smooth derivations of
concurrent programs that address both safety and progress in a formal
manner. Our techniques form an extension to the calculational method
of Feijen and van Gasteren using a UNITY style progress logic. We stress
the role of stable guards, and we illustrate the derivation techniques on
some examples in which progress plays an essential role.

1 Introduction

In [1], Feijen and van Gasteren describe an elegant programming method for the
notoriously hard task of constructing concurrent programs. It is based on the
calculational method of sequential program derivation from Dijkstra [2] and
the axiomatic theory of Owicki and Gries [3]. The method starts with a specifi-
cation that includes an abstract program, called the computation proper, and a
formalization of the synchronization requirements. By repeatedly adjusting the
program, the requirements are established.

Like the theory in [3], the method in [1] does not address progress. As a
consequence the derivations emphasize safety, while progress is postponed and
addressed in an ad-hoc manner. However, as progress often plays an important
role in concurrent programs, proper derivations need to consider it at an early
stage. Thereto, Dongol and Goldson [4] provided an extension to the theory in
[3], integrating it with the progress logic of Chandy and Misra [5] as described
in their UNITY formalism.

In the current work, we explore whether the logic in [4] can be integrated nicely
with the method in [1] such that safety and progress are considered equally in
derivations. As the logic allows proofs via algebraic manipulation, we head for a
calculational style of derivation. The challenge is to be formal and precise, while
keeping the complexity of the derivations low. The approach we have taken is
to consider some elementary programs, in a search for techniques and heuristics
necessary for smooth derivations.
� This author is supported by the NWO under project 016.023.015 “Improving the

Quality of Protocol Standards”.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 140–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Progress in Deriving Concurrent Programs 141

In particular, we evaluate how the techniques from [1] affect progress, and
we develop a number of lemmas, heuristics and theorems to aid derivations.
We also emphasize the role of stable guards in the construction of programs by
rephrasing the usual informal definition of individual progress. To experiment
with these techniques, we discuss the derivation of two elementary programs in
which progress plays an essential role.

Other attempts at progress-based derivations do exist. Apart from a progress
logic, Chandy and Misra [5] also present derivations of concurrent programs.
With their method, one performs refinements on the original specification un-
til a level of detail is reached where the UNITY program is ‘obvious’. Hence,
derivations stay within the realms of specifications until the final step, where
the specification is transformed to a UNITY program. However, as each specifi-
cation consists of a list of invariants and leads-to assertions, it is hard to judge
the overall structure of the program. Furthermore, it is difficult to decide when
there is enough detail in the specification to translate it to a program.

To illustrate the progress logic, Dongol and Goldson [4, 6] started to integrate
progress with program derivation, but the presented techniques are undeveloped.
A clear methodology is not provided, and the derivations are quite complex and
seem to contain arbitrary design decisions.

Overview. In Section 2 we present the necessary background, which includes
the logics of safety and progress, and an overview of the method of [1]. Then in
Section 3 we present our extensions, which address both progress calculations
and program derivations. We present example derivations of an initialization
protocol in Section 4 and a mutual exclusion algorithm in Section 5. Finally in
Section 6 we conclude this work.

2 Preliminaries

In this section, we summarize various basic theories as far as we use them in the
rest of this work. We describe the programming language used and its semantics
in Section 2.1, the safety logic in Section 2.2, and the progress logic in Section 2.3.
Then, we discuss stability in Section 2.4 and overview safety-based derivations
in Section 2.5. In Section 2.6 we describe a technique for avoiding total deadlock.

2.1 Syntax and Semantics

A concurrent program consists of a number of sequential programs, which are
called its components, to be executed in parallel by interleaving the atomic
statements of the components. We adopt a weakly fair scheduling regime so that
in the interleaving, no component is neglected forever. The location between two
subsequent atomic statements in a component is referred to as a control point.
We consider components that communicate via shared variables.

The programming language we use to define each component is based on
Dijkstra’s Guarded Command Language [2], where statements take the following
form:
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skip | x := E | 〈S〉 | S1;S2 | if B1 → S1 � B2 → S2 fi | do B → S od

We refer to skip statements, assignments and guard evaluations as elementary
statements. In concurrent programs, the if statement blocks whenever both B1
and B2 evaluate to false, and hence it is important for synchronization. In ad-
dition, ∗[ S ] is used as an abbreviation of do true→ S od.

To use the progress logic of [4], each control point is assigned a label that
is unique within the component. We use Xi to refer to the control point with
label i in component X , or to the atomic statement at this control point; the
particular meaning will be clear from the context. The elementary statements
and statement 〈S〉 are assumed to be atomic, and hence statements are labelled
as follows:

i: skip j: | i: x := E j: | i: 〈S〉 j: | i: S1; j: S2 k: |
i: if B1 → j1: S1 � B2 → j2: S2 fi k: | i: do B → j:S od k:

The non-elementary statements can be decomposed as follows. A coarse-grained
atomic statement i: 〈S〉 j: consists of an atomic execution of S, eliminating
all control points within S. A sequential composition i: S1; j: S2 k: consists
of the two statements i: S1 j: and j: S2 k:. A selection statement i: if B1 →
j1: S1 � B2 → j2: S2 fi k: consists of:

1. atomic guard evaluation i: (B1 → j1: � B2 → j2: ), where a non-deterministic
choice between B1 and B2 is made if both guards hold, and

2. statements j1: S1 k: and j2: S2 k:

A repetition i: do B → j: S od k: consists of:

1. atomic guard evaluation i: (B → j: � ¬B → k: ), and
2. statement j: S i:

For each component X , an auxiliary variable pcX is introduced to model the
program counter of component X . Variable pcX is updated implicitly by each
atomic statement to reflect the change in the control state. Auxiliary variables
are used as a proof aid, and they may not influence the flow of control.

Control points are annotated with a series of assertions, i.e., predicates on
the state of the system. An assertion P at control point Xi is equivalent to a
condition [ pcX = i ⇒ P ], where notation [ F ] denotes formula F surrounded
by a universal quantifier binding all program variables. At each control point
Xi the predicate pcX = i is implicit. In addition, there is a special predicate
Pre that describes the initial state of the program, including implicitly that the
program counters of the components have their initial value.

Semantics for the labelled elementary statements are provided using both the
weakest liberal precondition wlp and the weakest precondition wp as both partial
and total correctness need to be addressed. In the definitions below, we reduce
clutter by removing mention of the first label.

Definition 1 (Weakest liberal precondition). The weakest liberal precon-
dition (wlp) of a statement S and a predicate P is the weakest predicate that
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needs to hold before executing S, so that each terminating execution of S ends
up in a state satisfying P . For the elementary statements it is defined as:

[ wlp.(skip j: ).P ≡ (pc := j).P ]
[ wlp.(x := E j: ).P ≡ (x, pc := E, j).P ]
[ wlp.(B1 → j1: � B2 → j2: ).P ≡ (B1 ⇒ (pc := j1).P ) ∧

(B2 ⇒ (pc := j2).P ) ]

Definition 2 (Weakest precondition). The weakest precondition (wp) of a
statement S and a predicate P is the weakest predicate that needs to hold before
executing S, so that S is guaranteed to terminate in a state satisfying P . For the
elementary statements it is defined as:

[ wp.(skip j: ).P ≡ (pc := j).P ]
[ wp.(x := E j: ).P ≡ (x, pc := E, j).P ]
[ wp.(B1 → j1: � B2 → j2: ).P ≡ (B1 ⇒ (pc := j1).P ) ∧

(B2 ⇒ (pc := j2).P ) ∧ (B1 ∨B2) ]

Note that for each statement Xi we have [ wlp.Xi.(pcX = i) ]. In particular,
notice that guard evaluations and the skip statement have the side effect that
they update the program counter. For the typical synchronization statement
S =̂ 〈if B → skip fi〉, we have [ wlp.(S j: ).P ≡ B ⇒ (pc := j).P ] and
[ wp.(S j: ).P ≡ B ∧ (pc := j).P ].

2.2 Safety

Safety properties are expressed by assertions. To prove their correctness, we use
the Owicki/Gries theory [3] using the nomenclature of [1].

Definition 3 (Correct assertion). An assertion P in a component is correct
if it is both

– locally correct, i.e., it is established in the component:
• if P is an initial assertion in the component: [ Pre ⇒ P ] holds;
• if P is preceded by an atomic statement {Q} S, where Q is a pre-assertion

of S, then [ Q ⇒ wlp.S.P ] holds.
– globally correct, i.e., it is maintained by all other components:

• for each atomic statement {Q} S in any other component, where Q is a
pre-assertion of S, then [ P ∧Q ⇒ wlp.S.P ] holds.

We note that the last condition for local correctness (also in [4]) may not be
appropriate for the atomic evaluation of multiple guards. However, since it gives
no problems in our study, we only suggest as an alternative the condition [ Q ⇒
wlp.S.(pcX = j ⇒ P ) ] if P occurs at control point Xj .

2.3 Progress

To prove progress properties of a program, we use the progress logic from [5]
as described in [4]. It is based on the un relation, which captures the temporal
[7] notion of ‘unless’, which is also known as ‘weak until’. Expression P un Q
denotes that P continues to hold until Q becomes true, but it does not guarantee
that Q will become true.
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Definition 4 (Unless). For predicates P and Q, condition P un Q holds in
an annotated program if

[ P ∧ ¬Q ∧ U ⇒ wlp.S.(P ∨Q) ]

holds for all atomic statements {U} S.

Progress conditions are typically expressed using the leads-to relation �, which
is related to temporal logic using (P � Q) ≡ 	(P ⇒ ♦Q). Expression P � Q
for a program denotes that whenever an execution of the program reaches a state
that satisfies P , each continuation of the execution will eventually reach a state
that satisfies Q.

Definition 5 (Leads-to). For any predicates P and Q, condition P � Q holds
in an annotated program if P � Q can be derived by a finite number of applica-
tions of the following rules:

– Immediate progress rule: P � Q holds in an annotated program whenever
P un Q holds in the program and there exists an atomic statement Xi such
that [ P ∧ ¬Q ⇒ pcX = i ∧ wp.Xi.Q ] holds.

– Transitivity rule: P � Q holds if there exists a predicate R such that P � R
and R � Q.

– Disjunction rule: P � Q holds if there exist predicates R.i such that [ P ≡
(∃i: : R.i) ] and (∀i: : R.i � Q).

The rule of immediate progress, which is the base rule of progress, consists
of two parts. The first part is P un Q which requires that each statement in
the annotated program either preserves P or establishes Q. To ensure that Q
eventually holds, the second part requires that there exists an atomic statement,
say Xi, such that P ∧ ¬Q implies that control is at Xi and Xi is guaranteed to
terminate and establish Q.

A number of useful lemmas about � can be found in [5, 4]. In particular we
will use:

Lemma 1 (Properties of �). For predicates P and Q, the following hold:
(Implication) (P � Q) ⇐ [ P ⇒ Q ]
(Induction) (P � Q) ⇐ (∀m: : P ∧ M = m � (P ∧ M ≺ m) ∨ Q),

provided m is a fresh variable and ≺ is a well-founded order on
the type of M , which is an expression over program variables.

2.4 Stability

A special instance of the un relation is P un false, for any predicate P . It
corresponds to the notion that P is stable, i.e., it is maintained by each atomic
statement. Note that a stable predicate does not need to be true initially.

Definition 6 (Stable). A predicate P is stable under component X, if for
each atomic statement Xi with pre-assertion U , [ P ∧U ⇒ wlp.Xi.P ] holds. A
predicate P is stable in a program, if it is stable under all components.
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In particular, stability of P ∧Q follows from stability of both P and Q, but not
vice versa. The assumption that evaluating a series of guards is a single atomic
statement, may be too demanding for an implementation. The following lemma
from [1] shows a technique that exploits stability to relieve this assumption.

Lemma 2 (Guard disjunction lemma). Any program fragment

if B ∨ C → S fi

in a component can be implemented (without impairing total correctness) as

if B → S � C → S fi

where the atomicity of guard evaluation is just per single guard, if (at least) one
of the disjuncts B or C is stable under all other components.

2.5 Safety Derivations

In this section we summarize the programming method of [1]. Program develop-
ment starts by expressing the program’s specification in terms of a preliminary
program and some queried assertions. A queried assertion is an assertion that
has not yet been proved correct, and it is marked with a ‘?’ before it. The deriva-
tion process consists of turning each of these into a correct assertion. When all
assertions (which include those from the specification) are correct, the developed
program is correct with respect to the specification. There are three main ways
to make an assertion correct:

– strengthen the annotation;
– introduce new statements; and
– modify an existing statement.

Introducing a new statement, or modifying an existing one may turn all as-
sertions into queried assertions again. Fortunately, this does not happen upon
strengthening the annotation, which means we are freely able to add conjuncts
to existing assertions. This occurs often enough that we allow multiple assertions
(co-assertions) to be placed at a single control point which denotes their con-
junction. Hence, annotations {P}{Q} and {P ∧Q} are equivalent. An important
result in [1] is that correctness of each co-assertion may be proved independently.
Introducing a new assertion maintains correctness of previous assertions, and
typically the weakest possible strengthening that serves the goal is calculated.

2.6 Avoiding Total Deadlock

In [8] a technique to guarantee the absence of total deadlock is described (see
also [9]). In a setting with program counters, it can be reformulated as follows.
To establish a condition [ pcX = j ∧ pcY = k ⇒ Q ], where X and Y are
components, j and k are labels, and Q is some predicate, it is sufficient to ensure
that Q is (locally) established by each atomic statement that can terminate at
control point Xj or Yk. If the statement at Xj and the statement at Yk are
if statements, absence of total deadlock corresponds to the case that Q is the
disjunction of the guards of these two statements.
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3 Derivation Techniques

In this section, we describe the techniques we have developed for progress-based
derivations. We describe some properties of progress claims and lemmas for pre-
serving progress in Section 3.1. The notion of weakest immediate progress is
described in Section 3.2. Then we address the role of stability in establishing
individual progress in Section 3.3. To aid readability, we postpone our proofs
to the appendix, however, an interested reader can refer to the proof to gain a
better understanding of the theory.

3.1 Maintenance of Progress

To aid our proofs and derivations, we have developed the following important
rules. These give formal justification to strengthening and weakening predicates
in proofs, which are frequently demanded in derivations.

Lemma 3 (Monotonicity). For predicates P , Q and R, the following hold:

– un is monotonic (or isotonic) in its second argument, i.e.,

(P un Q) ∧ [ Q⇒ R ] ⇒ (P un R)

– � is anti-monotonic (or antitonic) in its first argument, i.e.,

[ P ⇒ Q ] ∧ (Q � R) ⇒ (P � R)

– � is monotonic (or isotonic) in its second argument, i.e.,

(P � Q) ∧ [ Q⇒ R ] ⇒ (P � R)

Lemma 4 (Contradiction). For predicates P and Q, the following holds:

(P ∧ ¬Q � Q) ≡ (P � Q)

For derivations, it is of utmost importance to know how progress is maintained
by modifications of the program under construction. Informally speaking, we can
imagine that a progress condition P � Q cannot be endangered by statements at
control points that cannot be reached from any state that satisfies P . However,
the notion of reachability does not really help if at least one program counter
does not occur in expression P , or if the components contain repetitions.

Remark 1. Using our experiences we prescribe as a heuristic that progress can
be better addressed from the end of a program towards its start.

In what follows, we investigate a stronger approach to this issue, viz. when the
proof of a progress property is maintained. We use A |= P � Q to denote that
condition P � Q holds for annotated program A, where the annotation may
include queried assertions.
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Theorem 5 (Immediate Progress Preservation). Let A be a program, and
P and Q be predicates. Suppose A |= P � Q holds and some proof of it is based
on a certain set of instances of immediate progress. Then for any program B in
which these instances of immediate progress are valid, B |= P � Q holds.

This theorem suggests an approach in which all applied instances of immediate
progress are stored. Correctness of the proved progress properties is maintained
by preserving all instances of immediate progress. However, although such a
list of immediate progress instances avoids checking all previous proofs after
any change to the program, maintaining such a list easily becomes a burden.
Fortunately, within our derivations, the immediate progress instances are usually
such that they can hardly be falsified upon modifying the program. To address
the few cases in which they can be falsified, we will explicitly require dedicated
constraints.

Corollary 6 (Annotation Strengthening). Let A be a program and P , Q,
U and V be predicates. Suppose A |= P � Q holds and [ V ⇒ U ]. If B is a
program that is obtained from A by replacing an assertion U in A by assertion
V in B, then B |= P � Q.

This corollary allows us to strengthen the annotation of a program without
having to worry about the program’s progress properties. Adding co-assertions
to the program is also justified as that is just strengthening the annotation.

An important technique in the method of [1] is strengthening the guard of a
selection statement, as it maintains correctness of the (safety) assertions. How-
ever, as remarked in [1], both strengthening and weakening a guard can endanger
progress. In our derivations, we will not strengthen or weaken any guard. Instead
we will only refine them when necessary, i.e., we gradually impose more (logical)
structure on it.

3.2 Weakest Immediate Progress

Following [2, 1], we have come to realise the importance of the wlp in safety-based
program derivation. In this section, we search for a similar notion in progress-
based derivations. As immediate progress forms the base of �, the following is
a frequently occurring pattern in derivations.

P � R
⇐ { Q � R by immediate progress of statement Xi }

P � Q
We investigate a systematic way to compute a predicate Q such that Q �
R holds by the immediate progress rule for a given statement Xi. Since � is
monotonic in its second argument, we want to obtain a weakest suitable Q which
we will refer to as the weakest immediate-progress (wip) condition of Xi.

The second part of the immediate progress rule of Xi gives the following
requirement on Q (after trading):

[ Q ⇒ R ∨ (pcX = i ∧ wp.Xi.R) ] (1)
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The first part of the immediate progress rule is Q un R, which gives the following
requirement for each atomic statement {U} S in the program:

[ Q ⇒ R ∨ ¬U ∨ wlp.S.(Q ∨R) ] (2)

Conjunct pcX = i in (1) restricts the statements in component X that need
to be considered for (2) to Xi. Moreover (1) implies (2) for statement Xi as
[ wp.Xi.R ⇒ wlp.Xi.(Q ∨R) ].

In general, (2) gives rise to a fixed point computation for the weakest solution
of Q in these equations (see [10]). Note that each approximation of Q contains
a disjunct R, which corresponds to a kind of 0-step immediate progress, i.e.,
[ Q ⇒ R ]. This disjunct ensures that the above proof step is an equivalence,
using monotonicity of �. In many derivations, this disjunct is not important
and we just leave it out.

3.3 Individual Progress

Individual progress ensures that it is impossible to be blocked at any statement
forever. In particular, it excludes individual starvation and deadlock, but it does
not guarantee termination of repetitions.

As the control points before and after each atomic statement are different,
individual progress is guaranteed if pcX = i � pcX = i for each statement Xi.
This condition can be simplified using the contradiction lemma with P := true
and Q := (pcX = i), yielding for each statement Xi:

true � pcX = i.

Thanks to weak fairness, this condition holds trivially for each non-blocking
statement Xi. In contrast, upon introducing a blocking statement Xi, we will
immediately introduce this condition as a proof obligation.

Individual progress of a selection statement is guaranteed if “eventually one
of its guards becomes stably true”. When constructing programs, it is easier to
rephrase this into: “eventually a stable disjunct of one of its guards becomes
true”. This is formalized in the following lemma.

Lemma 7 (Stable Termination). For any atomic statement Xi and predicate
T , condition true � pcX = i follows from condition

true � pcX = i ∨ T

provided that

– [ T ⇒ wp.Xi.(pcX = i) ] and
– T is stable in all components different from X.

Notice that due to the monotonicity of �, this rule is even an equivalence.
For blocking statement Xi, application of the implication rule to prove this

condition would yield [ pcX = i ⇒ T ], which defeats the purpose of blocking. As
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suggested by the ground rule of progress in [1], the other components must have
the potential to establish condition T . Therefore it is common to apply induction,
often based on their program counters with a well-founded order based on the
reverse execution order. In the case where there is just one other component,
say Y , we obtain:

(∀j: : pcY = j � pcX = i ∨ pcY ≺ j ∨ T ).

Notice that due to the monotonicity of �, induction is an equivalence.

Remark 2. In the case that a component is a loop, we break the circular ex-
ecution order by choosing an appropriate base. As a heuristic, good bases are
control points of statements preceding a blocking statement.

For the many statements in component Y that establish T or that are guaranteed
to terminate in a control point with a smaller label according to ≺, the above
condition can immediately be discharged.

Lemma 8 (Ordering). For any statement Yj such that condition [ pcY = j ⇒
wp.Yj .(pcY ≺ j ∨ T ) ] holds, the following condition is guaranteed:

pcY = j � pcY ≺ j ∨ T.

If the base control point according to≺ contains a statement, we typically exploit
the ordering lemma by ensuring that this statement establishes T .

4 Initialization Protocol

As a first example, we consider the initialization protocol for two components
from [11]. The protocol ensures that both components have executed their initial-
ization code before the rest of the program is executed. [1] presents a derivation
that first emphasizes safety, and afterwards progress is ensured in an ad-hoc
manner. The alternative design in [4] addresses progress in a formal way, but it
is not calculational.

4.1 Specification

The starting point is the specification below, which consists of the computation
proper and the synchronization requirements to be established.

Component X:
0: init.X
1: {? pcY �= 0}

Component Y :
0: init.Y
1: {? pcX �= 0}

Statement init.X denotes the (terminating) contribution of component X to the
initialization of the system. All variables that will be used for synchronization are
fresh, and hence init.X is treated as a skip statement. The queried assertion in
component X expresses that init.Y has terminated. In addition to these visible
requirements, no precondition may be imposed on the synchronization variables.
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4.2 Derivation

We are heading for a symmetric solution, and hence our discussions focus on
only one of the components, say X . The derivation starts by considering the
sole queried assertion, viz. pcY = 0. Since pcY cannot be accessed by component
X , its local correctness must be established by a guarded skip. For the guard
we introduce a fresh variable bX and obtain bX ⇒ pcY = 0 as required pre-
assertion. Global correctness of assertion pcY = 0 is guaranteed by the shape of
the program. Thus we obtain the following program:

Component X:
0: init.X ;
2: {? bX ⇒ pcY �= 0}
〈if bX → skip fi〉

1: {pcY �= 0}

Component Y :
0: init.Y ;
2: {? bY ⇒ pcX �= 0}
〈if bY → skip fi〉

1: {pcX �= 0}

Upon introducing blocking statement X2, for individual progress we require

true � pcX = 2.

To prove this, we want to apply the stable termination lemma for a condition T
that implies bX . As we would like to obtain the weakest possible proof obligation,
we choose T := bX . Hence, the proof obligation becomes

true � pcX = 2 ∨ bX

provided we require the following constraint:

bX is stable under component Y (I1)

Since component Y needs to establish bX , we apply induction on pcY with a
well-founded order ≺ that corresponds to the reverse execution order:

(∀j: : pcY = j � pcX = 2 ∨ pcY ≺ j ∨ bX) (I2)

We prove this condition by case analysis on j. Thanks to the ordering lemma,
we will not consider the above proof obligation for labels j such that statement
Yj is guaranteed to terminate. Following our heuristic (see Remark 1), we start
to consider label 1.

case j = 1.
pcY = 1 � pcX = 2 ∨ pcY ≺ 1 ∨ bX

≡ {1 is the base of ≺}
pcY = 1 � pcX = 2 ∨ bX

⇐ {wip calculation of Y1 is impossible}{wip calculation of X2 does not
help, see below}{lemma 1: implication}

pcY = 1 ⇒ pcX = 2 ∨ bX

⇐ {logic}
pcY = 1 ⇒ bX
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For the wip calculation of X2, the intermediate predicate for requirement (1)
must imply pcX = 2 ∨ bX ∨ (pcX = 2 ∧ wp.X2.(pcX = 2 ∨ bX)), which simplifies
to pcX = 2 ∨ bX . This is useless as it is not weaker than the original.

Condition pcY = 1 ⇒ bX obtained from the proof above guarantees the
absence of individual deadlock of component X upon termination of component
Y . We will treat it as a queried assertion bX at Y1 and deal with its correct-
ness immediately as additional statements may need to be introduced. Global
correctness of the assertion is guaranteed as bX is not yet modified in X . Local
correctness can be established by inserting an assignment bX := true just before
Y1 (see the program below). Note that this assignment does not endanger cor-
rectness of the annotation, and it does not need to be considered for the progress
requirement thanks to the ordering lemma.

Component X:
0: init.X ;
2: {? bX ⇒ pcY �= 0}
〈if bX → skip fi〉 ;

3: {pcY �= 0}
bY := true

1: {pcY �= 0}{bY }

Component Y :
0: init.Y ;
2: {? bY ⇒ pcX �= 0}
〈if bY → skip fi〉 ;

3: {pcX �= 0}
bX := true

1: {pcX �= 0}{bX}
I1: bX is stable under component Y

? I2: (∀j: : pcY = j � pcX �= 2 ∨ pcY ≺ j ∨ bX)

case j = 2.
pcY = 2 � pcX = 2 ∨ pcY ≺ 2 ∨ bX

≡ {formal weakening by lemma 4: contradiction}
pcX = 2 ∧ pcY = 2 ∧ ¬bX � pcX = 2 ∨ pcY ≺ 2 ∨ bX

⇐ {wip calculation of Y2, use stability of bY under X}
pcX = 2 ∧ pcY = 2 ∧ ¬bX � pcY = 2 ∧ bY

⇐ {lemma 1: implication}{logic}
pcX = 2 ∧ pcY = 2 ⇒ bX ∨ bY (I3)

This condition guarantees the absence of total deadlock as when both X and Y
are at their blocking statement, at least one of their guards is true. The instance
of immediate progress used in this proof follows as [ bY ⇒ wp.Y2.(pcY ≺ 2) ]
holds. Since we will not strengthen any guard, this condition and hence the
instance of immediate progress cannot be endangered later on. Note that without
the first formal weakening step, the last condition would be pcY = 2 ⇒ bY ,
which is obviously too strong.

To ensure correctness of condition I3, we want to apply the technique in [8].
The consequent of the implication can be established by an assignment bX :=
true or bY := true just before X2. Both preserve the stability constraint, but
bX := true defeats the purpose of X2. Thus we introduce an assignment bY :=
true just before X2 (see the program below). This assignment does not endanger
the correctness of the annotation.
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Component X:
0: init.X ;
4: bY := true ;
2: {? bX ⇒ pcY �= 0}
〈if bX → skip fi〉 ;

3: {pcY �= 0}
bY := true

1: {pcY �= 0}{bY }

Component Y :
0: init.Y ;
4: bX := true ;
2: {? bY ⇒ pcX �= 0}
〈if bY → skip fi〉 ;

3: {pcX �= 0}
bX := true

1: {pcX �= 0}{bX}
I1: bX is stable under component Y
I2: (∀j: : pcY = j � pcX �= 2 ∨ pcY ≺ j ∨ bX)
I3: pcX = 2 ∧ pcY = 2 ⇒ bX ∨ bY

So far, we have introduced assignments to bX and bY to guarantee progress. The
remaining queried assertion addresses safety. Its global correctness is already
guaranteed by the shape of the program. To avoid returning to the original prob-
lem, local correctness can be established by an assignment bX := false. However,
it may not be inserted just before X2, due to our way of establishing condition
I3. Hence, we also require this assertion at X4, and insert the assignment just
before X4 at a control point X5.

This new assignment can only endanger assertion bX at Y1. Thereto we re-
quire a co-assertion pcX = 5, which is correct although its proof requires some
annotation that we simply copy from [4, 1] (see the program below).

Component X:
0: init.X ;
5: bX := false ;
4: {bX ⇒ pcY �∈ {0, 5}}

bY := true ;
2: {bX ⇒ pcY �∈ {0, 5}}
〈if bX → skip fi〉 ;

3: {pcY �∈ {0, 5}}
bY := true

1: {pcY �∈ {0, 5}}{bY }

Component Y :
0: init.Y ;
5: bY := false ;
4: {bY ⇒ pcX �∈ {0, 5}}

bX := true ;
2: {bY ⇒ pcX �∈ {0, 5}}
〈if bY → skip fi〉 ;

3: {pcX �∈ {0, 5}}
bX := true

1: {pcX �∈ {0, 5}}{bX}
I1: bX is stable under component Y
I2: (∀j: : pcY = j � pcX �= 2 ∨ pcY ≺ j ∨ bX)
I3: pcX = 2 ∧ pcY = 2 ⇒ bX ∨ bY

After eliminating the annotation, we obtain the following program:

Component X:
init.X ;
bX := false ;
bY := true ;
〈if bX → skip fi〉 ;
bY := true

Component Y :
init.Y ;
bY := false ;
bX := true ;
〈if bY → skip fi〉 ;
bX := true

5 Peterson’s Mutual Exclusion Algorithm

The next example we consider is Peterson’s mutual exclusion algorithm for two
components [12]. The derivation in [1] first emphasizes safety based on the safe
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choice algorithm, and afterwards progress is ensured in an ad-hoc manner. In
the alternative derivation in [13] the first emphasis is on progress based on an
ad-hoc formalization. The derivation in [14] starts to formalize progress based
on an auxiliary notion of overtaking.

5.1 Specification

The starting point is the following specification:

Component X:
∗[

0: if true→
1: nncs.X

� true→
2: tncs.X

fi ;
3: {? pcY �= 3}

cs.X
]

Component Y :
∗[

0: if true→
1: nncs.Y

� true→
2: tncs.Y

fi ;
3: {? pcX �= 3}

cs.Y
]

Statement cs.X denotes the critical section of component X , and it is guaranteed
to terminate. The non-critical section is not guaranteed to terminate, which is
modelled by splitting it into a non-terminating case nncs.X and a terminating
case tncs.X . For the required synchronization no statements may be introduced
within the corresponding non-deterministic if statement. All variables that will
be used for synchronization are fresh, and hence we treat cs.X and tncs.X as
skip statements, and nncs.X as a statement 〈if false → skip fi〉. The queried
assertion expresses mutual exclusion of the critical sections.

To simplify the modelling of the non-critical section, it is tempting to use a
single atomic statement

〈if true→ nncs.X
[] true→ tncs.X
fi〉

Regarding the wlp this model is equivalent to nncs.X , and regarding the wp
this model is equivalent to tncs.X . However, as the interleaving execution model
requires that atomic statements either completely block or completely terminate,
this model of a non-critical section is invalid.

5.2 Derivation

We are heading for a symmetric solution, and hence we focus on only component
X . The derivation can only start by considering the sole queried assertion, viz.
pcY = 3 at X3. Since pcY cannot be accessed by component X , the way to
establish its local correctness is to introduce a guarded skip, say at a new control
point X4. For its guard we introduce a fresh variable bX and we require as pre-
assertion bX ⇒ pcY = 3. This is also sufficient for global correctness, in particular
under statement Y4 using its analogous pre-assertion bY ⇒ pcX = 3. Thus we
obtain the following program:
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Component X:
∗[

0: if true→
1: nncs.X

� true→
2: tncs.X

fi ;
4: {? bX ⇒ pcY �= 3}

〈if bX → skip fi〉 ;
3: {pcY �= 3}

cs.X
]

Component Y :
∗[

0: if true→
1: nncs.Y

� true→
2: tncs.Y

fi ;
4: {? bY ⇒ pcX �= 3}

〈if bY → skip fi〉 ;
3: {pcX �= 3}

cs.Y
]

Upon introducing a blocking statement X4, for individual progress we require:

true � pcX = 4.

To prove this, we want to apply the stable termination lemma for a condition T
that implies bX . It turns out that choosing bX for T gives a stability requirement
on bX that is too restrictive. To obtain more manipulative freedom, we introduce
fresh variables sX and rX , substitute guard bX by the more generic guard sX ∨
rX , and choose sX for T . Note that a similar substitution could have been
performed in our derivation of the initialization protocol, but it would not have
been useful. Thus the current proof obligation becomes

true � pcX = 4 ∨ sX

provided we require the following constraint:

sX is stable under component Y (P1)

Since component Y needs to establish sX , we apply induction on pcY :

(∀j: : pcY = j � pcX = 4 ∨ pcY ≺ j ∨ sX) (P2)

We choose a well-founded order ≺ that corresponds to the reverse execution
order. Since the component is a loop, following Remark 2 we should choose the
statement preceding Y4 as a base. In the current program, this happens to be
part of the non-critical section, which hardly allows manipulation. Thus we insert
before Y4 a new control point, say Y5, containing a skip statement and use it as
a base.

We prove condition P2 by case analysis on j. Using the ordering lemma, the
base case j = 5 follows from the constraint:

[ wp.Y5.sX ] (P3)

which can be established by modifying the skip statement at Y5 to sX := true.
In what follows, we exploit the ordering lemma to only consider labels j such
that statement j is not guaranteed to terminate.
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case j = 1.
pcY = 1 � pcX = 4 ∨ pcY ≺ 1 ∨ sX

≡ {formal weakening by lemma 4: contradiction}
pcX = 4 ∧ pcY = 1 ∧ ¬sX � pcX = 4 ∨ pcY ≺ 1 ∨ sX

⇐ {wip calculation of Y1 does not help}{wip calculation of X4:
first attempt pcX = 4 ∧ (sX ∨ rX) could be endangered by Y
since rX is not stable; add conjunct pcY = 1 using [ wlp.Y1.false ]}

pcX = 4 ∧ pcY = 1 ∧ ¬sX � pcX = 4 ∧ pcY = 1 ∧ (sX ∨ rX)
⇐ {lemma 1: implication}{logic}

pcY = 1 ⇒ rX

We require an assertion rX at Y1, since it is unreasonable at X4. The instance
of immediate progress follows from conditions [ wlp.Y1.false ] and [ sX ∨ rX ⇒
wp.X4.(pcX = 4) ]. Since we will not modify any guard, they cannot be endan-
gered later on.

case j = 4.
pcY = 4 � pcX = 4 ∨ pcY ≺ 4 ∨ sX

≡ {formal weakening by lemma 4: contradiction}
pcX = 4 ∧ pcY = 4 ∧ ¬sX � pcX = 4 ∨ pcY ≺ 4 ∨ sX

⇐ {wip calculation of Y4: first attempt pcY = 4 ∧ (sY ∨ rY ) could be
endangered by X ; add conjunct pcX = 4 using [ wlp.X4.(pcX = 4) ]}

pcX = 4 ∧ pcY = 4 ∧ ¬sX � pcX = 4 ∧ pcY = 4 ∧ (sY ∨ rY )
⇐ {lemma 1: implication}{logic}

pcX = 4 ∧ pcY = 4 ⇒ sX ∨ (sY ∨ rY ) (P4)

The instance of immediate progress follows from tautology [ wlp.X4.(pcX = 4) ]
and condition [ sY ∨ rY ⇒ wp.Y4.(pcY ≺ 4) ]. Since we will not strengthen
any guard, it cannot be endangered later on. Correctness of condition P4 is
guaranteed using the technique of [8] thanks to statements X5 and Y5. Thus we
obtain the following program:

Component X:
∗[

0: if true→
1: {? rY }

nncs.X
� true→

2: tncs.X
fi ;

5: sY := true ;
4: {? (sX ∨ rX) ⇒ pcY �= 3}

〈if sX ∨ rX → skip fi〉 ;
3: {pcY �= 3}

cs.X
]

Component Y :
∗[

0: if true→
1: {? rX}

nncs.Y
� true→

2: tncs.Y
fi ;

5: sX := true ;
4: {? (sY ∨ rY ) ⇒ pcX �= 3}

〈if sY ∨ rY → skip fi〉 ;
3: {pcX �= 3}

cs.Y
]

P1: sX is stable under component Y
P2: (∀j: : pcY = j � pcX �= 4 ∨ pcY ≺ j ∨ sX)
P3: [ wp.Y5.sX ]
P4: pcX = 4 ∧ pcY = 4 ⇒ sX ∨ (sY ∨ rY )
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What remains is to ensure that the queried assertions become correct. We first
consider queried assertion (sX ∨ rX) ⇒ pcY = 3 at X4. We split this assertion
according to the disjuncts in the antecedent into the two assertions

(i) sX ⇒ pcY = 3 and
(ii) rX ⇒ pcY = 3

The simplest way to establish local correctness of (i) is to falsify its antecedent.
We choose to modify the assignment at control point X5 to sY , sX := true, false.
Note that this assignment does not endanger the correctness of the annotation.
Global correctness of (i) at X4 can only be endangered by statement Y4. To
avoid this, we require pcX = 4 ∧ pcY = 4 ∧ (sY ∨ rY ) ⇒ ¬sX , or equivalently
pcX = 4 ∧ pcY = 4 ⇒ ¬sX ∨ (¬sY ∧ ¬rY ). To make this condition more
homogenous, we split off term ¬rY and require it as an assertion at X4 since it
would not make sense at Y4. The remaining condition pcX = 4 ∧ pcY = 4 ⇒
¬sX ∨ ¬sY is added as a requirement on the program.

Correctness of this condition is guaranteed using the technique from [8] via
new assignments X5 and Y5. Using assertion ¬rY at X4, this condition and
condition P4 can be combined into condition

pcX = 4 ∧ pcY = 4 ⇒ sX = sY (P5)

Assertion (ii) at X4 is equivalent to assertion pcY = 3 ⇒ ¬rX at X4. To
make it more similar to required assertion ¬rX at Y4, we strengthen it into a
queried assertion ¬rX at Y3. Note that this strategy is not useful for assertion
(i), because local correctness would be hindered by the required stability of sX

under Y . Thus we obtain the following program:

Component X:
∗[

0: if true→
1: {? rY }

nncs.X
� true→

2: tncs.X
fi ;

5: sX , sY := false, true ;
4: {sX ⇒ pcY �= 3}{? ¬rY }

〈if sX ∨ rX → skip fi〉 ;
3: {pcY �= 3}{? ¬rY }

cs.X
]

Component Y :
∗[

0: if true→
1: {? rX}

nncs.Y
� true→

2: tncs.Y
fi ;

5: sY , sX := false, true ;
4: {sY ⇒ pcX �= 3}{? ¬rX}

〈if sY ∨ rY → skip fi〉 ;
3: {pcX �= 3}{? ¬rX}

cs.Y
]

P1: sX is stable under component Y
P2: (∀j: : pcY = j � pcX �= 4 ∨ pcY ≺ j ∨ sX)
P3: [ wp.Y5.sX ]
P5: pcX = 4 ∧ pcY = 4 ⇒ sX �= sY

Notice that nncs.X , the case that the non-critical section does not terminate,
has hardly played a role so far, and that the only occurrences of variable rY in
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the annotation are in some assertions of component X . In absence of nncs.X
(and the queried assertion at X1), variable rY can even be replaced by false.

What remains to be done is to find places for assignments that establish
the assertions about rY . Since we have applied [8] to establish P5, we cannot
insert any assignment between X5 and X4 and hence we insert an assignment
rY := false just before X5. The only suitable place for an assignment rY := true is
just before X0. Correctness of the queried assertions follows by topology. Hence,
we get the following program:

Component X:
∗[

7: rY := true ;
0: if true→
1: {rY }

nncs.X
� true→

2: tncs.X
fi ;

6: rY := false ;
5: sY , sX := true, false ;
4: {sX ⇒ pcY �= 3}{¬rY }

〈if sX ∨ rX → skip fi〉 ;
3: {pcY �= 3}{¬rY }

cs.X
]

Component Y :
∗[

7: rX := true ;
0: if true→
1: {rX}

nncs.Y
� true→

2: tncs.Y
fi ;

6: rX := false ;
5: sX , sY := true, false ;
4: {sY ⇒ pcX �= 3}{¬rX}

〈if sY ∨ rY → skip fi〉 ;
3: {pcX �= 3}{¬rX}

cs.Y
]

P1: sX is stable under component Y
P2: (∀j: : pcY = j � pcX �= 4 ∨ pcY ≺ j ∨ sX)
P3: [ wp.Y5.sX ]
P5: pcX = 4 ∧ pcY = 4 ⇒ sX �= sY

Note that variable rX is not used to enclose a critical section, but to enclose a
possibly non-terminating non-critical section. What remains is to implement the
assignments to sX and sY , since they are too coarse-grained. Since sX = sY is
maintained by the program, we propose to introduce a variable v and implement
variable sX as v = Y . Thus we obtain the program in below, where we have
abbreviated the non-atomic non-critical section into ncs.

Component X:
∗[ rY := true ;

ncs.X ;
rY := false ;
v := X ;
〈if v = Y ∨ rX → skip fi〉 ;
cs.X

]

Component Y :
∗[ rX := true ;

ncs.Y ;
rX := false ;
v := Y ;
〈if v = X ∨ rY → skip fi〉 ;
cs.Y

]

Strictly speaking, the guard of the guarded skip is too coarse-grained for an
implementation, since it contains more than one shared variable. However, since
one of the disjuncts is stable (by construction), it can be implemented using the
guard disjunction lemma.
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6 Conclusions and Further Work

We have presented techniques for the derivation of concurrent programs, paying
equal attention to safety and progress. The techniques extend the calculational
method of [1]. While constructing a program, the program text is repeatedly
adapted as guided by the open proof obligations. We have investigated what
transformations maintain the proved progress conditions.

Our main theorem in this respect is the immediate progress preservation the-
orem. Straightforward application of this theorem requires maintaining a list
of immediate progress conditions. Although this is similar to maintaining the
proved assertions for safety, we have not yet developed a convenient notational
device. The reason is that we have shown that most of these progress conditions
cannot be endangered by the program modifications that we allow. Nevertheless
we consider notations an important piece of further work.

We have used a notion of weakest immediate progress to calculate the weakest
condition required for progress, similar to weakest preconditions. Our derivations
rely on the stable termination lemma, which emphasizes stable guards. Individual
progress of a statement is usually said to be guaranteed if “eventually one of its
guards becomes stably true”, but our experiments suggest rephrasing it into:
“eventually a stable disjunct of one of its guards becomes true”.

We have illustrated these techniques by deriving an initialization protocol
and a mutual exclusion algorithm. Thanks to the ordering lemma, many proof
obligations for progress could be discharged trivially. It is further work to address
programs that consist of more than two components.

Acknowledgements. The authors would like to thank Robert Colvin, Ian Hayes
and the anonymous referees for their comments on earlier versions of this work.
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Appendix: Proofs for Section 3

Lemma (Monotonicity). For predicates P , Q and R, the following hold:

– un is monotonic (or isotonic) in its second argument, i.e.,

(P un Q) ∧ [ Q⇒ R ] ⇒ (P un R)

– � is anti-monotonic (or antitonic) in its first argument, i.e.,

[ P ⇒ Q ] ∧ (Q � R) ⇒ (P � R)

– � is monotonic (or isotonic) in its second argument, i.e.,

(P � Q) ∧ [ Q⇒ R ] ⇒ (P � R)

Proof.
Monotonicity of un follows from monotonicity of wlp.

Anti-monotonicity of �:
P � R

⇐ {transitivity}
(P � Q) ∧ (Q � R)

⇐ {implication}
[ P ⇒ Q ] ∧ (Q � R)

Monotonicity of �:
P � R

⇐ {transitivity}
(P � Q) ∧ (Q � R)

⇐ {implication}
(P � Q) ∧ [ Q⇒ R ]

�.
Lemma (Contradiction). For predicates P and Q, the following holds:

(P ∧ ¬Q � Q) ≡ (P � Q)

Proof.
Part ⇒:

P � Q
⇐ {disjunction}

(P ∧Q � Q) ∧ (P ∧ ¬Q � Q)
≡ {implication}

P ∧ ¬Q � Q

Part ⇐:
P ∧ ¬Q � Q

⇐ {anti-monotonicity}
P � Q

�.
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Theorem (Immediate Progress Preservation). Let A be a program, and
P and Q be predicates. Suppose A |= P � Q holds and some proof of it is based
on a certain set of instances of immediate progress. Then for any program B in
which these instances of immediate progress are valid, B |= P � Q holds.

Proof. By the definition of �, any proof of A |= P � Q consists of a finite
number of applications of immediate progress, transitivity and disjunction. Given
a proof ofA |= P � Q such that B preserves each instance of immediate progress
in this proof, we show that this proof can be mimicked for B. Thereto we apply
induction on the structure of the proof for A:

– Immediate progress: Suppose A |= P � Q is an instance of immediate
progress:

B |= P � Q
⇐ {B preserves instances of immediate progress}
A |= P � Q

– Transitivity: Suppose A |= P � Q is proved using A |= (P � R)∧(R � Q),
for some intermediate predicate R:

B |= P � Q
⇐ {By transitivity}
B |= (P � R) ∧ (R � Q)

≡ {By logic}
(B |= P � R) ∧ (B |= R � Q)

⇐ {Induction hypothesis (twice)}
(A |= P � R) ∧ (A |= R � Q)

≡ {By logic}
A |= (P � R) ∧ (R � Q)

– Disjunction: Suppose [ P ≡ (∃i: : R.i) ], for some predicates R.i, and A |=
(∃i: : R.i) � Q is proved using A |= (∀i: : R.i � Q):

B |= (∃i: : R.i) � Q
⇐ {By disjunction}
B |= (∀i: : R.i � Q)

≡ {By logic}
(∀i: : B |= R.i � Q)

⇐ {Induction hypothesis}
(∀i: : A |= R.i � Q)

≡ {By logic}
A |= (∀i: : R.i � Q) �.

Corollary (Annotation Strengthening). Let A be a program and P , Q, U
and V be predicates. Suppose A |= P � Q holds and [ V ⇒ U ]. If B is a
program that is obtained from A by replacing an assertion U in A by assertion
V in B, then B |= P � Q.

Proof. Thanks to the immediate progress preservation theorem, it is sufficient
to show that the instances of immediate progress are preserved. This is the case
since strengthening U into V only weakens the individual proof obligations. �.
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Lemma (Stable Termination). For any atomic statement Xi and predicate
T , condition true � pcX = i follows from condition

true � pcX = i ∨ T

provided that

– [ T ⇒ wp.Xi.(pcX = i) ] and
– T is stable in all components different from X.

Proof.

true � pcX = i
⇐ {wip calculation of Xi: for Xi we get pcX = i ∨ (pcX = i ∧ T ),

and the un requirements of the other components follow from
the stability of T }

true � pcX = i ∨ (pcX = i ∧ T )
≡ {logic}

true � pcX = i ∨ T �.
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Abstract. Fusion is a program transformation that combines adjacent
computations, flattening structure and improving efficiency at the cost of
clarity. Fission is the same transformation, in reverse: creating structure,
ex nihilo. We explore the use of fission for program comprehension, that
is, for reconstructing the design of a program from its implementation.
We illustrate through rational reconstructions of the designs for three
different C programs that count the words in a text file.

1 Introduction

Program fusion is a meaning-preserving transformation that combines two ad-
jacent computations into one. Those computations might be independent; for
example, computing the mean of a sequence of numbers involves both summing
and counting the elements of the sequence, and these two independent loops
may be fused into one, returning a pair. Alternatively, the computations might
be consecutive; for example, testing for membership of a collection can be ex-
pressed as comparisons against every element of the collection, then disjoining
the results, and these two consecutive loops may be fused into one.

Program fusion is usually seen as an efficiency-improving transformation, per-
haps at the cost of comprehensibility. A clear and simple version of a program
is developed first, as a composition of strongly coherent but loosely coupled
components; for example, membership in terms of comparisons and distributed
disjunction, or mean in terms of sum and count. That modular structure might
incur unnecessary runtime costs: either in building up an intermediate data struc-
ture, only to take it apart straight away, or in making two traversals of a data
structure when only one is required. Fusion laws show how to combine compo-
nents, breaking down the modular structure and the redundant manipulations
it entails.

Program fission uses the same properties of programs as fusion does, but in the
opposite direction. Starting from a complex monolithic optimized program, one
constructs a simpler, more modular ‘specification’ or ‘prototype’, identifying the
components from which the complex program might have been assembled. This
construction might be for the first time, for a program that was never properly
designed or whose structure has evolved over time from an initial design that has
not been kept up to date; or it might be a matter of reconstructing a lost design.
Either way, it can be used for program comprehension, that is, for understanding
the behaviour of an undocumented unit of code.
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Program fission is harder than program fusion, because it entails entropy reduc-
tion: the introduction of structure, rather than its elimination. It is a fundamental
phenomenon of physical systems that entropy increases in a closed system: in or-
der to prevent the inevitable increase in disorder over time, it is necessary to inject
some energy into the system. A similar phenomenon seems to arise in logical sys-
tems such as software; witness tales of ‘software rot’, for example [1].

Program fission is one approach among many to the problem of software
reverse-engineering, or the reconstruction of lost or out-of-date documentation
for legacy systems. This whole area has been described as being ‘about as easy as
reconstructing a pig from a sausage’ [2]. Indeed, as we shall see, it is harder even
than that: a given sausage can have only one explanation, but a given program
might have multiple explanations. By analogy, you might not even know that it
is a pig you should be reconstructing from your sausage.

2 Notation

We will make use of a Haskell-like notation, for the sake of familiarity; we will
also use a number of functions from the Haskell standard library, but we will
explain them as we introduce them. However, we will make greater use of sum
and product types and less use of currying than is usual in the Haskell language
or libraries.

2.1 Sums and Products

We use α × β for the product type with first component of type α and second
of type β (normally written ‘(α, β)’ in Haskell); the projection functions fst , snd
are as expected. We write ‘f × g’ for the map operation on pairs, applying f to
the first component and g to the second, and ‘f � g’ for the ‘fork’ operation,
taking x to (f x , g x ). The function twist :: α × β → β × α twists a pair. The
unit type is 1 (normally written ‘()’ in Haskell). We also use α + β for the sum
type (normally written ‘Either α β’ in Haskell). In the special case that α = 1,
we use the injections Nothing :: 1 + β and Just :: β → 1 + β as in Haskell.

2.2 Datatypes

We will have need of both ‘cons lists’ (constructed by prefixing elements) and
‘snoc lists’ (constructed by suffixing). We extend Haskell’s neutral notation in-
volving a plain colon for constructing a non-empty list, and use ‘·:’ for prefixing
to a cons list and ‘:·’ for suffixing to a snoc list. The type [α] denotes cons lists
with elements of type α, and 〈α〉 denotes snoc lists. However, we will resort to
using the conventional notation ‘[ ]’ for the empty list and ‘[a ]’ for a singleton
list in what follows, trusting to context to disambiguate which kind of list is
meant. We will also use a datatype Nat of Peano numbers, with Zero :: Nat and
Succ :: Nat → Nat .
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2.3 Folds

The natural pattern of computation over cons lists, the so-called universal ar-
row induced by the datatype definition, is called foldr in the Haskell library; it
consumes list elements, starting at the end of the list. We use the same name
here, but give it a slightly different type by uncurrying the binary operator.

foldr :: (α× β → β)→ β → [α]→ β
foldr f e [ ] = e
foldr f e (a ·: x ) = f (a, foldr f e x )

In contrast, the natural pattern of computation over snoc lists consumes list
elements starting from the beginning of the list, since that is how snoc lists are
constructed.

folds :: (β × α→ β) → β → 〈α〉 → β
folds f e [ ] = e
folds f e (x :· a) = f (folds f e x , a)

The Haskell standard library also provides a variant of foldr , which uses an
accumulating parameter [3] and consumes the list elements from left to right
rather than right to left. Again, we adapt its type.

foldl :: (β × α→ β)→ β → [α] → β
foldl f e [ ] = e
foldl f e (a ·: x ) = foldl f (f (e, a)) x

Note that, apart from the variety of lists, the types of foldl and folds are identical.
Indeed, if we introduce the function snoc2cons :: 〈α〉 → [α] to convert from one
list type to another, preserving ordering, then for finite cons lists x , it is not
difficult to show that

folds f e x = foldl f e (snoc2cons x )

The proof is essentially the same as for Bird and Wadler’s Third Duality Theorem
[4] for foldl and foldr . (For infinite x , the above result holds only for certain
non-strict f .)

2.4 Unfolds

The categorical dual of a fold on lists, which collapses a list to a value, is an
unfold, which grows a list from a value. The Haskell standard library provides
essentially the right definition for us.

unfoldr :: (β → 1 + (α× β)) → β → [α]
unfoldr f b = case f b of

Nothing → [ ]
Just (a, b′)→ a ·: unfoldr f b′
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Here is an analogous operation for growing natural numbers:

unfoldn :: (β → 1 + β) → β → Nat
unfoldn f b = case f b of

Nothing → Zero
Just b′ → Succ (unfoldn f b′)

2.5 Paramorphisms and Hylomorphisms

Meertens [5] presents a generalization of folds called paramorphisms, which cor-
respond to the primitive recursive definitions. Practically, these are characterized
by having available, as well as the results of recursive calls, the data substruc-
tures on which those calls were made. We will use the paramorphism operator
for snoc lists:

paras :: ((β × 〈α〉) × α→ β)→ β → 〈α〉 → β
paras f e [ ] = e
paras f e (x :· a) = f ((paras f e x , x ), a)

Meijer, Fokkinga and Paterson [6] introduce what they call a hylomorphism,
which is the composition of an unfold (to generate a data structure) and a fold
(to consume that data structure). We use the cons list instance:

hylor :: (α→ 1 + (β × α)) → (β × γ → γ)→ γ → α→ γ
hylor g f e = foldr f e ◦ unfoldr g

The crucial fact about hylomorphisms is that the intermediate data structure
is a virtual data structure [7]: it determines the shape of the computation, but
need not actually be constructed, and (under certain mild strictness conditions)
may be deforested [8]. In our case, this gives:

hylor g f e a = case g a of
Nothing → e
Just (b, a′)→ f (b, hylor g f e a′)

2.6 Fusion

Each of the various recursion patterns introduced above enjoys a crucial property
called fusion, whereby an adjacent computation can be absorbed. We will use
the fusion laws for folds :

h ◦ folds f e = folds g (h e) ⇐ h ◦ f = g ◦ (h × id)

and for paras :

h ◦ paras f e = paras g (h e) ⇐ h ◦ f = g ◦ ((h × id)× id)

To be precise, each of these fusion laws has mild side conditions concerning strict-
ness, but we elide them here because they do not affect subsequent calculations.

For more details, including proofs of the fusion laws from universal properties
of the recursion patterns, see for example [9].
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2.7 Functors

Finally, many datatypes form functors, operations on types with a corresponding
‘map’ operation on functions:

fmap :: Functor f ⇒ (α→ β) → f α→ f β

We will use this just for the ‘maybe’ functor taking α to 1 + α.

3 Counting Words

We will use as an illustration in this paper the Unix word count utility wc, a
now-standard example in the program comprehension literature. The program
shown in Figure 1 is taken from Kernighan and Ritchie’s classic book on the
C programming language [10], and counts the characters, words and lines in a
text file. In fact, it is really only the word counting aspect of this program that

#include <stdio.h>
#define IN 1 /* inside a word */
#define OUT 0 /* outside a word */

/* count lines, words, and characters in input */
main()
{

int c, nl, nw, nc, state;
state = OUT;
nl = nw = nc = 0;
while ((c = getchar()) != EOF) {

++nc;
if (c == ’\n’)

++nl;
if (c == ’ ’ || c == ’\n’ || c == ’\t’)

state = OUT;
else if (state == OUT) {

state = IN;
++nw;

}
}
printf("%d %d %d\n", nl, nw, nc);

}

Fig. 1. Kernighan and Ritchie’s wc program

has interesting structure; counting the characters is simply computing the length
of the text, and counting the lines is implemented as counting the newline char-
acters, which is the length of the text filtered for newlines. So we will actually
start with the program in Figure 2, which counts only the words. This might
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#include <stdio.h>
#define IN 1 /* inside a word */
#define OUT 0 /* outside a word */

int blank(int c) {
return ( c==’ ’ || c==’\n’ || c==’\t’);

}

/* count words in input */
main()
{

int c, nw, state;
state = OUT;
nw = 0;
while ((c = getchar()) != EOF) {

if (blank(c))
state = OUT;

else if (state == OUT) {
state = IN;
++nw;

}
}
printf("%d\n", nw);

}

Fig. 2. The word-counting slice of Kernighan and Ritchie’s wc program

be considered as the first step in re-engineering a specification from the original
program, by slicing that program into three independent aspects [11, 12]. (In-
deed, slicing is a fission transformation, reversing the fusion of independent but
similarly-structured computations.)

We argue that the C program in Figure 2 is ‘obviously’ equivalent to the
following functional program. The imperative loop has been converted to a tail-
recursive function.

wc1 :: [Char ]→ Integer
wc1 = fst ◦ foldl step1 (0,False)
step1 ((n, b), c) | blank c = (n,False)
step1 ((n,True), c) = (n,True)
step1 ((n,False), c) = (n + 1,True)
blank c = (c ’ ’) ∨ (c ’\n’) ∨ (c ’\t’)

Characters come from a string argument rather than standard input, and the
count is returned as an integer result rather than printed to standard output. In a
fuller study of program comprehension, one would make this equivalence between
imperative and functional programming more explicit; but for our purposes —
namely, illustrating program fission — we will take the functional program wc1
as the starting point.
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In the remainder of this paper, we reconstruct a number of different implemen-
tations wc2,wc3... of wc1. They will all be extensionally equal, possibly modulo
different representations of lists, but will have different structures and hence
different ‘explanations’. We refer to this common behaviour collectively as wc.

4 Directionality

The first observation we make about program wc1 is that tail recursion — here,
in the form of a foldl — is somewhat alien to a lazy functional programmer,
although — in the form of a while loop — it comes quite naturally to an
imperative programmer. Program wc1 would be more comprehensible if it were
expressed in a less alien idiom.

With the benefit of understanding of the purpose of the program, namely that
it counts words, we could reasonably argue that it does not matter whether we
scan the input from left to right or vice versa. We could therefore refactor wc as
follows:

wc2 = fst ◦ foldr step2 (0,False)
step2 = step1 ◦ twist

However, there are two counter-arguments. The first is that, although this
refactoring seems reasonable, its formal justification is not so obvious. In partic-
ular, it is not the case that the uses of foldl in wc1 and foldr in wc2 are equal:
a text that starts with a non-blank but ends with a blank will yield different
boolean state values in different directions, even though the number of words is
the same both ways. The second counter-argument is that this step depends on
understanding the purpose of the program, which is exactly what is unavailable
in a program comprehension exercise.

So we take an alternative approach: adapt the underlying data structure to
reflect more closely the pattern of computation. After all, we introduced the list
type into the problem in the first place: it was not present in the C program.
Specifically, the left-to-right traversal in the C program is the natural pattern
of computation on snoc lists rather than on cons lists. Therefore, in place of the
tail-recursive foldl pattern for cons lists, we use the naturally recursive fold on
snoc lists:

folds :: (β × α→ β) → β → 〈α〉 → β

We therefore make the following refactoring instead.

wc3 :: 〈Char 〉 → Integer
wc3 = fst ◦ folds step1 (0,False)

We might elevate this step to a general principle of program comprehension:
consider carefully the data structures used, because they determine the pattern of
computation. This strengthens the case for functional programming as a medium
for program comprehension; functional programming encourages the definition
of tailor-made datatypes, rather than shoe-horning a problem into one of a fixed
collection of general-purpose but sometimes ill-fitting datatypes.
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5 Extracting Length

Now, it seems reasonable (although still an invention) that wc involves length
somehow; in particular, wc is length after some initial computation. It is evident
that wc3 is counting something, because the result that is returned is constructed
from an initial zero that is occasionally incremented. Perhaps we could elevate
this observation to a second principle of program comprehension: if a program
returns a count, investigate what it is counting.

Returning to the program, we name the generator of things to be counted
words — without any justification as yet, but what’s in a name?

wc4 = length ◦ words4

Since wc4 should equal wc3, in order to deduce a definition of words4, we need
to extract a factor of length from the definition of wc3. Extracting this factor
from the fst is straightforward, since, by the pair calculus,

fst ◦ f = length ◦ fst ◦ g ⇐ f = (length× id) ◦ g

That is, extracting a factor of length from wc3 amounts to extracting a factor
of length× id from folds step1 (0,False).

Now we can use fission — fusion in reverse — to deduce e and glue4 (the
latter another name chosen with hindsight) such that

folds step1 (0,False) = (length× id) ◦ folds glue4 e

For the seed, this requires (length × id) e = (0,False), and so e = ([ ],False).
For the binary operator, it requires

(length× id) ◦ glue4 = step1 ◦ ((length× id)× id)

This equation characterizes a data refinement relation between glue4 and step1,
where glue4 is the abstract operation, step1 the concrete operation, and length×
id the abstraction function. Informally, where glue4 trades in sequences, step1
trades in their lengths. Normally, however, one uses a data refinement relation-
ship to derive a concrete implementation from an abstract one; here, of course,
we need to go in the opposite direction.

That is, where step1 trades in numbers, we need to construct a function glue4
that trades in their ‘unlengths’, or sequences of those lengths. Of course, ‘un-
length’ is not a function; there are many sequences of a given length. As a
consequence, the data refinement relationship does not completely determine
glue4. We need to exercise some creativity in inventing suitable sequences of
given lengths. Ockham’s Razor suggests that we should use as little creativity as
possible in inventing such sequences. This corresponds in our physical analogy
with entropy to minimizing the energy injected into the system. Moreover, one
might expect that the less creative we are at any given step in a re-engineering
exercise, the more freedom there is in later steps (and the less likely we are to
lead ourselves into a dead end).
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For example, the first clause of the definition of step1 entails that, when c
is blank, glue4 ((ws , b), c) should be a pair (ws ′,False) such that ws and ws ′

have the same length. The least creative way to achieve this is naturally to let
ws ′ = ws .

glue4 ((ws , b), c) | blank c = (ws ,False)

For the second clause, when c is non-blank, we require glue4 ((ws ,True), c)
to be a pair (ws ′,True) where ws should again be the same length ws ′. We
could do the same thing again, equating the two sequences, but in fact there
is an even less creative way of proceeding. We note that the physical theory of
information states that it requires energy to erase data as well as to invent it.
Therefore, we look for a way to use c, combining it with ws while maintaining
the latter’s length. This is straightforward to do, if ws is a sequence of sequences
of characters, provided that it is non-empty: we suffix c to the last sequence
in ws . Fortunately, it is an invariant of the fold in wc3 that when the boolean
component of the pair is True, the integer component is greater than zero, so
our abstract value ws will be a non-empty sequence.

glue4 ((ws :· w ,True), c) = (ws :· (w :· c),True)

Finally, for the third clause, again we assume that c is non-blank, and we
require glue4 ((ws ,False), c) to be a pair (ws ′,False) where ws ′ is one longer
than ws . The least creative way to extend the sequence of strings ws by one
string, using the given data c, is to suffix c as an additional singleton string.

glue4 ((ws ,False), c) = (ws :· [c],True)

Assembling these three cases, we have

glue4 ((ws , b), c) | blank c = (ws ,False)
glue4 ((ws :· w ,True), c) = (ws :· (w :· c),True)
glue4 ((ws ,False), c) = (ws :· [c],True)

And to rewind the reasoning that led us here: if we let

words4 = fst ◦ folds glue4 ([ ],False)

then indeed the composition

wc4 = length ◦ words4

computes the words in a text, and proceeds to count them.

6 Mind the Gap

In Section 5, we used an argument based on entropy to suggest that, when
introducing structure in order to satisfy a fusion law, one should both invent and
discard as little information as possible. We stuck to this principle for the second
and third clauses of the function glue4, but wavered a little in our resolve when
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it came to the first clause. The function words4 does discard some information
that might be preserved: it conflates different blank characters, such as spaces
and newlines, and it also fails to keep track of how many blanks separate words.
Therefore, words4 is not invertible. How would the development have proceeded
if we had stuck to our principle, and found a way to preserve blank characters?

In the case that c is blank, we wanted glue4 ((ws , b), c) to return a pair
(ws ′,False) such that ws and ws ′ have the same length. We chose to let ws ′ = ws ,
but this required us to discard c. We can preserve c while maintaining the length
of the first component of the pair, provided that that first component is non-
empty:

glue ((ws :· w , b), c) | blank c = (ws :· (w :· c),False)

In effect, this corresponds to representing each word in the input as a non-
empty sequence of non-blanks followed by a (possibly-empty, in the case of the
last word) sequence of blanks. However, there is nowhere to keep the c while
preserving the length of an empty first component — because this representation
does not capture blanks at the start of the input. We therefore augment the state,
the result of words , to represent also the possibly-empty sequence of blanks at
the start of the input.

words5 :: 〈Char 〉 → 〈Char 〉 × 〈〈Char 〉〉
words5 = fst ◦ folds glue5 (([ ], [ ]),False)
wc5 = (length ◦ snd) ◦ words5

glue5 (((wb, [ ]), b), c) | blank c = ((wb :· c, [ ]),False)
glue5 (((wb,ws :· w), b), c) | blank c = ((wb,ws :· (w :· c)),False)
glue5 (((wb,ws :· w),True), c) = ((wb,ws :· (w :· c)),True)
glue5 (((wb,ws),False), c) = ((wb,ws :· [c]),True)

Note now that the boolean component of the state is redundant, as it can be
determined from the remaining components.

7 A Different Starting Point

The Kernighan and Ritchie C programs above maintain in their main loops, in
addition to the counts which are the point of the exercise and will eventually be
printed out, a boolean variable state indicating whether, if the next character to
be read is a non-blank, it will start a new word. One might start with a different
program: one that dispenses with this boolean variable, but uses instead a two-
character window onto the text to determine which non-blank characters start
words. Such a program is shown in Figure 3. We omit the definition of blank,
since it is identical to the one given earlier. In this section, we subject this new
program to the same kind of reasoning as before, to determine whether it could be
considered as having ‘the same explanation’ but with a different implementation,
or whether it really arose from a different design.

The program in Figure 3 maintains the invariant that the variable d records
the character before the ‘current’ character c (except initially, when it acts as
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#include <stdio.h>

/* count words in input */
main()
{

int c, d, nw;
nw = 0;
d = ’ ’;
c = getchar();
while (c != EOF) {
if (!blank(c) && blank(d)) {
++nw;

}
d = c; c = getchar();
}

printf("%d\n", nw);
}

Fig. 3. A different wc program, with a two-character window

a space character). This is an instance of the general paramorphism pattern,
whereby the treatment of each element depends not just on the treatment of
previous elements, but also on those previous elements themselves.

wc6 = paras step6 0
step6 ((n, x ), c) | blank c = n
step6 ((n, x :· d), c) | blank d = n + 1
step6 ((n, x :· d), c) = n
step6 ((n, [ ]), c) = n + 1

Note that the use of the paramorphism pattern encodes the invariant that
n = wc6 x in every application step6 ((n, x ), c). It therefore explicitly captures
the invariant about the value of variable d, which must therefore be compre-
hended from the code. It also provides a separate initial boundary condition to
remove the need for the ‘virtual’ space character before the first ‘real’ character.

As before, we try to write this as the composition of length with some simpler
function, using paramorphism fission. Clearly, the seed of the paramorphism has
to be [ ], the only sequence with length 0. For the operator, the fusion condition
is that

length ◦ glue7 = step6 ◦ ((length× id)× id)

If we can construct a function glue7 satisfying this condition, then length fuses
with paras glue7 [ ] to give wc6.

For the first clause, when c is blank, apparently glue7 should simply return
the first of its three argument components.

glue7 ((ws , x ), c) | blank c = ws
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For the second clause, when c is non-blank, the initial segment x :· d of char-
acters seen so far is non-empty, and the previous character d is blank, we should
return a sequence one longer than the first argument component ws . The obvious
thing to do is to suffix a new element to ws , and the least creative data-preserving
way of doing that is to suffix [c].

glue7 ((ws , x :· d), c) | blank d = ws :· [c]

For the third clause, when c is non-blank, the initial segment x :· d is non-
empty, and d is also non-blank, we should return a sequence the same length
as the first argument component ws . Returning ws unchanged loses the data c.
A less creative way would be to preserve c by combining it with data in ws ,
provided the latter is non-empty. Fortunately, it is an invariant that in this
circumstance ws is non-empty.

glue7 ((ws :· w , x :· d), c) = ws :· (w :· c)

For the fourth and final clause, when c is non-blank but the initial segment of
the list is empty, we need to extend the sequence by a single element. The least
creative type-correct way to do this is make a singleton string from c.

glue7 ((ws , [ ]), c) = ws :· [c]

Summing up, we have deduced the following definition of glue7:

glue7 ((ws , x ), c) | blank c = ws
glue7 ((ws , x :· d), c) | blank d = ws :· [c]
glue7 ((ws :· w , x :· d), c) = ws :· (w :· c)
glue7 ((ws , [ ]), c) = ws :· [c]

We then define

wc7 = length ◦ words7
words7 = paras glue7 [ ]

Using paramorphism fusion, the length combines with the paramorphism, yield-
ing the earlier program wc6. Moreover, words7 does indeed yield the individual
words in the text.

8 Nested Loops

All the C programs for the wordcount problem that we have seen so far have a
single loop, with additional hidden state to determine the behaviour of the loop
body. A different way of solving the problem is to use nested loops, in effect
using the program counter instead of that hidden state. One such program is
shown in Figure 4. In this program, the variable c always contains the next
character in the text, or the EOF character at the end of the text. The outer
loop runs indefinitely. The first inner loop skips blanks. If this first inner loop
reaches the end of the text, control breaks out of the outer loop and the program
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#include <stdio.h>

main() {
int c=getchar(), nw=0;
while (1) {
while (c != EOF && blank(c))

c=getchar();
if (c == EOF)

break;
nw++;
while (c != EOF && !blank(c))

c=getchar();
}
printf("%d\n", nw);

}

Fig. 4. A wc program with nested loops

quits. Otherwise, the first inner loop terminated because it reached a non-blank
character; the number of words is incremented, and the rest of that word skipped.

We claim that this program has the following ‘obvious’ functional equivalent.

wc8 x = let y = dropWhile blank x in
if null y then 0

else 1 + wc8 (dropWhile (not ◦ blank ) y)

where null is the predicate that returns True precisely of the empty list, and
dropWhile::(α→ Bool ) → [α]→ [α] takes a predicate p and a list x and discards
the longest prefix of x all of whose elements satisfy p. (Strictly speaking, getting
to this program entails the elimination of the accumulating parameter that is
the word count.) This program matches the pattern of a list hylomorphism:

wc9 :: [Char ]→ Integer
wc9 = hylor word9 plus9 0
plus9 (w ,n) = 1 + n
word9 x = let y = dropWhile blank x in

if null y then Nothing
else Just ((), dropWhile (not ◦ blank ) y)

Of course, a hylomorphism fissions automatically into a fold after an unfold:

wc10 = foldr plus9 0 ◦ unfoldr word9

And as expected, the fold phase is just length, and counts the items generated
by the unfold phase; these items are all units, but there is precisely one of them
for each word.
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We might apply the principle of least creativity again, preserving those non-
blank elements of y discarded by word9:

word11 x = let y = dropWhile blank x in
if null y then Nothing

else Just (span (not ◦ blank) y)

Here, span :: (α → Bool) → [α] → [α] × [α] is a generalization of dropWhile:
it takes a predicate p and a list x and returns a pair of lists (y, z ) such that
y ++ z = x and y = dropWhile p x .

When hylor word11 plus9 0 is fissioned, we get:

wc11 = foldr plus9 0 ◦ unfoldr word11

Here, the unfold phase really is just words again.
It might seem curious that we have reverted to cons lists for the virtual data

structure of the hylomorphism, rather than continuing to work with snoc lists.
But of course, the virtual data structure of a hylomorphism merely encapsulates
the pattern of recursion, and hylomorphisms for cons lists and snoc lists are
entirely equivalent.

9 Counting Revisited

Let us return our attention to the recursive equivalent of the program with
nested loops from Figure 4:

wc8 x = let y = dropWhile blank x in
if null y then 0

else 1 + wc8 (dropWhile (not ◦ blank ) y)

Our reconstruction in Section 8 started from the observation that this recur-
sive program is an instance of the hylomorphism pattern on lists. However, the
list algebra involved in this hylomorphism is a very special one, namely the ini-
tial algebra of natural numbers. This leads to another explanation of the same
program.

We adapt the type of the function, so that it returns a recursively-constructed
natural number rather than a built-in integer.

wc12 :: [Char ]→ Nat
wc12 x = let y = dropWhile blank x in

if null y then Zero
else Succ (wc12 (dropWhile (not ◦ blank) y))

Now we see immediately that this is a straightforward instance of unfoldn :

wc13 = unfoldn dropWord 13
dropWord 13 x = let y = dropWhile blank x in

if null y then Nothing
else Just (dropWhile (not ◦ blank) y)
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In fact, this observation is an instance of a more general rule about the com-
position of length and an unfold to lists:

length ◦ unfoldr f = nat2int ◦ unfoldn (fmap snd ◦ f )

where nat2int :: Nat → Integer coerces from recursively-constructed naturals to
built-in integers. This law could be phrased as a principle of counting: rather
than enumerating a list of things, then computing the length of that list, one
can more directly count the number of times the operation ‘discard a thing’ can
be performed.

Unfolds to the naturals are surprisingly common, despite the unfamiliarity
of the operator unfoldn itself. The law above suggests that they capture many
counting problems. Gibbons [13] shows that unfoldn is essentially the minimiza-
tion operator from recursive function theory, the additional operator needed to
progress from the primitive recursive to the general recursive functions, or equiv-
alently from for to while loops. For example, integer division is an unfold to
naturals, since dividing by m is the same as computing the number of times
m can be subtracted without the difference becoming negative. Elsewhere [14]
we have argued that even unfolds to lists are underappreciated; we believe that
argument applies a fortiori to unfolds to other datatypes such as the naturals.

10 Discussion

The reconstruction of specifications from programs is an important part of a
larger endeavour called software renovation. This field addresses the difficult
problem of maintaining legacy software when its design documentation is inade-
quate or unavailable. In order to modify undocumented software, one essentially
is forced to spend some effort in comprehending the existing system (unless one
is prepared to use trial and error, making random changes and hoping for a
useful result), reverse engineering a higher-level design from a lower-level imple-
mentation. Nelson [15] presents a useful, if brief and rather old, survey of reverse
engineering and program comprehension terminology.

Program comprehension has applications beyond software maintenance, too;
it is also a useful educational tool. Linger’s classic text on structured program-
ming [16, Chapter 5] presents as a pedagogic exercise a significant case study of
reconstructing a top-down design for an unstructured and undocumented pro-
gram. Dromey [17], Knuth [18], and Deimel and Naveda [19] argue for the ben-
efits of program comprehension, and more generally program reading, in helping
students learn to program.

There has been other work on using program comprehension techniques to
reintroduce recursion (for example, [20]), but this tends to focus on the ear-
lier stage of simply introducing recursion, which we have glossed over; the later
stage of subsequently investigating the structure of that recursion is largely un-
explored. The most relevant work in this direction is by Oliveira, who inspired
our work. One presentation [21] presents calculations in both VDM-SL and a
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pointfree functional style, and focusses on the ‘BMF transformation’ between
the two notations; later work [12] sticks to the pointfree style, and places a
stronger emphasis on slicing. Neither paper uses fission to extract the length
factor, and curiously, both derive the paramorphism wc6 from Kernighan and
Ritchie’s original program rather than from our alternative starting point in
Figure 3, arguably straying from reverse engineering into re-engineering.

The view we have taken in this paper is that the essence of a design is ex-
pressed in terms of higher-order recursion patterns. A similar view underlies our
and others’ arguments [13, 22] that the different designs for sorting algorithms
embodied by insertion sort, merge sort, quick sort and so on arise from using
different patterns of recursion. If one accepts the claim that design patterns in
object-oriented programming correspond to recursion patterns in generic func-
tional programming [23, 24], then this is further support for Johnson’s slogan
that ‘patterns document architectures’ [25].

An advantage of using a formal linguistic vehicle such as functional program-
ming for expressing patterns, rather than the informal prose and pictures that
are traditional in the patterns community [26], is that those patterns and the
programs that exhibit them may be manipulated and reasoned about mathe-
matically [24]. In particular, well-known fusion laws can be used to flatten the
structure imposed by a pattern, for efficiency; in this paper, we have used those
laws in reverse as fission laws in order to recover lost structure. The term ‘pro-
gram fission’ has been mentioned before [27], but in the context of partitioning
data- rather than control structures.

We have examined three different C programs for counting the words in a
text file, and attempted to reverse engineer designs from these implementations.
Naturally, different implementations of a program arise from different designs
for those implementations; but it is reasonable to ask how divergent those de-
signs are: how much of the development is shared, and how late in the process
do the evolutionary forks appear? In fact, we have shown that the three differ-
ent wordcount programs might all have arisen from the same high-level design,
namely the composition length ◦ words . The differences between the three pro-
grams are explained in terms of different strategies for implementing words : as
a fold, a paramorphism, or an unfold — the first two of which are inductive, the
last coinductive. However, the coinductive design lends itself to an alternative
explanation of the problem, in terms of counting rather than enumeration, which
might be considered a second high-level design.

We leave as future work a closer study of the translation from imperative
programs (such as in Figure 2) into what we have called their ‘obvious’ functional
equivalents (such as the program wc1). It would also be interesting to prove
the equivalence of the various specifications wc4,wc7,wc11,wc13 that we have
reconstructed; presumably, it would be simpler than proving the equivalence of
the lower-level programs from which they were obtained.
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27. Bobeff, G., Noyé, J.: Molding components using program specialization techniques.
In Bosch, J., Szyperski, C., Weck, W., eds.: Proc. of 8th Int. Wksh. on Component-
Oriented Programming, WCOP ’03 (2003)

28. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE
Trans. on Softw. Engin. 17(8) (1991) 751–761

29. PURe research group: Program understanding and re-engineering: Calculi and ap-
plications. Web site (1999-2005) http://wiki.di.uminho.pt/wiki/bin/view/PURe/



“Scrap Your Boilerplate” Revolutions

Ralf Hinze and Andres Löh
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Abstract. Generic programming allows you to write a function once,
and use it many times at different types. Traditionally, generic functions
are defined by induction on the structure of types. “Scrap your boil-
erplate” (SYB) is a radically different approach that dispatches on the
structure of values. In previous work, we have shown how to reconcile
both approaches using the concept of generic views: many generic func-
tions can be based either on the classical sum-of-products view or on the
view that underlies SYB, the so-called ‘spine’ view. One distinct advan-
tage of the spine view is its generality: it is applicable to a large class of
data types, including generalised algebraic data types. Its main weakness
roots in the value-orientation: one can only define generic functions that
consume data (show) but not ones that produce data (read). Further-
more, functions that abstract over type constructors (map, reduce) are
out of reach. In this paper, we show how to overcome both limitations.
The main technical contributions are the ‘type spine’ view and the ‘lifted
spine’ view.

1 Introduction

A generic function is one that the programmer writes once, but which is used
over many different data types. The folklore examples are pretty printing, pars-
ing, mapping functions, reductions, and so on. There is an impressive body of
work on generic programming [1,2,3]. The approaches differ wildly in syntax,
expressiveness and ease of use. However, they all share a common structure. In
general, support for generic programming consists of two essential ingredients:
a way to write overloaded functions, and independently, a way to access the
structure of values in a uniform way.

Overloading is essential as almost every generic function exhibits type-specific
behaviour: Haskell’s pretty printer, for instance, displays pairs and lists using a
special mix-fix notation.

A uniform mechanism for accessing the structure of values is essential to
program the ‘generic part’ of a generic function: a generic pretty printer works for
all data types including types that the programmer is yet to define. Consequently,
the pretty printer has to treat elements of these types in a uniform way: in
Haskell, for instance, they are displayed using prefix notation.

The two ingredients are orthogonal concepts, and for both, there is a choice.
In Haskell, overloaded functions can be expressed
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– using the class system [4,5],
– using a type-safe cast operation [6,3],
– by reflecting the type structure onto the value level [7,8],
– by specialisation [1,9],
– or by a combination of the above [10].

Each approach has certain advantages and disadvantages. Nonetheless, they are
mostly interchangeable and of similar expressiveness. For the purposes of this
paper, we pick the third alternative, type reflection, as it is the most perspicuous.

The structural view, on the other hand, has a much larger impact: it affects
the set of data types we can represent, the class of functions we can write and
potentially the efficiency of these functions. For instance,

– PolyP [1] views data types as fixed points of regular functors,
– Generic Haskell [2] uses a sum-of-products view.

“Scrap your boilerplate” (SYB) [3] was originally introduced as a combinator
library for generic programming, so it seemed to lack the structural view on
data types. In a previous paper [11], we have revealed this structure:

– SYB [3] builds upon the so-called ‘spine’ view.

The spine view treats data uniformly as constructor applications; it is, in a sense,
value-oriented. This is in contrast to the classical views of PolyP and Generic
Haskell, which can be characterised as type-oriented. One distinct advantage of
the spine view is its generality: it is applicable to a large class of data types,
including generalised algebraic data types (GADTs) [12,13]. The reason for the
wide applicability is simple: a data type definition describes how to construct
data, the spine view captures just this. Its main weakness also roots in the value-
orientation: one can only define generic functions that consume data (show ) but
not ones that produce data (read). Again, the reason for the limitation is simple:
a uniform view on individual constructor applications is useful if you have data
in your hands, but it is of no help if you want to construct data. Furthermore,
functions that abstract over type constructors (map, reduce) are out of reach,
because type constructors comprise no values.

In this paper, we show how to overcome both limitations. The main technical
contributions are the ‘type spine’ view for defining generic producers and the
‘lifted spine’ view, which renders it possible to define generic functions that
abstract over type constructors.

The rest of the paper is structured as follows. In Section 2 we review the SYB
approach to generic programming. We introduce the spine view and explain
how to define generic consumers such as show . Section 3 introduces a variant of
the spine view, the ‘type spine’ view, that allows us to write generic producers
such as read . Section 4 then broadens the scope of SYB to generic functions
that abstract over type constructors. In particular, we show how to implement
classic generic functions such as map. Finally, Section 5 reviews related work
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and Section 6 concludes. For reference, Appendix A defines the helper functions
that are used in the main body of the paper.

2 Recap: “Scrap Your Boilerplate” Reloaded

This section summarises the essentials ideas of the SYB approach to generic
programming. The material is based on the paper “ ‘Scrap Your Boilerplate’ Re-
loaded” [11]. Readers familiar with our previous work may wish to skim through
Sections 2.1 and 2.2 and proceed with Section 2.3.

As noted in the introduction, support for generic programming consists of two
essential ingredients: a way to write overloaded functions and a way to access
the structure of values in a uniform way. Section 2.1 introduces type reflection,
the mechanism we use to implement overloaded functions. This choice is entirely
independent of the paper’s main theme and has been taken with clarity in mind.
Section 2.2 then reveals the generic view SYB builds upon.

2.1 Overloaded Functions

Assume that you want to define a pretty printer, such as Haskell’s show function,
that works for a family of types including characters, integers, lists and pairs.
The show function cannot be assigned the polymorphic type α → String , as
show is not insensitive to what type its argument is. Quite on the contrary, the
particular algorithm show invokes depends on the type: characters, for instance,
are displayed differently from lists.

An obvious idea is to pass the pretty printer an additional argument that rep-
resents the type of the value that we wish to convert to its string representation.
As a first try, we could assign the pretty printer the type Type → α → String
where Type is the type of type representations. Unfortunately, this is too simple-
minded: the parametricity theorem [14] implies that a function of this type must
necessarily ignore its second parameter. This argument breaks down, however,
if we additionally parameterise Type by the type it represents. The signature of
the pretty printer then becomes Type α→ α→ String.

The idea is that an element of type Type τ is a representation of the type τ .
Using a generalised algebraic data type [12,13], we can define Type directly in
Haskell.

data Type :: ∗ → ∗ where
Char :: Type Char
Int :: Type Int
List :: Type α→ Type [α ]
Pair :: Type α→ Type β → Type (α, β )

Each type has a unique representation: the type Int is represented by the con-
structor Int , the type (String , Int ) is represented by Pair (List Char ) Int . For
any given τ in our family of types, Type τ comprises exactly one element; Type τ
is a so-called singleton type.
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In the sequel, we shall often need to annotate an expression with its type
representation. We introduce a special type for this purpose.1

infixl 1 :
data Typed α = (:){val :: α, type :: Type α}

The data definition defines a single two-argument constructor, named ‘:’, which
is usually written infix. Using Haskell’s record notation we additionally introduce
two projection functions val and type. Thus, 4711:Int is an element of Typed Int
and (47, "hello") : Pair Int (List Char ) is an element of Typed (Int ,String ). It
is important to note the difference between x : t and x ::τ . The former expression
constructs a pair consisting of a value x and a representation t of its type. The
latter expression is Haskell syntax for ‘x has type τ ’.

Given these prerequisites, we can define the desired family of pretty printers.
For concreteness, we re-implement Haskell’s showsPrec function (the Int argu-
ment of showsPrec specifies the operator precedence of the enclosing context;
ShowS is shorthand for String → String , Hughes’ efficient sequence type [15]).

showsPrec :: Int → Typed α→ ShowS
showsPrec d (c : Char ) = showsPrecChar d c
showsPrec d (n : Int) = showsPrecInt d n
showsPrec d (s : List Char ) = showsPrecString d s
showsPrec d (xs : List a) = showsList [shows (x : a) | x ← xs ]
showsPrec d ((x , y) : Pair a b)

= showChar ’(’ · shows (x : a) · showChar ’,’
· shows (y : b) · showChar ’)’

The function showsPrec makes heavy use of type annotations; its type Int →
Typed α → ShowS is essentially an uncurried version of Int → Type α →
α → ShowS . Even though showsPrec has a polymorphic type, each equation
implements a more specific case as dictated by the type representation. For
example, the first equation has type Int → Typed Char → ShowS . This is
typical of functions on GADTs.

Let us consider each equation in turn. The first three equations delegate the
work to tailor-made functions, showsPrecChar , showsPrecInt and showsPrecString ,
which are provided from somewhere. Lists are shown using showsList , defined in
Appendix A, which produces a comma-separated sequence of elements between
square brackets. Note that strings, lists of characters, are treated differently:
they are shown in double quotes by virtue of the third equation. Finally, pairs
are enclosed in parentheses, the two elements being separated by a comma.

The function showsPrec is defined by explicit case analysis on the type rep-
resentation. This is typical of an overloaded function, but not compulsory: the
1 The operator ‘:’ is predefined in Haskell for constructing lists. However, since we use

type annotations much more frequently than lists, we use ‘:’ for the former and Nil
and Cons for the latter purpose. Furthermore, we agree upon that the pattern x : t
is matched from right to left : first the type representation t is matched, then the
associated value x .



184 R. Hinze and A. Löh

wrapper functions shows and show , defined below, are given by simple abstrac-
tions.

shows :: Typed α→ ShowS
shows = showsPrec 0
show :: Typed α→ String
show x = shows x ""

Note that shows and showsPrec are mutually recursive.
An overloaded function is a single entity that incorporates a family of functions

where each member implements some type-specific behaviour. If we wish to
extend the pretty printer to other data types we have to add new constructors
to the Type data type and new equations to showsPrec. As an example, consider
the data type of binary trees.

data Tree α = Empty | Node (Tree α) α (Tree α)

To be able to show binary trees, we add Tree to the type of type representations

Tree :: Type α→ Type (Tree α)

and extend showsPrec by suitable equations

showsPrec d (Empty : Tree a) = showString "Empty"
showsPrec d (Node l x r : Tree a)

= showParen (d > 10) (showString "Node" • showsPrec 11 (l : Tree a)
• showsPrec 11 (x : a)
• showsPrec 11 (r : Tree a))

The predefined function showParen b puts its argument in parentheses if b is
True. The operator ‘•’ separates two elements by a space, see Appendix A.

2.2 Generic Functions

Using type reflection we can program an overloaded function that works for all
types of a given family. Let us now broaden the scope of showsPrec, shows and
show so that they work for all data types including types that the programmer
is yet to define. For emphasis, we call such functions generic functions.

We have seen in the previous section that whenever we define a new data type,
we add a constructor of the same name to the type of type representations and
we add corresponding equations to all overloaded functions that are defined by
explicit case analysis. While the extension of Type is cheap and easy (a compiler
could do this for us), the extension of all overloaded functions is laborious and
difficult (can you imagine a compiler doing that?). In this section we shall develop
a scheme so that it suffices to extend Type by a new constructor and to extend
a single overloaded function. The remaining functions adapt themselves.

To achieve this goal we need to find a way to treat elements of a data type
in a general, uniform way. Consider an arbitrary element of some data type. It
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is always of the form C e1 · · · en, a constructor applied to some values. For
instance, an element of Tree Int is either Empty or of the form Node l a r .
The idea is to make this applicative structure visible and accessible: to this end
we mark the constructor using Con and each function application using ‘♦’.
Additionally, we annotate the constructor arguments with their types and the
constructor itself with information on its syntax. As an example, Empty becomes
Con empty and Node l a r becomes Con node♦(l :Tree Int)♦(a:Int)♦(r :Tree Int)
where empty and node are the tree constructors augmented with additional
information. The functions Con and ‘♦’ are themselves constructors of a data
type called Spine.

infixl 0 ♦

data Spine :: ∗ → ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β) → Typed α→ Spine β

The type is called Spine because its elements represent the possibly partial
spine of a constructor application. The following table illustrates the stepwise
construction of a spine.

node :: Constr (Tree Int → Int → Tree Int → Tree Int)
Con node :: Spine (Tree Int → Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) :: Spine (Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) :: Spine (Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int) :: Spine (Tree Int)

Note that the type variable α does not appear in the result type of ‘♦’: it is ex-
istentially quantified.2 This is the reason why we annotate the second argument
with its type. Otherwise, we wouldn’t be able to use it as an argument of an
overloaded function, see below.

Elements of type Constr α comprise an element of type α, namely the original
data constructor, plus some additional information about its syntax: for the
purposes of this paper we confine ourselves to the name of the constructor.

data Constr α = Constr{constr :: α,name :: String }
Given a value of type Spine α, we can easily recover the original value of type

α by undoing the conversion step.

fromSpine :: Spine α→ α
fromSpine (Con c) = constr c
fromSpine (f ♦ x ) = (fromSpine f ) (val x )

The function fromSpine is parametrically polymorphic: it works independently
of the type in question as it simply replaces Con with the original constructor
and ‘♦’ with function application.
2 All type variables in Haskell are universally quantified. However, ∀α.σ → τ is iso-

morphic to (∃α.σ) → τ provided α does not appear free in τ , which is where the
term ‘existential type’ comes from.
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The inverse of fromSpine is not polymorphic; rather, it is an overloaded func-
tion of type Typed α→ Spine α. Its definition, however, follows a trivial pattern
(so trivial that the definition could be easily generated by a compiler): if the
data type contains a constructor C with signature

C :: τ1 → · · · → τn → τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi. As
an example, here is the definition of toSpine for binary trees:

toSpine :: Typed α→ Spine α
toSpine (Empty : Tree a) = Con empty
toSpine (Node l x r : Tree a) = Con node ♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)

The smart constructors empty and node are given by

empty :: Constr (Tree α)
empty = Constr{constr = Empty ,name = "Empty"}
node :: Constr (Tree α→ α→ Tree α→ Tree α)
node = Constr{constr = Node, name = "Node"}

It is easy to see that fromSpine (toSpine (x : t)) = x . The converse, however,
is not true as the Spine type is not restricted to constructor applications: for
instance, fromSpine (Con copy ♦ (Empty :Tree Int)) = Empty where copy is the
annotated identity, Constr{constr = λx → x ,name = "copy"}.

With all the machinery in place we can now turn showsPrec into a truly
generic function. The idea is to add a catch-all case that takes care of all the
remaining type cases in a uniform manner.

showsPrec d x = showParen (arity x > 0 ∧ d > 10) (shows (toSpine x ))
shows :: Spine α→ ShowS
shows (Con c) = showString (name c)
shows (f ♦ x ) = shows f • showsPrec 11 x

The catch-all case displays its argument x using prefix notation. It first converts x
into a spine, which the helper function shows then traverses. Note that in the
last equation of shows the variable x is of type Typed α; at this point we require
the type information so that we can call showsPrec recursively. The Tree instance
of showsPrec is subsumed by this general pattern, so the two Tree equations can
be safely removed.

The function arity used above computes the arity of a data constructor. Its
implementation follows the same definitional scheme as showsPrec:

arity :: Typed α→ Int
arity = arity · toSpine
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arity :: Spine α→ Int
arity (Con c) = 0
arity (f ♦ x ) = arity f + 1

Interestingly, arity exhibits no type-specific behaviour; it is completely generic.
Now, why are we in a better situation than before? When we introduce a new

data type such as, say, XML, we still have to extend the representation type with
a constructor XML :: Type XML and provide cases for the data constructors of
XML in the toSpine function. However, this has to be done only once per data
type, and it is so simple that it could easily be done automatically. The code
for the generic functions (of which there can be many) is completely unaffected
by the addition of a new data type. As a further plus, the generic functions are
unaffected by changes to a given data type (unless they include code that is
specific to the data type). Only the function toSpine must be adapted to the
new definition (and possibly the type representation if the kind of the data type
changes).

2.3 Discussion

The key to genericity is a uniform view on data. In the previous section we
have introduced the spine view, which views data as constructor applications. Of
course, this is not the only generic view. PolyP [1], for instance, views data types
as fixed points of regular functors; Generic Haskell [2] uses a sum-of-products
view. These two approaches can be characterised as type-oriented: they provide
a uniform view on all elements of a data type. By contrast, the spine view is
value-oriented: it provides a uniform view on single elements.

The spine view is particularly easy to use: the generic part of a generic func-
tion only has to consider two cases: Con and ‘♦’. By contrast, Generic Haskell
distinguishes three cases, PolyP even six.

A further advantage of the spine view is its generality: it is applicable to a
large class of data types. Nested data types [16], for instance, pose no problems:
the type of perfect binary trees [17]

data Perfect α = Zero α | Succ (Perfect (α, α))

gives rise to the following two equations for toSpine:

toSpine (Zero x : Perfect a) = Con zero ♦ (x : a)
toSpine (Succ x : Perfect a) = Con succ ♦ (x : Perfect (Pair a a))

The equations follow exactly the general scheme introduced in Section 2.2. The
scheme is even applicable to generalised algebraic data types. Consider as an
example a typed representation of expressions.

data Expr :: ∗ → ∗ where
Num :: Int → Expr Int
Plus :: Expr Int → Expr Int → Expr Int
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Eq :: Expr Int → Expr Int → Expr Bool
If :: Expr Bool → Expr α→ Expr α→ Expr α

The relevant equations for toSpine are

toSpine (Num i : Expr Int) = Con num ♦ (i : Int)
toSpine (Plus e1 e2 : Expr Int) = Con plus ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (Eq e1 e2 : Expr Bool ) = Con eq ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (If e1 e2 e3 : Expr a)

= Con if ♦ (e1 : Expr Bool ) ♦ (e2 : Expr a) ♦ (e3 : Expr a)

Given this definition we can apply show to values of type Expr without further
ado. Note in this respect that the Glasgow Haskell Compiler (GHC) currently
does not support deriving (Show ) for GADTs. We can also turn Type itself
into a representable type (recall that Type is a GADT). One may be tempted
to consider this an intellectual curiosity, but it is not. The possibility to reflect
Type is vital for implementing dynamic values.

data Dynamic :: ∗ where
Dyn :: Typed α→ Dynamic

Note that the type variable α does not appear in the result type: it is effectively
existentially quantified. However, since α is accompanied by a representation of
its type, we can define a suitable toSpine instance.

Dynamic :: Type Dynamic
Type :: Type α→ Type (Type α)
Typed :: Type α→ Type (Typed α)
toSpine (Dyn x : Dynamic) = Con dyn ♦ (x : Typed (type x ))
toSpine ((x : t) : Typed a) = Con hastype ♦ (x : t) ♦ (t : Type t) -- t = a
toSpine (Char : Type Char ) = Con char
. . .

It is important to note that the first instance does not follow the general pattern
for toSpine. This points out the only limitation of the spine view: it can, in
general, not cope with existentially quantified types. Consider, as an example,
the following extension of the expression data type:

Apply :: Expr (α→ β) → Expr α→ Expr β

The equation for toSpine

toSpine (Apply f x : Expr b)
= Con apply ♦ (f : Expr (a → b)) ♦ (x : Expr a) -- not legal Haskell

is not legal Haskell, as a, the representation of α, appears free on the right-hand
side. The only way out of this dilemma is to augment x by a representation of
its type, as in Dynamic.3

3 Type-theoretically, we have to turn the existential quantifier ∃α.τ into an intensional
quantifier ∃α.Type α× τ . This is analogous to the difference between parametrically
polymorphic functions of type ∀α.τ and overloaded functions of type ∀α.Type α→ τ .
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To make a long story short: a data declaration describes how to construct
data; the spine view captures just this. Consequently, it is applicable to almost
every data type declaration. The classic views are much more restricted: Generic
Haskell’s sum-of-products view is only applicable to Haskell 98 types excluding
GADTs and existential types; PolyP is even restricted to fixed points of regular
functors excluding nested data types and higher-order kinded types.

On the other hand, the classic views provide more information as they repre-
sent the complete data type, not just a single constructor application. The spine
view effectively restricts the class of functions we can write: one can only define
generic functions that consume data (such as show ) but not ones that produce
data (such as read). The uniform view on individual constructor applications is
useful if you have data in your hands, but it is of no help if you want to construct
data. We make this more precise in the following section.

Furthermore, functions that abstract over type constructors (such as map and
reduce) are out of reach for SYB. The latter deficiency is somewhat ironic as these
functions are the classic examples of generics. In the following two sections we
show how to overcome both limitations.

3 Extension I: The Type Spine View

A generic consumer is a function of type Type α → α → τ (∼= Typed α → τ),
where the type we abstract over occurs in an argument position (and possibly
in the result type τ ). We have seen in the previous section that the generic part
of a consumer follows the general pattern below.

consume :: Type α→ α→ τ
. . .
consume a x = consume (toSpine (x : a))
consume :: Spine α→ τ
consume . . . = . . .

The element x is converted to the spine representation, over which the helper
function consume then recurses. By duality, we would expect that a generic
producer of type Type α → τ → α, where α appears in the result type but not
in τ , takes on the following form.

produce :: Type α→ τ → α
. . .
produce a t = fromSpine (produce t)
produce :: τ → Spine α -- does not work
produce . . . = . . .

The helper function produce generates an element in spine representation, which
fromSpine converts back. Unfortunately, this approach does not work. The for-
mal reason is that toSpine and fromSpine are different beasts: toSpine is an
overloaded function, while fromSpine is parametrically polymorphic. If it were
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possible to define produce :: ∀α.τ → Spine α, then the composition fromSpine ·
produce would yield a parametrically polymorphic function of type ∀α.τ → α,
which is the type of an unsafe cast operation. And, indeed, a closer inspection of
the catch-all case reveals that a, the type representation of α, does not appear on
the right-hand side. However, as we already know a truly polymorphic function
cannot exhibit type-specific behaviour.

Of course, this does not mean that we cannot define a function of type
Type α → τ → α. We just require additional information about the data type,
information that the spine view does not provide. Consider in this respect the
syntactic form of a GADT (eg Type itself or Expr in Section 2.3): a data type
is essentially a sequence of signatures. This motivates the following definitions.

type Datatype α = [Signature α ]
infixl 0 �

data Signature :: ∗ → ∗ where
Sig :: Constr α→ Signature α
(�) :: Signature (α→ β)→ Type α→ Signature β

The type Signature is almost identical to the Spine type, except for the second
argument of ‘�’, which is of type Type α rather than Typed α. Thus, an element
of type Signature contains the types of the constructor arguments, but not the
arguments themselves. For that reason, Datatype is called the type spine view.

This view is similar to the sum-of-products view: the list encodes the sum, the
constructor ‘�’ corresponds to a product and Sig is like the unit element. To be
able to use the type spine view, we additionally require an overloaded function
that maps a type representation to an element of type Datatype α.

datatype :: Type α→ Datatype α
datatype (Char ) = [Sig (char c) | c ← [minBound . .maxBound ] ]
datatype (Int) = [Sig (int i) | i ← [minBound . .maxBound ] ]
datatype (List a) = [Sig nil ,Sig cons � a � List a ]
datatype (Pair a b) = [Sig pair � a � b ]
char :: Char → Constr Char
char c = Constr{constr = c,name = showChar c}
int :: Int → Constr Int
int i = Constr{constr = i , name = show Int i }

Here, nil , cons and pair are the annotated versions of Nil , Cons and ‘(,)’. As an
aside, the first two equations produce rather long lists; they are only practical
in a lazy setting. The function datatype plays the same role for producers as
toSpine plays for consumers.

The first example of a generic producer is a simple test-data generator. The
function generate a d yields all terms of the data type α up to a given finite
depth d .

generate :: Type α→ Int → [α]
generate a 0 = [ ]
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generate a (d + 1) = concat [generate s d | s ← datatype a ]
generate :: Signature α→ Int → [α ]
generate (Sig c) d = [constr c ]
generate (s � a) d = [f x | f ← generate s d , x ← generate a d ]

The helper function generate constructs all terms that conform to a given sig-
nature. The right-hand side of the second equation essentially computes the
cartesian product of generate s d and generate a d . Here is a short interactive
session that illustrates the use of generate (we assume a suitable Bool instance
of datatype).

Main〉 generate (List Bool ) 3
[[ ], [False ], [False,False ], [False,True ], [True ], [True,False ], [True,True ] ]
Main〉 generate (List (List Bool)) 3
[[ ], [ [ ] ], [ [ ], [ ] ], [ [False ] ], [ [False ], [ ] ], [ [True ] ], [ [True ], [ ] ] ]

As a second example, let us define a generic parser. For concreteness, we re-
implement Haskell’s readsPrec function (again, the Int argument specifies the
operator precedence of the enclosing context; ReadS abbreviates String →
[(α,String)], the type of backtracking parsers [18]).

readsPrec :: Type α→ Int → ReadS α
readsPrec (Char ) d = readsPrecChar d
readsPrec (Int) d = readsPrecInt d
readsPrec (List Char ) d = readsPrecString d
readsPrec (List a) d = readsList (reads a)
readsPrec (Pair a b) d

= readParen False (λs0 → [((x , y), s5) | ("(", s1)← lex s0,
(x , s2)← reads a s1,
(",", s3)← lex s2,
(y, s4)← reads b s3,
(")", s5)← lex s4 ])

readsPrec a d
= alt [readParen (arity ′ s > 0 ∧ d > 10) (reads s) | s ← datatype a ]

The overall structure is similar to that of showsPrec. The first three equations
delegate the work to tailor-made parsers. Given a parser for elements, readsList ,
defined in Appendix A, parses a list of elements. Pairs are read using the usual
mix-fix notation. The predefined function readParen b takes care of optional
(b = False) or mandatory (b = True) parentheses. The catch-all case implements
the generic part: constructors in prefix notation. Parentheses are mandatory if
the constructor has at least one argument and the operator precedence of the
enclosing context exceeds 10 (the precedence of function application is 11). The
parser for α is the alternation of all parsers for the individual constructors of α
(alt is defined in Appendix A). The auxiliary function reads parses a single
constructor application.
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reads :: Signature α→ ReadS α
reads (Sig c) s0 = [(constr c, s1) | (t , s1)← lex s0,name c = = t ]
reads (s � a) s0 = [(f x , s2) | (f , s1)← reads s s0,

(x , s2)← readsPrec a 11 s1 ]

Finally, arity ′ determines the arity of a constructor.

arity ′ :: Signature α→ Int
arity ′ (Sig c) = 0
arity ′ (s � a) = arity ′ s + 1

As for showsPrec, we can define suitable wrapper functions that simplify the use
of the generic parser.

reads :: Type α→ ReadS α
reads a = readsPrec a 0
read :: Type α→ String → α
read a s = case [x | (x , t)← reads a s , ("", "")← lex t ] of

[x ]→ x
[ ] → error "read: no parse"

→ error "read: ambiguous parse"

From the code of generate and readsPrec we can abstract a general definitional
scheme for generic producers.

produce :: Type α→ τ → α
. . .
produce a t = . . . [ . . . produce s t . . . | s ← datatype a ]
produce :: Signature α→ τ → α
produce . . . = . . .

The generic case is a two-step procedure: the list comprehension processes the list
of constructors; the helper function produce takes care of a single constructor.

The type spine view is complementary to the spine view, but independent of
it. The latter is used for generic producers, the former for generic consumers (or
transformers). This is in contrast to Generic Haskell’s sum-of-products view or
PolyP’s fixed point view where a single view serves both purposes.

The type spine view shares the major advantage of the spine view: it is ap-
plicable to a large class of data types. Nested data types such as the type of
perfect binary trees can be handled easily:

datatype (Perfect a) = [Sig zero � a,Sig succ � Perfect (Pair a a)]

The scheme can even be extended to generalised algebraic data types. Since
Datatype α is a homogeneous list, we have to partition the constructors according
to their result types. Re-consider the expression data type of Section 2.3. We have
three different result types, Expr Bool , Expr Int and Expr α, and consequently
three equations for datatype.



“Scrap Your Boilerplate” Revolutions 193

datatype (Expr Bool )
= [Sig eq � Expr Int � Expr Int ,

Sig if � Expr Bool � Expr Bool � Expr Bool ]
datatype (Expr Int)

= [Sig num � Int ,
Sig plus � Expr Int � Expr Int ,
Sig if � Expr Bool � Expr Int � Expr Int ]

datatype (Expr a)
= [Sig if � Expr Bool � Expr a � Expr a ]

The equations are ordered from specific to general; each right-hand side lists
all the constructors that have the given result type or a more general one.
Consequently, the If constructor, which has a polymorphic result type, appears
in every list. Given this declaration we can easily generate well-typed expressions
(for reasons of space we have modified generate Int so that only 0 is produced):

Main〉 let gen a d = putStrLn (show (generate a d : List a))
Main〉 gen (Expr Int) 4
[Num 0,Plus (Num 0) (Num 0),Plus (Num 0) (Plus (Num 0) (Num
0)),Plus (Plus (Num 0) (Num 0)) (Num 0),Plus (Plus (Num 0) (Num
0)) (Plus (Num 0) (Num 0)), If (Eq (Num 0) (Num 0)) (Num 0) (Num 0), If
(Eq (Num 0) (Num 0)) (Num 0) (Plus (Num 0) (Num 0)), If (Eq (Num 0)
(Num 0)) (Plus (Num 0) (Num 0)) (Num 0), If (Eq (Num 0) (Num 0)) (Plus
(Num 0) (Num 0)) (Plus (Num 0) (Num 0))]
Main〉 gen (Expr Bool) 4
[Eq (Num 0) (Num 0),Eq (Num 0) (Plus (Num 0) (Num 0)),Eq (Plus (Num
0) (Num 0)) (Num 0),Eq (Plus (Num 0) (Num 0)) (Plus (Num 0) (Num
0)), If (Eq (Num 0) (Num 0)) (Eq (Num 0) (Num 0)) (Eq (Num 0) (Num
0))]
Main〉 gen (Expr Char ) 4
[ ]

The last call shows that there are no character expressions of depth 4.
In general, for each constructor C with signature

C :: τ1 → · · · → τn → τ0

we add an element of the form

Sig c � t1 � · · · � tn

to each right-hand side of datatype (t) provided τ0 is more general than τ .

4 Extension II: The Lifted Spine View

The generic functions of the previous two sections abstract over a type. For
instance, shows generalises functions of type
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Char → ShowS , String → ShowS , [ [Int ] ]→ ShowS

to a single generic function of type

Type α→ α→ ShowS ∼= Typed α→ ShowS

A generic function may also abstract over a type constructor of higher kind. Take,
as an example, the function size that counts the number of elements contained
in some data structure. This function generalises functions of type

[α ]→ Int , Tree α→ Int , [Tree α]→ Int

to a single generic function of type

Type′ ϕ→ ϕ α→ Int ∼= Typed ′ ϕ α→ Int

where Type′ is a representation type for types of kind ∗ → ∗ and Typed ′ is a
suitable type for annotating values with these representations.

The original spine view is not appropriate in this context as it cannot capture
type abstractions. To illustrate, consider a variant of Tree whose inner nodes are
annotated with an integer, say, a balance factor.

data BalTree α = Empty | Node Int (BalTree α) α (BalTree α)

If we call the generic function on a value of type BalTree Int , then the two integer
components are handled in a uniform way. This is fine for generic functions on
types, but not acceptable for generic functions on type constructors. For instance,
a generic version of sum must consider the label of type α = Int , but ignore the
balance factor of type Int . In the Sections 4.1 and 4.2 we introduce suitable
variants of Type and Spine that can be used to define the latter brand of generic
functions.

4.1 Lifted Types

To represent type constructors of kind ∗ → ∗ we introduce a new tailor-made
representation type.

data Type′ :: (∗ → ∗)→ ∗ where
List :: Type′ [ ]
Tree :: Type′ Tree

infixl 1 :′

data Typed ′ ϕ α = (:′){val ′ :: ϕ α, type ′ :: Type′ ϕ}
The type is only inhabited by two constructors since the other data types listed
in Type have kinds different from ∗ → ∗.

An overloaded version of size is now straightforward to define.

size :: Typed ′ ϕ α→ Int
size (Nil :′ List) = 0
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size (Cons x xs :′ List) = 1 + size (xs :′ List)
size (Empty :′ Tree) = 0
size (Node l x r :′ Tree) = size (l :′ Tree) + 1 + size (r :′ Tree)

Unfortunately, the overloaded function size is not as flexible as shows . If we
have some compound data structure x , say, a list of trees of integers, then we
can simply call shows (x :List (Tree Int)). We cannot, however, use size to count
the total number of integers, simply because the new versions of List and Tree
take no arguments.

There is one further problem, which is more fundamental. Computing the size
of a compound data structure is inherently ambiguous: in the example above,
shall we count the number of integers, the number of trees or the number of
lists? Formally, we have to solve the type equation ϕ τ = List (Tree Int).
The equation has, in fact, not three but four principal solutions: ϕ = Λα → α
and τ = List (Tree Int), ϕ = Λα → List α and τ = Tree Int , ϕ = Λα →
List (Tree α) and τ = Int , and ϕ = Λα→ List (Tree Int) and τ arbitrary. How
can we represent these different container types? One possibility is to lift the
type constructors [9] so that they become members of Type′ and to include Id ,
the identity type, as a representation of the type variable α:

Id :: Type′ Id
Char ′ :: Type′ Char ′

Int ′ :: Type′ Int ′

List ′ :: Type′ ϕ→ Type′ (List ′ ϕ)
Pair ′ :: Type′ ϕ→ Type′ ψ → Type′ (Pair ′ ϕ ψ)
Tree′ :: Type′ ϕ→ Type′ (Tree′ ϕ)

The type List ′, for instance, is the lifted variant of List : it takes a type construc-
tor of kind ∗ → ∗ to a type constructor of kind ∗ → ∗. Using the lifted types we
can specify the four different container types as follows: List ′ (Tree′ Id), List ′ Id ,
Id and List ′ (Tree′ Int ′). Essentially, we replace the types by their lifted coun-
terparts and the type variable α by Id . Note that the above constructors of Type′

are exactly identical to those of Type except for the kinds.
It remains to define Id and the lifted versions of the type constructors.

newtype Id χ = InId {outId :: χ }
newtype Char ′ χ = InChar ′{outChar ′ :: Char }
newtype Int ′ χ = InInt′ {outInt′ :: Int }
data List ′ α′ χ = Nil ′ | Cons ′ (α′ χ) (List ′ α′ χ)
data Pair ′ α′ β′ χ = Pair ′ (α′ χ) (β′ χ)
data Tree′ α′ χ = Empty ′ | Node ′ (Tree′ α′ χ) (α′ χ) (Tree′ α′ χ)

The lifted variants of the nullary type constructors Int and Char simply ignore
the additional argument χ. The data definitions follow a simple scheme: each
data constructor C with signature
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C :: τ1 → · · · → τn → τ0

is replaced by a polymorphic data constructor C ′ with signature

C ′ :: ∀χ.τ ′
1 χ→ · · · → τ ′

n χ→ τ ′
0 χ

where τ ′
i is the lifted variant of τi.

The function size can be easily extended to Id and to the lifted types.

size (x :′ Id) = 1
size (c :′ Char ′) = 0
size (i :′ Int ′) = 0
size (Nil ′ :′ List ′ a′) = 0
size (Cons ′ x xs :′ List ′ a′) = size (x :′ a′) + size (xs :′ List ′ a′)
size (Empty ′ :′ Tree′ a′) = 0
size (Node ′ l x r :′ Tree′ a′)

= size (l :′ Tree′ a′) + size (x :′ a′) + size (r :′ Tree′ a′)

The instances are similar to the ones for the unlifted types except that size is
now also called recursively for components of type α′.

Unfortunately, in Haskell, size no longer works on the original data types: we
cannot call, for instance, size (x :′ List ′ (Tree′ Id)) where x is is a list of trees of
integers, since List ′ (Tree′ Id) Int is different from [Tree Int ]. We address this
problem later in Section 4.3 after we have introduced the lifted spine view.

4.2 Lifted Spine View

A constructor of a lifted type has the signature ∀χ.τ ′
1 χ → · · · → τ ′

n χ → τ ′
0 χ

where the type variable χ marks the parametric components. We can write the
signature more perspicuously as ∀χ.(τ ′

1 →̇ · · · →̇ τ ′
n →̇ τ ′

0) χ, using the lifted
function space:

infixr →̇
newtype (ϕ →̇ ψ) χ = Fun{app :: ϕ χ→ ψ χ}

For technical reasons, ‘→̇’ must be defined by a newtype rather than a type
declaration.4 As an example, here are variants of Nil ′ and Cons ′:

nil ′ :: ∀χ.∀α′.(List ′ α′) χ
nil ′ = Nil ′

cons ′ :: ∀χ.∀α′.(α′ →̇ List ′ α′ →̇ List ′ α′) χ
cons ′ = Fun (λx → Fun (λxs → Cons ′ x xs))

Now, an element of a lifted type can always be put into the applicative form
c′ ‘app‘ e1 ‘app‘ · · · ‘app‘ en. As in the first-order case we can make this structure
visible and accessible by marking the constructor and the function applications.
4 In Haskell, types introduced by type declarations cannot be partially applied.
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data Spine ′ :: (∗ → ∗)→ ∗ → ∗ where
Con ′ :: (∀χ.ϕ χ) → Spine ′ ϕ α
(♦′) :: Spine ′ (ϕ →̇ ψ) α→ Typed ′ ϕ α→ Spine ′ ψ α

The structure of Spine ′ is very similar to that of Spine except that we are
now working in a higher realm: Con ′ takes a polymorphic function of type
∀χ.ϕ χ to an element of Spine ′ ϕ; the constructor ‘♦′’ applies an element of
type Spine ′ (ϕ →̇ ψ) to a Typed ′ ϕ yielding an element of type Spine ′ ψ.

Turning to the conversion functions, fromSpine′ is again polymorphic.

fromSpine′ :: Spine ′ ϕ α→ ϕ α
fromSpine′ (Con ′ c) = c
fromSpine′ (f ♦′ x ) = fromSpine′ f ‘app‘ val ′ x

Its inverse is an overloaded function that follows a similar pattern as toSpine:
each constructor C ′ with signature

C ′ :: ∀χ.τ ′
1 χ→ · · · → τ ′

n χ→ τ ′
0 χ

gives rise to an equation of the form

toSpine ′ (C ′ x1 . . . xn :′ t ′0) = Con c′ ♦ (x1 : t ′1) ♦ · · · ♦ (xn : t ′n)

where c′ is the variant of C ′ that uses the lifted function space and t ′i is the type
representation of the lifted type τ ′

i . As an example, here is the instance for lifted
lists.

toSpine ′ :: Typed ′ ϕ α→ Spine ′ ϕ α
toSpine ′ (Nil ′ :′ List ′ a′) = Con ′ nil ′

toSpine ′ (Cons ′ x xs :′ List ′ a′) = Con ′ cons ′ ♦′ (x :′ a′) ♦′ (xs :′ List ′ a′)

The equations are surprisingly close to those of toSpine; pretty much the only
difference is that toSpine ′ works on lifted types.

The Spine ′ data type provides the generic view that allows us to implement
the ‘generic part’ of a generic function. The following declarations make the
concept of a generic view explicit.5

infixr 5 �
infixl 5 	

type ϕ � ψ = ∀α.ϕ α→ ψ α
type ϕ 	 ψ = ∀α.ψ α→ ϕ α

data View ′ :: (∗ → ∗)→ ∗ where
View ′ :: Type′ ψ → (ϕ � ψ) → (ϕ 	 ψ)→ View ′ ϕ

A view consists of three ingredients: a so-called structure type that provides a
uniform view on the original type and two functions that convert to and fro. In
our case, the structure view of ϕ is simply Spine ′ ϕ.
5 It is also possible to introduce an explicit view for the spine data type. We have not

done so mainly for reasons of space.



198 R. Hinze and A. Löh

Spine ′ :: Type′ ϕ→ Type′ (Spine ′ ϕ)
spineView :: Type′ ϕ→ View ′ ϕ
spineView a′ = View ′ (Spine ′ a′) (λx → toSpine ′ (x :′ a′)) fromSpine′

Similar to the spine view, we have fromSpine′ (toSpine ′ (x :′ t ′)) = x ; the con-
verse, however, does not hold.

Given these prerequisites we can finally turn size into a generic function.

size (x :′ Spine ′ a′) = size x
size (x :′ a′) = case spineView a′ of

View ′ b′ from to → size (from x :′ b′)

The catch-all case applies the spine view: the argument x is converted to the
structure type, on which size is called recursively. Currently, the structure type
is always of the form Spine ′ ϕ (this will change in the next section), so the first
equation applies, which in turn delegates the work to the helper function size .

size :: Spine ′ ϕ α→ Int
size (Con ′ c) = 0
size (f ♦′ x ) = size f + size x

The implementation of size is entirely straightforward: it traverses the spine
summing up the sizes of the constructors arguments. It is worth noting that the
catch-all case of size subsumes all the previous instances except the one for Id , as
we cannot provide a toSpine ′ instance for the identity type. In other words, the
generic programmer has to take care of essentially three cases: Id , Con ′ and ‘♦′’.

As a second example, here is an implementation of the generic mapping func-
tion:

map :: Type′ ϕ→ (α→ β) → (ϕ α→ ϕ β)
map Id m = InId ·m · out Id
map (Spine ′ a′) m = map m
map a′ m = case spineView a′ of

View ′ b′ from to → to ·map b′ m · from
map :: (α→ β) → (Spine ′ ϕ α→ Spine ′ ϕ β)
map m (Con ′ c) = Con ′ c
map m (f ♦′ (x :′ a′)) = map m f ♦′ (map a′ m x :′ a′)

The definition is stunningly simple: the argument function m is applied in the Id
case; the helper function map applies map to each argument of the constructor.
Note that the mapping function is of type Type′ ϕ → (α → β) → (ϕ α → ϕ β)
rather than (α → β) → (Typed ′ ϕ α → ϕ β). Both variants are commensurate,
so picking one is just a matter of personal taste.

4.3 Bridging the Gap

We have noted in Section 4.1 that the generic size function does not work on
the original, unlifted types as they are different from the lifted ones. However,
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both are closely related: if τ ′ is the lifted variant of τ , then τ ′ Id is isomorphic
to τ [9]. Even more, τ ′ Id and τ can share the same run-time representation,
since Id is defined by a newtype declaration and since the lifted data type τ ′

has exactly the same structure as the original data type τ .
As an example, the functions fromList InId and toList outId exhibit the

isomorphism between [ ] and List ′ Id .

fromList :: (α→ α′ χ) → ([α ]→ List ′ α′ χ)
fromList from Nil = Nil ′

fromList from (Cons x xs) = Cons ′ (from x ) (fromList from xs)
toList :: (α′ χ→ α) → (List ′ α′ χ→ [α ])
toList to Nil ′ = Nil
toList to (Cons ′ x xs) = Cons (to x ) (toList to xs)

Operationally, if the types τ ′ Id and τ have the same run-time representation,
then fromList InId and toList out Id are identity functions (the Haskell Report
[19] guarantees this for InId and out Id ).

We can use the isomorphism to broaden the scope of generic functions to
unlifted types. To this end we simply re-use the view mechanism (the equation
below must be inserted before the catch-all case).

spineView List = View ′ (List ′ Id) (fromList InId ) (toList outId )

The following interactive session illustrates the use of size.

Main〉 let ts = [tree [0 . . i :: Int ] | i ← [0 . . 9]]
Main〉 size (ts :′ List)
10
Main〉 size (fromList (fromTree InId ) ts :′ List ′ (Tree′ Id))
55
Main〉 size (fromList InId ts :′ List ′ Id)
10
Main〉 size (InId ts :′ Id)
1
Main〉 size (fromList (fromTree InInt′ ) ts :′ List ′ (Tree′ Int ′))
0

With the help of the conversion functions we can implement each of the four
different views on a list of trees of integers. Since Haskell employs a kinded first-
order unification of types [20], the calls almost always involve a change on the
value level. The type equation ϕ τ = List (Tree Int) is solved setting ϕ = List
and τ = Tree Int , that is, Haskell picks one of the four higher-order unifiers.
Only in this particular case we need not change the representation of values:
size (ts :′ List) implements the intended call. In the other cases, List (Tree Int)
must be rearranged so that the unification with ϕ τ yields the desired choice.
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4.4 Discussion

The lifted spine view is almost as general as the original spine view: it is ap-
plicable to all data types that are definable in Haskell 98. In particular, nested
data types can be handled with ease. As an example, for the data type Perfect ,
see Section 2.3, we introduce a lifted variant

data Perfect ′ α′ χ = Zero′ (α′ χ) | Succ′ (Perfect ′ (Pair ′ α′ α′) χ)
Perfect :: Type′ Perfect
Perfect ′ :: Type′ ϕ→ Type′ (Perfect ′ ϕ)
toSpine ′ (Zero′ x :′ Perfect ′ a′) = Con ′ zero′ ♦′ (x :′ a′)
toSpine ′ (Succ′ x :′ Perfect ′ a′) = Con ′ succ′ ♦′ (x :′ Perfect ′ (Pair ′ a′ a′))

and functions that convert between the lifted and the unlifted variant.

spineView (Perfect)
= View ′ (Perfect ′ Id) (fromPerfect InId ) (toPerfect out Id )

fromPerfect :: (α→ α′ χ)→ (Perfect α→ Perfect ′ α′ χ)
fromPerfect from (Zero x ) = Zero′ (from x )
fromPerfect from (Succ x ) = Succ′ (fromPerfect (fromPair from from) x )
toPerfect :: (α′ χ→ α)→ (Perfect ′ α′ χ→ Perfect α)
toPerfect to (Zero′ x ) = Zero (to x )
toPerfect to (Succ′ x ) = Succ (toPerfect (toPair to to) x )

The following interactive session shows some examples involving perfect trees.

Main〉 size (Succ (Zero (1, 2)) :′ Perfect)
2
Main〉 map (Perfect) (+1) (Succ (Zero (1, 2)))
Succ (Zero (2, 3))

We have seen in Section 2.3 that the spine view is also applicable to generalised
algebraic data types. This does not hold for the lifted spine view, as it is not
possible to generalise map or reduce to GADTs. Consider the expression data
type of Section 2.3. Though Expr is parameterised, it is not a container type: an
element of Expr Int , for instance, is an expression that evaluates to an integer; it
is not a data structure that contains integers. This means, in particular, that we
cannot define a mapping function (α → β) → (Expr α → Expr β): How could
we possibly turn expressions of type Expr α into expression of type Expr β?
The type Expr β might not even be inhabited: there are, for instance, no terms
of type Expr String . Since the type argument of Expr is not related to any
component, Expr is also called a phantom type [21].

It is instructive to see where the attempt to generalise map or reduce to
GADTs fails technically. We can, in fact, define a lifted version of the Expr type
(we confine ourselves to one constructor).

data Expr ′ :: (∗ → ∗) → ∗ → ∗ where
Num ′ :: Int ′ χ→ Expr ′ Int ′ χ
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However, we cannot establish an isomorphism between Expr and Expr ′ Id : the
following code simply does not type-check.

fromExpr :: (α→ α′ χ)→ (Expr α→ Expr ′ α′ χ)
fromExpr from (Num i) = Num ′ (InInt′ i) -- wrong: does not type-check

The isomorphism between τ and τ ′ Id only holds for Haskell 98 types.
In the preceding section we have seen two examples of generic consumers (or

transformers). As in the first-order case generic producers are out of reach and
for exactly the same reason: fromSpine′ is a polymorphic function while toSpine ′

is overloaded. Of course, the solution to the problem suggests itself: we must also
lift the type spine view to type constructors of kind ∗ → ∗. In a sense, the spine
view really comprises two views: one for consumers (and transformers) and one
for pure producers.

Up to now we have confined ourselves to generic functions that abstract over
types of kind ∗ or ∗ → ∗. An obvious question is whether the approach can be
generalised to kind indices of arbitrary kinds. The answer is an emphatic “Yes!”.
Let us briefly sketch the main steps, for a formal treatment see Hinze’s earlier
work [9]. Assume that κ = κ1 → · · · → κn → ∗ is the kind of the type index. We
first introduce a suitable type representation and lift the data types to kind κ by
adding n type arguments of kind κ1, . . . , κn. Types and lifted types are related
as follows: τ is isomorphic to τ ′ Out1 . . . Outn where Out i is the projection
type that corresponds to the i-th argument of κ. The spine representation must
be lifted accordingly. The generic programmer then has to consider two cases
for the spine view and additionally n cases, one for each of the n projection
types Out1, . . . , Outn.

Introducing lifted types for each possible type index sounds like a lot of work.
Note, however, that the declarations can be generated completely mechanically
(a compiler could do this easily). Furthermore, generic functions that are indexed
by higher-order kinds, for instance, (∗ → ∗)→ ∗ → ∗ are rare. In practice, most
generic functions are indexed by a first-order kind such as ∗ or ∗ → ∗.

5 Related Work

Scrap your boilerplate. The SYB approach has been developed by Lmmel and
Peyton Jones in a series of papers [3,22,5]. The original approach is combinator-
based: the user writes generic functions by combining a few generic primitives.
The first paper [3] introduces two main combinators: a type-safe cast for defining
ad-hoc cases and a generic recursion operator, called gfoldl , for implementing
the generic part. It turns out that gfoldl is essentially the catamorphism of the
Spine data type [11]: gfoldl equals the catamorphism composed with toSpine.
The second paper [22] adds a function called gunfold to the set of predefined
combinators, which is required for defining generic producers. The name suggests
that the new combinator is the anamorphism of the Spine type, but it is not:
gunfold is actually the catamorphism of Signature, introduced in Section 3.
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view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation

none ITA [25,7,26,
27,28]

– – –

fixed point Reloaded [11] PolyP [29,30] – PolyP [1]

sum-of-products LIGD [8,21] DTC [31],
GC [32],
GM [10]

–
GH [33,2,34,35]

spine Reloaded [11],
this paper

SYB [5],
Reloaded [36]

SYB [3,22] –

Fig. 1. Generic programming: the design space

Relating approaches to generic programming. There is a wealth of material on
the subject of generic programming. The tutorials [23,2,24] provide an excellent
overview of the field. We have noted in the introduction that support for generic
programming consists of two essential ingredients: a way to write overloaded
functions, and independently, a way to access the structure of values in a uniform
way. The different approaches to generic programming can be faithfully classified
along these two dimensions. Figure 1 provides an overview of the design space.
The two ingredients are largely independent of each other and for each there are
various choices. Overloaded functions can be expressed using

– type reflection: This is the approach we have used in this paper. Its origins
can be traced back to the work on intensional type analysis [25,7,26,27,28]
(ITA). ITA is intensively used in typed intermediate languages, in particu-
lar, for optimising purely polymorphic functions. Type reflection avoids the
duplication of features: a type case, for instance, boils down to an ordinary
case expression. Cheney and Hinze [8] present a library for generics and dy-
namics (LIGD) that uses an encoding of type representations in Haskell 98
augmented by existential types.

– type classes [4]: Type classes are Haskell’s major innovation for supporting
ad-hoc polymorphism. A type class declaration corresponds to the type sig-
nature of an overloaded value—or rather, to a collection of type signatures.
An instance declaration is related to a type case of an overloaded value.
For a handful of built-in classes Haskell provides support for genericity: by
attaching a deriving clause to a data declaration the Haskell compiler au-
tomatically generates an appropriate instance of the class. Derivable type
classes (DTC) generalise this feature to arbitrary user-defined classes. A
similar, but more expressive variant is implemented in Generic Clean [32]
(GC). Clean’s type classes are indexed by kind so that a single generic func-
tion can be applied to type constructors of different kinds. A pure Haskell 98
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implementation of generics (GM) is described by Hinze [10]. The implemen-
tation builds upon a class-based encoding of the type Type of type represen-
tations.

– type-safe cast [6]: A cast operation converts a value from one type to another,
provided the two types are identical at run-time. A cast can be seen as a
type-case with exactly one branch. The original SYB paper [3] is based on
casts.

– specialisation [9]: This implementation technique transforms an overloaded
function into a family of polymorphic functions (dictionary translation).
While the other techniques can be used to write a library for generics, spe-
cialisation is mainly used for implementing full-fledged generic programming
systems such as PolyP [1] or Generic Haskell [35], that are set up as pre-
processors or compilers.

The approaches differ mostly in syntax and style, but less in expressiveness—
except perhaps for specialisation, which cannot cope with higher-order generic
functions. The second dimension, the generic view, has a much larger impact:
we have seen that it affects the set of data types we can represent, the class of
functions we can write and potentially the efficiency of these functions.

– no view : Haskell has a nominal type system: each data declaration intro-
duces a new type that is incompatible with all the existing types. Two types
are equal if and only if they have the same name. By contrast, in a struc-
tural type system two types are equal if they have the same structure. In a
language with a structural type system there is no need for a generic view;
a generic function can be defined exhaustively by induction on the structure
of types. The type systems that underly ITA are structural.

– fixed point view: PolyP [1] views data types as fixed points of regular func-
tors, which are in turn represented as lifted sums of products. This view is
quite limited in applicability: only data types of kind ∗ → ∗ that are regu-
lar can be represented, excluding nested data types and higher-order kinded
data types. Its particular strength is that recursion patterns such as cata-
or anamorphisms can be expressed generically, because each data type is
viewed as a fixed point, and the points of recursion are visible. The original
implementation of PolyP is set up as a preprocessor that translates PolyP
code into Haskell. A later version [29] embeds PolyP program into Haskell
augmented by multiple parameter type classes with functional dependencies
[37]. Oliveira and Gibbons [30] present a lightweight variant of PolyP that
works within Haskell 98.

– sum-of-products view: Generic Haskell [2,34,35] (GH) builds upon this view.
It is applicable to all data types definable in Haskell 98. Generic Haskell is
a full-fledged implementation of generics based on ideas by Hinze [33,38]
that features generic functions, generic types and various extensions such as
default cases and constructor cases [39]. Generic Haskell supports the defin-
ition of functions that work for all types of all kinds, such as, for example, a
generalised mapping function.
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– spine views: The spine view treats data uniformly as constructor applica-
tions. The different spine views have been extensively discussed in
Sections 2.3, 3 and 4.4.

6 Conclusion

The SYB approach to generic programming was originally presented as an im-
plementation of strategic programming in Haskell. Strategic programming [40]
is an idiom for processing and querying complex, compound data such as, for
example, abstract syntax trees. Because of this background and because of the
particular presentation as a combinator library, the approach seemed to be tied
to generic consumers indexed by types of kind ∗. This paper makes the following
contributions revealing the full potential of the SYB approach.

– The ‘type spine’ view allows us to implement generic producers in the same
elegant manner as generic consumers that build upon the spine view. The
type spine view can be seen as the hidden structure that underlies the gunfold
combinator.

– Functions that abstract over type constructors can be handled using the
technique of lifting. Previously, these functions were thought to be out of
reach for the SYB approach. For reasons of space, we have confined ourselves
to type indices of kind ∗ → ∗. Lifting, however, works for indices of arbitrary
kinds.

Using one of the different spine views one can program almost all of the standard
examples of generic functions.

The spine views are attractive for at least two reasons: they are easy to use
and they are widely applicable. The generic programmer only has to consider two
cases plus one case for each argument of the type index (that is, n additional
cases for indices of kind κ1 → · · · → κn → ∗). The spine view and the type
spine view cover almost all data types including generalised algebraic data types,
but excluding existential types. For principal reasons, the lifted spine view is
more restricted: generic functions that abstract over type constructors can be
instantiated to arbitrary container types but not to phantom types (GADTs).

We have left a couple of topics for future work. The overloading technique
used in this paper, type reflection, hinders in its present form the formulation of
the approach as a re-usable library: the encoding of overloaded functions using
explicit type arguments requires the extensibility of the Type data type and
of functions such as toSpine. Using the concepts of open data types and open
functions [41] this limitation can be overcome. We plan to build an industrial-
strength library based on this extension. Type reflection has at least one distinct
advantage over a class-based approach: we expect that it is much easier to prove
algebraic properties of generic functions in this setting. We believe that the
work of Reig [42] could be recast using our approach, leading to shorter and
more concise proofs.
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13. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: Type inference for
generalised algebraic data types. Technical Report MS-CIS-05-26, University of
Pennsylvania (2004)

14. Wadler, P.: Theorems for free! In: The Fourth International Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), London,
UK, Addison-Wesley Publishing Company (1989) 347–359

15. Hughes, R.J.M.: A novel representation of lists and its application to the function
“reverse”. Information Processing Letters 22(3) (1986) 141–144

16. Bird, R., Meertens, L.: Nested datatypes. In Jeuring, J., ed.: Fourth International
Conference on Mathematics of Program Construction, MPC’98, Marstrand, Swe-
den. Volume 1422 of Lecture Notes in Computer Science., Springer-Verlag (1998)
52–67

17. Hinze, R.: Functional Pearl: Perfect trees and bit-reversal permutations. Journal
of Functional Programming 10(3) (2000) 305–317

18. Hutton, G.: Higher-order functions for parsing. Journal of Functional Programming
2(3) (1992) 323–343

19. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press
(2003)

20. Jones, M.P.: A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming 5(1) (1995) 1–35

21. Hinze, R.: Fun with phantom types. In Gibbons, J., de Moor, O., eds.: The Fun of
Programming. Palgrave Macmillan (2003) 245–262 ISBN 1-4039-0772-2 hardback,
ISBN 0-333-99285-7 paperback.
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41. Hinze, R., Löh, A.: Open data types and open functions. Technical Report IAI-
TR-2006-3, Institut für Informatik III, Universität Bonn (2006)

42. Reig, F.: Generic proofs for combinator-based generic programs. In Loidl, H.W.,
ed.: Trends in Functional Programming. Volume 5. Intellect (2006)

43. Braun, W., Rem, M.: A logarithmic implementation of flexible arrays. Memoran-
dum MR83/4, Eindhoven University of Technology (1983)

A Library

The function tree turns a list of elements into a balanced binary tree, a so-called
Braun tree [43].

tree :: [α] → Tree α
tree x
| null x = Empty
| otherwise = Node (tree x1) a (tree x2)
where (x1, a : x2) = splitAt (length x ‘div ‘ 2) x

The type ShowS is Haskell’s type of pretty printers. The operator ‘•’ separates
two elements of this type by a space.

(•) :: ShowS → ShowS → ShowS
s1 • s2 = s1 · showChar ’ ’ · s2
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The function showsList produces a comma-separated sequence of elements be-
tween square brackets.

showsList :: [ShowS ]→ ShowS
showsList Nil = showString "[]"
showsList (Cons x xs) = showChar ’[’ · x

· foldr (·) id [showChar ’,’ · s | s ← xs ]
· showChar ’]’

The type ReadS is Haskell’s parser type. The function alt implements the
alternation of a list of parsers.

alt :: [ReadS α ]→ ReadS α
alt rs = λs → concatMap (λr → r s) rs

Give a parser for elements, readsList parses a list of elements written as a comma-
separated sequence between square brackets.

readsList :: ReadS α→ ReadS [α]
readsList r = readParen False (λs → [x | ("[", s1) ← lex s , x ← readl s1 ])

where readl s = [([ ], s1) | ("]", s1) ← lex s ]
++ [(x : xs , s2) | (x , s1) ← r s ,

(xs , s2) ← readl ′ s1 ]
readl ′ s = [([ ], s1) | ("]", s1) ← lex s ]

++ [(x : xs , s3) | (",", s1) ← lex s ,
(x , s2) ← r s1,
(xs , s3) ← readl ′ s2 ]
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Abstract. A generic function is defined by induction on the structure
of types. The structure of a data type can be defined in several ways. For
example, in PolyP a pattern functor gives the structure of a data type
viewed as a fixed point, and in Generic Haskell a structural representa-
tion type gives an isomorphic type view of a data type in terms of sums
of products. Depending on this generic view on the structure of data
types, some generic functions are easier, more difficult, or even impossi-
ble to define. Furthermore, the efficiency of some generic functions can
be improved by choosing a different view. This paper introduces generic
views on data types and shows why they are useful. Furthermore, it
shows how generic views have been added to Generic Haskell, an exten-
sion of the functional programming language Haskell that supports the
construction of generic functions. The separation between inductive def-
initions on type structure and generic views allows us to combine many
approaches to generic programming in a single framework.

1 Introduction

A generic function is defined by induction on the structure of types. Several
approaches to generic programming [1, 2, 3, 4, 5] have been developed in the last
decade. These approaches have their commonalities and differences:

– All the approaches provide either a facility for defining a function by induc-
tion on the structure of types, or a set of basic, compiler generated, generic
functions which are used as combinators in the construction of generic func-
tions. The compiler generated functions, however, are also defined by induc-
tion on the structure of types.

– All the approaches differ on how they view data types. There are various
ways in which the inductive structure of data types can be defined, and each
approach to generic programming chooses a different one.

This paper introduces generic views on data types. Using generic views it is pos-
sible to define generic functions for different views on data types. Generic views
provide a framework in which the different approaches to generic programming
can be used and compared.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 209–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



210 S. Holdermans et al.

The inductive structure of types. Different approaches to generic programming
view the structure of types differently:

– In PolyP [1] a data type is viewed as the fixed point of a pattern functor
that has kind ∗ → ∗ → ∗. Viewing a data type as a fixed point of a pattern
functor allows us to define recursive combinators such as the catamorphism
and anamorphism [6], and functions that return the direct recursive children
of a constructor [7]. A downside of this view on data types is that PolyP can
only handle regular data types of kind ∗ → ∗.

– In Generic Haskell [2, 8, 9], a data type is described in terms of a top-level
sums of products structural representation type. Generic functions in Generic
Haskell are defined on possibly nested data types of any kind. However,
because the recursive structure of data types is invisible in Generic Haskell,
it is hard to define the catamorphism and children functions in a natural
way, for example.

– In the ‘Scrap your boilerplate’ [3, 10] approach the generic fold is the central
steering concept. The generic fold views a value of a data type as either a
constructor, or as an application of a (partially applied) constructor to a
value. Using the generic fold it is easy to define traversal combinators on
data types, which can, for example, be specialized to update small parts of a
value of a large data structure. A disadvantage of the boilerplate approach is
that some generic functions, such as the equality and zipping functions, are
harder to define. Furthermore, the approach does not naturally generalize to
type-indexed data types [11, 9]. We can translate the boilerplate approach
to the level of data types by defining a particular generic view.

Other approaches to representing data types can be found in the Constructor
Calculus [4], and in the work of De Moor and Hoogendijk [5].

Generic views on data types. An approach to generic programming essentially con-
sists of two components: a facility to define recursive functions on a specific set of
types, called view types, and a view on the inductive structure of data types, which
maps data types onto view types. We call such a view on the structure of types a
generic view (or just view) on data types. Wadler [12] also defines views on data
types. The difference between Wadler’s views and generic views is that the former
constitute a method for viewing a single data type in different ways, whereas the
latter describes how the structure of a large class of data types is viewed.

Each of the above generic views on data types has its advantages and disad-
vantages. Some views allow the definition of generic functions that are impossible
or hard to define in other approaches, other views allow the definition of more
efficient generic functions. This paper

– identifies the concept of generic views as an important building block of an
implementation for generic programming;

– shows that different choices of generic views have significant influence on the
class of generic functions that can be expressed;

– clearly defines what constitutes a generic view, and discusses how generic
views have been added to Generic Haskell;
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– provides a common framework which can be used to compare different ap-
proaches to generic programming.

Views add expressiveness to a generic programming language. Generic functions
still work for arbitrary data types that can be expressed in the view, but the
choice between different views allows us to define more generic functions.

Organization. This paper is organized as follows. Section 2 briefly introduces
generic programming in Generic Haskell. Section 3 shows by means of examples
why generic views on data types are useful, and how they increase the expres-
siveness of a generic programming language. Section 4 formally defines a generic
view. For some of the examples of Section 3, we give the formal definition. Sec-
tion 5 discusses how views have been added to the Generic Haskell compiler.
Section 6 gives related work and conclusions.

2 Introduction to Generic Programming in Generic
Haskell

This section introduces generic programming in Generic Haskell. The introduc-
tion will be brief, for more information see [13, 11, 9]. Generic Haskell has slightly
changed in the last couple of years, and we will use the version described in Löh’s
thesis ‘Exploring Generic Haskell’ [9] (EGH) in this paper, which to a large ex-
tent has been implemented in the Coral release [8].

2.1 Type-Indexed Functions

A type-indexed function takes an explicit type argument, and can have behavior
that depends on the type argument. For example, suppose the unit type Unit,
sum type +, and product type × are defined as follows,

data Unit = Unit
data a + b = Inl a | Inr b
data a × b = a × b.

We use infix types + and × and an infix value constructor × here to ease the
presentation. The type-indexed function collect collects values from a data struc-
ture. We define function collect on the unit type, sums and products, integers,
and characters as follows:

collect〈Unit〉 Unit = [ ]
collect〈α + β〉 (Inl a) = collect〈α〉 a
collect〈α + β〉 (Inr b) = collect〈β〉 b
collect〈α× β〉 (a × b) = collect〈α〉 a ++ collect〈β〉 b
collect〈Int〉 n = [ ]
collect〈Char〉 c = [ ].

The type signature of collect is as follows:

collect〈a :: ∗ | c :: ∗〉 :: (collect〈a | c〉)⇒ a → [c ].
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The type of collect is parameterized over two type variables. The first type vari-
able, a, appearing to the left of the vertical bar, is a generic type variable, and
represents the type of the type argument of collect . Type variable c, appearing to
the right of a vertical bar, is called a non-generic (or parametric) type variable.
Such non-generic variables appear in type-indexed functions that are paramet-
rically polymorphic with respect to some type variables. The collect function
is parametrically polymorphic in the element type of its list result. It always
returns the empty list, but we will show below how to adapt it so that it collects
values from a data structure. Since it always returns the empty list there is no
need, but also no desire, to fix the type of the list elements. The type context
(collect〈a | c〉) ⇒ appears in the type because collect is called recursively on
sums and products, which means that, for example, if we want an instance of
collect on the type α + β, we need instances of collect on the types α and β.
Thus collect depends on itself. The theory of dependencies and type signatures
of generic functions is an integral part of dependency-style Generic Haskell.

The type signature of collect can be instantiated for specific cases, including
cases omitted in the definition as we shall see later, by the Generic Haskell
compiler, yielding, for example, the types

collect〈Unit〉 :: ∀c .Unit → [c ]
collect〈[α]〉 :: ∀c a . (collect〈α〉 :: a → [c ])⇒ [a ] → [c ]

for the cases of the unit type and lists, respectively. The latter type can be read
as “given a function collect〈α〉 of type a → [c ], the expression collect〈[α]〉 is of
type [a ]→ [c ]”.

Depending on the situation, the function collect〈α〉 can be automatically in-
ferred by the compiler, or it can be user specified using local redefinitions. For
example, if we only want to collect the positive numbers from a list, we write:

let collect〈α〉 x = if x > 0 then [x ] else [ ]
in collect〈[α]〉,

which has type Num a ⇒ [a ] → [a ]. Generally, we use a local redefinition to
locally modify the behavior of a generic function. Some generic functions such
as collect only reveal their full power in the context of local redefinitions.

2.2 Default Cases

Suppose we wish to use function collect to collect the variables of the data type
Term, which represents lambda terms:

data Term = Var Variable | Abs Variable Term | App Term Term
newtype Variable = V String.

We cannot use local redefinitions as we did for the list case, because this would
require that the data type Term is parameterized over the type of variables.
Instead, we write function varcollect making use of default cases :
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varcollect〈Variable〉 v = [v ]
varcollect extends collect

where collect as varcollect .

The first line defines the Variable case of varcollect . The next two lines copy the
definition of collect and rename its dependency on collect to varcollect . The use of
a default case is equivalent to manually copying the definition of collect , replacing
the calls to collect with calls to varcollect , and adding the case for Variable. The
more specific behavior of varcollect is reflected in its type signature:

varcollect〈a :: ∗〉 :: (varcollect 〈a〉) ⇒ a → [Variable].

2.3 View Types

A type-indexed function such as collect does not only work on the types that
appear as its type indices. To see why collect is in fact generic and works on
arbitrary data types, we give a mapping from data types to view types such as
units, sums and products. It suffices to define a function on view types (and
primitive or abstract types such as Int and Char) in order to obtain a function
that can be applied to values of arbitrary data types. If there is no specific case
for a type in the definition of a generic function, generic behavior is derived
automatically by the compiler by exploiting the structural representation.

For example, the definition of the function collect generically derived for lists
coincides with the following specific definition:

collect〈[α]〉 [ ] = [ ]
collect〈[α]〉 (x : xs) = collect〈α〉 x ++ collect〈[α]〉 xs .

To obtain this instance, the compiler needs to know the structural representation
of lists, and how to convert between lists and their structural representation. We
will describe these components in the remainder of this section.

The structural representation (or structure type) of types is expressed in terms
of units, sums, products, and base types such as integers, characters, etc. For
example, for the list and tree data types defined by

data List a = Nil | Cons a (List a)
data Tree a b = Tip a | Node (Tree a b) b (Tree a b)

we obtain the following structural representations:

type List◦ a = Unit + a × List a
type Tree◦ a b = a + Tree a b × b × Tree a b,

where we assume that × binds stronger than +, and both type constructors
associate to the right. Note that the representation of a recursive type is not
recursive, and refers to the recursive type itself. The representation of a type in
Generic Haskell only represents the structure of the top level of the type.



214 S. Holdermans et al.

If two types are isomorphic, the corresponding isomorphisms, also called
embedding-projection pairs, can be stored as a pair of functions converting back
and forth:

data EP a b = EP{from :: (a → b), to :: (b → a)}.
A type T and its structural representation type T ◦ are isomorphic, witnessed
by a value convT :: EP T T ◦. For example, for the list data type we have that
convList = EP fromList toList, where fromList and toList are defined by

fromList :: ∀a .List a → List◦ a
fromList Nil = Inl Unit
fromList (Cons x xs) = Inr (x × xs)
toList :: ∀a .List◦ a → List a
toList (Inl Unit) = Nil
toList (Inr (x × xs)) = Cons x xs.

The definitions of the embedding-projection pairs are automatically generated
by the Generic Haskell compiler for all data types that appear in a program.

Using structural representation types and embedding-projection pairs, a call
to a generic function on a data type T is reduced to a call on type T ◦. Hence, if
the generic function is defined for view types such as Unit, +, and ×, we do not
need cases for specific data types such as List or Tree anymore. For primitive
types such as Int, Float, IO or →, no structure is available. Therefore, for a
generic function to work on these types, a specific case is necessary.

2.4 Specializing Generic Functions

In this section we sketch how Generic Haskell specializes a generic function. As-
sume that collect , the collect function from Section 2.1, is called on the type argu-
ment Bool. No case is given for Bool, so Generic Haskell considers the structural
representation for Bool. The data type Bool and its structural representation
are given by

data Bool = False | True,
type Bool◦ = Unit + Unit.

We reduce a call of collect〈Bool〉 to a call collect〈Bool◦〉. The translation of
the latter function to Haskell code, using the cases of collect for view types,
is quite simple and described elsewhere (EGH,[2]). The call collect〈Bool◦〉 is of
type Bool◦ → [c ], whereas collect〈Bool〉 is of type Bool → [c ]. So to express
the call of collect〈Bool〉 in terms of the the call of collect〈Bool◦〉, we have to lift
the isomorphism between Bool and its representation to the type of the generic
function collect .

Given an embedding-projection pair between a type D and its structure type
D◦, we can use the generic function bimap to lift the isomorphism to arbitrarily
complex types. Recall that collect is defined in such a way that it returns the
empty list for every data type, and only becomes useful when locally redefined.
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Similarly, bimap defines the identity embedding-projection pair for each data
type generically. A remarkable fact is that bimap can be defined on function
types. We give the cases for Unit, +, and → as an example (see, for example,
EGH for a complete definition):

bimap〈a1 :: ∗, a2 :: ∗〉 :: (bimap〈a1, a2〉) ⇒ EP a1 a2
bimap〈Unit〉 = EP id id
bimap〈α + β〉 =

let from+ (Inl a) = Inl (from bimap〈α〉 a)
from+ (Inr b) = Inr (from bimap〈β〉 b)
to+ (Inl a) = Inl (to bimap〈α〉 a)
to+ (Inr b) = Inr (to bimap〈β〉 b)

in EP from+ to+
bimap〈α→ β〉 =

let from→ c = from bimap〈β〉 · c · to bimap〈α〉
to→ c = to bimap〈β〉 · c · from bimap〈α〉

in EP from→ to→.

Using local redefinition, we can plug in an embedding-projection pair in bimap
to lift the isomorphism between Bool and its representation to the type of the
generic function collect .

collect〈Bool〉 = let bimap〈α〉 = epBool in to (bimap〈α→ [c ]〉) collect〈Bool◦〉.
The details of why this works are omitted here. It is, however, important to
realize that for generic functions that both consume and produce values of the
type argument’s type, both components of the embedding projection pair will be
applied: a value of the original type D is transformed into D◦ to be in suitable
form to be passed to the function that works on the structural representation.
Because the function also returns something containing values of type D◦, these
values are then converted back to type D . This is the reason why the embedding-
projection pair should contain an isomorphism. If it does not, a value could
change simply by the conversion functions that are applied, making it highly
difficult to define, for example, the generic identity function.

3 Views

We have explained how Generic Haskell defines a structural representation type
plus an embedding-projection pair for any Haskell data type. A type-indexed
function is generic because the embedding-projection pair is applied to the type
arguments by the compiler as needed. Other approaches to generic programming
use different, but still fixed representations of data types. In this section, we
argue that different views improve the expressiveness of a generic programming
system, because not every view is equally suitable for every generic function. In
Section 4 we will give a formal definition of generic views.
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3.1 Fixed Points

Consider the data type Term, introduced in Section 2.2, and the function
subterms that, given a term, produces the immediate subterms.

subterms :: Term→ [Term]
subterms (Var x ) = [ ]
subterms (Abs x t) = [t ]
subterms (App t u) = [t , u ]

This function is an instance of a more general pattern. The function subtrees,
for example, produces the immediate subtrees of an external binary search
tree.

subtrees :: ∀a b .Tree a b → [Tree a b ]
subtrees (Tip a) = [ ]
subtrees (Node l b r) = [ l , r ]

Given a recursive data type’s value, both subterms and subtrees retrieve the
immediate children corresponding to the recursion points in the data type’s de-
finition. Since the general pattern is clear, we would like to be able to express
it as a generic function. However, Generic Haskell does not allow us to define
such a function directly, due to the fact that the structure over which generic
functions are inductively defined does not expose the recursive occurrences in a
data type’s definition.

Generic Haskell’s precursor, PolyP, does give access to these recursive calls,
enabling the definition of a generic function that collects the immediate recursive
children of a value [7]. Generic functions in PolyP, however, are limited in the
sense that they can only be applied to regular1 data types of kind ∗ → ∗. In
particular, this precludes nested and mutually recursive data types.

Interestingly, it is possible to write a program in Generic Haskell that produces
the immediate children of a value, but it requires some extra effort from the user
of the program. If regular recursive data types are expressed using an explicit
type-level fixed point operator:

data Fix f = In (f (Fix f ))
data TermBase r = VarBase Variable | AbsBase Variable r | AppBase r r
type Term′ = Fix TermBase
data TreeBase a b r = TipBase a | NodeBase r b r
type Tree′ a b = Fix (TreeBase a b),

then the generic function children can be defined with a single case for Fix.

children〈a :: ∗〉 :: (∀c . collect〈a | c〉) ⇒ a → [a ]
children〈Fix ϕ〉 (In r) = let collect〈α〉 x = [x ] in collect〈ϕ α〉 r

1 A data type is regular if it does not contain function spaces, and if the arguments of
the type constructor on the left- and right-hand sides in its definition are the same.
So the data type Flip defined by data Flip a b = MkFlip a (Flip b a) is not regular.
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The children function depends on the collect function collect2 defined in Sec-
tion 2. The local redefinition fixes the type of the produced list and adapts
the collect function to construct singleton lists from the recursive components
in a fixed point’s value. The function collect ensures that these singletons are
concatenated to produce the result list.

Although this approach works fine, there is an obvious downside. The pro-
grammer needs to redefine her recursive data types in terms of Fix. Whenever
she wants to use children to compute the recursive components of a value of any
of the original recursive types, say Term or Tree, a user-defined bidirectional
mapping from the original types to the fixed points, Term′ and Tree′, has to be
applied.

With a fixed-point view, the compiler becomes capable of deriving the fixed
point for any regular recursive data type and will generate and apply the required
mappings automatically. The structure of a data type is then no longer perceived
as a sum of products, but as the fixed point of a sum of products. The only thing
we have to change in the definition of children to make use of the new view is
to add the name of the view to the type signature:

children〈a :: ∗ viewed Fix〉 :: (∀c . collect〈a | c〉) ⇒ a → [a ].

The definition of children is unchanged. For example, children〈[Int]〉 [1, 2, 3]
yields [[2, 3]]. The user of the function does not have to worry about defining
types in terms of Fix any longer: the translation happens behind the scenes.

Another well-known function that can be defined using the fixed-point view
is the catamorphism [14]. In the definition of cata we use a type-indexed type
AlgebraOf, which returns the algebra of a data type: a function from the pattern
functor of the data type to the result type. The details of this definition can be
found in EGH, and in the forthcoming release of Generic Haskell with views.

3.2 Balanced Sums of Products

Traditionally, Generic Haskell views the structure of data types using nested
right-deep binary sums and products. The choice for such a view is rather ar-
bitrary. A nested left-deep view or a balanced view may be just as suitable.
However, the chosen view has some impact on the behavior of certain generic
programs. The generic function enc, for instance, encodes values of data types
as lists of bits.

data Bit = Off | On
enc〈a :: ∗〉 :: (enc〈a〉) ⇒ a → [Bit]
enc〈Unit〉 Unit = [ ]
enc〈α + β〉 (Inl a) = Off : enc〈α〉 a
enc〈α + β〉 (Inr b) = On : enc〈β〉 b

2 One might be tempted to write collect〈a | a〉 for the dependency, but this produces
incorrect type signatures for some specializations of children . The reason is that the
non-generic variable of collect must have kind ∗, which in general does not hold since
variable a can have any arbitrary kind.



218 S. Holdermans et al.

enc〈α× β〉 (a × b) = enc〈α〉 a ++ enc〈β〉 b
enc〈Int〉 n = encInt n
enc〈Char〉 c = encChar c

Here, encInt and encChar denote primitive encoders for integers and characters,
respectively. The interesting cases are the ones for sums where a bit is emitted
for every choice that is made between a pair of constructors. In the case for
products the encodings of the constituent parts are concatenated.

Applying a nested right-deep view to the type Compass of directions

data Compass = North | East | South | West ,

gives the structure

type Compass◦ = Unit + (Unit + (Unit + Unit)).

Using this structure, encoding a value with enc takes one bit at best (North) and
three bits at worst (West). In contrast, a balanced view Bal on the structure,
i.e.,

type Compass◦B = (Unit + Unit) + (Unit + Unit),

requires only two bits for any value of Compass .
In general, encoding requires O(n) bits on average when a nested structure

representation is applied, and O(log n) bits when a balanced representation is
used. All we have to do (next to implementing a balanced view Bal) is to change
the type signature of enc accordingly:

enc〈a :: ∗ viewed Bal〉 :: (enc〈a〉) ⇒ a → [Bit].

3.3 List-Like Sums and Products

Suppose we have a generic function show which is of type

show 〈a :: ∗〉 :: (show 〈a〉) ⇒ a → String

and produces a human-readable string representation of a value. We want to
write a function showP that shows only a part of a value. The part that is
shown is determined by a path of type

type Path = [Int].

Non-empty lists of type Path select a part of the value to print. For instance,
[1] selects the second field of the top-level constructor, and [1, 0] selects the first
field of the top-level constructor thereof. The function has type

showP 〈a :: ∗〉 :: (show 〈a〉, showP 〈a〉) ⇒ Path→ a → String.

The motivation for showP comes from the Proxima editor [15], where there is
a need to generically handle paths to selections in arbitrary documents. Let us
look at the definition of showP on products:

showP 〈α× β〉 (0 : p) (a × b) = if null p then show 〈α〉 a else showP 〈α〉 p a.
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If the first path element is 0, the left component is selected. The encoding in bi-
nary products is such that the left component is always a field of the constructor,
and not an encoding of multiple fields. We can therefore test if the remainder
of the path is empty: if this is the case, we show the complete field using show ;
otherwise, we show the part of the field that is selected by the tail of the current
path.

showP 〈α× β〉 (n : p) (a × b) = showP 〈β〉 (n − 1 : p) b

If the first path element is not 0, we can decrease it by one and show a part of
the right component, containing the remaining fields.

There are several problems with this approach. Consider the following data
type and its structural representation:

data Con012 a b = Con0 | Con1 a | Con2 a b
type Con012◦ a b = Unit + a + a × b.

Using the standard view of Generic Haskell a product structure is only created if
there are at least two fields. If there is only one field, such as for Con1 , the single
field (here a) is the representation. Obviously, we then cannot use the product
case of the generic function to make sure that 0 is the topmost element of the
path.

We could add a check to the sum case of the function, detecting the size
of the underlying product structure by calling another generic function, or by
modifying the type of showP to pass additional information around. However,
consider a data type Rename and its structural representation:

data Rename = R Original
type Rename◦ = Original .

The structural representation does not even contain a sum structure. Although
it is possible to write showP in the standard view, it is extremely tiresome to
do so. The same functionality has to be distributed over a multitude of different
cases, simply because the structural encoding is so irregular, and we cannot rely
on sum and product structure to be present in any case.

A list-like view List on data types can help. For this purpose we introduce a
data type without constructors and without values (except bottom).

data Zero

The type Zero plays the role of a neutral element for sums in the same way as
Unit does for products. The above definition is not Haskell 98, but is supported
by GHC and can be simulated in Haskell 98.

In our list-like view, the left component of a sum always encodes a single
constructor, and the right component of a sum is either another sum or Zero. For
products, the left component is always a single field, and the right component
is either another product or Unit. In particular, there is always a sum and a
product structure. The data type Con012 is encoded as follows:

type Con012◦L a b = Unit + a ×Unit + a × b ×Unit + Zero.
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Now, we can define showP easily:

showP 〈a :: ∗ viewed List〉 :: (show 〈a〉, showP 〈a〉) ⇒ Path→ a → String
showP 〈Unit〉 Unit = error "illegal path"
showP 〈α× β〉 (0 : p) (a × b) = showP 〈α〉 p a
showP 〈α× β〉 (n : p) (a × b) = showP 〈β〉 (n − 1 : p) b
showP 〈Zero〉 = error "cannot happen"
showP 〈α + β〉 [ ] x = show 〈α + β〉 x
showP 〈α + β〉 p (Inl a) = showP 〈α〉 p a
showP 〈α + β〉 p (Inr b) = showP 〈β〉 p b.

We have moved the check for the empty path to the sum case. We can do this
because we know that every data type has a sum structure in the list-like view.

3.4 Boilerplate Approach

In the ‘Scrap Your Boilerplate’ approach, Lämmel and Peyton Jones present a
design pattern for writing programs that traverse data structures [3, 10]. These
traversals are defined using a relatively small library that comprises two types of
generic combinators: recursive traversals and type extensions. Generic functions
are defined in terms of these library functions, and not by induction on the
structure of types. The library functions, however, do use a particular view
on data types. This section discusses this view, dubbed Boilerplate, and shows
how to implement a traversal function based on this view. The emulation of
the boilerplate approach in Generic Haskell is useful for comparing different
approaches to generic programming, but it turns out to be less convenient to
use than the original boilerplate library due to the lack of higher-order generic
functions.

In the boilerplate approach all traversals are instances of a general scheme
imposed by a left-associative generic fold over constructor applications. So a type
is viewed as a sum of products, where a product is either a nullary constructor, or
the application of a constructor(-application) to a type. To emulate the behavior
of the generic fold, the product constructor × in the Boilerplate view is left
associative as well. The right component of a product is always a single field,
and the left component is either another product or Unit, similar to the List view
from Section 3.3.

For example, the Boilerplate view representations of the types of lists and trees
are given by:

type List◦BP a = Unit + (Unit× a)× List a
type Tree◦BP a b = Unit× a + ((Unit × Tree a b)× b)× Tree a b.

Besides generic traversals such as the generic fold, the Boilerplate view makes use
of type extensions. A type extension extends the type of a function such that it
works on many types instead of a single type. To emulate type extensions, we
have to be able to distinguish types by name. Therefore we use a type-indexed
function equipped with cases for specific types. The remaining cases – that is,
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the extension – are provided in a definition on a view that does not operate on
the structure of types. For this purpose, we use the identity view (Id), which
merely wraps a data type in the Id data type:

data Id a = Id a.

For example, consider the function addPrefixVar that adds prefixes to variables:

addPrefixVar :: Variable→ Variable
addPrefixVar (V x ) = V ("gh_"++ x ),

this function is extended as follows to work on any type:

addPrefix 〈a :: ∗ viewed Id〉 :: a → a
addPrefix 〈Variable〉 x = addPrefixVar x
addPrefix 〈Id α〉 (Id x ) = Id x .

The Generic Haskell specialization algorithm chooses the Variable arm when
addPrefix is applied to that type. For all other types, the last arm is selected.

The definitions of the traversal combinators rely on the list-like character of
the Boilerplate view. For example, the gmapT combinator applies a transforma-
tion argument to the immediate children of a node, traversing it in a right to
left fashion. The transformation argument is a type-extended function, which in
our approach is modeled by a type-indexed function.

We implement type-extended arguments to combinators as type-indexed func-
tions bound to the combinator’s name followed by the Par suffix. For example,
the gmapT combinator has the following definition (omitting the dependencies
in the type, these can easily be inferred from the function definition):

gmapT 〈a :: ∗ viewed Boilerplate〉 :: a → a
gmapT 〈Unit〉 Unit = Unit
gmapT 〈α + β〉 (Inl a) = Inl (gmapT 〈α〉 a)
gmapT 〈α + β〉 (Inr b) = Inr (gmapT 〈β〉 b)
gmapT 〈α× β〉 (a × b) = gmapT 〈α〉 a × gmapTPar 〈β〉 b.

The default definition of the transformation argument is the identity:

gmapTPar 〈a :: ∗ viewed Id〉 :: a → a
gmapTPar 〈Id α〉 (Id x ) = Id x .

The everywhere combinator applies a transformation to all nodes in a tree, tra-
versing it in a bottom-up fashion. It is defined in terms of the simple non-
recursive one-layer traversal combinator gmapT , or rather in terms of
gmapTInst , an instance of gmapT where the parameter gmapTPar is instan-
tiated with everywhere .

everywhere〈a :: ∗ viewed Id〉 :: a → a
everywhere〈Id α〉 (Id x ) = Id (everywherePar 〈α〉 (gmapTInst〈α〉 x ))
everywherePar 〈a :: ∗ viewed Id〉 :: a → a
everywherePar 〈Id α〉 (Id x ) = Id x
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The first function transforms the children by means of a call to gmapTInst
and then applies the transformation argument everywherePar to the result. The
generic function gmapTInst is the defunctionalized equivalent of the application
of gmapT to everywhere :

gmapTInst〈a :: ∗ viewed Boilerplate〉 :: a → a
gmapTInst extends gmapT

where gmapT as gmapTInst
gmapTPar as everywhere.

Function gmapTInst is defined by means of a default case: it behaves as gmapT
except that the dependency on gmapTPar is changed to one on everywhere .

It is now trivial to write a function that adds prefixes generically by ‘applying’
everywhere to addPrefix .

genAddPrefix 〈a :: ∗〉 :: a → a
genAddPrefix extends everywhere

where everywhere as genAddPrefix
everywherePar as addPrefix .

Note that the gmapT case for products only recurses on the left component of
a product. Since the Boilerplate view guarantees that all fields of a constructor
are encoded as right components of products, it is easy to verify that gmapT
does indeed define a non-recursive traversal. This simple non-recursive scheme
allows us to derive several rich recursive traversal strategies from a single base
combinator. These strategies are written using default cases.

The type-extension operators used in the Boilerplate approach can be defined
using type-indexed functions on the Id view. First class type-indexed functions
are not supported in Generic Haskell. We emulate application of generic com-
binators to type-extension operators using defunctionalization techniques [16].
Defunctionalization is a standard technique to transform higher-order programs
into first-order equivalents.

Because Generic Haskell lacks higher-order generic functions, these and other
Scrap Your Boilerplate examples are better expressed using the standard view
instead of the Boilerplate view. We believe, however, that an encoding of the
Boilerplate approach within the view formalism can help to better compare it
with other approaches, and improve the overall understanding of different generic
programming techniques.

Hinze, Löh and Oliveira [17] define a generic boilerplate view using general-
ized algebraic data types. The view uses run-time representations of types and
higher order functions, and is hence closer to the original Boilerplate approach.
It follows that this view represents boilerplate functions more faithfully. Generic
Haskell does not use run-time representations of types, so we cannot use the
same approach.
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4 Generic Views, Formally

The previous section shows why generic views are useful. This section formally
defines generic views, and presents the formal definition of the standard view.
The definition of the fixed-point view can be found in the technical report [18].
The other views mentioned in the previous section can also be defined using the
formalism introduced in this section.

4.1 Notation

Throughout this section, we often use the following notation to denote repetition:

{Xi}i∈1..n ≡ X1 . . .Xn

{Xi}i∈1..n
; ≡ X1; . . . ;Xn

If not explicitly mentioned otherwise, such repetitions can be empty, i.e., n can
be 0. We sometimes omit the range of the variable if it is irrelevant or clear from
the context.

4.2 Syntax

Programs. Figure 1 shows the syntax of programs in the core language. This
language is a rather standard functional language. A program consists of zero
or more type declarations and a single expression: the main function.

Types and kinds. The syntax of the type and kind language is shown in Figure 2.
New types are introduced by means of data declarations. Such a declaration
associates a type constructor with zero or more data constructors, each of which
has zero or more fields. The parameterized types are explained below.

Generic programming extensions. To facilitate generic programming, the core
language should be extended with parameterized type patterns and type-indexed
functions with dependencies, and adapted with the facility to specify a view in
the signature of a generic function.

Programs
P ::= {Di ; }i e type declarations

and main expression

Value declarations
d ::= x = e function declaration

Patterns
p ::= x variable pattern
| (C {pi}i ) constructor pattern

Expressions
e ::= x variable
| C data constructor
| λx . e abstraction
| (e1 e2) application
| case e0 of {pi → ei}i; case
| (fix e) fixed point
| let {di}i; in e let

Fig. 1. Syntax of the expression language
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Type declarations
D ::= data T = {Λai :: κi . }i {Cj {tj ,k}k}j|

algebraic data type

Parameterized types
u ::= {Λai :: κi . }i t type-level abstraction

Types
t ::= a type variable
| T type constructor
| (t1 t2) type application
| ∀a :: κ . t universal quantification

Kinds
κ ::= ∗ kind of proper types
| κ1 → κ2 function kind

Fig. 2. Syntax of types and kinds

Kind environments
K ::= ε empty kind environment
| K,a :: κ type-variable binding
| K,T :: κ type-constructor binding

Type environments
Γ ::= ε empty type environment
| Γ, x :: t variable binding
| Γ, C :: t data-constructor binding

Fig. 3. Syntax of environments

Structure types in Haskell are declared as type synonyms. Type synonyms
are not supported in the core language. Therefore, to describe structure types,
the language contains parameterized types, which are essentially a nesting of
type-level lambda abstractions around a type of kind ∗. Parameterized types are
only used in view definitions, they cannot appear in a core-language program.

Rules. The well-formedness rules for programs, types and kinds, the kinding
rules for types and the typing rules for expressions are standard. The operational
semantics of the core language is omitted. More information about the core
language can be found elsewhere (EGH,[19]).

4.3 Definitions

Using the notion of parameterized types, we can formalize the observation that
a view comprises a collection of view types and algorithms for the generation of
structure types and conversion functions. In the following definitions we will use
kind environments and type environments; their syntax is defined in Figure 3.

Definition 1 (Generic View). A generic view V consists of a collection of
bindings for view types,

viewtypesV ≡ K;Γ,

a partial mapping from types to structure types,

V [[D0 ]] str ≡ u; {Di}i∈1..n
, ,

and, for each type in the domain of this mapping, conversions between values
and structure values,
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V [[D0 ]] conv ≡ efrom; eto.

Notice that we allow the mapping from types to structure types to generate zero
or more additional declarations for supporting data types. The types introduced
by these declarations can be used for the generation of structure types. This is
used in the fixed-point view, for example.

For a view to be useful for generic programming, we require it to have three
essential properties. First, the mapping from types to structure types should
preserve kinds.

Definition 2 (Kind Preservation). A generic view V with

viewtypesV ≡ KV ;ΓV

is kind preserving if for each well-formed declaration D0 of a type constructor
T such that K 
 T :: κ, for which a structure type u can be derived,

V [[D0 ]] str ≡ u; {Di}i∈1..n
, ,

it follows that under kind environment K′

K′ ≡ K,KV {, Ti :: κi}i∈1..n ,

containing K, KV , and all the kinds of the Di declarations, the supporting type
declarations Di are well-formed and the structure type u has the same kind κ as
the original type T,

K′ 
 u :: κ.

Furthermore, the conversion functions derived from a type declaration should
be well-typed and indeed convert between values of the original type and values
of the structure type, which is captured by the following definition.

Definition 3 (Well-typed Conversion). A view V with

viewtypesV ≡ KV ;ΓV

generates well-typed conversions if, for each well-formed declaration D0 of a type
constructor T of kind {κi →}i∈1..�∗, for which a structure type t can be derived,

V [[D0 ]] str ≡ {Λai :: κi . }i∈1..� t ; {Di}i∈1..n ,

it follows that the corresponding conversion functions efrom and eto,

V [[D0 ]] conv ≡ efrom; eto,

take values of the original data type T to values of the structure type t and vice
versa,

K′;Γ ′ 
 efrom :: {∀ai :: κi . }i∈1..� T {ai}i∈1..� → t
K′;Γ ′ 
 eto :: {∀ai :: κi . }i∈1..� t → T {ai}i∈1..�

under environments K′ as in Definition 2 and Γ ′ containing the view bindings
ΓV and the types of the constructors from D0 and all Di .
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S [[ D0 ]] str ≡ u; {Di}i,

S [[ {Cj {tj ,k}k}j| ]] str ≡ t

S [[data T = {Λai :: κi . }i {Cj {tj ,k}k}j| ]] str ≡ {Λai :: κi . }i t ; ε

Fig. 4. Representation of data types in the standard view

Finally, the conversion functions from structure values to values should form the
inverses of the corresponding functions in the opposite direction:

Definition 4 (Well-behaved Conversion). A generic view V produces well-
behaved conversions if, for each well-formed declaration D of a type constructor
T, conversion functions efrom and eto are generated,

V [[D ]] conv ≡ efrom; eto,

such that eto is the left inverse of efrom with respect to function composition:

eto (efrom v) evaluates to v

for each value v of type T.

(Note that, for a well-behaved conversion pair, the function that takes values to
structure values is injective; thus, a structure type should have at least as many
elements as the corresponding original type.) Why do we want a generic view to
have well-behaved conversions? Assume function gid is a generic identity function
that is defined as a recursive function that traverses and copies the structure. To
prove that this function is an identity, we have to ensure that the conversions
that are applied during the traversal are well-behaved and do not modify the
value.

Only views that possess all three of the discussed properties are considered
valid:

Definition 5 (Validity). A generic view is valid if it is kind preserving and
generates well-typed, well-behaved conversions.

We claim the validity of the standard, fixed point, balanced, list-like and boiler-
plate views.

The validity of a view has two important consequences. First, well-behaved
conversions allow us to prove properties like the property for the generic iden-
tity function given after Definition 4. Second, let us recall from Section 5.2 that
a generic function call using a new data type can be reduced to a call using
the structural representation of the data type. This reduction is achieved by
means of a wrapper that uses the structural representation and embedding-
projection specified in the view. The theorem states that the generated wrapper
is type-correct:
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S [[ {Cj {tj ,k}k}j| ]] str ≡ t

S [[ ε ]] str ≡ Zero
(str-std-1) S [[ C ]] str ≡ Unit

(str-std-2)

S [[C t ]] str ≡ t
(str-std-3)

n ∈ 2 . . S [[ C {tk}k∈2..n ]] str ≡ t ′
2

S [[C {tk}k∈1..n ]] str ≡ Prod t1 t ′
2

(str-std-4)

m ∈ 2 . .

S [[ {Cj {tj ,k}k∈1..nj }j∈2..m
| ]] str ≡ t2 S [[C1 {t1,k}k∈1..n1 ]] str ≡ t1

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] str ≡ Sum t1 t2

(str-std-5)

Fig. 5. Representation of constructors in the standard view

S [[D ]] conv ≡ efrom; eto

S [[ {Cj {tj ,k}k}j| ]] conv ≡ {pfrom,j }j| ; {pto,j }j|
efrom ≡ λx . case x of {pfrom,j → pto,j }j; eto ≡ λx . case x of {pto,j → pfrom,j }j;

S [[data T = {Λai :: κi . }i {Cj {tj ,k}k}j| ]] conv ≡ efrom; eto

Fig. 6. Conversions for data types in the standard view

Theorem 1. Let V be a view with

V [[D0 ]] str ≡ u; {Di}i∈1..n
,

V [[D0 ]] conv ≡ efrom; eto.

For a type-indexed function x of arity 〈r | s〉, where all types γj in non-generic
positions of x are of kind ∗, the declaration

let {bimap〈βi〉 = EP efrom eto}i∈1..r
;

{bimap〈γj 〉 = EP id id}j∈1..s
;

in to bimap〈base (x 〈{βi}i∈1..r
, | {γj}j∈1..s

, 〉)〉 x 〈u〉
has the same type as x 〈T {αj }j∈1..n〉. Here base (f ) returns the base type (see
EGH) of f , i.e., the type specified for the generic function.

We will use the above declaration as the translation (or specialization) of

x 〈T {αj}j∈1..n viewed V〉.
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The proof of this theorem (which is very similar to the proof of Theorem 11.1
in EGH) uses the facts that a valid view preserves kinds, and has well-typed
conversions. Well-behavedness of the conversions is not necessary for proving
the theorem.

4.4 The Standard View

We describe the three components of a generic view for the standard Generic
Haskell view S of data types

View types. The view types of the standard view are given by the declarations

data Zero =
data Unit = Unit
data Sum = Λa :: ∗ . Λb :: ∗ . Inl a | Inr b
data Prod = Λa :: ∗ . Λb :: ∗ . a × b.

These types represent nullary sums, nullary products, binary sums, and binary
products, respectively. It is easy to convert these definitions into bindings in the
environments Γ and K.

Generating structure types. The algorithm that generates structural representa-
tions for data types is expressed by judgements of the forms

S [[D0 ]] str ≡ u; {Di}i∈1..n
,

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] str ≡ t .

The former express how type declarations are mapped to parameterized types
and lists of supporting declarations; the latter express how a type is derived from
a list of constructors. The rules are shown in Figures 4 and 5.

Type declarations are handled by the rule in Figure 4. The type parameters
of a declared type constructor are directly copied to the resulting structure type.
Notice that the standard view does not need auxiliary declarations.

For constructors, we distinguish five cases. The first rule, (str-std-1), repre-
sents empty constructor lists with Zero. The next three cases handle singleton
lists of constructors. Fieldless constructors are, by rule (str-std-2), represented
by nullary products. Rule (str-std-3) represents a unary constructors by the type
of its field. If a constructor has two or more fields, rule (str-std-4) generates a
product type and recurses. Finally, lists that contain two or more constructors
are represented by a recursively built sum (str-std-5).

Generating conversions. The rules for generating conversion functions are shown
in Figures 6 and 7 and are of the forms

S [[D0 ]] conv ≡ efrom; eto

S [[ {Cj {tj ,k}k}j| ]] conv ≡ {pfrom,j}j| ; {pto,j }j| ,
i.e., type declarations give rise to pairs of conversion functions, while lists of data
constructors give rise to pairs of patterns.
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S [[ {Cj {tj ,k}k}j| ]] conv ≡ {pfrom,j }j| ; {pto,j}j|

S [[ ε ]] conv ≡ ε; ε
(conv-std-1) S [[ C ]] conv ≡ C ;Unit

(conv-std-2)

S [[ C t ]] conv ≡ C x ; x
(conv-std-3)

n ∈ 2 . . {x1 �≡ xk}k∈2..n S [[C {tk}k∈2..n ]] conv ≡ C {xk}k∈2..n ; pto

S [[C {tk}k∈1..n ]] conv ≡ C {xk}k∈1..n ; x1 × pto
(conv-std-4)

S [[ C1 {t1,k}k∈1..n1 ]] conv ≡ pfrom,1; pto,1 m ∈ 2 . .

S [[ {Cj {tj ,k}k∈1..nj }j∈2..m
| ]] conv ≡ {pfrom,j }j∈2..m

| ; {pto,j}j∈2..m
|

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] conv

≡ {pfrom,j }j∈1..m
| ; Inl pto,1 {| Inr pto,j}j∈2..m

(conv-std-5)

Fig. 7. Conversions for constructors in the standard view

The rule in Figure 6 constructs a ‘from’ function that matches values of the
original type against a list of patterns. If a value matches a certain pattern, a
structure value is produced by using a complementary pattern; here, we make use
of the fact that the pattern language is just a subset of the expression language.
A ‘to’ function is created by inverting the patterns. The pairs of pattern lists
are generated using the rules for constructor lists. These rules are analogous to
the rules for generating structure types from constructor lists.

If there are no constructors, there are no patterns either (conv-std-1). Rule
(conv-std-2) associates a single constructor with the value Unit . Rule (conv-
std-3) associates unary constructors with variables that correspond to their field
values. If a constructor has two or more fields, rule (conv-std-4) associates the
corresponding variables to product patterns. Finally, if the list of constructors
has two or more elements, rule (conv-std-5) applies; it prefixes the patterns with
the injection constructors Inl and Inr .

5 Generic Views in the Generic Haskell Compiler

The latest version of the Generic Haskell compiler that implements views can be
downloaded via svn: https://svn.cs.uu.nl:12443/repos/Generic-Haskell/
branches/GenericViews. We have implemented (an extension of) the standard
view, the fixed-point view and the list-like sums and products view. The next
release of Generic Haskell will come with all the views mentioned in this paper:
in addition to the views already implemented, the balanced sums and products
view, and the identity and boilerplate views. In the previous version of the
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Generic Haskell compiler [8] we do not really use the standard view as presented
here, but additionally use representation data types Con and Lab to encode
information about constructors and record field labels in the data type. The
presence of these data types makes it possible to write functions such as show
and read that produce or consume a representation of a value and therefore rely
on the names of constructors and labels.

Since there is no reason to assume that the six views given in this paper are
the only useful views, we have considered developing a special-purpose language
for specifying views in user programs. We have decided not to do this for three
reasons:

– We expect that these views suffice for most purposes and users.
– A generic view consists of a set of view types, a function that generates

structure types, and a function that generates conversion functions, and it
follows that such a special-purpose language for specifying views would be
a complete programming language in itself.

– To add a new view to Generic Haskell, the compiler has to be modified.
Although this might sound scary, in practice it is rather simple.

The next section describes how a view is added to the Generic Haskell compiler.

5.1 Adding a View to the Generic Haskell Compiler

A new view is added to the Generic Haskell compiler by implementing a module
that contains a view declaration with the following type:

(Name,TDecl → Maybe (LamType, [TDecl],Expr,Expr, [TDecl])).

A view consists of a name, and a function that can be called on the abstract
representation of a type synonym or a data type (a TDecl) to produce a parame-
terized structure representation type (a LamType), supporting type declarations
(first [TDecl]) and an embedding-projection pair (two Expr’s). Views that apply
to a subset of the Haskell data types can be implemented by returning Nothing
on data type definitions that are outside of the view domain. Note that the
result of the view-generating function directly corresponds to the maps V [[ · ]] str

and V [[ · ]] conv. The collection viewtypesV of bindings that are required by the view
must be added to the Generic Haskell Prelude, i.e., they must be available for
the Generic Haskell compiler to parse.

The need for the second list of type declarations is better explained with an
example. Consider the application of the children function (Section 3) to the
Tree data type. This function definition uses the fixed-point view structure type
of Tree. That is, the type Fix applied to the supporting type TreeBase, which is
the base functor of Tree. This structure type is not yet enough. The definition
of children applies collect to the base functor of the data type. Because collect is
defined on the standard view, we need to generate a standard structure type for
TreeBase, a pair of standard embedding projections and supporting declarations.
In short, if we need a fixed-point view on Tree, we also need a standard view on
TreeBase. This is achieved by returning TreeBase in the second declaration list
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when generating the view components for Tree. This list, which is a subset of the
list of supporting declarations, is recursively processed by view-generating func-
tions. The implementation keeps track of additional information to determine
which view-generating functions should be called on these declarations, and to
avoid non-termination in certain cases.

The validity of a view can only be checked to a certain extent. The compiler
can verify the kind preservation and well-typed conversion properties of the view:
for each structural representation and embedding-projection pair generated, kind
and type checking is performed. The well-behavedness of the conversion cannot
be verified by the compiler, since verifying that the composition of two arbitrary
functions is the identity is an undecidable problem. This property remains a
proof obligation for the implementor of the view.

A view implementor has to deal with some additional implementation details
that slightly complicate views, but that are not of direct concern for this paper.
The interested reader can find more implementation information in the source
distribution of Generic Haskell extended with views, in particular in the file
/src/views/README and the view modules in the same directory.

5.2 Specialization

The specialization mechanism is independent of the actual view, see Theorem 1.
For other views than the standard view, different structural representations and
embedding-projection pairs are used, but the specialization procedure remains
exactly the same. The only thing that has changed in the implementation of
specialization within the Generic Haskell compiler is that all the references to
structural representation types and embedding-projection pairs point to the view
that is specified for the function in question.

6 Conclusions, and Related Work

We have shown that generic views on data types can make generic functions
both easier to write and more efficient. Generic views add expressiveness to
a generic programming language. Furthermore, generic views allow us to use
different generic programming styles in a single framework.

Although there are a multitude of approaches for generic programming, the
idea to use multiple views on data types in a single approach is, to the best of our
knowledge, original. Using our approach to views we can express many different
approaches to generic programming in a single framework. Our framework does
have a limitation though: a structure type is created from a single data type
declaration at a time. This poses no problems for views that transform only
the top level representation of a data type, consider for instance type List◦ in
Section 2.3. Views that deeply transform representations, however, face limita-
tions: the fixed-point view, for example, transforms the recursive occurrences
of a single recursive data type, and hence it cannot handle mutually recursive
ones. This is not a fundamental problem: we could have adapted the framework
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to allow for this. However, since we know of no existing approach to generic pro-
gramming that would need this extra complexity we have refrained from doing
so.

The name “generic view” is derived from Wadler’s proposal to introduce views
in (a predecessor of) Haskell [12]. Using one of these views, a single Haskell data
type can be analyzed in a different way, by introducing additional constructors
by which a value can be constructed, and on which pattern matching can be
performed. A view is essentially like the introduction of an additional data type,
together with the definition of conversion functions between values from the orig-
inal type and values of the view type. These conversions are then transparently
applied by the compiler where necessary.

Generic views are different in that they define a representation and conver-
sions for many types at the same time. Moreover, the representation types need
not be new data types, but can be built from existing data types. Wadler’s views
have the advantage that they can be added to the Haskell programming language
relatively easily, allowing every programmer to add her own views. On the other
hand, generic views have to be added to a generic programming system, such as
the Generic Haskell compiler, following the guidelines described in the previous
sections. However, we expect that the views we describe in this paper are suffi-
cient for most purposes and users, and we do not assume a user will frequently
want to add a new view to the Generic Haskell compiler.

Both views and generic views require that the definition of a new view goes
along with a proof obligation for the programmer that cannot easily be captured
in a language like Haskell. The conversion between the original type and the view
type (structure type in our framework), be it a single pair of functions such as in
Wadler’s proposal, or a type-indexed family of functions such as for generic views,
must really witness isomorphisms, otherwise unexpected results may occur.

Since Wadler’s views proposal, several variations of views have been given
[20, 21, 22]. Our approach is closest to Wadler’s proposal in that we also require
the existence of an isomorphism between the original type and the view type
(structure type). Views have also been proposed in the context of XML and
databases [23, 24]. Generic views as proposed in [25] are used to automatically
convert between two given views. The generic view concept as introduced in this
paper does not seem to have been investigated in this field.

The idea of using different sets of data types for inductive definitions of type-
indexed functions is common in the world of dependent types [26, 27]. This corre-
sponds to the idea of having views that work on different subsets of the Haskell
data types. However, in the approaches we have seen there is no automatic conver-
sion between syntactically definable data types as offeredby the dependently typed
programming language into representations as defined by the view or universe.

Acknowledgements. Our thanks go to a number of anonymous referees and Daan
Leijen for several helpful comments. This research has partly been funded by
the Netherlands Organization for Scientific Research (NWO) (project Generic
Haskell, nr. 612.069.000).
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17. Hinze, R., Löh, A., Oliveira, B.C.d.S.: ”Scrap Your Boilerplate” Reloaded. In:
Proceedings of the Eighth International Symposium on Functional and Logic Pro-
gramming (FLOPS 2006). Volume 3945 of LNCS., Springer-Verlag (2006)



234 S. Holdermans et al.
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Abstract. Dynamic programming is an algorithm design technique,
which allows to improve efficiency by avoiding re-computation of iden-
tical subtasks. We present a new recursion combinator, dynamorphism,
which captures the dynamic programming recursion pattern with mem-
oization and identify some simple conditions when functions defined by
structured general recursion can be redefined as a dynamorphism. The
applicability of the new recursion combinator is demonstrated on classical
dynamic programming algorithms: Fibonacci numbers, binary partitions,
edit distance and longest common subsequence.

1 Introduction

Solutions for many problems admit a simple recursive description where the orig-
inal problem is split to some subproblems, these are solved recursively and then
combined to a final solution. The corresponding program can then straightfor-
wardly expressed as a hylomorphism [9], where the decomposition of a problem is
represented by some functor coalgebra and the forming of a final result by an al-
gebra of the same functor. However, if the problem description contains identical
subproblems such a naive implementation is very inefficient as these subprob-
lems are solved independently from each other over and over again. This kind of
unnecessary re-computation can often be avoided using dynamic programming
techniques.

In this paper we study dynamic programming in the setting of categorical
approach to recursive datatypes and constructive algorithmics [2, 7, 8, 5]. We in-
troduce a new recursion combinator, which captures the dynamic programming
recursion pattern. It is a generalization of the combinator for a course-of-value it-
eration, histomorphism [10, 12], and uses annotated tree-like intermediate struc-
ture to tabulate previously computed values, hence avoiding re-computation on
identical subarguments. Like hylomorphism, it is parametrized by a coalgebra
and an algebra but for different (albeit related) functors. We show that given
a hylomorphism if its coalgebra satisfies a simple equation it can be redefined
in terms of the new combinator involving a related coalgebra and reusing the
algebra of the hylomorphism. The applicability of the new recursion operator
is demonstrated on classical dynamic programming algorithms: Fibonacci num-
bers, binary partitions, edit distance and longest common subsequence.
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The rest of the paper is organized as follows. Section 2 presents the setting
and summarizes the basic theory of recursive datatypes and recursion combina-
tors. Section 3 introduces two recursion combinators for dynamic programming,
histomorphism and dynamorphism, and studies their properties. Section 4 pro-
vides four concrete examples from dynamic programming that can be expressed
as dynamorphisms. Finally, Section 5 concludes by pointing out some directions
for further work.

2 Categorical Datatypes and Recursion Combinators

In this section we briefly review the basic notions of categorical approach to
recursive datatypes and its application to program calculation. For a more com-
prehensive and excellent introduction of the subject see e.g. [3, 6].

2.1 Preliminaries

Throughout the work we assume that the category we’re dealing with is CPO
category of (pointed) complete partial orders with a least element ⊥ (cpos) and
continuous partial functions between them. A function f : A → B is said to be
strict if f(⊥) = ⊥, i.e. it preserves the least element. The final object in CPO
is given by the singleton set {⊥} and is denoted by 1. The subcategory of CPO
where all functions are strict is denoted by CPO⊥.

A recursive type is defined categorically using a functor fixpoint. That is given
an endofunctor F : C → C we get the recursive type μF as the solution of the
equation μF 2 FμF. This equation is solvable in CPO for locally continuous
functors. We assume that the type signature is given by a combination of fol-
lowing basic functors: Id (identity), A (constant), × (product) and + (separated
sum). The product bifunctor A × B is given by the Cartesian product. We de-
note projections by outl : A × B → A and outr : A × B → B. The pairing of
f : C → A and g : C → B, i.e. the unique morphism h : C → A × B such
that outl ◦h = f and outr ◦h = g, is written 〈f, g〉. The separated sum bifunctor
A+B is given by the disjoint union, with injections denoted by inl : A→ A+B
and inr : B → A + B. The case analysis of f : A → C and g : B → C, i.e. the
unique strict h : A + B → C such that h ◦ inl = f and h ◦ inr = g, is written
[f, g]. In the examples, we often use also pattern matching for case analysis.

We shall also use type functors which are attained by taking a fixpoint over
bifunctors (e.g. functor List that lifts set of values to set of lists of values). The
functors attainable by a combination of described functors are called regular
functors and are locally continuous in CPO.

2.2 Catamorphisms

Let F : C → C be a functor. An F-algebra is a pair consisting of an object
A (called the carrier) and an arrow ϕ : FA → A. A homomorphism between
algebras ϕ : FA → A and ψ : FB → B is an arrow f : A → B such that
f ◦ ϕ = ψ ◦ Ff . F-algebras and their homomorphisms form a category Alg(F)
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where composition and identities are inherited from the base category C. An
initial F-algebra inF : FμF → μF is the one from which a unique homomorphism
exists to any other F-algebra ϕ : FA → A. This unique morphism is called
catamorphism or fold and is denoted by (|ϕ|)F : μF → A.

An initial algebra inF : FμF → μF (if it exists) is necessarily isomorphism
(we denote its inverse by outF : μF → FμF), hence its carrier μF is a solution
of recursive domain equation X 2 FX . Unfortunately, in CPO initial algebras
do not exist, but just weakly initial ones, i.e. the uniqueness of the outgoing
homomorphism is missing. On the other hand, a locally continuous functor F,
which preserves strictness, has an initial algebra in CPO⊥. Moreover, the cata-
morphism combinator can be extended to CPO by defining: for any F-algebra
ϕ : FA → A, the catamorphism (|ϕ|)F is a least arrow f : μF → A making the
following diagram commute:

FμF in ��

Ff

��

μF

f

��
FA

ϕ �� A

i.e. the least homomorphism from inF to ϕ.
Catamorphisms comes equipped with the following properties:

– Cancellation: For any F-algebra ϕ : FA→ A

(|ϕ|)F = ϕ ◦ F(|ϕ|)F ◦ outF (cata-cancellation)

– Reflection

idμF = (|inF|)F (cata-reflection)

– Fusion: For any F-algebras ϕ : FA → A, ψ : FB → B and a morphism
f : A→ B

f is strict ∧ f ◦ ϕ = ψ ◦ Ff ⇒ f ◦ (|ϕ|)F = (|ψ|)F (cata-fusion)

Catamorphisms capture structural recursion over inductive types.

2.3 Anamorphisms

The notion of a coalgebra is dual to the one of an algebra. Let F : C → C
be a functor. An F-coalgebra is a pair consisting of an object A and an arrow
ψ : A→ FA. A homomorphism between coalgebras ψ : A→ FA and ϕ : B → FB
is an arrow f : A → B such that ϕ ◦ f = Ff ◦ ψ. F-coalgebras and their
homomorphisms form a category CoAlg(F) where composition and identities are
inherited from the base category C. A final F-coalgebra is the one to which a
unique homomorphism exists from any other F-coalgebra ψ : A → FA. This
unique morphism is called anamorphism or unfold and is denoted by [(ψ)]F :
A→ μF.
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In general, carriers of an initial F-algebra and a final F-coalgebra are different.
However, in CPO the inverse of an initial F-algebra outF : μF → FμF is a final
F-coalgebra. Hence, for any F-coalgebra ψ : A → FA, the anamorphism [(ψ)] is
defined as a unique arrow f : A→ μF making the following diagram commute:

A

f

��

ψ �� FA

Ff

��
μF

outF �� FμF

Anamorphisms come equipped with the following properties:

– Cancellation: For any F-coalgebra ψ : A→ FA

[(ψ)]F = inF ◦F[(ψ)]F ◦ ψ (ana-cancellation)

– Reflection

idμF = [(outF)]F (ana-reflection)

– Fusion: For any F-coalgebras ψ : A → FA, ϕ : B → FB and a morphism
f : A→ B

ϕ ◦ f = Ff ◦ ψ ⇒ [(ϕ)]F ◦ f = [(ψ)]F (ana-fusion)

Anamorphisms capture structural corecursion over coinductive types.

2.4 Hylomorphisms

As in CPO inductive and coinductive types coincide we can also define a concept
that captures general recursion. Given an F-coalgebra ψ : A → FA and an
F-algebra ϕ : FB → B, a hylomorphism denoted by hylo(ϕ, ψ)F is the least
arrow f : A→ B that makes the following diagram commute:

FA

Ff

��

A
ψ��

f

��
FB

ϕ �� B

Equivalently, a hylomorphism is a composition of an anamorphism with a cata-
morphism:

hylo(ϕ, ψ)F = (|ϕ|)F ◦ [(ψ)]F (hylo-definition)

Hylomorphisms capture general recursion by producing a virtual intermedi-
ate structure and then collapsing it. The intermediate structure represents the
function call-tree that would be otherwise produced on the stack.
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Hylomorphisms come equipped with the following properties:

– Cancellation: For any F-algebra ϕ : FB → B and F-coalgebra ψ : A→ FA

hylo(ϕ, ψ)F = ϕ ◦ Fhylo(ϕ, ψ)F ◦ ψ (hylo-cancellation)

– Cata-Fusion: For any F-algebra ϕ : FB → B, φ : FC → C, F-coalgebra
ψ : A→ FA and a morphism f : B → C

f is strict ∧ f ◦ ϕ = φ ◦ Ff ⇒ f ◦ hylo(ϕ, ψ)F = hylo(φ, ψ)F
(hylo-cata-fusion)

– Ana-Fusion: For any F-coalgebras ψ : FA → A, ξ : FB → B, F-algebra
ϕ : FC → C and a morphism f : A→ B

ξ ◦ f = Ff ◦ ψ ⇒ hylo(ϕ, ξ)F ◦ f = hylo(ϕ, ψ)F (hylo-ana-fusion)

– Hylo-Shift: For any F-coalgebra ψ : A→ FA, G-algebra φ : B → GB and a
natural transformation τ : F .→ G

hylo(ϕ ◦ τB , ψ)F = hylo(ϕ, τA ◦ ψ)G (hylo-shift)

Further on, subscripts will be omitted for brevity when obvious from the
context.

3 Combinators for Dynamic Programming

Dynamic programming is a programming technique that can be applied to some
algorithms redefining them with better performance (and specially smaller com-
plexity in terms of the input). The application of dynamic programming requires
that the problem would have: a) optimal substructure, and b) overlapping sub-
problems.

Optimal substructure (also known as the principle of optimality [1]) in this
context means that to solve the problem we can break it into subproblems, solve
them recursively and then combine the results to solve the original problem.
Overlapping here means that the subproblem results are recomputed several
times, since the same sub-subproblems appear in different subproblems.

In such a case the dynamic programming method suggests to use memoization
to reuse the overlapping subproblem computation results and thus reduce the
complexity of the algorithm.

Note that every function expressible as a hylomorphism already has an op-
timal substructure, so we can apply dynamic programming technique knowing
only that a hylomorphism has overlapping subproblems. Note also that in case
of a hylomorphism overlapping subproblems will mean that some parts of the
intermediate structure will be equal (though we do not use this fact in the paper,
it helps to understand the problem background).
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3.1 Histomorphisms

The simplest instance of dynamic programming problem is provided by a course-
of-value iteration. As an example consider the Fibonacci function which can be
specified as follows:

fibo(0) = 0
fibo(1) = 1

fibo(n + 2) = fibo(n + 1) + fibo(n).

These equations give us the definition for the function as a hylomorphism (see
the next section). However this definition is of exponential complexity in terms
of its input. In [10], Uustalu and Vene defined a recursion combinator called
histomorphism which solves the problem by internally using an auxiliary tree-
like structure to capture the memoization of previously computed values on
substructures.

For a given endofunctor F and an object A, define a new endofunctor F×
A as

follows:
F×

A(X) = A× FX

F×
A(f) = id× Ff

The F×
A-functor represents one level of the structure μF with an extra annotation.

Next we define a recursive type based on this functor:1

F̃(A) = μF×
A

F̃(f) = [(〈f ◦ ε, θ〉)]F×
A

where natural transformations εA = outl ◦ out : F̃(A) → A and θA = outr ◦ out :
F̃(A) → FF̃(A) are projections of the final coalgebra outF×

A
= 〈εA, θA〉 : F̃(A) →

A× FF̃(A).
Intuitively, the recursive type F̃(A) is a datatype of F-branching trees, where

every node is annotated by values of type A. In a special case, when annotations
are empty, it’s isomorphic to the original recursive type, i.e. F̃(1) 2 μF. The
function εA : F̃(A) → A gives the value of the annotation in the root node and
θA : F̃(A) → FF̃(A) returns “subtrees” of the given tree.

Often, these annotated trees are constructed using anamorphisms in the form
[(〈f, ψ〉)]F×

A
: A → F̃B, where ψ : A → FA is an F-coalgebra and f : A → B is

an arrow for computing an annotation of a node. Later we make use following
properties of this anamorphism:

εA ◦ [(〈f, ψ〉)] = f (ε-cancellation)
θA ◦ [(〈f, ψ〉)] = F[(〈f, ψ〉)] ◦ ψ (θ-cancellation)

[(〈f, ψ〉)] = F̃f ◦ [(〈id, ψ〉)] (map-build-fusion)

1 In [10], the functor F̃ is defined as F̃(A) = νF×
A. However, in our setting inductive

and coinductive types coincide, hence the definition uses the least fixed point.
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The first two equations are obvious. The third one can be shown by using ana-
fusion law, i.e., we need to show that h = [(〈id, ψ〉)] is a coalgebra homomorphism:

B × FA

id×Fh

��

A
〈f,ψ〉��

h

��
B × FF̃A F̃A

〈f◦ε,θ〉��

As the following simple calculation shows, this is indeed the case:

〈f ◦ ε, θ〉 ◦ [(〈id, ψ〉)] = (f × id) ◦ out ◦[(〈id, ψ〉)]
= (f × id) ◦ (id× F[(〈id, ψ〉)]) ◦ 〈id, ψ〉
= (id× F[(〈id, ψ〉)]) ◦ 〈f, ψ〉

Definition 1. (histomorphism)
Let ϕ : FF̃A → A be an FF̃-algebra. A histomorphism, denoted by histo(ϕ), is
the least function f : μF→ A making the following diagram commute:

FμF

F[(〈f,out〉)]
��

in �� μF

f

��
FF̃A

ϕ �� A

Informally the definition of the histomorphism tells that its value on the given
argument is computed by first building an annotated F-branching tree and then
using an FF̃-algebra to give the final result. The annotated tree is generated
using an anamorphism, which gets the immediate subargument as the initial
seed. On every step, the anamorphism computes (recursively) the value of the
histomorphism on the current seed, and also a new seed by taking a “predecessor”
of the current one. Thus, all nodes in the tree contain the recursively computed
value of the histomorphism on the corresponding substructure of the argument.
The given FF̃-algebra can use these values to produce a final result. Note that the
annotated tree is recalculated on every recursive call, hence the definition above
corresponds to the naive (exponential) algorithm of computing course-of-value
iterative functions.

In the case of natural numbers, the base functor is FX = 1 + X and an-
notated trees are of type F̃(A) = μX.A × (1 + X), i.e. non-empty lists. The
Fibonacci function can be defined as a histomorphism fibo = histo(ϕ), where the
FF̃-coalgebra is defined as follows:

ϕ (inl ⊥) = 0

ϕ (inr x) =

{
1 if θ(x) = inl ⊥
ε(x) + ε(y) if θ(x) = inr y
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Histomorphisms come equipped the following properties:

– Cancellation: For any FF̃-algebra ϕ : FF̃A→ A

histo(ϕ) ◦ in = ϕ ◦ F[(〈histo(ϕ), out〉)] (histo-cancellation)

– Reflection

id = histo(in ◦Fε) (histo-reflection)

– Fusion: For any FF̃-algebras ϕ, ψ : FF̃A→ A and an arrow f : A→ B

f is strict ∧ f ◦ ϕ = ψ ◦ FF̃f ⇒ f ◦ histo(ϕ) = histo(ψ) (histo-fusion)

As noted above, the recursive definition of a histomorphism corresponds to the
exponential algorithm. In [10], Uustalu and Vene show that every histomorphism
can be defined in terms of a catamorphism and this alternative definition gives
a more efficient algorithm for computing histomorphisms.

Proposition 1. Let ϕ : FF̃A→ A be an FF̃-algebra, then

histo(ϕ) = εA ◦ (|in ◦〈ϕ, id〉|) (histo-as-cata)

The equation can be illustrated by the following diagram where the catamor-
phism (|in ◦〈ϕ, id〉|) is denoted by f :

FμF in ��

Ff

��

μF

f

��

histo(ϕ)

�������������

FF̃A
〈ϕ,id〉 �� A× FF̃A

in �� F̃A
ε �� A

Instead of computing a value of the histomorphism directly, the catamorphism
f builds an F-branching tree, which contains values of the histomorphism on
corresponding subarguments and, in particular, the final value in its root node.
The tree is constructed “bottom-up” by first recursively building subtrees for
the immediate subarguments, which are then combined by the FF̃-algebra to get
the value of the histomorphism on the current argument and the resulting tree.
Since the building of the annotated tree is done by one pass over the argument
structure, the equation gives a linear algorithm for computing histomorphisms.

3.2 Dynamorphisms

Although histomorphism is enough for the Fibonacci function, it is not so for
some other classic dynamic programming algorithms like edit distance. This
is due to histomorphism capturing structural (course-of-value) recursion, which
requires that the recursion pattern of the algorithm follows that of its input. Next
we will define a combinator that will lift this restriction and allow to capture all
generally recursive dynamic algorithms.
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Definition 2. (dynamorphism)
Let ψ : A → FA be an F-coalgebra and ϕ : FF̃B → B be an FF̃-algebra. A
dynamorphism denoted by dyna(ϕ, ψ)F is the least arrow f : A→ B that makes
the following diagram commute:

FA

F[(〈f,ψ〉)]
��

A
ψ��

f

��
FF̃B

ϕ �� B

Proposition 2. Let ψ : A → FA be an F-coalgebra and ϕ : FF̃B → B be an
FF̃-algebra, then

dyna(ϕ, ψ)F = histo(ϕ)F ◦ [(ψ)]F (dyna-definition)

Proof. We will use the fusion law of least fixed points [9]:

G is strict ∧ F ◦ G = G ◦ H =⇒ fixF = G(fixH)

In our case we have:
F(f) = ϕ ◦ F[(〈f, ψ〉)] ◦ ψ
G(g) = g ◦ [(ψ)]
H(h) = ϕ ◦ F[(〈h, out〉)] ◦ out

i.e. dyna(ϕ, ψ) = fixF and histo(ϕ) = fixH.
Obviously G is strict. Thus, we need to show that for any h : μF→ B

(F ◦ G)(h) = (G ◦ H)(h)

The left and right hand side of the equation simplify as follows:

(F ◦ G)(h) = F(h ◦ [(ψ)])
= ϕ ◦ F[(〈h ◦ [(ψ)], ψ〉)] ◦ ψ

(G ◦ H)(h) = G(ϕ ◦ F[(〈h, out〉)] ◦ out)
= ϕ ◦ F[(〈h, out〉)] ◦ out ◦[(ψ)]
= ϕ ◦ F([(〈h, out〉)] ◦ [(ψ)]) ◦ ψ

Here, the last equality holds because of ana-cancellation.
Hence, it suffices to show that [(〈h, out〉)] ◦ [(ψ)] = [(〈h ◦ [(ψ)], ψ〉)]. For this we

can use ana-fusion law because [(ψ)] is an F×
B-coalgebra homomorphism:

B × FA

id×F[(ψ)]
��

A
〈h◦[(ψ)],ψ〉��

[(ψ)]
��

B × FμF μF
〈h,out〉��

The equality on the first component of the product is obvious and the equality
on the second component holds by ana-cancellation. �.
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Dynamorphisms come equipped with the following properties:

– Cancellation: For any coalgebra ψ : A→ FA and algebra ϕ : FF̃B → B

dyna(ϕ, ψ)F = ϕ ◦ F[(〈dyna(ϕ, ψ)F, ψ〉)]F× ◦ ψ (dyna-cancellation)

– Histo-Fusion: For any algebras ϕ : FF̃A → A, ψ : FF̃B → B and an arrow
f : A→ B

f is strict ∧ f ◦ ϕ = ψ ◦ F̃f ⇒ f ◦ dyna(ϕ, ξ)F = dyna(ψ, ξ)F
(dyna-histo-fusion)

– Ana-Fusion: For any coalgebras ψ : A → FA, ξ : B → FB, algebra ϕ :
FF̃C → C and morphism f : A→ B

ξ ◦ f = Ff ◦ ψ ⇒ dyna(ϕ, ξ)F ◦ f = dyna(ϕ, ψ)F (dyna-ana-fusion)

– Histo-as-Dyna: For any algebra ϕ : FF̃B → B

histo(ϕ)F = dyna(ϕ, out)F (histo-as-dyna)

– Ana-as-Dyna: For any coalgebra ψ : A→ FA

[(ψ)]F = dyna(in ◦Fε, ψ)F (ana-as-dyna)

Although the recursive form of dynamorphism is more comfortable to reason
about it adds an exponential complexity penalty to the function, therefore we
use histo-as-cata to define a dynamorphism in terms of a corresponding hylo-
morphism.

Proposition 3. Let ψ : FA → A be an F-coalgebra and ϕ : FF̃B → B be an
FF̃-algebra, then

dyna(ϕ, ψ) = εB ◦ hylo(in ◦〈ϕ, id〉, ψ) (dyna-as-hylo)

Proof. Follows trivially from histo-as-cata, dyna-definition and hylo-definition.
�.

Thanks to dyna-as-hylo we can now define dynamorphisms which will recursively
reuse the annotated structure instead of rebuilding it every time some annotation
is needed (“bottom-up” approach versus “top-down”), thus getting an efficient
algorithm for their computation. Now we could define effectively the Fibonacci
function and others as dynamorphisms (and indeed we do so in the next section),
but first we bring in one more property that connects together a hylomorphism
function definition with a dynamorphism function definition through a natural
transformation.

Theorem 1. Let F and G be endofunctors, ψ : A → GA and ξ : A → FA
coalgebras, ϕ : GB → B an algebra, and σ : FF̃ .→ G a natural transformation.
Then

ψ = σA ◦ θ ◦ [(〈id, ξ〉)]F×

=⇒ hylo(ϕ, ψ)G = dyna(ϕ ◦ σB, ξ)F
(rec-compression)
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Proof. First note that by θ-cancellation the premiss of the implication is equiv-
alent to

ψ = σA ◦ F[(〈id, ξ〉)]F× ◦ ξ

Now, consider the following diagram:

FA

F[(〈f,ξ〉)]

��

F[(〈id,ξ〉)]
���

��

������

A
ξ��

ψ�������������

f

��

FF̃A
σA ��

FF̃f
���

�

�����
�

GA

Gf

��
FF̃B

σB �� GB
ϕ �� B

Here, the square on right corresponds to the hylomorphism and the outer square
to the dynamorphism. The upper square corresponds to the left hand side of
the implication and the lower square is the naturality square of σ, thus both
commute. As the triangle on the left also commutes (due to map-build-fusion),
it is easy to see that the whole square commutes whenever the square on right
does (and vice versa), hence the corresponding sets of functions coincide and
their minimal elements, the dynamorphism and the hylomorphism respectively,
are equal. �.
The rec-compression law expresses a property stating that when the coalgebras
in hylomorphism and dynamorphism are connected by a natural transformation
then we can reuse the algebra in both function definitions.

Intuitively this is the case since dynamic programming technique changes only
the recursion structure of the algorithm and there is no need to update the actual
calculating part of the algorithm. The required relation between the coalgebras
expresses an intuitive fact that the order of recursion in dynamic algorithm must
proceed in such a way that the needed subtask solutions are always (if indirectly)
available. The natural transformation plays the role of projection that restores
one level of the original recursive structure by projecting the annotated values
from the depths of the new annotated recursive structure.

4 Examples

In this section we review four classical dynamic algorithms: Fibonacci numbers,
binary partitioning of numbers, edit distance and longest common subsequence.
In each case we first define it as a hylomorphism and then as a dynamorphism
reusing the algebra as shown in rec-compression law.

4.1 Fibonacci Numbers

The first algorithm we present is that of Fibonacci numbers, which is a very
well known algorithm commonly used for illustrating the dynamic programming
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technique. Though it is a bit too simple (being the only example we consider
that can be expressed as a histomorphism) it is nevertheless useful to illustrate
the mechanics of the transformation from a hylomorphism to a dynamorphism
definition.

Since we already defined the algorithm in the previous section we start with
the hylomorphism definition fibo = hylo(ϕ, ψ)G, where G(X) = 1 + 1 + X2 and
ψ : N → GN, ϕ : GN → N are defined below:

ψ (0) = inj1⊥
ψ (1) = inj2⊥
ψ (n) = inj3 (n− 1, n− 2)

ϕ (inj1⊥) = 0
ϕ (inj2⊥) = 1
ϕ (inj3 (n1, n2)) = n1 + n2

As one can see the intermediate structure hylomorphism is using is that of binary
trees which size is exponential in relation to the size of input. It is also clearly
visible that the coalgebra ψ defines the exact shape of the intermediate structure
producing dependencies for every argument. So ψ(0) and ψ(1) does not have
any dependencies (since their value is constant) and any other natural number
n dependencies are n− 1 and n− 2.

Next we define Fibonacci as a dynamorphism fibo = dyna(ϕ ◦ σ, ξ)F making
use of rec-compression law. We use the fact that natural numbers have a natural
order and it is obvious that both dependencies (n−1 and n−2) comes one after
another in this order. Therefore we can use the base functor for natural numbers
F(X) = 1 + X and define the coalgebra ξ : N → FN as follows:

ξ (0) = inl⊥
ξ (n) = inr (n− 1)

We derive the definition of σ : FF̃ .→ G, by making sure, that the premiss of
rec-compression law is satisfied. For the case n = 0 note that

(θ ◦ [(〈id, ξ〉)]) (0) = inl⊥
Hence, for the case n = 0, we have to define σ (inl ⊥) = inj1⊥. If n > 0, we
have that

(θ ◦ [(〈id, ξ〉)]) (n) = (inr ◦[(〈id, ξ〉)]) (n − 1)

Now, in the case of n = 1, we get

(θ ◦ [(〈id, ξ〉)]) (1) = inrx, where x = [(〈id, ξ〉)]) (0)

= inr x, where 〈ε, θ〉(x) = (0, inl⊥)

In the case of n > 1, we get

(θ ◦ [(〈id, ξ〉)]) (n) = inrx, where x = [(〈id, ξ〉)]) (n− 1)

= inrx, where 〈ε, θ〉(x) = (n− 1, inr y)

and y = [(〈id, ξ〉)]) (n− 2)
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Hence, we can define σ : FF̃ .→ G as follows:

σ (inl ⊥) = inj1⊥

σ (inr x) =

{
inj2⊥ if θ(x) = inl ⊥
inj3(ε(x), ε(y)) if θ(x) = inr y

Note, that the composite algebra ϕ ◦ σ : FF̃N → N is equivalent to that of
used in the previous section to define Fibonacci as a histomorphism. Moreover,
as the coalgebra ξ : N → FN is the final coalgebra of functor F(X) = 1 + X , the
dynamorphism we derived is in fact the very same histomorphism.

4.2 Binary Partitions

Binary partitioning of a number is representing this number as a sum of powers
of 2. The number of binary partitions for a number n is the number of unique
ways to partitions this number (ignoring the order) into powers of 2.

The function can be defined by the following equations:

bp(0) = 1

bp(n) =
{

bp(n− 1), if n is odd
bp(n− 1) + bp(n/2), if n is even

Defining the function as a hylomorphism is quite straightforward. The inter-
mediate structure in this case is a tree with maximal branching factor of two,
i.e., bp = hylo(ϕ, ψ)G, where G(X) = 1 + X + X2 and ψ : N → GN, ϕ : GN → N

are defined below:

ψ (0) = inj1⊥

ψ (n) =

{
inj2(n− 1) if n is odd

inj3(n− 1, n/2) if n is even

ϕ (inj1⊥) = 1
ϕ (inj2 n) = n
ϕ (inj3 (n1, n2)) = n1 + n2

To transform the function to a dynamorphism we notice that again ψ(n) func-
tionally depends on the previous numbers only. However, as the dependencies
have dynamic depth, we need to know the size of the intermediate structure.
Hence we choose the intermediate structure to be a list of natural numbers, i.e.,
the base functor is F(X) = 1+N×X and define coalgebra ξ : N → FN as follows:

ξ (0) = inl⊥
ξ (n) = inr (n, n− 1)

Similarly to Fibonacci function, we derive the definition of σ : FF̃ .→ G, by
making sure, that the premiss of rec-compression law is satisfied. For the case
n = 0 we obviously have to define σ (inl ⊥) = inj1⊥. If n > 0, we notice that
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(θ ◦ [(〈id, ξ〉)]) (n) = inr(n, [(〈id, ξ〉)] (n− 1))

Therefore, if n is odd, we can use ε-cancellation ε([(〈id, ξ〉)]) (n − 1) = n − 1 to
conclude that σ (inr(n, x)) = inj2(ε(x)).

If n is even, we need not only the annotation in the root node but also in the
node which corresponds to n/2. For this, we define a partial function π : F̃A →
F̃A by π(x) = y, if θ(x) = inr(m, y), and denote by πk its k-fold composition.
Using induction over natural numbers, we can show that for k � n

(ε ◦ πk ◦ [(〈id, ξ〉)]) (n) = n− k

Indeed, the base case k = 0 is trivial. For the case k > 0 we have

(ε ◦ πk ◦ [(〈id, ξ〉)]) (n) = (ε ◦ πk−1 ◦ π ◦ [(〈id, ξ〉)]), (n)

= (ε ◦ πk−1[(〈id, ξ〉)]) (n− 1)

= n− 1− (k − 1) = n− k

Now, since the annotated tree we can access is generated by [(〈id, ξ〉)] (n− 1), we
need to take k = n − n/2 − 1 = n/2 − 1. Therefore, we can define the natural
transformation σ : FF̃ .→ G as follows:

σ (inl ⊥) = inj1⊥

σ (inr (n, x)) =

{
inj2(ε(x)) if n is odd

inj3(ε(x), ε(πn/2−1(x))) if n is even

Note that even though the definition bp = dyna(ϕ ◦ σ, ξ)F uses structural recur-
sion it cannot be defined by a single histomorphism. This is due to the need to
know the size of the intermediate structure built so far (one can define it though
as a composition of a histomorphism and a projection).

4.3 Edit Distance

Edit distance is a classical dynamic programming algorithm that measures the
measure of “distance” or “difference” between two strings (i.e. lists of characters
ListC). The algorithm can be defined as follows:

editDist([ ], bs) = #bs
editDist(as , [ ]) = #as

editDist(a:as , b:bs) = min (
editDist(as , b:bs) + 1,
editDist(a:as , bs) + 1,
editDist(as , bs) + (if a = b then 0 else 1))

Here #as denotes the length of the list as .
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The definition above translates fairly straightforwardly to a hylomorphism
editDist = hylo(ϕ, ψ)G, where G(X) = ListC +C2×X3 and ψ : List2C → GList2C ,
ϕ : GN → N are defined below:

ψ ([ ], bs) = inl bs
ψ (as , [ ]) = inl as
ψ (a:as , b:bs) = inr ((a, b), (as , b:bs), (a:as , bs), (as , bs))

ϕ (inl as) = #as
ϕ (inr ((a, b), x1, x2, x3))

= min (x1 + 1, x2 + 1, x3 + (if a = b then 0 else 1))

However translating this definition to a dynamorphism is not as simple. Typ-
ically a matrix is used to accumulate and look up values in the dynamic version
of edit distance algorithm. Matrix however is not an inductive structure and thus
cannot be used as the intermediate structure in the dynamorphism. So instead
of using a matrix we use a walk-through of a matrix—a list of values from the
matrix ordered predictably, e.g. row by row or column by column or wavefront
way. This list is indeed inductive and also corresponds in some way to the recur-
sion used in the edit distance algorithm to walk through and fill in the matrix.
In our case we choose to order row by row (or column by column, depending
how you imagine the matrix).

However, taking such a list for the intermediate structure brings in another
problem—now to project a value from the previous row or column (which we
need in this case) and to build the list recursively we need to know at least one
input string in our coalgebra and its length in the natural transformation. As
these are constant throughout the computation, we give them as an additional
parameter to ξ and σ denoted by subscript. So,

editDist (s1, s2) = dyna(ϕ ◦ σ#s1 , ξs1)F (s1, s2),

where F(X) = (ListC)2 × (1 + X) and ξs1 : List2C → FList2C , σn : FF̃ .→ G are
defined below:

ξcs ([ ], [ ]) = (([ ], [ ]), inl⊥)
ξcs ([ ], b:bs) = (([ ], b:bs), inr (cs , bs))
ξcs (a:as, bs) = ((a:as, bs), inr (as, bs))

σn ((as , bs), inl⊥) = inl [ ]
σn (([ ], bs), inr x) = inl bs
σn ((as , [ ]), inr x) = inl as
σn ((a:as , b:bs), inr x) = inr ((a, b), ε (x), ε (πn x), ε (πn+1 x))

While the definition of σn could be derived similarly to the previous examples,
we do not present the derivation here, as it gets quite complicated.

Note that since the base functor F of edit distance differs from that of binary
partitions the partial function π : F̃A → F̃A is defined here by π(x) = y, if
θ(x) = (s, inr(m, y)), which is also the definition used in the next example.
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4.4 Longest Common Subsequence

Longest common subsequence is another well-known dynamic programming al-
gorithm. It finds the longest character subsequence that is common to both input
strings. It can be defined as follows:

lcs([ ], bs) = [ ]
lcs(as , [ ]) = [ ]

lcs(a:as , b:bs) = if a = b then a:lcs(as , bs)
else (if #lcs(a:as , bs) > #lcs(as , b:bs)

then lcs(a:as , bs)
else lcs(as , b:bs))

The hylomorphism definition comes straight from the above.

G(X) = 1 + C2 ×X3

lcs = hylo(ϕ, ψ)G

ψ ([ ], bs) = inl⊥
ψ (as , [ ]) = inl⊥
ψ (a:as , b:bs) = inr ((a, b), (as , b:bs), (a:as , bs), (as , bs))

ϕ (inl⊥) = [ ]
ϕ (inr ((a, b), x1, x2, x3))

= if a = b then a:x3 else (if #x1 > #x2 then x1 else x2)

When defining the dynamorphism version we have the same problems as with
edit distance and we solve them the same way.

F(X) = (ListC)2 × (1 + X)
lcs(s1, s2) = dyna(ϕ ◦ σ#s1 , ξs1)F (s1, s2)

ξcs ([ ], [ ]) = (([ ], [ ]), inl⊥)
ξcs ([ ], b:bs) = (([ ], b:bs), inr (cs , bs))
ξcs (a:as, b:bs) = ((a:as, b:bs), inr (as, b:bs))

σn ((as , bs), inl⊥) = inl⊥
σn (([ ], bs), inr x) = inl⊥
σn ((as , [ ]), inr x) = inl⊥
σn ((a:as , b:bs), inr x) = inr ((a, b), ε (x), ε (πn x), ε (πn+1 x))

5 Conclusions and Future Work

We have shown that the dynamic programming recursion pattern can be cap-
tured by a generic recursion combinator, dynamorphism, which avoids the recom-
puting of identical substructures. We have identified a simple condition when a
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function defined by a hylomorphism can be redefined as a dynamorphism. While
the transformation is not automatic, it requires of guessing a coalgebra, it allows
to reuse some parts of original definition, namely the algebra. Moreover, after
the coalgebra is given, the another required component of the new definition, a
natural transformation, can often be derived without further guessing.

In all our examples, the intermediate structure used by dynamorphisms was
linear, i.e. some form of lists. Of course, this is to be expected, as one of the
requirements of dynamic programming is the existence of partial order among
the value dependencies, which we have sorted topologically to get a linear order.
While our formulation allows arbitrary tree-shaped intermediate structures, it’s
not clear whether this generality is really useful. Additional restrictions on the
shape of the intermediate structure might provide necessary information for
deriving instead of guessing the corresponding coalgebra. This is an important
area of further work.

It is known that histomorphism is an instance of comonadic recursion [11] and
that the latter can be generalized in a recursive coalgebra setting [4]. What is the
exact relationship between dynamorphisms and comonadic recursive coalgebras
is another interesting topic to study.

Acknowledgments. We are grateful to our anonymous referees for their con-
structive criticism and suggestions. We are also grateful to Jeremy Gibbons for
first pointing out that dynamic programming might provide relevant examples
of histomorphisms, and to Tarmo Uustalu for technical discussions. This work
was partially supported by Estonian Science Foundation grants No. 5567 and
No. 6713.

References

1. Bellman, R.: Dynamic Programming. Princeton Univ. Press, Princeton, NJ (1957)
2. Bird, R.S.: An introduction to the theory of lists. In Broy, M., ed.: Logic of

Programming and Calculi of Discrete Design. Vol. 36 of NATO ASI Series F.
Springer-Verlag, Berlin (1987) 3–42

3. Bird, R., de Moor, O.: Algebra of Programming. Vol. 100 of Prentice Hall Int.
Series in Computer Science. Prentice Hall, London (1997)

4. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform.
and Comput. 204(4) (2006) 437–468

5. Fokkinga, M.: Law and Order in Algorithmics. PhD thesis. Dept. of Informatics,
Univ. of Twente (1992)

6. Gibbons, J.: Calculating functional programs. In Backhouse, R.C., Crole, R.L.,
Gibbons, J., eds.: Revised Lectures from Int. Summer School and Wksh. on Al-
gebraic and Coalgebraic Methods in the Mathematics of Program Construction.
Vol. 2297 of Lect. Notes in Comput. Sci., Springer-Verlag, Berlin (2000) 149–202

7. Hagino, T.: A Categorical Programming Language. PhD thesis CST-47-87. Labo-
ratory for Foundations of Computer Science, Dept. of Computer Science, Univ. of
Edinburgh (1987)

8. Malcolm, G.: Data structures and program transformation. Sci. of Comput. Pro-
gram. 14(2–3) (1990) 255–279



252 J. Kabanov and V. Vene

9. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In Hughes, J., ed.: Proc. of 5th ACM Conf.
on Functional Programming Languages and Computer Architecture, FPCA ’91.
Vol. 523 of Lect. Notes in Comput. Sci. Springer-Verlag, Berlin (1991) 124–144

10. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica 10(1) (1999) 5–26

11. Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic J. of
Computing 8(3) (2001) 366–390

12. Vene, V.: Categorical Programming with Inductive and Coinductive Types. PhD
thesis. Vol. 23 of Diss. Math. Univ. Tartuensis. Dept. of Computer Science, Univ.
of Tartu (2000)



Bimonadic Semantics for Basic Pattern
Matching Calculi

Wolfram Kahl, Jacques Carette, and Xiaoheng Ji

Department of Computing and Software, McMaster University,
Hamilton, Ontario, Canada L8S 4K1

kahl@cas.mcmaster.ca, carette@cas.mcmaster.ca

Abstract. The pattern matching calculi introduced by the first author
are a refinement of the λ-calculus that integrates mechanisms appropriate
for fine-grained modelling of non-strict pattern matching.

While related work in the literature only uses a single monad, typically
Maybe, for matchings, we present an axiomatic approach to semantics of
these pattern matching calculi using two monads, one for expressions
and one for matchings.

Although these two monads only need to be relatively lightly coupled,
this semantics implies soundness of all core PMC rules, and is a useful
tool for exploration of the design space for pattern matching calculi.

Using lifting and Maybe monads, we obtain standard Haskell seman-
tics, and by adding another level of Maybe to both, we obtain a de-
notational semantics of the “matching failure as exceptions” approach
of Erwig and Peyton Jones. Using list-like monads opens up interesting
extensions in the direction of functional-logic programming.

1 Introduction

Although (pure) functional programming in general is very accessible to equa-
tional reasoning, the addition of pattern-matching function definitions introduces
non-equations looking like equations, for example the second line in

isEmptyList (x : xs) = False
isEmptyList ys = True

The operational semantics of such definitions employs the functional rewriting
strategy defined over several pages by Plasmeijer and van Eekelen [17] or, es-
sentially equivalently, in the section on case expressions in the Haskell report
[16]. This implies that syntactic use of the definitions of a program in reasoning
about that program has to take into account that complex strategy, and loses
the simplicity of equational reasoning.

The pattern matching calculus (PMC) introduced by Kahl [11] remedies this
situation. It separates pattern matching aspects into a separate syntactic cat-
egory of “matchings”, not unlike groups of “case branches p -> e” considered
by Harrison et al. [7], but with an additional “argument supply” constructor
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c© Springer-Verlag Berlin Heidelberg 2006



254 W. Kahl, J. Carette, and X. Ji

that rationalises and generalises the pattern guards proposed by Erwig and Pey-
ton Jones [4]. PMC is equipped with a confluent (second-order) rewriting system,
thereby enabling equational reasoning starting from the definitions of a program.
The rewriting system directly gives a normalisation strategy [11].

PMC allows straightforward internalisation of pattern matching definitions
without the ballast of having to introduce the new variables necessary as case
arguments (the syntax will be explained in detail in Sect. 2):

isEmptyList = { (x : xs)⇒ �False� ys ⇒ �True� }
Application to the empty list [] induces the following reduction sequence:

isEmptyList [] −→ { (x : xs)⇒ �False� ys ⇒ �True� } []
−→ { [] � ((x : xs)⇒ �False� ys ⇒ �True�) }
−→ { [] � (x : xs)⇒ �False� [] � ys ⇒ �True� }
−→ { [] � ys ⇒ �True� }
−→ { [] � ys ⇒ �True� }
−→ { �True� }
−→ True

There is also a “conservative embedding” of the λ-calculus into PMC: Application
is the same, and abstraction translates into a one-alternative variable-pattern
matching:

λ v . e := { v ⇒ �e� }
With this definition, β-reduction can be emulated by a three-step reduction se-
quence in PMC (the reduction rules are listed in Fig. 2 and explained in App. A):

(λ v . e) a = { v ⇒ �e� } a
−−−→
({ }@)

{ a � v ⇒ �e� }
−−−→

(�v)
{ �e�[v\a] }

= { �e[v\a]� }
−−−→
({ �� })

e[v\a]

β-normal forms translate into PMC normal forms, and PMC reduction sequences
starting from translations of λ-terms essentially correspond to β-reduction se-
quences, so the embedding is faithful.

Pattern guards extend Boolean guards with the ability to bind additional
variables; Peyton Jones’ standard example is:

clunky env v1 v2 | Just r1 <- lookup env v1
, Just r2 <- lookup env v2 = r1 + r2
| otherwise = v1 + v2

This directly translates into PMC, with a slightly different structure (with ap-
propriate conventions, we could omit more parentheses):
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clunky = { env ⇒ v1 ⇒ v2 ⇒ ((lookup env v1 � Just(r1)⇒
lookup env v2 � Just(r2)⇒ �r1 + r2�)
�v1 + v2�)

}
PMC is really a family of calculi based on a common core syntax: starting from
the rewriting system corresponding to Haskell evaluation or the standard func-
tional strategy and exchanging a single rule, we obtain a system that corresponds
to Erwig and Peyton Jones’s proposal [4] to treat pattern matching failure as an
exception that can be caught in the same or in another case expression.

In this paper, we provide a semantic basis for the exploration of these and
further pattern matching calculi by giving a compositional monadic semantics for
the core PMC syntax. The interesting aspect is that the two syntactic categories
of PMC correspond to two separate monads that are, in general, only relatively
lightly coupled. As we fundamentally use the separate notions of “computation”
in each syntactic category, it is very natural to use a monadic formalism, and
from there to continue using a categorical setting throughout for our semantics. It
has been suggested to us that using a metalanguage like that of [15] could clarify
our presentation; while we agree with this, we do not yet know how to model the
necessary “pointwise extensions” we need (see Sect. 4.1) in the metalanguage.
Thus we have opted to stay with a purely categorical presentation.

The main contributions of this paper are the clean separation of concerns
between the (monadic) semantics of expressions and of matchings, the crucial
observation that the interpretation of function types must be different for match-
ings and expressions, and a clean isolation of the design choices available when
considering pattern-matching semantics. Another important technical ingredient
was the need to create appropriate “pointwise extensions” of operations in the
base monads to function types — something routinely done in mathematics but
seldom done in statically typed programming languages.1

After presenting and explaining the abstract syntax of simply typed PMC in
the next section, we fix some category-theoretical notation and terminology in
Sect. 3.1 before defining the bimonadic PMC semantics in Sect. 4. In Sect. 5
we give the soundness theorem for the core reduction rules from [11] (listed in
Appendix A) with respect to our semantics without further constraints on the
two monads, and explain the core of its proof steps. We then start an exploration
of possible bimonadic constellations for alternative interpretations of PMC in
Sect. 6.

2 Abstract Syntax

PMC has two major syntactic categories, expressions and matchings. These are
defined by mutual recursion.

1 MapleTMand MathematicaTMboth overload arithmetic operators so that f +g means
pointwise addition, but both of these languages are dynamically typed.
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When considering the analogy to functional programs, only expressions of the
pattern matching calculus correspond to expressions of functional languages.

Matchings can be seen as a generalisation of (groups of) case alternatives.
Matchings can expose patterns to be matched against arguments; we say such
matchings are waiting for argument supply, and give them function types. Com-
plete case expressions correspond to expressions formed from matchings that
already have an argument supplied to their outermost patterns; matchings that
have arguments supplied to all their open patterns are called saturated. Argu-
ment supply to patterns is separated from performing pattern matching itself;
depending on the outcomes of the involved pattern matchings, saturated match-
ings can succeed and then return an expression, or they can fail.

Patterns form a separate, auxiliary syntactic category that will be used to
construct pattern matchings.

In this paper, we will consider a class of simply-typed pattern matching cal-
culi with common syntax; the abstract syntax of these calculi is defined by the
following grammar:

Pat ::= Var variable
| Constr(Pat, . . . ,Pat) constructor pattern

Expr ::= Var variable
| Constr(Expr, . . . ,Expr) constructor application
| Expr Expr function application
| { Match } (function) extraction
| fixType fixed-point combinator
| 3Type empty expression

Match ::= �Expr� lifting
| Type failure
| Pat ⇒ Match pattern matching
| Expr � Match argument supply
| Match Match alternative

Since this syntax has a number of unusual aspects, we explain the intuition
behind it in more detail below.

Throughout this paper, we will use the following conventions for meta-level
variables:
– α. αi , β, . . . are types; τ , τi are constructed types.
– v , vi , wi , x , xi , y, yi are variables; c, d are constructors.
– p, p1, p2, . . ., q are patterns; m, m1, m2, . . . are matchings,
– a, b, e, e1, e2, . . ., f are expressions,
– i , k , n are natural numbers,

Types are generated from data type constructors and the function type construc-
tor. Technically, we assume a family (TConstrk )k∈N of disjoint countable sets of
data type constructors of arity k , and types are generated by:

Type ::= TConstrk (Type1, . . . ,Typek ) constructed types
| Type → Type function types
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For the sake of simplicity, we do not consider polymorphism in this paper, so
there are no type variables, and therefore no concept of principal types; each
well-typed expression or matching has exactly one type.

We then assume that the set of constructors is organised as a family of disjoint
countable sets Constrα1×···×αn→τ for all types α1, . . . , αn , τ .

We also assume that the set of (expression) variables is organised as a family
of disjoint countable sets

Var =
⊎

α∈Type

Varα

and a function type : Var → Type to be given such that v ∈ Vartype v for each
variable v ∈ Var. Type judgements then need no context.

For the purpose of our examples, all literals, like numbers and characters,
are assumed to be constructors of appropriate types, and are used only in zero-
ary constructions (which are written without parentheses). Constructors will,
as usual, be used to build both patterns and expressions. Indeed, one might
consider Pat as a subset of Expr.

Typing judgements expressing that pattern p, expression e, respectively
matching m are well-typed of type α are written in the following way:



P

p : α 

E

e : α 

M

m : α

Patterns are built from variables and constructor applications. All variables
occurring in a pattern are free in that pattern; for every pattern p : Pat, we
denote its set of free variables by FV(p). In the following, we silently restrict
all patterns to be linear, i.e., not to contain more than one occurrence of any
variable. The pattern typing rules are as follows:



P

v : type v
c ∈ Constrα1×···×αn→α 


P
p1 : α1 · · · 


P
pn : αn



P

c(p1, . . . , pn) : α

Expressions are the syntactic category that embodies the term construction as-
pects; besides variables, constructor application and function application, we
also have the following special kinds of expressions: Every matching m gives
rise to the (function) extraction {m }. If the type of matching m is a function
type, then {m } extracts a function from m. If m is not a pattern matching
again, then it can either succeed or fail; if it succeeds, then {m } extracts the
value(s) “returned” by m; otherwise, {m } extracts “nothing”, which can also be
expressed as the expression 3, which is henceforth called the empty expression.

We use this somewhat uncommitted name “empty expression” since we shall
consider two interpretations of 3:
– It can be a “manifestly undefined” expression equivalent to non-termination,

following the common view that divergence is semantically equivalent to run-
time errors.

– It can be a special “error” value, propagating matching failure considered as
an “exception” through the syntactic category of expressions.
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None of the expression constructors binds any variables; we overload the FV( )
notation and use it to denote the set of free variables FV(e) for an expression
e : Expr. Expressions are typed according to the following rules:



E

v : type v 

E

fixα : (α→ α) → α 

E
3 : α



M

m : α



E
{m } : α

c ∈ Constrα1×···×αn→α �
E

e1 : α1 · · · �
E

en : αn

�
E

c(e1, . . . , en ) : α

�
E

e1 : α→ β �
E

e2 : α

�
E

(e1 e2) : β

Matchings are the syntactic category that embodies the pattern analysis aspects:

– For an expression e : Expr, the lifting or expression embedding �Expr� can be
seen as the matching that always succeeds and attempts to lift the result e
into the enclosing expression, so we propose to read it “lift e”.

– Failure is the matching that always fails.
– The pattern matching p ⇒ m waits for supply of one argument more than

m; this pattern matching can be understood as succeeding on instances of
the (linear) pattern p : Pat and then continuing to behave as the resulting
instance of the matching m : Match. It roughly corresponds to a single
case alternative in languages with case expressions, or to pattern-binding
λ-abstractions.

– argument supply a � m is the matching-level incarnation of function appli-
cation, with the argument on the left and the matching it is supplied to on
the right. It saturates the first argument m is waiting for. “a � m” can be
read “a into m” or “a feeds m”. The inclusion of argument supply into the
calculus is an important source of flexibility. By separating the aspects of
traversing the boundary between expressions and matchings, and matching
patterns against the right arguments, the design of the reduction system is
made more modular.

– the alternative m1 m2 combines the possible matching results of m1 and m2
in some way that can usefully be understood as “alternative”. In instances
corresponding to conventional functional programming, it has to be under-
stood sequentially: m1 m2 then behaves like m1 until this fails, and then
(and only then) it behaves like m2.

The typing rules for matchings are again straight-forward:



M

: α


P

p : α 

M

m : β



M

(p ⇒ m) : α→ β



E

e : α 

M

m : α→ β



M

(e � m) : β



E

e : α



M

�e� : α



M

m1 : α 

M

m2 : α



M

(m1 m2) : α
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Pattern matching p ⇒ m binds all variables occurring in p, so FV(p ⇒ m) =
FV(m)− FV(p), letting FV(m) denote the set of free variables of a matching m.
Pattern matching is the only variable binder in this calculus — taking this into
account, the definitions of free variables, bound variables, and substitution are
as usual. Note that there are no “matching variables”; variables can only occur
as patterns or as expressions.

We will omit the parentheses in matchings of the shape a � (p ⇒ m) since
there is only one way to parse a � p ⇒ m in PMC.

As-Patterns and Irrefutable Patterns
Several “more advanced” pattern matching facilities have been proposed in the
literature; Haskell98 defines two of those, namely as-patterns and irrefutable
patterns. Both are defined via syntactic translations in the Haskell98 report. For
as-patterns, the following translation is used:

case v of{x@p → e; → e ′} = case v of{p → (λ x → e) v ; → e ′}

In PMC, we can arrange this slightly more economically, thanks to the possi-
bility to have sequential matchings — in Haskell with pattern guards, the same
approach would be possible:

x@p ⇒ m = x ⇒ x � p ⇒ m

Although irrefutable patterns appear to be much more intricate, the Haskell98
report formally defines these using a straight-forward translation:

case v of{ p̃ → e; → e ′}
= (λ x1 . . . xn → e) (case v of{p → x1}) . . . (case v of{p → xn})

where x1, . . . , xn are all the variables in p

Non-strictness implies that matching (with potential failure) is only performed
when evaluation of e requires one of the xi . We can follow the same approach:

p̃ ⇒ m = y ⇒ (y � p ⇒ x1) � x1 ⇒ . . . (y � p ⇒ xn) � xn ⇒ m
where x1, . . . , xn are all the variables in p and y is a new variable.

The above two translations could be used as reduction rules. Another option is
to restrict ourselves to a core calculus where only variables can be arguments
of constructors in patterns; then the above two translations turn into expansion
rules and we can consider as-patterns and irrefutable patterns as syntactic sugar.
This approach also requires an expansion rule for nested patterns, considering
them as just an abbreviation for sequential matchings:

c(p1, . . . , pn)⇒ m := c(y1, . . . , yn)⇒ y1 � p1 ⇒ · · · yn � pn ⇒ m
where y1, . . . , yn are distinct new variables.

With this, pattern semantics becomes slightly easier to formulate, but nothing
else really changes.
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3 PMC Monads

We will define the semantics for PMC in an abstract categorical setting; we
assume some “standard” familiarity with category theory basics (some more
details are supplied in the appendix). We quickly introduce the notations we
need in Sect. 3.1, then characterise the bi-monadic setting for PMC-semantics in
Sect. 3.2, and also explain some simple instances of this setting.

3.1 Summary of Categorical Notation

We will define the semantics for PMC in an abstract categorical setting; in this
section we assume some “standard” familiarity with category theory basics, and
quickly introduce the notations we need.

We write f : a → b for a morphism with source object a and target object b.
The identity on object a is ida , and composition of morphisms f : a → b and
g : b → c is written f ;g.

We assume a choice × of binary products with projections fsta,b : a × b → a
and snda,b : a × b → b, and morphism pairing 〈f , g〉 : c → a × b for morphisms
f : c → a and g : c → b. We will denote by terma : a → 1l the unique morphism
into the terminal object 1l.

As we restrict ourselves to cartesian closed categories, for every two objects
a and b, there are an exponential object (for “functions from a to b”) written
[a → b], a “function application” morphism eval[a→b] : [a → b] × a → b, and
a currying operation Λ that maps every morphism f : c × a → b to the unique
morphism Λf : c → [a → b] such that (Λf × ida );eval[a→b] = f .

We essentially follow Barr and Wells [1] in adopting the following notations:
we write Πi : I • a(i) for the indexed (but not necessarily ordered) product
over the finite index set I, with component a(i) for index i ; the projection to
the sub-product indexed by elements of a subset J ⊆ I is

projaI�J : (Πi : I • a(i)) → (Πi : J • a(i)) .

We identify singleton products with their components: (Πi : {j} • a(i)) = a(j ).
We will follow category theoretic usage in writing both the object mapping

and the morphism mapping of a functor as an application of the functor name
so that for a functor H and a morphism f : a → b we have H f : H a → H b.

A monad is a triple (M , returnM , joinM ) consisting of a functor M together
with two natural transformations which, for readability, we also present as poly-
morphic morphisms:

returnM : id → M , i.e., returnM
a : a → M a

joinM : M ;M → M , i.e., joinM
a : M (M a) → M a

Every monad M gives rise to a so-called Kleisli category; it has returnM mor-
phisms as identities, and for arrows f : a → M b and g : b → M c, composition
is defined as:

f 4M g : a → M c
f 4M g = f ; M g ; joinM

c
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An additive monad in addition has two natural transformations

zeroM : 1l→ M , i.e., zeroM
a : 1l→ M a

plusM : M ×M → M , i.e., plusMa : M a ×M a → M a

with zeroM being (up to the canonical isomorphisms) a right and left unit for
plusM , and plusM associative.

As Moggi explains in [15], we need strong monads for being able to deal with
expressions with more than one free variable; a strong monad M has a natural
transformation

strengthLM
a,b : a ×M b → M (a × b)

called tensorial strength satisfying several properties. Using the isomorphism
(swapa,b from a×b to b×a), we can define the “swapped version” strengthRM

a,b :
M a × b → M (a × b). This allows us to define

⊗M : (M a ×M b) → M (a × b) ,

as well as an n-ary version, denoted
⊗

M, defined via folding over ordered tuples.

3.2 The Bi-monadic Setting

We need a monad E for the expression semantics, and an additive monad M for
the matching semantics, so we have zeroM and plusM. In addition, there should
be two natural transformations

extract : M → E , i.e., extracta : M a → E a
lift : E → M , i.e., lifta : E a → M a

satisfying the following additional laws:
lift;extract = idE , i.e., lifta ;extracta = idE a (lift;extract)
returnE;lift = returnM , i.e., returnE

a ;lifta = returnM
a (returnE;lift)

The law (lift;extract) ensures that lifta is injective; a further consequences of
these laws is:

returnM
a ;extracta = returnE

a ;lifta ;extracta = returnE
a .

Although it is tempting to demand that lift and extract should be monad ho-
momorphisms, i.e., not only preserve return, but also join, we have not found
it necessary to make that assumption for proving that the core PMC reduction
rules are sound with respect to the semantics given in Sect. 4.

Two particularly simple patterns of binmonadic settings will cover most of
the examples discussed in Sect. 6:

Setting 3.2.1 (M = E)
We can use the same monad in both rôles of matching monad and expression
monad, with identical natural transformations for extract and lift. Such a setting
trivially satisfies the laws (lift;extract) and (returnE;lift).
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Setting 3.2.2 (M = E + 1l)
More interesting is the case where the image of zeroM

a is disjoint from the image
of lifta .

On the first class of settings we consider, the matching monad M is the
monad coproduct [13] of the expression monad E and the constant monad 1l.
This gives us as the two monad coproduct injections the natural transformations
lift : E → M and zeroM : 1l → M; since these commute by definition with return
and join, the law (returnE;lift) is automatically satisfied.

For any choice of monad homomorphism emptyE : 1l → E, we then define
extract : M → E as the mediating morphism extract := [idE, emptyE], and from
the coproduct definition we immediately obtain (lift;extract).

For the additive part of M, we still need to define plusM : M × M → M.
To be able to essentially follow the additive pattern of the Maybe monad, we
restrict ourselves to cases where there is a distribution isomorphism distrLE,1l
from M×M = (E + 1l)×M to (E×M) + (1l×M), so we can define:

plusM = distrLE,1l ; [fstE,M , snd1l,M]

4 Monadic PMC Semantics

The semantics in this section is very much influenced by previous work, more
specifically [14, 15, 9].

4.1 Type Semantics

The interpretation of function types is different for matchings and expressions.
Therefore, for defining type semantics in the setting of the two monads E and
M, we will use K ∈ {E,M} as a meta-variable to unify treatment of expression
and matching semantics.

For each of our two syntactic categories of expressions and matchings, we will
define below two different type semantics (both parameterised with a monad K)
for each type α:

– the “raw” type semantics [[α]]K, and
– the “standard” type semantics [[α]]K.

As a mnemonic rule, one could remember that “superscript semantics” [[α]]K =
K [[α]]K is, in a generalised way, “in” the monad, while subscript [[α]]K semantics
only “involves” the monad, where “involving” means that the type typically is
a container of items “in” the monad.

Constructed Types
For each constructed type τ , the type semantics is obtained from the raw type
semantics by application of the corresponding monad:

[[τ ]]K = K [[τ ]]K ,
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and the “raw” semantics [[τ ]]K is the direct sum (over all constructors produc-
ing this type) of the direct products of the corresponding constructor argument
types.2 Since constructor applications take expressions as arguments, these ar-
gument types have to be wrapped in the expression semantics monad E — the
raw semantics of constructed types τ does indeed not depend on K.

[[τ ]]K =
⊎

n∈N,(c:α1×···×αn→τ)∈Constr

[[α]]E

where we use [[α]]E to denote

[[α1]]E × · · · × [[αn ]]E

A constructor c : α1×· · ·×αn → τ is then interpreted by the corresponding con-
structor injection cE : [[α]]E → [[τ ]]E together with the corresponding destructor
morphism:

c̃E : [[τ ]]E → M ([[α]]E)

such that cE;c̃E = returnM
[[α]]E

and, if c = d , with d : β1 × · · · × βn → τd , then:

dE;c̃E = termC
[[β]]E

;zeroM
[[α]]E

Function Types
Now consider the raw semantics of function types. Since all application con-
structs of the PMC syntax (constructor application, function application, and
argument supply) take expressions as arguments, the argument type in the K-
semantics will always be the expression type semantics of the argument type β.
The result type however depends on the context, and will therefore be the (raw)
K-semantics of the result type γ:

[[β → γ]]K = [[[β]]E → [[γ]]K]

[[β → γ]]K = [[[β]]E → [[γ]]K]

In order to ease analysis of our semantics, we provide essentially full type infor-
mation, but this tends to blow up our notation. We therefore incorporates the
function type semantics pattern into a variant notation for eval:

EvalKβ,γ : [[β → γ]]K × [[β]]E → [[γ]]K

EvalKβ,γ := eval[[[β]]E→[[γ]]K]

2 Since, normally, only finite sets of constructors are considered, practical applications
only require finite sums to exist in the underlying category.
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Point-Wise Extension Combinators
Since the semantics of function types is not directly monadic, we need a gen-
eralisation of Kleisli composition: If f : q → K r and g : r → [[α]]K, then
(f K

α g) : q → [[α]]K is defined by:

f K
τ g = f 4K g

f K
β→γ g = Λ

(
((f × id[[β]]E);strengthRK

r ,[[β]]E) K
γ ((g × id[[β]]E);EvalKβ,γ)

)
This behaves “mostly like” Kleisli composition: we have (f ;g) K

α h = f ;(g K
α h),

so we can omit those parentheses, and we also have returnK
r K

α g = g.
Because of the way we treat of function types, we shall frequently need a

construction that corresponds to “point-wise extension to function types” of the
composition f ;t[[τ ]] of a morphism f : q → [[τ ]]K with a transformation t : K →
H. For this purpose, we define a following “generalised composition” operation
inductively over the function type structure.

If f : q → [[α]]K, then [q f ; α t ] : q → [[α]]H is defined by:3

[q f ; τ t ] = f ;t[[τ ]]

[q f ; β→γ t ] = Λ[q×[[β]]E (f × id[[β]]E);EvalKβ,γ ; γ t ]

This even works for K = 1l since the constant functor 1l is trivially a strong
monad; in this case all f arguments are morphisms to the terminal object 1l.

Similarly, we need a “pointwise extension” of plusM to function types: For two
morphisms g1, g2 : q → [[α]]M, we define g1 �α g2 : q → [[α]]M as:

g1 �τ g2 = 〈g1, g2〉;plusM g1 �β→γ g2 = Λ

⎛⎝ (g1 × id[[β]]E);EvalMβ,γ

�γ

(g2 × id[[β]]E);EvalMβ,γ

⎞⎠
The following properties enable high-level reasoning using the point-wise exten-
sion combinators defined above; the proofs can be found in [10]:

([q f ; β→γ t ]× g);EvalHβ,γ = [q×r (f × g);EvalKβ,γ ; γ t ]

f ;[r g ; α t ] = [q f ;g ; α t ]

[q [q f ; α t ] ; α u ] = [q f ; α t ;u ]

f ;(g1 �α g2) = f ;g1 �α f ;g2

((g1 �β→γ g2)× h);EvalHβ,γ = ((g1 × h);EvalHβ,γ) �γ ((g2 × h);EvalHβ,γ)

3 Note that the transformation t has to be mentioned in [q f ; α t ] without type
argument, since it will be instantiated as ta : K a → H a at different types a.
Also note that we put the subscript q not close to the box, but after the opening
parenthesis, since q is the type “before f ”.
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4.2 Organisation of the Semantic Functions

While in strict languages, in the rewriting semantics only values can be substi-
tuted for variables, and analogously only values need to be bound to variables
by the valuations in the denotational semantics, we are here targeting non-strict
languages, where the operational semantics can substitute arbitrary expressions
for variables, and therefore, analogously, the type of the denotational variable
semantics has to coincide with that of the expression semantics. The object as-
sociated with a variable is therefore the E-image of the object that interprets
the variable’s type.

Pattern semantics:

[[p]]Pα : [[α]]E → M (FV(p)E)

[[v ]]P = returnM
vE

[[c(p1, . . . , pn)]]Pτ = lift[[τ ]] �M cE �M (([[p1]]P × · · · × [[pn ]]P); )
for c : α1 × · · · × αn → τ .
The target type here is isomorphic to M (Πv : FV(p) • [[type(v)]]E); for the sake
of conciseness we consider these two types as identified.

Expression semantics:

[[e]]EV,α : VE → [[α]]E

[[v ]]EV = proj
E

V�{v}

[[c(e1, . . . , en)]]EV = 〈[[e1]]EV , . . . , [[en ]]EV〉;cE;returnE
[[α]]E

[[f a]]EV,γ = 〈[[f ]]EV,β→γ , [[a]]EV,β 〉;EvalEβ,γ

[[{m }]]EV,α = [VE [[m]]MV,α ; α extract ]
[[�α]]EV = [VE termC

VE ; α zeroM;extract ]

Matching semantics:

[[m]]MV,α : VE → [[α]]M

[[�e�]]MV,α = [VE [[e]]EV ; α lift ]
[[ α]]MV,α = [VE termC

VE ; α zeroM ]
[[a  m]]MV,γ = 〈[[m]]MV,β→γ , [[a]]EV,β 〉;EvalMβ,γ

[[m1 m2]]MV,α = [[m1]]MV,α �α[[m2]]MV,α

[[p ⇒ m]]MV,β→γ = Λ (proj
E

V�U × [[p]]Pβ) ; strengthLM
UE,FV(p)E M

γ [[m]]MU⊕FV(p),γ

where U = V \ FV(p), and a product rearrangement morphism is again omitted

Fig. 1. PMC semantics
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For the sake of conciseness and readability, we abbreviate the object corre-
sponding to the type of a variable v by

vE := [[type(v)]]E

and also introduce similar notation for each set V of variables:

VE := Πv : V • [[type(v)]]E

Since we want the reduction rules to translate into semantic equations, both sides
of a rule always have to be interpreted in a compatible way; since the reduction
rules do not preserve all free variables, we have to externally impose a source
object for the semantic morphisms.

Therefore, given a variable set V , we define the semantics of an expression e
of type α with FV(e) ⊆ V as a morphism from the product corresponding to the
variable set V to the object corresponding to α:

[[e]]EV,α : VE → [[α]]E

(When the type α is clear from the context, we write [[e]]EV instead of [[e]]EV,α, and
analogously for the other semantics functions.)

For each matching m of type α, we define its semantics as a morphism in the
Kleisli category for M from the variables to the result type:

[[m]]MV,α : VE → [[α]]M

Finally, to each pattern p of type α, we associate a morphism in the Kleisli
category of M from the object used for expression semantics of type α to the
object corresponding to the set of free variables of the pattern:

[[p]]Pα : [[α]]E → M (FV(p)E)

Constructor pattern semantics have to be “strict” as can be seen from the first
occurrence of 4M in the corresponding clause in Fig. 1.

The definitions for all three semantics functions are listed in Fig. 1.

5 Soundness of the Core Reduction Rules

For the core reduction rules of PMC listed in Fig. 2 (see [11] and Appendix A
for more explanation), we prove the following soundness result in appendix [10]:

Theorem 5.1 All core reduction rules listed in Fig. 2 are sound at arbitrary
types.

Here is a quick summary of which assumptions were crucial for the proofs to
succeed; the detailed proofs, to be found in [10], mostly proceed at the level of
the semantics definitions of Fig. 1, thanks to the properties of the “pointwise
extensions” operators ; α and �α listed in Sect. 4.1.
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m −→
M

m ( ) e  (m1 m2) −→
M

(e  m1) (e  m2) ( )

{ } −→
E
� ({ }) { �e� } −→

E
e ({ �� })

� e −→
E
� (�@) {m } a −→

E
{ a  m } ({ }@)

e  −→
M

( ) a  �e� −→
M

�e a� (��)

a  v ⇒ m −→
M

m[v\a] (v)

d(e1, . . . , ek )  c(p1, . . . , pn )⇒ m −→
M

if c �= d or k �= n (d  c)

c(e1, . . . , en )  c(p1, . . . , pn )⇒ m −→
M

e1  p1 ⇒ · · · en  pn ⇒ m (c  c)

if FV(c(e1, . . . , en )) ∩ FV(c(p1, . . . , pn )) = {}

Fig. 2. PMC core reduction rules

– ( ) relies on zeroM
τ being a left-unit for plusMτ .

– (� ) relies crucially on the type-dependent, recursive definition of �.
– ({ }) relies on compositionality for ; α.

– ({ �� }) is because liftτ ;extractτ = idτ

– ({ }@) and (���) are both a reflection of the symmetry of the rules for supply
and application, as well as commutativity of � and Eval.

– (3@) and (� ) rely on the same properties as ({ }@) and (���), but also on
the definition of 3 and at function types, which reflect their being defined
“pointwise”.

– (�v) corresponds to β-reduction in λ-calculi, and relies on standard categor-
ical and monadic properties.

– (c � c) relies crucially on the fact that cE;c̃E = returnM
E [[α]]E→[[τ ]], as well on

returnM
a ;extracta = returnE

a , and on Λ being able to curry multiple variables.
– (d � c) relies on dE;c̃E = termC

[[β]]E
;zeroM

[[α]]E
for d = c, and on propagation of

zeroM by strength.

6 Using Different Monad Instances

Depending on the choice of monads E and M, additional rules become sound.
In deterministic functional programming, we have a rule that turns expression
matchings into left-zeros for alternative, and so essentially prohibits backtracking
(and non-deterministic choice):

�e� m −→
M

�e� (�� )

For the case where an empty expression is matched against a constructor pattern,
[11] offers two different right-hand sides:
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– The first rule corresponds to interpreting the empty expression as equivalent
to non-termination, as usual in Haskell:

3 � c(p1, . . . , pn)⇒ m −→
M

�3 � (3 � c → 3)

– The second rule corresponds to interpreting the empty expression as propa-
gating the exception of matching failure as in the approach proposed in [4],
this rule “resurrects” that failure:

3 � c(p1, . . . , pn)⇒ m −→
M

(3 � c → )

For each of the resulting rule sets, we now show a monadic setting making all
the rules sound, and then go on to explore more general monads.

Haskell uses a non-strict cpo semantics where all objects have a least element
undefined, but morphisms need not preserve this least element. Therefore, the
essential building block of Haskell semantics is the “Haskell monad” H, which
we define to be the lifting monad H := ( )⊥ over an appropriate cartesian closed
category (CCC) of cpo’s.

6.1 Haskell

For standard Haskell semantics, we choose the above Haskell monad as the ex-
pression monad E := H, and complete this to a bimonadic setting as in Setting
3.2.2 with M = E + 1l, choosing emptyE : 1l→ E so that it maps failure to ⊥.

This corresponds to the approaches used by Tullsen [19] and Harrison et al.
[7, 8] which all essentially employ the Maybe monad for this kind of purpose.

This setting also makes the rules (�� |) and (3 � c → 3) sound — which
proves that PMC� as defined in [11] appropriately implements the semantics of
Haskell.

6.2 Matching Failure as Exception

To achieve a semantics that is consistent with [4], and treats matching failure as
exception that can be caught by other matching alternatives, 3 needs to be a
zero for the expression monad E, which can chose as E = H + 1l. If we complete
this via Setting 3.2.1 with M = E, then this equates the semantics of and �3�,
and makes rule (3 � c → ) sound. But it also has as consequence that the rule
(�� ), which corresponds to (deterministic) functional programming, introduces
inconsistencies, e.g.:

3 = { �3 � } = { �3 � �42� } != { �42� } = { �42� } = 42

So this semantics informs us that in this case, we should not use the general rule
(�� ), but only restricted rules, e.g. �c(eq , . . . , en)� m −→

M
�c(eq , . . . , en)�.
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6.3 Functional-Logic Programming

Lazy functional-logic programming (FLP) extends lazy-functional programming
with logic variables and non-deterministic choice and the ability that any ex-
pression evaluates to “multiple values”. This kind of choice can be modelled for
example using a list monad, a tree monad, or the LogicT monad of Kiselyov et
al. [12].

By using this kind of monad both for M, where choice originates in PMC, and,
following Setting 3.2.1 with E = M, also for the expression monad, to which it
needs to propagate in FLP, we obtain an appropriate semantics for the fragment
of FLP that can be expressed with the syntax of PMC as presented here. The
pointwise extension behaviour of alternative in our semantics actually exactly
corresponds to the way choice is treated in the functional-logic programming
language Curry [5, 6]. (To obtain the full expressive power of FLP, we need to
extend the pattern syntax with the third alternative of call-by-value variables
— the details are beyond the scope of the present paper.)

6.4 Choice

A particularly interesting situation arises when the list monad is chosen for
M, but just partiality for E. Then we get all possible matches, yet we must
then return only a single valid result. This can be very useful in some situ-
ations where we have either an intrinsic measurement of “better” choices, or
where choice is inevitable but inessential. The same algorithm, Gaussian Elim-
ination, can serve as an example of both of these situations. [3] shows how for
many different domains, there is an intrinsic notion of “better than” for the pur-
poses of pivot choice. On the other hand, [18] shows that either multi-valuedness
or non-determinism are necessary ingredients even for single-valued functions
(like Gaussian Elimination) if one wishes to be fully abstract, in other words
representation-independent. Correspondingly, the “better than” notions of [3]
are generally representation-dependent. Having a convenient programming lan-
guage where we can disentangle these issues would clearly be beneficial. We
believe that this could allow versions of some numerical algorithms, in the style
of [2], to be made even more generic.

7 Conclusion and Outlook

Using a monad, most typically Maybe, for the semantics of pattern matching in
Haskell-like languages has been proposed previously [19, 7, 8].

Since PMC offers a finer-grained, more systematic separation of pattern match-
ing aspects from other expression evaluation aspects, choosing to interpret the
two syntactic categories with separate monads is an obvious choice — the alter-
native of using a monad transformer deserves further exploration.

From this starting point, defining a general, monadic semantics for PMC re-
quired the resolution of two fine technical points:



270 W. Kahl, J. Carette, and X. Ji

– the necessity to use different definitions of the function type semantics for
expressions and matchings, and

– the necessity to provide the corresponding “pointwise extensions” to the
operations in the base monads.

As a result, assuming only remarkably light coupling of the two monads through
the laws assumed for extract and lift, establishes the soundness of all the core
reduction rules of the two PMC calculi defined in [11], which is all their common
rules except the rule (�� ) expressing that the first success of a matching will
be its only result, and therefore obviously would exclude monads with a non-
determinism or backtracking component from being used for matching semantics.

By not including such an assumption, we keep our bi-monadic PMC seman-
tics open to uses also in functional-logic programming, which is one of the topics
we plan to explore in more depth in the future, and we are extending our cur-
rent prototype Haskell implementation of PMC reduction and of the semantics
presented in the paper to serve as a test-bed for exploration in this direction.

It is also quite intriguing that by just taking two List monads, one gets “all”
answers out of programs written as pure functions, if the patterns turned out to
be overlapping. Generalising this further, to say tree monads, is definitely worth
exploring.

Finally we would like to use the given semantics as justification for transfor-
mation rules that are useful for compilation of non-strict pattern matching.
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A PMC Core Reduction Rules

Here, we repeat from [11] the set of rules that implement the usual pattern
matching semantics of non-strict functional programming languages by allow-
ing corresponding reduction of PMC expressions as they arise from translating
functional programs. In particular, we do not include extensionality rules.

Formally, we define separate redex reduction relations for expressions and
matchings:

−→
E

: Expr ↔ Expr , and −→
M

: Match ↔ Match .

These are the smallest relations including the rules listed below. The resulting
rewriting system contains a mix of first-order rules, rule schemata, and second-
order rules; the first author described a direct confluence proof mechanised in
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Isabelle and a deterministic normalising strategy (via reduction to strong head
normal form) in [11].

A.1 Failure and Returning

Failure is the (left) unit for :

m −→
M

m ( )

A matching abstraction where all alternatives fail can be understood as repre-
senting an ill-defined case — this is reduced to the “empty expression”:

{ } −→
E

3 ({ })

Matching abstractions built from expression matchings are equivalent to the
contained expression:

{ �e� } −→
E

e ({ �� })

A.2 Application and Argument Supply

Application of a matching abstraction reduces to argument supply inside the
abstraction:

{m } a −→
E

{ a � m } ({ }@)

Argument supply to an expression matching reduces to function application
inside the expression matching:

a � �e� −→
M

�e a� (���)

No matter which of our two interpretations of the empty expression we choose,
it absorbs arguments when used as function in an application:

3 e −→
E

3 (3@)

Analogously, failure absorbs argument supply:

e � −→
M

(� )

Argument supply distributes into alternatives:

e � (m1 m2) −→
M

(e � m1) (e � m2) (� )
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A.3 Pattern Matching

Everything matches a variable pattern; this matching gives rise to substitution:

a � v ⇒ m −→
M

m[v\a] (�v)

Matching constructors match, and the proviso in the following rule can always
be ensured via α-conversion (for this rule to make sense, linearity of patterns is
important):

c(e1, . . . , en) � c(p1, . . . , pn)⇒ m −→
M

e1 � p1 ⇒ · · · en � pn ⇒ m

if FV(c(e1, . . . , en)) ∩ FV(c(p1, . . . , pn)) = {} (c � c)

Matching of different constructors fails:

d(e1, . . . , ek ) � c(p1, . . . , pn)⇒ m −→
M

if c = d or k = n(d � c)
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Abstract. The map and fold operators are both key elements of every
functional programmer’s toolkit. In this paper we examine the corre-
sponding concepts in the domain of multirelations, which can be used to
model both angelic and demonic nondeterminism.

1 Introduction

The map and fold operators of functional programming are both standard tools
for capturing common patterns of recursion among list processing functions,
and their relational equivalents are now widely used for the same purpose in
specifications [Bi98, BdM97]. A less well-known fact is that both these operators
also have predicate transformer equivalents which have not previously been used
for program derivation. One reason for this lack of attention is that the operators
do not take on a very familiar form in this context. Another reason is that the
class of problems that require the expressive power of predicate transformers,
as opposed to relations, is quite restricted. A third factor is that, apart from
a few exceptions such as [W94], predicate transformers have traditionally been
associated with the derivation of imperative, rather than functional programs.
The first contribution of this paper is to show how, when viewed in the equivalent
model of multirelations, the map and fold operators do look familiar, and this
is illustrated by a number of concrete examples. The second contribution is to
show how the laws associated with such operators can be used to transform
specifications at this level.

Multirelations were introduced in [Rew03] as an alternative to predicate trans-
formers for reasoning about specifications that contain both angelic and demonic
nondeterminism. Angelic nondeterminism occurs when the choice is made by an
‘angel’: it is assumed that the angel will choose the best possible outcome. De-
monic nondeterminism occurs when the choice is made by a ‘demon’: no assump-
tion can be made about the choice made by the demon, so we must be prepared
for the worst possible outcome. Ordinary relations can only be used to describe
one of these kinds of nondeterminism at a time, but several convincing exam-
ples in [MCR04] show how well-suited multirelations are for expressing both. In
our view, the primary advantage of multirelations over predicate transformers is
that they model programs forwards rather than backwards. So, instead of map-
ping postconditions to preconditions, they can be used to relate inputs, or initial
states, to outputs, or final states.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 274–298, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Nondeterministic Folds 275

The close relationship between multirelations and predicate transformers can
be expressed as an isomorphism of categories. This is useful for translating some
well-established properties of the category of predicate transformers to multirela-
tions. In particular, we will show that functors like map have a unique extension
from relations to multirelations, as do initial algebras. It is this property of ini-
tial algebras that yields the definition of foldr on multirelations, together with
its associated fusion law. The datatype of lists will be used to illustrate these
concepts, but the principle can be applied to any inductive datatype.

The structure of the paper is as follows. Section 2 contains an introduction to
multirelations, summarizing the main concepts and definitions from [MCR04].
Section 3 introduces some operations on multirelations, including map, foldr
and foldl, and includes several illustrative examples. Section 4 describes one
application in depth: that of a voting system, Section 5 gives the theory that
underpins the definitions of Section 3, and Section 6 is the conclusion.

2 Multirelations

Multirelations are to relations what multifunctions (relations) are to functions:
that is to say, they are relations whose target type is a powerset type. A mul-
tirelation represents a specification if and only if it is up-closed:

Definition 2.1 (up-closed multirelation). An up-closed multirelation M
with source A and target B is a subset of the cartesian product A × PB such
that for all x ∈ A and X , Y ⊆ B,

x M X ∧X ⊆ Y ⇒ x M Y

The types of all relations and up-closed multirelations with source A and target
B are denoted by A↔ B and A ⇒ B respectively. Note that we will abbreviate
“up-closed multirelation” to “multirelation”.

Multirelations model program behaviour in a different way from ordinary
relations. A relation R relates two values x and y, written x R y, if and only if
the corresponding program can terminate with output y given input x . However,
a multirelation M relates two values x and post , written x M post , if and only
if the corresponding program can terminate with an output value that satisfies
the predicate post given input x . In addition, if post ′ is another postcondition
such that post ⊆ post ′, then clearly any output value that satisfies post must
also satisfy post ′, which is reflected by the up-closure property.

The choice between various postconditions is interpreted as angelic: the angel
chooses which predicate to guarantee, and the demon chooses how to satisfy that
predicate.

Example 2.1. Let Int denote the type of all integers, M : Int ⇒ Int , and suppose
that for all x : Int and X : P Int

x M X ⇔ ({x} ⊆ X ∨ {x − 1, x + 1} ⊆ X )
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then two of the postconditions that the angel can choose between are {x} and
{x − 1, x + 1}. If he chooses the latter, then the choice of output value is deter-
mined by the demon. �

2.1 Strongest Postconditions

In the above example, the two postconditions {x} and {x − 1, x + 1} are the
strongest ones that the angel can choose between, in the following sense:

Definition 2.2 (strongest postcondition). Let M : A ⇒ B, x ∈ A and
post ⊆ B. Then post is a strongest postcondition of M with respect to x if and
only if

1. x M post
2. (∀ post ′ : x M post ′ : post ′ ⊂ post)

In general, we shall refer to the set of all strongest postconditions of a multire-
lation M with respect to an initial state x by sp(x ,M ). The values in this set
can represent the choices of guarantee offered to the angel, as the examples be-
low illustrate, but this is not always the case. An example to demonstrate that
strongest postconditions do not necessarily correspond to angelic choices is in-
cluded in the appendix. Note that the strongest postconditions of a multirelation
may not exist. For instance, consider abort, defined by

x abort X ⇔ False

Example 2.2. Each type A has identity ∈A: A ⇒ A, where ∈A (sometimes de-
noted by idA ) represents the set membership relation on subsets of A. So, given
an input value x ∈ A, the only strongest postcondition it can achieve is {x},
which means that the value x is output. This specification is guaranteed to
establish all postconditions that are satisfied by x itself. �

Example 2.3. For each pair of types A, B , and each value b ∈ B , the constant
specification const b : A ⇒ B is defined by

const b = A × ↑ {b}
where ↑ X = {Y | X ⊆ Y }. Here, the strongest postcondition that is satisfied
for any input value is {b}, ensuring that the value b is output. �

Example 2.4. Consider the multirelation A × ↑ {1, 2}, for some source type A.
Here the strongest postcondition for any input value is {1, 2}, so the angel has no
choice and must select the postcondition {1, 2}, giving the demon the choice be-
tween output values 1 and 2. This is an example of demonic nondeterminism. �

Example 2.5. In contrast, now consider the multirelation A ×(↑ {1} ∪ ↑ {2}), for
some source type A. Here the strongest postconditions for any input value are {1}
and {2}, so the angel can always choose between output values 1 and 2, with no
choice available for the demon. This is an example of angelic nondeterminism. �
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Example 2.6. Suppose that the angel is offered a fixed amount of money, which
he can either keep or gamble to win double or nothing. This choice can be
modelled by the multirelation choose : N ⇒ N where for all x : N, X : P N

x choose X ⇔ {x} ⊆ X ∨ {0, 2x} ⊆ X

The strongest postconditions of choose with respect to input value x are {x} and
{0, 2x}. If the angel chooses the former, then the demon will have no choice and
x will be output, but in the latter case the demon can choose between output
values 0 or 2x . �

It can be dangerous to rely solely on strongest postconditions for intuition about
arbitrary multirelations, since not all multirelations have them, but there is a
large class for which it is safe to do so, as characterised by the following definition:

Definition 2.3. Let M : A ⇒ B. Then M is representable if, for all x : A,
X : PB

x M X ⇔ (∃Y : Y ∈ sp(x ,M ) : Y ⊆ X )

All of the examples above are representable in this sense.

3 Operations

We will now introduce some operations on multirelations, some of which will be
familiar to readers of [MCR04], and the rest of which are new.

3.1 Composition

Multirelations cannot be composed using ordinary relational composition for
obvious type reasons. Instead, composition is defined as follows:

Definition 3.1 (composition). The composition of two multirelations M :
A ⇒ B , N : B ⇒ C is denoted by M o

9 N : A ⇒ C where for all x : A, X : P C

x (M o
9 N ) X ⇔ (∃Y : x M Y : (∀ y : y ∈ Y : y N X ))

So, given input value x , the angel can only guarantee that M o
9 N will output a

value that satisfies X if he can ensure that M will establish some intermediate
postcondition Y and if he can also guarantee that N will establish X given any
value in Y .

The composition operator is associative, with identity idA for each A, and
preserves up-closure. An alternative formulation of its definition that can be
useful in calculations involving representable multirelations is given below.

Lemma 3.1. Let M : A ⇒ B be representable, and let N : B ⇒ C, then for all
x : A, X : P C

x (M o
9 N ) X ⇔ (∃Z : Z ∈ sp(x ,M ) : (∀ z : z ∈ Z : z N X ))

The proof of this lemma is omitted.
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When working with folds, it is frequently useful to be able to insert an addi-
tional value when composing one multirelation with another. This composition-
like operator captures that idea:

Definition 3.2. For any z : C and multirelations M : A ⇒ B and N : (C ×
B) ⇒ D, the composition with z of M and N is denoted by M o

9z N : A ⇒ D
where for all x : A, X : P D

x (M o
9z N ) X ⇔ (∃Y : x M Y : (∀ y : y ∈ Y : (z , y) N X ))

The operator o
9 behaves very much like o

9 does: it has associative properties which
include

M o
9z (N o

9 S ) = (M o
9z N ) o

9 S
M o

9 (N o
9z S ) = (M o

9 N ) o
9z S

M o
9y (N o

9z S ) = (M o
9y N ) o

9z S

for all suitably-typed values and multirelations.

3.2 Lifting

Another pair of operators that are useful in program specifications are the fol-
lowing well-known functions for lifting relations to multirelations [BvW98]. The
notation used here is the same as that used for the closely related operators of
propositional dynamic logic [FL79].

Definition 3.3. For any relation R : A↔ B, its angelic lifting 〈R〉 : A ⇒ B is
defined for all x : A, X : P B by

x 〈R〉 X ⇔ (∃ y : x R y : y ∈ X )

Definition 3.4. For any relation R : A ↔ B, its demonic lifting [R] : A ⇒ B
is defined for all x : A, X : P B by

x [R] X ⇔ (∀ y : x R y : y ∈ X )

Both lifting operators distribute through composition and if R is a total function,
then the two liftings coincide. A multirelation is said to be angelic (demonic)
if it is the angelic (demonic) lifting of some relation. Notice that a demonic
multirelation has only one strongest postcondition for any initial state, which is
to be expected since it contains no angelic choice. In contrast, an angelic one
may have many strongest postconditions, but each one must be a singleton set
since it contains no demonic choice. One property of angelic multirelations that
will be required in Section 5 is given by the following lemma, where ; denotes
composition of ordinary relations.

Lemma 3.2. Let R : A↔ B and M : B ⇒ C, then

〈R〉 o
9 M = R ; M
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Proof

Let x ∈ A and X ∈ P C , then

x (〈R〉 o
9 M ) X

⇔ {Definition of o
9}

(∃Y : x 〈R〉 Y : (∀ y ∈ Y : y M X ))
⇔ {Definition of 〈 〉 and logic}

(∃ y : x R y : y M X )
⇔ {Definition of ;}

x (R ; M ) X �

3.3 Sums and Products

Sums are defined in exactly the same way for relations and multirelations:

Definition 3.5 (sum). The sum of M : A ⇒ C and N : B ⇒ D is defined for
all x : A, y : B and X + Y : P(C + D) by

(x , 0) (M N ) (X + Y ) ⇔ x M X
(y, 1) (M N ) (X + Y ) ⇔ y N Y

where C + D denotes the disjoint sum (C×{0}) ∪ (D×{1}) of sets C and D.

So this specification simply tests the tag component of its input and then behaves
like M or N accordingly. Once again, the strongest postconditions of M N are
closely related to those of M and N :

sp((x , 0),M N ) = {X × {0} | X ∈ sp(x ,M )}
sp((y, 1),M N ) = {Y × {1} | Y ∈ sp(y,N )}

It follows that the sum of two representable multirelations is also representable.
The product operator can be used to model the simultaneous execution of

programs [BB95]. It is not exactly like that for relations, and instead has the
following definition:

Definition 3.6 (product). The product of two multirelations M : A ⇒ C and
N : B ⇒ D is defined for all x : A, y : B and Z : P(C ×D) by

(x , y) (M N ) Z ⇔ (∃X ,Y : x M X ∧ y N Y ∧ X ×Y ⊆ Z )

where C ×D denotes the cartesian product of the sets C and D.

Not surprisingly, there is a very simple relationship between the strongest post-
condition of M N and those of M and N individually:

sp((x , y),M N ) = {X ×Y | X ∈ sp(x ,M ) ∧ Y ∈ sp(y,N )}
It follows that the product of two representable multirelations is itself repre-
sentable.

The following example illustrates how this operator can be used.
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Example 3.1. Consider a sealed bid auction, where two parties simultaneously
submit bids for an item. The bidding process of a single bidder can be modelled
by a relation bid : N ↔ N where the input value to bid is the amount of money
that the bidder has, and the output is the amount that they choose to bid.
Assuming that a bidder can never make a bid that exceeds the amount of money
they have available, the definition of bid is simply

bid = ≥
A sealed bid auction between two opposing bidders can be modelled by

auction = 〈bid〉 [bid ]

The set of strongest postconditions of auction for each input value (x , y) : N×N

is then given by

{ {w} × 0..y | 0 ≤ w ≤ x}
where 0..y denotes the set {u | 0 ≤ u ≤ y}. So, unsurprisingly, the angel can
only guarantee to win the auction if he has more money than the demon initially.
A more interesting variation on this theme will be developed in Section 4. �

3.4 Map

The map operator of functional programming, which applies a function to each
element of a list has the following analogue for multirelations:

Definition 3.7 (map). Let M : A ⇒ B, then map M is defined (using the
Haskell syntax for lists) for all x : A, xs : [A] and Z : P[B ] by

[ ] (map M ) Z ⇔ [ ] ∈ Z

(x : xs) (map M ) Z ⇔ (∃Y ,YS : x M Y ∧ xs (map M ) YS ∧
(∀ y, ys : y ∈ Y ∧ ys ∈ YS ⇒ (y : ys) ∈ Z ))

So map M behaves like the identity when its input is the empty list, but its
behaviour on non-empty lists is more easily understood by considering strongest
postconditions: for all x : A, xs : [A],

sp(x : xs ,map M ) = {consall(Y ,YS ) | Y ∈ sp(x ,M ) ∧ YS ∈ sp(xs ,map M )}
where consall(Y ,YS ) = {y : ys | y ∈ Y ∧ ys ∈ YS}.

The following example shows how this operator can be used.

Example 3.2. Consider an elected body of representatives (each member belong-
ing to one of two political parties) participating in a legislative debate. After
the debate, each representative must vote on the proposed legislation, and sup-
pose the type Ballot = {For ,Against ,Abstain} represents all possible choices of
votes. Each representative’s voting intentions can be described as a multirelation
castvote : Representative ⇒ Ballot .
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If the disciplinarians in the angelic party have perfect control over their rep-
resentatives, then any result can be guaranteed, in other words for any angelic
representative a and X : P Ballot ,

a castvote X ⇔ X = ∅

Here, the requirement that X = ∅ reflects the compulsion on representatives
to vote. This specification has a number of strongest postconditions that a can
choose between: {For}, {Against} and {Abstain}.

Now suppose voter d is from the opposition, then we have no control over his
ballot: for all X : PBallot ,

d castvote X ⇔ X = Ballot

This specification has a single strongest postcondition, namely the set of all valid
ballots.

If all the representatives are represented by a list, their combined behaviour
can be specified by

allvotes : [Representative] ⇒ [Ballot ]
allvotes = map castvote

Then the result of the debate is specified by:

debateresult : [Representative] ⇒ {For ,Against ,Draw}
debateresult = allvotes o

9 〈(remove Abstain); majority〉
where remove is the function that removes all of the specified element from a
list, and majority is the function that returns the majority of elements in a list,
if one, and otherwise returns a draw. �

3.5 Folds

The fold operators of functional programming, which capture a more general
pattern of recursion than map, have analogues for multirelations. Here is the
multirelational foldr :

Definition 3.8 (foldr). For all M : A× B ⇒ B and N : 1 ⇒ B, we have that
foldr M N : [A] ⇒ B, and for all X : P B,

[ ](foldr M N )X ⇔ X ∈ ran N
(x : xs)(foldr M N )X ⇔ xs((foldr M N ) o

9x M )X

So if the initial state is the empty list, the guarantees of foldr M N are the same
as those of N . If the initial state is of the form x : xs , then the guarantees are
more complicated. Informally, it may help to remember that

[x1, x2, . . . , xn ](foldr M N )X ⇔ X ∈ ran (N o
9xn

M . . . o
9x2

M o
9x1

M )
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The strongest postconditions for a foldr are also defined recursively. For all x : A
and xs : [A], we have that

sp(x : xs , foldr M N ) = {∩{sp((x , z ),M | z ∈ Z} | Z ∈ sp(xs , foldr M N )}
The following example illustrates the use of foldr :

Example 3.3. Consider a version of the game of Nim where there is a pile of
matches and a stack of positively numbered cards. The top card is removed
from the stack at the start of each round, and the number shown on the card
is the number of matches then removed from the pile. The players then each
remove either one or two matches in turn. The last round of the game occurs
when the last card is removed from the stack. If either player removes the last
match on this round, then that player loses.

Let the operation to represent the removal of matches in accordance with the
number at the top of the stack be called cardremove, and let move represent a
valid move for either player, then

cardremove : Nat × Int → Int move : Int ↔ Int
cardremove (w , x ) = x − w x move y ⇔ y = x − 1 ∨ y = x − 2

Then, assuming that the angel goes first, the angelic and demonic liftings can
be used to define a round as:

round : Nat × Int ⇒ Int
round = 〈cardremove〉 o

9 〈move〉 o
9 [move]

Now if we assume that the list of cards is consumed from right to left we can
define the moves in the game of nim : Int → ([Nat ] ⇒ Int) recursively as
follows: let x : Int and (w : ws) : [Nat ] denote the starting pile of matches and
cards respectively, then for all X : PInt

[ ] (nim x ) X ⇔ x ∈ X

(w : ws) (nim x ) X ⇔
(∃Y : ws (nim x ) Y ∧ (∀ y : y ∈ Y : (w , y) round X ))

Equivalently, this definition can be written more concisely as a foldr :

nim x = foldr round (const x ) �

It is sometimes more convenient to model problems using non-empty lists. The
foldr+ is intended for just such situations, and it is defined in a very similar way
to foldr :

Definition 3.9 (foldr+). For all M : A × B ⇒ B and N : A ⇒ B, we have
that foldr+ M N : [A] ⇒ B, and for all X : P B,

[x ](foldr+ M N )X ⇔ x N X
(x : y : xs)(foldr+ M N )X ⇔ (y : xs)((foldr+ M N ) o

9x M )X
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As in functional programming, there are also foldl and foldl+ operators, which
process elements of the list starting from the left-hand end:

Definition 3.10 (foldl). For all M : A×B ⇒ B and N : 1 ⇒ B, we have that
foldl M N : [A] ⇒ B, and for all X : P B,

[ ](foldl M N )X ⇔ X ∈ ran N
(x : xs)(foldl M N )X ⇔ xs((foldl M (N o

9x M ))X

Definition 3.11 (foldl+). For all M : A × B ⇒ B and N : A ⇒ B, we have
that foldl+ M N : [A] ⇒ B, and for all X : P B,

[x ](foldl+ M N )X ⇔ x N X
(x : y : xs)(foldl+ M N )X ⇔ (y : xs)((foldl+ M (N o

9x M ))X

Informally, the foldl operator can be thought of in the following way:

[x1, x2, . . . , xn ](foldl M N )X ⇔ X ∈ ran (N o
9x1

M o
9x2

. . .M o
9xn

M )

Example 3.4. Consider a gambling opportunity where a customer (the angel) is
presented with a series of monetary options [x1, x2, . . . , xn ]. The customer can
either choose to accept the first amount offered (x1), or can gamble by the second
amount (x2) to receive a payout of either x1 − x2 or x1 + x2, depending on what
the demon chooses. He may then choose to stick, or to gamble by a further
amount (x3) to receive one of the payoffs x1 − x2 − x3, x1 − x2 + x3, x1 + x2 − x3
or x1 + x2 + x3, and so on. The multirelation M : [Nat ] ⇒ Int that describes this
situation can be written informally as:

[x1, x2, . . . , xn ]M X
⇔
{x1} ⊆ X ∨
{x1 − x2, x1 + x2} ⊆ X ∨
{x1 − x2 − x3, x1 + x2 − x3, x1 − x2 + x3, x1 + x2 + x3} ⊆ X ∨ . . .

for all X : PInt . More formally, M can be defined as a fold:

M = foldl+ gamble ∈
where gamble : Int × Int ⇒ Int is defined for all x , y : Int , and X : PInt by

(y, x ) gamble X ⇔ x ∈ X ∨ {x − y, x + y} ⊆ X �

In functional programming, there are duality theorems for fold operators, which
state under which conditions a foldl may be expressed as a foldr . There is also
a duality theorem for multirelations:

Theorem 3.1. Let M : A× B ⇒ B and N : 1 ⇒ B. If for all Q : 1 ⇒ B and
x , y : A we have that Q o

9x M o
9y M = Q o

9y M o
9x M, then

foldl M N = foldr M N

The proof of this theorem is omitted. It can be proved in the same way as the
corresponding proof of the second duality theorem in [Bi98], and given this hint,
the proof is straightforward.
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4 Case Study: A Series of Elections

This example is inspired by voting systems.
There is to be an election. Two candidates (one from the angelic party, and

one from the demonic) are standing, and only one is to be elected. Unlike some
election systems which elect a candidate in a single mass voting event, the elec-
tion of this candidate is split over several regions (so we will have a type Region).
Each region has its own election on the election date for that region, thus declar-
ing that region’s preference, and the results from all the regional elections are
combined in some way to select the eventual overall winner.

This being politics, money is heavily involved (you’d be cynical too if you
did multirelational proofs). Each candidate has a certain amount of money to
spend on the election overall: the angel has an amount a, and the demon has
an amount d , for some a, d : Money, where Money = R

≥0. In this system, it is
assumed that the total number of votes a candidate obtains in a region is directly
proportional to the money he spends in that region. Thus if the angelic candidate
spends more than the demonic candidate in a region, the angelic candidate wins
that region. (If you prefer to be less cynical about it, you may imagine that the
two candidates can count on a roughly equal amount of voting support from
their staunch supporters, and the money spent simply woos the floating voters,
resulting in the same observation.)

We can represent a candidate’s tally of how he is doing so far, by a pair of
type {Region} ×Money, representing the set of regions the candidate has won
so far, and the amount of money he has left. Considering this data for both
candidates suggests a suitable type for representing the results so far:

Results = ({Region} ×Money) × ({Region} ×Money)

We will use the convention that the pair on the left represents the angelic can-
didate’s results, and the pair on the right the demonic candidate’s results.

Thus initially, before any of the regions have had their elections, the results
so far are described by this multirelation:

initially : 1 ⇒ Results
initially = const (({ }, a) , ({ }, d))

A candidate makes preparations for a regional election by choosing how much
money to spend in that region.

Spend : {Region} ×Money ↔ ({Region} ×Money) ×Money
∀m, s : Money, rs : {Region} : (rs ,m) Spend ((rs ,m), s) ⇔ 0 ≤ s ≤ m

A region’s preferred candidate is determined by seeing which candidate spent
the most money:

declare (r , (((rsa ,ma), sa), ((rsd ,md), sd )))
= ((rsa ∪ {r},ma − sa ), (rsd ,md − sd )), if sa > sd
= ((rsa ,ma − sa), (rsd ∪ {r},md − sd )), otherwise
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Note that if the monies spent are equal, the region is given to the demonic
candidate. This is because in that case, the vote will be so close that the angel
certainly can’t guarantee winning that region.

We are now in a position to define a multirelation Election representing an
election for a single region:

Election : (Region × Results) ⇒ Results
Election = (id (〈Spend〉 [Spend ])) o

9 〈declare〉
The 〈Spend〉 [Spend ] illustrates the spending decisions of the angel and demon
being made in parallel, before the results are declared for that region and added
to the tallies so far.

Assuming that the regions are listed in chronological order according to the
date of their elections, then the whole series of elections can be suitably described
by a foldl :

ElectionSeries : [Region] ⇒ Results
ElectionSeries = foldl Election initially

The angelic guarantees of the multirelation ElectionSeries thus represent possible
predicates that the angel can ensure, given a list of regions, his own pot of money,
and the demon’s.

As for whether the angel actually wins the election or not, that all depends
on how the results from all the elections are combined to produce an overall
result. One way to do it would be to give a region a weighting (e.g. according to
population size), and add up the weightings of the regions won by each candidate,
and compare to see which candidate has the most. We will consider a simpler
version, where the candidate who wins the most regions is also the overall winner.

4.1 “Will Sufficient Money Buy the Election?”

Although we are interested in knowing whether the angelic candidate wins a
majority of the regions, it turns out to be more useful to consider a generalisation:
that of whether the angel can guarantee winning at least w regions, for various
values of w . So we define, for st : Results

Winsw (st) ⇔ #angelwins(st) ≥ w
where angelwins((rsa ,ma), (rsd ,md)) = #rsa

and where # denotes the size or length of a list or set.
Thus we are interested for what values of w it is the case that

rs ElectionSeries Winsw

Experiments with assorted angelic and demonic pots of money along with small
region lists suggest that whilst the angel can always guarantee winning at least
0 of the regions, for w > 1 the angel can guarantee winning w of the regions rs
if the angel has more money than (#rs)d/(#rs + 1− w).
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The intuition behind this suggests that if the demon wants to prevent the angel
winning w regions, then the demon must win #rs +1−w regions. If the angel is
unlucky then the demon will concentrate his money on the #rs + 1−w regions
on which the angel spends the least money, thus spending d/(#rs + 1 − w) on
each of those regions. Thus the angel needs to maximise spending in the weakest
regions, which can best be achieved by spreading money as evenly as possible
across the regions, thus spending a/(#rs) in each region. Thus the angel will
only have a guarantee if a/(#rs) > d/(#rs+1−w). But can we prove it formally
using multirelations?

The above suggests that what we should aim to prove is

(w ≥ 0) ∨ (1 ≤ w ≤ #rs ∧ (#rs + 1− w)a > (#rs)d ) (1)
⇒ rs ElectionSeries Winsw (2)

for all a, d : Money, w : N and rs : [Region].

4.2 “Can We Prove It?”

When a fold is involved, an inductive proof is indicated. If the above suggestion
is taken as an inductive hypothesis, this means the inductive hypothesis is in
the form

P(w , rs)⇒ rs(foldl Election initially)Winsw

and this is problematic, for the same reason that foldl proofs are awkward in
standard functional programming: as soon as we start on the inductive case, we
run into a problem:

(r : rs)(foldl Election initially)Winsw
⇔ {definition of foldl}

rs(foldl Election (initially o
9r Election))Winsw

As the inductive hypothesis does not involve initially o
9r Election, it cannot be

used.
Using foldr instead doesn’t help, even though we can express ElectionSeries

using foldr with the list of regions rs in reverse chronological order, and there
is no difficulty manipulating the expression into a form where the inductive
hypothesis can be used, like this:

(r : rs)(foldr Election initially)Winsw
⇔ {definition of foldr}

rs((foldr Election initially) o
9r Election)Winsw

⇔ {definition of o
9r}

∃Y : rs(foldr Election initially)Y : (∀ st : st ∈ Y : (r , st)ElectionWinsw )
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Trying to go any further is difficult. It relies on demonstrating the existence of
a predicate Y which is true after all regions but one have had their elections. It
is difficult to see what Y could be, especially since it is not obvious how much
money the demon has left by this stage and whether this is a sufficiently small
amount to allow the angel to win the final election.

Going back to foldl , we need to use the standard functional programmer’s
trick for foldl inductions, and generalise the inductive hypothesis. We require
something of the form

Sufficient(w , rs ,Q)⇒ rs(foldl Election Q)Winsw (3)

for Q : 1 ⇒ Results . We will impose conditions on Q : it must be representable
and contain at least one non-empty predicate for the angel to choose from.

Note that the predicate Sufficient must involve the initialising multirelation
Q in some way - after all, if Q initialised the angel with 7 regions to his credit
before the elections in rs had even begun, this would severely affect the w for
which the angel can guarantee Winsw !

The predicate Sufficient must somehow express that the angel can guarantee
that after performing Q , the angel has sufficient money relative to the demon.
We give a definition of Sufficient in terms of the range of Q that illustrates a
standard form of predicate to use when doing multirelational inductive proofs
with foldl :

Sufficient(w , rs ,Q)⇒ MoneyEnoughw,rs ∈ ran Q

where

MoneyEnoughw,rs (st)⇔ (w ≤ #aw(st) ∨
(1 ≤ w −#aw(st) ≤ #rs ∧

(#rs + 1 + #aw(st) − w)am(st) > (#rs)dm(st) ))

where aw , am and dm are abbreviations for the obvious functions angelwins ,
angelmoney and demonmoney on type Results .

4.3 “Yes!”

We are now in a position to prove (3), and this will imply (2) by substituting
initially for Q .

Proof
The full proof is too lengthy for this paper, but we will sketch the proof, which
uses induction over rs with hypothesis (3).

Case (rs = [ ]):
This is straightforward when considering the guarantees Q provides in terms of
the strongest postconditions of Q .

Case (r : rs):

(r : rs)(foldl Election Q)Winsw
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⇔ {definition of foldl}
rs(foldl Election (Q o

9r Election))Winsw
⇐ {inductive hypothesis, claim}

Sufficient(w , rs ,Q o
9r Election)

⇔ {definition of Sufficient}
MoneyEnoughw,rs ∈ ran (Q o

9r Election)
⇔ {definition of o

9 }
∃Y : Y ∈ ran Q : (∀ st : st ∈ Y : (r , st)Election MoneyEnoughw,rs )

⇐ {claim}
∃Y : Y ∈ sp(1,Q) : (∀ st : st ∈ Y : MoneyEnoughw,r :rs (st))

⇔ {strongest postconditions, Q representable}
MoneyEnoughw,r :rs ∈ ran Q

⇔ {definition of Sufficient}
Sufficient(w , r : rs ,Q)

The first claim is that Q o
9r Election is representable and non-empty if Q is too.

When Q is of a form such that its strongest postconditions can be indexed by
choices made by the angel and demon (as is the multirelation initially that we
want to use), the proof is fiddly but straightforward.

For the second claim, it suffices to prove that

MoneyEnoughw,r :rs (st)⇒ (r , st)Election MoneyEnoughw,rs

This can be shown by choosing a particular strongest postcondition P from
sp((r , st),Election), and showing that when MoneyEnoughw,r :rs (st), it is the
case that P ⇒ MoneyEnoughw,rs .

The strongest postconditions for Elections are characterised by the angel’s
choices of how much to spend at that election, and the choice of P corresponding
to the choice of angelmoney(st)/(#rs + 1) (which might be guessed from the
above discussion) allows (4) to be proved with careful detailed predicate calculus
calculations (omitted). �

4.4 Further Notes

We can use the duality theorem for multirelations (Theorem 3.1), to express
ElectionSeries as a foldr too

ElectionSeries = foldr Election initially

since it is the case that

Proposition 4.1. For all Q : 1 ⇒ Results and x , y : Region, it is the case that

Q o
9x Election o

9y Election = Q o
9y Election o

9x Election
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Proof

The details of this proof are omitted, to spare the reader much
tedious predicate calculus, but here is a proof sketch:
It is sufficient to prove that for all st : Results and X : {Results},

(x , st)(Election o
9y Election)X ⇔ (y, st)(Election o

9x Election)X

One side of the above is expanded using the strongest postcon-
ditions for the representable multirelation Election (see Lemma
3.1), and it is demonstrated that this is symmetrical in x and
y. Note that this necessitates election results being represented
as sets of regions won so far, rather than a list, otherwise the
guarantees of the two above multirelations are different. �

The choice of postconditions in the proof provides advice for these sorts of
elections: if you have a lot more money than your opponent does, then your
best chance of guaranteeing a win comes from spreading it out evenly over
the regions. However, if you have less money than your opponent, the best
chance of defeating your opponent comes from concentrating your money in fewer
regions.

5 Initial Algebras and Folds

This section describes the theoretical concepts that underly the definitions of the
operations given in Section 3. In particular, it will be shown that functors (like
map) and initial algebras (like foldr) have a unique extension from relations to
multirelations. These results are well-known properties of predicate transformers
[GMdM94, deM92] which are isomorphic to multirelations [Rew03], but it is
instructive to rework some of the proofs directly for multirelations because they
turn out quite differently. For instance, the extension of initial algebras is much
simpler to derive for multirelations.

There are at least two well established ways to extend both functors and
initial algebras from total functions to relations: via Kleisli categories [Fo94] and
using span categories [CK84, FrS93]. The same is true of multirelations, but this
paper restricts attention to the latter method because it has the advantage that
it produces a unique extension of a functor which is itself a weak kind of functor.
The version of this method described in this section is based on the factorisation
of multirelations into an angelic part followed by a demonic part.

It is beyond the scope of this paper to explain the details of categorical con-
cepts, see [BaW90] for example, for an introduction to category theory. The
notation p ; q will be used for the composite of each pair of arrows with com-
patible types p : A→ B and q : B → C , and idA is the identity arrow on object
A. Function application will be denoted by juxtaposition.
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5.1 Order-Enriched Categories

Both relations and multirelations will be modelled using order-enriched cate-
gories, which are those with a partial order defined on homsets with respect to
which the categorical composition is monotonic.

The order-enriched category of relations, Rel, is defined as follows. The ob-
jects of Rel are sets, arrows are relations, composition is defined by ; and the
identity arrow for each set A is the identity function idA. The order on arrows
in Rel is subset inclusion.

The order-enriched category of up-closed multirelations, Mul, is defined as
follows. The objects of Mul are sets, arrows are up-closed multirelations, compo-
sition is defined by o

9, and the identity arrow for each set A is the set membership
relation ∈A. The order on arrows in Mul is subset inclusion.

The collection of all angelic and demonic multirelations each form subcate-
gories of Mul which we will call Ang and Dem respectively. Both of the lifting
functions of Definitions 3.3 can be thought of as functors that define an isomor-
phism between Rel and each of these subcategories.

5.2 Undoing the Demon’s Handiwork

Order-enriched categories accommodate a greater range of constructs than or-
dinary categories because all of the standard definitions can be weakened by
substituting inequality for equality. An example of such a definition is that of a
map [CK84, FrS93] which is a weak analogue of the concept of an isomorphism.
(It is unfortunate that the word map is used elsewhere in this paper for a very
different purpose, but since both are standard it is hoped that the meaning will
be clear from the context.)

Definition 5.1 (categorical map). Let (C,⊆) be an order-enriched category.
An arrow m : A→ B is a map if and only if it has an comap m∗ : B → A such
that both

idA ⊆ m ; m∗ and m∗ ; m ⊆ idB . (4)

It is immediate from the following shunting rule that every map uniquely deter-
mines its comap and vice versa. Let M : A → B , N : D → C , r : B → C and
s : A→ D in an order-enriched category (C,⊆), where r and s are maps, then

M ; r ⊆ s ; N ⇔ s∗ ; M ⊆ N ; r∗ (5)

In Mul the maps are precisely the demonic multirelations, Every demonic
multirelation [R] has comap 〈R◦〉, and conversely, it can be shown that every
map is demonic. So the concept of a map gives a succinct algebraic charac-
terisation of demonic multirelations, and dually, comaps characterise angelic
multirelations.

Intuitively, a comap can be thought of as the angelic multirelation that allows
the angel to choose to undo the choices made by its corresponding demonic
map.



Nondeterministic Folds 291

Furthermore, the ∗ operator can be considered as a (contravariant) functor
that defines an isomorphism between the categories Dem and Ang. In future,
demonic multirelations will be written in lowercase, by analogy with the common
convention for total functions, which are the maps in the category of relations.

5.3 Factorisation

Just as every ordinary relation can be factorised into an inverse function followed
by a function, every multirelation can be factorised into an angelic part followed
by a demonic part: let M : A ⇒ B , then since [7B ] = ⊆B

M
= {up-closure}

M ; [7B ]
= {Lemma 3.2}
〈M 〉 o

9 [7B ]

This is not the only way to construct a factorisation of this kind, for example,
let C be the subset of A × P B corresponding to M , and outl : C → A ,
outr : C → P B be the projection functions, and let ◦ denote relational converse,
then

M
= {definition of ;}

outl ◦ ; outr
= {calculation above}
〈outl ◦ ; outr〉 o

9 [7B ]
= {lifting distributes through composition}
〈outl ◦〉 o

9 〈outr〉 o
9 [7B ]

= {lifting operators agree on total functions}
〈outl ◦〉 o

9 [outr ] o
9 [7B ]

= {demonic lifting is a functor}
〈outl ◦〉 o

9 [outr ; 7B ]

This factorisation appears to be quite different from the previous one, but the
two are related in a sense that is captured by the following definition:

Definition 5.2 (unique map factorisation). Let (C,⊆) be an order-enriched
category. Then C has unique map factorisation if, for every arrow M : A → B,
there exists a pair of maps t : C → A and u : C → B such that

M = t∗ ; u
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and for any other pair of maps r and s, r∗ ; s ⊆ M if and only if there exists a
map h such that h ; t ⊆ r and s ⊆ h ; u.

The proof of this uniqueness property of multirelations is included in the appen-
dix. Factorisation is useful because it provides a mechanism for extending the
definitions of functors like map to multirelations, but unfortunately the result
is not guaranteed to be a functor itself. Instead, it is necessary to introduce a
weak analogue of the notion of a relator.

5.4 Relators

Recall the following definition from, for example [BdM97].

Definition 5.3 (relator). A relator is defined to be a monotonic functor.

It is easy to check that every relator F preserves comaps, which is to say that
for all maps r ,

F(r∗) = (Fr)∗

This property motivates the following weaker notion.

Definition 5.4 (uprelator). Let (C,⊆) be an order-enriched category. An up-
relator F : C → C is a monotonic graph morphism such that for all arrows M ,
N and maps r,

FidA = idFA
F(M ; N ) ⊆ FM ; FN

F(r∗) = (Fr)∗

So whereas relators distribute through composition, uprelators do not necessarily
do so. The product is an example of such an operator, since for instance if magic
is defined by x magic X ⇔ True then

(id magic) o
9 (abort abort) = (id o

9 abort) (magic o
9 abort)

It will be assumed that relators and uprelators bind more tightly than any other
operations, and since there is no difference between F(r∗) and (Fr)∗, the notation
Fr∗ will be used from now on to mean either. Note that the last clause in the
definition of an uprelator is equivalent to saying that for all arrows M , N and
maps r ,

F(M ; r) = FM ; Fr and F(r∗ ; N ) = Fr∗ ; FN (6)

If C is a category with unique map factorisation and Map C is the subcategory
of all maps in C, then every relator F : Map C → Map C has a well-defined
extension to an uprelator F̂ : C → C defined for all r∗ ; s by

F̂ (r∗ ; s) = (Fr)∗ ; Fs (7)

So every relator F : Rel→ Rel can be extended to an uprelator F : Mul→Mul
by the above method via the lifting functors: for all M : A ⇒ B ,

F M = 〈FM 〉 o
9 [F 7B ] (8)
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The unique map factorisation property guarantees that this is an uprelator and
the following lemma ensures that it is the only one that coincides with F on
relations.

Lemma 5.1. If C is a category with unique map factorisation and two uprelators
F,G : C → C agree on maps, that is Fm = Gm for all maps m, then F = G.

The proof of this lemma is in the appendix. It shows that the behaviour of every
uprelator on multirelations is uniquely determined by its behaviour on relations.
For example, the product , sum and map uprelators of Section 3 were derived via
equation (8) from their counterparts on relations.

It is natural to consider whether it is really worth using these categorical
concepts to formulate definitions like map when they could probably have been
guessed quite easily without them. One reason for doing so is that each operator
defined by equation (8) is guaranteed to be an uprelator, and so, for example, it
preserves the refinement ordering and obeys the laws of equation (6). Moreover,
each such operator is known to be the only one that agrees with its analogue
for relations. It can also be shown that if a relator F satisfies any law that is
expressed as a natural transformation, then its extension F̂ will inherit a weaker
form of the law, but it is beyond the scope of this paper to include such laws.
Similar arguments can be used to justify the use of initial algebras to formulate
the definition of fold . Perhaps most importantly, they give a generic definition
of fold , so it is valid across all regular datatypes.

5.5 Initial Algebras

The definition given below generalises the standard one slightly by using uprela-
tors instead of functors.

Definition 5.5 (initial algebra). Let F be an uprelator from some order-
enriched category C to itself. By definition, an F-algebra is an arrow of type
FA → A for some A. An F-algebra τ : FT → T is initial if, for each F-algebra
p : FA→ A there exists an arrow (|p |) : T → A that satisfies the equivalence

(τ ; q = F q ; p) ≡ (q = (|p |))

Arrows of the form (|p |) are called catamorphisms and correspond to the familiar
fold and reduce operators.

It has been known for some time that initial algebras are preserved under the
extension of functors from total functions to relations [EW67]. More recently, it
was shown that the extension of functors from relations to predicate transformers
transforms initial algebras into final coalgebras [deM92]. The restatement of this
result for multirelations uses only initial algebras and is given below:

Lemma 5.2. Let F : Rel → Rel be a relator with initial algebra τ : FT → T.
Then F : Mul→Mul is an uprelator with initial algebra 〈τ〉.
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Proof

Let K : T ⇒ A and H : FA ⇒ A,then

〈τ〉 o
9 K = FK o

9 H
≡ {Definition of F (8)}
〈τ〉 o

9 K = 〈FK 〉 o
9 [F 7] o

9 H
≡ {Lemma 3.2}

τ ; K = FK ; ([F 7] o
9 H )

≡ {Definition 5.5}
K = (| [F 7] o

9 H |) �

This proof is much shorter than its counterpart for predicate transformers and
the corresponding fold operator is also more useful because it has a more familiar
form, as we saw in Definition 3.8, which stated that a foldr is a catamorphism
of the initial algebra associated with the uprelator FA : Mul→Mul, defined by

FA(B) = 1 (A B)
FA(M ) = id1 (idB M )

The fusion law below is a fairly immediate consequence of Definition 5.5. Un-
fortunately, it is less succint than usual because of the relaxation of the condition
that F should be a relator.

Lemma 5.3 (fusion). Let F : Mul→Mul be an uprelator, and let M : FA ⇒
A, N : A ⇒ B and P : FB ⇒ B, then

(M o
9 N = FN o

9 P ∧ F((|M |) o
9 N ) = F(|M |) o

9 FN )⇒ (|M |) o
9 N = (|P|)

Clearly, if F is a functor then the second part of the antecedent above can be
dropped. By equation (6) this is also true if M is angelic or N is demonic. A
more concrete example of this law, in the context of lists, is given in the following
section,

5.6 Fusion for Lists

The fusion laws associated with the definition of foldr on relations have been
widely used in the derivation of functional programs [BdM97], and ultimately the
same might be true of the corresponding laws for multirelations. Unfortunately,
the law given below is less succint than its analogue on relations because the
product operator is an uprelator, rather than a relator, and so an extra condition
is necessary. Nevertheless, it is still much easier to apply than its counterpart
for predicate transformers.

Lemma 5.4 (fusion). Let M : A × B ⇒ B, M ′ : A × B ′ ⇒ B ′, N : 1 ⇒ B,
N ′ : 1 ⇒ B ′, and K : B ⇒ B ′, then
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N o
9 K = N ′ ∧M o

9 K = (idA K ) o
9 M ′

∧
(∀R,S : R (S o

9 K ) ⊇ (R S ) o
9 (idA K ))

⇒
(fold M N ) o

9 K = fold M ′ N ′

The statement of this law for non-empty lists is identical apart from the types of
N and N ′. Although the quantified expression above looks rather cumbersome,
it can be dropped completely if M and N are angelic or K is demonic. This fact
is used in the statement of the following special case of the fusion law.

Lemma 5.5 (map fusion). Let M : A×B ⇒ B, N : 1 ⇒ B and K : A′ ⇒ A,
then if K is angelic or M and N are demonic,

map K o
9 fold M N = fold (K id o

9 M ) N

6 Conclusions

This paper has introduced map and fold operators for multirelations, illustrated
with examples of their use in modelling and proofs. These operators have been
shown to be canonical, in the sense that they are the only ones that agree with
their counterparts for relations and functions. Both operators had been defined
previously in the equivalent framework of predicate transformers, but they did
not take on such a familiar form in that context, and the uniqueness proofs did
not work out so simply. The datatype of lists has been used for illustration in
this paper, but the generic nature of the definitions means that they are equally
applicable to any other regular datatype, such as trees.

We have also presented some theorems showing some of the properties of
maps and folds. One topic for future work is the meticulous cataloguing of the
various laws of multirelations, including further exploration of those concerning
the map and fold operators. In particular, it would be interesting to see whether
any other well-known theorems of foldr translate to multirelations in the same
way as the duality theorem of [Bi98] and the fusion laws of [BdM97]. The def-
inition of unfold also remains to be derived, possibly through the use of Kleisli
categories [Fo94]. But perhaps the most pressing concern is to discover more
applications of multirelations, like the voting example considered here, in order
to demosntrate their potential value. There are areas which could benefit from
the application of multirelations, including security, voting systems, transmission
protocols, resource-sharing protocols and games.
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in the refinement calculus. In Möller, B., ed.: Proc. of 3rd Int. Conf.
on Mathematics of Program Construction, MPC ’ 95, Vol. 947 of Lect.
Notes in Comput. Sci. Springer-Verlag (1995) 128–158

[BaW90] Barr, M., Wells, C.: Category Theory for Computing Science. Prentice-
Hall (1990)

[BF02] Brams, S. J., Fishburn, P. C.: Voting procedures. In Arrow, K. J., Sen,
A. K., Suzumura, K., eds.: Handbook of Social Choice and Welfare,
Vol. 1. North-Holland (2002) 173–206

[CK84] Carboni, A., Kasangian, S.: Bicategories of spans and relations. J. of
Pure and Appl. Algebra 33 (1984) 259–267.

[DaP02] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. 2nd
edn. Cambridge University Press (2002)

[DiS90] Dijkstra, E. W., Scholten, C. S: Predicate Calculus and Program Seman-
tics. Springer-Verlag (1990)

[EW67] Eilenberg, S., Wright, J. B.: Automata in general algebras. Inform. and
Control 11(4) (1967) 452–470

[FL79] Fischer, M. J., Ladner, R. E.: Propositional logic of regular programs.
J. of Comput. and Syst. Sci. 18 (1979) 194–211

[Fo94] Fokkinga, M. M.: Monadic maps and folds for arbitrary datatypes. Mem-
oranda Informatica 94-28. University of Twente (1994)
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Appendix

The following example shows that strongest postconditions do not necessarily
correspond to angelic choices.

Example 6.1. Let M : Int ⇒ Int be defined for all x : Int , X : P Int , by

x M X ⇔ (∃ y : x < y : up y ⊆ X )
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where up y = {n : Int | y ≤ n}. This multirelation can model a game where
the angel chooses a number greater than the input value x and the demon
then outputs any number that is at least as large as the one chosen by the
angel. The choices offered to the angel are among an infinite sequence up (x +
1), up (x + 2), . . . of postconditions, each stronger than its predecessor. This
multirelation has no strongest postconditions because it is always possible to
find a postcondition that is stronger than any other given postcondition. �

This is not the only multirelation with no strongest postconditions, since for
example abort has none either. So it follows that a multirelation is not uniquely
determined by its set of strongest postconditions.

Just after Definition 5.2 it was claimed that Mul has unique map factorisa-
tion.

Proof. First suppose that r : D ⇒ A, s : D ⇒ B , t : C ⇒ A, u : C ⇒ B and
h : D ⇒ C are demonic multirelations such that

h o
9 t ⊆ r and s ⊆ h o

9 u (9)

then we can calculate that

h o
9 t ⊆ r and s ⊆ h o

9 u
≡ {∗ is a contravariant functor}

r∗ ⊆ t∗ o
9 h∗ and s ⊆ h o

9 u
⇒ {Monotonicity of o

9}
r∗ o

9 s ⊆ t∗ o
9 h∗ o

9 h o
9 u

⇒ {Definition of map (4)}
r∗ o

9 s ⊆ t∗ o
9 u

Notice that nothing in the above calculation depends on multirelations, and so
it is true in any order-enriched category. For the converse, suppose that

r∗ o
9 s ⊆ t∗ o

9 u

then by the shunting rule (5), we have that

r∗ ⊆ t∗ o
9 u o

9 s∗

Since comaps are angelic, by Lemma 6.1 below, there exists h∗ such that

r∗ ⊆ t∗ o
9 h∗ and h∗ ⊆ u o

9 s∗

≡ {∗ is a contravariant functor and shunting (5)}
h o

9 t ⊆ r and s ⊆ h o
9 u

as required. �
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Lemma 6.1. Let R : A↔ C, S : A↔ B and M B ⇒ C then

〈R〉 ⊆ 〈S 〉 o
9 M

⇒ ∃H : B ↔ C :
〈R〉 ⊆ 〈S 〉 o

9 〈H 〉 and 〈H 〉 ⊆ M

Proof

〈R〉
= {∈ ; { }◦ = id}
〈R ; ∈ ; { }◦〉

= {Definition of 〈 〉}
〈〈R〉 ; { }◦〉

⊆ {Assumption and monotonicity of 〈 〉}
〈(〈S 〉 o

9 M ) ; { }◦〉
= {Lemma 3.2 and associativity of ;}
〈S ; M ; { }◦〉

= {〈 〉 distributes through composition}
〈S 〉 o

9 〈M ; { }◦〉

which establishes the result since 〈{ }◦〉 ⊆ [7] and so

〈M ; { }◦〉 ⊆ 〈M 〉 o
9 [7] = M �

Lemma 5.1

Proof. r∗ ; s is a map factorisation of M , then

F M
= {map factorisation}

F (r∗ ; s)
= {(6)}

F r∗ ; F s
= {F and G agree on maps (and hence comaps)}

G r∗ ; G s
= {(6)}

G (r∗ ; s)
= {map factorisation}

G M �
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Abstract. Bushes are considered as the first example of a truly nested
datatype, i. e., a family of datatypes indexed over all types where a con-
structor argument not only calls this family with a changing index but
even with an index that involves the family itself. For the time being, no
induction principles for these datatypes are known. However, the author
has introduced with Abel and Uustalu (TCS 333(1–2), pp. 3–66, 2005)
iteration schemes that guarantee to define only terminating functions on
those datatypes.

The article uses a generalization of Bushes to n-fold self-application
and shows how to define elements of these types that have a number
of data entries that is obtained by iterated raising to the power of n.
Moreover, the data entries are just all the n-branching trees up to a
certain height.

The real question is how to extract this list of trees from that com-
plicated data structure and to prove this extraction correct. Here, we
use the “refined conventional iteration” from the cited article for the ex-
traction and describe a verification that has been formally verified inside
Coq with its predicative notion of set.

1 Introduction

Assume, we had a type transformation Bsh3 that yields for every type A an
abstract datatype Bsh3A with just two datatype constructors

bnil3 : Bsh3A ,
bcons3 : A→ (Bsh3)3A→ Bsh3A .

As is usual, we write FnA := F (. . . (F︸ ︷︷ ︸
n×

A) . . .) for F any type transformation.

With these constructors, Bsh3 becomes a “nested datatype” in the sense of
Bird and Meertens [7]: These are families of datatypes indexed over types (hence
type transformations) where arguments of constructors of the family member
with index A may refer to some other members of the family. A classical example
are the powerlists that precisely represent perfect binary leaf trees: a powerlist
over A is either an element of A or a powerlist over A × A. In bcons3, we even
refer to the member with index (Bsh3)2A that itself refers to Bsh3. We would
like to call such families truly nested datatypes.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 299–315, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Definition 1. A truly nested datatype is a nested datatype with a call to the
family name within a type argument of an argument of one of the datatype
constructors.

The treatment to come is not confined to truly nested datatypes but shows that
even those complicated nested datatypes can be treated in a framework that
guarantees termination of all programs.

The paper [7] considers an example, namely the analogous bushes with ex-
ponent 2 instead of our 3. There is not yet a well-established tradition in truly
nested datatypes, and Bird and Paterson [8] study a family Host just for demon-
stration purposes although they discuss an extended de Bruijn representation
of lambda terms via true nesting elsewhere [9]. They also appear naturally in
Hinze’s account of generalized trie data structures [13]. But these works do
not consider termination guarantees for the programs that traverse these data
structures.

Type theory is well aware of termination questions. However, truly nested
datatypes are not accepted as inductive definitions in the theorem prover Coq
[23] since they are considered to violate the condition of strict positivity
[6, Section 14.1.2.1]. This is certainly accepted due to the fact that there are
not yet type-theoretical formulations of the reasoning principles for the proposed
means of structured programming for these datatypes [8, 12, 17].

At least, there are already systems that guarantee termination of all functions
that follow some type discipline in their recursive calls: With Abel and Uustalu
[2, 3, 4], the author has proposed a number of iteration principles that can be used
with truly nested datatypes and guarantee termination (strong normalization of
the respective extension of Girard’s system Fω of higher-order polymorphism
[10]). These iteration schemes can all be simulated already within Fω and hence
are available through encodings in Coq – with the universe Set taken to be
impredicative, as it used to be in versions prior to 8.0. But impredicativity is
still an option for the Coq system, and so the essential parts of the journal article
[4] were implemented and verified in Coq in form of a student project with the
author [22]. Here, we aim at something different. Although there is still no direct
support for reasoning on truly nested datatypes in Coq, we may construct some
of their more interesting elements and reason about what they contain.

Let us construct elements of Bsh3 Tri with Tri the datatype of ternary un-
labelled finite trees, hence just with the constructors

L : Tri ,
N : Tri→ Tri→ Tri→ Tri .

The function mkTriBsh3 : nat→ Bsh3 Tri shall take a natural number m and
yield a bush that contains all the elements of Tri of height less than m. For
this, we need a more general function mkTriBsh′

3 that takes a natural number
m and a function argument f of type Tri → A for some type A and yields an
element of Bsh3 A, in other words:

mkTriBsh′
3 : nat→ ∀A. (Tri→ A)→ Bsh3 A .
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The expression ∀A. (Tri → A) → Bsh3 A is again a type, i. e., a member of
Coq’s Set, only if Set is impredicative. Otherwise, it is a construction of the
framework (in Coq, an element of Type). We define mkTriBsh′

3 as the fixpoint
F of the following structural recursion on nat (this is even plain iteration):

F0f := bnil3 ,
F (Sm)f := bcons3 (f L) (Fm(λt1.Fm(λt2.Fm(λt3.f(Nt1t2t3))))) .

Finally, set (implicitly taking A := Tri)

mkTriBsh3 m := mkTriBsh′
3 m(λx.x) .

Type-correctness can be seen as follows: If t1, t2, t3 : Tri, then f(Nt1t2t3) : A,
hence λt3.f(Nt1t2t3) : Tri → A which qualifies as functional argument for
mkTriBsh′

3 m. By induction hypothesis, we have Fm(λt3.f(Nt1t2t3)) : Bsh3 A.
The next step shows that in fact we have a polymorphic recursion here: The uni-
versally quantified type changes during the recursion. λt2.Fm(λt3.f(Nt1t2t3)) :
Tri→ Bsh3 A has Bsh3 A in place of A, hence the recursive call with Fm yields
an element of Bsh3(Bsh3 A). Moving up the hierarchy once more, we arrive at

Fm(λt1.Fm(λt2.Fm(λt3.f(Nt1t2t3)))) : (Bsh3)3A ,

which is a good second argument to bcons3.
We would now like to argue that mkTriBsh3 3 contains precisely the Tri-

elements of height less than 3, moreover that they do not occur several times.
In essence, we would like to read off the bush the following list (drawn from the
Coq development [18]):

L :: N L L L
:: N L L (N L L L)

:: N L (N L L L) L
:: N L (N L L L) (N L L L)

:: N (N L L L) L L
:: N (N L L L) L (N L L L)

:: N (N L L L) (N L L L) L
:: N (N L L L) (N L L L) (N L L L) :: nil.

Therefore, there is the need for a function toListBsh3 that transforms any el-
ement of Bsh3A into a (finite) list over A. This cannot be done without the
assumption that Bsh3A has only elements that enter through bnil3 and bcons3.
Unfortunately, we cannot say that Bsh3A is the least set with some closure
properties since we relate different instances of Bsh3 – this is the problem with
nested datatypes. The article [8] gives a semantics of nested datatypes within
functor categories. Nested datatypes are then initial algebras for an endofunctor
on a category of endofunctors. In order to have a better operational view and
a termination guarantee through mere typing, Abel and the author introduced
in [2] a system of iteration that depends not on an endofunctor on a functor
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category but just a rank-2 type transformer F with a monotonicity witness
– a term of a type that expresses monotonicity of F . In the journal version
[4] this has been turned into the system Itω= (Section 6 of loc. cit.) of which
we will show only the iterator with superscript κ1 (we omit those superscripts
altogether): Whenever F is a transformation of type transformations, then μF
is a type transformation (the nested datatype associated with F ). There is only
one generic constructor in for the elements of μF for all those F ’s:

in : ∀F∀A.F (μF )A→ μF A .

(If F happens to be a sum type, in represents a product of constructors, one for
every summand.) In our case Bsh3 := μ(BshF3) with

BshF3 := λXλA. 1 + A×X(X(XA)) ,

and in particular, in : (1 + A × (Bsh3)3A) → Bsh3A whose type is isomorphic
with the product of the types assigned to bnil3 and bcons3.

This is well-established tradition. The new contribution is the elimination rule
that needs the following abbreviation for type transformations X,G (already
present in [11]):

X ≤ G := ∀A∀B. (A→ B) → XA→ GB .

The more straightforward notion would have been

X ⊆ G := ∀A.XA→ GA .

It is important to base monotonicity of rank-2 type transformers on ≤ instead
of ⊆, since otherwise truly nested datatypes will not be covered, see [4, Section
5.4].1

Monotonicity of a type transformation is thus expressed by X ≤ X . The
notion of monotonicity for rank-2 type transformers F is defined analogously,
but one level higher: The type construction mon2 F (inhabiting Type in Coq) is
defined to be

mon2 F := ∀X∀G.X ≤ G→ FX ≤ FG .

System Itω= assumes a binary function symbol It= such that for every type
transformation G, we have: If m has type mon2 F and s has type FG ⊆ G, then
It=(m, s) has type μF ≤ G. More pictorially:

Γ 
 m : mon2 F Γ 
 s : FG ⊆ G

Γ 
 It=(m, s) : μF ≤ G

There is no condition on F (except being transformation of type transformations)
or G. The monotonicity witness m need not be closed, it may even be a variable
1 One can pass from X ⊆ G to X ≤ G if X or G is monotone – certainly a stan-

dard assumption in any category-theoretic treatment when type constructors are
interpreted as functors.
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occurring in the typing context Γ . Certainly, the step term s corresponds to the
morphism part of the F -algebra G – were this system based on category theory.

The computation rule is

It=(m, s)f(in t) −→ s (mIt=(m, s) f t) .

Here f : A → B (from the definition of ≤) and t : F (μF )A, while X in the
type of m is instantiated with μF . Hence, the terms on both sides of the rule
have type GB. The major result of [2] has been that system Fω, extended with
these rules, is still strongly normalizing and hence yields total functions. This
counts among the results on type-based termination: It is just the type of m
that ensures that the recursive calls to It=(m, s) cannot go wrong: m dispatches
the argument t (and the type-changing parameter f) to the iteratively defined
function It=(m, s). (Note that applications are implicitly parenthesized to the
left, hence there is no subterm It=(m, s) f t in the term to the right-hand side.)

The unavoidable disadvantage of this iteration scheme is that we cannot di-
rectly define a function toListBsh3 : Bsh3 ⊆ list. But we can define
toListBsh′

3 : Bsh3 ≤ list as It=(m, s) with the terms m and s, described as
follows:

Assume X ≤ G and A→ B. We have to produce a term inhabiting

BshF3XA→ BshF3GB ≡ 1 + A×X(X(XA))→ 1 + B ×G(G(GB)) .

Trivially, we get from 1 to 1 and from A to B. So, we concentrate on

X(X(XA))→ G(G(GB)) .

But this just requires three applications of the hypothesis X ≤ G to the hypoth-
esis A→ B, thus illuminating the use of ≤ in place of ⊆. Since this construction
is the canonical one for BshF3, let bshf3 be a name for that monotonicity
witness m.

For s : BshF3 list ⊆ list, the type nearly suggests the program: Assume a
type A and an argument t : 1 + A × list(list(listA)). We have to produce an
element of listA. We do case analysis on the sum argument. In the left case, just
return nil, in the right case, decompose the argument into a : A and b : list3A.
The first element of the list we output is a, and then flatten(flatten b), with
the usual operation flatten : list2A → listA that concatenates the argument
lists.

With the computation rule, we get the following operational equations (we
abbreviate toListBsh′

3 := It=(bshf3, s) by toL):

toL f bnil3 = nil ,
toL f (bcons3 a b) = fa :: flatten(flatten(toL(toL(toL f))b)) .

The function parameter f is replaced by toListBsh′
3(toListBsh′

3f) in the out-
ermost recursive call. The essential difficulty with truly nested datatypes is that
the recursive function is used as a whole (for unspecified bush arguments in our
case since the second argument is missing!) in the changing parameter f .
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Setting that parameter to the identity, we arrive at the desired function
toListBsh3. Using a fuller specification that already uniquely determines the
result, we will verify in general that toListBsh3(mkTriBsh3 m) always yields
the list of all ternary trees with height less than m. And we will generalize this
from 3-bushes to n-bushes.

Outline of the paper. After this lengthy introduction that gently introduced
many of the needed concepts – in particular the iteration principle that we use
throughout to read off lists from our bushes – we informally prove the statement
on mkTriBsh3. In section 3, the bushes are generalized to n-fold nesting, and
such n-bushes are constructed in detail for the n-ary trees of a given maximum
height, thus with an iterated power of entries. In section 4, a mathematical
description of the structure of the verification of these n-bushes is given. There is
sufficient detail so that everybody could do the proof without having any further
ideas. But there is also a full development in the theorem prover Coq, commented
in Section 5. It discusses the fine points while the development itself is available
on the author’s home page [18]. Future work and some further questions are
addressed in Section 6.

2 Intuitive Verification

One can program the list of all ternary trees with height less than m by plain
iteration on m without making reference to Bsh3. Given a : A and s : A → A,
we use the notation [a; s] for the function f : nat→ A that is defined by iteration
as f 0 := a and f (m + 1) := s (f m). For example, mkTriBsh′

3 = [aB; sB] with
aB f := bnil3 and, for v : ∀A.(Tri→ A) → Bsh3A and f : Tri→ A,

sB v f := bcons3 (f L) (vBsh2
3A(λt1.vBsh3A(λt2.vA (λt3.f(Nt1t2t3))))) .

(The indices to v are here just for information about the instantiation of the
parameter A.)

The question arises how one could find this term sB . Unfortunately, this
cannot be answered fully here, but a motivation can be given.

Define mkTriList : nat → list T ri as mkTriList := [aL; sL] with aL := nil
and for l : list T ri

sL l := L :: flatten
(
flatten

(
map
(
λt1.map(λt2.map(λt3. Nt1t2t3)l)l

)
l
))

.

Then mkTriList 0 = nil, and mkTriList(m + 1) = sL(mkTriListm).
The construction of sL is explained as follows: If l contains all the ternary

trees of height less than m, then all ternary trees of height less than m + 1 are
obtained by taking just a leaf L or by taking a node N with three trees from
l. With t1, t2 from l fixed, map(λt3. Nt1t2t3)l builds the list of all Nt1t2t3 with
t3 in l. The next step yields the list of these lists where t2 runs through l, and,
finally, the list of lists of lists when t1 runs through l is obtained. Flattening
twice and adding just L yields the result.

Hence, the problem is fully specified by mkTriList.
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Theorem 1. For all m : nat, toListBsh3(mkTriBsh3 m) = mkTriListm.

We cannot hope for a direct verification of this theorem by induction on m since
mkTriBsh′

3(m + 1)(λx.x) refers to instances of mkTriBsh′
3 mf with f not the

identity.
Hence, the theorem has to be generalized for those arguments.

Lemma 1. For all m : nat, A,B, f : Tri→ A, g : A→ B holds

toListBsh′
3 g (mkTriBsh′

3 mf) = map(g ◦ f)(mkTriListm) .

The first idea here is to use the fusion law for natural numbers in order to express
the right-hand side as a single iteration. To recall, fusion says that f ◦ [a; s] =
[a′; s′] if a′ = f a and s′ ◦ f = f ◦ s (to be proven by a simple induction over the
natural numbers argument).

Let us define mkTriListMap : nat→ ∀A.(Tri→ A) → listA by

mkTriListMapmf := map f (mkTriListm) .

We will not be able to fix the parameter f in our intended application of the
fusion law. Instead, we consider

map′ : list T ri→ ∀A. (Tri→ A) → listA ,

defined by map′ l f := map f l. Thus, mkTriListMap = map′ ◦ mkTriList.
Fusion will tell us that mkTriListMap = [aM ; sM ] if aM = map′ aL and

sM ◦map′ = map′ ◦ sL .

For the first equation, just set aM f := map′ aL f = map f nil = nil. The second
equation with arguments l : list T ri, f : Tri→ A requires

sM (λf.map f l)f = map f (sL l) .

We want to calculate the right-hand side of this equation. Here, we need categor-
ical laws for map and flatten, namely the second functor law for map, i. e., that
map commutes with composition, and naturality of flatten as a transformation
from list2 to list: For all appropriate f, l,

flatten(map(map f)l) = map f(flatten l) .

With these, the right-hand side map f (sL l) above becomes

fL :: flatten
(
flatten

(
map
(
λt1.map(λt2.map(λt3. f(Nt1t2t3))l)l

)
l
))

.

Now, it is easy to find the definition of sM v f with v : ∀A. (Tri → A) → listA
that satisfies the equation:

sM v f := fL :: flatten(flatten(v(λt1.v(λt2.v(λt3. f(Nt1t2t3)))))) .
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Note that these arguments will need a good deal of extensionality: If two func-
tions are pointwise equal, they are equal. This principle does not hold in inten-
sional type theory. But this does not mean that our reasoning becomes wrong.
There is only much more work to do, namely to show that the contexts in which
we want to replace one function by “another” that is extensionally equal, only
depend on the extension, i. e., on the values of the function. Details are in the
Coq development [18], further discussion is to be found in Section 5.

Proving Lemma 1 now means showing

toListBsh′
3 g (mkTriBsh′

3 mf) = [aM ; sM ]m(g ◦ f) .

With this specialized argument g ◦ f to [aM ; sM ]m, the author sees no hope for
further program transformation that might have suggested the recursive defin-
ition of mkTriBsh′

3. However, the verification is now a plain induction on m
that, in intensional type theory, also needs that [aM ; sM ]mf only depends on
the extension of f .

3 Programming the n-Bushes

The number  3m of ternary trees of height strictly less than m is given by

 30 := 0 ,
 3(m + 1) := ( 3m)3 + 1 .

We get the sequence ( 3m)m of iterated third powers (plus 1): 0, 1, 2, 9, 730,
389017001, . . . Hence, we now know that we can define elements of Bsh3 Tri
with  3m entries by unfolding m steps of the recursive definition of mkTriBsh′

3.
We could now sort of generalize this by defining elements of Bsh3A with  3m
elements, described as the values of a function f : nat → A at the arguments
0, 1, . . . ,  3m− 1. However, for space reasons, this will only be part of the imple-
mentation [18] and not pursued further in this article.

But we do generalize in a second direction: The exponent 3 is quite immaterial
to the ideas and is replaced by an arbitrary n. Defining and reasoning with
arbitrary n is then a challenge for metaprogramming.

Definition 2 (power of type transformation). Let X be a type transforma-
tion. Then X0 := λA.A and Xk+1 := λA.X(XkA).

Note that we put the “new” X on the outside. For the mathematician, this is
immaterial. For our intended verification with Coq, this seems to be an important
decision, to be discussed after Definition 5.

Definition 3 (n-bushes). The rank-2 type transformation is

BshFn := λXλA. 1 + A×XnA

and its fixed point is Bshn := μ(BshFn) (using the μ of the introduction that
does not require any property of its argument).
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Definition 4 (datatype constructors). bniln := in(inl〈〉) with inl the left
injection into the sum and bconsn := λaλb. in(inr〈a, b〉) with inr the right in-
jection and pairing operation 〈·, ·〉.
The parameter n will be fixed throughout (we do not relate Bshn and Bshm).

This time, we start with the bush decomposition function. Since we cannot
argue with dots and braces that are given numbers of repetitions, we have to
define the building blocks by iteration on k and then use them with k := n.

Definition 5 (iterated flattening). Define flatk : ∀A. listkA → listA by
iteration on k as follows:

flat0 a := a :: nil ,
f latk+1 l := flatten(map flatk l) .

Remark. The much easier right-hand side flatten(flatk l) would require in the
verification that list(listkA) = listk(listA) is known to the type-checker which it
is not, due to our decision in Definition 2. With some effort due to extensionality
problems (also see Section 5), it can be shown nevertheless for every l, that
flat2 l = flatten l and flat3 l = flatten(flatten l).2 We used this last term up
to now, but toListBsh′

3 will now only formally be different but not extensionally.

Definition 6 (lifting ≤ to the k-th power). For type transformations X,G
and i : X ≤ G define POWk i : Xk ≤ Gk by iteration on k:

POW0 i := λf. f ,
POWk+1 i := λf. i(POWk i f) .

Definition 7 (monotonicity witness). Define bshfn : mon2(BshFn) in anal-
ogy with bshf3 in the introduction: Assume i : X ≤ G, f : A → B and
t : BshFnXA. Produce a term of type BshFnGB. For this, do case analysis
on t. If it is a left injection from 1, then inject this into the left. If it is the right
injection of a pair of a term a : A and a term b : XnA, then inject the following
pair into the right: It consists of fa and POWn i f b.

Definition 8 (listifying). Define toListBsh′
n : Bshn ≤ list analogously to

toListBsh′
3 in the introduction: toListBsh′

n := It=(bshfn, s) with step term
s : BshFn list ⊆ list just as before, but with flatn b instead of flattening b twice.

We see that the earlier definition for n = 3 is only a special case modulo the
remark after Definition 5. As usual, set toListBshn := toListBsh′

n(λx.x).

Lemma 2 (properties of toListBsh′
n). The operational equations are

toListBsh′
n f bniln = nil and

toListBsh′
n f(bconsn a b) = fa :: flatn(POWn toListBsh′

n f b) .

2 The general statement flatk+1 l = flattenk l does not type-check. Using heteroge-
neous equality alluded to in Section 5, one can work around this problem so that a
single proof is obtained which can be instantiated to every concrete number k.
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Proof. Unfold the definitions and use the operational rule for the iterator. �.
The last three definitions only concerned the analysis of bushes. Now, we prepare
for their definition.

Evidently, the number of n-ary unlabelled trees with height less than m is
 nm, defined as follows:

Definition 9 (generalized  nm).

 n0 := 0 ,
 n(m + 1) := ( nm)n + 1 .

The datatype of the n-ary unlabelled trees will be called Treen, with datatype
constructors Ln : Treen and Nn : vecn → Treen. Here (recall that we fix n
throughout), veck shall represent the k-tuples of Treen, with datatype const-
ructors

vnil : vec0 ,
vcons : Treen → ∀k. veck → veck+1 .

First, we generalize mkTriList := [aL; sL] : nat→ list T ri to

mkTreeListn := [aLn; sLn] : nat→ list T reen

with
aLn := nil : list T reen ,
sLn := λl. Ln :: flatn(L l nNn). : list T reen → list T reen .

Here, we use the functional

L : list T reen → ∀k. (veck → Treen)→ listk Treen ,

defined by plain iteration on k as

L l 0 f := f vnil ,

L l (k + 1) f := map
(
λt.L l k (f ◦ (vcons t k))

)
l .

Define for t1, t2, t3 : Tree3 the abbreviation

N ′
3t1t2t3 := N ′(vcons t1 2 (vcons t2 1 (vcons t3 0 vnil))) : Tree3 .

Definition unfolding yields

sL3 l = L3 :: flat3

(
map
(
λt1.map(λt2.map(λt3. N ′

3t1t2t3)l)l
)
l
)

.

Consequently, up to the remark after Definition 5 and to the isomorphism be-
tween Tri and Tree3, we get back our previous sL.

Again, the function mkTreeListn fully specifies what we expect from our
bush-making function mkTreeBshn : nat→ Bshn Treen:

∀m. toListBshn(mkTreeBshn m) = mkTreeListn m .
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Certainly, one could hope for a proof that this specification really meets our
intuition, in the sense that it implies certain properties (a looser specification)
such as the correct number of elements and that the elements are of the required
maximum height. We shall be satisfied if our definition of mkTreeBshnvalidates
the specification above.

As usual, we define a more general function

mkTreeBsh′
n : nat→ ∀A. (Treen → A) → BshnA

as mkTreeBsh′
n := [aBn; sBn] and set

mkTreeBshn m := mkTreeBsh′
n m (λx.x) .

For v : ∀A. (Treen → A) → BshnA and f : Treen → A, define:

aBn f := bnil3 ,
sBn v f := bcons3(fLn)(B v n (f ◦Nn)) ,

where the functional

B : (∀A. (Treen → A) → BshnA) → ∀k∀A. (veck → A) → Bshk
nA

is defined by plain iteration on k:

B v 0 f := f vnil ,
B v (k + 1) f := vBshk

nA(λt.B v k (f ◦ (vcons t k))) .

With these definitions, the case n = 3 is as follows:

sB3 v f = bcons3 (f Ln) (vBsh2
3A(λt1.vBsh3A(λt2.vA (λt3.f(N ′

nt1t2t3))))) ,

which is sB up to the isomorphism between Tree3 and Tri.
As is usual for nested datatypes, a statement for mkTreeBsh′

n instead of
mkTreeBshn has to be proved:

Theorem 2 (soundness for general n). For all numbers m, types A,B and
functions f : Treen → A, g : A→ B,

toListBsh′
n g (mkTreeBsh′

n mf) = map(g ◦ f)(mkTreeListn m) .

The proof of the theorem occupies the next section.

4 Verification

Remember that we fixed some n. Theorem 2 will be shown by induction on m. So
let T m stand for its statement with m fixed. Due to the repeated (n times) use of
our function mkTreeBsh′

n m in the recursive call for m+1 (replacing the formal
parameter v of sBn, there will also be n intermediate steps of a proposition P mk,
given in Definition 10. From T m, we will successively prove P m 0, . . . , P mn
and then be able to deduce T (m + 1), hence achieve the induction step of the
theorem.
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Definition 10 (Proposition). Let P mk be the following statement: For all
types A,B, functions f0 : veck → Treen, f : Treen → A, g : A→ B,

flatk(POWk toListBsh′
n g (B (mkTreeBsh′

n m) k (f ◦ f0))) =
map(g ◦ f)(flatk(L (mkTriListn m) k f0)).

Lemma 3 (Theorem implies Proposition). For all m, if T m holds, then
also for all k, P mk holds.

Proof. We fix m and assume T m holds. Prove by induction on k that P mk
holds. The case k = 0 goes by unfolding of the definitions. For the inductive
step we assume that P mk holds and want to show P m (k+1). This starts with
simple unfolding of definitions. Then T m is used with

λt.B (mkTreeBsh′
n m) k (f ◦ f0 ◦ (vcons t k))

in place of f and POWk toListBsh′
n g in place of g. Then, the second functor

law for map applies. Now, we may apply the induction hypothesis, namely that
P mk holds. Interestingly, this happens in the function argument of map (and
the function f0 for which the induction hypothesis is used will vary with that
argument). In extensional mathematics, this is innocuous, but for the actual
verification this requires further thought, see the next section. Once again, we
have to use the second functor law for map and then naturality of flatten (also
used in Section 2; it can be proven by induction on lists and also needs that
map f is a homomorphism for list concatenation “++” which is in turn an easy
induction). With this exception, we did not need any “free theorems” [24] in this
verification. The free theorems say that every function of type ∀A.XA → GA
with X,G functors, is natural in the sense of category theory. This is a very
extensional view that would not be well supported by Coq.

Back to the proof: A further application of the second functor law for map
suffices. Having the precise proof here does not seem necessary with this detailed
description of the kind of reasoning that is needed. �.
The proof of Theorem 2 is then by induction on m: For m = 0 just calculate.
The induction step is nearly an immediate application of the previous lemma
with k := n, as announced earlier.

5 Implementation

The complete development in Coq can be found on the author’s web page [18].
How does the presentation in this paper match with the implementation in

Coq? Firstly, the current presentation lives in Fω with type dependency on in-
dices n and k added. If we regard n as a fixed constant, then this type dependency
already disappears. Then, the induction over k can be reduced just to a step-
by-step consideration of the cases k := 0, . . . , n. Moreover, we adopted the raw
syntax of the Curry-style typing. Hence, we might see ourselves precisely in the
situation of the paper [4]. Hence, through the translations into Fω given there,
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the programs can be found even in plain Fω which is a subsystem of Coq’s cal-
culus of inductive constructions as long as Set is kept impredicative. Therefore,
we know that these functions are all terminating despite their highly unconven-
tional call structure. So good for the programs. Secondly, we never use in any
way the universally quantified types in places where we speak about ordinary
types. In other words, we do not use the full comprehension of impredicative
Set. Thus, we may use (and have used) the new Coq 8.0 with predicative Set
but cannot rely on the built-in equality any longer. The nested datatypes we
used in this paper come just from a module parameter of a module type that
has typed parameters for:

– the fixed point μ of rank-2 type constructors,
– the datatype constructor in and
– the iterator It=(·, ·).

In addition, there is the hypothesis that It=(m, s)f(in t) = s(mIt=(m, s) f t),
with = not the built-in decidable convertibility relation but Leibniz equality
that is animated by a rewriting mechanism in Coq. There is no implementation
whatsoever. We just provide a name for a hypothetical implementation of this
module type.

And there is no built-in termination guarantee. So, all the calculations have to
be triggered by tactics that rewrite with equations. This will certainly have bad
consequences if one wants to study types that depend on results computed from
these iterators: The type-checker will not invoke the reductions, and rewritten
arguments will no longer be feasible for these dependencies since equality can
only be expressed between terms of types that are convertible (with respect to
that built-in decidable convertibility relation). Fortunately, Coq also supports a
heterogeneous equality that will not prove any equality between terms of types
that are not provably equal, but where those equalities can at least be expressed.
And as soon as they have been expressed, one may work on them by rewriting
types with user-defined rewrite rules such as our computation rule for It=. If
this succeeds, one may finally also establish Leibniz equality. This heterogeneous
equality has been introduced by McBride under the name “John Major Equality”
[19] (see also [6, Section 8.2.7]), and there are even extensions of that idea that
try to integrate extensional reasoning into intensional type theory [21].

Namely, rewriting has another defect: rewriting cannot be done under a
λ-abstraction. Otherwise, the system would be extensional, and currently known
extensional type theories have undecidable type-checking. Coq is definitely not
based on extensional type theory, but many functionals do not distinguish be-
tween only extensionally equal argument functions. For example, map f l de-
pends only on the extension of f . This is to say that whenever for all x, fx = gx,
then map f l = map g l for all l. This principle is easily proven by induction on
lists l and used in the proof of Lemma 3. Much harder would be to show a
similar extensionality of toListBsh′

n f b for the argument f . One would need
an induction principle for the n-bushes b that does not seem to exist yet. In a
sense, it is not surprising that we do not need such extensionality for the proof
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of Lemma 3: the expression on the right-hand side of proposition P mk only de-
pends on the extension of f and g (due to the property of map just mentioned).
So, if P mk is true, then there should be no concern with extensionality of this
kind because we can always pass to the other side in course of the induction
proof.

To sum up this last discussion: We cannot assume that extensionally equal
functions are equal, but our proofs only would have liked to apply extensional-
ity in situations where those functions were arguments to a functional that is
indifferent to intensional differences, as long as the extensions coincide. I would
like to call those functionals extensional as well.

It should also be mentioned that we used the vectors from the Coq stan-
dard library Bvector that has a family of vectors for any type parameter. This
explains why Treen can be defined in Coq. Other attempts did not work, in
particular a definition of the type of Nn as an iterated implication or the type
of the argument of Nn as an iterated product.

6 Future Work and Conclusions

Is there a fusion law that would help in establishing Lemma 1 or even Theorem 2?
The crucial problem is the splitting into f and g.

Generic programming [5] aims at descriptions of algorithms that exist for
every datatype which follows a certain grammar of datatype functors. For nested
datatypes, there are the “hofunctors” [8, 17]. Generic Haskell [14, 16] goes further
up the hierarchy and allows all finite kinds. Since it generates a Haskell program
after having inspected which datatypes are really used, it could perhaps be
extended to support the shallow metaprogramming we undertook in this paper.
Then Generic Haskell would be a generic extension even of DependentML [25].
Can the function toListBsh′

n be obtained by generic programming?
In general, container types are now quite well understood [15]. Here, we speak

about higher containers with true nesting that could and should be seen as
strictly positive.3 The authors of [1] speculate that their framework of Martin-
Löf categories should also be useful in this more general setting (they excluded
nested datatypes in that article). Will this shed some light on programming with
truly nested datatypes?

It would be desirable to see a closer relationship with continuations since our
examples worked on function arguments that first only produced elements of
type A but climbed up the powers of BshnA in course of the recursion. One
should be able to learn considerably from the approaches to program with these
first-class higher-order functions.

What exactly is gained if one knows that a certain object is of type BshnA
for some specific n and A? The powerlists mentioned in the introduction ensure
that one has 2i elements for some i. With n-bushes, this is by no means the
3 Non-strict positivity is only concerned with appearences of the function space con-

structor in the type. Our framework does not exclude that at all, but we do not yet
have interesting examples of nested datatypes which crucially contain →.
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case: One can construct easily elements of Bshn nat that contain exactly the
first i numbers, for any i (this is also contained in the Coq development [18]).
What we have seen is that only a recursion of height m is needed to get  nm
elements and that one can precisely control what they are. Is this the maxi-
mum number? A theorem would require a precise computational model for its
formulation.

For the moment, our contribution could perhaps more be understood as an
adventure in types [20] - more precisely in truly nested container types.

And this adventure is only a beginning in the following sense: Although generic
programs sometimes generate truly nested datatypes [13], they are seen as not
yet proven useful. This might well be the case, but also the support by type-
theoretic systems is still missing for them. Especially with these intricate itera-
tion schemes, one would like to know – at least – that the programs terminate on
finite input. Haskell does provide a programming environment, but no guaran-
tees of that sort. In this article, we could reason about elements of truly nested
datatypes since they were parameterized by datatypes as simple as the natural
numbers. If the only purpose for generating such an n-bush were to flatten it im-
mediately afterwards into a list, this would not justify our efforts. Once arrived
in the realm of n-bushes, we would like to transform them – again with termi-
nation guarantees for those transformations. And we would like to reason about
these transformations in a theorem prover that has decidable type-checking.
The principles underlying such a reasoning have yet to be found. Then, truly
nested datatypes like the n-bushes may start to prove their usefulness even if an
adventure in types is not intended.
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Abstract. Action systems are a framework for reasoning about discrete
reactive systems. Back, Petre and Porres have extended these action sys-
tems to continuous action systems, which can be used to model hybrid
systems. In this paper we define a refinement relation, and develop prac-
tical data refinement rules for continuous action systems.

The meaning of continuous action systems is expressed in terms of
a mapping from continuous action systems to action systems. First, we
present a new mapping from continuous action systems to action systems,
such that Back’s definition of trace refinement is correct with respect to
it. Second, we present a stream semantics that is compatible with the
trace semantics, but is preferable to it because it is more general. Al-
though action system trace refinement rules are applicable to continuous
action systems with a stream semantics, they are not complete. Finally,
we introduce a new data refinement rule that is valid with respect to
the stream semantics and can be used to prove refinements that are not
possible in the trace semantics, and we analyse the completeness of our
new rule in conjunction with the existing trace refinement rules.

1 Introduction

Action systems [4, 5] can be used to model discrete systems. Back, Petre and
Porres extended action systems to continuous action systems, so that they could
be used to model hybrid systems [1]. A hybrid system is one in which both
continuous and discrete behaviour are modelled. In continuous action systems,
variables are modelled as continuous timed streams and a special variable that
represents the current time is introduced. Discrete (instantaneous) actions are
used to update the continuous timed streams.

In the work of Back et al. [1], the behaviour of a continuous action system is de-
fined in terms of an equivalent action system. This means that the definition of ac-
tion system trace refinement [2] may be applied to continuous action systems. With
respect to the definition of trace refinement, there are problems with the mapping
from continuous action systems to action systems given by Back et al. [1]:

– It allows aborting action systems to be refined by ones that modify past
behaviours.

– It requires the future values of output streams after every action to be pre-
served by refinement.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 316–337, 2006.
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The first problem allows a continuous action system to be refined by one that we
consider to not faithfully preserve the behaviour of the continuous action system
with respect to the intended interpretation. The second problem overly restricts
allowable refinements. We provide a variation on their mapping from continuous
action systems that addresses these problems.

Even though the new mapping avoids these problems the definition of action
system trace refinement [2] is still overly restrictive because it requires the timing
of actions to be preserved by refinement. To overcome this problem we introduce
the notion of stream semantics. In our stream semantics, the behaviour of a
continuous action system is expressed in terms of the set of continuous timed
streams that it generates. We formally define stream semantics for continuous
action systems in terms of their trace semantics, and compare trace and stream
semantics. We find that trace refinement implies stream refinement, but that the
converse does not hold. As a result, we argue that stream semantics should be
used instead of the trace semantics because it is more general.

Practical refinement rules (simulation and cosimulation rules) exist for prov-
ing trace refinements between action systems [2]. Since trace refinement implies
stream refinement, we may use these to prove stream refinements between contin-
uous action systems. However, because stream semantics are more general than
trace semantics, the trace refinement rules alone are incomplete for continuous
action systems with a stream semantics. We introduce a new data refinement rule
for continuous action systems that is able to prove refinements that are valid in
the stream—but not the trace—model. For a subclass of continuous action sys-
tems, we demonstrate that our new rule in conjunction with the standard data
refinement rules are as complete for continuous action system stream refinement
as the action system data refinement rules are for standard action system trace
refinement.

The following three sections contain background information relevant to the
paper: the structure and semantics of action systems is described in Sections 2
and 3, Sect. 4 describes continuous action systems and their interpretation as
action systems. In Sections 5, 6 and 7 we examine the semantics of continuous
action systems in detail: an alternative mapping from continuous action systems
to action systems is defined, a stream semantics for continuous action systems
is given, and we perform a comparison between the stream and trace semantics.
In Sect. 8 an algebra for reasoning about the semantics of continuous action
systems is constructed and used to develop a new stream data refinement rule,
and we discuss the completeness of the data refinement rules.

2 Action Systems

An action system [4, 5] is of the form:

| [ var x1 : X1; ...; xn : Xn ; S0; do S od] |:< z1 : Z1, ..., zm : Zm >

where each xi is a local variable, and each zj is a global variable. S0 is an
initialisation action that initialises the local variables without modifying the
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global variables. S is an action that operates on the combined local and global
state space. The following syntax is used to represent commands used in actions.

S ::= {g} | [g ] | x := e | S1; S2 | S1 � S2 | �i : T • Si | Sω | S∗ | S∞

Here g is a predicate, x is a variable in the state space, and e is an expression
on the state space. The semantics of our actions are described using conjunctive
predicate transformers. A predicate transformer is a function from predicates
on the output state space Γ to predicates on the input state space Σ. Given a
predicate transformer S : (Γ → B) → (Σ → B) and a predicate q, S .q returns
the weakest precondition of S to achieve q. The conjugate of S .q is written S .q,
and is defined as ¬S .(¬q). Informally, S .q specifies the set of states from which
S may possibly achieve q (but is not necessarily guaranteed to achieve q). A
predicate transformer S , is conjunctive if it distributes over nonempty meets,
i.e., if S .(

∧
i : I • qi) = (

∧
i : I • S .qi). Conjunctivity implies monotonicity. A

predicate transformer S2 is said to be a refinement of S1 if, for all predicates q, the
weakest precondition of S2 to achieve q is implied by the weakest precondition
of S1 to achieve q:

S1 � S2 � ∀ q • S1.q ⇒ S2.q

More detailed information about predicate transformers and program refinement
can be found elsewhere [3, 13, 9].

Assertion : ({g}).q g ∧ q
Coercion : ([g ]).q g ⇒ q
Assignment : (x := e).q q [x \ e]
Sequential composition : (S1; S2).q S1.(S2.q)
Nondeterministic choice : (S1 � S2).q S1.q ∧ S2.q
General nondet. choice : (�i : T • Si).q i : T • Si .q
Strong iteration : (Sω).q (μT • S ; T � skip).q
Weak iteration : (S∗).q (νT • S ; T � skip).q
Infinite iteration : (S∞).q (μT • S ; T ).q
skip : skip [true]
magic : magic [false]
abort : abort {false}

Fig. 1. Predicate transformer semantics of actions

In Fig. 1 we give a semantics for commands in which we identify a command
with its predicate transformer. Assignment, assertion, coercion, nondeterministic
choice, and sequential composition have the usual definitions. The unary opera-
tors (∗,ω ,∞) have the highest precedence, followed by “;”, and then “�”. We use
the iteration constructs of Back and von Wright [6, 3]. Informally, weak itera-
tion S ∗ performs the operation S any finite number of times. Strong iteration Sω
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either performs S any finite or any infinite number of times. Infinite iteration
S∞ performs S an infinite number of times. Strong and infinite iteration are
defined using the least fixed point operators, while weak iteration is defined
using the greatest fixed point operator. skip has no effect on the state. In terms
of the refinement lattice, the least predicate transformer is abort, while the
greatest predicate transformer is magic. abort is not guaranteed to terminate
or produce any particular output. Infinite iterations of predicate transformers
are considered to be aborting: for example, skip∞ = skipω = abort. magic is
miraculous, it can achieve everything, but it cannot be implemented.

We refer to the state space of an action system A as ΣA, which is a mapping
from the names of variables in A, to the types of the variables (in each σ : ΣA
each variable name must be mapped to a value in the corresponding type for
that variable). The local and global parts of this space are referred to as local .ΣA

and global .ΣA respectively, where local .ΣA and global .ΣA must have disjoint
domains. For any state σ : ΣA, we have that

local .σ � dom.(local .ΣA) � σ

global .σ � dom.(global .ΣA) � σ

where “�” represents domain restriction. Given an action system A, we refer to
the initialisation action of A as A0 and the action as A. The guard of action A
is denoted by g.A, and t .A denotes the states from which action A terminates,

g .A � ¬A.False

t .A � A.True

We write A = g1 → S1 [] ... [] gm → Sm , to mean that A = [g1]; S1�...�[gm ]; Sm ,
where each gi is a predicate and each Si is a predicate transformer. For an
action A of this form, we also refer to each predicate transformer “[gi ]; Si” as
an action (an action can be viewed as a nondeterministic choice between a finite
set of actions). If all predicate transformers Si are non-miraculous for A = g1 →
S1 [] ... [] gm → Sm , then g.A is simply

∨
i • gi , and t .A is

∧
i • t .([gi ]; Si).

3 Action System Trace Semantics

Back and von Wright have given a semantics for action systems in terms of
traces [2]. The trace semantics of an action system A is given in terms of sets of
behaviours that A may produce, beh.A : P(seq.ΣA). Each behaviour is a finite
or infinite sequence of states from ΣA (the state space of A) that may be either
terminating, nonterminating, or aborting. Each behaviour b : beh.A must satisfy
the following conditions:

– The first state of b must be reachable by executing A0 from a global initial
state.

– For every pair of adjacent states in b, the second state must be reachable
from the first by action A.
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– For every state in b other than the final (for infinite behaviours there is no
final state), g.A and t .A must hold.

– If b is finite then either ¬g.A or ¬t .A must hold in the final state.

A behaviour is defined to be terminating if it is finite and ¬g.A holds in its
final state; it is aborting if it is finite and its last final state satisfies ¬t .A, it is
nonterminating if it is neither terminating or aborting.

term.b � finite.b ∧ last .b ∈ ¬g .A (1)

aborting .b � finite.b ∧ last .b ∈ ¬t .A (2)

nonterm.b � ¬finite.b (3)

Note that action systems are reactive, hence their behaviour differs from that
of predicate transformers. In reactive systems, the behaviour of the system up
until an aborting action is executed is preserved. This means that nonterminat-
ing reactive systems that don’t contain aborting actions generate behaviours of
infinite length, while nonterminating predicate transformers are considered to
be aborting.

An action system A is refined by another action system C, if the globally
visible behaviour of C is permitted by A. In standard action systems, the globally
visible view of a behaviour b is a trace tr .b of type seq.(global .ΣA). A trace of a
behaviour is simply the behaviour with all finite sequences of stuttering steps and
local states removed: a stuttering step is a step which does not modify the global
state. Formally, the trace refinement relation (tr between two action systems A
and C is defined as follows [2]

A �tr C � ∀ bC : beh.C • (∃ bA : beh.A • bA �tr bC )

where bA �tr bC if, neither tr .bA nor tr .bC is aborting and tr .bA = tr .bC , or
tr .bA is aborting and is a prefix of the sequence tr .bC .

4 Continuous Action Systems

Continuous action systems have the same form as action systems, however all
variables are represented as timed streams. For some type VAL we define the
set of all timed streams on VAL, Stream.VAL, as the set of total functions from
Time to VAL:

Stream � λ VAL • Time → VAL

where Time is defined to be the set of non-negative real numbers. For any
s : Stream.VAL, and time interval I , we refer to the stream s over time interval
I as s ↓ I . We write s 8 s ′ to mean that s is a stream prefix of s ′.

An implicit variable τ of type Time is used to refer to the current time.
Actions that are performed on the continuous state space are atomic and they
take no time to execute: time is allowed to pass between the execution of actions.
Actions are constrained such that they cannot change the past: they are only
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allowed to change future values of timed streams. The initialisation command
and the action may refer to the implicit variable τ however they may not update
it. This variable is implicitly initialised and updated.

Given a variable x and an expression on the state space, the future update
statement x :−e [1] is defined as

x :−e � x := λ t • if t < τ then x .t else e.t

This assignment statement is used instead of “:=” in order to ensure that actions
do not change the past. We express nondeterministic future assignment as

x :∈ E � �e : E • x :−e

where E is a set of expressions on the state.
Any discrete (non-stream) variable, may be given a stream interpretation. For

example a variable x of type N may be interpreted as a variable of type Stream.N,
the occurrence of x in expressions may be replaced by x .τ , and assignments
x := v can be taken to mean x :−(λ t : Time • v). In later examples, for
brevity, we define some continuous action system variables to be of discrete
types.

The meaning of a continuous action system is expressed by Back et al. [1]
using an equivalent action system.

Definition 1 (actSysOLD). Given a continuous action system CA, with local
variables xi : Stream.Xi for i ∈ [1..n], global variables zj : Stream.Zj for j ∈
[1..m], initialisation action A0, and action A, actSysOLD .CA is defined as

| [ var τ : Time, x1 : Stream.X1; ...; xn : Stream.Xn ;
τ := 0; A0; N ; do A; N od

] |:< z1 : Stream.Z1, ..., zm : Stream.Zm >

where

N � (τ := next .(g .A).τ )

next .gg .t � min{t ′ | t ′ ≥ t ∧ gg .t ′}, if (∃ t ′ • t ′ ≥ t ∧ gg .t ′)
t , otherwise

In this mapping the variable τ is introduced, and initialised to zero. After the
execution of each action τ is advanced to the earliest time the action will be
enabled, if such a time exists; τ is not modified if no more commands will ever
be enabled, or if a command is currently enabled. Although a continuous action
system CA may map to a terminating action system, continuous action systems
themselves have no termination time. Termination of actSys .CA merely signifies
that from the termination time onwards, the stream variables evolve according
to their last assignment.

Apart from satisfying these constraints, continuous action systems are not
allowed to contain Zeno-behaviour: only a finite number of iterations are allowed
in a finite period of time.



322 L. Meinicke and I.J. Hayes

5 Continuous Action System Trace Semantics

Given the mapping from continuous action systems to action systems (Defini-
tion 1), we consider the definition of trace refinement to be invalid and overly
restrictive for continuous action systems. We interpret it to be invalid because it
allows aborting action systems to be refined incorrectly by action systems that
modify past behaviours.

Continuous action systems should not modify past values of streams. This
means that a behaviour that aborts at time t should not be refined by one
that produces different output streams in the interval [0..t), nor should it be
refined by one that aborts at an earlier time. However, in Fig. 2 we can see
that CJ is a trace refinement of CI: from initial state y = y0, CI produces
global trace 〈y0, f 〉, and then aborts, while CJ produces global output trace
〈y0, f , f ↓ [0..1)�g ↓ [1..∞)〉. (Where “�” is the stream concatenation operator.)
CI aborts at time 2. CJ does not abort, however, it produces a different output
stream in the interval [0..2). This problem arises because the time of program
abortion is irrelevant to the definition of trace refinement.

CI �
| [ var n : N;

n := 0;
do (τ = n = 0)→ y :−f ; n := n + 2
[] (τ = n = 2)→ abort
od

] |:< y : Stream.N >

CJ �
| [ var n : N;

n := 0;
do (τ = n = 0)→ y :−f ; n := n + 1
[] (τ = n = 1)→

y :−g ; n := n + 2
[] (τ = n = 3)→ n := n + 1
od

] |:< y : Stream.N >

Fig. 2. Continuous action systems CI and CJ. f and g are functions of type Stream.N.

We also consider the definition of trace refinement to be overly restrictive
because the global stream variables are defined over all time: therefore the traces
that describe the visible behaviour of the action system include information
about the future values of output streams after each action. Since the future
values of output streams may be modified by further actions, they should not
have to be preserved by refinements. For example, we have that CE and CF
(Fig. 3) produce the same overall output stream for y but, according to mapping
actSysOLD (Definition 1), they are not trace equivalent: CE is not a valid trace
refinement of CF, although CF is a valid trace refinement of CE. After each
action, the set of possible future values of the streams are not the same, even
though both of these programs produce the same output streams. (Both systems
produce the same global stream y = f .) From initial state y = y0, CE produces
the set of global traces of the form 〈y0, g1, g2, g3...〉, where ∀ i : N • gi ↓ [0..i ] =
f ↓ [0..i ], while CF produces the global trace 〈y0, f , f , f , ...〉.
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CE �
| [ var n : N;

n := 0;
do (τ = n)→

n := n + 1;
y :∈ {g : Stream.N | g ↓ [0..n] = f ↓ [0..n]}

od
] |:< y : Stream.N >

CF �
| [ var n : N;

n := 0;
do (τ = n)→

n := n + 1;
y :−f

od
] |:< y : Stream.N >

Fig. 3. Continuous action systems CE and CF. f is a function of type Stream.N.

A simple modification to the mapping from continuous action systems to
action systems alleviates these problems. In our modification the global variables
are redefined as partial streams: they are used to describe the output streams
that have already been produced (and cannot be modified by further actions).
Future values of global variables are stored as local variables. At the end of an
action, if no future actions will be enabled then the global variables are defined
over all time; if future actions are enabled then the global variables are defined
over the half-open interval [0..τ). A half-open interval is used in this last case
because future actions may change the values of variables at time τ .

We define Stream∗.VAL to be the set of all partial streams on VAL defined
over both half-open and closed intervals, and Streamω.VAL to be set of all partial
and total streams on VAL.

Stream∗ � λ VAL •
{s : Time �→ VAL | ∃ r : R • (dom.s = [0..r) ∨ dom.s = [0..r ])}

Streamω � λ VAL • Stream.VAL ∪ Stream∗.VAL

Definition 2 (actSys). Given a continuous action system CA, with local vari-
ables xi : Stream.Xi for i ∈ [1..n], global variables zj : Stream.Zj for j ∈ [1..m],
initialisation action A0, and action A, let z � 〈z1, ..., zm〉, z ′ � 〈z ′

1, ..., z
′
m〉.

We define actSys.CA as

| [ var τ : Time; x1 : Stream.X1; ...; xn : Stream.Xn ;
z ′
1 : Stream.Z1; ...; z ′

m : Stream.Zm ;
τ := 0; A0[z \ z ′]; M ;
do A[z \ z ′]; M od

] |:< z1 : Streamω .Z1, ..., zm : Streamω .Zm >

where

M � τ := next .(g .A[z \ z ′]).τ ;

z1 := znext .(g .A[z \ z ′]).z ′
1.τ ; ...; zm := znext .(g .A[z \ z ′]).z ′

m .τ

next .gg .t � min{t ′ | t ′ ≥ t ∧ gg .t ′}, if (∃ t ′ • t ′ ≥ t ∧ gg .t ′)
t , otherwise

znext .gg .z ′ .t � z ′ ↓ [0..t), if gg .t
z ′ otherwise
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As before, the variable τ is introduced, and initialized to zero, and after the
execution of each action τ is advanced to the earliest time an action will be
enabled, if such a time exists. For each global variable zj , a new local variable
z ′
j : Stream.Zj is introduced. This variable is used in actions A0 and A instead

of zj . Each global variable zj is redefined to be of type Streamω.Zj . After each
action the global variables are updated so that they are defined either: over all
time if no further actions are enabled, or just up until the current time if future
actions are enabled.

Using our new mapping actSys, it is trivial to show that CJ is not a trace
refinement of CI (Fig. 2). CI produces global trace 〈f ↓ [0..0), f ↓ [0..2)〉, while
CJ produces global trace 〈f ↓ [0..0), f ↓ [0..1), f ↓ [0..1)� g ↓ [1..∞)〉. We are also
able to prove that continuous action systems CE and CF (Figure 3) are trace
equivalent. We have that

E � actSys.CE =
| [ var τ : Time,n : N, y ′ : Stream.N;

τ,n, y := 0, 0, y ′ ↓ [0..0);
do (τ = n)→

n := n + 1;
y ′ :∈ {g : Stream.N |

g ↓ [0..n] = f ↓ [0..n]};
τ, y := n, y ′ ↓ [0..n)

od
] |:< y : Streamω .N >

F � actSys.CF =
| [ var τ : Time,n : N, y ′ : Stream.N;

τ,n, y := 0, 0, y ′ ↓ [0..0);
do (τ = n)→

n := n + 1;
y ′ :−f ;
τ, y := n, y ′ ↓ [0..n)

od
] |:< y : Streamω .N >

where we have simplified expressions next and znext. It can be seen that both E
and F produce the nonterminating global trace 〈f ↓ [0..0), f ↓ [0..1), f ↓ [0..2), ...〉,
hence they are trace equivalent.

The parallel composition operator that Back et al. [1] defined for continuous
action systems is performed at the continuous action system level (before map-
ping the continuous action systems to action systems), and hence it remains the
same despite our modifications to the action system mapping actSysOLD.

6 Continuous Action System Stream Semantics

Trace refinement is valid with respect to our new mapping actSys (Definition 2)
from continuous action systems to action systems, however it is still overly re-
strictive: this is because trace refinement requires the timing of actions to be
preserved by refinement. This information should not have to be preserved, be-
cause it does not influence the set of global output streams that may be produced.
In this section we define a stream semantics for continuous action systems that
overcomes this problem. The stream semantics that we construct is a better
choice of semantics than the trace model because it is more general.

Instead of using discrete traces over the continuous state variables to describe
continuous action system semantics, we may describe its semantics in terms of
the continuous timed streams that are generated by the program. We can express
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this alternative semantics in terms of the trace semantics of action systems. We
define the set of streams that may be produced by a continuous action system
CA as behStreams .(actSys .CA), where

behStreams.A � {b : beh.A • behStream.b} (4)

behStream.b � (λ var : (dom.ΣA − τ ) • lim getSeq .b.var) (5)

getSeq .b.var �
(λ i : dom.b • b.i .var ↓ [0..b.i .τ ))

�〈last .b.var ↓ Time〉, if term.b
(λ i : dom.b • b.i .var ↓ [0..b.i .τ )), otherwise

(6)

Each stream is defined as the limit of a sequence of partial streams. (Back et al.
[1] observed that the streams produced by continuous action systems could be
defined in this way, although they did not specify that aborted sequences should
be treated in the way we have done, nor do they define a refinement relation on
sets of streams.) If the non-Zeno property holds (as assumed), then the limit of
the sequence of partial streams getSeq.b.var is defined over all time if b is not
aborting, and is defined up until the time of abortion if b is aborting. Aborted
behaviours produce partial timed streams that have an open interval at the end.
Aborted streams do not define the value of the stream at the time of abortion
because refinements may modify this value. Given a continuous action system
CA and s : behStream.(actSys .CA),

aborting .s � ∃ r : Time • (∀ var : dom.s • dom.(s.var) = [0..r)) (7)

The global behaviour of a stream s : behStreams .CA is referred to as tr .s , where

tr .s � global .s (8)

If this semantics is adopted then a suitable notion of stream refinement, (str,
between continuous action systems may be defined. Given two continuous ac-
tion systems CA and CB, we say that CB is a stream refinement of CA if
actSys .CA (str actSys .CB, where

A �str B � ∀ sB : behStreams.B • (∃ sA : behStreams.A • sA �str sB ) (9)

where
sA �str sB � tr .sA  tr .sB , if aborting .(sA)

tr .sA = tr .sB if ¬aborting .(sA)

Since our stream semantics is derived from the trace semantics, this definition
of refinement is equivalent to the following: given action systems A and B,

A �str B � ∀ bB : beh.B • (∃ bA : beh.A • behStream.bA �str behStream.bB ) (10)

This definition of refinement is used in later proofs. We write CA (9str CB to
mean that CA is stream equivalent to CB.

7 Correspondence Between Trace and Stream Semantics

Simple refinement rules exist for proving trace refinements between action sys-
tems. It would be useful if we could use these to prove stream refinements
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between continuous action systems. In this section, we show that if a refine-
ment is valid using trace semantics then it is also valid using stream semantics.

Lemma 3. For any continuous action system CA, and b : beh.(actSys .CA),
we have that: aborting .b ⇔ aborting .(behStream.b).

Proof. This follows from the definition of aborting for behaviours (2) and
streams (7), the definitions of behStream (5), and actSys (Definition 2)), and
the non-Zeno property for continuous action systems. �

Lemma 4. For any continuous action system CA, and b : beh.(actSys .CA),

tr .(behStream.b) = trStream.(tr .b)

where

trStream.(tr .b) � λ var : dom.(global .ΣA) • lim(λ i : dom.(tr .b) • (tr .b).i .var)

Proof. This follows directly from behStream (5), tr for both behaviours and
streams (8), and actSys (Definition 2). �

Lemma 5. For continuous action systems CA and CB with the same global
state space, and bA : beh.(actSys .CA), bB : beh.(actSys .CB),

(bA �tr bB )⇒ (behStream.bA �str behStream.bB )

Proof. We prove this by cases.

Case 1: aborting.bA
(bA �tr bB )

⇒ (Definition �tr and aborting .bA)
∃n : dom.bB • (∀ var : dom.(global .ΣA) • last .bA.var = bB .n.var)

⇔ (actSys (Definition 2) and aborting .bA)
∃n : dom.bB • (∀ var : dom.(global .ΣA) •

last .bA.var ↓ [0..last .bA .τ ) = bB .n.var ↓ [0..bB .n.τ ))
⇔ (getSeq (6))
∃n : dom.bB • (∀ var : dom.(global .ΣA) •

lim getSeq .bA.var = bB .n.var ↓ [0..last .bB .τ ))
⇒ (actSys (Definition 2) and getSeq (6). Note that from actSys and the

constraints on continuous action systems, we have that actions cannot
change the past.)
∀ var : dom.(global .ΣA) • lim getSeq .bA .var  lim getSeq .bB .var

⇔ (behStream (5) and tr (8))
tr .(behStream.bA) tr .(behStream.bB )

⇔ (aborting .bA and Lemma 3)
tr .(behStream.bA) tr .(behStream.bB ) ∧ aborting .(behStream.bA)

⇔ ( �str)
behStream.bA �str behStream.bB
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Case 2: ¬aborting .bA

(bA �tr bB )
⇔ (Definition �tr and ¬aborting .bA)

tr .bA = tr .bB

⇒ (Lemma 4)
tr .(behStream.bA) = tr .(behStream.bB )

⇔ (¬aborting .bA and Lemma 3)
tr .(behStream.bA) = tr .(behStream.bB ) ∧ ¬aborting .(behStream.bA)

⇔ (�str)
behStream.bA �str behStream.bB

�

Theorem 6. For all continuous action systems CA and CB,

(actSys .CA (tr actSys .CB)⇒ (actSys .CA (str actSys .CB)

Proof. We have that,

bB ∈ beh.(actSys.CB)
⇒ (actSys.CA �tr actSys.CB)
∃ bA ∈ beh.(actSys.CA) • bA �tr bB

⇒ (Lemma 5)
∃ bA ∈ beh.(actSys.CA) • behStream.bA �str behStream.bB

Hence, by the definition of stream refinement (10), actSys .CA (str actSys .
CB. �

The converse does not hold. That is, it is not true for all continuous action
systems CA and CB that

(actSys.CA �str actSys.CB)⇒ (actSys.CA �tr actSys.CB)

For example we have that CM and CN (Fig. 4) are stream equivalent, but
not trace equivalent. In CN, the action from CM has been decomposed into
two steps. Both CM and CN produce global output stream f , however, CM
produces global trace 〈f ↓ [0..0), f ↓ [0..1), f ↓ [0..2), ...〉, while CN produces
global trace 〈f ↓ [0..0), f ↓ [0..0.5), f ↓ [0..1), f ↓ [0..1.5), ...〉. Both traces are not
aborting, but they are not equal. However, their limits are the same.

8 Data Refinement

As mentioned in the previous section, trace refinement is incomplete for contin-
uous action systems with a stream semantics: that is, there exist valid stream
refinements that are considered to be invalid in the trace model. In this sec-
tion we derive a new simulation rule for proving stream refinements between
continuous action systems. This rule can be used to prove refinements that are
valid in the stream semantics, but may not be valid in the trace semantics. We
then analyse the completeness of our new rule in conjunction with the action
system data refinement rules. For our proofs we make use of algebraic properties
of action systems.
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CM �
| [ var n : R;

n := 0;
do τ = n → z :∈ {g : Stream | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]};

n := n + 1
od

] |:< z : Stream.N >

CN �
| [ var n : R, b : B;

n, b := 0, true;
do τ = n ∧ b → z :∈ {g : Stream | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]};

n, b := n + 1
2 , false

[] τ = n ∧ ¬b → n, b := n + 1
2 , true

od
] |:< z : Stream.N >

Fig. 4. Continuous action systems CM and CN. f is a function of type Stream.N.

8.1 An Algebra for Continuous Action Systems

Algebraic theories are frequently used for reasoning about iterative program
constructs: for example, Back and von Wright [6] have used results from fixed
point theory to derive transformation rules for loop constructs, Hayes has used a
similar approach to reason about execution paths in programs [11], and iterative
real-time programming constructs [10], Cohen [7] and Kozen [12] performed early
work on the Kleene algebra with tests. Here we define an algebra to describe sets
of behaviours, and develop transformation rules for manipulating these sets of
behaviours. These rules are used to derive a refinement rule for continuous action
systems. Our algebra is closest to the concrete predicate transformer algebra of
Back and von Wright [6]1 (the approach taken by Cohen [7] is and Kozen [12] is
abstract-algebraic).

Behaviour Set Primitives and Composition Operators. Given a state
space Σ, we use the primitives in Fig. 5 to describe sets of traces of type Σ.
〈〈A0〉〉 defines a set of traces of length one such that the first value in the trace
is reachable by A0 from any global state. 〈| A |〉 defines a set of traces of length
two, where the first element may be any possible state, and the second element is
reachable from the first by executing action A (recall from Sect. 2 that A0 is the
conjugate of A0). Note that if A aborts, then every possible state is reachable
from any initial state, hence 〈| abort |〉 equals {〈σ1, σ2〉 : seq.Σ | true}. A
coercion primitive [g] produces a set of traces of length one where the first value
in a trace is any input from the state space that satisfies g. {g} produces the set
of all non-empty traces such that the first element of each trace does not satisfy
1 Note that von Wright [14] later showed how to work with loop refinement in an

abstract-algebraic setting.
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Initialisation Action : 〈〈A0〉〉 {〈σ1〉 : seq .Σ |
(∃σ0 : global .Σ • A0.(λ σ • σ = σ1).σ0)}

Action : 〈| A |〉 {〈σ1, σ2〉 : seq .Σ | A.(λ σ • σ = σ2).σ1}
Coercion : [g ] {〈σ1〉 : seq .Σ | g .σ1}
Assertion : {g} {s : seq .Σ | ¬g .(first .s)} ∪ {〈σ1〉 : seq .Σ | g .σ1}
Bottom : abort {false}
Top : magic [false]
Skip : skip [true]

Fig. 5. Trace set primitives. A0 is an initialisation action, A is an action, and g is a
predicate.

Nondeterministic choice : X �Y X ∪ Y
General nondet. choice : �i : T • Xi i : T •Xi

Sequential composition : X ; Y {b : X | ¬finite.b}∪
{b, b′ : seq .Σ, s : Σ | b � 〈s〉 ∈ X ∧

〈s〉� b′ ∈ Y • b � 〈s〉� b′}
Strong iteration : Y ω (μX • Y ; X � skip)
Weak iteration : Y ∗ (νX •Y ; X � skip)
Infinite iteration : Y ∞ (μX • Y ; X )

Fig. 6. Trace set composition operators

g, combined with the set of all traces of length one such that the first element of
each trace satisfies g. The bottom set of traces is abort, which is the set of all
possible traces, while the top set of traces is magic, which defines the empty set
of traces. Note that abort is not equal to 〈| abort |〉. Much of the notation we use
here is overloaded, i.e., assertions are represented the same way for both actions
and sets of traces. The meaning of statements should be clear from the context.

The trace set composition operations are defined in Fig. 6. We reuse the
definition of weak, strong and infinite iteration used by Back and von Wright
[6, 3]. The definition of weak iteration is equivalent to the Kleene star iterator
of Kozen and Cohen [12, 7]2. Informally, Y ∗ produces the set of traces that
are constructed by sequentially composing Y any finite number of times, Y ∞

produces the set of traces that are constructed by sequentially composing Y an
infinite number of times, and Y ω produces the trace set Y ∗∪Y ∞. Note that for
programs represented using the predicate transformer semantics from Sect. 2,
we have that nonterminating behaviour is equivalent to abort; here this is not
the case, nontermination generates traces of infinite length. In this sense the
meaning of our infinite iteration operator is most similar to that used by Hayes
[10]. (Cohen has also constructed an infinite iteration operator (Y ∞) that is
applicable to trace-based models [8].)

The set of trace sets satisfies all the properties of an an idempotent semiring
under (“�”, “; ”, magic, skip), except that X ; magic = magic does not hold

2 This equivalence is described by the Kleene star equivalence property.
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in general if X does not terminate. Additionally, the trace composition operators
satisfy the following properties.

Theorem 7. The following properties hold for both conjunctive predicate trans-
former semantics and the semantics of sets of traces.

X ω = X ; X ω � skip and X ω = X ω; X � skip (unfold strong iteration)

X ∗ = X ; X ∗ � skip and X ∗ = X ∗; X � skip (unfold weak iteration)

X ∞ = X ; X ∞ (unfold infinite iteration)

X ω = X ∗ �X ∞ (decompose strong iteration)

X ∞ = X ω; magic (infinite iteration equivalence)

X ∗ = �i : N •X i (Kleene star equivalence)

X ; (Y ; X )ω = (X ; Y )ω; X (leapfrog)

(X �Y )ω = X ω; (Y ; X ω)ω (decomposition)

[g1] � [g2] = [g1 ∨ g2] (guard disjunction)

[g1]; [g2] = [g1 ∧ g2] (guard conjunction)

Here X 0 = skip and X i+1 = X ; X i for i ∈ N.

All of the properties in Theorem 7, apart from Kleene star equivalence, have been
verified by by Back et al. to be correct for conjunctive predicate transformers
[6, 3]: they are also applicable to sets of traces. The Kleene star equivalence
property may be simply verified for both conjunctive predicate transformers
and sets of traces. (Induction rules also exist, however they are not required
except to prove Theorem 7).

Theorem 8. The following properties hold for sets of traces:

〈| [g ]; A |〉 = [g ]; 〈| A |〉 (shift guard)

〈| A � A′ |〉 = 〈| A |〉 � 〈| A′ |〉 (shift nondet. choice)

〈| �i : T •Ai |〉 = �i : T • 〈| Ai |〉 (shift general nondet. choice)

Lemma 9. Given action A such that Aω is terminating, i.e., Aω.True = True,

〈| A |〉ω = 〈| A |〉∗ and Aω = A∗

Proof. If Aω is terminating A∞ = magic (from Theorem 7 (infinite iteration
equivalence)), and so from Theorem 7 (decompose strong iteration) we have that
Aω = A∗ �magic = A∗. A similar argument applies for 〈| A |〉ω. �

Defining Action System Behaviours. The behaviours of an action system
may then be expressed using our primitives and composition operators as follows.

beh.A � 〈〈A0〉〉; ([t .A]; 〈| A |〉)ω; [¬g .A ∨ ¬t .A] (11)

We express guarded loops using iteration constructs in the same way as Back
and von Wright [6].



Continuous Action System Refinement 331

For action systems with trace semantics, it well known that we can merge to-
gether two actions A and B as long as B is a stuttering action, without changing
the set of global traces that are produced by the action system. For continuous
action systems (using stream semantics) we are also able to merge together two
actions A and B as long as B does not abort (B may be non-stuttering), without
changing the set of streams that are produced by the action system. It is this
property that enables us to introduce a new data refinement rule for continuous
action systems. We write X =str Y , where X and Y are set of traces, to mean
that behStreams .X = behStreams .Y .

Lemma 10. For action A, initialisation action A0, and terminating action B,
we have that

〈| A |〉; 〈| B |〉 =str 〈| A; B |〉 and 〈〈A0〉〉; 〈| B |〉 =str 〈〈A0; B〉〉

Proof. We show that if B is not aborting then 〈| A |〉; 〈| B |〉 =str 〈| A; B |〉.
The proof of 〈〈A0〉〉; 〈| B |〉 =str 〈〈A0; B〉〉 is similar. From the definition of the
behaviour set primitives and sequential composition we have that

〈| A; B |〉 = {〈σ1, σ3〉 | (A; B).(λ σ • σ = σ3).σ1}
〈| A |〉; 〈| B |〉 = {〈σ1, σ2, σ3〉 | A.(λ σ • σ = σ2).σ1 ∧ B .(λ σ • σ = σ3).σ2}

And from the definition of predicate transformer sequential composition and
conjugates, we have

(A; B).(λ σ • σ = σ3).σ1 ⇔ ∃σ2 •A.(λ σ • σ = σ2).σ1 ∧ B .(λ σ • σ = σ3).σ2

Hence 〈σ1, σ2, σ3〉 ∈ 〈| A |〉; 〈| B |〉, iff 〈σ1, σ3〉 ∈ 〈| A; B |〉. Since all traces from
〈| A |〉; 〈| B |〉 and 〈| A; B |〉 are finite, and each trace b from either 〈| A |〉; 〈| B |〉
or 〈| A; B |〉, has a corresponding trace b′ from the other set in which last .b′ =
last .b, from behStream (5) we have that behStream.b = behStream.b′, and hence
(from the definition of stream refinement (10)), 〈| A |〉; 〈| B |〉 =str 〈| A; B |〉. �

Lemma 11. 〈| skip |〉 =str skip, where the first occurrence of skip is a predicate
transformer, and the second occurrence is a set of traces.

Lemma 12. Given terminating action A,
〈| A |〉∗ =str 〈| A∗ |〉

Proof.

〈| A |〉∗
= (Theorem 7 (Kleene star equivalence))

�i : N • 〈| A |〉i
=str (Lemma 10 and 11)

�i : N • 〈| Ai |〉
= (Theorem 8 (shift general nondet. choice))

〈| �i : N •Ai |〉
= 〈| A∗ |〉
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8.2 Stream Refinement Rules

In this section we derive new stream data refinement rules for continuous action
systems using the rules developed in the previous section. First we construct an
equivalence rule, that shows how possibly non-stuttering actions may be merged
with other actions in a continuous action system without changing the output
streams that are generated by it. We then combine this rule with existing action
system trace refinement rules to generate new useful stream refinement rules.

Given a continuous action system CA, let A = actSys .CA. For an action
decomposition A = A� � A�, we define action system A(A�,A�) as follows.

A(A�,A�) � | [ var x : X ; A0; DO(A�,A�); do A�; DO(A�,A�) od] |:< z : Z >

where the local and global variables are the same as those of CA. Program
DO(A�,A�) may perform action A� for as long as it is enabled and an aborting
action isn’t enabled, and it may terminate when either the guard of A� holds or
the guard of A� ceases to hold:

DO(A�,A�) � ([t .A]; A	)ω; [¬g .A	 ∨ g .A�]

Theorem 13 (Stream Equivalence). If DO(A�,A�) is terminating (note that
this implies that A� must not be aborting), we have that

A �"str A(A�,A�)

Proof. We show that beh.A is stream equivalent to beh.A(A�,A�).
beh.A(A�,A�)

= (11)
〈〈A0; DO(A�,A�)〉〉; ([t .(A�; DO(A�,A�))]; 〈| A�; DO(A�,A�) |〉)ω;
[¬g .(A�; DO(A�,A�)) ∨ ¬t .(A�; DO(A�,A�))]

= 〈〈A0; DO(A�,A�)〉〉; ([t .A�]; 〈| A�; DO(A�,A�) |〉)ω; [¬g .A� ∨ ¬t .A�]
= (DO(A�,A�) is terminating, and Lemma 9)

〈〈A0; ([t .A]; A	)∗; [¬g .A	 ∨ g .A�]〉〉;
([t .A�]; 〈| A�; ([t .A]; A	)∗; [¬g .A	 ∨ g .A�] |〉)ω; [¬g .A� ∨ ¬t .A�]

=str (Lemmas 10 and 12, Theorem 8 (shift guard), and
Theorem 7 (guard conjunction))
〈〈A0〉〉; 〈| [t .A]; A	 |〉∗; [¬g .A	 ∨ g .A�];
([t .A� ∧ g .A�]; 〈| A� |〉; 〈| [t .A]; A	 |〉∗; [¬g .A	 ∨ g .A�])ω; [¬g .A� ∨ ¬t .A�]

= (Theorem 7 (leapfrog))
〈〈A0〉〉; 〈| [t .A]; A	 |〉∗; ([¬g .A	 ∨ g .A�]; [t .A� ∧ g .A�]; 〈| A� |〉; 〈| [t .A]; A	 |〉∗)ω;
[¬g .A	 ∨ g .A�]; [¬g .A� ∨ ¬t .A�]

= (Theorem 7 (guard conjunction), ¬g .A = ¬g .A	 ∧ ¬g .A�, ¬t .A� ⇒ g .A�)
〈〈A0〉〉; 〈| [t .A]; A	 |〉∗; ([t .A� ∧ g .A�]; 〈| A� |〉; 〈| [t .A]; A	 |〉∗)ω; [¬g .A ∨ ¬t .A�]

= (DO(A�,A�) is terminating, Lemma 9 and Theorem 8 (shift guard))
〈〈A0〉〉; ([t .A]; 〈| A	 |〉)ω; ([t .A�]; 〈| A� |〉; ([t .A]; 〈| A	 |〉)ω)ω; [¬g .A ∨ ¬t .A�]

= (Theorem 7 (decomposition))
〈〈A0〉〉; ([t .A]; 〈| A	 |〉 � [t .A�]; 〈| A� |〉)ω; [¬g .A ∨ ¬t .A�]

= (Theorem 8 (shift nondet. choice), t .A = t .A	 ∧ t .A� and t .A	 = true)
〈〈A0〉〉; ([t .A]; 〈| A	 �A� |〉)ω; [¬g .A ∨ ¬t .A]

= (11)
beh.A

�
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Since trace refinement implies stream refinement (Theorem 6), we are able to
combine the stream equivalence rule (Theorem 13) with standard action system
trace refinement rules in order to generate new stream refinement rules. From the
standard trace simulation rule for action systems [2] we have that A is refined
by B if there exists a valid representation program rep such that

A0; rep � B0

A; rep � rep; B

g .A ∧ t .A ⇒ rep.gB

We say that a representation program is valid if it does not modify the global
state and it is non-miraculous.

Theorem 14 (Stream Simulation). For any continuous action systems CA
and CB with the same global state space, let A be actsys.CA and B be act-
sys.CB. If there exists a decomposition A = A� �A� and B = B� �B� such that
programs DO(A�,A�) and DO(B�,B�) terminate and there exists a valid represen-
tation program rep, such that

A0; DO(A�,A�); rep � B0; DO(B�,B�) (12)

A�; DO(A�,A�); rep � rep; B�; DO(B�,B�) (13)

g .A� ∧ t .A� ⇒ rep.(gB�) (14)

then CA (str CB.

Proof. This follows directly from Theorems 13 and 6, and the standard action
system simulation rule. �

A corresponding stream cosimulation rule exists. The stream simulation rule
may be used to prove refinements (using stream semantics) that are not possible
using the standard simulation and cosimulation rules. We demonstrate this by
showing that CN is a valid refinement of CM (Fig. 4). Recall from Sect. 7 that
in CM, one action from CN has been decomposed into two separate actions.

Example. CM (str CN (Figure 4)

Proof. Let M and N be actSys .CM and actSys .CN, respectively. Then
M0 = n, τ := 0, 0; z := z ′ ↓ [0..0)
N0 = n, b, τ := 0, true, 0; z := z ′ ↓ [0..0)
The proof obligations of the stream simulation rules can easily be shown to

hold given the following action decompositions (proof steps elided). Program
intr introduces the local variable b.

rep � intr ; b := true
M� � [τ = n]; z ′ :∈ {g : Stream.N | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]};

n := n + 1; τ := n; z := z ′ ↓ [0..τ )
M	 � magic
N� � [τ = n ∧ b]; z ′ :∈ {g : Stream.N | f ↓ [0..τ + 1] = g ↓ [0..τ + 1]}

n, b := n + 1
2 , false; τ := n; z := z ′ ↓ [0..τ )

N	 � [τ = n ∧ ¬b]; n, b := n + 1
2 , true; τ := n; z := z ′ ↓ [0..τ )
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We have that
DO(M�,M�) � skip
DO(N�,N�) � [τ = n ∧ ¬b]; n, b := n + 1

2 , true; τ := n; z := z ′ ↓ [0..τ )
� [(τ = n)⇒ b]

�

8.3 Completeness of Data Refinement Rules

A set of rules is complete with respect to a chosen semantics if all valid refine-
ments in the semantics can be proven using the specified rules. As mentioned ear-
lier, the standard action system data refinement rules alone are incomplete with
respect to the stream semantics for continuous action systems. Here we prove a
completeness result for our new stream refinement rules in conjunction with the
action system data refinement rules, with respect to our stream semantics.

For any continuous action system CA such that actSys .CA is nonterminating,
and CA only contains terminating actions, we show that it is possible to use
our new stream refinement rules to convert actSys .CA to a stream equivalent
canonical form can.(actSys .CA). For any two such continuous action systems,
CA and CB, we show that both trace and stream refinement are equivalent for
can.(actSys .CA) and can.(actSys .CB). This means that, for this case, the usual
completeness results for action system data refinement apply.

Using our new stream simulation rule (Theorem 14), we can show that any
continuous actions system CA is stream equivalent to

CAcheck �
| [ var x : Stream.X , check : Time;

CA0; check := 0; CHECK ;
do CA; CHECK [] check = τ → check := check + p od

] |:< z : Streamω >

where
CHECK �
if (∃ t : Time • t ≥ τ ∧ (g .CA).t)→ skip
[] ¬(∃ t : Time • t ≥ τ ∧ (g .CA).t)→ check := −1
fi

check is a fresh variable and p is a defined non-zero time period. (It is assumed
that x and z are the local and global variables of CA respectively.) The action
“[check = τ ]; check := check +p” occurs every p seconds until the action system
terminates or aborts:

Acheck � actSys.CAcheck =
| [ var τ : Time, x : Stream.X , z ′ : Stream.Z , check : Time;

(τ := 0; CA0; check := 0; CHECK )[z \ z ′ ]; M ;
do (CA; CHECK )[z \ z ′ ]; M [] check = τ → check := check + p; M od

] |:< z : Streamω .Z >

For a continuous action system CA such that action CA terminates and
actSys .CA is nonterminating, we define the canonical form of actSys .CA,
can.(actSys .CA), to be
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| [ var τ : Time, x : Stream.X , z ′ : Stream.Z , check : Time;
Acheck0 ; DO(Acheck�

,Acheck�
);

do Acheck�
; DO(Acheck�

,Acheck�
) od

] |:< z : Streamω .Z >

(15)

where

Acheck�
� [check = τ ]; check := check + p; M

Acheck�
� (CA; CHECK )[z \ z ′ ]; M

The action of can.(actSys .CA) occurs every p seconds. It performs all the actions
in actSys.CA that occur between τ and τ + p. The variable check is used to
regulate the period of the actions. For any two non-aborting, nonterminating
action systems in canonical form, the timing of their actions is the same.

Lemma 15. Given continuous action system CA such that action CA is ter-
minating,

can.(actSys.CA) =str actSys.CA

Proof. The stream equivalence rule (Theorem 13) can be used to verify that
actSys .CAcheck is equivalent to can.(actSys .CA) (note that because action CA
is terminating, Acheck�

is terminating). Theorem 14 can be used to prove the
equivalence between CAcheck and CA. �

Lemma 16. For any two continuous action systems CA and CB such that
actions CA and CB are terminating and actSys.CA and actSys.CB are nonter-
minating,

(can.(actSys.CA) �str can.(actSys.CB)) = (can.(actSys.CA) �tr can.(actSys.CB))

Proof.

1. (can.(actSys .CA) (str can.(actSys .CB)) ⇒
(can.(actSys .CA) (tr can.(actSys .CB))
This follows from the fact that the semantics of continuous action systems are
trace extending (actSys (Definition 2)), and that actions in can.(actSys .CA)
and can.(actSys .CB) occur at the same regular interval for all time.

2. (can.(actSys .CA) (tr can.(actSys .CB)) ⇒
(can.(actSys .CA) (str can.(actSys .CB))
There exists a continuous action system CAcan such that actSys .CAcan =
can.(actSys .CA), so implication in this direction follows from Theorem 6.

�

Theorem 17. For any two continuous action systems CA and CB such that
actions CA and CB are terminating,

(actSys.CA �str actSys.CB) = (can.(actSys.CA) �tr can.(actSys.CB))
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Proof. This follows from Lemma 15 and Lemma 16. �

This theorem demonstrates that, for a restricted class of continuous action sys-
tems (those that do not contain aborting behaviours, and that are associated
with nonterminating action systems), our new stream refinement rules in con-
junction with the action system trace refinement rules are as complete with
respect to our stream semantics, as the action system trace refinement rules
are with respect to the trace semantics. For action systems with neither infinite
stuttering nor terminating behaviours, Back and von Wright have proved that
any trace refinement can be proved by a combination of backward and forward
simulation [2].

9 Conclusion

We have identified how the mapping from continuous action systems to action
systems may be adjusted such that action system trace semantics are valid for
continuous action systems, and we have defined a stream semantics that is com-
plementary to the trace semantics, but is more general. Our results indicate that
action system data refinement rules are applicable to continuous action systems
with stream semantics, but they are not complete. Subsequently, we constructed
and verified a new stream refinement rule that is capable of proving stream
refinements that are not possible in the more restrictive trace semantics. For
a certain subclass of continuous action systems we have shown that our new
stream refinement rule, in conjunction with the existing action system data re-
finement rules, are as complete (with respect to our stream semantics) as the
data refinement rules are for action systems with trace semantics. This work
enables the continuous action systems formalism to be used to reason about the
derivation of hybrid systems.
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Institut für Informatik, Universität Augsburg,
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Abstract. We show that the well-known algebra of matrices over a
semiring can be used to reason conveniently about predicates as used
in the Unifying Theories of Programming (UTP). This allows a simpli-
fied treatment of the designs of Hoare and He and the prescriptions of
Dunne. In addition we connect the matrix approach with the theory of
test and condition semirings and the modal operators diamond and box.
This allows direct re-use of the results and proof techniques of Kleene
algebra with tests for UTP as well as a connection to traditional wp/wlp
semantics. Finally, we show that matrices of predicate transformers al-
low an even more streamlined treatment and removal of a restricting
assumption on the underlying semirings.

1 Introduction

In the Unifying Theories of Programming (UTP) [5] the termination behaviour
of programs is modelled using two special variables ok and ok ′ that express
whether a program has been started and has terminated, respectively. Programs
are identified with predicates that relate the initial values v of variables with
their final values v′; moreover, ok and ok ′ may occur freely in such predicates.

The aim of the present paper is to present a calculationally more workable
form of the theory of predicates and designs that does no longer mention the
“unobservable” variables ok and ok ′; in fact it is even completely variable-free
and hence, in particular, does not need to work with substitutions. This makes
calculations not only simpler, but also safer. Truly hiding the unobservables is
important, since their unchecked use can lead to inconsistencies and paradoxes
such as the Dead Variable Paradox.

The remainder of this paper is organised as follows. Section 2 presents the
basic idea of the matrix model of UTP predicates, while Section 3 deals with the
special predicate class of UTP designs. In Section 4 we abstract from the concrete
case of predicates over program variables to that of matrices over semirings; next
to greater generality this yields a more compact notation. In Section 5 designs
are discussed in this more general setting, while Section 6 gives an algebraic
formulation of the healthiness conditions that distinguish designs. Designs were
introduced to model total correctness, in particular, non-miraculous programs.
Section 7 deals with another subclass of UTP predicates, the prescriptions, that
model the view of general correctness and may show miraculous behaviour.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 338–358, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Section 8 contains a more detailed treatment of conditions, i.e., predicates that
only depend on input values of variables, and the related concept of tests in
semirings. This allows direct re-use of the results and proof techniques of Kleene
algebra with tests for UTP. Sections 9 and 10 employ tests and conditions to
establish the link with traditional wlp/wp semantics. However, at a certain point
the connection is not as smooth as one may wish. This is remedied in Section
11 using “higher-level” predicate transformers. Section 12 presents a brief con-
clusion.

To keep the overall structure of the paper clearer, some technicalities are
deferred an appendix.

2 A Matrix View of UTP

Our main aim is to get rid of explicit uses of the special variables ok and ok ′.
We achieve this by recording, for each combination of possible values of these
two variables, the residual predicate that depends only on the proper program
variables. To emphasise the dependence of a general UTP predicate on ok and
ok ′ we use the notation R(ok , ok ′). The basic idea of our matrix calculus is now
to represent R by a 2× 2-matrix. The rows are indexed by the values of ok and
the columns by those of ok ′; the entries are the residual predicates in which ok
and ok ′ do not occur, i.e.,

R =
(

R(false , false) R(false, true)
R(true, false) R(true, true)

)
.

In this view, a predicate P not depending on ok and ok ′ corresponds to the
constant matrix (

P P
P P

)
.

The matrix representation may seem a complication at first. But let us look
at sequential composition of UTP predicates, defined as

R ; S ⇔df ∃ ok0, v0 : R[ok0, v0/ok ′, v′] ∧ S[ok0, v0/ok , v] ,

where v (also with index or prime) stands for the list of all proper program
variables. We emphasise again the dependence on ok and ok ′. To this end we also
split the existential quantifier into the parts concerning the unobservables and
the proper variables; afterwards the proper part can be folded into a composition
of its own:

(R ; S)(ok , ok ′) ⇔df ∃ ok0 : ∃ v0 : R(ok , ok0)[v0/v
′] ∧ S(ok0, ok ′)[v0/v]

⇔ ∃ ok0 : R(ok , ok0) ; S(ok0, ok ′) .

This now has a convenient matrix interpretation. As in graph algorithms such
as Warshall’s, we can view ∃ ok0 as summation over all possible values of ok0
and ; as elementwise multiplication. With this interpretation the above formula
gives just the entries for the product of the matrices R and S, i.e., R ;S = R ·S.
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The advantage of this view is that composition can now be treated in a com-
pletely component-free manner and existential quantification and substitution
disappear. Moreover, the pseudo-variables ok and ok ′ need no longer be men-
tioned explicitly at all. If for some reason we need to reason about them explicitly,
we can represent them as

ok =
(

false false
true true

)
, ok ′ =

(
false true
false true

)
.

Next to composition, the matrix algebra supports the Boolean operations:
negation, conjunction and disjunction all are defined componentwise. Setting
R ⇒ S ⇔df R ∨ S = S, also implication works componentwise.

3 Designs

As a subclass of the general UTP predicates, Hoare and He introduce designs,
that reflect an assumption/commitment style of specification, of the form

P 
 Q ⇔df ok ∧ P ⇒ ok ′ ∧ Q ,

where ok and ok ′ are not allowed to occur in P or Q. The informal meaning is:
if a computation allowed by the design has started in a state that satisfies the
precondition P it will eventually terminate in a state that satisfies the postcon-
dition Q. By plugging in the possible combinations of the values of ok and ok ′

we obtain the matrix representation

P 
 Q =
(

true true
P P ∨ Q

)
. (1)

To show a first example of the matrix calculus at work, let us derive this repre-
sentation algebraically:

ok ∧ P ⇒ ok ′ ∧ Q

=
(

false false
true true

)
∧
(

P P
P P

)
⇒
(

false true
false true

)
∧
(

Q Q
Q Q

)
=
(

false false
P P

)
∨
(

false Q
false Q

)
=
(

true true
P P

)
∨
(

false Q
false Q

)
=
(

true true
P P ∨ Q

)
.

We defer further calculations till we obtain a more compact notation in the
next section.

4 Abstracting to Semirings

Again, as in certain graph algorithms, it is useful to base the treatment not on
the concrete model of matrices over predicates but on matrices over semirings.



The Linear Algebra of UTP 341

Semirings provide the basic operations of choice and sequential composition un-
der the notations + and · as well as a basic set of algebraic laws for these. A
weak semiring is a structure (S,+, ·, 0, 1) such that

– (S,+, 0) is a commutative monoid,
– (S, ·, 1) is a monoid,
– operation · distributes over + in both arguments
– and 0 is a left annihilator, i.e., 0 · a = 0.

A semiring is a weak semiring in which 0 is also a right annihilator, i.e., a·0 = 0.
Sometimes for emphasis we write “full semiring” instead of just “semiring”.

A (weak) semiring is idempotent if + is idempotent, i.e., a + a = a. In this
case the relation a ≤ b ⇔df a+ b = b is a partial order, called the natural order
on S. It has 0 as its least element. Moreover, + and · are isotone w.r.t. ≤ and
a + b is the least upper bound or join of a and b w.r.t. ≤.

A (weak) idempotent semiring is Boolean if it also has a greatest-lower-bound
or meet operation ∧ , such that + and ∧ distribute over each other, and a
complement operation that satisfies de Morgan’s laws as well as a∧a = 0 and
a + a = :, where : = 0 is the greatest element. In other words, a Boolean
semiring is a Boolean algebra with a sequential composition operation. To save
parentheses we use the convention that ∧ binds tighter than + but equally tight
as · does. We will freely use the implication operator a → b =df a + b and its
standard laws. We use ∧ rather than � for the meet to avoid a clash of notation
between semiring theory and the theory of UTP. To disambiguate the formulas
we use a larger ∧ for meta-logical conjunction.

An important property is multiplicative idempotence of ::

: · : = :. (2)

The direction (≤) is trivial, since : is the greatest element. The converse direc-
tion follows by neutrality and isotonicity: : = : · 1 ≤ : · :.

From now on we assume S to be a full idempotent Boolean semiring.
In the previous section we have already used the Boolean semiring of UTP

predicates with ; as composition. Another important semiring is REL(M), the
algebra of binary relations under union and composition over a set M , of which
the predicates form a special instance.

Many other examples exist but will not be used here except for the ma-
trix semiring. Let (S,+, ·, 0, 1) be a semiring and M be a finite set. Then
the set SM×M of functions from M × M to S can be viewed as the set of
|M | × |M | matrices with indices in M and elements in S. Consider the struc-
ture MAT(M,S) = (SM×M ,+, ·,0,1) where + and · are the usual operations of
matrix addition and multiplication, and 0 and 1 are the zero and unit matrices.
Then MAT(M,S) again forms a semiring, the matrix semiring over M and S.
MAT(M,S) is idempotent if S is. In this case, the natural order is the compo-
nentwise one. If S is Boolean, so is MAT(M,S), with componentwise meet.

Taking S to be the two-element Boolean semiring of truth values yields the
usual Boolean matrix representation of REL(M) as MAT(M,S) in terms of ad-
jacency matrices.
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For abstractly representing predicates that depend on two Boolean variables
ok and ok ′ we use 2 × 2-matrices with elements from a Boolean semiring S as
entries. The element 1 represents the predicate skip ⇔df v = v′. We will use
the identifiers false , skip and true instead of 0, 1 and : when appropriate.

For convenience we define

ok =df

(
0 0
: :

)
, ok ′ =df

(
0 :
0 :

)
.

5 The Algebra of Designs

Generalising formula (1), we set for elements a, b ∈ S of a Boolean semiring S

a 
 b =df

(: :
a a + b

)
, (3)

with + now playing the role of disjunction or choice.
We want to calculate the behaviour of designs under + and ·. First,

(a 
 b) + (c 
 d) =
(: :

a a + b

)
+
(: :

c c + d

)
=( : :

a + c a + b + c + d

)
=
( : :

(c∧ a) (c∧ a) + b + d

)
= (c∧ a) 
 (b + d) .

In particular, the design : 
 0, which is the same as ok , is a neutral element
w.r.t. +. Moreover, we obtain

(a 
 b) ≤ (c 
 d) ⇔ (a 
 b)+(c 
 d) = (c 
 d) ⇔ (c ≤ a) ∧ (c∧ b ≤ d) (4)

and

(a 
 b) = (c 
 d) ⇔ a = c ∧ a + b = c + d ⇔ a = c ∧ (a∧ b = c∧d) . (5)

For composition we obtain, using (2),

(a 
 b) · (c 
 d)

=
(: :

a a + b

)
·
(: :

c c + d

)
=
( : · :+: · c : · :+: · (c + d)

a · :+ (a + b) · c a · :+ (a + b) · (c + d)

)
=
( : :

a · :+ a · c + b · c a · :+ a · (c + d) + b · c + b · d
)

=
( : :

a · :+ b · c a · :+ b · c + b · d
)

=
( : :

a · :∧ b · c a · :∧ b · c + b · d
)

= (a · :∧ b · c) 
 (b · d) .
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Summarised,
(a 
 b) · (c 
 d) = (a · :∧ b · c) 
 (b · d) . (6)

In particular, within the set of designs both ok = : 
 0 and true =df

(: :
: :

)
are left zeros and II =df : 
 1 is a left-neutral element w.r.t. composition.

6 Healthiness Conditions

In [5] the UTP predicates are classified according to certain healthiness condi-
tions. In matrix terminology, designs are characterised by two properties:

(H1) The first row must be constantly :.
(H2) Both rows must be increasing w.r.t ≤.

Clearly every design of the form (3) satisfies (H1) and (H2). Conversely, if a ≤ b

then
(: :

a b

)
=
(: :

a a + b

)
= a 
 b, so that

(: :
a b

)
is a design.

Clearly, matrix A satisfies (H1) iff A =
(: :

0 0

)
+ A = ok → A (see also

Theorem 3.1.4 in [5]).
This type of characterisation by a fixpoint property is particularly useful if

the underlying Boolean semiring (and hence the matrix semiring over it) is even
a complete lattice, since Tarski’s fixpoint theorem then implies that the set of
all (H1) predicates forms a complete sublattice.

Next we show how the fixpoint characterisation of (H2) given in Example
4.1.21(1) of [5] can be derived in a systematic way in our matrix calculus. First
we observe that(

a b
c d

)
satisfies (H2) ⇔ a+b = b ∧ c+d = d ⇔

(
a b
c d

)
=
(

a a + b
c c + d

)
.

So if we manage to generate the latter matrix from the original one by an isotone
function defined in terms of the algebra we are done.

In linear algebra this type of transformation is known as a shearing and can
be described by the multiplication(

a a + b
c c + d

)
=
(

a b
c d

)
·
(

1 1
0 1

)
.

The shearing matrix can be decomposed as follows:(
1 1
0 1

)
=
(: :

0 :
)
∧
(

1 1
1 1

)
= (: 
 :)∧

(
1 1
1 1

)
.

Therefore we have the following result.

Lemma 6.1. A satisfies (H2) iff A = A ·B where

B = (: 
 :)∧
(

1 1
1 1

)
.
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This is indeed a fixpoint characterisation with an isotone generating func-
tion, and so the set of all (H2)-matrices forms a complete lattice (provided the
underlying semiring S is complete).

The further healthiness conditions (H3) and (H4) serve to characterise the
designs for which : 
 0 and : 
 1 are also a right zero and a right-neutral
element w.r.t. ·, respectively. They are directly given as algebraic conditions:

(H3) A · II = A.
(H4) A · true = true.

By distributivity and associativity it is immediate that each of the classes (H3)
and (H4) is closed under addition and composition.

We only work these properties out for the case where A is a design. Here it
is easier to work directly with the matrices than going through the composition
formula for designs. For (H3) we calculate

(a 
 b) · II =
(: :

a a + b

)
·
(: :

0 1

)
=
( : :

a · : a · :+ a + b

)
,

so that a 
 b satisfies (H3) iff a · : = a ⇔ a · : ≤ a.
This means that a has to be a right ideal (in UTP also known as a condition).

In the semiring REL of relations this is equivalent to a itself being a right ideal,
since by Schröder’s law

a · : ≤ a ⇔ a · :̆ ≤ a ⇔ a · : ≤ a.

In general semirings this need not be the case.
Following [3], we call matrices satisfying (H3) normal. For normal designs we

obtain the simplified composition formula (see also Theorem 3.2.4 in [5])

(a 
 b) · (c 
 d) = (a∧ b · c) 
 (b · d). (7)

Various authors have noticed that (H3) implies (H2). In matrix algebra this
can be verified as follows:(

a b
c d

)
· II =

(
a · : a · :+ b
c · : c · :+ d

)
.

The matrix on the right-hand side clearly is (H2). So if A is (H3), i.e., if A = A·II,
it is also (H2).

For (H4) we calculate

(a 
 b) · true =
(: :

a a + b

)
·
(: :
: :

)
=
( : :

(a + b) · : (a + b) · :
)

,

so that a 
 b satisfies (H4) iff

(a + b) · : = :.

Matrices satisfying (H4) are called feasible in [5].
Let ND(S) be the set of all normal designs over S. Collecting the stated

algebraic properties, we obtain
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Lemma 6.2. The structure (ND(S),+, ·, ok, II) is a weak semiring.

There is no analogous result for the feasible normal designs, since there is not
even a neutral element w.r.t. addition. This can be shown as follows. A neutral
element t 
 a would have to be least w.r.t. the natural semiring order, i.e., would
need to satisfy, for all s, t,

t 
 a ≤ s 
 b ⇔ s ≤ t ∧ s∧ a ≤ b .

Setting s = : we obtain t = : and the residual requirement that a ≤ b for all
b. So the only candidate would be : 
 0 = ok which, however, is not feasible.

7 The Algebra of Prescriptions

Whereas (feasible) designs reflect the semantic view of total correctness, in [3]
Dunne models the view of general correctness as introduced in [11, 12, 13] that
also allows miraculous program behaviour. To this end Dunne introduces pre-
scriptions of the form

P 

Q ⇔df (ok ∧ P ⇒ ok ′) ∧ (ok ′ ⇒ Q ∧ ok) .

By investigating the four possible combinations of the values of ok and ok ′, or
by a calculation analogous to the one for designs in Section 2, one obtains the
matrix representation

P 

Q ⇔
(

true false
P Q

)
.

Since the first row of our matrices corresponds to the case ok = false , this
yields immediately Dunne’s healthiness condition (HP): A matrix A represents
a prescription iff its first row coincides with that of ok ′.

The generalisation to Boolean semirings reads

a 

 b =df

(: 0
a b

)
.

From this it is immediate that, unlike designs, prescriptions can uniquely be
decomposed into their constituents:

(a 

 b) = (c 

 d) ⇔ a = c ∧ b = d . (8)

Moreover, since the natural order on matrices works componentwise,

(a 

 b) ≤ (c 

 d) ⇔ c ≤ a ∧ b ≤ d . (9)

Let us now see how addition and composition of prescriptions work out. First,

(a 

 b) + (c 

 d) =
(: 0

a b

)
+
(: 0

c d

)
=
( : 0

a∧ c b + d

)
= a∧ c 

 b + d .



346 B. Möller

Second, since we assume S to be a full semiring,

(a 

 b) · (c 

 d) =
(: 0

a b

)
·
(: 0

c d

)
=
(: · :+ 0 · c : · 0 + 0 · d

a · :+ b · c a · 0 + b · d
)

=
( : 0

a · :∧ b · c b · d
)

= (a · :∧ b · c) 

 (b · d) .

Summarised,
(a 

 b) · (c 

 d) = (a · :∧ b · c) 

 (b · d) . (10)

So, in particular, the set of prescriptions is closed under choice and composition.
The formulas for addition and composition coincide with the ones for designs.

The following prescriptions are of particular importance (see Dunne [3] and
Nelson [13]):

loop =df 0 

 0 =
(: 0
: 0

)
= ok ′ ,

fail =df : 

 0 =
(: 0

0 0

)
= ok ∧ ok ′ ,

chaos =df 0 

 : =
(: 0
: :

)
= ok ′ → ok ,

havoc =df : 

 : =
(: 0

0 :
)

= ok ↔ ok ′ ,

skip =df : 

 1 =
(: 0

0 1

)
.

Since the composition rule for prescriptions is the same as for designs, it is clear
that skip (which corresponds to the design II) is a left identity and fail (which
corresponds to the design ok) is a left annihilator w.r.t. composition. Moreover,
fail is an identity w.r.t. addition.

Analogously to the case of designs, the normal and feasible prescriptions are
the ones for which skip is also a right identity and fail is also a right annihilator
w.r.t. composition. The componentwise algebraic transcriptions of these notions
are the same as for designs.

Let NP(S) be the set of normal prescriptions over a semiring S. Then we have

Lemma 7.1. The structure (NP(S),+, ·, fail, skip) is a weak semiring.

The identity in algebraic structure is used in the companion paper [4] to give
a uniform treatment of normal designs t 
 a and normal prescriptions t 

 a as
pairs (a, t) consisting of a transition part a and a termination condition part t.

For normal prescriptions we obtain again a simplified composition formula
that is isomorphic to (7):

(a 

 b) · (c 

 d) = (a∧ b · c) 

 (b · d) . (11)

Finally, we want to relate designs and prescriptions. Following [3], we define

relax (a 

 b) =df a 

 (a + b) =
(: 0

a a + b

)
.
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Except for the 0 entry this is the representation of a design. We can form a
proper design representation by adding one of the matrices(

0 :
0 0

)
= ok ∧ ok ′ = chaos or

(: :
0 0

)
= ok .

This is summarised in part 1. of the following lemma.

Lemma 7.2. 1. a 
 b = chaos→ relax (a 

 b) = ok → relax (a 

 b).
2. relax (a 

 b) = (a 
 b)∧ chaos = (a 
 b)∧ ok.

Part 2. follows from part 1. by straightforward Boolean algebra.

8 Conditions, Tests and Iteration

As a preparation for our treatment of predicate transformers in the next section,
we now show how to algebraically model state predicates that describe sets of
states. To keep the framework uniform, state predicates have to be embedded
into the general set of predicates or relations. If M is the set of all states then
in REL(M) there are three basic methods of representing state predicates, i.e.,
to characterise subsets N ⊆M , as special predicates or relations:

1. Use predicates that do not depend on the output values of variables, corre-
sponding to right-universal relations N ×M . In a semiring with : they are
abstractly characterised as right ideals, i.e., as elements a with a ·: = a.

2. Use predicates that do not depend on the input values of variables, corre-
sponding to left-universal relations M × N . In a semiring with : they are
abstractly characterised as left ideals, i.e., as elements a with :· a = a.

3. Use sub-predicates of skip corresponding to partial identity relations of the
form {(s, s) : s ∈ N}. In an idempotent semiring they are abstractly charac-
terised as elements a with a ≤ 1.

Each of these approaches has its advantages and disadvantages. Classical UTP
uses variant 1, while variant 3 is used in test and modal semirings. Since we
are going to import some results from the third framework, we will show some
connections between variants 1 and 3 (we do not need variant 2 in the present
paper, but the treatment for it would be symmetrical). We only give a summary
of the necessary theory; a more thorough treatment can be found in [4].

1. A (weak) condition semiring is a pair (S, cond(S)), where S is a (weak)
idempotent semiring with a greatest element : and cond(S) ⊆ S is a Boolean
subalgebra of the set of right ideals of S with 0,: ∈ cond(S) and such
that the join operation in cond(S) coincides with + and for every element
a ∈ S and every condition t ∈ cond(S) the meet t∧ a, called the input
restriction of a by t, exists and satisfies (t + u)∧a = (t∧ a) + (u∧a) as well
as t∧ (a + b) = t∧ a + t∧ b. We have the correspondences false ↔ 0 and
true ↔ :. The negation of t, i.e., its complement relative to : in cond(S), is
denoted by t. An example is again REL(M), with the right-universal relations
as conditions.
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2. A (weak) test semiring [8] is a pair (S, test(S)), where S is a (weak) idem-
potent semiring and test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval
[0, 1] of S such that 0, 1 ∈ test(S) and join and meet in test(S) coincide with
+ and · . The negation of test p, i.e., its complement relative to 1 in test(S),
is denoted by ¬p. We have the correspondences false ↔ 0 and true ↔ 1. In
a test semiring, for p ∈ test(S) and a ∈ S, the products p · a and a · p are
the input and output restrictions of a to those pre-/post-states that satisfy
p. An important example is REL(M) with the partial identities as tests.

We will use the letters a, b, c, . . . for semiring elements, p, q, r, . . . for tests and
s, t, u, . . . for conditions. It should be noted that 0 and : are always right (and
left) ideals. For 0 this follows from its left annihilation property, while for : this
is property (2).

By associativity of · and property (2) one has (p ·:) ·: = p · (:·:) = p ·:,
i.e., the element p ·: is indeed a right ideal. In fact it is easy to show that the
right ideals in a semiring S with : are exactly the products a ·: for a ∈ S.

It can be shown [4] that cond(S) and the set CS(S) =df {t∧ 1 : t ∈ cond(S)}
of condition subidentities are order-isomorphic. Hence every (weak) condition
semiring S can be made into a test (weak) semiring using test(S) =df CS(S).

To prepare an example of the use of tests we add an operator for finite iter-
ation. A left-inductive Kleene algebra[7] is a structure (S, ∗) such that S is an
idempotent semiring and the star operation ∗ : S → S satisfies, for all a, b, c ∈ S,
the left unfold and left induction axioms

1 + a · a∗ ≤ a∗ , b + a · c ≤ c ⇒ a∗b ≤ c .

By these axioms, a∗ · b is the least solution of the fixpoint equation x = b+ a ·x.
In particular, the star operator is isotone w.r.t. the natural semiring order. In [4]
we have shown that the design and prescription semirings can be made into
left-inductive Kleene algebras (and even ω-algebras with infinite iteration aω).

Assume now a test semiring S that also is a left-inductive Kleene algebra. For
test p and arbitrary element a one can define the loop “while p do a” in UTP
notation as [8]

p ∗ a =df (p · a)∗ · ¬p .

The general unfold and induction axioms yield the laws

¬p + (p · a)∗ · (p ∗ a) ≤ p ∗ a (uf) , ¬p + (p · a) · c ≤ c ⇒ t ∗ a ≤ c (in) .

With them we show the loop merge law L5 in Section 5.5. of [5]:

(p ∗ a) · ((p + q) ∗ a) = ((p + q) ∗ a) .

We show this as two inequations. Abbreviate the right hand side by d. For (≤)
we have by ¬p ≤ 1, isotony of star and (uf), unfold

(p · a)∗ · ¬p · d ≤ (p · a)∗ · d ≤ ((p + q) · a)∗ · d ≤ d .
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The direction (≥) reduces by (in), Boolean algebra (p + q = p + ¬p · q) and
distributivity to the three inequations

¬(p+q) ≤ (p∗a) ·d , p ·a ·(p∗a) ·d ≤ (p∗a) ·d , ¬p ·q ·a ·(p∗a) ·d ≤ (p∗a) ·d .

The first of these holds by (uf) twice, since by Boolean algebra ¬(p + q) =
¬p · ¬(p + q). The second one follows directly from (uf). For the third one we
have by the above inequation (≤) and (uf)

¬p · q · a · (p ∗ a) · d ≤ ¬p · q · a · d ≤ (p ∗ a) · (p + q) · a · d ≤ (p ∗ a) · d ≤ d ,

which finishes the proof.
Since we will show below that designs and prescriptions form condition and

test semirings, this general result also applies to them, showing the mentioned
law L5. Unfortunately, an analogous treatment using conditions instead of tests
is a bit more cumbersome.

9 Domain and Predicate Transformers

Next we want to characterise the domain of a semiring element a, i.e., the set of
states from which corresponding output states may be reached under a. Again,
such sets can be modelled by tests or by conditions.

A simple equational axiomatisation for the case of test semirings has been
presented in [2]. We repeat it and give a corresponding axiomatisation for the
case of condition semirings in parallel.

The domain operations are

� : S → test(S) �� : S → cond(S)

with the respective axioms

a ≤ �a · a (td1) a ≤ ��a∧ a (cd1)
�(p · a) ≤ p (td2) ��(t∧ a) ≤ t (cd2)
�(a · �b) ≤ �(a · b) (td3) ��(a · ��b) ≤ ��(a · b) (cd3)

According to [2] (td1) ∧ (td2) is equivalent to

�a ≤ p ⇔ a ≤ p · a . (12)

By analogous reasoning we obtain that (cd1) ∧ (cd2) is equivalent to

��a ≤ t ⇔ a ≤ t∧ a ⇔ a ≤ t . (GCc)

This property has the form of a Galois connection which corresponds to the one
for the case of a test semiring with : (see e.g. [1] and again [2]):

�a ≤ p ⇔ a ≤ p ·: . (GCt)

By the Galois connections, the domain operations are unique if they exist.
Moreover, one obtains the following consequences.
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Lemma 9.1.

1. �a ≤ 0 ⇔ a ≤ 0 , ��a ≤ 0 ⇔ a ≤ 0 .

2. �(a + b) = �a + �b , ��(a + b) = ��a + ��b .
3. a ≤ b ⇒ �a ≤ �b , a ≤ b ⇒ ��a ≤ ��b .
4. �p = p , ��t = t .

5. �(�a) = �a , ��(��a) = ��a .
6. a = �a · a , a = ��a∧ a .

7. �(p · a) = p · �a , ��(t∧ a) = t∧ ��a .

8. �(a · b) ≤ �(a · �b) , ��(a · b) ≤ ��(a · ��b) .

9. �(a ·:) = �a , ��(a ·:) = ��a .

10. �(a · b) ≤ �a , ��(a · b) ≤ ��a .
11. �1 = 1 , ��1 = : .

For the proofs in the condition semiring case see [4].
With the help of domain we now define predicate transformers such as wlp

and wp that map sets of states to sets of states, both denoted by state predicates.
This will allow a more perspicuous representation of the terms involved in the
formulas for composition of designs and prescriptions and later the introduction
of wlp and wp in the semirings of designs and prescriptions.

The forward modal operators diamond and box are given by

〈a〉p =df �(a · p) , 〈〈a〉〉t =df ��(a · t) ,

[a]p =df ¬〈a〉¬p , [[a]]t =df 〈〈a〉〉t .

Thus 〈a〉p/〈〈a〉〉t characterise those states for which some a-successor state sat-
isfies p/t, whereas [a]p/[[a]]t characterise those states for which all a-successor
states satisfy p/t. The box operators are the abstract counterparts of the wlp
operator [13].

From these definitions the following properties are straightforward [2, 4].

〈0〉p=0 , 〈〈0〉〉t= 0 ,
〈a〉(p + q)= 〈a〉p + 〈a〉q , 〈〈a〉〉(t + u)= 〈〈a〉〉t + 〈〈a〉〉u ,
〈a + b〉p= 〈a〉p + 〈b〉p , 〈〈a + b〉〉t= 〈〈a〉〉t + 〈〈b〉〉t ,
〈p · a〉q = p · 〈a〉q , 〈〈t∧ a〉〉u= t∧ 〈〈a〉〉u ,
〈1〉p= p , 〈〈1〉〉t= t ,

〈a · b〉p= 〈a〉〈b〉p , 〈〈a · b〉〉t= 〈〈a〉〉〈〈b〉〉t .

Hence 〈a〉 and 〈〈a〉〉 are isotone. Moreover, both diamonds are isotone in their
first arguments. If the underlying semiring is full, we obtain additionally

〈a〉0 = 0 〈〈a〉〉0 = 0

The box operators enjoy dual laws which we omit, since we will mainly work
with diamonds. Because of the importance of modal operators, we call a (weak)
test or condition semiring with domain modal.

Now we study the special case of the relation semiring. A (weak) semiring S
with : is ideal-closed, briefly id-closed, if its set RI(S) of right ideals is a Boolean
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algebra. The relation semiring REL(M) is id-closed, whereas the semiring of
formal languages over an alphabet, under union and concatenation, is not.

We quote the following result from [4]:

Lemma 9.2. For an id-closed weak semiring S, the pair (S,RI(S)) can uniquely
be made into a weak domain semiring by setting

��a =df a · : .

Hence over an id-closed semiring

〈〈a〉〉t = a · t , [[a]]t = a · t .

It should be noted that in [5] the notation a wp t is used for [[a]]t, although really
it ought to be a wlp t. We will give a proper definition of wp for designs and
prescriptions in the next section.

With the above representation of [[a]]t in id-closed weak semirings we see
that the subterm b · c occurring in the formulas (6) and (10) for composition of
designs and prescriptions can be folded into [[b]]c. In the case of a normal design or
description, by (7) and (11) the antecedent of the composition therefore simplifies
to a∧ [[b]]c.

10 Predicate Transformers for Matrices

Since we have seen that normal designs and prescriptions form weak semirings,
we can try to even make them into weak modal semirings. To this end we first
need to find out what the potential conditions or tests are in each case. Since,
as stated, the condition and test based approaches are isomorphic, we treat only
the condition case in the main text, since it is the one used in UTP, and defer
the test case to the Appendix.

First we determine the conditions in the design semiring. The greatest (nor-
mal) design and also the greatest matrix overall is true. So matrix A is an ideal
iff A · true = A. Now(

a b
c d

)
·
(: :
: :

)
=
(

(a + b) · : (a + b) · :
(c + d) · : (c + d) · :

)
=
(

a b
c d

)
iff

a = (a + b) · : = b ∧ c = (c + d) · : = d .

Hence the ideals are exactly the row-constant matrices with ideals of S as entries.
Therefore a normal design t 
 a is an ideal iff t+a = t, i.e., iff a ≤ t. Such a row-

constant design
(: :

t t

)
has the relative complement

(: :
t t

)
within the

set of normal designs. Moreover, such a matrix corresponds also to the simpler
design t 
 0. The order on the ideals is characterised by s 
 0 ≤ t 
 0 ⇔ s ≤ t.
Therefore we have
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Theorem 10.1. If (S, cond(S)) is a weak condition semiring, then

(NP(S), {t 
 0 : t ∈ cond(S)})
is weak condition semiring. If cond(S) = RI(S) then it is id-closed.
If (S, cond(S)) is a modal semiring then NP(S) is a weak modal semiring with
domain operation ��(t 
 a) = (t∧ ��a) 
 0.

Proof. The first claim is immediate from the above remarks. For the second
claim, we work out what (GCc) means for normal designs: By (4), shunting,
lattice algebra, (GCc), 2. and 4. of Lemma 9.1, and Boolean algebra:

(t 
 a) ≤ (s 
 0)
⇔ s ≤ t ∧ s∧ a ≤ 0
⇔ t ≤ s ∧ a ≤ s
⇔ t + a ≤ s

⇔ ��(t + a) ≤ s
⇔ t + ��a ≤ s

⇔ s ≤ t∧ ��a .

Now we check (cd3). By definition of ��, (5), (7), definition of ��, Boolean algebra
and distributivity, since a ·��b ≤ ��(a ·��b) and hence ��(a · ��b) ≤ (a · ��b), by modality,
definition of ��, and (7):

��((s 
 a) · ��(t 
 b))

= ��((s 
 a) · (t∧ ��b 
 0))

= ��((s 
 a) · (t∧ ��b 
 ��b))

=
��
(s∧ a · t∧ ��b 
 a · ��b))

= (s∧ a · t∧ ��b∧ ��(a · ��b)) 
 0

= (s∧ a · t∧ a · ��b∧ ��(a · ��b)) 
 0

= (s∧ a · t∧ ��(a · ��b)) 
 0
= (s∧ a · t∧ ��(a · b)) 
 0
= ��(s∧ a · t 
 a · b)
= ��((s 
 a) · (t 
 b)) . �.

Let us work out the box operator for the case of a modal underlying S: By the
definitions, complement of ideal, (5), (7), definition, since a · s ≤ ��(a · s), hence
��(a · s) ≤ a · s, definition,

[[t 
 a]](s 
 0)

= ��((t 
 a) · s 
 0))
= ��((t 
 a) · (s 
 0))
= ��((t 
 a) · (s 
 s))

= ��(t∧ a · s) 
 a · s)
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= t∧ a · s∧ ��(a · s) 
 0

= t∧ ��(a · s) 
 0
= t∧ [[a]]s 
 0 .

This corresponds precisely to the definition of the wp operator in [13]. That wp
is just the wlp of another semiring seems first to have been noted in [10] for a
test-based approach.

For the case of prescriptions things work much in the same way. Again we have
t

a ≤ skip ⇔ t = : ∧ a ≤ 1. The ideals have to satisfy (t

a)·chaos = (t

a),
which works out to

a · : = a ∧ a ≤ t .

Hence we can choose the sets of tests and conditions as in the case of designs
and obtain a (non-id-closed) weak modal semiring NP(S).

11 Matrices of Predicate Transformers

In this section we show that the matrix calculus can be extended to predicate
transformers, which will allow a lifting of the results of Sections 5 and 7 to
predicate transformer algebras. Doing this, we obtain the simplified composition
formulas for normal designs with less complicated calculations, while at the same
time removing the need for the underlying semiring to be id-closed.

First we show that the diamond operators over a condition semiring form a
condition semiring again.

Lemma 11.1. Set, for U ⊆ S in a weak modal condition semiring (S, cond(S)),

〈〈U〉〉 =df {〈〈a〉〉 : a ∈ U} .

1. The structure 〈〈S〉〉 =df (〈〈S〉〉,+, ◦, 〈〈0〉〉, 〈〈1〉〉) is a (weak) semiring with great-
est element 〈〈:〉〉 under the operations

〈〈a〉〉+ 〈〈b〉〉 =df 〈〈a + b〉〉 , 〈〈a〉〉 ◦ 〈〈b〉〉 =df 〈〈a · b〉〉 .

2. For s, t ∈ cond(S) we have 〈〈t∧ u〉〉 = 〈〈t〉〉∧ 〈〈u〉〉, where the meet of diamonds
is defined pointwise.

3. For t ∈ cond(S) we have 〈〈t〉〉 = 〈〈t〉〉.
4. {〈〈a〉〉 : a ∈ RI(S)} ⊆ RI(〈〈S〉〉).

Proof. 1. This is immediate from the diamond properties.
2. We calculate, for u ∈ cond(S), using Lemma 9.1.7,

〈〈s∧ t〉〉u = s∧ t∧ 〈〈:〉〉u = s∧ 〈〈:〉〉u∧ t∧ 〈〈:〉〉u = 〈〈s〉〉u∧ 〈〈t〉〉u .

3. First, 〈〈t〉〉+ 〈〈t〉〉 = 〈〈t+ t〉〉 = 〈〈:〉〉. Second, by 2., 〈〈t〉〉∧ 〈〈t〉〉 = 〈〈t∧ t〉〉 = 〈〈0〉〉.
The laws of involution and de Morgan are also easily checked.

4. a ∈ RI(S) ⇔ a = a · : ⇒ 〈〈a〉〉 = 〈〈a · :〉〉 = 〈〈a〉〉 ◦ 〈〈:〉〉. �.
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In the remainder we will mostly omit the composition operator ◦.
We now define a property that relaxes the one of id-closedness (see Section 9).

We call a (weak) modal condition semiring S Tarskian if it satisfies

〈〈:〉〉u = : ⇐ u ∈ cond(S)\{0} . (MTARt)

By Lemma 9.1.9, (MTARt) is equivalent to

��(: · u · :) = : ⇐ u ∈ cond(S)\{0} .

This is a modal analogue of the Tarski rule : · a · : = : ⇐ a = 0 of the
relational calculus, whence our terminology.

Property (MTARt) holds in REL(M), but also in many other semirings that,
contrary to REL(M), are not id-closed, e.g. in the semirings of languages of finite
and infinite words under concatenation and under fusion product.

We obtain another useful equivalent characterisation:

Lemma 11.2. S is Tarskian iff 〈〈t〉〉u = t for all t, u ∈ cond(S) with u = 0.

Proof. (⇒) 〈〈t〉〉u = t∧ 〈〈:〉〉u = t∧: = t.
(⇐) Set t = :. �.
Lemma 11.3. Assume a Tarskian modal condition semiring (S, cond(S)).
1. For all a ∈ S we have 〈〈a〉〉〈〈:〉〉 = 〈〈��a〉〉.
2. RI(〈〈S〉〉) = {〈〈t〉〉 : t ∈ cond(S)}.
3. (〈〈S〉〉,RI(〈〈S〉〉)) is an id-closed and Tarskian modal condition semiring with

��〈〈a〉〉 = 〈〈��a〉〉.
Proof. 1. Since we assume a semiring and not just a weak semiring,

〈〈a〉〉〈〈:〉〉0 = 〈〈a〉〉0 = 0 = 〈〈��a〉〉0 .

For u = 0 we calculate, using Lemma 11.2,

〈〈a〉〉〈〈:〉〉u = 〈〈a〉〉: = ��a = 〈〈��a〉〉u .

2. By 1. we have 〈〈a〉〉 ∈ RI(〈〈S〉〉) ⇔ 〈〈a〉〉 = 〈〈a〉〉〈〈:〉〉 ⇔ 〈〈a〉〉 = 〈〈��a〉〉.
3. Immediate from 2.,1. and Lemma 9.2. �.

Given these results we can now use( 〈〈:〉〉 〈〈:〉〉
〈〈t〉〉 〈〈t + a〉〉

)
and

( 〈〈:〉〉 〈〈0〉〉
〈〈t〉〉 〈〈a〉〉

)
as predicate transformer representations of normal design t 
 a and prescription
t

a, resp., over a Tarskian modal semiring. For the lower left corner element of
both (t 
 a) · (u 
 b) and (t 

 a) · (u 

 b) we obtain

〈〈t〉〉〈〈:〉〉 + 〈〈a〉〉〈〈u〉〉 = 〈〈t〉〉 + 〈〈a〉〉〈〈u〉〉 = 〈〈t〉〉∧ [[〈〈a〉〉]]〈〈u〉〉 ,

so that things work now smoothly even for non-id-closed underlying semiring S.
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12 Conclusion and Outlook

The matrix calculus has proved to be a convenient vehicle for reasoning about
general UTP predicates as well as designs and prescriptions. Their modal semi-
ring structure allows re-use of the large existing body of results about Kleene/ω
algebra with tests and modal Kleene/ω algebra. Recently it has also been
shown [6] that designs and prescriptions form a demonic refinement algebra
in the sense of von Wright [14], so that that framework can be re-used, too.

It remains to be seen whether a similar approach can be followed when further
observation variables are added.

Acknowledgements. I am grateful to Walter Guttmann, Peter Höfner, Kim Solin
and the anonymous referees for helpful discussions and remarks.
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A Appendix: Test-Based Predicate Transformers

First we determine the tests in the semiring of designs. The multiplicative iden-
tity is II = : 
 1 and by (4) we obtain

t 
 a ≤ II ⇔ (: ≤ t) ∧ (:∧ a ≤ 1) .

So the subidentities are of the form : 
 p with p ≤ 1. Moreover,

(: 
 p) + (: 
 q) = (: 
 p + q)

and, by (6),
(: 
 p) · (: 
 q) = (: 
 p · q) .

Hence, if p ≤ 1 has the relative complement q ≤ 1 w.r.t. 1 then : 
 q is the
complement of : 
 p relative to II. This shows

Lemma A.1. If (S, test(S)) is a weak test semiring, then so is

(ND(S), {: 
 p : p ∈ test(S)}) .

We use the characterisation (12) of domain to find out whether we can even
make ND(S) into a weak domain semiring if S is one: By (7) and lattice algebra,
(4), shunting, lattice algebra, distributivity and (12), and lattice algebra and
additivity of domain:

t 
 a ≤ (: 
 p) · (t 
 a)
⇔ t 
 a ≤ p · t 
 p · a
⇔ p · t ≤ t ∧ p · t∧ a ≤ p · a
⇔ t ≤ p · t ∧ a ≤ p · t + p · a
⇔ t ≤ p · t ∧ t + a ≤ p · t + p · a
⇔ �t ≤ p ∧ �(t + a) ≤ p

⇔ �(t + a) ≤ p .

So setting
�(t 
 a) =df : 
 �(t + a)

we satisfy (td1) and (td2); a straightforward calculation shows that also (td3)
holds. Altogether we have shown

Theorem A.2. If (S, test(S), �) is a weak modal semiring, then ND(S) can be
made into a weak modal semiring.

For the case of prescriptions things work much in the same way. Again we have
t 

 a ≤ skip ⇔ t = : ∧ a ≤ 1. Hence we can choose the set of tests as in the
case of designs and obtain a test-based weak modal semiring NP(S).

Next, as in the case of conditions, we investigate the semiring structure of the
test-based diamond operators.
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Lemma A.3. Consider a (weak) modal test semiring (S, test(S)) and set, for
U ⊆ S,

〈U〉 =df {〈a〉 : a ∈ U} .

1. The structure 〈S〉 =df (〈S〉,+, ◦, 〈0〉, 〈1〉) is a (weak) semiring with greatest
element 〈:〉 under the operations

〈a〉+ 〈b〉 =df 〈a + b〉 , 〈a〉 ◦ 〈b〉 =df 〈a · b〉 .

2. For p, q ∈ test(S) we have 〈p · q〉 = 〈p〉∧ 〈q〉.
3. For a ∈ S we obtain 〈a〉 ≤ 〈1〉 ⇔ 〈a〉 = 〈�a〉.
4. For p ∈ test(S) one has 〈¬p〉 = ¬〈p〉.
5. {〈a〉 : a ∈ RI(S)} ⊆ RI(〈S〉).

Proof. 1. This is shown in [9].
2. We calculate, for r ∈ test(S),

〈p · q〉r = p · q · r = p · r · q · r = 〈p〉r ∧ 〈q〉r .

3. By isotony of the diamond we only need to show (⇒). Consider an arbitrary
p ∈ test(S).

〈�a〉p = �a · p = p · �a = p · �(a · p + a · ¬p) = p · �(a · p) + p · �(a · ¬p)
= p · 〈a〉p + p · 〈a〉¬p = 〈a〉p + 0 = 〈a〉p ,

since by assumption 〈a〉p ≤ p and 〈a〉¬p ≤ ¬p.
4. First, 〈p〉+〈¬p〉 = 〈p+¬p〉 = 〈1〉. Second, by 2., 〈p〉∧ 〈¬p〉 = 〈p·¬p〉 = 〈0〉.

The laws of involution and de Morgan are also easily checked.
5. a ∈ RI(S) ⇔ a = a · : ⇒ 〈a〉 = 〈a · :〉 = 〈a〉 ◦ 〈:〉. �.

In the remainder we will again mostly omit the composition operator. Lem-
ma A.3.3 allows us to define domain on diamonds:

Theorem A.4. Setting �〈a〉 =df 〈�a〉 makes (〈S〉, 〈test(S)〉) into a modal test
semiring.

Proof. By the previous lemma 〈test(S)〉 is a test algebra. So we only need to
check the domain axioms.
(cd1) �〈a〉 ◦ 〈a〉 = 〈�a〉 ◦ 〈a〉 = 〈�a · a〉 = 〈a〉.
(cd2) �(〈p〉 ◦ 〈a〉) = �〈p · a〉 = 〈�(p · a)〉 ≤ 〈p〉.
(cd3) �(〈a〉 ◦ 〈b〉) = �〈a · b〉 = 〈�(a · b)〉 = 〈�(a · �b)〉 = �(〈a〉 ◦ 〈�b〉) = �(〈a〉 ◦ �〈b〉). �.
We conclude by relating the test and condition based approaches. A (weak)
modal test semiring S is Tarskian if satisfies

〈:〉q = 1 ⇐ q ∈ test(S)\{0} , (MTARc)

or, equivalently,
�(: · q · :) = 1 ⇐ q ∈ test(S)\{0} .

We define the set of test ideals of S as TI(S) =df {p · : : p ∈ test(S)}.
From [2] we know that p · : = ¬p · : and p · : ≤ q · : ⇔ p ≤ q. Using test
ideals we obtain another characterisation of the Tarskian property:
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Lemma A.5. S is Tarskian iff 〈p · :〉q = p for all p, q ∈ test(S) with q = 0.

Proof. (⇒) 〈p · :〉q = 〈p〉〈:〉q = 〈p〉1 = p.
(⇐) Set p = 1. �.
Lemma A.6. Assume a Tarskian modal test semiring (S, test(S)).

1. For all a ∈ S we have 〈a〉〈:〉 = 〈�a · :〉.
2. RI(〈S〉) = 〈TI(S)〉.
3. (〈S〉, 〈TI(S)〉) is an id-closed and Tarskian modal condition semiring with

��〈a〉 = 〈〈�a〉〉.
Proof. 1. Since we assume a semiring and not just a weak semiring,

〈a〉〈:〉0 = 〈a〉0 = 0 = 〈�a〉0 .

For q = 0 we calculate, using Lemma A.5,

〈a〉〈:〉q = 〈a〉1 = �a = 〈�a · :〉q .

2. By 1., 〈a〉 ∈ RI(〈S〉) ⇔ 〈a〉 = 〈a〉〈:〉 ⇔ 〈a〉 = 〈�a · :〉.
3. Immediate from 2.,1. and Lemma 9.2. �.

Therefore we can, over a Tarskian modal test semiring, represent normal designs
and prescriptions also in the forms

p 
 a =df

( 〈:〉 〈:〉
〈¬p · :〉 〈¬p · :+ a〉

)
and p 

 a =df

( 〈:〉 〈0〉
〈¬p · :〉 〈a〉

)
For the lower left corner element of both (p 
 a) · (q 
 b) and (p 

 a) · (q 

 b) we
now obtain, with the test ideal t =df p · : and arbitrary test ideal u,

〈t〉+ 〈a〉〈u〉 = ¬(〈t〉∧ [〈a〉]〈u〉) ,

and things work again smoothly even for non-id-closed underlying semiring S.
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Abstract. Separating sequential-program state into “visible” and “hid-
den” parts facilitates reasoning about knowledge, security and privacy:
applications include zero-knowledge protocols, and security contexts with
hidden “high-security” state and visible “low-security” state. A rigorous
definition of how specifications relate to implementations, as part of that
reasoning, must ensure that implementations reveal no more than their
specifications: they must, in effect, preserve ignorance.

We propose just such a definition –a relation of ignorance-preserving
refinement– between specifications and implementations of sequential
programs. Its purpose is to enable a development-by-refinement method-
ology for applications like those above.

Since preserving ignorance is an extra obligation, the proposed re-
finement relation restricts (rather than extends) the usual. We suggest
general principles for restriction, and we give specific examples of them.

To argue that we do not restrict too much –for “no refinements al-
lowed at all” is trivially ignorance-preserving– we derive The Dining
Cryptographers protocol via a program algebra based on the restricted
refinement relation. It is also a motivating case study, as it has never
before (we believe) been treated refinement-algebraically.

In passing, we discuss –and solve– the Refinement Paradox.

1 Introduction

Refinement as a relation between sequential programs is based traditionally on
a state-to-state operational model, with a corresponding logic of Hoare-triples
{Φ} S {Ψ} [1] or equivalently weakest preconditions wp.S.Ψ [2], and it generates
an algebra of (in-)equations between program fragments [3, 4]. A specification
S1 is said to be refined by an implementation S2, written S1 ( S2, just when
S2 preserves all logically-expressible properties of S1.

Ignorance is (for us) what an observer doesn’t know about the parts of the
program state he can’t see. If we partition the state into a “visible” part v and a
“hidden” part h, and we consider a known program operating over v, h, then we
can ask “from the final value of v, what can the observer deduce about the final
value of h?” If the program is v:= 0, what he knows afterwards about h is just
what he knew beforehand; if it is v:= hmod 2, then he has learned h’s parity;
and if it is v:= h then he has learned h’s value exactly.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 359–378, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Traditional refinement does not preserve ignorance. If we assume v, h both to
have type T , then “choose v from T ” is refinable into “set v to h” — it is simply
a reduction of demonic nondeterminism. But that refinement, which we write
v:∈T ( v:= h, is called the “Refinement Paradox” (Sec. 6) precisely because it
does not preserve ignorance: program v:∈T tells us nothing about h, whereas
v:= h tells us everything [5]. Thus we cannot use traditional refinement “as is”
for ignorance-preservation. We must alter it.

Our first contribution is to propose the following principles that should apply
to a refinement algebra altered to respect ignorance-preservation:

Pr1. All traditional “visible-only” refinements are retained — It would be im-
practical to search an entire program for hidden variables in order to val-
idate local visible-only reasoning in which the hiddens are not even men-
tioned.

Pr2. All traditional “structural” refinements are retained — Associativity of se-
quential composition, distribution of code into branches of a conditional
etc. are refinements (actually equalities) that do not depend on the actual
code fragments affected: they are structurally valid, acting en bloc. It would
be impractical to have to check through the fragments’ interiors (including
e.g. procedure calls) to validate such familiar rearrangements.

Pr3. Some traditional “explicit-hidden” refinements are excluded — Those that
preserve ignorance will be retained; the others (e.g. the Paradox) will be
excluded. For this principle we need a model and a logic.

Our second, and main contribution (Secs. 3–5) is to extend the model and
logic of sequential programming (only slightly) to realise the above principles:
existing visible-only and structural refinements will all remain sound (Pr1,Pr2);
and explicit-hidden (putative) refinements can be checked individually (Pr3) for
exclusion (e.g. Sec. 6) or retention (e.g. Sec. 7).

Ignorance-preserving refinement should be of great utility for developing zero-
knowledge- or security-sensitive protocols (at least); and our final contribution
(Secs. 7,8) is therefore a case study, the Dining Cryptographer’s protocol [6],
which will bolster our confidence that Pr3 has not excluded too much.

Sections 2 and 9 are informal, discussions of motivations and of comparisons
and conclusions respectively.

2 Realising the Refinement-Algebra of Ignorance

2.1 Guiding Intuitions

The great advantage of having our goals expressed as algebraic principles is that
we can conduct early (and intellectually inexpensive) gedanken experiments that
will inform the subsequent construction of our model and logic. For example. . .

Does program v:= h; v:= 0 reveal h? Yes, it does, because –first– sequential
composition “;” remains associative (from Pr2); and v:= 0; v:∈T = v:∈T (Pr1);
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then v:∈T ( skip (Pr1), with sequential composition retaining (-monotonicity
(Pr2); and finally skip is still the identity (Pr2). Thus we can reason

(v:= h; v:= 0); v:∈T = v:= h; v:∈T ; ( v:= h; skip = v:= h ;

since the implementation (rhs) fails to conceal h, so must the specification (lhs)
have failed also. Hence our model must have “perfect recall” [7], because escape
of h into v is not “erased” by the v-overwriting v:= 0 — and that is what allows
h to be “copied” by the final v:∈T , our algebraic means of detecting the leak.

Arguments like the above –as well as advice1– suggest the Logic of Knowledge
[8] as a suitable basis (App. A). Here we give the intuitions that basis supplies.

The observed program includes a notion of step-by-step atomicity, and the
observer knows at any time what atoms have actually been executed, what ef-
fect they potentially had, and what the visible variables’ values were after each
one. With “actually” and “potentially” we are making a distinction between
composite nondeterminism, written e.g. h:= 0� h:= 1 and acting between atoms
(or larger structures), and atomic nondeterminism, written e.g. h:∈{0, 1} and
acting within an atom:

– in the composite case, afterwards we know which of atoms h:= 0 or h:= 1
was executed (actually), and thus we know the value of h too; yet

– in the atomic case, afterwards we know only that the (potential) effects were
to set h to 0 or to 1, and thus we know at least (but only) that h∈{0, 1}.

Thus atomicity makes h:= 0 � h:= 1 and h:∈{0, 1} different. (Regularity of
syntax however allows v:= 0� v:= 1 and v:∈{0, 1} as well; but since in that case
we can see v anyway, afterwards, there is no difference between those latter two.)

Fig. 1 illustrates this viewpoint with some small examples.

2.2 An Appropriate Logic, Informally

Our logical language is first-order predicate formulae Φ, interpreted convention-
ally over the variables of the program, but augmented with a “knows” modal
operator so that KΦ holds in this state just when Φ itself holds in all (other)
states compatible with the visible part of this state, the program text and what
we have seen (as above) about the execution path and earlier visible values.

The dual modality “possibly” is written PΦ and defined ¬K(¬Φ); and it is
the modality we will use mainly, as it expresses ignorance directly. (Because KΦ
seems more easily grasped initially, we explain both.)

Fig. 2 illustrates the logic with our earlier examples in Fig. 1.

2.3 Refinement, and the Paradox

Traditional refinement ( between programs allows the reduction of demonic
nondeterminism, as in v:∈{0, 1} ( v:= 0.2 It is a partial order over the program
1 Moses, Engelhardt and van der Meyden have long advocated combining refinement

with the Logic of Knowledge; they operate mainly in a concurrent setting.
2 It also allows elimination of divergence, which we do not treat here.
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In each case we imagine that we are at the end of the program given, that the initial
values were v0, h0, and that we are the observer (so we write “we know” etc.)

Program Informal commentary

1.1 both v:∈{0, 1}
and v:= 0 � v:= 1

We can see the value of v, either 0 or 1.We
know h is still h0, though we cannot see it.

1.2 (one atomic statement)
h:∈ {0, 1}

We know that h is either 0 or 1, but we don’t
know which; we see that v is v0.

1.3 (two atomic statements)
h:= 0 � h:= 1

We know the value of h, because we know
which of atomic h:= 0 or h:= 1 was executed.

1.4 h:∈ {0, 1};
v:= 0 � v:= 1

We don’t know whether h is 0 or it is 1: even
the �-demon cannot see the hidden variable.

1.5 h:∈ {0, 1};
v:∈ {h, 1−h}

Though the choice of v refers to h it reveals no
information, since the statement is atomic.

1.6 h:∈ {0, 1};
v:= h � v:= 1−h

Here h is revealed, because we know which of
the two atomic assignments to v was executed.

1.7 h:∈ {0, 1, 2, 3};
v:= h

We see v; we deduce h since we can see v:= h
in the program text.

1.8 h:∈ {0, 1, 2, 3};
v:= h mod 2

We see v; from that either we deduce h is 0 or
2, or that h is 1 or 3.

1.9 h:∈ {0, 1, 2, 3};
v:= h mod 2; v:= 0

We see v is 0; but our deductions about h are
as for 1.8, because we saw v’s earlier value.

In 1.4 the “�-demon” refers anthropomorphically to unpredictable run-time effects as
a demon striving to reduce the utility of the program: the worst alternative is taken
whenever choice is offered. If for example these are scheduling choices in a concurrent
setting, this adversarial scheduler might be said to be “unable to see” certain variables.

We have assumed throughout that v, h are of type {0, 1} so that, for example, in 1.5
the choice h:∈ {0, 1} reveals nothing.

Fig. 1. Examples of ignorance, informally interpreted

lattice [3] and, as such, satisfies S1 � S2 ( S1 in general; and it is induced by
the chosen program logic, so that S1 ( S2 just when all expressible properties
of S1 are preserved in S2.

Our expressible properties will be traditional Hoare-style triples (equivalently
Dijkstra-style weakest preconditions), but over formulae whose truth is preserved
by increase of ignorance: those in which all modalities K occur negatively, and
all modalities P occur positively. We say that such occurrences of modalities are
ignorant ; and a formula is ignorant just when all its modalities are.

Thus we say that S1 ( S2 just when for all ignorant formulae Φ, Ψ we have

{Φ} S1 {ψ} implies {Φ} S2 {ψ} , (1)

although this is informal here because we have not yet given our interpretation
of programs (Sec. 3), or formulae (Sec. 4) or their connection (Sec. 5).

We saw that The Refinement Paradox [5] is an issue because traditional
refinement allows the “secure” v:∈T to be refined to the “insecure” v:= h as
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The initial values are v0, h0. “Valid conclusion” means true in all final states and
“Invalid conclusion” means false in some final state.

Program Valid conclusion Invalid conclusion

2.1 both v:∈ {0, 1}
and v:= 0 � v:= 1

v ∈ {0, 1} v = 0

2.2 h:∈ {0, 1} P(h=0) K(h=0)
2.3 h:= 0 � h:= 1 h ∈ {0, 1} P(h=0)
2.4 h:∈{0, 1};

v:= 0 � v:= 1
P(v=h) K(v �=h)

2.5 h:∈{0, 1};
v:∈{h, 1−h}

P(h=0)
In fact Program 2.5 equals Program 2.4.

P(v=0)

2.6 h:∈{0, 1};
v:=h � v:= 1−h

v ∈ {0, 1}
But Program 2.6 differs from Program 2.5.

P(h=0)

2.7 h:∈{0, 1, 2, 3};
v:=h

K(v=h) P(v �=h)

2.8 h:∈{0, 1, 2, 3};
v:=h mod 2

v=0
⇒ P(h∈{2, 4})

P(h=1)
∧ P(h=2)

2.9 h:∈{0, 1, 2, 3};
v:=h mod 2; v:= 0

The v:= 0 is an unsuccessful “cover up”.

P(h∈{1, 2}) v=0
⇒ P(h∈{2, 4})

· In 2.3 the invalidity is because � might resolve to the right: then h=0 is impossible.
· In 2.6 the invalidity is because :∈ might choose 1 and the subsequent � choose v:= h,
in which case v would be 1 and h=0 impossible.

· In 2.8 the validity is weak: we know h cannot be 4; yet still its membership of {2, 4}
is possible. The invalidity is because the assignment v:= h mod 2 leaves us in no doubt
about h’s parity; we cannot simultaneously consider both 1 and 2 to be possible.

· In 2.9 the invalidity is v might have been 1 earlier.

Fig. 2. Examples of ignorance logic, informally interpreted

an instance of reduction of demonic nondeterminism. But with (1) we have
solved that problem: we can show that the property {P(h=C)} v:∈T {P(h=C)}
is valid, but that property {P(h=C)} v:= h {P(h=C)} is not valid (Sec. 6).

An operational argument for the refinement’s failure is given also.

3 The Shadow Knows: An Operational Model

We now give our ignorance-sensitive interpretation of sequential programs; in
Sec. 4 we interpret modal formulae; and in Sec. 5 we connect the two via “weakest
preconditions” [2], an approach equivalent to Hoare-triples.

Assume a state space with two variables v (visible) and h (hidden). To model
knowledge (and hence ignorance) explicitly, we add a third variable H –called
the shadow of h– and the shadow “knows” all values that h has potentially at
any point. Thus for example h:∈{0, 1} leads us to either of two states, one with
h=0 and the other with h=1; but in both of them the shadow H is {0, 1}.
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The operational model is thus given by converting “ignorance-sensitive” (that
is v, h-) programs to “ordinary” (that is v, h,H-) programs via the scheme of
Fig. 3.3 In the ordinary programs, traditional sequential semantics applies.

For an ignorance-sensitive program S we write [[S]] for its conversion into the shadowed
form. In this simplified presentation we exclude declarations, supposing only single
variables v, h (ranging over a set D), and then H is simply a set of the potential values
for h (thus ranging over the powerset P.D).

On the right the traditional semantics applies: in particular, use of :∈ indicates an or-
dinary nondeterministic choice, from the set given, without any “atomic” implications.
Variable e is fresh, just used for the exposition.

Identity [[skip]] = skip
Assign to visible [[v:= E]] = e:= E; H := {h: H | e=E}; v:= e
Choose visible [[v:∈E]] = e:∈E; H := {h: H | e∈E}; v:= e
Assign to hidden [[h:= E]] = h:= E; H := {h: H · E}
Choose hidden [[h:∈E]] = h:∈E; H := (∪h: H · E)
Demonic choice [[S1 � S2]] = [[S1]] � [[S2]]
Composition [[S1;S2]] = [[S1]]; [[S2]]

Conditional [[if E then S1 else S2 fi]]
= if E then H := {h: H | E}; [[S1]] else H := {h: H | ¬E}; [[S2]] fi

In Fig. 4 we apply the above to give the shadow semantics for our earlier examples.

Fig. 3. Operational semantics

4 Interpretation of the Logic

As we foreshadowed (Sec. 2.2), our logical language is first-order augmented with
a modal operator so that KΦ is read “know Φ” [8, 3.7.2]. Here we set out its
interpretation.

We give the language function- (including constant-) and relation symbols as
needed, among which we distinguish the (program-variable) symbols visibles in
V and hiddens in H; as well there are the usual (logical) variables in L over which
we allow ∀, ∃ quantification. The visibles, hiddens and variables are collectively
the scalars X =̂ V ∪H ∪ L.

A structure comprises a non-empty domain D of values, together with func-
tions and relations over it that interpret the function- and relation symbols
mentioned above; within the structure we name the partial functions v, h that
interpret visibles,hiddens respectively; we write their types V �→D and H �→D.

A valuation is a partial function from scalars to D, thus typed X �→D; one
valuation w1 can override another w so that for scalar x we have (w # w1).x is
w1.x if w1 is defined at x and is w.x otherwise. The valuation 〈x �→d〉 is defined
only at x, where it takes value d.
3 Our definitions –in particular the introduction of H– are induced by abstraction,

from a lower level given in Sec. A.3.
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(v, h)-program S (v, h, H)-program [[S]]

4.1a v:∈{0, 1} e:∈{0, 1}; H := {h: H | e∈{0, 1}}; v:= e ,
and the rhs simplifies to v:∈ {0, 1}

4.1b v:= 0 � v:= 1 e:= 0; H := {h: H | e=0}; v:= e
� e:= 1; H := {h: H | e=1}; v:= e

simplifies to v:∈ {0, 1}
4.2 h:∈{0, 1} h:∈ {0, 1}; H := (∪h: H · {0, 1})

simplifies to h:∈ {0, 1}; H := {0, 1}
4.3 h:= 0 � h:= 1 h:= 0; H := {h: H · 0}

� h:= 1; H := {h: H · 1}
simplifies to h:∈ {0, 1}; H := {h}

4.4 h:∈{0, 1};
v:= 0 � v:= 1

h:∈{0, 1}; H := {0, 1};
v:∈{0, 1}

simplifies to h:∈ {0, 1}; H := {0, 1}; v:∈ {0, 1}
4.5 h:∈{0, 1};

v:∈{h, 1−h}
h:∈{0, 1}; H := {0, 1};
v:∈{h, 1−h}; H := {h: H | v∈{h, 1−h}}

which is the same as 4.4
4.6 h:∈{0, 1};

v:=h � v:= 1−h
h:∈{0, 1}; H := {0, 1};
v, H :=h, {h} � v, H := 1−h, {h}

simplifies to h:∈ {0, 1}; v:∈ {0, 1}; H := {h}
4.7 h:∈{0, 1, 2, 3};

v:=h
h:∈{0, 1, 2, 3}; H := {0, 1, 2, 3};
v, H :=h, {h}

simplifies to h:∈ {0, 1, 2, 3}; v:=h; H := {h}
4.8 h:∈{0, 1, 2, 3};

v:=h mod 2
h:∈{0, 1, 2, 3}; H := {0, 1, 2, 3};
v:= h mod 2; H := {h: H | v = h mod 2}

simplifies to (H := {0, 2} �H := {1, 3}); h:∈H ; v:= h mod 2
4.9 h:∈{0, 1, 2, 3};

v:=h mod 2;
v:= 0

h:∈{0, 1, 2, 3}; H := {0, 1, 2, 3};
v:= h mod 2; H := {h: H | v = h mod 2};
v:= 0

simplifies to (H := {0, 2} �H := {1, 3}); h:∈H ; v:= 0

Fig. 4. Operational-semantics examples

A state (v, h,H) comprises a visible- v, hidden- h and shadow- part H; the last,
in P.(H �→D), is a set of valuations over hiddens only. We require that h ∈ H.4

We define truth of Φ at (v, h,H) under valuation w by induction, writing
(v, h,H),w |= Φ. Let t be the term-valuation built inductively from the valuation
v # h # w. Then we have the following [8, pp. 79,81]:

4 Our state corresponds to Fagin’s Kripke structure and state together [8]; but our
use of Kripke structures is extremely limited (App. A). Not only do we make the
Common-Domain Assumption, but we do not allow the structure to vary between
worlds except for the interpretation h of hiddens.

To allow for declarations of additional variables, we must make H a set of valua-
tions rather than (as in Sec. 3) simply a set of values. We hope it is clear how the
simpler view is a special case of this section’s more formal presentation.
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– (v, h,H),w |= R.t1. · · · .tk for relation symbol R and terms t1 · · ·tk iff the
tuple (t.t1, · · · , t.tk) is an element of the interpretation of R.

– (v, h,H),w |= t1 = t2 iff t.t1 = t.t2.
– (v, h,H),w |= ¬Φ iff (v, h,H),w |= Φ.
– (v, h,H),w |= Φ1 ∧ Φ2 iff (v, h,H),w |= Φ1 and (v, h,H),w |= Φ2.
– (v, h,H),w |= (∀l · Φ) iff (v, h,H),w # 〈l �→d〉 |= Φ for all d in D.
– (v, h,H),w |= KΦ iff (v, h1,H),w |= Φ for all h1 in H.

We write just (v, h,H) |= Φ when w is empty, and |= Φ when (v, h,H) |= Φ for all
v, h,H with h∈H, and we take advantage of the usual “syntactic sugar” for other
operators (including P as ¬K¬). Thus for example we have |= Φ⇒ PΦ.

5 Weakest-Precondition Modal Semantics

For practicality, we introduce a weakest-precondition semantics to support direct
reasoning at the v, h-level of syntax, i.e. without translation to v, h,H-programs.
It corresponds to the operational semantics of Fig. 3, given the interpretation in
Sec. 4 of the modal formulae.

The predicate-transformer semantics is given in two layers, in Fig. 5 and Fig. 6,
because the modal- and classical aspects seem to separate naturally.

Substitute [e\E] Replaces e by E, with alpha-conversion as necessary if
distributing through ∀,∃.

Distribution through P however is affected by that modality’s implicitly quantify-
ing over hidden variables: if e is a hidden variable, then [e\E]PΦ is just PΦ; and
if E contains hidden variables, the substitution does not distribute into PΦ at all
(which therefore requires simplification by other means).

Shrink shadow [⇓E] Distributes through all classical operators, with renaming;
has no effect on classical atomic formulae.

We have [⇓E]PΦ = P(E ∧ Φ); hidden variables in E are not renamed.

Set hidden [h←E] Distributes through all operators, including P, with re-
naming as necessary for ∀,∃ (not P). Replaces h by E.

Set shadow [h⇐E] Distributes through all classical operators, with renaming;
has no effect on classical atomic formulae.

For modal formulae we have [h⇐E]PΦ = P(∃h:E · Φ); note that h’s in E (if any)
are not captured by the (∃h · · ·).

Fig. 5. Technical predicate transformers

Visible and hidden variables have separate declarations vis v and hid h re-
spectively. Declarations within a local scope do not affect visibility: a global
hidden variable cannot be seen by the observer; a local visible variable can.

Occurrences of v, h in the rules may be vectors of visible- or vectors of hidden
variables, in which case substitutions such as [h\h′] apply throughout the vector.
We assume wlog that modalities are not nested, since we can remove nestings
via |= PΨ ≡ (∃c · [h\c]Ψ ∧ P(h=c)).
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Identity wp.skip.Ψ = Ψ
Assign to visible wp.(v:= E).Ψ = [e\E] [⇓ e=E] [v\e] Ψ
Choose visible wp.(v:∈E).Ψ = (∀e:E · [⇓ e∈E] [v\e] Ψ)
Assign to hidden wp.(h:= E).Ψ = [h←E] Ψ
Choose hidden wp.(h:∈E).Ψ = (∀e:E · [h\e] [h⇐E] Ψ)

Demonic choice wp.(S1 � S2).Ψ = wp.S1.Ψ ∧ wp.S2.Ψ
Composition wp.(S1;S2).Ψ = wp.S1.(wp.S2.Ψ)
Conditional wp.(if E then S1 else S2 fi).Ψ

= E ⇒ [⇓E]wp.S1.Ψ ∧ ¬E ⇒ [⇓¬E]wp.S2.Ψ

Declare visible wp.(vis v).Ψ = (∀e · [v\e] Ψ) Note that both these
substitutions propagate
within modalities in Ψ.Declare hidden wp.(hid h).Ψ = (∀e · [h←e] Ψ)

Logical variable e is fresh.

The assign to visible rule has two components conceptually. The first is of course an
assignment of E to v, although this is split into two sections [e\E] · · · [v\e] so that v’s
initial- and final values are distinguished in between, necessary should v occur in E.
The second is the “collapse” of ignorance caused by E’s value being revealed: this is
inserted as a conjunct, by [⇓ e = E], into the body of P-modalities.

Fig. 6. Weakest-precondition modal semantics

The congruence of the transformer- and operational semantics is justified by
the following observation:

If we translate the v, h program fragments into v, h,H fragments via
the operational semantics (Fig. 3), and translate correspondingly the
modal formulae into ordinary first-order formulae, in both cases we have
introduced the shadow H explicitly: in effect our language and logic are
both regarded as syntactic sugar for a more basic form. For example
(recall Example 2.8),

v:=h mod 2 becomes v:= h mod 2; H := {h: H | v = h mod 2}
and v=0⇒ P(h∈{2, 4}) becomes v=0⇒ (∃h: H | h∈{2, 4}).
Then the normal wp-semantics [2] is used over the explicit v, h,H pro-
gram fragments, and the resulting preconditions are translated back from
the pure first-order (∃h:H · · ·)-form into the modal P-form.

The wp-logic of Figs. 5,6 has the following significant features, which bear
directly on the principles we set out in Sec. 1:

1. All visible-only program refinements (hence equalities) are preserved (Pr1).
2. All refinements relying only on Demonic choice, Composition, Identity

(“structural”) are preserved (Pr2).
3. The transformers defined in Fig. 6 distribute conjunction, as standard trans-

formers do [2]. Thus complicated postconditions can be treated piecewise.
4. Non-modal postconditions can be treated using traditional semantics [1, 2],

even if the program contains hidden variables.
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5. Because of (3,4) the use of the modal semantics can be restricted to only the
modal conjuncts of a postcondition.

Crucially, from (4) we see that we have not added refinements. The practical
value of (5) is illustrated by the Dining Cryptographers specification (Fig. 10).

6 Avoiding the Refinement Paradox

In this section we see an example of excluding a refinement (Pr3). Fig. 7 uses
wp-logic to support our claim, in Sec. 2.3 earlier, concerning avoiding the Re-
finement Paradox on Hoare-triple grounds: if |= wp.S1.Ψ ⇒ wp.S2.Ψ , then
{wp.S1.Ψ} S1 {Ψ} holds (perforce) — but {wp.S1.Ψ} S2 {Ψ} does not.

wp.(v:∈ T ).(P(h=C))
≡ “Choose visible”

(∀e: T · [⇓ e∈T ] [v\e] P(h=C))
≡ “v not free”

(∀e: T · [⇓ e∈T ] P(h=C))
≡ “Shrink shadow”

(∀e: T · P(e∈T ∧ h=C)))
≡ “h not free in e∈T”

(∀e: T · e∈T ∧ P(h=C))
≡ P(h=C) . “e not free in P(h=C)”

wp.(v:= h).(P(h=C))
≡ “Assign to visible”

[e\h] [⇓ e=h] [v\e] P(h=C)
≡ “v not free; Shrink shadow”

[e\h] P(e=h ∧ h=C)
≡ [e\h] P(e=C ∧ h=C) “h=C”
≡ “h not free in e=C”

[e\h] (e=C ∧ P(h=C))
≡ h=C ∧ P(h=C) “e not free”
≡ h=C . “|= Φ⇒ PΦ”

We exploit that |= P(Φ ∧ Ψ) ≡ Φ ∧ PΨ when Φ contains no hidden variables.

The right-hand side shows that h=C is the weakest Φ such that {Φ} v:= h {P(h=C)},
yet (v, h, H) |= P(h=C) ⇒ (h=C) for all C only when H = {h}. Thus, when the
expression T contains no h, the fragment v:∈T can be replaced by v:= h only if we
know h already.

Fig. 7. Avoiding the Refinement Paradox, seen logically

The corresponding operational view is that we have S1 ( S2 just when for
some initial (v0, h0, H0) every possible outcome (v2, h2, H2) of S2 has v1=v2 ∧
h1=h2 ∧ H1⊆H2 for some outcome (v1, h1, H1) of S1.5 We illustrate this via
Fig. 8, where we have e.g. (8.3) ( (8.2), (8.6) ( (8.5) and ((8.7); v:= 0) (
(8.9).

Apropos the Paradox we see that v:∈T ( v:= h because the former’s final
states are {e:T · (e, h0, H0)} whereas the latter’s are just { (h0, h0, {h0}) } and,
even supposing h0∈T , still in general H0 ⊆ {h0}.
5 This is the Smyth powerdomain-order over an underlying refinement on single triples

that allows the H-component –i.e. ignorance– to increase [9].
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The initial state is (v0, h0, {h0}).
Program Final states in the shadowed model

8.1 both v:∈ {0, 1}
and v:= 0 � v:= 1

(0, h0, {h0}) , (1, h0, {h0})

8.2 h:∈ {0, 1} (v0, 0, {0, 1}) , (v0, 1, {0, 1})
8.3 h:= 0 � h:= 1 (v0, 0, {0}) , (v0, 1, {1})
8.4 h:∈{0, 1};

v:= 0 � v:= 1
(0, 0, {0, 1}) , (0, 1, {0, 1}) ,
(1, 0, {0, 1}) , (1, 1, {0, 1})

8.5 h:∈{0, 1};
v:∈{h, 1−h}

(0, 0, {0, 1}) , (1, 0, {0, 1}) ,
(0, 1, {0, 1}) , (1, 1, {0, 1})

Thus this and
8.4 are equal.

8.6 h:∈{0, 1};
v:=h � v:= 1−h

(0, 0, {0}) , (1, 0, {0}) ,
(0, 1, {1}) , (1, 1, {1})

But this one
differs.

8.7 h:∈{0, 1, 2, 3};
v:=h

(0, 0, {0}) , (1, 1, {1}) ,
(2, 2, {2}) , (3, 3, {3})

8.8 h:∈{0, 1, 2, 3};
v:=h mod 2

(0, 0, {0, 2}) , (1, 1, {1, 3}) ,
(0, 2, {0, 2}) , (1, 3, {1, 3})

8.9 h:∈{0, 1, 2, 3};
v:=h mod 2;
v:= 0

(0, 0, {0, 2}) , (0, 1, {1, 3}) ,
(0, 2, {0, 2}) , (0, 3, {1, 3})

The final v:= 0
does not affect H.

In (8.9) partial information about h remains, represented by two possibilities for H of
{0, 2} and {1, 3}, even though v=0 in all outcomes.

Fig. 8. Examples (Figs. 1,2) revisited: a relational interpretation

7 The Encryption Lemma

In this section we see an example of retaining a refinement (Pr3); and we prepare
for our treatment of the DC (Dining Cryptographers’) protocol.

When a hidden secret is encrypted with a hidden key and published as a
visible message, the intention is that observers ignorant of the key cannot use
the message to deduce the secret, even if they know the encryption method.
A special case of this occurs in the DC protocol, where a secret is encrypted
(via exclusive-or) with a key (a hidden Boolean) and becomes a message (is
published).

We examine this simple situation in the ignorance logic; the resulting formal-
isation will provide one of the key steps in the DC derivation of Sec. 8.

Lemma 1. Let s:S be a secret, k:K a key, and 3 an encryption method so
that s3 k is the encryption of s. In a context hid s we have the refinement

skip ( |[ vis m;hid k · k:∈K;m:= s3 k ]| ,

which expresses that publishing the encryption as a message m reveals nothing
about the secret s, provided the Key-Complete Condition (3) of Fig. 9 (KCC )
is satisfied and the key k is not revealed.6

6 The Key-Complete Condition is very strong, requiring as many potential keys as
messages; yet it applies to the DC protocol, where both are just one bit.
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Proof. The calculation is given in Fig. 9. Informally we note that the KCC tells
us that for every message s 3 k revealed in m, every guess s′ of s we make is
supported by some key k′:K that could have produced the same m. �

postcondition s=B ∧ P(s=C)

through wp.(m:= s� k) gives “Assign visible”
[e\s � k] [⇓ e = s� k] [m\e] (s=B ∧ P(s=C))

≡ s=B ∧ [e\s� k] P(e = s� k ∧ s=C) “m not free; Shrink shadow”
≡ s=B ∧ [e\s� k] P(e = C � k ∧ s=C) “s=C”

through wp.(k:∈K) gives “Choose hidden”
(∀e: K · [k\e] [k⇐K] (s=B ∧ [e\s� k] P(e = C � k ∧ s=C)))

≡ s=B ∧ (∀e: K · [k⇐K] [k\e] [e\s� k] P(e = C � k ∧ s=C)) “distribute”
≡ s=B ∧ (∀e: K · [k⇐K] [e\s� e] P(e = C � k ∧ s=C)) “combine subs.”
≡ s=B ∧ (∀e: K · [e\s� e] [k⇐K] P(e = C � k ∧ s=C)) “subs. disjoint”
≡ s=B ∧ (∀e: K · [e\s� e] P(∃k′: K · e = C � k′ ∧ s=C)) “Set shadow”
≡ s=B ∧ (∀e: K · [e\s� e] (∃k′: K · e = C � k′) ∧ P(s=C)) “distribute”
≡ s=B ∧ P(s=C) ∧ (∀e: K · (∃k′: K · s� e = C � k′)) “distribute, sub.”

We use a subsidiary lemma (App. B) that skip � S if for all A,B, C we have

{v=A ∧ h=B ∧ P(h=C)} S {v=A ∧ h=B ∧ P(h=C)} , (2)

where v, h are the (vectors of) all variables in context.
In Lem. 1 the context is hid s (and no v), giving the initial calculation boxed above.
Because neither m nor k is free in its final line, concluding the calculation by applying
the remaining commands vis m,hid k has no effect. Finally, assuming the precondition,
∀-quantifying over B, C, s in their type S, then renaming e,C to k, s′, leaves only

KCC — (∀s, s′: S; k: K · (∃k′: K · s� k = s′ � k′)) , (3)

which we call the Key-Complete Condition for encryption � with key-set K.

Fig. 9. Deriving the Key-Complete Condition for the Encryption Lemma (Sec. 7)

8 Deriving the Dining Cryptographers’ Protocol

The Dining Cryptographers Protocol (DC ) is an example of ignorance preser-
vation [6]. In the original formulation, three cryptographers have finished their
meal, and ask the waiter for the bill: he says it has already been paid; they know
that the payer is either one of them or is the NSA. They devise a protocol to
decide which — without however revealing the payer in the former case.

Each two cryptographers flip a Boolean coin, hidden from the third cryptog-
rapher; and each publishes (says aloud) the exclusive-or ⊕ of the two coins he
sees and a Boolean indicating whether he paid. The exclusive-or of the three an-
nouncements, each known to all observers, is true iff some cryptographer paid;
but it reveals nothing about which one did.
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We model this with global Boolean variables p (some cryptographer paid) and
pi (Cryptographer i paid): a typical specification would include p = p0⊕ p1⊕ p2
as a post -condition. If we take the waiter as observer, then from his point of view
the postcondition should also include p⇒ 〈〈p0: B〉〉 ∧ 〈〈p1: B〉〉 ∧ 〈〈p2: B〉〉, where in
general for hidden (vector) h we introduce this abbreviation:

– Complete ignorance 〈〈h:E | Φ〉〉 =̂ (∀e:E · [h\e]Φ⇒ P(h=e))7

(with omitted Φ defaulting to true). It expresses ignorance of h’s value beyond
its membership in {h:E | Φ}; thus in this case, even if p holds, still the waiter is
to know nothing about whether p0, p1 or p2 hold individually.

As a specification pre-condition we would find 〈〈p0, p1, p2: B | ∑i pi ≤ 1〉〉
requiring (with an abuse of notation) that the waiter consider any combination
possible provided at most one pi holds. Putting pre- and post- together, the
suitability of a specification S could be expressed

{〈〈p0, p1, p2: B |
∑

i

pi ≤ 1〉〉} S {p = p0 ⊕ p1 ⊕ p2 ∧ p⇒
⎛⎝ 〈〈p0: B〉〉
∧ 〈〈p1: B〉〉
∧ 〈〈p2: B〉〉

⎞⎠} , (4)

and Fig. 10 shows it indeed is satisfied when S is the assignment p:= p0⊕p1⊕p2.
(Compare Halpern and O’Neill’s specification [10]: ours is less expressive because
we deal with only one agent at a time.)

postcondition p⇒ 〈〈p1: B〉〉
through wp.(p:= p0 ⊕ p1 ⊕ p2) gives “Assign visible”

[e\p0 ⊕ p1 ⊕ p2] [⇓ e = p0 ⊕ p1 ⊕ p2] [p\e] (p⇒ 〈〈p1: B〉〉)
≡ [e\p0 ⊕ p1 ⊕ p2] [⇓ e = p0 ⊕ p1 ⊕ p2] (e⇒ 〈〈p1: B〉〉) “substitute”
≡ [e\p0 ⊕ p1 ⊕ p2] [⇓ e = p0 ⊕ p1 ⊕ p2] (e⇒ (∀b: B · P(p1=b))) “expand 〈〈·〉〉”
≡ [e\p0 ⊕ p1 ⊕ p2] (e⇒ (∀b:B · P(e = p0 ⊕ p1 ⊕ p2 ∧ p1=b))) “Shrink shadow”
≡ [e\p0 ⊕ p1 ⊕ p2] (e⇒ (∀b:B · P((p0 ⊕ p1 ⊕ p2) ∧ p1=b))) “e in antecedent”
⇐ P((p0=p2) ∧ p1) ∧ P((p0 ⊕ p2) ∧ ¬p1) “drop antecedent; expand ∀”
⇐ P(¬p0 ∧ ¬p2 ∧ p1) ∧ P(¬p0 ∧ p2 ∧ ¬p1) “P is ⇒-monotonic”
⇐ (∀e0, e1, e2: B · i ei ≤ 1⇒ P(p0, p1, p2=e0, e1, e2)) “instantiate ∀ twice”
≡ 〈〈p0, p1, p2: B | i pi ≤ 1〉〉 . “contract 〈〈·〉〉”

Because wp is conjunctive (Sec. 5 point 3.) we can deal with postcondition conjuncts
separately; the standard part follows from ordinary wp (Sec. 5 point 4.); and by sym-
metry we can concentrate wlog on the p1 case for the remainder.

Fig. 10. Adequacy of the cryptographers’ specification (Sec. 8)

Rather than prove (4) for an implementation directly –which could be
complex– we can use program algebra to manipulate a specification for which (4)
has already been established. An implementation reached via ignorance-preserving
refinement steps requires no further proof of ignorance-preservation [11].
7 Naturally we have e.g. |= 〈〈h: E〉〉 ⇒ P(h∈E), but in fact the latter is strictly weaker:

for example, program h:∈ {0, 1} establishes P(h∈{1, 2}) but not 〈〈h: {1, 2}〉〉.
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A derivation of the DC protocol, from the specification “validated” in Fig. 10,
is given in Fig. 11. To illustrate the possibility of different viewpoints, we observe
as Cryptographer 0 –rather than as the waiter– which makes p0 visible rather
than hidden and thus alters our global context to vis p, p0;hid p1, p2: we can see
the final result, and we can “see” whether we paid; but we cannot see directly
whether Cryptographers 1 or 2 paid.

9 Contributions, Comparisons and Conclusions

Consider this putative refinement in which the variables range over arbitrary
integers which, “Boolean-wise” however, are each set initially in {0, 1}:

p:= p0 ⊕ p1 ⊕ p2

If c2, p1, c0 = 1, 1, 0, then
visible s1 will be 2 and
hidden p1=1 is revealed.
It shouldn’t be.

(? |[ vis s0, s1, s2, c1, c2: {0, 1};
hid c0: {0, 1} ·

s0:= c1 + p0 − c2;
s1:= c2 + p1 − c0;
s2:= c0 + p2 − c1;
p:= (s0 + s1 + s2)mod 2 ]| .

(5)

The coins ci cancel just as in Fig. 11, but this time additively. Although Re-
finement (5) is valid traditionally, the boxed text shows that it does not satisfy
ignorance-preserving refinement, as we have defined it, in any context where p1
was declared to be hidden — and so its traditional proof must use some rule
excluded by Pr3. Thus, in a sense,

Our contribution has been to disallow this refinement, and others like it.8

More generally our contribution is to have altered the rules for refinement
of sequential programs, just enough, so that ignorance of hidden variables is
preserved. We can still derive correct protocols (Fig. 11), but can no longer
mistakenly propose incorrect ones (5).

Compared to the work of Halpern and O’Neill, who apply the Logic of Knowl-
edge to secrecy [7] and anonymity [10], ours is a very restricted special case: we
allow just one agent; our (v, h,H) model allows only h to vary in the Kripke
model [8]; and our programs are not concurrent. They treat DC, as do Engel-
hardt, Moses & van der Meyden [12], and van der Meyden & Su [13].

What we add back –having specialised away so much– is reasoning in the wp-
based assertional/sequential style, thus exploiting the specialisation to preserve
traditional reasoning patterns where they can apply.

Comparison with security comes from regarding hidden variables as “high-
security” and visible variables as “low-security”, and concentrating on program
semantics rather than e.g. extra syntactic annotations: thus we take the exten-
sional view [14] of non-interference [15] where security properties are deduced
directly from the semantics of a program [16, III-A]. Recent examples of this
include elegant work by Leino et al. [17] and Sabelfeld et al. [18].
8 One role of Formal Methods is to prevent people from writing incorrect programs.
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The global context vis p, p0;hid p1, p2 expresses Cryptographer 0’s viewpoint; we
number the coins so that ci is opposite pi, and thus c0 is the only coin he can’t see.

p:= p0 ⊕ p1 ⊕ p2

= skip;
p:= p0 ⊕ p1 ⊕ p2

“skip is identity”

� “Encryption Lemma”
|[ vis s1, c2; hid c0 ·

c0:∈ B;
s1:= c2 ⊕ p1 ⊕ c0 ]|;
p:= p0 ⊕ p1 ⊕ p2

= “move into block; typed declaration”
|[ vis s1, c2;hid c0: B ·

s1:= c2 ⊕ p1 ⊕ c0

p:= p0 ⊕ p1 ⊕ p2 ]|
= “new inner block equals skip”

|[ vis s1, c2;hid c0: B ·
s1:= c2 ⊕ p1 ⊕ c0

p:= p0 ⊕ p1 ⊕ p2

|[ vis s0, s2, c1 ·
s0:= c1 ⊕ p0 ⊕ c2;
s2:= p ⊕ s0 ⊕ s1 ]| ]|

= “reorder”
|[ vis s0, s1, s2, c1, c2;hid c0: B ·

s0:= c1 ⊕ p0 ⊕ c2;
s1:= c2 ⊕ p1 ⊕ c0

p:= p0 ⊕ p1 ⊕ p2

s2:= p⊕ s0 ⊕ s1 ]|
= “Boolean algebra”

|[ vis s0, s1, s2, c1, c2;hid c0: B ·
s0:= c1 ⊕ p0 ⊕ c2;
s1:= c2 ⊕ p1 ⊕ c0

p:= p0 ⊕ p1 ⊕ p2

s2:= c0 ⊕ p2 ⊕ c1 ]|
= “reorder”

|[ vis s0, s1, s2, c1, c2;hid c0: B ·
s0:= c1 ⊕ p0 ⊕ c2;
s1:= c2 ⊕ p1 ⊕ c0

s2:= c0 ⊕ p2 ⊕ c1

p:= p0 ⊕ p1 ⊕ p2 ]|

The derivation begins at upper-left
with the specification, ending with
the implementing protocol at right.
Bold text highlights changes.

The “typed declaration” hid c0: B ·
abbreviates hid c0 · c0:∈B.

= “Boolean algebra”

|[ vis s0, s1, s2, c1, c2;hid c0: B ·
s0:= c1 ⊕ p0 ⊕ c2;
s1:= c2 ⊕ p1 ⊕ c0

s2:= c0 ⊕ p2 ⊕ c1

p:= s0 ⊕ s1 ⊕ s2 ]| .

Local variables ci (coins) and si (Cryptographer i said) for i: 0, 1, 2 are introduced
during the derivation, which depends principally on Key-Completeness and the Boolean
algebra of ⊕.

In our use of Lem. 1 (Encryption) the message (m) is s1, the secret (s) is p1, the
encryption (�) is ·(⊕ c2⊕)· –which satisfies the Key-Complete Condition (3) for both
values of the visible c2– and the key (k) is c0.

Other refinements, such as moving statements into blocks where there is no capture,
and swapping of statements that do not share variables, are examples of Pr1 and Pr2.

Fig. 11. Deriving the Dining Cryptographers’ Protocol
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Again we have specialised severely — we do not consider lattices, nor loops
(and thus possible divergence), nor concurrency, nor probability. However our
“agenda” of Refinement, the Logic of Knowledge, and Program Algebra, has
induced four interesting differences from the usual approaches to security:

1. We do not prove “absolute” security of a program. Rather we show that it is
no less secure than another; this is induced by our refinement agenda. After
all, the DC specification is not secure in the first place: it reveals whether
the cryptographers (collectively) paid or not. To attempt to prove the DC
implementation (absolutely) secure is therefore pointless.

However, if we did wish to establish absolute security we would simply
prove refinement of an absolutely secure specification (e.g. skip, or v:∈T ).

2. We concentrate on final- rather than initial hidden values. This is induced
by the Kripke structure of the Logic of Knowledge approach (App. A), which
models what other states are possible “now” (rather than “then”).

The usual approach relates instead to hidden initial values, so that h:= 0
would be secure and v:= h;h:∈T insecure; for us just the opposite holds.
Nevertheless, we could achieve the same effect by operating on a local hidden
copy, thrown away at the end of the block. Thus |[ hid h′: {h} · h′:= 0 ]|
is secure (for both interpretations), and |[ hid h′: {h} · v:= h′;h′:∈T ]| is
insecure.

A direct comparison with non-interference considers the relational seman-
tics R of a program, operating over v, h:T ; the refinement v:∈T ( v:∈R.v.h
then expresses absolute security for the rhs with respect to h’s initial value.
Operational reasoning (App. C) then shows that

Absolute security — (∀v, h, h′:T · R.v.h = R.v.h′)

is necessary and sufficient, which is non-interference for R exactly [17, 18].
3. We insist on perfect recall. This is induced by our algebraic principles (recall

the gedanken experiment of Sec. 2), and thus we consider v:= h to have
revealed h’s value at that point, no matter what follows.9 The usual semantic
approach allows instead a subsequent v:= 0 to “erase” the information leak.

Perfect recall is also a side-effect of (thread) concurrency [7],[16, IV-B],
but has different causes. We are concerned with ignorance-preservation dur-
ing program development ; the concurrency-induces-perfect-recall problem
occurs during program execution.

The “label creep” [16, II-E] caused by perfect recall, where the build-
up of un-erasable leaks makes the program eventually useless, is mitigated
because our knowledge of the current hidden values can decrease (via e.g.
h:∈T ), even though knowledge of initial- (or even previous) values cannot.

4. We do not require “low-view determinism” [16, IV-B]. This is induced by
our explicit policy of retaining abstraction, and of determining exactly when
we can “refine it away” and when we cannot. The approach of Roscoe and
others instead requires low-level behaviour to be deterministic [19].

9 A similar experiment shows the principles also imply that we can see the program
counter.
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We conclude that ignorance refinement is able to handle examples of simple
design, at least — even though their significance may be far from simple. Be-
cause wp-logic for ignorance retains most structural features of traditional wp,
we expect that loops and their invariants, divergence, and concurrency via e.g.
action systems [20] could be feasible extensions.

Adding probability via modal “expectation transformers” [21] is a longer-term
goal, but will require a satisfactory treatment of conditional probabilities (the
probabilistic version of Shrink shadow) in that context.
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A The Logic of Knowledge

A.1 Introduction, and Inspiration

The seminal work on formal logic for knowledge is Hintikka’s [22], who used
Kripke’s possible-worlds semantics for the model: he revived the discussion on a
subject which had been a topic of interest for philosophers for millennia. It was
first related to multi-agent computing by Halpern and Moses [23], and much
work by many other researchers followed. Fagin et al. summarise the field in
their definitive introduction [8].

Engelhardt, Moses, and van der Meyden have earlier treated the DC via a
refinement-calculus of knowledge and ignorance [12], and their work (and advice
from them) is the direct inspiration for what is here. It supports our presentation
in the following way.

The standard model for knowledge-based reasoning is based on possible “runs”
of a system and participating agents’ ignorance of how the runs have interleaved:
although each agent knows the (totality of) the possible runs, a sort of “static”
knowledge, he does not have direct “dynamic” knowledge of which run has been
taken on any particular occasion. Thus he knows a fact in a given global state (of
an actual run) iff that fact holds in all possible global states (allowed by other
runs) that have the same local state as his.

We severely specialise this view in three ways. The first is that we consider
only sequential programs, with explicit demonic choice. As usual, such choice
can represent both abstraction, that is freedom of an implementor to choose
among alternatives (possible refinements), and ignorance, that is not knowing
which environmental factors might influence run-time decisions.
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Secondly, we consider only one agent: informally, we think of this as an ob-
server of the system, whose local state is our system’s visible part and who is is
trying to learn about (what is for him) the non-local, hidden part.

Finally, we emphasise ignorance rather than (its dual) knowledge, and loss of
ignorance is sufficient to exclude an otherwise acceptable refinement.

A.2 The Model as a Kripke Structure

We are given a sequential program text, including a notion of atomicity: unless
stated otherwise, each syntactically atomic element of the program changes the
program counter when it is executed. Demonic choice is either a (non-atomic)
choice between two program fragments, thus S1 � S2, or an (atomic) selection
of a variable’s new value from some set, thus x:∈X . For simplicity we suppose
we have just two (untyped) variables, the visible v and the hidden h.

The global state of the system comprises both v, h variables’ current and all
previous values, sequences v, h, together with a history-sequence p of the program
counter; the observer can see v, p but not h. For example, after S1; (S2�S3);S4
he can use p to “remember” which of S2 or S3 was executed earlier.

The possible runs of a system S are all sequences of global states that could
be produced by the successive execution of atomic steps from some initial v0, h0,
including all outcomes resulting from demonic choice (both � and :∈ ).

If the current state is (v, h, p), then the set of possible states associated with it
is the set of triples (v, h1, p) that S can produce from v0, h0. We write (v, h, p) ∼
(v, h1, p) for this (equivalence) relation, which depends on S, v0, h0.

Thus from p the observer knows the execution trace; from v he knows the
successive v values; but of hiddens he knows only h0 directly. Fig. 1 illustrated
this viewpoint with its small examples.

A.3 The Connection with the Shadowed Operational Model

The correspondence between the Kripke model of Sec. A.2 and the shadow model
of Sec. 3 is via the abstraction

v = last.v ∧ h = last.h ∧ H = {h′ | (v, h′
, p) ∼ (v, h, p) · last.h

′} , 10

and it determines the operational semantics we gave in Fig. 3.
The abstraction works because programs cannot refer to the full run-sequences

directly; what they can refer to –the current values of v, h– is just what is cap-
tured in the abstraction. The shadow H is used by the modal-logic semantics: it
determines the accessibility relation with respect to which modalities are inter-
preted.11

10 Read the last as “vary h
′
such that (v, h

′
, p) ∼ (v, h, p) and take last.h

′
”.

11 In fact the H-component makes h redundant –i.e. we can make do with just (v, H)–
but this extra “compression” would complicate the presentation subsequently. The
redundancy is captured by the healthiness condition

wp.S.(KΨ) = K(wp.S.Ψ) .
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B Subsidiary Lemma for Skip (Fig. 9)

Sufficient conditions for skip ( S can be obtained operationally. Recall that
(operational) refinement includes increase of H, thus being an option available to
any refinement of skip (which nevertheless must still leave v and h unchanged).
Hence the refinement fails only if [[S]] can take some initial v, h,H to some final
v′, h′,H′, that is (writing [[S]] as a relation)

(v, h,H) [[S]] (v′, h′,H′) , (6)

and then we find either v =v′ or h =h′ or H ⊆H′. The first two possibilities are
excluded directly by the A and B terms in the postcondition of Fig. 9’s (2). For
the third, we merely pick some C with C∈H but C ∈H′; then the initial state
satisfies v=A∧h=B∧P(h=C) for appropriate A,B but the final state does not.
Thus the condition (2) excludes this case also.

C Comparison with Non-interference (Sec. 9)

Consider a program with relational semantics R operating over v, h:T , and as-
sume we have v:∈T ( v:∈R.v.h. Fig. 3 shows that from initial v, h,H the pos-
sible outcomes on the left are t, h,H for all t:T , and that on the right they are
t′, h, {h : H | t′∈R.v.h} for all t′:R.v.h. For refinement from that initial state we
must therefore have t′∈R.v.h ⇒ t′∈T , which is just type-correctness; but also

t′ ∈ R.v.h ⇒ H ⊆ {h : H | t′∈R.v.h} (7)

must hold, both conditions coming from the operational definition of refine-
ment (for which we recall Footnote 5 in Sec. 6). Since (7) constrains all initial
states v, h,H, and all t′, we close it universally over those variables to give a
formula which via predicate calculus and elementary set-theory reduces to the
non-interference condition (∀v, h, h′:T · R.v.h = R.v.h′) as usually given for
demonic programs [17, 18].
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Abstract. Many useful calculation rules, such as fusion and tupling,
rely on well-structured functions, especially in terms of inputs and out-
puts. For instance, fusion requires that well-produced outputs should
be connected to well-consumed inputs, so that unnecessary intermedi-
ate data structures can be eliminated. These calculation rules generally
fail to work unless functions are well-structured. In this paper, we pro-
pose a new calculation rule called IO swapping. IO swapping exchanges
call-time computations (occurring in the arguments) and return-time
computations (occurring in the results) of a function, while guarantee-
ing that the original and resulting function compute the same value. IO
swapping enables us to rearrange inputs and outputs so that the existing
calculation rules can be applied. We present new systematic derivations
of efficient programs for detecting palindromes, and a method of higher-
order removal that can be applied to defunctionalize function arguments,
as two concrete applications.

1 Introduction

Calculational programming [1] is a methodology for constructing programs, where
we first write down a program that may be terribly inefficient but certainly
correct, then we improve its efficiency by applying calculation rules, such as fu-
sion [2, 3] and tupling [4, 5, 6, 7]. As an example, consider the problem of checking
whether a list is a palindrome or not. A straightforward solution pld0 is given
as follows.

pld0 x = eqlist(x,reverse x)

eqlist([],[]) = True
eqlist(a:x,b:y) = a==b && eqlist(x,y)

reverse x = rev x []

rev [] h = h

rev (a:x) h = rev x (a:h)

The function reverse reverses the order of a list, and the function eqlist checks
whether two lists of the same length are equal. This program is accurate but
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inefficient on account of multiple traversals over the input list x; both eqlist

and reverse iterate their computation over x. Tupling enables us to eliminate
such multiple traversals [4, 5, 6, 7]. For example, Bird [4] derived

pldBird x = (r1,r2) = aux x r2 [] r1

aux [] [] h = (True, h)

aux (a:x) (b:y) h = (r1,r2) = aux x y (a:h)

(a==b && r1, r2)

Alternatively, Pettorossi and Proietti [6] derived

pldPettorossi x = (r1,r2) = aux x [] r1 r2

aux [] h = (\y−>y==[], h)

aux (a:x) h = (r1,r2) = aux x (a:h)

(\(b:y)−>a==b && r1 y, r2)

Both involve a single traversal of x, and tupling plays an important role.
As can be seen in this palindrome detecting problem, calculation rules are

useful for developing various kinds of programs if functions are well-structured.
For instance, tupling calculation eliminates multiple traversals if two functions
have the same structure for the recursion; in facts we succeeded in eliminating
multiple traversals in the palindrome detecting problem, because reverse and
eqlist certainly have the same recursion structure. However, These calculation
rules generally fail to work unless functions are well-structured.

Let us turn to another improvement to solutions for the palindrome detect-
ing problem. The previous two solutions, namely pldBird and pldPettorossi,
construct intermediate lists in the accumulative arguments (denoted by h). The
intermediate lists originate from the function reverse, and they are another
source of inefficiency. In other words, the intermediate list produced by reverse

is consumed by eqlist as follows.

pld1 = eqlist ⋅ (id � reverse)

A question that naturally arises is: “Can we derive an efficient palindrome detect-
ing program without an intermediate list?”. One obvious idea is to fuse eqlist

with (id � reverse), however, applying the fusion rule is not easy, because
there are unsuitable connections between eqlist and (id � reverse). Fusion
requires that well-produced outputs should be connected to well-consumed in-
puts so that the intermediate data structure can be eliminated. However, eqlist
consumes two lists simultaneously while (id � reverse) produces two lists dif-
ferently: id produces a list in its results while reverse produces a list in its
accumulative arguments.

In this paper, we introduce a novel program transformation called IO swap-
ping. IO swapping exchanges call-time computations (occurring in the argu-
ments) and return-time computations (occurring in the results) of a function,
while guaranteeing that the original and resulting function compute the same
value. IO swapping enables us to rearrange inputs and outputs so that exist-
ing calculation rules can be applied. For example, we can derive the following
program, rev_n, from reverse defined above using IO swapping.
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rev_n x = ([],r) = rev’ x r

rev’ [] = (x,[])

rev’ (_:y) = (a:z,r) = rev’ y

(z,a:r)

In contrast to reverse, function rev_n constructs the reversed list at return-
time. The production structure of rev_n is now the same as id, and fusion with
eqlist successfully derives the program

pld1 x = snd (aux x)

aux [] = (x,True)
aux (b:y) = (a:z,r’) = aux y (z,a==b&&r’)

This function pld1 is slightly more efficient than pldBird and pldPettorossi.
Although all three functions pld1, pldBird and pldPettorossi require two
traversals, the derived function pld1 does not require an intermediate list.

The remainder of this paper is organized as follows. We introduce IO swapping
in Section 3. We then give two concrete applications of IO swapping in the
two sections that follow. The first, in Section 4, is new systematic derivations
of efficient programs for detecting palindromes. The second, in Section 5, is a
derivation of the transformation of higher-order removal that can be applied to
defunctionalize function arguments. Finally, we discuss related work in Section 6
and conclude the paper in Section 7.

2 Preliminaries

2.1 Notations

Throughout the paper, we have mostly used the notation in functional program-
ming language Haskell [8]. Some syntactic notations we have used in this paper
are as follows. The backslash \ is used instead of λ for λ-abstraction, and the
identity function is written as (\x −> x). The symbol ⋅ denotes function compo-
sition, i.e., (f⋅g) x = f(g x). The underscore _ stands for the “don’t care” value.
We have used the special symbols × and � to express tupled functions for no-
tational convenience: (f × g) (x,y) = (f x, g y) and (f � g) x = (f x, g x).
Many basic Haskell functions have been used in this paper; their informal def-
initions are given in Fig. 1. We have assumed that evaluation is based on lazy
evaluation, data structures are finite, and all patterns are irrefutable except for
those of recursion parameters.

2.2 Fusion and Tupling

Functional programming languages provide a compositional way of program-
ming; larger programs are developed through the composition of smaller and
simpler functions. Fusion and tupling play an important role in improving the
efficiency of compositional programs. Fusion combines the composition of two
functions into one and eliminates the intermediate data structure between them.
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id x = x
fst (a, ) = a
snd ( ,b) = b
take m [x0,x1,. . .,xm,. . .,xn] = [x0,x1,. . .,xm−1]
drop m [x0,x1,. . .,xm,. . .,xn] = [xm,xm+1,. . .,xn]
length [x0,x1,. . .,xn] = n+1
reverse [x0,x1,. . .,xn] = [xn,xn−1,. . .,x0]
foldr f e [x0,x1,. . .,xn] = f x0 (f x1 (· · · (f xn e)· · · ))
foldl f e [x0,x1,. . .,xn] = f (· · · (f (f e x0) x1)· · · ) xn
div n m = 'n/m(

Fig. 1. Informal definitions of basic functions

Tupling eliminates multiple traversals of the same data if two functions share
the same recursion scheme. We will later make use of the following fusion rule [2]
and tupling rule [7].

Theorem 1 (Fold Promotion).

f ⋅ foldr (⊕) e = foldr (⊗) e’

provided that ⊗ and e’ are such that f (a ⊕ y) = a ⊗ (f y) and f e = e’

hold for any a and y. �.
Theorem 2 (Simple Tupling).

(f1 � f2) = foldr (\a (r1,r2)−>(k1 a r1, k2 a r2)) (z1,z2)

where f1 = foldr k1 z1 and f2 = foldr k2 z2. �.
Both Theorems 1 and 2 can be generalized to be polytypic [3, 9, 7].

3 IO Swapping

3.1 IO Swapping for

IO swapping is the new transformation that is used to change the view of recur-
sive functions through the swapping of input (arguments) and output (results).
The following theorem shows the IO swapping rule for a typical function, foldl.
Before going into the general framework, let us illustrate the basic idea behind
IO swapping using this theorem.

Theorem 3 (IO Swapping for ). The functions foldl and foldl n
defined below are equivalent.

foldl f e [] = e

foldl f e (a:x) = foldl f (f e a) x

foldl_n f e x = ([],r) = foldl’ x r

{- foldl’ y = (drop (length y) x, foldl f e (take (length y) x)) -}
foldl’ [] = (x,e)

foldl’ (_:y) = (a:z,r) = foldl’ y

(z,f r a)
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Fig. 2. Models of the computation processes of foldl and foldl n

Proof. This is the direct consequence of Theorem 4, which we are going to in-
troduce in Section 3.2. Applying Theorem 4 to foldl and removing unnecessary
variables yields foldl n. �.
Notice how the result is computed using function parameter f of foldl and
foldl_n. While f is applied to the accumulation parameter in function foldl,
it does the computation of the result in foldl’. This is because IO swapping is
a rule to swap the call-time computation (occurring in the arguments) and the
return-time computation (occurring in the results) of the original function.

Fig. 2 illustrates the recursion stacks with the value flows for foldl and
foldl n (foldl’). If we ignore the argument of foldl’, we can easily see that
foldl and foldl n compute exactly the same value, except that the compu-
tation is done at different times, call time or return time; moreover, inverting
the figure for foldl makes it look almost the same figure as that for foldl n.
IO swapping swaps call-time and return-time computation without changing the
whole process of computation by ‘turning the recursion stack upside down’, be-
cause call-time and return-time computation correspond to top-to-bottom and
bottom-to-top computation in the figure, respectively.

Note also that to do swapping we need to estimate the recursion depth from
which we should start the computation, because foldl’ should finish its whole
computation exactly at the top of the recursion. We can use the input list to
estimate the recursion depth and indeed foldl’ does this, because there is no
difference in the recursion depth between foldl’ and foldl.

3.2 IO Swapping for List Catamorphisms

The idea behind Theorem 3 can be generalized so that it can be applied to
higher-order list catamorphisms [3], known to be a generalized form of foldr
and foldl. The following theorem describes the IO swapping rule for higher-
order list catamorphisms with circularity [4].
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Theorem 4 (IO Swapping for List Catamorphisms). For any suitably-
typed g0, g1, g2, and g3, the following two functions, f1 and f2, are equivalent.

{- g0::r−>h, g1::h−>r, g2::a−>r−>h−>h, g3::a−>r−>h−>r -}
f1 :: [a] −> r

f1 x = r = f1’ x (g0 r) r

{- f1’ :: [a] −> h −> r -}
f1’ [] h = g1 h

f1’ (a:z) h = r = f1’ z (g2 a r h)

g3 a r h

f2 :: [a] −> r

f2 x = ([],h,r’) = f2’ x (g1 h) r’

{- f2’ :: [a] −> r −> ([a],h,r) -}
f2’ [] r = (x, g0 r, r)

f2’ (_:y) r = (a:z,h,r’) = f2’ y (g3 a r h)

(z, g2 a r h, r’)

Proof Sketch
Here we will provide a proof sketch. The full proof can be found in [10].

To prove Theorem 4, we need to assume that all computations terminate with
a unique solution. We call the outside (top) of the recursion of the auxiliary
function (f1’ or f2’) the 0-th recursive call and the first call of the auxiliary
functions the 1-st recursive call.

Now we can inductively prove that, for all k such that 0 ≤ k ≤ n, the first
argument, the second argument, and the return value of the k-th recursive call
of f1’ will be the first element of the return value, the second element of the
return value, and the second argument of the (n − k)-th recursive call of f2’,
respectively, without any conflict between recursions. Consequently the values
of f1 and f1’ determine one solution for f2 and f2’, and, from the assumption,
it is the only solution for f2 and f2’. Then the result for the whole computation
of f1 is the same as the second argument of f2’ at the bottom of the recursion.
The second argument of f2’ at the bottom of the recursion is propagated to the
top of the recursion without any updating and eventually becomes the result for
the whole recursion of f2. Therefore the results for f1 and f2 are the same. �.

As the same as Theorem 3, Theorem 4 swaps the call-time computation and
the return-time computation of the auxiliary function. In the definition for f1,
g3 does the return-time computation, but in the definition for f2 it does the
call-time computation. In contrast, g2 manages the call-time computation in
the function f1, but under f2 it does the return-time computation. The aux-
iliary function of f2, namely f2’, only uses its first argument for estimating
the recursion depth, then does the same computation of f1’ in the IO-swapped
manner. It finally returns the result for whole computation from the bottom
of the recursion by the third element of the result of f2’. Fig. 3 outlines the
computation process for f1 and f2. We can easily see that inverting the figure
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Fig. 3. Models of the computation processes of f1 and f2 in Theorem 4

to compute f1 yields almost the same figure as f2, which reflects the fact that
swapping the input and output of f1 yields f2. We can generalize Theorem 4
further, so that it can deal with almost every linear recursive function [10].

Note that we have assumed that data structures are finite. We succeed in
estimating the recursion depth because of the finiteness of the input list. In
other words, f2 never returns if the input list is infinite, because estimating the
recursion depth needs an infinite recursion. Also note that this does not matter
for Theorem 3, because foldl never returns anyway for an infinite input.

Higher-order list catamorphisms are known as foldr functions with higher-
order results, and functions f1 and f2 are certainly instances of foldr with
higher-order results as follows.

f1 x = r = foldr k1 g1 x (g0 r) r

k1 a p = \h −> r = p (g2 a r h) g3 a r h

f2 x = ([],h,r’) = foldr k2 z2 x (g1 h) r’

z2 = \r −> (x, g0 r, r)

k2 _ p = \r −> (a:z,h,r’) = p (g3 a r h)

(z, g2 a r h, r’)

So Theorem 4 indicates that applying IO swapping to higher-order list catamor-
phisms results in higher-order list catamorphisms with a projection function.
Moreover, applying IO swapping twice produces the original function after con-
stant propagation is removed. It is well known that catamorphisms are suitable
for manipulation, and many transformation rules for them have been devel-
oped [3, 1, 7]. Theorem 4 therefore allows us to combine IO swapping with other
program manipulation techniques.

The list reversing functions provide an example. From Theorem 4, the follow-
ing function, reverse2, is equivalent to reverse defined in Section 1.
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reverse2 x = ([],h,r’) = rev2 x h r’

rev2 [] r = (x, [], r)

rev2 (_:y) r = (a:z,h,r’) = rev2’ y r

(z, a:h, r’)

Function reverse2 produces a resulting list in the result of rev2, in contrast
to reverse, which produces a resulting list in the accumulative argument of its
auxiliary function rev.

It is worth noting that variable h at the top of the recursion of reverse2

describes a circularity [4], i.e., computational dependency from a result to an ar-
gument. This circularity is the IO-swapped appearance of computational depen-
dency from an argument to a result; the auxiliary function of reverse, namely
rev, passes its accumulative argument to its result at the bottom of the recursion,
and this corresponds to the circularity that passes a result to an argument at the
top of the recursion. In general, IO swapping introduces circularities whenever
the original function uses its arguments to compute its results. In other words,
f1, f1’, f2, and f2’ are defined using circularities to capture accumulations. In
the case of foldl, we do not need circularities as can be seen in Theorem 3, be-
cause the dependency from arguments to results is unnecessary in foldl. In fact,
we can remove the circularity in reverse2 by removing the second argument and
the third element of the result of rev2, because they just propagate constants.
Removing the circularity results in the function rev_n that we discussed in the
introduction.

4 Detecting Palindromes

To find out how useful IO swapping is in program development, let us demon-
strate the derivation of two efficient palindrome detecting programs that have no
intermediate lists. The role of IO swapping is to rearrange the structure of func-
tions in order to enable convenient manipulation. We will first derive a simple
palindrome detecting program, pld1, to show how IO swapping works, and after
that we will derive a more involved but efficient one, pld2, that only recurses
through half the length of the input list.

4.1 Detecting Palindromes Without Intermediate Data

Let us start from the following specification for a palindrome detecting function.

pld1 = eqlist ⋅ (id � reverse)

The definition for pld1 has an intermediate list produced by (id � reverse),
but Theorem 1 is not sufficient to eliminate it. As explained in the introduction,
the production/consumption structure of the intermediate list does not form a
suitable connection for the fusion. More concretely, eqlist consumes two lists
simultaneously while (id � reverse) produces two lists differently: id produces
a list in its results while reverse produces a list in its accumulative arguments.
Let us show how IO swapping can solve this problem.
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First of all, we apply IO swapping to reverse. Function reverse is an instance
of foldl as follows:

reverse x = foldl (\r a−>a:r) [] x

Theorem 3 yields the following program.

rev_n x = ([],r) = rev’ x r

rev’ [] = (x,[])

rev’ (_:y) = (a:z,r’) = rev’ y

(z,a:r’)

Note how rev_n produces the resulting list at return-time, in the same man-
ner as id. Successful fusion of eqlist with (id � rev_n) is consequently ex-
pected because of suitable connection of the production/consumption structure;
(id � rev_n) produces its resulting lists simultaneously, and eqlist consumes
its input lists simultaneously. Let us confirm it through the following calculation.

We write id and rev_n in terms of foldr as follows, because the foldr form
is appropriate for the later calculation.

id x = foldr (:) [] x

rev_n x = snd (foldr (\_ (a:z,r)−>(z,a:r)) (x,[]) x)

Tupling (Theorem 2) of id and rev_n yields the following program.

(id � rev_n) x = snd (foldr (\b (a:z,(r1,r2))−>(z,(b:r1,a:r2)))

(x,([],[])) x)

We now calculate an efficient palindrome detecting function as follows.

pld1 x

= eqlist ((id � rev_n) x)

= {- foldr form of (id � rev_n) -}
eqlist (snd (foldr (\b (a:z,(r1,r2))−>(z,(b:r1,a:r2)))

(x,([],[])) x))

= {- Swapping snd with eqlist -}
snd ((id×eqlist)(foldr (\b (a:z,(r1,r2))−>(z,(b:r1,a:r2)))

(x,([],[])) x))

= {- Fusion (Theorem 1): -}
{- (id×eqlist)(x,([],[])) = (x,True) -}
{- (id×eqlist)((\b (a:z,(r1,r2))−>(z,(b:r1,a:r2))) b r) -}
{- = (z,b==a && eqlist (r1,r2)) -}
{- = (\b (a:z,r’)−>(z,b==a&&r’)) b ((id×eqlist) r) -}

snd (foldr (\b (a:z,r’)−>(z,b==a&&r’))(x,True) x)

The resulting function is the one following after foldr is unfolded.

pld1 x = snd (aux x)

aux [] = (x,True)
aux (b:y) = (a:z,r’) = aux y (z,a==b&&r’)
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This function, pld1, has no intermediate list. IO swapping creates matching con-
nections between the production/consumption structures, and enables successful
fusion.

4.2 Detecting Palindromes Without Intermediate Data and Using
Half the Recursion Depth

To check whether a list is a palindrome or not, we do not need to traverse the
whole list; half of it is sufficient. This insight yields a more efficient specification
as follows.

pld2 = eqlist ⋅ (takehalf � revdrophf)

takehalf x = take (div (length x) 2) x

revdrophf x = reverse (drophalf x)

drophalf x = drop (div (length x) 2) x

For simplicity, we have assumed that the length of the input list is even.
First, let us derive efficient definitions for takehalf and drophalf using fu-

sion. We omit the details.

takehalf x = foldr’ (\_ r (b:y)−>b:r y) (\_−>[]) x x

drophalf x = foldr’ (\_ r (_:y)−>r y) id x x

Function foldr’ is defined below, having the similar fusion and tupling rules to
foldr [3, 9, 7].

foldr’ f e [] = e

foldr’ f e (a:b:x) = f (a,b) (foldr’ f e x)

Note that takehalf produces its resulting list in its return-time computation.
This indicates that the combination of takehalf and reverse is not suitable
to be fused with eqlist. Here, IO swapping has an effect. We adopted the IO-
swapped variant rev_n instead of reverse, because its production scheme is the
same as that for takehalf.

pld2 = eqlist ⋅ (takehalf � revdrophf2)

revdrophf2 x = rev_n (drophalf x)

We will next calculate an efficient definition for revdrophf2. Here tupling is
appropriate, because drophalf does not produce a new list and fusion is not
suitable in such a situation. Note that rev_n and drophalf have the same re-
cursion scheme; rev_n and drophalf have the same recursion depth, and rev_n

does not use its recursion parameter except for estimating the depth of the
recursion. Tupling now yields the following program.

revdrophf2 x

= ([],r1,dphf)

= foldr’ (\_ r (_:y)−> (a:z,r1,r2) = r y

(z,a:r1,r2))

(\y−>(dphf,[],y)) x x

r1
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This definition has an uncomfortable dependency denoted by the variable dphf;
dphf is computed by the recursion of foldr’ and is used at the bottom of
the recursion. We can eliminate this uncomfortable dependency because the
third element of the result (denoted by r2) remains unchanged throughout the
recursion. We can thus obtain the following program.

revdrophf2 x

= ([],r1) = foldr’ (\_ r (_:y)−> (a:z,r1) = r y

(z,a:r1))

(\y−>(y,[])) x x

r1

Finally, we fuse eqlist with (takehalf � revdrophf2). It is almost the same
as that discussed in the previous section. Note that takehalf and revdrophf2

have the same recursion scheme and the same production scheme, and tupling
takehalf with revdrophalf2 and fusing it with eqlist is not difficult. We omit
the details.

Tupling yields the following definition for (takehalf � revdrophf2).

(takehalf � revdrophf2)

= {- Tupling (Theorem 2) -}
([],r) = foldr’ (\_ r (b:y)−> (a:z,(r2,r1)) = r y

(z,(b:r2,a:r1)))

(\y−>(y,([],[]))) x x r

Fusion gives the following definition for pld2.

pld2 x

= eqlist ((takehalf � revdrophf) x)

= ([],r) = foldr’ (\_ r (b:y)−> (a:z,(r2,r1)) = r y

(z,(b:r2,a:r1)))

(\y−>(y,([],[]))) x x

eqlist r

= {- Fusion (Theorem 1) -}
([],r) = foldr’ (\_ r (b:y)−> (a:z,r’) = r y

(z,b==a&&r’))

(\y−>(y,True)) x x

r

The resulting function is as follows, after foldr’ is unfolded.

pld2 x = ([],r) = aux x x r

aux [] y = (y,True)
aux (_:_:x) (b:y) = (a:z,r’) = aux x y

(z, b==a&&r’)

This program has no intermediate list and its recursion depth is half the length
of the input list.
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5 Reinforce the Power of Transformations by IO
Swapping

In Section 4, we presented an application of IO swapping as a program trans-
formation. This section demonstrates an application of IO swapping as a meta-
transformation; IO swapping can take a program transformation and return one
that is an IO-swapped transformation of the old one. We will present a derivation
of a higher-order removal transformation that can be applied to defunctionalize
function arguments.

5.1 IO Swapping as a Metatransformation

Consider the higher-order removal problem [11]. It is well known that η-expansion
effectively defunctionalizes higher-order results. For example, think about the fol-
lowing function, sumTC, whose auxiliary function sum’ returns a function value.

sumTC x = r = sum’ x r 0

sum’ [] = id

sum’ (a:x) = (sum’ x) ⋅ (a+)

η-expansion yields the usual first-order definition for sumTC as follows.

sumTC x = sum’ x 0

sum’ [] h = h

sum’ (a:x) h = sum’ x (a+h)

Despite such effective defunctionalization of higher-order results, η-expansion
cannot remove higher-order accumulative arguments. That is, it cannot work for
the following sumCPS function, whose auxiliary function constructs a higher-order
accumulative argument.

sumCPS x = sum’ x id

sum’ [] k = k 0

sum’ (a:x) k = sum’ x (\v−>k(a+v))
We have to find another rule to remove higher-order accumulations. It is inef-
ficient to start from scratch. In Section 5.2, we will derive a new method from
η-expansion with IO swapping. Here, let us explain the general idea.

The problem is the mismatch between the purpose and the rule; we want to
manipulate arguments, but η-expansion only defunctionalizes results. IO swap-
ping enables us to rearrange the arguments and results to suit manipulation, as
seen in Section 4. Applying IO swapping to sumCPS above yields the following
function.

sumCPS’ x = ([], k) = sum_n’ x k 0

sum_n’ [] = (x, id)

sum_n’ (_:y) = (a:z,k) = sum_n’ y

(z,\v−>k(a+v))
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Fig. 4. Framework provided by IO swapping

The auxiliary function sum_n’ of sumCPS’ constructs a higher-order result, and
seems suitable for the application of η-expansion. The metatransformation use of
IO swapping is derived by generalizing this process, and the idea is summarized
in Fig. 4. Assume that there are programs f , g and a program transformation
T such that T [[f ]] = g. IO swapping gives functions equivalent to f and g,
namely f ′ and g′. We can now define a program transformation T ′ by the relation
between f ′ and g′, and T ′ works as an IO-swapped transformation of T . Note
that T ′ is specified by the sequence of program transformations, that is, applying
IO swapping after applying T , after applying IO swapping. Consequently, IO
swapping provides the relationship between the manipulation of arguments and
that of results for recursive functions.

5.2 Higher-Order Removal for Accumulative Arguments

Let us turn to removing the higher-order accumulation of sumCPS in the previous
subsection using IO swapping and η-expansion. First, we apply IO swapping to
sumCPS. Because sumCPS is an instance of foldl,

sumCPS x = foldl (\k a v−>k(a+v)) id x 0

we use Theorem 3 and obtain the following program.

sumCPS’ x = ([], k) = sum_n’ x k 0

sum_n’ [] = (x, id)

sum_n’ (_:y) = (a:z,k) = sum_n’ y

(z,\v−>k(a+v))
In sumCPS’, higher-order values only appear in the results, and applying η-
expansion is sufficient for higher-order removal. Recall that η-expansion is the
rule to pass an extra argument to the higher-order result. We define a function
sum n’’ that passes an extra argument to the second element of the result of
sum n’ as follows.

sum_n’’ y v = (x’,k) = sum_n’ y (x’,k v)
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Replacing sum n’ in the definition of sumCPS’ with sum n’’ yields the following
program.

sumCPS’ x = ([], k) = sum_n’’ x 0 k

sum_n’’ [] v = (x, v)

sum_n’’ (_:y) v = (a:z,k) = sum_n’’ y (a+v)

(z,k)

Higher-order removal is achieved.
We may go further. Since the effect of IO swapping is no longer needed, we

eliminate it. Applying Theorem 4 backwards yields the following program.

sumCPS x = sum’’ x

sum’’ [] = 0

sum’’ (a:x’) = v = sum’’ x’

a+v

This is the usual definition of the function summing up all elements of a list.
Our strategy, namely applying IO swapping after η-expansion after IO swapping,
works successfully.

Let us summarize the transformation above as a formal rule. The point of
derivation of an IO-swapped transformation is the step where we apply the
original transformation (in this case η-expansion) to the result of IO swapping.
Recall that the result for Theorem 4 is the following function.

f2 x = ([],h,r’) = f2’ x (g1 h) r’

f2’ [] r = (x, g0 r, r)

f2’ (_:y) r = (a:z,h,r’) = f2’ y (g3 a r h)

(z, g2 a r h, r’)

If we can define the rule for η-expansion for this function, we can then obtain
a higher-order removal rule for accumulative arguments. Although it is not so
obvious, we can achieve this by clarifying the intersection for the range of IO
swapping and the domain of η-expansion. We then obtain the following lemma.

Lemma 1. For suitably typed functions g0, g1, g2, g3, and g4, the following
two functions, f2a and f2b, are equivalent.

{- g0::r−>v−>h, g1::h−>r, g2::a−>r−>v−>h−>h -}
{- g3::a−>r−>r, g4::a−>r−>v−>v -}
f2a :: [a] −> v −> r

f2a x v0 = ([],h,r’) = fa’ x (g1 (h v0)) r’

{- fa’ :: [a] −> r −> ([a], v−>h, r) -}
fa’ [] r = (x, \v−>g0 r v, r)

fa’ (_:y) r = (a:z,h,r’) = fa’ y (g3 a r)

(z, \v−>g2 a r v (h (g4 a r v)), r’)

f2a :: [a] −> v −> r
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f2b x v0 = ([],h,r’) = fb’ x (g1 h) v0 r’

{- fb’ :: [a] −> r −> v −> ([a], h, r) -}
fb’ [] r v = (x, g0 r v, r)

fb’ (_:y) r v = (a:z,h,r’) = fb’ y (g3 a r) (g4 a r v)

(z, g2 a r v h, r’)

Proof. This is proved by η-expansion, similar to the case of sumCPS’ above.
Starting from f2a, we define fb’ as follows.

fb’ y r v = (z,h,r’) = fa’ y r (z,h v,r’)

Then we replace fa’ with fb’. We then obtain f2b. �.
We are ready to derive the higher-order removal rule for function arguments.
Applying IO swapping to both f2a and f2b, we obtain the following theorem.

Theorem 5 (Higher-order Removal for Function Arguments). For suit-
ably typed functions g0, g1, g2, g3, and g4, the following two functions, f1a and
f1b, are equivalent.

{- g0::r−>v−>h, g1::h−>r, g2::a−>r−>v−>h−>h -}
{- g3::a−>r−>r, g4::a−>r−>v−>v -}
f1a :: [a] −> v −> r

f1a x v0 = r = fa x (\v−>g0 r v) r

{- fa :: [a] −> (v−>h) −> r -}
fa [] h = g1 (h v0)

fa (a:z) h = r = fa z (\v−>g2 a r v (h (g4 a r v)))

g3 a r

f1b :: [a] −> v −> r

f1b x v0 = (r,v) = fb x (g0 v) r

{- fb :: [a] −> h −> (r,v) -}
fb [] h = (g1 h, v0)

fb (a:z) h = (r,v) = fb z (g2 a r v h)

(g3 a r, g4 a r v)

Proof. From Lemma 1, currying the arguments of fb’ to create a triple, and
applying IO swapping backwards to both f2a and f2b, we obtain f1a and f1b
respectively. �.
We can use our strategy for other program transformations such as fusion, as
discussed in [10].

6 Related Work

We demonstrated the derivation of two palindrome detecting functions, pld1 and
pld2, in Section 4. These palindrome detecting functions were given by Danvy
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and Goldberg [12] as an application of the There And Back Again (TABA) pat-
tern. What we demonstrated in Section 4 is, therefore, a derivation of TABA
programs based on IO swapping. IO swapping derives TABA programs, on the
one hand, because IO swapping turns an iteration over arguments into an it-
eration over results [13, 14]. IO swapping, on the other hand, is itself an ap-
plication of TABA pattern; the TABA pattern is necessary for expressing the
IO swapping rule. It is worth mentioning that another method based on de-
functionalization [15] was proposed [16] to derive TABA programs. Although
this defunctionalization-based method certainly derives pld1, it is not obvious
whether it can cope with pld2.

While it is well known in the functional community that it is difficult to manip-
ulate accumulative programs, we demonstrated in Section 5 a derivation of a ma-
nipulation method that could deal with accumulative programs. We found that a
combination of the derived method (Theorem 5) and η-expansion works in a simi-
lar fashion to the higher-order removal method proposed by Nishimura [17] on the
basis of a composition method [18] of attribute grammars [19]. Attribute gram-
mars give a good abstraction of accumulative programs, and many attribute-
grammar-based program transformation methods for accumulative functions
have been proposed [20, 21, 22, 23]. The reason attribute grammars make ma-
nipulations of accumulative functions easy is the symmetric treatments over ar-
guments and results, and this is also what IO swapping aims at.

IO swapping is related to circular programs [4]. There have not been many
studies on the application and transformation of circular programs in functional
area, since circularities are not intuitive and disturb program manipulation. IO
swapping offers the view that circularities, i.e., computational dependencies from
results to arguments, are IO-swapped variants of accumulations, which expresses
computational dependencies from arguments to results.

IO swapping is related to logic programming or relation-based programs to
some extent. From the viewpoint of logic programming, what IO swapping does
is to change the order in which a proof tree is constructed. If the original program
constructs the proof tree from its root to its leaves, the IO swapped program
constructs it from its leaves to its root, but the resulting tree is the same.

Although IO swapping seems related to the inversion of evaluation order [24],
our work bears little relationship to it. IO swapping does not change the order
of evaluations, but changes the dependency of computation: IO-swapped func-
tions usually compute arguments after results, while ordinary functions compute
results after arguments.

7 Conclusion

In this paper, we introduced a novel program transformation, namely IO swap-
ping. IO swapping enables us to rearrange arguments and results to be suitable
for manipulation. We demonstrated its effectiveness through two examples, the
derivations of efficient palindrome detecting functions, and a higher-order re-
moval transformation to defunctionalize function arguments.
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We are currently attempting to extend IO swapping so that it can deal with
non-linear recursions. Although many calculational rules have been extended to
non-linear recursions using a framework of constructive algorithmics [3], we have
not yet succeeded in describing the IO swapping rule in terms of constructive
algorithmics.

We also consider that IO swapping is related to the synthesis of data struc-
tures. IO swapping for list catamorphisms produces a new function, scanning
a list from tail to head. In general, IO swapping produces a new function that
scans a queue-fashion data structure from an ordinary list-iterating function.
It is much more difficult to manipulate queues than lists in a purely functional
setting. We hope that IO swapping will enable data structures to be synthesised,
e.g., the synthesis of list-like data structure such as queues, doubly linked lists,
and circular lists.
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to the TABA work and explaining its relation to defunctionalization and CPS
transformation, and to Shin-Cheng Mu and Keisuke Nakano for their inspiring
discussions. We are also very grateful to Jeremy Gibbons for editing this paper
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Abstract. Refinement algebras are abstract algebras for reasoning
about programs in a total-correctness framework. We extend a reduct
of von Wright’s demonic refinement algebra with two operators for mod-
elling enabledness and termination of programs. We show how the oper-
ators can be used for expressing relations between programs and apply
the algebra to reasoning about action systems.

1 Introduction

Refinement algebras are abstract algebras for reasoning about program refine-
ment [1, 19, 5]. The motivating models are different classes of predicate trans-
formers over a fixed state space, but these should not be seen as exclusive.
Applications include reasoning about distributed systems, data refinement, pro-
gram inversion, and compiler design [21, 22, 23].

In this paper we introduce a reduct of von Wright’s demonic refinement
algebra [22]. It differs from previous abstract-algebraic approaches to total-
correctness reasoning [22, 23, 8, 9] in that it has only one iteration operator:
strong iteration. In a program intuition, strong iteration of a statement either
terminates or goes on infinitely. Along the lines of von Wright in [22, 23], we
extend the algebra with guards and assertions. Guards should be thought of as
programs that check if some predicate holds, skip if that is the case, and other-
wise bring about a miracle. Assertions are similar, but instead of performing a
miracle when the predicate does not hold, they abort. That is to say, an asser-
tion that is executed in a state where the predicate does not hold establishes no
postcondition. In Floyd’s terminology, our guards are called assumptions [12].

As the main contribution of this paper, we extend the refinement algebra with
two new operators. The first one maps elements in the carrier set to the subset
of guards. The intuition is that the operator applied to a program returns a
guard that skips in those states in which the program is enabled. This operator
is axiomatised in the same way as the domain operator in [10]. The second
operator maps a program to an assertion that characterises the set of states in
which termination is guaranteed. Different relations between programs, such as
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exclusion and a program inversion condition, can be expressed using the new
operators. Moreover, with the aid of the enabledness operator, we encode action
systems [2, 3, 4] into the refinement algebra and use it for proving refinement
relations between them.

Conjunctive predicate transformers over a fixed state space serve as a moti-
vating model for the axiomatisation.

Five papers stand out in the lineage of this paper. Kozen’s axiomatisation
of Kleene algebra and his introduction of tests into the algebra has been a very
significant inspiration for us [15, 16]. The first abstract algebra that was genuinely
an algebra for total-correctness was von Wright’s demonic refinement algebra
[22], which rests upon previous work on algebraic program reasoning by Back
and von Wright [6]. Desharnais, Möller and Struth extended Kleene algebra with
a domain operator [10] and successfully applied it to reasoning about different
structures, such as greedy algorithms [18]. In a slightly different guise, the domain
operator appears again in the present paper.

The paper is organised as follows. We begin by presenting a refinement algebra
and extend it with guards and assertions. Then we introduce the new operators,
investigate their basic algebraic properties and apply them. We end with some
concluding remarks and an outlook on future work. Appendix A provides a
predicate-transformer model for the algebra.

The purpose of this paper is to introduce the enabledness and the termination
operators, settle their basic properties and lay a first ground for more elaborate
investigation and application.

Our intended readers are those interested in abstract algebraic reasoning in
computer science and those familiar with the research on program refinement.
Persons working with action systems might also find the paper worth reading.

2 Refinement Algebra

By a demonic refinement algebra (DRA) we shall understand a structure over
the signature

(�, ; ,ω ,:, 1)

that satisfies the identities (; is left implicit)

x � (y � z) = (x � y) � z (1)
x � y = y � x (2)
x �: = x (3)
x � x = x (4)
x(yz) = (xy)z (5)

1x = x (6)
x1 = x (7)
:x = : (8)
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x(y � z) = xy � xz (9)
(x � y)z = xz � yz (10)

xω = xxω � 1 (11)

and the equational implication

xz � y � z = xz � y ⇒ xωy � z = xωy.

When ( is defined as

x ( y ⇔ x � y = x (12)

the equational implication can be written as

xz � y ( z ⇒ xωy ( z (13)

and (3) as x ( :. Note that ( is a partial order with : as its top element.
The axiomatisation is similar to Kozen’s Kleene algebra [15]. The difference is

that there is no right annihilation axiom, so x: = : does not hold in general, and
that ∗ is replaced by ω . The operator ω is different from the iteration operator in
Cohen’s ω-algebra [8, 9]. Cohen’s infinite iteration operator should be interpreted
as an infinite repetition of a program statement, whereas our ω should be seen as
a repetition of a program statement that either terminates or goes on infinitely.
In [14] it is shown that under certain conditions imposed on the omega algebra,
Cohen’s infinite iteration operator is equal to (λx • xω:). The star operator of
Kleene algebra cannot be defined in terms of the other operators of a DRA.

The reason for not having a right annihilation axiom is that we want to reason
about non-termination, we want a total-correctness framework. Right annihila-
tion would prevent that (this is elaborated further below, and a semantical clar-
ification is given in Appendix A). In ω-algebra right annihilation holds, which
renders it an algebra for partial correctness. The intention to reason about total
correctness also motivates the restriction of the signature to one iteration oper-
ator. The demonic refinement algebra by von Wright in [22, 23] has two related
iteration operators, one equal to our ω and the other equal to ∗ in Kleene al-
gebra. The intuition for a∗ is a terminating repetition of a program statement
a (assuming that a is terminating). Since total correctness is what we are ac-
tually interested in and the strong iteration operator captures an iteration that
will either terminate or go on infinitely we can here exclude ∗ to get a more
comprehensible framework.

The elements of the carrier set can be seen as program statements. The opera-
tor ; is sequential composition and � is demonic choice. Executing x�y performs
a choice between x and y over which we have no influence. The iteration aω is,
as mentioned earlier, thought of as a terminating or infinitely repeating execu-
tion of a program statement a. The order ( is refinement; x ( y means that y
establishes anything that x does and possibly more. Finally, : is interpreted as
magic, a non-implementable program statement that establishes any postcondi-
tion, and 1 is skip. A semantical justification for this intuition is given in terms
of predicate transformers in Appendix A.
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We define a syntactic constant ⊥ with the intuition that it stands for an
always nonterminating program, an abort statement [22]:

⊥ = 1ω.

It is easily seen that ⊥ is a bottom element

⊥ ( x (14)

and that it is a left annihilator

⊥x = ⊥. (15)

The axiomatic reason for excluding x: = : is now apparent: if x: = : would
hold, we would have

⊥ = ⊥: = :
and, then, since ⊥ is a bottom element we would only have a one-point model.

Many properties of the Kleene-algebra ∗ have analogies for ω. For example,
leapfrog and decomposition,

x(yx)ω = (xy)ωx (16)

(x � y)ω = xω(yxω)ω (17)

and outer inheritance of commutativity

yx ( xz ⇒ yωx ( xzω (18)

hold. However, there are differences such as the fact that inner inheritance of
commutativity

xz ( yx⇒ xzω ( yωx (19)

does not hold in general (take y = 1) [22].

3 Guards and Assertions

An element g of the carrier set that has a complement ḡ satisfying

gḡ = : and g � ḡ = 1 (20)

is called a guard. It is easily established that the guards form a Boolean algebra
over (�, ; , ¯ , 1,:), where � is meet, ; is join, ¯ is complement, 1 is the bottom
element, and: is the top element. Every guard is defined to have a corresponding
assertion

g◦ = ḡ⊥ � 1 (21)

Thus ◦ is a mapping from guards to a subset of the carrier set, the set of
assertions.
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Intuitively, guards are statements that check if a predicate holds and, if so,
skip, otherwise do magic. Assertions are similar, but abort if the predicate does
not hold. The assertions have the properties

(g1g2)◦ = g◦1g
◦
2 = g◦1 � g◦2 , g◦ḡ◦ = ⊥ = ḡ◦g◦, and g◦g◦ = g◦ (22)

These are easily verified; similarly we have

g◦ ( 1 ( g (23)

for any assertion and any guard [22].
The assertions could have been defined implicitly by means of Galois connex-

ions: one part of a Galois connexion is uniquely defined by the other and the
Galois connexions

g◦x ( y ⇔ x ( gy and xg ( y ⇔ x ( yg◦ (24)

are satisfied by g◦ = ḡ⊥ � 1 [22].
The following propositions summarise some important properties of guards

and assertions. First we repeat a proposition reported in [22].

Proposition 1. Let x be an element in the carrier set of a DRA and let g1 and
g2 be any guards in the same set. Then

: ( g1xḡ2 ⇒ g1xg2 ( g1x and g1xg2 ( g1x⇔ xg2 ( g1x (25)

hold.

The following two propositions, like the one above, will be useful for the appli-
cations in Section 5.

Proposition 2. Let x be an element in the carrier set of a DRA and let g be
any guard in the same set. Then

: ( ḡx⇔ gx ( x (26)
ḡ◦x ( ⊥ ⇔ x ( g◦x (27)

hold.

Proof. Firstly,

gx ( x
⇒ {isotony}

ḡgx ( ḡx
⇔ {(20)}
:x ( ḡx

⇔ {(8)}
: ( ḡx
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and secondly

: ( ḡx
⇒ {isotony}
: � gx ( ḡx � gx

⇔ {(2, 3, 10)}
gx ( (ḡ � g)x

⇔ {(20)}
gx ( 1x

⇔ {(6)}
gx ( x

This establishes (26). Then, for one direction of (27) calculate

x ( g◦x
⇒ {isotony}

ḡ◦x ( ḡ◦g◦x
⇔ {(22)}

ḡ◦x ( ⊥x
⇔ {(15)}

ḡ◦x ( ⊥
For the other direction, first note that the left hand side is equivalent to

g⊥ � x ( ⊥
by (21), (10), and (15). Now assume that this holds. Then

x
( {(23)}

ḡx
= {(3)}

(: � ḡ)x
= {(8)}

(:⊥ � ḡ)x
= {(20)}

(ḡg⊥� ḡ)x
= {(9)}

ḡ(g⊥ � 1)x
= {(10)}

ḡ(g⊥x � x)
= {(15)}

ḡ(g⊥ � x)
( {assumption and isotony}

ḡ⊥
This proves the claim, since x ( ḡ⊥ ⇔ x ( ḡ⊥ � x⇔ x ( g◦x. �.



Refinement Algebra with Operators for Enabledness and Termination 403

Proposition 3. Let x be an element in the carrier set of a DRA and let g1 and
g2 be any guards in the same set. Then

g2xg1 ( xg1 ⇔ g2x ( xg1 (28)

xg◦1 ( g◦2xg
◦
1 ⇔ xg◦1 ( g◦2x (29)

hold.

Proof. Assume g2xg1 ( xg1. Since 1 ( g for any guard g, this implies that

xg1 = g2xg1

Then

g2x ( g2xg1 = xg1

Conversely, assume that g2x ( xg1. Then

g2xg1 ( xg1g1 = xg1

The case for assertions is proved in a similar fashion. �.

4 Enabledness and Termination

In this section we introduce two new operators, the enabledness operator and
the termination operator, and investigate their basic properties.

4.1 Enabledness

Let ε be a unary operator on a DRA which maps an element of the carrier set to
a guard and satisfies the following axioms

εxx = x (30)
g ( ε(gx) (31)

ε(xy) = ε(xεy) (32)

We intend ε to bind stronger than the other operators, so for example εxx is
(εx)x. The intuition behind ε is that it maps any program to a guard that skips
in those states in which the program is enabled, that is, in those states from
which the program will not terminate miraculously. Axiom (30), for example,
says that a program x equals a program that first checks if x is enabled and then
executes x.

The enabledness operator, ε, is axiomatised as the domain operator of Kleene
algebra with domain (KAD) [10]. This means that many properties proved for the
domain operator will also hold for ε in our algebra, but not necessarily all due to
the lack of right annihilation. In [17] Möller shows what can be recovered of KAD
when the right annihilation axiom and right distributivity, (9), are dropped, but
right isotony of ; is retained. However, the strong iteration operator is different
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from the iteration operator of KAD and we retain right distributivity, so our
framework is not fully symmetric with Möller’s.

As shown in [17], the first two axioms of ε can be replaced by the equivalence

gx ( x⇔ g ( εx (33)

and, moreover, the properties

ε(x � y) = εx � εy (34)
x ( y ⇒ εx ( εy (35)

hold. These are proved by reusing and slightly modifying proofs from [10].

4.2 Termination

Let τ be a unary operator on a DRA which maps an element in the carrier set
to an assertion, and satisfies the following axioms

x = τxx (36)
τ(g◦x) ( g◦ (37)
τ(xτy) = τ(xy) (38)

τ(x � y) = τx � τy (39)

By convention, τ has the same precedence as ε. As far as we can see, it does not
seem possible to derive the fourth axiom from the other three, yet we have no
proof of its independence.

The operator τ applied to a program denotes those states from which the
program is guaranteed to terminate, that is, states from which it will not abort.
Axiom (37) says that a program that checks if the program g◦x will terminate
is refined by the assertion g◦. This holds since the program g◦x’s termination is
determined by the assertion.

Similarly to the enabledness operator, it can be shown that the first two τ -
axioms have a characterisation as an equivalence and that τ is isotone.

Proposition 4. Let x and y be any elements in the carrier set of a DRA and
let g be any guard in the same set. Then

x ( g◦x⇔ τx ( g◦ (40)

is equivalent to the axioms (36–37). Moreover, τ is isotone, i.e.,

x ( y ⇒ τx ( τy (41)

holds.

4.3 Some Basic Properties

In this section we investigate some of the basic properties of ε, τ and ω. The
investigation reveals that some propositions that can be shown in KAD regarding
the domain operator (δ) and the Kleene star (∗), for example the induction
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rule [10], do not necessarily hold for ε and ω in a DRA. It also reveals that ε and
τ are not fully “symmetric”.

The following two propositions show that the two operators have some sym-
metry with respect to the constants.

Proposition 5. Let 1, : and ⊥ be the constants in a DRA. Then

εg = g (42)
τg◦ = g◦ (43)
ε1 = 1 (44)
τ1 = 1 (45)
ε: = : (46)
τ⊥ = ⊥ (47)
ε⊥ = 1 (48)
τ: = 1 (49)

hold.

Proof. The first two statements, (42-43), follow from (7) and (23), and axioms
(30–31) and (36–37), respectively. Parts (44-47) are direct consequences of the
first two. The seventh part, (48), is proved by (23) and

ε⊥
( {(14, 35)}

ε1
= {(44)}

1

The last part, (49), is proved similarly to the seventh. �.

Proposition 6. Let x and y be any elements in a DRA. Then

ε(τx) = 1 = τ(εx) (50)
ε(xτy) = εx (51)
τ(xεy) = τx (52)

hold.

Proof. For the first part, note that 1 ( ε(τx) follows from (23), whereas

ε(τx) ( ε1 = 1

follows from (23) and (44). In turn, τ(εx) ( 1 follows from (23), whereas

1 = τ11 = τ1 ( τ(εx)
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follows from the axioms of τ and (23). The second part follows from

ε(xτy)
= {(32)}

ε(xε(τy))
= {(50)}

ε(x1)
= {(7)}

εx

The third part is shown similarly as the second. �.

We also have asymmetries, as the following shows.

Proposition 7. Let x be an element in a DRA. Then

(εx)ω ( 1 (53)
ε(xω) = 1 (54)
(τx)ω = ⊥ (55)
τ(xω) ( 1 (56)

hold.

Proof. The first part follows from (11). The second part holds since ε(xω) (
ε1 = 1 by (11) and (30), and the converse follows from (23). For the third
part, first note that one way follows from ⊥ being a bottom element. The other
direction follows from (23) by (τx)ω ( 1ω = ⊥. The last part follows from (23).
To see that the converse does not hold, take x = 1. �.
Similarly to KAD we have unfolding rules.

Proposition 8. Let x and y be elements in a DRA. Then

ε(xωy) = ε(xε(xωy)) � εy (57)
τ(xωy) = τ(xτ(xωy)) � τy (58)

hold.

Proof. The calculation
ε(xωy)

= {(11)}
ε((xxω � 1)y)

= {(10)}
ε(xxωy � y)

= {(34)}
ε(xxωy) � εy

= {(32)}
ε(xε(xωy)) � εy

establishes the first part. The second part is proved in a similar fashion. �.
We do not, however, have an induction rule analogous to the one of KAD.
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Proposition 9. Let x be any element and g be any guard in a DRA. Then the
implication

g ( ε(xg)⇒ g ( ε(xωg)

does not hold in general. That is, there is an instantiation of x and g, such that

g ( ε(xg)

holds, but

g ( ε(xωg)

does not.

Proof. Take x = 1. Then the antecedent becomes g ( εg = g, which clearly
holds for any g. The consequent becomes g ( ε(1ωg) = ε(⊥g) = ε⊥ = 1, which
clearly does not hold for all g. �.
The reason that this does not hold stems from the fact that we cannot prove (19),
that is,

xz ( yx⇒ xzω ( yωx

in a DRA. This is easily seen when trying to prove the rule along the lines of [10]:

g ( ε(xg)
⇔ {(33)}

gxg = xg
⇔ {(28)}

gx ( xg
⇒ {(19)}

gxω ( xωg
⇔ {(28)}

gxωg = xωg
⇔ {(33)}

g ( ε(xωg)

But as can be seen from the above (by reading backwards), we do nevertheless
have the following result.

Proposition 10. Let x be any element and g be any guard in a DRA. Then

gxω ( xωg ⇔ g ( ε(xωg) (59)

holds. �.

On the other hand, we have an induction rule for τ , which aga in reveals some
asymmetry between ε and τ .

Proposition 11. Let x be any element and g be any guard in a DRA. Then

τ(xg◦) ( g◦ ⇒ τ(xωg◦) ( g◦ (60)

holds.
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Proof. The derivation

τ(xg◦) ( g◦

⇔ {(40)}
xg◦ ( g◦xg◦

⇔ {(29)}
xg◦ ( g◦x

⇒ {(18)}
xωg◦ ( g◦xω

⇔ {(29, 40)}
τ(xωg◦) ( g◦

proves the claim. �.

5 The Algebra in Action

We show how different relations between programs can be expressed employ-
ing the algebra. We also demonstrate the algebra’s applicability by using it for
proving two properties of action systems.

5.1 Expressing Relations Between Programs

The enabledness and termination operators can be used to express properties
between programs; we list here some examples. First note that εx is a guard that
skips in those states where x is disabled.

Excludes, enables, disables. A program x excludes a program y if whenever
x is enabled y is not. This can be formalised by saying that x is equal to first
executing a guard that checks that y is disabled and then executing x, alge-
braically: x = εyx. A program x enables y if y is enabled after having executed
x, algebraically: x = xεy. Similarly as above x disables y if x = xεy.

Using the algebra, we can prove that exclusion is commutative, i.e. x excludes
y if and only if y excludes x:

x = εyx
⇔ {(33)}

εy ( εx
⇔ {guards form a Boolean algebra}

εx ( εy
⇔ {(33)}

y = εxy

We can also express that termination of x requires termination or enabledness
of y, x = τyx and x = εyx, respectively.

Program inversion. A program x′ inverts a program x when execution of the
sequence xx′ under the same precondition results in the final state being the
same as the initial state [13, 7].
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If we assume that the precondition is included as part of the program to be
inverted, that is

x = g◦y

for some program y and some assertion g◦ that specifies the precondition, then
this means that

τx = τ(g◦y) ( g◦.

Program inversion can then be defined as

x′ inverts x⇔ τx ( xx′.

Intuitively, this says that the assertion that skips in those states from which x
terminates and aborts in all other states, can be replaced by the program xx′:
if x terminates and x′ inverts x then xx′ skips, otherwise xx′ aborts.

5.2 Action Systems

Action systems comprise a formalism for reasoning about parallel programs
[2, 3, 4]. An action system

do x0[] . . . []xn od

is an iteration of a demonic choice x0�· · ·�xn between a fixed number of actions,
x0, . . . , xn, that terminates when none of the actions are any longer enabled. In
the refinement algebra, an action system takes the form

(x0 � · · · � xn)ωε(x0) . . . ε(xn).

The actions are thus iterated, expressed with the strong iteration operator, until
none of them are any longer enabled, expressed with the enabledness operator.

We begin by showing that action systems have a leapfrog property:

x; do y;x od ( do x; y od;x

We will prove this property in the algebra and at the same time expose a method-
ology for performing derivations. Action-system leapfrog takes the form

x(yx)ωε(yx) ( (xy)ωε(xy)x (61)

in the algebra. We can now embark on proving (61) collecting assumptions, which
are then, in turn, proved:

x(yx)ωε(yx)
= {(16)}

(xy)ωxε(yx)
( {assume: xε(yx) ( ε(xy)x}

(xy)ωε(xy)x
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The assumption collected in the second step is shown to hold by the following
derivation.

xε(yx) ( ε(xy)x
⇐ {(25)}
: ( ε(xy)xε(yx)

⇔ {(26)}
ε(xy)xε(yx) ( xε(yx)

⇔ {(33)}
ε(xy) ( ε(xε(yx))

⇔ {(32)}
ε(xy) ( ε(xyx)

⇔ {(32)}
ε(xy) ( ε(xyεx)

⇐ {(23) and isotony}
True

The same result has been shown in the predicate transformer model [6], but our
proof is much cleaner and simpler.

An action system can be decomposed

do x [] y od = do y od; dox; do y od od

provided that x excludes y. In the refinement algebra, action-system decompo-
sition can be encoded as

(x � y)ωεx εy = yωεy(xyωεy)ωε(xyωεy) (62)

and the assumption as x = εyx. This result was also proved already in [6], but
again the reasoning in the abstract algebra presented here is more slick and lean.
We calculate

(x � y)ωεx εy
= {(17)}

yω(xyω)ωεx εy
= {assumption}

yω(εyxyω)ωεx εy
= {guards form a Boolean algebra}

yω(εyxyω)ωεy εx
= {(16)}

yωεy(xyωεy)ω εx
= {assume: εx = ε(xyωεy)}

yωεy(xyωεy)ω ε(xyωεy)

One direction (() of the assumption follows from the fact that

εx = ε(x1) ( ε(xεy) = ε(xy)

for any x and y. The other direction seems, however, harder. One way to prove
it would be to show that

εy⊥ = y⊥ (63)
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holds. Then the other direction would follow from

ε(xyωεy) ( εx
⇔ {(7)}

ε(xyωεy1) ( ε(x1)
⇔ {(48)}

ε(xyωεyε⊥) ( ε(xε⊥)
⇔ {(32)}

ε(xyωεy⊥) ( ε(x⊥)
⇐ {(35) and isotony of ;}

yωεy⊥ ( ⊥
⇐ {(13)}

y⊥ � εy⊥ ( ⊥
⇔ {provided (63) holds}

εy⊥ � εy⊥ ( ⊥
⇔ {(10)}

(εy � εy)⊥ ( ⊥
⇔ {guard property}

1⊥ ( ⊥
⇔ {(5,3)}

true

Equation (63) holds in the predicate-transformer model (see Appendix A) so at
least in this model it is a valid equation. Nevertheless, it does not seem to follow
from the axioms, which indicates that it might have to be taken as an additional
axiom for the enabledness operator. Since we have not been able to prove it, but
have no proof of its independence either, we leave its status as an open question.

6 Concluding Remarks

We have introduced a demonic refinement algebra restricted to strong iteration
and extended it with the enabledness operator and the termination operator. We
have shown that the new operators can be used for expressing relations between
programs and applied them to reasoning about action systems.

The reduced refinement algebra and its extension deserve further investiga-
tion. Since total correctness is what we are interested in, the restriction of the
signature to merely the strong iteration operator is motivated. However, some
propositions concerning ω that were proved in [22] rely on the Kleene-star oper-
ator in their proofs. To what extent these types of propositions can be proved
in the reduced algebra should be investigated. More generally, the complete-
ness of the axiomatisation with respect to the predicate transformer model and
decidability results would be important to settle. Case studies where the new
operators are applied to larger problems would also be interesting.

Acknowledgements. Thanks are due to Orieta Celiku, Peter Höfner, Bernhard
Möller and Viorel Preoteasa for elucidating discussions and careful scrutiny. The
authors are also grateful to several anonymous referees for helpful comments.
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A Predicate Transformers as a Model

We give a predicate transformer model for the demonic refinement algebra, and
look at how the guards and assertions and the enabledness and termination
operators are interpreted as predicate transformers.

A.1 Predicate Transformers and Correctness Reasoning

A predicate transformer [11] is a function S : ℘(Σ)→ ℘(Σ), where Σ is any set.
Let p, q ∈ ℘(Σ). If a predicate transformer S satisfies

p ⊆ q ⇒ S.p ⊆ S.q

it is isotone (or monotone) and if it for a nonempty I satisfies

S.(
⋂
i∈I

qi) =
⋂
i∈I

S.qi

it is conjunctive; it is universally conjunctive if S is conjunctive and S.Σ = Σ.
Conjunctivity implies isotony.

Programs can be modelled by predicate transformers according to a weakest
precondition semantics [11]: S.q denotes those sets of states from which the
execution of S is bound to terminate in q. Universally conjunctive predicate
transformers cannot properly model non-termination. Too see this, suppose that
S is an always non-terminating program, that is,

(∀q ∈ ℘(Σ) • S.q = ∅). (64)

Now, if S is universally conjunctive, then S.Σ = Σ so clearly (64) does not hold.
There are three distinguished predicate transformers

abort = (λq • ∅)
magic = (λq • Σ)

skip = (λq • q)

and a predicate transformer S1 is refined by S2, written S1 ( S2, if

(∀q ∈ ℘(Σ) • S1.q ⊆ S2.q).

This paper deals with three operations on predicate transformers [5, 19] defined
by

(S;T ).q = S.T.q (65)
(S � T ).q = S.q ∩ T.q (66)

Sω = μ.(λX • S;X � skip) (67)

where μ denotes the least fixpoint with respect to (.
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Let CtranΣ be the set of conjunctive predicate transformers over a set Σ.
Then it is quite easily verified that (CtranΣ ,�, ; ,ω ,magic, skip) is a DRA. It is
also clear that abort models ⊥, since it can be shown that skipω = abort [5].

We can now give a semantical justification for not having a right annihilation
axiom, x: = :. If we would have right annihilation, then for any predicate
transformer S and any q ∈ ℘(Σ)

S.Σ = S.(magic.q) = magic.q = Σ,

so our predicate-transformer model would be universally conjunctive. As noted
above, universally conjunctive predicate transformers cannot model non-termi-
nation, that is, they do not facilitate our goal: total-correctness reasoning.

A.2 Guards and Assertions

Consider the function [·] : ℘(Σ)→ (℘(Σ)→ ℘(Σ)) such that when p, q ∈ ℘(Σ)

[p].q = ¬p ∪ q

where ¬ is set complement. These predicate transformers are called guards. There
is also a dual, an assertion and it is defined by

{p}.q = p ∩ q.

Complement ¯ is defined on guards and assertions by [p] = [¬p] and {p} =
{¬p}. It follows directly from the definitions that the complement of any guard
is also a guard and, moreover, that the guards are closed under the operators
�,., and ; defined in Section 2.2. If [p] is any guard, it holds that

[p].(q1 ∩ q2) = ¬p ∪ (q1 ∩ q2) = (¬p ∪ q1) ∩ (¬p ∪ q2) = [p].q1 ∩ [p].q2

for any q1, q2 ∈ ℘(Σ). It is also easily established that (GrdΣ ,�, ; , ,̄ skip,magic)
is a Boolean algebra, where � is meet, ; is join, and ¯ is complement. For example,
if g ∈ GrdΣ , then g � ḡ = skip as the following shows: Let [p] be any guard and
q ∈ ℘(Σ). Then

([p] � [p]).q = ([p] � [¬p]).q = (¬p ∪ q) ∩ (¬(¬p) ∪ q) = q = skip.q.

The rest of the axioms for Boolean algebra are verified similarly. This means
that guards in the predicate-transformer sense constitute a model for the guards
in the abstract-algebraic sense. A similar argument shows that assertions in the
predicate-transformer sense are a model for assertions in the abstract-algebraic
sense.

A.3 Enabledness and Termination

In [5] the miracle guard is defined by

¬(
⋂

q∈℘(Σ)

S.q)
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and the abortion guard by⋃
q∈℘(Σ)

S.q.

Intuitively, the miracle guard is a predicate that holds in a state σ ∈ Σ when the
program S is guaranteed to not perform a miracle, that is S does not establish
every postcondition starting in σ. The abortion guard holds in a state σ ∈ Σ
if the program S will always terminate starting in σ, it will establish some
postcondition when starting in σ. When S is conjunctive (and thus isotone) the
least S.q is S.∅ and the greatest S.Σ, so the miracle guard can be written ¬(S.∅)
and the abortion guard S.Σ; this is the way that Nelson defines grd and hlt,
respectively, in [20].

We want the miracle guard and the termination guard to model the enabled-
ness operator and the termination operator, respectively. To do this, we lift them
to the predicate-transformer level and, if x is interpreted as the predicate trans-
former S, set εx to be [¬S.∅] and τx to be {S.Σ}. It can easily be established
that this interpretation is sound for the axioms of ε, (30–32) and of τ , (36–39).
For example, the axioms (30) and (37) are verified by

[¬S.∅];S ( S
⇔ {definitions}

(∀q ∈ ℘(Σ) • [¬S.∅].(S.q) ⊆ S.q)
⇔ {definitions}

(∀q ∈ ℘(Σ) • S.∅ ∪ S.q ⊆ S.q)
⇔ {isotony of S}

(∀q ∈ ℘(Σ) • True)
⇔ {logic}

True

and

(∀p ∈ ℘(Σ) • {({p};S).Σ} ( {p})
⇔ {definitions}

(∀p, q ∈ ℘(Σ) • {{p}.(S.Σ)}.q ⊆ {p}.q)
⇔ {definitions}

(∀p, q ∈ ℘(Σ) • p ∩ S.Σ ∩ q ⊆ p ∩ q)
⇔ {set theory}

(∀p, q ∈ ℘(Σ) • True)
⇔ {logic}

True

respectively. The validity of the other axioms can be verified similarly. The cal-
culation

[¬S.∅]; abort.q = S.∅ ∪ ∅ = S.∅ = S; abort.q

where q ∈ ℘(Σ), settles that equation (63) holds in this model.
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Abstract. We prove tractability of ground relational Knuth-Bendix
completion procedures. We apply this result to formally develop three
dynamic rule-based declarative and tractable decision procedures for ter-
mination analysis: for detection of simple and homeomorphic embeddings
of ground terms and for termination of ground term rewrite systems. Our
algorithms are of general interest for the automated analysis of dynamic
reachability, termination and ordering constraints. Our approach is par-
ticularly suited for declarative rule-based programming environments.

1 Introduction

Reachability and termination analysis are fundamental for understanding sys-
tems and structures based on relations. Applications arise, for instance, in model
checking, program correctness, constraint satisfaction problems, word and reach-
ability problems in (ordered) algebras and process algebras. In automated de-
duction and term rewriting, for instance, the following constraint satisfaction
problem is interesting: Is there an instantiation of variables satisfying a set of
inequality constraints for some lexicographic or recursive path ordering? For
all these purposes it is desirable to integrate specific decision procedures into
theorem provers and program analysis tools.

In a companion paper [1], we have proposed a cooperating Knuth-Bendix
completion procedure for non-symmetric transitive relations (such as quasiorder-
ings) and equivalences. We have also applied this procedure for formally con-
structing dynamic graph algorithms for cycle detection and strongly connecting
components.

In the present paper, we construct decision procedures related to reachability
and termination that are particularly suitable for rule-based declarative pro-
gramming environments and constraint solving languages. Again, the develop-
ment uses relational Knuth-Bendix completion [2, 1] as a uniform meta-procedure
that supports the integration of declarative and procedural knowledge. For par-
ticular algorithms, we augment this procedure with focused rules derived from
mathematical specifications. This has several benefits. First, the decision pro-
cedures are highly non-deterministic. They can easily be refined to efficient al-
gorithms via execution strategies. Second, correctness proofs and complexity
analysis are simple and modular relative to the meta-procedure. Third, most
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data-structures and implementation details can be hidden in the meta-procedure.
Fourth, our algorithms are intrinsically dynamic. Knuth-Bendix completion pro-
vides an abstract declarative data structure that maintains reachability informa-
tion about some set of ground rewrite rules in terms of a graph (cf. [1]). Updates,
that is insertion and deletion of inequalities, can be performed locally without
any need of recompiling the whole set. Dynamic algorithms are considered as
difficult; they are very rare outside the imperative programming paradigm.

Our contributions. First, we show tractability of termination of a ground
relational Knuth-Bendix completion procedure from [3, 2] (Theorem 3). This
immediately implies tractability of the reachability problem for (possibly non-
terminating) ground term rewrite systems [4] and of the uniform word problem
for term algebras [5] (Corollary 1). In contrast to the equational case [6], this
result is not straightforward; we show non-termination of two naive procedures
(Theorem 1, Proposition 1). A side effect of this analysis is a relational com-
pletion algorithm with implicit memoisation. Here, because of our applications,
we consider only Knuth-Bendix completion for quasiorderings. But it is easy to
adapt it to completion for non-symmetric transitive relations and the cooperat-
ing procedure for relations and equivalences from [1].

Second, we use this tractability result for formally constructing two novel
dynamic rule-based tractable algorithms for detecting embeddings and homeo-
morphic embeddings induced by ground term rewrite systems from mathematical
specifications (Theorem 4, Theorem 5). The main idea is to reduce these prob-
lems to cycle detection, which can be handled within the same framework by the
completion-based algorithms developed in [1]. Applications of the algorithms are
discussed in Section 8.

Third, the tractability result also yields a completion-based reconstruction of
a previous tractable decision procedure for termination of ground term rewrite
systems (Theorem 7).

Related work. The use of equational completion for developing decision pro-
cedures has been advocated already by Nelson [7]; its relevance to declarative
(congruence closure) algorithms has first been demonstrated by Kapur [8]. Re-
lational completion as a general purpose procedure for reachability analysis in
term algebras has been proposed in [3]. In [3, 9] the procedure is used for con-
structing solutions to word and reachability problems in lattice theory. There,
ordered resolution has been proposed as a meta-procedure for constructing fo-
cused calculi and completion-based decision procedures. In [1] the approach of
the present paper has been first introduced for constructing dynamic cycle de-
tection and strongly connected component algorithms. The development method
from [3] differs is several aspects from the present one. There, an irredundant
irreducible basis of a given theory specification is constructed. Then inference
rules and information about decidability are derived using the interaction of
the basis with arbitrary non-theory clauses. This approach, however, does not
yield enough information for the decision problems we consider here. We do not
ask whether some set of (negated) ground equations is satisfiable modulo some
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equational theory, but whether the transitive relation or quasiordering presented
by some set of ground inequalities has a certain inductively defined property. We
therefore do not perform a basis construction, but extend completion with spe-
cific rules instead. Our third result provides a completion-based, hence more
uniform, alternative to Plaisted’s polynomial enumeration procedure for sub-
term relations [4] (his Theorem 8). This procedure is the key to tractability of
termination of ground term rewrite systems. See Section 7 for further discussion.

2 Preliminaries

This paper focuses on ground rewriting and completion, that is, no variables
occur in terms and substitution is meaningless. While the definitions of this
section can easily be extended to the non-ground case, the restriction is crucial
for the further development of the paper.

Let TΣ be a set of ground terms with signature Σ. Σn denotes the set of n-ary
function symbols in Σ. Elements of Σ0 are constants. Let C be a denumerably
infinite set of constants disjoint from Σ. We write TΣ(C) instead of TΣ∪C. As
usual, terms are identified with Σ-labelled trees with nodes or positions in the
monoid N

∗ and t|p denotes the subterm of s at position p. We also write s[t]p
if t = s|p. Moreover, φ[s/t] denotes that all occurrences of ground term s in
expression φ are replaced by ground term t. For a constant c ∈ Σ ∪ C, an n-
ary function f ∈ Σ and terms t1, . . . , tn ∈ TΣ we recursively define the height
h : TΣ → N of a term as

h(c) = 1, h(f(t1, . . . , tn)) = 1 + max{h(t1), . . . , h(tn)}.
We define the size |.| : TΣ → N of a ground term as

|c| = 1, |f(t1, . . . , tn)| = 1 +
n∑

i=1

|ti|.

Let → be a binary relation on a set A. We write ← for its converse, →+ for
its transitive closure and →∗ for its reflexive transitive closure. Juxtaposition of
relations denotes the relational product. → is a quasiordering if → =→∗.

Let → be a binary relation on a ground term algebra A with associated set
of ground terms TΣ . The operation fA denoted by the n-ary operation symbol
f is isotone (in each argument), if it satisfies the formula

s1 → t1, . . . , sn → tn =⇒ f(s1, . . . , sn)→ f(t1, . . . , tn),

for all s1, . . . , sn, t1, . . . , tn ∈ TΣ. The relation → is compatible if s → t implies
r[s]p → r[t]p for all r, s, t ∈ TΣ . A ground rewrite rule is a pair of ground terms.
The ground rewrite relation →R induced by a set R of ground rewrite rules is
the smallest compatible relation containing R. We often write →R both for the
set of rewrite rules and the associated rewrite relation.

We also consider reduction orderings ≺ on ground terms, that is, Noetherian
compatible quasiorderings. In addition, we always assume that ≺ is assumed to
be linear and to contain contain the proper subterm relation.
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3 Relational Rewriting and Completion

We presuppose the basic concepts and notation of equational and relational
rewriting and completion [10, 11, 3, 2, 1] and briefly recall only the most impor-
tant notions and ideas. We also restrict our attention to quasiorderings. The
adaptation to transitive relations is straightforward.

A (relational) ground term rewrite system for quasiorderings (GTRS) is a
triple (R,S,≺) of finite sets R and S of rewrite rules and a reduction ordering
≺, also called syntactic ordering, such that l # r for all l →R r and l ≺ r for
all l →S r. I = R ∪ S induces the quasiordering →∗

I . In relational rewriting,
therefore, a set I of inequalities is oriented with respect to a syntactic ordering
≺. This yields two disjoint sets R and S of rewrite rules. In contrast, a set of
equations is oriented in equational rewriting. This yields one single set of rewrite
rules.

Assume that →R ∪ ←S is Noetherian and that for every two-step rewrite
sequence of the form →S→R (a peak) there exists a rewrite sequence in →∗

R→∗
S

(a valley) between the same terms. Then reachability in →∗
I can be decided by

searching for a common vertex in the →R dag from the initial term and the ←S

dag from the final term of a query inequality. Since only finitely many rewrite
rules apply to each term, the dags are finitely branching. A critical pair is a pair
of terms connected by a peak that possibly cannot be replaced by a valley.

As usual, a Knuth-Bendix completion procedure (KB-procedure) transforms
an initial set of expressions in →I into a GTRS that supports this decision
procedure. It orients inequalities in I with respect to the syntactic ordering
≺, computes critical pairs and simplifies expressions. We call the final GTRS a
normal system. By definition, in a normal system, all critical peaks can be joined
by a rewrite proof, →R and ←S are Noetherian and no rule from →R or →S

can be deleted.
A KB-procedure implements a state transition system together with a syn-

tactic reduction ordering ≺ on terms, on oriented and non-oriented inequalities
and on sequences of inequalities and rewrite steps. States are tuples of sets of
inequalities or rewrite rules. The transition relation is specified by transition
rules of two kinds. First, deductive inference rules add consequences to a state
corresponding to critical pair computations. Second, simplification rules combine
deduction steps with deletions implementing an (approximate) notion of redun-
dancy: An (oriented) inequality is redundant, if it can be replaced by a sequence
of smaller steps (oriented or unoriented) with respect to ≺.

For a quasiordering presented by a set I0 of ground inequalities, states of the
KB-procedure are of the form q = (I, R, S), where I is a set of ground inequalities
and R and S are sets of (decreasing and increasing) rewrite rules. In the initial
state q0, R0 and S0 are empty and I0—the initial specification—is irreflexive.
The set of transition rules between such states is denoted by C. A run of the
procedure is a (finite or infinite) sequence q0, q1, q2, . . . of states such that q0
is an initial state and between all consecutive states there is a transition that
applies some rule in C. A run fails, if I is non-empty in the limit. It succeeds, if
it does not fail and the limit sets R∞ and S∞ yield a normal system. A run is
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fair, if every enabled transition is eventually executed. C is correct, if every fair
run that does not fail succeeds and →∗

R∞∪S∞ = →∗
I0

. The rules of C are defined
as follows (c.f. [2]).

(I, R, S)
(I ∪ {s→I t}, R, S)

, (Deduce)

if (s, t) is a critical pair. This rule can also be represented as a pair of inference
rules.

l2 →S r2 l1[r2]p →R r1

l1[l2]p →I r1
,

l2 →S r2[l1]p l1 →R r1

l2 →I r2[r1]p
.

(I ∪ {s→I t}, R, S)
(I, R ∪ {s→R t}, S)

,
(I ∪ {t→I s}, R, S)
(I, R, S ∪ {t→S s}) , (Orient)

if s # t.
(I ∪ {s→I t}, R, S)

(I, R, S)
, (Simplify)

if s→I t is redundant. Analogous rules simplify expressions in →R and →S .

(I ∪ {s→I s}, R, S)
(I, R, S)

, (Delete)

Simplification rules and in particular Delete should be applied eagerly.

Theorem 1 ([2]). C is sound and correct, but need not terminate.

Proof. Soundness of the procedure means essentially that the relational theory
is preserved by the rules of C. The notion of correctness has been defined above.

We only show non-termination. See [3, 2] for a proof of soundness and correct-
ness. Let b # f # a be a precedence for constants a, b and function f of arity one
that is extended to a reduction ordering containing the subterm ordering. The
relations f(b) →I b and f(a) →I b are oriented as f(b) →R b and f(a) →S b.
Now inequalities fn(a)→S b can be computed by Deduce and Orient for ar-
bitrary n. All rules remain irredundant during the entire process, thus can never
be simplified. �

4 Transforming the Initial Specification

We now define a two-step transformation τ12 = τ2 ◦ τ1, τ12 : Q → Q′ on states
of C that allows us to enforce termination of C. Q is defined with respect to the
signature Σ, and Q′ with respect to a new signature Σ′ defined below.

The first transformation τ1 : TΣ → TΣ′ maps every f ∈ Σ to a constant
f ∈ Σ′

0. Σ′ contains one single additional binary function symbol @. Terms are
transformed as follows.

τ1(a) = a,

τ1(f(t1, . . . , tn)) = @(f,@(τ1(t1) . . .@(τ1(tn−1), τ1(tn)) . . . )),
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for every constant a ∈ Σ, function f ∈ Σ of arity n and terms t1, . . . , tn ∈ TΣ .
We often write fc1 . . . cn instead of @(f,@(c1 . . .@(cn−1, cn) . . . )). τ1 is similar
to currying in functional languages. τ1 is extended homomorphically to pairs of
terms, states and sets of states. Its main role is to preserve the initial signature.

Example 1. Using τ1, the term f(g(a, b), c, d) is transformed to the term

@(f,@(@(g,@(a, b)),@(c, d))).

The second transformation τ2 flattens expressions by renaming each subterm s
of a term t by a fresh constant cs and by adding a new pair of definitional rewrite
rules s →R cs and cs →S s to the initial specification. This renaming will be
performed in a purely declarative way by extending states of the Knuth-Bendix
completion procedure C to tuples (K, I,R, S), where K is a set of constants and
by adding the rule

(K, I[f(c)], R, S)
(K ∪ {c0}, I[f(c)/c0], R ∪ {f(c)→R c0}, S ∪ {c0 →S f(c)}) (Rename)

to C. Here, c = c1, . . . , cn is a sequence of constants from K and c0 ∈ Σ ∪K.
Rename forces subterm-renaming in a bottom up way. Note that in presence of
new names, the ordering ≺ looses its importance. It could even be constructed
on the fly during completion.

Example 2. By τ2, the inequality f(g(a)) ≤ b is transformed to f(c) ≤ b and
c = g(a), where c is a fresh constant. c = g(a) is then implicitly split into c ≤ g(a)
and c ≥ g(a) and then oriented with respect to ≺ as c→S g(a) and g(a) →R c.
Terms of greater height are renamed from the leaves to the root.

Proposition 1. C extended by Rename is sound and correct, but need not
terminate.

Proof. Adding Rename to C leads to a definitional extension of the theory.
Soundness is based on the fact that

φ(s) ⇔ ∀x.(x = s⇒ φ(x)) ⇔ ∃x.x = s ∧ φ(x))

holds in first-order logic. Correctness goes along the lines of the proof of
Theorem 1. For non-termination, we adapt the counterexample from the proof
of Theorem 1. Consider the rewrite rules f(b) →I b and f(a) →I b and assume
names c0, c1, · · · ∈ C such that ci # cj for all i < j and ci ≺ f for all ci ∈ C
and f ∈ Σ. Iterating this, Rename yields a →R c0, b →R c1, f(a) →R c2,
f(b) →R c3 and corresponding S-rules in which the arrows are flipped. Re-
name, Orient and Deduce then yield for all i ≥ 0 the rules f(c2i) →R c2i+2,
f(c2i+1) →R c2i+3, the corresponding (converse) S-rules, the rules c2i+2 →S c2i,
c2i+3 →S c2i+1 and in the respective next step by Deduce f(c2i+2) →R c2i+2,
f(c2i+3) →R c2i+3. This leads to non-termination. �.
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After application of τ2 (and orientation), the specification consists of two types
of rewrite rules. First, P -rules (or presentation rules) are of the form

f(c1, . . . , cn)→I∪R c0, c0 →I∪S f(c1, . . . , cn), c1 →I∪R∪S c2

for constants c1, . . . , cn ∈ C and function f of arity n that represent the initial
inequalities. Second, D-rules (or definitional rules) are of the form

f(c1, . . . , cn)→R c0, c0 →S f(c1, . . . , cn),

for an n-ary function f ∈ Σ and constants c0, . . . , cn ∈ C that represent the
subterm structure. P - and D-rules are not necessarily disjoint. We also classify
these rules in a different way. We call F -rule a P - or D-rule involving a function
symbol and C-rule a P -rule involving only constant symbols. τ2 is also extended
homomorphically to pairs of terms, states and sets of states.

We also extend |.| homomorphically from terms to pairs of terms and states,
setting |(s, t)| = |s|+ |t| and |(I, R, S)| =∑(s,t)∈I∪R∪S |(s, t)|.

The following proposition states that both transformations are conservative.

Proposition 2. Let Γ be a set of TΣ-inequalities and let Q denote the qua-
siordering axioms (reflexivity and transitivity) for the relation ≤ together with
isotonicity of all functions in Σ. Then for all s, t ∈ TΣ,

Γ ∪Q |= s ≤ t⇔ τ1(Γ ∪Q) |= τ1(s ≤ t)
⇔ τ2(Γ ∪Q) |= τ2(s ≤ t)
⇔ τ12(Γ ∪Q) |= τ12(s ≤ t).

Proof. For the first equivalence, we first consider a proof in TΣ and reason by
induction on the size of proofs.

(i) If s ≤ t ∈ Γ , then τ1(s) ≤ τ1(t) ∈ τ1(Γ ).
(ii) If the last step in the proof has been reflexivity, then s = t and therefore

τ1(s) = τ1(t).
(iii) If the last step in the proof has been transitivity, then there exists a TΣ-

term r and proofs of s ≤ r and r ≤ t. The induction hypothesis yields proofs
of τ1(s) ≤ τ1(r) and τ1(r) ≤ τ1(t). Then τ1(s) ≤ τ1(t) follows immediately from
transitivity.

(iv) If the last step in the proof has been isotonicity, then let s = f(s1, . . . , sn)
and t = f(t1, . . . , tn) and the induction hypothesis yields proofs of s1 ≤ t1 to
sn ≤ tn together with proofs of τ1(s1) ≤ τ1(t1) to τ1(sn) ≤ τ1(tn). Isotonicity of
@ then yields in n steps the proofs

sn−1sn ≤ tn−1tn,

sn−2sn−1sn ≤ tn−2tn−1tn

. . . . . .

fs1 . . . sn ≤ ft1 . . . tn.

The last line is τ1(s) ≤ τ1(t). The converse direction of the first equivalence is
similar.
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The second equivalence follows from soundness and correctness of C extended
by Rename (Proposition 1).

The third equivalence is immediate from the first and the second one. �.
Moreover, it is easy to see that the transformations τ1 and τ2, and therefore
also τ12, increase the size of a state q by order O(|q|). We may also assume that
they have polynomial running time. Finally, we henceforth assume that all terms
are built from one binary non-constant function symbol @, which has maximal
weight in the precedence on the signature, and that they are flat, that is, have
height at most 2.

5 Termination Analysis

With the two-step transformation τ12 and a precedence ≺ that gives @ greater
weight than all constants, the termination analysis of C is rather simple.

Theorem 2. Let q = τ12(q′) for some state q′ of C. Then C terminates on q
after O(|q|) steps.

Proof. By assumption, all pairs in q that can contribute to a Deduce-step are
F - or C-rules of depth at most 2 and size at most 4 of the form

c1c2 →R c3, c1 →S c2c3, (F )
c1 →R c2, c1 →S c2, (C)

where c1, c2 and c3 are constants in C. If k is the number of constants in q, then
q contains at most 2k2(k − 1) F -rules and k(k − 1) C-rules, since both kinds
of rules must contain at least two different constants. This and the sizes of F -
and C-rules imply that |q| ≤ 8k3 − 6k2 − 2k. Let n be the number of (P - and
D-)rules in q. We analyse the possible Deduce-steps.

– F/F -overlaps. Consider the Deduce-step

c1 →S c2c3 c2c3 →R c4

c1 →I c4
.

The conclusion is a C-rule. This is the only way two F -rules can overlap.
– F/C-overlaps. Consider the Deduce-steps

c1 →S c2 c2c3 →R c4

c1c3 →I c4
,

c1 →S c2c3 c3 →R c4

c1 →I c2c4
.

The conclusions are F -rules. There are two similar cases, where the C-rule
matches with c3 in the left-hand and with c2 in the right-hand F rule.

– C/C-overlaps. Consider the Deduce-step

c1 →S c2 c2 →R c3

c1 →I c3
.

The conclusion is a C-rule. This is the only way two C-rules can overlap.
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The Deduce-steps produce only F - and C-rules; no new constants from C are
introduced. So their number is bounded by the total number of rules in Q as
2k3− k2− k− n. At most k rules can be deleted; at most 2k3− k2− k− n rules
can be oriented or simplified. Thus the overall number of steps in C is O(k3),
which by our above estimation for |q| is equal to O(|q|). �

A subtlety is that no new constants are introduced during the completion process.
If one would continue renaming during the completion procedures and introduce
a new constant for every new term that is generated by a Deduce step (as in
the proof of Proposition 1), then the procedure need not terminate.

Theorem 3. C terminates in polynomial time.

Proof. Let q0 be the initial specification with R0 = S0 = ∅. According to the
results of Section 4, the transformation τ12 : q0 �→ q takes polynomial running
time and increases the size of q0 by a linear factor. According to Theorem 2, C
takes polynomially many steps in the size of q, hence also in the size of q0.

We may assume that each Deduce, Orient and Delete step may be ex-
ecuted in constant (or at least polynomial) time. See [8] for a discussion of a
related procedure. It remains to consider the cost of Simplify.

Unlike the equational KB-procedures, the Simplify-steps of C are search-
based. We represent q as a directed graph with vertices consisting of constants
or pairs of constants from C. There is an edge between vertices for every rule
l →I∪R∪S r in q. If q is built from k constants, then there may be at most k+k2

vertices. According to the proof of Theorem 2, there are at most k(k − 1) edges
corresponding to C-rules and 2k2(k−1) edges corresponding to F -rules. We can
then check for simplification by depth-first or breadth-first search along these
edges. This is linear in the number of vertices plus the number of edges. Thus
every Simplify-step takes polynomial time and the whole procedure therefore
has running time polynomial in the size of the initial specification. �

Correctness of C does not depend on performing Simplify-steps. Thus the run-
ning time can be considerably improved by using no or an approximate imple-
mentation of Simplify. The proof of Theorem 3 has the following consequences.

Corollary 1.

(i) The running time of the decision procedure of ground relational rewriting
(c.f. Section 3) is polynomial in the size of the normal GTRS.

(ii) ([4]) Reachability in GTRSs is tractable.
(iii) ([5]) The uniform word problem for term algebras is tractable.

For Corollary 1(ii), note that this result applies in particular to non-terminating
rewrite systems. For Corollary 1(iii), note that every word problem can be
rephrased as a reachability problem.

Example 3. Consider again the GTRS from the proof of Theorem 1. We use the
notation introduced in Section 4. The transformation τ12 yields the rewrite rules
fb→R b and fa→R b. There are no critical pairs.
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6 Detecting Embeddings

We now apply C as a meta-procedure to the development of two rule-based
declarative and (incrementally) dynamic algorithms for detecting simple and
homeomorphic embeddings in a state transition or constraint system represented
by a set of ground inequalities. The inference rules are highly non-deterministic
and therefore characterise classes of algorithms rather than particular instances.
Concrete algorithms can be obtained by refinement, imposing execution strate-
gies. The correctness proofs of algorithms are simple and concise. They are rel-
ative to total correctness of C.

We first define a simple embedding relation � by t�f(. . . , t, . . . ) for all t ∈ TΣ .
We say that a term s is embedded into a term t if s �∗ t. Let q = (I, R, S) be a
state. A →I∪R∪S-sequence s = t0, t1, . . . contains an embedding, if ti �∗ tj holds
for some ti, tj in s and i ≤ j.

We first present two simple technical lemmata.

Lemma 1. s �∗ t iff t = t[s]p for some position p.

The proof is obvious.

Lemma 2. s is a subterm of t iff τ1(s) is a subterm of τ1(t).

Proof. We ignore positions of terms in the proof to simplify notation.
(i) t = t[s] implies τ1(t) = τ1[τ1(s)] by induction on the size of t. If t ∈ Σ0,

then the result follows trivially from the definition of τ1. If t = f(t1, . . . , tn),
then either s = t or ti = ti[s] for some 1 ≤ i ≤ n. The first case is trivial. In
the second case, the induction hypothesis yields τ1(ti) = τ1(ti)[τ1(s)]. Then i−1
applications of @ yield τ1(t) = τ1(t)[τ1(s)], according to the definition of τ1.

(ii) τ1(t) = τ1(t)[τ1(s)] implies t = t[s] by induction on the size of terms.
The base case is similar to (i). Let τ1(t) = fτ1(t1) . . . τ1(tn). Then either s = t
(which is trivial) or τ1(ti) = τ1(ti)[τ1(s)] for some 1 ≤ i ≤ n. Then the induction
hypothesis yields ti = ti[s]. This implies t = t[s] by definition of τ1. �.
We assume that all rules are labelled with P , D or both, depending on whether
they are P - or D-rules.

Lemma 3. Let q = (I, R, S) be a state. The following statements are equivalent.

(i) s→∗
I∪R∪S t is an embedding.

(ii) τ1(s) →∗
I′∪R′∪S′ τ1(t) is an embedding, where (I ′, R′, S′) = τ1(q).

(iii) τ12(s) →∗
I′′∪R′′∪S′′ τ12(t) holds in the state τ12(q) = (I ′′, R′′, S′′), where

τ12(s) names a subterm of τ1(t) and all rules in the sequence are P -rules.

Proof. ((i) equivalent to (ii)). First note that s →∗
I∪R∪S t iff τ1(s) →∗

I′∪R′∪S′

τ1(t) by Proposition 2. Moreover, s �∗ t iff s is a subterm of t by Lemma 1, iff
τ1(s) is a subterm of τ1(t) by Lemma 2, iff τ1(t) = τ1(t)[τ1(s)] again by Lemma 1.

((ii) equivalent to (iii)). τ1(s) →∗
I′∪R′∪S′ τ1(t) iff τ12(s) →I′′∪R′′∪S′′ τ12(t)

by Proposition 2, obviously by a sequence of P -rules. Now let τ1(s) �∗ τ1(t).
By Lemma 1, this is equivalent to the fact that τ1(s) is a subterm of τ1(t). By
definition of τ2, equivalently, τ12(s) names a subterm of τ1(t). �
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Lemma 3 is the basis for detecting embeddings.

Theorem 4. Let q0 = (I0, R0, S0) be an initial specification and q = τ12(q0) =
(I, R, S). Let Ce be C together with the rule

(I, R ∪ {c1c2 →D
R c3}, S)

(I ∪ {c3 →P
I c1, c3 →P

I c2}, R ∪ {c1c2 →D
R c3}, S)

. (Back)

(i) An I0-sequence in q0 contains an embedding iff a fair run of Ce constructs
a cycle of P -rules from q.

(ii) Ce detects all embeddings in q0 in polynomial time.

Proof. (ad i) By Lemma 3, q0 contains an embedding iff q contains a rewrite
sequence of P -rules that connects the name cs of the initial term s with the
(name ct of the) final term t of the embedding. By Lemma 1, s must be a subterm
of t. By Lemma 2 and Lemma 3, subterms and embeddings are preserved by τ1.
Thus for each name of a term in q0, Back-steps eventually produce a rewrite
sequence to the names of all its subterms. This yields a cycle iff there is an
embedding.

(ad ii) By Theorem 3, C terminates in polynomial time. The number of rules
generated by Back is O(|q|) and therefore O(|q0|) by properties of the transfor-
mation τ12; the closure under Back can also be done in polynomial time. Cycle
detection can also be done in polynomial time with C and therefore Ce. This
has been shown for graph structures in [1]. The basic idea, which applies also
here, is that by the ordering constraints, every cycle must contain at least an
R- and an S-step, hence a critical peak. Each cycle with k-edges can therefore
eventually be collapsed into a cycle with two edges, which is simple to detect (in
polynomial time). Therefore detection of embeddings has polynomial running
time in the size of q0. �.

The intuition behind the algorithm is rather simple. If a rewrite sequence con-
tains an embedding, then, on the one hand, there is a sequence of P -rewriting
steps from the embedded term to the embedding term. On the other hand, there
is a sequence of D-rewriting steps from the embedding term to the embedded
term along the D-rules that form the edges of the tree corresponding to the
embedding term. This obviously yields a cycle.

The cycle detection algorithm can be refined to the running time of depth-first
search using a strategy and an on-the-fly construction of the precedence. See [1]
for details.

We now consider a more complex kind of embedding. A binary relation � on
TΣ is a (ground) homeomorphic embedding, if the following holds (cf. [12]). For
all s = f(s1, . . . , sm) and t = g(t1, . . . , tn) in TΣ, s � t iff either

(h1) f � g and si � tji for all i = 1, . . . ,m and some j1, . . . , jm with 1 ≤ j1 <
j2 < · · · < jm ≤ n, or

(h2) s � ti for some i = 1, . . . , n, or
(h3) s � t if s, t ∈ Σ0.
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Intuitively, an unlabelled tree s can be homeomorphically embedded in an un-
labelled tree t, if the root of s can be mapped to some node i of t and all other
nodes of s are injectively mapped to successors of i such that s can be rebuilt in
the subtree of t by considering paths of t as edges of s. For labelled trees, this is
generalised with respect to � on the signature.

The following lemma says that τ1 preserves homeomorphic embeddings.

Lemma 4. Let q = (I, R, S) be a state. Then s →I∪R∪S t is a homeomor-
phic embedding iff τ1(s) →I′∪R′∪S′ τ1(t) is a homeomorphic embedding, where
(I ′, R′, S′) = τ1(q).

Proof. s→I∪R∪S t iff τ1(s) →I′∪R′∪S′ τ1(t) follows from Proposition 2.

(i) Let s� t. We argue by induction on the size of terms and assume that the
precedence ≺ of Σ is inherited by Σ′. If t ∈ Σ0, then s � t and therefore also
τ1(s) � τ1(q) by (h3), since τ1(s), τ1(q) ∈ Σ′

0 by definition of τ1.
Now let s = f(s1, . . . sm) and t = g(t1, . . . , tn).
(Case h1). Let f � g and si � tji for all 1 ≤ i ≤ m and some j1, . . . , jm such

that 1 ≤ j1 < j2 < · · · < jm ≤ n. Then by definition of τ1, τ1(f), τ1(g) ∈ Σ′
0

and τ1(f) � τ1(g), therefore also τ1(f) � τ1(g). Moreover the induction hypoth-
esis yields τ1(si) � τ1(tji). Applying (h1) m times and (h2) n −m times yields
fτ(s1) . . . τ(sm) � gτ1(t1) . . . τ1(tn), hence τ1(s) � τ1(t). Here, (h2) is used to fill
in those τ1(tj) that are not related by � to a τ1(si).

(Case h2). Let s� ti for some 1 ≤ i ≤ n. Then the induction hypothesis yields
τ1(s) � τ1(ti). Then n applications of (h2) yield τ1(s) � gτ1(t1) . . . τ1(tn), hence
τ1(s) � τ1(t).

(ii) Let τ1(s) � τ1(t). We argue again by induction on the size of terms. The
cases are similar to those in (i), only the packing and unpacking of terms is done
in the opposite direction. �.
Lemma 5. Let q = (I, R, S) be a state. Then s →I∪R∪S t is a homeomorphic
embedding iff

(i) τ12(s)→I′′∪R′′∪S′′ τ12(t) holds in the state τ12(q) = (I ′′, R′′, S′′) and
(ii) τ12(s) � τ12(t) follows from the embedding axioms

c1 � c′1, c2 � c′2, c1c2 →D
R c3, c

′
1c

′
2 →R c′3 ⇒ c3 � c′3, (h1’)

c � c′1, c
′
1c

′
2 →D

R c′3 ⇒ c � c′3, (h2’)

c � c′2, c
′
1c

′
2 →D

R c′3 ⇒ c � c′3, (h2’)
c � c′ ⇒ c � c′, if c, c′ ∈ Σ0. (h3’)

All elements of Σ preserve their names and the precedence on Σ is inherited.

Proof. s→I∪R∪S t iff τ12(s) →I′′∪R′′∪S′′ τ12(t) holds by Proposition 2. Homeo-
morphic embeddings are preserved under τ1 by Lemma 4. The remainder follows
from the correctness of the encoding of (h1), (h2) and (h3), which is straightfor-
ward. In particular, the →R-rules in the definition trigger the choice of subterms
according to (h1), (h2) and (h3). �.
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Lemma 5 is the basis for detecting homeomorphic embeddings.

Theorem 5. Let q0 = (I0, R0, S0) be an initial specification and q = τ12(q0) =
(I, R, S). Let Ch be C together with the rules1

c1 →h
I c′1 c2 →h

I c′2 c1c2 →D
R c3 c′1c′2 →D

R c′3
c3 →h

I c′3
(H1)

c′1 →h
I c c′1c′2 →D

R c′3
c′3 →h

I c

c′2 →h
I c c′1c′2 →D

R c′3
c′3 →h

I c
(H2)

c � c′

c′ →h
I c

if c, c′ ∈ Σ0. (H3)

All h-rules are considered also as P -rules. (H1), (H2) and (H3) are eagerly
applied2.

(i) An I0-sequence in q0 contains an embedding, iff a fair run of Ch constructs
a cycle of P -rules from q that contains precisely one h-rule.

(ii) Ch detects all homeomorphic embeddings in q0 in polynomial time.

Proof. (ad i) By Lemma 5, q0 contains a homeomorphic embedding, iff q contains
a rewrite sequence of P -rules that connects the name cs of the initial term s with
the (name ct of the) final term t of the embedding. The rules (H1), (H2) and
(H3) are constructed such that all homeomorphic embeddings are enumerated
according to the rules (h1’), (h2’) and (h3’) in Lemma 5. The two rule sets are
identical (which establishes correctness of (H1), (H2) and (H3)), only the arrows
→h

I are inverted with respect to �. Therefore, a cycle containing precisely one
h-rule is eventually constructed by Ch iff there is an embedding.

(ad ii) By Theorem 3, C terminates in polynomial time. The rules (H1), (H2)
and (H3) do not introduce any new constants. (H3) introduces at most |Σ0|2
edges, that is C-rules. Also (H1) and (H2) introduce only C-rules. Their number
is bounded by k(k− 1), where k is the number of constants in C that occur in q
and therefore in O(|q0|). The closure under these rules can be done in polynomial
time. The remainder of the proof is analogous to that of Theorem 4. In addition
one must use an execution strategy for Ch that ensures that only one h-rule is
used for every cycle detection. �.
The concept of homeomorphic embedding may be difficult to grasp at first sight.
The fact that our detection algorithm is nevertheless simple and has been con-
structed from the mathematical specification in a few short formal steps indicates
the power of our approach. The (H2)-rules of Ch are essentially the Back-rule
of Ce read backwards. Generally, Ce uses a top-down approach to cycle construc-
tion, whereas Ch takes a bottom-up approach. We have chosen the bottom-up
approach, since it is then easier to model axiom (h1’), but in principle also a top-
down approach should be possible. There should also be much space for refining
1 They are written as inference rules because of their length.
2 Alternatively, and more non-deterministically, similar rules for R and S should be

used.
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the algorithms, using different execution strategies on the deduction and sim-
plification rules of Ce and Ch. The algorithms can also easily be combined with
other rule-based extensions of C and integrated into the combined KB-procedure
for equalities and inequalities in [1].

Our algorithms for embeddings and homeomorphic embeddings are inher-
ently dynamic. When a new rule s →I t is inserted into a state q, it must
first be transformed by τ12. The transformation with τ1 is completely local. The
transformation τ2 is non-local. Names of subterms that appear in q might be
relevant to s and t, but conversely, the addition has no impact on q. Inser-
tion of new rules is therefore also local. The abstract declarative data struc-
ture represented by the completion algorithm need not be recompiled when the
rule is inserted. Only the new critical pairs that arise between the new rule
and the precompiled rules must be computed. Deletion of a rule is more com-
plex. It requires tracking and revision of critical pair computations of presen-
tational rules, but fortunately no revision of definitional rules. In particular,
rules stemming from critical pair computations with the deleted rule must be
deleted, unless they can be produced by other rules. This procedure is again
local.

Example 4. Consider the one step rewrite sequence s →I t for terms s =
¬(¬0 ∨ 1) and t = ¬(¬(¬1 ∧ (1 ∨ (¬0 ∨ 1)))), where Σ = {0, 1,∨,∧,¬} is the
signature of the two-element Boolean algebra. Assume a precedence ≺ for which
all elements of Σ are incomparable (for homeomorphic embeddings, ≺ needs
only be a quasiordering). It is easy to check with (h1), (h2) and (h3) that s � t
(cf. [12]). Let Σ′ = {0, 1,∨,∧,¬,@} be a new signature for which ¬, ∨ and ∧
are constants. We obtain

τ1(s) = @(¬,@(∨,@(@(¬, 0), 1))) = (¬(∨(¬0)1)),
τ1(t) = @(¬,@(¬,@(∧,@(@(¬, 1),@(∨,@(1,@(∨,@(@(¬, 0), 1))))))))

= (¬(¬(∧(¬1)(∨1(∨(¬0)1))))).

τ2 yields the following rewrite rules.

¬0 →D
R c0, (1)

c01 →D
R c1, (2)

∨c1 →D
R c2, (3)

¬c2 →D
R c3, (4)

1c2 →D
R c4, (5)

∨c4 →D
R c5, (6)

¬1 →D
R c6, (7)

c6c5 →D
R c7, (8)

∧c7 →D
R c8, (9)

¬c8 →D
R c9, (10)

¬c9 →D
R c10, (11)

c3 →P
I c10. (12)
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We then obtain

c2 � c2

c2 →h
I c2

{by (H3)}, (13)

c2 →h
I c2 1c2 →D

R c4

c4 →h
I c2

{by (H2), (13), (5)}, (14)

c4 →h
I c2 ∨ c4 →D

R c5

c5 →h
I c2

{by (H2), (14), (6)}, (15)

c5 →h
I c2 c6c5 →D

R c7

c7 →h
I c2

{by (H2), (15), (8)}, (16)

c7 →h
I c2 ∧ c7 →D

R c8

c8 →h
I c2

{by (H2), (16), (9)}, (17)

¬ � ¬
¬ →h

I ¬
{by (H2)}, (18)

c8 →h
I c2 ¬ →h

I ¬ ¬c8 →D
R c9 ¬c2 →D

R c3

c9 →h
I c3

{by (H1), (17), (18)}, (19)

c9 →h
I c3 ¬c9 →D

R c10

c10 →h
I c3

{by (H2), (19), (11)}. (20)

We have thus obtained the 2-cycle c3 →I c10 →h
I c3 from (12) and the conclusion

of (20), which can easily be detected.

7 Termination of Ground Term Rewrite Systems

Tractability of termination for GTRSs has already been shown in [4]. The method
is based mainly on two facts.

Theorem 6 ([4]). Let R be a GTRS. The set of all r →∗
R s, where r is a

subterm of a right-hand side and s is a subterm of a left-hand side of a rule in
R, can be computed in polynomial time.

Proof. We give an alternative to the proof in [4] that is based on KB-completion.
By Theorem 3, R can be completed in polynomial time. By Proposition 2, τ12
preserves reachability. So reachability between polynomially many pairs of sub-
terms (in the size of the input GTRS) must be tested. This can be done with
the decision procedure of relational rewriting in polynomial time by Corollary 1.
Consequently, the whole procedure has polynomial running time. �.
The second fact expresses that every non-terminating GTRS contains a rewrite
sequence of a particular shape: a so-called constricting sequence.

Theorem 7 ([4]). A GTRS R is non-terminating iff there is a sequence α =
r1 . . . rk of left-hand sides of rules in R such that
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(i) r1 = rk,
(ii) for all pairs (ri, ri+1) in α there is a rule ri → s in R, ri+1 is the left-hand

side of a rule in R and s|p →∗
R ri+1 for some position p.

Moreover, the existence of such a sequence can be decided in polynomial time.

Proof. For the polynomial time part, we use KB-completion and Theorem 6 to
generate all pairs that satisfy condition (ii) in polynomial time. We then run
a cycle detection algorithm to satisfy condition (i). This can also be based on
relational completion, as shown in [1]. �.

8 Conclusion and Further Work

We have shown that ground KB-completion for quasiorderings terminates in
polynomial time, using a two-step transformation on the initial specification.
This result immediately transfers to completion for non-symmetric transitive
relations from [3] and to various extensions, including combined ground KB-
completion for relations and equivalences (cf. [3, 1]). A main application of reach-
ability analysis based on KB-completion is the proof support for algebraic calculi
for programs and processes and for ordered algebras in general. The question how
far our results can be generalised to these richer structures is very interesting.
Related results for certain lattices are contained in [9].

We have also developed two novel rule-based, declarative and dynamic algo-
rithms to detect embeddings and homeomorphic embeddings in ground rewrite
sequences, using KB-completion as a meta-procedure. We envision applications
in termination analysis of term rewrite systems and programs, in constraint sat-
isfaction problems for lexicographic or recursive path orderings (cf. [4]), in the
context of automated deduction, in constraint-based analysis, partial evalua-
tion and program transformation. In the context of termination analysis, the
presence of embeddings is a necessary, but not sufficient condition for non-
termination [13], whereas the absence of homeomorphic embeddings is a neces-
sary, but not sufficient condition for termination [13]. For the analysis of ordering
constraints in automated deduction, the fact that our algorithms are incremen-
tally dynamic is of particular interest. The present algorithms are only decision
procedures for the ground case. In general, it is undecidable, whether a term
rewrite system contains a homeomorphic embedding [14], but extensions of the
algorithms can be used as semi-decision procedures. Homeomorphic embeddings
also arise in the field of partial deduction with logic programs and termina-
tion analysis of logic programs [15, 16]. In the field of (online) partial evaluation
and program transformation or optimisation, the technique of supercompila-
tion (cf. [17]) is based on dynamic detection of homeomorphic embeddings. It
seems promising to reconstruct supercompilation in the Knuth-Bendix comple-
tion framework.



432 G. Struth

References

1. Struth, G.: Knuth-Bendix completion as a data structure. In MacCaull, W.,
Düntsch, I., Winter, M., eds.: Selected Revised Ppaers from 8th Int. Conf. on
Relational Methods in Computer Science, RelMiCS 2005, 3rd Int. Wksh. on Ap-
plications of Kleene Algebra, Wksh. of COST Action 274 TARSKI. Vol. 3929 of
Lect. Notes in Comput. Sci. Springer-Verlag (2006)

2. Struth, G.: Knuth-Bendix completion for non-symmetric transitive relations. In
van den Brand, M., Verma, R., eds.: Proc. of 2nd Int. Wksh. on Rule-Based Pro-
gramming, RULE 2001. Vol. 59 of Electron. Notes in Theor. Comput. Sci. Elsevier
(2001)

3. Struth, G.: Canonical Transformations in Algebra, Universal Algebra and Logic.
PhD thesis. Inst. für Informatik, Univ. des Saarlandes (1998)

4. Plaisted, D.A.: Polynomial termination and constraint satisfaction tests. In Kirch-
ner, C., ed.: Proc. of 5th Int. Conf. on Rewriting Techniques and Applications,
RTA ’93. Volume 690 of Lect. Notes in Comput. Sci. Springer-Verlag (1993)
405–420

5. Kozen, D.: Complexity of finitely presented algebras. Techn. Report TR-76-294,
Dept. of Computer Science, Cornell Univ. (1979)

6. Snyder, W.: Efficient ground completion: an O(n log n) algorithm for generating
reduced sets of ground rewrite rules equivalent to a set of ground equations E. In
Kirchner, C., ed.: Proc. of 3rd Int. Conf. on Rewriting Techniques and Applications,
RTA ’89. Vol. 355 of Lect. Notes in Comput. Sci. Springer-Verlag (1989) 419–433

7. Nelson, G.: Techniques for program verification. Techn. Report CSL-81-10, Xerox
Palo Alto Research Center (1981)

8. Kapur, D.: Shostak’s congruence closure as completion. In Comon, H., ed.: Proc.
of 8th Int. Conf. on Rewriting Techniques and Applications, RTA ’97. Vol. 1232 of
Lect. Notes in Comput. Sci. Springer-Verlag (1997) 23–37

9. Struth, G.: An algebra of resolution. In Bachmair, L., ed.: Proc. of 11th Int. Conf.
on Rewriting Techniques and Applications, RTA 2000. Vol. 1833 of Lect. Notes in
Comput. Sci. Springer-Verlag (2000) 214–228

10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

11. Levy, J., Agust́ı, J.: Bi-rewrite systems. J. of Symb. Comput. 22 (1996) 279–314
12. Wechler, W.: Universal Algebra for Computer Scientists. Springer-Verlag (1992)
13. Dershowitz, N.: Termination of rewriting. J. of Symb. Comput. 3 (1987) 69–116
14. Plaisted, D. A.: The undecidability of self-embedding for term rewriting systems.

Inform. Proc. Lett. 20 (1985) 61–64
15. Bol, R.: Loop checking in partial deduction. J. of Logic Programming 16 (1993)

25–46
16. Leuschel, M.: On the power of homeomorphic embedding for online termination.

In Levi, G., ed.: Proc. of 5th Int. Static Analysis Symposium, SAS ’98. Vol. 1503
of Lect. Notes in Comput. Sci. Springer-Verlag (1998) 230–245

17. Glück, R., Sørensen, M.H.: A roadmap to metacomputation by supercompilation.
In Danvy, O., Glück, R., Thiemann, P., eds.: Selected Papers from Int. Seminar
on Partial Evaluation. Vol. 1110 of Lect. Notes in Comput. Sci., Springer-Verlag
(1996) 137–160



Quantum Predicative Programming

Anya Tafliovich and Eric C.R. Hehner

Dept. of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

anya@cs.toronto.edu, hehner@cs.toronto.edu

Abstract. The subject of this work is quantum predicative program-
ming — the development of programs intended for execution on a
quantum computer. We look at programming in the context of formal
methods of program development, or programming methodology. Our
work is based on probabilistic predicative programming, a recent gen-
eralisation of the well-established predicative programming. It supports
the style of program development in which each programming step is
proven correct as it is made. We inherit the advantages of the theory,
such as its generality, simple treatment of recursive programs, time and
space complexity, and communication. Our theory of quantum program-
ming provides tools to write both classical and quantum specifications,
develop quantum programs that implement these specifications, and rea-
son about their comparative time and space complexity all in the same
framework.

1 Introduction

Modern physics is dominated by concepts of quantum mechanics. Today, over
seventy years after its recognition by the scientific community, quantum me-
chanics provides the most accurate known description of nature’s behaviour.
Surprisingly, the idea of using the quantum mechanical nature of the world to
perform computational tasks is very new, less than thirty years old. Quantum
computation and quantum information is the study of information processing
and communication accomplished with quantum mechanical systems. In recent
years the field has grown immensely. Scientists from various fields of computer
science have discovered that thinking physically about computation yields new
and exciting results in computation and communication. There has been ex-
tensive research in the areas of quantum algorithms, quantum communication
and information, quantum cryptography, quantum error-correction, adiabatic
computation, measurement-based quantum computation, theoretical quantum
optics, and the very new quantum game theory. Experimental quantum infor-
mation and communication has also been a fruitful field. Experimental quantum
optics, ion traps, solid state implementations and nuclear magnetic resonance
all add to the experimental successes of quantum computation.

The subject of this work is quantum programming — the developing programs
intended for execution on a quantum computer. We assume a model of a quantum
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computer proposed by Knill [1]: a classical computer with access to a quantum
device that is capable of storing quantum bits (called qubits), performing certain
operations and measurements on these qubits, and reporting the results of the
measurements.

We look at programming in the context of formal methods of program de-
velopment, or programming methodology. This is the field of computer science
concerned with applications of mathematics and logic to software engineering
tasks. In particular, the formal methods provide tools to formally express soft-
ware specifications, prove correctness of implementations, and reason about vari-
ous properties of specifications (e.g. implementability) and implementations (e.g.
time and space complexity). Today formal methods are successfully employed in
all stages of software development, such as requirements elicitation and analysis,
software design, and software implementation.

In this work the theory of quantum programming is based on probabilistic
predicative programming, a recent generalisation of the well-established predica-
tive programming [2, 3], which we deem to be the simplest and the most elegant
programming theory known today. It supports the style of program development
in which each programming step is proven correct as it is made. We inherit the
advantages of the theory, such as its generality, simple treatment of recursive
programs, and time and space complexity. Our theory of quantum program-
ming provides tools to write both classical and quantum specifications, develop
quantum programs that implement these specifications, and reason about their
comparative time and space complexity all in the same framework.

The rest of this work is organised as follows. Section 2.1 is the introduction
to quantum computation. It assumes that the reader has some basic knowledge
of linear algebra and no knowledge of quantum computing. Section 2.2 con-
tains the introduction to probabilistic predicative programming. The reader is
assumed to have some background in logic, but no background in programming
theory is necessary. The contribution of this work is section 3 which defines
the quantum system, introduces programming with the quantum system, and
several well-known problems, their classical and quantum solutions, and their
formal comparative time complexity analyses. Section 4 states conclusions and
outlines directions for future research.

1.1 Related Work

Traditionally, quantum computation is presented in terms of quantum circuits.
Recently, there has been an attempt to depart from this convention for the same
reason that classical computation is generally not presented in terms of classical
circuits. As we develop more complex quantum algorithms, we will need ways to
express higher-level concepts with control structures in a readable fashion.

In 2000 Ömer [4] introduced the first quantum programming language QCL.
Following his work, Bettelli et. al. [5] developed a quantum programming lan-
guage with syntax based on C++. These two works did not involve any verifi-
cation techniques.
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Sanders and Zuliani in [6] introduced a quantum language qGCL, which is an
extension of pGCL [7], which in turn generalises Dijkstra’s guarded-command
language to include probabilism. Zuliani later extends this attempt at formal
program development and verification in [8], which discusses treatment of non-
determinism in quantum programs, and in [9], where the attempt is made to build
on Aharonov’s work [10] to reason about mixed states computations. Zuliani
also provides tools to approach the task of compiling quantum programs in [11].
A very similar approach was used in [12] to formally prove the bound on the
running time of Grover’s algorithm, previously established in [13].

A large amount of work in the area was performed in the past two years.
In [14], [15], and [16] process algebraic approaches were explored. Tools devel-
oped in the field of category theory were successfully employed by [17], [18], [19],
[20], [21], and others to reason about quantum computation. In [22] and [23]
a functional language with semantics in a form of a term rewrite system is in-
troduced and a notion of linearity and how it pertains to quantum systems
are examined. A functional language QML with design guided by its categor-
ical semantics is defined in [24]. Following on this work, [25] provides a sound
and complete equational theory for QML. Weakest preconditions appropriate for
quantum computation are introduced in [26]. This work is interesting, in part,
because it diverts from the standard approach of reducing a quantum computa-
tion to a probabilistic one. It also provides semantics for the language of [21].
Other interesting work by the same authors includes reasoning about knowl-
edge in quantum systems ([27]) and developing a formal model for distributed
measurement-based quantum computation ([28]). A similar work is introduced
in [29], where a language CQP for modelling communication in quantum sys-
tems is defined. The latter approaches have an advantage over process algebraic
approaches mentioned earlier in that they explicitly allow a quantum state to
be transmitted between processes. Building on the work of [30], [31] defines a
higher order quantum programming language based on a linear typed lambda
calculus, which is similar to the work of [32].

1.2 Our Contribution

Our approach to quantum programming amenable to formal analysis is very
different from almost all of those described above. Work of [6], [8], [9] is the
only one which is similar to our work. The contribution of this paper is twofold.
Firstly, by building our theory on that in [3], we inherit the advantages it of-
fers. The definitions of specification and program are simpler: a specification is
a boolean (or probabilistic) expression and a program is a specification. The
treatment of recursion is simple: there is no need for additional semantics of
loops. The treatment of termination simply follows from the introduction of a
time variable; if the final value of the time variable is ∞, then the program is
a non-terminating one. Correctness and time and space complexity are proved
in the same fashion; moreover, after proving them separately, we naturally ob-
tain the conjunction. Secondly, the way Probabilistic Predicative Programming
is extended to Quantum Predicative Programming is simple and intuitive. The
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use of Dirac-like notation makes it easy to write down specifications and develop
algorithms. The treatment of computation with mixed states does not require
any additional mechanisms. Quantum Predicative Programming fully preserves
Predicative Programming’s treatment of parallel programs and communication,
which provides for a natural extension to reason about quantum communication
protocols, such as BB84 ([33]), distributed quantum algorithms, such as dis-
tributed Shor’s algorithm ([34]), as well as their time, space, and entanglement
complexity.

2 Preliminaries

2.1 Quantum Computation

In this section we introduce the basic concepts of quantum mechanics, as they
pertain to the quantum systems that we will consider for quantum computation.
The discussion of the underlying physical processes, spin- 1

2 -particles, etc. is not
our interest. We are concerned with the model for quantum computation only. A
reader not familiar with quantum computing can consult [35] for a comprehensive
introduction to the field.

The Dirac notation, invented by Paul Dirac, is often used in quantum mechan-
ics. In this notation a vector v (a column vector by convention) is written inside
a ket : |v〉. The dual vector of |v〉 is 〈v|, written inside a bra. The inner products
are bra-kets 〈v|w〉. For n-dimensional vectors |u〉 and |v〉 and m-dimensional vec-
tor |w〉, the value of the inner product 〈u|v〉 is a scalar and the outer product
operator |v〉〈w| corresponds to an m by n matrix. The Dirac notation clearly
distinguishes vectors from operators and scalars, and makes it possible to write
operators directly as combinations of bras and kets.

In quantum mechanics, the vector spaces of interest are the Hilbert spaces of
dimension 2n for some n ∈ N. A convenient orthonormal basis is what is called
a computational basis, in which we label 2n basis vectors using binary strings of
length n as follows: if s is an n-bit string which corresponds to the number xs,
then |s〉 is a 2n-bit (column) vector with 1 in position xs and 0 everywhere else.
The tensor product |i〉 ⊗ |j〉 can be written simply as |ij〉. An arbitrary vector
in a Hilbert space can be written as a weighted sum of the computational basis
vectors.

Postulate 1 (state space). Associated to any isolated physical system is a
Hilbert space, known as the state space of the system. The system is com-
pletely described by its state vector, which is a unit vector in the system’s
state space.

Postulate 2 (evolution). The evolution of a closed quantum system is de-
scribed by a unitary transformation.

Postulate 3 (measurement). Quantum measurements are described by a col-
lection {Mm} of measurement operators, which act on the state space of the
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system being measured. The index m refers to the possible measurement
outcomes. If the state of the system immediately prior to the measurement
is described by a vector |ψ〉, then the probability of obtaining result m is
〈ψ|M †

mMm|ψ〉, in which case the state of the system immediately after the
measurement is described by the vector Mm|ψ〉√

〈ψ|M†
mMm|ψ〉

. The measurement

operators satisfy the completeness equation
∑

m ·M †
mMm = I.

An important special class of measurements is projective measurements, which
are equivalent to general measurements provided that we also have the ability
to perform unitary transformations.

A projective measurement is described by an observable M , which is a Her-
mitian operator on the state space of the system being measured. This observable
has a spectral decomposition M =

∑
m · λm × Pm, where Pm is the projector

onto the eigenspace of M with eigenvalue λm, which corresponds to the outcome
of the measurement. The probability of measuring m is 〈ψ|Pm|ψ〉, in which case
immediately after the measurement the system is found in the state Pm|ψ〉√

〈ψ|Pm|ψ〉 .

Given an orthonormal basis |vm〉, 0 ≤ m < 2n, measurement with respect to
this basis is the corresponding projective measurement given by the observable
M =

∑
m · λm × Pm, where the projectors are Pm = |vm〉〈vm|.

Measurement with respect to the computational basis is the simplest and the
most commonly used class of measurements. In terms of the basis |m〉, 0 ≤ m <
2n, the projectors are Pm = |m〉〈m| and 〈ψ|Pm|ψ〉 = |ψm|2. The state of the
system immediately after measuring m is |m〉.

For example, measuring a single qubit in the state α× |0〉+ β × |1〉 results in
the outcome 0 with probability |α|2 and outcome 1 with probability |β|2. The
state of the system immediately after the measurement is |0〉 or |1〉, respectively.

Suppose the result of the measurement is ignored and we continue the com-
putation. In this case the system is said to be in a mixed state. A mixed state is
not the actual physical state of the system. Rather it describes our knowledge
of the state the system is in. In the above example, the mixed state is expressed
by the equation |ψ〉 = |α|2 × {|0〉} + |β|2 × {|1〉}. The equation is meant to
say that |ψ〉 is |0〉 with probability |α|2 and it is |1〉 with probability |β|2. An
application of operation U to the mixed state results in another mixed state,
U(|α|2 × {|0〉}+ |β|2 × {|1〉}) = |α|2 × {U |0〉}+ |β|2 × {U |1〉}.
Postulate 4 (composite systems). The state space of a composite physical

system is the tensor product of the state spaces of the component systems.
If we have systems numbered 0 up to and excluding n, and each system i,
0 ≤ i < n, is prepared in the state |ψi〉, then the joint state of the composite
system is |ψ0〉 ⊗ |ψ1〉 ⊗ . . .⊗ |ψn−1〉.

While we can always describe a composite system given descriptions of the com-
ponent systems, the reverse is not true. Indeed, given a state vector that de-
scribes a composite system, it may not be possible to factor it to obtain the
state vectors of the component systems. A well-known example is the state
|ψ〉 = |00〉/√2 + |11〉/√2. Such a state is called an entangled state.
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2.2 Probabilistic Predicative Programming

This section introduces the programming theory of our choice, on which our work
on quantum programming is based — probabilistic predicative programming. We
briefly introduce parts of the theory necessary for understanding section 3 of this
work. For a course in predicative programming the reader is referred to [2]. An
introduction to probabilistic predicative programming can be found in [3].

Predicative programming. In predicative programing a specification is a
boolean expression. The variables in a specification represent the quantities of
interest, such as prestate (inputs), poststate (outputs), and computation time
and space. We use primed variables to describe outputs and unprimed variables
to describe inputs. For example, specification x′ = x+1 in one integer variable x
states that the final value of x is its initial value plus 1. A computation satisfies
a specification if, given a prestate, it produces a poststate, such that the pair
makes the specification true. A specification is implementable if for each input
state there is at least one output state that satisfies the specification.

We use standard logical notation for writing specifications: ∧ (conjunction),
∨ (disjunction), ⇒ (logical implication), = (equality, boolean equivalence), =
(non-equality, non-equivalence), and if then else. The larger operators == and
=⇒ are the same as = and⇒, but with lower precedence. We use standard math-
ematical notation, such as + − ∗ /mod. We use lowercase letters for variables
of interest and uppercase letters for specifications.

In addition to the above, we use the following notations: σ (prestate), σ′

(poststate), ok (σ′ = σ), and x := e (x′ = e ∧ y′ = y ∧ . . .). The notation ok
specifies that the values of all variables are unchanged. In the assignment x := e,
x is a state variable (unprimed) and e is an expression (in unprimed variables)
in the domain of x.

If R and S are specifications in variables x, y, . . . , then R′′ is obtained from R
by substituting all occurrences of primed variables x′, y′, . . . with double-primed
variables x′′, y′′, . . . , and S′′ is obtained from S by substituting all occurrences
of unprimed variables x, y, . . . with double-primed variables x′′, y′′, . . . , then the
sequential composition of R and S is defined by

R;S == ∃x′′, y′′, . . . ·R′′ ∧ S′′

Various laws can be proven about sequential composition. One of the most
important ones is the substitution law, which states that for any expression e of
the prestate, state variable x, and specification P ,

x := e;P == (for x substitute e in P )

Specification S is refined by specification P if and only if S is satisfied when-
ever P is satisfied:

∀σ, σ′ · S ⇐ P

Specifications S and P are equal if and only if they are satisfied simultane-
ously:

∀σ, σ′ · S = P
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Given a specification, we are allowed to implement an equivalent specification
or a stronger one.

Informally, a bunch is a collection of objects. It is different from a set, which
is a collection of objects in a package. Bunches are simpler than sets; they don’t
have a nesting structure. See [3] for an introduction to bunch theory. A bunch of
one element is the element itself. We use upper-case to denote arbitrary bunches
and lower-case to denote elements (an element is the same as a bunch of one
element). A,B denotes the union of bunches A and B. A : B denotes bunch
inclusion — bunch A is included in bunch B. We use notation x, ..y to mean
from (including) x to (excluding) y.

If x is a fresh (previously unused) name, D is a bunch, and b is an arbitrary
expression, then λx : D · b is a function of a variable (parameter) x with domain
D and body b. If f is a function, then Δf denotes the domain of f . If x : Δf ,
then fx (f applied to x) is the corresponding element in the range. A function of
n variables is a function of 1 variable, whose body is a function of n−1 variables,
for n > 0. A predicate is function whose body is a boolean expression. A relation
is a function whose body is a predicate. A higher-order function is a function
whose parameter is a function.

A quantifier is a unary prefix operator that applies to functions. If p is a
predicate, then ∀p is the boolean result, obtained by first applying p to all the
elements in its domain and then taking the conjunction of those results. Taking
the disjunction of the results produces ∃p. Similarly, if f is a numeric function,
then

∑
f is the numeric result, obtained by first applying f to all the elements

in its domain and then taking the sum of those results.
For example, applying the quantifier

∑
to the function λi : 0, ..2n · |ψi|2, for

some function ψ, yields:
∑

λi : 0, ..2n · |ψi|2, which for the sake of tradition we
abbreviate to

∑
i : 0, ..2n ·|ψi|2. In addition, we allow a few other simplifications.

For example, we can omit the domain of a variable if it is clear from the context.
We can also group variables from several quantifications. For example, the sum∑

i : 0, ..2n ·∑ j : 0, ..2n · 2−m−n can be abbreviated to
∑

i, j : 0, ..2n · 2−m−n.
A program is an implemented specification. For simplicity we only take the fol-

lowing to be implemented: ok, assignment, if then else, sequential composition,
booleans, numbers, bunches, and functions.

Given a specification S, we proceed as follows. If S is a program, there is no
work to be done. If it is not, we build a program P , such that P refines S, i.e.
S ⇐ P . The refinement can proceed in steps: S ⇐ . . .⇐ R⇐ Q⇐ P .

One of the best features of Hehner’s theory is its simple treatment of recursion.
In S ⇐ P it is possible for S to appear in P . No additional rules are required to
prove the refinement. For example, it is trivial to prove that

x ≥ 0 ⇒ x′ = 0 ⇐= if x = 0 then ok else (x := x− 1;x ≥ 0⇒ x′ = 0)

The specification says that if the initial value of x is non-negative, its final
value must be 0. The solution is: if the value of x is zero, do nothing, otherwise
decrement x and repeat.

How long does the computation take? To account for time we add a time
variable t. We use t to denote the time at which the computation starts, and t′
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to denote the time at which the computation ends. In case of non-termination,
t′ = ∞. This is the only characteristic by which we distinguish terminating
programs from non-terminating ones. See [36] for a discussion on treatment of
termination. We choose to use a recursive time measure, in which we charge 1
time unit for each time P is called. We replace each call to P to include the time
increment as follows:

P ⇐= if x = 0 then ok else (x := x− 1; t := t + 1;P )

It is easy to see that t is incremented the same number of times that x is
decremented, i.e. t′ = t + x, if x ≥ 0, and t′ = ∞, otherwise. Just as above, we
can prove:

x ≥ 0 ∧ t′ = t + x ∨ x < 0 ∧ t′ = ∞
⇐= if x = 0 then ok

else (x := x− 1; t := t + 1; x ≥ 0 ∧ t′ = t + x ∨ x < 0 ∧ t′ =∞)

Probabilistic predicative programming. Probabilistic predicative program-
ming was introduced in [2] and was further developed in [3]. It is a generalisation
of predicative programming that allows reasoning about probability distributions
of values of variables of interest. Although in this work we apply this reasoning
to boolean and integer variables only, the theory does not change if we want to
work with real numbers: we replace summations with integrals.

A probability is a real number between 0 and 1, inclusive. A distribution is an
expression whose value is a probability and whose sum over all values of variables
is 1. For example, if n is a positive natural variable, then 2−n is a distribution,
since for any n, 2−n is a probability, and

∑
n · 2−n = 1. In two positive natural

variables m and n, 2−n−m is also a distribution. If a distribution of several
variables can be written as a product of distributions of the individual variables,
then the variables are independent. For example, m and n in the previous example
are independent. Given a distribution of several variables, we can sum out some
of the variables to obtain a distribution of the rest of the variables. In our
example,

∑
n · 2−n−m = 2−m, which is a distribution of m.

To generalise boolean specifications to probabilistic specifications, we use 1
and 0 for boolean true and false , respectively.1 If S is an implementable deter-
ministic specification and p is a distribution of the initial state x, y, ..., then the
distribution of the final state is∑

x, y, ... · S × p

For example, if the initial joint distribution of integers x and y is

(x = 0)× (y = 1)/3 + (x = 1)× (y = 0)× 2/3

1 Readers familiar with ) and ⊥ notation can notice that we take the liberty to equate
) = 1 and ⊥ = 0.
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then after executing the program x := x + 1, the distribution is∑
x, y · (x′ = x + 1)× (y′ = y)×

((x = 0)× (y = 1)/3 + (x = 1)× (y = 0)× 2/3)

== (x′ = 1)× (y′ = 1)/3 + (x′ = 2)× (y′ = 0)× 2/3

If R and S are specifications in variables x, y, . . . , R′′ is obtained from R
by substituting all occurrences of primed variables x′, y′, . . . with double-primed
variables x′′, y′′, . . . , and S′′ is obtained from S by substituting all occurrences
of unprimed variables x, y, . . . with double-primed variables x′′, y′′, . . . , then the
sequential composition of R and S is defined by

R;S ==
∑

x′′, y′′, . . . ·R′′ × S′′

If p is a probability and R and S are distributions, then

if p then R else S == p×R + (1− p)× S

Various laws can be proven about sequential composition. One of the most
important ones, the substitution law, introduced earlier, applies to probabilistic
specifications as well.

To implement a probabilistic specification we use a random (or pseudo-random)
number generator. For a positive natural variable n, we say that rand n produces
a random natural number uniformly distributed in 0, ..n. To reason about the
values supplied by the random number generator consistently, we replace every
occurrence of rand n with a fresh variable r whose value has probability (r :
0, ..n)/n. If rand occurs in a context such as r = rand n, we replace the equation
by (r : 0, ..n)/n. If rand occurs in the context of a loop, we parametrise the
introduced variables by the execution time.

Recall the earlier example. Let us change the program slightly by introducing
probabilism:

P ⇐= if x = 0 then ok else (x := x− rand 2; t := t + 1;P )

In the new program at each iteration x is either decremented by 1 or it is un-
changed, with equal probability. Our intuition tells us that the revised program
should still work, except it should take longer. Let us prove it. We replace rand
with r : time → (0, 1) with rt having probability 1/2. We choose the domain
time according to the task at hand: reals, integers, naturals, etc. Ignoring time
we can prove:

x ≥ 0 ⇒ x′ = 0
⇐= if x = 0 then ok else (x := x− rand 2;x ≥ 0 ⇒ x′ = 0)

As for the execution time, we can prove that it takes at least x time units to
complete:

t′ ≥ t + x

⇐= if x = 0 then ok else (x := x− rand 2; t := t + 1; t′ ≥ t + x)
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How long should we expect to wait for the execution to complete? In other
words, what is the distribution of t′? Consider the following distribution of the
final states:

(0 = x′ = x = t′ − t) + (0 = x′ < x ≤ t′ − t)×
(
t′ − t− 1

x− 1

)
× 1

2t′−t
,

where
(

n

m

)
=

n!
m!× (n−m)!

We can prove that:∑
rt · 1

2
×
(

if x = 0 then ok

else
(

x := x− rt; t := t + 1;
(0 = x′ = x = t′ − t) +

(0 = x′ < x ≤ t′ − t) ×
(
t′ − t− 1

x− 1

)
× 1

2t′−t

))
== (0 = x′ = x = t′ = t) + (0 = x′ < x ≤ t′ − t)×

(
t′ − t− 1

x− 1

)
× 1

2t′−t

Now, since for positive x, t′ is distributed according to the negative binomial
distribution with parameters x and 1

2 , its mean value is

∑
t′ · (t′ − t)×

(
(0 = x = t′ − t) + (0 < x ≤ t′ − t)×

(
t′ − t− 1

x− 1

)
× 1

2t′−t

)
== 2× x + t

Therefore, we should expect to wait 2× x time units for the computation to
complete. Notice that the theory tells us more than the expected time; it tells
us the distribution of times.

3 Quantum Predicative Programming

This section is the contribution of the paper. Here we define the quantum sys-
tem, introduce programming with the quantum system and several well-known
problems, their classical and quantum solutions, and their formal comparative
time complexity analyses. The proofs of refinements are omitted for the sake
of brevity. The reader is referred to [37] for detailed proofs of some of the
algorithms.

3.1 The Quantum System

Let C be the set of all complex numbers with the absolute value operator | · |
and the complex conjugate operator ∗. Then a state of an n-qubit system is a
function ψ : 0, ..2n → C, such that

∑
x : 0, ..2n · |ψx|2 == 1.
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If ψ and φ are two states of an n-qubit system, then their inner product,
denoted by 〈ψ|φ〉, is defined by2:

〈ψ|φ〉 =
∑

x : 0, ..2n · (ψx)∗ × (φx)

A basis of an n-qubit system is a collection of 2n quantum states b0,..2n , such
that ∀i, j : 0, ..2n · 〈bi|bj〉 = (i = j).

We adopt the following Dirac-like notation for the computational basis: if x is
from the domain 0, ..2n, then x denotes the corresponding n-bit binary encoding
of x and |x〉 : 0, ..2n → C is the following quantum state:

|x〉 = λi : 0, ..2n · (i = x)

If ψ is a state of an m-qubit system and φ is a state of an n-qubit system,
then ψ ⊗ φ, the tensor product of ψ and φ, is the following state of a composite
m + n-qubit system:

ψ ⊗ φ = λi : 0, ..2m+n · ψ(i div 2n)× φ(i mod 2n)

We write ⊗n to mean tensored with itself n times.
An operation defined on an n-qubit quantum system is a higher-order func-

tion, whose domain and range are maps from 0, ..2n to the complex numbers.
An identity operation on a state of an n-qubit system is defined by

In = λψ : 0, ..2n → C · ψ
For a linear operation A, the adjoint of A, written A†, is the (unique) opera-

tion, such that for any two states ψ and φ, 〈ψ|Aφ〉 = 〈A†ψ|φ〉.
The unitary transformations that describe the evolution of an n-qubit quan-

tum system are operations U defined on the system, such that U †U = In.
In this setting, the tensor product of operators is defined in the usual way. If ψ

is a state of an m-qubit system, φ is a state of an n-qubit system, and U and V
are operations defined on m and n-qubit systems, respectively, then the tensor
product of U and V is defined on an m + n qubit system by (U ⊗ V )(ψ ⊗ φ) =
(Uψ)⊗ (V φ).

Just as with tensor products of states, we write U⊗n to mean operation U
tensored with itself n times.

Suppose we have a system of n qubits in state ψ and we measure it. Suppose
also that we have a variable r from the domain 0, ..2n, which we use to record the
result of the measurement, and variables x, y, . . ., which are not affected by the
measurement. Then the measurement corresponds to a probabilistic specification
that gives the probability distribution of ψ′ and r′ (these depend on ψ and on
the type of measurement) and states that the variables x, y, . . . are unchanged.

For a general quantum measurement described by a collection M = M0,..2n

of measurement operators, which satisfy the completeness equation, the specifi-
cation is measureM ψ r, where
2 We should point out that this kind of function operations is referred to as lifting.
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measureM ψ r == 〈ψ|M †
r′Mr′ψ〉 ×

⎛⎝ψ′ =
Mr′ψ√

〈ψ|M †
r′Mr′ψ〉

⎞⎠× (σ′ = σ)

where σ′ = σ is an abbreviation of (x′ = x)× (y′ = y)× . . . and means “all other
variables are unchanged”.

To obtain the distribution of, say, r′ we sum out the rest of the variables as
follows:

∑
ψ′, x′, y′, . . . · 〈ψ|M †

r′Mr′ψ〉 ×
⎛⎝ψ′ =

Mr′ψ√
〈ψ|M †

r′Mr′ψ〉

⎞⎠×(σ′ = σ)

== 〈ψ|M †
r′Mr′ψ〉

For projective measurements defined by an observable O =
∑

m · λm × Pm,
where Pm is the projector on the eigenspace of O with eigenvalue λm:

measureO ψ r == 〈ψ|Pr′ψ〉 ×
(

ψ′ =
P ′

rψ√〈ψ|P ′
rψ〉

)
× (σ′ = σ)

Given an arbitrary orthonormal basis B = b0,..2n , measurement of ψ in basis
B is:

measureB ψ r == |〈br′ |ψ〉|2 × (ψ′ = br′)× (σ′ = σ)

Finally, the simplest and the most commonly used measurement in the com-
putational basis is:

measure ψ r == |ψr′|2 × (ψ′ = |r’〉)× (σ′ = σ)

In this case the distribution of r′ is |ψr′|2 and the distribution of the quantum
state is:∑

r′ · |ψr′|2 × (ψ′ = |r’〉)

which is precisely the mixed quantum state that results from the measurement.
In order to develop quantum programs we need to add to our list of imple-

mented things from section 2.2. We add variables of type quantum state as above
and we allow the following three kinds of operations on these variables. If ψ is a
state of an n-qubit quantum system, r is a natural variable, and M is a collection
of measurement operators that satisfy the completeness equation, then:

1. ψ := |0〉⊗n is a program
2. ψ := Uψ, where U is a unitary transformation on an n-qubit system, is a

program
3. measureM ψ r is a program
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The special cases of measurements, described in section 2.1, are therefore also
allowed: for an observable O, measureO q r is a program; for an orthonormal
basis B, measureB q r is a program; finally, measure q r is a program.

The Hadamard transform, widely used in quantum algorithms, is defined on
a 1-qubit system and in our setting is a higher-order function from 0, 1 → C to
0, 1→ C:

H = λψ : 0, 1→ C · i : 0, 1 · (ψ0 + (−1)i × ψ1)/
√

2

The operation H⊗n on an n-qubit system applies H to every qubit of the
system. Its action on a zero state of an n-qubit system is:

H⊗n|0〉⊗n =
∑

x : 0, ..2n · |x〉/√2n

On a general state |x〉, the action of H⊗n is:

H⊗n|x〉 =
∑

y : 0, ..2n · (−1)x·y × |y〉/√2n

where x · y is the inner product of x and y modulo 2.
Another important definition is that of the quantum analog of a classical

oracle f :

Uf = λψ : 0, 1→ C · x : 0, 1 · (−1)fx × ψx

3.2 Deutsch Algorithm

In this section we look at one of the most famous quantum algorithms, Deutsch’s
algorithm [38]. The task is: given an oracle function f : 0, 1 → 0, 1, compute
f0 ⊕ f1. For now, we ignore the restriction on the number of queries to the
oracle. With natural x, the specification is:

x′ = f0⊕ f1

A simple classical solution is x := f(0)⊕ f(1).
Let us develop a quantum solution. With a state ψ of a 1-qubit system:

x′ = f0⊕ f1 arithmetic

== | (((−1)f0/2 + (−1)f1/2)× |0〉+
((−1)f0/2− (−1)f1/2)× |1〉) x′|2 measure

== measure (((−1)f0/2 + (−1)f1/2)× |0〉 +

((−1)f0/2− (−1)f1/2)× |1〉) x arithmetic

== measure ((−1)f0/2× (|0〉+ |1〉)+
(−1)f1/2× (|0〉 − |1〉)) x Hadamard

== measure ((−1)f0/
√

2× (H |0〉) + (−1)f1/
√

2× (H |1〉)) x linearity
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== measure H((−1)f0/
√

2× |0〉+ (−1)f1/
√

2× |1〉) x Oracle

== measure H(Uf |0〉/
√

2 + Uf |1〉/
√

2) x linearity

== measure H(Uf(|0〉/√2 + |1〉/√2)) x Hadamard
== measure H(Uf(H |0〉)) x substitutions
== ψ := |0〉; ψ := Hψ; ψ := Ufψ; ψ := Hψ; measure ψ x

So far we have two solutions — a simple classical one and a complicated
quantum one. Let us add the restriction on the number of allowed calls to the
oracle. We add a time variable t and decide to charge 1 unit of time for a call to
the oracle, leaving all other operations free. The new specification is:

x′ = f0⊕ f1 ∧ t′ = t + 1

The above quantum solution still works:

x′ = f0⊕ f1 ∧ t′ = t + 1
== ψ := |0〉; ψ := Hψ; t := t + 1; ψ := Ufψ; ψ := Hψ; measure ψ x

The new specification with the above way of charging time is clearly unim-
plementable classically. The corresponding strongest classically implementable
specification is:

x′ = f0⊕ f1 ∧ t′ ≤ t + 2

3.3 Deutsch-Jozsa Algorithm

Deutsch-Jozsa’s problem ([39]), an extension of Deutsch’s Problem, is an example
of the broad class of quantum algorithms that are based on the quantum Fourier
transform ([40]). The task is: given a function f : 0, ..2n → 0, 1 , such that f is
either constant or balanced, determine which case it is. Without any restrictions
on the number of calls to f , we can write the specification (let us call it S) as
follows:

(f is constant ∨ f is balanced) =⇒ b′ = f is constant

where b is a boolean variable and the informally stated properties of f are defined
formally as follows:

f is constant == ∀i : 0, ..2n · fi = f0

f is balanced ==
∣∣∣∑ i : 0, ..2n · (−1)fi

∣∣∣ = 0

It is easy to show that

(f is constant ∨ f is balanced)

=⇒ (f is constant == ∀(i : 0, ..2n−1 + 1) · fi = f0)



Quantum Predicative Programming 447

That is, more than half of the values need to be equal to f0 .
In our setting, we need to implement the specification R defined as follows:

b′ == ∀i : (0, ..2n−1 + 1) · fi = f0

The quantum solution is a direct generalisation of Deutsch’s algorithm. The
idea is to create a suitable superposition for state ψ, so that a measurement of
ψ produces 0 if and only if f is constant, so that:

S ⇐= Q; b := (r = 0) , where
Q == f is constant ∨ f is balanced⇒ f is constant = (r′ = 0)

To implement Q we notice that:

f is constant ==
(∣∣∣∑x · (−1)fx/2n

∣∣∣ = 1
)

f is balanced ==
(∣∣∣∑x · (−1)fx/2n

∣∣∣ = 0
)

We can show that if f is constant ∨ f is balanced, variables x, y, and z are
from the domain 0, ..2n, and x · z is the dot product of x and z, then:

f is constant = (r′ = 0)

⇐=
∣∣∣(∑ z, x · (−1)x·z+fx/2n × |z〉

)
r′
∣∣∣2

== measure
(∑

x · (−1)fx/
√

2n ×
(∑

z · (−1)x·z/
√

2n × |z〉
))

r

== measure (H⊗n(Uf (H⊗n|0〉⊗n))) r

== ψ := |0〉⊗n; ψ := H⊗nψ; ψ := Ufψ; ψ := H⊗nψ; measure ψ r

The complete solution is:

ψ := |0〉⊗n; ψ := H⊗nψ; ψ := Ufψ; ψ := H⊗nψ; measure ψ r; b := (r′ = 0)

Let us add to the specification a restriction on the number of calls to the
oracle by introducing a time variable. Suppose the new specification is:

(f is constant ∨ f is balanced =⇒ b′ = f is constant) ∧ (t′ = t + 1)

where we charge 1 unit of time for each call to the oracle and all other operations
are free. Clearly, the above quantum solution works.

Classically the specification is unimplementable. The strongest classically im-
plementable specification is

(f is constant ∨ f is balanced =⇒ b′ = f is constant) ∧ (t′ ≤ t + 2n−1 + 1)
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3.4 Grover’s Search

Grover’s quantum search algorithm ([41], [42]) is well-known for the quadratic
speed-up it offers in the solutions of NP-complete problems. The algorithm is
optimal up to a multiplicative constant ([13]). The task is: given a function
f : 0, ..2n → 0, 1, find x : 0, ..2n, such that fx = 1. For simplicity we assume
that there is only a single solution, which we denote x1, i.e. f x1 = 1 and f x = 0
for all x = x1. The proofs are not very different for a general case of more than
one solutions.

As before, we use a general quantum oracle, defined by

Uf |x〉 = (−1)fx × |x〉
In addition, we define the inversion about mean operator as follows:

M : (0, ..N → C)→ (0, ..N → C)

Mψ == λx : 0, ..N · 2×
(∑

i : 0, ..N · ψi/N
)
− ψx

where N = 2n.
Grover’s algorithm initialises the quantum system to an equally weighted

superposition of all basis states |x〉, x : 0, ..N . It then repeatedly applies Uf

followed by M to the system. Finally, the state is measured. The probability of
error is determined by the number of iterations performed by the algorithm.

The algorithm is easily understood with the help of a geometric analysis of
the operators. Let α be the sum over all x, which are not solutions, and let β be
the solution:

α =
1√

N − 1
×
∑

x = x1 · |x〉
β = |x1〉

Then the oracle Uf performs a reflection about the vector α in the plane
defined by α and β. In other words, Uf (a×α+ b×β) = a×α− b×β. Similarly,
the inversion about mean operator is a reflection about the vector ψ in the plane
defined by α and β. Therefore, the result of Uf followed by M is a rotation in
this plane. We define θ to be the rotation angle:

θ = 2× arcsin
√

1/N

Since each rotation leaves us in the plane defined by α and β, then the state
of the system after i rotations by θ radians is:

ψi = cos((2× i + 1)× θ/2)× α + sin((2 × i + 1)× θ/2)× β

Suppose we charge one unit of time for each call to the oracle and all other
operations are free. The specification of the problem is then:

S ==
(
sin
(
(2× (t′ − t) + 1)× arcsin

√
1/N
))2

× (r′ = x1) +(
1−
(
sin
(
(2× (t′ − t) + 1)×arcsin

√
1/N
))2
)
× (r′ = x1)/(N − 1)
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where r is the result variable from the domain 0, ..N . The specification says

that we want the solution
(
sin((2× (t′ − t) + 1)× arcsin

√
1/N)

)2
of the time,

where t′ − t is the number of times we use the oracle.
As before, we want to specify the quantum state that, when measured, gives

the desired distribution. With a quantum state variable ψ : 0, ..N → C, we can
show

S == ψ′ = sin((2× (t′ − t) + 1)× θ/2)× β +
cos((2 × (t′ − t) + 1)× θ/2)× α;

measure ψ r

Let P be the description of the quantum state immediately before the
measurement.

P == ψ′ = ψt′−t

Since ψt′−t is the state obtained by t′− t rotations by θ radians, we define the
specification R to describe the rotation. With a natural k that represents the
number of iterations performed:

R == ψ = ψi ⇒ ψ′ = ψk ∧ t′ = t + k − i

Adding initialisation, we prove:

P ⇐= i := 0; ψ := ψ0; R

Our task has been simplified. We now need to implement ψ := ψ0 and R and
we are done. Implementing the assignment is trivial:

ψ := |0〉⊗n;ψ := H⊗nψ

Having understood the geometry of Grover’s algorithm, implementing R is
easy. After adding the time increment before the call to the oracle, we can show:

R⇐= if i=k then ok else (i := i + 1; t := t+1; ψ := Ufψ; ψ := Mψ; R)

Note that specification R is recursive. The ease with which recursion is treated
in Predicative Programming allows us to easily translate our geometric under-
standing of the problem into an implementable specification.

The complete quantum solution is

S ==
(
sin
(
(2 × (t′ − t) + 1)× arcsin

√
1/N
))2

× (r′ = x1) +(
1−
(
sin
(
(2× (t′ − t) + 1)× arcsin

√
1/N
))2
)
×

(r′ = x1)/(N − 1)
== P ; measure ψ r
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P ⇐= i := 0; ψ := |0〉⊗n; ψ := H⊗nψ; R

R⇐= if i = k then ok

else (i := i + 1; t := t + 1; ψ := Ufψ; ψ := Mψ; R)

Specification S carries a lot of useful information. For example, it tells us that
the probability of finding a solution after k iterations is(

sin((2 × k + 1)× arcsin
√

1/N)
)2

Or we might ask how many iterations should be performed to minimise the
probability of an error. Examining first and second derivatives, we find that the
above probability is minimised when t′− t = (π× i)/(4×arcsin

√
1/N)−1/2 for

integer i. Of course, the number of iterations performed must be a natural num-
ber. It is interesting to note that the probability of error is periodic in the number
of iterations, but since we don’t gain anything by performing extra iterations, we
pick i = 1. Finally, assuming 1 8 N = 2n, we obtain an elegant approximation
to the optimal number of iterations:

⌈
π ×√2n/4

⌉
, with the probability of error

approximately 1/2n.

3.5 Computing with Mixed States

As we have discussed in section 2.1, the state of a quantum system after a
measurement is traditionally described as a mixed state. An equation ψ =
{|0〉}/2+ {|1〉}/2 should be understood as follows: the state ψ is |0〉 with proba-
bility 1/2 and it is |1〉 with probability 1/2. In contrast to a pure state, a mixed
state does not describe a physical state of the system. Rather, it describes our
knowledge of what state the system is in.

In our framework, there is no need for an additional mechanism to compute
with mixed states. Indeed, a mixed state is not a system state, but a distribution
over system states, and all our programming notions apply to distributions. The
above mixed state is the following distribution over a quantum state ψ of a
single-qubit system: (ψ = |0〉)/2 + (ψ = |1〉)/2. This expression tells us, for each
possible value in the domain of ψ, the probability of ψ having that value. For
example, ψ is the state |0〉 with probability (|0〉 = |0〉)/2 + (|0〉 = |1〉)/2, which
is 1/2; it is |1〉 with probability (|1〉 = |0〉)/2 + (|1〉 = |1〉)/2, which is also 1/2;
for any scalars α and β, not equal to 0 or 1, ψ is equal to α× |0〉+ β × |1〉 with
probability (α×|0〉+β×|1〉 = |0〉)/2+(α×|0〉+β×|1〉 = |1〉)/2, which is 0. One
way to obtain this distribution is to measure an equally weighted superposition
of |0〉 and |1〉:

ψ′ = |0〉/
√

2 + |1〉/
√

2; measure ψ r measure

== ψ′ = |0〉/
√

2 + |1〉/
√

2; |ψr′|2 × (ψ′ = |r’〉) sequential composition

==
∑

r′′, ψ′′ · (ψ′′ = |0〉/
√

2 + |1〉/
√

2)× |ψ′′r′|2 × (ψ′ = |r’〉)
== |(|0〉/

√
2 + |1〉/

√
2) r′|2 × (ψ′ = |r’〉)

== (ψ′ = |r’〉)/2
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Distribution of the quantum state is then:∑
r′ · (ψ′ = |r’〉)/2 == (ψ′ = |0〉)/2 + (ψ′ = |1〉)/2

as desired.
Similarly, there is no need to extend the application of unitary operators.

Consider the following toy program:

ψ := |0〉; ψ := Hψ; measure ψ r; if r = 0 then ψ := Hψ else ok

In the second application of Hadamard the quantum state is mixed, but this
is not evident from the syntax of the program. It is only in the analysis of the
final quantum state that the notion of a mixed state is meaningful. The operator
is applied to a (pure) system state, though we are unsure what that state is.

ψ := |0〉; ψ := Hψ; measure ψ r ;
if r = 0 then ψ := Hψ else ok as before

== (ψ′ = |r’〉)/2;
if r = 0 then ψ := Hψ else ok sequential composition

==
∑

r′′, ψ′′ · (ψ′′ = |r”〉)/2 ×
((r′′ = 0)× (ψ′ = Hψ′′)× (r′ = r′′)+
(r′′ = 1)× (ψ′ = ψ′′)× (r′ = r′′)) one point law

== ((ψ′ = H |0〉)× (r′ = 0) + (ψ′ = |1〉)× (r′ = 1)) /2

== (ψ′ = |0〉/√2 + |1〉/√2)× (r′ = 0)/2 +
(ψ′ = |1〉)× (r′ = 1)/2

The distribution of the quantum state after the computation is:∑
r′ · (ψ′ = |0〉/√2 + |1〉/√2)× (r′ = 0)/2 + (ψ′ = |1〉)× (r′ = 1)/2

== (ψ′ = |0〉/
√

2 + |1〉/
√

2)/2 + (ψ′ = |1〉)/2
A lot of properties of measurements and mixed states can be proven from

the definitions of measurement and sequential composition. For example, the
fact that a measurement in the computational basis, performed immediately
following a measurement in the same basis, does not change the state of the
system and yields the same result as the first measurement with probability 1,
is proven as follows:

measure ψ r; measure ψ r measure

== |ψ r′|2 × (ψ′ = |r’〉); |ψ r′|2 × (ψ′ = |r’〉) sequential composition

==
∑

ψ′′, r′′ · |ψ r′′|2 × (ψ′′ = |r”〉)× |ψ′′ r′|2 × (ψ′ = |r’〉) one point law

== |ψ r′|2 × (ψ′ = |r’〉) measure
== measure ψ r

In case of a general quantum measurement, the proof is similar, but a little
more computationally involved.
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4 Conclusion and Future Work

We have presented a new approach to developing, analysing, and proving cor-
rectness of quantum programs. Since we adopt Hehner’s theory as the basis for
our work, we inherit its advantageous features, such as simplicity, generality, and
elegance. Our work extends probabilistic predicative programming in the same
fashion that quantum computation extends probabilistic computation. We have
provided tools to write quantum as well as classical specifications, develop quan-
tum and classical solutions for them, and analyse various properties of quantum
specifications and quantum programs, such as implementability, time and space
complexity, and probabilistic error analysis uniformly, all in the same framework.

Current research and research in the immediate future involve reasoning about
distributed quantum computation. Current work involves expressing quantum
teleportation, dense coding, and various games involving entanglement, in a way
that makes complexity analysis of these quantum algorithms simple and natural.
These issues will be described in a forthcoming paper. We can easily express tele-
portation as refinement of a specification φ′ = ψ, for distinct qubits φ and ψ, in
a well-known fashion. However, we are more interested in the possibilities of sim-
ple proofs and analysis of programs involving communication, both via quantum
channels and exhibiting the LOCC (local operations, classical communication)
paradigm. Future work involves formalising quantum cryptographic protocols,
such as BB84 [33], in our framework and providing formal analysis of these
protocols. This will naturally lead to formal analysis of distributed quantum
algorithms (e.g. distributed Shor’s algorithm of [34]).
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