
I. Gorton et al. (Eds.): CBSE 2006, LNCS, pp. 344 – 351, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Enhanced Composition Model for Conversational
Enterprise JavaBeans

Franck Barbier

PauWare Research Group – Université de Pau
Av. de l’université, BP 1155, 64013 Pau CEDEX – France

Franck.Barbier@FranckBarbier.com

Abstract. When designing applications with Enterprise JavaBeans (EJBs) and
more specifically with Stateful Session Beans, a major difficulty (or even an
impossibility) is being able to properly transform business models and more
precisely UML 2 models, into such component types, while including the
expression of their mutual compositions. This contradicts with the spirit of the
emerging Model-Driven Architecture (MDA) software engineering paradigm
based on the definition of seamless model transformations. In this scope, this
paper proposes and describes an appropriate Java library in order to increase the
composition power of EJBs. The proposition includes a support for a broadcast
communication mode (assimilated to “horizontal composition” in the paper)
which is, a priori, incompatible with non reentrance, a key characteristic of
EJBs. Besides, “vertical composition” is the counterpart of “horizontal compo-
sition”. “Vertical composition” enables the consistent hierarchical combination
of composite behaviors and compound behaviors, both being specified and
implemented by means of UML 2 State Machine Diagrams.

1 Introduction

Szyperski et al. have claimed for a long time that: “Components are for composition.”
[1]. In other words, all software components are software parts, although not all
software parts are necessarily software components. Furthermore, if components are
not specifically designed to have composition potentialities (i.e., composability or
compositionality attributes) at assembly time, the risk is high that components will
fail to interoperate properly. That is the reason why technological component models
exist: Enterprise JavaBeans (EJBs), CORBA Component Model (CCM), COM+ or
Fractal. In providing a well-bounded accurate development and deployment
framework, such component models support composition templates. A resulting
advantage is that, by complying to the imposed format1 of components, composition
is easy and straightforward. A disadvantage is the difficulty of transforming business
models like UML models for instance (which in essence are free of technical
constraints) into technical components. In other words, stereotyped components (e.g.,

1 The term “format” is here preferred to that of “model” since technological components obey

to code construction and deployment rules rather than to formal/mathematical specifications.

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 345

Entity Beans, Session Beans and Message-Driven Beans) of a given technological
component model (e.g., EJBs) may be considered as moulds. Melting business models
down in order to fill these moulds is a strong expectation in the software industry.

In the spirit of MDA [2], model transformation rules have to formalize how a
platform-independent model (PIM) is transformed into a platform-specific model
(PSM). This theoretical principle may however stumble over incompatible model
properties. We have carried out experimentations on this problem with UML 2 State
Machines Diagrams and Sequence Diagrams, and more generally with the global
“UML 2 Composition Model” [3]. Software components and compositions modeled
by means of UML possess recognized features coming from the intrinsic “semantics”
of UML itself. The most well-known characteristics are for instance the “coincident
lifetime” of composites and compounds in, what we call below, “vertical
composition”. For “horizontal composition”, which is closely related to component
communication, broadcast is the underlying communication mode (a heritage of
Harel’s Statecharts [4]). In EJBs, the predefined composition mechanisms do not
conform to these idealistic properties.

This paper proposes a solution for fitting conversational EJBs, which are Stateful
Session Beans, to the most important conceptual composition mechanisms of UML 2.
This occurs through the construction of a dedicated Java library named PauWare
which is illustrated in this paper.

That is why Section 2 gives a brief overview of EJBs. Section 3 insists on the
problem of non reentrance, which is particular to EJBs and which, a priori, precludes
the implementation of broadcast in EJBs. Broadcast indeed comes from the
executability facilities of UML 2 State Machines Diagrams and Sequence Diagrams
and thus, cannot be ignored. Section 4 shows how this has been solved with
PauWare: code samples are provided. Section 5 is about “vertical composition”: how
to compose conversational EJBs, hierarchically, starting from the hypothesis that they
own and are governed by a statechart that exists inside themselves. A major challenge
amounts to synchronizing the two statecharts of a composite and a compound. To
conclude in Section 6, we evoke the link of this work with autonomic computing.

2 Enterprise JavaBeans

EJBs [5] constitute a technological component standard. They also represent a highly
coercive computing framework as far as the format of an EJB is predefined and strict
(Fig. 1). From the code viewpoint, an EJB must have a Java implementation class and
appropriate interfaces for its clients. From the deployment viewpoint now, an EJB
must also have values assigned to mandatory deployment parameters.

Since EJBs’ shapes cannot be ordinary and have to satisfy many constraints, EJBs
are by their very nature composable. Components that do not comply to standards can
indeed be composable with much difficulty. However, in practice, the EJBs’
composition model may demonstrate numerous limitations. This is especially the case
for conversational EJBs. This specific EJB type offers interesting facilities to
programmers. For instance, programmers can control creation decisions; and
conversational EJBs remain unshared between clients. Unfortunately, even though it

346 F. Barbier

is possible to scrupulously control states within the inside of Stateful Session Beans,
sophisticated combination of such conversational EJBs is poor. In UML, models such
as different state machines2 may be assigned to distinct business components.
Composing these components amounts to taking into account scenarios embodying
the communication between them. State machines and scenarios however rely on a
composition semantics that has no direct mapping in EJBs. As a result, the benefits
from having a formal semantics for statechart composition (see for instance [6] or [7])
cannot really be exploited at the implementation level.

 «metaclass»
EJB implementation class

«metaclass»
EJB home interface

«metaclass»
EJB remote interface

«metaclass»
EJB

0..1 0..1

1..1

«metaclass»
Entity Bean

«metaclass»
Message-Driven Bean

«metaclass»
Session Bean

«metaclass»
Entity Bean primary key class

0..1

{disjoint, complete}

{disjoint, complete}

«metaclass»
Stateful Session Bean

«metaclass»
Stateless Session Bean

«metaclass»
EJB local home interface

0..1 «metaclass»
EJB local interface 0..1

Fig. 1. UML metamodel expressing the contractual format of an EJB and the possible types of
EJBs

3 Non Reentrance

In attempting to construct the inside of a Stateful Session Bean by means of a state
machine, one problem is caused by the broadcast communication mode, which is the
basis of Harel’s Statecharts [4, p. 269]: “The statechart communication mechanism,
on the other hand, is based on broadcast, whereby the sender proceeds even if nobody
is listening.” EJBs do not accept requests while transactions are in progress (this
phenomenon is known as non reentrance) while broadcast supposes that requests may
arrive at any time.

As an illustration, we reuse the Railcar control system case study presented in [8].
In Fig. 2, a railcar that is less than 80 meters far from a terminal, sends crossing
request which is part of the remote interface of the Terminal component type (see the
right hand side of Fig. 2). In Fig. 3, the sending of crossing request may be observed
within the statechart of the Railcar component type by means of this expression: ^my
next possible stop.crossing request(self). The reception of and response to crossing
request appears within the statechart of the Terminal component type (Fig. 3).

2 UML 2 state machines are closely related to Harel’s Statecharts. We comment on some key

differences in the rest of the paper but we do not formally distinguish the expression “state
machine” from the word “statechart” all along the paper.

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 347

In EJBs, the call of crossing request occurs within a transaction that started when
alert80 arrived. The receiver terminal may reply to the sender railcar (by using self
which is a parameter of crossing request) that some passengers standing at the said
terminal want to get onto the approaching railcar. How then may one guarantee that
candidate passengers (the possible reply) is not received at an unsuitable moment,
i.e., if the transaction associated with alert80 is not yet finished?

:Terminal:Railcar

alert100(terminal,railcar,is clockwise)

:Control center

alert80

crossing request(self)

sd Terminal approach

alert100(terminal,railcar,is clockwise)

candidate passengers(destinations)

alert100(terminal,railcar,is clockwise)

Fig. 2. Scenario of communication between three respective instances of a Control center, a
Railcar and a Terminal components

alert80 [passing through]/
^my next possible stop.crossing request(self)

Wait for alert80
entry/ ^cruiser.set Engaged20

Going through

Arriving

Cruising
entry/ ^cruiser.set Engaged80

terminal crossing(is clockwise)

Wait for entrance
entry/ ^cruiser.set Disengaged

Stopped on railway

Stopped at terminal
exit/ ^cruiser.set Engaged20

terminal stopping(is clockwise)

go on [passing through]

go on [stopping]

go

alert80 [stopping]

candidate passengers(destinations)

stop

alert100(terminal,railcar,is clockwise)

Railcar
new destination(another terminal)

Idle

terminal crossing(is clockwise)

Busy

alert100(terminal,railcar,is clockwise)
new destination(another terminal)

terminal stopping(is clockwise)/ ^timer.to be set(null,30000),
^clockwise ingoing vehicle.stop, ^counterclockwise ingoing vehicle.stop

crossing request(railcar) [destination board@pre→notEmpty()]/ ^railcar.candidate passengers(destination board@pre)

Terminal

time-out(30000,null)/
^timer.to be killed(null), ^my current railcar.go, ^clockwise ingoing vehicle.go on,

^counterclockwise ingoing vehicle.go on

Fig. 3. Two communicating statecharts of a Railcar and Terminal components

4 Horizontal Composition of Conversational EJBS

So, the coercive composition model of EJBs precludes intertwined communication,
but a consequence of broadcast is that a request receiver may immediately reply to the
sender even though the latter is not, from the EJBs’ composition model’s viewpoint,
in an “appropriate” state (while the transaction is in progress).

348 F. Barbier

To solve this problem, we propose a MDA-based Java statechart execution engine
that automates the complete and coherent management of statecharts at runtime. The
chosen executability semantics is obviously that of UML 2 which is slightly different
(even if broadcast remains) from that of the original Statecharts and of some Harel’s
variants [8]. In [9], two key subtle semantic differences are formally specified: UML
2 advocates a run-to-completion execution model (a first characteristic3) which
ensures that, within a given state machine instance, the processing of a new request
starts when, and only when, the immediately prior request processing is terminated.
This mechanism is close to the EJBs’ transaction management mechanism. In our
approach, requests that may have linked replies, require special treatment so that
statechart cycles are not disturbed by impromptu request receptions. Independently of
EJBs, this mechanism is for us mandatory in order to keep statecharts consistent
throughout execution cycles. A consubstantial result of such an implementation is that
the non reentrance constraint imposed by EJBs is automatically satisfied.

From a design viewpoint, this simply leads to incorporating a statechart into the
Java implementation class of a Stateful Session Bean as follows (code is incomplete):

protected Statechart _Arriving = new Statechart("Arriving"); // + the
other states

protected Statechart_monitor _Railcar = new
Statechart_monitor((_Arriving.xor(_Cruising)).xor(_Stopped_at_termina
l),"Railcar");

Next, coding alert80 leads to what follows (code is incomplete):

_Railcar.fires(_Wait_for_alert80,_Going_through,passing_through,_my_n
ext_possible_stop.getEJBObject(),"crossing_request",args,Statechart_m
onitor.Broadcast); // + the other transitions

_Railcar.run_to_completion(); // non interruptible statechart cycle

In the code above, crossing request (in bold print) is called by means of the Java
reflection API. The Statechart_monitor.Broadcast parameter value must be used if
the specification shows that a reply to the sent request (i.e., crossing request) is
probable. Since this mechanism is costly, it has not been generalized within PauWare.
Programmers have thus to pay attention to possible faults caused by reentrance.

5 Vertical Composition

The need for rich composition not only obliges one to have “horizontal” composition,
but also “vertical” (a.k.a. “hierarchical”) composition. As an illustration, the Fractal
composition model [10] supports hierarchical composition. The notion of “vertical
composition” consists in having a sub-component encapsulated in a composite
component (irreflexivity applies in order to avoid any cycle). The latter hides the sub-
component from clients and, more precisely, from the clients’ service requests.

The implementation of vertical composition within PauWare relies on the
theoretical research results exposed in [11-13]. In these three papers, a formal

3 The second specificity of the UML 2 executability semantics is a special strategy for coping

with conflicting transitions in statecharts. We do not address these issues in this paper. In
short, nested transitions linked to inner states override upper transitions linked to outer states.

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 349

semantics for the Aggregation and Composition UML relationships is provided. A
key feature of the UML Composition is coincident lifetime (a.k.a. “the fifth case of
lifetime dependency” in [11]) between attached composites and compounds. This
property of coincident lifetime makes the possibility realistic (and even relevant) that
a component instance strongly refers to the states of another component instance. In
comparison, the states of two different component instances do not have to be
interrelated if these two components have unrelated lifecycles4.

Going back to the Railcar system case study, one may thus consider that in terms
of states, a single Control center component instance is a composition of all existing
Railcar and Terminal component instances that participate in the system. In other
words, following the logics of coincident lifetime assigned to Composition in UML,
Railcar and Terminal component instances do not have to exist out of the life span of
the Control center component instance. In terms of behaviors, a control center
propagates or delegates environment data coming from sensors (e.g., alert100,
alert80) to railcars and terminals.

The proposed solution is based on the metamodel in Fig. 4. The Whole-Part,
Aggregation and Composition types come from [11]. The right hand side of Fig. 4 is
new and shows that the Statechart monitor type (embodying a global state machine)
inherits from the Statechart type. In other words, a state machine is a kind of
macroscopic state. However, the Statechart monitor type has interpretation
capabilities as well: it possesses the run_to_completion Java method which is not
owned by the Statechart type.

 Whole-Part
«binary»

«asymmetry»
«prescription at type level»

«emergent»
«resultant»

Aggregation
«shareability»

Composition
«unsharing»

«lifetime dependency (fifth case)»
Component

theWhole.. 1

thePart 1

Statechart
and(s : Statechart) : Boolean
xor(s : Statechart) : Boolean

1..*

Statechart
monitor

1..1
1

*

Fig. 4. UML metamodel for vertical composition

This leads to adding a specific service for the Railcar component type whose
implementation is as follows:

public Statechart_monitor state_machine() {return _Railcar;}

Vertical composition is then instrumented as follows:

Statechart _Control = new Statechart("Control");

_Control_center = new
Statechart_monitor(_Control.and(railcar_remote.state_machine()),"Cont
rol center");

The code above illustrates the linking of a Railcar component instance state
machine as a sub-state of the Control center component instance and as an orthogonal
state of the Control sub-state: use of the and operator.

4 In the worst case, two component instances may be connected together through their states

but, in our opinion, with great care, since it is an error-prone situation.

350 F. Barbier

Such a solution creates an automatic propagation/delegation mechanism. So,
requests are forwarded from composites to compounds in a transparent way. In the
code below, a multicast mode for sending the alert80 request is used. All attached
railcars, like the railcar_remote J2EE object in the code above, are concerned with
the reception and the possible processing (depending upon their current state) of
alert80:

public void alert80() throws Statechart_exception
{_Control_center.run_to_completion();}

In this code, no other processing except propagation/delegation occurs.

6 Conclusion: Perspectives and Benefits from an Enhanced
Composition Model for Conversational EJBS

A side effect of having state machines inside components is the possibility for
instrumenting dynamical re-configuration. For varied reasons, one may decide to
force the state of a component. Externally, this leads to offering and to implementing
a management service such as for instance reset:

public void reset() throws Statechart_exception
{_Terminal.to_state(“Idle”);}

Decisions may be taken by the components themselves. In this case, they become
self-configuring and self-managing software entities, a concept of autonomic
computing [14]. In this line of thought, a more advanced feature of autonomic
computing is self-healing. PauWare’s components may support self-healing in the
sense that the execution of any business request may generate faults. Fault self-
management consists then in trying to “cancel” faults automatically. At this time, the
implemented mechanism is rudimentary. When a fault occurs and if the autonomic
mode has been activated, conversational EJBs try to recover their immediately
previous “state”: this amounts to multiple consistent states, since statecharts are
composed of nested and parallel modeled/implemented states. Within the cycle of
moving a statechart from one step to another, internal operations in components may
change business data (just before the arrival of the “incriminated” fault). Going back
to the immediately previous state may therefore lead to inconsistencies. For example,
a requirement may be that a port must be closed in a given state. Returning to this
state without having the port closed is inconsistent.

To improve such a situation, state invariants that may be attached to states, have
the responsibility to check if the current values of business data are compliant with
the reached states. Within the process of fault recovery, this leads to proving that
returning to the immediately previous global state of a component is “correct”. To
sum up, self healing really succeeds if and only if all state invariants are true after
rolling back to such an immediately previous state.

We have presented in this paper a concrete implementation of an enhanced
composition model for conversational EJBs. A main motivation relating to such a
research work, is the look for a better integration of the EJBs’ technology within
MDA. One especially tries to fill the gap between two execution semantics. Model
executability in UML is somehow idealistic but it benefits from being abstract,

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 351

i.e., independent of technological platforms. Instead, execution constraints of EJBs
may be considered as numerous. Nevertheless, this is the source of a robust, but
limited, composition model. A tradeoff is thus required, a goal of this paper.

The proposed implementation also favors the creation of a support for autonomic
computing. Short-term perspectives are the adaptation of PauWare for J2ME
components, i.e., components that are deployed and run in mobile and wireless
devices. This implementation, currently in its testing phase, aims at being in better
convergence with the demands of autonomic computing.

References

1. Szyperski, C., Gruntz, D., Murer, S.: Component Software – Beyond Object-Oriented
Programming – Second Edition, Addison-Wesley (2002)

2. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled – Principles of Model-Driven
Architecture, Addison-Wesley (2004)

3. Bock, C.: UML 2 Composition Model, Journal of Object Technology, Vol. 3, 10 (2004)
47-73

4. Harel, D.: Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, Vol. 8 (1987) 231-274

5. Sun Microsystems: Enterprise JavaBeans™ Specification, Version 2.1 (2003)
6. Simons, A.: On the Compositional Properties of UML Statechart Diagrams, Proc. 3rd Conf.

Rigorous Object-Oriented Methods (2000) 4.1-4.19
7. Prehofer, C.: Plug-and-play composition of features and feature interactions with

statechart diagrams, Software and Systems Modeling, Vol. 3, 3 (2004) 221-234
8. Harel, D., Gery, E.: Executable Object Modeling with Statecharts, IEEE Computer, Vol.

30, 7 (1997) 31-42
9. von der Beck, M.: A structured operational semantics for UML-statecharts, Software and

Systems Modeling, Vol. 1, 2 (2002) 130-141
10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: An Open Component

Model and Its Support in Java, Proc. 7th International Symposium on Component-Based
Software Engineering, LNCS #3054, (2004) 7-22

11. Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M.: Formalization of
the Whole-Part Relationship in the Unified Modeling Language, IEEE Transactions on
Software Engineering, Vol. 29, 5 (2003) 459-470

12. Tan, H. B. K., Hao, L., Yang, Y.: On Formalization of the Composition Relationship in the
Unified Modeling Language, IEEE Transactions on Software Engineering, Vol. 29, 11
(2003) 1054-1055

13. Barbier, F., Henderson-Sellers, B.: Controversies about the Black and White Diamonds,
IEEE Transactions on Software Engineering, Vol. 29, 11 (2003) 1056

14. Kephart, J., Chess, D.: The Vision of Autonomic Computing, IEEE Computer, Vol. 36, 1
(2003) 41-50

	Introduction
	Enterprise JavaBeans
	Non Reentrance
	Horizontal Composition of Conversational EJBS
	Vertical Composition
	Conclusion: Perspectives and Benefits from an Enhanced Composition Model for Conversational EJBS
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

