

Lecture Notes in Computer Science 4063
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ian Gorton George T. Heineman
Ivica Crnkovic Heinz W. Schmidt
Judith A. Stafford Clemens A. Szyperski
Kurt Wallnau (Eds.)

Component-Based
Software Engineering

9th International Symposium, CBSE 2006
Västerås, Sweden, June 29 – July 1, 2006
Proceedings

13

Volume Editors

Ian Gorton
National ICT Australia, Eveleigh, NSW 1430, Australia
E-mail: ian.gorton@nicta.com.au

George T. Heineman
WPI, Worcester, MA 01609, USA
E-mail: heineman@cs.wpi.edu

Ivica Crnkovic
Mälardalen University, 721 23 Västerås, Sweden
E-mail: ivica.crnkovic@mdh.se

Heinz W. Schmidt
Monash University, Clayton VIC 3800 , Australia
E-mail: heinz.schmidt@csse.monash.edu.au

Judith A. Stafford
Tufts University, Medford, MA 02155, USA
E-mail: jas@cs.tufts.edu

Clemens A. Szyperski
Microsoft Corp., Redmond, WA 98053, USA
E-mail: cszypers@microsoft.com

Kurt Wallnau
Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
E-mail: kcw@sei.cmu.edu

Library of Congress Control Number: 2006927704

CR Subject Classification (1998): D.2, D.1.5, D.3, F.3.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-35628-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35628-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11783565 06/3142 5 4 3 2 1 0

Preface

On behalf of the Organizing Committee I am pleased to present the proceedings of the
2006 Symposium on Component-Based Software Engineering (CBSE). CBSE is
concerned with the development of software-intensive systems from reusable parts
(components), the development of reusable parts, and system maintenance and
improvement by means of component replacement and customization. CBSE 2006
was the ninth in a series of events that promote a science and technology foundation
for achieving predictable quality in software systems through the use of software
component technology and its associated software engineering practices.

We were fortunate to have a dedicated Program Committee comprising 27
internationally recognized researchers and industrial practitioners. We received 77
submissions and each paper was reviewed by at least three Program Committee
members (four for papers with an author on the Program Committee). The entire
reviewing process was supported by Microsoft’s CMT technology. In total, 22
submissions were accepted as full papers and 9 submissions were accepted as short
papers.

This was the first time CBSE was not held as a co-located event at ICSE. Hence
special thanks are due to Ivica Crnkovic for hosting the event. We also wish to thank
the ACM Special Interest Group on Software Engineering (SIGSOFT) for their
sponsorship of CBSE 2005. The proceedings you now hold were published by
Springer and we are grateful for their support. Finally, we must thank the many
authors who contributed the high-quality papers contained within these proceedings.
As the international community of CBSE researchers and practitioners continues to
prosper, we expect the CBSE Symposium series to similarly attract widespread
interest and participation.

May 2006 Ian Gorton

Organization

CBSE 2006 was sponsored by the Association for Computing Machinery (ACM)
Special Interest Group in Software (SIGSOFT).

Organizing Committee

Program Chair: Ian Gorton (NICTA, Australia)
Steering Committee: Ivica Crnkovic
(Mälardalen University, Sweden)
George T. Heineman
(WPI, USA)
Heinz W. Schmidt
(Monash University, Australia)
Judith A. Stafford (Tufts University, USA)
Clemens Szyperski (Microsoft Research, USA)
Kurt Wallnau
(Software Engineering Institute, USA)

Program Committee

Uwe Assmann, Dresden University of Technology, Germany
Mike Barnett, Microsoft Research, USA
Judith Bishop, University of Pretoria, South Africa
Jan Bosch, Nokia Research Center, Finland
Michel Chaudron, University of Eindhoven, The Netherlands
Shiping Chen, CSIRO, Australia
Susan Eisenbach, Imperial College, UK
Dimitra Giannakopoulou, RIACS/NASA Ames, USA
Lars Grunske, University of Queensland, Australia
Richard Hall, LSR-IMAG, France
Dick Hamlet, Portland State University, USA
George Heineman, Worcester Polytechnic Institute, USA
Tom Henzinger, EPFL, Switzerland and UC Berkeley, USA
Paola Inverardi, University of L'Aquila, Italy
Jean-Marc Jezequel, IRISA (INRIA & Univ. Rennes 1), France
Bengt Jonsson, Uppsala University, Sweden
Dean Kuo, University of Manchester, UK
Magnus Larsson, ABB, Sweden
Kung-Kiu Lau, University of Manchester, UK
Nenad Medvidovic, University of Southern California, USA
Rob van Ommering, Philips, The Netherlands
Otto Preiss, ABB Switzerland

VIII Organisation

Ralf Reussner, University of Oldenburg, Germany
Douglas Schmidt, Vanderbilt University, USA

Jean-Guy Schneider, Swinburne University of Tech., Australia
Dave Wile, Teknowledge, Corp., USA
Wolfgang Weck, Independent Software Architect, Switzerland

Previous CBSE Workshops and Symposia

8th International Symposium on CBSE, Lecture Notes in Computer Science,
Vol. 3489, Heineman, G.T. et al (Eds.), Springer, St. Loius, USA (2005)

7th International Symposium on CBSE, Lecture Notes in Computer Science,
Vol. 3054, Crnkovic, I.; Stafford, J.A.; Schmidt, H.W.; Wallnau, K. (Eds.),
Springer, Edinburgh, UK (2004)

6th ICSE Workshop on CBSE: Automated Reasoning and Prediction
http://www.sei.cmu.edu/pacc/CBSE6. Portland, Oregon (2003)

5th ICSE Workshop on CBSE: Benchmarks for Predictable Assembly
http://www.sei.cmu.edu/pacc/CBSE5. Orlando, Florida (2002)

4th ICSE Workshop on CBSE: Component Certification and System Prediction.
Software Engineering Notes, 26(10), November 2001. ACM SIGSOFT Author(s):
Crnkovic, I.; Schmidt, H.; Stafford, J.; Wallnau, K. (Eds.)
http://www.sei.cmu.edu/pacc/CBSE4-Proceedings.html. Toronto, Canada, (2001)

Third ICSE Workshop on CBSE: Reflection in Practice
http://www.sei.cmu.edu/pacc/cbse2000. Limerick, Ireland (2000)

Second ICSE Workshop on CBSE: Developing a Handbook for CBSE
http://www.sei.cmu.edu/cbs/icse99. Los Angeles, California (1999)

First Workshop on CBSE
http://www.sei.cmu.edu/pacc/icse98. Tokyo, Japan (1998)

Table of Contents

Full Papers

Defining and Checking Deployment Contracts for Software Components
Kung-Kiu Lau, Vladyslav Ukis . 1

GLoo: A Framework for Modeling and Reasoning About
Component-Oriented Language Abstractions

Markus Lumpe . 17

Behavioral Compatibility Without State Explosion: Design and
Verification of a Component-Based Elevator Control System

Paul C. Attie, David H. Lorenz, Aleksandra Portnova,
Hana Chockler . 33

Verification of Component–Based Software Application Families
Fei Xie, James C. Browne . 50

Multi Criteria Selection of Components Using the Analytic Hierarchy
Process

João W. Cangussu, Kendra C. Cooper, Eric W. Wong 67

From Specification to Experimentation: A Software Component Search
Engine Architecture

Vinicius Cardoso Garcia, Daniel Lucrédio, Frederico Araujo Durão,
Eduardo Cruz Reis Santos, Eduardo Santana de Almeida,
Renata Pontin de Mattos Fortes, Silvio Romero de Lemos Meira 82

Architectural Building Blocks for Plug-and-Play System Design
Shangzhu Wang, George S. Avrunin, Lori A. Clarke 98

A Symmetric and Unified Approach Towards Combining
Aspect-Oriented and Component-Based Software Development

Davy Suvée, Bruno De Fraine, Wim Vanderperren 114

Designing Software Architectures with an Aspect-Oriented Architecture
Description Language

Jennifer Pérez, Nour Ali, Jose A. Carśı, Isidro Ramos 123

A Component Model Engineered with Components and Aspects
Lionel Seinturier, Nicolas Pessemier, Laurence Duchien,
Thierry Coupaye . 139

X Table of Contents

CBSE in Small and Medium-Sized Enterprise: Experience Report
Reda Kadri, François Merciol, Salah Sadou . 154

Supervising Distributed Black Boxes
Philippe Mauran, Gérard Padiou, Xuan Loc Pham Thi 166

Generic Component Lookup
Till G. Bay, Patrick Eugster, Manuel Oriol . 182

Using a Lightweight Workflow Engine in a Plugin-Based Product Line
Architecture

Humberto Cervantes, Sonia Charleston-Villalobos 198

A Formal Component Framework for Distributed Embedded Systems
Christo Angelov, Krzysztof Sierszecki, Nicolae Marian,
Jinpeng Ma . 206

A Prototype Tool for Software Component Services in Embedded
Real-Time Systems

Frank Lüders, Daniel Flemström, Anders Wall, Ivica Crnkovic 222

Service Policy Enhancements for the OSGi Service Platform
Nico Goeminne, Gregory De Jans, Filip De Turck, Bart Dhoedt,
Frank Gielen . 238

A Process for Resolving Performance Trade-Offs in Component-Based
Architectures

Egor Bondarev, Michel Chaudron, Peter de With 254

A Model Transformation Approach for the Early Performance and
Reliability Analysis of Component-Based Systems

Vincenzo Grassi, Raffaela Mirandola, Antonino Sabetta 270

Impact of Virtual Memory Managers on Performance of J2EE
Applications

Alexander Ufimtsev, Alena Kucharenka, Liam Murphy 285

On-Demand Quality-Oriented Assistance in Component-Based Software
Evolution

Chouki Tibermacine, Régis Fleurquin, Salah Sadou 294

Components Have Test Buddies
Pankaj Jalote, Rajesh Munshi, Todd Probsting . 310

Table of Contents XI

Short Papers

Defining “Predictable Assembly”
Dick Hamlet . 320

A Tool to Generate an Adapter for the Integration of Web Services
Interface

Kwangyong Lee, Juil Kim, Woojin Lee, Kiwon Chong 328

A QoS Driven Development Process Model for Component-Based
Software Systems

Heiko Koziolek, Jens Happe . 336

An Enhanced Composition Model for Conversational Enterprise
JavaBeans

Franck Barbier . 344

Dynamic Reconfiguration and Access to Services in Hierarchical
Component Models

Petr Hnětynka, Frantǐsek Plášil . 352

MaDcAr: An Abstract Model for Dynamic and Automatic
(Re-)Assembling of Component-Based Applications

Guillaume Grondin, Noury Bouraqadi, Laurent Vercouter 360

Adaptation of Monolithic Software Components by Their
Transformation into Composite Configurations Based on Refactoring

Gautier Bastide, Abdelhak Seriai, Mourad Oussalah 368

Towards Encapsulating Data in Component-Based Software Systems
Kung-Kiu Lau, Faris M. Taweel . 376

Virtualization of Service Gateways in Multi-provider Environments
Yvan Royon, Stéphane Frénot, Frédéric Le Mouël 385

Author Index . 393

Defining and Checking Deployment Contracts
for Software Components

Kung-Kiu Lau and Vladyslav Ukis

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu, vukis}@cs.man.ac.uk

Abstract. Ideally in the deployment phase, components should be composable,
and their composition checked. Current component models fall short of this ideal.
Most models do not allow composition in the deployment phase. Moreover, cur-
rent models use only deployment descriptors as deployment contracts. These
descriptors are not ideal contracts. For one thing, they are only for specific con-
tainers, rather than arbitrary execution environments. In any case, they are
checked only at runtime, not deployment time. In this paper we present an ap-
proach to component deployment which not only defines better deployment con-
tracts but also checks them in the deployment phase.

1 Introduction

Component deployment is the process of getting components ready for execution in a
target system. Components are therefore in binary form at this stage. Ideally these bi-
naries should be composable, so that an arbitrary assembly can be built to implement
the target system. Furthermore, the composition of the assembly should be checked so
that any conflicts between the components, and any conflicts between them and the
intended execution environment for the system, can be detected and repaired before
runtime. This ideal is of course the aim of CBSE, that is to assemble third-party bina-
ries into executable systems. To realise this ideal, component models should provide
composition operators at deployment time, as well as a means for defining suitable
deployment contracts and checking them.

Current component models fall short of this ideal. Most models only allow compo-
sition of components in source code. Only two component models, JavaBeans [7] and
the .NET component model [6, 20], support composition of binaries. Moreover, current
models use only deployment descriptors as deployment contracts [1]. These descriptors
are not ideal contracts. They do not express contracts for component composition. They
are contracts for specific containers, rather than arbitrary execution environments. In
any case, they are checked only at runtime, not deployment time.

Checking deployment contracts at deployment time is advantageous because they es-
tablish component composability, and thus avoid runtime conflicts. Moreover, they also
allow the assembly to be changed if necessary before runtime. Furthermore, conflicts
due to incompatibilities between components and the target execution environment of
the system into which they are deployed can be discovered before runtime.

In this paper we present an approach to component deployment which not only de-
fines better contracts but also checks them in the deployment phase. It is based on a

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 K.-K. Lau and V. Ukis

pool of metadata we have developed, which components can draw on to specify their
runtime dependencies and behaviour.

2 Component Deployment

We begin by defining what we mean by component deployment. First, we define a ‘soft-
ware component’ along the lines of Szyperski [24] and Heinemann and Councill [10],
viz. ‘a software entity with contractual interfaces and contextual dependencies, defined
in a component model’.1

Our definition of component deployment is set in the context of the component life-
cycle. This cycle consists of three phases: design, deployment and runtime (Fig. 1).

phase
DeploymentDesign

phase phase
Runtime

Fig. 1. Software component lifecycle

In the design phase, a component is designed and implemented in source code, by
a component developer. For example, to develop an Enterprise JavaBean (EJB) [18]
component in the design phase, the source code of the bean is created in Java, possibly
using an IDE like Eclipse. A component in this phase is not intended to run in any
particular system. Rather, it is meant to be reusable for many systems.

In the deployment phase, a component is a binary, ready to be deployed into an
application by a system developer. For example, in the deployment phase, an EJB is a
binary “.class” file compiled from a Java class defined for the bean in the design phase.

For deployment, a component needs to have a deployment contract which specifies
how the component will interact with other components and with the target execution
environment. For example, in EJB, on deployment, a deployment descriptor describing
the bean has to be created and archived with the “.class” file, producing a “.jar” file,
which has to be submitted to an EJB container.

An important characteristic of the deployment phase is that the system developer
who deploys a component may not be the same person as the component developer.

In the runtime phase, a component instance is created from the binary component and
the instantiated component runs in a system. Some component models use containers
for component instantiation, e.g. EJB and CCM [19]. For example, an EJB in binary
form as a “.class” file archived in a “.jar” file in the deployment phase gets instantiated
and is managed by an EJB container in the runtime phase.

2.1 Current Component Models

Of the major current software component models, only two, viz. JavaBeans and the
.NET component model, allow composition in the deployment phase. To show this, we
first relate our definition of the phases of the component lifecycle (Fig. 1) to current
component models.

1 Note that we deal with components obeying a component model and not with COTS [2].

Defining and Checking Deployment Contracts for Software Components 3

Design

A

B

Deploy−
ment

InsA

InsB

Runtime

Category 1: EJB, COM, CCM,

UML2.0, PECOS, Pin, Fractal
Koala, SOFA, KobrA, ADLs,

A

B

DeploymentDesign

InsA

InsB

Runtime DeploymentDesign Runtime

Category 2: JavaBeans Category 3: .NET Component Model

A

B

B

C

AA B

C

InsA

InsC

InsB

Fig. 2. Current component models

Current component models can be classified according to the phases in which com-
ponent composition is possible. We can identify three categories [16] as shown in Fig. 2.

In the first category, composition (denoted by the small linking box) happens only at
design time. The majority of current models, viz. EJB, COM [3], CCM,ADLs (archi-
tecture description languages) [22],2 etc. fall into this category. For instance, in EJB, the
composition is done by direct method calls between beans at design time. An assem-
bly done at design time cannot be changed at deployment time, and gets instantiated at
runtime into executable instances (denoted by InsA, InsB.)

In the second category, composition happens only at deployment time. There is only
one model in this category, viz. JavaBeans. In JavaBeans, Java classes for beans are de-
signed independently at design time. At deployment time, binary components (“.class”
files) are assembled by the BeanBox, which also serves as the runtime environment for
the assembly. Java beans communicate by exchanging events. The assembly is done at
deployment time by the BeanBox, by generating and compiling an event adapter class.

In the third category, composition can happen at both design and deployment time.
The sole member of this category is the .NET component model. In this model, compo-
nents can be composed as in Category 1 at design time, i.e. by direct method calls. In
addition, at deployment time, components can also be composed as in Category 2. This
is done by using a container class, shown as a rectanglular box with a bold border. The
container class hosts the binary components (“.dll” files) and can make direct method
calls into them.

Finally, current component models target either the desktop or the web environment,
except for the .NET component model, which is unified for both environments. Having
a component model that allows components to be deployed into both desktop and web
environments enhances the applicability of the component model.

2.2 Composition in the Deployment Phase

Composition in the deployment phase can potentially lead to faster system development
than design time composition, since binary components are bought from component
suppliers and composed using (ideally pre-existing) composition operators, which can
even be done without source code development. However, composition at component
deployment time poses new challenges not addressed by current component models.
These stem mainly from the fact that in the design phase, component developers design

2 In C2 [17] new components can be added to an assembly at deployment time since C2 com-
ponents can broadcast events; but new events can only be defined at design time.

4 K.-K. Lau and V. Ukis

Design Deployment Runtime

Execution Environment Execution Environment

Is the assembly conflict−free?

B

TM2

ED2

TM2

ED2

A

TM1

ED1

B

TM = Threading model
ED = Environmental

dependencies

A

TM1

ED1

TM2

ED2

InsB

TM1

ED1

InsA

Fig. 3. Composition in deployment phase

and build components (in source code) independently. In particular, for a component,
they may (i) choose any threading model; and (ii) define dependencies on the execution
environment. This is illustrated by Fig. 3.

A component may create a thread inside it, use some thread synchronisation mech-
anisms to protect some data from concurrent access, or not use any synchronisation
mechanisms on the assumption that it will not be deployed into an environment with
concurrency.

Also each component supplier may use some mechanisms inside a component that
require some resources from the system execution environment, thus defining the com-
ponent’s environmental dependencies. For instance, if a component uses socket com-
munication, then it requires a network from the execution environment. If a component
uses a file, then it requires file system access. Note that component suppliers do not
know what execution environments their components will be deployed into.

In the deployment phase, the system developer knows the system he is going to build
and the properties of the execution environment for the system. However, he needs to
know whether any assembly he builds will be conflict-free (Fig. 3), i.e. whether (i) the
threading models in the components are compatible; (ii) their environmental dependen-
cies are compatible; (iii) their threading models and environmental dependencies are
compatible with the execution environment; and (iv) their emergent assembly-specific
properties are compatible with the properties of the execution environment if compo-
nents are to be composed using a composition operator. The system developer needs to
know all this before the runtime phase. If problems are discovered at runtime, the sys-
tem developer will not be able to change the system. By contrast, if incompatibilities are
found at deployment time, the assembly can still be changed by exchanging components.

By the execution environment we mean either the desktop or the web environment,
and not a container (if any) for components. These two environments are the most wide-
spread, and differ in the management of system transient state and concurrency. Since
the component developer does not know whether the components will be deployed on
a desktop or a web server, the system developer has to check whether the components
and their assembly are suitable to run in the target execution environment.

2.3 Deployment Contracts

Deployment contracts express dependencies between components, and between them
and the execution environment. As shown in [1], in most current component mod-
els a deployment contract is simply the interface of a component. In EJB and CCM,

Defining and Checking Deployment Contracts for Software Components 5

?
Container

Execution Environment

?

? ?

Execution Environment

DD = Deployment descriptor ? = Deployment contract

?

DDDD

B

A B

A

Fig. 4. Deployment contracts

deployment contracts are deployment and component descriptors respectively. As
shown in Fig. 4, a deployment (or component) descriptor contractualises the manage-
ment of a component by a container. However, the information about components inside
the descriptors is not used to check whether components are compatible. Nor is it used
to check whether a component can be deployed in an execution environment.

By contrast, our approach aims to check conflicts between components; and, in the
presence of a component container, between the container and the execution environ-
ment; in the absence of a container, between components and the execution environ-
ment. This is illustrated by Fig. 4, where the question marks denote our deployment
contracts, in the presence or absence of containers.

We can also check our deployment contracts, so our approach addresses the challenge
of deployment time composition better than existing component models that allow de-
ployment time composition, viz. the. NET component model and JavaBeans. In the .NET
component model, no checking for component compatibilities is done during deploy-
ment. In JavaBeans, the BeanBox into which beans are deployed, is deployed on the
desktop environment, and it checks whether beans can be composed together by check-
ing whether events emitted by a source bean can be consumed by the target bean, by
matching event source with event sink. However, this check is not adequate with regard
to threading models and environment dependencies, as shown by the following example.

Example 1. Consider a Java bean that creates a thread inside itself to perform some
long-running task in the background and sends an event to another bean from within
that thread. The target bean may have problems. For example, if the target bean makes
use of a COM component that requires a single-threaded apartment, and the bean is
invoked from different threads, the component assembly is bound to fail.

This shows that the threading model of the source bean, namely sending an event
from an internally created thread, and the environmental dependency of the target bean,
namely the use of the COM component requiring a single-threaded apartment, are in-
compatible. The assembly will fail at runtime even though the BeanBox’s check for
component (event) compatibility is passed.

3 Defining Deployment Contracts

In this section we discuss how we define suitable deployment contracts. Our approach is
based on metadata about component environmental dependencies and threading mod-
els. To determine and create suitable metadata, we studied the two most comprehensive,
operating system-independent frameworks [9] for component development: J2EE [23]

6 K.-K. Lau and V. Ukis

and .NET Framework [25]. In particular, we studied the core APIs of these two frame-
works in order to identify where and how a component can incur environmental de-
pendencies and influences on its threading model. The comprehensiveness and wide
application of these frameworks should imply the same for the metada we create. We
define deployment contracts using these metadata3 as attributes that the component de-
veloper is obliged to attach to components he develops.

3.1 Environmental Dependencies

A component incurs an environmental dependency whenever it makes use of a resource
offered by the operating system or the framework using which it is implemented. For
each resource found this way we created an attribute expressing the semantics of the
environmental dependency found. Each attribute has defined parameters and is there-
fore parameterisable. Moreover, each attribute has defined attribute targets from the
set {component, method, method’s parameter, method’s return value, property}. An
attribute target defines the element of a component it can be applied to.

To enable a developer to express resource usage as precisely as possible, we allow
each attribute to have (a subset of) the following parameters: 1) ‘UsageMode’: {Create,
Read, Write, Delete} to indicate the usage of the resource. Arbitrary combinations of
values in this set are allowed. However, here we assume that inside a component, cre-
ation, if specified, is always done first. Also, deletion, if specified, is always done last;
2) ‘Existence’: {Checked, Unchecked} to indicate whether the component checks for
existence of a resource or makes use of it assuming it is there; 3) ‘Location’: {Local,
Remote} to indicate whether a resource required by component is local on the machine
the component is deployed to or is remote; 4) ‘UsageNecessity’: {Mandatory, Optional}
to indicate whether a component will fail to execute or will be able to fulfil its task if
the required resource is not available.

Meaningful combinations of the values of these parameters allow an attribute to ap-
pear in different forms (120 for an attribute with all 4 parameters) which have to be
analysed differently.

In addition to these four parameters, any attribute may have other parameters specific
to a particular environmental dependency. For instance, consider an attribute on a com-
ponent’s method expressing an environmental dependency to a COM component shown
in Fig. 5. (Such a component was used in Example 1.) The component has a method
“Method2” that has the attribute “UsedCOMComponent” attached. The attribute has
(1) shows the COM GUID used by the component; (2) says that three parameters:

public class B
{
[UsedCOMComponent("DC577003−3436−470c−8161−EA9204B11EBF",
COMAppartmentModel.Singlethreaded,
UsageNecessity.Mandatory)]
public void Method2(...) {...}

}

(1)
(2)
(3)

Fig. 5. A component with an environmental dependency

3 A full list and details can be found in [14].

Defining and Checking Deployment Contracts for Software Components 7

Table 1. Categories of resource usage and component developer’s obligations

1 Usage of an operating-system resource. For instance: Files, Directories, Input/Ouput Devices
like Printers, Event Logs, Performance Counters, Processes, Residential Services,
Communication Ports and Sockets.

2 Usage of a resource offered by a framework. For instance: Application and Session State
storages offered by J2EE and .NET for web development, Communication Channels to
communicate with remote objects.

3 Usage of a local resource. For instance: Databases, Message Queues and Directory
Services.

4 Usage of a remote resource. For instance: Web Services or Web Servers, Remote Hosts,
and resources from Category 3 installed remotely.

5 Usage of a framework. For instance: DirectX or OpenGL.
6 Usage of a component from a component model. For instance: a Java Bean using a COM

component via EZ JCOM [8] framework.

the used COM component requires a single-threaded environment; (3) says that the
usage of the COM component is mandatory. Furthermore, implicitly the attribute says
that the component requires access to a file system as well as Windows Registry since
COM components have to be registered there with GUID.

We have analysed the pool of attributes we have created, and as a result we can define
categories of resource usage for which the component developer is obliged to attach the
relevant attributes to their component’s elements. The categories are shown in Table 1:

Using binary components with relevant attributes from the categories in Table 1, it
is possible at deployment time to detect potential conflicts based on contentious use of
resources from Table 1.

Finally, metadata about environmental dependencies can be used to check for mutual
compatibility of components in an assembly. For instance, if a component from an
assembly requires continuous access to a file in the file system in the write mode but
another component in the assembly also writes to the same file but creates it afresh
without checking whether it has existed before, the first component may lose its data
and the component assembly may fail to execute.

3.2 Threading Models

A component can create a thread, register a callback, invoke a callback on a thread [4, 5],
create an asynchronous method [11], make use of thread-specific storage [21] or access
a resource requiring thread-affine access,4 etc. For each of these cases, we created an
attribute of the kind described in Section 3.1 expressing the semantics of the case.

For instance, consider an attribute expressing the creation of a thread by a compo-
nent shown in Fig. 6. (Such a component was used in Example 1.) The component
has a method “Method1” that has the attribute “SpawnThread” attached. The parameter
(1) indicates the number of threads spawned. If this method is composed with another
component’s method requiring thread affinity, the composition is going to fail.

4 Thread-affine access to a resource means that the resource is only allowed to be accessed from
one and the same thread.

8 K.-K. Lau and V. Ukis

public class A
{

[SpawnThread(1)] (1)
public void Method1(...) {...}

}

Fig. 6. A component with a defined threading model

Table 2. Categories of threading issues and component developer’s obligations

1 Existence of an asynchronous method.
2 Registration or/and invocation of a callback method.
3 Existence of reentrant or/and thread-safe methods.
4 Existence of component elements requiring thread-affine access.
5 Existence of Singletons or static variables.
6 Spawning a thread.
7 Usage of Thread-specific storage.
8 Taking as a method parameter of returning a synchronisation primitive.

We have analysed the pool of attributes we have created, and as a result we can define
categories of threading issues for which the component developer is obliged to attach
the relevant attributes to their components. These categories are shown in Table 2:

Using binary components with attributes from the categories shown in Table 2, it is
possible at component deployment time to detect potential conflicts based on inappro-
priate usage of threads and synchronisation primitives by components in an assembly.
It is also possible to point out potential deadlocks in a component assembly.

In total, for both environmental dependencies and threading models, we have created
a pool of about 100 metadata attributes5. Now we show an example of their use.

Example 2. Consider Example 1 again.The two incompatible Java beans are shown in
Fig. 7 with metadata attributes from Sections 3.1 and 3.2. Using these attributes we can
detect the incompatibility of the beans at deployment time.6

}

{

public void Method1(...) {...}
[SpawnThread(1)]

public class A

Design

{

COMAppartmentModel.Singlethreaded,
UsageNecessity.Mandatory)]

}

public class B

[UsedCOMComponent("DC577003−...",

public void Method2(...) {...}

Deployment

Is the assembly conflict−free?

Desktop

A

Method1()

B

Method2()

Fig. 7. Example 1 using metadata attributes

In the design phase, The two beans are the ones in Figs. 5 and 6. In the deployment
phase, by performing an analysis of the metadata attributes attached to the compo-
nents, we can deduce that method “A.Method1()” invokes the method “B.Method2()”

5 In .NET Framework v2.0 there are about 200 attributes, but they are only checked at runtime.
6 Note that this problem may also arise in other component models.

Defining and Checking Deployment Contracts for Software Components 9

on an internally created thread. Therefore, if method “A.Method1()” is invoked sev-
eral times, each time a new thread is created that makes an invocation of the method
“B.Method2()”. Therefore, the COM component used by method “B.Method2()” is not
going to be called from one thread and its requirement for a single threaded apartment
cannot be fulfiled in such composition of components A and B. Therefore, the system
developer can be warned not to do such composition.

Besides this, using a COM component requires use of a file system, where the com-
ponent resides, and Windows Registry, where it must be registered. The system de-
veloper can also be warned if these resources are unavailable in the system execution
environment.

Moreover, in Fig. 7 the components are deployed into the desktop environment. In
this environment, there is a guarantee that the main thread of the system is always
the same for the lifetime of a system instance. Therefore, the system developer need
not be warned that the execution environment may cause problems. Note that in the
web environment there is no guarantee for the thread affinity of the main thread. If the
assembly in Fig. 7 was deployed into the web environment, it would also fail since
the COM component used by the component B would be accessed by different threads
imposed by the web environment.

3.3 Implementing Retrievable Metadata

The attributes we have created must be retrievable at deployment time, i.e. they must be
retrievable from binaries. In this section, we explain how we implement them.

Our implementation draws on .NET’s facility for defining custom attributes7. A cus-
tom attribute in .NET is a class derived from the .NET’s class System.Attribute. An
example of an attribute from the attribute pool we have defined is shown below:

[AttributeUsage(AttributeTargets.Class|AttributeTargets.Method|
AttributeTargets.Property, AllowMultiple=true)]

public class UsedWebService : System.Attribute {
public UsedWebService(string url, string userName,
string pwd, UsageNecessity usageNecessity) {...} ... }

The attribute above is called ‘UsedWebService’. It has a constructor, which takes as
parameters the url to the web service, credentials used when accessing the web service
as well as whether the web service usage is mandatory for the component.

Furthermore, above the attribute declaration ‘public class UsedWebService : Sys-
tem.Attribute’, the usage of the attribute is specified by a .NET built-in attribute ‘At-
tributeUsage’ that indicates which elements of components the attribute is allowed to
be applied to, as well as whether multiple attributes can be applied to the same ele-
ment. Here the attribute ‘UsedWebService’ can be applied to either a whole class (we
model components as classes) or a component’s method or property. Here ‘AllowMul-
tiple=true’ means that the attribute ‘UsedWebService’ can be applied multiple times to
the same component element. That is, if a component makes use of several web ser-
vices, several ‘UsedWebService’ attributes can be applied to indicate the component’s
environmental dependencies.

7 In Java, Annotations can be used to express the metadata. However, they are somewhat less
flexible than .NET Attributes.

10 K.-K. Lau and V. Ukis

To retrieve attributes from a binary component, we use .NET’s Reflection facility
from System.Reflection namespace. For instance, to retrieve attributes at component
level, the following code is executed:

Type compType = Type.GetType(componentName); (i)
object[] attributes = compType.GetCustomAttributes(false);(ii)

(i) loads the component type from the binary component using component name in a
special format, and (ii) retrieves all the attributes attached to the component. Note that
no component instantiation has been done.

To retrieve attributes on component’s properties, the following code is executed:

Type compType = Type.GetType(componentName); (i)
foreach(PropertyInfo prop in compType.GetProperties()) (ii)
{object[] attributes = prop.GetCustomAttributes(false);} (iii)

(i) loads the component type from the binary component, (ii) iterates through all the
properties inside the component, and (iii) retrieves all the attributes attached to the
current property.

Attributes attached to component’s methods, method’s parameters and return values
can be retrieved in a similar but more complicated manner.

Being able to retrieve the attributes at deployment time enables us to check deploy-
ment contracts before component instantiation at run time.

4 Checking Deployment Contracts

Given an assembly of components with deployment contracts and a chosen execution
environment in the deployment phase, as illustrated by Fig. 4, we can use the deploy-
ment contracts to determine whether the assembly is conflict-free. In this section we
explain how we do so.8

The checking process first loads the binary components, and then for each binary
retrieves the attributes at all levels (component, property, method, and method input
and return parameters). The checking task is then divided into 2 sub-tasks: (i) Analysis
of mutual compatibility of deployment contracts of components in the assembly with
respect to usage of resources in the assembly’s execution environment; (ii) Analysis of
mutual compatibility of deployment contracts of components in the assembly with re-
spect to their threading models in consideration of state and concurrency management
of assembly’s execution environment. Both sub-tasks consist of checking the deploy-
ment contracts involved. The results of the checking range over {ERROR, WARNING,
HINT} with the obvious meaning.

For (i), we perform the following: For each attribute at any level we determine re-
source(s) required in the execution environment. If a resource is not available in the
execution environment, an ERROR is issued.

Furthermore, we follow component connections in the assembly and consider how
resources are used by the individual components by evaluating attached attributes’

8 We present only an outline here.

Defining and Checking Deployment Contracts for Software Components 11

parameters. Once an attribute representing a resource usage is found on a component,
we follow the chain of components till another component with an attribute represent-
ing the usage of the same resource is found either at method or property or compo-
nent level. Once such a component is found, we check the “UsageMode” parameters
of the attributes on the two components for compatibility and issue ERROR, WARN-
ING or HINT depending on the parameters’ values. After that, we again follow the
chain of components till the next component with an attribute representing the usage
of the same resource is found and check the values of the parameter “UsageMode”
on corresponding attributes of the component and the previous one in the chain. This
process is repeated till all attributes representing resource usage on all components are
processed.

Moreover, specific parameters of each attribute are analysed and WARNINGs and
HINTs are issued if necessary. For instance, if attributes’ parameters indicate that com-
ponents in a component assembly use a database and not all components uniformly use
either encrypted or unencrypted database connection, a WARNING is issued.

Another example is usage of cryptography files. If a cryptography file is used, it
is hinted which cryptography algorithm has been used to create the certificate. This
information is useful to the system developer due to the fact the different cryptogra-
phy algorithms have different degrees of security and different processing times when
checked. Depending on system requirements a specific cryptography algorithm may or
may not be suitable.

A further example is represented by communication channels. If a communication
channel is used, it is hinted which communication protocol for data transfer and which
serialisation method for data serialisation is used. This information is used by the sys-
tem developer, who knows system requirements, to judge whether the component is
suitable for their system.

For (ii), we perform the following: We follow component connections in the assem-
bly to determine for each component if it is stateful or stateless, and multithreaded or
singlethreaded. This can be done by evaluating corresponding attributes on a compo-
nent. After that we determine if the assembly is stateful or stateless, and multithreaded
and singlethreaded depending on the components in the assembly. If at least one com-
ponent in the assembly is stateful, the assembly is stateful. Otherwise, it is stateless. If
at least one component in the assembly is multithreaded, the assembly is multithreaded.
Otherwise, it is singlethreaded.

Following this, we check whether state management of the assembly’s execution
environment is suitable for the assembly. Furthermore, we check whether concurrency
management of the assembly’s execution environment is suitable for the assembly. We
issue ERRORs, WARNINGs or HINTs depending on the level of incompatibility.

Apart from that, if a component can repeatedly issue a callback to another one on an
internally created thread, and the callback method either requires thread-affine access;
or accesses component’s transient state in not read-only mode, or accesses a singleton
or a static variable, and no component element enclosing it is marked as reentrant or
thread-safe, an ERROR is issued pointing out a likely state corruption problem.

Moreover, if synchronisation primitives are exchanged between components, a
WARNING is issued pointing out a possible cause for a deadlock.

12 K.-K. Lau and V. Ukis

5 Example

To illustrate the usefulness of deployment contracts we show how they can be applied
to a design pattern described in [4, 5]. The design pattern is for systems including one
component that loads data in the background and another one that displays the data.
Furthermore, while the data is being loaded in the background, the loading compo-
nent notifies the one displaying the data about the chunks of data already loaded. The
component displaying data can either display the chunks of data already loaded, thus
implementing so-called streaming, or just display a visualisation of it, e.g. a progress
bar, which advances each time the loading component sends a notification that a chunk
of data has been loaded.

Fig. 8 shows two such components. Component A has two methods “DisplayData”,
which displays loaded data, and “DisplayProgress”, which displays a progress bar. A’s
developer knows that the method “DisplayProgress” may be used as a callback method
by another component, which loads the data. They also know that a callback may be
invoked on different threads. Since no synchronisation of multiple threads is done inside
the component, state corruption will arise if it is used concurrently from multiple threads.
Therefore, in the design phase, the component developer is obliged to attach the attribute
“RequiredThreadAffineAccess” at component level (in the design phase) to let the system
developer know that the component must not be used in multithreaded scenarios.

public class A

{

public void DisplayData(int id) {...}

public void DisplayProgress(...) {...}

}

[RequiredThreadAffineAccess]
public class B
{
[IssueCallback("RegisterProgressCallback",
ExecutingThread.InternallyCreatedThread,
UsageNecessity.Mandatory)]
public void LoadData(int id) {...}
[CallbackRegistration]
public void RegisterProgressCallback(...) {...}

}

Design Deployment

Desktop

Is the assembly
conflict−free?

A B

Fig. 8. Implementation of a design pattern for components with use of metadata attributes

Component B has two methods: “RegisterProgressCallback” and “LoadData”. The
method “RegisterProgressCallback” registers a callback of another component with the
component. In this situation, the component developer is obliged to attach the attribute
“CallbackRegistration” to the component’s method. The method “LoadData” loads the
data. Moreover, while the data is being loaded, the method invokes a callback to notify
the component’s user that a certain chunk of data has been loaded. In this situation,
the component developer is obliged to attach and parameterise the attribute “IssueCall-
back”. The attribute parameters show that the method will issue the callback registered
with the method “RegisterProgressCallback”. The thread executing the callback will
be an internally created one. Furthermore, the callback is mandatory. Therefore, the
component must be composed with another component in such a way that the method
“RegisterProgressCallback” is called before the method “LoadData” is called.

In the deployment phase, suppose the system developer chooses the desktop as the
execution environment. Furthermore, suppose the system developer decides to compose

Defining and Checking Deployment Contracts for Software Components 13

components A and B in the following way: since A displays the data and needs to know
about chunks of data loaded, its method “DisplayProgress” can be registered with B
to be invoked as a callback while the data is being loaded by B. Once the data has
been loaded, it can be displayed using A’s method “DisplayData”. B offers a method
“RegisterProgressCallback” with the attribute “CallbackRegistration” attached. There-
fore, this method can be used to register component A’s method “DisplayProgress” as
a callback. After that, B’s method “LoadData” can be called to initiate data loading.
While the data is being loaded, the method will invoke the registered callback, which is
illustrated by the attribute “IssueCallback” attached to the method.

The scenario required by the system developer seems to be fulfilled by assembling
components A and B in this way. To confirm this, he can check the deployment contracts
of A and B in the manner described in the previous section. We have implemented a
Deployment Contracts Analyser (DCA) for automating the checking process. For this
example, the result given by DCA is shown Fig. 9.

DCA finds out that component A has a component-level attribute “RequiredThread-
AffineAccess” that requires all its methods to be called always from one and the same
thread. The method “DisplayProgress” will be called from a thread internally created
by the method “LoadData”. But the method “DisplayData” will be called from the main
thread. This means that methods of A will be called from different threads, which con-
tradicts its requirement for thread-affine access. Furthermore, if data is loaded several
times, the method “B.LoadData(...)” will create a new thread each time it is called
thus invoking the method “A.DisplayProgress(...)” each time on a different thread. This
means that A and B are incompatible.

Fig. 9. Deployment Contracts Analyser

14 K.-K. Lau and V. Ukis

A component from the assembly AB has to be replaced by another one. Then a de-
ployment contracts analysis has to be performed again. This process has to be repeated
until an assembly of compatible components, i.e. a conflict-free assembly, is found.
Once a conflict-free assembly is found, it can be executed at runtime.

6 Evaluation

The idea of deployment contracts based on a predefined pool of parameterisable at-
tributes can be applied to any component model supporting composition of components
at deployment time. We have implemented the idea in .NET, and since the .NET com-
ponent model supports deployment time composition (Fig. 2), our implementation is a
direct extension of the .NET component model with about 100 new attributes, together
with a deployment-time analyser.

Our attributes are created by analysing the APIs of J2EE and .NET frameworks.
However, the idea is general and therefore other frameworks for component develop-
ment can be studied to create more attributes, thus enabling more comprehensive rea-
soning by extending deployment contracts analysis.

Our pool of metadata for component deployment is general-purpose since it is cre-
ated by analysing general-purpose frameworks. Other pools of metadata for component
deployment, see [12] for a survey, are mostly not general-purpose. For example, MetaH
has a set of metadata for the domains of flight control and avionics; the CR-RIO Frame-
work has metadata for distribution and processing policies.

Use of metadata for component deployment in current component models [12] such
as EJB and CCM is restricted to component deployment descriptors that are XML spec-
ifications describing how to manage components by the component container. Specifi-
cation of metadata in an easily changeable form like XML has the disadvantage that it
can be easily tampered with, which may be fatal for system execution. Therefore, our
metadata is contained in the real binary components, cannot be easily tampered with
and is retrieved automatically by the Deployment Contracts Analyser.

Moreover, metadata about components in deployment descriptors is not analysed for
component mutual compatibility. Although deployment descriptors allow specification
of some environmental dependencies and some aspects of threading, the information
specifiable there is not comprehensive and only reflects features that are manageable
by containers, which are limited. By contrast, our metadata set is comprehensive and
the component developer is obliged to show all environmental dependencies and as-
pects of threading for their component. In addition, our deployment contracts analysis
takes account of properties of the system execution environment, as well as emergent
assembly-specific properties like e.g. transient state, which other approaches do not do.

Furthermore, in current component models employing metadata for component de-
ployment, metadata is not analysed at deployment time. For instance, in EJB and CCM
the data in deployment descriptors is used by containers at runtime but not at deployment
time. The deployment descriptor has to be produced at deployment time but its contents
are used at runtime. In .NET, only metadata for graphical component arrangement is
analysed at deployment time. By contrast, in our approach all the metadata is analysed
at deployment time, which is essential when components come from different suppliers.

Defining and Checking Deployment Contracts for Software Components 15

Currently the J2EE and .NET frameworks provide compilers for their components.
However, if components are produced and compiled independently by component de-
velopers and composed later in binary form by system developers, no means for compi-
ler-like checking of composition is provided. By contrast, our Deployment Contracts
Analyser can check components for compatibility when they are in binary form and
ready to be composed by a compositon operator.

Using our attributes, developers have extensive IDE support in the form of Intel-
liSense. Moreover, .NET developers should be familiar with the concept of attributes thus
making it easy for them to employ the proposed approach using new attributes. Thanks
to various parameters on each attribute, the component developer can flexibly specify
how resources are used inside components and which threading aspects are available.

Furthermore, although EJB specification forbids component developers to manage
threads themselves, there is nothing in current EJB implementations that would prevent
the developers to do so. If enterprise beans manage threads themselves, they may in-
terfere with the EJB container and cause the running system to fail. By contrast, our
approach checks threading models of components for compatibility before runtime,
thus enabling the system developer to recognise and prevent runtime conflicts before
runtime.

7 Conclusion

In this paper,we have shown how to use metadata to define deployment contracts of com-
ponents that express component’s environmental dependencies and threading
model. Such contracts bind two parties: (a) the component developer, who develops com-
ponents, and (b) the system developer, who develops systems by composing pre-existing
components using composition operators. The former is obliged to attach the attributes
to component’s elements in specified cases. The latter is guaranteed to be shown conflicts
among the third-party components in assemblies they create at deployment time.

We have also shown how deployment contracts analysis can be performed to help
the system developer spot these conflicts. Most importantly, incompatible components
in an assembly can be replaced by other, compatible, ones to ensure conflict-freedom
of the assembly, before runtime.

Besides checking deployment contracts at deployment time, we have also imple-
mented a generic container for automated binary component composition [13] using
special composition operators – exogenous connectors [15]. Our future work will com-
bine the generic container and the Deployment Contracts Analyser, thus allowing auto-
mated component composition only if the analyser does not discover any conflicts with
component assembly.

References

1. F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, and
K. Wallnau. Volume ii: Technical concepts of component-based software engineering, 2nd
edition. Technical Report CMU/SEI-2000-TR-008, Carnegie Melon Software Engineering
Institute, 2000.

16 K.-K. Lau and V. Ukis

2. B. Boehm and C. Abts. COTS integration: Plug and pray? IEEE Computer, 32(1):135–138,
1999.

3. D. Box. Essential COM. Addison-Wesley, 1998.
4. Schmidt D. C. Pattern-oriented Software Architecture. Vol. 2, Patterns for Concurrent and

Networked Objects. New York John Wiley&Sons, Ltd., 2000.
5. Microsoft Corporation. Microsoft asynchronous pattern for components.
6. Microsoft Corporation. Msdn .net framework class library version 2.0, 2005.
7. R. Englander. Developing Java Beans. O’Reilly & Associates, 1997.
8. EZ JCom Framework web page. http://www.ezjcom.com.
9. M. Fowler, D. Box, A. Hejlsberg, A. Knight, R. High, and J. Crupi. The great j2ee vs.

microsoft.net shootout. In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications, pages
143–144, New York, NY, USA, 2004. ACM Press.

10. G.T. Heineman and W.T. Councill, editors. Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, 2001.

11. A. W. Keen and R. A. Olsson. Exception handling during asynchronous method invocation.
In Parallel Processing: 8th International Euro-Par Conference Paderborn, Germany, volume
2400 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

12. K.-K. Lau and V. Ukis. Component metadata in component-based software development: A
survey. Preprint 34, School of Computer Science, The University of Manchester, Manchester,
M13 9PL, UK, October 2005.

13. K.-K. Lau and V. Ukis. A container for automatic system control flow generation us-
ing exogenous connectors. Preprint 31, School of Computer Science, The University of
Manchester, Manchester, M13 9PL, UK, August 2005.

14. K.-K. Lau and V. Ukis. Deployment contracts for software components. Preprint 36, School
of Computer Science, The University of Manchester, Manchester, M13 9PL, UK, February
2006. ISSN 1361 - 6161.

15. K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-
nents. In Proc. 8th Int. SIGSOFT Symp. on Component-based Software Engineering, LNCS
3489, pages 90–106, 2005.

16. K.-K. Lau and Z. Wang. A taxonomy of software component models. In Proc. 31st Euromi-
cro Conference. IEEE Computer Society Press, 2005.

17. N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using object-oriented typing to
support architectural design in the c2 style. In Proc. ACM SIGSOFT’96, pages 24–32, 1996.

18. Sun Microsystems. Enterprise java beans specification, version 3.0, 2005.
19. Object Management Group (OMG). Corba components, specification, version 0.9.0, 2005.
20. D.S. Platt. Introducing Microsoft .NET. Microsoft Press, 3rd edition, 2003.
21. D. C. Schmidt, T. Harrison, and N. Pryce. Thread-specific storage - an object behavioral

pattern for accessing per-thread state efficiently. In The Pattern Languages of Programming
Conference, September 1997.

22. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

23. Sun Microsystems. Java 2 Platform, Enterprise Edition. http://java.sun.com/
j2ee/.

24. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, second edition, 2002.

25. A. Wigley, M. Sutton, R. MacLeod, R. Burbidge, and S. Wheelwright. Microsoft .NET
Compact Framework(Core Reference). Microsoft Press, January 2003.

GLoo: A Framework for Modeling and Reasoning
About Component-Oriented Language Abstractions

Markus Lumpe

Department of Computer Science
Iowa State University

Ames, IA 50011, USA
lumpe@cs.iastate.edu

Abstract. The most important contribution to the success or failure of a soft-
ware project comes from the choice of the programming languages being used
and their support in the target environment. The choice of a suitable implementa-
tion language is not a guarantor for success, but an unsuitable language may result
in a long, error-prone, and costly implementation, often resulting in an unstable
product. In this paper, we present GLoo, a framework for modeling and reason-
ing about open-ended language mechanisms for object- and component-oriented
software development. At the heart of GLoo is a small dynamic composition lan-
guage that provides abstractions to (i) define and/or import reusable software
components, (ii) introduce new compositional language abstractions, and (iii)
build executable and reusable component-oriented specifications. To demonstrate
its flexibility and extensibility, we then present an encoding of the traits concept
as an example of how to add support for a new and readily available language
abstraction to the GLoo framework.

1 Introduction

Successful software systems have to abide by the Laws of Software Evolution [12],
which require that software systems must be continually adapted, or else they become
progressively less useful in a real-world environment. For this reason, software systems
must be extensible, so that new behavior can be added without breaking the existing
functionality, and composable, so that features can be recombined to reflect changing
demands on their architecture and design.

By placing emphasis on reuse and evolution, component-oriented software technol-
ogy has become the major approach to facilitate the development of modern, large-scale
software systems [18,22,26]. However, component-oriented software development is in
itself an inherently dynamic process in which we need to be able to deal with different
component models, incorporate new composition techniques, and extend the means for
specifying applications as compositions of reusable software components with new ab-
stractions on demand [4]. Unfortunately, general-purpose programming languages are
not suitable for this task, since they are not tailored to software composition [19]. As a
consequence, when using a general-purpose programming language to specify applica-
tions as compositions of reusable software components one often has to use awkward
formulations due to unsuitable language constructs, and lengthy formulations due to an
unsuitable level of abstraction at which compositional abstractions can be expressed.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 17–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 M. Lumpe

Consider, for example, the composition of some orthogonal behavior originating
from different sources, say different base classes. We can use multiple inheritance for
this purpose. However, while multiple inheritance appears to provide an appropriate
mechanism to express the desired functionality, “there is no good way to do it” [30].
Consequently, multiple inheritance has been mostly abandoned in modern language ap-
proaches in favor of single inheritance, which provides a more controllable way to build
classes. Unfortunately, the lack of multiple inheritance often results in unsuitably struc-
tured class hierarchies when specifying the simultaneous support for totally orthogonal
behavior. In addition, such class hierarchies may be hard to maintain due to frequent
occurrences of code duplications in different places.

The component-based software development approach has emerged from the object-
oriented approach, which has already shown a positive influence on software evolution
and reuse. These aspects do, however, not depend on object-oriented techniques [22].
Moreover, the specification of applications as compositions of reusable components re-
quires a language paradigm different from the one being used to define the components
themselves. While object-oriented programming languages are well suited for imple-
menting components, a specially-designed composition language is better for building
applications as compositions of reusable software components [24].

We advocate a paradigm that combines the concepts of dynamic binding, explicit
namespaces, and incremental refinements. Dynamic binding is a key element in a soft-
ware development approach that, without affecting its previous behavior, allows for new
functionality to be added to an existing piece of code [5]. On the other hand, explicit
namespaces [3, 14] in concert with incremental refinements provide a suitable means
to directly specify the sets of both provided and required services of components [14].
From a technical point of view, explicit namespaces serve as a lookup environment with
syntactic representations to resolve occurrences of free variables in programs. However,
the values bound in these namespaces may also contain occurrences of free variables. To
resolve those, we can use incremental refinements that allow for a phased recombination
of mappings in a namespace to new, updated values. The notion of incremental refine-
ment is based on λF -contexts [14]. A λF -context is a term that is evaluated with respect
to a local lookup environment. For example, the λF -context a[b] denotes a term a,
whose meaning depends on the values defined in b, if a contains free variables. Thus,
b denotes the requirements posed by the free variables of a on its environment [17].

In this work, we present a framework for modeling and reasoning about open-ended
language mechanisms for object- and component-oriented software development. At
the center of this framework is the small dynamic composition language GLoo de-
signed in the spirit of PICCOLA [13, 2], which has already demonstrated the feasibility
of a high-level composition language that provides component-based, compositional in-
terfaces to services defined in a separate host language. However, PICCOLA is far from
providing the ease and flexibility required to build reliable component-based applica-
tions due to a conceptual gap between the mechanisms offered by PICCOLA and the
component-based methodology that it is supposed to support.

GLoo is essentially a pure functional language and therefore fosters a declarative
style of programming. The core elements of GLoo are first-class namespaces, methods,
and variables, but no predefined statements like conditionals, loops, and assignment.

GLoo: A Framework for Modeling and Reasoning 19

GLoo also provides built-in support for most operators found in Java or C#, but their
semantics is partially open. That is, with the exception of the core integer operations
addition, subtraction, multiplication, and division, for which GLoo provides a built-in
implementation, all operators remain undefined and their actual semantics has to be
provided by the application programmer. GLoo only specifies priority and associativity
for operators, which cannot be changed.

One of the key innovations of GLoo with respect to PICCOLA is a built-in gateway
mechanism to directly embed Java code into a GLoo specification. This mechanism is
based to the λF -concept of abstract application [14] and allows for code abstractions
defined in both GLoo and Java to coexist in one specification unit.

The rest of this paper is organized as follows: in Section 2, we briefly describe the
main features and design rationale of GLoo and discuss briefly related work in Sec-
tion 3. We present the design and implementation of our encoding of the traits concept
in GLoo in Section 4. We conclude this paper in Section 5 with a summary of the main
observations and outline future directions in this area.

2 The GLoo Language

2.1 Design Rationale

A successful component-based software development approach not only needs to pro-
vide abstractions to represent different component models and composition techniques,
but it has to provide also a systematic method for constructing large software systems
[4]. Unfortunately, rather then high-level plugging, most existing component frame-
works offer, in general, only low-level wiring techniques to combine components. We
need, however, higher-level, scalable, and domain-specific compositional mechanisms
that reflect the characteristics and constraints of the components being composed [24,2].
The ability to define these mechanisms will provide us with more effective means to do
both to reason about the properties of composition and to enhance program comprehen-
sion by reducing the exposure of the underlying wiring mechanisms to the component
engineer.

The design of GLoo targets a problem-oriented software development approach that
provides a paradigm for both programming in-the-small and programming in-the-large
[6]. More precisely, GLoo aims at a higher-level and scalable programming approach
to encapsulate domain expertise that provides support for the definition of domain-
specific abstractions enabling the instantiation, coordination, extension, and composi-
tion of components. These domain-specific abstractions can be defined in GLoo, Java,
or both.

2.2 The Core Language

The core of GLoo is the λF -calculus that combines the concepts of dynamic bind-
ing, explicit namespaces, and incremental refinement in one unifying framework. More
precisely, the λF -calculus is a substitution-free variant of the λ-calculus in which vari-
ables are replaced by forms [15] and parameter passing is modeled by means of ex-
plicit contexts [1, 3]. Forms are first-class namespaces that provide a high-level and

20 M. Lumpe

F, G, H ::= (||) empty form
| (| X |) form variable
| (| F, l = V |) binding extension
| (| F#G |) form extension
| (| F\G |) form restriction
| (| F → l |) form dereference
| (| F [G] |) form context

V ::= E empty value
| a abstract value
| M λF − value

M, N ::= F form
| M.l projection
| (\X :: M) abstraction
| M N application
| M [F] λF − context

Fig. 1. GLoo-style syntax of the λF-Calculus

language-neutral abstraction to represent components, component interfaces, and their
composition. Explicit contexts, on the other hand, serve as a syntactic representation
that mimic λ-calculus substitutions, that is, they provide the means for a fine-grained
and keyword-based parameter passing mechanism.

The design of the λF -calculus, like Dami’s λN -calculus [5], tackles a problem that
arises from the need to rely on the position and arity of parameters in mainstream pro-
gramming languages. Requiring parameters to occur in a specific order, to have a spe-
cific arity, or both, imposes a specification format in which we are required to define
programming abstractions that are characterized not by the parameters they effectively
use, but by the parameters they declare [5]. However, in a framework especially de-
signed for software composition this can hamper our ability to adapt existing software
components to new requirements, because any form a parameter mismatch has to be
resolved explicitly and, in general, manually.

The syntax of the λF -calculus is given in Figure 1. The λF -calculus is composed
from the syntactic categories forms, values, and terms. Every form is derived from the
empty form (||). A form can be extended by adding a new mapping from a label to a
value using binding extension, or by means of form extension that allows for a form
to be extended with a set of mappings. The difference between these two extension
mechanisms lies in the way the values E and (||) are handled. If we extend a form F
with a binding l = E using binding extension, then the resulting form F ′ is equiva-
lent to a form F ′′ that does not contain a binding for label l. In other words, binding
extension can be used to hide existing mappings in a form. Form extension, on the
other hand, is blind for bindings involving the values E and (||). That is, if the ex-
tending form contains bindings that map to those values, then these bindings do not
contribute to the extension operation. For example, (| (| l = a, m = b |) # (| l =
d, m = E , n = c |) |) yields (| l = d, m = b, n = c |). Form restriction can be con-
sidered the inverse to form extension, which can be used to remove bindings from a
form. In combination, both form extension and form restriction play a crucial role in a
fundamental concept for defining adaptable and extensible software abstractions [15].
Finally, form dereference allows for a form-based interpretation of a value, whereas
a form context (| F [G] |) denotes a form F , whose meaning is refined by the lo-
cal lookup environment G that may contain bindings for occurrences of free variables
in F .

GLoo: A Framework for Modeling and Reasoning 21

Forms and projections take the role of variables in terms. In a term, a form serves
as an explicit namespace that allows for a computational model with late binding [14].
Abstraction and application correspond to their counterparts in the λ-calculus, whereas
a λF -context is the counterpart to a form context. In contrast to λ-calculus, however,
the evaluation of an abstraction allows for an incremental refinement of its body. More
precisely, the evaluation of an abstraction yields a closure that associates the current
evaluation environment with the body of that abstraction. For example, if we evaluate
the abstraction (\X :: M) using the form F as an evaluation environment, then the
result is a closure (\X :: M [F]) in which F serves as a local lookup environment for
free occurrences of variables in M . The resulting closure can be subjected to further
evaluations that will allow for additional lookup environments to be added. However,
to retain a static scoping mechanism for occurrences of free variables in the body of
an abstraction, the order in which these additional lookup environments are added is
significant. For example, if we reevaluate the closure (\X :: M [F]) in a new evalua-
tion environment G, then we obtain a closure (\X :: (M [F])[G]) in which G serves
as an incremental refinement of M [F]. Bindings defined in F have precedence over the
ones defined in G, but bindings in G may provide values to resolve free occurrences of
variables in F and therefore allow for a local refinement of the meaning of M . Para-
meter passing works in a similar way. If we apply a value H as argument to the closure
(\X :: (M [F])[G]), then we have to evaluate (M [F])[G] in an evaluation environment
(| X = H |), that is, we have to evaluate the term ((M [F])[G])[(| X = H |)]. In other
words, parameters are passed to functions using a keyword-based mechanism. For a
complete definition of the evaluation rules, the interested reader is referred to [14].

2.3 GLoo Specification Units

From a technical point of view, component-oriented software development is best sup-
ported by an approach that favors a clear separation between computational and com-
positional entities [24]. This requirement is captured by the maxim

“Applications = Components + Scripts.” [24]

The definition of the GLoo language follows this maxim. A GLoo specification unit
defines a value or component that can be recombined with values and/or components,
which are defined in other specification units. In other words, a GLoo specification unit
defines a single λF -context that can locally define new abstractions or import defini-
tions from other λF -contexts in order to construct a new value or component.

GLoo specification units add support for basic data types, an import facility, term se-
quences, a delayed evaluation of terms, computable binders, and a Java gateway mech-
anism to the core language. These amendments solely serve to enrich the versatility of
values, but do not change the underlying computational model of the λF -calculus.

As a first example, consider the specification given in Listing 1. This script defines
IntRdWrClass, a class that is composed from the class IntClass and the traits
TWriteInt and TReadInt. The concepts of classes and traits [23] are not native
to GLoo. GLoo is not an object-oriented programming language per se. However, by
importing the units LanguageOfTraits.lf and IntClass.lf into the scope

22 M. Lumpe

1 let
2 Services = load "System/Services.lf"
3 load "Extensions/LanguageOfTraits.lf"
4
5 IntMetaClass = load "Classes/IntClass.lf"
6 TReadInt = load "Traits/TReadInt.lf"
7 TWriteInt = load "Traits/TWriteInt.lf"
8 in
9 IntMetaClass (trait "TRdWrInt" join TWriteInt with TReadInt)

10 end

Listing 1. The GLoo script IntRdWrClass.lf

defined by IntRdWrClass.lf, this unit now provides support for the required
object-oriented language features.

Every GLoo script defines a top-level let-block that contains a possibly empty set
of declarations and a single value. The declarations are evaluated sequentially. Thus,
the second declaration is evaluated in an environment in which the first binding is vis-
ible, and so on. There are five declarations in the script IntRdWrClass.lf. The
integration of the core system services is defined in line 2. The unit Services.lf
defines the basic programming abstractions for printing as well as IO, and provides
also, for example, a standard implementation for conditionals. The declaration in line
3 extends the current scope with a traits domain sublanguage that provides support
for defining, composing, and manipulating traits. The abstractions defined in the unit
LanguageOfTraits.lf serve as syntactic and semantic extensions (i.e., keywords)
to the GLoo language. Using this technique, we can focus on what an application of-
fers (i.e., a programming approach supporting traits), without entering into the details
of how it is implemented. The declarations in lines 5-7 introduce the components that
we want to combine to the current scope. The reader should note that we do not ac-
quire any explicit support for an object model. The object model is encapsulated in
IntClass.lf. The details of the underlying object model of class IntClass do
not pollute the declaration space of IntRdWrClass.lf. We know, however, that
IntMetaClass is a function that may take a trait as argument.

The result of evaluating the unit IntRdWrClass.lf is a class IntRdWrClass
that is composed from the class IntClass and the result of the composition of the
traits TWriteInt and TReadInt, that is, the composite trait TRdWrInt. The under-
lying object-oriented programming abstractions guarantee the soundness of this
composition. However, the details of the verification progress are encapsulated in the
corresponding GLoo units and are not exposed to the current scope.

2.4 The Gateway Mechanism

The built-in gateway mechanism of GLoo provides an approach to directly incorporate
Java code into the scope of a GLoo specification unit. The gateway mechanism can
be used for the specification of glue code to adapt components to fit actual composi-
tional requirements [24], and to extend the GLoo language either by defining supported
operators, adding new value types, or incorporating new and readily available program-
ming abstractions. Gateway code is enclosed in %{...}%, which is treated as a single

GLoo: A Framework for Modeling and Reasoning 23

let
println = %{ System.out.println(aArg.toString()); return aArg; }%

eval = %{ // check for lazy value
if (aArg instanceof LazyValue)

// force evaluation of lazy values
aArg = (((LazyValue)aArg).getValue()).evaluate(new EmptyForm());

return aArg; }%
in

(| println = println, eval = eval |)
end

Listing 2. Selected abstractions provided by Services.lf

token by the GLoo compiler. The Java code enclosed in %{...}% is transformed into
a static member function, which is emitted to a predefined runtime support class. The
GLoo compiler uses com.sun.tools.javac to compile this runtime support class after all
gateway specifications have been collected. If no errors are detected, then the gener-
ated runtime class is loaded into the GLoo system as a temporary runtime extension to
support the evaluation of the top-level GLoo specification unit.

To illustrate the use of the gateway mechanism, consider Listing 2 that shows an
extract of the specification unit Services.lf. This example illustrates how the func-
tionsprintln and eval can be defined in GLoo. The functionprintln implements
the output of the standard textual representation of each data type. It relies on the fact
that all supported GLoo values have to override the Object.toString() method,
so that a proper textual representation can be produced, if necessary. In addition, the
reader should note that every gateway function takes one argument, named aArg, and
has to return a value of a type that is a subtype of the GLoo type Value. For this rea-
son, println returns its argument, which not only satisfies the protocol of gateway
functions, but also allows applications of the function println to occur in positions,
where its argument is required.

GLoo uses a strict evaluation model, that is, terms are evaluated as soon as they be-
come bound to a variable or applied to a function. On the other hand, functions in GLoo
are characterized by the arguments they use, not by the ones they define. Unfortunately,
these competing aspects pose a serious conflict, because the strict evaluation model
forces all arguments to a function to be evaluated before they are applied to it, even
though the function may never use them. For this reason, GLoo also provides a special
modifier (i.e., the symbol ’$’) to explicitly mark a term lazy. The lazy modifier is, for
example, crucial to the definition of choice statements, where the individual branches
must not be evaluated before a corresponding guard evaluates to the value true (e.g., the
if-statement).

The evaluation of a lazy term is delayed until its evaluation is explicitly triggered
by a corresponding program abstraction. This is the purpose of the function eval. The
eval function, as shown in Listing 2, taps directly into the GLoo evaluation machinery.
More precisely, this function checks, whether its argument aArg needs to be evaluated
or not by checking if it is an instance of type LazyValue. In such a case, eval forces
the evaluation of aArg by calling its evaluate method using an empty evaluation

24 M. Lumpe

let
if = %{ /* Java code defining the ternary procedure if-then-else */ }%

in
(|

if_1 = (\Bool:: if (| condition = Bool,
then = (\Arg:: eval Arg),
else = (\Arg:: (||)) |)),

if_2 = (\Bool:: if (| condition = Bool,
then = (\Then:: (\Else:: eval Then)),
else = (\Then:: (\Else:: eval Else)) |))

|)
end

Listing 3. Definition of conditionals in Services.lf

environment (i.e., an empty form). This approach allows programmers to switch to a
lazy evaluation model for selected arguments, and to determine when such arguments
should be evaluated, if at all.

2.5 Support for the Definition of Language Abstractions

The specification shown in Listing 3 illustrates how conditionals can be defined in
GLoo. In this example, we define an if-statement for both a single-armed and a two-
armed version. The underlying semantics of the if-statement is implemented in the
ternary gateway function if, whose visibility is restricted to the scope of the speci-
fication unit Services.lf. The functions if 1 and if 2 both define a wrapper for
the local if function in order to implement the desired corresponding behavior of a
single-armed and two-armed if-statement, respectively. More precisely, if 1 and if 2
both define appropriate continuations to consume the remaining arguments to a given
if-statement. In the case of if 1, the continuations either force the evaluation of the
next argument (i.e., the value Bool denotes true) or simply discard it (i.e., the value
Bool denotes false). On the other hand, the continuations defined by if 2 have to
consume two arguments in turn, but evaluate only the one that corresponds to the truth
value denoted by Bool. The reader should note that all arguments except Bool have
to be marked lazy in order to prevent their premature evaluation, which could interfere
with the commonly accepted conceptual model underlying the if-statement.

3 Related Work

Python [16], Perl [29], Ruby [27], Tcl [31], CLOS [25], Smalltalk [10], Self [28], or
Scheme [7] are examples of programming languages in which programs can change
their structure as they run. These languages are commonly known as dynamic pro-
gramming languages and scripting languages [21], respectively. However, the degree
of dynamism varies between languages. For example, Smalltalk and Scheme are lan-
guages that permit simultaneously syntactic and semantic extensions, that is, everything
is available for modification without stopping to recompile and restart. Python, Perl,
JavaScript, and Self, on the other hand, support only semantic extensions either by dy-
namic (re-)loading of runtime modules, runtime program construction, or copying and

GLoo: A Framework for Modeling and Reasoning 25

modifying prototypes. However, program extensions defined in this way can only be ex-
pressed in either the language itself, C/C++, or a corresponding API. Extensions written
in other languages may not be integrated as easily.

Since Smalltalk and Scheme both provide support for syntactic extensions, these
languages are also examples of so-called open-ended programming languages. Open-
ended languages allow for extending the language with new programming abstractions
on demand. However, in the case of Smalltalk and Scheme, these extensions can only
be defined in the very same language as the host language. An extreme example of
an open-ended language is CDL [11], which is a programming language with an empty
kernel. More precisely, CDL admits only one type, the word, which can be interpreted in
the language only by means of macros. No other predefined concrete algorithms, types,
or objects exist in the language. CDL provides, however, construction mechanisms for
algorithms. Types and objects, on the other hand, cannot directly be expressed in the
language. These have to be supplied by means of CDL’s extensions mechanisms, which
enable one to borrow new language constructs from outside the language. Language
extensions are defined in macro libraries that serve as semantic extensions (CDL does
not support syntactic extensions). In practice, these macro libraries are organized as
standard API’s capturing a specific application domain. As a result, programming in
CDL is not much more cumbersome than programming in a mainstream and general-
purpose programming language like C, Java, or C#.

4 A Model for Traits

In this section, we present a model of traits [23] as an example of how to add support
for a new language abstraction to the GLoo framework.

Traits offer a simple compositional model for factoring out common behavior and
for integrating it into classes in a manner consistent with inheritance-based class models
[23]. Traits are essentially sets of related methods that serve as (i) a building block to
construct classes, and (ii) a primary unit of code reuse. Reuse is a primary tenant in a
component-oriented software development approach and it is, therefore, natural that we
seek to explore the means for providing support for traits in the GLoo framework.

Unfortunately, to view a trait simply as set of methods is rather misleading, as traits
require a rich supporting infrastructure in order to unfold their expressive power. Schärli
et al. [23] characterize the properties of traits as follows:

• A trait exposes its behavior by a set of provided methods.
• A trait declares its dependencies by a set of required methods that serve as argu-

ments to the provided behavior.
• Traits are stateless. A trait does not define any state variables, and its provided

behavior never refers to state variables directly.
• Classes and traits can be composed to construct other classes or traits. Trait com-

position is commutative, but conflicts have to be resolved explicitly and manually.
• Trait composition does not affect the semantics of both classes and traits. Adding

a trait to a class or trait is the same as defining the methods obtained from the trait
directly in the class or trait.

26 M. Lumpe

let
read = (\():: Services.print "Input number: ";

Services.stringToInt (Services.readString (||)))

TReadIntProvides =
(|

readInt = (\():: (self (||)).setIntField (| aIntField = read (||) |))
|)

TReadIntRequires =
(|

readInt = (| setIntField = "Int -> Unit" |)
|)

in
trait "TReadInt" provides TReadIntProvides requires TReadIntRequires

end

Listing 4. Definition of trait TReadInt

In addition, to facilitate conflict resolution, Schärli et al. [23] propose two auxiliary
operations: method aliasing, and method exclusion. These operations together with a
suitable flattening mechanism for trait composition are required in a comprehensive
approach that provides support for the traits concept in a class-based programming
model.

The first two trait properties can easily be mapped to the concept of explicit names-
paces. Unfortunately, trait composition, method aliasing, and method exclusion require
an additional compile-time support that is not part of the GLoo framework by default.
However, as we have shown in earlier work [20], object- and component-oriented ab-
stractions can most easily be modeled if they are represented as first-class entities.
We can use this approach to define a meta-level architecture that provides the means
to differentiate the compositional aspects from the programming aspects of the traits
concept.

4.1 Specifying Traits in GLoo

Programmatically, we define a trait as illustrated in Listing 4. The specification shown in
Listing 4 defines a trait, calledTReadInt, that defines one provided methodreadInt,
and declares the methodsetIntFieldwith the signatureInt -> Unit as a required
method of readInt. The focus of this work is on a suitable representation of traits, not
on a type system for traits. It is, however, highly desirable to provide additional infor-
mation regarding their compositional constraints for required methods of a trait. For
this reason, we utilize the type syntax proposed by Fisher and Reppy [8] for a statically
typed calculus of traits, classes, and objects, but the type annotations are for documenta-
tion purposes only. A future model of traits in GLoo may also define a type verification
process that takes these annotations to perform additional checks.

The general format of a trait specification follows the structure used to define the trait
TReadInt. Within the local scope of a trait, we define the sets of provided and required
methods. The set of provided methods is a form that maps the provided methods to their
corresponding implementations. In method bodies, the term (self (||)) yields the
current instance, and allows for dynamic binding of methods. Provided methods may

GLoo: A Framework for Modeling and Reasoning 27

let
MetaTraits = load "Extensions/Traits.lf"

in
(|

trait = (\Name:: (\Cont:: Cont (| traitName = Name |))),
provides = (\Args:: (\P:: (\Cont:: Cont (| Args, provides = P |)))),
requires = (\Args:: (\R:: MetaTraits.newTrait (| Args, requires = R |)))
join = (\Args:: (\L:: (\Cont:: Cont (| Args, left = L |)))),
with = (\Args:: (\R:: MetaTraits.composeTraits (| Args, right = R |)))

|)
end

Listing 5. Selected abstractions provided by LanguageOfTraits.lf

also rely on some private behavior not exposed to clients. For example, the method
readInt calls the private method read to fetch an integer value from the console.

The set of required methods is also represented by a form. However, each binding in
that form maps to another form that records all methods, including their signatures, a
given provided method depends on. This format is more verbose than the original spec-
ification of Schärli et al. [23], but it addresses a problem that can occur when defining
the exclusion of a method in a trait. In such a case, we need to add the excluded method
potentially to the set of required methods. In order to decide this question, we need to
explore all remaining provided methods. Without the additional structure in our model,
we have to extend the search to the source code of the provided methods, which may
not be accessible anymore at the time of the search.

The required core abstractions to define traits are shown in Listing 5. The bind-
ings defined in the unit LanguageOfTraits.lf serve as language extensions to
an importing scope. The associated functions are defined in continuation-passing style
(CPS) that mimics the parsing process of the corresponding syntactic categories. For
example, trait is a function that takes a name of a trait and returns a function that
consumes a continuation to construct a new trait. The continuation can be either the
function provides to build a new trait or the function join to compose a trait with
another trait. Both provides and join yield a function that takes a final continua-
tion to actually perform the desired operation. In case of provides, we need to use
the function requires that passes its arguments to meta level function newTrait to
register a new trait with the meta level trait infrastructure. The function join, on the
other hand, requires the function with that passes its arguments to composeTraits,
a meta level function to construct a composite trait.

4.2 Operational Support for Traits

In order to add support for the traits concept to the GLoo framework, we represent traits
at both a meta level and a programming level. The meta level defines the abstractions
to (i) compose traits, (ii) alias methods, (iii) exclude methods, and (iv) encode meta-
data associated with traits. The programming level, on the other hand, provides a set
of high-level abstractions to define and use traits. The programming level completely
encapsulates the meta level and therefore shields the application programmer from the
underlying complexity of the traits concept. Moreover, both the meta level and the pro-
gramming level constitute a narrow-focused domain-specific sublanguage that enables

28 M. Lumpe

composeTraits =
(\Arg::

let
left = getTraitInfo Arg->left
right = getTraitInfo Arg->right

in
Services.if_2

(is_trait_composition_sound
(| common = Services.intersection (| left = left->provides,

right = right->provides |),
left_origins = left->origins,
right_origins = right->origins |))

($ let
provides = (| (| left->provides |) # (| right->provides |) |)
requires =

filter_required
(| required = (| (| left->requires |) # (| right->requires |) |),

provided = provides |)
origins = (| (| left->origins |) # (| right->origins |) |)

in
registerTrait (| traitName = Arg.traitName, provides = provides,

requires = requires, origins = origins |)
end)
($ (Services.error "Conflicting trait methods encountered!"))

end)

Listing 6. Definition of method composeTraits in Traits.lf

us not only to use traits in GLoo specifications, but also to reason about the features and
constraints of the traits concept.

The meta level support for traits is defined in the unit Traits.lf that defines
an internal representation of traits called MetaTrait. A MetaTrait encodes the
metadata associated with every trait. It records (i) the trait name, (ii) the set of provided
methods, (iii) the set of required methods, and (iv) the origins of all provided methods.
The latter is used for conflict resolution and enables us to check whether conflicting
methods originate from the same trait in which case the conflict is resolved immediately.

The meta level also defines the functions registerTrait, filterRequired,
and is trait composition sound to name a few. These functions1 are used
to define the function composeTraits (cf., Listing 6), which takes two traits and
builds their union, if possible. The purpose of is trait composition sound
is to check that the provided methods of the two traits being composed are pairwise
distinct. In order to verify this condition, we also pass the origins of both traits to
is trait composition sound. We acquire the origins of both traits by calling
the function getTraitInfo, which returns the metadata associated with the corre-
sponding trait. If the soundness test succeeds, then we are actually composing both
traits by building (i.e., flattening) the new sets of provided and required methods, and
the new joined origins. We pass these data together with the corresponding trait name
to the meta-function registerTrait, which (i) registers the newly composed trait
with the meta-level infrastructure, and (ii) returns the programming representation of it.

The unit Traits.lf also defines functions for method exclusion and method alias-
ing. These functions take a trait and a list of method names to either be excluded or

1 A detailed presentation of these functions has been omitted due to a lack of space.

GLoo: A Framework for Modeling and Reasoning 29

aliased. The structure of these functions resembles the one of composeTraits. How-
ever, a detailed presentation of them has been omitted due to lack of space.

4.3 Using Traits

In the previous section, we have presented the core abstractions for trait construction
and composition. In this section, we illustrate briefly how to composes classes and
traits.

Trait composition is commutative, that is, the composition order is irrelevant. Con-
flicts must be explicitly resolved. However, Schärli et al. [23] define two additional
criteria that must be also satisfied in the case of the composition of classes and traits:

1) “Class methods take precedence over trait methods.”
2) “Trait methods take precedence over superclass methods.”’

In order words, the provided methods of a trait have to be inserted into a class between
its inherited behavior and the behavior defined by that class. This is a logical conse-
quence of the flattening property that requires that methods obtained from a trait must
behave as if they were defined in the class directly [23].

To illustrate the composition of classes and traits, consider the GLoo specification
unit shown in Listing 7. This unit defines a meta-class of the class IntClass that
defines two public methods getIntField and setIntField, and a private in-
stance variable fIntField. The general structure of a class definition is given by
three abstractions: (i) a incremental modification, (ii) a generator, and (iii) a class wrap-
per [15]. In the case of class IntClass, these abstractions are deltaIntClass,
IntClassG, and IntClassW, respectively. These abstractions not only define the
required behavior of class IntClass, but also the underlying object model2, which,
in the case of IntClass, adheres to Java semantics.

We use the abstractionsdeltaIntClass, IntClassG, and IntClassW to con-
struct a meta-class of class IntClass. This meta-class is actually a function that may
take a trait as argument. To instantiate a class, we have to call this function using either
a trait or an empty form as argument. The latter will simply instantiate the correspond-
ing class, since we have applied an empty extension. If we, however, apply a proper
trait, then the behavior defined by this trait is composed with the behavior defined by
the class in accordance with the criteria for the composition of classes and traits. First,
we verify that the composition is closed, that is, all required trait methods are imple-
mented by the class. Secondly, we merge the methods of both the trait and the class. By
using form extension class methods are given precedence over trait methods. The result
denotes a new incremental modification of the class that is obtained from the composi-
tion of the original incremental modification and the trait methods. The class generator
finally merges any present inherited behavior with the new incremental behavior3 to
create instances of the extended class.

2 These two aspects should be specified in different scopes in order to separate the concerns and
to raise the level of abstraction. We have proposed a solution for this problem in [15].

3 The class IntClass does not inherit any behavior, hence this step is the identity function.

30 M. Lumpe

let
fix = load "System/fix.lf"

in
(\Trait::

let
IntClassBehavior =
(|
getIntField = (\():: State.fIntField),
setIntField = (\Args:: self (| State, fIntField = Args.aIntField |))
|)

deltaIntClass =
let

pureTrait = Traits.pureTrait Trait
in

(Services.if_1
(Services.not_empty pureTrait)
($ let
allRequired =
Traits.buildAllRequired(Traits.getTraitInfo Trait)->requires

inU:\BPO\Lncs\4063\Editing\40630017\40630017.tex
(Services.if_1

(Services.not_empty
(| (| allRequired |) \ (| IntClassBehavior |) |))

($ (Services.error "Composition incomplete!")))
end));

(| pureTrait # IntClassBehavior |)
end

IntClassState = (| fIntField = 0 |)
deltaClass = (\State:: deltaIntClass)
IntClassG =

(\OArgs:: deltaClass
(| OArgs # (|IntClassState\(|fIntField=OArgs.fIntField |) |)|))

IntClassW = (\OArgs:: (fix (| f=(\self:: IntClassG) |)) OArgs)
in

(| W=IntClassW, G=IntClassG |)
end)

end

Listing 7. Definition of the (meta-)class IntClass

5 Conclusion and Future Work

In this paper, we have presented GLoo, a framework for modeling and reasoning about
component-oriented language abstractions. At the center of this framework is a small
dynamic composition language that is based on the λF -calculus [14]. The main tenants
of the GLoo programming paradigm are dynamic binding, explicit namespaces [3], and
incremental refinement. These concepts together with a built-in gateway mechanism to
incorporate Java code directly into the scope of GLoo specification units provides us
with the means for a problem-oriented software development approach.

To demonstrate how a domain-specific sublanguage can be defined, we have imple-
mented the traits concept [23] in GLoo. The language of traits is defined as a readily
available language abstraction that can be loaded on demand. The specific added value
of this abstraction is a clear separation between compositional and programming as-
pects of traits, which facilitates both the construction and the composition of traits.

We have studied the encoding of classes, traits, and objects in GLoo. We need,
however, also support for the integration of external software artifacts into the GLoo

GLoo: A Framework for Modeling and Reasoning 31

framework. We plan, therefore, to further explore the gateway concept in order to in-
corporate existing Java classes and components. Like the language of traits, we envi-
sion a narrow-focused domain sublanguage of classes and components that will allow
application programmers to use existing Java abstraction as they were defined in GLoo
directly.

Acknowledgements

We are deeply grateful to Andrew Cain for suggesting the name GLoo and Jean-Guy
Schneider and the anonymous reviewers for their valuable comments and discussions.

References

1. Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy. Explicit Substi-
tutions. In Proceedings of the 17th Annual ACM Symposium on Principles of Programming
Languages (FSE ’90), pages 31–46, San Francisco, California, 1990. ACM.

2. Franz Achermann. Forms, Agents and Channels: Defining Composition Abstraction with
Style. PhD thesis, University of Bern, Institute of Computer Science and Applied Mathemat-
ics, January 2002.

3. Franz Achermann and Oscar Nierstrasz. Explicit Namespaces. In Jürg Gutknecht and Wolf-
gang Weck, editors, Modular Programming Languages, LNCS 1897, pages 77–89. Springer,
September 2000.

4. Uwe Aßmann. Invasive Software Composition. Springer, 2003.
5. Laurent Dami. A Lambda-Calculus for Dynamic Binding. Theoretical Computer Science,

192:201–231, February 1998.
6. Frank DeRemer and Hans H. Kron. Programming in the Large versus Programming in the

Small. IEEE Transactions on Software Engineering, SE–2(2):80–86, June 1976.
7. Kent Dybvig. The Scheme Programming Language. MIT Press, third edition, October 2003.
8. Kathleen Fisher and John Reppy. Statically typed traits. Technical Report TR-2003-13,

University of Chicago, December 2003.
9. GLoo. http://www.cs.iastate.edu/∼lumpe/GLoo.

10. Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-Wesley, Septem-
ber 1989.

11. Cornelis H.A. Koster and H.-M. Stahl. Implementing Portable and Efficient Software in
an Open-Ended Language. Informatics Department, Nijmegen University, Nijmegen, The
Netherlands, 1990.

12. M. M. Lehman, D. E. Perry, J. C. F. Ramil, W. M. Turski, and P. Wernik. Metrics and Laws of
Software Evolution – The Nineties View. In Proceedings of Fourth International Symposium
on Software Metrics, Metrics 97, pages 20–32, Albuquerque, New Mexico, November 1997.
Also as chapter 17 in Eman, K. El, Madhavji, N. M. (Eds.), Elements of Software Process
Assessment and Improvement, IEEE CS Press, Los Alamitos, CA, 1999.

13. Markus Lumpe. A π-Calculus Based Approach to Software Composition. PhD thesis, Uni-
versity of Bern, Institute of Computer Science and Applied Mathematics, January 1999.

14. Markus Lumpe. A Lambda Calculus With Forms. In Thomas Gschwind, Uwe Aßmann, and
Oscar Nierstrasz, editors, Proceedings of the Fourth International Workshop on Software
Composition, LNCS 3628, pages 83–98, Edinburgh, Scotland, April 2005. Springer.

15. Markus Lumpe and Jean-Guy Schneider. A Form-based Metamodel for Software Composi-
tion. Science of Computer Programming, 56:59–78, April 2005.

32 M. Lumpe

16. Mark Lutz. Programming Python. O’Reilly & Associates, October 1996.
17. Oscar Nierstrasz and Franz Achermann. A Calculus for Modeling Software Components. In

Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors,
Proceedings of First International Symposium on Formal Methods for Components and Ob-
jects (FMCO 2002), LNCS 2852, pages 339–360, Leiden, The Netherlands, 2003. Springer.

18. Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Technology. In Os-
car Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Software Composition, pages
3–28. Prentice Hall, 1995.

19. Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a Composition Language. In
Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, editors, Object-Based Models
and Languages for Concurrent Systems, LNCS 924, pages 147–161. Springer, 1995.

20. Oscar Nierstrasz, Jean-Guy Schneider, and Markus Lumpe. Formalizing Composable Soft-
ware Systems – A Research Agenda. In Proceedings the 1st IFIP Workshop on Formal
Methods for Open Object-based Distributed Systems, pages 271–282. Chapmann & Hall,
1996.

21. John K. Ousterhout. Scripting: Higher Level Programming for the 21st Century. IEEE
Computer, 31(3):23–30, March 1998.

22. Johannes Sametinger. Software Engineering with Reusable Components. Springer, 1997.
23. Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits: Compos-

able Units of Behavior. In Luca Cardelli, editor, Proceedings ECOOP 2003, LNCS 2743,
pages 248–274. Springer, July 2003.

24. Jean-Guy Schneider. Components, Scripts, and Glue: A conceptual framework for software
composition. PhD thesis, University of Bern, Institute of Computer Science and Applied
Mathematics, October 1999.

25. Guy L. Steele. Common Lisp the Language. Digital Press, Thinking Machines, Inc., 2nd
edition, 1990.

26. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley / ACM Press, Second edition, 2002.

27. Dave Thomas. Programming Ruby – The Pragmatic Programmers’ Guide. The Pragmatic
Bookshelf, LLC, second edition, 2005.

28. David Ungar and Randall B. Smith. SELF: The Power of Simplicity. In Proceedings OOP-
SLA ’87, volume 22 of ACM SIGPLAN Notices, pages 227–242, December 1987.

29. Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly & Associates,
Third edition, July 2000.

30. Peter Wegner. OOPSLA’87 Panel P2: Varieties of Inheritance. SIGPLAN Not., 23(5):35–40,
May 1988.

31. Brent B. Welch. Practical Programming in Tcl and Tk. Prentice Hall PTR, second edition,
1997.

Behavioral Compatibility Without State
Explosion: Design and Verification of a

Component-Based Elevator Control System�

Paul C. Attie1, David H. Lorenz2, Aleksandra Portnova3, and Hana Chockler4

1 American University of Beirut, Beirut, Lebanon
paul.attie@aub.edu.lb

2 University of Virginia, Charlottesville, VA 22904, USA
lorenz@cs.virginia.edu

3 Northeastern University, Boston, MA 02115, USA
portnova@ccs.neu.edu

4 WPI, Worcester, MA 01609, USA
hanac@theory.csail.mit.edu

Abstract. Most methods for designing component-based systems and
verifying their compatibility address only the syntactic compatibility of
components; no analysis of run-time behavior is made. Those methods
that do address run-time behavior suffer from state-explosion: the expo-
nential increase of the number of global states, and hence the complexity
of the analysis, with the number of components. We present a method
for designing component-based systems and verifying their behavioral
compatibility and temporal behavior that is not susceptible to state ex-
plosion. Our method is mostly automatic, with little manual deduction
required, and does not analyze a large system of connected components
at once, but instead analyzes components two-at-a-time. This pair-wise
approach enables the automatic verification of temporal behavior, us-
ing model-checking, in time polynomial in the number and size of all
components. Our method checks that behavior of a pair of interacting
components conforms to given properties, specified in temporal logic.
Interaction of the components is captured in a product of their behav-
ioral automata, which are provided as a part of each component’s in-
terface. We demonstrate the effectiveness of our method by applying
it to the design and verification of a component-based elevator control
algorithm.

1 Introduction

Monolithic software systems are fragile and unreliable. Component-based soft-
ware engineering (CBSE) [34, 38, 19] alleviates this inherent software problem.
Third-party composition of software systems, comprising reliable components
from trustworthy third-party providers, reduces the system’s overall fragility. In

� This work was supported in part by NSF’s Science of Design program under Grants
Number CCF-0438971 and CCF-0609612.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 33–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 P.C. Attie et al.

practice, however, part of the fragility is merely shifted from the component arti-
facts to the connectors and the composition process [28]. When the composition
is unreliable, component systems are just as fragile and unreliable as monolithic
software. Improving the theoretical and practical foundation of third-party com-
position techniques is thus essential to improving overall component software
reliability.

In this paper, we lay a foundation for a new component model which sup-
ports behavioral interoperability and is based on the use of temporal logic and
automata to specify and reason about concurrent component systems. Unlike
other temporal logic and automata-based methods for software components, our
work avoids using exhaustive state-space enumeration, which quickly runs up
against the state-explosion problem: the number of global states of a system is
exponential in the number of its components. We present formal analysis and
synthesis techniques that addresses issues of behavioral compatibility among
components, and enables reasoning about global behavior (including temporal
behavior, i.e., safety and liveness) of an assembly of components.

We illustrate the model concretely by means of an example design for an
elevator system, which can scale up in size (number of floor and button compo-
nents) and still be model-checked. Designing a component-based elevator system
that can be scaled up is a canonical Software Engineering problem since it runs
up against state-explosion. Our methodology, however, permits model-checking
in time polynomial in the number and size of components.

2 Problem and Approach in a Nutshell

For two components, which were independently developed, to be deployed and
work together, third-party composition must allow the flexibility of assembling
even dissimilar, heterogeneous, precompiled components. In achieving this flex-
ibility, a delicate balance is preserved between prohibiting the connecting of
incompatible components (avoiding false positives), while permitting the con-
necting of “almost compatible” components through adaptation (avoiding false
negatives). This is achieved during assembly through introspection, compatibil-
ity checks, and adaptability.

CBSE builder environments typically apply two mechanisms to support
third-party composition. First, to check for interface compatibility, builders use
introspection. Introspection is a means of discovering the component interface.
Second, builders support adaptability by generating adapters to overcome dif-
ferences in the interface. Adapters are a means of fixing small mismatches when
the interfaces are not syntactically identical.

The goal in behavioral compatibility for components is to develop support in
CBSE for behavioral introspection and behavioral adaptability that can be scaled
up for constructing large complex component systems. While there is progress
in addressing behavioral introspection and adaptability [40, 35, 39, 36, 37] there
is little progress in dealing with the state explosion problem.

Behavioral Compatibility Without State Explosion 35

2.1 The State Explosion Problem

Many current mechanical methods for reasoning about behavior (of finite state
systems) generally rely on some form of exhaustive state-space search to gen-
erate all the possible behaviors. These methods are thus susceptible to state
explosion: the number of global states of a concurrent system consisting of n
components, each with O(l) local states, is in O(ln). Approaches to dealing with
state explosion include compositional verification [29, 18, 13, 9, 8, 25] (and the
strongly related assume-guarantee reasoning [1, 20]), abstraction [30, 12, 23, 24],
and symmetry reduction [15, 16, 11, 10].

Current methods typically rely on defining finite-state “behavioral” automata
that express state changes. The automata-theoretic product of the behavioral
automata of two components will then describe the resulting behavior when
these two components are connected. Thus, the two components can be checked
for compatibility by model checking this product. When a third component is
subsequently connected to the first two, one then needs to generate the product
of all three behavioral automata. Thus, this fails to provide a practical method
for checking large systems, since taking the product of n automata incurs state
explosion.

2.2 Avoiding State-Explosion by Pair-Wise Composition

To overcome state-explosion, we eschew the computation of the product of all n
behavioral automata. Instead, we compute the products of pairs of behavioral
automata, corresponding to the pairs of components that interact directly.1 In
the worst case, where all components interact (where the largest component has
O(l) local states), this has complexity O(n2l2). This low polynomial complexity
means that our method scales up to large systems. We verify temporal behavior
“pair-properties” of these “pair-products.” These give us properties of the inter-
actions of all component-pairs, when considered in isolation. We then combine
such “pair-properties” to deduce global properties of the entire system by means
of temporal logic deductive systems [17]. Since the pair-properties embody the
complexity of the component interaction, this deductive part of the verification
is quite short.

Our approach involves abstraction in going from a component to its be-
havioral automaton. It applies even when all components are functionally dif-
ferent, and so is not a form of symmetry reduction. Our approach combines
pair-properties verified of each pair-product to deduce the required global prop-
erties. Each pair-product represents two components interacting in isolation.
Our approach therefore does not involve the usual “assume-guarantee” proof
rule typical of compositional approaches, where each component is verified cor-
rect using the assumption that the other components are correct, with due care
taken to avoid cyclic reasoning.

1 For clarity, we assume all connectors involve exactly two components. The method-
ology can be easily generalized to verify connectors between multiple components.

36 P.C. Attie et al.

The main insight of this paper is that components can be designed to enable
this pair-wise verification, thus supporting behavioral compatibility checks that
scale up to large complex systems [7].

3 Technical Preliminaries

I/O automata We augment the standard definition of I/O automata [31] to ac-
commodate propositional labelings of states. An augmented input/output (I/O)
automaton A is a tuple

〈〈〈states(A), start(A), sig(A), steps(A), prop(A), label (A)〉〉〉

as follows. states(A) is a set of states; start(A) ⊆ states(A) is a nonempty set
of start states; sig(A) = (in(A), out(A), int(A)) is an action signature, where
in(A), out(A) and int(A) are pair-wise disjoint sets of input, output, and inter-
nal actions, respectively, (let acts(A) = in(A) ∪ out(A) ∪ int(A)); steps(A) ⊆
states(A) × acts(A) × states(A) is a transition relation; prop(A) is a set of
atomic propositions; and label(A) : states(A) �→ 2prop(A) is a labeling func-
tion. If states(A), acts(A) and prop(A) are all finite, then A is a finite-state I/O
automaton. label(A)(s) gives the atomic propositions that are true in state s.

Let s, s′, u, u′, . . . range over states and a, b, . . . range over actions. Write
s

a−→A s′ iff (s, a, s′) ∈ steps(A). We say that a is enabled in s. Otherwise a is dis-
abled in s. I/O automata are required to be input enabled : every input action is
enabled in every state. An execution fragment α of automaton A is an alternating
sequence of states and actions s0a1s1a2s2 . . . such that (si, ai+1, si+1) ∈ steps(A)
for all i ≥ 0, i.e., α conforms to the transition relation of A. Furthermore, if α
is finite then it ends in a state. An execution of A is an execution fragment that
begins with a state in start(A). execs(A) is the set of all executions of A. A
state of A is reachable iff it occurs in some execution of A. Two I/O automata
are compatible iff they have no output actions and no atomic propositions in
common, and no internal action of one is an action of the other. A set of I/O
automata is compatible iff every pair of automata in the set is compatible.

Definition 1 (Parallel Composition of I/O automata). Let A1, . . . , An,
be compatible I/O Automata. Then A = A1 ‖ · · · ‖ An is the I/O automa-
ton2 defined as follows. states(A) = states(A1) × · · · × states(An); start(A) =
start(A1) × · · · × start(An); sig(A) = (in(A), out(A), int(A)) where out(A) =⋃

1≤i≤n out(Ai), in(A) =
⋃

1≤i≤n in(Ai) − out(A), int(A) =
⋃

1≤i≤n int(Ai);
steps(A) ⊆ states(A) × acts(A) × states(A) consists of all the triples
(〈〈〈s1, . . . , sn〉〉〉, a, 〈〈〈t1, . . . , tn〉〉〉) such that ∀i ∈ {1, . . . , n} : if a ∈ acts(Ai), then
(si, a, ti) ∈ steps(Ai), otherwise si = ti; prop(A) =

⋃
1≤i≤n prop(Ai); and

label(A)(〈〈〈s1 , . . . , sn〉〉〉) =
⋃

1≤i≤n label (Ai)(si).

2 Formally, A is a state-machine. It is easy to show, though, that A is in fact an I/O
automaton.

Behavioral Compatibility Without State Explosion 37

Let A = A1 ‖ · · · ‖ An be a parallel composition of n I/O automata. Let s be a
state of A. Then s�Ai denotes the i’th component of s, i.e., the component of s
that gives the local state of Ai, i ∈ {1, . . . , n}. Let ϕ = {i1, . . . , im} ⊆ {1, . . . , n}.
Then s�Aϕ denotes the tuple 〈〈〈sj�Ai1 , . . . sj�Aim〉〉〉. A subsystem of A is a parallel
composition Ai1 ‖ · · · ‖ Aim , where {i1, . . . , im} ⊆ {1, . . . , n}. We define the
projection of an execution of A onto a subsystem of A in the usual way: the
state components for all automata other than Ai1 , . . . , Aim are removed, and so
are all actions in which none of the Ai1 , . . . , Aim participate:

Definition 2 (Execution projection). Let A = A1 ‖ · · · ‖ An be an I/O
automaton. Let α = s0a1s1a2s2 . . . sj−1ajsj . . . be an execution of A. Let ϕ =
{i1, . . . , im} ⊆ {1, . . . , n}, and let Aϕ = Ai1 ‖ · · · ‖ Aim . We define α�Aϕ as the
sequence resulting from removing all ajsj such that aj �∈ acts(Aϕ) and replacing
each sj by sj�Aϕ.

Proposition 1 (Execution projection). Let A = A1 ‖ · · · ‖ An be an I/O
automaton. Let α ∈ execs(A). Let ϕ = {i1, . . . , im} ⊆ {1, . . . , n}, and let Aϕ =
Ai1 ‖· · ·‖Aim . Then α�Aϕ ∈ execs(Aϕ).

Proof. Immediate from the standard execution projection result for I/O au-
tomata [31], when considering the subsystem Aϕ as a single I/O automaton.

4 Formal Methods for Composition Correctness

Attie and Emerson [4, 5] present a temporal logic synthesis method for shared
memory programs that avoids exhaustive state-space search. Rather than deal
with the behavior of the program as a whole, the method instead generates
the interactions between processes one pair at a time. Thus, for every pair of
processes that interact, a pair-machine is constructed that gives their interaction.
Since the pair-machines are small (O(l2)), they can be built using exhaustive
methods. A pair-program can then be extracted from the pair-machine. The
final program is generated by a syntactic composition of all the pair-programs.

Here, we extend this method to the I/O automaton [31] model, which is
event-based. Unlike [4, 5], which imposed syntactic restrictions (variables must be
shared pairwise), the method presented here can be applied to any component-
based system expressed in the I/O automaton notation. It is straightforward
to extend the results presented here to any event-based formalism with a well-
defined notion of composition.

The method of [4] is synthetic: for each interacting pair, the problem specifica-
tion gives a formula that specifies their interaction, and that is used to synthesize
the corresponding pair-machine. We also consider the analytic use of the pair-
wise method: if a program is given, e.g., by manual design, then generate the
pair-machine by taking the concurrent composition of the components one pair
at a time. The pair-machines can then be model-checked for the required con-
formance to the specification. If the pair-machines behave as required, then we
can deduce that the overall program is correct.

38 P.C. Attie et al.

In our method, the desired safety and liveness properties are automatically ver-
ified (e.g., by model checking) in pair systems and the correctness of the whole sys-
tem deduced from the correctness of these pair systems. We start with formally
proving the propagation of safety and liveness properties from pair systems to
the large system. We use propositional linear-time temporal logic [33, 17] without
the nexttime modality (LTL-X), and with weak action fairness, to specify prop-
erties. LTL-X formulae are built up from atomic propositions, boolean connec-
tives, and the temporal modality U (strong until). LTL-X semantics is given by
the |= relation, which is defined by induction on LTL-X formula structure. Let α =
s0a1s1a2s2 . . . be an infinite execution fragment of A, αi = siai+1si+1ai+2si+2 . . .,
a suffix of α, and p be an atomic proposition. Then A, α |= p iff p ∈ label(A)(s0),
and A, α |= fUg iff ∃i ≥ 0 : A, αi |= g and ∀j ∈ {0, . . . , i − 1} : A, αj |= f . We
define the abbreviations Ff = trueUf (“eventually”), Gf = ¬F¬f (“always”),

fUwg = (fUg) ∨ Gf (“weak until”), and
∞
Ff = GFf (“infinitely often”).

Fairness constraints allow us to filter away irrelevant executions. We use weak
action fairness: an execution fragment α of A is fair iff it is infinite and every
action of A is either infinitely often executed along α or infinitely often disabled
along α. Define A, s |=Φ f iff f holds along all fair execution fragments of A
starting in s, and A |= f iff f holds along all fair executions of A.

Let A = A1 ‖ · · · ‖ An be the large system, and let Aij = Ai ‖ Aj be a
pair-system of A, where i, j ∈ {1, . . . , n}, i �= j. Then, if Aij |=Φ fij for some
LTL-X formula fij whose atomic propositions are all drawn from prop(Aij), we
would like to also conclude A |=Φ fij . For safety properties, this follows from
execution projection. For liveness properties, we need something more, since the
projection of an infinite execution of A onto Aij could be a finite execution of Aij ,
and so the liveness property in question may not be satisfied along this finite
projection, while it is satisfied along all the infinite extensions. We therefore
require that along an infinite global execution α, for every pair-system Aij , an

action involving Aij occurs infinitely often along α. Write A, α |=
∞
Fex(Aij)

iff α contains infinitely many actions in which Ai or Aj or both participate in

(this implies that α is infinite). Write A, s |=Φ
∞
Fex(Aij) iff for every infinite

fair execution α starting in s: A, α |=
∞
Fex(Aij). If s = 〈〈〈s1, . . . , sn〉〉〉 is a state

of A, then define s�ij = 〈〈〈si, sj〉〉〉, i.e., s�ij is the projection of s onto the pair-
system Aij .

Theorem 1. Let A = A1 ‖ · · · ‖An be an I/O automaton. Let i, j ∈ {1, . . . , n},
i �= j, and let Aij = Ai ‖ Aj. Assume that A, u |=

∞
Fex(Aij) for every start

state u of A. Let s be a reachable state of A, and let fij be an LTL-X formula
over prop(Aij). Then

Aij , s�ij |=Φ fij implies A, s |=Φ fij .

Behavioral Compatibility Without State Explosion 39

The proof of Theorem 1 is available in the full version of the paper.3 By applying
the above result to all pair-programs, we obtain:

∧

ij

(Aij |=Φ fij) implies A |=Φ
∧

ij

fij .

We then show that the conjunction
∧

ij fij of all the pair-properties implies the
required global correctness property f , i.e., (

∧
ij fij) ⇒ f . This leads to the

following rule of inference:
∧

ij(Aij |=Φ fij) (
∧

ij fij) ⇒ f

A |=Φ f
.

4.1 Characterizing the Global Properties That Can Be Verified

A natural question that arises is: how much verification power do we give up by
the restriction to pairs? Are there interesting global properties that cannot be
verified using our approach?

Let ei (i ≥ 1) denote an event, i.e., the execution of an action. Let part(ei)
denote the components that participate in ei. With respect to safety, we consider
event ordering, i.e., e1 < en, meaning that if e1 and en both occur, then e1
occurs before en. This can be verified by finding events e2, . . . , en1 such that,
for all i = 1, . . . , n − 1, ei < ei+1 can be verified in some pair. That is, there
exist components A ∈ part(ei), A′ ∈ part(ei+1), and A ‖ A′ is a pair system
that satisfies ei < ei+1. With respect to liveness, we consider leads-to properties,
i.e., e1 � en, meaning that if e1 occurs, then en subsequently occurs. This can
be verified by a similar strategy as outlined above for e1 < en. Event ordering
is sufficiently powerful to express many safety properties of interest, including
mutual exclusion, FIFO, and priority. Leads-to is sufficiently powerful to express
many liveness properties of interest, including absence of starvation and response
to requests for service.

More generally, any global property that can be expressed by an LTL formula
f which is deducible from pair-formulae fij can be verified. A topic of future
work is to characterize this class of LTL formulae exactly.

4.2 Behavioral Automaton of a Component

A behavioral automaton of a component expresses some aspects of that compo-
nents run-time (i.e., temporal) behavior. Depending on how much information
about temporal behavior is included in the automaton, there is a spectrum of
state information ranging from a “maximal” behavioral automaton for the com-
ponent (which includes every transition the component makes, even internal
ones), to a trivial automaton consisting of a single state. Thus, any behavioral
automaton for a component can be regarded as a homomorphic image of the
maximal automaton. This spectrum refines the traditional white-box/black-box

3 http://www.cs.virginia.edu/~lorenz/papers/cbse06/

40 P.C. Attie et al.

Table 1. The interoperability space for components

Compatibility: Interface Automaton Behavioral
Export interface interface + automaton complete code
Reuse black box adjustable white box
Encapsulation highest adjustable lowest
Interoperability unsafe adjustable safe
Time complexity linear polynomial for finite state undecidable
Assembly properties none provable from pair

properties
complete but impractical

Assembly behavior none synthesizable from
pair-wise behavior

complete but impractical

spectrum of component reuse, ranging from exporting the complete source code
(maximal automaton) of the component—white-box, to exporting just the in-
terface (trivial automaton)—black box. Table 1 displays this spectrum.

The behavioral automaton can be provided by the component designer and
verified by the compiler (just like typed interfaces are) using techniques such
as abstraction mappings and model-checking. Verification is necessary to ensure
the correctness of the behavioral automaton, i.e., that it is truly a homomorphic
image of the maximal automaton. Alternatively, the component compiler can
generate a behavioral automaton from the code, using, for example, abstract
interpretation or machine learning [32]. In this case, the behavioral automaton
will be correct by construction. We assume the behavioral automaton for third
party components is provided by the component designer.

4.3 Behavioral Properties of a Pair-Program

In general, we are interested in behavioral properties that are expressed over
many components at once. We infer such properties from the verified pair-
properties. Such inference can be carried out, for example, in a suitable deduc-
tive system for temporal logic. The third-party assembler would have to specify
the pair-properties and the pairs of interacting components and then carry out
the deduction.

It is usually the case that the pairs of interacting processes are easily identi-
fiable just based on the nature of process interactions in a distributed system.
For example, in mutual exclusion, a pair-program is two arbitrary processes; in
the elevator example the pair-program involves a floor component and an el-
evator controller component. Sometimes pair-properties to be verified are the
same as the global specification, just projected onto a pair. For example, in mu-
tual exclusion, the global property is just the quantification over all pairs of the
pair-property given for some arbitrary processes i and j, i.e.,

∧
ij G¬(Ci ∧ Cj),

where Ci is a state of a process Pi corresponding to this process being in the
critical section.

However, sometimes pair-properties are not straightforward projections of the
required global properties. These pair-properties have to be derived manually.

Behavioral Compatibility Without State Explosion 41

Then we have to prove that the conjunction of these pair-properties implies
the global specification by the means of temporal logic deductive systems [17].
These proofs are usually quite small (e.g., 27 lines for the elevator example) and
straightforward.

4.4 Verification of Behavioral Properties of the Large Program

At the verification stage the component assembler would have to choose a model-
checker which he plans to do verification in, then provide to the model-checker a
description of a behavioral automaton of the pair-programand the pair-properties
in a suitable format. If verification is successful then the pair-properties hold in
the global programand, as proven during the assembly phase, conjunction of these
pair-properties implies the global property of the program. If verification is not
successful then the third party assembler would have to either swap in a different
component and repeat verification process or change the global property to be
verified.

5 Implementation: Pair-Wise Component Builder

We now describe the working of a pairwise verification methodology in a pair-
wise component builder tool. This tool allows for interactive component design
and pair-wise verification. The pair-wise builder is based on Sun’s Bean Devel-
opment Kit (BDK) and the ContextBox [27, 26] software. Verification is done
using the Spin model-checker [21] that uses LTL as a specification language and
Promela as a modeling language. The goal is to provide the user with a list of
design recommendations that should be considered when developing components
in order to be able to use the tool for the subsequent component composition
and verification.

A builder is used for creating a compound component out of subcomponents.
The builder hence has two main functions:

– governing the connecting activity and dealing with problems of interoper-
ability; and

– encapsulating the assembled components into the compound component.

Traditionally, builders focus on interoperability in the restricted sense of only
considering interface compatibility, and support for system behavior predic-
tion [14] is not available. In our framework, behavioral compatibility can also
be checked. Hence, within our framework we implement a stronger notion of a
builder, which, in addition to interface compatibility, can also deal with:

– temporal behavior of connectors, since we accommodate a stronger notion of
interoperability, which encompasses both the interface between components
and the temporal behavior of their connection (i.e., pair-properties), and

– global temporal behavior, that is, the temporal behavior of the assembled sys-
tem. The deductive proofs that infer such properties of this global behavior
from the known pair-properties are carried out within the builder.

42 P.C. Attie et al.

For a component to be pair-wise composable in our builder, one takes the
following steps. The component interface must be a collection of separate in-
terfaces, each interface addressing a related connector. This corresponds to a
JavaBeans component implementing several event listener interfaces, but does
not need to be necessarily fine grained. This interface separation enables captur-
ing only interface information relevant to a pair-system, which is model-checked
during third-party assembly.

The inputs to our builder tool are components that have separate interfaces
per connector. In the BDK this corresponds to a component’s BeanInfo hav-
ing a list of named operations that can be invoked by events. These functions
are grouped and labeled according to components whose events this component
subscribes to. Pair-wise composable components, as part of their BeanInfo, also
have a high level description in Promela of their behavioral automata. The com-
ponents are connected in the builder. As a result, relevant changes are made
to their state machines to reflect components subscribing to each others events
(i.e., Promela code of a pair-program is generated based on the interfaces and
the behavioral automata of the pair).

Depending on component assembly, the user specifies properties of the model
(as LTL formulae) that she wishes to verify. Properties can be over a single
component or over a pair of components that were connected. The builder com-
municates the LTL specification and the generated Promela description of the
pair-program to the Spin interface. Then Spin model-checks the LTL formulae.
Since model checking is over pair-systems, it is efficient. If violation of a property
is detected, the user can modify either (1) the component, or (2) the component
system design or (3) the properties, and then repeat the process.

6 Case Study: Elevator System

We now present a case study of a component-based algorithm that was pair-wise
verified using our pair-wise component builder. This component-based elevator
algorithm was implemented with a collection of interfaces to enable pair-wise
verification. The elevator model consists of four types of components: floor com-
ponents (numbered 1 to N), panel button components, the user component, and
the controller component. The controller component (controller) represents the
elevator, and hence implements the elevator’s movement. Each floor component
(floor(f)) represents a specific floor and maintains information about the floor
and requests for this floor. Each panel button component (panelbutton(f)) repre-
sents a specific panel button inside an elevator. The events that floor components
and controller component listen to (up requests and down requests for each floor)
are generated by the user component (user) and by the buttons on the panel
from inside the elevator.

6.1 Informal Description

When moving upwards, the elevator controller satisfies requests in the upwards
direction up to where it perceives the uppermost currently outstanding request

Behavioral Compatibility Without State Explosion 43

to be, where this can be a panel request or a floor request in either direction.
The elevator then reverses its direction and proceeds to satisfy the requests in
the downwards direction until reaching what it perceives to be the lowermost
currently outstanding request, then reverses again, etc. As the elevator passes
floor f , it checks in with the floor(f) controller to determine if it needs to stop
floor f due to an outstanding request in the direction of its movement, and stops
if floor(f) so indicates. The controller maintains the following information.
Controller (elevator cabin):

int g—current elevator location
int top—the uppermost requested floor, set to 0 when this floor is reached
int bottom—the lowermost requested floor, set to 0 when this floor is reached
boolean up—true if the direction of the elevator movement is up, false if down
boolean stop—true if the elevator is not moving

Upon reaching the uppermost (lowermost) requested floor, the controller
sets top (bottom) to 0, which is an invalid floor number. This indicates that
the uppermost (lowermost) request currently known to the controller has been
satisfied.

When a request for floor f is issued, an event is sent to the floor(f) component,
where records the request, and also to the controller, which updates its top and
bottom variables if necessary.

There are N floor components. Each floor component’s state captures
whether floor f is requested in either direction.
Floor(f), (f = 1, . . . , N):

bool up(f)—true if the floor is requested for a stop in the upwards direction
bool down(f)—true if the floor is requested for a stop in the downwards direction

There are three types of event generators (button up at the floor, button
down at the floor, floor number button on the panel), but only two event types
(requests) are generated.

down button pushed at a floorf generates a downwards(f) request.
up button pushed at a floor f generates an upwards(f) request.
floor f pushed on the panel inside an elevator, generates either a upwards(f) or
downwards(f) request based on the elevator position.

The upwards(f) and downwards(f) events are randomly generated by a user
component and N separate panel-button components that implement the panel
buttons. The correctness of the algorithm obviously depends on correct main-
tenance of the top and bottom variables so that none of the requests are lost.
It is important to update these variables not only when the new requests are
issued but also to make sure they get reset after being reached, so that no sub-
sequent requests are lost. Our update algorithm guarantees that all the requests
are taken into account (only once).

6.2 Specification

There are two requirements that the elevator model must satisfy. (1) Safety: an
elevator does not attempt to change direction without stopping first, since this

44 P.C. Attie et al.

would damage the motor, and (2) Liveness: every request for service is eventually
satisfied

When connecting the controller component to the floor component, the
builder would typically generate a CommandListener adapter, which subscribes
to request events, so when an upwards request event is received from the floor,
it invokes the up method of the controller. Now, the motor, due to physical
constraints, cannot be switched from going up to going down without stopping
first. Builders in current systems would not detect if the request sequence vio-
lated this constraint, and consequently the motor could be damaged at runtime.
The safety property that we verified is the following:

If the elevator is moving up (down) then it continues doing so until it stops.
The LTL formula for this is:

G(up ⇒ upUwstop) ∧ G(¬up ⇒ (¬up)Uwstop) (1)

Where boolean up indicates direction of elevator movement and boolean stop
indicates whether the elevator is moving or not. Recall that G is the “always”
modality: Gp means that p holds in all states from the current one onwards. Uw

is “weak until”: either p holds from now on, or q eventually holds, and p holds
until then. This property can be verified by checking the controller alone, and
so is not challenging, since the controller by itself has only a small number of
states.

The interesting property that we verified is liveness: if a request is issued, it
is eventually satisfied. The LTL formulae for this are:

G(up(f) ⇒ F(g = f ∧ stop∧ up)) (2)

G(down(f) ⇒ F(g = f ∧ stop ∧ ¬up)) (3)

Where g is the elevator location variable and f is the number of the requested
floor; up(f) and down(f) indicate request for floor f in a certain direction. Fp
means that p eventually holds.

6.3 Model-Checking

Our interconnection scheme enables the separation of the state spaces of the
various components. Instead of constructing the global product automaton of N
floor components, the user component, N panel buttons, and the controller com-
ponent in the elevator system, we only construct N different pair-machines, and
model-check each pair-machine separately. A pair-machine consists of a con-
troller component and a single floor component, for each floor. We can then
verify behavioral properties of each of these pair-machines in isolation, and
then combine these properties deductively to obtain properties of the overall
system.

Behavioral Compatibility Without State Explosion 45

Safety. Safety is a property local to the controller component, hence, it can
be verified within the component. Since the controller component was model-
checked in isolation, we needed to ensure that we are model-checking it in
a correct environment (i.e., random request sequences). This is done through
input-enabledness of the behavioral automaton. This ensures that if there is a
transition that depends on the input from some other component we replace
this transition by a set of transitions that embody all the possible input values
from the other component (i.e., one transition per input value). The controller
component non-deterministically chooses one of these transitions. During model-
checking such input-enabledness creates an environment that produces the same
execution traces as the product behavioral automaton of the two components.
However, we avoid the extra states that would have been contributed by the sec-
ond component that are unnecessary for this verification confined only to this
component.

Liveness. We verified that liveness holds in our model by checking the model
against the LTL formula (2). We verified liveness in the model with various
number of floors N . This amounted to model-checking a system with N floor(f),
N panelbutton(f), 1 controller, and 1 user.

To achieve pair-wise verification we needed to decompose the liveness prop-
erty into pair-properties. Our pair consisted of a controller component and a
floor component, where our pair-model was input-enabled for the input coming
from other components. The pair-properties were manually derived for this pair-
program. The global liveness property (the LTL formulae (2, 3)) of a system as a
whole was deduced from the conjunction of the following pair-properties. These
pair-properties were checked for each of N pairs controller ‖ floor(f). Define
p � q = G(p ⇒ Fq).

When request is issued, it gets processed by the controller:
(p 1.1) up(f) � top ≥ f up(f) bottom ≤ f

(p 1.2) down(f) � top ≥ f down(f) bottom ≤ f

The controller actually moves up or down without changing its direction:
(p 2.1) (g = g0 < f up(f) up bottom ≤ f ≤ top) �

(g = g0 + 1 ≤ f up(f) up bottom ≤ f ≤ top)
(p 2.2) (g = g0 ≥ f up(f) ¬up bottom ≤ f ≤ top) �

(g = g0 − 1 ≤ f up(f) ¬up bottom ≤ f ≤ top)
(p 2.3) (g = g0 < f down(f) up bottom ≤ f ≤ top) �

(g = g0 + 1 ≤ f down(f) up bottom ≤ f ≤ top)
(p 2.4) (g = g0 ≥ f down(f) ¬up bottom ≤ f ≤ top) �

(g = g0 − 1 ≤ f down(f) ¬up bottom ≤ f ≤ top)

The controller stops once reaching the requested floor:
(p 3.1) (up(f) up g = f) � (stop g = f ¬up(f))
(p 3.2) (down(f) ¬up g = f) � (stop g = f ¬down(f))

46 P.C. Attie et al.

The controller reverses direction at the top and the bottom:
(p 4.1) (g = bottom up(f) ¬up bottom ≤ f ≤ top) �

(g = bottom up(f) up bottom ≤ f ≤ top)
(p 4.2) (g = top up(f) up bottom ≤ f ≤ top) �

(g = top up(f) ¬up bottom ≤ f ≤ top)
(p 4.3) (g = bottom down(f) ¬up bottom ≤ f ≤ top) �

(g = bottom down(f) up bottom ≤ f ≤ top)
(p 4.4) (g = top down(f) up bottom ≤ f ≤ top) �

(g = top down(f) ¬up bottom ≤ f ≤ top)

Boundary (efficiency) condition
(p 5) G(bottom ≤ g ≤ top)

6.4 Verification Results

We constructed models with N = 3, 5, 7, 9, 10, 12, 30, 100, where N is the number
of floors. The systems were model-checked as a whole system and pair-wise.4

The number of states in a whole system grew too large for Spin to model-check
above N = 10. On the other hand, model-checking pair-wise was achieved up to
N = 100 without experiencing exponential blow up. In the verification results
(Table 2), “number of transitions” is the number of transitions explored in the
search. This is indicative of the amount of work performed in model-checking the
given properties, for the given value of N . Pair-wise model checking first suffers
from some overhead due to the Spin model representation for N ≤ 10, and then
shows a polynomial increase in N , as expected from the theoretical analysis.

Table 2. Spin model-checking performace for an elevator system

Number of Whole system Pair-wise
Floors (N) # Transitions Run Time # Transitions Run Time
3 3.6 × 108 45 4.6 × 103 1
5 5.6 × 108 74 5.1 × 104 1
7 7.6 × 108 121 2.4 × 105 1
9 9.4 × 108 169 7.7 × 105 1
10 8.9 × 108 170 1.2 × 106 1
12 N/A N/A 2.9 × 106 1
30 N/A N/A 1.9 × 108 8
100 N/A N/A 1.9 × 109 109

7 Conclusion and Related Work

Component-based systems are widely acknowledged as a promising approach
to constructing large-scale complex software systems. A key requirement of a
4 1.7 GHz with 8Gb of RAM.

Behavioral Compatibility Without State Explosion 47

successful methodology for assembling such systems is to ensure the behavioral
compatibility of the components with each other. This paper presented a first
step towards a practical method for achieving this.

We have presented a methodology for designing components so that they can
be composed in a pair-wise manner, and their temporal behavior properties ver-
ified without state-explosion. Components are only required to have interface
separation per connector to enable disentanglement of intercomponent commu-
nication and specification of the externally visible behavior of each component
as a behavioral automaton.

Vanderperren and Wydaeghe [40, 35, 39, 36, 37] have developed a component
composition tool (PascoWire) for JavaBeans that employs automata-theoretic
techniques to verify behavioral automata. They acknowledge that the practicality
of their method is limited by state-explosion. Incorporating our technique with
their system is an avenue for future work.

DeAlfaro and Henzinger [2] have defined a notion of interface automaton,
and have developed a method for mechanically verify temporal behavior prop-
erties of component-based systems expressed in their formalism. Unfortunately,
their method computes the automata-theoretic product of all of the interface
automata in the system, and is thus subject to state-explosion.

Our approach is a promising direction in overcoming state-explosion. In addi-
tion to the elevator problem, the pairwise approach has been applied successfully
to the two-phase commit problem [5], the dining and drinking philosophers prob-
lems [4], an eventually serializable data service [6] and a fault-tolerant distributed
shared memory [3]. Release of the pair-wise component builder will contribute to
the ease of the exploitation of our methodology and its subsequent application.

References

[1] Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems 15(1) (1993) 73–132

[2] de Alfaro, L., Henzinger, T.A.: Interface automata. (2001) In Proceedings of
the 9th Annual Symposium on Foundations of Software Engineering (FSE), pages
109–120. ACM.

[3] Attie, P.C., Chockler, H.: Automatic verification of fault-tolerant register emula-
tions. In: Proceedings of the Infinity 2005 workshop. (2005)

[4] Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar
processes. ACM Transactions on Programming Languages and Systems 20(1)
(1998) 51–115

[5] Attie, P.C.: Synthesis of large concurrent programs via pairwise composition.
In: CONCUR’99: 10th International Conference on Concurrency Theory. Number
1664 in Lecture Notes in Computer Science, Springer-Verlag (1999)

[6] Attie, P.C.: Synthesis of large dynamic concurrent programs from dynamic spec-
ifications. Technical report, American University of Beirut (2005) Available at
http://www.cs.aub.edu.lb/pa07/files/pubs.html.

[7] Attie, P.C., Lorenz, D.H.: Correctness of model-based component composition
without state explosion. In: ECOOP 2003 Workshop on Correctness of Model-
based Software Composition. (2003)

48 P.C. Attie et al.

[8] Cheung, S., Giannakopoulou, D., Kramer, J.: Verification of liveness properties
in compositional reachability analysis. In: 5th ACM SIGSOFT Symposium on
the Foundations of Software Engineering / 6th European Software Engineering
Conference (FSE / ESEC ’97), Zurich (1997)

[9] Cheung, S., Kramer, J.: Checking subsystem safety properties in compositional
reachability analysis. In: Proceedings of the 18th International Conference on Soft-
ware Engineering, Berlin, Germany, ICSE 1996, IEEE Computer Society (1996)

[10] Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(2) (1996)

[11] Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. In: Proceedings of the 5th International Conference on Computer Aided
Verification. Number 697 in LNCS, Berlin, Springer-Verlag (1993) 450–462

[12] Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5) (1994) 1512–1542

[13] Clarke, E.M., Long, D., McMillan, K.L.: Compositional model checking. In:
Proceedings of the 4th IEEE Symposium on Logic in Computer Science, New
York, IEEE (1989)

[14] Crnkovic, I., Schmidt, H., Stafford, J., Wallnau, K., eds.: Proceedings of the 4th

ICSE Workshop on Component-Based Software Engineering: Component Cer-
tification and System Prediction, Toronto, Canada, IEEE Computer Society
(2001)

[15] Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Proceedings of
the 5th International Conference on Computer Aided Verification. Number 697 in
Lecture Notes in Computer Science, Berlin, Springer-Verlag (1993) 463–477

[16] Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in
System Design: An International Journal 9(1/2) (1996) 105–131

[17] Emerson, E.A.: Temporal and modal logic. In Leeuwen, J.V., ed.: Handbook of
Theoretical Computer Science. Volume B, Formal Models and Semantics. The
MIT Press/Elsevier, Cambridge, Mass. (1990)

[18] Grumberg, O., Long, D.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3) (1994) 843–871

[19] Heineman, G.T., Councill, W.T., eds.: Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley (2001)

[20] Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Method-
ology and case studies. In: Proceedings of the 10th International Conference on
Computer-Aided Verification (CAV). (1998)

[21] Holzmann, G.J.: The SPIN Model Checker. Addison Wesley, San Francisco,
California, USA (2003)

[22] Proceedings of the 23rd International Conference on Software Engineering,
Toronto, Canada, ICSE 2001, IEEE Computer Society (2001)

[23] Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Informa-
tion and Computation 163(1) (2000) 203–243

[24] Kesten, Y., Pnueli, A., Vardi, M.Y.: Verification by augmented abstraction: The
automata-theoretic view. Journal of Computer and System Sciences 62(4) (2001)
668–690

[25] Lamport, L.: Composition: A way to make proofs harder. In de Roever, W.P.,
Langmaack, H., Pnueli, A., eds.: Compositionality: The Significant Difference
(Proceedings of the COMPOS’97 Symposium). Number 1536 in Lecture Notes
in Computer Science, Bad Malente, Germany, Springer Verlag (1998) 402–423

Behavioral Compatibility Without State Explosion 49

[26] Lorenz, D.H., Petkovic, P.: ContextBox: A visual builder for context beans
(extended abstract). In: Proceedings of the 15th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, Minneapolis, Min-
nesota, OOPSLA’00, ACM SIGPLAN Notices (2000) 75–76

[27] Lorenz, D.H., Petkovic, P.: Design-time assembly of runtime containment compo-
nents. In Li, Q., Firesmith, D., Riehle, R., Pour, G., Meyer, B., eds.: Proceedings
of the 34th International Conference on Technology of Object-Oriented Languages
and Systems, Santa Barbara, CA, IEEE Computer Society (2000) 195–204

[28] Lorenz, D.H., Vlissides, J.: Designing components versus objects: A transforma-
tional approach. In: ICSE 2001 [22] 253–262

[29] Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-
Quarterly 2(3) Centrum voor Wiskunde en Informatica, Amsterdam, The Nether-
lands (1989) 219–246

[30] Lynch, N., Vaandrager, F.: Forward and backward simulations — part I: Untimed
systems. Information and Computation 121(2) (1995) 214–233

[31] Lynch, N.A.: Distributed Algorithms. Morgan-Kaufmann, San Francisco, Cali-
fornia, USA (1996)

[32] Mäkinen, E., Systä, T.: MAS - an interactive synthesizer to support behavioral
modeling in UML. In: ICSE 2001 [22] 15–24

[33] Pnueli, A.: The temporal logic of programs. In: IEEE Symposium on Foundations
of Computer Science, IEEE Press (1977) 46–57

[34] Szyperski, C.: Component Software, Beyond Object-Oriented Programming.
Addison-Wesley (1997)

[35] Vanderperren, W., Wydaeghe, B.: Towards a new component composition process.
In: Proceedings of the 8th International Conference on the Engineering of Com-
puter Based Systems, ECBS’01, IEEE Computer Society (2001) 322–331

[36] Vanderperren, W., Wydaeghe, B.: Separating concerns in a high-level component-
based context. In EasyComp Workshop at ETAPS 2002 (2002)

[37] Vanderperren, W.: A pattern based approach to separate tangled concerns in
component based development. In: Proceedings of the 1st AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software, ACP4IS’02, En-
schede, The Netherlands (2002) 71–75

[38] Wallnau, K.C., Hissam, S., Seacord, R.: Building Systems from Commercial Com-
ponents. Software Engineering. Addison-Wesley (2001)

[39] Wydaeghe, B., Vanderperren, W.: Visual component composition using composi-
tion patterns. In: Proceedings of the 39th International Conference on Technology
of Object-Oriented Languages and Systems, Santa Barbara, CA, TOOLS 39 USA
Conference, IEEE Computer Society (2001) 120–129

[40] Wydaeghe, B.: PACOSUITE: Component composition based on composition pat-
terns and usage scenarios. PhD thesis (2001)

Verification of Component-Based Software
Application Families�

Fei Xie1 and James C. Browne2

1 Dept. of Computer Science, Portland State Univ., Portland, OR 97207
xie@cs.pdx.edu

2 Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712
browne@cs.utexas.edu

Abstract. We present a novel approach which facilitates formal verification of
component-based software application families using model checking. This ap-
proach enables effective compositional reasoning by facilitating formulation of
component properties and their environment assumptions. This approach inte-
grates bottom-up component verification and top-down system verification based
on the concept of application family architectures (AFA). The core elements of an
AFA are architectural styles and reusable components. Reusable components of
a family are defined in the context of its architectural styles and their correctness
properties are verified in bottom-up component compositions. Top-down system
verification utilizes architectural styles to guide decomposition of properties of
a system into properties of its components and formulation of assumptions for
the component properties. The component properties are reused if already veri-
fied; otherwise, they are verified top-down recursively. Architectural style guided
property decomposition facilitates reuse of verified component properties. Pre-
liminary case studies have shown that our approach achieves order-of-magnitude
reduction on verification complexities and realizes major verification reuse.

1 Introduction

Model checking [1] has great potential in formal verification of software systems. The
massive effort required for model checking whole systems “from scratch” has, how-
ever, hindered application of model checking to software. The observations that many
software systems are members of families of related systems which share common ar-
chitectural styles and common components and that compositional reasoning [2, 3] is
one of the most effective methods for reducing model checking complexities suggest
component-based software verification, where verification of whole systems is based
on compositional reasoning and on reuse of verified component properties.

A key challenge in component-based verification is formulation of component prop-
erties and their environment assumptions, i.e., what properties to verify on a component
and what are the assumptions under which the properties should be verified. This chal-
lenge is largely due to lack of knowledge about possible environments of components.
In the state of the art, property and assumption formulation is often ad-hoc and system-
specific. There has been recent research [4, 5] on automatic generation of assumptions

� This research was partially supported by NSF grants IIS-0438967 and CNS-0509354.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 50–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification of Component-Based Software Application Families 51

for safety properties of components. However, formulation of component properties and
formulation of assumptions for liveness properties still needs to be addressed.

This paper presents and illustrates a novel approach which facilitates formal veri-
fication of component-based software application families using model checking. This
approach contributes to addressing the component property and assumption formulation
challenge through extending the concept of software architectures to the concept of ap-
plication family architectures (AFA). An AFA of an application family consists of the
computation model, component model, architectural styles, and reusable components
of the family. Intuitively, the AFA concept addresses lack of knowledge about possible
environments of components by capturing common usage patterns and compositions of
components and provides a hierarchy of reusable components with verified properties.

In this approach, bottom-up component verification and top-down system verifica-
tion are integrated based on assume-guarantee compositional reasoning [2, 3] and the
AFA concept. The integration works as follows. Basic reusable components of a fam-
ily are derived from its architectural styles and are developed bottom-up as the family
is initialized. Properties of these components are derived from the architectural styles
and verified in the environments defined by these styles. The properties then serve as
abstractions of the components in bottom-up verification of larger composite compo-
nents. Top-down verification of a member system utilizes architectural styles to guide
decomposition of properties of the system into properties of its components and formu-
lation of environment assumptions of the component properties. The component prop-
erties are reused, if already verified; otherwise, they are verified top-down recursively.
Architectural style driven property decomposition addresses formulation of component
properties and their assumptions, and facilitates reuse of verified properties of reusable
components. Additional reusable components may be introduced as the family evolves.

Preliminary case studies on web service based systems have shown that our approach
is very effective in scaling verification: It achieved order-of-magnitude verification com-
plexity reductions for non-trivial component-based systems and realized major verifi-
cation reuse. The cost of our approach lies in configuring and evolving the AFA of a
family and is amortized among member systems of the family. Further case studies are
under way to evaluate if benefits obtained in verification and reuse justify the cost.

The rest of this paper is organized as follows. In Section 2, we introduce the concept
of AFA and present an AFA for the domain of university information systems (UIS)
based on web services. In Section 3, we discuss integrated bottom-up and top-down
verification for an application family, which is illustrated with its application to the UIS
domain in Section 5. In Section 6, we analyze the effectiveness and cost of integrated
verification. We discuss related work in Section 7 and conclude in Section 8.

2 Application Family Architectures (AFAs)

AFAs extend the concept of software architectures [6, 7] and target model checking of
component-based application families. An AFA for an application family is derived via
domain analysis of this family. It captures common architectural styles of the systems
in this family, which suggest properties that need to be verified on these systems and
provide knowledge about possible composition environments for reusable components.

52 F. Xie and J.C. Browne

It also catalogs reusable components and their verified properties. An AFA is a 4-tuple,
(computation model, component model, architectural style library, component library):

– The computation model defines the basic elements of a system: (1) the basic func-
tional entities, (2) the interaction mechanism of these entities, and (3) the units of
execution, and specifies the execution semantics in terms of these basic elements.

– The component model defines the concept of component, specifying the elements of
a component: executable representation, interfaces (including functional interfaces
and component properties), etc. It also defines the component composition rule.

– The architectural style library contains the common architectural styles that appear
in systems of this family. An architectural style specifies the types of components
that can be used in this style, the component interactions under this style, and a set
of properties required by this style on these components and on their composition.

– The component library contains the reusable components that have been constructed
for developing systems in this family. These components are reused in development
of new systems. This library is expanded when new components are introduced.

2.1 AFA for University Information System

To illustrate this concept, we present an AFA for the domain of university information
systems (UIS). A modern university is supported by many information systems such as
the registration system, the library system, and the event ticketing system. Their central
functionality is to process various electronic transactions. These systems are required
to correctly process these transactions following the designated protocols.

Computation Model. An emerging trend is to develop information systems using web
service technologies. Components of such systems are web services, implemented in
program languages such as Java and C# or design-level executable languages such as
Business Process Execution Language for Web Services (BPEL4WS) [8]. We formalize
(with simplifications) the semantics of web service based systems as an Asynchronous
Interleaving Message-passing (AIM) computation model. In this model, a system is
a finite set of interacting processes. The processes interact via asynchronous message-
passing. A system execution is an interleaving of the state transitions of these processes.
In our previous work [9], we have developed the ObjectCheck toolkit which supports
model checking of systems that follow the AIM semantics. We employ ObjectCheck as
the model checker for verifying components and systems of the UIS family.

Component Model. Web services, the components in web service based systems, can
be primitive (directly implemented) or composite (composed from simpler web ser-
vices). Their interfaces are specified in XML-based interface specification languages,
Web Service Definition Language (WSDL) [10] and Web Service Choreography Inter-
face (WSCI) [11]. WSDL defines the message types supported by a web service. WSCI
defines how the message types are interrelated in a choreographed interaction with the
web service.

Component – A component C is a pair (E, {S}). E is the executable specification
of C. Conceptually, E is a set of interacting AIM processes. (A primitive component

Verification of Component-Based Software Application Families 53

may contain multiple AIM processes.) Practically, E can be implemented in Java, C#,
or BPEL4WS. {S} is a set of services and each service S is a pair (M, F) as follows.

– M is the messaging interface through which C provides the service S and requests
the services necessary for providing S. M contains input and output message types
and is specified in WSDL.

– F is the functional specification of the service S and is a pair (provides, requires).
The provides is a pair (P (pro), A(pro)) where P (pro) is the temporal proper-
ties that define the service S and A(pro) specifies the assumptions of P (pro) on
the components that request S. To provide S, C often requires other services. The
requires is a set and each entry of the set is a pair (P (req), A(req)). A(req) speci-
fies the assumptions on a service S′ required by C. P (req) specifies the properties
of C necessary for enabling the assumptions in A(req), i.e., when C requests the
service S′, it must behave as P (req) specifies. The properties and assumptions are
formulated on the message types in M and are specified in WSCI.

This component definition facilitates assume-guarantee compositional reasoning by
specifying properties with their assumptions and guides verification reuse by grouping
properties and assumptions into the provides and requires format.

Component Composition – Composition of a set of components, C0, . . ., Cm−1, cre-
ates a composite component, C = (E, {S}), which provides services that aggre-
gate the services provided by C0, . . ., Cm−1. Suppose the services (M0, F0), . . .,
(Mn−1, Fn−1) of C0, . . ., Cm−1 are used to compose the service (M, F) of C. (n
can be bigger than m since multiple services of a component may be involved.)

– E is constructed from E0, . . ., Em−1 by establishing mappings between incoming
message types in Mi and outgoing message types in Mj , 0 ≤ i, j < n, in order to
fully or partially satisfy the requires of Fi with the provides of Fj .

– M includes all message types in M0, . . ., Mn−1 that are needed for C to interact
with its environment. F is defined on M . The provides of F is derived from the
provides of one or several Fi’s. The requires of F is derived from all entries in the
requires of F0, . . ., Fn−1 that are not satisfied inside the composition.

F is verified on an abstraction of C0, . . ., Cm−1 constructed from F0, . . ., Fn−1. The
abstraction includes all properties in the provides and requires of F0, . . ., Fn−1 whose
assumptions are satisfied by the composition or the assumptions in the provides and
requires of F . F is verified by checking the properties in the provides and requires of
F on the abstraction. (See [12] for details of abstraction construction.)

Architectural Style Library. An architectural style is a triple, (component templates,
service invocation graph, properties). The component templates are specified by com-
ponent service interfaces which can be complete or partially defined, i.e., with partially
defined messaging interfaces and (provides, requires) pairs. A component matches a
component template if its interfaces match the interfaces of the component template.
The service invocation graph is a directed graph that defines how the requires of the
component templates are satisfied by the provides of other component templates. In
a composite component following this style, the provides and requires of the sub-
components corresponding to the component templates must conform to the satisfaction

54 F. Xie and J.C. Browne

relationships. The properties are required to hold on a composite component following
this style. They are formally defined on the interfaces of the component templates if the
interfaces provide sufficient semantic information; otherwise, they are informally spec-
ified. A component is reusable if it matches a component template and its functionality
is common across multiple composite components following this style.

The UIS architectural style library includes (but not limited to) the following styles:

– Three-tier architecture. (1) Component templates: The application logic, the busi-
ness logic, and the database engine. The database engine is reusable. (2) Service
invocation graph: This style features layered service invocation. The user logic in-
vokes the business logic which, in turn, invokes the database engine. (3) Properties:
The three components interact properly to ensure that their composition correctly
processes each transaction received. The properties are informally specified due to
insufficient semantic information about the transactions.

– Agent-dispatcher. (1) Component templates: A pool of agents and a dispatcher man-
aging the agents. The dispatcher is a reusable component while the agents are dif-
ferent for different transactions, however, the agents conform to a partial interface
whose provides is partially determined by the requires of the dispatcher. (2) Ser-
vice invocation graph: The environment of a composite component following this
style invokes the services of the dispatcher and agents. The dispatcher invokes the
service of the agents. An agent provides services to the environment of the compos-
ite component and the dispatcher via the same messaging interface. (3) Properties:
Upon a request from the environment if a free agent exists it must be dispatched.
A dispatched agent is eventually freed. The properties are formally defined on the
interfaces of the dispatcher template and the agent template.

Systems in the UIS family are transaction-oriented and circular service invocation
is not permitted. The service invocation graphs are directed and acyclic. Dependencies
between a service requester and its provider are captured in their requires and provides.
Such dependencies do not cause circular reasoning due to the sequencing relationships
among the messages of two interacting sub-components in executing a transaction.

Component Library. Basic reusable components of the UIS family, such as the data-
base engine, are derived from its architectural styles. The desired properties of the data-
base engine assert that it correctly handles each query. The properties have assumptions
that databases are locked before and unlocked after they are queried and if multiple
databases are accessed, they must be locked in a proper order to avoid deadlocks. The
properties and their assumptions are parameterized by how many and what databases
are accessed simultaneously. An instantiation of the properties for accessing a single
database is shown in Figure 1. Space limitation prohibits showing the WSCI repre-
sentations of the properties and assumptions. Instead, in Figure 1, the properties and
assumptions are concisely specified in an ω-automaton based property specification
language [9]. Each assertion is instantiated from a property template and is correspond-
ing to an ω-automaton. Properties in this language are intuitive, for instance, the first
assertion in Figure 1 asserts that after receiving a lock message, the database engine
will eventually reply with a locked message. These specifications are translated from
the WSCI specifications when the properties are verified using the ObjectCheck toolkit.

Verification of Component-Based Software Application Families 55

Provides:
P(pro):
After(Lock) Eventually(Locked); Never(Locked) UnlessAfter(Lock);
After(Locked) Never(Locked) UnlessAfter(Lock);
After(Unlock) Eventually(Unlocked); Never(Unlocked) UnlessAfter(Unlock);
After(Unlocked) Never(Unlocked) UnlessAfter(Unlock);

A(pro):
After(Lock) Never(Lock) UnlessAfter(Unlocked);
After(Locked) Eventually(Unlock); Never(Unlock) UnlessAfter(Locked);
After(Unlock) Never(Unlock)UnlessAfter(Locked);

Fig. 1. Properties of Database Engine

(For simplicity, only properties that are related to locking/unlocking are shown and the
transaction identifiers are omitted from the messages.) The properties in P(pro) define
the desired behaviors of the database engine. The assumptions in A(pro) specify the
required behaviors of other components requesting the service. The database engine
requires no other services. Besides the database engine, the agent-dispatcher style sug-
gests the dispatcher service. These components are the initial components in the library.

2.2 Relationships of AFA to Verification

AFA extends the concept of software architectures to enable operational support for
bottom-up component verification, top-down system verification, and their integration.
The inclusion of a computation model and a component model in an AFA relates soft-
ware architectures to component implementations and compositions, thus making the
concept of software architectures operational for verification. The computation model
guides the selection of model checkers. The component model provides compositional
structures necessary for compositional reasoning. The architectural styles suggest com-
ponent properties and how these properties are decomposed if needed.

3 Integrating Bottom-Up and Top-Down Verification

In this section, we present how the AFA concept facilitates bottom-up component verifi-
cation, top-down system verification, and their integration. Our approach utilizes archi-
tecture styles captured by the AFA to guide property formulation and decomposition,
and reduces complexities of verifying member systems based on compositional reason-
ing and on reuse of verified properties of reusable components available in the AFA.

3.1 Bottom-Up Component Verification in Family Initialization

As an application family is initialized, its basic reusable components are derived from
its architectural styles. The properties of the components are formulated according to
these styles. The assumptions of the component properties are also formulated accord-
ing to how the components interact under the architectural styles. Derivation of reusable
components and formulation of properties and assumptions requires manual efforts.
Verification of the component properties follows the bottom-up approach developed in
our previous work [12]. The properties of a primitive component, which is developed

56 F. Xie and J.C. Browne

from scratch, are directly model-checked. The properties of a composite component,
instead of being checked on the component directly, are checked on its abstractions that
are constructed from the verified properties of its sub-components. If the properties of
the composite component cannot be verified on the abstractions, the abstractions are
refined by introducing and verifying additional properties of the sub-components.

3.2 Top-Down System Verification in Member System Development

Development of a member system of an application family is top-down. The system is
partitioned into its components which are reused from the component library, directly
implemented, or partitioned recursively. A system is a composite component. There-
fore, we discuss how a composite component is verified as it is developed top-down.

For a composite component following an architectural style, we integrate verification
into its top-down development and utilize the architecture style to guide the decompo-
sition of its properties into the properties of its sub-components.1 We assume that the
component interface has been designed. The properties of the composite component
are formulated in the (provides, requires) format based on the interface and according
to the architectural style. For architecture styles with informally specified properties, for
instance, the 3-tier architecture, the property formulation requires manual efforts. The
composite component is developed and verified using a top-down process as follows:

1. Composite component layout. The component is partitioned into its sub-components
according to the architectural style. The sub-component interfaces are defined and
the sub-component interactions are specified. This step requires manual efforts of
the designers. The representation for sub-component interactions, for instance,
High-level Message Sequence Charts (HMSC) [13] for the UIS family, are selected
in conformance to the computation model and the component model of the family.

2. Architectural style driven property decomposition. The properties of the compos-
ite component are decomposed into the properties of its sub-components. The de-
composition is guided by the architectural style and based on the sub-component
interactions. How architectural styles guide property decomposition is discussed in
detail in Section 4. The validity of the decomposition is established by ensuring that
the properties of the sub-components imply the properties of the composite compo-
nent and there exists no circular reasoning among sub-component properties. For a
well-studied application domain, this step can be largely automated.

3. Reuse or recursive development of sub-components. The architectural style sug-
gests whether a sub-component is reusable. There may be a set of components in the
library which are reusable in a given sub-component role even though they are dif-
ferent in their interfaces or properties. A component is selected from the set based
on their interfaces and properties. If no qualified component is found for a sub-
component or it is suggested to be application-specific by the architectural style, it
needs to be developed. If the sub-component is primitive, it is implemented, and its
properties are verified through direct model checking of its implementation. If the

1 A composite component may or may not follow an architecture style. A composite component
following no style can be verified through compositional reasoning based on user-guided de-
composition of properties of the composite component into properties of its sub-components.

Verification of Component-Based Software Application Families 57

sub-component is composite, it is developed and verified top-down. If it follows an
architectural style, the top-down process discussed herein is applied recursively.

4. Composition. After all the sub-components are selected from the library or recur-
sively developed, they are composed to construct the composite component by us-
ing the composition rule in Section 2.1 following the architectural style.

In each step of this process, failure to achieve the goal of the step will lead to revisions
and re-executions of the previous steps or abortion of this process.

3.3 Bottom-Up Component Verification in Component Library Expansion

In the top-down development and verification of a member system, new components
may be introduced. Some of these components are application-specific while the others
are reusable. The properties of the reusable components have been established when
the system is verified. These newly introduced reusable components may be further
composed among themselves or with the existing reusable components to build larger
reusable components bottom-up. Such a composite component is identified in the de-
velopment of the member system and its sub-components together achieve a reusable
functionality. The interface of the composite component is derived from the interfaces
of its sub-components. The properties of the composite component are verified on its
abstractions constructed from the properties of its sub-components. The sub-component
properties are available from either verification of the member system or the component
library. All these reusable components are then included into the component library.

3.4 Interactions of Bottom-Up and Top-Down Verification

Bottom-up and top-down verification are synergistic in their integration into the devel-
opment lifecycle of an application family. Bottom-up component verification in family
initialization provides the basis for verification reuse. Top-down member system devel-
opment and verification expands the component library by introducing new reusable
components and by enabling bottom-up construction and verification of larger reusable
components. Component library expansion raises the level of component reuse and re-
duces the number of decompositions needed in top-down verification of a new system.

4 Architectural Style Driven Decomposition

The central step of top-down system verification is the architectural style driven prop-
erty decomposition. In this step, the properties of a composite component (a system
is a composite component) are decomposed into the properties of its sub-components
based on the architectural style guiding the composition and on the sub-component in-
teractions. For a well-studied domain, the decomposition procedure can be largely auto-
mated. How the decomposition procedure operates also depends on the representations
of architectural styles, component interfaces, component interactions, and properties.

We present a decomposition procedure for the UIS family. (With slight modifica-
tions, this procedure can be generalized to many other transaction processing centric
families.) Given a composite component C and a service (M, F) that C is expected

58 F. Xie and J.C. Browne

to provide, the procedure decomposes the properties and assumptions in the provides
and requires of F into the properties and assumptions of the sub-components of C fol-
lowing the architectural style of C. Properties and assumptions of a sub-component are
grouped to define the services provided and required by the sub-component.

Under the UIS architectural styles, component interactions are transaction-oriented.
To provide the service S, the sub-components C0, . . ., Cn−1 of C interact following a
transaction: a sequence of message communications through the messaging interfaces
of C0, . . ., Cn−1. Component interfaces are service-oriented: a component provides a
service and to provide the service, it requires services from other components.

We assume as C is designed, the interactions among C0, . . ., Cn−1 are specified
as a High-level Message Sequence Chart (HMSC) [13]. A HMSC allows branching
upon different messages, repetitions of sub-sequences, and skips of sub-sequences. We
also extend HMSCs by grouping the messages interactions among the sub-components
according to service invocations. The message interactions for invoking a service are
explicitly annotated. The external component that requires the service of C (denoted by
P-ENV) and the set of the external components that provide the services required by C
(denoted by R-ENV) are also represented in the HMSC. The message communications
with P-ENV and R-ENV are derived from the provides and requires of F . Specifying
HMSCs adds little extra costs to the design process of message-passing based systems.

The decomposition procedure for compositions whose service invocation graphs
have tree structures is given as pseudo code in Figure 2. (Space limitation prohibits

procedure Decompose (style, comp-set, hmsc, current, parent)
begin
if (current == P-ENV) then
{children} = Find-Children (style, comp-set, hmsc, current);
foreach child ∈ {children} do
Decompose (style, comp-set, hmsc, child, current);

endfor;
elseif (current �∈ R-ENV) then
provides = Derive-Provides-from-HMSC (hmsc, current, parent));
{children} = Find-Children (style, comp-set, hmsc, current);
foreach child ∈ {children} do
req = Derive-Requires-from-HMSC (hmsc, current, child);
requires = requires ∪ {req};
Decompose (style, comp-set, hmsc, child, current);

endfor;
Attach-Service-to-Component (current, (provides, requires));

endif;
end;

Fig. 2. The decomposition procedure

presenting the more complex decomposition procedure for compositions with directed
acyclic service invocation graphs, which follows the same basic idea.) It inputs the ar-
chitectural style guiding the composition, the set of sub-components represented by
their messaging interfaces, the HMSC, the current sub-component whose service is
to be derived, and the parent sub-component that requires the service of the current
sub-component. The parent-children relationships among the sub-components are de-
termined by the service invocation relationships among the sub-components defined in

Verification of Component-Based Software Application Families 59

the architectural style and the service annotations in HMSC. A component may appear
in the children set of another components multiple times if it provides multiple services
to its parent. The procedure is invoked with P-ENV as the current and NULL as the
parent since P-ENV is the root of the transaction, and invokes itself recursively.

1. If current is P-ENV, the procedure locates all sub-components providing services
to P-ENV and invokes itself recursively on each of these sub-components.

2. If current is not P-ENV and also not in R-ENV, the procedure first derives the pro-
vides of current from its interactions with its parent (the sub-component to which
it provides the service). The procedure then finds all children of current (the sub-
components that provide services to current), derives each entry of the requires of
current from the interaction with each child, and invokes itself recursive on each
child. The service, (provides, requires), is then associated with current.

3. If current is in R-ENV, then nothing need be done.

Deriving the provides and requires of current from the HMSC is essentially pro-
jecting the HMSC onto current and the sub-components that interact with current. To
derive the provides, the interactions of current with its parent are projected. To derive
an entry of the requires, the interactions of current with one of its children are pro-
jected. The properties and assumptions in the provides and the requires are specified
as WSCI processes. A WSCI process is a simple state machine that captures the be-
haviors of a sub-component as specified in the HMSC: receiving incoming messages
and responding with outgoing messages. The derivation algorithm is straightforward.
Receiving and sending messages in the HMSC is captured as atomic messaging activi-
ties in the WSCI process. Sequencing relationships among messages in the HMSC are
captured by sequence activities in the WSCI process. Branchings according to different
messages received in the HMSC are captured by choice activities in the WSCI process.

Space limitation precludes presentation of a detailed correctness proof of the decom-
position procedure. The intuition is as follows. The procedure always terminates since
it goes through each component following an order determined by the architectural
style. The procedure ensures that the composition of the derived services of the sub-
components implies the service of the composite component. The requires of P-ENV is
satisfied by the provides of its children sub-components whose requires are satisfied by
their children recursively. The requires of the sub-components that interact with R-ENV
are satisfied by the provides of R-ENV. Therefore, the composite provides the requires
of P-ENV if R-ENV provides the requires of the composite. In addition, the acyclic ser-
vice invocations among the sub-components and the sequencing relationships among
the messages of two interacting sub-components prevent circular reasoning.

5 Integrated Bottom-Up and Top-Down Verification of UIS

5.1 Bottom-Up Component Verification in Family Initialization

As the UIS family is initialized, its architectural styles suggest two reusable compo-
nents: the database engine and the dispatcher. Verification of database engines is out of
the scope of this paper. We assume that the properties of the database engine hold. The

60 F. Xie and J.C. Browne

Provides:
P(pro): After(Login) Eventually(TryLater + Dispatch); Never(TryLater + Dispatch) UnlessAfter(Login);

After(TryLater + Dispatch) Never(TryLater + Dispatch) UnlessAfter(Login);
A(pro): (Empty)
Requires:
A(req): After(Dispatch) Eventually(Free); Never(Free) UnlessAfter(Dispatch);

After(Free) Never(Free) UnlessAfter(Dispatch);
P(req): After(Dispatch) Never(Dispatch) UnlessAfter(Free);

Fig. 3. Properties of Dispatcher

dispatcher is a primitive component. Its properties and their assumptions are shown
in Figure 3. The properties in P(pro) and P(req) are checked on the dispatcher un-
der a non-deterministic environment whose interface complements the interface of the
dispatcher and which is constrained by the assumptions in A(pro) and A(req). The prop-
erties were verified in 0.9 seconds and 0.16 megabytes which are order-of-magnitude
lower than the time and memory usages for verifying a system utilizing the dispatcher
service (see Section 6). No composite reusable components are introduced in family
initialization.

5.2 Top-Down System Verification in Member System Development

We illustrate top-down system verification through verifying the registration system
from the UIS family. The registration system is structured following the 3-tier architec-
ture. It consists of three components: the application logic, the business logic, and the
database engine. The interactions among these components and the environment of the
registration system are captured by a HMSC. Upon a login request, the system execu-
tion may take three branches: (1) log the user in; (2) reject the user; (3) ask the user to
try later. For illustration purposes, the first two branches are shown in Figure 4 as two

Unlock(A)

AddClassReq/
DelClassReq AddClass/

DelClass

Logout

LoggedOut

Unlocked(C)

Unlocked(S)

Unlock(S)

Locked(S)

Lock(S)

Locked(C)

Lock(C)

AddClassReply/
DelClassReply

AddRes/
DelRes

App−Logic Database

Login

P−Env

AuthReq

Bus−Logic

LoggedIn

AuthReply

Lock(A)

Locked(A)

Unlocked(A)

Unlock(C)

Unlock(A)

App−Logic Database

Login

P−Env

AuthReq

Bus−Logic

AuthReply

Lock(A)

Locked(A)

Unlocked(A)

Rejected

Fig. 4. A flattened view of the HMSC for component interactions under the 3-tier architecture

Verification of Component-Based Software Application Families 61

MSCs with the following extensions: The forward dashed arrow denotes the skip of a
sub-sequence and the backward dashed arrow denotes the repetition of a sub-sequence.
For instance, after a user logs in, she may or may not add or delete classes, and she may
add or delete multiple classes. In Figure 4, service annotations that group messages into
service invocations are not shown for simplicity. The message interactions between the
application logic and the business logic are grouped into two service invocations: one
for authentication and the other for adding or deleting classes. Similarly, the message
interactions between the business logic and the database engine are grouped into two
service invocations: one for access to the authentication database and the other for si-
multaneous access to the class database and the student database.

The 3-tier architecture requires verifying that the registration system follows the des-
ignated message sequences for a registration transaction when interacting with a well-
behaved user. Essentially, we verify that the system interacts with such a user following
the message sequences between P-ENV and the application logic in Figure 4.

The properties of the registration system can be automatically derived from the
HMSC as follows. A WSCI process is created from the HMSC and captures the mes-
sages from P-ENV to the system, the response messages of the system, and the se-
quencing relationships among the messages observed by the system. Essentially, the
WSCI process is obtained from the HMSC by projecting the interactions between the
system and P-ENV onto the system. Space limitation prohibits showing the WSCI
process. Instead, its formal translation is shown in Figure 5. The temporal predicates
in P(pro) encode the WSCI process, i.e., capturing the temporal relationships among
the messages, for instance, the first three predicates in P(pro) capture the temporal
relationships between Login and LoggedIn, Rejected, and TryLater. A(pro) is derived
from the HMSC by projecting the interactions of P-ENV and the system onto P-ENV.
For instance, the first predicate in A(pro) specifies an assumption on P-ENV that it
never sends an AddClassReq, DelClassReq, or Logout message unless after it receives a
LoggedIn message. The properties in P(pro) and the assumptions in A(pro) are inter-
dependent and together they capture the message interactions between P-ENV and
the system. Since the registration system requires no other services, its requires is
empty.

Provides:
P(pro):
After(Login) Eventually(LoggedIn+Rejected+TryLater);
Never(LoggedIn+Rejected+TryLater) UnlessAfter(Login);
After (LoggedIn+Rejected+TryLater) Never (LoggedIn+Rejected+TryLater) UnlessAfter(Login);
After(AddClassReq) Eventually(AddClassReply); Never(AddClassReply) UnlessAfter(AddClassReq);
After(AddClassReply) Never(AddClassReply) UnlessAfter(AddClassReq);
After(DelClassReq) Eventually(DelClassReply); Never(DelClassReply) UnlessAfter(DelClassReq);
After(DelClassReply) Never(DelClassReply) UnlessAfter(DelClassReq);
After(Logout) Eventually(LoggedOut); Never(LoggedOut) UnlessAfter(Logout);
After(LoggedOut) Never(LoggedOut) UnlessAfter(Logout);

A(pro):
Never(AddClassReq+DelClassReq+Logout) UnlessAfter(LoggedIn);
After(AddClassReq) Never (AddClassReq+DelClassReq+Logout) UnlessAfter(AddClassReply);
After(DelClassReq) Never (AddClassReq+DelClassReq+Logout) UnlessAfter(DelClassReply);
After(LoggedIn) Eventually (Logout); After(Logout) Never(AddClassReq+DelClassReq+Logout);

Fig. 5. Properties of Registration System

62 F. Xie and J.C. Browne

The properties of the registration system are decomposed into the properties of its
sub-components by the decomposition procedure in Section 4. The procedure starts
with P-ENV and invokes itself recursively on the three sub-components of the sys-
tem following the service invocation graph of the 3-tier architecture. The first com-
ponent whose properties are derived is the application logic. The derived properties
and assumptions of the application logic are shown in Figure 6. The application logic

Provides: (same as the provides in Figure 5.)
Requires 1:
A(req):
After(AuthReq) Eventually(AuthReply); Never(AuthReply) UnlessAfter(AuthReq);
After(AuthReply) Never(AuthReply) UnlessAfter(AuthReq);

P(req): After(AuthReq) Never(AuthReq) UnlessAfter(AuthReply);
Requires 2:
A(req):
After(AddClass) Eventually(AddRes); Never(AddRes) UnlessAfter(AddClass);
After(AddRes) Never(AddRes) UnlessAfter(AddClass);
After(DelClass) Eventually(DelRes); Never(DelRes) UnlessAfter(DelClass);
After(DelRes) Never(DelRes) UnlessAfter(DelClass);

P(req):
After(AddClass) Never(AddClass+DelClass) UnlessAfter(AddRes);
After(DelClass) Never(AddClass+DelClass) UnlessAfter(DelRes);

Fig. 6. Properties of Application Logic

provides the registration service to P-ENV. The procedure derives the provides inter-
face of the application logic from its message interactions with P-ENV. The provides
interface is derived by projecting the message interactions between P-ENV and the ap-
plication logic and it is essentially the same as the provides interface of the registra-
tion system. The procedure determines from the HMSC that to provide the registration
service, the application logic requires two services from the business logic: one for au-
thentication and the other for adding or deleting classes. The corresponding requires
entry for each of the two services is derived from the message interactions with the
business logic. The A(req) is derived by projecting the message interactions onto the
business logic while P(req) is derived by projecting the message interactions onto the
application logic.

Following the service invocation relation between the application logic and the busi-
ness logic, the decomposition procedure is invoked to derive the properties of the busi-
ness logic. Based on the HMSC service annotations, the procedure is invoked for each
service that the business logic provides. The properties are shown in Figure 7, capturing
the services provided to the application logic and required from the database engine.

The database engine processes two types of service invocations: access to the au-
thentication database and simultaneous access to the student and class databases. The
properties and assumptions in the provides of the database engine are the same as the as-
sumptions and properties in the requires of the business logic. The database engine has
no requires. The properties and assumptions of the two service invocations differ since
they are instantiated differently. The database engine introduced in the family initializa-
tion is selected for reuse since it has a matching messaging interface and its properties
(or assumptions), instantiated by how many and what databases are accessed, imply (or
are implied by) the properties (or assumptions) derived in the top-down decomposition.

Verification of Component-Based Software Application Families 63

/* Service 1 */
Provides:
P(pro) (or A(pro), respectively) is the same as A(req) (or P(req)) of Requires 1 of Application Logic.
Requires:
A(req) (or P(req), respectively) is same as P(pro) (or A(pro)) of Provides of the DB engine in Figure 1.
/* Service 2 */
Provides:
P(pro) (or A(pro)) is same as A(req) (or P(req)) of Requires 2 of Application Logic.)
Require:
A(req):
After(Lock(C)) Eventually(Locked(C)); Never(Locked(C)) UnlessAfter(Lock(C));
After(Locked(C)) Never(Locked(C)) UnlessAfter(Lock(C));
After(Lock(S)) Eventually(Locked(S)); Never(Locked(S)) UnlessAfter(Lock(S));
After(Locked(S)) Never(Locked(S)) UnlessAfter(Lock(S));
After(Unlock(S)) Eventually(Unlocked(S)); Never(Unlocked(S)) UnlessAfter(Unlock(S));
After(Unlocked(S)) Never(Unlocked(S)) UnlessAfter(Unlock(S));
After(Unlock(C)) Eventually(Unlocked(C)); Never(Unlocked(C)) UnlessAfter(Unlock(C));
After(Unlocked(C) Never(Unlocked(C)) UnlessAfter(Unlock(C));

P(req):
After(Lock(C)) Never(Lock(C)) UnlessAfter(Unlocked(C));
After(Locked(C)) Eventually(Lock(S)); Never(Lock(S)) UnlessAfter(Locked(C));
After(Lock(S)) Never(Lock(S)) UnlessAfter(Locked(C));
After(Locked(S)) Eventually(Unlock(S)); Never(Unlock(S)) UnlessAfter(Locked(S));
After(Unlock(S)) Never(Unlock(S)) UnlessAfter(Locked(S));
After(Unlocked(S)) Eventually(Unlock(C)); Never(Unlock(C)) UnlessAfter(Unlocked(S));
After(Unlock(C)) Never(Unlock(C)) UnlessAfter(Unlocked(S))

Fig. 7. Properties of Business Logic

The structure of the application logic follows the agent-dispatcher style. For each
user request, the dispatcher dispatches an agent to serve the user if there exists a free
agent; otherwise, it asks the user to try later. The properties of the application logic are
decomposed into the properties of the dispatcher and the agents. Based on the derived
properties for the dispatcher, the dispatcher that has been introduced and verified when
the UIS family is initialized is selected for reuse. The provides and requires of the
agents are largely the same as those of the application logic except the properties and
assumptions that are related to agent dispatching, which are shown in Figure 8.

Provides:
P(pro):
After(Dispatch) Eventually(LoggedIn+Rejected); Never(LoggedIn+Rejected) UnlessAfter(Dispatch);
After(LoggedIn+Rejected) Never(LoggedIn+Rejected) UnlessAfter(Dispatch);
After(Dispatch) Eventually(Free); Never(Free) UnlessAfter(Dispatch);
After(Free) Never(Free) UnlessAfter(Dispatch);

A(pro): After(Dispatch) Never(Dispatch) UnlessAfter(Free);

Fig. 8. Properties and Assumptions of Agents Related to Dispatching

The business logic is partitioned into the authentication processor and the registration
processor. Each implements a service of the business logic shown in Figure 7.

5.3 Bottom-Up Component Verification in Component Library Expansion

As the registration system is developed, the authentication processor is introduced in
the business logic layer and it interacts with the database engine to provide the user

64 F. Xie and J.C. Browne

authentication. The two components is composed bottom-up to build an authentication
service that processes authentication requests and replies to these requests. The desired
properties of the authentication service is shown in Figure 9. The properties, instead

Provides:
A(req):
After(AuthReq) Eventually(AuthReply); Never(AuthReply) UnlessAfter(AuthReq);
After(AuthReply) Never(AuthReply) UnlessAfter(AuthReq);

P(req): After(AuthReq) Never(AuthReq) UnlessAfter(AuthReply);

Fig. 9. Properties of Authentication Service

of being checked directly on the authentication service, is checked on its abstraction.
The abstraction is constructed from the verified properties of the authentication proces-
sor and the database engine. The properties of the authentication processor have been
established in the top-down system verification while the properties of the database en-
gine have been established in the family initialization. The introduction of the authenti-
cation service suggests the introduction of a new architectural style: 3-tier architecture
with authentication, as shown in Figure 10. In development of new systems such as the

Database EngineBusiness Logic

Authentication Service

Application Logic

Fig. 10. 3-tier architecture with authentication

library system and the ticket sale system, the new style can be selected to structure these
systems and, therefore, facilitate reuse of the authentication service and its properties.

6 Effectiveness and Cost of Integrated Verification

Our integrated approach has major potential for improving reliability of a component-
based application family. It enables effective verification of member systems of the
family by greatly reducing verification complexities of the systems and facilitating ver-
ification reuse. Direct verification of the properties of the registration system with a
configuration of 3 concurrent users and 2 agents takes 7034.27 seconds and 502.31
megabytes and it does not scale to large configurations. In verifying the same system
with our approach, only the properties of the agent, the authentication processor, and
the registration processor must be verified and the properties of other components are
reused. The time and memory usages for verifying these components are shown in Ta-
ble 1. It can be observed that our approach achieves order-of-magnitude reduction in
verification time and memory usages. Our approach scales to member systems of large
configuration via systematic partition of a system into components of manageable size.

Verification of Component-Based Software Application Families 65

Table 1. Verification time and message usage

Agent Authentication Processor Registration Processor
Time (Seconds) 0.75 0.1 4.09

Memory (MBytes) 0.29 0.31 0.31

The cost of our approach lies in initializing, maintaining, and evolving the AFA:
identifying and capturing architectural styles, bootstrapping the component library, and
expanding the library. The cost, however, is amortized across the member systems of
an application family. Architectural style driven property decomposition procedures are
often reused across multiple application families, for instance, the decomposition pro-
cedure in Section 4 can be reused across many transaction processing centric families.
We are currently conducting further case studies on families of web service based sys-
tems and embedded systems to evaluate whether the cost of applying our approach can
be justified by the benefits obtained in system verification and verification use.

7 Related Work

The concept of AFAs extends the concept of software architectures [6, 7] and targets
verification of families of component-based systems. Space limitation prohibits full
coverage of related work on software product families. The Product Line Initiative [14]
at SEI focuses on design and implementation issues for software product families. Our
work differentiates by focusing systematic verification of software application families.

Pattern reuse is often conducted at two levels: design level and architectural level.
Design patterns [15] are concerned with reuse of programming structures at the algo-
rithmic or data structure level. Architectural styles (a.k.a., architectural patterns) [6, 7]
are concerned with reusable structural patterns of software systems with respect to their
components. Architectural styles have been applied in system design, documentation,
validation, etc. Our research utilizes architectural styles of a component-based applica-
tion family to facilitate component property formulation and decomposition.

A major challenge to assume-guarantee compositional reasoning is formulation of
component properties and their environment assumptions. There are approaches [4, 5]
to automatic generation of assumptions for safety properties of components. Our ap-
proach addresses this challenge via architectural style guided property formulation in
bottom-up component verification and via architectural style driven property decompo-
sition in top-down system verification. It handles both safety and liveness properties and
complements automatic assumption generation for safety properties of components.

8 Conclusions and Future Work

We have presented a novel approach to formal verification of software application fam-
ilies. This approach synergistically integrates bottom-up component verification and
top-down system verification into the development lifecycle of software application

66 F. Xie and J.C. Browne

families. Its application to the UIS family has shown that it enables verification of non-
trivial systems and reuse of major verification efforts. Currently, we are conducting
further case studies to evaluate whether the benefits obtained by our approach in system
verification and verification reuse can justify the cost of our approach.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (1999)
2. Chandy, K.M., Misra, J.: Proofs of networks of processes. IEEE TSE 7(4) (1981)
3. Jones, C.B.: Development methods for computer programs including a notion of interference.

PhD thesis, Oxford University (1981)
4. Gannakopoulou, D., Pasareanu, C., Barringer, H.: Assumption generation for software com-

ponent verification. In: ASE. (2002)
5. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional reasoning by learning assump-

tions. In: CAV. (2005)
6. Perry, D., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT SEN

17(2) (1992)
7. Shaw, M., Garlan, D.: Software Architecture: Perspective on An Emerging Discipline. Pren-

tice Hall (1996)
8. IBM: Business Process Execution Language for Web Services (BPEL4WS), Ver. 1.1. (2003)
9. Xie, F., Levin, V., Kurshan, R.P., Browne, J.C.: Translating software designs for model

checking. In: FASE. (2004)
10. W3C: Web Services Description Language (WSDL), Ver. 1.1. (2001)
11. W3C: Web Service Choreography Interface (WSCI), Ver. 1.0. (2002)
12. Xie, F., Browne, J.C.: Verified systems by composition from verified components. In:

ESEC/SIGSOFT FSE. (2003)
13. ITU: Rec. Z.120, Message Sequence Chart. (1999)
14. Clements, P.C., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison-

Wesley (2002)
15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Object-

Oriented Software. Addison-Wesley (1994)

Multi Criteria Selection of Components Using
the Analytic Hierarchy Process

João W. Cangussu, Kendra C. Cooper, and Eric W. Wong

University of Texas at Dallas,
Department of Computer Science,

Richardson TX 75083, USA
{cangussu, kcooper, ewong}@utdallas.edu

Abstract. The Analytic Hierarchy Process (AHP) has been successfully
used in the past for the selection of components, as presented in case stud-
ies in the literature. In this paper, an empirical study using AHP to rank
components is presented. The components used in the study are for data
compression; each implements one of the Arithmetic Encoding (AREC),
Huffman coding (HUFF), Burrows-Wheeler Transform (BWT), Fractal
Image Encoding (FRAC), and Embedded Zero-Tree Wavelet Encoder
(EZW) algorithms. The ranking is a semi-automated approach that is
based on using rigorously collected data for the components’ behavior;
selection criteria include maximum memory usage, total response time,
and security properties (e.g., data integrity). The results provide a clear
indication that AHP is appropriate for the task of selecting components
when several criteria must be considered. Though the study is limited
to select components based on multiple non-functional criteria, the ap-
proach can be expanded to include multiple functional criteria.

1 Introduction

The selection of components is recognized as a challenging problem in component
based software engineering [1, 2, 3], as there are complex technical, legal, and
business considerations that need to be simultaneously and iteratively addressed
as development proceeds. When selecting a component, the number of criteria
can be large. Established metaheuristic search techniques [4] from the artificial
intelligence community have been proposed to search for software components
including genetic algorithms [5, 6] and evolutionary algorithms [7]. Alternative
approaches using multi-criteria decision making (MCDM) techniques have also
been employed as a solution to this problem [2, 8, 9, 10, 11, 12]. One well known
MCDM technique is the Analytic Hierarchy Process (AHP).

Case studies are available in the literature that report the successful use of the
AHP approach [9, 10, 11]. The data supporting the description of the components
in these studies appears to be obtained from vendor specifications, etc. Here,
we rigorously collect data about the components as the foundation for their
selection. We note that other sources [1, 13] have provided arguments against
the use of the AHP approach for the selection of components; this is discussed
in Section 4.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 67–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

68 J.W. Cangussu, K.C. Cooper, and E.W. Wong

In this paper we present an empirical study for the ranking, using AHP, of
components based on non-functional criteria. To the best of our knowledge, no
such work is currently available. A relatively small number of empirical studies
in component based software engineering have become available over the years,
which include the representation and selection of UNIX tool components [14],
support for regression testing of component based software [15], design of a
knowledge base used for business components [16], variations in COTS-based
software development processes used in industry [17], and the use of fuzzy logic
to specify and select components based on a single selection criterion [18]. Due to
the very limited number of empirical studies available in the area of component
based software engineering, this study makes a substantial contribution to the
literature.

The results of this study provide a clear indication of the suitability of AHP
for this task. In addition, the approach can be extended to incorporate functional
requirements and the possible integration of components when no suitable alter-
native implements all required functionality.

The remainder of this paper is organized as follows. A general description of
AHP is presented in Section 2. An empirical study for the selection of components
for non-functional requirements using AHP is the subject of Section 3. Section 4
presents relevant related work. Conclusions and extensions of the work described
in this paper are addressed in Section 5.

2 Analytic Hierarchy Process (AHP)

The problem of selecting the best alternative from a set of options that are
characterized by criteria that may be qualitative, quantified with different units
of measure, and conflict with each other has been under investigation for cen-
turies [19]. The decision making approaches proposed to address this problem
are called multi-criteria decision making (MCDM) methods. There are numer-
ous MCDM methods available including the Weighted Sum Method, Weighted
Product Method and Analytic Hierarchy Process (AHP) [20, 21].

The AHP method has three main steps [22] (refer to Figure 1). The first step
is to structure the decision making problem as a hierarchical decomposition, in
which the objective or goal is at the top level, criteria used in the evaluation are
in the middle levels, and the alternatives are at the lowest level. The simplest
form used to structure a decision problem consists of three levels: the goal at the
top level, criteria used for evaluation at the second level, and the alternatives
at the third level. We use this form to present the second and third steps in
the AHP.

The second step is to create decision tables at each level of the hierarchical
decomposition. The matrices capture a series of pairwise comparisons (PC ma-
trices) using relative data. The comparison can be made using a nine point scale
or real data if available. The nine point scale includes: [9, 8, 7, . . . , 1/7, 1/8, 1/9],
where 9 means extreme preference, 7 means very strong preference, 5 means
strong preference, and continues down to 1, which means no preference. The

Multi Criteria Selection of Components Using the AHP 69

Level 4Level 3Level 2Level 1

C2

C1

Cn

...

C1 C2 Cn. . .
. . .

. . .

...
...

...

. . .

a12 a1n

a2na21

an1 an2

1

1

1

1

Objective of
the problem

Criterion C 1

Criterion C 2

Criterion C n

Sub−criterion
C11

Sub−criterion
C21

Sub−criterion
Cnp

Criterion C 1

Problem
Statement

A1 A2 Am. . .

...

a1m

a2m

C2

1

A2

A1

Am

...

A1 A2 Am. . .
. . .

. . .

...
...

...

. . .

a12 a1m

a2ma21

am1 am2

C1

1

1

1

1

A1 A2 Am. . .

...

a1m

a2m

Cn

1

wC1
A1

wC1
A2

...
wC1

Am

wC2
A1

wC2
A2

...
wC2

Am

wCn
A1

wCn
A2

...
wCn

Am

A2

A1

Am

...

wCn
A1

wC2
A1

wC1
A1

wC1
A2

...
...

...

. . .
. . .

. . .

wCn
A2

wCn
Am

wC2
A2

wC2
Am

wC1
Am

wc1
wc2

wcn

C1 C2 Cn. . .

..

.

i=1

n

wCi
A2

wCix

i=1

n

wCi
Am

wCix

i=1

n

wCi
A1

wCix RA1

RA2

..

.

RAm

RA1 RA2

... RAmRANK=SORT

wc1
wc2

. . . wcn

S
T
E
P
3

S
T
E
P
2

S
T
E
P
1

CiPairwise Comparison Matrices (PC)

. .
 .

. .
 .

. .
 .

Alternative 1

Alternative 2

Alternative m

. . .

Importance Matrix (IM)

Synthesis Matrix (SM)

Fig. 1. General structure of the AHP approach

reciprocals of the above levels are also available. For example, if a comparison
between “a” and “b” is evaluated as 7, then the comparison between “b” and
“a” is 1/7.

70 J.W. Cangussu, K.C. Cooper, and E.W. Wong

For the top level of the decomposition, a single importance matrix (IM) is
defined, which captures the relative importance of each criterion; these are con-
sidered in the second level. For example, if the evaluation criteria are response
time (RTP), memory usage (MU), data security (DS), and data integrity (DI),
then the decision maker compares their importance, two at a time in a four
by four matrix. For example, a decision maker may determine that the RTP is
strongly preferred to DI. In this case the pairwise comparison of RTP/DI has
the value 5; DI/RTP has the inverse value 1/5. In AHP, the values captured in
the IM reflect the relative importance of criteria, i.e., the requirements, from the
decision maker’s perspective. The IM does not capture additional relationships
among the criteria, such as synergistic or conflicting relationships. The criteria
are assumed to be independent. This is likely to be the case in many decision
making situations, in which the conflicting or synergistic relationships among
the requirements are not well understood.

The IM for the top level provides a means to prioritize the requirements for
the decision making process. Using the comparison data in the matrix a priority
vector can be calculated, for example, with an eigenvector formulation. This
priority vector is used in the third step, when the priorities are aggregated.

The decision tables for the middle level capture a pairwise comparison (PC)
matrix for the alternative solutions for each evaluation criterion. Consequently,
each evaluation criterion has a PCCi . For example, if there are four evaluation
criteria and five alternatives to choose from, then this results in four PC that
are five by five. The priority vector for each of these decision tables is calculated.
Here again, an eigenvector calculation can be used. The priority vector can be
represented in normalized form, such that the sum of the elements is equal to
one. This vector is used in the third step, when the priorities are aggregated.
In AHP, the values captured in a PC matrix do not explicitly capture other
relationships such as synergistic or conflicting relationships that are present in
the alternative solutions.

The third step aggregates, or synthesizes, the priorities so that the “best”
alternative can be chosen. Options for the aggregation include a distributive
mode and an ideal mode. As these two options have been shown to give the
same result 92% of the time [23], we present the distributive mode here and
refer the reader to [23] for a discussion of the ideal mode. The distributive mode
calculation uses the priority vector calculated in step one as a weight vector,
W , and the normalized priority vectors calculated in step two to define a new
matrix A. Each element Aij represents the normalized priority calculated in
step two for alternative i and evaluation criteria j. To calculate an alternative’s
overall priority, each row in the matrix is multiplied by the weight vector and
the multiplied elements are added together:

Alternative priority i =
4∑

j=1

(wj ∗ Aij) (1)

The alternative with the largest value represents the best alternative.

Multi Criteria Selection of Components Using the AHP 71

3 Empirical Study

An empirical study of how to select components based on non-functional criteria
is addressed in this Section. First, a set of available components is described in
Section 3.1. This is followed by Section 3.2, which presents all the steps to rank
these components according to two distinct scenarios.

3.1 Compression Components

Though there exist a large number of compression techniques, the subset used in
this section has been reduced to five compression components: Arithmetic En-
coding (AREC), Huffman coding (HUFF), Burrows-Wheeler Transform (BWT),
Fractal Image Encoding (FRAC), and Embedded Zero-Tree Wavelet Encoder
(EZW). It is our understanding that they provide a broad spectrum in terms
of the features of interest (e.g., response time, compression ratio, quality, etc).
Source code for these components is available over the Internet. As a first step,
the credibility of the source code for both compression and decompression has
been assured based on available reviews and references given by various web
sites, a thorough code walk through, and testing the components. In some cases
the source code has been modified so that it could compile in the lab environ-
ment using the g++ compiler (with default settings) on Sun Solaris. A brief
description of the components/techniques used in the case study follows.

– Huffman Coding: this is a lossless approach based on statistical features of
the file to be compressed. The more frequently the occurrence of a symbol,
the smaller the bit code used to represent it.

– Arithmetic Coding: differently from Huffman Coding, this approach assigns a
floating point output number to a sequence of input symbols. The number of
bits in the output number is directly proportional to the size and complexity
of the sequence to be compressed. It is also a lossless method.

– Burrows-Wheeler Transform: this method is based on sorting the input se-
quence in a certain way to improve the efficiency of compression algorithms.
As the previous two methods, it is also a lossless approach.

– Embedded Zero-Tree Wavelet Encoder: this approach is based on the use
of wavelet transforms to compress images (2D-signals). Extensions to other
signal dimensions is also possible. Images are compressed using a progressive
encoding with increasing accuracy. The better the accuracy, the better the
quality of the image. Therefore, this is not a lossless approach.

– Fractal Image Encoding: this method is based on the representation of an
image as an iterated function system (IFS). Blocks of the image that are
similar are then equally represented. This is also a loss data approach.

Based on the characteristics of compression algorithms, four attributes are
analyzed here: total execution time (TET), compression ratio (CR), maximum
memory usage (MU), and root mean-square error (RMSE), where total execution
time is the combination of compression plus decompression time and RMSE is
a quality measure. Other features can be easily included according to users’

72 J.W. Cangussu, K.C. Cooper, and E.W. Wong

needs. A set of 271 images were collect to evaluate the components. To capture
the performance for small, medium, and large images, their size were uniformly
distributed in the range from 10KB to 10MB. Also, different types of images
were used (e.g., raw, pgm, jpg, and png). To compute the averages and standard
deviations in Table 1, each component was executed 10 times for all the images.

Table 1. Average and standard deviation results for the five compression components
and each feature of interest

TET (in s) MU (in KB) CR RMSE
avg std avg std avg std avg std

HUFF 111.3 132.4 2135270 21.63 1.167 0.379 0 0
AREC 180.3 237.3 2135103 3.37 1.248 0.555 0 0
BWT 473.3 371.1 2137885 603.5 3.334 13.277 0 0
FRAC 89.5 73.3 2138986 2155.99 58.427 104.68 50.55 32.43
EZW 380.4 485.4 2142957 4732 4.226 0.837 39.35 27.91

3.2 AHP Steps

The three steps defined in Section 2 and seen in Figure 1 are presented next in
the context of the selection of components for image compression.

AHP Step 1. At this point the structure of the problem has already been
defined as a three level hierarchical decomposition. The problem is the selection
of image compression components; the four criteria of interest have been defined.
The data for each of the available alternatives have also been collected, providing
2710 data points for each alternative.

AHP Step 2. The first step after defining the features to be considered in
the computation of the rank of the five components is to decide their relative
importance. Using Saaty’s scale [22], the user defines the relative importance of
each feature compare to each other. Since four features are under consideration
here, a 4 × 4 matrix, as seen in Table 2 results. For example, if the user defines
that TET is two times more important than CR then IM1,2 = 2; consequently,
IM1,2 = 1/2 in Table 2. If quality (represented by RMSE) is three times more
important than MU then IM3,4 = 3 and IM4,3 = 1/3, as seen in Table 2.

Table 2. Importance Matrix (IM) for the four features of interest for scenario 1

TET CR RMSE MU
TET 1 2 1/3 5
CR 1/2 1 4 3

RMSE 3 1/4 1 2
MU 1/5 1/3 1/2 1

Multi Criteria Selection of Components Using the AHP 73

The goal of creating the IM is to facilitate the computation of the weights
of each feature. It is, in general, difficult for the user to directly compute the
weights. Using the AHP approach, the user decides the relative importance of
just two features, which greatly eases the task. The weights can now be computed
by finding the eigenvector associated with the largest eigenvalue of IM . In this
case, the eigenvector is

xIM = [0.5373 0.6616 0.5035 0.1417]T (2)

In order to avoid scale issues, the values in xIM are normalized to 1 using to
Eq. 3. The measurements under consideration here are all in a ratio scale which
is closed for arithmetic operations. Therefore, the normalized results obtained
from Eq. 3 maintain the same scale properties as the original data.

xIMN

i =
xIM

i∑4
j=1 xIM

j

(3)

The new normalized weights xIMN

for the features are now:

xIMN

= [wTET wCR wRMSE wMU]T

= [0.2914 0.3588 0.2730 0.0768]T (4)

As can be verified from Eq. 4, the sum of the weights is 1. Also, it is clear that
compression ratio (the weight of CR is represented by the second value in the
vector) plays a more important role in the users selection while memory usage
(the weight of MU is represented by the fourth value in the vector) has almost
no influence. The other two features have similar importance.

The next step on the AHP approach is to compute pair-wise comparison
matrices (PC matrices) for each feature. Using the average values of TET from
Table 1 we can compute the entries for PCTET . Each entry is computed using
Eq. 5 below.

PCTET
i,j =

TETj

TETi
(5)

where TETk, for k = {1(AREC), 2(HUFF), 3(BWT), 4(EZW), 5(FRAC)} is
the average total execution time (extracted from Table 1) for each of the al-
ternatives. For example, TETAREC = 180 and TETHUFF = 111 resulting in
PCTET

2,1 = 1.62. It should be noticed that execution time has an inverse ef-
fect, that is, the lower the execution time the better. Therefore, the numerator
and denominator in Eq. 5 are inverted. The same is true for RMSE and MU.
Table 3 presents the results of the pair-wise comparison for PCTET . As before,
to find the rank/weight for execution time for each alternative, we compute the
normalized (to avoid scale issues when comparing, for example, execution time
with RMSE) eigenvector associated with the largest eigenvalue for PCTET . This
results in the values in Eq. 6

xTET N

= [0.1819 0.2947 0.0693 0.0862 0.3679]T (6)

74 J.W. Cangussu, K.C. Cooper, and E.W. Wong

Table 3. Pair-wise comparison (PCTET) matrix for total execution time (TET) for
the five available components

TET AREC HUFF BWT EZW FRAC
AREC 1.0000 0.6172 2.6252 2.1101 0.4945
HUFF 1.6203 1.0000 4.2536 3.4189 0.8012
BWT 0.3809 0.2351 1.0000 0.8038 0.1883
EZW 0.4739 0.2925 1.2441 1.0000 0.2343
FRAC 2.0224 1.2482 5.3093 4.2675 1.0000

Based solely on execution time and Eq. 6, the rank for the components would
be: 1st-FRAC, 2nd-HUFF, 3rd-AREC, 4th-EZW, and 5th-BWT. Sorting the ex-
ecution time column of Table 1 leads to the exactly same order which is a good
indication of the accuracy of the approach. Therefore, one could argue against
the computation of eigenvalues and eigenvectors when it is much easier to sim-
ply sort the average execution time. This could be true when only one criterion
is being considered, but does not apply for multi-criteria problems as the one
described here. Therefore, we need to consider the computation of weights for
the remaining features.

Table 4. Pair-wise comparison (PCMU) matrix for memory usage (MU) for the five
available components

MU AREC HUFF BWT EZW FRAC
AREC 1.0000 1.0001 1.0013 1.0037 1.0018
HUFF 0.9999 1.0000 1.0012 1.0036 1.0017
BWT 0.9987 0.9988 1.0000 1.0024 1.0005
EZW 0.9963 0.9964 0.9976 1.0000 0.9981
FRAC 0.9982 0.9983 0.9995 1.0019 1.0000

Table 5. Pair-wise comparison (PCRMSE) matrix for root mean square error (RMSE)
for the five available components

RMSE AREC HUFF BWT EZW FRAC
AREC 1.0000 1.0000 1.0000 40.3588 51.5568
HUFF 1.0000 1.0000 1.0000 40.3588 51.5568
BWT 1.0000 1.0000 1.0000 40.3588 51.5568
EZW 0.0248 0.0248 0.0248 1.0000 1.2775
FRAC 0.0194 0.0194 0.0194 0.7828 1.0000

The pair-wise comparison matrices PCMU for memory usage and PCRMSE

for root mean square error are computed similarly to what has been done to
PCTET . They are shown, respectively, in Tables 4 and 5. To avoid division
by zero problems, a value 1 has been added to each entry, related to RMSE,
in Table 1. Now, following exactly the same steps used in the computation of

Multi Criteria Selection of Components Using the AHP 75

xTET N

, the eigenvectors xMUN

and xRMSEN

are computed and the results are
shown in Eqs. 7 and 8.

xMUN

= [0.2003 0.2003 0.2000 0.1995 0.1999]T (7)

xRMSEN

= [0.3285 0.3285 0.3285 0.0081 0.0064]T (8)

As expected, due to only small variations on the amount of memory used by
each approach, there is little difference in the weights in xMUN

. Also, as can be
seen in Eq. 8, the weights for AREC, HUFF, and BWT are the same and are
much larger than the weights for EZW and FRAC. This behavior is expected
since the first three are lossless approaches.

The computation of the weights for Compression Ratio (CR) presents a small
distinction when compare to the previous features. The computation of the
weights for TET, MU, and RMSE are based on an inverted gain, i.e., the smaller
the value, the better. This is captured in Eq. 5 by switching the numerator and
denominator. In the case of CR (the larger the ratio the better), such inversion
is not necessary which leads to the use Eq. 9.

PCCR
i,j =

CRi

CRj
(9)

Table 6. Pair-wise comparison (PCCR) matrix for compression ratio (CR) for the five
available components

CR AREC HUFF BWT EZW FRAC
AREC 1.0000 1.0691 0.3743 0.2953 0.0214
HUFF 0.9354 1.0000 0.3501 0.2762 0.0200
BWT 2.6717 2.8563 1.0000 0.7890 0.0571
EZW 3.3861 3.6201 1.2674 1.0000 0.0723
FRAC 46.8079 50.0414 17.5198 13.8234 1.0000

Using the values from Table 1 and Eq. 9 leads to matrix PCCR presented in
Table 6. The computation of the normalized eigenvector xCRN

is done as before
resulting in the values presented in Eq. 10

xCRN

= [0.0182 0.0171 0.0488 0.0618 0.8541]T (10)

AHP Step 3. The final step in the computation of the rank for the five com-
ponents is to combine the weights for each feature [wTET wCR wRMSE wMU]
(line 1 in Table 7) with the weights computed for all the pair-wise compari-
son matrices. Each column in Table 7 correspond respectively to xTET N

, xCRN

,
xRMSEN

, and xMUN

. Now, using Eq. 1 from Section 2 leads us to the results
in Table 8. All the values used up to this point are referred to as Scenario 1 in
Table 8.

76 J.W. Cangussu, K.C. Cooper, and E.W. Wong

Table 7. Synthesis Matrix (SM) for the ranking of the five compression components

TET CR RMSE MU
wTET = 0.2914 wCR = 0.3588 wRMSE = 0.2730 wMU = 0.0768

AREC 0.1819 0.0182 0.3285 0.2003
HUFF 0.2947 0.0171 0.3285 0.2003
BWT 0.0693 0.0488 0.3285 0.2000
EZW 0.0862 0.0618 0.0081 0.1995
FRAC 0.3679 0.8541 0.0064 0.1999

Table 8.

Alternative Scenario 1 - Rank Scenario 2 - Rank
Components Value Position Value Position

AREC 0.164627 (3) 0.236828 (2)
HUFF 0.197080 (2) 0.263210 (1)
BWT 0.142737 (4) 0.214710 (4)
EZW 0.064837 (5) 0.052667 (5)
FRAC 0.430719 (1) 0.232586 (3)

FRAC has the first position in the rank, as seen in Table 8. This is clearly
the best choice as FRAC has the best response time (TET) and by far the best
compression ratio (CR). These two features have the two highest weights, as
seen in Eq. 4. The difference of these two features for FRAC is so large that it
compensates the poor quality of the compressed images (due to a high RMSE).
The second and third positions in the rank, respectively HUFF and AREC,
present average execution time and reasonably compression ratio when compare
to the two approaches in the bottom of the rank. In addition, they are lossless
approaches justifying their rank placement. EZW is clearly the last place in the
rank; it has poor response time, the compression ratio is not outstanding, and
RMSE is high. We can conclude that, for this scenario, the rank computed using
AHP has been able to capture the user’s preference in an adequate manner.

Now let us assume a different scenario, refer hereafter as Scenario 2. To com-
pute the rank of the components for a new scenario, only the importance matrix
needs to be changed. That is, what is changing are the user’s preferences (cap-
tured now by a new IM in Table 9) and not the comparative behavior of the
components (still captured by PCTET , PCCR, PCRMSE , and PCMU). As can
be seen in Table 9, quality (RMSE) has now a much higher importance than in
the previous scenario.

The new normalized weights xIMN

for scenario 2 are presented in Eq. 11.

xIMN

= [0.2353 0.1445 0.5240 0.0961]T (11)

Replacing the values from Eq. 11 in Table 7 leads to the results of Scenario 2
in Table 8. As can be seen, the increase of the importance for quality (RMSE)

Multi Criteria Selection of Components Using the AHP 77

Table 9. Importance Matrix for the four features of interest for scenario 2

TET CR RMSE MU
TET 1 2 1/5 5
CR 1/2 1 1/4 3

RMSE 5 4 1 2
MU 1/5 1/3 1/2 1

results in two lossless components (HUFF and AREC) overtaking FRAC in the
rank. Again, AHP has been able to properly select the best alternatives under
a given scenario. Additional scenarios were also used in this study. In all cases,
the AHP approach has been able to rank the components and identify the best
alternative.

As we can see from the two scenarios described above, changes in IM lead to
changes in the selection of components. Therefore it is important to know how
sensitivity is IM to these changes. Initial experiments indicate that the sensitivity
depends not only on the values of IM but also on the values for SM. That is,
if the values in one column of SM are close, a small change in IM may change
the rank of the components. However, if the values are far apart, changes in IM
need to be more significant in order to affect the rank.

4 Related Work

Diverse approaches to component selection have been proposed such as processes
that use MCDM [2, 8, 9, 10, 11, 12], keyword matching combined with knowledge
based approaches [24, 25], analogy based approaches (including case based rea-
soning) [26, 27, 28], and fuzzy logic [18, 29].

The AHP, an established MCDM approach, has been adopted in component
selection approaches that have reported successful case studies [9, 10, 11]. OTSO,
for example, is one of the earliest component selection approaches that uses
AHP [9]. The OTSO process is composed of subprocesses to search, screen, and
evaluate component alternatives; there is an additional subprocess to rigorously
define the evaluation criteria. The evaluation definition subprocess refines the
requirements for the components into a hierarchical decomposition. The evalua-
tion criteria include functional, quality (non-functional), business concerns, and
relevant software architecture. The AHP was selected in OTSO for the compo-
nent evaluation because it provided a systematic, validated MCDM approach.
The OTSO approach has been applied in two case studies with Hughes corpora-
tion in a program that develops systems to integrate and make available Earth
environment data from satellites [9]. One study has involved the selection of a hy-
pertext browser tool. Initially, the search resulted in over 48 tools; the screening
process reduced this to four tools which were evaluated with respect to evalua-
tion criteria refined from the initial requirements. The evaluation required 322
pairwise comparisons by the evaluators. This was deemed feasible because AHP
tool support was used. The results of the case study indicated that the AHP

78 J.W. Cangussu, K.C. Cooper, and E.W. Wong

approach produced relevant information for component selection and the infor-
mation was perceived as more reliable by decision makers. ArchDesigner [30, 31]
is another example of a component selection approach based on AHP. Their
results are also a indication of AHP’s applicability for the component selection
problem.

The strengths and limitations of using AHP have been discussed within the
context of component selection [1, 13]. The strengths presented include that it
only requires a pairwise comparisons of alternatives and a pairwise weighting
of selection criteria, which reduces the burden on experts and it enables consis-
tency analysis of the comparisons and weights, which allows the quality of the
information on the criteria and alternatives to be assessed. In addition, the AHP
allows the use of a relative ratio scale [1..9] or real data for the comparisons [23]
and has been successfully used in component selection approaches, as reported
in case studies.

The limitations presented include the assumption of independence among the
evaluation criteria, the difficulty in scaling the approach to problems with a large
number of comparisons, which would burden the experts in a manual approach,
and determining if the AHP is the best approach among the many MCDM al-
ternatives available. Stating these limitations, the approach has been questioned
by some for its usefulness in component based software engineering.

Given the arguments that support and question the use of AHP in component
selection, we believe a more extensive empirical study investigating the effective-
ness of using the AHP approach for component selection in a semi-automated
approach is needed.

5 Conclusions and Future Work

An empirical study is presented in this work to investigate using the AHP ap-
proach to select components using non-functional criteria. The application of
AHP has been constrained to non-functional attributes of functionally equiva-
lent components. The approach is semi-automated, to provide scalability. The
importance matrix, which reflects the required behavior of the component, is cre-
ated manually. Data about the non-functional behavior of a set of compression
components are collected including memory usage, response time, root mean
square error, and compression ratio; the data are used to automatically cre-
ate the pairwise comparison decision tables for the criteria. The data collected
about the behavior of the components (e.g., criteria such as memory and re-
sponse time) reflect the intrinsic synergistic and conflicting relationships among
the criteria in the components. Once the importance matrix and the pairwise
comparison tables are available, the data are synthesized and a ranking is auto-
matically calculated. The results of the study indicate the AHP is an effective
ranking approach. This approach can be applied to the selection of components
using other non-functional criteria, however, designing the data collection for
the components’ behavior may be non-trivial.

Multi Criteria Selection of Components Using the AHP 79

The limitations of the study include that a comparison on the use of AHP
and alternative MCDM techniques is not considered. This study needs to be
conducted in the future work. In addition, the limitation of using the AHP
with respect to the assumption of independence is not addressed in this study.
In the future, the composition of multiple components that will integrate to-
gether and provide a set of functional capabilities with minimal overlap will be
investigated. The extension can be considered as follows. First, non-functional
requirements can be used to rank the components as done in this paper, let us
refer to this rank as Rnf . Now, let us assume that a set of K functionalities is
desired F = {f1, f2, . . . , fK}. An IM matrix comparing the relative importance
of each functionality fi can be used to define their weights. PC matrices can then
be constructed to verify which alternative implements each of the functionali-
ties. The availability of these matrices allows for the computation of a new rank
Rf accounting for the functional requirements. Ranks Rnf and Rf can now be
combined to compute the final rank of the available components. Let us assume
a component Cj is the first choice in that rank.

It is likely that the selected component Cj does not implement all the desired
functions. In this case, the process above can be repeated for the remaining
components but now focusing only on the functionality that is not implemented
by Cj . This process can be repeated until all functional requirements have been
satisfied. Clearly, there are compositional issues that still need to be addressed.
However, the goal of this section is to present a potential expansion of the use
of AHP and not to validate it.

References

1. C. Alves and A. Finkelstein, “Challenges in cots decision-making: a goal-driven
requirements engineering perspective,” in Proceedings of the 14th international
conference on Software engineering and knowledge Engineering, (Ischia, Italy),
pp. 789–794, 2002.

2. “Commercial-off-the-shelf (cots) evaluation, selection, and qualification process.”
Systems Engineering Process Office - Space and Naval Warfare Systems Center,
October 2002.

3. F. Navarrete, P. Botella, and X. Franch, “How agile cots selection methods are
(and can be)?,” in 31st EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 160–167, 30 Aug.-3 Sept. 2005.

4. C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview
and conceptual comparison,” ACM Computing Surveys, vol. 35, no. 3, pp.
268–308, 2003.

5. S. Wadekar and S. Gokhale, “Exploring cost and reliability tradeoffs in architec-
tural alternatives using a genetic algorithm,” in Proceeding of 10th International
Symposium on Software Reliability Engineering, pp. 104–113, November 1999.

6. T. Tseng, W. Liang, C. Huang, and T. Chian, “Applying genetic algorithm for the
development of the components-based embedded system,” Computer Standards &
Interfaces, vol. 27, no. 6, pp. 621–635, 2005.

80 J.W. Cangussu, K.C. Cooper, and E.W. Wong

7. W. Chang, C. Wu, and C. Chang, “Optimizing dynamic web service com-
ponent composition by using evolutionary algorithms,” in Proceeding of 2005
IEEE/WIC/ACM International Conference on Web Intelligence, pp. 708–711, Sep-
tember 2005.

8. B. C. Phillips and S. M.Polen, “Add decision analysis to your cots selection
process,” CrossTalk the journal of defense software engineering, April 2002. avail-
able at: http://www.stsc.hill.af.mil/crosstalk/2002/04/index.html.

9. J. Kontio, “A cots selection method and experiences of its use,” in Proceedings of
the 20th Annual Software Engineering Workshop, (Maryland), November 1995.

10. C. Ncube and N. Maiden, “Guiding parallel requirements acquisition and cots
software selection,” in Proceedings of the IEEE International Symposium on Re-
quirements Engineering, pp. 133–140, 1999.

11. A. Lozano-Tello and A. Gomez-Perez, “Baremo: how to choose the appropriate
software component using the analytic hierarchy process,” in Proceedings of the
14th international conference on Software engineering and knowledge engineering,
(Ischia, Italy), pp. 781 – 788, 2002.

12. C. Ncube and N. Maiden, “Selecting cots anti-virus software for an international
bank: Some lessons learned,” in Proceedings 1st MPEC Workshop, 2004.

13. L. C. Briand, “Cots evaluation and selection,” in Proceedings of the International
Conference on Software Maintenance, pp. 222–223, 1998.

14. W. Frakes and T. Pole, “An empirical study of representation methods for reusable
software components,” IEEE Transactions on Software Engineering, vol. 20,
pp. 617–630, August 1994.

15. A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, M. L. Soffa, and H. Do,
“Using component metacontents to support the regression testing of component-
based software,” in Proceedings of the IEEE International Conference on Software
Maintenance (ICSM), November 2001.

16. P. Vitharana, F. M. Zahedi, and H. Jain, “Knowledge-based repository scheme for
storing and retrieving business components: A theoretical design and an empirical
analysis,” IEEE Transactions on Software Engineering, vol. 29, pp. 649–664, July
2003.

17. J. Li, F. O. Bjoernson, R. Conradi, and V. B. Kampenes, “An empirical study of
variations in cots-based software development processes in norwegian it industry,”
in Proceedings. 10th International Symposium on Software Metrics, pp. 72 – 83,
2004.

18. K. Cooper, J. W. Cangussu, R. Lin, G. Sankaranarayanan, R. Soundararadjane,
and E. Wong, “An empirical study on the specification and selection of compo-
nents using fuzzy logic,” in Lecture Notes in Computer Science, vol. 3489, pp.
155–170, Springer-Verlag, April 2005. Eighth International SIGSOFT Symposium
on Component-based Software Engineering (CBSE 2005), Co-Located with ICSE-
2005, St. Louis, Missouri, May 15-21, 2005.

19. K. R. Hammond, J.S. and H. Raiffa, Smart Choices A Practical Guide to Making
Better Decisions. Harvard Business School Press, 1999.

20. M. Mollaghasemi and J. Pet-Edwards, Making Multiple-Objective Decisions. IEEE
Computer Society Press, 1997.

21. E. Triantaphyllou, Multi-criteria decision making methods: a comparative study.
Kluwer Academic Publishers, 2000.

22. T. Saaty and L. Vargas, Methods, Concepts & Applications of the Analytic Hier-
archy Process. Kluwer Academic Publishers, 2001.

23. T. Saaty, Fundamentals of Decision Making and Priority Theory. RWS Publica-
tions, 1994.

Multi Criteria Selection of Components Using the AHP 81

24. R. Seacord, D. Mundie, and S. Boonsiri, “K-bacee: Knowledge-based auto-
mated component ensemble evaluation,” in Proceedings of the 2001 Workshop on
Component-Based Software Engineering, 2001.

25. L. Chung and K. Cooper, “A cots-aware requirements engineering process: a goal-
and agent oriented approach,” in Proceedings of the International Council on Sys-
tems Engineering Symposium, (Las Vegas, Nevada), 2002.

26. B. H. C. Cheng and J.-J. Jeng, “Reusing analogous components,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 9, pp. 341–349, March-April 1997.

27. P. Gonzalex, “Applying knowledge modelling and case-based reasoning to software
reuse,” IEE Proceedings Software, vol. 147, pp. 169–177, October 2000.

28. M. Gu, A. Aamodt, and X. Tong, “Component retrieval using conversational case-
based reasoning,” in Proceedings of the ICIIP, International Conference on Intel-
ligent Information Systems, (Beijing, China), October 21-23 2004.

29. T. Zhang, L. Benini, and G. D. Micheli, “Component selection and matching for
ip-based design,” in Proc. of Conference and Exhibition on Design, Automation
and Test in Europe.

30. A.Liu and I. Gorton, “Accelerating cots middleware technology acquisition: the
i-mate process,” IEEE Software, vol. 20, pp. 72–79, March/April 2003.

31. T.Al-Naeem, I.Gorton, M. A. Babar, F.Rahbi, and B. Boualem, “A quality-driven
systematic approach for architecting distributed software applications,” in Inter-
national Conference on Software Engineering (ICSE).

From Specification to Experimentation: A
Software Component Search Engine Architecture

Vinicius Cardoso Garcia1, Daniel Lucrédio2, Frederico Araujo Durão1,
Eduardo Cruz Reis Santos1, Eduardo Santana de Almeida1,

Renata Pontin de Mattos Fortes2, and Silvio Romero de Lemos Meira1

1 Informatics Center – Federal University of Pernambuco &
C.E.S.A.R. – Recife Center for Advanced Studies and Systems

{vinicius.garcia, frederico.durao, eduado.cruz,
eduardo.almeida, silvio}@cesar.org.br

2 Institute of Mathematical and Computing Sciences – São Paulo University
{lucredio, renata}@icmc.usp.br

Abstract. This paper presents a software component search engine,
from the early specification and design steps to two experiments per-
formed to evaluate its performance. After the experience gained from the
use of this first version, several improvements were introduced. The cur-
rent version of the engine combines text mining and facet-based search.
The experiments indicated, so far, that using these two techniques to-
gether is better than using them separately. From the experience ob-
tained in these experiments and in industrial tests, we point out possible
improvements and future research directions, which are presented and
discussed at the end of the paper.

1 Introduction

In a software development process, reuse is characterized by the use of software
products in a situation that is different from when and where they were originally
constructed. This idea, which is not new [1], brings crucial benefits to organiza-
tions, such as reduction in costs and time-to-market, and quality improvement.

Component repositories are among the factors that promote the success in
reuse programs [2, 3]. However, the simple acquisition of a component reposi-
tory does not lead to the expected benefits, since other factors must also be
considered, such as management, planning, reuse processes, among others [4,5].

Current component managers and repositories are, mostly, products that work
only with black-box components [6], i.e., components that are packaged without
the source code, inhibiting tasks such as adaptation and evolution. Moreover, the
adoption of this kind of repository often implicates in reengineering the software
factories, since making components available for reuse repositories (documen-
tation, packaging) have to follow some predetermined criteria [4]. Additionally,
these repositories represent isolated solutions, not associated to commonly used
development tools such as Eclipse [7]. This increases the barrier for their adop-
tion and utilization.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 82–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From Specification to Experimentation 83

Thereby, an initial way of stimulating the reuse culture in organizations, and
obtaining its initial benefits [8], must concentrate in offering subsidies and tools
for the reuse of white-box components - where the source code is available - and
already existent source code, whether from the organization itself, from previous
projects, or from repositories available on the Internet.

In this context, this paper presents the specification, design and implementa-
tion of an architecture for a component search engine, to help promoting reuse
during software development, and solving the mentioned problem. In previous
work [9] we introduced the search engine and described our initial experience in
its specification and construction. This paper makes two novel contributions:

– Some refinements on the search engine;
– An experiment that evaluates the feasibility of Maracatu search engine use

in industrial contexts, aiding in the software development process with reuse
of components or source code parts.

2 Basic Component Search Requirements

Current research in component search and retrieval has focused in key aspects and
requirements for the component market, seeking to promote large scale reuse [9].

Lucrédio et al. [9] present a set of requirements for an efficient component
search and retrieval engine, standing out:

a. High precision and recall. High precision means that most components
that are retrieved are relevant. High recall means that few relevant components
are left behind without being retrieved.
b. Security. In a global component market, security must be considered a pri-
mordial characteristic, since there is a higher possibility that unauthorized indi-
viduals try to access the repository.
c. Query formulation. There is a natural loss of information when users for-
mulate queries. According to [10], there is a conceptual gap between the problem
and the solution. Components are often described in terms of their functional-
ities, or the solution (“how”), and the queries are formulated in terms of the
problem (“what”). Thus, a search engine must provide means to help the user
in formulating the queries, in an attempt to reduce this gap.
d. Component description. The search engine is responsible for identifying
the components that are relevant to the user, according to the query that is
formulated and compared with the components descriptions.
e. Repository familiarity. Reuse occurs more frequently with well-known
components [11]. However, a search engine must help the user in exploring the
repository and gaining knowledge about other components that are similar to
the initial target, facilitating future reuse and stimulating component vendors
competition [12].
f. Interoperability. In a scenario involving distributed repositories, it is in-
evitable not to think about interoperability. In this sense, a search engine that
functions in such scenario must be based on technologies that facilitate its future
expansion and integration with other systems and repositories.

84 V.C. Garcia et al.

g. Performance. Performance is usually measured in terms of response time. In
centralized systems, this involves variables related to the processing power and
the search algorithms. In distributed systems, other variables must be considered,
such as, for example, network traffic control, geographic distance and, of course,
the number of available components.

These requirements, however, are related to a component market that is based
on black-box reuse. To a search engine that also retrieves white-box components
and reusable source code, different requirements must be considered, as presented
next.

2.1 Features and Technical Requirements

A search engine based on white-box reuse should consider the evolving and dy-
namic environment that surrounds most development organizations. Differently
from black-box reuse, where there is usually more time to encapsulate the compo-
nents and to provide well-structured documentation that facilitates searching,
most development repositories contain work artifacts, such as development li-
braries and constantly evolving components. Documentation is usually minimal,
and mostly not structured.

In this sense, such engine should support two basic processes: i) to locate
all reusable software artifacts that are stored in project repositories, and to
maintain an index of these artifacts. The indexing process should be automatic,
and should consider non-structured (free text) documentation; and ii) to allow
the user to search and retrieve these artifacts, taking advantage of the index
created in process i).

Since in this scenario the artifacts are constantly changing, the first process
must be automatically performed on the background, maintaining the indexes
always updated and optimized according to a prescribed way. On the other
hand, the developer is responsible for starting the second, requesting possible
reusable artifacts that suits his/her problem. For the execution of these two
basic processes, some macro requirements should be fulfilled:

i. Artifacts filtering. Although ideally all kinds of artifacts should be consid-
ered for reuse, an automatic mechanism depends on a certain level of quality that
the artifact must have. For example, a keyword-based search requires that the
artifacts contain a considerable amount of free text describing it, otherwise the
engine cannot perform the keywords match. In this sense, a qualitative analysis
of the artifacts must be performed, in order to eliminate low-quality artifacts
that could prejudice the efficiency of the search.
ii. Repositories selection. The developer must be able to manually include the
list of the repositories where to search for reusable artifacts. It must be possible,
at any moment, to perform a search on these repositories in order to find newer
versions of the artifacts already found, or new artifacts.
iii. Local storage. All artifacts that were found must be locally stored in a
cache, in order to improve performance (reusable components repository
centralization).

From Specification to Experimentation 85

iv. Index update. Periodically, the repositories that are registered must be
accessed to verify the existence of new artifacts, or newer versions of already
indexed artifacts. In this case, the index must be rebuilt to include the changes.
v. Optimization. Performance is a critical issue, specially in scenarios where
thousands of artifacts are stored into several repositories. Thus, optimization
techniques should be adopted. A simple and practical example is to avoid to an-
alyze and index software artifacts that were already indexed by the mechanism.
vi. Keyword search. The search can be performed through keywords usage,
like most web search engines, in order to avoid the learning of a new method.
Thus, the search must accept a string as the input, and must interpret logical
operators such as “AND” and “OR”.
vii. Search results presentation. The search result must be presented in the
developer’s environment, so he/she can more easily reuse the artifacts into the
project he is currently working on.

3 Design of the First Maracatu Search Engine

Maracatu architecture was designed to be extensible to different kinds of reusable
artifacts, providing the ability to add new characteristics to the indexing, rank-
ing, search and retrieval processes. This was achieved through the partitioning of
the system into smaller elements, with well-defined responsibilities, low coupling
and encapsulation of implementation details.

However, as in any software project, some design decisions had to be made,
restricting the scope and the generality of the search engine. Next we discuss
these decisions, and the rationale behind them:

Type of the artifacts. Although theoretically all kinds of artifacts could be
indexed by the search engine, a practical implementation had to be limited to
some specific kinds of artifact. This version of Maracatu is restricted to Java
source code components, mainly because it is the most common kind of artifacts
found, specially in open source repositories and in software factories.
CVS Repositories. Maracatu was designed to access CVS repositories, because
it is the most used version control system, and also to take advantage of an
already existent API to access CVS, the Javacvs API [13].
Keyword indexing and component ranking. To perform indexing and rank-
ing of the artifacts, the Lucene search engine [14] was adopted. Lucene is a web
search engine, used to index web pages, and it allows queries to be performed
through keywords. It is open-source, fast, and easy to adapt, and this is the
reason why it was chosen to become part of Maracatu architecture.
Artifacts filtering. As a strategy for filtering the “quality” artifacts (with high
reuse potential), the JavaNCSS [15] was used, to perform source code analysis
in search for JavaDoc density. Only components, with more than 70% of its
code documented, are considered. This simple strategy is enough to guarantee
that Lucene is able to index the components, and also requires little effort to
implement.

86 V.C. Garcia et al.

User environment. Maracatu User Interface, where the developer can formu-
late the queries and view the results, was integrated to Eclipse platform, as a
plug-in, so that the user does not need to use a different tool to search the
repositories.

Maracatu architecture is based on the client-server model, and uses Web Ser-
vices technology [16] for message exchange between the subsystems. This im-
plementation strategy allows Maracatu Service to be available anywhere on the
Internet, or even on corporative Intranet, in scenarios where the components are
proprietary.

Maracatu is composed of two subsystems:
Maracatu Service: This subsystem is a Web Service, responsible for indexing
the components, in background, and responding to user’s queries. It is composed
of the following modules: the CVS module, which accesses the repositories in
the search for reusable components; the Analyzer, responsible for analyzing the
code in order to determine if it is suitable for indexing; the Indexer, responsi-
ble for indexing the Java files that passed through the Analyzer, also rebuilding
the indexes when components are modified or inserted; the Download module,
which helps the download (check-out) process, when the source code is trans-
ferred to the developer machine, after a request; and the Search module, which
receives the parameters of a query, interprets it (for example, “AND” and “OR”
operators), searches the index, and returns a set of index entries.
Eclipse plug-in : This subsystem is the visual interface the developer sees. It
acts as a Web Service client to access Maracatu Service.

The first version of Maracatu can be seen in Figure 1, which shows Maracatu
plug-in1 being used in Eclipse development environment (1).

Fig. 1. Maracatu running on Eclipse environment

1 The version 1.0 of the plug-in may be obtained on the project site http://
done.dev.java.net

From Specification to Experimentation 87

The Figure shows a screen of the plug-in (2), where the developer may type
a string to retrieve the components. In the example, a search was performed
with the string “Search” & “Retrieve”, obtaining as a result the following com-
ponents: AssignmentCommand, DBConnection, Assembler, among others. From
this result, it is possible to identify which project (repository) this component
belongs to (represented in “Module”), and download the component to the local
machine. Next, the developer may import the component into his/her Eclipse
project (3). In the example of the Figure, the developer has chosen the Assign-
mentCommand.

The first version of Maracatu plug-in implementation contained 32 classes,
divided into 17 packages, with 955 lines of code (not counting comments).

4 Maracatu Search Engine: Current Stage

After the first release of Maracatu, and its initial utilization in the industry,
several enhancements started to be suggested by its users. Some of these were
added, giving origin to the current version of the tool. Maracatu’s first version
was used to aid in the second version development. It helped the team to under-
stand how to use some API, consulting the open source code as example of its
use and to reduce the time to release the second prototype.

Next sections describe the new features that were included. The improvements
took place both in the client (plug-in) and in the server side (Maracatu Service).

4.1 Usability Issues

As expected, the first problems detected by the users were related to the User
Interface. In this sense, improvements were introduced into Maracatu’s Eclipse
plug-in:

i) Component pre-visualization: Before actually downloading a component,
it is interesting to have a glimpse on its content, so that the user may determine if
it is worth to retrieve that component or not. This saves considerable time, since
the check-out procedure, needed to download a component from CVS, requires
some processing. In this sense, two options were implemented, as shows Figure
2. The user may choose, in a pop-up menu (1), either to see a text (2) or UML
(3) version of the component, which he/she can then analyze before actually
downloading the component. The UML was obtained by a parser which analyze
the Java code and perform a transformation to write the UML.
ii) Drag and Drop functionality: With this new feature, components listed
in the tree view can be directly dragged to the user workspace project, been
automatically added to the project.
iii) Server Configuration: In the first version of Maracatu, the repositories
addresses were not dynamically configurable. The user could not, for example,
add new repositories without manually editing the server’s configuration files.
In order to solve this inconvenience, a menu item was added, to show a window
where the user can configure which repositories are to be considered in the search.

88 V.C. Garcia et al.

Fig. 2. Class Viewer and UML Generator

4.2 Facet-Based Search

The current version of Maracatu supports Facet-Based classification and search
[17] of the components. Components now can be browsed by platform, compo-
nent type and component model. It is also possible to combine facet-based search
with text-based search. By choosing only the desired facets, the search universe
is reduced, improving the search performance.

A new module, called Classifier, was introduced in the server-side of Mara-
catu’s architecture. This module is responsible for:

i) Reading the components from Maracatu’s repository, identifying the facets
to be extracted and inserted in the new search method. The extractor looks for
pre-defined facets, defined in a configuration file, together with rules for their
identification. Currently the rules consist of a combination of correlated terms
that must appear inside a component’s code in order to determine if it is classified
within the facet. New facets can be inserted by modifying this configuration file.
ii) After the identification and extraction of the facets, components are classified
according to them. The extraction and classification works together.

In the client side (Eclipse plug-in), modifications were made on the interface,
with a “selector” for each facet, allowing the developer to select the desirable
values for each one. The field for typing the regular text-based query was main-
tained, so the user may combine facet-based search with text-based search. The
search is now preceded by a filtering, which excludes components that do not
satisfy the constraints (facets). The keyword-based search is then performed over
the filtered result.

From Specification to Experimentation 89

Currently, Maracatu is capable of classifying components according to three
facets (F), with the following values:
F1: Platform - Values: J2EE, J2ME or J2SE;
F2: Component Type - Values: Web Services, GUI, Networking, Infrastructure,
Arithmetic, Security, Java 3D or Data Source; and
F3: Component Model - Values: EJB, CORBA or JavaBeans.

The user may choose combinations of these facets and values, performing
queries such as: retrieve all Infrastructure or Networking components that are
developed for J2EE Platform in the EJB Component Model.

5 Practical Usage in the Industry

Currently, the second version of Maracatu is being used in the industrial context,
at C.E.S.A.R.2, a Brazilian company. It is initially being used in two projects,
developed by RiSE3 group. These projects involve the development of a compo-
nent manager and a shared component library for Brazilian companies. The two
projects are supported by the Brazilian Government, under a budget of around
$1.5 millions. The team that uses Maracatu in these projects is composed by
13 members, divided as follows: project manager (1), software quality engineer
(1), software configuration manager (1), team leader (1), technical leader (1)
and software engineers (8). The experience gained in this usage is important to
identify opportunities for new features and improvements.

These projects’ repository contains 5 sub-projects, involving around 4200 ar-
tifacts created and shared by the development team. These artifacts may be
reused in different ways, offering different kinds of contribution to new projects:
source code can be directly reused, but they can also serve as examples of some
particular implementation or structural design.

The second version of Maracatu plug-in implementation contained 106 classes,
divided into 55 packages, with 3844 lines of code (not counting comments).

6 Experiments

Two experiments were performed in order to analyze and compare the mecha-
nisms of keyword matching and facet searching. The goal was to verify if the
second version became more useful than the first one, since the facet mechanism
was included.

For each experiment, four metrics were considered: the recall, the precision
and the f-measure. Recall is the number of relevant components retrieved over
the number of relevant components in the database [18]. The precision is the
number of relevant components retrieved over the total number of components
retrieved. Recall and precision are the classic measures of the effectiveness of
2 Currently, this company has about 700 employees and is preparing to obtain CMMi

level 3.
3 http://www.cin.ufpe.br/~rise

90 V.C. Garcia et al.

an information retrieval system. Ideally, a search mechanism should have good
precision and good recall. To assess this, mechanisms can be evaluated through
the f-measure, which is the harmonic mean of precision and recall [19]. The closer
the f-measure is to 1.0, the better the mechanism is. But this will only occur if
both precision and recall are high. If some mechanism have excellent precision,
but low recall, or excellent recall, but low precision, the f-measure will be closer
to zero, indicating that this mechanism does not perform well in one of these
criteria.

6.1 Context

According to Prieto-Dı́az [17] the facet approach provides higher accuracy and
flexibility in classification. The facet searching is based on the controlled vocab-
ulary and relies on a predefined set of keywords used as indexing terms. These
keywords are defined by experts and are designed to best describe or represent
concepts that are relevant to the domain question.

From these experiments, we expect to obtain similar results, i.e., the facet
approach should have better accuracy in classifying the components, and there-
fore the recall should be higher. On the other hand, free text search should have
higher precision, since it only retrieves components that has terms provided in
the query. If our results are correct, the combination of text and facet-based
search should provide the best results, resulting in higher f-measure than the
isolated approaches. These results would indicate that Maracatu’s mechanisms
were consistently implemented, and that the theory behind it is well-founded.

We considered that values close to 50 % for recall and values close to 20 %
for precision are satisfactory, since they come close to measurements made by
other authors [20, 11]. However, these values are only considered as a reference,
and these results were not included in the hypotheses of the experiments.

The dependent variables for the experiments are recall, precision, search time,
and f-measure. The independent variable is the searching method with three
approaches: keyword, facet, and keyword + facet. Differences in subjects’ skills
were also considered, to explain the results.

The null hypotheses, i.e., the hypotheses that the experimenter wants to reject,
are:

– H0a: facet-based search has lower recall than keyword search
– H0b: keyword-based search has lower precision than facet-based search
– H0c: the combination of facet-based and keyword-based search does not have

a greater f-measure than the isolated approaches

By rejecting these hypotheses, we expect to favor the following alternative
hypotheses:

– H1: facet-based search has higher recall than keyword search
– H2: keyword-based search has higher precision than facet-based search
– H3: the combination of facet-based and keyword-based search have a greater

f-measure than the isolated approaches

From Specification to Experimentation 91

If null hypotheses H0a and H0b are rejected, the results would indicate the
theory that facet-based search retrieves more relevant components, and that
keyword-based search is more precise. But the main result to be expected comes
from null hypothesis H0c. If rejected, the results would indicate that the combi-
nation of facet-based and keyword-based search takes advantage of the best of
each approach, producing a better overall result. By following this rationale, the
new version of Maracatu is more useful than the first one.

6.2 Preparation of the Experiments

In the first experimental environment, a repository was divided into 14 index files
for 4017 source code components distributed in 8 different projects from Java.net
(http://java.net/) and SourceForge (http://www.sourceforge.com) devel-
opers site, and two RiSE projects. The second experimental environment had a
repository divided into 14 index files for 3819 source code components distrib-
uted in 7 different projects, from the same developers site.

One particularly challenging task is to obtain a precise measure of the recall,
since the experimenter needs to know exactly how many relevant components
exist in the repository for each query. To overcome this problem, both experi-
ments adopted the same strategy: one of the projects inserted into the repository,
called known project, (with about 200 components), was from a very specific
domain, and was very well known by an expert. In this way, he could provide
a number of relevant components for each query with some assurance, since he
has a good knowledge of that project. Each experiment had a different known
project.

The experiments were conducted in a single machine, a Compaq Presario with
2,4 GHz, 512 MB RAM and Windows XP SP1. The subjects in this study were
4 researches of the RiSE Group and C.E.S.A.R, primarily software engineers and
analysts. Each subject was given a set of ten queries for each searching method
(keywords, facets and keywords + facets), and was asked to find all items in the
repository relevant to the query. The expert for each known project should be
consulted in this activity.

The queries were elaborated with the help of the expert for each known
project, and were specific to its domain, so that the number of relevant com-
ponents outside the known project - which would be unknown to the expert -
would be minimum.

6.3 Analysis of Experimental Results

Recall. Table 1 shows the recall results for both experiments. For each approach,
the table shows the mean of the recall for the ten queries, the standard deviance
and the variance.

In experiment 2, if we consider the worst case of the standard deviance, the
null hypothesis H0a - facet-based search has lower recall than keyword search-
fails to be rejected, since there is a possibility that keyword-based approach
has greater recall than facet-based. However, in experiment 1, even considering

92 V.C. Garcia et al.

Table 1. Recall for both experiments

Approach Experiment 1 Experiment 2
Recall Std.Dev. Variance Recall Std.Dev. Variance

Keyword 0,4356 0,1434 0,0206 0,4867 0,2813 0,0791
Facet 0,8046 0,1562 0,0244 0,6936 0,2749 0,0756
Kw./Facet 0,4584 0,1646 0,0271 0,3158 0,2665 0,0710

the worst case of the standard deviance, the null hypothesis H0a is rejected.
This favors alternative hypothesis H1: facet-based search has higher recall than
keyword search.

Precision. Table 2 shows the precision results for both experiments. For each
approach, the table shows the mean of the precision for the ten queries, the
standard deviance and the variance.

Table 2. Precision for both experiments

Approach Experiment 1 Experiment 2
Precision Std.Dev. Variance Precision Std.Dev. Variance

Keyword 0,2084 0,2745 0,0753 0,1556 0,2655 0,0705
Facet 0,0071 0,0102 0,0001 0,0155 0,0238 0,0006
Kw./Facet 0,2616 0,2786 0,0776 0,2530 0,4658 0,2169

In both experiments, if looking only at the mean values, one may tend to
think that null hypothesis H0b - keyword-based search has lower precision than
facet-based search - was rejected. However, although this is probably true, it is
not guaranteed by statistical results, since the standard deviance was too high,
which may indicate that the mean could drastically change. However, in practice,
due to the high difference in the mean values in both experiments, we can favor
the alternative hypothesis H2: keyword-based search has higher precision than
facet-based search.

f-measure. Table 3 shows the f-measure results for both experiments. For each
approach, the table shows the mean of the f-measure for the ten queries, the
standard deviance and the variance.

By looking at these results, we may immediately discard the facet-based ap-
proach, since it has a very low f-measure for both experiments. However, null
hypothesis H0c - the combination of facet-based and keyword-based search does
not have a greater f-measure than the isolated approaches - cannot be statisti-
cally rejected by these results. If we look at both experiments, and if we consider
the worst case of the standard deviance, the mean could change drastically, and
the f-measure for the keyword approach could be higher than the keyword +
facet approach.

From Specification to Experimentation 93

Table 3. F-measure for both experiments

Approach Experiment 1 Experiment 2
F-meas. Std.Dev. Variance F-meas. Std.Dev. Variance

Keyword 0,2544 0,2584 0,0668 0,2109 0,3181 0,1012
Facet 0,0136 0,0189 0,0004 0,0294 0,0443 0,0020
Kw./Facet 0,3127 0,2592 0,0672 0,2361 0,2559 0,0655

However, in practice, considering just the mean values, both experiments tend
to reject Null hypothesis H0c, since in both cases the combination of facets and
keywords had a greater f-measure. Thus, if we had to make a decision, we would
favor alternative hypothesis H3: the combination of facet-based and keyword-
based search have a greater f-measure than the isolated approaches. However,
more experiments are needed in order to provide a more solid confirmation of
this hypothesis.

6.4 Discussion

Subject preferences for the searching methods was obtained by asking the sub-
jects to answer which approach was preferred. Keyword + facet was ranked
higher, followed by keyword and only then the facets.

The three null hypotheses were practically rejected, although not statisti-
cally. This favors the alternative hypotheses, and specially H3, which states that
the new version of Maracatu, combining facet-based search with keyword-based
search, is more useful than the first one, which only had keyword-based search.

As expected, the recall and precision rates, in the best cases, were very close to
the values obtained by other authors [20] [11] (50% recall and 20% for precision).
We can not say which mechanism is better, nor that these mechanisms are
similar, since several other factors could influence the result. The same set of
components and queries should be replicated to all mechanisms in order to obtain
a more meaningful comparison result. However, this indicates that the research
on Maracatu is on the right direction.

7 Related Work

The Agora [21] is a prototype developed by the SEI/CMU4. The objective of the
Agora system is to create a database (repository), automatically generated, in-
dexed and available on the Internet, of software products assorted by component
type (e.g. JavaBeans or ActiveX controls). The Agora combines introspection
techniques with Web search mechanisms in order to reduce the costs of locating
and retrieving software components from a component market.

The Koders [22] connects directly with version control systems (like CVS
and Subversion) in order to identify the source code, being able to recognize

4 Software Engineering Institute at Carnegie Mellon University.

94 V.C. Garcia et al.

30 different programming languages and 20 software licenses. Differently from
Maracatu, which can be used in an Intranet, Koders can be only used via its Web
Site, which makes it unattractive for companies that want to promote in-house
reuse only, without making their repositories public.

In [23], Holmes and Murphy present Strathcona, an Eclipse plug-in that locates
samples of source code in order to help developers in the codification process.
The samples are extracted from repositories through six different heuristics. The
Strathcona, differently from Maracatu, is not a Web Service client, and thus it
is not as scalable as Maracatu. Besides, Maracatu can access different remotely
distributed repositories, while the Strathcona can access only local repositories.

Another important research work is the CodeBroker [11], a mechanism for
locating components in an active way, according to the developer’s knowledge
and environment. Empirical evaluations have shown that this kind of strategy
is effective in promoting reuse. From the functional view, Maracatu follows the
same approach as CodeBroker, except for being passive instead of active.

8 Maracatu’s Agenda for Research and Development

As a result of the research and tests made with the tool, the team responsible for
the project identified the necessity for the development of new features and new
directions for research. A formal schedule of these requirements is being defined
by C.E.S.A.R. and RiSE group, and will address the following issues.

8.1 Non-functional Requirements

Usability. Macaratu’s usability might be enhanced with features such as giving
the user the possibility to graphically view the assets and its interdependencies.
This would help the user to keep track of assets cohesion and to learn more about
the assets relationships and dependencies. Another usability feature could be to
highlight the searched text. And finally, it would be interesting for the user to
select the repositories he/she wants to search, as an additional filter.
Scalability. On the server side, there are not features for load balancing. This
will be an important feature in the future, as the tool starts to be used with a
larger number of developers simultaneously searching for assets on the Intranet
or even on the Internet.
Security. A common problem that a company may face when promoting reuse
is the unauthorized access to restricted code. The idea is to improve software
reuse, but there are cases where not every user can access every artifact. User
authentication and authorization need to be implemented in order to solve these
questions.

8.2 Functional Requirements

Improved facet search. The facet search might be enhanced, by using more
complex, flexible and dynamic rules. Currently, facet rules are specific for Java
source code, and use a very simple structure. A rule engine should be used to

From Specification to Experimentation 95

improve it. This would bring the necessary flexibility for the administrator or the
developer to define specific semantic-aware rules to associate pre-defined facets.
Besides, a more flexible facet extractor would be easier to adapt to organizational
structures, facilitating the adoption of the search engine.
Semantic Search. Semantic search might be added to improve recall, since it
would retrieve not only the specific assets the user searched for, but also others
that are semantically related. Current facet search is a form of semantic search,
since the facets are semantically defined to represent and group some information
on the repository. However, new semantic engines could provide more benefits.
Specialized Algorithm. On its second prototype, Maracatu uses the Lucene
Search system to index and retrieve source code. This algorithm is not optimized
or specialized for source code search. A feature that might be added is to count
the source code dependencies when indexing and ranking it. So a developer could
choose to retrieve the assets with less dependencies, for example. One example
of such work can be seen on Component Rank [24].
Metrics. The use of more complex metrics than JavaNCSS might be interesting.
Currently the only metric information used is the amount of Javadoc documen-
tation. We can evaluate other code quality features in order to improve the filter
process.
Query by reformulation. There is a natural information loss when the reuser
is formulating a query. As pointed out by [10], there is also the conceptual gap
between the problem and the solution, since usually components are described
in terms of functionality (“how”), and queries are formulated in terms of the
problem (“what”). In [11], the authors state that retrieval by reformulation “is
the process that allows users to incrementally improve their query after they
have familiarized themselves with the information space by evaluating previous
retrieval results.”.
Information Delivery. Most tools expect user’s initiative to start searching for
reusable assets. Unfortunately, this creates a search gap, because the user will
only search for components he/she knows or believes to exist in the repository
[11]. On the other hand, using context-aware features, the tool can automatically
search for relevant information without being requested, bringing components
that the user would not even start looking for, increasing the chance of reuse.

We are aware that this is not a definitive set of improvements. However, these
are proved solutions that could increase Maracatu’s performance and usefulness.

9 Concluding Remarks

Since 1968 [1], when McIlroy proposed the initial idea of a software component
industry, the matter has been the subject of research. Over from decades [9], the
component search and retrieval area evolved, with mechanisms that, initially,
facilitated the reuse of mathematical routines, up to robust mechanisms, which
help in the selection and retrieval of black-box components, either in-house or in
a global market.

96 V.C. Garcia et al.

In this paper, we presented Maracatu, a search engine for retrieving source
code components from development repositories. The tool is structured in a
client-sever architecture: the client side is a plug-in for Eclipse IDE, while the
server side is represented by a web application responsible for accessing the repos-
itories in the Internet or Intranets. Two versions of the engine were developed
so far, with new features being added as it is used in industrial practise. We also
presented two experiments, comparing the text matching mechanism (first ver-
sion) with the facet mechanism implemented in the last version. The experiment
showed that the facet-based mechanism alone does not have good performance
but, when combined with text-based search, is a better overall solution.

Additionally, we discussed Maracatu’s agenda for future research and devel-
opment, listing it features still to be implemented. Issues concerned with usabil-
ity, scalability and security gain importance in future releases, as pointed out
by the experiments and pactical usage. Particularly, the facet searching mecha-
nism could benefit from more sophisticated, flexible and dynamic rules. Semantic
search would be another important approach to be studied, as well as more spe-
cialized algorithms for component ranking.

In the view of the RiSE framework for software reuse [25], Maracatu is a
search tool to incorporate the first principles and benefits of reuse into an or-
ganization. However, reusability will not occur by itself, and it is an illusion
to think that the adoption of tools could do it either. There must be a strong
organizational commitment to reuse program; adherence to a reuse process; an
effective management structure to operate a reusability program with the re-
sources and authority required to provide the overall culture to foster reuse.
Maracatu facilitates the task of reusing software artifacts, but we hope that the
first benefit it brings can encourage project managers and CIOs to pay attention
to the software reuse as a viable and mandatory investment in their software
development agenda.

References

1. McIlroy, M.D.: Software Engineering: Report on a conference sponsored by the
NATO Science Committee. In: NATO Software Engineering Conference, NATO
Scientific Affairs Division (1968) 138–155

2. Frakes, W.B., Isoda, S.: Success Factors of Systematic Software Reuse. IEEE
Software 11(01) (1994) 14–19

3. Rine, D.: Success factors for software reuse that are applicable across Domains
and businesses. In: ACM Symposium on Applied Computing, San Jose, California,
USA, ACM Press (1997) 182–186

4. Morisio, M., Ezran, M., Tully, C.: Success and Failure Factors in Software Reuse.
IEEE Transactions on Software Engineering 28(04) (2002) 340–357

5. Ravichandran, T., Rothenberger, M.A.: Software Reuse Strategies and Component
Markets. Communications of the ACM 46(8) (2003) 109–114

6. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Addison Wesley (2002)

7. Gallardo, D., Burnette, E., McGovern, R.: Eclipse in Action. A Guide for Java
Developers. In Action Series. Manning Publications Co., Greenwich, CT (2003)

From Specification to Experimentation 97

8. Griss, M.: Making Software Reuse Work at Hewlett-Packard. IEEE Software
12(01) (1995) 105–107

9. Lucrédio, D., Almeida, E.S., Prado, A.F.: A Survey on Software Components
Search and Retrieval. In Steinmetz, R., Mauthe, A., eds.: 30th IEEE EUROMI-
CRO Conference, Component-Based Software Engineering Track, Rennes - France,
IEEE/CS Press (2004) 152–159

10. Henninger, S.: Using Iterative Refinement to Find Reusable Software. IEEE Soft-
ware 11(5) (1994) 48–59

11. Ye, Y., Fischer, G.: Supporting Reuse By Delivering Task-Relevant and Person-
alized Information. In: ICSE 2002 - 24th International Conference on Software
Engineering, Orlando, Florida, USA (2002) 513–523

12. Banker, R.D., Kauffman, R.J., Zweig, D.: Repository Evaluation of Software Reuse.
IEEE Transactions on Software Engineering 19(4) (1993) 379–389

13. NetBeans: Javacvs project (2005)
14. Hatcher, E., Gospodnetic, O.: Lucene in Action. In Action series. Manning Pub-

lications Co., Greenwich, CT (2004)
15. Lee, C.: JavaNCSS - A Source Measurement Suite for Java (2005)
16. Stal, M.: Web services: beyond component-based computing. Communications of

ACM 45(10) (2002) 71–76
17. Prieto-Dı́az, R.: Implementing faceted classification for software reuse. Communi-

cations of the ACM 34(5) (1991) 88–97
18. Grossman, D.A., Frieder, O.: Information Retrieval. Algoritms and Heuristics.

Second edn. Springer, Dordrecht, Netherlands (2004)
19. Robin, J., Ramalho, F.: Can Ontologies Improve Web Search Engine Effectiveness

Before the Advent of the Semantic Web? In Laender, A.H.F., ed.: XVIII Brazilian
Symposium on Databases, Manaus, Amazonas, Brazil, UFAM (2003) 157–169

20. Frakes, W.B., Pole, T.P.: An Empirical Study of Representation Methods for
Reusable Software Components. IEEE Transactions on Software Engineering 20(8)
(1994)

21. Seacord, R.C., Hissam, S.A., Wallnau, K.C.: Agora: A Search Engine for Soft-
ware Components. Technical Report CMU/SEI–98–TR–011, ESC–TR–98–011,
CMU/SEI - Carnegie Mellon University/Software Engineering Institute (1998)
CMU/SEI - Carnegie Mellon University/Software Engineering Institute.

22. Koders: Koders - Source Code Search Engine, URL: http://www.koders.com
(2006)

23. Holmes, R., Murphy, G.C.: Using structural context to recommend source code
examples. In: 27th International Conference in Software Engineering, St. Louis,
MO, USA, ACM Press (2005) 117–125

24. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto,
S.: Component Rank: Relative Significance Rank for Software Component Search.
In: 25th International Conference on Software Engineering (ICSE2003). (2003)
14–24

25. Almeida, E.S., Alvaro, A., Lucrédio, D., Garcia, V.C., Meira, S.R.L.: RiSE Project:
Towards a Robust Framework for Software Reuse. In: IEEE International Con-
ference on Information Reuse and Integration (IRI), Las Vegas, USA, IEEE/CMS
(2004) 48–53

Architectural Building Blocks for Plug-and-Play
System Design

Shangzhu Wang, George S. Avrunin, and Lori A. Clarke

Department of Computer Science
University of Massachusetts, Amherst, MA 01003, USA

{shangzhu, avrunin, clarke}@cs.umass.edu

Abstract. One of the distinguishing features of distributed systems is
the importance of the interaction mechanisms that are used to define
how the sequential components interact with each other. Given the com-
plexity of the behavior that is being described and the large design space
of various alternatives, choosing appropriate interaction mechanisms is
difficult. In this paper, we propose a component-based specification ap-
proach that allows designers to experiment with alternative interaction
semantics. Our approach is also integrated with design-time verification
to provide feedback about the correctness of the overall system design. In
this approach, connectors representing specific interaction semantics are
composed from reusable building blocks. Standard communication inter-
faces for components are defined to reduce the impact of changing inter-
actions on components’ computations. The increased reusability of both
components and connectors also allows savings at model-construction
time for finite-state verification.

1 Introduction

One of the distinguishing features of distributed systems is the importance of
the interaction mechanisms that are used to define how the sequential com-
ponents interact with each other. Consequently, software architecture descrip-
tion languages typically separate the computational components of the system
from the connectors, which describe the interactions among those components
(e.g., [1, 2, 3, 4]). Interaction mechanisms represent some of the most complex
aspects of a system. It is the interaction mechanisms that primarily capture the
non-determinism, interleavings, synchronization, and interprocess communica-
tion among components. These are all issues that can be particularly difficult to
fully comprehend in terms of their impact on the overall system behavior.

As a result, it is often very difficult to design a distributed system with
the desired component interactions. The large design space from which devel-
opers must select the appropriate interaction mechanisms adds to the difficulty.
Choices range from shared-memory mechanisms, such as monitors and mutual
exclusion locks, to distributed-memory mechanisms, such as message passing and
event-based notification. Even for a single interaction mechanism type, there are
usually many variations on how it could be structured.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 98–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Architectural Building Blocks for Plug-and-Play System Design 99

Because of this complexity, design-time verification of distributed systems is
particularly important. One would like to be able to propose a design, use verifi-
cation to determine which important behavioral properties are not satisfied, and
then modify and reevaluate the system design repeatedly until a satisfactory de-
sign is found. With component-based design, existing components are often used
and glued together with connectors. In this mode of design, one would expect
that the interaction mechanisms represented by the connectors would need to be
reconsidered and fine-tuned several times during this design and design-time ver-
ification process, whereas the high-level design of the components would remain
more stable. If using a finite-state verifier, such as Spin [5], SMV [6], LTSA [7],
or FLAVERS [8], a model of each component and each connector could be cre-
ated separately and then the composite system model could be formed and used
as the basis for finite-state verification.

A major obstacle to the realization of this vision of component-based design
is that the semantics of the interactions are often deeply intertwined with the
semantics of the components’ computations. Changes to the interactions usually
require nontrivial changes to the components. As a result, it is often difficult and
costly to modify the interactions without looking into and modifying the details
of the components. Consequently, there is little model reuse during design-time
finite-state verification.

In this paper, we propose a component-based approach that allows designers
to experiment with alternative interaction semantics in a “plug-and-play” man-
ner, using design-time verification to provide feedback about the correctness of
the overall system design. The main contributions of our approach include:

– Defining a small set of standard interfaces by which components can commu-
nicate with each other through different connectors: These standard inter-
faces allow designers to change the semantics of interactions without having
to make significant changes to the components.

– Separating connectors into ports and channels to represent different aspects
of the semantics of connectors: This decomposition of connectors allows us
to support a library of parameterizable and reusable building blocks that can
be used to describe a variety of interaction mechanisms.

– Combining the use of standard component interfaces with reusable building
blocks for connectors: This separation allows designers to explore the design
space and experiment with alternative interaction semantics more easily.

– Facilitating design-time verification: With the increased reusability of com-
ponents and connectors, one can expect savings in model-construction time
during finite-state verification.

This paper presents the basic concepts and some preliminary results from an
evaluation of our approach. Section 2 illustrates the problem we are trying to
address through an example. Section 3 shows how the general approach can be
applied to the message passing mechanism. In section 4, we demonstrate through
examples how designers may experiment with alternative interaction semantics
using our approach. Section 5 describes the related work, followed by conclusions
and discussions of future work in Section 6.

100 S. Wang, G.S. Avrunin, and L.A. Clarke

2 An Illustrative Example

As an example, consider a bridge that is only wide enough to let through a single
lane of traffic at a time [7]. For this example, we assume that traffic control
is provided by two controllers, one at each end of the bridge. Communication
between controllers as well as between cars and controllers may be necessary
to allow appropriate traffic control. To make the discussion easier to follow,
we refer to cars entering the bridge from one end as the blue cars and that
end’s controller as the blue controller; similarly the cars and controller on the
other end are referred to as the red cars and the red controller, respectively. We
start with a simple “exactly-N -cars-per-turn” version of this example, where
the controllers take turns allowing some fixed number of cars from their side to
enter the bridge. Note that since each controller counts the fixed number of cars
entering and exiting the bridge, no communication is needed between the two
controllers.

For an architectural design of this simple version of the system, one needs
to identify the components and the appropriate interactions among the compo-
nents. It is natural to propose a system composed of a BlueController compo-
nent, a RedController component, and one or more BlueCar components and
RedCar components. In such a distributed system, message passing seems to
be a natural choice for the component interactions. Four connectors then need
to be included to handle message passing among the components as indicated
in Figure 1: a BlueEnter connector between the BlueCar components and the
BlueController component, a BlueExit connector between the BlueCar compo-
nents and the RedController component, and similarly a RedEnter connector
and a RedExit connector.

As described in Figure 1(a), a car sends an enter request message to the
controller at the end of the bridge it wants to enter and then proceeds onto the
bridge. When it exits the bridge, it notifies the controller at the exit end by send-
ing an exit request message. Controllers receive enter request and exit request
messages, update their counters, and decide when to switch turns. Since there
may be multiple cars that communicate with each controller, messages are
buffered in the connectors between car components and controller components.

Astute readers will notice that according to the description in Figure 1(a),
cars from different directions can be on the bridge at the same time, which could
cause a crash. This is due to an erroneous design in the component interactions.
With this design, a car sends an enter request message and immediately goes
onto the bridge without confirming that its request has been accepted by the
controller. This controller, however, may still be waiting for exit requests from
cars from the other direction, and the enter request message from this car may
still be in the buffer, waiting to be retrieved and handled. Therefore, a car may
enter the bridge while there are still cars traveling in the opposite direction.
Obviously, what is needed here is synchronous communication between a car
and its controller rather than asynchronous communication.

One way to fix this problem is to have the controller send a go ahead message
after receiving each enter request to authorize that car to enter the bridge. After

Architectural Building Blocks for Plug-and-Play System Design 101

BlueCar i

send "enter_request";
go on to the bridge
send "exit_request"

while(true){

}

RedCar i

send "enter_request"
go on to the bridge
send "exit_request"

while(true){

}

BlueController

}
counter = 0;
while (counter<N){
 receive "red_exit_request";

 counter++;}
}

while(true){

 counter++;

counter = 0;
while (counter<N){
 receive "blue_enter_request";

RedController

counter = 0;
while(true){

while (counter<N){
 receive "blue_exit_request";

 counter++;
}
counter = 0;
while (counter<N){
 receive "red_enter_request";

 counter++;
}

}ConnectorComponent

RedCar i

}

while(true){

go on to the bridge;

send "exit_request";

send "enter_request";
receive "go_ahead";

BlueCar i

}

receive "go_ahead";
send "enter_request";

go on to the bridge;

while(true){

send "exit_request";

while(true){

}
}

BlueController

counter = 0;
while (counter<N){

 counter++;
}
counter = 0
while (counter<N){
 receive "red_exit_request";

 counter++;

send "go_ahead";
 receive "blue_enter_request";

while(true){
RedController

}
}

counter = 0;
while (counter<N){
 receive "blue_exit_request";

 counter++;
}
counter = 0;
while (counter<N)

 counter++;

 receive "red_enter_request";
send "go_ahead";

BlueEnter

BlueExit

RedEnter

RedExit

BlueEnter

RedEnter

BlueExit

RedExit

(b)(a)

Fig. 1. Architecture design and illustration of component interactions for the single-
lane bridge example

sending the enter request, the car would wait for this acknowledgement before
entering the bridge, as shown in Figure 1(b) (the highlighted areas indicate the
changes). These changes, involving both the car components and the controller
components, effectively make the communication between them synchronous and
solve the problem caused by the asynchronous communication.

This example shows the typical design practice in which the semantics of
the interactions are not specified independently, but instead are spread among
the connectors and the components. This is a trivial example, but it is easy
to envision how the intertwined semantics of the connectors and components
increases the challenge of discovering and correcting errors in the design of more
complex systems. Therefore, we prefer an approach that allows us to modify
connectors and components more independently of each other.

3 Plug and Play with Message Passing

As illustrated in the example above, changing from asynchronous message pass-
ing to synchronous message passing requires changes in the components, not
just in the connectors. In practice, designers must consider a wide range of al-
ternative semantics when selecting the appropriate interaction mechanism for
a connector. If it is subsequently discovered, perhaps through verification, that
the selected interaction mechanism is wrong, then it is likely that, not only the
connector, but the associated components will need to be modified and then
reevaluated. Therefore, the impact of changes in connectors on components will
not only make it more challenging for designers to find a suitable design, but
will also affect the maintainability and reusability of the system components.
Our approach tries to address these problems by decomposing connectors into
ports and channels, by representing the semantic variations for both ports and
channels as building blocks that can be assembled to provide the desired inter-
action mechanism, and by designing these building blocks so that components

102 S. Wang, G.S. Avrunin, and L.A. Clarke

can communicate through standard interfaces that are designed to work with
any kinds of connectors.

In this section, we show how our plug-and-play approach can be realized for
message passing, one of the most commonly used interaction mechanisms for dis-
tributed systems. We first present examples of building blocks that are derived
from a variety of commonly used message passing semantics. We then define
standard component interfaces and show how connectors and components com-
municate with each other through a set of protocols. We also discuss how finite-
state verification can be employed to facilitate the plug-and-play style of design.
Finally, we mention that this approach is not restricted to message passing, but
can be applied to many of the most common interaction mechanisms. In partic-
ular, we discuss briefly how this can be accomplished for the publish/subscribe
interaction mechanism.

3.1 Message Passing Variations and Building Blocks

Many languages such as CSP [9] and Linda [10] incorporate message passing
facilities. There are also message passing libraries such as MPI [11]. Although the
fundamentals of message passing interactions are sending and receiving messages,
there are a surprising number of semantic variations for these two operations, as
well as variations in the communication media used to store and deliver messages.

For example, a synchronous send operation will block the sender until the
message is delivered to the recipient, while other variations would allow the
sender to continue execution immediately or as soon as the message is stored
in the buffer. Similarly, a receiver component may be blocked or may return
immediately when a desired message cannot be retrieved from the buffer at the
moment. A receive may also allow messages to be selectively retrieved from
the buffer based on a matching criteria. Other variations of message passing
semantics involve the message buffers, such as the size of the buffer and the
ordering of messages been stored and delivered.

With such variations, determining a particular kind of message passing inter-
action for a system essentially means selecting a combination of these semantics.
As we have demonstrated in the previous sections, this large design space may
make it difficult for designers to choose the correct and desirable semantics. Our
approach helps designers with such choices by creating building blocks that cap-
ture the different combinations of the variations for each aspect of the message
passing semantics, and therefore allowing designers to experiment with the vari-
ations by plugging and playing with these building blocks. Our building blocks
include different kinds of send ports, receive ports, and channels that together
cover a number of variations for the most commonly used message passing se-
mantics. A small sample of the message passing building blocks, selected to
include those used in our examples, is given in Figure 2.

Figure 3(a) shows an example of how one may specify an asynchronous mes-
sage passing communication between a pair of sender and receiver components.
The connector is composed of an asynchronous blocking send port, a blocking
receive port, and a channel that buffers one message. Through this connector,

Architectural Building Blocks for Plug-and-Play System Design 103

Asynchronous
Nonblocking
Asynchronous
Blocking

Synchronous
Blocking

Asynchronous
Checking

Synchronous
Checking

Send
Port

AFTER the message has been accepted by the channel.

Similar to "asynchronos checking send" except that when the message can be accepted
by the channel, it blocks until the message is received by the receiver and then sends a
confirmation back to the sender.

Channel
1−slot buffer

FIFO queue

A buffer of size 1.

A FIFO queue of size N.

Priority queue A priority queue of size N.

Receive
Port

Blocking

Nonblocking

the message may or may not be accepted
Waits for a message from the sender and sends a confirmation back immediately

and handled by the channel.

Waits for a message from the sender and forwards it to the channel. If the message
cannot be accepted by the channel, it returns and sends a notification to the sender;
Otherwise it blocks until the message is accepted and sends a confirmation back to the sender.

by the channel that the message has been received by the receiver.

Waits for a "receive request" from the receiver and forwards it to the channel. It blocks until
a desired message is retrieved from the channel and sends a confirmation to the receiver.

Similar to "blocking receive" except that it returns immediately if no desired message can be
retrieved currently. It then sends a notification along with an empty message to the receiver.

Waits for a message from the sender and sends a confirmation back

Waits for a message from the sender and sends a confirmation back AFTER it is notified

Fig. 2. A set of message passing building blocks

the sender component sends a message without waiting for an acknowledgement
from the receiver but blocks until the message is stored in the channel. The
receiver component blocks until a message can be received. By replacing the
asynchronous send port with a synchronous one from the library, the new con-
nector in Figure 3(b) allows the sender to block not only until the message is
stored in the channel but also until it has been delivered to the receiver. Simi-
larly, channels can also be easily replaced. For example, the single-slot buffer can
be replaced by a FIFO queue channel that holds up to 5 messages, when mes-
sages need to be buffered (as shown in Figure 3(c)). Moreover, the replacement
of channels can be done independently of the replacement of ports. This kind
of “plug-and-play” development facilitates experimentation with alternative in-
teraction semantics. We have also found that our approach helps reduce the
effort needed for repeated model construction when designers use design-time
finite-state verification to check their design choices.

3.2 Component Interfaces and Protocols Among Building Blocks

In this section , we describe the standard component interfaces for sending and
receiving messages and the protocols used between these interfaces and differ-
ent kinds of connectors. The component interfaces are used as follows: A sender
component first issues a send command and then waits to receive a SendStatus
message from the connector; similarly, a receiver component first sends a receive
request to the port, waits for a RecvStatus message, followed by another message
from the connector that may contain the requested data. These interfaces are
designed to work with connectors having different send and receive semantics.
For example, in the case of asynchronous message passing, the connector returns
the SendStatus message to the sending component immediately, while for syn-
chronous message passing, the connector returns the SendStatus until after the
sender’s message has been delivered. The RecvStatus message indicates whether
the requested message has been successfully retrieved, that is, whether the sub-
sequent message contains the real data. Different connectors may send these

104 S. Wang, G.S. Avrunin, and L.A. Clarke

Fig. 3. Constructing message passing connectors

messages at different stages of retrieving a message. Moreover, always sending
a message after the RecvStatus allows this interface to work with nonblocking
receives that allow failure of retrieving messages.

To see how different connectors may interact with these interfaces, one has to
first understand the important role of ports in supporting the kind of plug-and-
play design we propose. In our approach, connectors are decomposed into chan-
nels that represent the communication media (in this case the message buffers),
and ports that capture the synchronization semantics of the communication.
This separation frees components from being tied to any specific synchronization
semantics and therefore allows easy manipulation of all aspects of interaction se-
mantics. It is the ports that handle the interleavings of communications between
components and channels and deciding when a specific status or data message
should be forwarded, hiding all the details from both components and channels.

Using a notation similar to Message Sequence Charts, Figure 4 and 5 show
the typical protocols used between components, ports and channels for sending
and receiving messages. In Figure 4,we see that for both asynchronous send
and synchronous send, the same set of protocols are used between the sender
component and the send port, and between the send port and the channel.
It is the send port that controls the relaying and interleaving of the internal
events, and thus whether the message passing is synchronous or asynchronous.
In Figure 4(a), the asynchronous send port returns the sendOk message to the
sending component without waiting for the channel to deliver the message and
simply discards the receiveOk message from the channel when it arrives. The
synchronous send port in Figure 4(b) waits to receive the receiveOk message from
the channel before sending sendOk to the sending component, which is therefore
blocked until after the message m is received. Neither the sending component nor
the channel needs to know whether the connector is implementing synchronous or

Architectural Building Blocks for Plug-and-Play System Design 105

send m

time

sender send port channel

send m

sender send port channel

time

SendStatus =
"sendOk"

Asynchronous Blocking Send(a) Synchronous Blocking Send(b)

m

"receiveOk"

"receiveOk"

m

"sendOk"
SendStatus =

Fig. 4. Example scenarios of message passing interactions (using send ports)

asynchronous message passing; the designer can swap one send port for another
to switch the semantics of the connector.

Similarly, Figure 5 shows that same protocols can be used for both block-
ing receive and nonblocking receive. In Figure 5(a), after forwarding the Re-
ceiveRequest from the receiver to the channel, the port blocks until an outOk
message is received from the channel indicating that the desired message is avail-
able. A recvSucc confirmation is then sent to the receiver following the retrieved
message. To implement the semantics of nonblocking receive (Figure 5(b)), a
receive port may immediately return when the desired message is not available
(outFail) by sending a recvFail message followed by an empty message to the
receiving component. In a fashion similar to that illustrated above, we are able
to support the plug-and-play of a number of different send and receive ports as
well as channels defined in Figure 2.

3.3 Design-Time Verification

In addition to providing a convenient and efficient way of specifying and
experimenting with various interaction semantics, we also support design-time
verification for checking specification properties of the system. For finite-state
verification techniques such as model checking, formal models of the system
need to be constructed before verification can be applied. For the purpose of
our approach, predefined and reusable formal models can be created for each
building block in our library. Formal models of the selected building blocks are
then composed at verification time with formal models of the components to
form a system model that is then checked against the properties specified. Note
that the designer is responsible for providing the models of the components and
specifying the properties.

Through verification, designers may find unexpected behaviors or errors in
their system design. If the problems are caused by the interaction mechanisms,
changes can be made by simply adjusting the building blocks of the connectors,
perhaps without having to modify the components. When this occurs, there is
no need to recreate the component models. Moreover, predefined models for the
building blocks can be used in most cases to represent the modified interaction
mechanisms, also reducing the cost of model construction.

106 S. Wang, G.S. Avrunin, and L.A. Clarke

time

receive portreceiver receive port channel

Action
(Condition)

Triggers only when the condition satisfies A transition that could happen more than once*

receiverchannel

ReceiveRequest

ReceiveRequest

BufferStatus = "outOk/outFail"

RecvStatus = "recvSucc"

(BufferStatus = "outOK")
m

m

*

ReceiveRequest

m

ReceiveRequest

 "outOk/outFail"BufferStatus =

= "outOk")(BufferStatus

m

(BufferStatus = "outFail")

RecvStatus = "recvFail"

null
(BufferStatus = "outFail")

(BufferStatus = "outOk")

"recvSucc"RecvStatus =

"outOk")(BufferStatus =

(a) Blocking Receive (b) Nonblocking Receive

Fig. 5. Example scenarios of message passing interactions (using receive ports)

To evaluate our approach, we have used Spin [5] to verify a series of designs
using our building blocks. In our evaluation, the formal models of components
and building blocks are described in Promela, the input language of Spin. We
use the default message passing operations (“?” and “!”) in Promela to imple-
ment the communications among components, ports and channels. Each port is
a Promela proctype that takes two Promela native channels as parameters for
communications with the component and the channel that are connected to this
port. For the purpose of the evaluation, we have coded models in a way that re-
flects our goal of reusable and parameterizable building blocks. For a particular
choice of interaction mechanisms, it might well be possible to implement connec-
tors more directly using features of the Promela language. The full description
of the Promela models for the building blocks is given in [12].

Notice that by using Spin and Promela to support design-time verification,
we are showing only one possible way to combine our design approach and ver-
ification. Our approach is not tied to particular formalisms or verification tech-
niques. In fact, we have defined the same set of building blocks in the process
algebra FSP and used LTSA [7] to verify the system designs. It is reasonable
to expect, however, that when using different formalisms and verification tech-
niques, specialized optimizations will need to be developed.

3.4 Other Interaction Mechanisms

Although here we have described this approach for message passing interactions,
we believe that the overall approach can be applied to most commonly used inter-
action mechanisms. To validate this claim, we have also applied this approach to
publish/subscribe interactions, another commonly used interaction mechanism.
In publish/subscribe systems, the fundamental communications between com-
ponents and connectors are the announcement of events by components, the de-
livery of events to components, and the subscription or unsubscription by which
components indicate their interest in particular events. It is straightforward to
map these communications to sending and receiving messages; therefore they

Architectural Building Blocks for Plug-and-Play System Design 107

Fig. 6. An initial design of the “exactly-N-cars-per-turn” single-lane bridge

can be described using available message passing building blocks. In message
passing, it is almost always the case that the sender initiates the communica-
tion by pushing messages to the connector and the receiver pulls messages from
the connector. Unlike message passing, however, most publish/subscribe systems
support one or more combinations of push/pull on both the publisher side and
the subscriber side. To describe these semantics, new kinds of send and receive
ports that capture such push/pull semantics are defined. A more detailed dis-
cussion about the building blocks for publish/subscribe can be found in in [12].

4 The Single-Lane Bridge Example Revisited

We now return to the single-lane bridge example introduced in Section 2 to
illustrate how the techniques described above facilitates iterative exploration
and verification of designs. Figure 6 shows an architecture design of the exactly-
N -cars-per-turn version of the system. All the cars from the same direction
(indicated as having the same color) communicate with the controller at each
side through a single connector. For the initial design, asynchronous message
passing is chosen for both the communication between a car and the controller
on its entering side and the communication between the car and the controller
on the other side. FIFO queues are selected for buffering messages.

One important property of the system that we want to check is that cars
traveling in opposite directions can never be on the bridge at the same time. By
composing the Promela models of the components provided by the designer and
the prebuilt models of the building blocks from the library, we can use Spin to
determine whether the system satisfies the property. In this case, of course, Spin
produces a counterexample in which a blue car sends an enter request message
and enters the bridge, followed by a red car sending an enter request message and
entering the bridge. As noted above, the problem is obviously the result of the
careless design of the asynchronous communication between cars and the con-
troller handling enter requests, which allows cars to enter the bridge before their

108 S. Wang, G.S. Avrunin, and L.A. Clarke

enter requests have even been received by the controller. With our approach, the
erroneous design can be easily corrected by replacing the asynchronous blocking
send ports for sending enter requests with synchronous ones, and no changes in
the components are necessary. To confirm that the system now satisfies the prop-
erty, the verification can be repeated with the formal models of the asynchronous
ports replaced by those of the synchronous ones.

In fact, astute readers may notice that the FIFO queues used for buffering
exit request messages are not necessary since the exact ordering in which the
exit request messages are received does not matter. Therefore, the FIFO queue
channels used in BlueExit and RedExit connectors can be safely replaced with
single-slot buffers. This modification again requires no further changes in other
parts of the architecture. Similarly, the modified design can be re-verified as
before to make sure the system still satisfies the property.

Of course, not all modifications to a system require only simple changes in
the interaction mechanisms. Suppose that, in order to improve traffic flow, the
designer wishes to modify the bridge system so that when there are fewer than N
cars crossing the bridge from one side, the turn can be yielded without waiting
for N cars to cross, allowing cars from the other side to enter the bridge. To
change the previous design of the single-lane bridge into this “at-most-N -cars-
if-waiting” version, additional communication between the controllers needs to
be added. Although this functional change of the system unavoidably requires
changes in the controller components, we can see that with our approach, we
can reduce the impact of these changes on both the design and the verification.

Figure 7 shows a possible architecture for the modified system, with two new
connectors between the controllers to allow the communication of the current
traffic status at each end. The interactions between two controllers are repre-
sented in a synchronous message passing connector composed of a synchronous
blocking send port, a nonblocking receive port, and a reliable single-slot buffer.
Since the controllers now have to actively poll enter request messages from cars
to check if there is any car waiting to enter the bridge, we also need to change
the blocking receive ports used by the controllers in the previous design into
nonblocking ones. To verify that this new system still prevents crashes on the
bridge, the component models need to be modified to reflect the new communi-
cations. Models of the new connectors, however, can be constructed from models
of the building blocks in the library.

A third and more realistic variation of the single-lane bridge example might
involve traffic control of emergency vehicles. Although this again cannot avoid
functional changes in the components, the necessary changes in the interaction
mechanisms would not affect the components and can be made easily. For exam-
ple, the FIFO queues used for buffering enter request messages may be replaced
with priority queues to handle emergency requests. The new design can be ver-
ified again in the same manner as described above. The detailed design and
formal models of the three versions of the example are described in [12].

Through this example, we illustrate how our plug-and-play approach, inte-
grated with design-time verification, may assist the designer exploring a series

Architectural Building Blocks for Plug-and-Play System Design 109

Fig. 7. The architecture design of the “at-most-N-cars-if-waiting” single-lane bridge

of system designs. With our approach, the impact of each change can be kept
relatively local, in that components only need to be modified when they must
handle new functionality. Changes in a connector can be made relatively easily
by selecting alternative building blocks to define that connector.

5 Related Work

The limitations and frustrations of component-based development are well
known (e.g., [13, 14]). Previous work, such as [15, 1, 2, 3, 4, 16], has proposed
treating connectors as first-class entities in component-based development, al-
though [16] in particular, has put the focus at a lower level of abstraction (pro-
gramming level) than what we are interested in.

The idea of specifying complex connectors and modeling them for verifica-
tion is, of course, not new. The Wright architecture description language [1], for
example, uses the CSP process algebra to describe arbitrary connectors. The Ar-
chitectural Interaction Diagrams (AIDs) of Ray and Cleaveland [17] use process
algebra methods to construct connectors hierarchically. Constraint automata
based approaches have also been proposed to specify and analyze the semantics
of connectors composed from a set of primitive channels [18,19]. In approaches
like these, the burden is on the designer to construct connectors with the right
semantics from powerful, but low-level, primitives. Our approach is aimed more
at providing a library of building blocks from which connectors representing
widely used interaction mechanisms can be easily constructed, offering “ready-
to-use” pieces that hide from the user most of the details of how these pieces
are actually constructed and modeled. The interaction mechanisms we describe
are at a lower level of abstraction than the communication patterns described
in [20]. Our approach defines finer-grained patterns that express specific seman-
tics of interactions, and provide a mechanism that allows the designer to work
with the detailed semantics.

110 S. Wang, G.S. Avrunin, and L.A. Clarke

Although a similar notion of ports has been proposed in architectural descrip-
tion languages such as ACME [21] and ArchJava [22], in our approach, ports are
used to explicitly capture some of the most important aspects of interaction
semantics such as synchronization, and therefore are treated as parts of connec-
tors. Our definition of ports makes it possible to support standard component
interfaces that allow connectors to be modified or replaced with minimal impact
on the components. The mechanism we use to realize this is closely related to
the connector wrappers of [23], although their emphasis is on adapting existing
connectors whereas ours is on building up new connectors that can be easily
exchanged for one another. The term building blocks has been often used in dif-
ferent contexts. For example, in [24], building blocks are referred to as parts
of software used to build a system. The building blocks in our approach are
design-level elements used to construct connectors representing interactions.

Our work on the semantics of interaction mechanisms is related to the work on
categorizing connectors (e.g. [25,26]). In particular, our analysis of the variations
of message passing semantics is similar in spirit to the analysis of publish/sub-
scribe systems in [27]. There has been extensive work on applying verification to
systems employing a single type of interaction mechanism (e.g. [28,29,30]). Our
approach is intended to support many kinds of mechanisms, rather than being
restricted to a single type.

A number of middleware frameworks support component-based development,
although each typically allows a somewhat limited range of interaction mecha-
nisms and provides no direct support for verification. Some work, such as the
Cadena system [31], has been directed at providing verification support for sys-
tems built on standard middleware. There is also work on the verification of
middleware-based software architecture [32]. A number of tools and approaches
have also been proposed for assembling existing components into applications,
including mediators [33], Piccola [34], and various techniques for wrapping com-
ponents. Our interest here is more in the choice of interaction mechanisms be-
tween components and less on the adaptation of existing components to interact
with each other. Our approach also differs from previous work on architectural
evolution (e.g., [35, 36]) in our focus on supporting the exploration of different
interaction mechanisms at the design stage and our emphasis on modeling and
verification.

6 Conclusion and Future Work

In this paper, we propose a compositional specification approach that helps de-
signers more easily experiment with different interaction mechanisms between
components. By decomposing the connectors into ports and channels, and us-
ing ports as mediators between components and channels, we are able to keep
the interface of the components simple and standardized so that changes to the
interaction mechanisms can be made with little or no modification to the compo-
nents. The decomposition also allows us to build a library of ports and channels
as reusable building blocks to construct connectors with different semantics. Our

Architectural Building Blocks for Plug-and-Play System Design 111

approach is also integrated with finite-state verification techniques, facilitating
design-time verification and the early detection of design errors. Using our ap-
proach, designers may experiment with their choice of design for a variety of
interaction semantics by simply plugging in, or replacing, building blocks and
then using verification to check their design choices. Since this design process
may be repeated to reflect system changes, our approach allows considerable
reuse of the models of components and connectors. Consequently, we also save
on model-construction time while doing the finite-state verification.

We are currently implementing our approach by developing plugins to the ar-
chitecture design environment AcmeStudio1 developed at CMU. Our prototype
tool will allow designers to define and use building blocks to specify component
interactions. It will also allow the specification of component models and the use
of a model checker to verify the design. We are also carrying more case studies
to demonstrate and further evaluate our approach.

We intend to explore other commonly used interaction mechanisms and, when
necessary, to construct additional building blocks to express their semantics.
There are a number of interesting issues related to design-time verification. For
instance, optimizations could be developed to reduce the system models that
are composed from the building blocks and models of the components; these
depend, of course, on the particular modeling formalism and verification tools
being applied. We need to explore these optimizations and learn when they can
be profitably applied.

Acknowledgements

This material is based upon work supported by the National Science Founda-
tion under awards CCF-0427071 and CCR-0205575 and by the U.S. Department
of Defense/Army Research Office under award DAA-D19-01-1-0564 and award
DAAD19-03-1-0133. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation or the U. S. Department of
Defense/Army Research Office. We are grateful to Prashant Shenoy for helpful
conversations about this work.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. on
Softw. Eng. and Methodol. (1997) 140–165

2. Shaw, M., Garlan, D.: Softw. Architecture:Perspectives on an Emerging Discipline.
Prentice-Hall (1996)

3. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In: Proc. 5th European Softw. Eng. Conf., Sitges, Spain (1995)
137–153

1 Available at http://www.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html

112 S. Wang, G.S. Avrunin, and L.A. Clarke

4. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4) (1992) 40–52

5. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
6. K.L.McMillan: Symbolic Model Checking: An approach to the State Explosion

Problem. Kluwer Academic (1993)
7. Magee, J., Kramer, J.: Concurrency State Models and Java Programs. John Wiley

and Sons (1999)
8. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for

verifying properties of concurrent software systems. ACM Trans. on Softw. Eng.
and Methodol. 13(4) (2004) 359–430

9. Hoare, C.A.R.: Communicating Sequential Processes. Englewood Cliffs,
NJ:Prentice-Hall Intl. (1985)

10. Carriero, N., Gelernter, D.: Linda in context. Comm. ACM 32(4) (1989) 444–58
11. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-

plete Reference. MIT Press (1996)
12. Wang, S., Avrunin, G.S., Clarke, L.A.: Architectural building blocks for plug-and-

play system design. Technical Report UM-CS-2005-16, Dept. of Comp. Sci., Univ.
of Massachusetts Amherst (2005)

13. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch, or, why it’s hard
to build systems out of existing parts. In: Proc. 17th Intl. Conf. on Softw. Eng.,
Seattle, Washington (1995) 179–185

14. Inverardi, P., Wolf, A.L.: Uncovering architectural mismatch in component behav-
ior. Science of Computer Programming 33(2) (1999) 101–131

15. Bálek, D., Plášil, F.: Software connectors and their role in component deploy-
ment. In: Proc. Third Intl. Working Conf. on New Developments in Distributed
Applications and Interoperable Systems, Deventer, The Netherlands (2001) 69–84

16. Gensler, T., Lowe, W.: Correct composition of distributed systems. In: Tech. of
Object-Oriented Languages and Systems. (1999)

17. Ray, A., Cleaveland, R.: Architectural interaction diagrams: AIDs for system mod-
eling. In: Proc. 25th Intl. Conf. on Softw. Eng. (2003) 396–406

18. Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component con-
nectors in reo by constraint automata: (extended abstract). Electr. Notes Theor.
Comput. Sci. 97 (2004) 25–46

19. Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in compo-
sitions of software architectural primitives. In: 19th IEEE Intl. Conf. on Automated
Softw. Eng. (2004) 371–374

20. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc.,
New York, NY, USA (1996)

21. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In Leavens, G.T., Sitaraman, M., eds.: Foundations of Component-
Based Systems. Cambridge University Press (2000) 47–68

22. Aldrich, J., Chambers, C., Notkin, D.: Archjava: Connecting software architecture
to implementation. In: Proc. 26th Intl. Conf. on Softw. Eng., Orlando, FL, USA,
ACM (2002)

23. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proc. 2003 Intl. Conf. on Softw. Eng., Portland, Oregon (2003)

24. van der Linden, F.J., Mller, J.K.: Creating architectures with building blocks.
IEEE Softw. 12(6) (1995) 51–60

Architectural Building Blocks for Plug-and-Play System Design 113

25. Hirsch, D., Uchitel, S., Yankelevich, D.: Towards a periodic table of connectors.
In: Proc. Third Intl. Conf. on Coordination Languages and Models, London, UK
(1999) 418

26. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connec-
tors. In: Proc. 22nd Intl. Conf. on Softw. Eng., Limerick, Ireland (2000) 178–187

27. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems.
In: Proc. 10th Intl. SPIN Workshop on Model Checking of Softw., Portland, Oregon
(2003)

28. Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of
implicit invocation systems. In: Proc. 11th ACM Symp. on Found. of Softw. Eng.,
Finland (2003)

29. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate pub-
lish/subscribe architectures. In: Proc. Specification and Verification of Component-
Based Systems, Helsinki, Finland (2003) 35–41

30. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: Proc. 9th European Softw. Eng. Conf. / 11th ACM SIGSOFT Intl. Symp. on
Found. of Softw. Eng., Helsinki, Finland (2003) 257–266

31. Childs, A., Greenwald, J., Ranganath, V.P., Deng, X., Dwyer, M.B., Hatcliff, J.,
Jung, G., Shanti, P., Singh, G.: Cadena: An integrated development environment
for analysis, synthesis, and verification of component-based systems. In: Proc. of
Fund. Approaches to Softw. Eng., 7th Intl. Conf. (2004) 160–164

32. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of
middleware-based software architecture descriptions. In: Proc. 26th Intl. Conf.
on Softw. Eng., Washington, DC, USA, IEEE Computer Society (2004) 221–230

33. Sullivan, K.J., Notkin, D.: Reconciling environment integration and software evo-
lution. ACM Trans. Softw. Eng. Methodol. 1(3) (1992) 229–268

34. Achermann, F., Lumpe, M., Schneider, J.G., Nierstrasz, O.: Piccola – a small com-
position language. In Bowman, H., Derrick, J., eds.: Formal Methods for Distrib-
uted Processing – A Survey of Object-Oriented Approaches. Cambridge University
Press (2001) 403–426

35. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for
architecture-based software development and evolution. In: Proc. 21st Intl. Conf.
on Soft. Eng., Los Angeles (1999) 44–53

36. van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N.: Taming archi-
tectural evolution. In Inverardi, P., ed.: Proc. 8th European Softw. Eng. Conf./9th
Symp. on the Found. of Softw. Eng., Vienna (2001) 1–10

A Symmetric and Unified Approach Towards
Combining Aspect-Oriented and

Component-Based Software Development

Davy Suvée, Bruno De Fraine, and Wim Vanderperren

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

{dsuvee, bdefrain, wvdperre}@vub.ac.be

Abstract. In this paper, we propose a novel approach towards inte-
grating the ideas behind Aspect-Oriented and Component-Based Soft-
ware Development. Our approach aims at achieving a symmetric, unified
component architecture that treats aspects and components as uniform
entities. To this end, a novel component model is introduced that does
not employ specialized aspect constructs for modularizing crosscutting
concerns. Instead, an expressive configuration language is provided that
allows to describe both regular and aspect-oriented interactions amongst
components. This paper presents the ongoing FuseJ research, a first ex-
periment for realizing this symmetric and unified aspect/component ar-
chitecture.

1 Introduction

Aspect-Oriented Software Development (AOSD) [11] is a recent software engi-
neering paradigm that aims at improving the separation of concerns offered by
present-day software engineering methodologies. A proper separation of con-
cerns is crucial for implementing comprehensible, reusable and maintainable
software applications [15]. AOSD research argues that by employing classic
software engineering approaches, including Component-Based Software Devel-
opment (CBSD) [5], the implementation of certain concerns, such as logging,
security and caching, cannot be confined into a single logical module. These
concerns are called crosscutting as their implementation virtually crosscuts the
traditional decomposition of an software application. AOSD provides a solution
for modularizing these crosscutting concerns by introducing a new modulariza-
tion entity, called an aspect.

Currently, a wealth of technologies are available that all aim at integrating the
ideas of both AOSD and CBSD. Examples of such technologies include JAC [16],
JAsCo [20], Caesar [14], CAM/DAOP [18], JBoss/AOP [4], AspectWerkz [3] and
Spring/AOP [8]. Some AOSD technologies introduce an asymmetric, AspectJ-
like [10] approach, where crosscutting concerns are implemented through means

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 114–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Symmetric and Unified Approach 115

of a dedicated aspect language. Other, framework-based AOSD technologies im-
plement aspects through the base programming language. Although framework-
based approaches allow for a more straightforward integration of aspects within
the standard software development process, they still enforce aspects to imple-
ment a set of so-called aspect interfaces. Hence, similar to asymmetric AOSD
approaches, aspects are still considered, treated and implemented as different
kinds of entities within the application. This explicit distinction between aspects
and components however induces several disadvantages. Inherently, the behavior
provided by aspects is not that different from regular component behavior. Both
implement some functionality required within the application and it is only the
way in which they interact with the rest of the software system that differs. The
crosscutting composition mechanism of current aspect modules however, resides
itself tangled with the behavior of the concern, explicitly ruling out other ways of
integrating its behavior within the application. In addition, the reusability and
applicability of existing software components is constrained. Nowadays, several
mature, feature-rich components are available that for instance allow managing
the security issues within an application. At the moment however, there is no
elegant and straightforward solution available for integrating the behavior of
existing components in an aspect-oriented fashion.

The research presented in this paper aims at exploring the possibilities and
advantages of introducing a symmetric, unified approach towards combining the
ideas and concepts of AOSD and CBSD. Instead of introducing and considering
aspects as specialized entities, we propose to apply aspect-oriented composition
mechanisms upon the existing component constructs. On the one hand, this al-
lows aspects to straightforwardly adopt the same characteristics of components,
namely being reusable and independently deployable while at the same time
exposing and adhering to a contractually specified interface [21]. On the other
hand, the decision whether components should be integrated in a regular or
an aspect-oriented manner can be postponed until component composition time
and can easily be changed afterwards.

The remainder of this paper presents the ongoing FuseJ research [19], a first
experiment for achieving a symmetric and unified aspect/component architec-
ture. The next section introduces the FuseJ component model and its configura-
tion language by presenting a small case study situated in a Peer-To-Peer (P2P)
file sharing environment. Section 3 discusses related work. Finally, we present
our conclusions and future work.

2 The FuseJ Approach

In order to achieve a seamless unification between aspects and components,
FuseJ mingles ideas from the AOSD and CBSD world in a simple, expressive
component model and introduces a novel configuration language for describing
the aspect/component composition. As a small case study, we employ a simpli-
fied and partial implementation of a P2P file sharing application. The down-
load controller subsystem is responsible for managing the retrieval of shared file

116 D. Suvée, B. De Fraine, and W. Vanderperren

1 TransferI {
2 [] getFileFragment(String aFileName)
3 FileFragementInfo findFileFragment(String aFileName);
4 }
5

6 NetworkI {
7 send(String host, String info);
8 [] get();
9 }

10

11 TransferS {
12 TransferI;
13 NetworkI;
14 }

Listing 1. The TransferS service specification

fragments from remote hosts. It features four components, namely Transfer,
Network, Optimizer and Logger. The Transfer component retrieves file frag-
ments and employs the functionalities offered by the Network component to
communicate with remote hosts. The Optimizer component is responsible for
optimizing the file fragment transfer strategy depending on several user crite-
ria: one user could be interested in first downloading file fragments that are not
very well spread, while other users could be interested in first downloading file
fragments from hosts that have a broadband connection. Instead of hard-coding
and tangling the logic of these various transfer strategies within the implemen-
tation of the Transfer component itself, one can better opt for modularizing
these strategies as aspects. The next subsections illustrate how FuseJ implements
both regular and crosscutting concerns as components and elucidates how the
FuseJ configuration language helps at integrating and composing them in the
P2P download controller subsystem.

2.1 FuseJ Component Model

FuseJ employs a simple, straightforward Java-based component model, built
upon the well-known concept of provided -expected interfaces. Its main objec-
tive is to keep coupling amongst components as low as possible, hence achiev-
ing maximum reusability. To this end, FuseJ proposes the concept of a service
specification. A service specification defines the set of operations implementing
components should provide to and can expect to be offered by the environment
in which they are eventually deployed. The provided and expected operations of
a service specification are described in terms of regular Java interfaces.

Listing 1 illustrates the TransferS service specification. Components that
implement this service specification are required to provide an implementation
for operations that are part of the TransferI interface, while at the same time
they can employ operations that are part of the NetworkI interface within their
internal implementation. Hence, the set of provided interfaces make up the pub-
licly accessible interface of the component, while the expected interfaces describe
the set of interaction points with operations offered by other components.

Listing 2 illustrates the simplified implementation of the TransferC com-
ponent that implements the TransferS service specification. This component

A Symmetric and Unified Approach 117

1 TransferC TransferS {
2

3 [] getFileFragment(String aFileName) {
4 FileFragementInfo info = findFileFragment(aFileName);
5 send(info.host(), "get|" + aFileName + "|" + info.filefragement());
6 get(); }
7

8 FileFragementInfo findFileFragment(String aFileName) {
9 /* Code for sequential retrieval of file fragments */ }

10

11 }

Listing 2. The TransferC component implementation

is required to provide an implementation for all operations defined within the
TransferI interface. Whenever the TransferC component is ordered to retrieve
a shared file fragment, it employs the findFileFragment operation. The default
implementation of the findFileFragment operation employs a non-optimized
download strategy, namely a sequential retrieval of file fragments. When a spe-
cific file fragment to download is found, the expected operations send and get
are employed in order to retrieve the file fragment from a remote host. All opera-
tions that are part of the expected interfaces of a component (e.g. the send/get
methods) can be transparently invoked from within the component implementa-
tion. Hence, the entire implementation of a concrete component is implemented
in terms of its own service specification, this way minimizing coupling with other
concrete service specifications and components.

The FuseJ component model does not support the language level specification
of non-functional properties typically encountered in CBSD systems, such as
quality of service, security and life-cycle management. As these kind of non-
functional properties have already been identified as being crosscutting [7], FuseJ
provides and models these properties as regular components, which are later on
composed with specific application concerns in an aspect-oriented fashion. The
next section describes how components are composed/integrated into a single
application by making use of the FuseJ configuration language.

2.2 FuseJ Configuration Language

For describing the component composition process, the FuseJ configuration lan-
guage makes use of an explicit configuration construct, a concept borrowed from
architecture systems [6]. A configuration acts as a kind of mediator, which pre-
scribes how two or more components should interact by linking provided/expected
operations. Listing 3 illustrates the structure of a FuseJ configuration entity.
Each configuration configures two or more components and the resulting compo-
sition again complies with a particular service specification. Each configuration
is built up out of one or more linklets. Each linklet links the operations defined
in one or more components and is generally built up out of four individual parts:

– A target role that enumerates the set of operations to execute (line 3).
– A source role that enumerates the set of operations that act as trigger

(line 4).

118 D. Suvée, B. De Fraine, and W. Vanderperren

1 <name> (<comp>|<serv>)+ <serv> {
2 (<linkname> {
3 | : (<compop>|<servop>)+
4 | | | | : (<compop>|<servop>)+
5 (: (<parameter_mapping>)+)?
6 (: (<compop>|<servop>)+)?
7 })+
8 }

Listing 3. General structure of a FuseJ configuration entity

– An optional property mapping that enumerates the set of property map-
pings, described in terms of source, target or external operations (line 5).

– An optional condition specification that enumerates the set of precondi-
tions, described in terms of source, target or external operations (line 6).

As FuseJ implements both regular and crosscutting concerns as basic compo-
nents in order to achieve unification, the distinction between both, namely the
way in which their interaction takes place, emerges at the configuration level.
In its most basic form, a linklet links up two operations, either defined at the
component or the service level.

1 TransferNetC
2 TransferC, NetworkC TransferNetS {
3

4 send {
5 :
6 NetworkC.sendData(Ip ip, String st);
7 :
8 TransferC.send(String ho, String st);
9 :

10 ip = IpConvertC.convert(ho);
11 }
12

13 get { ... }
14 }

TransferC

getFileFrag

findFileFrag

send

get

NetWorkC

sendData

getData

to

to
findFileFrag

getFileFrag

TransferNetC

as

as

...

Fig. 1. A component-based interaction between the TransferC - NetworkC components

Figure 1 illustrates a configuration that specifies two regular, component-
based interactions. It configures the TransferC and NetworkC components as
the new TransferNetC component that complies with the TransferNetS service
specification. Two separate linklets are employed. The send linklet interconnects
the send and sendData operations of respectively the TransferC and NetworkC
components. Hence, whenever the TransferC component employs the expected
send operation, the provided sendData operation of the NetworkC component is
executed. A linklet also prescribes how operation properties (i.e. input and out-
put parameter) are matched. Properties employed within the source and target
roles of a linklet are specified through a unique identifier. When these specified
identifiers match in both a source and target role (e.g. the st parameter), they

A Symmetric and Unified Approach 119

are automatically reified. When this is not possible (because of distinct parame-
ter types), the where-clause declares how the mapping takes place (e.g. the ho
String parameter that gets converted to a parameter of type Ip).

In order to comply with the TransferNetS service specification, the config-
uration implicitly exposes the getFileFragment and findFileFragment oper-
ations of the TransferC component, although a separate expose-as linklet can
be employed if required. The newly configured TransferNetC component can
be employed within other configurations, hence supporting the hierarchical con-
struction of applications.

1 LoggedTransferNetC
2 TransferNetC, LoggerC TransferNetS {
3

4 log {
5 :
6 Logger.log(String st);
7 :
8 TransferNetC.*(..);
9 :

10 st = .getMethodSignature();
11 }
12

13 }

TransferNetC

log

LoggedTransferNetC

findFileFrag

getFileFrag

findFileFrag

as

as

be
fo
re

TransferNetC

getFileFrag

Logger

Fig. 2. An aspect-oriented before interaction between the TransferNetC - LoggerC
components

Next to regular, component-based interactions, a configuration can also de-
scribe aspect-oriented interactions, this by declaring the source role as being
advised. At the moment, three kinds of crosscutting interactions are supported,
namely before, after and around. The before and after interactions trigger the
behavior of additional operations, which act as advice, before or after an advised
operation. The configuration illustrated in Figure 2 for instance, makes sure that
each execution of an operation that is part of the TransferNetC component is
logged for future reference. For this, quantification is employed in order to select
the appropriate methods that should be advised by the Log operation of the
Logger component. The where clause inits the st parameter with the method
signature of the triggering operation. For this, it accesses the Source object, a
component that is the run-time reification of the operation that triggered the
interaction (i.e. join point). In a similar fashion, Target allows to access the
run-time reification of the operation that is executed by the interaction.

An around interaction wraps and possibly replaces the original behavior of
an operation. FuseJ models the continuation of an around advice, which cor-
responds with the proceed concept in asymmetric AOSD approaches, through
means of an explicit proceed operation, specified as an expected operation. Fig-
ure 3 illustrates a configuration that specifies a crosscutting around interaction
through its optimize linklet. It recuperates the LoggedTransferNetC component
and wraps the behavior of its findFileFragement operation with the optimize
operation declared by the OptimizerC component. Depending on whether the

120 D. Suvée, B. De Fraine, and W. Vanderperren

1 OptimizedLoggedTransferC
2 LoggedTransferNetC, OptimizerC TransferNetS {
3

4 optimize {
5 :
6 OptimizerC.optimize(String f);
7 :
8 TransferNetC.findFileFragment(String f);
9 }

10

11 optimizeproceed { }
12

13 }

TransferNetC

getFileFrag

findFileFrag

OptimizerC

optimize

OptimizedLoggedTransferC

getFileFrag

findFileFrag

as

as

ar
ou
nd

LoggedTransferNetC

subjectedop

to

Fig. 3. An aspect-oriented around interaction between the LoggedTransferNetC - Op-
timizerC components

request can be optimized, the original file fragment retrieval behavior of the
TransferNetC component is either executed or not. For this, the subjectedop
expected operation of the OptimizerC component is back-linked to the advised
operation through the optimizeproceed linklet.

3 Related Work

Several aspect-oriented technologies have been introduced that also aim at avoid-
ing a specialized aspect module. Multi-Dimensional Separation Of Concerns is
one of the first approaches that promotes the simultaneous modularization of
multiple concerns, without one dominating the other [13]. HyperJ, its practical
realization, captures concerns in so called hyperslices. Hypermodules are used to
compose a set of hyperslices in order to build up the application. One of the main
differences between HyperJ and FuseJ however, is that FuseJ concentrates on
describing interactions between components, while HyperJ focuses on describing
mappings. In many cases, the HyperJ approach requires components to share
common method names and arguments, which easily gives raise to problems
when combining independently specified third-party components.

Invasive Software Composition is a component-based approach that unifies
several software engineering techniques, such as architecture systems and generic
and aspect-oriented programming [2]. Invasive Software Composition aims at
improving the reusability of software components. To this end, software com-
ponents are equipped with both explicit and implicit hooks. These hooks are
composed using a separate composition mechanism. Hooks are similar to the
provided/expected operations of FuseJ components. FuseJ component opera-
tions however, only expose the component’s public interface, while hooks can
be attached at any programming construct. Hence, hooks support a finer level
of granularity and the resulting composition has more expressive power. The
downside however is that, as the internals of a component are not contractu-
ally specified, the composition could easily break later on when the component
implementation evolves.

A Symmetric and Unified Approach 121

More recently, two approaches, namely FAC [17] and DyMac [12], have emerged
that, similar to FuseJ, specifically aim at eliminating the dissimilarities between
aspects and components. When FAC and DyMac are employed, software appli-
cations are decomposed into regular components and aspect components, where
an aspect component is a regular component that modularizes the behavior
of a crosscutting concern. Similar to FuseJ, dedicated binding constructs are
introduced that specify the (crosscutting) interactions amongst individual com-
ponents. In contrast with FuseJ however, FAC and DyMac do not strive for a
full unification between aspect and components. Component methods that are
employed as advices still need to comply to a particular set of requirements (for
instance method names and argument types), which obstructs a full symmetric
model for aspects and components.

4 Conclusions and Future Work

In this paper we present the ongoing FuseJ research, a symmetric and unified
approach towards combining the ideas and concepts of aspects and components.
To this end, the FuseJ research introduces a novel component model that does
not employ specialized aspect constructs for modularizing crosscutting concerns.
Instead, aspect-oriented composition mechanisms are provided through means
of an expressive component configuration language that allows to describe both
regular and aspect-oriented interactions amongst components. Next to the fea-
tures described in this paper, the FuseJ configuration language also provides
support for more advanced aspect-oriented mechanisms including more involved
pointcut designators such as cflow, dynamic triggering conditions and aspectual
polymorphism. A first prototype implementation of the FuseJ component archi-
tecture is available.

Although the FuseJ unified aspect/component architecture yields several ad-
vantages, some aspect-oriented encapsulation and composition techniques still
need to be integrated in order to achieve full AOSD expressiveness. For instance,
the integration of aspect precedence/combinations still needs to be examined. In
addition, experiments will be conducted that investigate the applicability of as-
pects at the architectural level itself.

References

1. M. Akşit, editor. Proc. 2nd Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2003). ACM Press, Mar. 2003.

2. U. Aßmann. Invasive Software Composition. Springer, 1st edition, 2003.
3. J. Bonér and A. Vasseur. AspectWerkz: simple, high-performant, dynamic,

lightweight and powerful AOP for Java. Home page at http://aspectwerkz.
codehaus.org/, 2004.

4. B. Burke et al. JBoss Aspect-Oriented Programming. Home page at http://www.
jboss.org/products/aop, 2004.

5. F. Duclos, J. Estublier, and P. Morat. Describing and using non functional aspects
in component based applications. In Kiczales [9], pages 65–75.

122 D. Suvée, B. De Fraine, and W. Vanderperren

6. D. Garlan and M. Shaw. An introduction to software architecture. Advances in
Software Engineering and Knowledge Engineering, 1:1–40, 1994.

7. S. Göbel, C. Pohl, S. Röttger, and S. Zschaler. The COMQUAD component model:
enabling dynamic selection of implementations by weaving non-functional aspects.
In K. Lieberherr, editor, Proc. 3rd Int’ Conf. on Aspect-Oriented Software Devel-
opment (AOSD-2004), pages 74–82. ACM Press, Mar. 2004.

8. R. Johnson et al. Spring Java/J2EE Application Framework, Reference Doc-
umentation, 2004. Available at http://www.springframework.org/docs/spring-
reference.pdf.

9. G. Kiczales, editor. Proc. 1st Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2002). ACM Press, Apr. 2002.

10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS
2072, pages 327–353, Berlin, June 2001. Springer-Verlag.

11. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors,
11th Europeen Conf. Object-Oriented Programming, volume 1241 of LNCS, pages
220–242. Springer Verlag, 1997.

12. B. Lagaisse and W. Joosen. Component-based open middleware supporting aspect-
oriented software composition. In Proceedings of CBSE 2005, pages 139–254, St.
Louis, USA, May 2005.

13. H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyper-
space approach. In Kluwer, editor, Proceedings of the Symposium on Software
Architectures and Component Technology: The State of the Art in Software Devel-
opment, 2000.

14. K. Ostermann and M. Mezini. Conquering aspects with Caesar. In Akşit [1], pages
90–99.

15. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053–1058, Dec. 1972.

16. R. Pawlak, L. Seinturier, L. Duchien, L. Martelli, F. Legond-Aubry, and G. Florin.
Aspect-oriented software development with Java Aspect Components. In R. E.
Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software De-
velopment, pages 343–369. Addison-Wesley, Boston, 2005.

17. N. Pessemier, L. Seinturier, T. Coupaye, and L. Duchien. A model for developing
component-based and aspect-oriented systems. In Proceedings of the 5th Interna-
tional Symposium on Software Composition, Vienna, Austria, 2006.

18. M. Pinto, L. Fuentes, M. Fayad, and J. M. Troya. Separation of coordination in a
dynamic aspect oriented framework. In Kiczales [9], pages 134–140.

19. D. Suvée, B. De Fraine, and W. Vanderperren. FuseJ: An architectural description
language for unifying aspects and components. In L. Bergmans, K. Gybels, P. Tarr,
and E. Ernst, editors, Software Engineering Properties of Languages and Aspect
Technologies, Mar. 2005.

20. D. Suvée and W. Vanderperren. JAsCo: An aspect-oriented approach tailored for
component based software development. In Akşit [1], pages 21–29.

21. C. Szyperski. Component Software: Beyond Object-Oriented Programming. 1st
edition, 1998.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 123 – 138, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing Software Architectures with an
Aspect-Oriented Architecture Description Language

Jennifer Pérez, Nour Ali, Jose A. Carsí, and Isidro Ramos

Department of Information Systems and Computation
Polytechnic University of Valencia

Camino de Vera s/n
E-46022 Valencia, Spain

{jeperez, nourali, pcarsi, iramos}@dsic.upv.es

Abstract. A great deal of languages have emerged and have demonstrated the
advantages that Aspect-Oriented Programming offers. For this reason, the
aspect-oriented approach is being introduced into the early phases (analysis and
design) of the software life cycle. In this work, we present an Aspect-Oriented
Architecture Description Language (AOADL) to specify software architectures
of complex, dynamic and distributed software systems. This AOADL follows
the PRISMA approach, which integrates the advantages of Component-Based
Software Development (CBSD) and Aspect-Oriented Software Development
(AOSD). The PRISMA AOADL combines components and aspects in an
elegant and novel way achieving a better management of crosscutting-concerns.
In addition, it is independent of the technology, and it has great expressive
power in order to facilitate the automatic code generation from its
specifications. In this work, we demonstrate how PRISMA AOADL improves
the management, maintainability and reusability of software architectures
introducing the notion of aspect in its ADL.

1 Introduction

Nowadays, software systems are becoming more and more difficult to develop due to
their complex structures, non-functional requirements and distributed and dynamic
nature. Two approaches of software development have emerged to overcome these
needs: Component-Based Software Development (CBSD) [7, [27] and Aspect-
Oriented Software Development (AOSD) [2].

On the one hand, CBSD reduces the complexity of software development and
improves its maintenance by increasing software reuse. CBSD decomposes the
system into reusable entities called components. By extension, this advantage is
provided by software architectures [8] due to the fact that architectural models are
constructed using components. As a result, software architectures have emerged as a
solution for the development process of complex software systems.

On the other hand, AOSD allows the separation of concerns by modularizing
crosscutting concerns into a separate entity, the aspect. The encapsulation of the
aspect permits the reusability of the same aspect in different objects, and the evolution
of an aspect without affecting the other objects and aspects. The main emphasis in this
approach has been made at the implementation level, by introducing the Aspect

124 J. Pérez et al.

Oriented Programming (AOP) as a new paradigm of software development. A great
number of aspect-oriented programming languages have been proposed and have
demonstrated that AOP improves the structure and reusability of the code [10].

PRISMA is an approach to develop complex software systems that has been
designed taking into account different solutions of interest: CBSD and AOSD. This
approach provides a model and an Aspect-Oriented Architecture Description
Language (AOADL). The model defines software architectures by integrating aspect-
oriented software development (AOSD) and component-based software development
(CBSD). This integration is directly reflected in its AOADL. In this work, we
specially focus on the demonstration of the improvement of the reusability, the
development, and the maintainability of architectures using the PRISMA AOADL.

PRISMA AOADL defines the semantics of the architectural models in a formal
way in order to validate and verify PRISMA architectural models and to
automatically generate source code from the PRISMA AOADL. It is important to
keep in mind that the PRISMA language is independent of the technology and it has
great expressive power. These properties allow us to generate code from its specifi-
cations and to choose among different technologies at the time of generating the code.
For this reason, we can compile the same PRISMA architectural model into different
programming languages and technologies, thereby reducing the development time and
preserving the traceability between an architectural model and its application code.

The structure of the paper is the following: Section 2 presents a brief summary of
related work. Section 3 gives an overview of the PRISMA approach and presents in
detail the PRISMA AOADL by demonstrating its main advantages. Conclusions and
further work are presented in the last section.

2 Related Work

A wide variety of models based on the separation of concerns have been proposed
[21], [28], etc. However, the most widely used is the Aspect-Oriented Paradigm
(AOP). Aspect-Oriented models can be classified into two different categories: static
models and dynamic models. The static models are not able to change aspects and
their weaving at run-time, whereas the dynamic ones offer this advantage. Examples
of dynamic models are the Mask Model [22] and the Dynamic Aspect-Oriented
Platform (DAOP) [18].

A well-accepted aspect-oriented programming language is AspectJ [10], which is
an extension of Java, where the code is separated into aspect and non-aspect code
(objects). However, based on experiments implementing different aspects such as
persistence and distribution [25], this model has many drawbacks (static, limited
reusability). Therefore, in [19], work has been done to provide dynamic weaving
using the Java Virtual Machine Debugger Interface (JVMDI).

AOP is being transferred to other platforms such as .NET by means of extensions.
However, the existing .NET approaches for supporting AOP are still in an early phase
and only Rapier-Loom.Net [23] supports mechanisms for adding or removing aspects
dynamically. However, it defines the weavings inside the aspects thereby losing their

 Designing Software Architectures with an AOADL 125

reusability. EOS [20] is another dynamic approach that is able to attach aspects at the
instance level by means of events. However, none of these approaches takes into
account the emerging relations that result from the aggregation of various aspects at
the same point of the base code (joinpoint). The JAsCo [26] approach is presented as
a solution of this lack. It provides an expressive language that permits the definition
of relations among aspects. JAsCo integrates AOSD and CBSD at the implementation
level by extending the JavaBeans and introducing connectors to perform dynamic
aspect weaving by preserving the aspect reuse. The inconvenience of this approach is
that the dynamic weaving of aspects to the base code is referential but not inclusive.
As a result, base code and the aspects are not inside the same entity when they are
instantiated and the code mobility is limited. As mobility is an essential feature of
software components, PRISMA AOADL provides all these needed properties at the
same time. These properties are the following: dynamic weaving (run-time evolution),
the join of the base code and the aspects inside the same entity (mobility support), and
the reuse of aspects (reusability). Finally, an important difference between these AOP
approaches and PRISMA AOADL is the technological independence; all these
properties are going to be integrated at the architectural level of the software
development process, instead of integrating them at the implementation level.

A wide variety of ADLs have been proposed at the architectural level, an
interesting comparison between these languages has been made in the work by [11].
Some proposals for the integration of the software architecture and the AOSD have
emerged in order to take advantage of both approaches [5]. Each one introduces
aspects in their Architecture Description Languages (ADLs) in a different way: as a
component [13], as a connector among components [18], as a view of the architecture
[9], etc. However, PRISMA introduces the aspect in its ADL as a new concept
without simulating it with any other architectural term (components, connectors,
views, etc).

Our approach does not only introduce aspects as new requirements [13], it takes
advantage of the notion of aspect from the beginning of the system definition. Also,
the complete view of the software architecture is not lost by the use of aspects as [9].
Moreover, at the configuration level, when the architectural elements are instantiated,
we do not lose the structural and architectural view of the system due to the fact that
our components are connected by means of connectors instead of aspects [18]. As
Shaw presents in her work [24], the specification of software systems with complex
coordination protocols is too difficult without the connector architectural element.
This is because the connector provides the separation of the component interaction
achieving a higher level of abstraction, modularity and architectural view of the
system. TranSAT [3] is another approach that incorporates aspects that refine the
original component specification and generates another one that includes them
without losing the black box view of the component. However, this approach is only
focused on technical aspects.

In [4], the main requirements for developing aspect-oriented software architectures
are presented. They are the linguistic support for weaving aspects, dynamic adap-
tability, and reusability. PRISMA AOADL is presented as a good solution to specify
aspect-oriented software architectures because it satisfies these requirements.

126 J. Pérez et al.

3 PRISMA: An Aspect-Oriented Architecture Description
Language (AOADL)

The PRISMA approach allows the definition of software architectures of complex
software systems by integrating AOSD and CBSD. PRISMA uses AOSD to separate
the crosscutting concerns (distribution, security, context-aware, coordination, etc.) of
the architecture in aspects. In this way, the PRISMA architectural elements are
defined by using aspects to define their behaviour.

A PRISMA architectural element can be analyzed from two different views,
internal and external. The internal view (see Figure 1) shows an architectural element
as a prism with each side of the prism being an aspect that is imported by this
architectural element. This represents that an architectural element of PRISMA is
formed by a set of aspects and weavings relationships among aspects. Whereas, the
external view (see Figure 2) is an architectural element that encapsulates its
functionality as a black box, and by means of its ports publishes and receives a set of
services to and from the rest of the architectural elements.

Fig. 1. Internal View of an Architectural
Element

Fig. 2. External View of an Architectural
Element

The PRISMA AOADL defines the architectural elements at different levels of

abstraction: the type definition level and the configuration level. The type definition
level defines architectural types with a high abstraction level. Its main advantages are
software reuse and complexity reduction by integrating components and aspects. The
PRISMA types defined at this level are stored in a PRISMA repository so that they
can be reused by other types or specific architectures.

The configuration level designs the architecture of software systems by creating
and interconnecting instances of the defined architectural elements in the type
definition level. In other words, we specify the topology of a specific software system
at this level.

In the following sections, a very simple banking system example is going to be
used to illustrate the PRISMA AOADL. An information system that contains a client-
server architecture between two components is defined. By this simple banking
system, we present the specification of different aspects (coordination, distribution
and functional aspects) and architectural types.

There are two components that are involved in the banking system and are
connected with each other: an ATM and an Account. The ATM is the client
component that requires withdrawal and balance services from the Account. The
Account is the server component that offers the required services to the ATM. The

 Designing Software Architectures with an AOADL 127

ATM stores an ATM number that identifies it (numberId), the amount of money
available in the ATM (money) and where the ATM is located (address). The Account
stores an account number that identifies it (numberId), the amount of money (money),
and the postal address of its owner (address). The system has a connector
ATMAccount that controls the communication process between the two components.
In order to simplify the example we do not take the persistence aspect into account
and we assume that the information is stored in the main memory.

3.1 The Type Definition Level

The type definition level of PRISMA defines architectural patterns (complex comp-
onents) and the first-class citizens of the language: interfaces, aspects, components,
and connectors. They are stored in the PRISMA repository in order to be reused.

3.1.1 Interfaces
An interface publishes a set of services. It describes the signature of the services that
can be invoked or requested through that interface. The arguments that define a
service can be input or output. Input arguments are necessary to perform the
execution of a service, and output arguments will store the result of the service
execution. Interfaces publish services without taking into account the ports and
aspects that are going to use them. In the following, we present some interfaces of the
banking system.

Interface ICreditCardTransactions

 withdrawal(input Quantity: currency, output MyMoney: currency);

 balance(output MoneyBalance:currency);

 changeAddress(input NewAdd: string);

End_Interface ICreditCardTransactions;

Interface IMobility

 move(input NewLoc:loc);

End_Interface IMobility;

3.1.2 Aspects
An aspect defines the structure and the behaviour of a specific concern of the
software system. Examples of concerns are functionality, coordination, safety,
distribution, among others. A common syntax of aspects has been defined. This
common syntax is going to be presented using the functional aspect.

• Functional Aspect
The head of an aspect specifies its name and the kind of concern it defines: functional,
distribution, coordination, etc. Moreover, interfaces whose semantics is defined by
the aspect are detailed next to the reserved word using. We are going to define a
functional aspect which specifies the semantics of the ICreditCardTransaction
interface (see Figure 3, nº 1).

128 J. Pérez et al.

Attributes are specified inside an aspect. These attributes are necessary to store
information about the characteristics of the aspect. Attributes are preceded by the
Attributes reserved word and they have a name and a type (see Figure 3, nº 2). This
type defines the kind of values that the attribute can store. There are three kinds of
attributes:

• Constant: Their stored values cannot change
• Variable: The stored values can be modified
• Derived: The value is calculated on demand applying its derivation rule.

An aspect defines the semantics of services. The set of services specified in an
aspect must contain the begin service, the end service, and the interface services that
this aspect uses (see Figure 3, nº 3). Begin and end services do not mean that it is
possible to instantiate an aspect by itself; they make a reference to the creation and
destruction services of the architectural element that the aspect will belong to, and
where it will be instantiated. The semantics of services is defined by means of
preconditions and valuations. Preconditions establish the condition that must be
satisfied to execute a specific service (see Figure 3, nº 5). Valuations specify the
changes in the value of attributes and parameters by the execution of services (see
Figure 3, nº 4).
 With regard to services, it is important to take into account that the same service
can have two different behaviors: client and server. The client behavior is when a
service is invoked by an aspect. The server behavior is when a service is offered and
processed by an aspect. Sometimes, it is necessary to distinguish between these two
behaviors. The syntactical difference between client or server service is the reserved
word in, out and in/out.

The aspect example shown in Figure 3 has a precondition to indicate when the
service withdrawal can be executed and the valuation of the withdrawal indicates how
the money attribute is updated when this service is executed. The precondition ensures
that there is enough money to be able to withdraw the required quantity, and the
valuation of the withdrawal updates the quantity of the available money. Services,
preconditions and valuations are preceded by the reserved words Services,
Preconditions, and Valuations, respectively.

It is necessary to specify the protocol to describe the order and the state in which a
service could be executed (see Figure 3, nº7). The protocol is a textual specification of
a transition state machine.

An aspect also defines the set of roles that can be played taking into account the
semantics of the services. They are called played_roles (see Fig 3, nº6). A played_role
is a projection of the protocol that defines the partial behaviour belonging to a specific
role. This role must be compliant with the signature and the process of the protocol.
As a result, the played_role is performed inside the global behaviour of the protocol,
and its calculations are a subset of the calculations of the protocol.

Every service that composes a played_role belongs to the same interface. This is
specified at the beginning of the played_role specification with the for keyword and
the name of the interface. A played_role is a partial view of the protocol that has its
own meaning, a specific behaviour that can be later associated to a port. This
association allows us to define the behaviour of ports.The formal language that we

 Designing Software Architectures with an AOADL 129

used to describe the Played_Roles and Protocols is the poliadic π-calculus [12]. The
main advantage of this language is the fact that it allows us to describe processes and
services that can be executed concurrently in a simple way.

1 Functional Aspect BankInteraction using
 ICreditCardTransaction
2 Attributes

numberId: number;
name: string;
address: string

 money: currency;
3 Services

 begin;
in/out withdrawal(input Quantity: currency, output
 MyMoney:currency);

4 Valuations
 [in withdrawal(Quantity, MyMoney)]

 money := money - Quantity;
 MyMoney := Quantity;
in/out balance(output MoneyBalance:currency);

4 Valuations
 [in balance(MoneyBalance)]

 MoneyBalance := money;

in/out changeAddress(input NewAdd: string);

4 Valuations
 [in changeAddress(NewAdd)]
 address := NewAdd;
end;

5 Preconditions
in withdrawal(Quantity)
 if Quantity <= money;

6 Played_Roles
 BANK for ICreditCardTransaction ::=

 (withdrawal ?(Quantity, MyMoney)
 withdrawal !(Quantity, MyMoney))
 +
 (balance ?(Quantity, MyMoney)
 balance !(Quantity, MyMoney))
 +
 (changeAdress ?(Newadd)
 changeAdress !(Newadd));

 CUSTOMER for ICreditCardTransaction:: =
 (withdrawal !(Quantity, MyMoney)
 withdrawal ?(Quantity, MyMoney))
 +
 (balance !(Quantity, MyMoney)
 balance ?(Quantity, MyMoney)
 +
 (changeAdress !(Newadd)
 changeAdress ?(Newadd));

7 Protocol
BANKINTERACTION ::= begin TRANSACTION;

 TRANSACTION = (BANK || CUSTOMER) TRANSACTION + end;
End_Aspect BankInteraction;

Fig. 3. BankInteracation Functional Aspect

130 J. Pérez et al.

• Distribution Aspect
This aspect has the same sections of a functional aspect with some predefined
attributes and services. The distribution aspect [1] specifies the locations of the
instances. However, if the location is specified in the distribution aspect, the same
distribution aspect cannot be reused in different architectural elements if instances are
distributed in different locations. This problem is solved using the PRISMA AOADL
due to the fact that it is separated into the Type Definition Language and the
Configuration Language. Thus, the Type Definition Language specifies that a type
has a location without assigning it a value. The value of the location is assigned when
architectural elements are instantiated in the Configuration Language.

Distribution Aspect ExtMbile using IMobility
 Attributes
 id: nat;
 location: LOC NOT NULL;
 Services
 in move(input NewLoc:LOC);

Valuations
 [in move(NewLoc)] location:= NewLoc;

 Played_Roles
 MOVEMYSELF::= IMobility.move ? (NewLoc);
 Protocols
 EXTMBILE ≡ begin MOVEMENT;

 MOVEMENT ≡ MOVEMYSELF MOVEMENT +
 end;
End_Distribution Aspect ExtMbile;

Fig. 4. ExtMbile distribution aspect

The distribution aspect presented in Figure 4 specifies the behaviour of a mobile
architectural element enabling the change of the location attribute by the move service
valuation. The attribute location has an abstract data type called LOC. This data type
hides the different mechanisms of locations of an architectural element at a physical
level, e.g. it can be a URL, an IP, etc. The location attribute should have a value when
an architectural element is instantiated; this is indicated by the NOT NULL.

• Coordination Aspect
This aspect presents the same sections as a functional one. The difference between
both aspects is their purpose, functionality is for computation and coordination is for
synchronization of architectural elements. Figure 5, shows the coordination aspect
which allows the synchronization of two architectural elements whose port type is the
ICreditCardTransaction interface.

In Figure 5 the BankCoordination coordination aspect does not have attributes
because it does not perform computations, it only synchronizes. However, a
coordination aspect can have attributes to take coordination decisions in complex
protocols. Figure 5 also shows that the coordination played roles are the opposite
processes of the functional played_roles (see Figure 3). This is due to the fact that the
coordinator units have the opposite process view of the computational units, i.e., an
output action for a computation unit is an input action for a coordinator unit and vice
versa.

 Designing Software Architectures with an AOADL 131

Coordination Aspect BankCoordination using ICreditCardTransaction
Services

 begin;
in/out withdrawal(input Quantity: currency, output
 MyMoney:currency);
in/out balance(output MoneyBalance: currency);
int/out changeAddress(input NewAdd: string);
end;

 Played_Roles
 CUSTOMER for ICreditCardTransaction ::=

 (withdrawal ?(Quantity, MyMoney)
 withdrawal !(Quantity, MyMoney))
 +
 (balance ?(Quantity, MyMoney)
 balance !(Quantity, MyMoney))
 +
 (changeAdress ?(Newadd)
 changeAdress !(Newadd));

 BANK for ICreditCardTransaction:: =
 (withdrawal !(Quantity, MyMoney)
 withdrawal ?(Quantity, MyMoney))
 +
 (balance !(Quantity, MyMoney)
 balance ?(Quantity, MyMoney)
 +
 (changeAdress !(Newadd)
 changeAdress ?(Newadd));

7 Protocol
 BANKCOORDINATION ::= begin STNCHRONIZE;
 SYNCHRONIZE ::=
 (CUSTOMER.withdrawal ?(Quantity, MyMoney)
 BANK.withdrawal!(Quantity, MyMoney)) SYNCHRONIZE
 +
 (CUSTOMER.balance ?(Quantity, MyMoney)
 BANK.balance!(Quantity, MyMoney)) SYNCHRONIZE
 +
 (CUSTOMER.changeAdress ?(Newadd))
 (BANK.changeAdress !(Newadd)) SYNCHRONIZE
 +
 (BANK.withdrawal ?(Quantity, MyMoney)
 CUSTOMER.withdrawal!(Quantity, MyMoney)) SYNCHRONIZE
 +
 (BANK.balance ?(Quantity, MyMoney)
 CUSTOMER.balance !(Quantity, MyMoney)) SYNCHRONIZE
 +
 (BANK.changeAdress ?(Newadd))
 (CUSTOMER.changeAdress !(Newadd)) SYNCHRONIZE
 + end;

End_Coordination Aspect BankCoordination;

Fig. 5. BankCoordination Coordination Aspect

3.1.3 Components and Connectors
A simple architectural element is specified with the set of ports, the aspects it is
formed of, and the aspect weavings. It can be noticed from the aspects specification in
section 3.1.2, that an aspect definition does not include the points where an aspect
needs to coordinate with the rest of other aspects (aspect weavings). In this way,

132 J. Pérez et al.

aspects are completely maintainable and reusable. Therefore, when architectural
elements are defined they import the aspect types from the PRISMA repository and
define their weavings. An aspect weaving is specified by determining the aspects that
participate in the weaving, the services of the aspects where they are weaved, and the
weaving methods. A weaving that relates service s1 of aspect A1 and service s2 of
aspect A2 can be specified using the following operators:

• A2.s2 after A1.s1: A2.s2 is executed after A1.s1
• A2.s2 before A1.s1: A2.s2 is executed before A1.s1
• A2.s2 instead A1.s1: A2.s2 is executed in place of A1.s1

Component Account

 Functional Aspect Import BankInteraction;
 Distribution Aspect Import ExtMbile;

 Weavings
 BankInteraction.changeAddress(NewAdd: string)
 before
 ExtMbile.move(NewAdd: string);
 End_Weaving;

 Ports
 AccountCnct: ICreditCardTransactions
 Played_Roles BankInteraction.CUSTOMER;
 AccountSys: ICreditCardTransactions
 Played_Roles BankInteraction.CUSTOMER;
 End_Ports;
End_Component Account;

Component ATM

 Functional Aspect Import BankInteraction;
 Distribution Aspect Import ExtMbile;

 Ports
 ATMCnct: ICreditCardTransactions
 Played_Roles BankInteraction.BANK;
 End_Ports;
End_Component ATM;

Fig. 6. Definition of Components

Simple architectural elements in PRISMA are components and connectors. A
component is an architectural element that captures the functionality of the
information system and does not act as a coordinator between other architectural
elements; whereas, a connector is an architectural element that acts as a coordinator
between other architectural elements. In order to better understand how to specify
components and connectors, we show their syntax by means of the specification of
the ATM and Account components and the connector that connects them.

The specified aspects in section 3.1.2 are going to be reused to define the
architectural elements of the example. The same ExtMbile distribution aspect (see
Figure 4) specifies the Account and ATM components (see Figure 6), and the

 Designing Software Architectures with an AOADL 133

ATMAccount connector (see Figure 7). The BankInteraction functional aspect (see
Figure 3) is reused in the Account and ATM components (see Figure 6). The
BankCoordination coordination aspect (see Figure 5) is used to define the connector
ATMAccount (see Figure 7). However, it is important to note that these aspects could be
reused to create other architectural elements. We present the synchronization between
aspects in the Account component; for example, when the customer address changes
(ChangeAddress), the account of this customer must be moved to another place nearer
to his/her new address (see weaving section in the Account component in Figure 6).

Connector ATMAccount

 Coordination Aspect Import BankCoordination;
 Distribution Aspect Import ExtMbile;

 Port
 ATM: ICreditCard_Transactions
 Played_Roles BankCoordination.BANK;
 Account: ICreditCard_Transactions
 Played_Roles BankCoordination.CUSTOMER;
 End_Port;
End_Connector ATMAccount;

Fig. 7. Definition of Connectors

3.1.4 Systems, Attachments and Bindings
PRISMA components can be simple or complex. The complex ones are called
systems. A PRISMA system is a component that includes a set of connectors,
components, and other systems that are correctly linked.

A system is specified as a pattern so that it can be reused in any software
architecture that could be necessary. The difference between a system and a simple
component is that it needs attachments and bindings:

-Attachments: They are connection relationships that establish the connection
among ports of components and connectors.

- Bindings: They are connection relationships that establish the connection among
the system (complex component) and the architectural elements it contains. The
bindings allow the system to define its exterior behaviour (ports) by means of the
architectural elements it contains.

Figure 8 shows the definition of the SimpleBank type. The set of architectural
elements, that are necessary to define the system, are imported, and the number of
instances that can be specified at configuration time are constrained. In the
specification of the SimpleBank system (see Figure 8), this number is not specified
and the default value (min=1, max=n) is applied to each type. In addition, the
connections among the different types of architectural elements are specified in order
to define the architectural pattern. The SimpleBank type has two types of attachments.
They establish the connections among ports of components (ATM, Account) and ports
of connectors (ATMAccount). Each type constrains the cardinality of the attachment at
configuration time. The SimpleBank bindings establish the connection among the
systems ports (SimpleBank) and the connectors or/and components ports (Account)
that the system is composed of (see bindings section). Each type constrains the

134 J. Pérez et al.

cardinality of the binding at configuration time. The cardinality constrains of the
system allow us to define a specific pattern of communication that must be satisfied at
the configuration time.

Fig. 8. SimpleBank system specification

Fig. 9. SimpleBank system graphical representation1

Figure 9 illustrates the graphical view of the architecture that has been specified in
Figure 8.

3.2 The Configuration Level

The configuration level is used to define a specific architectural model for a software
system. In order to do this all required connectors, components and systems types
should be instantiated, and attachment and binding instances should be added among
them. At this moment, constraints that have been defined in systems are validated in
order to ensure the pattern satisfaction. An example of a configuration is to define a

1 The figure has been designed using the Poseidon Tool, http://www.gentleware.com

System SimpleBank
 Ports
 Banksystem: ICreditCardTransactions;
 End_Port;

 Import Architectural Elements ATM, Account, ATMAccount;

 Attachments

 Account.AccountCnct (1..n) (1..1) ATMAccount.Account;
 ATM.ATMCnct (1..n) (1..1) ATMAccount.ATM;

 End_Attachments;

 Bindings

 SimpleBank.Banksystem (1..1) (1..n) Account.AccountSys;
 End_Bindings;

End System SimpleBank;

 Designing Software Architectures with an AOADL 135

specific architectural model for a bank by reusing the system type that we have
defined in the previous section (see Figure 10).

Architectural Model

MySimpleBank = new SimpleBank(){
 MyFirstCustomer = new Account (0000001, Jose, Main Street 20,
 100, mainhost);
 MainATM = new ATM{ATM1, MainBranchATM, London Road, 1000000,
 localhost);
 BankController = new ATMAccount()

 Attachments
 MyFirstCustomer.AccountCnct BankController.Account;
 MainATM.ATMCnct BankController.ATM;

 End_Attachments;
 Bindings

 MySimpleBank.Banksystem MyFirsCustormer.AccountSys;
 End_Bindings;

};
End_Architectural Model;

Fig. 10. Architectural Model of the MySimpleBank Bank System

Fig. 11. Graphical representation of the MySimpleBank Architectural model1

Fig. 12. Information related to the instantiation from the types of PRISMA library1

Figure 11, shows the graphical representation of the MySimpleBank system
instance defined in Figure 10. Underlined names indicate that they are instances of a
type (see Figure 12).

136 J. Pérez et al.

4 Conclusions and Further Work

In this paper, an AOADL to specify complex, dynamic and distributed information
systems has been presented in detail. This language allows us to define PRISMA
architectural models. The structure, design and maintainability of architectures
specified in the PRISMA AOADL are improved by reusing entities at different levels
of granularity (interfaces, aspects, components, connectors and systems). This
reusability is achieved by means of the division of the language into two levels of
abstraction and the integration of AOSD and CBSD into the language. The stored
types defined at the type definition level can be reused by the configuration level to
define a specific software architecture. In addition, the fact that interfaces and aspects
are first-class citizens of the language increases the reusability because an interface
can be used by several aspects and an aspect can be used by several architectural
elements. The example of the paper has demonstrated this high level of reusability by
reusing an interface to define two aspects, a distribution aspect to define two
components and one connector, and other functional aspect to define two components.

We have used a simple example to present the language in order to facilitate the
understanding of the language capabilities to the reader instead of using a complex
one. However, it is important to keep in mind that PRISMA does not specify simple
architectural systems for academic projects such as: pipelines, filters, blackboards,
etc. PRISMA AOADL is being used to specify industrial projects where the software
systems are complex, open, and active such as the TeachMover robot [16] and
EFTCoR [17]. EFTCoR is a robot family that cleans the hulls of ships.

The PRISMA AOADL provides a better management of evolution and main-
tenance of crosscutting-concerns and software architectures. The maintenance of
crosscutting-concerns is improved due to the fact that if we want to change the
features of a specific concern, we only need to modify or change the aspect that
defines the concern, and every architectural element that imports it will be updated.
However, other approaches that use non-aspect-oriented ADLs need to look for each
statement that is related to the concern in the tangled code of every architectural
element of the system. The maintenance of software architecture is improved because
the PRISMA approach supports evolution by means of a meta-level which provides a
set of evolution services to evolve software architectures at run-time [16].

The PRISMA AOADL has a graphical notation that is based on a UML profile. As
a result, PRISMA reduces the complexity in software development by providing a
graphical notation and a modelling tool to support more intuitive and friendly
software architecture modelling [14].

It is important to take into account that most ADLs only allow us to specify the
skeleton of architectures and the services that are interchanged among their different
architectural elements. However the PRISMA AOADL has a great expressive power
to specify more features and requirements related with the software system by means
of aspects in order to facilitate the code generation. We are currently developing the
model compiler using DSL tools [6]. This is going to permit the compilation of the
same PRISMA architectural model into different programming languages and
technologies, thereby reducing the development time and preserving the traceability
between an architectural model and its application code. We are improving the
graphical modelling tool using DSL tools and we are starting to generate C# code and

 Designing Software Architectures with an AOADL 137

PRISMA specifications from graphical PRISMA architectural models. Despite the
fact that .NET framework does not provide support for the Aspect-Oriented approach,
we are able to execute the C# code generated using our model compiler by developing
a .NET middleware for our PRISMA approach called PRISMANET [15].
PRISMANET extends the .NET technology by the execution of aspects on the .NET
platform, the reconfiguration of software architectures (local and distributed) and the
addition and removal of aspects from components at run-time.

As future work, we are going to introduce validation and verification techniques in
our modelling tool. Currently, we support cardinality constrains to define architectural
patterns (systems). We are going to extend the language to support other kinds of
constrains. In addition, we want to measure the benefits of the language with several
case studies.

Acknowledgements

This work has been funded by the Department of Science and Technology (Spain)
under the National Program for Research, Development and Innovation,
DYNAMICA project TIC2003-7804-C05-01.

References

1. Ali, N., Ramos, I., Carsí, J.A.: A Conceptual Model for Distributed Aspect-Oriented
Software Architectures. International Conference on Information Technology Coding and
Computing (ITCC), IEEE Computer Society, Las Vegas, NV, USA. (2005)

2. AOSD. Aspect-Oriented Software Development, http://aosd.net (2005)
3. Barais, O., Cariou, E., Duchien, L., Pessemier, N., Seinturier L.: “Transat: A framework

for the specification of software architecture evolution”. In ECOOP First International
Workshop on Coordination and Adaptation Techniques for Software Entities (WCAT04),
Oslo, June. http://wcat04.unex.es/. bib. (2004)

4. Constantinides, C.A., Elrad, T.: On the Requirements for Concurrent Software
Architectures to Support Advanced Separation of Concerns. In proceedings of OOPSLA
Workshop on Advanced Separation of Concerns in Object-Oriented Systems. Available at:
http://trese.cs.utwente.nl/Workshops/OOPSLA2000/papers/constantinides.pdf. (2000)

5. Cuesta C.E., Romay M.P., De la Fuente P., Barrio-Solórzano M., Architectural Aspects of
Architectural Aspects, Second European Workshop on Software Architecture (EWSA),
Springer LNCS 3527, Pisa, June (2005)

6. Domain-Specific Language (DSL) Tools, http://lab.msdn.microsoft.com/ teamsystem/
workshop/dsltools/default.aspx

7. D’Souza, D., Wills, A. : "Objects, Components and Frameworks with UML: The Catalysis
approach”; Addison-Wesley. (1999)

8. Garlan D., Perry D.: Introduction to the Special Issue on Software Architecture, IEEE
Transactions on Software Engineering, 21(4), April (1995)

9. Katara, M., Katz, S.: Architectural Views of Aspects. International Conference on Aspect-
Oriented Software Development (AOSD), ACM Press, March, (2003)

10. Kiczales, G., Hilsdale, E., Huguin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview
of AspectJ. In proceedings of the European Conference on Object-Oriented Programming,
Springer-Verlag. (2001)

138 J. Pérez et al.

11. Medvidovic, N., Taylor, R. N.: A classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions of SW Engineering, Vol. 26, nº 1,
January. (2000)

12. Milner, R.: π- Cálculo Poliadico: A tutorial. (1991)
13. Navasa, A., Perez, M.A., Murilllo J.M.: .Aspect Modelling at Architecture Desing. 2nd

European Workshop in Software Architectures, Pisa, Italy, June, LNCS 3527, Springer
Verlang. (2005)

14. Pérez, J., Navarro, E., Letelier, P., Ramos, I.: Graphical Modelling for Aspect Oriented
SA, Proceedings on the 21st Annual ACM Symposium on Applied Computing (SAC),
ACM ,Dijon, France, April 23 -27, 2006. (short paper)(accepted, to appear)

15. Pérez, J., Ali, N., Costa, C., Carsí, J. A., Ramos, I.: Executing Aspect-Oriented
Component-Based Software Architectures on .NET Technology. 3rd International
Conference on .NET Technologies, Plzen, Pilsen, Czech Republic, 30 May-1 June. (2005)

16. Pérez, J. Ali, N., Carsí, J.A., Ramos, I.: Dynamic Evolution in Aspect-Oriented
Architectural Models. 2nd European Workshop in Software Architectures, Pisa, Italy,
June, LNCS 3527, Springer Verlang. (2005)

17. Pérez, J., Ali, N., Ramos, I., Pastor, J.A., Sánchez, P., Álvarez, B. : Tele-operated Systems
Development using the PRISMA approach. VIII conference on Software Engineering and
Databases, Alicante, Spain. (2003) (in spanish).

18. Pinto, M., Fuentes, L., Troya, J. M.: DAOP-ADL: An Architecture Description Language
for Dynamic Component and Aspect-Based Development. Generative Programming and
Component Engineering: Second International Conference, GPCE 2003, Erfurt, Germany,
September 22-25, Springer Verlag Computer Science, ISSN: 0302-9743. (2003)

19. Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect-Oriented Programming.
In proceedings of the 1st international conference on Aspect-oriented software
development, Enschede, The Netherlands, April. (2002)

20. Rajan, H., Sullivan, K., Eos: Instance-Level Aspects for Integrated System Design. In the
proceedings of the 2003 Joint European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
Helsinki, Finland, September. (2003).

21. Rashid, A.: A Hybrid Approach to Separation of Concerns: The Story of SADESK. Proc.
Reflection conf., Springer-Verlang, LNCS, 2192, pp. 231-249. (2001)

22. Sánchez, F.: Mask Model: Towards adaptability of synchronization restrictions in LCOO.
PhD. dissertation, Extremadura University, Spain. (1999)

23. Schult, W. , Polze, A.: Aspect-Oriented Programming with C# and .NET. In 5th IEEE
International Symposium on Object-Oriented Real-time Distributed Computing,
(Washington, DC), IEEE Computer Society Press, pp.241-248. (2002)

24. Shaw M.: Procedure Calls Are the Assembly Language of Software Interconection:
Connectors Deserve First-Class Status. Proceedings of Workshop on Studies of Software
Design, January. (1994)

25. Soares, S., Laureano, E., Borba, P.: Implementing Distribution and Persistence Aspects
with AspectJ. In proceedings of the 17th ACM Conference on Object-Oriented
programming systems, languages, and applications, OOPSLA'02, Seattle, WA, USA,
174-190. (2002)

26. Suvee, D., Vanderperren, W., Jonckers, V.: JasCo: an Aspect-Oriented approach tailored for
Component Based Software Development. In proceedings of the 2nd international
conference on Aspect-oriented software development. Boston Massachusetts, March. (2003)

27. Szyperski C.: Component software: beyond object-oriented programming, ACM Press and
Addison Wesley, New York, USA. (1998)

28. Tarr, P., Ossher, H., Harrison, W.H., Sutton, S. M.: “N Degrees pf Separation: Multi-
Dimensional Separation of Concerns”. Internacional Conference on Software Engineering
(ICSE), ACM, pp. 1907-119. (1999)

A Component Model Engineered
with Components and Aspects

Lionel Seinturier1, Nicolas Pessemier1,
Laurence Duchien1, and Thierry Coupaye2

1 INRIA Futurs - LIFL, Projet Jacquard/GOAL
Bâtiment M3, 59655 Villeneuve d’Ascq, France

{seinturi, pessemie, duchien}@lifl.fr
2 France Telecom R&D

28 chemin du Vieux Chêne, BP98
38243 Meylan, France

Thierry.Coupaye@francetelecom.fr

Abstract. This paper presents AOKell, a framework for engineering
component-based systems. This framework implements the Fractal
model, a hierarchical and dynamic component model. The novelty of
this paper lies in the presentation of AOKell, an implementation of the
Fractal model with aspects. Two dimensions can be isolated with Frac-
tal: the functional dimension, which is concerned with the definition of
application components, and the control dimension, which is concerned
with the technical services (e.g. lifecycle, binding, persistence, etc.) that
manage components. The originality of AOKell is, first, to provide an
aspect-oriented approach to integrate these two dimensions, and sec-
ond, to apply a component-based approach for engineering the control
dimension. Hence, AOKell is a reflective component framework where
application components are managed by other, so-called, control com-
ponents and where aspects glue together application components and
control components.

1 Introduction

Software components are more and more used in various application domains.
This trend is supported by the fact that many component models are available,
coming either from the industry such as Sun EJB [1], Microsoft .NET/COM+,
OMG CCM [2], OSGi [3], or from research teams (e.g. ArchJava [4], Fractal [5],
FuseJ [6], K-Component [7], OpenCOM [8]).

In our opinion, the domain of component-based software engineering is char-
acterized by two main requirements: the need for components goes beyond the
boundaries of programming languages, and components need to be used in var-
ious execution contexts, such as embedded applications with strong constraints
in terms of memory footprint and execution costs, information systems hosted
on application servers, or grid computing. In this paper, we argue that the chal-
lenge for component models is to be able to handle these requirements. So far,
existing component frameworks are mostly seen as closed, black box entities

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 139–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 L. Seinturier et al.

which provide artefacts to design and program applications with components.
The components are handled by the framework, which provides a set of services
to manage these application components. Yet, this set of services is most of the
time closed. This is the case for example, with the EJB [1] component model,
where new services cannot be added to the container.

In this paper we propose AOKell, which is an open implementation in Java
of the Fractal component model. By implementation, we mean a software in-
frastructure for defining and executing components. The implementation is open
in the sense that the services provided by the AOKell framework are fully accessi-
ble and programmable. By giving programmers a way to engineer these services,
AOKell eases the task of adapting component-based applications to different
execution contexts. This approach also fosters the development of various forms
of control for components such as the ones needed to program self healing com-
ponents, self-testing components, or components that carry their proofs or their
specifications. Two main software techniques are used to engineer these services:
components and aspects. Both the applications and the services provided to
the applications are designed and implemented with components. Aspects glue
together these two dimensions. This paper presents the design and the imple-
mentation of AOKell in Java with the AspectJ [9] aspect-oriented language.
Although we do not report on it in this paper, AOKell has also been ported to
the .NET platform [10].

The paper is organized as follows. Section 2.1 presents the background of this
work: the Fractal component model and aspect-oriented programming. Section 3
is the core of the paper and presents the design of the AOKell framework. We
show how aspects are used in AOKell (section 3.1) and we present the model for
customizing the control dimension (section 3.2). Section 4 reports some perfor-
mance measurements. Section 5 compares AOKell to similar existing projects.
Section 6 concludes this paper and presents our future work directions.

2 Background

2.1 The Fractal Component Model

The Fractal component model [5] is a general model for developing component-
based systems. The model is sufficiently open to accommodate the needs of
various application domains. For example, the model has been used to imple-
ment applications for grid computing [11], operating systems [12], the GoTM
transaction monitor [13], a version of the JORAM [14] JMS [15] server and the
Speedo [16] JDO [17] persistence framework.

AOKell, the framework presented in this paper, is an implementation of the
Fractal component model for the Java programming language. Implementations
exist in other programming languages: FracTalk in Smalltalk, Plasma in C++,
Think [12] in C, FractNet [10] for the .NET platform. Two additional implemen-
tations in Java exist: Julia, which is the reference implementation, and ProAc-
tive, which is an implementation for grid computing. Information about these

A Component Model Engineered with Components and Aspects 141

implementations can be found on the Fractal web site1. As this will be explained
in section 3, the added value of AOKell compared to these implementations is
to be based on some concepts of aspect-oriented programming and to introduce
the notion of a control component.

Fractal is a hierarchical and dynamic component model. The model is hierar-
chical in the sense that a component can be composite or primitive. A composite
component contains other primitive or composite components. A primitive com-
ponent is the smallest unit of code packaged as a component. The model is
dynamic in the sense that the software architecture of a Fractal application can
be manipulated at runtime: components can be created, containment hierar-
chies can be modified, and bindings (which are communication paths between
components) can be set and unset. Components can be shared which means
that a component can be included in several non nested composite components.
This feature allows designing as components shared resources such as pools (for
threads, network sockets, etc.).

Two dimensions can be isolated in the Fractal component model: the func-
tional dimension and the control dimension.

Functional Dimension. The functional dimension is concerned with program-
ming the core functionalities of the application. Besides the notion of a compo-
nent, which can be primitive or composite, two main artefacts are provided to
engineer the functional dimension: interface and binding.

An interface is an access point to a component and supports a finite set of
operations. An interface can be of two kinds: server and client. Server interfaces
correspond to the services provided by the components, whereas client interfaces
correspond to the ones required by the components.

A binding is a communication path between two components, more precisely
between a client interface and a server interface. Bindings can be dynamically set
and unset to adapt, at runtime, the architecture of the application. The default
semantics for the communication in a binding is that of a local method call. How-
ever, Fractal components can accommodate various other communication modes
such as remote method call, asynchronous message passing, publish/subscribe.

Several other artefacts are provided such as the notion of a template. A tem-
plate is an existing component assembly that can be cloned. Templates are a
powerful means of instantiating, in just one step, complex software architectures
containing several components and bindings.

The Fractal component model is associated with an API. The implemen-
tations of the model may conform to one of the levels defined in the Fractal
Specifications [18], i.e. implementing the whole API is not mandatory. One of
the tools worth noticing is Fractal ADL which is an architecture description lan-
guage (ADL). Assemblies of components can be defined with this XML-based
language, which is a front-end for the Fractal API. All architecture descriptions
written with Fractal ADL are translated, either statically or dynamically, into
series of calls to the API. These calls install the assemblies described with Fractal
ADL.
1 http://fractal.objectweb.org

142 L. Seinturier et al.

The next piece of XML code illustrates the syntax of Fractal ADL. This
sample defines one composite component (HelloWorld) and two primitive ones:
client (line 3) and server (line 8). HelloWorld provides the run interface
(line 2). This interface is bound (line 12) to the run interface provided by client.
The server component provides a s interface (line 9), which is bound (line 13)
to the s interface requested (line 5) by client.

1 <definition name="HelloWorld">
2 <interface name="run" signature="Runnable" role="server"/>
3 <component name="client">
4 <interface name="run" signature="Runnable" role="server"/>
5 <interface name="s" signature="IService" role="client"/>
6 <content desc="ClientImpl"/>
7 </component>
8 <component name="server">
9 <interface name="s" signature="IService" role="server"/>
10 <content desc="ServerImpl"/>
11 </component>
12 <binding client="this.run" server="client.run"/>
13 <binding client="client.s" server="server.s"/>
14 </definition>

Control Dimension. The control dimension of the Fractal component model is
concerned with the supervision and the management of functional components.
This dimension provides the services to handle components. The range of services
incorporated into the control dimension can vary from basic services such as
managing component names, to lifecycle services, or to more complex services
such as persistence or transaction services. The control dimension plays a role
rather similar to the one played by containers in component models such as
EJB [1], except that this control dimension is open and fully programmable
with Fractal. Two main artefacts are provided to engineer the control dimension:
membrane and controller.

Each functional component is associated with a membrane. A membrane is
composed of a set of smaller units, called controllers. A controller implements
a particular control function and is associated to an interface. Controllers may
either provide new functionalities to components, such as the ability to set or
unset binding, or control existing functionalities, such as intercepting requests
or blocking calls on a stopped component.

The Fractal Specifications [18] defines seven control interfaces. However this
set is not closed and programmers can still develop their own control interfaces.
Furthermore, although the signatures of these interfaces are defined in the spec-
ifications, their semantics is only weakly specified. The idea is to accommodate
various implementations tailored to developers needs.

Among the seven predefined Fractal control interfaces, three are defined for
managing component attributes, component bindings (with methods for set-
ting, unsetting, retrieving and listing bindings), and component lifecycles (start-
ing and stopping a component). Two additional control interfaces are available

A Component Model Engineered with Components and Aspects 143

for managing containment hierarchies: the content control interface manages
(adding, removing, listing) sub-components contained in a composite, and the
super control interface manages the super components attached to a compo-
nent. The factory control interface is available for cloning a template. Finally,
the component control interface is available for retrieving the basic information
about a component such as the list of interfaces. This interface is similar to the
IUnknown interface of the COM component model.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [19] is a software engineering technique
for modularizing applications with many concerns. The general idea of AOP is
that, whatever the domain, applications tend to be decomposed according to a
dominant concern. The concerns which do not fit into this decomposition cannot
be cleanly modularized.

This issue is illustrated with the well-known example of the Tomcat servlet
server where some concerns such as XML parsing are cleanly modularized,
whereas others, such as user session management, are implemented in many
different classes. This leads to code that is said to be scattered (the implementa-
tion of a concern is scattered around several different locations), and tangled (a
same piece of code mixes different concerns). AOP aims at providing solutions
for untangling and unscattering applications. The notion of an aspect is available
to modularize such concerns, which are said to be crosscutting. Several languages
and frameworks such as AspectJ [9], JBoss AOP [20], AspectWerkz [21], JAC [22]
or JAsCo [23] are available for programming aspect-oriented applications.

The AspectJ language has been chosen to develop the aspects needed by
AOKell. This choice has been motivated by the fact that AspectJ is a stable
and mature project, well integrated with widely used IDEs such as Eclipse. Also
the fact that AspectJ currently provides features for compile-time and load-time
weaving, allows covering a wide range of needs.

3 The AOKell Framework

AOKell is our implementation of the Fractal component model for the Java lan-
guage. The functional dimension of a component-based application with AOKell
strictly conforms to the Fractal model. By this way, AOKell can execute any
Fractal system. AOKell differs from other existing implementations of the Frac-
tal model by relying on aspects and components for engineering the control di-
mension, i.e. the services provided to functional components. By providing these
two advanced software engineering techniques, we hope to promote flexibility
and to allow adapting component-based applications to execution contexts with
various and changing constraints.

Section 3.1 describe the structure of a component with AOKell and explain
the role devoted to aspects. Next, section 3.2 presents the concepts which have
been set up for ”componentizing” the membranes.

144 L. Seinturier et al.

3.1 Integrating the Control Dimension with Aspects

This section describes how aspects are used in AOKell to integrate control ser-
vices into components. Section 3.2 will elaborate on the way these control func-
tions are designed and implemented.

Component models such as EJB or CCM provide an architecture where com-
ponents are hosted by containers that provide technical services. For example,
the EJB specifications [24] define services for managing security, transaction,
persistence and lifecycle. Most of the time, this set of services is closed and hard-
coded in the container. One exception is the JBoss J2EE application server [25]
where services can be wrapped and accessed with aspects defined with the JBoss
AOP framework [20].

The general idea illustrated with the case of the JBoss server is that aspects,
while providing a way for modularizing crosscutting concerns, allow smoothly
integrating a concern into applications. This leads to a common practise of AOP:
the aspect modularizes a given concern, and either implements it directly, or
delegates it to an external module. The separation of concern is almost optimal
in the sense that the aspect is only concerned with the logic for integrating the
concern into the application.

This pattern is used with AOKell to integrate the control logic into com-
ponents. More precisely, each control function (a so-called controller in Fractal
terms) is associated with an aspect which is responsible for integrating this logic
into components. This solution is illustrated in figure 1.

Fig. 1. Structure of a component with AOKell

The integration performed by aspects relies on two mechanisms: feature injec-
tion and behavior extension. The first mechanism is known, in AspectJ, under
the term inter-type declaration (ITD). With ITD, aspects can declare members
(methods and/or fields) to be injected into the classes, in our case into compo-
nent implementations. All existing control interfaces are injected with this ITD
mechanism.

A Component Model Engineered with Components and Aspects 145

The second mechanism is known, in AspectJ, under the term code advising.
Aspects define so-called pointcuts and advice code. Pointcuts pick out a set of
join points, which corresponds to the points of the program execution where the
aspect needs to be executed. The advice code is a piece of code which will be
executed at these points. Code advising is used in AOKell to intercept operation
calls and executions. For example, when controlling a component, the lifecycle
controller may reject operation executions while the component has not been
started. This feature is implemented by defining, in the aspect associated to the
lifecycle controller, pointcuts and pieces of advice code.

3.2 Componentized Membranes

The previous section showed how aspects are used with AOKell to integrate the
control logic into components. This section elaborates on the way this control
logic is designed and implemented.

We have seen that the control logic is defined in the Fractal component model
with a membrane composed of controllers, each one being specialized with a par-
ticular control mechanism (binding management, lifecycle, etc.). Far from being
autonomous, these controllers need to collaborate to achieve the global control
function assigned to the membrane. For example, when starting a composite
component, the content of this composite needs to be traversed to recursively
start sub-components2. This implies that the lifecycle controller depends on the
content controller. Several other similar dependencies exist between controllers.
For clarity sake, we omit details for all these dependencies, which come from the
semantics assigned to controllers. Readers can find them in [26].

However, the fact that these dependencies between controllers are hidden and
not clearly expressed prevent developers from reusing controllers independantly.
Our idea is to apply to the design of the control layer the same principles which
were applied to the application layer: engineer the control with components. By
”contractually specifying the interfaces” [27] of these control components, we
hope to foster their reuse, to clarify the architecture of the membrane, and to
ease the development of new ones. By supplying a component-based approach for
engineering the control layer, we also hope to obtain gains in terms of flexibility:
it will be easier to develop new control layers and thus to adapt applications to
execution contexts with different characteristics in term of resource management
(memory, threads, etc.).

As a consequence, AOKell is a framework where the concepts of a component,
of an interface and of a binding are used to engineer the functional dimension
and the control dimension as well. A control membrane with AOKell is a com-
posite component providing the control interfaces associated to that membrane.
This composite contains sub-components. Each sub-component implements the
control functionality associated to a controller. As explained in the previous
section, this component is associated to an aspect that integrates this control
logic into application level components. Furthermore, these sub-components are
2 Note that this is not a formal obligation. One may design a control function where

the starting is not recursive.

146 L. Seinturier et al.

bound together according to their dependencies. Figure 2 summarizes these ele-
ments. For clarity sake, the control membrane for the third component has been
omitted.

Application

level

Control

level
aspects

mem
brane

Fig. 2. AOKell component layers

The most widely used control membrane in Fractal applications is the one
associated with primitive components. The architecture of this membrane is il-
lustrated in figure 3. This membrane provides five controllers, for managing the
lifecycle (LC), the bindings (BC), the component name (NC), the super compo-
nents (SC) and a controller (Comp) implementing the general Component interface,
which is available for all Fractal components. As a matter of convention, provided
interfaces are drawn on the left side of the components, and required interfaces
are on their right side. Bindings represent communication paths between the
controllers.

The architecture presented in figure 3 illustrates that the control function for
primitive components is not simply realized by five isolated controllers, but is the
result of the collaboration of these five controllers. Compared to a purely object-
oriented approach, a component-based solution for the implementation of control

Controllers

: Binding
: Lifecycle
: Name
: Super
: Component

BC
LC
NC
SC
Comp

Component

implementation

aspects

Comp

NC
LC

BC

SC

Application
level

Fig. 3. Primitive membrane: control level for primitive components

A Component Model Engineered with Components and Aspects 147

membranes allows describing explicitly the dependencies between controllers.
New control membranes can be developed by extending existing ones, or simply
by developing a whole new architecture.

The benefits of engineering the control dimension with components have been
experimented by implementing the Dream framework [28]. Dream is a framework
for developing middleware platforms with Fractal. The purpose is to ease the
development of middleware by providing a library of component with advanced
control functionalities. For example, Dream provides a membrane to define active
components, i.e. components with threads or pools of threads to handle their re-
quests. Based on these membranes, a version of the JORAM [14] JMS [15] server
has been developed with Dream. Basically, implementing the Dream framework
with AOKell consists in implementing a component-based version of the con-
trollers and of defining the architecture of the membranes.

4 Performance Evaluation

This section evaluates the cost of running a component based application with
AOKell. We are mainly interested in measuring the cost induced by the compo-
nent framework and the componentization of membranes. To do so, we compare
an application developed with AOKell with the same one developed with a pure
object-oriented approach.

AOKell is written in Java and uses AspectJ 1.2.1. The AOKell source code
size is 12,604 lines with 104 classes and 13 aspects3. Other technical details can
be found in [26]. AOKell has also been ported to the .NET platform [10]. For
this porting, AspectJ has been replaced by AspectDNG [29].

The tests are conducted with a simple application containing two components:
a client component and a server component. The server component provides an
interface with eight methods. Each method owns a different signature, either
without parameters, or with primitive parameters, or with object references
parameters, and/or with return types.

The measures are done on a 2Ghz Pentium 4 PC running Windows XP Pro
and Sun JDK 1.5.0. A warm-up phase is performed before taking measures to
avoid bootstrapping and class loading costs induced by the JVM. The test con-
sists of series of calls emitted from the client component to the server component.
In table 1, the figures correspond to the times taken by 8,000,000 calls (1,000,000
per method defined in the interface provided by the server component). The given
figures correspond to the average value of 4 runs.

Table 1 presents the result obtained for this microbenchmark with five differ-
ent techniques.

– Fractal/Julia: this is a component-based Fractal implementation of the mi-
crobenchmark. This version is linked with the Julia (version 2.1.1) reference
implementation of the Fractal Specifications.

3 AOKell can be downloaded from http://fractal.objectweb.org

148 L. Seinturier et al.

Table 1. Cost of invoking and executing an operation (x 8,000,000)

Operation execution time
without interception with interception

Pure Java 1.5.0 178ms
AspectJ 1.2.1 209ms

Fractal/Julia 2.1.1 237ms 515ms
Fractal/AOKell 1.1 215ms 559ms
JBoss AOP 1.1.1 1046ms

– Fractal/AOKell: this Fractal version of the microbenchmark is linked with
the AOKell implementation presented in this paper. These two last versions
allow comparing a purely object-oriented implementation of the control di-
mension (Fractal/Julia) with an implementation where the control dimension
is componentized (Fractal/AOKell).

– Java: this is a pure object-oriented Java implementation. No components are
involved. The client and the server are Java objects. This implementation
gives a reference to evaluate the cost of running a componentized application.

– AspectJ: this version is implemented with AspectJ version 1.2.1. No com-
ponents are involved. The client and the server are Java objects. The server
object is advised by an empty around advice. This version gives a clue on
the cost of intercepting a method with AspectJ.

– JBoss AOP: this version is implemented with the JBoss AOP [20] (version
1.1.1) framework for dynamic AOP. No components are involved. The client
and the server are Java objects. The server object is advised by an empty
around advice. This version gives a clue on the cost of intercepting a method
with JBoss AOP.

We saw in section 3.1 that controllers may, via aspects, either inject new
features or modify the behavior of components by intercepting existing features.
The microbenchmark reported in table 1 provides a measure of the interception
cost of both Fractal versions.

Control without interception. When compared to the Java implementation, the
AOKell version is 21% costlier. The main reason is that the binding between
the client and the server component is dynamic: before each call, the reference
to the target server component must be resolved. This ensures that at any time
the architecture is modified, the communication path between components will
be updated accordingly. We believe that this penalty is acceptable compared to
the benefits of having a component architecture dynamically updatable.

The figures given in table 1 show that AOKell performs better than Julia. We
believe that this is due to the way controllers are implemented in Julia: a mixin
mechanism is provided to modularize the different concerns addressed by each
controller. When mixed together, these different pieces of code are assembled
in a class which contains more indirections than the AOKell version where con-
trollers have been implemented directly. Compared to Julia controllers, AOKell

A Component Model Engineered with Components and Aspects 149

controllers are then less modular in terms of separation of concerns, but they
are implemented as components (Julia controllers are objects) and they perform
slightly better.
Control with interception. The interception costs reported in the second column
of table 1 is due to the Fractal lifecycle controller. The purpose of this controller is
to ensure that a call cannot be issued on a stopped component. This mechanism
is implemented in Julia by engineering the bytecode of components with the ASM
library [30], and in AOKell with AspectJ. When the interception mechanism is
activated, the figures in table 1 shows that, compared to Julia, the overhead of
running AOKell is 8.5%. This is mainly due to the use of AspectJ compared to
that of ASM. In our opinion, this penalty is acceptable compared to the benefits
of a high level language such as AspectJ compared to a bytecode engineering
library such as ASM.

5 Related Work

This section compares AOKell to related projects.
OpenCOM. v1 [8] and v2 [31] is a component model with support for runtime dy-
namic reconfiguration.OpenCOM supports different kinds of deployment environ-
ments (e.g. operating systems, PDAs, embedded devices, network processors) and
allows the particularities of those environments to be selectively hidden from or
made visible to the OpenCOM programmer. At the application level, OpenCOM
components provide interfaces and receptacles (required interfaces). Interceptor
components can be associated with interfaces. The architecture of an OpenCOM
application is introspectable and can be dynamically modified. Since v2, Open-
COM provides the four following notions: capsule, caplet, loader, and binder. A
capsule is a unit of scope that contains and manages the application components.
A caplet is a sub-scope within a capsule that contains a subset of the application
components. Binders and loaders are first-class entities that provide various ways
of binding and loading components. Caplets, loaders and binders are implemented
as components, and several implementations may be provided.

Compared to Fractal, capsules and caplets are similar to composite compo-
nents. Binders and loaders are similar to Fractal controllers. By customizing the
implementation of caplets, loaders and binders, programmers have the ability
to adapt applications to different deployment environments. The approach is
similar in AOKell where controllers are programmed as components. However,
we can put forth three differences with OpenCOM. First, AOKell controllers are
not restricted to a particular set of functionalities and can implement any kind
of services. Second, controllers are components too, but we have gone a step fur-
ther by introducing the notion of a component architecture at the control level.
Finally, the integration of the control dimension and of the functional dimension
is achieved with aspects.
Asbaco. [32], like AOKell, is a proposal for extending the membrane of the
Fractal components. The authors introduce the term microcomponent to desig-
nate a component that implements a control functionality. Like AOKell, Asbaco

150 L. Seinturier et al.

microcomponents are associated with the same notions as regular components:
they may own client and server interfaces, and bindings can be created between
components. However, the API for manipulating bindings between microcompo-
nents is different from the one available for regular components. With AOKell,
this API is the same at both levels which leads to a model which is more symmet-
ric. With Asbaco, integrating controllers and regular components is performed
with a load-time mixin technique based on the ASM bytecode engineering li-
brary [30]. With AOKell, this integration is performed with AspectJ [9]. We
believe that the use of AspectJ leads to programs that are easier to write, un-
derstand and debug. Although we are currently using the compile-time weaving
facility provided by AOKell, we plan to investigate the use of both the compile-
time and the load-time features to make the weaving of the control dimension
more dynamic.

FuseJ. [6], and JAsCo [23], which is the previous project by the same team, is
an architectural description language (ADL) that aims at unifying aspects and
components. The FuseJ ADL introduces the notions of a gate and of a connector.
A gate, much like an interface in Fractal, is a component communication point.
Output and input gates may be defined. Gates are bound to methods provided or
required by components. Connectors are responsible for declaratively specifying
the architecture of the application. Two kinds of interactions may be specified
by connectors: component-based and aspect-oriented. The former case is similar
to a binding in Fractal and binds a required gate with a provided one. The latter
allows defining an around advice.

Fractal/AOKell and FuseJ differ in the way aspects are used: with AOKell,
aspects are only used as a technique for integrating the control and functional
dimensions of the component model. The goal of FuseJ is to make aspects first
class entities in the component-based programming model. In that sense, FuseJ
is similar to another of our project, called FAC [33], which has been build on
top of AOKell.

6 Conclusion

This paper presented AOKell, which is a framework for developing component-
based applications. AOKell is an implementation of the Fractal Specifications
[18] [5]. AOKell is implemented in Java with the AspectJ [9] aspect-oriented
language. AOKell has been ported to the .NET platform [10].

Fractal/AOKell provides a component model with two dimensions: the func-
tional and the control dimension. The functional dimension is concerned with
the development of application-level functionalities, while the control dimension
is concerned with the supervision and the technical services required by the ap-
plication. While this dichotomy can be found in other component models, e.g.
EJB [1] with the notion of a component and of a container, the originality of
AOKell is to open the control dimension and to make it programmable. Further-
more, AOKell provides the same concepts for engineering both dimensions. The

A Component Model Engineered with Components and Aspects 151

notions of a component, of a provided or required interface, and of a binding,
are used both to engineer the functional dimension and the control dimension.

AOKell is reflective in the sense that the notion of a component is used both
at the functional level and at the control level which can be seen as a kind of
meta-level. With AOKell, components are controlled by other, so-called control
components. One of the benefits of this approach is to provide a highly dy-
namic model. By modifying the components assemblies at the control level, pro-
grammers can modify the control of their application components. AOKell also
enables the precise engineering of the control level. This allows adapting com-
ponents to execution environments with various needs in term of control, and to
foster the development of various forms of control such as the ones needed to pro-
gram self healing components, self-testing components, or components carrying
their proofs or their specifications.

With AOKell, application-level components are controlled by so-called mem-
branes, which are assemblies of control components. Each control component
provides a particular control function and may require the services provided by
other control components. By componentizing membranes, we foster the reuse,
the evolvability and the maintenance of control policies. We then facilitate the
development of various control policies, and we obtain a general component
model, which can be adapted to application domains with various needs in terms
of resources (memory, thread, etc.) and of technical services.

The second originality of AOKell is to use an aspect-oriented approach [19]
to integrate the control and the functional dimension of our component model.
Each control component is associated with an AspectJ [9] aspect, which is re-
sponsible for introducing and supervising the functional component in order to
meet the requirement of the control component. In terms of software engineer-
ing, this aspect orientation gives a highly expressive solution that facilitates the
development and the debugging of the control logic.

As a matter of perspective, we plan to investigate the dynamicity of the rela-
tion between a component-based application and its componentized membrane.
So far, we have been using the compile-time weaving facility of AspectJ for inte-
gration. A load-time weaving mode is also available with AspectJ. Furthermore,
other dynamic frameworks are available such as AspectWerkz [21], JAC [22] or
JAsCo [23] for runtime weaving. By investigating these solutions, we will be able
to provide a fully dynamic model where any modification in the assembly of con-
trol components, including features related to interception, will be dynamically
applied to the application components without recompilation.

Acknowledgments

This work is partially funded by France Telecom under the external research
contract #46131097.

We thank Romain Rouvoy for many discussions about AOKell and for numer-
ous bug reports, Philippe Merle and Renaud Pawlak for their valuable comments
about this article.

152 L. Seinturier et al.

References

1. Bodoff, S., Armstrong, E., Ball, J., Carson, D.: The J2EE Tutorial. Addison-
Wesley (2004) 2nd edition.
java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

2. Siegel, J.: CORBA 3 Fundamentals and Programming. 2nd edn. Wiley (2000)
3. OSGi Alliance: OSGi Technical Whitepaper. (2004) Revision 3.0.

www.osgi.org.
4. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architec-

ture to implementation. In: Proceedings of the 24th International Conference on
Software Engineering (ICSE’02), ACM Press (2002) 187–197

5. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: An open com-
ponent model and its support in Java. In: Proceedings of the 7th International
Symposium on Component-Based Software Engineering (CBSE-7). Volume 3054
of Lecture Notes in Computer Science., Springer (2004) 7–22

6. Suvée, D., Vanderperren, W., Jonckers, V.: FuseJ: An architectural description
language for unifying aspects and components. In: Workshop Software-engineering
Properties of Languages and Aspect Technologies (SPLAT) at AOSD’05. (2005)
ssel.vub.ac.be/Members/dsuvee/papers/splatsuvee2.pdf.

7. Dowling, J., Cahill, V.: The K-Component architecture meta-model for self-
adaptative software. In: Proceedings of Reflection’01. Volume 2192 of Lecture
Notes in Computer Science., Springer-Verlag (2001) 81–88

8. Clarke, M., Blair, G., Coulson, G., Parlavantzas, N.: An efficient component model
for the construction of adaptive middleware. In: Proceedings of Middleware’01.
(2001)

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: Get-
ting started with AspectJ. Communications of the ACM 44(10) (2001) 59–65

10. Escoffier, C., Donsez, D.: FractNet: An implementation of the Fractal component
model for .NET. In: 2ème Journée Francophone sur Développement de Logiciels
par Aspects (JFDLPA’05). (2005) www-adele.imag.fr/fractnet/.

11. Baude, F., Caromel, D., Morel, M.: From distributed objects to hierarchical grid
components. In: Proceedings of the International Symposium on Distributed Ob-
jects and Applications (DOA’03). (2003)

12. Fassino, J.P., Stefani, J.B., Lawall, J., Muller, G.: Think: A software framework
for component-based operating system kernels. In: Proceedings of the USENIX
Annual Technical Conference. (2002) 73–86

13. Rouvoy, R., Merle, P.: Abstraction of transaction demarcation in component-
oriented platforms. In: Proceedings of the 4th ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware’03). Volume 2672 of Lecture Notes in Computer Science., Springer-
Verlag (2003) 305–323

14. ObjectWeb: JORAM: Java open reliable asynchronous messaging.
joram.objectweb.org (2002)

15. Sun Microsystems: Java Message Service Specification Final Release 1.1. (2002)
java.sun.com/jms.

16. Alia, M., Chassande-Barrioz, S., Déchamboux, P., Hamon, C., Lefebvre, A.: A mid-
dleware framework for the persistence and querying of java objects. In: Proceedings
of the 18th European Conference on Object-Oriented Programming (ECOOP’04).
Volume 3086 of Lecture Notes in Computer Science., Springer-Verlag (2004)
292–316

A Component Model Engineered with Components and Aspects 153

17. Sun Microsystems: Java Data Objects. (2002) java.sun.com/products/jdo/.
18. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Component Model. Ob-

jectWeb. (2004) Version 2.0.3.
fractal.objectweb.org/specification/index.html.

19. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP’97). Volume 1241 of Lec-
ture Notes in Computer Science., Springer (1997) 220–242

20. Burke, B.: It’s the aspects. Java’s Developer’s Journal (2003)
www.sys-con.com/story/?storyid=38104&DE=1.

21. Bonér, J., Dahlstedt, J., Vasseur, A.: AspectWerkz 2: An extensible aspect con-
tainer. TheServerSide.com (2004)
www.theserverside.com/articles/article.tss?l=AspectWerkzP1.

22. Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F., Martelli,
L.: JAC: An aspect-based distributed dynamic framework. Software Practice and
Experiences (SPE) 34(12) (2004) 1119–1148

23. Suvée, D., Vanderperren, W., Jonckers, V.: JAsCo: An aspect-oriented approach
tailored for component based software development. In: Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development (AOSD’03),
ACM Press (2003) 21–29

24. Sun Microsystems: Enterprise Java Beans. (1997)
www.javasoft.com/products/ejb.

25. Fleury, M., Reverbel, F.: The JBoss extensible server. In: Proceedings of the 4th
ACM/IFIP/USENIX International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’03). Volume 2672 of Lecture Notes
in Computer Science., Springer-Verlag (2003) 344–373

26. Seinturier, L., Pessemier, N., Coupaye, T.: AOKell: An aspect-oriented implemen-
tation of the Fractal specifications. Objectweb Fractal Workshop, Grenoble, France
(2005)

27. Szyperski, C.: Component Software - Beyond Object-Oriented Programming. 2nd
edn. Addison-Wesley (2002)

28. Leclercq, M., Quema, V., Stefani, J.B.: DREAM: a component framework for
the construction of resource-aware, configurable middleware. IEEE Distributed
Systems Online 6(9) (2005)

29. Gil, T., Evain, J.B.: AspectDNG. DotNetGuru. (2005)
www.dotnetguru.biz/aspectdng/.

30. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to imple-
ment adaptable systems. In: Journées Composants 2002 (JC’02). (2002)
asm.objectweb.org/current/asm-eng.pdf.

31. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Uyema, J.: A component
model for building systems software. In: Proceedings of the IASTED Software
Engineering and Applications (SEA’04). (2004)

32. Mencl, V., Bures, T.: Microcomponent-based component controllers: A foundation
for component aspects. In: Proceedings of the 12th Asia-Pacific Software Engi-
neering Conference (APSEC’05). (2005)

33. Pessemier, N., Seinturier, L., Duchien, L., Coupaye, T.: A model for developing
component-based and aspect-oriented systems. In: Proceedings of the 5th Interna-
tional Symposium on Software Composition (SC’06). Lecture Notes in Computer
Science, Springer (2006)

CBSE in Small and Medium-Sized Enterprise:
Experience Report

Reda Kadri1, François Merciol2, and Salah Sadou2

1 Alkante Company, RENNES , France
2 Valoria Lab,Yves Coppens Research Center

University of South Brittany, France
r.kadri@alkante.com,

{Francois.Merciol, Salah.Sadou}@univ-ubs.fr

Abstract. Although the CBSE has a great success in software engi-
neering, only large scale companies use it through their research and
development department. Small and medium size enterprises still have
some hesitations that deprives them of the various advantages offered by
CBSE. This is mainly due to the economic constraints that large compa-
nies don’t have. How can we make them benefit from this technology? Do
they have to develop their own models? Should they obtain a modified
version of this technology? What will happen to the code that already
exists? What are the costs of such migration? How to proceed? In this
paper we present an experiment carried out in using CBSE within the
framework of a partnership1 between a small and medium-sized enter-
prise and an academic research team. We present the results and the way
in which this migration has been performed, by hoping that this would
be an answer to the above questions.

1 Introduction

In spite of the enormous evolution which software engineering using CBSE has
made, and of the advantages offered by it, most of the small and medium-sized
enterprises (SMEs) hesitate to migrate towards this technology. Considering their
structures and their constraints, SMEs should be the first concerned by CBSE’s
advantages: i) these types of companies generally have a restricted number of
developers; ii) they do not easily take into account new types of different require-
ments due to their use of classical architectures; iii) Their developer turnover2 is
very high; iv) They are the first concerned by the decomposition of the applica-
tion delivery phenomenon. This phenomenon corresponds to the decomposition
of an application according to various criteria. One of the most important criteria
is the adaptation to the customers planning and to their constraints (training,
budget, ...).
1 This work is the result of the cooperation between “Software Evolution” team, Val-

oria and Alkante. Alkante is a company specialized in the design of various types of
information systems (in particular Geographic Information System).

2 In US financial terminology, turnover refers to the rate at which an employer gains
and loses staff.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 154–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

CBSE in Small and Medium-Sized Enterprise: Experience Report 155

Their hesitation to migrate to CBSE may be due to the fear of an unknown
costs. It also may be due to the lack of information and lack of experience in
CBSE. But the main reason behind this hesitation is related to the importance
of the already existing code. They don’t want to neglect years of developing.

Usually, an SME don’t has enough budget to create its own research and
development department (R&D). Our solution is to cooperate with a research
laboratory in order to acquire the R part of R&D. Our aim is to ensure and plan
a controlled evolution of our development methodology. So, we have defined a
strategy for a smooth migration to CBSE. This strategy is based on a transi-
tional architecture in order to preserve our existing code. In this transitional
architecture, existing code is embedded in pseudo components with provided
and required interfaces. To validate our solution we compared the development
costs for traditional architecture with those for transitional one.

In the remaining part of this paper we describe the limits of the traditional
development organisation (section 2). Then we describe and explain our tran-
sitional architecture (section 3). In section 4, we describe the migration of a
component, from transitional architecture to an implemented component model.
Finally, we conclude with some results from our experience.

2 Limits of Traditional Development Process

Most of SMEs use traditional development process where an application is taken
as a monolithic element. In this case, the reuse of packages implies systematically
an adaptation. During the first years of our company, we were only concerned
by the development costs, since the applications were new, the code adaptation
problems appeared later. In this section we will discuss the costs related to code
adaptation.

2.1 Problem Statement

After a few development years, we acquired a significant number of packages cor-
responding to reusable entities. Even if we develop applications from the same
family (ex: GIS), they use more and more different technologies: database, direc-
tories and devices (PDA, mobile phone, ...). This leads to a various adaptation of
our packages. We quickly noticed that these adaptations generate an important
costs.

As our packages are not interdependent, often the adaptation of one creates
modification on another. This often create additional costs that are not antici-
pated.

Another problem, which is more specific to SMEs, concerns the decomposition
of applications delivery. To become competitive, SMEs cut out their applications
in several parts according to needs of their client. The different parts are delivered
according to a predefined schedule.

If companies invoice the integration costs, often called main application up-
date costs, the application would reach a very high costs.

156 R. Kadri, F. Merciol, and S. Sadou

Fig. 1. Sub-applications delivery schedule

Figure 1 shows the deliveries for four clients (C1, C2, C3 and C4) over two
years. Each client’s application was assembled from different sub-applications.
Some of them already exist, whereas the others were developed during this pe-
riod. In the first delivery all applications were based on the same set of sub-
applications (A, B, C and D).

Each sub-application was designed with the same architectural base and the
same development process like the main application. So, sub-applications may
encapsulate other entities. For example, the authentication sub-application (A)
encapsulates an NT Lan Manager (NTLM) authentication and a Single Sign-On
(SSO) using Central Authentication Service (CAS). This sub-application may
be enriched by adding other authentication mechanisms.

2.2 Development Costs

In this paper we illustrate only the first level of composition. In this case, each
additional sub-application corresponds to an update of the main application.

CBSE in Small and Medium-Sized Enterprise: Experience Report 157

Table 1 shows costs of each version of the application. Each version corre-
sponds to a client’s delivery.

Table 1. Different versions costs

V0 V1 V2 V3 TOTAL
C1 63 1496 168 336 2081
C2 58 495 932 1485
C3 1910 38 327 183 2458
C4 49 321 1150 1520

The important costs occur during the first development of a sub-application
(C3xV0, C1xV1, etc). When we use an existed sub-application, for a new appli-
cation (ex: C3xV1), the costs are indeed low, but not null. In fact, the reuse of
a sub-application for a new delivery generate two kinds of costs (adaptation and
integration) as shown below. We call these costs, “assembly costs”.

The measurements carried out in the company enabled us to do a precise
calculation of the first sub-applications development costs, as shown in table 2.

Table 2. Sub-applications’ costs

Sub-applications A B C D E F G H
Costs(hours) 90 140 750 930 900 540 115 300

So, we use the elements of table 1 and table 2 to extract the assembly costs.
Table 3 illustrates these assembly costs for each version and for each customer.

Table 3. Assembly costs

V1 V2 V3 Total
C1 56 31 36 123
C2 40 32 72
C3 38 27 28 93
C4 21 95 116
TOTAL
(Hours)

155 185 64 404

We note that the costs increase as the number of added sub-application in-
creases. For instance:

– C1xV1 sub-applications E and F were added and costed 56 hours of devel-
opment, whereas sub-application G costed 32 hours in C1xV2.

– C4xV1 sub-application H was added and costed 21 hours of development,
whereas sub-applications G and E costed 95 hours in C4xV2.

158 R. Kadri, F. Merciol, and S. Sadou

2.3 Discussion

In this study of costs, we did not illustrate those depending on maintenance. We
will study them in another work, devoted to the software evolution.

We focus our study on the assembly costs as they appear in figure 1 and
table 1: the clients C1 and C3 have the same application (V3), but assembled
in a different order. Finally, the difference is (2458-2081=) 377 hours. These
additional costs are generated by transitional versions.

Some companies with experience, tend to reduce their assembly costs by using
sub-application deliveries always in the same order. But any modification of
planning or assembly order need a new design which creates expensive costs.

In our study, the assembly costs are equivalent to those of one sub-application
development. At this stage, the traditional architecture can not help us to min-
imize those costs. According to Ommering’s [2] and Shilaghi’s [9] case studies,
CBSE allows to efficiently create a variety of complicated products with a short
lead time.

Examples of companies using CBSE are Nokia and Philips Corporation, Nokia
maintains a large library of software components that they use to build their
family of cell phones [11], Koala [5] model of Philips is also a good example of
such assembly costs minimization.

3 Transitional Architecture

Before the migration to CBSE, several reasons led us to make a transitional
architecture:

– The absence of well defined methods for CBSE migration.
– The presence of a great number of codes.
– The hesitation of developers to switch toward new technologies (training

aspects).
– The need of more time and sufficient maturation to choose a CBSE imple-

mented model (FRACTAL [10], EJB [4], ...).

Our decision was based on the following assumption: “with a slowly developing
maturity of software components comes a slow liberation from overly traditional
objects, much can be learned from object technology, and some of it can be gen-
eralized or transformed to serve components” [1]. So, we defined a transitory
architecture as near as possible to component models. Our new development
process is designed in an organization that separates the developers in two teams:
the first one relates to the module developers, called Components Development
Team (CDT); the second one relates to the application developers, called Ap-
plication Development Team (ADT). Figure 2 illustrates our organization which
corresponds with a real development platform.

The platform contains developers workspaces, a concurrent version system for
team work and management of different file versions (all the source code is stored
in it). It contains a dedicated application for pseudo components deployment and

CBSE in Small and Medium-Sized Enterprise: Experience Report 159

Fig. 2. Development platform

assembly. It also includes a source code documentation and reverse engineering
tool. Another workspace is intended for updating the customers applications and
updating one or several of their pseudo components. Each pseudo component
is described by a Configuration Component File (CCF) written in XML and
stored in Components Database (Component repository). We describe in CCFs
required, provided and control pseudo components interfaces. Each component
encapsulates its documentation which describes it and also its interfaces.

For clarification, the components documentation is not represented in the
figure 2, but a the code and the project design documentations are stored in
a repository. Pseudo components are the base elements of applications. Each
application is described by its Project Configuration File (PCF) and stored in
Project Database (Project repository).

The CFF and PCF are high level representation and handling tools, they are
not dependent on a particular technology. We should respect an independence
between our high level representation and software functionalities. For more flex-
ibility, the CFF do not contain a code but refer to the pieces of software present
in CVS repository. In this way the CFF is seen as a wrapper of components. It is
possible for us to assemble several components to obtain high level components.
Those components correspond to sub-applications as those shown in figure 1.
So, a sub-application is represented by a CCF.

160 R. Kadri, F. Merciol, and S. Sadou

Fig. 3. Development process

The usability of this platform is made easy by its deployment and assembly
components application. On one hand, it allows the CDT developers to access
the list of the components and allows the addition of new components. On the
other hand, it allows ADT developers to create new projects and to choose an
adequate components for them. For ADT developers this common platform is
regarded as a read only access On The Shelves (OTS) components.

ADT developers work is personalization and respect of the project specifica-
tions. CDT developers work is implementation and respect of the component
specifications.

3.1 Development Process

The Development organization and the platform merge for an effective develop-
ment process. We will describe it with the following process:

CBSE in Small and Medium-Sized Enterprise: Experience Report 161

– After the specification validation, a project manager is chosen.
– The project manager is in charge of the two developer teams (CDT and

ADT).
– using the last deployment application he creates the project.
– He selects the necessary components and writes the specifications for the

new ones.
– He notifies the creation of the project to the developers.
– The mission of CDT is to develop the new components and their integration

in components repository.
– The mission of ADT is to deploy the project and satisfy the application

specifications.
– If necessary, the ADT team may initiate a new components specification.

Each development team respects the same progression steps, from specifica-
tions to validations. The interaction between the two teams is materialized by
three repositories as shown in figure 3 : i) CVS repository; ii) components repos-
itory; iii) project repository. It is filled progressively with components satisfying
new requirements. These are not the components that we find OTS, but their
wrappers. Each wrapper represents a piece of software in the CVS repository.
Wrappers are written in different languages and correspond to the functionalities
required from a component.

The assembly tools use those wrapped components to produce an application.
An application is materialized by a PCF file. In figure 3, we illustrate in a
synthetic way the following three roles:

– CDT team, who is responsible for the development of components OTS.
– ADT team, who is responsible for the application development.
– The platform composed of assembly tools which coordinates the activities of

the two previous teams.

The distribution of these roles enabled us to have more flexibility in our
development and enabled us to capitalize standard components.

So, how to check the benefits of this transitional component approach. The
simplest way would be to reiterate the same development process for same clients
with the same development teams. But this solution is not economically accept-
able for a company and is more unacceptable for SMEs. So, the solution we
choose is to evaluate the costs of the platform setup and the new assembly costs.
For the assembly costs evaluation we repeat the same study with two new clients
C5 and C6 as shown in figure 4 and table 5.

The same method of measurements gave us the composition costs of old sub-
applications, shown in table 4, and gave us the platform costs which correspond
to 1260 hours.

Table 4. Composition costs of the old sub-applications

Sub-applications A B C D E F G H
Costs(hours) 12 40 68 69 54 46 23 16

162 R. Kadri, F. Merciol, and S. Sadou

This composition concerns only the eights sub-applications and not what
they encapsulate. We just defined a membrane around these sub-application
and we made them interdependent. To access component service, we must use
its provided and required interfaces. Its control interfaces are used during the
adaptation process.

Fig. 4. Sub-applications delivery schedule after transition

Table 5. Assembly costs

V1 V2 V3 Total
C5 16 11 14 41
C6 14 18 32
TOTAL
(Hours)

73

After having attested and certified the significant costs minimization of the
transitional architecture, we become aware about the benefits we will get by
using CBSE. We notice that our developers became familiarized with CBSE
concepts just by using the transitional architecture. Now its time to start the
completion of CBSE migration.

CBSE in Small and Medium-Sized Enterprise: Experience Report 163

4 Example of CBSE Component Resulting from Our
Transitional Architecture

To migrate towards a concrete component technology, we choose Fractal [10] and
its implementation platform Julia [10] for the following reasons:

– We have a component technology using specification written in XML.
– We should automate the migration towards such technology.
– We already have several Fractal tools developed by our research laboratory

partner.

One of our best sale is a cartographic application based on (Scalable Vector
Graphics) SVG. It uses different data translators. Those data translators are
available in several plugins format added to other applications. The regular evo-
lution of these applications involves several updates of the plugins. We decided
to compose those translators and make them independent from other applica-
tions. After having composed each of them we encapsulated them in a single
component called Geoconv.

In figure 5 Geoconv encapsulates two translation components. Each one was
implemented by a part which was extracted from the plugins applications, and
another part which was extracted from application using those plugins. In this
example, the component “ShapeToSvg” is used to convert Shape Files Format
(Shp) using two encapsulated components (“ReadShape”, “ReadDbf”) to obtain
coordinates, styles and data flows. The component “MapInfoToSvg” is used to

Fig. 5. Geoconv component

164 R. Kadri, F. Merciol, and S. Sadou

convert Mid and Mif format using two encapsulated components (“ReadMif”,
“ReadMid”) to obtain coordinates, styles and data flows. Because of different
interpretation of SVG headers by different web browsers, “Headcontroler” is
a component used for generating and updating this Header if it is changed.
“Generator” component is used to generate SVG file from those flows and the
header. When a new format of data is added to translate, we have to just add
a new component in GeoConv. This last component should have three provided
interfaces to bind them with “Generator” required interfaces.

5 Conclusion

This study is an important experience for our SME, it improved our development
process. This process allows development with a low cost and delivers several
products in a short time. It makes us more competitive from other SMEs by
quick response to client offers. It also allows us a smooth transition to CBSE.
This transition permits our developers to acquire CBSE concepts since they are
easily able to find composable parts of our existing code. Our developers some-
times develop with existing libraries and packages, they also develop applications
which integrates with other client applications, it’s not easy for us because those
client applications are not based on component technologies. We noticed that the
component industry is not mature because it does not sell components adapted
for all technologies that we are using. We continue collaboration with our re-
search laboratory partners to minimize the evolution and maintenance costs of
components. We test and validate tools developed for this purpose in our enter-
prise.

References

1. Syperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wersley Second Edition, 2002

2. Rob van Ommering.: Building Product Populations with Software Components.
Philips Research Laboratories. In proceedings of the International Conference on
Software Engineering (ICSE’02), Orlando, Florida, USA.

3. Alessandro Maccari. Experience in assessing product family software architecture
for evolution. Nokia Research Center. In proceedings of the International Confer-
ence on Software Engineering (ICSE’02), Orlando, Florida, USA.

4. Sun-Microsystems: Enterprise JavaBeans Specification, version 2.1. Sun-
Microsystems Web Site: http://java.sun.com/products/ejb (2003)

5. The Koala Component Model for Consumer Electronics Software. Van Ommering,
Rob and van der Liden, Frank and Kramer, Jeff and Magee, Jeff In IEEE Computer,
vol. 33, num. 3 (2000) 78-85

6. Microsoft: COM: Component Object Model Technologies. Microsoft Web
Site:http://www.microsoft.com/com/(2005)

7. Chouki Tibermacine, Regis Fleurquin and Salah Sadou. Preserving Architectural
Choices throughout the Component-based Software Development Process. In pro-
ceedings of the 5th Working IEEE/IFIP Conference On Software Architecture
(WICSA’05), Pittsburgh, Pennsylvania, USA November 2005.

CBSE in Small and Medium-Sized Enterprise: Experience Report 165

8. Konstantin Beznosov. Experience Report: Design and Implementation of a
Component-Based Protection Architecture for ASP.NET Web Services. In pro-
ceedings of the International Symposium on Component-Based Software engineer-
ing (CBSE’05).

9. Raul Silaghi and Alfred Strohmeier. Integration CBSE, SoC, MDA, and AOP in a
software Development Method. In proceeding of the seventh International Enter-
prise Distributed Object Computing Conference. (EDOC’03).

10. Bruneton, Eric and Coupaye, Thierry and Leclerq, Matthieu and Quema, Vivien
and Stefani, Jean-Bernard: An Open Component Model and its Support in Java.
In Proceedings of the International Symposium on Component-Based Software
Engineering (CBSE’04). Held in conjuction with ICSE’04. Edinburgh, Scotland
(2004)

11. Jan Bosch, Software Product Families in Nokia. In Proceedings of Software Product
Lines, 9th International Conference (SPLC’05), Rennes, France, September 26-29,
(2005)

Supervising Distributed Black Boxes

Philippe Mauran1, Gérard Padiou1, and Xuan Loc Pham Thi2

1 Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505,
ENSEEIHT, 2 rue Camichel, BP 7122, 31071 Toulouse cedex 7, France

{mauran, padiou}@enseeiht.fr
2 College of Information Technology, Can Tho University

1, Ly Tu Trong Street, Can Tho City, Vietnam
ptxloc@cit.ctu.edu.vn

Abstract. Software components bring in an interesting alternative to
the traditional, centralized, approach to software development. The core
idea is indeed to enable the (end) user to build and customize his own ap-
plication, by assembling pre-existing (“off the shelf”) components. How-
ever, picking predefined, off-the-shelf components raises the question of
the suitability of these components to a peculiar use. In this setting, the
ability to supervise and adapt components appears to be crucial, in or-
der to make the component-oriented approach to software design really
effective.

The fact that a component is and must remain a black box for its
clients makes a significant difference as regards instrumentation, and thus
supervision of components. This paper introduces a supervision service
fitted for software components. The main features of this service are that:
– it proposes an instrumentation protocol that keeps the opacity of

components, with respect to their implementation, whilst it allows
to instrument components independently from their design.

– it facilitates the supervision of components by providing a simple
coupling between the component’s internal control, and the con-
trol provided by the user of the component, based on user-specified
criteria.

This paper motivates the interest of such a supervision service, outlines
its implementation, and illustrates its use.

1 Introduction

The implementation of distributed services raises several design issues that re-
quire the development of new software technologies. These technologies rely on
the notion of middleware for remote interactions, and are based on the software
component paradigm to ensure modularity, portability, and versatility in the de-
ployment and maintenance of such distributed architectures. In this paper, we
focus more particularly on building and using distributed, open, and dynamic
services by assembling and reusing software components.

Software reuse comes up against a recurring problem: there usually, and a
priori, is a semantic gap between the design of a component and its context of
use. Thus reuse requires adaptation. In concrete terms, this involves, on the one

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 166–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Supervising Distributed Black Boxes 167

hand, a correct specification of the context of use, and, on the other hand, an
adaptation of the component to this context.

Adaptation can be carried out statically, e.g. when components are connected,
and/or when they are deployed. In this paper, we consider a more dynamic
adaptation, inasmuch as it is centered on the requirements of the clients of the
server component. Such an approach seems better fitted to a highly dynamic
and open environment, such as Web Services. However, this approach requires
to supervise the component, for monitoring its state and its behavior, in order
to adapt the component, should it come to stray from its users expectations.
Thus, use-centered dynamic adaptation necessitates to implement an appropriate
support for component supervision. We shall relate, more particularly, these
supervision mechanisms to debugging, insofar as they show certain similarities.
In a (highly) dynamic setting, adaptation thus requires supervision.

Lastly, supervision calls for instrumentation. In fact, supervision involves
gathering data about the state and the behavior of the component. We take
a declarative approach to this instrumentation, which consists, on the one hand,
in exporting component attributes, under the component designer’s control, and
on the other hand, in monitoring state predicates, connected to adaptation re-
actions, both specified by the component user (independently from the designer
of the component).

Hence, our approach rests on defining a component supervision service (CSS)
fitted to software components, prompted by reuse, and based on a safe instru-
mentation of distributed components.

2 Bringing the Supervision Service to the User, as a Key
to Software Reuse

In the spirit of component-oriented design, the use of the CSS invites to con-
sider (at least) two roles in the design of a service: the designer of (reusable)
components, and the application architect.

The designer of components defines and provides elementary services/compo-
nents. To facilitate components reuse, the component designer has to comple-
ment the interface(s) which specify the service provided by the component, by
several pieces of information, which relate to the implementation of the compo-
nent, while keeping this implementation hidden:

– required interfaces/services, to enable composition, without having to in-
spect/access the implementation of the component ;

– technical constraints (such as target runtime environments), to support de-
ployment ;

– configurable properties, to allow a (limited) customization of some aspects
of the component

Our proposal represents a step further in this direction, by providing the designer
of components with the ability to delegate the handling of specific situations,

168 P. Mauran, G. Padiou, and X.L.P. Thi

that result from the runtime context or from the context of use. To this end,
the designer of the component simply has to specify the properties and/or the
methods of the component that can be referred to by the conditions evaluated by
the CSS. This sharing out of roles appears to follow closely two design principles
stated by Butler Lampson in the setting of the design of Operating Systems
[Lam83], which are archetypal complex software systems1:

– do one thing at a time, and do it well : here, the programmer focuses on the
implementation (efficient) of the base case;

– leave it to the client : this is literally the purpose of the CSS.

In light of this, the CSS can be seen as a relevant tool in the setting of the
component-oriented approach to the design of complex systems.

The application architect assembles components to build an architecture of com-
ponents which implements the service required by the (end) user. Besides, the
CSS allows this designer to express and to automate the preferences and the
strategies of use, in a way closely fitted to (the circumstances of) each use. For
example, in the framework of the development of a virtual travel agency, the
base components may allow to lookup and book:

– trips, with various means of transportation
– accommodations
– visits
– events . . .

Out of these components, an application can be designed, which allows to build
journeys, from:

– constraints or preferences given by the user, about the service itself: means
of transportation, stopovers, requirements in terms of comfort . . .

– strategies to use whenever some constraints cannot be satisfied: lookup for
equivalent or different services, search for alternate routes, drop all or part
of the services . . .

– constraints on the runtime context, or on the QoS, in the case of interactive
sessions, for example.

Such a variety of uses can hardly be anticipated during the design of components.
These constraints, preferences, and strategies can themselves be reusable, i.e.
be considered as components. From this point of view the conditions defined
by the user can be seen as a new kind of connector, which the CSS allows to
implement.

1 Moreover it does not seem to infringe another of these principles : keep (implementa-
tion) secrets, as the programmer controls the observability of properties and methods
w.r.t. condition evaluation.

Supervising Distributed Black Boxes 169

3 Software Component Supervision

Our purpose is to design a service for software component supervision. More
precisely, we aim at enabling the user to control (in every sense of the word) the
dynamics of a component while he uses it, that is:

– to track, to observe the changes of the component;
– to check the consistency of these changes w.r.t. the use of the component;
– direct these changes, according to the intended use of the component.

From a functional point of view, this situation appears to be very close to the
situation of a programmer when he is debugging a program: his aim is then to
check, at runtime, the accordance of the actual behavior of the program with its
expected behavior. In the setting of program debugging, the expected behavior
is not (fully) explicitly stated, and the nature and the extent of the conformity
check is left to the programmer, who can be assisted in this task by fine-grained
supervision tools, namely debuggers. We rest on this similarity of situation to
work out the main features for the supervision of software components:

– monitoring and editing the state (and more widely the runtime context) of
supervised components

– synchronizing component execution and interventions related to component
monitoring. In a debugging tool, this synchronization is specified as stopping
conditions that are defined with respect to the control flow (step by step ex-
ecution, breakpoints. . .) or with respect to the program state (watchpoints).

While component supervision and program debugging look similar in terms
of functionalities, their expression appears to be quite different, due to the sep-
aration between the designer, and the user of a component, and due to the
opaqueness of components to their users. Actually, whereas the programmer can
access the program code, and knows the expected semantics for the program
(though this semantics may not be explicitly stated), the very notion of com-
ponent involves that the actual (operational) semantics of a component remains
hidden to its users. Furthermore, and also as a key concept to the notion of
component, the documentation of the component is the only means of commu-
nication between the designer of a component and the users of the component. A
fortiori, we cannot expect the user (or the designer) to carry out by himself the
checking of the correspondence between the actual and the expected (w.r.t. a
given use) semantics of the component. Thus, our problem is to define a protocol

– that allows to implement supervision of components at the user level;
– that accounts for the gap between designers of components, and users of

components;
– where supervision can be specified regardless of the internal control flow or

code of components.

The lack of reference to components’ code or control flow leads to a declar-
ative expression of the coordination between a component’s (internal) actions

170 P. Mauran, G. Padiou, and X.L.P. Thi

and the (possible) actions superposed by its users. This expression is based on
the observable state (or runtime context) of the component and/or on the inter-
action (method calls) between the component and its client(s). More precisely,
we propose a protocol that allows the user to specify observable conditions, and
to provide their corresponding reactions (handlers). An observable condition is
either a state predicate, binding component’s properties, or a scheduling con-
straint on the component’s use, such as a path expression.

The elements of protocol we have introduced take into account the separation
between the designer, and the user of a component, from the user’s point of view:
they aim at allowing a declarative, large-grained (i. e. independent from the
code), supervision of components, by the users of components. In other words,
the user of a component is given tools that enable him to control the runtime
behavior of the component, in accordance with the semantics he expects from
the component, and these tools are suited to using components as black boxes.
Conversely, it is interesting to consider the separation between the designer, and
the user of a component, from the designer’s point of view, that is to enable the
designer to control how a component can be instrumented. Our approach has
to allow the designer of a component to specify what can be observed in the
component. In this way, the designer contributes to instrumentation, while he
retains the ability to control it by setting a model of the part(s) of the component
that can be instrumented. This model limits the uses and the operations that
the designer deems compatible with the “internal“ semantics of the component.
To this end, the designer can specify which aspects of the component can be
supervised, by defining the observable state space of the component (e.g. as
a list of properties), and (possibly) the coupling between the users’ points of
observations and the (internal) control flow of the component2. This approach
appears to fit the essence of the notion of software component: in the same vein,
the specification of required interfaces allows to connect components as black
boxes, regardless of their implementation.

4 Component Supervision Service (CSS)

This section outlines our design of the supervision service. The implementation
of the supervision service we present here was performed in the setting of a
Java ORB implementation of CORBA (and of an IDL to Java object mapping).
However, the design, the architecture, and the corresponding protocol are based
on general principles, independent from the peculiarities of the CORBA model or
the Java platform. The transposition to other component-oriented environments
and middlewares should be rather straightforward, as long as the target platform
provides a basic form of reflection. For example, we already have developed an
implementation of the supervision service for the Java 2 platform as a package
where interactions are based on RMI [PTMP05]. This section presents the design
principles of the supervision service, and then illustrates the use of this service.
2 The notion of pointcut introduced in Aspect Oriented Programming [KHH+01] gives

a way to specify this coupling, without unveiling the control flow of a component.

Supervising Distributed Black Boxes 171

The Component Supervision Service superposes a supervision service to the
base(functional) service provided by a component, so as to turn this “standard“
component into a “supervisable” (instrumented) component. This superposition
is carried out by inserting an interceptor between the original component and
its client(s). The interceptor encapsulates the base component: it accepts client
calls through the base component’s interface, handles these calls with respect to
supervision, and then delegates them to the base component; in the same way,
the interceptor filters and interprets the base component’s results before passing
them back to the caller.

Besides the base component’s interface, intended to allow a transparent super-
vision of the base component, the interceptor provides an interface that enables
to supervise the base component. This interface adapts the basic supervision
operations (monitoring, editing, synchronization) to the features of software
component design and use: separation between user and designer, component
implementation hiding, concurrent use of components. On these grounds,

– the designer of a component defines a set of observable properties of the com-
ponent. These properties are implemented as private attributes, that can be
accessed through read-only (public) accessors. Observable properties repre-
sent the part of the state space (and/or of the runtime context, and/or of
the execution trace of the component) that the designer of the component
allows to be used for supervision. The designer of the component manages
(and controls) the update of observable properties. We present further on a
general framework for implementing these updates, in the prospect of au-
tomating (or assisting) the generation of this code.

– the user of the component can specify and submit, through the supervision in-
terface, a set of conditions on observable properties (defined by the designer
of the component). A reaction (handler) is provided by the user, for each of
these conditions. When such a condition becomes invalid, the instrumented
component has to call back the corresponding reaction. The evaluation of
conditions is performed by the instrumented component.

Using an instrumented (supervisable) component. By way of illustration, we
consider an elementary example using the Component Supervision Service (CSS)
that we have implemented on the CORBA/Java platform. In this example, a
client uses a bounded buffer of integers, specified by the following CORBA IDL
module:

module example {
exception BufferIsFullException{} ;
exception BufferIsEmptyException{} ;
interface SimpleBuffer { /* base object */

readonly attribute short NbUsed ;
readonly attribute short Size ;
void Insert (in short i) raises (BufferIsFullException);
short Remove() raises (BufferIsEmptyException) ;

} ;
}

172 P. Mauran, G. Padiou, and X.L.P. Thi

In the context of the CORBA to Java mapping, this service is defined by the
SimpleBufferOperations interface, which provides (in particular) two accessors,
NbUsed() and Size() that correspond to observable (read-only) properties NbUsed
and Size. This interface is implemented by the SimpleBufferServant class, which
is the actual “functional” part of the buffer, and (indirectly3) by an interceptor,
SimpleBufferPOATie, which (in substance) performs the CORBA handling of re-
quests on the server side, and then delegates these requests to the applicative
(“functional”) servant. Our approach, in the context of the CORBA/Java plat-
form, was to transform this interceptor, by weaving supervision handling and
CORBA handling of requests.

The programmer, on the client side, wants to be sure that the buffer he uses
is never occupied above one half of its capacity. To this end, he defines a proper
condition (the HalfLoadCondition class below), along with its corresponding han-
dler (the handleCondition method of the ClientServant class below), that will be
called by SimpleBufferPOATie, when the threshold defined by HalfLoadCondition
is reached. The HalfLoadCondition condition is described by the following Java
class:

public class HalfLoadCondition implements Condition {
private SimpleBufferPOATie obsv;
private ConditionObserver obsrvr;
private String rfr;
private String[] opds = {"NbUsed","Size"};

public void initialize(String ref, Object tgt, ConditionObserver oc) {
rfr = ref; obsrvr = oc; obsv = (SimpleBufferPOATie) tgt;

}
public Object target() { return obsv;}
public ConditionObserver observer() { return obsrvr; }
public String[] operands() { return opds;}
public String reference() { return rfr;}
public boolean evaluate() { return (2*obsv.NbUsed()<obsv.Size()); }

}

HalfLoadCondition is defined in accordance with a pattern stated by the
supervision protocol. It provides read-only accessors to attributes that store
a reference to the supervised component, (which is an instance of SimpleBuffer-
POATie), a reference to its client (which is an instance of ConditionObserver), the
identifiers of the observable properties bound by the condition, and the URL of
the code of HalfLoadCondition (in order to allow its dynamic loading by Simple-
BufferPOATie). The initialize(...) method is used to instantiate HalfLoadCondition.
The evaluate() method is the evaluation code for the condition.

The handler corresponding to a condition is described by the handleCondi-
tion method, in a class that must implement the interfaces ConditionObserver
(instrumentation aspect) and ClientOperations (CORBA remote access aspect).

3 Actually: SimpleBufferPOATie extends SimpleBufferPOA, which implements Simple-
BufferOperations.

Supervising Distributed Black Boxes 173

public class ClientServant implementsConditionObserver,ClientOperations {
public SimpleBuffer ti = nil; // target object
public ClientServant (SimpleBuffer b){ ti = b; }
// user-defined handler -> rC: condition class URL
public void handleCondition (String rC) {

System.out.println("threshold: " + ti.getNbUsed());
try {
ti.Remove(); ti.Remove();

} catch (Exception e) {
System.out.println("handleCondition: "+e);

}
System.out.println("new NbUsed: " + ti.getNbUsed());

}
} // ClientServant

The client application creates a remotely accessible Client object. This object
is implemented by ClientServant, that provides the user-defined handler:

class Application {
public static void main(String[] args){
// CORBA initializations: naming context (nc), ORB, POA, ...
// connect the client to the remote SimpleBuffer object
org.omg.CORBA.Object obj = nc.resolve_str("SimpleBuffer");
SimpleBuffer ti = SimpleBufferHelper.narrow(obj);
ClientServant client = new ClientServant(nc);
ClientPOA theClient = new ClientPOATie(client,rootPOA);
rootPOA.activate_object(theClient);
Client proxyClient = theClient._this();
try {

SupervisableComponentSupport spv =
SupervisableComponentSupportHelper.narrow(nc.resolve_str("CSS"));

spv.activate(
new java.io.File("HalfLoadCondition.class").toURL().toString(),
proxyClient, ti
);

for (int k=1;k<100;k++) {
ti.Insert(2*k); ti.Insert(k); ti.Remove();

}
} catch (Exception e) { System.out.println("main: "+e); }

}
}

Conditions Evaluation. A supervision class, which is integrated with the super-
vised component, manages conditions, and the corresponding synchronization
with the clients of the supervised component. In the general case, a cyclic ac-
tivity, a monitor, can be associated to the supervised component. This monitor
tracks the evolution of the observable properties, (re)evaluates the conditions
that may have become invalid, due to this evolution, and, if the case arises,
calls back the corresponding handlers. As a matter of fact, the designer of a

174 P. Mauran, G. Padiou, and X.L.P. Thi

component indirectly controls the evaluation of conditions, inasmuch as he con-
trols the evolution of the observable properties.

The protocol we have defined aims at making explicit this coupling between
the control of the changes in the observable properties, on the one hand, and
the synchronization with users’ supervision, on the other hand. To this end,
the protocol requires the component designer to notify to the users the changes
he deems relevant, Therefore, the designer of the component is responsible for
managing the changes of observable properties, whereas the evaluation of the
conditions is managed by the supervision class, which is integrated with the
supervised component.

Although the designer of a component can define his own protocol to man-
age and notify the evolution of the observable properties, we propose a generic
framework for notifying observable properties changes, in the (rather common)
case where observable properties relate to functional aspects, i.e. the state of the
supervised component. Then,

– observable properties changes result from the execution of methods called
by the clients of the component;

– insofar as the implementation of a component must remain hidden to its
user(s), we consider that any interaction or synchronization between a com-
ponent and its client should be avoided, while a call is being processed. Thus,
we choose to postpone the evaluation of the conditions (which can result in
such a synchronization) until the end of the processing of a call.

In this perspective, the protocol we present

– defines a write accessor for each observable property of the supervised com-
ponent. This accessor is private to the component4. It must be called for
any update of an observable property. It systematically notifies the up-
dates to a supervision support class, which is integrated with the supervised
component.

– ends each public method of the component by calling the condition evalua-
tion method.

This framework enables to deal routinely (and therefore, automatically, in the
long run) with the handling of the updates of observable properties, along with
the evaluation of the supervision conditions.

On the other hand, the diversity, and the versatility, of non-functional aspects
(i.e. aspects that are related to the execution context of the supervised compo-
nent), do not seem very propitious to the development of simple and generic
coupling patterns. Therefore, for now, we only consider cyclic activities, which
periodically check the observable properties for updates, and (possibly) notify
the supervision support class, which evaluates the corresponding conditions. This
pattern looks appropriate when different users work on different instances of a
component. It can be replaced by ad-hoc monitoring activities, for aspects that
4 This accessor is thus out of the users’ scope: the reason for its definition is to facilitate

the implementation of the supervision class.

Supervising Distributed Black Boxes 175

do not compose well with supervision, e.g. when concurrent calls to the same
component need to be synchronized, which can affect the instants of observations
granted to the concurrent users. In the latter case, the designer of the component
has to manage the updates of the observable properties, and the evaluation of
the conditions, depending on the aspect to be implemented. While the composi-
tion of supervision with non functional aspects is an important and open matter,
that must be dealt with, it is , for now, outside the scope of this study.

object <I>POATie

_impl

<I>Operations<I>Operations
implements implements

object <I>POA object <I>Servant

Fig. 1. Interception pattern

Instrumented Component Implementation. To complement the previous exam-
ple, we present the server-side implementation of the supervision service, in the
setting of a Corba to Java mapping. In this context, each interface <I> defined
in an IDL module is compiled (mapped) into a set of Java source files. Amongst
these files, <I>POATie.java implements an interceptor for the method calls to
the object that implements <I>, as shown in figure 1. We use this interceptor as
a basis for the instrumentation of the Corba object. To this end, the interceptor’s
code is supplemented by:

– the declaration of a monitoring object, which is an instance of the Supervis-
ableComponentSupport class. This object, which implements the supervision
service. is defined as a (private) attribute of the interceptor, following a
pattern similar to the implementation of Java Beans properties. This class
provides, in particular:

• the user supervision operations, introduced in the beginning of this
section: submit a new condition (method activate), remove a formerly
submitted condition (method desactivate), list the observable properties
(method listObservableAttributes).

• The (des)activateObservableAttribute method(s), which enable the de-
signer of the component to dynamically control the set of observable
properties, i.e. properties that can appear in a condition submitted by a
user. Initially, every property is observable. These methods take a para-
meter, which is the identifier of the observable property.

176 P. Mauran, G. Padiou, and X.L.P. Thi

• The evaluateConditions method, which performs the evalutation of the
conditions that are submitted by the user, and calls the corresponding
reactions, if needed. This method is systematically called at the end of
each method of the component’s (functional) interface, but it can also be
called by the component’s internal activities that monitor non functional
aspects.

• the attributeChangeNotify method, which takes the identfier of the up-
dated property as a parameter. This method is called after each write
access to an observable property. To this end, the setXxx(...) accessor
which corresponds to each observable property is redefined: it first calls
the initial accessor, and then calls attributeChangeNotify.

– the evaluation of the conditions provided by the user, at the end of each
(public) method ;

– the registration of the observable properties and methods with the supervisor
module ;

– the methods needed to implement instrumentation (observable properties
activation, desactivation, and enumeration . . .).

In our example, the instrumented (simplified) version of the SimpleBuffer-
POATie interceptor is as follows (added declarations and statements are in
italics):

public class SimpleBufferPOATie extends SimpleBufferPOA {
// supervision management object
private SupervisableComponentSupport spvr =

new SupervisableComponentSupport(this);
private example.SimpleBufferOperations _impl;
private org.omg.PortableServer.POA _poa;
// Constructors
public SimpleBufferPOATie (example.SimpleBufferOperations delegate){

this._impl = delegate;
spvr.activateObservableAttribute(’’NbUsed’’);
spvr.activateObservableAttribute(’’Size’’);
...

}
public example.SimpleBufferOperations _delegate() { return this._impl; }
public void _delegate (example.SimpleBufferOperations delegate){

this._impl = delegate;
}
...
/* base object */
public short NbUsed() { return _impl.NbUsed(); }
public short Size() { return _impl.Size(); }
protected void setNbUsed(int value) {

_impl.setNbUsed(value); spvr.attributeChangeNotify("NbUsed");
}
public void Insert (short i) throws example.BufferIsFullException {

_impl.Insert(i); spvr.evaluateConditions();
} // Insert

Supervising Distributed Black Boxes 177

public short Remove () throws exemple.BufferIsEmptyException {
short image = _impl.Remove(); spvr.evaluateConditions() ;
return image ;

} // Remove

// instrumentation methods
Vector listObservableAttributes() {

return spvr.listObservableAttributes();
}
Vector listObservableMethods() {

return spvr.listObservableMethods();
}
void activate(String refCondition, ConditionObserver oc)

throws UnknownConditionException, NonActiveOperandsException {
spvr.activate(refCondition,oc);

}
void desactivate(String refCondition, ConditionObserver oc)

throws UnknownConditionException {
spvr.desactivate(refCondition,oc); // refCondition = condition URL

}
} // class SimpleBufferPOATie

5 Related Work and Extensions to the CSS

Supervision protocol setting. Our proposal can be seen as a generalization of
“callbacks”5, and also of “active interfaces” [Hei98], insofar as the user of a
component is given the ability to superpose handlers he defines to the regular
component behaviour. It is a generalization, as the coupling between the handlers
and the component is also defined by the user, and as this coupling is not limited
to a closed set of events (given by the designer of the component), as with
callbacks, active interfaces, or publish/subscribe protocols defined for the Java
Beans or for the CORBA Event Service [OMG01].

In this respect, the protocol we propose can be seen as an extension of the
Java Beans. In fact, the Java Beans introduce the notion of observable property,
together with a related publish/subscribe protocol for updates, and therefore
allow the user of a Bean to control the value and updates of these properties.
This basic instrumentation pattern is extended by JMX6, which allows to define
“operations”, that correspond to the observable methods of our protocol. From
this standpoint, the coupling by means of conditions that we propose appears
to be the matching part, in terms of control, of the notion of property: it aims
at enabling the user of a component to define a customizable control flow, since
the execution of the component can be controlled by the user, and synchronized
with a computation provided by the user, according to user-defined criteria. The

5 Which itself appears as a generalization of the notion of exception.
6 JMX [Sun02] is a J2EE component, dedicated to the low-level supervision of distrib-

uted (J2EE) components. We sketch the main features of JMX in the following.

178 P. Mauran, G. Padiou, and X.L.P. Thi

latter point shows the difference between our proposal and the Java Beans (or
their JMX extension): whereas the latter focuses on the control of properties, and
limits the support for coordination to a set of events related to properties updates
or defined by the designer of the component, we lay the stress on expressing
a user-defined coordination, based on properties. Supervised components can
thus be viewed as “instrumented” Java Beans. Similarly to the Java Beans,
the supervision service is implemented as a class, which is an attribute of the
supervised component.

Evaluation of the CSS. A direct comparison between our approach and existing
supervision tools would not be very relevant, since different goals are pursued: the
latter aims at efficiency, while the former strives for versatility and adaptability.

Whereas the implementation of the CSS can be optimized, it is intrinsically
costly (when compared to the running time of the supervised components), since
it consists in an on-the-fly check of the soundness of the behaviour of components
with respect to specifications provided by the users. Therefore, our supervision
service is mainly intended for dynamic, open systems, where the needs for super-
vision or adaptation are important, and where available components are black
boxes, that cannot be easily modified, and that have loose or unfitting semantics
with respect to user requirements. This sort of setting can be found notably in
critical systems 7, where compliance with requirements is essential, and also in
distributed systems and services, where supervision is an active research area,
for such purposes as management [DL02], tracking, debugging [GSZ01], QoS or
correctness assessment [CSDS03]. In particular, Web Services [SG04] currently
are a prominent applicative field for works in the latter research domain. As
for us, in the broader perspective of distributed Informations Systems develop-
ment, we rely on the CSS for implementing a Safety of Service service (SSS)
[PTMP03a], which allows to check and enforce the compliance of the overall use
of a service (i.e. not only a single component), with specifications stated by the
user through use profiles [PTMP03b].

Extensions to the CSS. To be actually usable, supervision by means of the CSS
should be as simple as possible, from the designer’s point of view, as well as from
the user’s standpoint. From the designer’s point of view, the protocol we present
sets rules for a systematic implementation of the supervision service. Although
7 While it may sound paradoxical at first sight (critical systems are supposed to be

(thoroughly) verified before their deployment), the use of a supervision service may
prove quite interesting, as

– it provides a complementary means to verify the correctness of a system ;
– it enables to check properties that cannot be checked statically ;
– it can be used to check at runtime the assumptions made, during the design stage,

on the system environment and behaviour, thus allowing to ascertain the soundness
of the underlying system model ;

– critical systems are a setting where implementing a supervision service may appear
to be worth its extra cost.

Supervising Distributed Black Boxes 179

these rules are uninvolved, their implementation by designers of components re-
mains rather tedious, and, above all, error-prone. Therefore, it seems interesting
to supplement this level of specification, which is needed for a fine-grained control
of observable properties, by a “compiler” for supervisable components, which,
given initial components and observable properties, would generate supervised
components, in the same way as IDL/stub compilers use Interface Definitions to
generate the code for handling remote interactions8. This “supervisable compo-
nent compiler” can be implemented directly, or it can be built upon the features
offered by:

– aspect programming languages and environments, such as AspectJ
[KHH+01], since supervision can be considered as a specific aspect, which
must be woven with the code of the component to be supervised ;

– reflexion-based component platforms and models, such as Fractal [BCL+04],
which enables to program interceptors (“controllers”, in the Fractal termi-
nology) bound to components, thus allowing a dynamic weaving of non-
functional aspects;

– the JMX distributed supervision architecture [Sun02]. JMX defines a frame-
work for low-level monitoring and management of distributed components,
in the setting of the J2EE platform. JMX facilitates more particularly open,
distributed and dynamic systems supervision by

• supporting the adaptation of existing supervision and management pro-
tocols (e.g. SNMP . . .);

• allowing to reconfigure observable properties or methods at runtime;
• integrating base distributed services (naming, security. . .) with supervi-

sion.
In this respect, and in the prospect of a broader use of the CSS ,JMX can
provide a basis for implementing a higher-level supervision service, such as
ours, in a distributed environment.

On the user side, we are currently working on the ease of use of the supervision
protocol, by allowing to enable/disable dynamically the CSS with respect to a
component.

6 Conclusion

The CSS aims at allowing to superpose a supervision service to existing compo-
nents, for standard maintenance, debugging, tracking, or adaptation purposes.
Due to the very nature of components, this service has the distinctive feature
of allowing to define supervision from a specification of the properties that the
user expects from the component, independently from the component implemen-
tation and control flow. This supervision service therefore allows to check that
a component conforms to its user’s needs, nay to adapt this component to its

8 Such supervisable components can be generated independently from the conditions
to be monitored.

180 P. Mauran, G. Padiou, and X.L.P. Thi

user’s needs, without having to consider the semantics or the implementation of
the component.

By stating observable methods and properties, the designer specifies and con-
trols the possible instrumentation of the component that he provides. From that
point, the CSS provides the user of the component with a generic and non in-
trusive supervision protocol, that enables the user to perform the adaptations
that he deems relevant, independently from the designer of the component.

For example, if the purpose of adaptation is to maintain at runtime the con-
sistency of the component’s behavior with respect to a given model, as is the
case with Self-Healing Systems [GS02, WE04], then the CSS provides a basis for
instrumentation, and allows to take into account a variety of system models9.

Self-adaptation is just an example, as the CSS potentially provides a basis for
any external adaptation of supervisable components. This leads to the difficult
question of controlling the bounds of adaptation. Indeed, the protocol that we
present does not prevent users from completely altering the functionality of a
component, by superposing a completely unrelated behavior. In fact, we do not
tackle this matter directly, as our choice, and aim, is to provide the user with
a supervision mechanism, and let him be the judge of the relevance of his own
adaptations. This is a proven strategy [Lam83], in spite of its weaknesses, which
are those of the user.

Acknowledgements

We would like to thank the anonymous referees for their constructive and in-
sightful comments, which helped us to improve this paper significantly.

References

[BCL+04] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and
Jean-Bernard Stefani. An open component model and its support in java.
In Component-Based Software Engineering: 7th International Symposium
(CBSE 2004), pages 7 – 22, May 2004.

[CSDS03] F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-oriented man-
agement of web services. Communications of the ACM, 46(10):55 – 60,
October 2003.

[DL02] P.-C. David and T. Ledoux. An Infrastructure for Adaptable Middleware.
In DOA’02, October 2002.

[GS02] David Garlan and Bradley Schmerl. Model-based adaptation for self-
healing systems. In WOSS ’02: Proceedings of the first workshop on Self-
healing systems, pages 27–32, New York, NY, USA, 2002. ACM Press.

[GSZ01] J. Gao, S. Shim, and E. Zhul. Tracking software components. Journal of
Object-Oriented Programming, October 2001.

9 This example is somewhat particular insofar as adaptive maintenance may require
meta-level actions, which may appear to come amiss the modularity principle on
which the CSS is based.

Supervising Distributed Black Boxes 181

[Hei98] G. T. Heineman. A model for designing adaptable software components.
In 22nd Annual International Computer Science and Application Con-
ference (COMPSAC-98), pages 121–127, August 1998.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In 15th European
Conference on Object-Oriented Programming, pages 327–353, June 2001.

[Lam83] Butler W. Lampson. Hints for computer system design. In SOSP ’83:
Proceedings of the ninth ACM symposium on Operating systems princi-
ples, pages 33–48, New York, NY, USA, 1983. ACM Press.

[OMG01] OMG. Event service specification. Technical Report http://www.w3.org/
TR/2004/NOTE-ws-arch-20040211/, OMG, March 2001.

[PTMP03a] Xuan Loc Pham Thi, Philippe Mauran, and Grard Padiou. Sret de
service des composants logiciels. In Marc Bui, editor, First International
Conference RIVF’03, Hanoi, pages 159–162, February 2003.

[PTMP03b] Xuan Loc Pham Thi, Philippe Mauran, and Grard Padiou. Try and
patch : an approach to improve the trust in software components. In
Olivier Camp, Joaquim Filipe, Slimane Hammoudi, and Mario Piattini,
editors, Fifth International Conference on Enterprise Information Sys-
tems, Angers, pages 505–508, April 2003.

[PTMP05] Xuan Loc Pham Thi, Philippe Mauran, and Grard Padiou. Instrumenter
pour superviser, superviser pour adapter, adapter pour rutiliser. In
Patrick Bellot, Duong Vu, and Marc Bui, editors, RIVF’05 3rd Inter-
national Conference, February 2005.

[SG04] J. P. Sousa and D. Garlan. Web services architecture. W3C Working
Group Note http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/,
W3C, February 2004.

[Sun02] Sun. Javatm management extensions instrumentation and agent
specification, v1.2. Technical Report http://java.sun.com/products/
JavaManagement, Sun Microsystems Inc., October 2002.

[WE04] David S. Wile and Alexander Egyed. An externalized infrastructure
for self-healing systems. In Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA’04), pages 285–288, 2004.

Generic Component Lookup

Till G. Bay1, Patrick Eugster2, and Manuel Oriol1

1 Chair of Software Engineering, Swiss Federal Institute of Technology in Zürich
CH-8092 Zürich, Switzerland

2 Purdue University, Dept. of Computer Science, West Lafayette, IN 47907, USA

Abstract. The possibilities currently offered to conduct business at an electronic
level are immense. Service providers offer access to their attendances through
components placed on the Internet; such components can be combined to build
applications, which can themselves be used as components by further business
units. The final leg of the way to this paradigm has been paved by the advent of
service-oriented architectures in general, and Web Services in particular.

With protocols existing for any parties to communicate, the most critical in-
gredient to the success of a business idea remains the task of choosing one’s busi-
ness partners. At a technical level, this translates to the issue of identifying which
components represent the most adequate services to build a final application.

While each middleware technology and system proposed in the past has been
described with its scheme for “looking up” components, this paper chooses the
more difficult approach of trying to distill the fundamentals of component lookup.
We propose a generic model of component lookup — applicable to settings as
diverse as tagged sets, classic white pages, or even method dispatch — and its
implementation. We illustrate our model through various examples of existing
lookup schemes. It turns out that in our generic context the common distinction
between name-based and type-based lookup becomes rather artificial.

1 Introduction

The evolution from the Internet to the World Wide Web, more recently boosted by the
advent of the semantic web and Web Services, has marked the gradual transformation
of a communication infrastructure consisting of bare metal into a mighty platform fos-
tering interaction of business parties.

The possibilities currently offered to conduct business at an electronic level are
amazingly vast. Service providers offer access to their attendances through components
placed on the Internet; such components can be combined to build applications, which
can themselves be used as components by further business units. Web Service tech-
nologies typically provide the glue between individual components by proposing safe,
efficient, and flexible communication protocols.

The most critical ingredient to the success of a business idea remains the task of set-
ting up interactions, that is, choosing one’s business partners. The success – or failure
– of an entire business plan can depend on a single participant. At a technical level, the
selection of appropriate business partners translates to the issue of identifying which
components represent the most adequate services to build a final application. In partic-
ular, application designers have to face the challenge of specifying their own compo-
nents, and choosing foreign components according to potentially several specifications.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 182–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Generic Component Lookup 183

Coding algorithms to perform such selections is an onerous task, and the outcome is
usually an ad-hoc solution of limited application scope.

Each middleware technology and system proposed in the past has typically been
described with its own scheme for “looking up” components, i.e., seeking, selecting,
and connecting to components. In fact, the high number of non-redundant systems for
looking up components advocates for a tighter integration or a composition model for
such systems. In this paper, we try to distill the fundamentals of component lookup. We
propose a generic model of multiple specifications component lookup based on mathe-
matical formulae, called COLOS (generic COmponent LOokup based on Specification
matching). By differentiating between explicit and implicit component specifications, as
well as between internal and external ones, our model becomes applicable to settings
as diverse as tagged sets, name-based schemes, or even method dispatch. What we pro-
pose is thus a framework intended to provide programmers with an infrastructure to use
and freely encode specifications and add them to associated components. By offering
the possibility of combining specifications by the means of mathematical operators, our
system is able to sort the components that match with a group of specifications and put
first the components that match best according to user-defined criteria.

Our way of combining specifications and their matching is robust to distribution as
results can be collected in a peer-to-peer manner. Our implementation is itself based
on collections of components that can be combined, and includes the foundations for
building secure matching as it can also be used for locking.

We illustrate our model through various examples of existing lookup schemes. Quite
interestingly, it turns out that in the generic context we consider, the traditional differen-
tiation made in the past between value-based (“white pages”) and type-based (“yellow
pages”) is artificial.

Roadmap. Section 2 presents preliminary material, including our model of components
and their specifications, and related approaches. Section 3 elaborates on our generic
model of component matching. Section 4 illustrates that model through various match-
ing schemes. Section 5 discusses the deployment and the use of our implementation
based on COLOS . Section 6 draws final conclusions.

2 Preliminaries

Various systems and models have been described in the past for coordinating compo-
nents in distributed settings. This section starts by presenting a simple abstract model
of lookup, and then relating that model to a set of predating approaches.

2.1 Lookup Model

Components are described towards the outside world by respective specifications (see
Figure 1). Lookup services basically provide components, on one hand, a means to
construct and advertise such specifications, and on the other hand, a mechanism to
query components based on (specification) templates. The composition and nature of
these specifications and templates, as well as the matching between them, vary between
approaches.

184 T.G. Bay, P. Eugster, and M. Oriol

MATCHING

Specification Template

Internal,
The component External,

The component’s runtime environment

Implicit

Explicit

Fig. 1. Component and lookup model

Internal vs. external specification. When viewing specifications as being based on dif-
ferent properties, one can in a first step distinguish between internal and external prop-
erties. Internal properties are based on the nature of components themselves, i.e., they
reflect properties of a given component. External criteria reflect properties which per-
tain to the surroundings of the component, such as its context or (runtime) environment.

Implicit vs. explicit specification. In a second step, one can distinguish between implicit
and explicit properties. The former kind of criteria reflect intrinsic properties of the
services provided by a given component; they are not influenced by the nature and
set of targeted clients for that component, or the means by which the component is
made available to such consumers. Explicit criteria in contrast, manifest in the way
the component’s very design is influenced by the perspective of making it ultimately
available to the outside world.

Static vs. dynamic evaluation. Furthermore, the evaluation of the matching can be sta-
tic, i.e., based on attributes of component specifications which are evaluated once and
for all when the component is loaded, or dynamic, in which case the matching becomes
a continuous process (see Section 5.1).

2.2 Examples

We illustrate the above model through a set of well-known lookup services, and over-
viewing derivatives for each. Results are summarized in Table 1 (due to the sparse oc-
currence of dynamic criteria in common lookup services the distinction static/dynamic
is however omitted).

Domain Name System (DNS). DNS is very likely to be the most frequently used, static,
name-based lookup system. Components are IP addresses, the specifications are (inter-
nal) host names, the templates are host names as well, and the matching tries to find
the component that registers with a given host name (explicitly) and returns it’s IP if
possible.

Generic Component Lookup 185

Network Information Service (NIS). NIS is one of the oldest type-based, static lookup
systems. Components are the entries of the maps (external), the specifications are map
names (implicit), the templates are either map names or nicknames (e.g., passwd for
passwd.byname), and the matching is the result of the ypcat command.

CORBA. The Common Object Request Broker Architecture (CORBA) [1] defines both
a Naming Service and Trading Object Service for name-based and type-based lookup of
objects respectively. The Naming Service represents the original means of looking up
objects based on a hierarchical naming scheme, where an object is registered (explicit)
and made available by attaching it (external) a unique name N1. · · · .Nn of which each
component Ni is a name/kind-pair. In this case, specifications and templates are both
defined as sets of such pairs. Names for the Java RMI registry, or regular expressions,
are similar in that sense, with n = 1.

The Trading Object Service offers rich combinations of means of defining the service
type of a component. The most preferred way of attaching a type specification to a
component consists in attaching it a name/value-pair. This definition of a component is
external and explicit as well: the “type” describes actual properties of the component
itself, but is not implicit like the actual classification of a component according to the
type system of the considered language/environment.

Note that the OMG has more recently specified the Interoperable Name Service,
defining URL-format object references that can be typed into a program to reach ser-
vices at a remote location, including the Naming Service.

RM-ODP. The Reference Model for Open Distributed Processing (RM-ODP) [2] de-
fines, similarly to CORBA, both a “white pages” (name-based) and “yellow pages”
(type-based) lookup service (both explicit and external), going by the names of relo-
cator and trader respectively. The latter service describes two roles which interacting
components may take: exporters of services, and importers. A service description is an
interface (type) and a set of properties attached to it, and a service offer binds a service
description to a concrete component, which can be a CORBA object or another object.
Properties are thus used to describe specifications and templates, the latter ones being
more precisely combinations of properties; rules are expressed based on properties and
operators (these are called matching criteria).

A novelty of the trader specification is the description of delegation and collabora-
tion among individual trader units, which however does not seem to impact the model
ultimately perceived by an application programmer, as, expressed in our terminology,
specifications are simply cascaded.

UDDI. The universal description, discovery and integration (UDDI) [3] specification
defines a lookup service for Web Services. Such a registry is centered around a public
cloud, a set of replica nodes storing white pages (abstract services by “name”), yellow
pages (by “type”), and green pages (by “description” and “location”). Targeting at Web
Services, UDDI encompasses a set of XML messages for SOAP-based interaction with
registries. Each party is described through a business entity, several of which can be
linked through publisher assertions. A business service is a particular Web Service of-
fered by a business entity. Such a service is described by one or more binding templates,

186 T.G. Bay, P. Eugster, and M. Oriol

which optionally contain textual service descriptions, and URLs for the respective ser-
vices. Finally, binding templates refer to one or more tModels, which contain the point-
ers to actual descriptions of the services offered, and delineate the interaction protocols
with the respective services. All the above-mentioned entities describe a refined pattern
for specifications in the sense of our model introduced before-hand. The enforcing of
authentication is covered in our model by external explicit criteria (see Section 4.5). The
load distribution among nodes forming the public cloud is achieved in our implemen-
tation in an efficient manner by distributing the matching, greatly transparently, over a
peer-to-peer overlay network (see Section 5.1).

Note that UDDI is a rare example of dynamic lookup, where components can be
notified of changes in specifications of other components. Further examples are given
by load balancing, or reuse frequency [4].

Service Groups. Sadou et al. [5] introduce a notion of service group to mediate between
client and server components. These are motivated by the desire for type evolution, e.g.,
the possibility of adding parameters to methods. Just like in RM-OPD, the approach
introduces both a notion of type which reflects provided services (i.e., the server side)
in the terminology introduced by the authors, and a notion of role which represents the
needs of customers (i.e., the client side).

At a first glance, one could hence be brought to viewing the types of [5] as speci-
fications in our case, roles as templates, and service groups as defining the matching,
respectively. However, the emphasis of [5] consists in making services of a given type
available to clients expecting a slightly different type. Service groups are thus a form of
glue aiming at expressing how to pass from a given type to a given role. They consist in
stubs for respective server objects, which transform invocations based on a given role
(the expected type) such as to fit the effective type. In our model, this represents explicit,
internal component registration, and the specifications are made up of the stubs.

In a sense, HydroJ [6] and LuckyJ [7], can be seen as similar approaches to service
groups, as these are also based on some notion of type. Borrow/Lend [8], a derivative
of the Type-based Publish/Subscribe (TPS) abstraction [9], as suggested by the name of
the latter paradigm, in contrast, is primarily based on type-based matching of inherent
Java object types (implicit, internal). The types are augmented by (dynamic) predicate
evaluation, and with keys (explicit, external).

Coordination Spaces. The Borrow/Lend abstraction can in fact be seen as a variant of
the Linda Tuple Space [10] with callback functionalities. The original Tuple Space is
a means of exchanging information among distributed components, based on tuples of
place holders (types) and values, i.e., a mixture of value-based and type-based match-
ing, where values can also be character strings. This demonstrates how thin the border
between types and values is.

Just like Borrow/Lend, Tagged Sets [11] are a variant of Tuple Spaces, where tuple
items can also be predicates (leading to a dynamic evaluation), or keys (symmetric or
asymmetric). Similarly, SecOS [12], supports the use of keys, with a partial matching.
Clearly, any such criterion is explicit and external.

Generic Component Lookup 187

Table 1. Coarse classification of lookup services

Criteria Explicit Implicit

External UDDI, CORBA Naming, Trading,
Java RMI, Linda, Regular Expressions,
Tagged Sets, Borrow/Lend, SecOS

Reuse Frequency, Load Balancing, NIS

Internal HydroJ, LuckyJ, Service Groups, DNS Method Dispatch, Borrow/Lend

2.3 A Note on Values and Types

A distinction that is often made when discussing component lookup is the one between
values and types. This is nicely illustrated by the metaphors of “white pages” and “yel-
low pages” respectively.

However, component lookup in a distributed heterogeneous environment is basically
untyped. Matching components for their “type” boils down to matching such compo-
nents for the name of their type, an internal property of these components. The pos-
sibility of registering several objects under a same given name, as supported by many
systems, illustrates this seamless transition; by doing so, such a name becomes more
a type description than a unique identifier. The issue of matching in such a setting be-
comes essentially a question of depth, in a way similar to the issue of object copy-
ing/cloning [13]. Any categorical distinction between values and types at this level
seems unnatural. This is captured by our abstract notions of specifications and tem-
plates, which will become clearer through the matching model presented in Section 3,
and illustrations thereof in Section 4.

3 Matching Model

The matching model presented in this section has resulted from the desire of capturing
all the different lookup criteria outlined in the previous section.

In our model, the matching of components against requirements builds on the two
basic notions introduced in the previous section, namely specifications and templates.
The former roughly represent actual component descriptions (i.e., server-side views of
components, see Figure 1), and the latter represent requirement descriptions (i.e., client-
side views of components). In our matching model, specifications and templates are
related by matching modules. Our goal is to be able to combine several specifications
and templates into a compact notation and to design a lookup mechanism that sorts the
retrieved components in a list.

Our solution relies on mathematical formulae containing templates. As an example
the formula t0 +3.0− t1∗ t2 combines the three templates t0, t1 and t2. Such a formula
will be evaluated for each component C that has specifications s0, s1 and s2 respectively
corresponding to each template. The evaluation replaces each template with a value
(the matching value) that is calculated by applying a matching function (?i) between
the specifications of the component and the templates. As an example evaluating the
formula with given specifications will return the evaluation of:

(?0(s0, t0) + 3.0−?1(s1, t1)∗?2(s2, t2))

188 T.G. Bay, P. Eugster, and M. Oriol

For each component, this formula yields its matching value. When a client looks
a component up, it is given a list of components sorted by their matching values in
descending order. Components for which the matching value is 0 or below are omitted
from the list. In the remainder of the section we define the theoretical framework to
formalize this intuition using denotational semantics.

3.1 Matching Modules

A matching module is a triplet encompassing a set of specifications S, a set of templates
T and a matching relation ?.

mm ::= (S, T, ?)
where ? : S × T → N

3.2 Specifications

A specification S is itself a set of specification terms si. Informally, a specification term
is the specification for a component according to a given formalism. A template T is
itself a set of templates terms ti. Informally, a template term delineates a set of compo-
nents according to a given formalism. The matching relation ? is a function that takes a
specification term and a template term as arguments and returns a natural number.

In short, we define here what we need for providing ways of matching specifications
and templates. Our goal being to integrate several of these modules into a multi-module
specification, we do not enter into details but rather give examples of this in Section 4.

3.3 Qualified Specifications

A qualified specification term qs is a specification term annotated with a qualifier.

s ∈ Si

val ::= n ∈ N

comp ::= < | > | �= | ≤ | ≥ | =
qualifier ::= required comp val | ∅

qs ::= s qualifier

Qualifiers on specification terms are used as a way for the component provider to order
differences in the treatment of the matching. We specify two different types of quali-
fiers: ∅ that means that we do not modify the basic mechanism (that we always omit
in practice as a notation abuse) and required that allows us to filter and impose a con-
dition on the matching for specific specification terms. This latter qualifier allows us,
in particular to envision security-constrained matching as shown in Section 4.5. Even
if, for now, we only consider the qualifiers required and ∅ we could imagine other
qualifiers that modify the infrastructure’s behavior accordingly.

A component specification CS consists of a set of qualified specification terms that
appear at most once in the set of specifications of a given matching module.

CS ::= {qs1, ..., qsn}
such that ∀ i, j ∈ [1, n] si ∈ s0 sj ∈ s0 ⇒ i = j

A component specification is the way a component provider can describe its
components.

Generic Component Lookup 189

3.4 Templates

A template T∈ T consists of a mathematical formula using mathematical operators and
template terms.

t ∈ Ti

op ::= + | − | ∗ | /
T ::= n ∈ N | t | T op T

The idea is, that unlike qualified specification terms that are composed in a list to make
the component specification, we compose template terms to a mathematical formula
in order to allow component seekers to allocate more weight to some specification. It
also allows to exclude components that answer to a specification by using subtractions
and divisions to lower their matching values and possibly rule them out of the returned
list.

3.5 Matching

The valued matching of a component specification CS with a template T consists
in matching on the specification and calculating its value according to the template
definition. It is defined as follows:

valuedMatch ::= CS?vT

V�·� : valuedMatch → Q ∪ {∞}
V�CS?vn� = n
V�CS?vt� = 0 if � ∃ qs = s0 q0 ∈ CS

such as ∃ mm0 = (S0, T0, ?0) | t ∈ T0, s0 ∈ S0
?(s, t) otherwise

V�CS?vT1 op T2� = V�CS?vT1� op V�CS?vT2�

The intuition behind the matching we describe is the following: each template term
within the mathematical formula of the template is replaced by the result of the appli-
cation of the matching relation between the template term and the specification term of
the component specification.

The matching compliance of a component specification CS with a template T de-
scribes the specification terms matched. It is defined as follows:

compliesToMatch ::= CS?cT

C�·� : compliesToMatch → B

C�{s required comp0 n0}?cT � = TRUE if ∃ t in T s.a. V�s?vt� comp0 n0
FALSE otherwise

C�{s∅}?cT � = TRUE

C�{qs1, ..., qsn}?cT � = C�{qs1}?cT � ∧ ... ∧ C�{qsn}?cT �

As a simple explanation, a template complies with a specification if all the required
conditions on the specifications are fulfilled by any of the basic templates.

190 T.G. Bay, P. Eugster, and M. Oriol

3.6 Component Selection

Finally, we can define the selection mechanism built on top of the valued matching and
the matching compliance. A component C declares its interface in its component spec-
ification CS. The component repository C consists in a set of components stored with
their specifications. These can be selected using the selection operator ↓ that returns a
list of components for which we show the semantics E .

C ::= {(CS1, C1), ..., (CSn, Cn)}
lookup ::= C ↓ T

E�·� : lookup → list of (CSi, Ci)
E�C ↓ T � = {(CS′

1, C
′
1), ..., (CS′

m, C′
m)} ⊆ C

such that
∀i ∈ [1, m], C�CS′

i?cT � and V�CS′
i?vT � > 0

and ∀i, j ∈ [1, m], i < j ⇔ V�CS′
i?vT � ≥ V�CS′

j?vT �

Intuitively, the final result of a component selection on a repository is a list containing
elements from the repository ordered by decreasing matching values. That way, we can
obtain the component that is best adapted regarding to the templates we defined. In the
next section we show examples of such matching modules and how they can be used.

4 Illustration

This section illustrates our generic model of component lookup through a small set
of existing lookup schemes. More examples can be found in a longer version of this
paper [14] (e.g. examples based on nominal and structural subtyping or on reuse fre-
quency [4]).

4.1 Unique Identifiers

As a first simple example, we consider the selection mechanism based on a unique com-
ponent identifier. In that case the matching module can be described by the following
triplet:

mmUId ::= (N, N, ?UId)
where ?UId : N × N �→ { 0, 1 }
?UId(x, y) = 1 ifx = y

0 otherwise

As a first example of use, we can imagine a collection of software components that have
unique identifiers:

C = {({1UId}, C1), ..., ({1337UId}, C1337), ..., ({nUId}, Cn)}
Looking up component identified by number 1337 can be made as follows:

C ↓ 1337UId = {({1337UId}, C1337)}
Note that a variation of this module can be used to describe the DNS.

Generic Component Lookup 191

4.2 Regular Expressions

Among the most widespread and popular descriptions of components are component
APIs, and component documentation. One can imagine selecting components based
on criteria expressed on their textual description, in addition to other specifications.
An example is selecting components according to their author(s), as appearing in the
documentation. This constitutes the case of matching regular expressions (note that we
use the original regular expressions as defined in Kleene algebra):

char ::= a | ...
string ::= char | string string
expr ::= ∅ | char | (expr expr) | (expr + expr) | expr∗
mmregexp ::= (string, expr, ?regexp)

where ?regexp : string × expr �→ N

?regexp(s, e) = number of occurrences of s in e

Now imagine that a user wants to obtain a component for which John Doe is indicated
as the main author of that component in the accompanying documentation and prefer-
ably take the component with the unique identifier 1337. A collection including such a
component could then be:

C = { ({1UId, “...author : John Doe...”regexp}, C1), ...
({1337UId, “...author : John Doe...”regexp}, C1337), ...
({nUId}, Cn)}

Looking up a component fulfilling at least one of these characteristics would then pro-
duce:

C ↓ (1337UId + “ ∗ author : John Doe ∗ ”regexp) =
{ ({1337UId, “...author : John Doe...”regexp}, C1337),

({1UId, “...author : John Doe...”regexp}, C1)}
Looking up a component fullfilling both criteria can be made as follows:

C ↓ (1337UId ∗ “ ∗ author : John Doe ∗ ”regexp) =
{ ({1337UId, “...author : John Doe...”regexp}, C1337)}

4.3 Load Balancing

Another criterion of component linking, is its current load.

mmload ::= (N, ∅, ?load)
where ?load : N × ∅ �→ N+

?load(n) = number of components currently using component n

Imagine that a user wants to obtain the component which is currently experiencing the
smallest load written by John Doe. Suppose also that some components support only
up to 10 clients at the time. A collection containing such components could then be
specified as follows:

192 T.G. Bay, P. Eugster, and M. Oriol

C = {({1UId, “...author : John Doe...”regexp, C1), ...
({1337UId,“...author : John Doe...”regexp, required 1337load < 10.0}, C1337), ...
({nUId, nload}, Cn)}
A programmer wishing to get such a component should perform the following

lookup (note that the result is dependant of the number of clients currently connected
to both components):

C ↓ (“ ∗ author : John Doe ∗ ”regexp/(1.0+load)) =
{ ({1UId, “...author : John Doe...”regexp, C1),

({1337UId, “...author : John Doe...”regexp}, C1337)}

4.4 Compliance to an Interface

It very often happens that programmers want to obtain components that comply to a
given interface. Informally, compliance to an interface is expressed in terms of a struc-
tural subtyping relationship. Suppose that I1 is compliant to I2 if and only if I1 has at
least the same procedures as I2.

p procedure names
t types names
procedure ::= (p, {t0, ..., tn})
I ::= {procedure1, ..., proceduren}
mmcomply ::= (Interfaces, Interfaces, ?comply)

where ?comply : Interfaces × Interfaces �→ {0, 1}
?comply(I1, I2) = 1 iff I2 ⊆ I1, 0 otherwise

Supposing that some components offer procedures to set and get their internal attributes,
the collection of components could be:

C={({1UId, {set a {V oid, string}, get a {string}, decrement {}}comply, C1), ...
({1337UId, “...author : John Doe...”regexp}, C1337), ...
({nUId, nload, {set a {V oid, string}, get a {string}}}comply, Cn)}

Then a program seeking for components that comply to an interface containing set a
and get a could make the following lookup:

C ↓ {set a {V oid, string}, get a {string}}comply =
{ ({1UId, {set a {V oid, string}, get a {string}, decrement {}}comply, C1),

({nUId, nload, {seta {V oid, string}, geta {string}}}comply, Cn)}
Variants of this example are countless as we could return the number of procedures in
common, or the number of lacking procedures etc. However this is the simplest variant
and it corresponds to the approach of service groups [5].

4.5 Secure Linking

By specifying a required clause, a component provider can enforce the matching of a
specification as a necessary precondition for handing out any reference to its compo-
nent. Our current example is presenting encrypted matching and can be considered as

Generic Component Lookup 193

a subset of tagged sets [11] or any other matching mechanisms driven or restricted by
encryption [12, 8].

We call E(K, value) the encryption and D(K, value) the decryption, for which we
give the semantics S�·� that we detail below.

SKey SymetricKeys
AKey Asymmetric Keys (private)
AKey Asymmetric Keys (public)
value ::= basicvalue | valueAKey | valueSKey

e ::= value | E(SKey, e) | E(AKey, e) | D(SKey, e) | D(AKey, e)

S�·� : e �→ value
S�value� = value
S�value� = value
S�E(SKey, e)� = S�e�SKey

S�E(AKey, e)� = S�e�AKey

S�D(SKey, eSKey)� = S�e�
S�D(AKey, eAKey)� = e

The associated matching module is then:

mmCrypt ::= (Keys, Keys, ?Crypt)
where ?Crypt : Keys × Keys �→ {0, 1}

?Crypt(K1,K2)=1 if S�D(K2, E(K1, value))�=value
0 otherwise

A collection containing components being locked by an asymmetric key AKey could
then be :

C = {({1UId, “...author : John Doe...”regexp, C1), ...
({1337UId, “...author : John Doe...”regexp, requiredAKeyCrypt=1.0}, C1337), ...
({nUId, nload, AKeyCrypt}, Cn)}

A programmer wishing to know all the components locked with AKey should then
make the following lookup:

C ↓ AKeyCrypt =
{({1337UId, “...author : John Doe...”regexp, requiredAKeyCrypt = 1.0}, C1337)
({nUId, nload, AKeyCrypt}, Cn)}

Implementation-wise, locking a component with a cryptographic key means that the ac-
cess to the component should be made on the platform where the component is located.
Similarly to tagged sets [11], the keys do not need to transit through the network.

5 COLOS Implementation

This section first presents our Eiffel implementation of the model described in Section 3.
Thereafter, we show how to use the implementation of COLOS in practice.

194 T.G. Bay, P. Eugster, and M. Oriol

5.1 Implementation

The implementation of the COLOS model consists mainly in the specifications, tem-
plates and the surrounding component infrastructure. Currently the framework consists
of 21 classes with 1700 lines of code altogether. We are extending it to more component
models and plan on making it available as open source.

Specifications. LL SPECIFICATION is a list of LL SPECIFICATION TERMs. The de-
ferred (abstract) class LL SPECIFICATION TERM should be subclassed by a program-
mer who wants to define his own matching module. The only mandatory feature to be
implemented returns a STRING representing the name of the corresponding matching
module. The infrastructure already implements the features to look through the speci-
fications given that the LL SPECIFICATION TERMs return the correct matching mod-
ule name. This enables an implementation based on hashtables. Just like for templates,
which are described in following Section, we use the possibility to define our own infix
operators for setting constraints on the specifications that describe a component. The
Eiffel programming language makes it easy to define these operators and together with
automatic conversion functions they allow writing easily readable code.

Templates. To implement our prototype, we relied on two features of the Eiffel
language, namely (1) user-defined infix operators and (2) user-defined automatic type
conversion. Infix operators allow us to compose templates using the infix operators as
defined by the natural mathematical intuition while automatic conversion lets us have
valid types for general mathematical operations. According to the latest definition of
Eiffel and the priority of the operators, the usual priorities apply. The infix operators are
coded into LL TEMPLATE and are thus inherited by all templates. The automatic con-
version from DOUBLE to LL TEMPLATE ensures that we can compose doubles and
templates in a same expression containing infix operators. In short, the Eiffel compiler
(ISE Eiffel 5.7) converts mathematical formulae containing templates by transforming
the doubles that they contain into TEMPLATES. As an example, the formula

template := 2.0∗template0−1.0/(template1−template2)

is automatically transformed by the compiler into:

template :=
((create {LL TEMPLATE}.make from double(2.0))∗template0) −
((create {LL TEMPLATE}.make from double(1.0))/(template1−template2))

The deferred class LL TEMPLATE TERM, inherits from the class LL TEMPLATE.
A programmer wishing to implement a matching module should subclass it and imple-
ment the feature match that takes an LL SPECIFICATION TERM as an argument and
he should also provide a feature returning the name of the matching module as men-
tioned previously. Note that in our infrastructure the only LL SPECIFICATION TERMs
that can be passed as parameter to the match feature are the ones actually belonging to
the same matching module.

Generic Component Lookup 195

Decentralized lookup. The current matching prototype infrastructure performs cen-
tralized component lookup. We are currently in the process of augmenting our imple-
mentation for efficient component lookup in peer-to-peer (P2P) settings, which will
make our infrastructure available as a service within a peer group of JXTA
networks [15].

In order to complete such a decentralized lookup efficiently, it is very useful to be
able to “decompose” the matching. The idea can be viewed as a generalization of
the problem of content-based event routing in P2P networks, where event contents
are viewed as consisting in several properties which are each matched against val-
ues, and an overlay network can be built which regroups participants with common
interests and whose nodes many perform matching of only subsets of the properties
(e.g. [16]).

In order to be able to decompose the matching in the lookup problem, a little help
is however required from the programmer. Both specifications and templates have to
provide access to a tree-based representation of themselves, akin to abstract syntax
trees. The individual tree nodes represent elementary matching operations, and can be
performed in a decentralized, yet minimally redundant, manner.

The logical regrouping of several tModels to a bindingTemplate, several bindingTem-
plates to a businessEntity, and several instances of latter kind to a businessService in
UDDI (see Section 2.2), is but an illustration of such a decomposition.

5.2 Using the Implementation

In the current state of the implementation of COLOS , a programmer wishing to use
the component lookup mechanism can simply instantiate the class LL COMPONENT -
COLLECTION and the components along with their specifications. By subclassing
the two deferred (abstract) classes LL SPECIFICATION TERM and LL TEMPLATE -
TERM, the programmer can implement a matching module. It implies
setting two variables and redefining the feature match. Note that keeping a reference
to the object encapsulating a component with its specification allows revoking parts of
the specification dynamically.

In the following example (see Figures 2 and 3) we show how one describes a com-
ponent and then uses our lookup mechanism to match requirements against the entire
component repository. We see how the specification terms are first declared and en-
riched with the corresponding information. Then they are added to the component’s
specification. Note how the less operator is used to impose a constraint on the spec-
ification about the component’s load. In the second listing (see Figure 3) of the ex-
ample it is shown how to prepare a component lookup. Instead of specifications we
are now preparing templates that are put together to match against the component
repository. The ˆ-operator is used to initiate the matching. In the resulting list the
components are ordered according to rating of the matching in respect to the tem-
plate formula. In this case we are only interested in the component with the high-
est rating and we are therefore only obtaining the first component of the resulting
list.

196 T.G. Bay, P. Eugster, and M. Oriol

uid specification term : LL UID SPECIFICATION TERM
regexp specification term : LL REGEXP SPECIFICATION
load specification term : LL LOAD SPECIFICATION ... create
uid specification term .make (”1337”) create
regexp specification term .make (”This component ...

author : John Doe”)
create load specification term .make (Current.component)

Current. add specification term to spec (uid specification term)
Current. add specification term to spec (regexp specification term)
Current. add specification term to spec (load specification term <10.0)
...

Fig. 2. Specification declaration

uid template : LL UID TEMPLATE regexp tempalte: LL REGEXP TEMPLATE
load template : LL LOAD TEMPLATE component: LL COMPONENT
components: LL COMPONENT COLLECTION ... create uid template.makr
(”1337”) create regexp tempalte .make (”∗author: John Doe∗”) create
load template .make component:=
(componentsˆ((uid template +regexp tempalte) /(1.0+ load template))) . get first component
...

Fig. 3. Using the lookup infrastructure

6 Conclusions

Lookup mechanisms are an essential part of the very foundations of distributed com-
ponent interaction. Various systems and specifications have been proposed in the liter-
ature, each targeting at a specific setting.

We have presented COLOS , a generic model of component lookup, which can be
used to express most predating lookup schemes. COLOS matches component specifi-
cations against templates using mathematical formulae. We have described this match-
ing through denotational semantics, illustrated it through various examples, and
presented an implementation of COLOS in Eiffel. The implementation reflects ex-
actly the theory and uses automatic transformations as well as infix operators to obtain
extremely compact and intuitive code. We envision the definition of further “common”
matching modules, and intend to implement our framework on top of a fully decentral-
ized peer-to-peer overlay network. Furthermore, we plan to port it to a wider range of
programming languages and platforms in order to obtain interoperability.

References

1. Group, O.M.: The Common Object Request Broker Architecture: Core Specification, Ver-
sion 3.0.3. OMG (2004)

2. Blair, G., Stefani, J.B.: Open Distributed Processing and Multimedia. Addison-Wesley
(1997)

Generic Component Lookup 197

3. ShaikhAli, A., Rana, O., Al-Ali, R., Walker, D.: Uddie: An extended registry for web ser-
vices. In: SAINT-W ’03: Proceedings of the 2003 Symposium on Applications and the
Internet Workshops (SAINT’03 Workshops). (2003) 85

4. Pauls, K., Bay, T.: Reuse Frequency as Metric for Dependency Resolver Selection. In:
Component Deployment: Third International Working Conference, CD 2005. Volume 3798.
(2005) 164–176

5. Sadou, S., Koscielny, G., Mili, H.: Abstracting Services in a Heterogeneous Environment. In:
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001).
(2001) 141–159

6. Lee, K., LaMarca, A., Chambers, C.: Hydroj: object-oriented pattern matching for evolvable
distributed systems. In: OOPSLA ’03: Proceedings of the 18th annual ACM Conference on
Object-Oriented Programing, Systems, Languages, and Applications. (2003) 205–223

7. Oriol, M., Di Marzo Serugendo, G.: A disconnected service architecture for unanticipated
run-time evolution of code. IEE Proceedings-Software, Special Issue on Unanticipated Soft-
ware Evolution 151(2) (2004) 95–107

8. Eugster, P., Baehni, S.: Abstracting Remote Object Interaction in a Peer-to-Peer Environ-
ment. Concurrency & Computation: Practice and Experience 17(7-8) (2005)

9. Eugster, P., Guerraoui, R.: Distributed Programming with Typed Events. IEEE Software
2(21) (2004) 56–64

10. Carriero, N., Gelernter, D.: Applications experience with Linda. ACM Sympos. on Parallel
Programming (1985)

11. Oriol, M., Hicks, M.: Tagged Sets: A Secure and Transparent Coordination Medium. In: 7th
Int. Conf. on Coordination Models and Languages. (2005)

12. Bryce, C., Oriol, M., Vitek, J.: A Coordination Model for Agents Based on Secure Spaces.
In: 3rd Int. Conf. on Coordination Models and Languages. (1999) 4–20

13. Gregono, P., Sakkinen, M.: Copying and Comparing: Problems and Solutions. In: 14th
European Conference on Object-Oriented Programming (ECOOP 2000). (2000) 226–250

14. Bay, T., Eugster, P., Oriol, M.: A First Order Model of Component Lookup. Technical report,
Swiss Federal Institute of Technology in Zurich (ETHZ) (2006)

15. Oaks, S., Gong, L.: Jxta in a Nutshell. O’Reilly & Associates, Inc. (2002)
16. Eugster, P., Guerraoui, R.: Probabilistic Multicast. In: 3rd IEEE International Conference on

Dependable Systems and Networks (DSN 2002). (2002) 313–323

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 198 – 205, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using a Lightweight Workflow Engine in a Plugin-Based
Product Line Architecture

Humberto Cervantes and Sonia Charleston-Villalobos

Universidad Autonoma Metropolitana-Iztapalapa (UAM-I),
San Rafael Atlixco Nº 186, Col. Vicentina, C.P. 09340, Iztapalapa. D.F., Mexico

{hcm, schv}@xanum.uam.mx

Abstract. This paper presents a software product line architecture where
applications are assembled by installing a set of plugins on a common software
base. In this architecture, the software base embeds a lightweight workflow
engine that guides the main flow of control and data of the application. This
architecture eliminates the problem of scattered flow of data and control and
facilitates plugin substitution. This architecture is currently being used to build
a biomedical engineering research application on top of the Eclipse platform.

1 Introduction

In recent years, computer users have witnessed the emergence of a wave of successful
applications whose functionalities can be extended via the addition of plugins. Plugins
are binary extension units for an application whose architecture allows functionalities
to be introduced by end-users at well-defined places once the application has been
installed. Plugins are software entities that are closely related to components.
Component-based development, however, does not usually consider that components
can be added to applications after the applications have been installed. Components
are rather used to facilitate the construction of the applications themselves (extensible
or not) [9].

Building an application as a plugin-based system makes sense both from a
technical and an economical point of view. Technically it makes sense because the
approach promotes a high level of modularity and decoupling between the base (or
main) application and the plugins which can be developed independently, helping
reduce delivery periods. Economically, the approach also makes sense, since a
developer can concentrate on the development of the base application or the deve-
lopment of its extensions. Furthermore, since development lifecycles are independent,
plugins can be deployed separately from the base application. Plugin deployment
activities, which are usually performed by end users, include install, update and
removal of the plugins.

A field where the plugin-based approach can be particularly useful is the
construction of software product lines. Software product lines represent sets of
applications (typically from a common application domain) that share features and are
developed by reusing certain elements, such as an architectural foundation [1]. If this
architectural foundation is built following a plugin-based approach, the construction
of the different applications can be achieved by installing different sets of plugins on

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 199

top of the foundation. One difficulty with this approach resides, however, in the fact
that applications must typically execute workflows associated with their particular
domain. In the case where an application is built as a set of plugins installed on a
common foundation, the control and data flow of the application is usually scattered
among the foundation and the set of plugins that compose the application. This
situation limits the possibility of plugin update or substitution, since it is difficult for
replacement plugins to guarantee that they implement the correct part in the control
and data flow.

This paper proposes a solution to this problem that introduces concepts from
workflow-based applications into a plugin-based architecture. Workflow-based
applications support the definition and execution of business processes. In such appli-
cations, the definition and execution of the appropriate control and data flow, and the
invocation of the application logic blocks are externalized. As a consequence, changes
to the process can be done without impacting the application logic blocks which
become independent from the main data and control flow and as a consequence can
be replaced more easily [5]. The work presented in this paper is currently being
applied in the construction of a biomedical engineering research application on top of
the Eclipse platform.

The remainder of the paper is structured as follows: section 2 discusses plugin-
based application development using Eclipse and discusses the scattered flow of
control problem, section 3 describes the proposed architecture, section 4 presents
current and future work respectively, section 5 presents related work and finally,
section 6 concludes the paper.

2 Plugin-Based Application Development

This section discusses plugin-based application development and the problem of
scattered flow of control. Due to space restrictions, discussion around plugins focuses
mainly on the Eclipse platform, which is used to implement the ideas described in this
paper.

2.1 Plugin-Based Applications and Eclipse

Today, a wide variety of plugin-based applications exist; these applications include
web browsers, image editing tools and integrated development environments (IDEs).
All of these tools are characterized by the fact that they are built as standalone
applications that provide an initial degree of functionality when installed. This func-
tionality is available even when no plugins are present; for example, when a web
browser is installed, it allows pages to be read but multimedia content cannot usually
be displayed.

Among plugin-based applications, the Eclipse platform [4] has some particular
characteristics. This platform was originally conceived as a foundation to facilitate the
construction of IDEs. As such it provided, in addition to standard elements such as a
text editor, development facilities that included team development support. A specific
development environment could be built by adding a set of tools, for example a
compiler for a particular language, to the base platform. The different tools were

200 H. Cervantes and S. Charleston-Villalobos

delivered as plugins. Today, the Eclipse platform has evolved from being an IDE-
oriented foundation to become a generic plugin-based application foundation.
Development specific elements have been moved out of the base platform which is
now called the Rich Client Platform [6]. The Rich Client Platform (RCP) provides the
minimal functionality required to allow all-purpose plugin-based client-side
applications to be built on top of it.

Eclipse’s plugin model allows plugins to interact directly with other plugins and
not only with the base application. As a result, plugins can be composed in a similar
way to components. Eclipse's plugins provide extensions when they contain new
functionalities to be introduced into the base application or into another plugin.
Plugins can also declare extension points which are locations where other plugins can
introduce their own extensions and enrich the original plugin’s functionality.
Furthermore, extension points are always optional, meaning that any provider of an
extension point must be capable of functioning even if no provider of extensions for
that extension point are present. Finally, the vision behind the Eclipse’s architecture is
that everything is built out of plugins, including the base RCP itself, which currently
consists of around 11 different plugins whose presence is mandatory. The plugins that
form the RCP manage plugin deployment activities and declare a series of extension
points which allow other plugins to introduce new functionalities such as toolbars,
menu entries and views. Today, the RCP is gaining much momentum as the Eclipse
IDE itself facilitates enormously the task of constructing plugin-based applications on
top of the RCP through its Plugin Development Environment (PDE).

2.2 The Structure of an Application Developed on Top of Eclipse

In a certain way the Eclipse’s plugin approach is a hybrid between “traditional”
plugin approaches and component-based development. In Eclipse, a customized (or
extended) base platform is assembled by selecting a set of plugins that will provide
functionalities that are added to the basic ones already provided by the RCP. Once
assembled, this extended base platform is delivered to end users as a standalone
application. The plugins that form this application may not be removed afterwards.
However, after this application is installed, end users can continue extending the
functionality of the application by installing additional plugins into it. The archi-
tecture of a typical application built on top of the RCP is depicted in figure 1. This
figure also shows that plugins can interact directly among each other without
extending the base platform.

2.3 The Problem of Scattered Flow of Control

Eclipse plugins typically provide user interface elements that allow the user to interact
with the application. These user interface elements, such as buttons on a toolbar, for
example, are associated with handlers that can invoke methods declared on an
interface provided by a different plugin's extension. In such a situation the logic that
guides the flow of control and data of the application ends up being scattered among
the plugin set and the base platform. This situation can limit the substitutability of the
plugins used to build the application. For instance, when a plugin is substituted by
another plugin, either by a newer version or by a different plugin that provides the

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 201

Rich Client Platform

Plugin Plugin

Plugin

Plugin

Extension point

Extension

Plugin

Plugin

Extended base platform

Fig. 1. Architecture of an application built on top of the Eclipse Rich Client Platform

same extension, the replacing plugin must correctly implement its predecessor's part
of the flow of control and data that is necessary for the application to function
correctly.

In today's applications these problems are addressed by limiting substitutability
and by constraining the places where plugins can extend the base application. This
solution is, however, undesirable for the context of plugin-based product line
architectures, where it is necessary to allow a large number of plugins to be sub-
stituted by completely different sets.

3 A Workflow-Based Product Line Architecture

This section introduces the concepts workflow-based applications and discusses how
these concepts are used to solve the problem exposed in the previous section.

3.1 Workflow-Based Applications

Workflow-based applications support the definition and execution of business
processes (composed of activities associated to a particular domain). In such
applications, the definition and execution of the appropriate control and data flow,
and the invocation of the application logic blocks are externalized. This allows the
workflow to be changed without impacting the application logic blocks [5]. In
workflow-based applications, logic blocks become flow-independent in the sense that
they do not contain application logic associated with the execution of the business
process. This facilitates the replacement of logic blocks.

3.2 Using Workflows in a Plugin-Based Product Line Architecture

To limit the problem of scattered flow of data and control and to facilitate plugin
substitutability and reusability, the concepts of workflow-based applications can be
introduced in a plugin-based product line architecture. The fundamental idea is to
limit the degree of direct interaction among plugins and to introduce a third party (a
mediator) responsible for controlling the application's main flow of control and data.

202 H. Cervantes and S. Charleston-Villalobos

Acquisition Processing Visualization

[Processing required]

[No processing required]

DataBuffer [acquired]

DataBuffer [processed]

Project Management [acquire]

[exit]

Fig. 2. Typical workflow found in DSP applications for biomedical research

In the context of this work, this idea has been used to create a plugin-based product
line architecture oriented towards the construction of digital signal processing (DSP)
applications for biomedical engineering research. In this field, these applications are
generally guided by the workflow depicted in figure 2. This main workflow contains
four different activities: project management, data acquisition, processing and
visualization. The activity diagram shows that data that is acquired can be visualized
immediately or be processed by applying different algorithms before visualization.
Each of the activities of the main workflow is itself guided by a specific sub-
workflow. Figure 3 shows the sub-workflow associated to the acquisition activity in
the main workflow. This sub-workflow allows users to test the acquisition device
before performing the actual data acquisition and storing the corresponding data.

Configure acquisition parameters Test acquisition device
[test]

Acquire

[acquire]

Display data

Store

DataBuffer

Configuration [correct]

DataBuffer

Configuration [tested]

Fig. 3. Detail of the sub-workflow associated to the acquisition activity

To achieve a workflow based approach in plugin-based product line architecture,
the different workflow definitions are contained and executed by the product-line
architecture. Figure 4 illustrates how this is achieved: the product-line architecture,
which is the common element to specific applications, is constructed as an extended
Eclipse base platform that contains a lightweight workflow engine. Plugins are
associated with particular activities, such as data acquisition or visualization. Every
plugin's extension interface provides methods that fall into three different categories.
The first category of methods allow the workflow engine to control the execution of

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 203

Fig. 4. Architecture with the lightweight workflow engine

an activity. The second category allows the workflow engine to register itself as an
observer of activity events. The events produced by the plugins include activity
termination and cancellation. The third category of methods allow the workflow
engine to perform data transfer. As a result, workflows are executed as the engine
initiates activities and receives notifications from the plugins.

Finally, even tough the approach described here requires that plugins associated
with different activities to not interact directly, it does not limit plugins associated to a
particular activity from providing extension points that allow other plugins to extend
their functionality. An example of this occurs in the plugin associated with the data
storage activity in figure 4, this plugin can be extended by specialized plugins that
allow the data to be stored in different formats. The fact that the data storage plugin is
extended by other plugins is, however, irrelevant to the application's workflow.

4 Current Results and Future Work

The work presented in this paper is part of an ongoing project that is realized at the
Universidad Autónoma Metropolitana Iztapalapa in Mexico City. This project
received an Eclipse innovation grant from IBM in 2005. The goal of this project is to
build an application to acquire data obtained from respiratory sounds. This application
will be deployed in a hospital environment where it will allow both physicians to
better diagnose certain respiratory conditions and biomedical researchers to gather
data on the field. This project is realized following the Unified Process development-
methodology and is currently in the construction phase. A screen capture of an
executable prototype for the project is depicted in figure 5. This prototype is built on
top of the base architecture described in the previous section.

Future work includes the construction of a different but related application on top
of the same product-line architecture with a set of different plugins. Other areas of
interest include the use of a language to describe the workflows (currently this is done

204 H. Cervantes and S. Charleston-Villalobos

Fig. 5. Screenshots of the application

programmatically). Furthermore, workflow description could itself be delivered via
plugins to facilitate extension. A final area of interest to the authors is the possibility
of supporting dynamic deployment activities in the application, this would include the
install, update and removal of the plugins during execution.

5 Related Work

The work presented in this paper is related to three main research areas which include
component-based software development, product line architectures and workflow-
based applications.

5.1 Component-Based Software Development

As mentioned before, components and plugins have similar features. Examples of
existing component models are JavaBeans [8] and the CORBA Component Model
[7]. Such models are successfully used today in the construction of applications both
on the client and on the server side. However, component models are not really
oriented towards supporting plugin-oriented features such as end-user managed
evolution or the interaction with an extensible application core. It is possible to
implement a plugin-based architecture over a standard component model, but this is
not straightforward.

5.2 Software Product Line Architectures

Among the core assets of a software product line, the software architecture plays the
most central role [1]. One of the most successful plugin-based product line
architectures is the original Eclipse platform, which allowed different IDEs to be
built. A framework that supports the construction of plugin-based product line archi-
tectures is described in [2]. The approach proposed, however, does not deal with the
issue of scattered flow of control.

5.3 Workflow-Based Applications

The concepts of workflow-based applications are particularly popular in the area of
service oriented architectures (SOA). The Business Process Execution Language

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 205

(BPEL) supports the execution of processes that interact with web services [3]. There
are some similarities between SOA and plugin-based architectures: the plugin-based
application core is similar to a service requester that searches the plugin registry to
discover available services (provided by registered plugins). Once the core finds
them, it interacts with these service providers. In service orientation, there are no
guarantees that a service requester may find a particular service; this is the same for a
plugin-based application since there is no guarantee that a particular plugin will be
present. There are, however, some differences with SOA, since in SOA, service
providers and requesters may arrive or depart constantly, and such a high level of
dynamism is not currently present in plugin-based architectures.

6 Conclusions

This paper has presented a plugin-based software product line architecture where the
architecture embodies a lightweight workflow engine to facilitate plugin substi-
tutability and specific product development. This architecture is currently being
applied in the construction of a biomedical engineering research tool. It must be noted
that the ideas presented in this paper are not specific to plugin-based applications;
they can also be beneficial to the construction of standard component-based
applications.

Acknowledgments. The authors wish to acknowledge IBM for its financial support,
and the students who are participating in the project and who make it possible.

References

1. Bass, L. and Clements, P. and Kazman, R., “Software Architecture in Practice (2d
Edition),” Addison Wesley, 2003

2. Caporuscio, M. and Muccini, H. and Pelliccione, P. and Di Nisio, E. “Towards a Plugin-
based Implementation of Product Line Architectures,” unpublished paper found online at
http://se2c.uni.lu/tiki/se2c-bib_abstract.php?id=1948. Visited 01/06

3. Curbera, F. and Al., "Business Process Execution Language (BPEL) for Web Services,
Version 1.1," Online document at http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/, last visited 01/06

4. The Eclipse Foundation, Official Eclipse Homepage at http://www.eclipse.org, last visited
01/2006.

5. Leymann, F. and Roller, D., "Workflow-based applications," IBM Systems Journal, Vol. 36,
No. 1, (pp. 102), 1997.

6. McAffer, J. and Lemieux, J-M., “Eclipse Rich Client Platform,” Eclipse Series, Addison
Wesley, 2006

7. Object Management Group (OMG), “CORBA Component Model, Version 3.0,” Online
document available at http://www.omg.org/technology/documents/formal/components.htm,
June 2002

8. Sun Microsystems, “Java Beans Specification, Version 1.01”, Available online at
http://java.sun.com/products/javabeans/, July 1997.

9. Clemens Szyperski, “Component Software: beyond object-oriented programming,” 2d
Edition, Addison-Wesley Professional, 2002.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 206 – 221, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Formal Component Framework for Distributed
Embedded Systems

Christo Angelov, Krzysztof Sierszecki, Nicolae Marian, and Jinpeng Ma

Mads Clausen Institute for Product Innovation, University of Southern Denmark,
Grundtvigs Alle 150, 6400 Soenderborg, Denmark

{angelov, ksi, nicolae, jinpeng}@mci.sdu.dk

Abstract. The widespread use of embedded systems mandates the development
of industrial software design methods based on formal models (frameworks)
and prefabricated components. This paper presents a formal specification of the
COMDES framework, focusing on the main architectural issues and the specific
line of reasoning that was followed while developing a hierarchy of executable
models describing relevant aspects of system structure and behaviour. The
above framework has been used to systematically define a hierarchy of reusable
and reconfigurable components - simple and composite function blocks, recon-
figurable state machines and function units - implementing the executable mod-
els presented in the paper.

1 Introduction

The widespread use of embedded systems mandates the development of industrial
software design methods, i.e. computer-aided design and engineering of embedded
applications using formal models (frameworks) and repositories of prefabricated
components, following practices already established in mature areas of engineering,
such as mechanical engineering and electronics.

A framework is defined hereafter as a set of executable models that are used to
specify relevant aspects of system structure and behaviour. Furthermore, executable
models are implemented as reusable and reconfigurable components that can be
stored in permanent memory in binary format and used as building blocks for embed-
ded applications. With this approach, model-based configuration is substituted for
model-based program generation, whereby the configuration specification is stored in
data structures containing relevant information such as component parameters,
input/output links, sequence of execution, etc. Hence, it is possible to reconfigure
applications by updating data structures rather than reprogramming the application
and reloading the newly generated code.

The main problem that has to be addressed in this context is to develop a compre-
hensive, yet intuitive and open framework for embedded systems. There are currently
a considerable number of frameworks and component models, which have been de-
veloped by various research groups and organizations. Most of them have their ori-
gins in the traditional Software Engineering domain, e.g. components with operational
interfaces and various types of port-based objects [1, 2, 8, 16-18]. However, it can be
argued that the proper way of developing such frameworks is to use decomposition

 A Formal Component Framework for Distributed Embedded Systems 207

criteria that are derived from the areas of control engineering and systems science,
taking into account that modern embedded systems are predominantly control and
monitoring systems [5]. This approach has been used for some time with industrial
control systems, whose software is built from component objects (function blocks)
that implement standard application functions and interact by exchanging signals.
Accordingly, function blocks are ‘softwired’ into function block diagrams that
are mapped onto real-time control tasks, e.g. standards IEC 61131-3 [6] and IEC
61499 [7].

However, this is a relatively low-level solution, which is inadequate for modern
embedded systems. The latter vary from simple applications to highly complex, time-
critical and distributed systems featuring autonomous subsystems (function units) that
have to interact with one another within various types of distributed transactions. The
above standards do not provide modeling techniques and component definitions at
this level, subsystem and task interaction is not specified either, and distributed sys-
tems are implemented in a non-transparent fashion using so-called service interface
function blocks [7].

Therefore, the basic control engineering approach has to be extended into a systems
engineering approach, in order to take into account the complexity of real-world ap-
plications. The framework must support compositionality and scalability through a
well-defined hierarchy of reusable and reconfigurable components. On the other hand,
it has to adequately specify system behaviour for a broad range of sequential, con-
tinuous and hybrid applications. Last but not least, the modeling techniques and nota-
tions used must be intuitive and easy to understand by application experts.

These guidelines have been used to develop the COMDES framework (Compo-
nent-based Design of Software for Distributed Embedded Systems), which has been
informally presented elsewhere [8-10]. This paper presents a formal specification of
the framework, focusing on the main architectural issues and the specific line of rea-
soning that was followed in order to systematically develop executable models
describing various aspects of system structure and behaviour. These have been im-
plemented as a hierarchy of executable components such as function units, function
unit activities and function blocks. Furthermore, the models have been used to sys-
tematically derive tabular data structures that can be used to represent system configu-
rations in a computer-aided software development environment.

The rest of the paper is organized as follows: Section 2 presents a top-down speci-
fication of system structure in terms of subsystems (function units) and their interac-
tions, as well as the internal structure of function units. The latter are modeled as
software integrated circuits encapsulating autonomous threads of control – activities,
which are built from function blocks. Section 3 presents a specification of system
behaviour, which combines the reactive and transformational aspects of activity be-
haviour into a hierarchical executable model (hybrid state machine), which is imple-
mented as a function block of class State Machine. The discussion is illustrated with a
real example – a DC Motor Speed and Direction Control System, which has been im-
plemented as a time-driven distributed control system operating in a Controller Area
Network. Related research is discussed in Section 4. A summary of the proposed
software design method and its implications is given in the concluding section of the
paper.

208 C. Angelov et al.

2 Specification of System Structure

2.1 Embedded Control System Specification

The embedded control system is conceived as a composition of software components
(function units) that may be viewed as the software equivalent of subsystems such as
sensor, controller, actuator, etc., which have to be softwired with one another in order
to configure particular applications. Accordingly, function units interact by exchang-
ing signals, i.e. labeled messages (pressure, temperature, etc.), within various types of
distributed transactions such as producer-consumer and client-server. Producer-
consumer communication, and in particular - state message communication - is con-
sidered better suited for real-time applications because of its non-blocking nature and
inherent support for broadcast/multicast interaction [14]. Therefore, this type of inter-
action will be assumed in the following discussion.

Under this assumption, the control system configuration can be described by a
function unit diagram, i.e. a data flow graph (DFG) specifying function units and their
interactions. The latter can be formally specified as:

DFG = ‹ U, S, M › , (1)

where U is the set of function units; S is the set of communication variables (signals)
generated by various function units, where each signal si ∈ S, is defined in terms of
constituent variables: si = { v1

i, v2
i, …, vk

i }.
It is obvious that:

S =
)(U
Yi , (2)

where Yi is the subset of signals generated by the function unit ui ∈ U.
Accordingly, M is a set of mappings:

M = { Mu1, Mu2, …, Mun } , (3)

where Mui: ui → U is a mapping specifying the subset of function units receiving
signals from the function unit ui ∈ U. Furthermore, it is possible to represent Mui as:

Mui =
)(iY
M(sj / sj ∈Yi) , (4)

where M(sj) is a subset of function units receiving signal sj ∈ Yi generated by the
function unit ui ∈ U.

By defining the above mappings for each function unit and signal generated, it is
possible to derive the subset of input signals Xi for each function unit ui ∈ U, result-
ing in the construction of a data flow graph whose arcs are labeled with the signals
exchanged between various function units. It can be explicitly specified using a
graphical notation – a function unit diagram, e.g. Fig. 1. Alternatively, the data flow
graph can be specified implicitly by defining the subsets Xi and Yi , i.e. the signals re-
ceived and sent out, for each one of the constituent function units ui ∈ U (see also
Tables 1 and 2).

The function unit diagram represents the static aspect of subsystem interaction. The
dynamic aspects are to be treated in the context of system reactions to specific events
that are executed as distributed transactions. However, complex potentially distributed

 A Formal Component Framework for Distributed Embedded Systems 209

reactions can be viewed as a sequence of local reactions executed by function unit ac-
tivities in response to various types of events, i.e. timing, external and message arrival
events (see next section). Activities are mapped onto real-time tasks, e.g. Sensor (S),
Controller (C) and Actuator (A), which are executed in a timed multitasking envi-
ronment (see Fig. 2).

DCVoltage

FU_OperationStation

FU_Sensor FU_Controller FU_Actuator

Se
ns

or
S

pe
ed

O
S

tationS
ync S

en
so

rS
pe

ed

S
ensorS

peed

O
StationM

ode

O
S

tationS
ync

C
ontrollerV

oltage

pulses

O
S

tationS
etpoint

O
S

tationM
anualV

oltage

O
S

tationP
aram

eters

O
S

tationS
ync

O
S

tationM
ode

O
S

tationSetpoint

O
S

tationM
anualV

oltage

O
S

tationParam
etersC

on
tro

lle
rV

ol
ta

ge

C
on

tro
lle

rV
ol

ta
ge

Fig. 1. Control system specification: DC motor control system - function units and signals

tik tok tok+1tik+1I/O

A

C->A

C

S->C

S

Periodic timing event

Deadline event

Message arrival event

T

D(D<T)

Fig. 2. Function unit interaction in a distributed timed multitasking environment

210 C. Angelov et al.

Table 1. DC motor control system: function units and their interactions

Function unit – ui Signals received – Xi Signals sent – Yi
pulses (physical input)

FU_Sensor
OstationSync

SensorSpeed

SensorSpeed
OStationSetpoint
OstationMode
OStationManualVoltage

FU_Controller

OStationParameters

ControllerVoltage

OstationSync
FU_Actuator

ControllerVoltage
DCVoltage (physical output)

SensorSpeed OStationSync
ControllerVoltage OStationSetpoint

OStationMode
OStationManualVoltage

FU_OperationStation

OStationParameters

Table 2. DC motor control system: messages (signals) exchanged between function units

Constituent variables – vj
i
 ∈ si External signals – si ∈ S Message

priority Name Type Unit
OstationSync 7 timeStamp ULONG tick
OStationMode 6 automaticManual UBYTE boolean
OStationManualVoltage 5 i_volt float Volt
SensorSpeed 4 realRPM float RPM
ControllerVoltage 3 o_volt float Volt
OStationSetpoint 2 setRPM float RPM

Kp float Volt/RPM
Ki float Volt/RPM
Kd float Volt/RPM

OStationParameters 1

Ts float second

Timed multitasking is characterized by split-phase execution of tasks and drivers,

whereby I/O drivers are executed atomically at precisely specified time instants, i.e.
task release and deadline instants, whereas application tasks are executed in a dy-
namic scheduling environment [16]. This technique makes it possible to effectively
eliminate I/O jitter, while retaining the inherent flexibility of dynamically scheduled
systems.

Detailed discussion of distributed transactions goes beyond the scope of this paper;
more information is given in the paper [10], which presents function unit interaction
under Distributed Timed Multitasking. This is an extended model combining timed
multitasking and transparent signal-based communication in the context of the
COMDES framework, which is supported by the timed-multitasking version of the
HARTEX kernel. Subsequent discussion will focus on the specification of function

 A Formal Component Framework for Distributed Embedded Systems 211

units and function unit activities, as well as their composition from executable com-
ponents such as function blocks.

2.2 Function Unit Specification

The function unit (FU) is an active object encapsulating one or more threads of
control (activities) that generate application-specific reactions in response to certain
timing and/or external events.

Formally, a function unit can be defined as:

FU = ‹ X, Y, E, A › , (5)

where X and Y are the sets of input and output signals, respectively; E is the set of
activating events; A is the set of activities, triggered by events e ∈ E.

In the general case, the set of input signals can be presented as:

X = XL XR , (6)

where XL is the set of local (physical) input signals that might be analog, discrete or
binary-coded, depending on the application; XR is the subset of remote input signals,
i.e. signal messages that are generated by remote devices and communicated over the
network; XR ⊂ S.

Likewise, Y = YL YR, where YL is the subset of locally generated (physical)
output signals and YR is the subset of remote output signals, i.e. signals that are sent to
remote devices via the communication network; YR ⊂ S.

This aspect of the specification is illustrated by Table 1, e.g. function unit
FU_Controller, where XR = { SensorSpeed, OStationSetpoint, OStationMode,
OStationManualVoltage, OStationParameters }, and YR = { ControllerVoltage }.

The above definition has also structural implications: input and output signals are
associated with internal components – signal drivers that are used to communicate
with other function units and the environment. These may be triggered at precisely
specified time instants within various types of distributed transactions [10]. In
particular, input drivers are executed when the activity task is released, whereas
output drivers are executed when its deadline arrives or when the task comes to an
end (if no deadline has been specified).

An incoming signal is received by an input signal driver (ISD), which converts the
signal xi ∈ X into a subset of internal variables v1

i, v2
i, … , vk

i depending on the
composition of the message, e.g. OStationParameters = { KP, KI, KD, TS }.

The union of these subsets defines the set of internal function unit variables V:

V = V
)(X

i ,

(7)

where Vi = { v1
i, v2

i, … , vk
i } is the subset of internal signals constituting the input

signal xi ∈X.
Internal input variables are processed by FU activities whereby each activity Aj is

associated with a subset of relevant variables Vj, such that:

V =
)(A
 Vj . (8)

212 C. Angelov et al.

 Likewise, each output signal is associated with an output signal driver (OSD),
which converts a subset of internal variables, e.g. w1

i, w2
i, … , wk

i into the
corresponding output signal yi ∈ Y.

The union of these subsets defines the set of internal output variables:

W =
)(Y
 Wi , (9)

where Wi = { w1
i, w2

i, … , wk
i } is the subset of internal signals constituting the output

signal yi∈Y.
Internal output variables are generated by FU activities, whereby each activity Aj is

associated with a subset of relevant variables Wj, such that

W =
)(A
 Wj . (10)

The above discussion can be illustrated with the specification of function unit
FU_Controller (see Fig. 3 and Tables 3, 4 and 5).

o_voltController
ControllerVoltage

OSD1

realRPMISD1

SensorSpeed

setRPMISD2

OStationSetpoint

automaticManualISD3

OStationMode

i_voltISD4

OStationManualVoltage

KP

ISD5

OStationParameters
KI

KD

TS

Fig. 3. Function unit specification: FU_Controller

Table 3. Function unit FU_Controller: input signal drivers, input signals and internal signals
produced

ISD Input signals – xi ∈ X Internal signals produced – vj
i ∈ xi

ISD1 SensorSpeed realRPM
ISD2 OStationSetpoint setRPM
ISD3 OStationMode automaticManual
ISD4 OStationManualVoltage i_volt

KP
KI
KD

ISD5 OStationParameters

TS

 A Formal Component Framework for Distributed Embedded Systems 213

Table 4. Function unit FU_Controller: activities and internal signals consumed and produced

Activities – Ai
Internal

signals consumed – Vj
Internal

signals produced – Wj
realRPM
setRPM
automaticManual
i_volt
KP
KI
KD

Controller

TS

o_volt

Table 5. Function unit FU_Controller: output signal drivers, internal signals consumed and
output signals produced

OSD Internal signals consumed – wj
i ∈ yi Output signals – yi ∈ Y

OSD1 o_volt ControllerVoltage

Finally, the set of activating events E can be specified as:

E = Et Ee Em . (11)

Here, Et is the set of timing events, Et = { ↑ (kTi) }; Ee is the set of external events, Ee

= { ↑ xj }; Em is the set of message arrival events, Em = { ↑ mj }. Events are processed
by function unit activities that generate output signals in response to specific events
(see next section).

3 Specification of System Behaviour

System behaviour can be specified in terms of global and local reactions that are gen-
erated in response to certain events taking place in the environment. A global reaction
corresponds to a distributed transaction involving a subset of communicating function
units/activities (e.g. Fig. 2), whereas a local reaction corresponds to a transaction
phase executed by a function unit activity.

Avoiding excessive detail involving the internal representation of system signals, it
can be seen that every activity A∈A is essentially associated with subsets of activat-
ing events E ∈ E, input signals X ∈ X and output signals Y ∈Y. The occurrence of
the event e(t) ∈ E triggers the activity A, resulting in a sequence of computations im-
plementing some input-to-output signal transformation, which ends up with the gen-
eration of one or more output signals, e.g. yk ∈Y. The latter can be described by a
function, defined on a subset of input signals x ∈X, such that yk(t) = fk(x(t)) and yk(t)
can be viewed as a reaction to the occurrence of event e(t):

rj : e(t) → yk(t), yk ∈ Y . (12)

Consequently, the behavior of the activity A, as a whole, can be specified in terms
of the corresponding subsets of reactions and signal transformation functions.

214 C. Angelov et al.

The above discussion highlights two basic and interrelated aspects of system
behavior, i.e. the reactive and transformational (signal processing) aspects. Currently
used models emphasize one of these two aspects depending on the application
context. For example, discrete-event control systems usually emphasize the reactive
aspect of system behavior, in the context of event-driven operation and control flow
models, e.g. state machines. Conversely, continuous control systems emphasize the
transformational aspect in the context of continuous data flow models such as
function block diagrams. This has resulted in widely differing design methods and
languages for continuous and sequential control systems.

Such a differentiation of system models is largely artificial, and it clearly comes
into conflict with the nature of real plants, which are more or less hybrid, even if they
are treated as predominantly discrete or continuous. This is even more obvious in
complex hybrid control systems, e.g. modal control systems.

The above problem can be solved via an augmented process (activity) model,
which takes into account both the reactive and the transformational aspects of system
behaviour. Such a model can be specified in terms of activating events, input and
output signals, as follows:

A = ‹ X, Y, E, R, F › , (13)

where: X is the set of input signals processed by A, X ⊆ X; Y is the set of output
signals generated by A, Y ⊆ Y; E is the set of events activating A, E ⊆ E; R is a
function specifying system reactions, i.e. output signals that have to be generated by
the activity in response to certain events in E, and F is a set of functions that specify
the computation of output signals during the execution of system reactions.

3.1 Specification of Reactive Behaviour

System reactions can be determined via the function R, specifying which output sig-
nal(s) have to be generated in response to certain activating events. This function can
be derived given certain assumptions about the type of system, e.g. continuous, se-
quential or hybrid control system.

In the general case, activity behaviour can be modeled with a state machine,
whereby the generation of a control signal y(t) at time t is dependent on the current
state q(t); q ∈Q, where Q is the set of states. The transition to the current state is de-
fined in terms of a previous state q(t-), an activating event e(t), and eventually the
value of some guard g(t), g ∈G, where G is a set of guards (predicates) defined in the
set of input signals X.

Accordingly, the reaction function can be defined as a partial function:

R: Q × E × G → Y . (14)

Furthermore, it can be shown to be a composition of a state transition function ς

and an output function σ , such that R = σ ° ς. Here, the state transition function is
defined as a partial function:

ς : Q × E × G → Q , (15)

 A Formal Component Framework for Distributed Embedded Systems 215

and the output function is:

σ : Q → Y . (16)

Consequently, for each qm ∈ Q, and for a subset of events and the corresponding
subset of guards enabling transitions out of that state, it is possible to define a subset
of successor states Nqm = { qn1, qn2, …, qnr }, to be further denoted as the next-state
mapping of qm . Accordingly, each state qnj is associated with one or more output sig-
nals yi ∈Y that constitute the reaction to the event triggering the transition to that
state.

Applying that technique to all states results in the construction of the state transi-
tion graph (STG) of the activity:

STG(A) = ‹ Q, X, Y, E, G, N, O › , (17)

where N is the set of next-state mappings: N = { Nqi }, Nqi: qi → Q, and O is the set
of output mappings: O = { Oqi }, Oqi: qi → Y. It is assumed that the STG satisfies
completeness and consistency requirements [13].

This discussion is illustrated with the hierarchical state transition graph shown in
Fig. 4. It specifies the reactive behaviour of the Controller activity, which is triggered
by a periodically arriving timing event ↑ (kT). The first-level state machine of that
model is also presented in tabular form (see Table 6).

automaticManual == AutomaticautomaticManual == Manual

automaticManual == Manual

q0/Init

q2/AutomaticControlq1/ManualControl

automaticManual == Automatic

H

AutomaticManual

Left2Right Right2Left

q1/LeftControl

q0/StopMotor

q2/RightControl

q3/WaitForStop

 Stopped & RightStopped & Left

LeftRotation
RightRotation

Stopped

H

Fig. 4. Specification of reactive behaviour: Controller state machine (first and second level)

216 C. Angelov et al.

Table 6. Controller state machine (first level)

Next state mapping
Nq(t-)

Event
e(t)

Guard
g(x(t))

Next state
q(t)

Action
y(t) ↔ q(t)

Nq0 ↑ (kT) 1 q3 WaitForStop
↑ (kT) Left2Right q0 StopMotor

Nq1
↑ (kT) LeftRotation q1 LeftControl
↑ (kT) Right2Left q0 StopMotor

Nq2
↑ (kT) RightRotation q2 RightControl
↑ (kT) Stopped & Left q1 LeftControl

↑ (kT) Stopped & Right q2 RightControl Nq3

↑ (kT) ¬Stopped q3 WaitForStop

The above definition has obviously the semantics of a Moore machine. However, it

has been further extended, so as to cover the behavior of various types of control
system, i.e. continuous, discontinuous as well as hybrid controllers. To that end,
system reactions are co-defined by the corresponding signal transformation functions,
whose arguments can be any type of input signal – on/off (Boolean), binary-coded
(integer) or analog (real), depending on the application context.

3.2 Specification of Transformational Behaviour

Signal transformation functions specify how the output signals are generated for the
corresponding system reactions and the associated activity states. Specifically:

∀ yi ∈ Y, ∃ fi ∈ F: yi(t) = fi (x1
i(t), x2

i(t), …, xm
i(t)), xj

i ∈ X , (18)

i.e. each output signal can be specified with a function that describes the
transformation, involving one or more input signals, that must be applied in order to
generate the output signal.

In the general case fi may specify a complex signal transformation that might be
represented as a composite function:

fi = ii
l

i
l 11 ... ϕϕϕ − , (19)

where i
jϕ are basic application functions encapsulated into reusable components

called function blocks (FBs).
The introduction of composite functions has thus important implication not only

for system behavior but also – for system structure that has to be modeled at the lower
(activity) level. There are basically two types of model that can be used to specify a
sequence of computations corresponding to a composite function: control flow
models, e.g. computation sequence graphs, and data flow models, which are also
known as function block diagrams. The latter have been traditionally used by control
engineers to specify the computation of control signals for both continuous and
discontinuous control applications [6]. Function block diagrams may also be used to
specify computations needed for the evaluation of guard variables (e.g. a Boolean flag
indicating that a process variable value is higher than its Hi-limit).

 A Formal Component Framework for Distributed Embedded Systems 217

A function block diagram is a data flow graph that can be defined in terms of
function blocks and their connections. A function block is defined as:

FB = ‹ I, J, Z, › , (20)

where: I is a set of input signals; J is a set of output signals; Z is a set of internal
(persistent) variables, and is a set of functions relating output signals to input
signals, parameters and persistent variables. Accordingly, the function block diagram
can be formally specified as a data flow graph, using notations similar to those already
introduced in the context of higher-level function unit diagrams (see section 2.1).

In our example, the second level state machine executes the control action
AutomaticControl within state q2 (see Fig. 4). This control action is specified with a
function block diagram composed of function blocks PID and MUX, implementing
the desired control signal transformation (see Fig. 5). That diagram is also presented
in tabular form in Table 7, where the positioning of function blocks implies their
execution sequence, in accordance with the flow of signals in the diagram.

A function block diagram can be ultimately encapsulated into a higher-level
component, i.e. a composite function block (CFB). The latter is externally
indistinguishable from a basic function block; the only difference is that its function is
a composite one but this is transparent to the external observer.

PID

cs_autom
atic

realRPM

KP

KI

KD

TS

setRPM

MUX o_volt

Fig. 5. Specification of transformational behaviour: function block diagram of control action
AutomaticControl (state q2 of the second level of Controller state machine)

Table 7. Control action AutomaticControl: function block diagram

FB type[instance]
Function
ϕi ∈ Φ

Input: internal
signal – vi ∈ I

Output: internal
signal wi ∈ J

Param_KP: KP
Param_KI: KI
Param_KD: KD
Param_TS: TS
ProcesVariable: realRPM

PID[1] pid

Setpoint: setRPM

Control signal:
cs_automatic

Input1: cs_automatic
Input2: cs_manual MUX[1] channel1
Input3: cs_stop

MUXOutput: o_volt

218 C. Angelov et al.

3.3 Combining the Reactive and Transformational Aspects of Activity Behavior

The same principle of encapsulation can be used to ultimately represent the mecha-
nism of generating reaction signal yi using a composite function of even higher order:

yi = iψ (x) , (21)

where:

iψ = fi R . (22)

However, this is a hierarchical type of composition, whereby ∀ (ei, yj), iψ∃ : (R(ei)

= yj) → (yj = fj(x)).

Composite functions jψ constitute the set , which can be used to redefine a

function unit activity:

A = ‹ X, Y, E, › , (23)

where represents an integral body of computation, which is always executed in
response to events ei ∈ E. This computation can be encapsulated into a
reconfigurable function block of class State Machine [9, 11]. This is essentially a
hybrid state machine in the sense that it can process discrete and/or analog input
signals, and likewise – generate discrete and/or continuous control signals. It can be
configured so as to implement different instances of the constituent functions R and fi,
in accordance with the requirements of specific applications (see e.g. Fig. 6).

FB State Machine o_volt

realRPM

i_volt
KP

KI

KD

TS

setRPM
automaticManual

Configuration of Controller state machine
(as specified in Figs. 4 and 5)

Controller activity

Fig. 6. Controller activity implemented with an instance of function block State Machine

The above formulation can be further simplified assuming time-driven execution,
whereby the activity is triggered by periodically arriving timing events { ↑ (kT)}.
Hence,

A = ‹ X, Y, › , (24)

where represents the body of computation executed with every timing event.

 A Formal Component Framework for Distributed Embedded Systems 219

The generalized model of activity behavior has important implications. In
particular, this model makes it possible to uniformly specify activity structure and
behavior in terms of function blocks belonging to the COMDES component hierarchy
[9]. In simple terms, this means that an activity is always specified and implemented
with function blocks. These may be simple and/or composite function blocks – with
continuous control systems, and function blocks of class State Machine – with
sequential or hybrid control systems. In the latter case complex behavior is
transparent, i.e. it is hidden in the corresponding instance of the function block.

4 Related Research

Component frameworks developed in the Software Engineering domain use most of-
ten some kind of port-based objects (PBOs). Port-based objects provide for loose
coupling between components, which facilitates system reconfiguration. However,
there are different PBO types, ranging from passive objects [12] to active single-
threaded objects used in frameworks such as Port-Based Objects, Giotto and Timed
Multitasking [16-18], as well as multi-threaded and composite port-based objects, e.g.
ROOM [3]. Port-based objects can be combined with different models of computation
resulting in widely differing frameworks – from very simple ones to heterogeneous
and hierarchical frameworks, featuring sophisticated interaction protocols and com-
plex component interfaces, e.g. ‘polymorphic’ interfaces used in Ptolemy II [4] or pa-
rameterized port objects [12].

The use of port-based objects results in relatively complex models featuring multi-
ple ports and port connections (diagram clutter), e.g. replicated and relay ports used in
composite port-based objects [3]. This problem is avoided in frameworks developed
in the Control Engineering domain by adopting domain-specific modelling and inter-
action techniques, i.e. function block diagrams and signal-based communication
[6, 7]. However, these are essentially flat models that are nor quite adequate for com-
plex hierarchical and distributed systems. That observation has motivated the devel-
opment of the COMDES framework, which has been specifically designed to address
the above issues. This has been achieved through a well-defined hierarchy of compo-
nents featuring transparent signal-based communication between components and
subsystems (function units).

Another limitation of industrial standards is the use of function blocks having only
stateless (transformational) behaviour, e.g. basic and composite function blocks that
implement specific signal transformations such as filter, PID, etc. This limitation has
been relaxed in the newer standard IEC 61499, where function blocks incorporate a
simple modal state machine [7]. However, that state machine is ‘hardwired’ in the
function block, i.e. it uses a predefined set of inputs and outputs and its configuration
cannot be changed without reprogramming. This problem has been addressed in
COMDES by developing a function block of class State Machine, featuring a fully re-
configurable execution control state machine [11].

Furthermore, it is possible to invoke continuous signal-processing function blocks
within the states of the execution control state machine. This feature is usually not
supported in hierarchical state machine models but it is present in hybrid models, such
as mode automata implemented in LUSTRE [15] and heterogeneous models

220 C. Angelov et al.

combining the state-machine and data-flow domains in Ptolemy II [4]. However, these
are not implemented as reusable and reconfigurable components.

Finally, is should be noted that instances of function block State Machine can be
hierarchically nested. Thus, it is possible to implement complex behaviours similar to
those that can be specified by Statecharts and other hierarchical/concurrent state ma-
chine models. However, in our case the model is executable - it can be implemented
using prefabricated components, i.e. function blocks, following the principle “what
you specify is what you verify, execute and test”.

5 Conclusion

The paper has presented COMDES - a domain-specific framework for hard real-time
distributed control systems.

Under this framework, distributed applications are specified in terms of autono-
mous subsystems (function units), such as sensor, actuator, control unit, operator
station, etc., that have to be suitably configured and softwired with one another. Ac-
cordingly, function units are conceived as software integrated circuits encapsulating
one or more dynamically scheduled activities, as well signal drivers that are used to
communicate with the outside world and other function units. Activities are config-
ured from prefabricated components - function blocks, whereby activity structure is
described with a function block diagram. Activity behaviour is specified in terms of
hybrid state machines – a hierarchical executable model that takes into account both
the reactive and the transformational aspects of system behaviour. Hence, it can be
potentially used to specify a broad range of embedded applications such as discrete,
continuous and hybrid control systems.

The presented framework has been used to systematically develop design patterns
for reusable components - simple and composite function blocks and reconfigurable
state machines, implementing the executable models presented in the paper. These
have been validated in a number of real-time control experiments, e.g. a distributed
control system of an industrial plant specified in the Production Cell Case Study. A
prototype version of a system configuration toolset is now under development.

Signal-based communication is an outstanding feature of the COMDES framework.
Software components, and specifically - function units, interact by exchanging sig-
nals, i.e. labeled messages with state message semantics, rather than using I/O ports or
operational interfaces. This feature facilitates system reconfiguration and provides for
transparent communication between function units, resulting in flexible and truly
open distributed systems.

Signal-based communication is also used for internal interactions involving activi-
ties belonging to one and the same function unit, as well as function blocks constitut-
ing an activity. Consequently, activities do not need shared data structures and never
block during execution. Hence, the application is configured entirely from non-
blocking components that communicate by exchanging signals with state message
semantics. This has obvious implications for system safety and predictability.

The above model of communication has been further elaborated using the concept
of Distributed Timed Multitasking. This technique can be used to eliminate I/O jitter

 A Formal Component Framework for Distributed Embedded Systems 221

and thus engineer highly predictable distributed systems while retaining the flexibility
and ease of reconfiguration that are inherent to dynamically scheduled systems.

References

1. ARTIST Project IST-2001-34820: Selected Topics in Embedded Systems Design: Road-
maps for Research. Project report (2004)

2. European Research Consortium for Informatics and Mathematics: ERCIM News, N 52,
(2003) Special Issue on Embedded Systems

3. Selic B., Gullegson G., and Ward P.T.: Real-Time Object-Oriented Modeling. John Wiley
& Sons (1994)

4. Lee, E.A, Xiong, Y.: System-Level Types for Component-Based Design. Proc. of the First
Workshop on Embedded Software EMSOFT’2001, Lake Tahoe USA (2001)

5. Software Technologies, Embedded systems and Distributed systems in FP6. Workshop on
Software Technologies, Embedded Systems and Distributed Systems in the 6th Framework
Programme for EU Research, Brussels, Belgium (2002)

6. John, K.H., Tiegelkamp, M.: IEC 61131-3: Programming Industrial Automation Systems.
Springer (2001)

7. Lewis, R.: Modeling Control Systems Using IEC 61499. Institution of Electrical Engineers
(2001)

8. Angelov, C., Sierszecki, K., and Marian, N.: Component-Based Design of Embedded
Software: an Analysis of Design Issues, in N. Guelfi et al. (Eds.): FIDJI 2004, LNCS
3409, (2005) 1-11

9. Angelov, C., Sierszecki, K.: A Software Framework for Component-Based Embedded
Applications. Proc. of the Asia-Pacific Software Engineering Conference APSEC'2004,
Busan Korea (2004)

10. Angelov, C., Berthing, J., Sierszecki, K., and Marian, N.: Function Unit Specification in a
Timed Multitasking Environment. Proc. of the 17th International Conference on Software
and Systems Engineering and Their Applications ICSSEA’04, Paris France (2004)

11. Angelov C., Sierszecki K. and Marian N.: Design Models for Reusable and Reconfigur-
able State Machines, in L.T. Yang et al. (Eds): Embedded and Ubiquitous Computing
EUC 2005, LNCS 3824, (2005) 152-163

12. Wang S., Shin K.G.: Constructing Reconfigurable Software for Machine Control Systems.
IEEE Trans. on Robotics and Automation, 18 (4), (2002) 475-486

13. Heimdahl, M. P. E., Leveson, N.G.: Completeness and Consistency Analysis of State-Based
Requirements. IEEE Transactions on Software Engineering, TSE 22(6), (1996) 363-377

14. Kopetz, H.: Real-Time Systems, Design Principles for Distributed Embedded Applica-
tions, Kluwer Academic Publishers (1997)

15. Maraninchi, F., Remond, Y.: Applying Formal Methods to Industrial Cases: the Language
Approach (The Production-Cell and Mode-Automata). Proc. of the 5th International
Workshop on Formal Methods for Industrial Critical Systems, Berlin (2000)

16. Liu J., and Lee E.A.: Timed Multitasking for Real-Time Embedded Software. IEEE Con-
trol Systems Magazine: Advances in Software Enabled Control, (2003) 65-75

17. Stewart D.B., Volpe R.A., and Khosla P.K.: Design of Dynamically Reconfigurable Real-
Time Software Using Port-Based Objects. IEEE Trans. on Soft. Eng., TSE 23(12), (1997)
759-776

18. Isovic D., Norström C.: Components in Real-Time Systems. Proc. of the 8th Int. Conf. on
Real-Time Comp. Systems and Applications RTCSA’2002, Tokyo Japan (2002)

A Prototype Tool for Software Component
Services in Embedded Real-Time Systems

Frank Lüders1, Daniel Flemström1, Anders Wall2, and Ivica Crnkovic1

1 Dept. of Computer Science and Electronics, Mälardalen University
Box 883, SE-721 23 Väster̊as, Sweden

{frank.luders, daniel.flemstrom, ivica.crnkovic}@mdh.se
2 ABB Corporate Research, Forskargränd 8, SE-721 78 Väster̊as, Sweden

anders.wall@se.abb.co

Abstract. The use of software component models has become popu-
lar during the last decade, in particular in the development of software
for desktop applications and distributed information systems. However,
such models have not been widely used in the domain of embedded real-
time systems. There is a considerable amount of research on component
models for embedded real-time systems, or even narrower application
domains, which focuses on source code components and statically con-
figured systems. This paper explores an alternative approach by laying
the groundwork for a component model based on binary components
and targeting the broader domain of embedded real-time systems. The
work is inspired by component models for the desktop and information
systems domains in the sense that a basic component model is extended
with a set of services for the targeted application domain. A prototype
tool for supporting these services is presented and its use illustrated by
a control application.

1 Introduction

The use of software component models has become increasingly popular during
the last decade, especially in the development of software for desktop applications
and distributed information systems. Popular component models include Jav-
aBeans [5] and ActiveX [4] for desktop applications and Enterprise JavaBeans
(EJB) [11] and COM+ [15] for distributed information systems. In addition to
basic standards for naming, interfacing, binding, etc., these models also define
standardized sets of run-time services oriented towards the application domains
they target. Unlike for these domains, there has been no widespread use of soft-
ware component models in the domain of real-time and embedded systems, pre-
sumably due to the special requirements such systems have to meet with respect
to timing predictability and limited use of resources. Much research has therefore
been directed towards defining new component models for real-time and embed-
ded systems. Typically, such models are based on static configurations of source
code components and target relatively narrow application domains. Examples
include the Koala component model for consumer electronics [22], PECOS for
industrial field devices [6], and SaveCCM for vehicle control systems [7].

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 222–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Prototype Tool for Software Component Services 223

An alternative approach is to strive for a component model based on binary
components and targeting a broader domain of applications, similar to the do-
main targeted by a typical real-time operating system. The approach pursued
in this paper is to provide a combination of restrictions and extensions of an
existing component model to adapt it to our target domain. Adapting an exist-
ing component model has several advantages: It may be possible to use existing
(integrated) development environments; existing components can be re-used or
adapted for the real-time domain; integration with application from other do-
mains becomes significantly simpler, and so on.

Our previous work has demonstrated that the key concepts of the Component
Object Model (COM) [3] can be used with advantage in the development of an
embedded real-time system [10]. A study of COM and its extension Distributed
COM (DCOM) [17] shows that these models are not inherently incompatible
with real-time requirements, although some restrictions on how the models are
used may be necessary to ensure predictability [9]. Some reasons that COM is an
attractive starting point are that the model is relatively simple, commercial COM
implementations are already available for a few real-time operating systems,
and COM is already well-known and accepted in industry. The goal of this
paper is to lay the groundwork for a software component model for embedded
real-time systems by using the basic concepts of COM as the starting point
and extending the basic model with standardized services of general use for this
application domain, much like COM+ extends COM with services for distributed
information systems.

The remainder of the paper is organized as follows. In Section 2 we clarify
what we mean by software component services and identify some useful services
for embedded real-time systems. Section 3 is an overview of a prototype tool we
are developing to support such services, including an example control application
to demonstrate the use of the tool. Related work is reviewed in Section 4 and
conclusions and some ideas for further work are presented in Section 5.´

2 Component Services

In this paper we define component services as solutions to common problems
that can be added to components without modifying them and with little or
no adaptation of application code. This is similar to the concept of component
services in EJB and COM+, where examples of services include transaction
control, data persistence, and security. Our focus is on services that address
common challenges in embedded real-time systems, including logging, synchro-
nization, and timing control. Traditionally, such functions have to be hand coded
and off line deduced using complex theories, which can be very time consuming
and sometimes impossible in complex industrial systems. If third party compo-
nents are used, it may also be impossible to implement functions by modifying
the components. In the following subsections we describe some of the services
we have identified in more depth and outline how they may be implemented.
In general, we propose that services are implemented through the use of proxy

224 F. Lüders et al.

Fig. 1. Implementing a logging service through a proxy object

objects, which are automatically generated from configuration files written in an
XML based format.

2.1 Logging

A logging service allows the sequence of interactions between components to
be traced. Our suggested solution for achieving this is to use a proxy object as
illustrated in the UML class diagram in Fig. 1. In the diagram, the object C2
implements an interface IC2 for which we wish to apply a logging service. A
proxy object that also implements IC2 is placed between C2 and a client that
uses the operations exposed through IC2. The operations implemented by the
proxy forward all invocations to the corresponding operations in C2 in addition
to writing information about parameter values, return codes, and invocation and
return times to some logging medium. To add logging of all operation invocations
through an interface, we simply add an entry in the configuration file:

<application>
...
<component name="myProject.C2">
<interface name="IC2">

<service type ="Logging"/>
</interface>

</component>
...
</application>

No programming is required in the client C1 or the component C2. To add
logging only for a particular operation, the entry is modified as follows:

<interface name="IC2">
<operation name="DoSomething">
<service type ="Logging"/>

</operation>
</interface>

2.2 Execution Time Measurement

This service allows operation invocations to be monitored and information about
execution times accumulated. Different measurements, such as worst-case,

A Prototype Tool for Software Component Services 225

best-case, and average execution time may be collected. A possible use of the in-
formation is to dynamically adapt an on-line scheduling strategy. The suggested
solution is to use a forwarding proxy that measures the time elapsed from each op-
eration call till it returns and collects the desired timing information. As with the
logging service, the time measurement service is specified in the configuration file:

<interface name="IC2">
<service type="Timing">
<measurement type="Mean" />
<measurement type="Worst"/>

</service>
</interface>

Again, no programming is required.

2.3 Synchronization

A synchronization service allows components that are not inherently thread-
safe to be used in multi-threaded applications. The suggested solution is to use
forwarding proxies that use the basic mechanisms of the underlying operating
system to implement the desired synchronization policies. A synchronization
policy may be applied to a single operation or to a group of operations, e.g.
all operations of an interface or a component. Several different policies may be
useful and will be described further in this section. Most synchronization policies
rely on blocking and it may be useful to combine such policies with timeouts
to limit blocking time. If the blocking time for an operation call reaches the
timeout limit, the proxy return an error without forwarding the call. A more
advanced timeout policy is one where the proxy tries to determine if a call can
be satisfied without violating the timeout limit a priori and, if not, returns an
error immediately.

The simplest synchronization policy is mutual exclusion, which blocks all op-
eration calls except one. After the non-blocked call completes, the waiting calls
are dispatched one by one according to the priority policy. This policy may be
applied merely by adding an entry in the configuration file but, if timeouts are
used, the client should be able to handle the additional error codes that may
arise. Another class of synchronization policies is different reader/writer policies.
These differs from the previously described policy in that any number of calls
to read operations may execute concurrently, while each call to write operations
has exclusive execution. Thus, the operations subjected to a reader/writer policy
must be classified as either writer or reader operations, depending on whether
they may modify state or not. Concurrent read calls are scheduled according to
their priorities.

Using this policy requires that it be specified for each operation whether it is
a read or write type of operation. This can be done in the component specifica-
tion (e.g. a COM IDL file) or in the configuration file. If this is left unspecified
for an operation, the proxy must assume it may write data. No programming is
required, except possibly to handle error codes resulting from timeouts. For all

226 F. Lüders et al.

synchronization policies, we may select if the priority of the dispatching thread
should be the same as the calling thread, or explicitly specified in the configu-
ration file. A specification of a reader/writer policy may look as follows:

<interface name="IC2">
<service type="Synchronization" policy="RWPolicyX"/>
<operation name="DoSomething" type="Write"/>
<operation name="WriteData" type="Write"/>
<operation name="ReadData" type="Read" />

</interface>

2.4 Execution Timeout

This service can be used to ensure that a call to a component´s operation always
terminate within a specified deadline, possibly signaling a failure if the operation
could not be completed within that time. The solution is to use a proxy that
that use a separate thread to forward each operation call and then wait until
either that thread terminates or the deadline expires. In the latter case the
proxy signals the failure by returns an error code. Also, it is possible to specify
different options for what should be done with the thread of the forwarded call
if the deadline expires. The simplest option is to forcefully terminate the thread,
but this may not always be safe since it may leave the component in an undefined
and possibly inconsistent state. Another option is to let the operation call run
to completion and disregard its output. Obviously, using this service requires
that the client is able to handle timeouts. Again, the service is specified in the
configuration file:

<interface name="IC2">
<service type="Timeout" deadline="10ms" fail="Terminate"/>

</interface>

2.5 Vertical Services

In addition to the type of services discussed above, which we believe are generally
useful for embedded real-time systems, one can imagine many services aimed at
more specific application domains, often called vertical services [8]. Among the
services we have considered are cyclic execution, which are much used in process
control loops [1], and support for redundancy mechanisms such as N-version
components, which are useful in fault-tolerant systems [2]. The prototype tool
presented in the next section includes an implementation of a cyclic execution
service.

3 Prototype Tool

This section outlines a prototype tool we are developing that adds services to
COM components on Microsoft Windows CE. The tool generates source code for
proxy objects implementing services by intercepting method calls to the COM

A Prototype Tool for Software Component Services 227

Fig. 2. Generating a proxy object for a component service

objects. The tool takes as inputs component specifications along with a spec-
ification of the desired services for each component. Component specifications
may be in the form of Interface Definition Language (IDL) files or their binary
equivalent Type Library (TLB) files. Desired services are either specified in a
separate file using an XML-based format or in the tool´s graphical user interface,
described further below. Note that access to component source code is not re-
quired. Based on these inputs, the tool generates a complete set of files that can
be used with Microsoft eMbedded Visual C++ (sic) to build a COM component
implementing the proxy objects (i.e., the proxies are themselves COM objects).
This process is depicted in Fig. 2.

3.1 Design Consideration

The use of proxy objects for interception is heavily inspired by COM+. However,
rather than to generate proxies at run-time, we suggest that these are generated
and compiled on a host computer (typically a PC) and downloaded to the em-
bedded system along with the application components. There, the proxy COM
classes must be registered in the COM registry in such a way that proxy ob-
jects are placed between interacting application components. This process may
occur when the software is initially downloaded to the system or as part of dy-
namic reconfiguration of a system that supports this. In the latter case, one can
imagine updating or adding proxies without updating or adding any applica-
tion components. The current version of the tool only generates proxy code and
does not address the registration and run-time instantiation of components. This
means that the client code must instantiate each proxy along with the affected
COM object and set up the necessary connection between them. A desirable

228 F. Lüders et al.

improvement would be to automate this task, either by generating code that
performs setup for each proxy object or by extending the COM run-time envi-
ronment with a general solution.

We consider staying as close as possible to the original COM and COM+ con-
cepts an important design goal for the tool. Another goal is that the programmer
or integrator should be able to choose desired services for each component with-
out having to change the implementation or doing any programming. There are
however cases, e.g. when adding invocation timeouts, where there is a need for
adapting the code of the client component to fully benefit from the service. Spe-
cific to COM is that a component is realized by a set of COM classes that,
in turn, each implements a number of interfaces. All interfaces have a method
called QueryInterface that allows changing from one interface to another on the
same COM class. Since each proxy is implemented by a COM class, which must
satisfy the definition of QueryInterface, we must generate one proxy for each
COM class to which we wish to add any services.

3.2 Supported Services

Fig. 3 shows the graphical user interface of the tool. After a TLB or IDL file
has been loaded all COM classes defined in the file are listed. Checking the
box to the left of a COM class causes a proxy for that class to be generated
when the button at the bottom of the tool is pressed. Under each COM class,
the interfaces implemented by the class is listed and, under each interface, the
operations implemented by the interface. In addition, the available services are
listed with their names set in brackets. Checking the box to the left of a service
causes code to be generated that provides the service for the element under
which the service is listed. In the current version of the tool, a service for cyclic
execution may only be specified for the IPassiveController interface (see example
below), while all other services may only be specified for individual operations.
Checking the box to the left of an interface or operation is simply a quick way
of checking all boxes further down in the hierarchy.

If the cyclic execution service is checked, the proxy will implement an inter-
face called IActiveController instead of IPassiveController (see example below).
Checking the logging service results in a proxy that logs each invocation of the
affected operation. The timing service causes the proxy to measure the execu-
tion time of the process and write it to the log at each invocation (if timing
is checked but not logging, execution times will be measured but not saved).
The synchronization service means that each invocation of the operation will
be synchronized with all other invocations of all other operations on the proxy
object for which the synchronization service is checked. The only synchroniza-
tion policy currently supported is mutual exclusion. The timeout service has a
numeric parameter. When this service is selected (by clicking the name rather
than the box) as in Fig. 3, an input field marked Milliseconds is visible near the
bottom of the tool. Checking the service results in a proxy where invocations
of the operation always terminate within the specified number of milliseconds.
In the case that the object behind the proxy does not complete the execution

A Prototype Tool for Software Component Services 229

Fig. 3. The graphical user interface of the prototype tool

of the operation within this time, the proxy forcefully terminates the execution
and returns en error code.

3.3 Example Application

To illustrate the use of the tool we have implemented a component that encap-
sulates a digital Proportional-Integral-Differential (PID) controller [1]. For the
purpose of comparison, we first implemented a component that does not rely
on any services provided by the tool. Fig. 4 shows the configuration of a an
application that uses this component. PIDController is a COM class that im-
plements an interface IActiveController and relies on the two interfaces ISensor
and IActuator to read and write data from/to the controlled process. For the
purpose of this example, these interfaces are implemented by the simple COM
class DummyProcess that does nothing except returning a constant value to the
controller. The interfaces are defined as follows:

230 F. Lüders et al.

Fig. 4. An application using a controller component without services

interface ISensor : IUnknown {
[propget] HRESULT ActualValue([out, retval] double *pVal);

};
interface IActuator : IUnknown {

[propget] HRESULT DesiredValue([out, retval] double *pVal);
[propput] HRESULT DesiredValue([in] double newVal);

};
interface IController : IActuator {

[propget] HRESULT SensorInterface([out, retval] ISensor **pVal);
[propput] HRESULT SensorInterface([in] ISensor *newVal);
[propget] HRESULT ActuatorInterface([out, retval] IActuator **pVal);
[propput] HRESULT ActuatorInterface([in] IActuator *newVal);
[propget] HRESULT CycleTime([out, retval] double *pVal);
[propput] HRESULT CycleTime([in] double newVal);
[propget] HRESULT Parameter(short Index, [out, retval] double *pVal);
[propput] HRESULT Parameter(short Index, [in] double newVal);

};
interface IActiveController : IController {

[propget] HRESULT Priority([out, retval] short *pVal);
[propput] HRESULT Priority([in] short newVal);
HRESULT Start();
HRESULT Stop();

};

IController is a generic interface for a single-variable controller with config-
urable cycle time and an arbitrary number of control parameters. PIDController
uses three parameters for the proportional, integral, and differential gain. IAc-
tiveController extends this interface to allow control of the controller´s execution
in a separate thread. The reason for splitting the interface definitions like this is
that we wish to reuse IController for a controller that uses our cyclic execution
service rather than maintaining its own thread. Note that IController inherits
the DesiredValue property from IActuator. This definition is chosen to allow the
interface to be used for cascaded control loops where the output of one controller
forms the input to another.

A Prototype Tool for Software Component Services 231

The test application TestControl1.exe creates one instance of PIDController
and one instance of DummyController. It then connects the two objects by set-
ting the SensorInterfaca and ActuatorInterface properties of the PIDController
object. After this it sets the cycle time and the control parameters before in-
voking the Start operation. This causes the PIDController object to create a
new thread that executes a control loop. A simple timing mechanism is used to
control the execution of the loop in accordance with the cycle time property.
At each iteration the loop reads a value from the sensor interface, which it uses
in conjunction with the desired value, the control parameters, and an internal
state based on previous inputs to compute and write a new value to the actuator
interface. To minimize jitter (input-output delay as well as sampling variability),
this part of the loop uses internal copies of all variables, eliminating the need
for any synchronization.

Next, the control loop updates its internal variables for subsequent iterations.
Since the desired value and the control parameters may be changed by the ap-
plication while the controller is running, this part of the loop uses a mutual
exclusion mechanism for synchronization. In addition to performing its control
task the loop timestamps and writes the sensor and actuator data to a log. The
control loop is illustrated by the following pseudo code:

while (Run) {
WaitForTimer();
ReadSensorInput();
ComputeAndWriteActuatorOutput();
WriteDataToLog();
WaitForMutex();
UpdateInternalState();
ReleaseMutex();

}

Note that, due to the simple timing mechanism, the control loop will halt unless
all iterations complete within the cycle time.

Next, we implemented a component intended to perform the same function,
but relying on services provided by generated proxies. A test application using
this component and generated proxies is shown if Fig. 5. In this application,
PIDController is a COM class that implements the IPassiveController interface.
Note that, although this COM class has the same human readable name as in
the application described above, it has a distinct identity to the COM run-time
environment. To avoid confusion we use the notation Control2.PIDController
when appropriate. IPassiveController extends IController as follows:

interface IPassiveController : IController {
HRESULT UpdateOutput();
HRESULT UpdateState();

};

These operations are used by the PIDController Proxy object to implement a
control loop that performs the same control task as in the previous example.

232 F. Lüders et al.

Fig. 5. An application using a controller component with services

PIDController Proxy was generated with the use of the tool by checking the
cyclic execution service under the Control2.PIDController´s IPassiveController
interface and the synchronization service under the UpdateState operation as
well as the operations for accessing the desired value and the control para-
meters. The DummyProcess Proxy provides the interface pointers for the con-
troller´s SensorInterface and ActuatorInterface properties. Behind this proxy is
a DummyProxecess object with the same functionality as in the previous exam-
ple. DummyProcess Proxy was generated by the tool with the logging service
checked. As a result, all data read and written via the sensor and actuator
interfaces are logged. The interfaces ISensor Proxy, IActuator Proxy and IPID-
Controller Proxy are only used to set up the connections between proxies and
other objects. They are defined as follows:

interface ISensor_Proxy : IUnknown {
HRESULT Attach([in] ISensor *pTarget);

};
interface IActuator_Proxy : IUnknown {

HRESULT Attach([in] IActuator *pTarget);
};
interface IPIDController_Proxy : IUnknown {

HRESULT Attach([in] IPassiveController *pTarget);
};

A Prototype Tool for Software Component Services 233

In order to evaluate to two test applications we built and executed them on
the Windows CE 4.0 Emulator. Since the timing accuracy on the emulator is 10
milliseconds, it was not possible to measure any timing differences between the
two applications. In both cases the controller worked satisfactory for cycle times
of 20 milliseconds or more (the measured input-output delay as well as sampling
variability was zero—from which we can only conclude that the actual times are
closer to zero than 10 milliseconds). For shorter cycle times, both controllers
ultimately halted since the limited timer accuracy caused the control loop to fail
to complete its execution before the start of the next cycle. Also, we were not
able to see any systematic difference in memory usage for the two applications.
Clearly, further evaluation of the effects of the services on timing and memory
usage is desirable.

To estimate the difference in programming effort and code size for the two
applications we compared the amounts of source code and sizes of compiled
files. These size metrics for the various components are presented in Table 1.
The middle column shows the number of non-empty lines of source code. For
the first three components, the number only include the source code of the
C++ classes implementing the COM objects, i.e. the automatically generated
code included in all COM components is not included. Taking these numbers as
(admittedly primitive) measurements of programming effort, we see that using
the tool to generate service proxies has resulted in a saving of 127 lines or 42 per
cent. On the other hand, we see that the effort required for the client program
is substantially greater in the case where the proxies are used. This is due to
the need for the program to set up the connections between the proxies and the
other objects. We conclude that the usefulness of our approach would greatly
benefit from automation of this task.

As for the code size, there is only a small difference between the three COM
components, leading to an overhead of roughly 100 per cent from using the
proxies. This is largely due to the fact that the implemented COM objects are
relatively small, leading to the obligatory house-keeping code of all COM compo-
nents taking up a large percentage of the code size. For larger COM objects, the
relative code sizes approaches the relative sizes of the source code. The small size
of the COM objects is also the main reason that the component implementing
the proxy objects is the largest of all the components. In addition, the generated
code is designed to be robust in the sense that all the operations of the proxy ob-
jects verify that the interface pointers have been set before forwarding operation

Table 1. Size metrics for components

Component Lines of source code File size in KB
Controller1.dll 300 56.5
Controller2.dll 173 53.5
Controller2 Proxy.dll 351 60.5
TestControl1.exe 81 12.5
TestControl2.exe 157 14.0

234 F. Lüders et al.

calls. An obvious trade-off would be to sacrifice this robustness for less overhead
in execution time as well as space. From the file size of the two test programs we
find that the code overhead for setting up the connections between the proxies
and the other objects is a little more than 10 per cent. This overhead, unlike the
overhead on programming effort, cannot be eliminated by automating the setup
task.

4 Related Work

The services discussed in this paper have already been adopted by some current
and emerging technologies. As a base for our discussions, we have selected a few
of the most common solutions for these. In addition, this section briefly reviews
some existing research on binary components for real-time systems.

Microsoft´s component model COM [3] originally targets the desktop software
domain. Thus, it has good support for specifying and maintaining functional as-
pects of components while disregarding temporal behavior and resource utiliza-
tion. Often this can only be overcome with a substantial amount of component
specific programming. There is no built in support to automatically measure and
record execution times for methods in components. This is typically done by third
party applications that instrument the code in run-time. These applications are
typically not well suited for executing on embedded resource constrained sys-
tems. The desktop version of COM, as well as the DCOM package available for
Windows CE, has some support for synchronizing calls to components that are
not inherently thread safe. This is achieved through the use of so-called apart-
ments, which can be used to ensure that only one thread can execute code in
the apartment at a time. Since this technique origins from the desktop version
of COM, there is no built in support for time determinism and the resource
overhead is larger than desired for many embedded systems.

COM+ [15] is Microsoft’s extension of their own COM model with services
for distributed information systems. These services provide functionality such
as transaction handling and persistent data management, which is common for
applications in this domain and which is often time consuming and error prone
to implement for each component. Builders of COM+ application declare which
services are required for each component and the run-time system provides the
services by intercepting calls between components. COM+ is a major source of
inspiration for our work in two different ways. Firstly, we use the same criteria
for selecting which services our component model should standardize, namely
that they should provide non-trivial functionality that is commonly required
in the application domain. Since our component model targets a different do-
main than COM+, the services we have selected are different from those of
COM+ as weöö. Secondly, we are inspired by the technique of providing services
by interception. This mechanism is also used in other technologies and is some-
times called interceptors rather than proxies, e.g. in the Common Object Request
Broker Architecture (CORBA) [14] and the MEAD framework for fault-tolerant
real-time CORBA applications [13].

A Prototype Tool for Software Component Services 235

The approach presented in this paper is similar to the concept of aspects
and weaving. In [21], A real-time component model called RTCOM is presented
which have support for weaving of functionality into components as aspects
while maintaining real-time policies, e.g. execution times. However, RTCOM is
a proprietary source code component model. Moreover, functionality is weaved
in at the level of source code in RTCOM whereas in our approach, services are
introduced at the system composition level.

Another aspect-oriented approach is presented in [18], which describes a
method using C# attributes to generate a proxy that handles component repli-
cation for fault tolerance. Our work is primarily targeting COM and C++, which
does not support attributes as used in that paper. An obstacle to the use of C#
for the type of systems we are interested in is the lack of real-time predictabil-
ity in the underlying .NET Framework [16]. The possibility of adding real-time
capabilities to the .NET framework are described in [23].

A model for monitoring of components in order to gain more realistic WCET
estimations is described in [20]. In this model the WCET is guessed at develop-
ment time and the component is then continuously monitored at runtime and
measurements of execution times are accumulated. This technique is very similar
to our execution time measurement service.

Another effort to support binary software components for embedded real-
time systems is the ROBOCUP project [12], which builds on the aforementioned
Koala model and primarily targets the consumer electronics domain. This work
is similar to ours in that the component model defined as part of this project
is largely based on the basic concepts of COM. Furthermore, the sequel of the
project, called Space4U [19], also seems to use a mechanism similar to proxy
objects, e.g. to support fault-tolerance.

5 Conclusion and Future Work

The aim of this work has been to lay the groundwork for component services for
embedded real-time systems using COM as a base technology. A major benefit
of this approach is that industrial programmers can leverage their knowledge
of existing technologies. Also, extending COM with real-time services probably
requires less effort than inventing a new component technology from the ground.

The initial experiences with the prototype shows that it is possible to create
a tool that more or less invisibly add real-time services to a standard compo-
nent model. The example application demonstrates that the use of generated
proxies to implement services may substantially reduce the complexity of soft-
ware components. Another conclusion to be drawn from the example is that our
approach would benefit from also automating the configuration of applications
with proxies.

We have been able to identify some component services which we believe are
useful for embedded real-time systems. As part of our future work, we plan to
evaluate the usefulness of the services as well as to extend the set of services. We
hope to do this with the help of input from organizations developing products in

236 F. Lüders et al.

such domains as industrial automation, telecommunication, and vehicle control
systems.

We realize that the proposed solutions imposes some time and memory over-
head, and we believe that this is an acceptable price for many embedded real-
time systems if using the model reduces the software development effort. It is,
however, necessary that this overhead can be kept within known limits. So far,
our prototype implementation has been tested with the Windows CE emulator,
where we have found no noticeable run-time overheads. In our future work, we
plan to evaluate the solution experimentally on a system running Windows CE.
Measurements will be made to determine the effect on timing predictability as
well as time and memory overhead.

We furthermore aim to empirically evaluate our approach with respect to
its effect on development effort and such quality attributes as reliability and
reusability. Our hypothesis concerning reliability is that it may improve as a
result of reduced complexity of application components, provided off course that
the generated proxies are reliable. We also believe reusability may be affected
positively, as e.g. the use of synchronization services could make it easier to
reuse components across applications that share some functionality but rely on
different synchronization policies. The primary evaluating technique will be to
conduct replicated student projects where software is developed both with and
without the prototype tool. A possible complementary technique is industrial
case studies, which implies a lower level of control and replication but may allow
more realistic development efforts to be investigated.

References

1. K. J. Åström and B. Wittenmark. Computer Controlled Systems — Theory and
Design. Prentice Hall, 2nd edition, 1990.

2. A. Avizienis. The methodology of N-version programming. In M. R. Lyu, editor,
Fault Tolerance. Wiley, 1995.

3. D. Box. Essential COM. Addison-Wesley, 1997.
4. D. Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.
5. R. Englander. Developing Java Beans. O’Reilly, 1997.
6. T. Genßler, C. Stich, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts,

G. Arévalo, B. Schönhage, and P. Müller. Components for embedded software —
The PECOS approach. In Proceedings of the 2002 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, 2002.

7. H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM — A compo-
nent model for safety-critical real-time systems. In Proceedings of the 30th EROMI-
CRO Conference, 2004.

8. G. T. Heineman and W. T. Council. Component-Based Software Engineering —
Putting the Pieces Together. Addison-Wesley, 2001.

9. F. Lüders. Adopting a software component model in real-time systems devel-
opment. In Proceedings of the 28th Annual IEEE/NASA Software Engineering
Workshop, 2004.

A Prototype Tool for Software Component Services 237

10. F. Lüders, I. Crnkovic, and P. Runeson. Adopting a component-based software
architecture for an industrial control system — A case study. In C. Atkinson,
C. Bunse, H.-G. Gross, and C. Peper, editors, Component-Based Software Devel-
opment for Embedded Systems. Springer, 2005.

11. R. Monson-Haefel, B. Burke, and S. Labourey. Enterprise JavaBeans. O’Reilly,
4th edition, 2004.

12. J. Muskens, M. R. V. Chaudron, and J. J. Lukkien. A component framework for
consumer electronics middleware. In C. Atkinson, C. Bunse, H.-G. Gross, and
C. Peper, editors, Component-Based Software Development for Embedded Systems.
Springer, 2005.

13. P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte, J. G.
Slember, and D. Srivastava. MEAD: Support for real-time fault-tolerant CORBA.
Concurrency and Computation: Practice and Experience, 17(12):1527–1545, Feb-
ruary 2005.

14. Object Management Group. Common object request broker architecture: Core
specification, March 2004. OMG formal/04-03-12.

15. D. S. Platt. Understanding COM+. Microsoft Press, 1999.
16. D. S. Platt. Introducing Microsoft .NET. Microsoft Press, 3rd edition, 2003.
17. F. E. Redmond III. DCOM — Microsoft Distributed Component Object Model.

Hungry Minds, 1997.
18. W. Schult and A. Polze. Aspect-oriented programming with C# and .NET. In

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, 2002.

19. Space4U Project. Space4U public hompage, January 2006. http://www.hitech-
projects.com/euprojects/space4u/, Accessed on 28 April 2006.

20. D. Sundmark, A. Möller, and M. Nolin. Monitored software components — A
novel software engineering approach. In Proceedings of the 11th Asia-Pacific Soft-
ware Engineering Conference, Workshop on Software Architectures and Component
Technologies, 2004.

21. A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Aspects and components
in real-time system development: Towards reconfigurable and reusable software.
Journal of Embedded Computing, 1(1), February 2004.

22. R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala com-
ponent model for consumer electronics software. Computer, 33(3):78–85, 2000.

23. A. Zerzelidis and A. J. Wellings. Requirements for a real-time .NET framework.
ACM SIGPLAN Notices, 40(2):41–50, 2005.

Service Policy Enhancements for the OSGi
Service Platform

Nico Goeminne, Gregory De Jans, Filip De Turck,
Bart Dhoedt, and Frank Gielen

Ghent University, Gaston Crommenlaan 8, bus 201,
B-9050 Gent, Belgium

{Nico.Goeminne, Gregory.DeJans, Filip.DeTurck, Bart.Dhoedt,
Frank.Gielen}@intec.ugent.be

http://www.ibcn.intec.ugent.be/

Abstract. New content and service providers emerge every day. Each
player offers new software components or services to support their tech-
nology. In these multi-vendor environments there is a genuine need for
integration and interoperability. Integration and interoperability is a first
step, once this is achieved components can seamlessly use services from
different providers, and that is when service policies come into play. A
policy mechanism allows fine grained control over the service usage. The
OSGi Service Platform allows seamless integration of components and
services but lacks a well defined mechanism for dynamic service pol-
icy management. Two approaches are presented for enhancing the OSGi
Service Platform with policies. The first approach extends the platform
while the second one adapts the plug-in components. Finally they are
compared and evaluated against multiple requirements; usability, per-
formance, transparency and backward compatibility.

1 Introduction

Today, content/service providers and hardware manufacturers have their own
set of technologies and software components. Integration and interoperability are
the most important factors to make this multi-vendor environment successful.
New design philosophies and concepts are built around these values such as the
Service Oriented Architecture (SOA). Within the service oriented architecture
a service is an entity that performs some functionality and which can be shared
among multiple components.

Whenever services are exposed or shared, there is a need for service policy
management. The top level of that mechanism is the policy decision logic, which
is the place where rules are imposed on service use. The rules can be defined in
various formats, languages and libraries such as JRules[1], Jena[2] and others.
Defining the rules and knowing when they should be applied is not sufficient, they
need to be enforced within the lower layer. This paper presents the components
needed in OSGi Service Platform[3][4] to support the lower layer of the policy
mechanism.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 238–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Service Policy Enhancements for the OSGi Service Platform 239

The OSGi Service Platform technology allows integration of components and
services from different vendors or service providers. The unit of deployment is
a component called a bundle. A bundle is a Java archive(jar) file, and the code
inside can be activated by the framework through the bundle’s activator class.
A bundle may contain multiple OSGi services, which are plain old java objects
that are registered within the platform’s service registry. Each of those services
can be used by other bundles, thus creating some kind of dependency among
each other.

Service dependency management tries to offer an answer to the question ‘What
should a bundle do when a service becomes (un)available?’ There are several ap-
proaches to help the bundle developer manage those dependencies. For example
use the ServiceTracker, Service Binder[5][6][7], or Declarative Services[8][9] to
reduce the impact of service dependencies. Releasing a service and in particular
a java object may prove to be more difficult then one would think as pointed
out by [10], but solutions are in development[11].

So, in contrast to service dependency management there is service policy
management which offers an answer to the question ‘How can one manage which
bundle is allowed to use a service, taking into account the service’s usage by other
bundles?’ This work will focus on that question.

Section 2 outlines two use cases which show the need for service policy man-
agement and introduces two models, the Framework Extensions model and the
Bundle Adaptation model that could be used to support service policies within
the OSGi Service Platform. The Framework Extensions model adds interfaces
and behaviour definitions to the OSGi R3 specifications. The Bundle Adapta-
tion model implements the same behaviour outside the OSGi core framework. It
requires some modifications to bundles who wish to participate. Sections 3 and 4
describe the models in detail. Section 5 describes how to build a policy enforce-
ment component using the models. Their performance is analyzed in section 6
and the remaining conclusions are in section 7.

2 Service Policy Management

The following use cases clearly show the need for some kind of service policy
management.

Use Case 1: Appliance Control. When both a power saving service and a
home surveillance service use a lighting service to toggle the lights on-off status,
some rules should be in place to govern the priorities. We do not want the power
saving service turning off the lights when the home surveillance service detects
some suspicious activities and tries to turn the lights on.

Use Case 2: Content Management. When there are two digital photograph
albums, each image, from a common set of images, should be displayed in only
one album at a time. The digital photograph albums are OSGi bundles, and the
images are OSGi services. One of the two albums is a master album, each image
shown in this album, should not be shown in the other album, the slave.

240 N. Goeminne et al.

The current OSGi Specifications are not sufficient to support the use cases. They
do not allow fine grained service management and only support a flat view on
the Service Registry also pointed out by [12]. A service exported by a bundle
can be used by all bundles. The Permissions Admin Specification (R3) and the
Conditional Permission Admin Specification (R4), provide means of managing
access to a service, but do not define a model of behaviour. What should happen
when the usage of a service is prohibited for a specific bundle? Furthermore
their management capabilities do not correspond with the dynamic nature of
the Service Platform. In order to support fine grained service management two
models are proposed and implemented.

Model 1: Framework Extensions. In this model bundles are unaffected, yet
the OSGi framework is slightly extended. Great care should be taken to make
the extensions as ‘natural’ as possible, meaning the extensions follow the design
philosophy of the service platform.

Model 2: Bundle Adaptations. In this model the OSGi Service Platform is
not affected, allowing the model to be implemented as a set of bundles that are
backward compatible with any OSGi R3 platform. Yet in this model the bundles
that wish to support policies are adapted.

There are a number of important criteria to evaluate; backward compatibility
with legacy OSGi Service Platforms or bundles, performance, usability, foot-
print, transparency. The complete set of criteria is listed in Table 1 and will be
explained int the remaining sections of the paper.

Table 1. Comparison of two approaches to support service policies: the framework
extensions model allows backward compatibility with existing OSGi bundles while the
bundle adaptation model can be plugged into legacy OSGi service platforms

Model 1: Model 2:
Framework Extensions Bundle Adaptations

Legacy bundles supported supported but at a price: use of AOP
or conversion tool

System Services supported not supported
Legacy OSGi frame-
works

not supported supported

Footprint size minimal minimal increase with number of bun-
dles

Performance issues minimal minimal when using a conversion tool
or considerable when using dynamic
AOP

Programming model transparent developers aware of policies or trans-
parent when using a conversion tool or
AOP

Extra benefits rule logic and language independent; subcomponents useful for: moni-
toring service behaviour, profiling; could be used for other means than
policy handling, such as configuring and debugging

Service Policy Enhancements for the OSGi Service Platform 241

3 Model 1: Framework Extensions

The model as shown in Fig. 1 contains three separate components, their roles,
implications and implementations are discussed below.

Service Registry

ServiceAdmin
Service

Manages service
visibility

Policy Enforcement Component

Policy Decision Logic

Eventing mechanism

Notifies service
usage

OBTAINING
and

RELEASED
events

Plugable
bundles

OSGi Service
Platform

Uses

Fig. 1. Global decomposition and operation of model 1: Framework extensions. The
Eventing mechanism, the Service Admin and the Policy Enforcement Component work
together extending the OSGi Service Platform with service policy capabilities.

Eventing Mechanism. The subsystem gives notifications when a service is
being obtained or released. The subsystem can only be implemented as a direct
hook into the OSGi framework.

ServiceAdmin Service. The ServiceAdmin service is a system service that
offers an interface to manage the visibility of a service toward a bundle. The
service can only be implemented as a direct hook into the OSGi framework.

Policy Enforcement Component. The PEC processes the information pro-
vided by the eventing mechanism and makes decisions based on that information
to adjust the service’s visibility towards the bundles. The PEC is a standalone
bundle and does not need framework modification, it just uses the newly pro-
vided capabilities and is common for both models as described in section 5.

3.1 Service Event Extensions

The OSGi specification (R3-R4), currently offers three kinds of service events.
A bundle may wish to register a ServiceListener and act on those events.

ServiceEvent.REGISTERED. When a bundle offers a service to the plat-
form, it registers the service in the platform’s service registry. A registered service
event is issued.

ServiceEvent.MODIFIED. When the properties of the service are changed
by the owning bundle, a modified service event is sent.

242 N. Goeminne et al.

ServiceEvent.UNREGISTERING. An unregistering service event is gener-
ated when a service is about to be removed from the service registry.

Yet two other major service related ‘actions’, the obtaining and the releasing of
a service, have no corresponding event, although they are indicated by the get-
Service and the ungetService API method calls. When investigating the service
usage one must always use the request response pattern (active polling) instead
of the event driven model. Therefore the OSGi eventing mechanism should be
extended with two new event types:

ServiceEvent.OBTAINING. Before a service object is delivered to the re-
questing bundle, a service event should be sent to all interested listeners, indi-
cating which service (by means of the service reference) is requested by which
bundle.

ServiceEvent.RELEASED. After a bundle released a certain service object,
all interested listeners should be notified. Again the service event should denote
which bundle is releasing the service.

It should be noted that the OSGi spec had foreseen future additions to the
service event types. The class org.osgi.framework.ServiceEvent was adjusted to
handle the two new event types.

public class ServiceEvent extends EventObject {

public final static int REGISTERED = 0x00000001;
public final static int MODIFIED = 0x00000002;
public final static int UNREGISTERING = 0x00000004;
public final static int OBTAINING = 0x00000008; *
public final static int RELEASED = 0x00000010; *

private transient ServiceReference reference;
private transient int type;
private transient Bundle bundle; *

public ServiceEvent(int type, ServiceReference reference) {
this(type, reference, reference.getBundle()); *

}
public ServiceEvent(int type, ServiceReference reference, *

Bundle bundle) { *
super(reference);
this.reference = reference;
this.type = type;
this.bundle = bundle; *

}
public ServiceReference getServiceReference() {
return (reference);

}
public Bundle getBundle() { *
return (bundle); *

} *
public int getType() {
return (type);

}
}

The changes are reflected by an asterix (*) and are fairly straightforward. The
only real interface change is the extra getBundle method. It gets the bundle
responsible for causing the event; the bundle that is registering, modifying,

Service Policy Enhancements for the OSGi Service Platform 243

unregistering, obtaining or releasing the service. Thus the role of the bundle
depends on the event type, it is the bundle owning the service in case of a reg-
istering, modifying or unregistering event and it is the bundle using the service
in case of an obtaining or releasing event.

An obvious choice for listening to these new service events would be the
existing ServiceListener interface. That approach has three disadvantages. First,
there is no control over which listener will be notified first. In some cases one
may wish to create some kind of manager that reacts upon an obtaining request.
They would prefer to get notified before other bundles are notified.

As a second disadvantage, each time a service is requested or released all
listeners are notified. This means a big performance loss, since services are ob-
tained and released a lot, (as shown in Table 2) especially at peak moments
during bootstrap or shutdown and to a lesser extent at bundle deployment time.
Besides those moments the service platform is rather stable. The performance
impact of having many listeners is analysed in section 6.

Table 2. The number of events that were processed by the framework when a boot-
strap is immediately followed by a shutdown. The different configurations use the
Knopflerfish[13] http service, desktop and tray icons (windows configuration).

Configuration init http desktop windows desktop-http
Number of bundles 3 9 10 12 15
Event type Counts
REGISTERED 2 5 16 17 20
MODIFIED 0 0 0 0 0
OBTAINING 3 6 67 72 83
RELEASED 3 6 67 72 83
UNREGISTERING 2 5 16 17 20

The third disadvantage: bundles that erroneously rely on the fact that there
are only three service event types are broken.

public class WrongListener implements ServiceListener {

public void serviceChanged(ServiceEvent event) {
if (event.getType() == ServiceEvent.REGISTERED ||

event.getType() == ServiceEvent.UNREGISTERING){
// Do something

}
else {

// Make the wrong assumption that the event type is MODIFIED
}

}
}

To avoid such mistakes one should always use the switch statement, unfortu-
nately not all bundle developers do.

To solve all three disadvantages a new interface that extends ServiceListener
was defined. The SynchronousServiceListener (cf. SynchronousBundleListener)
interface outline:

244 N. Goeminne et al.

public abstract interface ServiceListener extends EventListener {
public abstract void serviceChanged(ServiceEvent event);

}

public abstract interface SynchronousServiceListener extends ServiceListener {
}

All notifications are handled by the inherited serviceChanged method. The ser-
vice platform delivers both the existing as the newly added event types to the
SynchronousServiceListener, whereas ServiceListeners only receive the old ser-
vice events. This solves the performance and the legacy listener problem in one
effort. Furthermore all events are delivered to the SynchronousServiceListeners
before they are delivered to the ServiceListeners. Now, the three disadvantages
are resolved.

Using the new service event types one can observe and profile the service usage
of a bundle or of a service, making it easier to debug. For example one could
build a debug tool, where authorized service usage (per bundle) is logged and
unauthorized or unpredicted usage is reported. Furthermore one could build
watches on services. To illustrate the capabilities of these extra advantages a
simple logging example is shown below.

public class SynchronousServiceListenerImpl implements SynchronousServiceListener {
public void serviceChanged(ServiceEvent event) {
System.out.print("[SSL](" + event.getServiceReference()

+ ")(" + event.getBundle() +")(");
switch(event.getType()){

case ServiceEvent.REGISTERED:
System.out.print("REGISTERED");
break;

case ServiceEvent.MODIFIED:
System.out.print("MODIFIED");
break;

case ServiceEvent.OBTAINING:
System.out.print("OBTAINING");
break;

case ServiceEvent.RELEASED:
System.out.print("RELEASED");
break;

case ServiceEvent.UNREGISTERING:
System.out.print("UNREGISTERING");
break;

}
System.out.println(")");

}
}

The main difference between a plain old listener and the SynchronousServiceLis-
tener is that the old service listener will never receive OBTAINING or RE-
LEASED events. In fact, legacy listeners omit the two cases. The difference in
operation is shown in Fig. 2. Both listeners can be added to the framework
the same way using the bundle context; no new API method is required and
the same filter rules can be applied to both synchronous and non-synchronous
service listeners.

bc.addServiceListener(new ServiceListenerImpl());
bc.addServiceListener(new SynchronousServiceListenerImpl());

Service Policy Enhancements for the OSGi Service Platform 245

ServiceListener

BundleContext
and Service Registry Activator

Activator

register Service

Create Service

REGISTERED event

Using Bundle

action

Owning BundleOSGi Framework

Synchronous
ServiceListener

Activator
Other Bundle

addServiceListener

addServiceListener

REGISTERED event

action

getService

OBTAINED event

action

ServiceReference

Fig. 2. Sequence diagram showing the actions following registration or obtaining a
service. Note that the SynchronizedServiceListener is notified first and the plain old
service listener is not notified in case of the obtaining event. Consider the start method
of the bundle’s activator class as the ‘main’ method of a normal Java program.

3.2 Service Registry Extensions

In order to support service policies, we need more control over which bundle
may use which service. The security facilities within the OSGi platform offer
some control, but are rather static. In fact once a service usage is granted it is
hard to return on that decision, because security checks are only done when the
service is first requested. Denying access afterwards comes only in effect when
the service is released and requested a second time. The model clearly lacks
essential functionality if one wishes to revoke a service from a using bundle.

In this proposal, a bundle gets a filtered view on the service registry. A man-
agement interface called the ServiceAdmin service is available for fine-tuning
that view and is listed below.

public interface ServiceAdmin {

public void setServiceVisibility(ServiceReference serviceReference,
Bundle bundle, boolean visible);

public ServiceReference [] getInVisibleServices (Bundle bundle);

public boolean isVisible(ServiceReference serviceReference, Bundle bundle);
}

A service can be made invisible for a bundle by using the setServiceVisibil-
ity method. The service visibility status towards a bundle can be analyzed by
the two other methods. Bundles that are blocked from seeing certain services
will not see them when invoking a getServiceReference on the BundleContext,

246 N. Goeminne et al.

and ServiceListeners registered by that Bundle will not be notified. As far as
the blocked service concerns the owning bundle has unregistered the service
(cf. Fig. 3).

BundleContext
and Service Registry

OSGi Framework

Activator

Owning Bundle

BundleContext
and Service Registry
 and Service Admin

Activator

ServiceListener

Activator

ServiceListener

Bundle A Bundle B

addServiceListener

addServiceListener

Create Service X
register Service X

REGISTERED event

action

REGISTERED event

action

setServiceVisibility(Service X, Bundle B, false)

UNREGISTERED event

changeProperties Service X

action

MODIFIED event

getServiceReferences

action

all services except Service X

setServiceVisibility(Service X, Bundle B, true)

REGISTERED event

action

Fig. 3. Sequence diagram showing the actions and consequences when using the Ser-
viceAdmin service

The concept of filtering has already been used in the OSGi platform R3,
when a bundle does not have the right permission. Or in release R4, where
due to the support of multiple packages, service requests by interface name or
LDAP filter may cause returning a non class compatible service, which is thus
filtered out. Where the standard OSGi frameworks just do filtering, our adap-
tation sends events, notifying bundles that the service they are using has been
unregistered. That event is only delivered to the one blocked bundle. In fact
that bundle thinks the service is no longer available, and thus releases the ser-
vice, while other bundles do not receive the unregistered event, and are still
using the service. When the service gets unblocked for our blocked bundle, a
registered event is sent towards the blocked bundle, which thinks the service
is newly available and can start using it. As mentioned before while being in

Service Policy Enhancements for the OSGi Service Platform 247

blocked state, the bundle does not receive any event notification of the service
(As far as the blocked bundle is concerned the service does not exist).

4 Model 2: Bundle Adaptations

The functional requirements for this model are exactly the same as for model
1. Interested bundles should still be notified of the service usage behaviours,
as well as they should be able to manage the service visibility. Therefore the
three main components, the Eventing mechanism, the Service Admin service
and the Policy Enforcement Component stay exactly the same. Two non func-
tional requirements are added, first the model should not require any OSGi
framework extensions (should run on every OSGi framework) and secondly, the
model should support legacy bundles (bundles and their developers are unaware
of the policy management component). The model is shown in Fig. 4.

OSGi Service Platform

Policy Enforcement Component

Policy Decision
Logic

Bundle
Adaptation
Component

A
O

P
 B

C

ad
ap

to
r

Eventing
mechanism

manages

sends
OBTAINING,
RELEASED

events

Usual service
events

Usual service
Events AND

OBTAINING AND
RELEASED events

Other (service) bundles

uses Acts as a BC but filters
ServiceReferences

Acts as a Listener Registry
but filters Service Events

Adapts BC of each
newly installed Bundle

ServiceAdmin
Service

PEC
BC

Fig. 4. Global decomposition and operation of model 2: bundle adaptations. All com-
ponents that were placed inside the OSGi Service Platform are now placed in separate
bundles.

4.1 Removing the Framework Extensions

When shifting these components out of the OSGi framework some problems
arise.

Eventing Mechanism. Two problems are manifested, first how can this sub-
component discover the exact time a service is obtained or released? And sec-
ondly, how can it filter out events for invisible services?

ServiceAdmin Service. Again there are two problems to deal with. How can
it send the unregistered event for a service towards a bundle and thus making

248 N. Goeminne et al.

the service invisible for that bundle? And how can it filter out invisible services
when a bundle issues the getServiceReferences method on the bundle context?

Policy Enforcement Component. The PEC is already a standalone bundle
and is common for both models as described in section 5.

A solution to all of those problems can be found by wrapping the bundle con-
text and providing the bundle with a special bundle context. The bundle con-
text is the bundle’s interface towards the framework. When a bundle requests
or releases a service it will invoke the getService or ungetService on the bundle
context. The wrapping bundle context intercepts those calls and this solves the
first problem.

Service listeners are registered with the OSGi framework by invoking the
registerServiceListener method on the bundle context. At that time the wrap-
ping bundle context can choose to add the listener to the eventing mechanism
instead of adding it to the framework. The eventing mechanism now has full
control over all service listeners, which solves the second problem. It listens to
the framework and filters out service events before delivering the events to the
service listeners. As a surplus it can send specialized events towards a certain
service listener, which solves the first problem of the Service Admin. Further-
more the wrapping bundle context can filter out invisible services when a bundle
invokes the getServiceReferences method on the bundle context, which solves the
last problem.

By wrapping the bundle context all framework extensions are eliminated, but
at a price. The policy enforcement framework now has to manage and maintain
all service listeners and the bundles need to be adapted so they are provided
with the wrapping bundle context. In the long run wrapping the bundle context
has another small disadvantage. It is not robust against evolutionary changes in
the OSGi platform. That is, if future versions of the platform add methods to
the bundle context the wrapper needs to be updated with the new methods as
well.

4.2 Bundle Adaptations

Supplying a bundle with a wrapping bundle context can be done using AOP or
possibly by Java 5 annotations. Depending on the AOP implementation used
it may introduce new package dependencies on the AOP library, and the host
JVM should support AOP. Since the OSGi platform is targeted at J2ME CDC
Foundation Profile and upward, Java 5 is not always a possible option. For that
reason the AOP and Java 5 annotations are not feasible.

An alternative approach uses a bundle conversion tool. The tool adds a new
bundle activator and adapts the bundle manifest so that the framework will call
the new activator. The new bundle activator creates a wrapping bundle context
and then calls the old activator with the wrapping bundle context. This approach
does not tweak or touch the original code. The tool itself is also a bundle and can
be applied automatically whenever a new bundle is installed, using the ‘double
install’ technique as shown in Fig. 5.

Service Policy Enhancements for the OSGi Service Platform 249

Management
Agent

Synchronous
BundleListener Framework

install new Bundle X from URL

download bundle X

install bundle X
INSTALLED event

download bundle X

adapt Activator and Manifest in JAR file

update bundle X with adapted Bundle

update bundle X

UPDATED event

PEC Tool

Fig. 5. This figure shows the ‘double install’ mechanism, the tool bundle acts upon
install events, downloads the jar a second time, makes adaptations and updates the
bundle.(In R4 it is possible to get the jar entries)

5 A Policy Enforcement Component

The policy enforcement component is a separate bundle and is common for both
models. The proposed models provide a sufficient toolset to implement any kind
of service policy management component. In fact, the PEC’s decision logic could
be provided and implemented by third parties using different technologies, e.g.
hard coded rules, XML configuration, rule based, etc.

A simple PEC implementation for use case 2 could look like the code below.

public class SynchronousServiceListenerImpl implements SynchronousServiceListener {

private Bundle master, slave;
private ServiceAdmin admin;

public SynchronousServiceListenerImpl(Bundle master, Bundle slave, ServiceAdmin admin) {
this.master = master;
this.master = slave;
this.admin = admin;

}
public void serviceChanged(ServiceEvent event) {
ServiceReference ref = event.getServiceReference();
switch(event.getType()){

case ServiceEvent.OBTAINING:
if (master.getBundleId() == event.getBundle().getBundleId()){

admin.setServiceVisibility(ref,slave,false);
} break;

case ServiceEvent.RELEASED:
if (master.getBundleId() == event.getBundle().getBundleId()){

admin.setServiceVisibility(ref,slave,true);
} break;

}
}

}

250 N. Goeminne et al.

The listener uses the ServiceAdmin service to control the visibility of the image
services towards the slave bundle. When an image service is obtained by the mas-
ter bundle the visibility for the slave bundle is turned off. The overall operation
is shown in Fig. 6 and the outcome is demonstrated in Fig. 7. Furthermore an
OSGi filter makes sure the listener only receives events related to image services.

Activator

ServiceListener

Activator

ServiceListener

Slave
Bundle

Master
Bundle

BundleContext
and Service Registry
and Service Admin

OSGi Framework

Activator

Images Bundle

Activator PEC

register Image Services

SSL

addSynchronizedServiceListener

getServices

Image Service Objects

getService(Image Service)

OBTAINING event (from master)

setServiceVisibility(Slave Bundle, Image Service, false)

UNREGISTERED event

UngetService

Image Service Object

Fig. 6. Sequence diagram showing how the policy enforcement reacts when the master
bundle is requesting a managed service

master album obtaining
the image services

slave album forced to
release the image services

Fig. 7. Demonstration of the complete policy enforcement framework. The system can
be used for configuring the Knopflerfish desktop. Each graphical desktop component
can be made invisible since each component is a service. The proof of concept imple-
mentation does not make the visibility rules persistent across a framework restart, but
this could be done easily by saving the persistent service IDs and bundle IDs.

6 Performance

In section 3 the SynchronousServiceListener was introduced as a way to reduce
the performance impact of the models. Having obtaining and released delivered
to more listeners would result in a reduced overall performance as shown in the
Fig. 8, so delivering to a reduced set of specialized listeners performs better.

Service Policy Enhancements for the OSGi Service Platform 251

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of registered listeners

P
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

300 Events

200 Events

100 Events

Fig. 8. Measured times needed for the delivery of 100, 200 and 300 obtaining and
released events. The actual event handling is not included. The information from table
2 shows that the delivery of 100 events is a realistic amount of events during a peak
moment. Furthermore delivery to all listeners is not very scalable.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

100 200 300 400 500 600 700 800 900 1000

Number of cycles

A
v
e
ra

g
e
 d

o
w

n
ti

m
e
 (

m
s
)

Registration Object

Bundle Adaptations

Framework Extensions

Fig. 9. Average downtime

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900 1000

Number of cycles

A
b

s
o

lu
te

 d
o

w
n

ti
m

e
 (

m
s

) Registration Object

Bundle Adaptations

Framework Extensions

Fig. 10. Absolute downtime

A second series of test (cf. Fig. 9, Fig. 10) were performed to analyze the
impact of changing the visibility of a service. In the test setup a bundle is mea-
suring the downtime of a service. (The time in ms it cannot use the service). A
service is brought down and up by changing the visibility using the ServiceAdmin
service (a cycle). The two models are compared against each other. Furthermore
they are compared against the situation where the bundle owning the service,
unregisters and reregisters the service by using the ServiceRegistration object
and the bundle context.

As expected the standard third method, which does not allow service policies,
performs worst. When the service was brought down and up a 1000 times, the
absolute downtime is more then 250 ms. The average downtime for the standard
method is about 0.3 ms. The same test for the bundle adaptations model results
in an absolute downtime of 62 ms and an average downtime of 0.05 ms. And
finally the best results were obtained using the framework extension model where
an absolute downtime of 32 ms and an average downtime of 0.03 ms.

7 Conclusions

This paper indicated the need for component and service integration frameworks
in a multi-vendor environment. Furthermore, as shown in use cases 1 and 2,

252 N. Goeminne et al.

service policy management should not be neglected if one wishes to avoid in-
consistent overall system behaviour. The OSGi Service Platform was chosen for
its capabilities to integrate components and services from different providers.
The platform was analyzed and found insufficient to support dynamic service
policies. Therefore two models were presented and evaluated.

Although the framework extensions model is more feasible in terms of
architectural design, capabilities, performance, transparency and backward com-
patibility support for legacy bundles, it has one major setback; it requires mod-
ifications to the core platform. The proposed extensions to the platform are still
within the design philosophy of the OSGi Service Platform and great care is
being taken to avoid changes in the OSGi programming model. This approach
results in extensions that do not have any impact on the development of bundles.
In fact these extensions are completely transparent to both the providing and
the using bundles.

The key requirement that needed to be fulfilled in the bundle adaptations
model was backward compatibility with existing OSGi platforms. The model
was defined as a pluggable set of bundles and can run on any R3 compatible
platform. Achieving this goal created a trade-off and resulted in slightly re-
duced performance, a more complex architecture and the need for bundles to be
adapted. Luckily the adaptation can be automated by a tool and by using the
double install mechanism plugged into the platform as a bundle. In short, this
approach is ready to go.

Both models offer a complete set of capabilities to implement a policy manage-
ment component as demonstrated in section 5. Finally we propose to incorporate
the framework extensions within a future release of the OSGi Service Platform.

Acknowledgements

This research has been partly funded by the IBBT-TCASE project [14] which
focuses on service delivery to the end-user environment, service and business
logic execution and common service capabilities.

References

1. ILOG JRules,
http://www.ilog.com/products/jrules/

2. Jena A Semantic Web Framework for Java,
http://jena.sourceforge.net/

3. The Open Services Gateway Initiative, OSGi Service Platform Release 3, IOS Press,
Amsterdam, The Netherlands, March 2003. http://www.osgi.org/

4. The OSGi Alliance, OSGi Service Platform Core Specification Release 4, October
2005. http://www.osgi.org/

5. Oscar - An OSGi framework implementation http://oscar.objectweb.org/
6. Apache Felix Project http://incubator.apache.org/felix/
7. Humberto Cervantes, Richard S. Hall, Service Binder,

http://gravity.sourceforge.net/servicebinder

Service Policy Enhancements for the OSGi Service Platform 253

8. The OSGi Alliance, OSGi Service Platform Service Compendium Release 4, Octo-
ber 2005. http://www.osgi.org/

9. Humberto. Cervantes and Richard .S. Hall. Automating Service Dependency
Management in a Service-Oriented Component Model, Proceedings of the Sixth
Component-Based Software Engineering Workshop, May 2003, pp. 91-96.

10. Almut Herzog, Nahid Shahmehri, Problems Running Untrusted Services as Java
Threads, In Certification and Security in Inter-Organizational E-Services. E.
Nardelli, M. Talamo (eds). Pages: 19-32. Springer Verlag. 2005.

11. The Java Community Process,
JSR 121: Application Isolation API Specification,
JSR 278: Resource Management API for Java ME,
JSR 284: Resource Consumption Management API,
http://www.jcp.org/

12. Richard .S. Hall and Humberto. Cervantes. An OSGi Implementation and Experi-
ence Report, Proceedings of the IEEE Consumer Communications and Networking
Conference, January 2004.

13. The Knopflerfish Project,
http://www.knopflerfish.org/

14. IBBT, The Interdisciplinary institute for BroadBand Technology,
http://www.ibbt.be/

A Process for Resolving Performance Trade-Offs
in Component-Based Architectures

Egor Bondarev1, Michel Chaudron1, and Peter de With2

1 Eindhoven University of Technology, System Architectures and Networking group
5600 MB, Eindhoven, The Netherlands

2 LogicaCMG, 5605 JB, Eindhoven, The Netherlands
e.bondarev@tue.nl

Abstract. Designing architectures requires the balancing of multiple
system quality objectives. In this paper, we present techniques that sup-
port the exploration of the quality properties of component-based archi-
tectures deployed on multiprocessor platforms. Special attention is paid
to real-time properties and efficiency of resource use. The main steps of
the process are (1) a simple way of modelling properties of software and
hardware components, (2) from the component properties, a model of an
execution architecture is composed and analyzed for system-level quality
attributes, (3) for the composed system, selected execution scenarios are
evaluated, (4) Pareto curves are used for making design trade-offs ex-
plicit. The process has been applied to several industrial systems. A Car
Radio Navigation system is used to illustrate the method. For this sys-
tem, we consider architectural alternatives, show their specification, and
present their trade-off with respect to cost, performance and robustness.

1 Introduction

A major challenge in system development is finding the best balance between
different quality requirements that a system has to meet. Time-to market con-
straints require that design decisions be taken as early as possible. To address
this challenge, the architect should be able to solve a number of orthogonal issues:
a) construct the component architecture satisfying the functional requirements,
b) evaluate (predict) the extra-functional quality properties of the composed
architecture, and c) identify several architecture alternatives that satisfy both
types of requirements. Essentially, he needs a means to efficiently explore this
architectural design space against multidimensional quality attribute scale.

A concurrent trend is the assembly of systems out of existing components
(which can be both software and hardware), as this reduces development time
and cost. Within this component-based approach, the challenge of early archi-
tecture assessment shifts to the evaluation of global system properties based on
the properties of the constituent components. For this reason, the component-
oriented society needs to develop techniques for modelling component properties
such that these can be composed into a system model. Each model type usu-
ally addresses one attribute (performance, behaviour or cost). Upon component

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 254–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Process for Resolving Performance Trade-Offs in CBA 255

integration, models of the same type are composed into a system model of the
corresponding system attribute. There has been a broad range of approaches
towards this problem, known as predictable assembly ([1], [2] and [3]). The CB-
SPE approach [4] provides a solid technique for evaluating the performance of
component-based software systems. A prediction method based on formal spec-
ification of component non-functional properties is presented in [5]. Currently,
these approaches focus on prediction of a single quality attribute (QA). To moti-
vate various design trade-offs, assessment of multiple QAs is needed. The process,
described in this paper, allows prediction of performance, robustness and cost
QAs, and enables design space exploration with respect to these attributes.

The following methods feature multi-objective trade-off analysis. The method
presented in [9] uses Petri nets with parameterized interfaces to assess perfor-
mance and safety. For large system this method becomes computation expen-
sive. Less calculation expensive PISA framework for design space exploration
featuring QA prediction have been proposed in [10] for network processor ar-
chitectures. It uses Real-Time Calculus that abstracts from the state space and
has low calculation complexity. Recently proposed SESAME framework [11] uses
simulation, application and architecture models to predict performance proper-
ties and explore design choices. The SPIE2 framework [12] adds the possibility
to optimize the architecture using genetic algorithms. However, none of the last
three methods supports designing a system out of conventional component with
provides and requires interfaces. Instead, they define a component as an active
entity (task or process). In [16] the authors propose compile-time framework
that explores and optimizes performance properties of systems built out of ac-
tive conventional components.

Contribution. In this paper we present the design space exploration (DSE)
process that supports both active and passive COTS components. It allows soft-
ware and hardware composition and mapping the components on the hardware
nodes. The process enables accurate prediction of system performance attributes
by composition of performance models of individual components. The compo-
nent performance models are easy to construct and use, which speeds up the
architecture assessment time. The supporting RTIE tool, developed by us, helps
to construct multiple architecture alternatives and find the optimal solutions
against multiple criteria. We illustrate the process by a case study on finding
the optimal architecture for the Car Radio Navigation (CRN) system.

The paper is structured as follows. Section 2 explains the requirements of
the CRN system to be designed. Section 3 describes our multidimensional DSE
process in detail. Section 4 shows how we used the process to design and assess
the architectures for CRN system, besides, it reveals the experimental results of
the case study. Section 5 concludes the paper.

2 Car Radio Navigation System

We illustrate our process for resolving performance design trade-offs in CBA by
designing a Car Radio Navigation system. This CRN system had to be built

256 E. Bondarev, M. Chaudron, and P. de With

according to the component-based paradigm on a cost-limited (yet not prede-
fined) hardware platform. However, the major challenge was to find at an early
design stage an optimal system architecture in terms of the vital QAs like real-
timeliness, robustness and cost. Technically speaking, the goal was the following:
given a set of functional and extra-functional requirements, as well as a set of
software and hardware components, to determine a set of architecture solutions,
that are optimal with respect to the above-mentioned quality attributes.

Requirements. We divided the requirements into two categories: functional
(Fn) and extra-functional (RTn). The main ones are summarized below:
F1: The system shall be able to gradually (scale = 32 grads) change the sound
volume.
RT1: The response time of the operation F1 is less than 200 ms (per grade).
F2: The system shall be able to find and retrieve an address specified by the
user.
RT2: The response time of the operation F2 is less than 200 ms.
F3: The system should be able to receive and handle Traffic-Message-Channel
(TMC) messages.
RT3: The response time of the operation F3 for one message is less than 350 ms.

Functional Decomposition. Requirement analysis led us to a conceptual soft-
ware view depicted in Fig. 1.

Fig. 1. Overview of the CRN system functionality

The CRN logical view has three major functional blocks:

– The man-machine interface (MMI), that takes care of all interactions with
the end-user, such as handling key inputs and graphical display output.

– The navigation functionality (NAV) is responsible for destination entry, route
planning and turn-by-turn route guidance giving the driver visual advices.
The navigation functionality relies on the availability of a map database and
positioning information.

– The radio functionality (RAD) is responsible for tuner and volume control
as well as handling of TMC traffic information services.

A Process for Resolving Performance Trade-Offs in CBA 257

In the next section, we illustrate our DSE process that enables architecture
comparison and supports resolving design trade-offs with respect to multiple
performance attributes and cost.

3 Multidimensional Design Space Exploration Process

Fig. 2 depicts our DSE process that uses a component-based architecture as the
skeletal structure, onto which the composition of QAs can be performed out of
models of individual components. We developed an RTIE (Real-Time Integration
Environment) toolset that supports all the steps in the DSE flow. A distinguish-
ing feature of our process is that the analysis is based on the evaluation of a
number of key execution scenarios. The use of scenarios enables efficient analy-
sis while also enabling the architect to trade modelling effort (modelling multiple
scenario’s improves the ’coverage’ of the behaviour of the system) against confi-
dence in the results. The other cornerstones of the approach are:

– modelling of software components, processing nodes, memories and bus links,
– composition of system QAs out of these models,
– prediction of a system timing behaviour and resource usage, required for real-

time system design,
– pareto curves for identification of optimal architecture alternatives.

Fig. 2. Multidimensional design space exploration process

258 E. Bondarev, M. Chaudron, and P. de With

Let us outline the process phases. As input for an architecture, the sys-
tem designer has various third-party hardware and software components (in a
repository). Each component should be supplied with a set of models address-
ing important component attributes, like timeliness, cost, resource use. Relevant
types of models for a software (SW) component are: functional, resource and
behaviour models. Our example shows that these models can be made with
comparatively little effort. Typical models for hardware (HW) components are:
memory, communication and processing models.

The following steps are to be done for each architectural alternative (see
Fig. 2). Considering more alternative solutions leads to more complete coverage
of the design space.

Software Architecture Composition. The designer selects from the (RTIE)
repository the software components that together satisfy the defined functional
requirements and may satisfy extra-functional requirements. The component se-
lection is done by checking the functional models of available components with
respect to the functional requirements. The process assumes that the selected
components are supplied along with corresponding set of models. By means of
the RTIE graphical tool, the designer specifies component composition by instan-
tiating and connecting components. The resulting composition is converted into
XML-file with links to the individual component models stored in the repository.

Hardware Architecture Specification. The hardware architecture specifica-
tion can be done in parallel. In most of the cases, a hardware platform is pre-
specified. If not, the designer can select available hardware components from
a repository and choose a specific topology, number of processing nodes, types
of memory, communication means and scheduling policy. Then, he puts these
together on a design canvas, thereby specifying the hardware architecture. The
architecture is also represented in XML-file with references to the models of
hardware nodes.

SW/HW Mapping. Once the software and hardware architecture are speci-
fied, the mapping of the software components on the hardware nodes is made.
The mapping shows on which processing node each software component should
be executed. Efficient mapping is required to distribute the load of hardware
resources in an optimal way. However, at the first mapping iteration, it is not
clear how to deploy the software components to achieve the optimal load distri-
bution. Various mapping alternatives are possible at this stage. Each alternative
represents a system architecture.

Model Synthesis and Scenario Simulation. Some system attributes like cost
can be found analytically given a static architecture. However, for prediction of
other important system attributes (performance and robustness) the behaviour
of a system needs to be found. In our process, we obtain these attributes through
the scenario simulation method [6]. This method synthesize a model of the task

A Process for Resolving Performance Trade-Offs in CBA 259

execution architecture by composing resource and behaviour models of individual
software components, performance models of hardware nodes and scenario model
of the constructed software composition. All these models enable parameter-
dependent specification. For the details of parameter-dependent modeling the
reader is referred to [15]. The following two paragraphs specify models in more
detail.

The resource model contains parameter-dependent processing and memory
requirements of each operation implemented by the component. The resource
requirements can be obtained by profiling of each individual component on a
reference processor. The reference processor is also specified in the model in
order to scale the operation resource requirements to any other processor. The
behaviour model specifies for each implemented operation a parameter-dependent
sequence of external calls to operations offered by other interfaces. The external
call is a (synchronous or asynchronous) invocation of other interface’s operation
made inside the implemented operation. The data for the behaviour model can
be obtained by the source-code analysis. The performance model of a hardware
block specifies its capabilities. A performance model for a processing core defines
its instruction type (RISC, CISC or VLIW) and execution frequency. A model for
a memory IP block describes a memory type (SRAM, SDRAM, etc), a memory
size in MBytes and addressing type. A bus performance model specifies the
scheduling protocol (TDMA, CDMA, fare use, etc) and bandwidth size. The
data for performance models can be obtained by measurements or from supplier
data sheets.

For software composition architecture, the designer defines a set of resource-
critical scenarios and for each of them specifies an application scenario model.
Critical scenarios are the application execution configurations that may intro-
duce processor, memory or bus overload. In the scenario, the designer may spec-
ify environmental stimuli (events or thread triggers) that influence the system
behaviour. For a stimulus, the designer may define the burst rate, minimal inter-
arrival time, period, deadline, offset, jitter, task priority, and so on. By defining
the stimuli, the designer specifies autonomous behaviour of the system, or emu-
lates an environmental influence (interrupts, network calls) to the system.

The scenario, resource, behaviour and performance models are synthesized
by the RTIE tool. The objective of the synthesis is to reconstruct (generate) the
tasks running in the application. Prior to the synthesis, the task-related data
is spread over different types of models. For instance, the task periodicity may
be specified in an application scenario model, whereas the information about
the operation call sequence comprising the task is spread over corresponding
component behaviour models. The compiler combines these two types of data
in the task information containing period, jitter, offset, deadline and operation
sequence call graph. The synthesis results in the task execution architecture that
contains parameter-dependent data on the tasks running in the designed sys-
tem and data on the allocation of these tasks on the software and hardware
architectures. An example of this allocation is given in Fig. 3. Here, the system
executes three tasks using two processors and five deployed service instances. The

260 E. Bondarev, M. Chaudron, and P. de With

Fig. 3. Task allocation on the component and hardware architecture

Task1 executes on Processor1 and consists of operations offered by ServiceA and
ServiceB. The Task3 execution is spread over both processors and includes a
communication via the on-chip network. The task executes operations offered
by three service instances: ServiceB, ServiceD and ServiceE.

The obtained task execution architecture is a subject for virtual schedul-
ing (simulation). A simulation-based analysis employs virtual schedulers that
simulate the execution of the tasks specified in the system model for some pe-
riod of time. The selection of a scheduling algorithm is dictated by the types of
communication lines and operating system used for the designed system. The
RTIE tool provides the following virtual schedulers: rate monotonic (RM), dead-
line monotonic (DM), earliest deadline first (EDF), constant bandwidth server
(CBS), time division multiple access (TDMA) and fare-use algorithms. The simu-
lation techniques feature both processing and communication resources schedul-
ing. An example of the simulation results is given in Fig. 4.

The diagram shows the execution timelines of the three processors and the
bus-load timeline. For each processor timeline, the tasks executing the opera-
tions of the services that are mapped on the processor are shown. For each task
instance, its initiation and completion times are given. Beside this, the diagram
reflects the time slots when a task instance misses its deadline. The bus-load
timeline represents the timed bus utilization done by the communicating opera-
tions in these three tasks. The statistics, generated from the simulation timelines,
gives the overall data on the predicted task properties and load of the resources.

Quality Attribute Extraction. The throughput, latency and resource con-
sumption QAs are extracted in a straightforward way from the generated task
simulation timeline. For other attributes, like robustness additional computation
is needed. Robustness can be calculated as performance sensitivity to stimuli rate
increase. For this, the designer changes the stimuli rate in each of the scenario
system models and redo the simulations. Comparison of the new task latencies
or resource use with the old values answers the question on how sensitive is the
architecture against the input event rate changes.

Multi-objective Pareto Analysis. At this stage, having defined a number
of alternative architectures and predicted multiple QAs for each of them, we
look for an optimal design alternative. Pareto analysis is a powerful means for
resolving conflicting objectives [7]. The multi-objective optimization problem

A Process for Resolving Performance Trade-Offs in CBA 261

Fig. 4. Execution timelines for tasks on three processors obtained by RMA simulation

does not yield a unique solution, but a set of solutions that are Pareto-optimal.
An example of the Pareto analysis is shown in Section 4.4.

4 The Quest for an Optimal CRN Architecture

For this case study, we implemented and packaged three Robocop software com-
ponents: RAD, MMI and NAV, which correspond to above-mentioned CRN
functional blocks. The Robocop component model [8] supports modelling and
composition of a wide spectrum of component attributes and is targeted to em-
bedded systems domain. The Robocop component is an open set of models (see
Fig. 5).

For example, the functional model specifies the component functionality,
while resource model (see Fig. 6.B) specifies resource utilization of the com-
ponent operations. The executable entity (.dll file) is also considered as a special
type of model. A Robocop component can be downloaded from a common repos-
itory as a black-box and used for third-party binding. A component developer
is responsible for specification of the models. The executable component may
include a number of executable entities called services. A service may have pro-
vides and requires interfaces. The provides interfaces specify and give access to
operations implemented by the service.

262 E. Bondarev, M. Chaudron, and P. de With

Fig. 5. Robocop component model

The three implemented components, their provides/requires interfaces and
operations are depicted in Fig. 6.A. The MMI component provides IGUIControl
interface and requires to be bound to IParameters and IDatabase interfaces. The
GUIControl interface provides access to three implemented operations: setVol-
ume (handles the volume rotary button request from the user), setAddress (han-
dles the address keyboard request from the user) and updateScreen (updates the
GUI display). The NAV component provides IDatabase, ITMC interfaces and re-
quires operations from the IGUIControl interface. The IDatabase interface gives
access to addressLookup() operation, which queries the address in the database
and finds a path to this address. The ITMC interface provides an access to
decodeTMC() operation. The RAD component provides IParameters, IReceiver
interfaces and requires ITMC interface. The two operations implemented by this
component are adjustVolume() and receiveTMC().

Each component is accompanied by resource, behaviour (see Fig. 6.B), and
cost models. The resource model specifies resource requirements per individual
operation. The behaviour model describes the operation’s underlying calls to
operations of other interfaces. Besides, the model may specify a periodic thread
triggers (like Posix thread with a periodic timer), if they are implemented inside
the component. Both resource and behaviour models are composable, i.e. from
a number of behaviour models of constituent components one can generate a
system behaviour model. The composition principles are explained in detail in
[6]. The resource requirements (CPU claim) has been obtained by profiling of
each individual component on a reference RISC processor. The operation be-
haviour data has been generated from the component source code. For example,
the RAD behaviour model describes that the operation adjustVolume() synchro-
nously calls once the IGUIControl. updateScreen() operation. This model also
shows the bus usage of the adjustVolume() operation: 4 bytes. That means the
operation sends outside (as an argument of updateScreen()) 4 bytes of data.

4.1 Defining Architecture Alternatives

Following the process, we composed a component assembly (see Fig. 7.A) from
the available components. We were able to design only one software architecture
alternative due to a limited number of available software components. These

A Process for Resolving Performance Trade-Offs in CBA 263

Fig. 6. (A) Components used for the case study; (B) Behaviour and resource models
of the selected components

three components were instantiated and bound together via pairs of their pro-
vides/requires interfaces. This assembly satisfies the three defined functional
requirements: F1, F2 and F3.

The next phase is to define a set of hardware architectures and map the soft-
ware components onto hardware. We reused five feasible alternative hardware
architectures with different mapping schemas proposed in [13] (see Fig. 7.B). For
instance, in Architecture A there are three processing nodes connected with a
single bus of 72 kbps bandwidth. The MMI Inst component is executed (mapped)
on a 22-MIPS processor, the NAV Inst component is mapped on a 113-MIPS
processor, and RAD Inst component executes on a 11-MIPS processor. The ca-
pacity of the processing nodes and communication infrastructure was taken from
the datasheets of several commercially available automotive CPUs. The multi-
objective DSE process has been performed for these five solutions.

4.2 Scenarios and Task Generation

For our case study, we selected three distinctive execution scenarios to assess the
architecture against the six defined requirements. These scenarios should impose
the highest possible load on the hardware resources for accurate evaluation of
the real-time requirements RT1, RT2 and RT3.

264 E. Bondarev, M. Chaudron, and P. de With

Fig. 7. (A) Software component assembly of the CRN system. (B) Five alternative
system architectures to explore.

“Change Volume” Scenario. The user turns the rotary button and expects
instantaneous audible and visual feedback from the system. The maximum rota-
tion speed of the button is 1 sec from lowest to highest position. For emulating
this user activity, we introduced a VolumeStimulus task trigger, which initiates
execution of the IGUIControl.setVolume() operation. The trigger parameters are
defined in the following way: the event period is set to 1/32 sec, as the volume
button scale contains 32 grades. The task deadline is set to 200 ms, according
to R1. The trigger and component assembly resemble a scenario model.

For this scenario, the RTIE tool generated (from the behaviour models of par-
ticipating components) the message sequence chart (MSC) of operation calls in-
volved in the task execution. The scenario model and obtained MSC are shown in
Fig. 8.A. The task is executed periodically (31 ms) and passes through MMI Inst
and RAD Inst.

“Address Lookup” Scenario. Destination entry is supported by a smart type-
writer style interface. The display shows the alphabet and the user selects the
first letter of a street. By turning a knob the user can move from letter to letter;
by pressing it the user selects the currently highlighted letter. The map data-
base is searched for each letter that is selected and so on. We assume that the
worst-case rate of the letter selection is 1 time per second. This user activity
was emulated with a LookupStimulus trigger, which initiates execution of the
IGUIControl.setAddress() operation. The trigger period was set to 1000 ms. The
deadline for the address lookup task is 200 ms, according to RT2.

A Process for Resolving Performance Trade-Offs in CBA 265

Fig. 8. Model and message sequence chart for scenarios: (A) Change Volume; (B)
Address Lookup, and (C) TMC Message Handling

The task-generation procedure outputs the task MSC for this scenario. The
obtained scenario model and MSC are shown in Fig. 8.B. The task is executed
periodically (1000 ms) and passes the MMI Inst and NAV Inst components.

“TMC Message Handling” Scenario. RDS TMC is a digital traffic infor-
mation that enables automatic replanning of the route in case of traffic jam.
Traffic messages are received by the RAD component (in the worst case 1 time
per 3 seconds). We introduced a TMCStimulus trigger emulating these TMC
messages. The trigger initiates execution of the IReceiver.receiveTMC() opera-
tion. The period is set to 3000 ms. The deadline for the TMC handling task is
set to 350 ms, according to RT3.

The task-generation procedure resulted in the task MSC for this scenario.
The obtained scenario model and task are represented in Fig. 8.C. The task is
executed periodically (3000 ms) and passes through three component instances:
RAD Inst, MMI Inst and NAV Inst. The fully decoded messages are forwarded
to the user.

4.3 Simulation and Attribute Extraction

The scenarios sketched above have an interesting property: they can occur in
parallel. TMC messages must be processed while the user changes the volume
or enters a destination address at the same time. Therefore, we combined these
three scenarios into two in order to get worst-case load on the system resources

266 E. Bondarev, M. Chaudron, and P. de With

during simulation. We defined ScenarioA as a combination of the SetVolume
and TMCHandling scenarios, and ScenarioB as a combination of the Address-
Lookup and TMCHandling scenarios. From the processing point of view, both
new scenarios have two tasks executing in parallel.

Table 1. Experimental data of the predicted quality attributes

Attribute Arch. A Arch. B Arch. C Arch. D Arch. E

Max. task latency
against RT1 (RT1=200ms) 37.55 ms 37.55 ms 30.52 ms 9.18 ms 3.58 ms

Max. task latency
against RT2 (RT2=200ms) 86.51 ms 86.51 ms 61.49 ms 63.79 ms 21.05 ms

Max. task latency
against RT3 (RT3=350ms) 325.05 ms 395.05 ms 101.71 ms 114.12 ms 46.02 ms

Performance sensitivity
(latency increase 57.6% 51.1% 3.2% 3.1% 0.0%

for TMC handling)

Cost, euro 290 305 380 335 340

Following our DSE process, we simulated the execution of these two scenarios
for each of the five system architectures. Before simulation, the following pre-
processing of the computation and communication time data is performed. For
each of the processing nodes, the execution times of all operations to be executed
on the node are calculated from the component resource and node performance
models (execution time = CPU claim value * processor speed). The communi-
cation time of the operation calls made through the processor boundaries is
calculated by dividing the bus claim value of an operation on a bus bandwidth
value, defined in a bus performance model.

The scenario simulation by preemptive RM algorithm (other policies can also
be used) resulted in (a) predicted system timing behaviour description and (b)
resource consumption of a system for each scenario and task worst-case latencies.
First, we analyzed the predicted task latencies against the real-time requirements
RT1, RT2 and RT3 for each of the five architectures (see Table 1).

Analyzing the table data, we concluded that except for Architecture B, the
rest of the four architectures satisfy the given real-time requirements. The Ar-
chitecture B does not satisfy the requirement RT3, because it has TMCHandling
task latency higher than 350 ms. Architecture A can be considered fast enough;
architecture E is the fastest solution. Then, we analyzed the architecture robust-
ness as a performance sensitivity to the changes in the input event rates (arrival
period of the three stimuli). We increased the data rate of the three stimuli by
5% (i.e. VolumeStimulus to 33.6 events/s, LookupStimulus to 1.05 events/s and
TMCStimulus to 0.35 events/s). Afterwards, we re-simulated the adjusted sce-
narios and obtained new task latencies. The fourth row in Table 1 describes the

A Process for Resolving Performance Trade-Offs in CBA 267

increase of the latency of the TMC handling task as percentage of the normal
latency per architecture. For instance, the end-to-end delay of the TMC message
handling task for architecture A increased by 57.6%! This happened due to a
high overload of the 22-MIPS processor in this scenario.

The system cost attribute was calculated as a cumulative cost of the sys-
tem hardware and software components. The software component cost has been
defined with correlation to the component source code complexity (in reality,
the cost of a third-party component is defined by the component producer).
The cost of the hardware components was calculated from the available market
prices. The total calculated cost for each architecture is given in Table 1. The
most expensive architecture was number C due to the costly high-performance
processing nodes.

4.4 Analysis of Architecture Alternatives

The performance, robustness and cost attributes were selected as main objec-
tives for our design space exploration. Using the RTIE Pareto analysis tool, we
obtained several two-dimensional Pareto graphs. Two of them, robustness vs.
cost and performance vs. cost are depicted in Fig. 9.

Fig. 9. Pareto exploration graphs based on A) performance vs. cost, B) robustness vs.
cost quality attributes

The graphs can be evaluated as follows. The Pareto curve is drawn by con-
necting the alternatives that are closest to the origin. This curve defines a set of
optimal alternatives. With respect to the cost-robustness trade-off (see Fig. 9.B),
the optimal architectures are E, D and A, because they create the curve closest
to the null-coordinate point. The alternatives C and B are non-optimal. The
choice from the three alternative architectures depends on a weighting function
(priority) for the cost and robustness attributes. If cost has higher priority then
Architecture A should be selected. If performance sensitivity is a critical fac-
tor, then the Architecture A is not the best candidate. Moreover, looking at the
cost-performance trade-off (see Fig. 9.A), we can observe that TMC task latency
for Architecture A is close to its deadline. Thereby, low robustness (57.6%) of
Architecture A cannot be tolerated.

268 E. Bondarev, M. Chaudron, and P. de With

With respect to the cost-performance trade-off, again the optimal alternatives
are E, D and A, though C is not positioned on the hypothetical ideal Pareto
curve. The Architecture B gets out of competition because its TMC task latency
is higher than task deadline. Despite of its low cost, the Architecture A with low
performance and insufficient robustness can be also omitted.

Concluding, the Architectures E and D can be considered as optimal alter-
natives. If the cost weighting function is higher than performance or robustness
weighting function, the architecture E can be adopted for further development
and vice versa. In addition, we may also re-iterate the DSE process to achieve
acceptable performance for less costly Architecture A. For instance, we can add
a new software component TMCHandler, which reduces TMCHandling task la-
tency, or re-dimension one of the processing node. Another optimization tech-
nique would be to reduce the cost of the Architecture E, by sacrificing (within
acceptable range) its performance and robustness.

5 Conclusion

The proposed DSE process includes the steps of designing, predicting quality
attributes and evaluating the architectural alternatives. The accuracy of per-
formance attribute prediction has been previously validated by a case study on
a Linux-based MPEG-4 player [14]. The prediction accuracy on the general
performance proved to be higher than 90%. In all case studies, the modelling
effort required from application designer was fairly small - in the order of hours.
The most of the modelling work goes to the component developer, because he
should provide the component models. Thereby, the application developer may
relatively easily model a system out of 100 components (scalability), because
necessary models are already supplied within these components. The process en-
ables early identification of the bottlenecks of individual alternatives and leads
to selection of optimal solutions. In this paper we address strictly performance
attributes, however the proposed DSE process enables targeting other impor-
tant QAs, like reliability and availability. This extensibility is realized by open
component model structure, in which new model types can be easily added.

Limitations. There are certain limitations of the process. Firstly, the compo-
nent behaviour model represents an abstraction of the component source code,
leaving out implementation details. That eases the assessment of the component
and system behaviour, but limits the specification of all aspects of the source
code, like complex parameter-dependent loops and condition forks implemented
inside a component operation. Secondly, to explore the design space of a system,
a designer can only select the components that already contains required cost,
resource and behaviour models. Moreover, the QAs that are system-wide, like
safety and security, cannot be easily localized and modeled at the component
level. Thirdly, introduction of scenarios requires that the designer has a good
understanding of the system-environment interaction aspects, and has some an-
alytical skills in identifying the scenarios. The scenario identification criteria is

A Process for Resolving Performance Trade-Offs in CBA 269

our ongoing work. Finally, the RTIE tool does not facilitate generation of com-
plete design space. Instead, the designer is responsible for identification of the
architecture alternatives.

In our future plans, we focus on development of automated optimization
algorithms as a back-end for this exploration process. Genetic algorithms can
be used to generate better alternatives by varying the topology, mapping and
scheduling-policy of an architecture.

References

1. I. Crnkovic and M. Larsson. Building Reliable Component-based Software Systems,
Artech House, 2002

2. K.C. Wallnau, ”Volume III: A Technology for Predictable Assembly from Certifi-
able Components”, CMU/ESI-2003-TR-009 report, April 2003.

3. S.A. Hissam, et al., ”Packaging Predictable Assembly with Prediction-Enabled
Component Technology”, CMU/ESI-2001-TR-024 report, November 2001.

4. A. Bertolino, R. Mirandola, ”CB-SPE Tool: Putting Component-Based Perfor-
mance Engineering into Practice”, Proc. 7th Symp. on CBSE, Edinburgh, UK.
Vol. 3054 of LNCS, Springer (2004) 233-248.

5. S. Zschaler, ”Towards a Semantic Framework for Non-functional Specifications of
Component-Based Systems”, Proc. 30th EUROMICRO Conf., France, Sep. 2004.

6. E. Bondarev, et al, ”Predicting Real-Time Properties of Component Assemblies: a
Scenario-Simulation Approach”, Proc. 30th Euromicro Conf., Sep. 2004.

7. C.A. Mattson and A.Messac, ”A Non-Deterministic Approach to Concept Selection
Using s-Pareto Frontiers”, Proc. ASME DETC 2002, Canada, Sep. 2002.

8. ”Robocop: Robust Open Component Based Software Architecture”,
http://www.hitech-projects.com/euprojects/robocop/deliverables.htm

9. Schmidt, H.W. et al, ”Modelling Predictable Component-based Distributed Con-
trol Architectures”, Proc OORTDS workshop, 2003, 339-346

10. L. Thiele et al, Design Space Exploration of Network Processor Architectures,
Network Processor Design: Volume 1, Morgan Kaufmann Publishers, 2002.

11. A. D. Pimentel et al, ”A Systematic Approach to Exploring Embedded System
Architectures at Multiple Abstraction Levels”, IEEE Trans. on Computers, Vol.
55), Feb. 2006.

12. M. Zitzler et al, ”SPEA2: Improving the performance of the strength pareto evo-
lutionary algorithm”, Technical Report TIK-Report 103, ETH, Zurich, May 2001.

13. E. Wandeler, L. Thiele, M. Verhoef, ”System Architecture Evaluation Using Mod-
ular Performance Analysis - A Case Study”, Proc. 1th ISOLA Symposium, 2004.

14. E. Bondarev et al ”On Predictable Software Design of Real-Time MPEG-4 Video
Applications”, SPIE Proc. VCIP 2005. China. July, 2005.

15. E. Bondarev et al., ”Modelling of Input-Parameter Dependency for Performance
Predictions of Component-Based Embedded Systems”, In Proc. of 31th Euromicro
Conference; CBSE Track, Porto, September 2005.

16. J. Fredriksson et al, ”Optimizing Resource Usage in Component-Based Real-Time
Systems”, Proc 8th CBSE Symposium, May, 2005.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 270 – 284, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Model Transformation Approach
for the Early Performance and Reliability Analysis

of Component-Based Systems

Vincenzo Grassi1, Raffaela Mirandola2, and Antonino Sabetta1

1 Dipartimento di Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”, Italy

vgrassi@info.uniroma2.it, sabetta@info.uniroma2.it
2 Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy
mirandola@elet.polimi.it

Abstract. The adoption of a “high level” perspective in the design of a
component-based application, without considering the specific features of some
underlying supporting platform, has the advantage of focusing on the relevant
architectural aspects and reasoning about them in a platform independent way,
omitting unnecessary details that could even not be known at the earliest
development stages. On the other hand, many of the details that are typically
neglected in this high-level perspective must necessarily be taken into account to
obtain a meaningful evaluation of different architectural choices in terms of
extra-functional quality attributes, like performance or reliability. Toward the
reconciliation of these two contrasting needs, we propose a model-based
approach whose goal is to support the derivation of sufficiently detailed
prediction models from high level models of component-based systems, focusing
on the prediction of performance and reliability. We exploit for this purpose a
refinement mechanism based on the use of model transformation techniques.

1 Introduction

Component-based development is one of the major current trends in software deve-
lopment. Other recently emerged trends are: the central role played by the software
architecture concept in the software development; the model driven paradigm of
development; and the attention given to the analysis of extra-functional properties
during software development. Our work aims at leveraging concepts and methodologies
developed within all these fields, to support the early analysis of extra-functional
properties (such as performance and reliability) of component-based architectures.

The software architecture approach focuses on the high level modeling of an
application in terms of coarse-grained components and interaction patterns among
them (connectors), abstracting away low level details [2]. Also the model driven
paradigm, even if from a somehow different perspective, calls for a focus on the high-
level modeling of an application in the early development phases, neglecting low level
platform-dependent details [21]. The underlying idea is that better software systems
can result from modeling and analyzing their relevant architectural aspects in the early
phases of the development lifecycle. The goal of this early analysis is to predict the

 A Model Transformation Approach 271

quality of the system before it has been built, to understand the main effects of an
architectural choice with respect to quality requirements. In the case of component-
based architectures, this prediction can be exploited to drive decisions about which
components should be used and how they should be connected (connector selection)
so as to meet the quality requirements imposed on the design. It can also be used for
“what-if” experiments to predict the impact of architectural changes needed to adapt
the system to new or changing requirements.

On the other hand, the prediction of extra-functional quality properties like
performance and reliability generally requires the knowledge of low level details, like
the characteristics and the patterns of use of some underlying interconnection infra-
structure used to support component interactions. The absence of such details in an
architectural model may actually hinder the possibility of carrying out a meaningful
analysis at early development stages.

To reconcile these two contrasting aspects, our proposal is aimed at introducing
details useful to support performance and reliability analysis into a high-level model of a
component-based architecture. In particular, we focus on details concerning the
underlying platform that provides the interconnection infrastructure among compo-
nents, since different ways of connecting the same set of high level components can
have a different impact on the overall extra functional characteristics of the system [15].

To achieve this goal, we exploit model transformation methodologies and tools
mainly developed within the model driven development (MDD) paradigm [3,
12,14,16,17, 26]. In the MDD framework, the focus of model transformations is on a
transformation path from high level to platform specific models (up to the executable
code) of a software application. Besides, MDD based concepts and tools have proved
useful also in supporting the early analysis of extra-functional quality attributes of the
application being developed. Indeed, carrying out such an analysis can be seen as a
transformation process that takes as input some “design-oriented” model of the
software system (plus some additional information related to the extra-functional
attribute of interest) and generates an “analysis-oriented” model, that lends itself to the
application of some analysis methodology [1,10]. However, defining such a
transformation could be quite cumbersome, for several reasons: the large “semantic
gap” between the source and target model of the transformation, the heterogeneous
design notations that could be used by different component providers, and the
different target analysis notations one could be interested in to support different kind
of analysis (e.g. queueing networks, Markov processes). To alleviate these problems,
some “intermediate languages” have been recently proposed that capture the relevant
information for the analysis of extra-functional attributes, to be used as a bridge
between design-oriented and analysis-oriented notations [7,8,26].

In our approach to the performance/reliability oriented refinement of high level
component-based models, we take advantage of the existence of these intermediate
languages. Hence, we implement our refinement as a model transformation whose
input and output models are both expressed in one of such languages. We assume that
the input model has been directly obtained by means of suitable transformations from
a high-level architectural model of the application, so lacking details about the
performance and reliability “costs” of the adopted connectors. Then, the output model
is obtained by enriching the input model with static and dynamic features concerning
these connectors, which may be useful for performance and reliability prediction.

272 V. Grassi, R. Mirandola, and A. Sabetta

Fig. 1. Our contribution (shaded area) within a transformation path from architectural models
of component-based applications (possibly expressed using heterogeneous notations SN1,
..,SNn) to different types of performance/reliability models (expressed by different notations
TN1, .., TNm)

Working at the intermediate language level, we make our approach independent of
both the specific notation(s) used to describe the high level architecture, and the target
analysis-oriented model that will be finally generated. Fig. 1 provides a graphical
representation of our approach.

The rest of the paper is organized as follows. In section 2 we briefly present the
intermediate language we have selected. In section 3 we outline our general approach,
based on the idea of using model transformations to support the refinement of models
expressed in the intermediate language. In section 4 we present the implementation of
this approach in terms of a specific model transformation methodology, using the
QVT (Query/View/Transformation) language proposed by the OMG within its MDA
framework [16]. For this purpose, we present two examples of parametric
transformations referring to two different connector types, that can be used to refine a
source “high-level” model, adding to it information about the actual connector
resource usage. Section 5 reviews related work, while section 6 concludes the paper.

2 An Intermediate Language to Support Transformations from
Design to Performance/Reliability Analysis Models

The intermediate language we have selected to implement our architectural
refinement is KLAPER (Kernel LAnguage for PErformance and Reliability analysis).
To make the paper self-contained we summarize here the relevant features of
KLAPER, referring the reader to [7] for further details. The purpose of KLAPER is to
capture in a lightweight and compact model only the relevant information for the
performance and reliability analysis of component-based systems, while abstracting
away irrelevant details. KLAPER is neither an architecture description language
(ADL) nor an analysis language: it has been designed as an intermediate “distilled”
language to help define transformations between design-oriented and analysis-
oriented notations, filling the large semantic gap that usually divides them. Using
KLAPER (or other similar languages) we may split the complex task of deriving an
analysis model (e.g. a queueing network) from a high level design model (expressed
using UML or other component oriented notations) into two separate and presumably
simpler tasks:

 A Model Transformation Approach 273

• extracting from the design model only the information that may be relevant
for performance/reliability analysis, and expressing it in KLAPER;

• generating an analysis model based on the information expressed in
KLAPER.

We point out that this two tasks may be solved independently of each other. More-
over, as a positive side effect of this two steps approach built around a single
intermediate language, we may mitigate the “n-by-m” problem of translating n
heterogeneous design notation types into m performance/reliability model types,
reducing it to a less complex task of defining n+m transformations: n from different
design notations to KLAPER, and m from it to different analysis models.

To take advantage of the current state of the art in the field of model
transformation methodologies, KLAPER has been defined as a MOF (Meta-Object
Facility) compliant metamodel [14], where MOF is the metamodeling framework
proposed by the Object Management Group (OMG) for the management of models
and their transformations within the MDD approach to software development [12,21].
Fig. 2 shows the structure of the KLAPER MOF metamodel, while Fig. 3 summarizes
the list of attributes and associations for the relevant KLAPER metaclasses1. We refer
to [7] for details about this MOF specification.

To support the first task outlined above, KLAPER helps to distill from a design
model the following basic information: the operation of a software system consists of

Behavior

Ste p

1..*in 0..*

out 0..*

Serv iceCall

Activity

Transi tion

Start End

Branch Fork Join

0..1

0..*

 called
 Serv ice

Acquire Release

nestedBehavior

Work load
0..1

0..*

ActualParam

{ordered}
0..*

actual
Param

Serv ice

Resource

1..*

offeredService 0..*

1

0..*
used

Service

0..*
 behavior

resourc e

1

0..1

0..1 to

0..1 f rom

Control

Fig. 2. Structure of the KLAPER MOF metamodel

1
 This metamodel is a slight modification of the metamodel presented in [8], that fixes some
minor problems.

274 V. Grassi, R. Mirandola, and A. Sabetta

Resource: attributes: name, type, capacity, schedulingPolicy, description; associations:
offeredService.

Service: attributes:name, formalParams, speedAttr, failAttr, description; associations:
behavior, resource.

Behavior : associations: usedService, step, workload.
Step : attributes: name; associations: in, out.
Activity : attributes: name, repetition, /internalExecTime, /internalFailProb,

/internalFailTime,completionModel; associations: nestedBehavior, serviceCall.
Branch : attributes: branchProbs.
Acquire : attributes : resourceUnits; associations: resource
Release : attributes: resourceUnits; associations: resource
ServiceCall: attributes: resourceType, serviceName, isSynch; associations: step,

actualParam, calledService;
ActualParam : attributes: value.
Transition : associations: to, from.
Workload : attributes: workloadType, arrivalProcess, population, initialResource;

associations: behavior.

Fig. 3. Attributes and associations of the main KLAPER metaclasses

a set of Steps, where each step may take time to be completed, and/or may fail before
its completion. For this purpose, the internalExecTime, internalFailTime and
internalFailProb attributes of each step specify (according to a stochastic setting) the
execution time or failure characteristics of that single step. A step may be a Control
node (Branch, Fork, Join) that usually neither takes time nor fails, or an Activity node
that consists of “internal operations” (i.e. operations that do not require any service
offered by other resources) and ServiceCalls addressed to other Resources. A service
call may include the specification of a set of ActualParameters. An interesting feature
of KLAPER is that ServiceCall actual parameters are meant to represent abstractions
(for example expressed in terms of random variables) of the “real” service parameters
(see [7] for more details). This helps in defining parametric service requests at a
suitable abstraction level that may facilitate the next step of constructing a repre-
sentative analysis model.

Steps are grouped in Behaviors (directed graphs of nodes). Behaviors may be
associated with a Workload modeling the demand injected into the system by external
entities like the system users (proactive behavior), or may be associated with a
Service offered by some Resource (reactive behavior). Resources are the topmost
modeling element in KLAPER: hence, the domain model underlying KLAPER
considers that a component-based system is an assembly of interacting Resources,
each offering (and possibly requiring) Services. Thus a KLAPER Resource is an
abstract modeling concept that can be used to represent both software components
and physical resources like processors, communication links or other physical
devices. Each offered Service is characterized by a list of formal parameters that can
be instantiated with actual values by other resources requiring that service.

To conclude this section, we point out that the performance/reliability attributes
associated with a service behavior step concern only the internal service
characteristics; they do not take into account possible delays or failures caused by the
use of other required services, needed to complete that step. In this respect, we remark
that when we build a KLAPER model (first task outlined above) our goal is mainly
“descriptive”. The calledService association specified in a step helps in identifying

 A Model Transformation Approach 275

which are the external services that may cause additional delays or failure possibilities,
but how to properly mix this “external” information with the internal information to
get an overall picture of the service performance or reliability is out of the KLAPER
scope. It is a problem that must be solved during the generation and solution of an
analysis model derived from a KLAPER model (second task outlined above).

3 Refinement of KLAPER High-Level Models

As already pointed out in the introduction, we assume that the starting point for our
refinement is a KLAPER model directly obtained from a high-level model of a
component-based application. Rules to generate this model from two different
notations for component-based systems are presented in [7]. At this high level we
may generally expect to only have information about the provided and required
services of each component, and the type of connectors used to enable component
interactions. As a consequence, the corresponding KLAPER model built using
suitable transformation rules cannot contain more information than that already
available in the original model.

Fig. 4 gives an example of this, in the case of a model representing two comp-
onents connected through a “synchronous client/server” connector. In this example we
use a UML 2.0 notation for the architectural model, that consists of a “structural
view” expressed through a component diagram, and a “dynamic view” expressed
through an activity diagram, where the latter provides some information about the two
component dynamics. We also assume the existence of a C/Ssynch stereotype to label
the connector between the two components. Without further specifications of the
semantics of such annotation (from a performance or reliability viewpoint), we are
only able to derive the KLAPER model in the lower part of fig. 4 (without the “dashed
part”), where the interaction between the two components is simply modeled by a
direct association between a ServiceCall step in the Client behavior and the
offeredService of the Server (to avoid cluttering the figure, we have omitted some
details of the KLAPER model). This model does not include any information about
the use of resources of the underlying interaction infrastructure caused by the adoption
of that particular type of connector (the “dashed part” of the figure partially outlines
this lacking information, expressed in the KLAPER syntax).

Our idea to facilitate the inclusion into KLAPER models also of these lower level
details, which are relevant from a performance/reliability viewpoint, is to build a
library of KLAPER “parametric transformations”, each corresponding to a specific
connector type. Given a connector type specified in an architectural model, the goal
of the corresponding transformation is to enrich the high-level KLAPER model
directly obtained from the source architectural model with information concerning the
resource consumption caused by the use of that connector.

Each transformation refers to “abstract” resources (e.g. cpu or communication link
type resources), specified as parameters of the transformation. In a concrete
application of the transformation, these parameters are mapped to concrete instances
of KLAPER resources, which model the resources of some platform where the
application will be deployed. We point out that, besides specifying the used resources,
the goal of the transformation is also to specify a suitable pattern of use of these

276 V. Grassi, R. Mirandola, and A. Sabetta

Resource
 ...
 name = "server"
 ...

 offered
 Service

 behavior

End

Start

 client server
 serv serv

invoke serv
perform serv

client server

Service
 ...
 name = "serv"
 ...

Resource
 ...
 name = "client"
 ...

 behavior

End

Start

ServiceCall
 ...
 isSynch = true
 ...

<<C/Ssynch>>

 called
 Service

return result

ServiceCall

Service

 name = "transmit"
 ...

Resource

 type = "network"
 ...

 offered
 Service

 called
 Service

 behavior

. . .

Fig. 4. From a (UML 2) architectural model to a corresponding “high-level” KLAPER model:
the dashed part partially depicts the missing “low-level” details

resources. In particular, this means that it must also specify how to “weave” the
resource usage pattern caused by a connector with the behaviors of the KLAPER
resources that model the high level application components, to get a more refined
description of the overall resource usage of that application.

4 Specifying Refinement Transformations of KLAPER Models

In this section we present two example transformations that manipulate high-level
KLAPER models to represent the resource usage of two different types of connectors.
To this end, we use two variants of the synchronous client/server connector
(presented in the previous section): static synchronous client/server and dynamic
synchronous client/server.

We express such transformations using the QVT (Query/View/Transformation)
language, whose purpose is to enable the transformation of MOF-based models.

The QVT specification allows the definition of both declarative and imperative
transformation rules. As in this paper we adopt the declarative style, we give some
details only about it. The declarative specification is supported by a two-level

 A Model Transformation Approach 277

Fig. 5. Conceptual overview of the stepwise refinement approach

architecture, where the topmost level consists of a user-friendly language and
metamodel, called Relations, which allows the definition of complex transformations
by means of object pattern matching and object template creation. The semantics of
this higher-level language is defined in terms of the lower-level Core language and
metamodel, which is a more basic language defined as a minimal extension of the
EMOF (Essential MOF) and OCL metamodels [18].

A QVT Transformation (expressed in the Relations language) is composed of
relations. Each relation defines a bi-directional mapping between two (or more)
domains for which the relation is defined. Each domain has a pattern, i.e. a
configuration of object instances together with their mutual links and attributes that
define the applicability conditions of a rule. A relation can have a when clause and a
where clause, containing a set of OCL statements, that are used to further constrain
the applicability of the mapping rule (when clause), or to enforce the deletion (or
creation) of certain elements that are (or are not) found in the target model and that do
not conform to the rule target pattern (where clause). We refer to [16] for further
details.

For the purpose of this work, we express the refinement transformations on
KLAPER models as relations, not as operational mappings, because an intuitive
graphical syntax is defined in the standard specification for the former while only a
textual syntax is available for the latter.

Technically speaking, the model refinements we are going to present here are “in-
place” transformations, i.e. transformations where both the source and the target
candidate models conform to the same metamodel and are bound to the same model at
run-time [16].

When the general approach discussed in section 3 is rephrased in terms of QVT,
the connector resource usage and the “weaving rules” are embedded in the QVT rule
and encoded in the “right-hand side” of the rule. The conditions contained in the when
clause constrain the application of the rule to the portion of the source model specified
by the user. As shown in Fig. 5, the proposed approach is realized in two steps.
 First the high-level KLAPER model is augmented with a resource modeling the
connector. Such a connector model is minimal and is only meant to represent a
structural change in the original model, ignoring the behavioral aspects related to the
connector use. The second step is performed to attach a behavioral specification to the
connector, modeling its dynamics and the service demand that in turn it addresses to
other resources. Transformations that refer to connectors belonging to the same
“family” (characterized by the same structure but different behaviors) share the first
step and differ in the second step. In this paper, we give examples for the family of
connectors that model a Client/Server interaction between two components.

278 V. Grassi, R. Mirandola, and A. Sabetta

Fig. 6. Insertion of a connector resource into a high-level KLAPER model

A QVT relation describing a “step one” refinement is shown in Fig. 6. The
transformation, which in principle is bi-directional, is assumed to be executed from
left to right. When a ServiceCall and a Service matching the pattern on the left-hand
side are found in the model, the pattern on the right-hand side is enforced, creating (if
not already existing) a connector resource (connector) offering a communication
service (s2) whose behavior (b) is responsible for calling the service (s) that in the
original model was called directly by sc1.

From the application of the first rule a structural enhanced model is obtained,
which is still under-specified to be useful for analysis purposes. This problem is
addressed using another refinement transformation that is applied to the model
obtained after the execution of the first rule.

As a result, a behavioral specification is attached to the communication service
offered by the connector resource. A complete implementation requires that a few
more relations be enforced by the where clauses of both step-one and step-two rules,
so that the resulting model remains consistent, but we prefer not to delve into details
about these technicalities here. In fact we are not concerned by strict syntactic
compliance with the QVT standard specification, but we rather prefer to convey the
intuitive idea of using a stepwise refinement of a high-level model to yield an
augmented model that is richer both from the structural and the behavioral standpoint.
Such a refined model can give useful insights regarding performance or reliability
problems that are not evident (or not captured at all) in the original model but that
arise when the interaction dynamics between different components is taken into
account. By the way, designing the transformation process in steps is a key feature of
the proposed approach, as this eases the experimentation of different alternative
behaviors (using different step-two transformations) that can be attached to a partial
(i.e. only structural) model of a connector obtained through a step-one transformation
applied to a high-level model.

The two examples presented in the remainder of the section illustrate the
transformation of the generic structural model, obtained after the first step of the
transformation process, into two different concrete connectors, each having a different
dynamic behavior and resource requirement.

Static synchronous client/server connector. In this first example we consider a
Client-Server interaction with a static binding between the client that requires a
service and the server that provides it. The left part of Fig. 7 defines the pattern that is
looked for in the source model. When a match is found that satisfies the when clause,

 A Model Transformation Approach 279

Fig. 7. QVT refinement rule to attach a static synchronous client/server behavior to the con-
nector resource

the rule is enforced and new elements are introduced in the model, or are updated to
conform to the right-hand side pattern if they already exist but their attributes are not
appropriate. The behavior attached to the connector resource (in the right hand side) is
meant to represent the fact that, to actually support an interaction, the connector itself
must use some processing and network resources. The operations requested from those
resources are modeled as KLAPER service calls addressed to them. For the sake of
conciseness, we omit the specification of some KLAPER attributes. When the rule is
applied, a new element is added to the model only if none is found matching the pattern
in the right-hand side. The rule may cause the attributes of existing elements to be
adjusted to match the enforced pattern. It is important to note that the formal parameters
of the communication service provided by the connector are the same as those of the
service provided by the server, thus representing the fact that in this example the
connector works as a proxy through which the client communicates with the server.

Dynamic synchronous client/server connector. This second example is similar to the
first one but here the interaction between the client and the server goes through a
preliminary discovery phase (Fig. 8). To retrieve a reference to the appropriate server,
a discovery service is invoked and afterwards the binding between the two parties is
established dynamically. It can be noted that in both transformations the user should
supply the parameters for the service calls addressed by the connector to the services
provided by the cpu and network resources that represent the supporting platform.
Those (actual) parameters should represent the amount of the service demand

280 V. Grassi, R. Mirandola, and A. Sabetta

Fig. 8. QVT refinement rule to attach a dynamic synchronous client/server behavior to the
connector resource

addressed to these resources, and typically depend on the size of the information
transported through the connector. In the abstract it is difficult to give a general rule
to model such dependency, so the modeler is required to define the where clauses of
the transformations appropriately, evaluating different possible scenarios.

Even though the models presented in these examples are admittedly naïve, they
show that the approach to the specification of connectors proposed in this work leads
to parametric models that are sufficiently self-contained to allow switching from one
interaction scheme to another with ease.

As a result of the stepwise application of a set of refinement transformations to a
high level KLAPER model, more detailed models are produced where the information
about the usage of resources of some underlying platform is explicitly captured and
added incrementally to the model. Fig. 9 (partially) shows the result of the application
of the insertConnector and the staticCsConnector transformations to the high level
KLAPER model of Fig. 4. The elements in the dashed part of Fig. 9 have been added
to the high-level model of Fig. 4 as a result of the transformation.

This refined model can be further transformed into another model expressed in
some analysis-oriented notation that can be readily understood by experts or processed
by an automatic analysis tool. As an example of the performance model that can be
derived from a KLAPER model enriched with the connector templates we have
defined, Fig. 10 depicts a fragment of a queueing network (QN) that models the
resource usage of a request addressed by a client to a server mediated by a static client-
server connector. Transformation rules to get this model from a KLAPER model are
outlined in [7]. In the figure, the CPU1, CPU2 and Network nodes model,

 A Model Transformation Approach 281

 Resource
 ...
 name = "server"
 ...

 offered
 Service

 behavior

End

Start

Service
 ...
 name = "serv"
 ...

Resource
 ...
 name = "client"
 ...

 behavior

End

Start

ServiceCall
 ...
 isSynch = true

 called
 Service

Resource
 type = "staticCSconn"
 ...

 offered
 Service

 behavior

Start

Service
 name = "communicate"
 ...

ServiceCall
 name = "call_Server"
 isSynch = true

End

 called
 Service

Resource
 type = "network"
 ...

 offered
 Service Service

 name = "transmit"
...

calledService

 called
 Service

calledService

Fig. 9. Partial representation of the KLAPER model of fig. 4 refined through the insert-
Connector and staticCsConnector transformations

Net work

CPU1

CPU2

class1

class1

class1

class2

c lass2

Fig. 10. Queueing model derived from the KLAPER model of figure 9

respectively, the processing resources where the Client and the Server are deployed
and the communication resource that connects them. The service demand addressed to
these resources by the Client/Server interaction (through a static client-server
connector) is modeled, according to the QN notation, by jobs circulating among
the QN nodes. Multiple jobs model concurrent requests to the same resources. In
the figure, class1 and class2 are two job classes that model the client-to-server and the
server-to-client paths of the Client/Server interaction, respectively. Existing solution
techniques can be used to solve this model and to obtain standard figures of merit such
as, for example, the application response time and/or the resource utilization [10].

5 Related Work

The rigorous modeling of software applications starting from the early development
phases is strongly encouraged in the Software Architecture approach [2]. For this
purpose, several architecture description languages (ADLs) have been proposed, that
support the modeling of an application in terms of high-level components and
connectors [13].

282 V. Grassi, R. Mirandola, and A. Sabetta

Besides these specialized ADLs, also UML, which is a de facto standard language
for software design, can be used to represent software architectural models, in
particular using its recently released UML 2.0 version, where several architectural
concepts have been more clearly modeled and expressed [25]. UML has been also
extended to model performance or reliability characteristics [5,23,24].

Given an architectural model expressed in any of these notations that support the
specification of performance and reliability characteristics, an important problem is
how to derive from it a meaningful analysis oriented model, that can be used to
predict the system performance or reliability. In this respect, automatic prediction
tools should be devised, to predict these quality attributes without requiring extensive
knowledge of analysis methodologies from the application designer.

Motivated by these considerations, recently there has been a great interest in
methodologies for the automatic generation of analysis-oriented models starting from
architectural models. In particular, several proposals have been presented concerning
the generation of performance analysis models. We refer to [1] for a thorough
overview of these proposals. Some proposals have also been presented for the
generation of reliability models [4,11,20].

The development of these methodologies has received a great impulse by the
almost contemporary development of model transformation methodologies and tools
aimed at supporting the MDD paradigm [3,12,14,16,17,26]. Indeed, a crucial issue for
the application of the MDD paradigm is the existence of automatic model trans-
formations. Moreover, it has been recognized [22] the need of incorporating QoS
specification and evaluation within a MDD-based approach at the more abstract level
and at the platform-specific level. In this view, the model transformations, the code
generation, the configuration and deployment should be QoS-aware. Ideally the target
execution platform should be also QoS-aware.

Examples of utilization of MDD methodologies for the generation of performance
or reliability models can be found in [7,8,28]. The work in [28] describes an
intermediate model called Core Scenario Model (CSM) expressed in a MOF-based
notation, which is extracted from a UML design model, and a tool architecture called
PUMA, which provides a unified interface between different kinds of UML diagrams
and different kinds of performance models, for example Markov models, stochastic
Petri nets and process algebras, queues and layered queues. The work in [8] proposes
a transformation method of an annotated UML model into a performance model,
based on graph transformation concepts and an intermediate language similar to the
one used in [28]; the implementation of the transformation rules and algorithm uses
lower-level XML trees manipulations techniques, such as XML algebra. The target
performance model used as an example in this paper is a Layered Queueing Network
(LQN). Similarly to [28] and [8], the work in [7] presents a MOF-based language to
build intermediate models for a transformation from design to analysis models.
Differently from [28,8], this intermediate language is intended to support the
generation of both performance and reliability models.

As already outlined in the introduction, our work builds on the existence of such
intermediate languages. The proposals in [6, 27] are close to our approach to the
refinement of architectural models, as they address the problem of providing a
performance-oriented refinement of high-level architectural connectors. With respect
to these works, we leverage the existence of an intermediate language to remain

 A Model Transformation Approach 283

independent of source and target notations used to express respectively the design and
the analysis model. Moreover we explicitly exploit model transformation metho-
dologies to integrate our approach within a model transformation path, aimed at
generating performance/reliability analysis models from architectural models.

6 Conclusions

The definition of automatic tools for transformations from design models to analysis
models is a crucial issue for the effective introduction of performance or reliability
analysis at the early stage of component-based software development. Toward this
end, we have presented an approach for the refinement of architectural models that
exploits currently available model transformation methodologies and tools. Our
refinement focuses on the introduction of information concerning the performance or
reliability related features of the adopted connectors into an architectural model of a
component-based application, since connectors play a key role in determining the
overall quality of a software architecture. To remain independent of the design and
analysis oriented notations that could be used, we have defined our refinement within
the framework of a MOF-based language, proposed as an intermediate notation
between design and analysis oriented notations. We are working on the automation of
the proposed approach since this represents a key point for its successful application.
Future works also include the development of other transformations to make available
blueprints for various plausible interconnection infrastructures; and the validation of
our approach by its application to industrial case studies.

Acknowledgements

Work partially supported by the MIUR-FIRB project “PERF: Performance evaluation
of complex systems: techniques, methodologies and tools”.

References

1. S. Balsamo, A. di Marco, P. Inverardi, M. Simeoni “Model-based performance prediction
in software development: a survey” IEEE Trans. on Software Engineering, Vol. 30/5, May
2004, pp. 295-310.

2. L. Bass, P. Clements, R. Kazman, Software Architectures in Practice, Addison-Wesley,
New York, NY, 1998.

3. J. Bezivin, E. Breton, G. Dupé, P. Valduriez “The ATL transformation-based model
management framework” Res. Report no. 03.08, IRIN, Univ. de Nantes, Sept. 2003.

4. V. Cortellessa, H. Singh, B. Cukic, E. Gunel, V. Bharadwaj ”Early reliability assessment
of UML based software models” in Proc. 3rd Int.Workshop on Software and Performance
(WOSP’02), July 24-26, 2002, Rome (Italy).

5. V. Cortellessa, A. Pompei “Towards a UML profile for QoS: a contribution in the
reliability domain” in Proc. 4th Int. Workshop on Software and Performance (WOSP’04),
Jan. 2004, pp. 197-206.

6. H. Gomaa, D.A. Menascé “Performance engineering of component-based distributed
software systems” in Performance Engineering (R. Dumke et al. Eds.), LNCS 2047,
Springer-Verlag, 2001.

284 V. Grassi, R. Mirandola, and A. Sabetta

7. V. Grassi, R. Mirandola, A. Sabetta “From Design to Analysis Models: a Kernel Language
for Performance and Reliability Analysis of Component-based Systems” in Proc. WOSP
2005: 5th ACM International Workshop on Software and Performance, Palma de
Mallorca, Spain, July 11-14, 2005, pp. 25-36.

8. G. Gu, D.C. Petriu “From UML to LQN by XML Algebra-Based Graph Transformations”
in: Proc. Fifth International Workshop on Software and Performance (WOSP 2005),
Palma, Illes Balears, Spain, July 11-15, 2005, pp. 99-110.

9. Hissam, S.A., et al. “Packaging Predictable Assembly” in Proc. Component Deployment
(CD 2002), LNCS 2370, Springer Verlag (2002), pp. 108-124.

10. Lazowska E.D. et al., Quantitative System Performance: Computer System Analysis using
Queueing Network Models, on line at: http://www.cs.washington.edu/homes/lazowska/qsp/

11. C. Leangsuksun, H. Song, L. Shen ”Reliability Modeling Using UML” in Proc. 2003 Int.
Conf. on Software Engineering Research and Practice, June 23-26, 2003, Las Vegas,
Nevada, USA.

12. “MDA Guide Version 1.0.1” OMG Document omg/03-06-01, on line at: www.omg.org/
docs/omg/03-06-01.pdf.

13. N. Medvidovic, R.N. Taylor “A classification and comparison framework for software
architecture description languages” IEEE Trans. on Software Engineering, vol. 26, no. 1,
Jan. 2000, pp. 70-93.

14. “Meta Object Facility (MOF) 2.0 Core Specification”, OMG Adopted Specification
ptc/03-10-04, on line at: www.omg.org/docs/ptc/03-10-04.pdf.

15. N.R. Mehta, N. Medvidovic, S. Phadke “Toward a taxonomy of software connectors” in
Proc. 22nd Int. Conference on Software Engineering (ICSE 2000), May 2000.

16. “MOF 2.0 Query/Views/Transformations RFP”, OMG Document ad/2002-04-10, on line
at: www.omg.org/docs/ad/02-04-10.pdf.

17. J. Oldevik “UMT UML model transformation tool” on line at: http://umt-qvt.sourceforge.
net/ docs/UMTdocumentationv08.pdf.

18. “UML 2.0 OCL Specification”, OMG Final Adopted Specification online at:
www.omg.org/docs/ptc/03-10-14.pdf

19. “OWL-S: Semantic Markup for Web Services” White Paper, The OWL Services
Coalition, Nov. 2003, on line at: www.daml.org/services/owl-s/1.0/owl-s.pdf.

20. R.H. Reussner, H.W. Schmidt, I. Poernomo “Reliability Prediction for Component-Based
Software Architectures” Journal of Systems and Software, pp. 241-252, vol. 66, No. 3, 2003.

21. Bran Selic, “The Pragmatics of Model-Driven Development”, IEEE Software, vol. 20, no.
5, pp. 19-25, Sep.-Oct. 2003

22. A. Solberg, K.E. Husa, J. Aagedal, E. Abrahamsen “QoS-Aware MDA” in Proc. Workshop
Model-Driven Architecture in the Specification, Implementation and Validation of Object-
Oriented Embedded Systems (SIVOES-MDA ’03) (in conjunction with UML03) (2003).

23. “UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms”, OMG Adopted Specification ptc/04-09-012, www.omg.org/docs/ptc/
04-09-01.pdf.

24. “UML Profile for Schedulability, Performance, and Time Specification”, OMG Adopted
Specification ptc/02-03-02, on line at: www.omg.org/docs/ptc/02-03-02.pdf.

25. “UML 2.0 Superstructure Specification” OMG Adopted Specification ptc/03-08-02, on
line at: www.omg.org/docs/ptc/03-08-02.pdf.

26. D. Varrò, G. Varrò, A. Pataricza “Designing the automatic transformation of visual
languages” Science of Computer Programming, vol. 44(2), 2002, pp. 205-227.

27. T. Verdikt, B. Dhoedt, F. Gielen, P. Demesteer “Automatic Inclusion of Middleware
Performance Attributes into Architectural UML Software Models” in IEEE Trans. of
Software Engineering, Vol. 31, No. 8, Aug. 2005, pp. 695-711

28. M. Woodside et al. “Performance by Unified Model Analysis (PUMA)” in Proc. WOSP
2005: 5th ACM International Workshop on Software and Performance, Palma de
Mallorca, Spain, July 11-14, 2005, pp. 1-12.

Impact of Virtual Memory Managers on
Performance of J2EE Applications

Alexander Ufimtsev, Alena Kucharenka, and Liam Murphy

Performance Engineering Laboratory,
School of Computer Science and Informatics

University College Dublin, Belfield, D4, Ireland
alexu@ucd.ie, alena kucharenka@tut.by, Liam.Murphy@ucd.ie

http://www.perfenglab.com

Abstract. We investigate the impact of Operating System’s Virtual
Memory Managers (VMMs) on performance of enterprise applications.
By taking various popular branches of the Linux kernel and modifying
their VMM settings, one can see the effects it introduces on ECPerf
J2EE Benchmark. JBoss application server is used to run ECPerf. Our
tests show that even the change of one parameter in VMM can have
significant performance impacts. Performance of various kernel branches
is compared. Parameter sensitivity and influence of specific settings are
presented.

1 Introduction

Component systems nowadays run in a layers of software and hardware. A typical
J2EE system runs inside the application servers (AS), which in their turn run
inside Java Virtual Machines (JVM), which run on an Operating System (OS).
And OSes either run on a hardware or within another host OS. Despite its great
advantages, this layered model introduces a lot of complexities. For example,
the effects of changes introduced at lower layers can be non-obvious, especially if
layers are not directly connected. It is hard to anticipate the performance change
of J2EE application if a certain parameter in the OS is modified.

This paper studies the effects of modifying kernel’s Virtual Memory Man-
ager (VMM) settings and implementation on performance of J2EE applications.
Various Linux kernel branches were examined and tested. Changes of VMM
parameters were reflected in performance of ECPerf, J2EE industry-standard
benchmark. Parameters that affect performance the most were identified. Influ-
ence of specific VMM settings on performance was analysed. It must be noted
that no attempt was made to understand the cause of performance differences.
To determine the cause of the differences, one must examine the source code
of VMM patches, as well as other changes introduced to specific kernel trees.
The motivation for this work is not to find out what caused the differences in
performance, but rather prove that they actually happen and they should not
be ignored.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 285–293, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

286 A. Ufimtsev, A. Kucharenka, and L. Murphy

The rest of the paper is organized as follows: Section 2 contains detailed de-
scription of kernel branches and VMM parameters, Section 3 describes the exper-
imental settings, including test scenarios, hardware and software used, Section 4
contains results and analysis, Section 5 describes related work, and Section 6
concludes the paper and discusses future work.

2 Kernel Branches and VMM Parameters

2.1 Kernel Branches

Linux kernel development process is not a centralized or unified process - any-
one is free to fork the code and maintain his or her own repository. Though
main development happens within the official ’vanilla’ version with releases avail-
able from a central repository1, many Linux distributions and kernel developers
maintain their own branches of it, with changed or augmented functionality.
The reasons for keeping a separate branch include, but are not limited to ex-
panding the set of supported hardware, tightening security, improving stabil-
ity and performance, maintaining compatibility with older versions, and quick
bugfixing. Some kernel branches serve as a playground for new experimental
features, which when proved stable and useful are merged into the main kernel
branch.

A few kernel repositories have been examined. The main selection criteria was
the presense of VMM patches. The following branches were selected:

– Debian 2.4;
– Debian 2.6;
– SUSE;
– Fedora Core;
– Alan Cox (-ac);
– Andrew Morton (-mm);
– Con Kolivas (-ck).

Debian 2.4 kernel was selected for comparison of speeds between 2.4 and 2.6
kernel branches. It was decided to produce two kernel versions for SUSE - one
with its original configuration file and the other with the file common for all
other kernel images. All kernels, except for Debian 2.4.26 and 2.6.8 have been
compiled locally with gcc-3.3.5.

2.2 VMM Parameters

This study concentrates on the VMM implementation of the current stable Linux
branch, 2.6. VMM parameters, typically configurable at runtime via manipula-
tion with /proc/sys/vm interface, have been examined. A list of parameters that
could possibly affect performance has been created. Based on the description
of parameters, they have been split into two groups - red and blue. During the
1 ftp://ftp.kernel.org

Impact of VMMs on Performance of J2EE Applications 287

experiments we test the hypothesis that Red group is more likely to affect VMM
performance while the blue one less likely to do so.

Red :

– dirty background ratio - the percentage of memory that is allowed to contain
’dirty’ or unsaved data;

– dirty expire centisecs - The longest # of centiseconds for which data is al-
lowed to remain dirty;

– dirty ratio - contains as a percentage of total system memory, the # of pages
at which a process that is generating disk writes will itself start writing out
dirty data;

– dirty writeback centisecs - interval between periodical wakeups of the pdflush
writeback daemons;

– page-cluster - tunes the readahead of pages during swap;
– swappiness - drives the swappiness decision.

Blue:

– lower zone protection - determines how aggressive the kernel is in defending
the lowmem zones;

– min free kbytes - used to force the Linux VM to keep a minimum number of
memory free;

– vfs cache pressure - controls the tendency of the kernel to reclaim the mem-
ory which is used for caching of directory and inode objects;

– overcommit memory - value which sets the general kernel policy towards
granting memory allocations.

3 Experimental Environment

3.1 Hardware Platform

The testing environment includes three x86 machines:

– app server Pentium III-866 Mhz with 512 Mb RAM;
– database Pentium III-800 Mhz with 512 Mb RAM;
– client Pentium IV-2.2 Ghz, 1024 Mb RAM.

The client machine is more or as powerful as servers to ensure it does not become
a bottleneck when generating the test load.

3.2 The Software Environment

The following software was used for testing purposes:

– operating system: Debian GNU/Linux 3.1 ’sarge’;
– database server : MySQL v. 5.0.7beta-1;
– application server : JBoss v. 4.01sp1 running on Java2SDK 1.4.2 08;
– client : ECPerf suit 1.1 on Java2SDK 1.4.2 08;

Debian ’sarge’ was used for all the machines. The initial Java heap size of the
app. server was set to 384MB;

288 A. Ufimtsev, A. Kucharenka, and L. Murphy

3.3 ECPerf and Its Tuning

ECperf is an Enterprise JavaBeans (EJB) benchmark meant to measure the
scalability and performance of J2EE servers and containers. It stresses the abil-
ity of EJB containers to handle the complexities of memory management, con-
nection pooling, passivation/activation, and caching. Originally developed by
Sun Microsystems, ECPerf is now being developed and maintained by SPEC
Corporation2. It is currently available from SPEC under the name of SPEC-
jAppServer2004.

ECPerf Configuration: During initial experiments the following workload was
identified as the one delivering the best performance: txRate = 5, runOrderEntry
= 1, runMfg = 1, which is an equivalent of 40 threads: 25 for order entry, and 15
planned line.

The following parameters set the steady state for 10 minutes, with 8 minute
warmup and 3 minute cooldown periods, respectively: rampUp = 480, stdyState
= 600, rampDown = 180

3.4 Testing Algorithm

The following pseudocode describes the testing algorithm used in this study:
every kernel is installed and booted into. Then for every parameter in the red
and blue list one of them is set to a specific value, the following happens three
times. First, the memory is cleaned then database is wiped out and recreated,
swap is turned off, and application server is restarted. Logs and traces are saved
for every individual run for later analysis.

for (all kernels) {
boot();
for(new vmm parameter) {

set vmm parameter to a new value;
new average;
for(int i = 0; i++; i < 3) {

clean_memory();
clean_db();
turn_off_swap();
average += avg(run_ecperf());

}
save_tuple(kernel,parameter,value,average);

}
}

Values of VMM parameters were changed two, three, or four times, depending on
the type of the parameter. Tests with the default values were carried out as well.
Swap partitions were turned off for the duration of the test due to significant
improvement in performance.
2 http://www.spec.org

Impact of VMMs on Performance of J2EE Applications 289

4 Results and Analysis

Figure 1 shows the overall results obtained during the measurements. The results
show averaged performance metric of ECPerf, in business operations per minute
(Bops/min). Peak and lowest performance measurements were taken three times,
while the default settings were tested ten times. An average performance im-
provement over standard settings was 5,19%, while average performance decline
due to unintentional misconfiguration was -8,73%. The decline does not take
into account min free kbytes VMM parameter, which if set to particularly high
number effectively stops OS from working.

Fig. 1. Overall Results

It can also be noted that Debian kernels seem to be more sensitive to mis-
configuration. SUSE kernel branch was performing similarly with both custom
and original configuration from SUSE. Also, kernel branch maintained by Con
Kolivas (-ck) demonstrated a similar drop in performance at all levels - the
price one pays for improved user interactivity and context switching. Reference
test subject - kernel 2.4 performed noticably slower than its 2.6 counterparts.
Andrew Morton’s branch, which is an experimental playground for new kernel
features demonstrated performance improvement over 2.6.11 series. This was
subsequently reflected in the mainline 2.6.14 and improved even more in 2.6.15.
These three kernels seem to behave much better with default settings as well.

290 A. Ufimtsev, A. Kucharenka, and L. Murphy

Table 1. Maximum Performance Improvement and Decline for Various Kernels, %

Kernel Improvement Decline
2.6.11.12-ac 2.95 -4.43
Debian 2.6.8-2 14.96 -20.93
Debian 2.4.26 9.89 -10.88
Fedora 2.6.11-1.1369 4.25 -5.77
2.6.12.3-ck 6.02 -5.59
2.6.13-rc3-mm 3.00 -7.34
Debian 2.6.11 5.29 -20.00
Suse 2.6.11.4 (1) 2.70 -5.32
Suse 2.6.11.4 (2) 3.61 -6.03
Vanilla 2.6.12.3 4.04 -3.27
Vanilla 2.6.14.3 2.45 -7.15
Vanilla 2.6.15-rc5 3.16 -8.04
Average 5.19 -8.73

We argue that a performance improvement over 5% can be quite important
considering the fact it is caused by changing just one value in VMM settings.
Kernel-specific results are shown in Table 1.

4.1 Error and Sensitivity Analysis

Figure 2 shows the number of failed tests and standard deviation of the results
for appropriate kernels. It is quite low since the overall number of tests includes
11 kernel parameters * 3 values * 3 ECperf tests = 99. Absolute majority of the

Fig. 2. Number of failed tests and Standard Deviation of results for tested kernels

Impact of VMMs on Performance of J2EE Applications 291

failed tests happened due to setting VMM parameter min free kbytes to 256Mb
which effectively cut half of the memory off the application server. Since half
of the memory suddenly became not available, JVM failed to start thus failing
the test. The hypothesis with preliminary separation of kernel VMM parameters
into ’red’ and ’blue’ groups proved partially true, though the ’worst offender’
was still min free kbytes.

The upper line in Figure 2 shows the averaged standard deviation for the
tests. It can be noted that Debian kernels seem to have a higher deviation, while
the worst is Con Kolivas’s kernel.

The results of overall sensitivity analysis are shown in Figure 3. It shows
the kernel parameters, which have the strongest, but not necessarily the best
influence on performance of our J2EE system. This piechart was obtained by
adding performance deltas across different kernels to the kernel parameters that
caused it, depicted in Equation 1:

sensitivity =
∑

(stdev(parameter, kernel)) (1)

It can be seen that dirty expire centisecs and min free kbytes have the
strongest influence on performance. Changes in the other parameters affect ker-
nel performance on a smaller scale. More details are available in Figure 4.

An attempt to determine what VMM settings actually result in better per-
formance is shown in Figure 5. The task was non-trivial since there was no
clear winner - each kernel seemed to have its own ’winning’ setting. To over-
come this difficulty, the results for each kernel have been sorted by the ECPerf
Bops/min number and each of the 33 parameters has been assigned a value from
1 (for showing the worst performance) to 33 (for showing the best performance).
Then the appropriate parameters and their values have been aggregated across

Fig. 3. Overall sensitivity of various VMM settings

292 A. Ufimtsev, A. Kucharenka, and L. Murphy

Fig. 4. Sensitivity of various VMM settings and kernels

Fig. 5. Effects of various parameters settings on performance

Impact of VMMs on Performance of J2EE Applications 293

different kernel branches. The results have been split into three categories ‘likely
positive’, ‘undefined’, and ‘negative’. Settings in ‘likely positive’ group are
likely to increase the performance, while the settings in ‘negative’ group are
very likely going to degrade your performance significantly. The rest of the set-
tings are too close to call - they have to be tried individually on each kernel to
determine what works best for that specific one.

5 Related Work

J2EE performance-related research generally deals with the software layer just
beneath the application itself, e.g. the application server. Two most known stud-
ies have been done by Gorton et al [1] and Cecchet [2]. A lot of work is currently
undertaken in JVM research, though it is mainly concerned with common run-
time optimization and garbage collection. Also, an earlier study by the authors
deals with the impact of method input parameters on the performance of EJB
applications [3].

6 Conclusions and Future Work

Multiple branches of Linux kernel were tested to determine whether changes in
Virtual Memory Manager (VMM) settings affect performance of J2EE appli-
cations using ECPerf benchmark. Parameters that affect performance the most
were identified. Influence of specific VMM settings on performance was analysed.

We argue that performance change of above 5% by changing just one setting
inside of the Virtual Memory Manager is important and cannot be overlooked,
especially when dealing with performance-critical systems.

There are plans for more tests including multiple parameter optimization,
more application servers: WebSphere Community Edition, WebSphere Enter-
prise Edition. We also plan to evaluate the influence of different process and I/O
schedulers on J2EE performance as well.

Acknowledgment

The support of the Informatics Research Initiative of Enterprise Ireland is grate-
fully acknowledged.

References

1. Gorton, I., Liu, A., Brebner, P.: Rigorous Evaluation of COTS Middleware Tech-
nology IEEE Computer Mar (2003) 50-55

2. Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and Scalability of EJB
Applications Proc of 17th ACM Conference on Object-Oriented Programming, Seat-
tle, Washington, (2002).

3. Oufimtsev, A. and Murphy, L.: Method Input Parameters and performance of EJB
Applications. In Proc. of the OOPSLA Middleware and Component Performance
workshop, ACM (2004).

On-Demand Quality-Oriented Assistance in
Component-Based Software Evolution

Chouki Tibermacine, Régis Fleurquin, and Salah Sadou

VALORIA, University of South Brittany, France
{Chouki.Tibermacine, Regis.Fleurquin, Salah.Sadou}@univ-ubs.fr

Abstract. During an architectural evolution of a component-based soft-
ware, certain quality attributes may be weakened. This is due to the lack
of an explicit definition of the links between these non-functional charac-
teristics and the architectural decisions implementing them. In this pa-
per, we present a solution that aims at assisting the software maintainer
during an evolution activity on his demand. It requires the definition of
a documentation during development, organized in the form of bindings
between formal descriptions of architectural decisions and their targeted
quality attributes. Through an assistance algorithm, the approach uses
this documentation in order to notify the maintainer of the possible ef-
fects of architectural changes on quality requirements. We also present a
prototype tool which automates our proposals. This tool and the over-
all approach has been experienced on a real-world software in order to
validate them.

1 Introduction

An intrinsic characteristic of software, addressing a real world activity, is the need
to evolve in order to satisfy new requirements. Maintenance is now, more than
ever, an inescapable activity, the cost of which is ever increasing (between 80 %
and 90 % of the software total cost [5, 19]). Among the maintenance activities,
the checking of functional and non-functional non regression of a software, after
its evolution, is one of the most expensive. It consists in checking the existence
of the newly required service or property after modification, on the one hand,
and in verifying that the other properties and/or services have not been altered
on the other hand. This checking is done during the regression testing stage.
When problems are found, a rework on the software architecture is required.
This involves a sequence of iterations of the maintenance activities, which make
undoubtedly its cost grow more and more.

In this paper, we present an approach which helps to reduce the number
of these necessary iterations, in the context of component-based software. It
consists of warning the software developer of the possible loss of some quality
attributes during an architectural evolution, well before starting regression tests.
Under the assumption that the architecture of an application is determined
by quality requirements such as, maintainability, portability or availability [1],
we propose to formally document links between quality attributes and their

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 294–309, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On-Demand Quality-Oriented Assistance 295

realizing architectural decisions. Thus, we automate the checking of these quality
properties after an architectural change has been made.

In the next section, we show, through a system architecture, how some quality
requirements can be mapped into architectural decisions and how problems can
rise when evolving this architecture. We present, in section 3, the principles of our
approach which helps to resolve the problem pointed in the section before. The
proposed solution is based on a documentation, which is introduced in section 4.
An algorithm which uses this documentation and assists the maintenance activity
is discussed and illustrated by an example in section 5. A prototype tool for
evolution assistance, and the validation of the approach are then presented in
section 6. Before concluding and presenting the perspectives, we discuss some
related works in section 7.

2 Illustrative Example

Along this paper, we use a simple imaginary example which represents a Museum
Access Control System (MACS)1. Figure 1 provides an overview of its architec-
ture. The system receives as input the necessary data for user authentication
(Authentication component). After identification, the data is sent to the access
control component (AccessCtl). The latter consults an authorization database
(the component AuthDataStore) to check if the user2 is authorized to enter the
museum or not. Then, it adds other data elements (entrance hour, the visited
gallery in the museum, etc.) to the received data flow and sends it to the Logging
component. The component AdminService allows the administration of the
database abstracted by the component AuthDataStore. The Logging component
provides an interface for persistent local logging. This interface is used by the
archiving data store component (ArchivDataStore) which provides an interface
to a data retrieval service component (DataRetrievalService).This component
implements an interface which allows local supervision of the museum and query-
ing of logs. The two components AdminService and DataRetrievalService ex-
port their interfaces via the same component DataAdminRetrieval. After local
archival storage, the data is transmitted (by the component ServerTrans) via
the network to the central server of the organization responsible for the museum
security for central archival storage.

2.1 Some Architectural Decisions and Their Rationale

The architecture, described in Figure 1, was designed taking into account quality
requirements defined in the NFRs (Non-Functional Requirements) specification.
We present some of these requirements and their architectural mappings.

1 This software system is not a real-world component-based one. We just defined a
few years ago within a development project a formal specification of it. We think
that it is simple to present and to use as an illustrative example.

2 Users of the museum are visitors, exhibition organizing committee members, museum
administrative and service employees.

296 C. Tibermacine, R. Fleurquin, and S. Sadou

DataAdminRetrievalDataManagement

MACS

DataRetrievalService

MuseumSupervision

AdminService

AccessAdmin

Archiving

AccessCtrl
LocalArchiving

Transmission

Logging ServerTransAuthentication AccessCtl

AccessAuth

CentralServerArchivingUserAuthentication

LogsQuerying

ArchivDataStoreAuthDataStore

AuthDBAdmin

TransmissionArchivingAccessCtrl
AccessCtlDup LoggingDup

Fig. 1. A Simplified architecture of a Museum Access Control System

1. “The system should be easily maintained.” (We mark this maintainability
quality attribute QA1.) This is ensured by the layered pattern [20], which
can be seen if we decompose the system’s architecture vertically. (We mark
this architectural decision AD1.)

2. “The software system should be portable over different environments. It can
serve different applications for museum supervision or access control data
administration.” (This portability property is marked QA2.) To reach this
portability level, a façade component -with analogy to façade objects [7]-
was designed as front to MACS’s internals. In Figure 1, this is performed
by the component DataAdminRetrieval. All communications from client
applications to access MACS’s data management services transit by this
component. (We mark this architectural decision AD2.)

3. “The access control functionality should be more available for service employ-
ees.” (We mark this availability property QA3) In the bottom of
Figure 1, the sequence of components AccessCtl and Logging is duplicated.
This redundancy scheme (marked AD3) is a mean to make the system fault
tolerant and thus fulfills the availability requirement. If one of the two com-
ponents (AccessCtl or Logging) fails, the sequence below (AccessCtlDup
and LoggingDup) takes over the process. In this degraded mode of the sys-
tem functioning, the component AccessCtlDup authorizes the access only to
service employees. Logs remain in the state of the component LoggingDup
and are not persistent in the ArchivDataStore component. Then, the data
is transmitted to the central server.

The sequence of these duplicates is organized as a pipeline [20]. (We mark
this decision AD4.) In a pipeline each filter (component) has only one ref-
erence to the downstream component. This guarantees a certain level of

On-Demand Quality-Oriented Assistance 297

maintainability (minimal coupling, QA1) required for such emergency so-
lution. This pattern also guarantees a certain level of performance defined
in the NFRs specification, but not detailed here. We mark this last quality
attribute QA4.

The developers have introduced a data abstraction component (Data-
RetrivalService),which abstracts details of the underlying databases. This
architectural decision is marked AD5. Indeed, this traditional practice fulfills
the first attribute (QA1).

2.2 Some Evolution Scenarios and Their Consequences

Let us assume that the maintenance team receives two change requests that
must be tackled urgently. As a consequence, changes are made without tak-
ing into account the associated design documentation. The first request im-
poses that henceforth some data should be directly transmitted to the central
server. That is, a part of information about service employees should be directly
sent to the ServerTrans component after identification. This gives the system
more (time and space) performance. Thus, the system maintainers decide to
create a link between AccessCtl component and ServerTrans component; and
between AccessCtlDup and ServerTrans components. (We mark this change
ACG1.) In the last case, the AccessCtlDup component finds itself with two
links. The first one with the LoggingDup component for the data flow that
is not affected by the modification and the second one with the ServerTrans
component for the data that is directly transmitted to the central server. This
modification makes the system lose the benefits of the pipeline structure (breaks
AD4). Therefore, the initial level of maintainability (QA1) of the system is now
weakened.

While the first change request has a non-functional goal, the second change
is of functional nature. It asks to add a new component representing a no-
tification service: DB UpdateNotification. This component notifies the client
applications, subscribed to its services, when updates are done on the archiv-
ing database. This new component exports a publish/subscribe interface via the
port that provides the interface DataManagement. It implements a publish on-
demand interaction pattern and uses directly the component ArchivDataStore.
This change (marked ACG2) makes the system lose the benefits of the façade
pattern guaranteed by the component DataAdminRetrieval (AD2) and conse-
quently weakens the availability quality attribute QA2.

The lack of knowledge during evolution about the reasons which have led the
initial architects to make such decisions, may easily lead to break some archi-
tectural decisions and consequently affect the corresponding quality attributes.
The two simple examples above illustrate how can we lose such properties.
This is often noticed during regression testing. Thus, it is necessary to per-
form changes on the architecture another time, and to iterate, frequently, for
many times. Several similar remarks have been noticed by our industrial partner
when evolving one of its complex system (a cartographic converter from different
binary files and spatial databases to SVG (Scalable Vector Graphics) format, for

298 C. Tibermacine, R. Fleurquin, and S. Sadou

using them in a Geographic Information System -GIS-). We didn’t present
this system as an illustrative example in this paper for reasons of brevity and
simplicity.

3 Principles of the Approach

Our approach aims at solving the problems quoted in the previous section. It
consists in making explicit and formal the reasons behind architectural decisions.
The choice of a formal language to specify this documentation guarantees not
only the unambiguity of descriptions but also allows the automation of some
operations, like the preservation of architectural choices throughout the devel-
opment process of a component-based software [23].

Based on the assumption that architectural decisions are determined by the
quality information stated in the requirements specification, we propose to main-
tain the knowledge of the links binding quality attributes to architectural deci-
sions. This knowledge is of great interest for maintainers on two accounts:

ArchitecturalConstraint

+name

+description

+body

+profile: ACLProfiles

InternalArchitecturalElement

+target

QualityAttribute

+id

+name

+description

+degreeOfCriticality

ArchitecturalTactic

+id

+description

EvolutionContract

+id

+description

1

1..*

1

* *

1+ad

+qa

ArchitecturalDecision

+id

+description1..*1..*

1..*

*

ArchitecturalChange

affects

*

*

appliesTo

1..* *

+at

+ec

generates

*

*

<<enumeration>>

ACLProfiles

+xAcme

+UML2

+Fractal

+CCM

+Standard

*

0..1

ISO9126Characteristic

+name

+description

+subCharacteristic

normalizedAs

*1

formalizedAs

ExternalArchitecturalElement

Component Interface Operation

*

*

attachedTo

* *1 1

+relatedDecision

*

*

Fig. 2. Structure of Contracts

– Preservation of Quality Attributes: it will be possible to warn the devel-
oper, at each architectural maintenance stage, of the potential deterioration
of some quality attributes;

– Architecture Comprehension: it is easier to understand a specific ar-
chitecture when we already know its motivations. Starting from the speci-
fication of a targeted evolution, it becomes possible to identify the related
architectural artifacts.

In the remaining of this paper, we use some terms which we define as following:

Quality Attribute (QA): a quality characteristic targeted by one of the
statements in the non-functional requirements specification;

On-Demand Quality-Oriented Assistance 299

Architectural Decision (AD): a part of the software architecture that tar-
gets one or several QAs;

Architectural Tactic (AT): a couple composed of an AD and a QA defining
the link between one architectural decision and one quality attribute;

Evolution Contract (EC): a set of ATs defined for a given software.

These definitions are illustrated in Figure 2. An architectural decision may
have several related decisions, which are present in different ATs. For exam-
ple, AD3 (replicated components) in section 2 has one related decision which
is AD4 (pipeline). Indeed, if AD3 is removed from MACS architecture, AD4
will also disappear. As explained in section 4.2, an architectural decision is for-
malized as an architectural constraint. Each constraint is specified using an ar-
chitectural predicate language, called ACL. This language has several profiles
dedicated to existing architecture/component models, for example xAcme [26]
or CORBA Component Model [14] (more details are given in section 4.2). A
constraint targets an internal architectural element. Internal architectural el-
ements are architectural abstractions present in the metamodel of the used
architecture or component description language (e.g. a component, a connec-
tor or an interface). An architectural change is applied on one or many
internal architectural elements. It can affect or generate one or several archi-
tectural decisions. A QA corresponds to an ISO/IEC 9126 [9] characteristic
or sub-characteristic (e.g. maintainability, portability or usability). Each QA
has a degree of criticality (inspired from Kazman’s QA scores and Clements’s
QA priorities [3]). The value of this degree, specified by developers, stipulate
the importance of this quality attribute in the architecture. It takes values be-
tween 1 and 100. The sum of values of all these degrees should be at most
100. Starting from non-functional requirements (NFRs), we may extract one or
several QAs. Each one is attached to several external architectural elements.
These elements represent the common externally visible architectural con-
cepts present in existing component models (component, interface and opera-
tion). These external architectural elements are a subset of internal architectural
elements.

4 Capturing Architecture Decisions and Their Rationale
in Contracts

Based on the structure presented above, to document an architecture, we need
a language for defining evolution contracts and a tool set to edit and interpret
this documentation.

4.1 Evolution Contract Organization

In order to specify textually ECs, we use an XML representation which conforms
to the structure presented in Figure 2. The following listing illustrates an example
of such specification.

300 C. Tibermacine, R. Fleurquin, and S. Sadou

<evolution-contract id = "000001">
<architecture-tactic id = "000100">

<description>
This tactic ensures the Portability quality requirement by
using a Facade Design Pattern

</description>
<quality-attribute id = "001000" name = "Portability"

characteristic = "Portability">
<description>

The software system should be portable
over different environments. It can
serve different applications for museum
supervision or access control
data administration

</description>
</quality-attribute>
<architecture-decision id = "010000">
<description>

Facade design pattern
</description>
<formalization profile = "Fractal">

<!--Here we edit the ACL constraint-->
</formalization>

</architecture-decision>
</architecture-tactic>

</evolution-contract>

This simple example illustrates a simple EC composed of only one of the ATs
presented in section 2. This AT concerns the façade design pattern AD associated
to the portability QA. The formalization element of this EC contains the
formal definition of the AD which is described in the next section.

4.2 AD Definition Language

In order to formalize architectural decisions, we proposed a predicate language
called ACL (Architectural Constraint Language). This language is based on a
slightly modified version of UML’s Object Constraint Language [15], called CCL
(Core Constraint Language), and on a set of MOF metamodels. Each metamodel
represents the architectural abstractions used at a given stage in the component-
based development process. A couple formed by CCL and a given metamodel
represents an ACL profile. Each profile can be used at a stage in the development
process. We defined ACL profiles for xAcme, UML 2 [16], CORBA components,
Enterprise JavaBeans [21] and many others. CCL navigates in the architecture’s
metamodel in order to define constraints on its elements.

Instead of presenting the grammar of ACL, we preferred to illustrate it
through the description of two AD examples from section 2.1. We describe this
ADs using the standard profile of ACL, which is composed of CCL and of a
generic architecture metamodel called ArchMM [23]. This metamodel is used

On-Demand Quality-Oriented Assistance 301

as an intermediate representation when transforming ACL constraints from one
profile to another.

The listing below describes the constraint enforcing the façade architectural
pattern in the component MACS.

context MACS:CompositeComponent inv:
let boundToDataManagement:Bag=MACS.port.interface
->select(i:Interface|i.kind = ’Provided’
and i.name = ’DataManagement’).port.binding
in
((boundToDataManagement->size() = 1)
and (boundToDataManagement.interface
->select(i:Interface|i.kind = ’Provided’).port.component.name
->includes(’DataAdminRetrieval’)))

This constraint states that the DataManagement provided interface of MACS
component must be bound internally to one and only one interface. The latter
corresponds to the provided interface of DataAdminRetrieval component.

The following constraint concerns the replicated components stated by AD3.

context MACS:CompositeComponent inv:
let startingPort:Port=MACS.port->select(p:Port|
i.name=’UserAuthentication’) in
let startingComponent:Component=startingPort.getInternalComponent() in

let endingPort:Port=MACS.port->select(p:Port|
i.name=’CentralServerArchiving’) in
let endingComponent:Component=endingPort.getInternalComponent() in

let paths:OrderedSet=MACS.configuration
.getPaths(startingComponent,endingComponent) in

paths.size() = 2 and paths->first()->excludesAll(paths->last())

This constraint uses two operations from ArchMM. The first one (getIntern-
alComponent()) returns the subcomponent attached to a given port of a
composite component. The second operation (getPaths(c1:Component,c2:
Component)) returns an ordered set of all the paths between the components
given as parameters. The returned paths are also represented by ordered sets of
components. A returned path excludes the parameter components. The con-
straint states that it must exist two distinct paths between the component
attached to UserAuthentication port and the component attached to Central-
ServerArchiving port.

The two-level expression nature of ACL guarantees the homogeneity of con-
straints defined in different stages of the development process. Indeed, only meta-
models change from one stage to another; the core constraint language remains
the same. This has been of great interest when we performed transformations of
constraints from one stage to another in order to automatically preserve archi-
tectural decisions [24].

302 C. Tibermacine, R. Fleurquin, and S. Sadou

5 Using Contracts in Evolution Assistance

In the proposed approach, an AT is perceived as a constraint which has to be
checked for validity during each evolution. An evolution contract may be seen
as a contract, because it documents the rights and the duties of two parties: the
developer of the previous version of the architecture who guarantees the quality
attributes and the developer of the new version who should respect the evolution
contract established by the former. The evolution contract is elaborated during
the development of the first version of the architecture. ATs appear in each
development stage where a motivated AD is made. Thus, the evolution contract
is built gradually and enriched as the project evolves. ATs can even be inherited
from a Software Quality Plan and thus, can emerge even before starting the
software development. Thereafter, this evolution contract can be modified in
respect of the rules below:

– Rule 1: “a consistent system is a system where each QA is involved in at
least one AT”. This condition ensures that, at the end of the maintenance
process, there is no dangling QA (i.e. with no associated ADs). The breach
of this condition implies de facto the obligation to modify the non-functional
specification;

– Rule 2: “we should not prohibit an evolution stage. We simply notify, at the
demand by the developer of a change validation, the attempt of breaking one
or more ADs and we specify the affected QAs stated in the evolution con-
tract”. It is of the developer’s responsibility, fully aware of the consequences,
to maintain or not the modification. If this modification is maintained, the
corresponding ATs are discarded. Indeed, The substitution of an architec-
tural decision by another may be done without affecting the targeted quality
attributes. Moreover, we can be brought to invalidate, temporally, a decision
to perform a specific modification;

– Rule 3: “we can add new ATs to the evolution contract”. Thus, during an
evolution, new architectural decisions can complete, improve or replace old
ones.

The previous rules are illustrated by the simple architectural maintenance
scenario in Figure 3. Consider the previous example presented in section 2. The
evolution contract associated to the MACS component, which contain 6 ATs, is
illustrated in the bottom part of the figure. Note that for reasons of simplicity
we organized the evolution contract by factorizing QAs. Architectural changes
are represented at the top of the figure. The minus symbol stipulates that the
corresponding AD has been affected, and the plus symbol shows that the AD is
preserved or enhanced. Forward arrows mean that the architectural maintainer
decides to validate her/his change, however backward arrows mean she/he does
not maintain her/his decision. At the middle of the figure, we illustrate the
evolution of the assistance system, the different warnings that it triggers and
the validation or not of the different intermediate evolution contracts.

Let us suppose that a software maintainer applies ACG1, which was pre-
sented in section 2, to MACS architecture (second column of figure 3). As stated

On-Demand Quality-Oriented Assistance 303

Assistance

System

Side

AD1 AD5AD4

AD2

AD3

AD1 AD5 AD1 AD5 AD1 AD5QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

QA1

QA2

QA3

QA4

Side

Developer

ACG1 ACG2 ACG3 ACG4

AD4 − AD4 − AD4 − AD4 −

AD4

State

AD4 AD4 AD4 AD4 AD4

AD2

AD3

AD1 AD5

AD6 +

AD2 − AD2 − AD2 −

AD3 − AD3 −

AD3 AD3

AD6

AD3

EC

QA1
QA4

AD2 QA2

AD4 QA1 AD4 AD4QA1

AD2 QA2

AD3 QA3

AD4 QA4

QA1

AD2 QA2

AD3 QA3

AD4 QA4

AD6 QA2

Fig. 3. Assisting the evolution activity with evolution contract

in that section, this change affects AD4. The assistance algorithm checks the
ACL constraint present in MACS’s EC which is associated to this decision, and
consequently warn the maintainer that AD4 is altered and that QA1 and QA4
are also possibly affected. Knowing that ACG1 enhances QA4 -AT6(QA4,AD4)
not affected-, the maintainer decides to validate his change. The EC is consid-
ered valid, while there is no QA without associated ADs (see the second table
in the bottom of the figure).After that, the maintainer decides to apply ACG2,
which was also presented in section 2. He is thus notified that AD2 and its as-
sociated QA, namely QA2, are potentially affected. He decides to continue, but
the EC is in this case not valid, as soon as there is one QA (QA2) without
associated AD (see the third table in the bottom of the figure). Later, the main-
tainer tries to apply ACG3. This change consists in removing the LoggingDup
component. Concretely, the system maintainer discovered that data in this com-
ponent is not consistent with data in the ArchivDataStore component. He is
immediately notified that ACG3 alter AD3 (replicated components) and con-
sequently QA3 (availability property) will be eventually affected. In addition,
this AD has one related decision, namely AD4 which represents the pipeline
pattern. The assistance system, by scanning the EC, warns the maintainer that
AD4 and QA1 (Maintainability) and QA4 (Performance) are also affected. This
time, the maintainer does not keep his changes and undoes the changes made
on the architecture. Note that, the EC is still invalid. Finally, the maintainer
decides to make a new architectural change (ACG4). It consists in removing
the hierarchical connector between the newly added notification sub-component
(DB UpdateNotification) and MACS’s DataManagement port, and adding a
new connector between the former and the component DataAdminRetrieval.
The motivation behind adding this new AD, marked AD6, is to re-ensure the

304 C. Tibermacine, R. Fleurquin, and S. Sadou

portability quality characteristic and thus reintroduce QA2 in the EC. In this
case, all QAs have corresponding ADs. The contract is thus considered valid.

6 Evolution Assistance Prototype Tool and Validation

In order to validate our approach we developed a prototype tool, called AURES
(ArchitURe Evolution aSsistant), which allows the edition, the validation
and the evaluation of ECs. In addition, it assists the software developer during
an evolution operation. We experienced our approach with our industrial partner
on real-world software system they developed the last year. We present in the
following subsections the prototype tool, its structure and how it operates. After
that, we introduce how we validated our approach.

6.1 AURES Architecture

This tool is organized as in Figure 4 and is composed of the following elements:

EC Editor: This component allows the edition of evolution contracts. It uses
the XMI format of metamodels of the different ACL profiles to guide the
developer in editing her/his architectural constraints. It asks the developer
to introduce the necessary information discussed previously in order to com-
plete and generate the EC.

EC Validator: This component validates an EC with an introduced architec-
ture description. If the EC evaluation returns false, the developer is requested
to correct either the EC or the architecture description; else this component
produces an archive file composed of the architecture description and the
EC files, saved by the Version Handler component.

Evolution Assistant: When a new version of the architecture is submitted,
the EC of the latest version is then checked out from the Version Handler
component. This EC is then reevaluated on the new architecture description.
If the evaluation returns true, the new architecture description is associated
to the EC and then it is saved in the Version Handler component; else the
architecture evolver is warned that some ADs are altered and that conse-
quently the associated QAs are affected.

EC Evaluator: To evaluate an EC, this component uses a temporary pivot
model and the ArchMM metamodel. The pivot model is a direct instance
of ArchMM, produced by the Description Transformer subcomponent,
from a given architecture description. This subcomponent executes a set of
XSL scripts to make XML transformations of architecture descriptions. For
the moment, the prototype presented in this paper supports architectures
described in the Fractal ADL [2] and in xAcme. However, the pivot model
makes the tool easily extensible. The EC Evaluator is composed of an ACL
Compiler which extends the OCL Compiler[11] and which requires the AD
part of the EC. It also contains an ACL Interpreter, which evaluates ACL
boolean expressions. Note that, this component is used by two other compo-
nents: the EC Validator and the Evolution Assistant. When it is invoked

On-Demand Quality-Oriented Assistance 305

<<artifact>>

ArchMM.xmi

EvaluatorAssistant

Evaluation

Validation Edition
Input

Archictecture
Description

Evaluation
Version

Assistance

Evolution

CheckingOut
Version

Editor

Adding Adding

Evolution

EC

ECEC

EC EC

EC

EC
Acquisition

AURES

EC

Validator

Version

Handler

Fig. 4. A prototype tool for ECs edition and interpretation, and for evolution assistance

by the first one, only constraints involving one version of the architecture
are evaluated. However, if it is requested by the second one, all constraints
are evaluated. The latest architecture description is checked out with the EC
and transformed to the pivot model to be evaluated.

6.2 Example of Use

Let us consider one of the evolution scenarios presented in section 2.2. This con-
cerns the addition of a component representing a notification service. Once this
new architecture description introduced to the Evolution Assistant compo-
nent, the latter checks out the EC corresponding to MACS from the component
Version Handler and then displays a warning report. This report notifies the
architecture evolver that the Façade pattern does not hold anymore and that
the portability property has been affected. The architecture evolver should ei-
ther modify his new architecture description, or the EC and consequently the
NFRs specification.

6.3 Validation of the Approach

We experienced our approach on Alkanet, a GIS developed by our industrial
partner. The project cost has been estimated at 2500 men-hours and its main-
tenance cost at 1400 men-hours. Starting from maintenance logs, we took the
software components that have been the most affected by the maintenance. These
components perform the conversion of different types of data format to SVG.
A team composed of developers, who know the initial NFRs specification, has
documented these components (their initial version) by the necessary evolution

306 C. Tibermacine, R. Fleurquin, and S. Sadou

contracts. After that, starting from this documented version of the components,
another group of developers, equivalent to that who has performed the main-
tenance initially, has performed the same set of evolution scenarios as in logs.
They use AURES for validating changes on the components after applying each
scenario. We noticed that the maintenance cost has been reduced by 35 %.
Indeed, we passed from 600 men-hours estimated for the maintenance of the
converter components to 390 men-hours. It is true that the chosen components
are the most complex. For components of less complexity, the gain would be
undoubtedly less. But, the most complex components have the highest main-
tenance costs (Lehman’s 2nd law of system evolution [10]). This allowed us to
extrapolate this result on the whole application without a lot of errors. Accord-
ing to the developers’ declarations, evolution contracts helped them to better
understand the architecture of the software to evolve. Furthermore, automatic
checking of architectural constraints has been of great benefit.

7 Related Work

Capturing and documenting design rationale is a research challenge, with an in-
creased interest in the software engineering community [22]. Within the context
of software architecture, Tyree and Akerman in [25] discussed the importance
of documenting architecture decisions and making them first-class entities in ar-
chitecture description. They present a template to describe them at a high-level
of abstraction during development. Their paper focuses on the methodological
aspect of describing these templates and not on how they can be used when
evolving an architecture as in our approach. In the architecture evolution field,
Lindvall et al. presented a survey on techniques employed in diagnosing or re-
searching degeneration in software architectures and treating it [8]. Architecture
degeneration is seen as the deviation of the actual architecture from the planned
one. Many of the technologies presented in this paper focus on recognition of ar-
chitecture styles and design patterns, and their extraction from code. This helps
to identify deviations by comparing architectures and their properties before and
after an evolution. The authors also discuss visualization techniques of architec-
tural changes to understand software evolution and thus deduce degenerated
portions in the evolved architecture. For treating this degeneration, the authors
present a survey of existing refactoring techniques. Our approach allows the de-
generation identification by checking formal documents (evolution contracts) on
architecture descriptions before and after evolution. It alerts software evolvers
about degenerated components in the architecture and the consequences of this
degeneration on quality requirements. It then assists them by using quality in-
formation to treat this degeneration.

As in software architecture evaluation methods like ATAM or SAAM [3], our
approach forces the architect to create architecture documentation. However,
while these evaluation methods are applied during design to detect if a given
architectural decision is risky or not according to quality requirements; in our
approach, we assume that a posteriori all decisions are non-risky and we care

On-Demand Quality-Oriented Assistance 307

about their preservation during evolution. Our approach can be seen as a com-
plementary technique to these methods and is used downstream. In this manner,
we may use an evaluation method only during analysis/design stage and avoid
its use after each evolution.

In the literature, non-functional properties (which include quality attributes)
has been supported on the software development through two approaches. The
first one is process-oriented, while the second is product-centric. In the first ap-
proach, methods for software development driven by NFRs are proposed. They
support NFR refinement to obtain a software product which complies to the
initial NFRs [13, 4]. In the second approach, the non-functional information is
embedded within the software product. It is the case in our approach, where evo-
lution contracts, which embed statements of NFRs, are associated to architec-
tural descriptions. In [6], Franch and Botella propose to formalize non-functional
requirement specifications. The statements of these specifications are encapsu-
lated in modules, which are associated to a component definition and to its
implementations. They propose also an algorithm, which allows the selection of
the best implementation for a given component definition. This selection method
can be used when a new implementation is proposed to ensure that the best one
is used. The authors mean by “best”, the implementation that better fits to its
non-functional requirements. In our work, we focus on the architectural (struc-
tural) aspect of components, while they consider the abstract data type view of
components. In addition, in our case, the maintenance is performed on architec-
tural descriptions or component configurations while changes in their approach
are made at a fine-grained implementation level.

8 Conclusion and Future Work

In early 1990’s, Perry and Wolf presented a model for software architectures.
This model represents software architectures in the form of three basic abstrac-
tions: Elements, Form and Rationale [17]. Elements are architectural entities
responsible for processing and storing data or encapsulating interactions. Form
consists of properties -constraints on the choice of elements- and relationships
-constraints on the topology of the elements-. The Rationale captures the motiva-
tion for the choice of an architectural style, the choice of elements and the form.
While the description of the two first aspects have received a lot of attention by
the software architecture community [12], there has been a little effort devoted to
the last aspect. In this paper, we presented evolution contracts, as a contribution
to the description of the last element in Perry’s model. This evolution contract
leads to make explicit and checkable architectural decisions (Elements and Form
in Perry’s model). Thus, it is possible to assist architectural evolution activity
and prevent the loss of quality attributes (Rationale in Perry’s model). It is,
as we think best, a good practice for documenting software architectures and
design rationale, and thus facilitating software comprehension in maintenance
activities.

308 C. Tibermacine, R. Fleurquin, and S. Sadou

On the conceptual level, we plan studying: i) reusability, substitution and
extension of ECs, and ii) quality quantification by associating metrics to QAs.
This helps to better assist the maintenance activity. On the tool level, we project
to stabilize the prototype before integrating it in a CASE tool. This would guide,
in a continuous way, the system maintainer. We are also studying the feasibility
of integrating the tool in a Configuration Management System. We limit our
study to CMS dedicated to software architectures, like Mae [18]. Thus we take
advantage from the enhanced control version capabilities of these systems.

References

1. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, 2nd
Edition. Addison-Wesley, 2003.

2. E. Bruneton, C. Thierry, M. Leclercq, V. Quéma, and S. Jean-Bernard. An open
component model and its support in java. In Proceedings of CBSE’04. Held in
conjunction with ICSE’04, Edinburgh, Scotland, may 2004.

3. P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures, Methods
and Case Studies. Addison-Wesley, 2002.

4. L. M. Cysneiros and J. C. Sampaio do Prado Leite. Nonfunctional requirements:
From elicitation to conceptual models. IEEE TSE, 30(5):328–350, 2004.

5. L. Erlikh. Leveraging legacy system dollars for e-business. IEEE IT Professional,
2(3), 2000.

6. X. Franch and P. Botella. Supporting software maintenance with non-functional
information. In Proceedings of the First IEEE Euromicro Conference on Software
Maintenance and Reengineering (CSMR’97), pages 10–16, Berlin, Germany, March
1997. IEEE Computer Society.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Sofware. Addison-Wesley Professional Computing Series.
Addison Wesley Longman, Inc., 1995.

8. L. Hochstein and M. Lindvall. Combating architectural degenration: A survey.
Information and Software Technology, 47(10):693–707, July 2005.

9. ISO. Software engineering - product quality - part 1: Quality model. International
Organization for Standardization web site. ISO/IEC 9126-1. http://www.iso.org,
2001.

10. M. M. Lehman and J. F. Ramil. Software evolution in the age of component-based
software engineering. IEE Proceedings - Software, 147(6):249–255, 2000.

11. S. Loecher and S. Ocke. A Metamodel-Based OCL-Compiler for UML and MOF.
In Proceedings of the workshop on OCL 2.0 - Industry standard or scientific play-
ground?, 6th International Conference on the Unified Modelling Language and its
Applications, volume 154 of ENTCS, October 2003. Elsevier

12. N. Medvidovic and N. R. Taylor. A classification and comparison framework for
software architecture description languages. IEEE TSE, 26(1):70–93, 2000.

13. J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. IEEE TSE, 18(6):483–497, June 1992.

14. OMG. Corba components, v3.0, adpoted specification, document formal/2002-06-
65. Object Management Group Web Site: http://www.omg.org/docs/formal/02-
06-65.pdf, June 2002.

15. OMG. Uml 2.0 ocl final adopted specification, document ptc/03-10-14. Object
Management Group Web Site: http://www.omg.org/docs/ptc/03-10-14.pdf, 2003.

On-Demand Quality-Oriented Assistance 309

16. OMG. Uml 2.0 superstructure final adopted specification, document ptc/03-08-
02. Object Management Group Web Site: http://www.omg.org/docs/ptc/03-08-
02.pdf, 2003.

17. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

18. R. Roshandel, A. van der Hoek, M. Mikic-Rakic, and N. Medvidovic. Mae - a sys-
tem model and environment for managing architectural evolution. ACM TOSEM,
11(2):240–276, April 2004.

19. R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing Legacy Systems: Soft-
ware Technologies, Engineering Processes, and Business Practices. SEI Series in
Software Engineering. Pearson Education, 2003.

20. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice Hall, 1996.

21. Sun-Microsystems. Enterprise javabeans(tm) specification, version 2.1.
http://java.sun.com/products/ejb, November 2003.

22. A. Tang, M. A. Babar, I. Gorton, and J. Han. A survey of the use and documenta-
tion of architecture design rationale. In Proceedings of the 5th IEEE/IFIP Working
Conference on Software Architecture (WICSA’05), pages 89–98, Pittsburgh, Penn-
sylvania, USA, November 2005, IEEE CS.

23. C. Tibermacine, R. Fleurquin, and S. Sadou. Preserving architectural choices
throughout the component-based software development process. In Proceedings of
the 5th IEEE/IFIP Working Conference on Software Architecture (WICSA’05),
pages 121–130, Pittsburgh, Pennsylvania, USA, November 2005. IEEE CS.

24. C. Tibermacine, R. Fleurquin, and S. Sadou. Simplifying transformations of ar-
chitectural constraints. In Proceedings of ACM SAC (SAC’06), Track on Model
Transformation, Dijon, France, April 2006. ACM Press.

25. J. Tyree and A. Akerman. Architecture decisions: Demystifying architecture. IEEE
Software, 22(2):19–27, March/April 2005.

26. xAcme: Acme Extensions to xArch. School of Computer Science Web Site:
http://www-2.cs.cmu.edu/ acme/pub/xAcme/, 2001.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 310 – 319, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Components Have Test Buddies

Pankaj Jalote* , Rajesh Munshi , and Todd Probsting

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
jalote@iitk.ac.in, {rajeshm, toddpro}@microsoft.com

Abstract. Most large software systems are architected as component-based sys-
tems. In such systems, components are developed and tested separately. As
components cooperate for providing services, testing of a component also re-
veals defects in other components. In this paper we study the role testing of
other components plays in finding defects in a component by analyzing defect
data of an earlier version of Windows. Our analysis shows that testing of other
components often is the largest source of finding defects in a component. The
analysis also shows that though many components reveal defects in a compo-
nent, often a small set of components – the Test Buddies – exists whose testing
reveals the vast majority of the defects found by testing other components. The
Test Buddies of a component are those with a heavy interaction with the com-
ponent and represent the high priority customers for testing. The Test Buddy
information for a system can be determined by the test data of an earlier release,
and then can be used in different ways to improve the testing.

1 Introduction

There are many large software systems today that have a few million Lines of Code in
them. Almost all such systems now use a component-based architecture to organize their
code and to manage the development. In a component-based software system, a software
product is viewed as a set of components, each component providing a well defined
functionality through a well defined interface. Components interact with each other
through the interfaces. Generally, a component will use services of some other compo-
nent to provide its own services, and this causes the dependency between components.

Testing a component-based software system throws up new challenges as a com-
prehensive testing should include testing of components, integration testing to test
how components interact, and system testing [12]. Some approaches for testing com-
ponent-based systems have been proposed (e.g. [1, 6, 13, 14]), mostly focusing on the
situation where the software system being built uses some third party components,
which introduces new issues like lack of source code availability, independent
evolution, etc.

Though using commercial components for building new applications is indeed a
major use of component-based software engineering, most large software products,
which may not use any third party components, are engineered as component-based

* P. Jalote was a visiting researcher at Microsoft when the work was done. His current address is Depart-

ment of Computer Science and Engineering; Indian Institute of Technology; Kanpur – 208016; India.

 Components Have Test Buddies 311

systems. Reasons for using component-based approach when all the components are
developed within the organization include ease of work distribution, management and
code ownership, modularity, separation of concerns, architectural considerations, etc.
When building these large software products, a component is often developed inde-
pendently by a dedicated team. A component is tested independently (often by a dedi-
cated team) in different usage scenarios before it is made available for integration
with other components through some source code control repository. Testing of the
whole product often comprises of testing scripts of components enhanced by some
system level testing scripts.

When testing a component, test cases are generally written from the perspective of
that component. That is, the testers for a component write the test cases to drive the
component under various scenarios it is can be used in. These scenarios are typically
determined from the usage scenarios for the overall product. As there are dependen-
cies between components, since they collaborate to provide the functionality of the
larger system, the testing of a component inevitably exercises and tests some other
components as well. That is, though the focus is to detect defects in a particular com-
ponent, the test cases developed for that component inevitably detect defects in other
components as well. Little work has been done to understand the defect finding rela-
tionship between components and the impact of testing a component on finding
defects in other components. In this paper, we focus on this issue and study the defect
finding relationship between components, based on the analysis of defect data of
many components of an earlier release of Windows.

Our analysis shows that for a large system like Windows where there are complex
interactions between components, testing of other components plays a critical role in
revealing defects in a component. We found that the largest fraction of defects of a
component is detected through testing of other components. On analyzing this further,
we found that a component often has Test Buddies, which are the small set of compo-
nents whose testing reveals most of the externally found bugs. In other words, though
many defects in a component were being found through testing of other components,
of these defects, a vast majority were actually being found by testing of only a few
components – the Test Buddies.

Test Buddies of a component essentially represent the components which have a
high bandwidth interaction with it, that is, those that depend most on it and interact
most heavily with it. They can be viewed as the highest priority customers of a
component. Though Test Buddies cannot be determined by static analysis, they can be
determined easily from the defect data of a product.

The information about Test Buddies can be used in various ways to improve the
testing and development process. It can be of particular help when a component
changes and test cases have to be selected for regression testing.

2 Components and Testing

Let us first briefly describe how components are organized and tested. In Windows,
there is a defined component hierarchy, which groups the components in some areas
like networking, file system, process management, etc. [9]. The component hierarchy
is centrally defined and all development occurs within this context. If a new

312 P. Jalote, R. Munshi , and T. Probsting

component is needed, it has to be defined in this hierarchy, as all other support and
tracking systems assume that only the components defined in this hierarchy exist.

Each component has a team which consists of a development team as well as a test
team. The test team for the component develops the test cases based on system usage
scenarios and develops the test scripts for them. The test team is responsible for exe-
cuting these test cases and recording the defects they find in their component or in
some other component. Defects found though means other than testing (e.g. using
static analysis tool like PreFix[4]) are also logged.

Each test case has a unique test identifier. There is a testing framework that logs
the execution of each of the test cases. Coverage and other data for each test case are
recorded in a centralized database. When changes are made to some component, in-
house tools are used to prioritize the test cases, based on which decisions are made on
which test cases to execute [10].

As defects are found by many different groups, but are usually fixed by the owner
of the code in which the defect exists, generally when the defect is recorded, a consid-
erable amount of information is logged to facilitate debugging and fixing of defects.
Often, a record for a defect will contain:

− Component where the defect is
− The person who found the defect
− The method of finding the defect
− Symptoms and how they can be recreated
− Date and time of logging (automatically recorded)
− Severity, criticality, priority, nature, etc (for prioritization purposes)

The life cycle of a defect is something like the following. During some quality con-
trol (QC) task performed to identify defects, some erroneous behavior is observed.
This is logged, along with other information, by the person who finds the defect. Once
a defect is entered, it is in “open” state. The defect is attributed to a component. For
identifying the component to which a defect belongs, if needed, the defect triaging
process, where people from different component groups meet to discuss the defects
found, is employed. The open defects are typically assigned to some developer (often
the owner of the code) for fixing. The developer fixes the bug; the fix is verified to
ensure that the scenario that caused the defect now is successful, and then the defect is
marked as “closed”.

Defect logging is an industry best practice [3] and is widely followed. It is this re-
corded defect data that is the main data source of our analysis. Though there are over
a thousand components and a large number of defects recorded, we focused only on
those components that had contributed the most defects. These generally are the larg-
est components, and each had over a thousand defects logged against it. There were
over 50 such components for our analysis.

3 Finding Bugs in a Component – Role of Testing of Other
Components

The first part of our analysis is to study the role testing of other components plays in
testing a component. As testing of each component is being done separately and by

 Components Have Test Buddies 313

separate test teams, and as the complete system testing is essentially testing of com-
ponents, understanding this relationship will help.

This analysis is part of a wider analysis, the when-who-how analysis, which was
done of the logged defects. In this three dimensional analysis, for a defect we focus on
the data about when it was detected, who detected it, and how it was detected. For the
when analysis, the development timeline is divided with milestones, each milestone
representing some intermediate delivery. For the how analysis, the method for finding
the defect was categorized into a few categories like testing, stress testing, application
of code analysis tools, code review, etc. For the who analysis, the groups involved in
finding defects were categorized into a few categories. This three dimensional analy-
sis of defects was done to find areas of improvement in the overall quality control
process being followed. Analysis along each of these dimensions offered a different
perspective and new insights into the defect finding process.

For this work, it is the analysis along the “who” dimension that is pertinent. For
this analysis, we consider each team that is independently detecting defects as a unit.
This method can result in a large number of teams, most of them being test teams of
components. As our analysis takes a component perspective, for a component, we can
partition the test teams of components into two groups – “Internal” and “OtherTest-
Teams”. For a component, the internal test team is its own test team while OtherTest-
Teams comprise of test teams of other components. Besides these two groups, there
are other categories also, depending on the nature of the quality control process. For
example, a category that we used for analyzing windows defects is the following (for
OtherTestTeams we use OtherWinTeams):

− AppGroup: Teams focused on compatibility testing
− Customer: External customers
− Internal: The test team of the component
− InternalCustomer: Internal customers within the organization
− OtherTestTeams (OtherWinTeams): Test teams for other components
− Ignored: The rest

In this analysis, for each component we grouped the defects in these categories,

and then found the percentage of defects in each category. The averages for the dif-
ferent categories are shown in Figure 1. (The actual percentages have been omitted to
protect the confidentiality of data.)

As the result showed, the largest percentage of defects found for a component were
actually by OtherTestTeams (OtherWinTeams for Windows) – that is through testing
being done for other components by their test teams. This rather counter intuitive
outcome that the defects in a component are found more through testing of other com-
ponents reveals the key role testing of other components play in improving the reli-
ability of a component. It should, however, be pointed out that defect logging is often
not taken very seriously during the early unit testing stages, and defects found by the
developers themselves during their private testing are often not logged. That is, this
analysis reflects the situation for defects found in more formal testing that is done
after the component is released internally for integration. This means that generally
the internal defects are under represented as defects found by developers and in early

314 P. Jalote, R. Munshi , and T. Probsting

Source of finding defects

App
G
ro

up

Cus
to
m
er

In
te
rn
al

In
te
rn
al
C
us

to
m
er

O
th
er

W
in
Te

am
s

Ig
no

re
d

Fig. 1. Fraction of total defects found by different groups

stages of self testing are not included. However, our test buddy analysis is a further
analysis of the defects found in a component by other components (i.e. OtherTest-
Teams defects) – for that analysis, the number of defects found by Internal team is not
important.

Another reason for the large contribution of OtherTestTeams in finding defects that
was mentioned by many developers and testers who reviewed the analysis was that
there are a lot more testers outside the component than in a component, and so the
number of defects found by others is larger. Indeed it is true that the test team of a
component is only a small fraction of the total number of test teams. In a product with
50 major components and each having a test team, for every component there is one
Internal team while the OtherTestTeams consist of actually 49 test teams.

4 Test Buddies

If other components are finding most of the defects in a component, the next natural
questions to ask is are there any special components that are finding these defects?
That is, are there any critical components in the system which might be finding most
of these defects for most of the components?

To identify the actual test team that found a defect and the component to which the
test team belongs turns out to be tricky from the data we had. We started with the id
of the person who logged the defect. Through corporate databases, we identified the
cost center he or she belongs to, and then through there identified the project assigned
to him. Using this information, we then identified the component team to which the
person belongs. As this analysis is complex and has to be done separately for each
component, we randomly selected some (about 15) components for this analysis. For
each component, we attributed the defects found by OtherTestTeams to different
components whose test teams found the defect. Then we ranked the test teams in
order of their defect finding contribution. For these components, we then determined
the average percentage of OtherTestTeams defects that are found by the highest

 Components Have Test Buddies 315

ranking team, the 2nd highest ranking team, etc. The average percentages for all the
components are shown in Figure 2.

Avg % of OtherWinTeam defects found by top 10 test
teams

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

Team Rank

%
o

f
O

th
er

W
in

T
ea

m

d
ef

ec
ts

 f
o

u
n

d

Fig. 2. Average percentage of defects found by top 10 other components

As we can see, on an average, the top ranked component finds more than a third of
the defects, the second ranker finds about 12%, and the sixth rank onwards compo-
nents find less than 5% of the defects. That is, the top 5 components find over 90% of
the defects in a component that are being found by test teams of other components.
This analysis clearly shows that for a component, only a few test teams contributed
most of the defects. We also noted that for most components the total no of test teams
finding defects in a component is quite large.

This led us to hypothesize that the 80-20 rule may hold – that 80% of the defects in
a component are being found by 20% of the components. We define Test Buddies of a
component as the set of other components whose test teams found 80% of the OtherT-
estTeam defects for this component. Of the components analyzed, we found that all
expect one had a small number of Test Buddies. This analysis is shown in Figure 3.

No of TestBuddies

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Component number

o

f
T

es
tB

u
d

d
ie

s

Fig. 3. No of Test Buddies for the different components

316 P. Jalote, R. Munshi , and T. Probsting

As we can see, the number of Test Buddies for many components is less than 5, for
some it is around 10. There is only one component which really does not have Test
Buddies – defects for this were found by a large number of components. This analysis
suggests that most components have Test Buddies – a small set of components whose
testing finds most of the defects in it.

An interesting aspect of Test Buddies is that the different components had a differ-
ent set of test buddies. That is, there were no components that were globally critical in
finding defects – each component had its own set of components which found defects.
And, of the total number of teams that found defects in a component, only a small
fraction of those formed the Test Buddy set, as shown in Figure 4. As can be seen in
the figure, though the total number of components whose testing finds defects in a
component is quite large, the number of test buddy components is rather small.

#TestBuddies and total teams finding defects

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Component Number

N
u

m
b

er
 o

f
te

st
 t

ea
m

s

Teams finding 80%

Total teams

Fig. 4. No of test buddies as a fraction of total teams

Besides the components that find defects in a component, there are many other
components which find no defects in this component. In fact, in this product there are
well over a thousand components. As we can see from the data, only about a hundred
or so find defects in a component. This does show that the modularity and componen-
tization is quite effective – most components either do not interact with each other or
do not interact very heavily. It does suggest that there are some components with
which a component is quite tightly coupled in terms of usage. This may be because
some components might be clients of some “server” components, and though the
server components are functionally different and need to be kept as a separate compo-
nent, the interaction with client components tends to be very heavy.

5 Using Test Buddy Information

The test buddies for a component represent the heavy users of a component, or the
components that depend the most on this component. This is different from identify-
ing dependency between components (using techniques like testing dependency graph
[11], component interaction graph [13], or UML behavior models [14]) which focus

 Components Have Test Buddies 317

only on identifying which component depends on which others, but not on the
strength of dependency. Test buddies essentially identify the components that have
the strongest dependency on this component. They can also be viewed as the highest
priority clients of this component for the purpose of finding defects. That is, these are
the defect finders on which the testing of this component heavily depends.

For a product under development, whose complete defect data is not available, test
buddies can be determined either from the data from an earlier release, or defect data
at an earlier milestone of this release. Often the component hierarchy and the nature
of components is preserved through different releases, though new components do get
added. Hence the data from an earlier release should give a close approximation of the
test buddies. Same will hold for the test buddies determined from defect data at a
milestone, as the relationship between components is unlikely to change substantially
from milestone to milestone. As the test buddy information is to be used for improv-
ing the quality control and development processes, accurate information is not essen-
tial and approximate information is quite sufficient.

The information about Test Buddies of components can be used in different ways
to improve the development. When there are many components interacting with each
other, coordination between different component teams for testing or any other
activity becomes extremely hard. Consequently, component teams start working inde-
pendently with very lose cooperation with other components. With test buddies, the
interaction can be limited to test buddies, limiting the scope strongly and making
cooperation feasible.

For example, the test plan of a component can be reviewed by the teams of its test
buddies – something that is eminently feasible even though it is not feasible to get it
reviewed by all its client components. The review by test buddies can bring up the
scenarios that are getting missed in the test plan. This feedback, if obtained early, can
have a favorable impact on development also, besides improving the testing.

Other types of cooperation are also possible. A component can start paying closer
attention to the bugs being reported by its test buddies – any prevention based on this
feedback can have strong benefits. A virtual test script for a component can be formed
by combing its test script with those of the test buddies. If this can be automated, then
a components testing can become more rigorous, catching defects early.

Cooperation can be extended in other areas as well. Clearly, if specifications of a
module are inspected by its test buddies, since these components have the maximum
linkages, shortcomings are likely to be identified early in the development cycle.
Once again, due to the set of reviewers becoming manageable, this is feasible.

Similarly, when changes occur, test buddy information can be leveraged. It is
known that upgrading a component often has side effects on other components, and
techniques like regression testing are used to evaluate the impact of a change. With
test buddy information, when changes are to be made to a component, two specific
measures can be taken. First, the change specifications and the approach for change
can be reviewed by test buddies. This review can identify any undesirable side effects
that might occur on the test buddies. Though a review by all dependent components is
not feasible, review by a small set of components that form the test buddies is emi-
nently feasible and can help identify and mitigate impact on the commonly used cus-
tomer components.

318 P. Jalote, R. Munshi , and T. Probsting

Secondly, the test buddy information can be used for test prioritization of test cases
in regression testing. A brute force method of handling changes is to run all the test
cases every time some changes are committed. This is, unfortunately, not always
feasible as regression tests for a large product may take many days to complete, and
hence test cases are often prioritized and then highest priority test cases are executed
to check that there are no undesirable side effects of a change. (There is a body of
work in prioritizing test cases in regression testing, e.g. [5, 7, 8, 10]). The test buddy
information can also be used for test case prioritization – the test cases of the test
buddies are given a higher priority than test cases for other components.

6 Summary

There is a considerable interest in component-based software development and most
large software systems that are getting developed use this approach now. For develop-
ing a component-based system (but without using third party components), compo-
nents are often developed by separate teams who perform their testing independently.
However, as components have dependencies, testing of a component can reveal de-
fects in other components.

In this work we study the role testing of other component plays in finding defects
in a component. Our study is based on the defect data of an earlier release of the
Windows operating system. We used the rich data that is logged to analyze the defects
of more than fifty components which have the largest number of defects. For each
component we separated the defects into different categories; in particular defects
found by test teams were separated into those found be the internal test team of the
component and those found by test teams of other components. Our first analysis of
classifying the defects by who is finding them showed that for a component the larg-
est percentage of defects being found in formal testing runs is through testing of other
components. That is, when test scripts of different components are executed in formal
test runs (which does not include non-formal testing like the unit testing being done
by programmers themselves), test scripts of other components find maximum defects
in a component.

Though for a component there is one test team while there are a large number of
test teams and test scripts of other components, this established that testing of other
components plays a strong role in finding defects in a component.

We then analyzed this data further and found that of the defects being found by
other components, the vast majority were being found by only a few components. We
define test buddies of a component as those components whose testing finds 80% of
the defects being found by other components. We found that most components have a
very small set of test buddies. There were a much larger set of components that found
the remaining 20% of the defects, and a yet larger set that found no defects. That is,
the componentization did result in a structure in which most components had very
little interaction with a component. But, there are a few “client” components which
interact very heavily with a component and they end up finding most of the defects.

Test buddies of a component represent those components that use this component
the most, and have a strong interconnection with it. For a product under development,
test buddies can be identified from the defect data of an earlier release, or defect data

 Components Have Test Buddies 319

at a milestone. This knowledge about test buddies can be used in many ways to im-
prove coordination between components for improving quality. Without test buddies,
this coordination for a large product is so complex that it is practically impossible.
With test buddy information, coordination can be limited to test buddies. This opens
up possibilities of joint testing, test case reviews, review of specifications, etc to im-
prove the quality of a component – techniques that are not feasible without this data.

We feel that during evolution of large systems defect data should be mined to iden-
tify the test buddies of different components. And strategies should be evolved to
leverage this information for improving the quality of the system built from compo-
nents. This can go a long way in improving the reliability of the overall system. Of
course, this analysis is only from data of one product and whether this phenomenon
will hold in general needs to be validated further by doing this analysis on data from
other products as well. We hope that the potential benefits of this information will
encourage others to do this analysis and share the results.

References

1. S. Beydeda, V. Gruhn, An integrated testing technique for component-based software, In-
ternational Conference on Computer Systems and Applications, IEEE Press, 2001

2. Rex Black Managing the Testing Process, Microsoft Press 1999
3. N. Brown. Industrial-strength management strategies, IEEE Software, July 1996.
4. W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding dynamic program-

ming errors. Software Practice and Experience, 30(7):775--802, 2000
5. S Elbaum, AG Malishevsky, G Rothermel “Test case prioritization: A family of empirical

studies”, IEEE Transactions on Software Engineering, 2002
6. MJ Harrold, D Liang, S Sinha - An approach to analyzing and testing component-based

systems, ICSE Workshop Testing Distributed Component-Based Systems, 1999
7. G Rothermel, RH Untch, C Chu, MJ Harrold “Prioritizing test cases for regression test-

ing”, IEEE Transactions on Software Engineering, 2001
8. AK Onoma, WT Tsai, MH Poonawala, H Suganuma “Regression testing in an industrial

environment”, Communications of the ACM, 1998
9. Salomon, David and Mark E. Russinovich Inside Microsoft Windows 2000, Third Edition,

Microsoft Press
10. A Srivastava, J Thiagarajan “Effectively prioritizing tests in development environment”,

ACM SIGSOFT Software Engineering Notes, 2002
11. Y L Traon, T Jeron, J M Jezequel, and P Morel, “Efficient Object-Oriented Integration and

Regression Testing”, IEEE Transaction on Reliability, vol 49, no 1, pp 12-25, March 2000
12. EJ Weyuker “Testing Component-Based Software: A cautionary Tale”, IEEE Software (5)

pp 54-59 1998
13. Y. Wu, D Pan, and M H Chen, “Techniques for Testing Component-Based Software”,

proc. of ICECCS, pp 222-232, 2001
14. Y Wu, M H Chen, and J Offutt, “UML-based Integration Testing for Component-based

Software”, proc. of ICCBSS pp 251-260, 2003

Defining “Predictable Assembly”

Dick Hamlet�

Portland State University
Portland, OR, USA
hamlet@cs.pdx.edu

Abstract. Predictable assembly in component-based software develop-
ment intuitively means the ability to predict effectively properties of a
system, making essential use of properties of its components. A formal
definition is difficult to give, because the idea is a large, vague one. As an
outgrowth of an informal workshop, this paper frames a mathematical
definition. A somewhat surprising consequence of the formal definition
is that assembly is usually predictable, but each particular case requires
engineering effort to establish.

1 Introduction

In September 2005, K-K. Lau organized an informal workshop at the University
of Manchester whose goal was to define “predictable assembly of software com-
ponents.” The attendees spent two days in informal talks and discussion, and
(predictably, for an assembly!) did not arrive at a satisfactory definition. This
paper is an outgrowth of Lau’s workshop.

The workshop subject of predictable assembly recognized that little could
be gained by attempting a general definition of ‘component’. Everyone seems
to know what a software component is, and few are willing to reconsider their
beliefs. The existing definitions range from broad generalities (e.g., Szyperski’s
much cited [1], “Anything executable”) to the narrowly specific (e.g., an Eiffel
class [2], or a Java Bean [3]). It is hard for those holding different ideas of
‘component’ to understand and use each other’s work, just because it is difficult
to shake off one’s own intuitive baggage. The workshop took a different tack:
Whatever ‘components’ are, it is desirable that properties of systems using them
can be predicted from knowledge of the components. Defining an entity in terms
of what is done with it is accepted mathematical practice, particularly in algebra.
In Section 3 it will appear that predicable assembly as defined is almost always
a possibility.

If we avoid using the “C-word” and thereby keep out the freight of different
intuitive meanings, we still need to refer to parts of software systems that have an
independent existence. ‘Software elements’ (or ‘elements’ for short) is a suitably
vague term, conveying no more than the idea of being a part.
� Supported by NSF ITR grant CCR-0112654 and by an E.T.S. Walton grant from

Science Foundation Ireland. Neither institution is in any way responsible for the
statements made in this paper.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 320–327, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Defining “Predictable Assembly” 321

2 Semantic Background of Elements and Assemblies

Two underlying ideas are not in dispute1: properties and assembly.

2.1 Properties and Behaviors of Software

In mathematical logic, ‘property’ is another word for a logical predicate defined
on a set comprising values of variables of the logic. The property ‘holds’ when
its variables take on values that make it true. The intuitive sense of a predi-
cate is often ‘relational’ in that some variables are identified as ‘independent’
(or ‘input’) and others as ‘dependent’ (‘output’) and truth of the predicate de-
fines a relationship between the two. For example, a conventional Hoare-logic
postcondition predicate Q may involve input x and output y for a program P ,
and {P} Q(x, y) expresses correctness (without any precondition). Furthermore,
such relational predicates may happen to be single-valued in that they are true
for (x, y) of at most one output y for each input x. Such a single-valued predicate
defines a (partial) function from inputs to outputs. When there is no output y
such that the defining predicate holds for (x, y), the function is undefined at x.

One set over which predicates range is observable quantities for the software
system to be assembled. In physical science it has been very useful to distinguish
between quantities that can be detected by apparatus and others that are more
tenuous. A corresponding distinction for programs could single out ‘observable’
values by the existence of engineering devices (‘converters’) and programming-
language constructions that take a representation of an observable value back and
forth between software and the physical world. For example, force is observable
because a strain gauge ‘reads’ force; a stepping motor ‘writes’ it. Converters for
text and graphical input/output observables are built into most programming
languages. The observable quantities of interest differ from system to system;
however, there is always an input domain that the system reads and an output
domain that it writes. Programs are mappings that relate the input set of observ-
ables to the output set of observables; this is is their ‘functional’ behavior. Along
the way, many internal quantities may arise in a program. It can be important
to define and analyze predicates involving internal values, but in the end it is
the observable input-output behavior that counts. Software engineering makes
the distinction by stating requirements in observables and relegating internals
to design.

Other, ‘non-functional’ software properties are often of interest, but these
necessarily depend on functional behavior. The reason is that when one element
invokes another the complete behavior—functional and non-functional—of the
second element depends on the input it receives, which is influenced by the be-
havior of the first. Thus any contribution to system properties from the second
element arises not from the system input, but rather from a functional trans-
formation of system input. An archetype non-functional property is run time

1 There is some truth in the aphorism that a group of experts seeking a definition will
dispute anything.

322 D. Hamlet

(wall-clock elapsed time2), which is evidently observable. The example illustrates
a confusion that runs through any discussion using the word ‘functional’. On one
hand, a program’s functional behavior is by definition its input-output relation-
ship, excluding things like run time. This makes run time ‘non-functional’. But
on the other hand, run time could be mathematically treated just as output is.
Given an input, the run time can be measured and thus a run-time function can
be defined, making run time ‘functional’. Furthermore, in real cases where there
is concurrency the run time may not be a single-valued relation, that is, non-
functional. Finally, the input-output relation may also fail to be single-valued,
making the defined ‘functional’ behavior technically non-functional.

In this paper, ‘functional/non-functional’ will be reserved for distinguishing
input-output behavior from other less fundamental behaviors. The input-output
behavior will also be called ‘black-box’ behavior. We will use ‘relation’ for the
mathematical idea of ordered pairs. A single-valued relation will sometimes be
called a ‘mapping’. For example, we might say that in the absence of concurrency
the functional behavior of a program is a mapping, and so is the non-functional
run-time behavior.

It captures the black-box nature of software to stipulate that any program,
system, or software element is described by a relation between sequences of
input values and sequences of output values. In the simplest case there is a
single input space X and a single output space Y . Let X� be the set of finite,
non-zero-length sequences drawn from X . Program P ’s semantics is defined by
a relation S ⊆ X� × Y as follows:

Definition 1. There exists a y ∈ Y such that P has output y for some input
sequence x ∈ X� if and only if S(x, y) holds.

Termination is covered in Definition 1 as follows: If S contains a pair (x, y) then
P must terminate on input x to meet the definition; if there is no y such that
(x, y) ∈ S, then P does not terminate on input x. Non-deterministic program
behavior is captured in Definition 1 by a relation that is not single-valued in its
independent variables. The use of sequences in Definition 1 captures a program’s
use of persistent state, without making state explicit. Intuitively, programs begin
every input sequence with state ‘reset’ to an initial value. Each member of an
input sequence sends the program to a next state, but state is entirely under
program control so it need not be described in the definition.

Definition 1 covers functional behavior. Non-functional behavior can some-
times be captured by additional relations on the cross product of input sequences
and another value space. For example, program run time3 might be defined by
a mapping T : X� → R, where R is the non-negative reals. Program reliability
might be a mapping from input sequences to a probability, r : X� → [0, 1] ⊂ R.
A surprising number of non-functional properties can be defined using mappings.
2 Things are more complicated for an internal quantity like ‘processor time’.
3 Intuitive run time is the time for just one, not a sequence, of executions. The single-

input run time depends on the state, which is only implicitly known by position in
the input sequence. The run time for part of an input sequence could be obtained
by subtracting the defined values for two sequences, one a prefix of the other.

Defining “Predictable Assembly” 323

The intuitive character of the simplest relational Definition 1 of software
semantics is that a program receives input sequences and produces outputs in
response. What happens along the way is not modeled, so the definition does
not capture temporal properties. An example of this deficiency is a program
that receives an ‘arming’ input, sets an internal timer, and responds differently
if a second input arrives before or after the timer expires. The example exposes
‘elapsed time’ as a fundamental parameter in computation, a kind of cross be-
tween input and state. Like input and state a time interval can influence program
behavior. Unlike input, time cannot be arbitrarily set by the environment; unlike
state, the program does not completely control its value.

A more complex definition better covers temporal variations:

Definition 2. Program behavior is described by a relation between timed input
sequences of pairs T = <(x1, t1), (x2, t2), ..., (xn, tn)> and an output pair (y, t′).

Intuitively the ith input value xi arrives at time ti and the program output
response to the input sequence is y at time t′. The inclusion of t′ is necessary to
model the possibility that a program can act differently depending on how long
one waits after input arrives. The wall-clock run time(s) of the program on input
sequence T therefore comprise the set of all t′ > tn that (each with some output)
stand in the program relation to T . (A “timed frame in the relational style” of
Broy and Stølen [4] can express the same intuitive semantics as Definition 2.
The Broy and Stølen notion of “timed stream”, by modeling time only as tick
marks separating message values, makes it easier to express synchronization. In
their notation more of the semantic content is carried by the structured stream
and less by the relation.)

If a software system is assembled from software elements, there must be an
overlap in domains between some elements and the system. Some elements must
read the same kind of values as the system reads; some elements must write the
same kind of values the system does. These elements are the system interfaces
to the physical world. Other input and output domains of elements making up
a system are not visible in system behavior.

2.2 Series Assembly

How elements connect to each other in assembly poses a difficult definitional
problem: Shall the connection be taken to be a property of the elements, or of
the system? The extreme views are:

(System). Elements are combined using rules (‘connectors’) defined only at the
system level. These connectors mediate between outputs produced by one
element and inputs accepted by another. The elements themselves need not
match in any way. This view has the virtue that it allows maximum reuse
of the simplest elements, but at the expense of defining a whole new system
entity, the connector.

(Element). Elements are combined using fixed interface rules that define a
well-formed assembly. At the interface agreement is required for a system

324 D. Hamlet

to be well-formed, but not so much that deciding well-formedness becomes
intractable. Here the drawbacks are that the interface rules constrain the
component developer and the choice of rules may limit system design possi-
bilities.

Perhaps the idea of a ‘component model’ [5] is a compromise between these
extremes. The model and its ‘containers’ define the allowed connections, and in
turn restrict what elements placed in the containers must do.

This paper takes the ‘element’ view4. Section 2.1 has defined the semantics of
programs. Assemblies are defined not by semantic ‘composition’ operators, but
by syntactic connections, each with its own intuitive semantics. The simplest
and most revealing connection of elements is ‘series’. In a series connection, a
first element invokes a second element, which receives as input the output of
the first. A discussion of other connections, e.g., one element calling another, is
beyond the scope of this short paper.

3 Predictable Assembly

Precise semantic definitions are the basis for a definition of the notion of ‘pre-
dictable assembly’. Definitions 1 and 2 use relational semantics, but their details
do not play an important role here. A different background formalism could be
substituted without changing the character of this section.

Predictable assembly is intuitively the ability to effectively predict properties
of the assembly from element properties. Inclusion of the adverb ‘effectively’—
that is, by algorithmic means—raises an old, old issue in program analysis. If
element properties are obtained by testing methods, they are at best approxi-
mations to the actual properties. (For example, test run times necessarily fail to
take account of some input values, which may conceal significant times.) Cal-
culations concerning the assembly made from inaccurate element data may be
effective, but are also inaccurate (likely even more inaccurate than the data). On
the other hand, if element properties are expressed in formal mathematics, they
can be perfectly accurate, but there are still two problems of effective predic-
tion: (1) The accuracy of a formal description cannot be effectively checked in
general, hence the formal expression may not in fact be true of the element. (2)
There may be no effective way to obtain formal descriptions of the assembly. For
example, to find the description may require an iterative procedure not known
to terminate in general.

We are left with the familiar dichotomy that testing can be carried out but
with dubious results; formal analysis has the potential for ideal results, but
cannot always be carried out. An intuitively satisfying definition of predictable
assembly must allow for the deficiencies of both methods. Such a definition is
called ‘relative’ (to the underlying method). It will not do to give an absolute
definition, then discover that in particular examples the prediction cannot be
made, but the fault lies with the underlying testing or formalism, not with
intuitive ‘predictability’.
4 On the other side, Arbab’s work [6] is an elegant example of the ‘system’ view.

Defining “Predictable Assembly” 325

The statement5 that non-functional software properties cannot be formalized
most often reflects only confusion of terms. Sometimes it means that the formal
properties are difficult to effectively manipulate. Sometimes it confuses the two
kinds of ‘functional’ as mentioned in Section 2. Sometimes it refers to emer-
gent properties like ‘security’ as discussed in Section 3 below. And sometimes
the confusion is not easy to categorize. For example, the reliability property
r : X� → [0, 1] is identically 1 whenever a program is correct on X , so no one
bothers to mention it in a formal correctness theory.

Here are two relative definitions:

Definition 3 (relative to formal logic). An assembly is predictable for its
property Q when Q can be deduced for the assembly from formal descriptions of
its elements.

Definition 3 does not fail because of the failings of formalism in general. Assembly
is predictable using a formal method if working from formal element descriptions
(which may be wrong), there is a procedure (which may not be tractable) for
predicting the assembly behavior. In cases where the element descriptions are
shown to be right and the procedure can be carried out, the prediction will be
effective.

Definition 4 (relative to testing). An assembly is predictable for its property
Q when calculations using element test results can be carried out to predict values
of Q along with an error bound for the prediction.

Element tests carry an inaccuracy and this will be give rise to a prediction inac-
curacy. It is not unfair to insist that testing-based predictable assembly provide
an effective error calculation relating the accuracy of the assembly predictions
to the accuracy of the element tests. Definition 4 allows testing its intrinsic
weakness. If the accuracy bound is not tight enough the prediction is not useful.

In both cases, the arbiter of prediction accuracy is system testing. A pre-
diction is accurate if it agrees with system test results. The validation of any
particular prediction procedure, formal or test-based, is therefore well defined.
Ideally, validation can be theoretical—one can prove that system tests will go as
predicted. Without a proof, experiments can provide support.

Relative definitions that allow methods to exhibit their intrinsic imperfections
may seem to be useless—what good is a prediction that in a particular case can’t
be made (formalism), or can’t be trusted (testing and formalism)? It is our intent
to capture the sense of predictable assembly as an engineering practice. Engineers
always use imperfect design- and analysis methods. A relative definition allows
researchers and practitioners to add to the stock of such methods so that a
body of experience can develop around predicting assembly properties. In the
end, some assembly-prediction methods may be found to be a waste of time;
or, a particular method may work only in special cases. Engineers will abandon
the former and try to force the special cases of the latter to occur. If there are

5 Usually made by those who don’t like formalism.

326 D. Hamlet

methods to try, however imperfect, engineers may try them; without defined
methods, they are out of work.

To illustrate Definitions 3 and 4, consider a series assembly with the simplest
kind of program semantics, where program defining relations (Definition 1) are
single-valued and non-temporal. For a non-functional property take run time.

Illustration 1. The functional behavior of the series assembly of element 1 with
program mapping F1 and element 2 with program mapping F2 is obtained by
mathematical composition. The run time of the assembly is obtained by addition.
Let an input sequence X = <x1, x2, ..., xn> be given. Element 1 has output
sequence Y = <y1, y2, ..., yn>, where:

y1 = F1(<x1>), y2 = F1(<x1, x2>), ..., yn = F1(<x1, x2, ..., xn>).

The system output is F2(Y).
If T1 and T2 are the respective element run-time mappings, the system run

time on input sequence X is T1(X) + T2(Y).

In the formal view of Illustration 1, mappings F1, T1, F2, T2 would be given for the
elements by logical predicates, and the formulas are derived to predict the func-
tional and run-time mappings of the series assembly. The assembly is predictable
according to Definition 3 and the proof is immediate from the definitions.

In the testing view, finite-support mappings to approximate F1, T1, F2, T2
can be obtained by testing the elements. The formulas in Illustration 1 can com-
bine these finite-support approximations into an approximation for the assembly,
subject to a technical difficulty in matching input test points for element 2 with
output values from element 1. Subdomain testing is one way to solve this match-
ing problem [7]. The hard part of proving that the assembly of Illustration 1 is
predictable according to Definition 4 is bounding the error in a subdomain-based
calculation. Empirical evidence indicates that properties of a series assembly can
be predicted with less relative error than roughly the sum of the element relative
errors, but no theoretical analysis has been attempted [7].

It is revealing to consider so-called ‘emergent’ properties of systems. An emer-
gent property may not be present at the element level, but arises in the assembly.
Intuitively, the relative definitions allow emergent properties to be predicable.
One device that often works is to use in the proof an ‘intermediate property,’
something other than the property to be predicted, whose element values per-
mit the prediction. For example, a system’s memory-leak-free behavior does not
always arise from elements that are leak-free. Using lists of allocated addresses
as an intermediary, the system (leak-free) property can be predicted from the
elements (address-list) properties [8].

Using Definitions 3 and 4, no system property fails to be predictable a priori.
If a clever formal derivation or testing procedure can be found, the property is
established as predictable; if not found today, more cleverness may be available
tomorrow. It is the business of engineering to seek out such clever methods. A
special case occurs when a system property is itself uncomputable in the Turing
sense, for example the property of being deadlock-free. The relative definitions
can push the unsolvable problem to the element level so that the deadlock-free

Defining “Predictable Assembly” 327

property becomes technically predictable. For example, the proof might use as
intermediate element property an undecidable restriction on resource allocation.
Except as a means to demonstrate the unsolvability of the element property—
a form of reducibility proof—such an exercise is not useful. However, a slight
twist in the argument brings in an acknowledged strength of component-based
development—restrictions on the general case are easier to devise and verify at
the element level. In the deadlock-free example, simple restrictions might be
placed on elements and their assembly connections that guarantee the absence
of deadlock in the assembly. It should be easier to prove that elements observe
a safe pattern of resource allocation that implies system safety than to analyze
an assembly. The proof of predictable assembly then becomes a template for
devising element properties that make prediction effective.

Examples of intrinsically non-predictable properties probably exist, but to
construct one might require a contrived self-referential property.

4 Summary

A definition of predictable assembly was given relative to an underlying analy-
sis method (formal logical description or testing). According to the definition,
assembly properties are usually predictable, but to demonstrate this requires
validating engineering procedures within a formal- or testing-analysis frame-
work. The primary model that underlies the definition is a functional and non-
functional relational semantics assigned to assemblies and their elements.

References

1. Szyperski, C.: Component Software. 2nd edn. Addison-Wesley (2002)
2. Meyer, B.: Object-oriented Software Construction. Prentice Hall (2000)
3. Roman, E., Ambler, S., Jewell, T.: Mastering Enterprise JavaBeans, 2nd Ed. John

Wiley and Sons (2001)
4. Broy, M., Stølen, K.: Specification and development of interactive systems: FOCUS

on streams, interfaces, and refinement. Springer (2001)
5. Heineman, G.T., Councill, W.T.: Component-Based Software Engineering: Putting

the Pieces Together. Addison-Wesley (2001)
6. Arbab, F.: Abstract behavior types: a foundation model for components and their

composition. Science of Computer Programming (2005) 3–52
7. Hamlet, D., Andric, M., Tu, Z.: Experiments with composing component properties.

In: Proc. 6th ICSE Workshop on Component-based Software Engineering, Portland,
OR (2003)

8. Hamlet, D., Mason, D., Woit, D.: Properties of software systems synthesized from
components. In Lau, K.K., ed.: Case Studies in Computer-based Software Engineer-
ing. World Scientific (2004)

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 328 – 335, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Tool to Generate an Adapter for the Integration
of Web Services Interface*

Kwangyong Lee1, Juil Kim2, Woojin Lee2, and Kiwon Chong2

1 Ubiquitous Computing Middleware Team, ETRI, Daejeon, Korea
kylee@etri.re.kr

2 Department of Computing, Soongsil University, Seoul, Korea
{sespop, bluewj}@empal.com, chong@ssu.ac.kr

Abstract. As the number of available web services is steadily increasing, many
applications are being developed by reusing web services. Accordingly, a tool
to generate an adapter which integrates interfaces of several web services is
proposed in this paper. The concept of the adapter for the integration of web
services interface is described. The purpose of the adapter is to help developers
use several web services with little effort for their application development.
Then, implementation of the tool to generate an adapter is presented. The archi-
tecture of the tool, the process, and the algorithm to generate an adapter are de-
scribed. The tool will help developers integrate several web services when they
develop applications.

1 Introduction

The business process automation has been motivated by opportunities in terms of cost
savings, higher quality and more reliable executions. This automation has generated
the need for integrating different applications involved in the processes. Accordingly,
application integration has been one of the main factors in the software market [1].

Web services were born as a solution to the integration problem [2]. To create ap-
plications using several web services, developers use service integration. Developers
and users can then solve complex problems by combining available basic services and
ordering them to best suit their problem requirements [3].

We propose the programming-level integration technique for improving the pro-
ductivity and the maintainability of applications based on web services. We propose a
tool to generate an adapter which integrates interfaces of several web services in this
paper. The concept of the adapter for the integration of web services interface is de-
scribed. Then, implementation of the tool to generate an adapter is presented. The ar-
chitecture of the tool, the process, the templates and the algorithm to generate an
adapter are described. The adapter will help developers to rapidly develop applicatons
with high quality. Developers can use several web services like a single web service
through the adapter of this paper because the adapter integrates interfaces of several
web services. The productivity of application development will be improved because
the adapter can be generated automatically. The maintainability of applications also

* This work was supported by the Soongsil University Research Fund.

 A Tool to Generate an Adapter for the Integration of Web Services Interface 329

will be improved because developers can reflect modification of web services and add
new web services through the adapter. We hope the proposed tool will help develop-
ers generate the adapter when they develop applications.

2 An Adapter for the Integration of Web Services Interface

Developers search web services when they want to use web services as a part of their
application. They should use several web services when they develop the application
if there is not a single web service which satisfies their requirements. An application
using several web services has a structure of figure 1-(a). However, controlling sev-
eral web services costs a lot of effort, so developers make efforts to control several
web services when they develop the application. Developers also modify source codes
of every class which use the web service if a web service has been changed. To solve
these problems, this paper proposes the adapter of figure 1-(b). The adapter performs
the role of a middleware between a client application and web services. The adapter
uses the façade and the proxy patterns [4]. The adapter is composed of two kinds of
classes – the WebServicesFacade and the WebServicesProxy. The WebServices
Facade provides interfaces of several web services and interfaces which compose
several interfaces of the web services. The WebServicesProxy provides a local repre-
sentative for a web service in a different address space and the same interfaces as a
web service.

Fig. 1. The structure of an application using several web services

The adapter minimizes the complexity of connection and the dependency between
a client application and web services. Therefore, developers can manage and control
several web services with little effort for their application development through the
adapter. Furthermore, the maintainability of applications increases through the adapter
because developers modify only the source code of the adapter when web services are
changed.

330 K. Lee et al.

Users can access only the service specification of a web service through WSDL.
Accordingly, the adapter integrates interfaces which are defined in the WSDL of web
services. Developers can use several web services like a single web service through
the adapter because the adapter integrates interfaces of several web services. They
control only the adapter in order to use the web services. Developers can easily use
the interfaces of several web services through the adapter in their application devel-
opment. Users can call operations of web services and use the return values of the op-
erations through the adapter even if they don’t know the information of web services
such as URL of WSDL document, web service name and port, and operation name.
Users can use operations of web services just as methods of local object through the
adapter.

3 A Tool to Generate an Adapter for Web Services Integration

3.1 The Architecture of the Tool

A tool to generate an adapter for the integration of web services interface consists of
the Web Service Finder, the WSDL Analyzer, the Web Service Tester, the Adapter
Information Generator, the Templates Storage, and the Adapter Generator. Figure 2
shows the architecture of the tool.

Fig. 2. The architecture of a tool to generate an adapter

 Followings are detailed descriptions of modules of the tool.

* Web Service Finder: This is a GUI to search web services that are necessay for
an application. This module stores the URLs of WSDL documents for web ser-
vices to find.

 A Tool to Generate an Adapter for the Integration of Web Services Interface 331

* WSDL Analyzer: This module extracts web service information from WSDL
document using the URL of the document. Web service information contains the
access point URL, name of operations, parameters of operations, type of parame-
ters, and return value type of operations.
* Web Service Tester: This module confirms the suitability of a web service. Be-
cause there are a lot of web services that perform similar service, users should
find out the most appropriate web service. Users choose an operation to test, set
parameter values, and check the test result of the operation for verifying the web
service using this module.
* Adapter Information Generator: This module generates the adapter informa-
tion using predefined templates and web service information.
* Templates Storage: This module stores predefined templates to generate an
adapter. Templates for WebServicesFacade and WebServicesProxy class which
consist of an adapter are stored in this module.
* Adapter Generator: This module creates java source files of an adapter using
the adapter information generated by the Adapter Information Generator.

3.2 The Generation Process of an Adapter

The adapter is generated by following process.

 Search web services from UDDI. The web services should provide proper op-
erations in requirement of application.
 Select several web services among the searched web services in order to use in
the development of application.
Input the WSDL URL of selected web services to the WSDL Analyzer.
The WSDL Analyzer parses the information of the web services through the
WSDL URL and stores the parsed information. The Web Service Tester calls
the operations of the web services and confirms return values. The process is
performed again from if the return values are not satisfied.
Adapter information is generated using the parsed information and the template
of adapter.
 The Adapter Generator creates java source files with the adapter information.
Users can use several web services using the class files of an adapter by com-
piling the java source files of the adapter and customize the adapter by modify-
ing the java files of the adapter.

3.3 The Algorithm for the Generation of an Adapter

Developers can use several web services using the class files of an adapter by compil-
ing the automatically generated java source files of the adapter and customize the
adapter by modifying the java files of the adapter.

Figure 3 presents the algorithm for the generation of the WebServicesProxy and the
WebServicesFacade class. The proxy of each web service and the façade of an adapter
are generated through these algorithms.

332 K. Lee et al.

Fig. 3. The algorithm for the generation of the WebServicesProxy and the WebServicesFacade
class of the adapter

4 Case Study with Internet Library System

We generated an adapter for the Internet Libarary Sytem as a case study. The Internet
Library System provides useful functions for searching, ordering and reserving do-
mestic or international books. We developed the functions for searching domestic or
international books as a part of the Internet Libarary System. We needed to use two
web services for searching domestic books and international books, so we generated
an adapter using the tool proposed in this paper in order to integrate a web service for
domestic books search and a web service for international books search.

Figure 4 shows the GUI for web service search of the tool. When several proper
web services are selected, they are analyzed through WSDLs and tested for identify-
ing the most suitable web service.

Fig. 4. The GUI for web service search of the tool

 A Tool to Generate an Adapter for the Integration of Web Services Interface 333

 Figure 5 shows the GUI for web service test of the tool. For testing of a web ser-
vice, a method of the web service is selected and invoked with testing values. The re-
sult of the invocation is displayed on the right of the GUI. If the result is acceptable,
the user selects the web sevice. When all web sevices for implementation are selected,
the tool generates an adapter for interface integration of the web services.

Fig. 5. The GUI for web service test of the tool

 The WSDLs of web services for searching dosmetic books and international books
are presented in the left side of figure 6.

Fig. 6. The WSDLs of web services for searching dosmetic books and international books, and
the source code of WebServicesFacade class generated by the tool

334 K. Lee et al.

 The source code of WebServicesFacade class which is a component of an adapter
to integrate the web services is presented in the right side of figure 6. The code is
generated by the tool proposed in this paper. The integrated mehod of the WebSer-
vicesFacade class can be used for integrated searching of books which are inside and
outside of the country. Users can easily generate integrated methods using the meth-
ods of the WebServicesProxy classes.

We easily implemented the functions for searching domestic or international books
as a part of the Internet Libarary System using the adapter which is generated by the
tool. The complexity of connection and the dependency between web services and the
client application have been minimized through the adapter. Also, the maintainability
of applications has increased because we modified only the source code of the adapter
when web services for books search were changed or new functions were added to the
web services.

5 Related Work

There are many existing approaches to service integration. BPEL [5, 6] defines a
language for creating service compositions in the form of business processes and is
currently being standardized by the Organization for the Advancement of Structured
Information Standards (OASIS). BPEL allows a set of existing web services to be
composed into a new web service using well-defined process modeling constructs.
OWL-S (previously DAML-S) [7] is a services ontology that enables automatic ser-
vice discovery, invocation, composition, interoperation, and execution monitoring.
Web component [8] is a packaging mechanism for developing web-based distributed
applications in terms of combining existing web services. The web component ap-
proach treats services as components in order to support software development prin-
ciples such as reuse, specialization and extension. The main idea is to encapsulate the
composition logic and the construction scripts which oversee the combination of ex-
isting web services. R. Hamadi and B. Benatallah proposed a Petri net-based model
for web service composition [9]. They assume that a Petri net, which represents the
behavior of a service, contains one input place and one output place. At any given
time, a service can be in one of the following states: not instantiated, ready, running,
suspended, or completed. After users define a net for each service, composition opera-
tors perform composition: sequence, alternative, unordered sequence, iteration, paral-
lel with communication, discriminator, selection, and refinement.

These approaches integrate web services in terms of business process. They integrate
several web services by defining the flow of a service call according to the business
process of an application. They are high-level integration techniques of web services.
However, not only high-level integration technique but also programming-level integra-
tion technique is necessary in order to save cost and time when developers develop,
manage, modify, extend, or reconstruct applications. Our work complements the exist-
ing works because it is a programming-level integration technique, and we support
automatic generation of an adapter for the integration.

 A Tool to Generate an Adapter for the Integration of Web Services Interface 335

6 Conclusion

As the number of available web services is steadily increasing, many applications are
being developed by reusing web services. Accordingly, web service integration has
been issued. Users can access only the service specification of a web service through
WSDL. Accordingly, web service integration is integration of interfaces which are de-
fined in the WSDL of web services.

We described the adapter in order to integrate the interfaces of several web ser-
vices. Developers search web services when they want to use web services as a part of
their application. They should use several web services when they develop an applica-
tion if there is not a single web service which satisfies their requirements. Controlling
several web services costs a lot of effort, so developers make efforts to control several
web services when they develop applications.

Accordingly, we proposed a tool to generate an adapter which integrates interfaces
of several web services. We described the concept of the adapter for the integration of
web services interface. Developers can use several web services with little effort for
their application development if they use the adapter. Developers can use several web
services like a single web service through the adapter because the adapter integrates
several web services. They control only the adapter in order to use the web services.
The adapter will help developers to rapidly develop applicatons with high quality. The
time and the cost for development and maintenance of applications will also be saved
through the adapter. Then, we presented the architecture of the tool, the process, and
the algorithm to generate an adapter. The proposed tool will help developers generate
the adapter when they develop applications.

References

[1] Boualem Benatallah et al., Developing Adapters for Web Services Integration, LNCS
3520, pp. 415-429, Springer-Verlag, 2005.

[2] Alonso, G., Casati, F., Kuno, H., Machiraju, V., Web Services: Concepts, Architectures,
and Applications, Springer Verlag, 2004.

[3] Nikola Milanovic and Miroslaw Malek, Current Solutions for Web Service Composition,
IEEE Internet Computing, vol. 8, no. 6, pp. 51-59, 2004.

[4] Erich Gamma, et al., Design Patterns, Addison Wesley, 1995.
[5] F.Curbera et al., The Next Step in Web Services, Comm. ACM, vol. 46, no. 10, pp. 29-34,

2003.
[6] BPEL Specification, http://www.ibm.com/developerworks/library//ws-bpel/
[7] A. Ankolekar et al., DAML-S: Web Service Description for the Semantic Web, Proc. Int'l

Semantic Web Conf.(ISWC), LNCS 2342, pp. 348-363, Springer-Verlag, 2002.
[8] J. Yang and M.P. Papazoglou, Web Component: A Substrate for Web Service Reuse and

Composition, Proc. 14th Conf. Advanced Information Systems Eng. (CAiSE 02), LNCS
2348, pp. 21-36, Springer-Verlag, 2002.

[9] R. Hamadi and B. Benatallah, A Petri-Net-Based Model for Web Service Composition,
Proc. 14th Australasian Database Conf. Database Technologies, pp.191–200, ACM Press,
2003.

A QoS Driven Development Process Model
for Component-Based Software Systems

Heiko Koziolek and Jens Happe

Graduate School Trustsoft �, University of Oldenburg, Germany
{heiko.koziolek, jens.happe}@informatik.uni-oldenburg.de

Abstract. Non-functional specifications of software components are considered
an important asset in constructing dependable systems, since they enable early
Quality of Service (QoS) evaluations. Several approaches for the QoS analysis
of component-based software architectures have been introduced. However, most
of these approaches do not consider the integration into the development process
sufficiently. For example, they envision a pure bottom-up development or neglect
that system architects do not have complete information for QoS analyses at their
disposal. We extent an existing component-based development process model by
Cheesman and Daniels to explicitly include early, model-based QoS analyses.
Besides the system architect, we describe further involved roles. Exemplary for
the performance domain, we analyse what information these roles can provide to
construct a performance model of a software architecture.

1 Introduction

Quality of Service (QoS) analysis and prediction during early development stages of a
software system is widely considered as an important factor for the construction of de-
pendable and trustworthy systems. For component-based systems [10], the overall aim
is to analyse QoS properties such as performance, reliability, availability, and safety
based on specification documents of components and the architecture. For this purpose,
compositional, analytical models can be constructed to allow predictions, even if the
system only exists on paper. Using specifications of existing components, QoS predic-
tions may be more precise than predictions for systems built from scratch.

To make early QoS analyses feasible in the IT industry, they have to become an
integral part of the component-based development process. Cheesman and Daniels [2]
describe a component-based development process model based on the Rational Unified
Process (RUP). However, this approach does not contain any hint on how to include
QoS analyses into the process.

On the other hand, several component-based QoS predictions approaches have been
proposed. Most of these approaches focus on the analysis part and only contain very
brief descriptions on how they are going to be integrated into the development process.
For example, the component-based reliability [8, 9], performance [5, 1, 4], and safety [3]
prediction approaches consider a pure bottom-up development where already existing
components are assembled. This is a strong restriction, since combined top-down (start-
ing from requirements) and bottom-up (starting from existing components) approaches
as described in the following are more realistic.
� This work is supported by the German Research Foundation (DFG), grant GRK 1076/1.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 336–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A QoS Driven Development Process Model for Component-Based Software Systems 337

All these approaches require a lot of additional information. QoS attributes of a
component are not only determined by the component itself, but are influenced by the
usage model, the deployment environment, its internal structure, and the services used
by the component. In most cases, it is unclear how the information about all these factors
is obtained and integrated. This is due to a lack of distinction concerning the roles and
responsibilities during the development process.

The contribution of this position statement is an extension to the component-based
development approach described by Cheesman and Daniels [2] to include QoS analyses.
Augmenting the process model of the CB-SPE approach [1], we describe the respon-
sibilities of the roles of component developer, system architect, system deployer, and
domain experts. We discuss which information has to be provided by each role to con-
struct a QoS prediction model. Our approach is not limited to performance analyses,
but applicable to any QoS property.

This position statement is organised as follows. Section 2 introduces the roles in
component-based development and discusses their responsibilities. Section 3 describes
our QoS driven, component-based development process model and details on the spec-
ification and QoS analysis phases. In Section 4, we exemplary describe for a QoS prop-
erty, which input values are needed for the construction of a performance model and
associate these values with the roles discussed in Section 2. Conclusions follow in
Section 5.

2 Roles in Component-Based Development

Since we want to evaluate QoS attributes at an early development stage, we need ad-
ditional information about the internal component structure, the usage model, and the
deployment environment. Not all of this information can be given by system architects
themselves. Therefore, support of domain experts, component developers, and system
deployers is required.

In our model, the system architects drive the development process. They design the
software architecture and delegate work to other involved parties. Furthermore, they
collect and integrate all information to perform QoS analyses and assemble the com-
plete system from its parts. One of their information sources are the domain experts,
who are involved in the requirements analysis, since they have special knowledge of
the business domain. They are also familiar with the users’ work habits and, thus, are
responsible for analysing and describing the user behaviour.

On a more technical side, the component developers are responsible for the specifica-
tion and implementation of components. They develop components for a market as well
as on request. System architects may design architectures that are reusable in different
deployment contexts. Sometimes, the actual deployment context is determined not until
late development stages, especially if the software is developed for general markets.
System deployers are responsible for specifying concrete execution environments with
resources and connections. They also allocate components to resources. During the de-
ployment stage of the development process, they are responsible for the installation,
configuration, and start up of the application.

338 H. Koziolek and J. Happe

3 Integrating QoS Prediction into the Component-Based
Development Process

In the following, the roles described in the former section are integrated into the com-
ponent-based development process model featuring QoS analysis. We focus on the de-
velopment process that is concerned with creating a working system from requirements
and neglect the concurrent management process that is concerned with scheduling hu-
man resources and defining milestones. We base our model on the UML-centric devel-
opment process model described by [2], which is itself based on the Rational Unified
Process (RUP).

Requirements

Specification QoS Analysis Provisioning Assembly

Test

Deployment

Business
Requirements

Use Case
Models

Tested
Applications

Applications

Use Case
Models

Existing Assets

Technical constraints

Component Specs
& Architectures

Business Concept
Model

Deployment
Diagrams

Results for
QoS Metrics

Components

Workflow

Change of Activity

Flow of Artifact

Legend:

Fig. 1. Component-based Development Process Model with QoS Analysis

The main process is illustrated in Figure 1. Each box represents a workflow. The
thick arrows between boxes represent a change of activity, while the thin arrows char-
acterise the flow of artifacts between the workflows. The workflows do not have to be
traversed linearly (i.e., no waterfall model). Backward steps into former workflows are
allowed. The model also allows an incremental or iterative development based on pro-
totypes. We have inherited the requirements, specification, provisioning, assembly, test,
and deployment workflows from the original model and added the QoS analysis work-
flow. Component specifications, the architecture, and use case models are input to the
QoS analysis workflow. Outputs of the QoS analysis are results for QoS metrics, which
can be used during specification to adjust the architecture, and deployment diagrams
that can be used during deployment.

In the following, we will only describe our extensions to the specification workflow
and the new QoS analysis workflow. However, most of the other workflows are also
influenced by QoS driven development. For example, a detailed description of the QoS
requirements has to be compiled within requirements workflow. Furthermore, testing
has not only to check functional properties, but also QoS attributes. For the other work-
flows and artifacts exchanged among them, we refer the interested reader to [2].

A QoS Driven Development Process Model for Component-Based Software Systems 339

3.1 Specification Workflow

The specification workflow (see Figure 2, right column) is carried out by the system ar-
chitect. The workflows of the system architect and the component developers influence
each other. Existing components (e.g., from a repository) may have an impact on the
component identification and specification workflow, as the system architect can reuse
existing interfaces and specifications. Vice versa, newly specified components by the
system architect can be input for the component requirements analysis of component
developers, who design and implement new components.

Component Developer

Component Repository

Component Requirements
Analysis

Functional Property
Specification

Non-Functional Property
Specification

Component Implementation

Requirements

Interfaces
Internal Dependencies

QoS Relevant
Information

Binary Component
and Specification

System Architect

Component Identification

Component Interaction

Component Specification

Interoperability Check

Initial Component
Specs & Architecture

Service Effect
Specification

Optimised Component
Specs & Architecture

Business
Type
Model

Business
Concept Model

Use Case
Model

Initial Interfaces

Interface
Signatures

Interface
Protocols

Existing
Interfaces

and Assets

Component
Requirements &

Interface Signatures

Service Effect
Specifications &

Interface
Protocols

Service Effect
Specifications &

Interface
Protocols

S
pe

ci
fic

at
io

n

Technical
Constraints

Results of QoS
Metrics

Initial Component
Specs & Architecture

Initial Component
Specs & Architecture

Fig. 2. Detailed View on the Specification Workflow

The workflows of the component developers are only sketched here, since they are
performed separately from the system architect’s workflows. If a new component needs
to be developed, the workflow of the component developer (see Figure 2) can be as-
sumed to be part of the provisioning workflow according to Cheesman and Daniels.
Any development process model can be used to construct new components as long as
functional and non-functional properties are specified properly. After the component
requirement analysis, the functional property specification and then the non-functional
property specification of the components follow. The functional properties consist of

340 H. Koziolek and J. Happe

interface specifications (i.e., signatures and protocols) and descriptions of internal de-
pendencies between provided and required interfaces. We use service effect specifica-
tions from [7] to describe such dependencies. They model how a provided services calls
its required services and can be specified by state machines. Non-functional, QoS rele-
vant information includes resource demands, reliability values, data flow, and transition
probabilities for service effect specifications. After component implementation accord-
ing to the specifications, component developers may put the binary implementations
and the specifications into repositories, where they can be retrieved and assessed by
third party system architects.

The specification workflow of the system architect consists of four inner work-
flows. The first two workflows (component identification and component interaction)
are adapted from [2] except that we explicitly model the influence on these workflows
by existing components. During the component specification, the system architect ad-
ditionally gets existing interface and service effect specifications as input. Both are
transferred to the new workflow interoperability check. In this workflow, interoperabil-
ity problems are solved and the architecture is optimised. For example, parametrised
contracts, which are modelled as service effect specifications, can be computed [7].
The outputs of the specification workflow are an optimised architecture and component
specifications with refined interfaces.

3.2 QoS Analysis Workflow

During QoS analysis, the software architecture is refined with information on the de-
ployment context, the usage model, and the internal structure of components. Figure 3
shows the process in detail.

Allocation

QoS Requirement
Annotation

QoS Information Integration

Q
oS

 A
na

ly
si

s
System Architect

System Model
Transformation

System Deployer Domain Expert

System Environment
Specification

QoS Attribute Specification
of Resources and

Connections

Use Case Analysis

Usage Model Refinement

Use Case Models

Scenarios
(Activity Charts)

Component QoS
Specification

(Data Dependencies,
Resource Consumption)

Annotated System
Architecture

Fully QoS Annotated
System Architecture

QoS Evaluation
Model

QoS
Metrics

Results for
QoS Metrics

Component Specs &
Architecture

Component Specs &
Architecture

Use Case Models

Annotated
Deployment

Diagram Refined
User

Model

System
Environment

Deployment
Diagram

Component
Developer

Business
Requirements

QoS Evaluation

Deployment
Diagram

Fig. 3. Detailed View of the QoS Analysis Workflow

A QoS Driven Development Process Model for Component-Based Software Systems 341

The system deployer starts with the system environment specification based on the
software architecture and use case models. Given this information, the required hard-
ware and software resources and their interconnections are derived. As a result, this
workflow yields a deployment diagram that describes only the system environment
without allocated components. The system deployer can also create a description of
existing hardware and software resources. Moreover, a set of representative system en-
vironments can be designed if the deployment context is still unknown. During the
allocation, the system deployer specifies the mapping of components to resources. The
resulting deployment diagram is annotated with a detailed QoS attribute specification
of the deployment environment. These specifications provide input parameters for the
QoS analysis models used later. The resulting fully annotated deployment diagram is
passed to the system architect.

The domain expert refines the use case models from the requirements during the
use case analysis. A description of the scenarios for the users is created based on an
external view of the current software architecture. The scenarios describe how users
interact with the system and what dependencies exists in the process. For example,
activity charts can be used to describe such scenarios. The scenario descriptions are
input to the usage model refinement. The domain expert annotates the descriptions with,
for example, branching probabilities, expected size of different user groups, expected
workload, and user think times.

As the central role in QoS analysis, the system architect integrates the QoS relevant
information, performs the evaluation, and delivers the feedback to all involved parties.
In the QoS requirement annotation workflow, the system architect maps QoS require-
ments to the software architecture. For example, the maximum waiting time of a user
becomes the upper limit of the response time of a component service. While doing so,
the system architect specifies QoS metrics, like response time or probability of failure
on demand, that are evaluated during later workflows.

During QoS information integration, the system architect collects the QoS specifica-
tions provided by the component developers, system deployers, and domain experts and
integrates them into an overall QoS model of the system. This information is sufficient
to transform the system and its behaviour into a stochastic process or simulation model
as done in the system model transformation.

The QoS evaluation workflow either yields an analytical solution or the results of
a simulation. QoS evaluation aims, for example, at testing the scalability of the archi-
tecture and at identifying bottlenecks. If the results show that the QoS requirements
cannot be fulfilled with the current architecture, the system architect has to modify the
specifications or renegotiate the requirements.

4 Information Required and Mapping to Roles

To construct a QoS prediction model, additional, extra-functional information besides
the pure functional UML model is required. We will focus on information required
for performance modelling as an example. The additional information needed to con-
struct a performance model (e.g., a queueing network or stochastic Petri net) can be
specified directly in UML with the SPT profile [6]. In this extension to UML, the per-
formance analysis domain model describes the information needed to create a

342 H. Koziolek and J. Happe

performance model. It allows the inclusion of workload, component-behaviour, and
resources into UML expressed as stereotypes and tagged values.

Domain experts are responsible for specifying all information closely related to the
users of the system. This includes specifying workloads with user arrival rates or user
populations and think times. In some cases, these values are already part of the require-
ment documents. If method parameter values have an influence on the QoS of the sys-
tem, the domain experts may assist the system architect in characterising these values.

The system deployer provides information about the resources of the system (e.g.,
hardware-related like processing devices or software-related like thread pools). In the
UML SPT profile, resources in deployment diagrams can be characterised as active or
passive. Further attributes are scheduling policies, processing rates, or context switch
times and must be specified by the system deployer. The system deployer is also re-
sponsible for adapting the platform independent resource demand specifications of the
component developer to the properties of the system under analysis.

The system architect is responsible for extracting information from the requirements
(e.g., maximal response times for use cases) and including them into the model. All
information provided by the other roles are integrated by the system architect, who
also has to estimate missing values. For example, the system architect might have to
specify a parameter distribution for certain services if it influences the performance or
he has to estimate the resource demand of components that have been provided without
extra-functional specifications.

Component developers specify the performance of their components without know-
ledge where the components will be deployed, thus enabling independent third party
performance analysis. First, they need to characterise the execution demands on the
resources of the system in a platform independent way, for example, by specifying
the number of processor or byte code instructions their services execute. The system
deployer will use these values and parametrise them for the environment under analy-
sis. Second, component developers have to specify how provided services call required
services. This is necessary, so that the system architect can describe the control flow
through the architecture. External calls to required services will be mapped to perfor-
mance model steps in the UML SPT profile. The component developer can obtain these
by code analysis or by evaluating design documents of the components.

For a performance analysis, transition probabilities and the number of loop iterations
are required for calls from provided to required services. These values cannot be fully
determined by the component developer, in case they are not fixed in the source code.
Influences on these values may come from external sources, for example from the pa-
rameter values the service is called with or the results of external services. If such an
influence exists, the component developer has to state this dependency in the component
specification explicitly, so that the system architect can specify probability distributions
for parameter values or exploit the postconditions of required services for this service.

5 Conclusions and Future Work

In this position statement, we have described how QoS analyses can be integrated into
the early stages of a component-based development process. Several developer roles

A QoS Driven Development Process Model for Component-Based Software Systems 343

participate in QoS analyses, as the system architects do not have all necessary in-
formation by themselves. We have demonstrated how component developers, system
deployers, domain experts, and system architects interact during early QoS analyses.
Additionally, we have described in detail, which information is necessary to conduct a
performance analysis (exemplified by the UML SPT profile) and which of the roles can
provide it.

A component-based development process model integrating QoS analysis is relevant
for practitioners and researchers. Practitioners receive a recipe on how to tackle QoS
problems during early development stages. Researchers are supported by showing a
method on how to integrate their QoS analysis models into a practical development
process.

Stating the specification responsibilities for the different values as in Section 4 is
just a first step to an engineering approach to component-based performance prediction.
Currently, we are looking for possibilities to retrieve some of the values from existing
code (semi-) automatically. In this position statement, we have omitted an experimental
evaluation of our development process model, which is planned for the future.

References

1. A. Bertolino and R. Mirandola. CB-SPE Tool: Putting Component-Based Performance En-
gineering into Practice. In Component-Based Software Engineering, volume 3054 of Lecture
Notes in Computer Science, pages 233–248. Springer, 2004.

2. J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying Component-
based Software Systems. Addison-Wesley, 2001.

3. L. Grunske, B. Kaiser, and Y. Papadopoulos. Model-Driven Safety Evaluation with State-
Event-Based Component Failure annotations. In Component-Based Software Engineering,
8th International Symposium, CBSE 2005, Proceedings, volume 3489 of Lecture Notes in
Computer Science, pages 33–48. Springer Verlag, 2005.

4. D. Hamlet, D. Mason, and D. Woit. Properties of Software Systems Synthesized from Com-
ponents, volume 1, chapter Case Studies, pages 129–159. World Scientific Publishing Com-
pany, 2004.

5. S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wallnau. Packaging Predictable
Assembly. In Proceedings of the IFIP/ACM Working Conference on Component Deployment
(CD2002), pages 108–124, London, UK, 2002. Springer-Verlag.

6. Object Management Group OMG. UML Profile for Schedulability, Performance and Time.
http://www.omg.org/cgi-bin/doc?formal/2005-01-02, 2005.

7. R. H. Reussner, I. H. Poernomo, and H. W. Schmidt. Reasoning on Software Architectures
with Contractually Specified Components. In A. Cechich, M. Piattini, and A. Vallecillo, edi-
tors, Component-Based Software Quality: Methods and Techniques, number 2693 in Lecture
Notes in Computer Science, pages 287–325. 2003.

8. R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Reliability Prediction for Component-
Based Software Architectures. Journal of Systems and Software, 66(3):241–252, 2003.

9. R. Y. Shukla, P.A. Strooper, and D.A. Carrington. A Framework for Reliability Assessment
of Software Components. In Proceedings of the 7th International Symposium on Component-
based Software Engineering (CBSE7), Edinburgh, UK, volume 3054 of Lecture Notes in
Computer Science, pages 272–279, 2004.

10. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 2002.

I. Gorton et al. (Eds.): CBSE 2006, LNCS, pp. 344 – 351, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Enhanced Composition Model for Conversational
Enterprise JavaBeans

Franck Barbier

PauWare Research Group – Université de Pau
Av. de l’université, BP 1155, 64013 Pau CEDEX – France

Franck.Barbier@FranckBarbier.com

Abstract. When designing applications with Enterprise JavaBeans (EJBs) and
more specifically with Stateful Session Beans, a major difficulty (or even an
impossibility) is being able to properly transform business models and more
precisely UML 2 models, into such component types, while including the
expression of their mutual compositions. This contradicts with the spirit of the
emerging Model-Driven Architecture (MDA) software engineering paradigm
based on the definition of seamless model transformations. In this scope, this
paper proposes and describes an appropriate Java library in order to increase the
composition power of EJBs. The proposition includes a support for a broadcast
communication mode (assimilated to “horizontal composition” in the paper)
which is, a priori, incompatible with non reentrance, a key characteristic of
EJBs. Besides, “vertical composition” is the counterpart of “horizontal compo-
sition”. “Vertical composition” enables the consistent hierarchical combination
of composite behaviors and compound behaviors, both being specified and
implemented by means of UML 2 State Machine Diagrams.

1 Introduction

Szyperski et al. have claimed for a long time that: “Components are for composition.”
[1]. In other words, all software components are software parts, although not all
software parts are necessarily software components. Furthermore, if components are
not specifically designed to have composition potentialities (i.e., composability or
compositionality attributes) at assembly time, the risk is high that components will
fail to interoperate properly. That is the reason why technological component models
exist: Enterprise JavaBeans (EJBs), CORBA Component Model (CCM), COM+ or
Fractal. In providing a well-bounded accurate development and deployment
framework, such component models support composition templates. A resulting
advantage is that, by complying to the imposed format1 of components, composition
is easy and straightforward. A disadvantage is the difficulty of transforming business
models like UML models for instance (which in essence are free of technical
constraints) into technical components. In other words, stereotyped components (e.g.,

1 The term “format” is here preferred to that of “model” since technological components obey

to code construction and deployment rules rather than to formal/mathematical specifications.

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 345

Entity Beans, Session Beans and Message-Driven Beans) of a given technological
component model (e.g., EJBs) may be considered as moulds. Melting business models
down in order to fill these moulds is a strong expectation in the software industry.

In the spirit of MDA [2], model transformation rules have to formalize how a
platform-independent model (PIM) is transformed into a platform-specific model
(PSM). This theoretical principle may however stumble over incompatible model
properties. We have carried out experimentations on this problem with UML 2 State
Machines Diagrams and Sequence Diagrams, and more generally with the global
“UML 2 Composition Model” [3]. Software components and compositions modeled
by means of UML possess recognized features coming from the intrinsic “semantics”
of UML itself. The most well-known characteristics are for instance the “coincident
lifetime” of composites and compounds in, what we call below, “vertical
composition”. For “horizontal composition”, which is closely related to component
communication, broadcast is the underlying communication mode (a heritage of
Harel’s Statecharts [4]). In EJBs, the predefined composition mechanisms do not
conform to these idealistic properties.

This paper proposes a solution for fitting conversational EJBs, which are Stateful
Session Beans, to the most important conceptual composition mechanisms of UML 2.
This occurs through the construction of a dedicated Java library named PauWare
which is illustrated in this paper.

That is why Section 2 gives a brief overview of EJBs. Section 3 insists on the
problem of non reentrance, which is particular to EJBs and which, a priori, precludes
the implementation of broadcast in EJBs. Broadcast indeed comes from the
executability facilities of UML 2 State Machines Diagrams and Sequence Diagrams
and thus, cannot be ignored. Section 4 shows how this has been solved with
PauWare: code samples are provided. Section 5 is about “vertical composition”: how
to compose conversational EJBs, hierarchically, starting from the hypothesis that they
own and are governed by a statechart that exists inside themselves. A major challenge
amounts to synchronizing the two statecharts of a composite and a compound. To
conclude in Section 6, we evoke the link of this work with autonomic computing.

2 Enterprise JavaBeans

EJBs [5] constitute a technological component standard. They also represent a highly
coercive computing framework as far as the format of an EJB is predefined and strict
(Fig. 1). From the code viewpoint, an EJB must have a Java implementation class and
appropriate interfaces for its clients. From the deployment viewpoint now, an EJB
must also have values assigned to mandatory deployment parameters.

Since EJBs’ shapes cannot be ordinary and have to satisfy many constraints, EJBs
are by their very nature composable. Components that do not comply to standards can
indeed be composable with much difficulty. However, in practice, the EJBs’
composition model may demonstrate numerous limitations. This is especially the case
for conversational EJBs. This specific EJB type offers interesting facilities to
programmers. For instance, programmers can control creation decisions; and
conversational EJBs remain unshared between clients. Unfortunately, even though it

346 F. Barbier

is possible to scrupulously control states within the inside of Stateful Session Beans,
sophisticated combination of such conversational EJBs is poor. In UML, models such
as different state machines2 may be assigned to distinct business components.
Composing these components amounts to taking into account scenarios embodying
the communication between them. State machines and scenarios however rely on a
composition semantics that has no direct mapping in EJBs. As a result, the benefits
from having a formal semantics for statechart composition (see for instance [6] or [7])
cannot really be exploited at the implementation level.

 «metaclass»
EJB implementation class

«metaclass»
EJB home interface

«metaclass»
EJB remote interface

«metaclass»
EJB

0..1 0..1

1..1

«metaclass»
Entity Bean

«metaclass»
Message-Driven Bean

«metaclass»
Session Bean

«metaclass»
Entity Bean primary key class

0..1

{disjoint, complete}

{disjoint, complete}

«metaclass»
Stateful Session Bean

«metaclass»
Stateless Session Bean

«metaclass»
EJB local home interface

0..1 «metaclass»
EJB local interface 0..1

Fig. 1. UML metamodel expressing the contractual format of an EJB and the possible types of
EJBs

3 Non Reentrance

In attempting to construct the inside of a Stateful Session Bean by means of a state
machine, one problem is caused by the broadcast communication mode, which is the
basis of Harel’s Statecharts [4, p. 269]: “The statechart communication mechanism,
on the other hand, is based on broadcast, whereby the sender proceeds even if nobody
is listening.” EJBs do not accept requests while transactions are in progress (this
phenomenon is known as non reentrance) while broadcast supposes that requests may
arrive at any time.

As an illustration, we reuse the Railcar control system case study presented in [8].
In Fig. 2, a railcar that is less than 80 meters far from a terminal, sends crossing
request which is part of the remote interface of the Terminal component type (see the
right hand side of Fig. 2). In Fig. 3, the sending of crossing request may be observed
within the statechart of the Railcar component type by means of this expression: ^my
next possible stop.crossing request(self). The reception of and response to crossing
request appears within the statechart of the Terminal component type (Fig. 3).

2 UML 2 state machines are closely related to Harel’s Statecharts. We comment on some key

differences in the rest of the paper but we do not formally distinguish the expression “state
machine” from the word “statechart” all along the paper.

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 347

In EJBs, the call of crossing request occurs within a transaction that started when
alert80 arrived. The receiver terminal may reply to the sender railcar (by using self
which is a parameter of crossing request) that some passengers standing at the said
terminal want to get onto the approaching railcar. How then may one guarantee that
candidate passengers (the possible reply) is not received at an unsuitable moment,
i.e., if the transaction associated with alert80 is not yet finished?

:Terminal:Railcar

alert100(terminal,railcar,is clockwise)

:Control center

alert80

crossing request(self)

sd Terminal approach

alert100(terminal,railcar,is clockwise)

candidate passengers(destinations)

alert100(terminal,railcar,is clockwise)

Fig. 2. Scenario of communication between three respective instances of a Control center, a
Railcar and a Terminal components

alert80 [passing through]/
^my next possible stop.crossing request(self)

Wait for alert80
entry/ ^cruiser.set Engaged20

Going through

Arriving

Cruising
entry/ ^cruiser.set Engaged80

terminal crossing(is clockwise)

Wait for entrance
entry/ ^cruiser.set Disengaged

Stopped on railway

Stopped at terminal
exit/ ^cruiser.set Engaged20

terminal stopping(is clockwise)

go on [passing through]

go on [stopping]

go

alert80 [stopping]

candidate passengers(destinations)

stop

alert100(terminal,railcar,is clockwise)

Railcar
new destination(another terminal)

Idle

terminal crossing(is clockwise)

Busy

alert100(terminal,railcar,is clockwise)
new destination(another terminal)

terminal stopping(is clockwise)/ ^timer.to be set(null,30000),
^clockwise ingoing vehicle.stop, ^counterclockwise ingoing vehicle.stop

crossing request(railcar) [destination board@pre→notEmpty()]/ ^railcar.candidate passengers(destination board@pre)

Terminal

time-out(30000,null)/
^timer.to be killed(null), ^my current railcar.go, ^clockwise ingoing vehicle.go on,

^counterclockwise ingoing vehicle.go on

Fig. 3. Two communicating statecharts of a Railcar and Terminal components

4 Horizontal Composition of Conversational EJBS

So, the coercive composition model of EJBs precludes intertwined communication,
but a consequence of broadcast is that a request receiver may immediately reply to the
sender even though the latter is not, from the EJBs’ composition model’s viewpoint,
in an “appropriate” state (while the transaction is in progress).

348 F. Barbier

To solve this problem, we propose a MDA-based Java statechart execution engine
that automates the complete and coherent management of statecharts at runtime. The
chosen executability semantics is obviously that of UML 2 which is slightly different
(even if broadcast remains) from that of the original Statecharts and of some Harel’s
variants [8]. In [9], two key subtle semantic differences are formally specified: UML
2 advocates a run-to-completion execution model (a first characteristic3) which
ensures that, within a given state machine instance, the processing of a new request
starts when, and only when, the immediately prior request processing is terminated.
This mechanism is close to the EJBs’ transaction management mechanism. In our
approach, requests that may have linked replies, require special treatment so that
statechart cycles are not disturbed by impromptu request receptions. Independently of
EJBs, this mechanism is for us mandatory in order to keep statecharts consistent
throughout execution cycles. A consubstantial result of such an implementation is that
the non reentrance constraint imposed by EJBs is automatically satisfied.

From a design viewpoint, this simply leads to incorporating a statechart into the
Java implementation class of a Stateful Session Bean as follows (code is incomplete):

protected Statechart _Arriving = new Statechart("Arriving"); // + the
other states

protected Statechart_monitor _Railcar = new
Statechart_monitor((_Arriving.xor(_Cruising)).xor(_Stopped_at_termina
l),"Railcar");

Next, coding alert80 leads to what follows (code is incomplete):

_Railcar.fires(_Wait_for_alert80,_Going_through,passing_through,_my_n
ext_possible_stop.getEJBObject(),"crossing_request",args,Statechart_m
onitor.Broadcast); // + the other transitions

_Railcar.run_to_completion(); // non interruptible statechart cycle

In the code above, crossing request (in bold print) is called by means of the Java
reflection API. The Statechart_monitor.Broadcast parameter value must be used if
the specification shows that a reply to the sent request (i.e., crossing request) is
probable. Since this mechanism is costly, it has not been generalized within PauWare.
Programmers have thus to pay attention to possible faults caused by reentrance.

5 Vertical Composition

The need for rich composition not only obliges one to have “horizontal” composition,
but also “vertical” (a.k.a. “hierarchical”) composition. As an illustration, the Fractal
composition model [10] supports hierarchical composition. The notion of “vertical
composition” consists in having a sub-component encapsulated in a composite
component (irreflexivity applies in order to avoid any cycle). The latter hides the sub-
component from clients and, more precisely, from the clients’ service requests.

The implementation of vertical composition within PauWare relies on the
theoretical research results exposed in [11-13]. In these three papers, a formal

3 The second specificity of the UML 2 executability semantics is a special strategy for coping

with conflicting transitions in statecharts. We do not address these issues in this paper. In
short, nested transitions linked to inner states override upper transitions linked to outer states.

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 349

semantics for the Aggregation and Composition UML relationships is provided. A
key feature of the UML Composition is coincident lifetime (a.k.a. “the fifth case of
lifetime dependency” in [11]) between attached composites and compounds. This
property of coincident lifetime makes the possibility realistic (and even relevant) that
a component instance strongly refers to the states of another component instance. In
comparison, the states of two different component instances do not have to be
interrelated if these two components have unrelated lifecycles4.

Going back to the Railcar system case study, one may thus consider that in terms
of states, a single Control center component instance is a composition of all existing
Railcar and Terminal component instances that participate in the system. In other
words, following the logics of coincident lifetime assigned to Composition in UML,
Railcar and Terminal component instances do not have to exist out of the life span of
the Control center component instance. In terms of behaviors, a control center
propagates or delegates environment data coming from sensors (e.g., alert100,
alert80) to railcars and terminals.

The proposed solution is based on the metamodel in Fig. 4. The Whole-Part,
Aggregation and Composition types come from [11]. The right hand side of Fig. 4 is
new and shows that the Statechart monitor type (embodying a global state machine)
inherits from the Statechart type. In other words, a state machine is a kind of
macroscopic state. However, the Statechart monitor type has interpretation
capabilities as well: it possesses the run_to_completion Java method which is not
owned by the Statechart type.

 Whole-Part
«binary»

«asymmetry»
«prescription at type level»

«emergent»
«resultant»

Aggregation
«shareability»

Composition
«unsharing»

«lifetime dependency (fifth case)»
Component

theWhole.. 1

thePart 1

Statechart
and(s : Statechart) : Boolean
xor(s : Statechart) : Boolean

1..*

Statechart
monitor

1..1
1

*

Fig. 4. UML metamodel for vertical composition

This leads to adding a specific service for the Railcar component type whose
implementation is as follows:

public Statechart_monitor state_machine() {return _Railcar;}

Vertical composition is then instrumented as follows:

Statechart _Control = new Statechart("Control");

_Control_center = new
Statechart_monitor(_Control.and(railcar_remote.state_machine()),"Cont
rol center");

The code above illustrates the linking of a Railcar component instance state
machine as a sub-state of the Control center component instance and as an orthogonal
state of the Control sub-state: use of the and operator.

4 In the worst case, two component instances may be connected together through their states

but, in our opinion, with great care, since it is an error-prone situation.

350 F. Barbier

Such a solution creates an automatic propagation/delegation mechanism. So,
requests are forwarded from composites to compounds in a transparent way. In the
code below, a multicast mode for sending the alert80 request is used. All attached
railcars, like the railcar_remote J2EE object in the code above, are concerned with
the reception and the possible processing (depending upon their current state) of
alert80:

public void alert80() throws Statechart_exception
{_Control_center.run_to_completion();}

In this code, no other processing except propagation/delegation occurs.

6 Conclusion: Perspectives and Benefits from an Enhanced
Composition Model for Conversational EJBS

A side effect of having state machines inside components is the possibility for
instrumenting dynamical re-configuration. For varied reasons, one may decide to
force the state of a component. Externally, this leads to offering and to implementing
a management service such as for instance reset:

public void reset() throws Statechart_exception
{_Terminal.to_state(“Idle”);}

Decisions may be taken by the components themselves. In this case, they become
self-configuring and self-managing software entities, a concept of autonomic
computing [14]. In this line of thought, a more advanced feature of autonomic
computing is self-healing. PauWare’s components may support self-healing in the
sense that the execution of any business request may generate faults. Fault self-
management consists then in trying to “cancel” faults automatically. At this time, the
implemented mechanism is rudimentary. When a fault occurs and if the autonomic
mode has been activated, conversational EJBs try to recover their immediately
previous “state”: this amounts to multiple consistent states, since statecharts are
composed of nested and parallel modeled/implemented states. Within the cycle of
moving a statechart from one step to another, internal operations in components may
change business data (just before the arrival of the “incriminated” fault). Going back
to the immediately previous state may therefore lead to inconsistencies. For example,
a requirement may be that a port must be closed in a given state. Returning to this
state without having the port closed is inconsistent.

To improve such a situation, state invariants that may be attached to states, have
the responsibility to check if the current values of business data are compliant with
the reached states. Within the process of fault recovery, this leads to proving that
returning to the immediately previous global state of a component is “correct”. To
sum up, self healing really succeeds if and only if all state invariants are true after
rolling back to such an immediately previous state.

We have presented in this paper a concrete implementation of an enhanced
composition model for conversational EJBs. A main motivation relating to such a
research work, is the look for a better integration of the EJBs’ technology within
MDA. One especially tries to fill the gap between two execution semantics. Model
executability in UML is somehow idealistic but it benefits from being abstract,

 An Enhanced Composition Model for Conversational Enterprise JavaBeans 351

i.e., independent of technological platforms. Instead, execution constraints of EJBs
may be considered as numerous. Nevertheless, this is the source of a robust, but
limited, composition model. A tradeoff is thus required, a goal of this paper.

The proposed implementation also favors the creation of a support for autonomic
computing. Short-term perspectives are the adaptation of PauWare for J2ME
components, i.e., components that are deployed and run in mobile and wireless
devices. This implementation, currently in its testing phase, aims at being in better
convergence with the demands of autonomic computing.

References

1. Szyperski, C., Gruntz, D., Murer, S.: Component Software – Beyond Object-Oriented
Programming – Second Edition, Addison-Wesley (2002)

2. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled – Principles of Model-Driven
Architecture, Addison-Wesley (2004)

3. Bock, C.: UML 2 Composition Model, Journal of Object Technology, Vol. 3, 10 (2004)
47-73

4. Harel, D.: Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, Vol. 8 (1987) 231-274

5. Sun Microsystems: Enterprise JavaBeans Specification, Version 2.1 (2003)
6. Simons, A.: On the Compositional Properties of UML Statechart Diagrams, Proc. 3rd Conf.

Rigorous Object-Oriented Methods (2000) 4.1-4.19
7. Prehofer, C.: Plug-and-play composition of features and feature interactions with

statechart diagrams, Software and Systems Modeling, Vol. 3, 3 (2004) 221-234
8. Harel, D., Gery, E.: Executable Object Modeling with Statecharts, IEEE Computer, Vol.

30, 7 (1997) 31-42
9. von der Beck, M.: A structured operational semantics for UML-statecharts, Software and

Systems Modeling, Vol. 1, 2 (2002) 130-141
10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: An Open Component

Model and Its Support in Java, Proc. 7th International Symposium on Component-Based
Software Engineering, LNCS #3054, (2004) 7-22

11. Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M.: Formalization of
the Whole-Part Relationship in the Unified Modeling Language, IEEE Transactions on
Software Engineering, Vol. 29, 5 (2003) 459-470

12. Tan, H. B. K., Hao, L., Yang, Y.: On Formalization of the Composition Relationship in the
Unified Modeling Language, IEEE Transactions on Software Engineering, Vol. 29, 11
(2003) 1054-1055

13. Barbier, F., Henderson-Sellers, B.: Controversies about the Black and White Diamonds,
IEEE Transactions on Software Engineering, Vol. 29, 11 (2003) 1056

14. Kephart, J., Chess, D.: The Vision of Autonomic Computing, IEEE Computer, Vol. 36, 1
(2003) 41-50

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 352 – 359, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Reconfiguration and Access to Services
in Hierarchical Component Models

Petr Hn tynka1 and František Plášil1,2

1 Department of Software Engineering
Faculty of Mathematics and Physics, Charles University

Malostranské nám stí 25, Prague 1, 11800, Czech Republic
{hnetynka, plasil}@nenya.ms.mff.cuni.cz

2 Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou v ží, Prague 8, 18000, CzechRepublic

plasil@cs.cas.cz

Abstract. This paper addresses the unavoidable problem of dynamic reconfig-
uration in component-based system with a hierarchical component model. The
presented solution is based on (1) allowing several well defined patterns of
dynamic reconfiguration and on (2) introducing a utility interface concept,
which allows using a service provided under the SOA paradigm from a
component-based system. The paper is based on our experience with non-trivial
case studies written for component-based systems SOFA and Fractal.

1 Introduction

Component-based development (CBD) [19] has become a commonly used technique
for building software systems. There are many opinions as to what a component is.
One typically agrees that it is a black-box entity with well defined interfaces and
behavior, which can be reused in different contexts and without knowledge of its
internal structure (i.e., without modifying its internals). However, from a design view,
components – especially hierarchical ones – can be viewed as glass-box entities with
the internal structure visible as a set of communicating subcomponents. Typically, the
collection of the related abstractions, their semantics and the rules for component
composition (creation of component architecture) are referred to as a component
model and an implementation of it as a component system/platform. In our view, the
concept of “component” has always to be interpreted in the semantics of a particular
component model.

Many component systems currently exist and are used both in industry and
academia. Typically, the industrial component systems, such as EJB [6] and CCM
[15], are based on a flat component model. On the contrary, the academic component
systems and models usually provide advanced features like hierarchical architectures,
behavior description, coexistence of components from different platforms, dynami-
cally updatable components, support for complex communication styles, etc.

However, it is hard to properly balance the semantics of advanced features – in our
view, this fact hinders a widespread, industrial usage of hierarchical component

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 353

models. Based on our experience with the SOFA [17] and Fractal [4] component
models, we claim that this issue is primarily related to dynamic reconfiguration of an
architecture, i.e., adding and removing components at runtime, passing references to
components, etc. A simple prohibition of dynamic reconfiguration (even though
adopted by some systems [2]) would be very limiting, since dynamic changes of
architecture are inherent to many component-based applications [14]. On the other
hand, particularly in hierarchical component models, an arbitrary sequence of
dynamic reconfiguration can lead to “uncontrolled” architectural modification, which
is inherently error-prone (we call this evolution gap problem, also architecture
erosion [3]). Moreover, for description of component architectures, most of the
component models provide an architecture description language (ADL) [2,4,13,14],
which typically captures just the initial components’ configuration. (The idea of
software architectures and ADL specification came from hardware design, which is
static by nature). Thus a challenge is to somehow capture reconfiguration in an ADL.

Another currently emerging paradigm is the service-oriented architecture (SOA)
[21]. SOA-based systems (WebServices, etc.) are commonly used in industry. In a
high-level view, there is no difference between the SOA and CBD paradigms [10] –
both a service and component have a well defined interface, their internal structure is
not visible to their environment, and they can be reused in different contexts without
modification. However, in SOA, services are not nested and their composition is
typically done with the granularity of each request call, frequently being data driven.
Thus, because of lack of any continuity in the architecture, there is no problem with
dynamic reconfiguration similar to component models.

In this paper, we employ experience with our hierarchical component model SOFA
[17] which supports many advanced features like dynamic update, behavior
description via behavior protocols, software connectors, and an open-source prototype
of which is available [18]. However, based on case studies, we identified deep-going
SOFA limits, including dynamic reconfiguration restricted to a dynamic update of a
component and the lack of any cooperation with external services, which lead us to
the design of the SOFA 2.0.

The goal of the paper is to show how we propose to address the dynamic
reconfiguration in SOFA 2.0 with the aim to avoid the evolution gap problem and
allow for accessing external services provided through the SOA paradigm. To address
the goal, the paper is structured as follows. Section 2 introduces the key contribution
– the nested factory pattern and utility interface pattern. Section 3 contains evaluation
and related work, while the concluding Section 4 summarizes the presented ideas.

2 Dynamic Reconfiguration and Its Patterns

By dynamic reconfiguration we mean a run time modification of an application’s
architecture. As a special case this includes dynamic update of a component supported
by the original SOFA (and also in SOFA 2.0); here the principle is that a particular
component is dynamically replaced with another one having compatible interfaces.
This kind of dynamic reconfiguration is easy to handle, because all the changes are
located in the updated component and are transparent to the rest of the application.
Since the new component can have a completely different internal structure, such a

354 P. Hn tynka and F. Plášil

component update in principle means replacing a whole subtree in the component
hierarchy, being thus a “real” architecture reconfiguration. Also, as an aside, dynamic
update is not usually initiated by the application itself but by an external entity (the
user, provider, etc.); on the contrary though, a general dynamic reconfiguration is an
arbitrary modification of an application architecture typically initiated by the
application itself. We have identified the following five elementary operations such a
dynamic reconfiguration is based upon: (1) removing a component, (2) adding a
component, (3) removing a connection, (4) adding a connection, (5) adding/removing
a component’s interface.

 As mentioned in Sect.1, in hierarchical component models an arbitrary sequence
of these operations can lead to “uncontrolled” architectural modification (the
evolution gap problem). To avoid it in SOFA 2.0, we limit dynamic reconfigurations
to those compliant with specific reconfiguration patterns. At present, we allow the
following three reconfiguration patterns: (i) nested factory, (ii) component removal,
and (iii) utility interface. In principle the operations (1) – (4) are to be employed in
these patterns only, and the operation (5) is limited to the use of collection interfaces
(an unlimited array of interfaces of a specific type in principle [8]). The choice of
these patterns is based on our experience gained out of non-trivial case studies. Due to
space constrains, we below discuss and analyze only (i) and (iii) which we consider
the key ones.

2.1 Nested Factory Pattern

The nested factory pattern covers adding a new component and a new connection to
an architecture. The new component is created by a factory component as result of a
method invocation on this factory. The key related issues are (i) where in the
hierarchy the new component should be placed, and (ii) how the connections of/to the
new component should be lead.

Consider the situation on Fig. 1a) capturing a fragment of an application featuring
the DAccess component, which logs all method calls to a set of loggers connected via
a required collection interface. The DAccess is a data access component, which is
bound to LFactory (the logger factory) featuring a collection required interface for
accessing the loggers. As a result of a call to its provided interface, the logger factory
creates a new logger component and returns a reference pointing to it. Such a call is
issued by the DAccess component, which in response receives a reference to a new
logger and binds to it via the collection interface (dashed line on Fig. 1a).

Provided the DAccess and LFactory components are siblings in the flat archi-
tecture, such a dynamic reconfiguration is easy. However, a problem arises when this
assumption does not hold as on Fig. 1b). The issue is, where the newly created
component (Logger) should be placed in the architecture and how the connection to it
should be established.

A straightforward answer to the question where to put the dynamically created
Logger components might be into the FactoryManager. However a decision how to
manage their connections to DAccess is not that intuitively obvious. If we allow a
direct connection between the DAccess and Logger, then the connection will go
through the FactoryManager component boundaries and violate the requirement of
encapsulation. The second option, to add a copy of the Logger provided interface to

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 355

the FactoryManager component and lead the connection through it is also not ideal,
because it would mean that FactoryManager had to mediate traffic of all connections.
In general, if a component A asking creation of another component B (and also
assuming A is to be connected to B) is located in a different part of the hierarchical
architecture than B is, the problem of mediating connections becomes pressing.

In SOFA 2.0, we have adopted the following rule: The newly created component B
becomes a sibling of the component A that initiated the creation (and A’s call to the
factory also determines the A’s collection interface the connection is to be established
to). In the example above, the Logger component becomes a sibling of the DAccess
component – see Fig. 1c).

DAccess LFactory

Logger

Logger2

DAccess LFactory

Logger1

DAccess LFactory

Logger
??

a) b) c)

FactoryManager FactoryManager

Fig. 1. Dynamic application example

The main reason, why the newly created component B does not become a sibling
of the factory component (as this can seem to be also an obvious simple solution) is
that the component A which initiated the creation typically needs to intensively
collaborate with B which is obviously easier to manage when B is a sibling of A. The
next positive outcome of the rule is better performance, because it is not necessary to
create complicated connections going up and again down through the hierarchy.

Technically, to identify a factory component, factory annotation can be
syntactically attached to the factory methods of an interface.

The newly created component B is not limited to having just a provided interface
(as it is shown in Fig.1) but it can have also required interfaces. However, these are
restricted just to the types featured by the component A initiating the creation. At the
moment the provided interface of B is bound, the required interfaces are also bound to
the same provisions as the required interfaces of A are. As an aside, this pattern works
also in the case when B is a composite component.

2.2 Utility Interface Pattern

While working on case studies, we frequently faced the situation when a component
provides a functionality, which is to be used by multiple components in the
application at different levels of nesting (i.e. the need of use is orthogonal to the
components’ hierarchy). The functionality is typically some kind of a broadly-needed
service such as printing. A solution can be to place such a component on the top level
of the architecture hierarchy and arrange “tunnel” for connections through all the
higher-level composite components to those nested ones where the functionality is
actually needed. But this solution leads to an escalation of connections and makes the
whole component architecture blurred (by making the utility features visible to the

356 P. Hn tynka and F. Plášil

components where they are not actually needed) and consequently error-prone.
Another typical situation we faced is that a reference to such a service is to be passed
among components (e.g., returning reference to a service from a call of a registry/
naming/trading component).

For these reasons, we have introduced utility interfaces (the complete meta-model
is in [8]). The reference to a utility interface can be freely passed among components
and the connection made using this reference is established orthogonally to the
architecture hierarchy (Fig. 2).

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

Fig. 2. Utility interface example

From a high-level view, the introduction of utility interfaces brings into
component-based models a feature of service-oriented architectures (since Pservice
can be seen as an external service). Such feature fusing allows to take advantages of
both these paradigms (e.g., encapsulation and hierarchical components of component
models and simple dynamic reconfiguration of SOA).

As a side effect, the introduction of utility interfaces this way consequently means
that – in a limiting case – the whole application can be built only of components with
utility interfaces and therefore the component-based application becomes an ordinary
service-oriented application (inherently dynamically reconfigurable). Thus, service
oriented architecture becomes a specific case of a component model.

3 Evaluation and Related Work

Evaluation: The approach to dynamic reconfiguration in a hierarchical component
model presented in this paper is based on our experience with not-trivial case studies
crafted for the SOFA and Fractal component models.

In principle, our approach to handling dynamic reconfiguration is based on
combining the features of hierarchical component models and service-oriented
architecture. From the component models point of the view, we allow just several
types of dynamic reconfiguration compliant with well-defined patterns. Such a
prohibition of an arbitrary reconfiguration and allowance of several well-defined
modifications only is used in the most of component models (as discussed below),
however none of them tackles the issue of how the component factory concept should
be integrated into a hierarchical component model. Nevertheless, in addition to
addressing this factory issue, the novel contribution of this paper is the introduction of

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 357

utility interfaces which brings into a component-based system a feature of SOA and
allows simplified dynamic reconfiguration without losing some advantages of
component models such as focus on reusability and support for integration. Overall,
in our view, the utility interface concept sophisticatedly integrates paradigms of the
hierarchical component model and service-oriented architecture.

The authors of [12] define a taxonomy of component-based models using the
criterion of component composition at different stages of component lifecycle (design
and deployment). Using this taxonomy, they classify the existing component systems,
including SOFA (the original version), which with Koala and KobrA fits into the
most advanced category characterized by (i) composing components at design time,
(ii) storing composed components in a repository and (iii) reusing already stored
components (including composite ones) in further composition. The only missing
feature of these three systems is no composition at deployment time and runtime.
With incorporating the proposed dynamic reconfiguration patterns, SOFA 2.0 meets
all the criteria imposed in [12] (assuming the authors under “deployment” understand
also runtime).

As mentioned in Sect. 2, our choice of reconfiguration patterns is based on our
experience with non-trivial case studies of component-based applications. In most of
them, we faced a situation where dynamic reconfiguration was necessary. Since the
original SOFA has dynamic reconfiguration limited to updates only, we usually had to
overcome this lack by restricting the desired dynamic architecture modification via
employing “dynamic parts” of a predefined static architecture (e.g., in the example
application from Sect. 2.1, a maximum number of concurrent loggers was predefined
and the corresponding number of the Logger components was instantiated at launch
time). But this approach led to non-generic applications with rather big performance
penalties (creating all necessary instances during launching). Also, several of our case
studies have been based on the Fractal component model. Fractal provides support for
dynamic reconfiguration but as we discuss below it suffers the evolution gap problem.

Related work: Component systems with a flat component model (CCM [15], C2 [20])
do not consider dynamic reconfiguration as an issue, since there is no problem where
to place a newly created component and a service can be seen as another component
in the flat component space. However, the evolution gap problem is inherently
present.

In the area of hierarchical component models, there are several approaches as to
how to deal with dynamic reconfiguration.

(1) Forbidding. A very simple and straightforward approach used in several
component systems (e.g., [2]) is not to allow dynamic reconfiguration at all. But this
is very limiting, revealing in essence all the flaws of the static nature of an ADL.
(2) Flattening. Another solution is to use hierarchical architecture and composite
components only at the design time and/or deployment time. However, at run time the
application architecture is flattened and the composite components disappear – this
way the evolution gap problem becomes even more pressing, since the missing
composite components make it very hard to trace the dynamic changes with respect to
the initial configuration. This approach is used, e.g., in the OMG Deployment &
Configuration specification [16], which defines deployment models and processes for
component-based systems (including CCM). The component model introduced in this

358 P. Hn tynka and F. Plášil

OMG specification is hierarchical, but finally, in the deployment plan, the application
structure is flattened and the composite components are removed.
(3) Restricted reconfiguration. Several systems forbid an arbitrary reconfiguration but
allow special and well-defined types of dynamic reconfiguration:
 (a) Patterns. Being an extension of Java, ArchJava [1] is a component system

employing a hierarchical component model. Components in ArchJava can be
dynamically added (using the new operator), but an addition of new connections is
restricted by connection patterns. These patterns define through which interfaces
and to which types of components the new component can be connected.
Moreover, only the direct parent component can establish these connections
(among direct subcomponents).

 (b) Shared components. Fractal introduces shared components (at the ADL level); a
shared component is a subcomponent of more than one other components. This way,
component hierarchy becomes a DAG in general (not a tree). Appling this idea to
the Fig. 1 would mean that the Logger component would be used by LFactory and
DAccess. This solution works nicely, however, an architecture with shared
components can be confusing, since it is not easy to determine who is responsible
for lifecycle of a shared component, reasoning about architecture (e.g., checking
behavior compliance) is very complicated, and several advanced features of
component models (e.g., dynamic update of a component subtree) cannot be applied.

 (c) Formal rules. Several systems (e.g., CHAM [9], “graph rewriting” [23]) define
a formal system for describing the permitted dynamic reconfigurations. These
systems allow complex definition of all architecture states during an application’s
lifecycle. But they are very complicated, even for simple architectures.

(4) Unlimited. Darwin [13] uses direct dynamic instantiation, which allows defining
architecture configurations that can dynamically evolve in an arbitrary way (but the
new connections among components are not captured). Julia [11], an implementation
to Fractal, allows a general component reference passing (so that any time a reference
is passed, it mimics establishing a new connection – this works orthogonally to
specifying a shared component in ADL). Obviously, the evolution gap problem is
ubiquitous in these cases.

However, let’s emphasize that SOA is typically based on dynamic reconfiguration,
since the composition of services is done with the granularity of individual calls
captured in coordination languages like Linda [22] or by routing of messages [5].

4 Conclusion

We have shown a way of addressing dynamic reconfiguration in a hierarchical
component model. With the aim to avoid uncontrolled architecture modification, the
presented solution is based on the proposition of three reconfiguration patterns, which
include the introduction of the utility interface concept that allows to use a service
provided under the SOA paradigm from a component-based system. The paper is
based on our experience with non-trivial case studies written for component-based
systems SOFA and Fractal. Currently, we have specified the whole meta-model of
SOFA 2.0, all necessary interfaces for the development time, deployment and
runtime. A working prototype is expected within several months.

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 359

Acknowledgements

The authors would like to thank Tomáš Bureš, Vladimír Mencl and Lucia Kapová for
valuable comments, Jan Klesnil, Ond ej Kmoch, Tomáš Kohan and Pavel Kotr for
contributing to meta-model design, and Pavel Ježek and Jan Kofro for sharing
experience with a Fractal case study. This work was partially supported by the Grant
Agency of the Czech Republic project 201/06/0770.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture to
Implementation, Proceedings of ICSE 2002, Orlando, USA, May 2002

2. Allen, R.: A Formal Approach to Software Architecture, PhD thesis, CMU, 1997
3. Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.: A Component

Model for Architectural Programming, Proceedings of FACS'05, Macao, Oct 2005
4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J. B.: An Open Component

Model and Its Support in Java, Proceedings of CBSE 2004, Edinburgh, UK, May 2004
5. Chappell, D. A., Enterprise Service Bus, O'Reilly Media, Jun 2004
6. Enterprise Java Beans specification, version 2.1, Sun Microsystems, Nov 2003
7. Hn tynka, P., Píše, M.: Hand-written vs. MOF-based Metadata Repositories: The SOFA

Experience, Proceedings of ECBS 2004, Brno, Czech Republic, IEEE CS, May 2004
8. Hn tynka, P., Plášil, F., Bureš, T., Mencl, V., Kapová, L.: SOFA 2.0 metamodel, Tech.

Rep. 11/2005, Dept. of SW Engineering, Charles University, Prague, Dec 2005
9. Inverardi, P., Wolf, A. L.: Formal Specification and Analysis of Software Architectures

Using the Chemical Abstract Machine Model, IEEE Trans. on Soft. Eng., v. 21, n. 4, 1995
10. Iribarne, L.: Web Components: A Comparison between Web Services and Software

Components, Colombian Journal of Computation, Vol. 5, No. 1, Jun 2004
11. Julia, http://forge.objectweb.org/projects/fractal/
12. Lau, K.-K., Wang, Z.: A Taxonomy of Software Component Models, Proceedings of

EUROMICRO-SEAA’05, Porto, Portugal, Sep 2005
13. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures, Proceedings of

FSE’4, San Francisco, USA, Oct 1996
14. Medvidovic, N.: ADLs and dynamic architecture changes, Joint Proceedings

SIGSOFT’1996 Workshops, ACM Press, New York, USA, Oct 1996
15. OMG: CORBA Components, v 3.0, OMG document formal/02-06-65, Jun 2002
16. OMG: Deployment and Configuration of Component-based Distributed Applications

Specification, OMG document ptc/05-01-07, Jan 2005
17. Plášil, F., Bálek, D., Jane ek, R.: SOFA/DCUP: Architecture for Component Trading and

Dynamic Updating, Proceedings of ICCDS’98, Annapolis, USA, IEEE CS, May 1998
18. SOFA prototype, http://sofa.objectweb.org/
19. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edition,

Addison-Wesley, Jan 2002
20. Taylor, R. N., et al: A Component- and Message-Based Architectural Style for GUI

Software, IEEE Transactions on Software Engineering, Vol. 22, No. 6, Jun 1996
21. WebServices, http://www.w3.org/2002/ws/
22. Wells, G.: Coordination Languages: Back to the Future with Linda, Proceedings of

WCAT’05, Glasgow, UK, Jul 2005
23. Wermelingera, M., Fiadeiro, J. L.: A graph transformation approach to software

architecture reconfiguration, Science of Computer Programming, Vol. 44, Iss. 2, Aug 2002

MaDcAr: An Abstract Model for
Dynamic and Automatic (Re-)Assembling

of Component-Based Applications

Guillaume Grondin1,2, Noury Bouraqadi1, and Laurent Vercouter2

1 Dépt. GIP, École des Mines de Douai,
841, rue Charles Bourseul, 59500 Douai, France

{grondin, bouraqadi}@ensm-douai.fr
2 Dépt. G2I, École des Mines de Saint-Etienne,
158, cours Fauriel, 42023 Saint-Étienne, France

vercouter@emse.fr

Abstract. Dynamicity is an important requirement for critical soft-
ware adaptation where a stop can be dangerous (e.g. for humans or
environment) or costly (e.g. power plants or production lines). Adap-
tation at run-time is also required in context-aware applications where
execution conditions often change. In this paper, we introduce MaD-
cAr, an abstract model of dynamic automatic adaptation engines for
(re-)assembling component-based software. MaDcAr aims at being a
conceptual framework for developing customizable engines reusable in
multiple applications and execution contexts. Besides, MaDcAr pro-
vides a uniform solution for automating both the construction of appli-
cation from scratch and the adaptation of existing component assemblies.

Keywords: Automatic Assembling ; Dynamic Adaptation ; Context-
Awareness.

1 Introduction

In many application domains (medical, financial, telecoms, etc), there is a re-
quirement for applications to be dynamically adaptable1, i.e. without stopping
or disturbing their execution. Indeed, some applications have to run continu-
ously during adaptations (e.g. to install a security patch). The need for dynamic
adaptation can be accentuated by the cost of an application stop (e.g. a produc-
tion chain). In this paper, we consider applications that should never stop even
if they are subject to unpredictable and frequent (environment) changes, like in
Ubiquitous Computing [Wei93].

In the context of component-based applications, the need for dynamic adapta-
tion can be fulfilled by dynamic reconfiguration of applications [WLF01] [OT98]
[KM90]. In this paper, a component-based application is symbolized by an as-
sembly, i.e. a set of connected software components. Hence, a reconfiguration
1 Adaptation is the process of conforming a software to new or different condi-

tions [KBC02].

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 360–367, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MaDcAr: An Abstract Model for Assembling Engines 361

of such an application is called a re-assembling. Dynamic re-assembling allows
not only to modify locally a part of an application (by dynamic component re-
placement), but also to adapt the whole application architecture. Indeed, the
architecture of an application can evolve thanks to dynamic assembling opera-
tions like the addition or the removal of components.

During this process of assembly reconfiguration, the application components
must be initialized and linked to each other. Initialization refers to assigning
some values to component attributes. Linking refers to connecting interfaces of
different components.

In the case of applications that need to be frequently adapted, the adaptation
process needs to be automated to help humans to use or configure such appli-
cations. This requirement translates into an automatic (re-)assembling process
in component-based applications. Automation can be partial and covers for ex-
ample only the triggering or the realization of adaptations. Automation can be
total and covers the full adaptation process without requiring human interven-
tion.

In this paper, we present MaDcAr, an abstract Model for automatic and
Dynamic component Assembly reconfiguration. MaDcAr models engines able
to build and to reconfigure component-based applications at run-time on behalf
of humans. By reconfiguration, we mean all kind of adaptations ranging from a
simple change of some component attribute value to a complete replacement of
the application architecture or components.

The reminder of this article is organized as following. In section 2, we describe
MaDcAr, our abstract model for assembling engines. In section 3, we discuss
other works on automatic and dynamic assembling. In section 4, we sum up the
main characteristics of MaDcAr and sketch some future works.

2 MaDcAr: A Model for Automatic and Dynamic
Component Assembly Reconfiguration

The automation of the assembling task requires an assembling engine which can
behave on behalf of humans. This engine has to automatically build applications
by assembling components. Moreover, dynamic adaptation requires the assem-
bling of an application to be performed at runtime. MaDcAr2 is an abstract
model for dynamic and automatic assembling engines. As illustrated by figure 1,
a MaDcAr assembling engine requires four inputs: a set of components to as-
semble, an application description that refers to a specification of the applica-
tion’s functionalities and its non functional properties, an assembling policy that
directs the assembling decisions and a context that refers to a set of data (e.g.
state of the application, CPU availability, bandwidth, etc) measured by some
sensors. The application description and the assembling policy are specified in
terms of constraints. In other words, an application re-assembling consists in a
Constraint Satisfaction Problem [Kum92, RLP00]. Therefore, MaDcAr assem-
bling engines include a constraint solver to compute automatically appropriate
2 Model for automatic and Dynamic component Assembly reconfiguration.

362 G. Grondin, N. Bouraqadi, and L. Vercouter

assembling decisions. The proposed model aims at providing a totally automated
solution to component-based applications assemblings, i.e. where assemblings
can be triggered and performed without any human intervention.

MaDcAr is abstract in that it makes only few assumptions on the assembling
engines’ inputs. Those assumptions are:

1. We restrict our study to the case of homogeneous components, i.e. where
components to assemble comply with the same component model,

2. The components must have customizable attributes and contractually spec-
ified interfaces that are either required or provided,

3. Also, we do not make distinction between components and connectors. We
view connectors just as components dedicated to interaction. So, the assem-
bling engine deals with connectors in the same way it deals with components.

Fig. 1. A MaDcAr assembling engine Fig. 2. A MaDcAr application descrip-
tion

2.1 Application Description

An application description consists of a set of alternative configurations, as
shown in figure 2. Configurations are “blueprints” for component assemblies,
they consists in a graph of roles. A role is an abstract component description
specified as a set of contracts [Mey92, BJPW99]. Those contracts which de-
scribe the roles and the configurations are expressed as constraints. Moreover,
the contracts of a role must at least specify3 (1) a set of interfaces (provided or
required) which symbolize the role’s possible interactions with other roles, (2) a
set of attributes which values allow to initialize components and (3) two multi-
plicities. The multiplicities of a role permit to define the minimal (min) and the
maximal number (max) of components which can fulfill this role simultaneously
(i.e. within the same assembly). When necessary, we note a role R(min, max),
where 0 ≤ min, min ≤ max and max ≤ ∞.

At a point in time only one configuration is used as a blueprint to assem-
ble application components. When adaptation is triggered, the assembling en-
gine chooses a configuration among available ones and re-assembles components
accordingly.
3 But are not restricted to.

MaDcAr: An Abstract Model for Assembling Engines 363

MaDcAr’s configurations differ from the homonymous concept in Architec-
ture Description Languages (ADLs) [Fux00, MT97]. In MaDcAr, each configu-
ration aims at describing a set of component assemblies abstractly and concisely.
The degree of reconfigurability of an application’s architecture is clearly symbol-
ized in MaDcAr by the use of a set of fixed configurations instead of a single
adaptable configuration. Moreover, our configurations are characterized by two
degrees of freedom/flexibility. First, they do not refer directly to component
instances nor component types, but rather refer to component’s abstract de-
scriptions, namely roles. As a consequence, MaDcAr’s roles allow to minimize
the coupling between a configuration and the components which can be used for
this configuration. Second, a single MaDcAr configuration allows to describe
multiple assemblies even if they must contain different numbers of components,
thanks to role multiplicities.

2.2 Assembling Process

MaDcAr assembling engines can be used both to automatically build assemblies
from unconnected components, and to dynamically adapt existing component
assemblies. The assembling process of a MaDcAr engine is composed of five
successive steps :

1. Triggering: the engine may trigger (re-)assembling only once some changes
occur in one of the four engine’s inputs (execution context, set of available
components, application description, assembling policy).

2. Identification of eligible configurations: the engine must build a compatibil-
ity matrix which maps the roles of each configuration to the corresponding
compatible4 components. A configuration is eligible if it can be minimally
fulfilled5 by a subset of available components.

3. Selection of a configuration: the engine selects a configuration based on the
assembling policy and the compatibilities obtained in the previous step.

4. Selection of a subset of components: the engine selects components that are
to be assembled according to the selected configuration and the assembling
policy.

5. (Re-)assembling: the engine performs the assembling of the selected compo-
nents according to the selected configuration.

2.3 Context and Assembling Policy

In MaDcAr, the definition of a context just consists in specifying a set of
sensors (software/hardware) which can provide some “interesting values”, i.e.
values which are to be used in an assembling process. Assembling policies permit
to direct (re-)assembling. Directing MaDcAr’s assembling process consists in
specifying when (i.e. for which context) and how (cf. configuration/component
4 A component is said to be compatible with a role when it satisfies all the role’s

contracts.
5 That is, given the set of available components, each configuration’s role can be

fulfilled by a number of components equal to the role’s minimal multiplicity.

364 G. Grondin, N. Bouraqadi, and L. Vercouter

selection) assembling must be done. In MaDcAr, the assembling policy is
decomposed into two different parts:

1. the detection of the contextual situations that may concern (re-)assembling,
and

2. the decisions that the assembling engine has to take for each contextual
situation.

Detection. We model the context as a set of contextual elements, where each
element can be obtained using some sensors. Sensors can be used for both
automatic triggering of re-assembling (during particular contextual changes) and
collection of data required by the engine to make assembling decisions. Those data
may concern both external (e.g. CPU, memory,. . .) and internal (e.g. component
attribute values of the current assembly) aspects of the application.

Decision. In MaDcAr, decisions are expressed by sets of rules which produce
constraints that can be injected to the constraint solver included in the assem-
bling engine. These decisions allow the engine to select a configuration and to
plan the assembling. However, several default choices are used in MaDcAr
in order to ensure that the decision process results in a single configuration:

– When several configurations satisfy the assembling policy, one of them is
arbitrary selected by the assembling engine (unless the current configuration
is also satisfying).

– When none of the configurations satisfies the assembling policy, then the
assembling engine automatically selects one of the eligible configurations
(unless the current configuration is also eligible).

Once a single configuration is selected, the engine selects the components to
assemble in two successive steps:

1. the selection of the minimum number (min) components for each role R(min,
max) of the new configuration, and

2. the selection of extra components6 for the roles which are not maximally
fulfilled7, according to the assembling policy.

This component selection process is performed by the constraint solver included
in the assembling engine. The eligible components are those which satisfy the
functional contracts of the chosen configuration’s role. Extra-functional proper-
ties on a part of the application8 or on the whole application9 (like constraints
on memory consumption or performance) may influence the number of selected
6 However, some assembling policies (e.g. resource-saving oriented ones) may lead to

a zero component selection in this second step.
7 That is, the roles for which the number of selected components are less than their

maximal multiplicity.
8 In MaDcAr, local extra-functional properties can be expressed as role contracts.
9 In MaDcAr, global extra-functional properties can be expressed in the assembling

policy.

MaDcAr: An Abstract Model for Assembling Engines 365

components during the second step. However, the default component se-
lection policy consists in selecting the maximum number of components for
each role.

3 Related Work

Many works on automatic and dynamic assembling can be found in literature.
The importance of automation and dynamicity is not the same in all approaches
and often depends on the kinds of applications which are targeted.

C2 [MORT96, Med96, OT98] allows dynamic modifications of compositions
while the system is executing. But, in C2, it is not possible to generally define
when or under what condition (for instance due to an exception) configurations
are to be carried out. The degree of automation of a re-assembling in C2 is
low, because any reconfiguration needs to be triggered manually. However, the
flexibility of C2 connectors facilitates the binding/unbinding of components. In-
deed, they mediate and coordinate the communication among components using
generic filtering policies (e.g. priority-based or publish/subscribe-based). These
policies permits to automatically adapt the interactions between the components
each time a component is binded/unbinded to a connector. In other words, the
connectors of C2 contain the assembling logic of the architecture. Hence, C2
provide an acceptable degree of uncoupling between the components functioning
and the assembling logic. But, this dispersion of the assembling logic of the ar-
chitecture makes the dynamic evolution of an architecture very hard to manage
globally, as a separated concern.

David and Ledoux [DL03] present an approach for runtime adaptation of
applications in response to changes in the execution context. Starting from the
Fractal component model [BCS02], they introduce a reflective extension in order
to transparently modify the behavior of components. The adaptation process is
based on an adaptation policy for each component. Each adaptation policy is a
set of Event Condition Action rules. For openness, the adaptation policies can be
added or deleted dynamically. The re-assembling process consists in a sequence
of components reconfigurations: firstly, structural reconfigurations of composite
components, and secondly, parameterization and addition or removal of a service
for both primitive and composite components. This extension of Fractal allows
to re-assemble an application while running. However, the degrees of availability
and performance of the services of this application is not considered in the re-
assembling process. Moreover, global re-assembling seems hard to be automated
because the adaptation policies are defined locally for each component.

SPARTACAS [Mor04] is a framework for automating retrieval and adaptation
of contract-based components. This framework has been successfully applied to
synthesis of software for embedded and digital signal processing systems. This
solution is based on the first order logic. When SPARTACAS cannot retrieve a
component that is a complete match to a problem, it retrieves a component that
partially satisfies the requirements of a problem. Such components have to be
adapted. SPARTACAS proposes three possibilities when a component cannot be

366 G. Grondin, N. Bouraqadi, and L. Vercouter

retrieved. Indeed, the missing component can be replaced by a composite formed
by (1) two sequential components, (2) two alternative components or (3) two
parallel components, depending on the required behavior. A major advantage
of this framework is that it offers the possibility to build the applications by
assembling components hierarchically and progressively. However, dynamic re-
assembling is not addressed.

4 Conclusion and Future Work

In this paper have presented MaDcAr, an abstract model for engines that
dynamically and automatically (re-)assemble component-based applications. In
MaDcAr, an assembling engine has four inputs: a set of components to assem-
ble, an application description (set of alternative configurations), an assembling
policy to drive application building and adaptation and a context. Based on
these inputs, a MaDcAr compliant engine computes a configuration (“assem-
bly blueprint”) and builds the application. And, when the execution context
changes, MaDcAr chooses a more appropriate configuration and re-assembles
the components accordingly. Thus, the same mechanism apply both for building
applications and adapting them. Moreover, MaDcAr does support unplanned
adaptations since application descriptions and components can be changed at
run-time, i.e. without stopping the whole application. Another interesting prop-
erty of MaDcAr is that it models customizable engines. The assembling policy
is not fixed, but it can be replaced, even at run-time. Besides, this policy is
separated from the application description. Hence MaDcAr encourages a clear
separation of concerns.

Currently, we are working on an implementation of MaDcAr for Fractal
[BCS02], a hierarchical component model. This projection is a first step toward
identifying specificities related to the re-assembling of composite components.
Another direction for future work is to explore how to lower developers’ overhead.
We envision providing them with a high-level formalism to express MaDcAr
configurations.

References

[BCS02] E. Bruneton, T. Coupaye, and J. Stefani. Recursive and dynamic software
composition with sharing. In WCOP’02–Proceedings of the 7th ECOOP
International Workshop on Component-Oriented Programming, Malaga,
Spain, Jun 2002.

[BJPW99] Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau, and Damien
Watkins. Making components contract aware. Computer, 32(7):38–45,
1999.

[DL03] Pierre-Charles David and Thomas Ledoux. Towards a framework for self-
adaptive component-based applications. In DAIS, pages 1–14, 2003.

[Fux00] A. D. Fuxman. A survey of architecture description languages. Tech-
nical Report CSRG-407, Department of Computer Science, University of
Toronto, Canada, 2000.

MaDcAr: An Abstract Model for Assembling Engines 367

[KBC02] Abdelmadjid Ketfi, Noureddine Belkhatir, and Pierre-Yves Cunin. Adapt-
ing applications on the fly. In ASE ’02: Proceedings of the 17 th IEEE
International Conference on Automated Software Engineering (ASE’02),
page 313, Washington, DC, USA, 2002. IEEE Computer Society.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic
change management. IEEE Trans. Softw. Eng., 16(11):1293–1306, 1990.

[Kum92] V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI
Magazine, 13(1):32–44, 1992.

[Med96] Nenad Medvidovic. Adls and dynamic architecture changes. In Joint pro-
ceedings of the second international software architecture workshop (ISAW-
2) and international workshop on multiple perspectives in software devel-
opment (Viewpoints ’96) on SIGSOFT ’96 workshops, pages 24–27, 1996.

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51,
1992.

[Mor04] Brandon Morel. Spartacas automating component reuse and adaptation.
IEEE Trans. Softw. Eng., 30(9):587–600, 2004. Senior Member-Perry
Alexander.

[MORT96] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Tay-
lor. Using object-oriented typing to support architectural design in the c2
style. In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium
on Foundations of software engineering, pages 24–32, New York, NY, USA,
1996. ACM Press.

[MT97] Nenad Medvidovic and Richard N. Taylor. A framework for classifying
and comparing architecture description languages. In ESEC ’97/FSE-5:
Proceedings of the 6th European conference held jointly with the 5th ACM
SIGSOFT international symposium on Foundations of software engineer-
ing, pages 60–76, New York, NY, USA, 1997. Springer-Verlag New York,
Inc.

[OT98] P. Oreizy and R. Taylor. On the role of software architectures in runtime
system reconfiguration. In CDS ’98: Proceedings of the International Con-
ference on Configurable Distributed Systems, page 61, Washington, DC,
USA, 1998. IEEE Computer Society.

[RLP00] P. Roy, A. Liret, and F. Pachet. The framework approach for constraint
satisfaction. ACM Computing Surveys, 32(1es), 2000.

[Wei93] M. Weiser. Ubiquitous computing. Computer, 26(10):71–72, 1993.
[WLF01] Michel Wermelinger, Antonia Lopes, and Jose Luiz Fiadeiro. A graph

based architectural (re)configuration language. In ESEC/FSE-9: Proceed-
ings of the 8th European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 21–32, 2001.

Adaptation of Monolithic Software Components
by Their Transformation into Composite

Configurations Based on Refactoring

Gautier Bastide1, Abdelhak Seriai1, and Mourad Oussalah2

1 Ecole des Mines de Douai, 941 rue Charles Bourseul,
59508 Douai, France

{seriai, bastide}@ensm-douai.fr
2 LINA, université de Nantes, 2 rue de la Houssinière,

44322 Nantes, France
oussalah@lina.univ-nantes.fr

Abstract. We present in this paper an approach aiming at adapting
component structures instead of adapting component services. It focuses
on transforming a software component from a monolithic configuration
to a composite one. Among the motivations of this kind of adaptation,
we note its possible application to permit flexible deployment of software
components and flexible loading of component service-code according to
the available resources (CPU, memory). This adaptation is based on the
analysis and the instrumentation of component codes.

Keywords: Software component, adaptation, restructuration, composite-
component, refactoring.

1 Introduction

Component-based software engineering (CBSE) [6] [10] focuses on reducing ap-
plication development costs by assembling reusable components like COTS [11]
(Commercial-Off-The-Shelf). However, experiments show that direct component
reuse is extremely hard and this one usually has to be adapted in order to be
integrated into an application. This difficulty is due to the available large vari-
ety of infrastructures and software environments, going from the simple mobile
phone equipped with minimal capacities to the cluster of several multi-processor
computers. The solution may consist in the development of software components
which can adapt themselves to these constraints. To deal with this issue, many
approaches were proposed to adapt component-based applications. They differ
according to several criteria. Among these last, we can quote: the adaptation
target, the adaptation moment, the adaptation actor, the adaptation goal, etc.

Nevertheless, we can note that, in spite of this diversity of proposed ap-
proaches, all ones which are interested to adapt components, focus on adapting
their services and only some works are interested to adapt the component struc-
tures. Moreover, to our knowledge, all these last approaches are interested in
the adaptation of the component implementation by the replacement of an al-
gorithm by another (i.e. code replacement). The result is that, no approach

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 368–375, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptation of Monolithic Software Components 369

proposes techniques for restructuring software components (i.e. adapting their
structures).

While being based on the above considerations, our objective in this paper is
to propose a software component restructuring approach. In fact, our approach
permits us to restructure component implementation while preserving its be-
haviour and its services. First, following the component use needs, this one is
fragmented into new generated components. Next, these new components are
recomposed to create a new configurable composite-component. This transfor-
mation process is based on the analysis and the instrumentation of component
codes.

Among the motivations of this kind of adaptation, we note its possible ap-
plication to allow flexible component deployment and flexible component-code
loading according to the available resources (e.g. CPU). For example, the compo-
nent structure adaptation by its fragmentation in some generated components
can be used to define a flexible deployment strategy. Indeed, this adaptation
allows us to organize component services in separate sub-sets. Each sub-set is
defined in a new component generated by fragmenting the original one. Then,
the generated components can be deployed on one or more machines (Fig. 1)1.

Fig. 1. Structural adaptation for flexible deployment

We discuss the proposed approach in the rest of this paper as follows. Section 2
presents an example of experimentation that we use to illustrate our approach.
Section 3 details the transformation process allowing us to fragment a compo-
nent into new generated components and next, to recompose them to form a
configurable composite-component. Section 4 reviews related work. Conclusion
and future works are presented in section 5.

2 Example of Experimentation: A Shared-Diary System

In order to illustrate our purpose, we use throughout this paper an example of a
monolithic software component providing services of a shared-diary system which
can be accessible to multiple users. It defines the following provided services:
1 In [1], we presented different types of structural adaptation possibilities and discussed

their possible applications.

370 G. Bastide, A. Seriai, and M. Oussalah

1. Managing personal diary. This includes authentication, consulting events,
etc. These services are provided through the Diary interface.

2. Organizing a meeting. This includes services permitting users to confirm the
possibility to organize a meeting, etc. (Meeting interface)

3. Managing absence. This includes services permitting users to verify the pos-
sibility to add an absence event, to consult absences, etc. (Absence interface)

4. Right management. This includes services concerning absence right attribu-
tion, service related to diaries initialization, etc. (Right interface)

5. Updating diary, meeting dates, absence dates and absence rights of a person
(DiaryUpdate, MeetingUpdate, AbsenceUpdate and RightUpdate interfaces).

We assume that, due to the load balancing policy adopted for the used deploy-
ment infrastructure, the Shared-Diary component cannot be deployed on only
one host. Then, our goal is to adapt it in order to be deployed on a distributed in-
frastructure. This result can be obtained by transforming this component into a
composite-component, where sub-components are deployed on distributed hosts.
To achieve this goal, this composite-component is decomposed to/recomposed
from four sub-components which are:

1. Diary-Manager component (provided interfaces: Diary, DiaryUpdate),
2. DataBase-Manager component (provided interfaces: Right, RightUpdate),
3. Absence-Manager component (provided interfaces:Absence, AbsenceUpdate),
4. Meeting-Manager component (provided interfaces: Meeting, MeetingUpdate).

3 Software Component Transformation

Software component adaptation, from a monolithic implementation to a com-
posite one, is achieved through a transformation which is based on two phases
(Fig. 2). The first one is the decomposition phase which consists in fragmenting
component code according to a given specification, where each generated code-
part matches with a new generated component implementation. The second
phase is the recomposition which consists in assembling components generated
during the first phase and integrating them into a new generated composite-
component.

We consider here, an oriented-object implementation of components. Thus,
the internal structure of a component consists of some class hierarchies repre-
senting the implementation code of its services and its interfaces. Our approach
deals with the Fractal component model [3] and its Java implementation called
Julia [4]. To create a Fractal component, it is necessary to specify an unique
class which implements all methods specified by the corresponding component
interfaces.

3.1 Software Component Decomposition

During the decomposition phase, the adaptation administrator specifies the new
structure which must be created by indicating new components to be generated.
Then, the component implementation is fragmented.

Adaptation of Monolithic Software Components 371

Fig. 2. Component transformation process

Specification of the New Component Structure. This first step of the
decomposition stage consists in specifying the external structures of the com-
ponents to be generated. This is realized by specifying, using an ADL script,
these components, and for each components, its provided interfaces. We defined
control operations allowing us to check the specification validity: each new sub-
component must provide a set of interfaces which must be included in the inter-
face set of the component to be adapted. Moreover, the union of these subsets
must be equal to the set of interfaces provided by the initial component. In addi-
tion, no element specified in this ADL must be in contradiction with the initial
ADL. To illustrate this, let us reconsider our example of the shared-diary com-
ponent. The goal of the structural adaptation of this component is to reorganize
services provided by this one in four new generated sub-components (Fig. 3).

<component name=”Shared−Diary”>
<component name=”Diary−Manager”>

<s e r v i c e s i gna tu r e=”Diary”>
<s e r v i c e s i gna tu r e=”DiaryUpdate”> </component>

<component name=”DataBase−Manager”>
<s e r v i c e s i gna tu r e=”Right”>
<s e r v i c e s i gna tu r e=”RightUpdate”> </component>

<component name=”Meeting−Manager”>
<s e r v i c e s i gna tu r e=”Meeting”>
<s e r v i c e s i gna tu r e=”MeetingUpdate”> </component>

<component name=”Absence−Manager”>
<s e r v i c e s i gna tu r e=”Absence”>
<s e r v i c e s i gna tu r e=”AbsenceUpdate”> </component>

</component>

Fig. 3. The ADL specification script of the shared-diary component

Component Fragmentation. Once the fragmentation specification is given,
component structure is refactored. This sub-stage consists in fragmenting
this component into a set of new generated components, while guaranteeing
the component integrity and coherence. In fact, the fragmentation is realized
by analysing the monolithic component code-source, determining for each new
component to be generated its corresponding code, separating these codes, one

372 G. Bastide, A. Seriai, and M. Oussalah

from the others, and determining existing dependences between them. These
steps are mainly based on building, for each component to be generated, its
SBDG (i.e. Structural and Behavioural Dependence Graph). A SBDG is a graph
where nodes are structural elements and arcs are the different forms of depen-
dences existing between these elements (Fig. 4). Structural elements are of two
types: external (e.g. interfaces, implementation class) and internal ones (e.g. in-
ternal methods, inner classes). Dependences between structural elements are of
two types: structural and behavioural dependences. Structural dependences cor-
respond to composition relationship between structural elements. Behavioural
dependences represent method-calls defined in a method code.

Once, the SBDG corresponding to a component to be generated is built, code
of each one of its structural elements is generated. These codes are connected
between them in order to reflect the existing structural links between their corre-
sponding structural elements. All the generated code represents the first version
of a new component source-code. The next version of the generated component
source-code transforms behavioural links, existing between methods defined re-
spectively by two different SBDG, on composition links defined between the
corresponding components (see Sect. 3.2).

Fig. 4. A part of the Shared-diary SBDG

3.2 Software Component Composition

Once the component to be adapted is fragmented and the new components are
generated, the initial component must be recomposed. This operation requires
two steps. First, we have to assemble generated components together (i.e. hor-
izontal composition) while taking into account their dependences. Then, the
result of this operation is encapsulated into a composite-component (i.e. vertical
composition) which can be configured according to the adaptation needs.

Adaptation of Monolithic Software Components 373

Horizontal Composition: Generated Component Assembly. The decom-
position stage generates unconnected components providing each one a sub-set
of services among the initial component services. However, these services are
not independent of each other. In fact, they are linked through behavioural or
resource sharing dependences.

Connecting components via behavioural-dependence interfaces: Components gen-
erated by fragmentation are connected using behavioural-dependence interfaces.
These interfaces are used to materialize behavioural-dependences between gen-
erated components according to the SBDG graph. These are:

1. Interfaces defining required behavioural-dependence services.
2. Interfaces defining provided behavioural-dependence services.

Connecting components via resource-sharing interfaces: Components are also
connected via interfaces used to manage resource sharing. We consider as
resource every structural entity defined in the component code with an asso-
ciate state. For example, instance and class attributes are considered as re-
sources. Shared-resources are those defined and used in two or more component
implementations. So, we need to preserve a coherent state of these resources
in all components sharing them. Coherence is ensured through two types of
interfaces: communication interfaces and synchronisation-access interfaces. Com-
munications interfaces aim at permitting components to communicate, between
components, updates occurred on shared-resources. These are:

1. An interface defining required services permitting components to notify
shared-resource state updates.

2. An interface defining provided services allowing components to update
shared-resource states every time when this resource is updated.

The second type of interfaces (i.e. synchronisation-access interfaces) allows com-
ponents to synchronise access to a shared-resource. These are:

1. An interface defining required services permitting components to acquire,
from components sharing a resource, an authorisation to update this one.

2. An interface defining provided services allowing components to release rights
to update a shared-resource.

Vertical Composition: Composite-Component Generation. The last
step of our transformation process aims to guarantee:

– Transparency property. The component adaptation must be achieved in a
transparent way compared to the application components.

– Autonomy property: New generated component may be accessible and han-
dled as separate entities, ones from the others.

This goal is achieved by the integration of the horizontal composition result into a
composite-component. In fact, the composite-component allows us to replace the

374 G. Bastide, A. Seriai, and M. Oussalah

adapted component without any modification of the other application compo-
nents. It permits us to ensure that application components should not be able to
access, after the component transformation, to other services than those provided
by the adapted component before its transformation. Furthermore, composite-
component provides interfaces allowing it to handle sub-components in inde-
pendent manner. For example, we define a deployment interface as provided
by generated composite-component. This interface allows the administrator to
specify and realize deployment of each composite sub-component. Furthermore,
we define a composite-component as providing facilities for possible functional
adaptations. This is done via a second non-functional interface integrated to the
composite-component interface set. This interface allows the administrator to
set a collection of configurable properties. These properties are:

– Sub-component encapsulation: This property refers to the visibility and the
accessibility of sub-components considering other application components. A
generated composite-component can be specified as (1) “white-box”, which
means that composite structure is visible and sub-components are directly
accessible, (2) ”black-box”, which imposes sub-components to be neither
visibles nor accessibles by other application components or (3) “mix-box”,
which means that some sub-components, not all, can be accessibles directly
by the other application components.

– Internal access: This property permits us to specify how a sub-component
can be accessed by other sub-components. This can be configured either via
the composite-component or via a direct reference to a sub-component.
Access through the composite allows us to prepare a future functional adap-
tation. In fact, as all service-invokes exchanged between sub-components are
analysed by the composite, post or pre-conditions may be set up easily.

4 Related Work

Many approaches have been proposed in the literature in order to adapt software
component-based applications. These ones can be classified according to differ-
ent criteria. Software component-based application can be adapted in order to
improve performances [8], design or implementation [5]. Also, these applications
can be adapted to a better taking into account of the deployment environment
(i.e. adaptive adaptation). Another adaptation need is the evolution of the appli-
cation functionalities [7]. Concerning our approach, it can be classified as adap-
tive adaptation. In fact, it aims, for example, at taking into account component
deployment environment and consequently to adapt this one by restructuring it.

Adaptation techniques can be categorized as either “white-box” or “black-
box”. “White-box” techniques typically require understanding of the internal im-
plementation of the component to be adapted, whereas “black-box” techniques
[2] only require knowledge about the component’s interfaces. Our adaptation
approach can be considered as “black-box” considering adaptation administra-
tor which does not need to manipulate component source-code. But, it can be

Adaptation of Monolithic Software Components 375

considered as “white-box” when considering the adaptation process which needs
component source-code.

5 Conclusion

We presented in this article an approach allowing us to create customisable
composite-components from monolithic ones. Our proposal is based on a new
adaptation technique allowing the administrator to reorganize a software compo-
nent basing on code refactoring. First, component code is decomposed according
to a specification given by an adaptation administrator and then, new compo-
nents are generated. Next, the generated components are recomposed to form a
composite-component whose properties can be configured following adaptation
needs. The transformation process is based on component source-code analysis
and instrumentation.

The proposed approach has been implemented and a prototype, developed
using the Java implementation of the Fractal component model [4], is available.
Our approach does not consider run-time adaptation issues. Structural dynamic
adaptation constitutes one of our future focuses.

References

1. G. Bastide, A-D. Seriai, M. Oussalah: Adapting Software Components by Structure
Fragmentation. ACM Symposium on Applied Computing, Dijon, France, April
2006.

2. J. Bosch: Superimposition: A Component Adaptation Technique. Information and
Software Technology, 1999.

3. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.-B. Stefani: An Open Com-
ponent Model and Its Support in Java. CBSE, 7-22, 2004.

4. E. Bruneton: Julia Tutorial. http://fractal.objectweb.org/tutorials/julia/
5. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Professional, 1995.
6. G. Heineman, W. Councill: Component Based Software Engineering: Putting the

Pieces Together, ISBN 0-201-70485-4, Addison Wesley Professional, 2001.
7. R. Keller, U. Holzle: Binary Component Adaptation. ECOOP, 307-329, 1998.
8. K. U. Mtzel and P. Schnorf: Dynamic Component Adaptation. Ubilab Technical

Report 97.6.1, Union Bank of Switzerland, Zrich, Switzerland, 1997.
9. M.E. Segal, O. Frieder: On-the-Fly Program Modification: Systems for Dynamic

Updating,IEEE Softw., 10(2):53-65, 1993.
10. C. Szyperski, Component software: beyond object-oriented programming,ISBN 0-

201-17888-5,ACM Press/Addison-Wesley Publishing Co., 1999.
11. K. Wallnau, S. Hissam, R. Seacord: Building Systems from Commercial Compo-

nents, ISBN 0-201-70064-6, Addison Wesley, 2002.

Towards Encapsulating Data in Component-Based
Software Systems

Kung-Kiu Lau and Faris M. Taweel

School of Computer Science,
The University of Manchester,

Manchester, M13 9PL, UK
{kung-kiu, faris.taweel}@cs.manchester.ac.uk

Abstract. A component-based system consists of components linked by con-
nectors. Data can reside in components and/or in external data stores. Operations
on data, such as access, update and transfer are carried out during computations
performed by components. Typically, in current component models, control, com-
putation and data are mixed up in the components, while control and data are both
communicated by the connectors. As a result, such systems are tightly coupled,
making reasoning difficult. In this paper we propose an approach for encapsulat-
ing data by separating it from control and computation.

1 Introduction

A software system consists of three elements: control, computation, and data. The sys-
tem’s behaviour is the result of the interaction between these elements. Therefore, the
latter determines whether the system has desirable properties such as loose coupling
and ease of analysis and reasoning. It is reasonable to expect that it is advantageous
to encapsulate these elements, and separate them from one another, since this should
make reasoning more tractable. For example, some recent research in stimulus reactive
systems has focused on separating control flow from data flow [9, 5].

Paradoxically perhaps, for component-based software systems, it is not any easier
to achieve such separation of concerns. A component-based system consists of com-
ponents linked by connectors, as exemplified by software architectures [17]. In such
a system, data can reside either in components or in external databases (which are
often also regarded as components). Operations on data, such as access, update and
transfer are carried out during computations performed by components. Typically, in
current component models, control, computation and data are mixed up in the com-
ponents, while control and data are both communicated by the connectors. As a re-
sult, such systems are tightly coupled, making reasoning difficult. More seriously,
this impedes component reuse, which is a key objective for component-based
development.

In this paper we introduce an approach for encapsulating data by separating it from
control and computation, in component-based systems. Our approach is based on
our earlier work on encapsulating control and computation in component-based
systems [10].

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 376–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Encapsulating Data in Component-Based Software Systems 377

2 Data in Current Component Models

In current component models, computation, control and data are intermixed (Fig. 1).
Components initiate control and perform computation (Fig. 1(b)). Connectors provide
communication between components for both control and data (Fig. 1(c)). Some

C
A

B
D

E
control origin

control flow
data
data flow

(a) Components and connectors (b) Control flow (c) Data flow

Fig. 1. Current component models

components may act as (external) databases, but for simplicity we will treat them all
as components.

In these models, data exists in components, and during the computation performed
by a component, data can be accessed from other components, updated, and transferred
to other components. Component models with external data stores provide special ab-
stractions modelling these sources. For example, EJB [4, 15] provides the entity bean
that connects to an external database; .NET [14] provides the Dataset component, and
CCM [16] provides persistent components. .NET takes an extra step by providing a
database connector called the .NET Data Adaptor Framework [14]. However, in these
models, data is not separated from computation or control.

In general, connection schemes in current component models use message passing,
and fall into two main categories:1. (i) connection by direct message passing; and (ii)

A

b();

C

B

a();
B.a();
C.b(); C.b();

D

c();

E

D.c();

B.a();
notify();

notify();
C.b();

K2

K1
A

a();

b();

B

C
notify();
C.b();

K1.notify();
K2.notify();

K3.notify();
c();

DK3

component
connector

(a) Direct message passing (b) Indirect message passing

Fig. 2. Connection by message passing

connection by indirect message passing. Direct message passing corresponds to direct
method calls, as exemplified by objects calling methods in other objects (Fig. 2 (a)),
using method or event delegation, or remote procedure call (RPC). Component models
that adopt direct message passing schemes as composition operators are EJB, CCM,
COM [2] etc.

Indirect message passing corresponds to coordination (e.g. RPC) via connectors,
as exemplified by ADLs. Here, connectors are typically glue code or scripts that pass

1 For a survey, see [11].

378 K.-K. Lau and F.M. Taweel

messages between components indirectly. A connector, when notified by a component
invokes a method in another component (Fig. 2 (b)). Besides ADLs, other component
models that adopt indirect message passing schemes are JavaBeans [8], Koala [19],
SOFA [1] etc.

In connection schemes by message passing, direct or indirect, control originates in
and flows from components (Fig. 1(b)). This is clearly the case in both Fig. 2(a) and
(b). Furthermore, data resides in components, and as components perform computation
(invoked by message passing), data flows between components in tandem with control
flow (message passing) between them (Fig. 1(c)). This is the case in both Fig. 2(a) and
(b), although data is not shown explicitly. Clearly in current component models, neither
control nor data is encapsulated.

3 Encapsulating Computation and Control

We are developing a component model [10] in which components encapsulate com-
putation (unlike objects or port-connector type components, Fig. 2), and connectors
encapsulate control (unlike current component models, Fig. 1). In our model, compo-
nents do not call methods in other components, and control originates in and flows from
connectors, leaving components to encapsulate only computation. This is illustrated by
Fig. 3. We call our connectors exogenous connectors. Fig. 3 (a) shows an example

a();
b();

A
A.a();
B.c(); c();

B

d();

C

f();
e();
D

A.b();
C.d(); C.d();

D.e();

K1

K2 K3 a();
b();

A
c();

B

d();

C

f();
e();
D

K1

K2 K3

(a) Example (b) Control flow

Fig. 3. Connection by exogenous connectors

of exogenous connection. Here components do not call methods in other components.
Instead, all method calls are initiated and coordinated by exogenous connectors. The
latter thus encapsulate control, as is clearly illustrated by Fig. 3 (b), in contrast to Fig. 1
(b). Exogenous connectors thus encapsulate control, i.e. they initiate and coordinate
control.

Exogenous connectors are hierarchical in nature, with a type hierarchy [10]. At the
bottom of the hierarchy, because components are not allowed to call methods in other
components, we have an exogenous method invocation connector. This is a unary op-
erator that takes a component, invokes one of its methods, and receives the result of
the invocation. To structure the control flow in a set of components or a system, at the
next level of the type hierarchy, we have other connectors for sequencing exogenous
method calls to different components. So we have n-ary connectors for connecting in-
vocation connectors, and n-ary connectors for connecting these connectors, and so on.
As well as invocation connectors, we have defined and implemented pipe connectors,
for sequencing, and selector connectors, for branching.

Towards Encapsulating Data in Component-Based Software Systems 379

Example 1. Consider a system whose architecture can be described in the Acme [6] and
C2 [18] ADLs by the architectures in Fig. 4 (a) and (b) respectively. Using exogenous
connectors in our component model, the corresponding architecture is that shown in
Fig. 4 (c). In the latter, the lowest level of connectors are unary invocation connectors

B

C

D

E

F

G

A

B

C
A

D

E

F

G D B A C F GE

S3
P2

InvAInvE InvD InvB InvC InvF InvG

P1

S2S1

(a) Acme (b) C2 (c) Exogenous connection

Fig. 4. Corresponding architectures

that connect to single components, viz., InvA, InvB, . . . ; the second-level connectors are
binary selector connectors S1 and S2 and connect pairs of invocation connectors; and
the connectors at levels 3 and 4 are of variable arities and types: P1 and P2 are pipes,
while S3 is a selector.

4 Encapsulating Data

In our component model, a system consists of a hierarchy of exogenous connectors
sitting atop a flat layer of components, as illustrated in Fig. 4(c). The components en-
capsulate computation while the connectors encapsulate control (Fig. 5). Since it is the

D B A C F GE

S3
P2

InvAInvE InvD InvB InvC InvF InvG

P1

S2S1

Computation

DataControl
?

Fig. 5. Encapsulating data

only model we know of that has these two kinds of encapsulation, we believe our com-
ponent model is a good basis for attempting to encapsulate data as well. So the question
we want to address in this paper is how we can encapsulate data in our component
model (Fig. 5).

In our component model, components already encapsulate local data, like objects in
object-oriented languages. However, for system or global state we have not provided
any encapsulation. To clearly illustrate the challenge we face, consider what happens if
data flow follows control flow, as in current component models (Fig. 1).

Example 2. The architecture in Fig. 4(c) can be used to represent a bank system, with
A being an ATM, B and C two bank consortia, each containing two bank branches,

380 K.-K. Lau and F.M. Taweel

E and D, and F and G respectively. At level 1, each component has its own invocation
connector. The ATM (A) can display a menu, accept a customer card, read its informa-
tion, accept customer requests such as choice of operations (deposit, withdrawal, check
balance, etc.).

At level 2, the selector connector S1 selects the customer’s bank branch (from E
and D), prior to invoking that branch’s methods requested by the customer. Similarly,
the selector connector S2 chooses between F and G, prior to invoking their methods
requested by the customer. To pass values from one bank consortium (B or C) to one of
its bank branches, we need a pipe connector; so at level 3, we have two pipe connectors
P1 and P2, for consortia B and C respectively. At level 4, the selector connector S3 se-
lects the customer’s bank consortium from consortia B and C, after receiving customer
requests and card information from the ATM (A). Thus, the bank system’s operational
cycle is initiated by passing the customer requests and card information from the ATM
(A) to the connector S3.2

We will show what happens if data flow follows control flow. Initially, data comes
with a customer request to the ATM. This data comprises customer details on his card
(customer identification, account number, bank consortium identification code, etc.),
the customer’s choice of transaction (say withdrawal), and the amount involved.

S3

P2

S1

Level 1

Level 2

Level 3

Level 4

InvA

B ADE

InvBInvDInvE

Data in
(Customer

request)

Control and data

Data out

Fig. 6. Control flow and data flow of the bank system

This data flows with control until it reaches the customer’s bank branch where it
is used for processing the requested transaction. Fig. 6 traces the data (and control)
flow for an example where the customer bank branch is D, belonging to consortium B.
At S3, the bank consortium code is used to determine the next connector, in this case
P2. All the data, except the bank consortium code, is then passed on to P2. Using the
customer account number, P2 invokes B to identify the customer bank branch, which is
D in this case. So the bank branch code together with the rest of data is passed to S1.
Here, the bank branch D is selected and the customer’s request, account number and
amount are passed to D, and the customer’s request is processed.

The main observation here is that, apart from the bank consortium identification
code, customer data traverses a long route, with the control flow, to its final destination.
This property is not unique to exogenous connectors, but also pertains to any component
model with explicit connectors where data flow follows control flow, e.g. Fig. 4(a) and
(b). It clearly raises performance and space concerns.

2 A pipe selector should be used to connect A and S3, but for simplicity, we omit it here.

Towards Encapsulating Data in Component-Based Software Systems 381

As clearly illustrated by Example 2, rather than leaving global data to flow with
control, it is desirable to separate the two. To this end, it is necessary to store data in a
shared data space (a repository), and to allow access to such data via data connectors
(Fig. 5) at suitable points in the control flow. Furthermore, for data access operations to
be generic against the data space, the type of data stored in data spaces must be generic
with respect to the programming environment. A generic data type for a programming
environment is a type that subsumes all its other data types. We call this type the type
Universal to be independent from different names provided by different programming
languages.

The data space is a transient data store that every system must have to maintain its
global state. In a data space, data is created and accessed indirectly via data connectors.
A data element stored in a data space has many properties including a unique string
reference; a state indicating whether it is transient or persistent; and a set of access per-
missions specifying which exogenous connector in the system can read (r), write (w),
persist (p) and execute (x) this data element. Any data element is a collection element
that can contain executable string code such as SQL data manipulation statements. To
execute these elements, they must have the execute (x) permission.

Data connectors link data elements stored in (global) data spaces to exogenous con-
nectors as well as to other data connectors. In effect, they set, get and execute data
elements in the data space; and encapsulate data access coordination and data flow in a
system. They are hierarchical in nature. At the bottom of the hierarchy, because exoge-
nous connectors only encapsulate control they cannot access (global) data directly, we
need a data accessor connector. This is a unary data connector that can link to only one
data element in the data space; and store, return and execute that specific data element.
In order to structure flow and access coordination for a set of data elements, at the next
level of the hierarchy, we have other connectors for sequencing access and execution
of data elements. Accordingly, we have n-ary data connectors for connecting accessor
data connectors, and n-ary data connectors for connecting these connectors, and so on.

Data connectors and exogenous connectors are both connectors However, they form
two separate kinds of hierarchies that can be connected at design time at specific points,
where data values are required by exogenous connectors.

Example 3. To explain our approach for encapsulating data, we consider Example 2
again. In particular, we consider the case in (Fig. 6). Here the data flow can be par-
titioned into three paths: (i) customer’s request and card information passing through
InvA, S3, P2 and InvB; (ii) data passing through InvB, P2, S1 and InvD; and (iii) data
passing information back to the ATM (A), where the returned data can be, for example,
a bank statement.

To prevent data from flowing along these paths in the hierarchy of exogenous con-
nectors, we store the customer’s request and card information in the system’s data space,
as three data elements (bank consortium code, bank branch code and transaction data),
and use data connectors to link these data elements to exogenous connectors in which
they are needed (Fig 7). As a result, data flows separately from control. At the start of
the system’s operation, data is exported to the data space by InvA, then at S3 only the
first element (consortium code) is retrieved to evaluate the next pipe connector. At the
connector P2, control is passed to InvB which in turn uses the second element (branch

382 K.-K. Lau and F.M. Taweel

S3

P2

S1

Level 1

Level 2

Level 3

Level 4

InvA

B ADE

InvBInvDInvE

Control Data

Data space

Fig. 7. Data connectors for the bank system

code) to determine the customer’s bank branch. When control reaches S1, the bank
branch identity is used to direct control to InvD. InvD retrieves from the data space
the third data element (transaction data), and passes it by value to D, to process the
requested service. InvD stores a report in the data space that is ultimately accessed by
S3 and displayed to the customer. Thus, instead of data following control, we have
separated data from control.

This example shows only the basic idea of data connectors, but not their hierarchies,
i.e. data connectors that compose other data connectors. So, while this example may
give the impression that data connectors are just a means of handling global data, the
whole picture about our data connectors will only become complete when composition
operations among them are addressed.

Nevertheless, Example 3 does illustrate how in our approach data no longer flows
with control. In fact, what flows in exogenous connectors is just a unique signal iden-
tifying the required service. Data is encapsulated in data spaces; and its flow and ac-
cess coordination in data connectors. This results in not only reduced coupling between
components (and even connectors), but also enables data structuring as well as compo-
sitional operations on data.

5 Evaluation

In present approaches to software connectors, control and data are mixed up in con-
nectors [13]. Some approaches even allow for the parameterisation of computation for
connectors [12]. Current component models are no exceptions. Either they provide no
explicit connectors (EJB, CCM, COM, etc), or have connectors that mix data and con-
trol (Koala, SOFA, ADLs, etc). Furthermore, an example of a basic set of connectors
that can be composed systematically is yet to be seen. As connectors encapsulate inter-
actions among components, data and control flowing together does not make the analy-
sis of a system any easier. It has been demonstrated that separation of data and control
makes the analysis of systems’ properties easier [9, 5]. Compared to these approaches,
the novelty in our work lies in the total separation and hence encapsulation of control,
computation, and data. Our motivation is to make component-based development more
amenable to analysis, reasoning, and above all reuse. Our data connectors lead to loose
coupling between components, and therefore contribute to our objective.

Compared to other component models, our data connectors are unique in that they
encapsulate data completely. Compared to data processing languages, the hierarchy of

Towards Encapsulating Data in Component-Based Software Systems 383

our data connectors is also unique in that they provide a structured way of accessing and
processing data (by composition). As a result, our work should provide a useful basis
for developing data-intensive applications which can benefit from component-based
solutions.

Using our data connectors, we can distinguish between global data, i.e. data shared
by all the components in the whole system, and data that is shared by a specific subset
of components in the system. This is not just a distinction between global data and lo-
cal data as in current programming languages, e.g. object-oriented languages, but it is
a distinction between local data for individual components and shared data between a
composite component, or a sub-system, made up of sub-components. It is thus a finer
distinction, and more importantly, it allows us to encapsulate data at different levels of
granularity, i.e. at the level of individual components, at the level of composite compo-
nents, or at the level of the whole system. For database applications, we believe such
encapsulation provides a new dimension.

Our data space is similar to tuple spaces in generative communication and coordina-
tion languages [7, 3]. But we are different in using explicit connectors to data spaces.

6 Conclusion

In this paper we have proposed a way to encapsulate data in a component model that
already encapsulated control and computation. The resulting model is, to the best of our
knowledge, the first model with encapsulation of control computation data. However,
the work is preliminary, and serves to demonstrate the feasibility of our idea. More
practical evaluation will be needed, and in future work, we intend to do such evaluation.

Nevertheless, compared to related work, viz. component models with explicit con-
nectors, our work seems unique in that global data is really separated from control and
computation. In fact, using our connectors we can differentiate between global data, i.e.
data global to the whole system, and data shared by specific components.

We also have operations for structuring and composing data, making our approach
potentially very useful for data-intensive applications, which also benefit from
component-based solutions.

References

1. Dusan Balek. Connectors in software architectures, 2002.
2. Don Box. Essential COM. Addison-Wesley, Harlow, 1998.
3. Nicholas Carriero and David Gelernter. Linda in context. Commun. ACM, 32(4):444–458,

1989.
4. Linda G. DeMichiel, editor. Enterprise JavaBeans Specification, Version 2.1. Sun Microsys-

tems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A, November 12 2003.
5. Berndt Farwer and Mauricio Varea. Object-based control/data-flow analysis. Technical Re-

port DSSE-TR-2005-1, University of Southampton, Department of Electronics and Com-
puter Science, Highfield, Southampton SO17 1BJ, United Kingdom, March 2005.

6. David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of
component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 47–68. Cambridge University Press, 2000.

384 K.-K. Lau and F.M. Taweel

7. David Gelernter. Generative communication in linda. ACM Trans. Program. Lang. Syst.,
7(1):80–112, 1985.

8. Graham Hamilton, editor. JavaBeans. Sun Microsystems, Inc., 4150 Network Circle, Santa
Clara, California 95054, U.S.A, August 8 1997.

9. Ouassila Labbani1, Jean-Luc Dekeyser1, and Pierre Boulet1. Mode-automata based method-
ology for scade. In Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation
and Control, 8th International Workshop, HSCC 2005, volume LNCS 3414, pages 386–401,
Berlin Heidelberg, March 9-11 2005. Springer-Verlag GmbH.

10. K.-K. Lau, Perla I. Velasco, and Zheng Wang. Exogenous connectors for components.
In Eighth International SIGSOFT Symposium on Component-based Software Engineering
(CBSE’05), May 2005.

11. Kung-Kiu Lau and Zheng Wang. A survey of software component models. Survey CSPP-30,
The University of Manchester, Manchester, UK, April 2005.

12. Antnia Lopes, Michel Wermelinger, and Jos Luiz Fiadeiro. Higher-order architectural con-
nectors. ACM Trans. Softw. Eng. Methodol., 12(1):64–104, 2003.

13. Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a taxonomy of software
connectors. In ICSE, pages 178–187, 2000.

14. Microsoft. Data access development overview: within the Microsoft Enterprise Devel-
opment Platform. Microsoft Enterprise Development Strategy Series. Microsoft, http://
msdn.microsoft.com/netframework/technologyinfo/entstrategy/default.aspx, March 2005.

15. Richard Monson-Haefel. Enterprise JavaBeans. O’Reilly, Farnham ; Sebastopol, Calif., 4th
ed. edition, 2004.

16. OMG. CORBA Component Model, V3.0. Object Management Group, http://www.omg.org/
docs/formal/02-06-69.pdf, 2002.

17. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, 1996.

18. Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead Jr., Ja-
son E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. A component- and
message-based architectural style for GUI software. Software Engineering, 22(6):390–406,
1996.

19. Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The koala
component model for consumer electronics software. IEEE Computer, 33(3):78–85, 2000.

Virtualization of Service Gateways in
Multi-provider Environments

Yvan Royon, Stéphane Frénot, and Frédéric Le Mouël

INRIA Ares - CITI Lab - INSA Lyon
Bat. Leonard de Vinci, 69621 Villeurbanne cedex, France

{yvan.royon, stephane.frenot, frederic.le-mouel}@insa-lyon.fr

Abstract. Today we see more and more services, such as entertainment
or home automation, being brought to connected homes. These services
are published and operated by a variety of service providers. Currently,
each provider sells his own box, providing both connectivity and a closed
service environment. The open service paradigm aims at mixing all ser-
vices within the same box, thus opening the service delivery chain for
home users. However, open service gateways still lack important mech-
anisms. Multiple service providers can access and use the same gateway
concurrently. We must define what this use is, i.e. we must define a notion
of user. Also, service providers should not interfere with each other on
the gateway, except if explicitly required. In other words, we must isolate
services from different providers, while still permitting on-demand collab-
oration. By combining all these mechanisms, we are defining a multi-user,
multi-service execution environment, which we call a virtualized service
gateway. We implement part of these features using OSGi technology.1

Keywords: Virtual gateway, multi-user, service-oriented programming.

1 Introduction

During the last years, high speed connectivity to the home has evolved at a
very fast pace. Yesterday, home network access consisted in bringing IP connec-
tivity to the home. The services made available were common application-level
programs, such as web or e-mail clients. Today, the operators are moving to
integrating value-added services in their offer, mainly multicast TV and Voice
over IP. These network-enabled services are provided by the same connectivity
box, or by a dedicated set-top box. It is foreseen that in the next few years, both
the number and the quality of available services will increase drastically: home
appliances, entertainment, health care. . . However, these services would be de-
veloped, maintained and supervised by other parties, for instance respectively
whitegoods manufacturers, the gaming industry, and hospitals. Until today, the
entire service chain and the delivery infrastructure, including the home gateway,
are under the control of a single operator. Emerging standards push towards
open solutions that enable both integration and segmentation of various mar-
kets such as connectivity, entertainment, security, or home automation. This
1 This work was partially supported by the IST-6thFP-507295 MUSE Project.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 385–392, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

386 Y. Royon, S. Frénot, and F. Le Mouël

approach implies that, on the single access point that connects the home net-
work to the internet (i.e. the home gateway), many service vendors are each able
to deploy and manage several services.
Current and ongoing service platform efforts enable multi-party service provi-
sioning, but they still lack strong concepts and mechanisms to completely sup-
port it. In particular, no isolation of services that belong to different parties has
been defined.

We propose an isolation of services, depending upon which party, or user,
deploys, manages and owns them. Consequently, we also define the notion of
user in this context. By isolation, we mean that a service provider should only
be able to “see” her own services on the common service platform. We represent
this as a virtual service gateway. Each service provider owns and manages his
own virtual gateway and the services it runs. All virtual gateways are run and
managed by a unique core service gateway, typically hosted inside the home
gateway (physical box), and operated by the home gateway provider.

The paper is structured as follows. Section 2 describes ongoing works on multi-
application Java environments. Section 3 defines the notion of virtual service
gateway in this context. Section 4 explains how we implement these concepts on
top of OSGi. Finally, section 5 discusses and concludes the article.

2 Multi-application Java Environments

This paper focuses on Java-based environments. Java applications are
architecture- and OS-agnostic, which is an interesting feature when using very
diverse hardware platforms (e.g. home gateways). Also, Java Virtual Machines
are available and already deployed on lots of architectures, which range from
enterprise servers through PCs to mobile phones. Reusing the existing software
base is a key to technology acceptance. The main alternative to Java is Mi-
crosoft’s .NET. Our main concern with .NET is the lack of unloading facilities
for assemblies. This would cause the environment to grow huge if applications
were often updated. Therefore, in this section, we examine solutions to make
the JVM a multi-application environment, which is essential for an open service
gateway.

2.1 Current Java Environments

A standard Java Virtual Machine is a multi-thread but mono-application envi-
ronment (figure 1). In order to run two applications, two JVMs are launched.
In this case, the applications run independently, i.e. if they need to collaborate,
they must access the operating system’s communication facilities (e.g. TCP/IP
network stack, file system. . .). We can see that the problems with this solution
are both the overhead from running two JVMs, and the inefficiency of commu-
nications, even though there are proposals to limit these [1].

There are two kinds of responses to these insufficiencies: bringing multi-
application capabilities to the JVM, or using an overlay on top of the JVM,
e.g. a J2EE or similar application server.

Virtualization of Service Gateways in Multi-provider Environments 387

2.2 Multi-application Java Environments

• Sun’s Multi-tasking Virtual Machine [2] (figure 2), for instance, runs several
Java applications, called isolates, in the same Java environment. Isolates share
class representation, so that only static fields are duplicated. Applications are
instrumented using a resource management interface, for heap memory manage-
ment in particular.

• Rival proposals are Java operating systems [3] [4]. These mix the JVM with
the operating system layer, and often come with multi-process capabilities.

• A last option is to add multi-application-like functionalities using an overlay
on top of the JVM (figure 3). The overlay is the single application that runs in the
JVM, but it allows several pseudo-applications to run concurrently on top of it.

Fig. 1. Mono-application Fig. 2. Multi-task Fig. 3. Multi-service

2.3 Isolation Terminology

The term “isolation” may imply several kinds of mechanisms. We attempt here
to basically classify them.

• The first family of mechanisms is namespace isolation. A namespace is a
context for identifiers, and, in our case, for applications or services. Applications
in different namespaces cannot “see” each other: this is an access right enforce-
ment. With Java technology, this namespace isolation may be achieved through
the use of classloaders, or more advanced loading facilities such as the Module
Loader [5] or MJ [6].

• The second family of isolation mechanisms concerns low-level resources. In
a resource-isolated environment, applications are supposed to be protected from
one another. For instance, schedulers provided by operating systems allocate
CPU slots for applications according to their priority. Recent Linux kernels also
endorse out-of-memory kills, i.e. if a process endangers the whole system using
too much memory, it gets killed. Such memory protection can be qualified as
a reactive mechanism, versus proactive mechanisms. An example of a proactive
mechanism would be Xen’s hypervisor [7].

There are two ways to combine namespace isolation and resource isolation.
The first one is to complete namespace isolation with reactive resource isola-
tion, for instance by checking specific constraints such as CPU usage [8]. The
second one is to build a combination of proactive, strong resource isolation and
namespace isolation through the use of different virtualization techniques. Pro-
posals such as Xen [7] or Denali [9] run multiple lightweight or full-featured

388 Y. Royon, S. Frénot, and F. Le Mouël

operating systems on the same machine. Other attempts, such as Java isolates,
provide an isolation API for Java applications.

2.4 Our Goals

The advantages of a modified runtime are performance (communications, mem-
ory sharing) and resource isolation (see below). Inversely, the advantages of
overlays are their usability on any standard JVM, and their ease of development
through their level of abstraction. Table 1 summarizes this comparison.

Table 1. Summary of Multi-application Java Environments

Namespace Resource Performance Uses a Easiness of
isolation isolation optimizations standard JVM integration2

Modified JRE yes yes yes no intrusive
Overlay no no no yes effortless

Our goal in this paper is to define a multi-user, service-oriented Java environ-
ment, without modifying the standard Java Runtime Environment. This implies
that we use an overlay. Our contribution is divided in two steps: first we add
namespace isolation to the overlay solution, then, we add a definition of users.

3 Towards a Multi-user, Service-Oriented Environment

In this section, we evoke the notion of service-orientation and its benefits. We
then detail the terms multi-user, through the definition of core and virtual service
gateways. We explain on one hand how they should be isolated, and on the other
hand when and how they should be able to cooperate.

3.1 Service-Oriented Programming

For clarification, the term “service” in this paper refers to Service-Oriented Pro-
gramming (SOP). SOP is based on Object-Oriented Programming, which relies
on ideas such as encapsulation, inheritance and polymorphism. SOP addition-
ally states that elements (e.g. components) collaborate through behaviors. These
behaviors, also called services or interfaces, allow to separate what must be done
(the contract) from how it is done (its implementation) [10].

Some service-oriented solutions, such as Web Services, deal with the interop-
erability in communications, and are referred to as Service-Oriented Architec-
tures. By contrast, SOP environments such as the OSGi Service Platform [11]
and Openwings are centered on the execution environment, which is the focus
of this paper.
2 Easiness of integration means the easiness of developing the environment itself, using

it, and developing applications for it.

Virtualization of Service Gateways in Multi-provider Environments 389

3.2 Namespace Isolation

Core and Virtual Gateways. A core service gateway is a software element,
managed by an operator. It makes resources available in order to run services.
Such resources, physically supplied by the underlying hardware (i.e. the home
gateway), include CPU cycles, memory, hard disk storage, network bandwidth,
and optionally standard services (e.g. logging, HTTP connectivity). The gate-
way operator grants service providers access to these resources. This access is
symbolized by a virtual service gateway, and provides a namespace isolation.
Figure 4 illustrates this architecture.

Fig. 4. Multi-service, namespace-isolated environment

Service cooperation. In an isolated, multi-application environment, applica-
tions are cloistered by default. However, they still should be able to cooperate on
demand. In resource isolated environments, they cooperate through data com-
munications. They either use standard OS facilities (e.g. sockets, IPCs, filesys-
tem), or dedicated facilities (e.g. Links in the Java isolates API). By contrast,
in open, non-isolated service environments, applications pass references on ser-
vices (or interfaces). In an open, multi-service, multi-user, namespace-isolated
environment, this still must be possible if explicitly permitted. The framework
is then responsible for passing these references.

3.3 Multi-user Java Environment

The gateway operator, through the core service gateway, acts much like a Unix
root user. He allows users (service providers) to launch their shell or execu-
tion environment (their virtual service gateway). The core gateway also runs
services accessible to all users. However, contrary to Unix root users, the core
gateway does not have access to service gateways’ data, files, etc, since these
would belong to different, potentially competing companies. Figure 5 represents
the architecture with participating users.

The root user, i.e. the gateway operator, is responsible for the management
of the virtual gateways it runs. This management layer is structured around 4
activities. Lifecycle management provides a mean to start and stop virtual gate-
ways. Performance management provides information about the current status
of a gateway (a virtual gateway or the core gateway itself). Security management

390 Y. Royon, S. Frénot, and F. Le Mouël

Fig. 5. Multi-service, multi-user residential gateway

positions credentials and make security challenges with core and virtual gate-
ways. Finally, Accounting and Logging brings information about service usage
for each gateway.

Users, or service providers, access their virtual gateways through a remote
monitoring interface. According to the business model described in section 1,
each service provider is responsible for the bundles she deploys. This means that
service providers are encouraged to supervise their own services on their clients’
service gateways. Also, some business services may inherently need remote mon-
itoring: health care, home automation.

4 Implementation

4.1 OSGi and Virtualized OSGi

The service-oriented overlay we use for our prototype implementation is the
OSGi Service Platform [11]. The OSGi specification defines a service-oriented
API (figure 3), deployment units (components called bundles), and a container
(the service platform) which guarantees dependencies resolution for hosted
components.

In order to create virtual gateways, we launch several OSGi gateway instances
from within a core OSGi instance (figure 4). The core gateway also instruments
and manages virtual gateways. This solution allows us to create a straightforward
matching with the concepts of root user and users detailed above.

4.2 Service Isolation

The advantages of running several service gateway instances inside a single core
gateway instance are quite immediate. Each service gateway can only access
OSGi bundles and services it directly hosts. The core gateway itself does not see
the hosted virtual gateways, but only a management agent that allows their life
cycle management. This is a straightforward way to enforce namespace isolation.

Each service provider sees his own virtual gateway as if it was a standard OSGi
service platform. Therefore, at deployment time, standard OSGi deployment
schemes come in action. At runtime, namespace isolation is provided through a
hierarchy of classloaders. Each deployed component (i.e. OSGi bundle) comes

Virtualization of Service Gateways in Multi-provider Environments 391

with its own classloader, which delegates to its service gateway’s classloader [12].
This way, by default, services from different providers (i.e. running in different
virtual service gateways) are in different namespaces.

4.3 Service Cooperation

The core service gateway can provide services to its virtual service gateways.
Currently, a static list of shared services and implementations is passed from the
core gateway to virtual gateways. Each virtual gateway then needs to internally
publish these shared services, so that its own services may access them. A more
dynamic solution is planned, but not yet implemented.

4.4 Performance

We chose to run several OSGi Framework instances inside a core Framework
instance. The main drawback to this approach is that it induces a resource
consumption overhead. We ran a first set of performance tests on a standard
Pentium IV PC, using a Gentoo Linux operating system, and Sun’s JDK 1.5
with standard parameters (e.g. initial memory allocation pool). Our measures
compare a vanilla Oscar 1.0.5 gateway with a core gateway that runs six virtual
gateways, each launching a standard set of bundles. After 24 hours, we observe
an overall 33% increase in memory use within the JVM’s pre-allocated mem-
ory pool. This corresponds to a 2.9 MB consumption overhead. More thorough
benchmarks are planned and under progress.

4.5 Available Code

We provide an OSGi bundle2 that allows to start and stop virtual OSGi in-
stances. The project, called vosgi for Virtual OSGi, has been tested on patched
versions of both ObjectWeb’s Oscar3 and Apache’s Felix4 open source implemen-
tations of the OSGi Service Platform specifications. The management activities
expressed in section 3 are enabled through a JMX architecture [13] called mosgi
(for Managed OSGi).

5 Discussion and Conclusion

In this paper, we have proposed a first step toward a multi-user, service-oriented
execution environment. It can target the same markets as OSGi service plat-
forms (mobile phones, vehicles, home gateways. . .), while improving isolation
and management.

Since we use a standard Java virtual machine as the lower layer, our best
option for service provider separation is to provide a namespace isolation. If
we want to go further into resource isolation, we need a JVM and an operating
2 Available at http://ares.inria.fr/~sfrenot/devel/ under the CeCILL open

source licence.
3 http://oscar.objectweb.org/
4 http://incubator.apache.org/felix/

392 Y. Royon, S. Frénot, and F. Le Mouël

system that provides such a functionality. For instance, we could provide a multi-
user environment on top of real-time virtual machines. But these are not available
on a large scale yet, and they are not aimed at this ”in-the-middle” market
(neither embedded nor high-end PCs).

The proposed multi-user environment currently has two main alternatives.
The first one is the multi-tasking virtual machine, and the second one is the use
of ”standard” operating systems (e.g. Linux, Windows).

From the MVM point of view, Sun’s team works on mapping OS-level users
rights within the JVM [14]. This project is aimed at big server systems that
host many users and applications (SPARC/Solaris). Inversely, our approach is
focused on embedded systems, using standard JREs. Also, we believe that coop-
eration through service sharing, or interface sharing, is a better abstraction for
developers than data sharing (Link objects between isolates).

Compared to standard operating systems, we assume that a service-oriented
approach is a real improvement over “classical” C programming. We argue that
both layers (Java and service orientation) are beneficial to service development
for the targeted market. It enables many advantages (code structure, code hot-
plugging. . .) with only few drawbacks (mainly startup time).

References

1. Czajkowski, G., Daynès, L., Nystrom, N.: Code sharing among virtual machines.
ECOOP (2002)

2. Czajkowski, G., Daynès, L.: Multitasking without comprimise: a virtual machine
evolution. In: OOPSLA, New York, NY, USA, ACM Press (2001) 125–138

3. Golm, M., Felser, M., Wawersich, C., Kleinoeder, J.: The JX operating system. In:
USENIX. (2002) 45–58

4. Prangsma, E.: JNode. (http://jnode.sourceforge.net)
5. Hall, R.S.: A Policy-Driven Class Loader to Support Deployment in Extensible

Frameworks. In: Component Deployment, Edinburgh, UK. (2004) LNCS 3083, pp.
81 - 96.

6. J. Corwin, D.F. Bacon, D.G., Murthy, C.: MJ: a Rational Module System for Java
and its Applications. In: (OOPLSA. (2003) pp. 241-254.

7. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP. (2003)

8. Yamasaki, I.: Increasing robustness by code instrumenting: Monitoring and man-
aging computer resource usage on OSGi frameworks. OSGi World Congress (2005)

9. Whitaker, A., Shaw, M., Gribble, S.: Denali: Lightweight virtual machines for
distributed and networked applications (2002)

10. Bieber, G., Carpenter, J.: Introduction to service oriented programming.
http://www.openwings.org (2001)

11. The OSGi Alliance: OSGi Service Platform. 4th edn. IOS Press (2005)
12. Liang, S., Bracha, G.: Dynamic class loading in the Java virtual machine. In:

OOPSLA. (1998) pp. 36–44
13. Fleury, E., Frénot, S.: Building a JMX management interface inside OSGi. Tech-

nical report, Inria RR-5025 (2003)
14. Czajkowski, G., Daynès, L., Titzer, B.: A Multi-User Virtual Machine. In: Usenix.

(2003) pp. 85–98

Author Index

Ali, Nour 123
Almeida, Eduardo Santana de 82
Angelov, Christo 206
Attie, Paul C. 33
Avrunin, George S. 98

Barbier, Franck 344
Bastide, Gautier 368
Bay, Till G. 182
Bondarev, Egor 254
Bouraqadi, Noury 360
Browne, James C. 50

Cangussu, João W. 67
Carśı, Jose A. 123
Cervantes, Humberto 198
Charleston-Villalobos, Sonia 198
Chaudron, Michel 254
Chockler, Hana 33
Chong, Kiwon 328
Clarke, Lori A. 98
Cooper, Kendra C. 67
Coupaye, Thierry 139
Crnkovic, Ivica 222

De Fraine, Bruno 114
De Jans, Gregory 238
De Turck, Filip 238
de With, Peter 254
Dhoedt, Bart 238
Duchien, Laurence 139
Durão, Frederico Araujo 82

Eugster, Patrick 182

Flemström, Daniel 222
Fleurquin, Régis 294
Fortes, Renata Pontin de Mattos 82
Frénot, Stéphane 385

Garcia, Vinicius Cardoso 82
Gielen, Frank 238
Goeminne, Nico 238
Grassi, Vincenzo 270
Grondin, Guillaume 360

Hamlet, Dick 320
Happe, Jens 336
Hnětynka, Petr 352

Jalote, Pankaj 310

Kadri, Reda 154
Kim, Juil 328
Koziolek, Heiko 336
Kucharenka, Alena 285

Lau, Kung-Kiu 1, 376
Le Mouël, Frédéric 385
Lee, Kwangyong 328
Lee, Woojin 328
Lorenz, David H. 33
Lucrédio, Daniel 82
Lüders, Frank 222
Lumpe, Markus 17

Ma, Jinpeng 206
Marian, Nicolae 206
Mauran, Philippe 166
Meira, Silvio Romero de Lemos 82
Merciol, François 154
Mirandola, Raffaela 270
Munshi, Rajesh 310
Murphy, Liam 285

Oriol, Manuel 182
Oussalah, Mourad 368

Padiou, Gérard 166
Pérez, Jennifer 123
Pessemier, Nicolas 139
Plášil, Frantǐsek 352
Portnova, Aleksandra 33
Probsting, Todd 310

Ramos, Isidro 123
Royon, Yvan 385

Sabetta, Antonino 270
Sadou, Salah 154, 294
Santos, Eduardo Cruz Reis 82
Seinturier, Lionel 139
Seriai, Abdelhak 368

394 Author Index

Sierszecki, Krzysztof 206
Suvée, Davy 114

Taweel, Faris M. 376
Thi, Xuan Loc Pham 166
Tibermacine, Chouki 294

Ufimtsev, Alexander 285
Ukis, Vladyslav 1

Vanderperren, Wim 114
Vercouter, Laurent 360

Wall, Anders 222
Wang, Shangzhu 98
Wong, Eric W. 67

Xie, Fei 50

	Frontmatter
	Full Papers
	Defining and Checking Deployment Contracts for Software Components
	GLoo: A Framework for Modeling and Reasoning About Component-Oriented Language Abstractions
	Behavioral Compatibility Without State Explosion: Design and Verification of a Component-Based Elevator Control System
	Verification of Component-Based Software Application Families
	Multi Criteria Selection of Components Using the Analytic Hierarchy Process
	From Specification to Experimentation: A Software Component Search Engine Architecture
	Architectural Building Blocks for Plug-and-Play System Design
	A Symmetric and Unified Approach Towards Combining Aspect-Oriented and Component-Based Software Development
	Designing Software Architectures with an Aspect-Oriented Architecture Description Language
	A Component Model Engineered with Components and Aspects
	CBSE in Small and Medium-Sized Enterprise: Experience Report
	Supervising Distributed Black Boxes
	Generic Component Lookup
	Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture
	A Formal Component Framework for Distributed Embedded Systems
	A Prototype Tool for Software Component Services in Embedded Real-Time Systems
	Service Policy Enhancements for the OSGi Service Platform
	A Process for Resolving Performance Trade-Offs in Component-Based Architectures
	A Model Transformation Approach for the Early Performance and Reliability Analysis of Component-Based Systems
	Impact of Virtual Memory Managers on Performance of J2EE Applications
	On-Demand Quality-Oriented Assistance in Component-Based Software Evolution
	Components Have Test Buddies

	Short Papers
	Defining ``Predictable Assembly''
	A Tool to Generate an Adapter for the Integration of Web Services Interface
	A QoS Driven Development Process Model for Component-Based Software Systems
	An Enhanced Composition Model for Conversational {\itshape Enterprise JavaBeans}
	Dynamic Reconfiguration and Access to Services in Hierarchical Component Models
	{\sc MaDcAr}: An Abstract Model for Dynamic and Automatic (Re-)Assembling of Component-Based Applications
	Adaptation of Monolithic Software Components by Their Transformation into Composite Configurations Based on Refactoring
	Towards Encapsulating Data in Component-Based Software Systems
	Virtualization of Service Gateways in Multi-provider Environments

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

