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Preface

On behalf of the Organizing Committee I am pleased to present the proceedings of the
2006 Symposium on Component-Based Software Engineering (CBSE). CBSE is
concerned with the development of software-intensive systems from reusable parts
(components), the development of reusable parts, and system maintenance and
improvement by means of component replacement and customization. CBSE 2006
was the ninth in a series of events that promote a science and technology foundation
for achieving predictable quality in software systems through the use of software
component technology and its associated software engineering practices.

We were fortunate to have a dedicated Program Committee comprising 27
internationally recognized researchers and industrial practitioners. We received 77
submissions and each paper was reviewed by at least three Program Committee
members (four for papers with an author on the Program Committee). The entire
reviewing process was supported by Microsoft’s CMT technology. In total, 22
submissions were accepted as full papers and 9 submissions were accepted as short
papers.

This was the first time CBSE was not held as a co-located event at ICSE. Hence
special thanks are due to Ivica Crnkovic for hosting the event. We also wish to thank
the ACM Special Interest Group on Software Engineering (SIGSOFT) for their
sponsorship of CBSE 2005. The proceedings you now hold were published by
Springer and we are grateful for their support. Finally, we must thank the many
authors who contributed the high-quality papers contained within these proceedings.
As the international community of CBSE researchers and practitioners continues to
prosper, we expect the CBSE Symposium series to similarly attract widespread
interest and participation.

May 2006 Ian Gorton
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Defining and Checking Deployment Contracts
for Software Components

Kung-Kiu Lau and Vladyslav Ukis

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom
{kung-kiu, vukis}@cs.man.ac.uk

Abstract. Ideally in the deployment phase, components should be composable,
and their composition checked. Current component models fall short of this ideal.
Most models do not allow composition in the deployment phase. Moreover, cur-
rent models use only deployment descriptors as deployment contracts. These
descriptors are not ideal contracts. For one thing, they are only for specific con-
tainers, rather than arbitrary execution environments. In any case, they are
checked only at runtime, not deployment time. In this paper we present an ap-
proach to component deployment which not only defines better deployment con-
tracts but also checks them in the deployment phase.

1 Introduction

Component deployment is the process of getting components ready for execution in a
target system. Components are therefore in binary form at this stage. Ideally these bi-
naries should be composable, so that an arbitrary assembly can be built to implement
the target system. Furthermore, the composition of the assembly should be checked so
that any conflicts between the components, and any conflicts between them and the
intended execution environment for the system, can be detected and repaired before
runtime. This ideal is of course the aim of CBSE, that is to assemble third-party bina-
ries into executable systems. To realise this ideal, component models should provide
composition operators at deployment time, as well as a means for defining suitable
deployment contracts and checking them.

Current component models fall short of this ideal. Most models only allow compo-
sition of components in source code. Only two component models, JavaBeans [7] and
the NET component model [6, 20], support composition of binaries. Moreover, current
models use only deployment descriptors as deployment contracts [1]. These descriptors
are not ideal contracts. They do not express contracts for component composition. They
are contracts for specific containers, rather than arbitrary execution environments. In
any case, they are checked only at runtime, not deployment time.

Checking deployment contracts at deployment time is advantageous because they es-
tablish component composability, and thus avoid runtime conflicts. Moreover, they also
allow the assembly to be changed if necessary before runtime. Furthermore, conflicts
due to incompatibilities between components and the target execution environment of
the system into which they are deployed can be discovered before runtime.

In this paper we present an approach to component deployment which not only de-
fines better contracts but also checks them in the deployment phase. It is based on a

1. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 1-16, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 K.-K. Lau and V. Ukis

pool of metadata we have developed, which components can draw on to specify their
runtime dependencies and behaviour.

2 Component Deployment

We begin by defining what we mean by component deployment. First, we define a ‘soft-
ware component’ along the lines of Szyperski [24] and Heinemann and Councill [10],
viz. ‘a software entity with contractual interfaces and contextual dependencies, defined
in a component model’.!

Our definition of component deployment is set in the context of the component life-
cycle. This cycle consists of three phases: design, deployment and runtime (Fig. 1).

Runtime
CE
Fig. 1. Software component lifecycle

In the design phase, a component is designed and implemented in source code, by
a component developer. For example, to develop an Enterprise JavaBean (EJB) [18]
component in the design phase, the source code of the bean is created in Java, possibly
using an IDE like Eclipse. A component in this phase is not intended to run in any
particular system. Rather, it is meant to be reusable for many systems.

In the deployment phase, a component is a binary, ready to be deployed into an
application by a system developer. For example, in the deployment phase, an EJB is a
binary “.class” file compiled from a Java class defined for the bean in the design phase.

For deployment, a component needs to have a deployment contract which specifies
how the component will interact with other components and with the target execution
environment. For example, in EJB, on deployment, a deployment descriptor describing
the bean has to be created and archived with the “.class” file, producing a “jar” file,
which has to be submitted to an EJB container.

An important characteristic of the deployment phase is that the system developer
who deploys a component may not be the same person as the component developer.

In the runtime phase, a component instance is created from the binary component and
the instantiated component runs in a system. Some component models use containers
for component instantiation, e.g. EJB and CCM [19]. For example, an EJB in binary
form as a “.class” file archived in a “jar” file in the deployment phase gets instantiated
and is managed by an EJB container in the runtime phase.

2.1 Current Component Models

Of the major current software component models, only two, viz. JavaBeans and the
.NET component model, allow composition in the deployment phase. To show this, we
first relate our definition of the phases of the component lifecycle (Fig. 1) to current
component models.

! Note that we deal with components obeying a component model and not with COTS [2].
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Category 1: EJB, COM, CCM, Category 2: JavaBeans Category 3: .NET Component Model
Koala, SOFA, KobrA, ADLs,
UML2.0, PECOS, Pin, Fractal

Fig. 2. Current component models

Current component models can be classified according to the phases in which com-
ponent composition is possible. We can identify three categories [16] as shown in Fig. 2.

In the first category, composition (denoted by the small linking box) happens only at
design time. The majority of current models, viz. EJB, COM [3], CCM,ADLs (archi-
tecture description languages) [22],2 etc. fall into this category. For instance, in EJB, the
composition is done by direct method calls between beans at design time. An assem-
bly done at design time cannot be changed at deployment time, and gets instantiated at
runtime into executable instances (denoted by InsA, InsB.)

In the second category, composition happens only at deployment time. There is only
one model in this category, viz. JavaBeans. In JavaBeans, Java classes for beans are de-
signed independently at design time. At deployment time, binary components (““.class”
files) are assembled by the BeanBox, which also serves as the runtime environment for
the assembly. Java beans communicate by exchanging events. The assembly is done at
deployment time by the BeanBox, by generating and compiling an event adapter class.

In the third category, composition can happen at both design and deployment time.
The sole member of this category is the .NET component model. In this model, compo-
nents can be composed as in Category 1 at design time, i.e. by direct method calls. In
addition, at deployment time, components can also be composed as in Category 2. This
is done by using a container class, shown as a rectanglular box with a bold border. The
container class hosts the binary components (““.dll” files) and can make direct method
calls into them.

Finally, current component models target either the desktop or the web environment,
except for the NET component model, which is unified for both environments. Having
a component model that allows components to be deployed into both desktop and web
environments enhances the applicability of the component model.

2.2 Composition in the Deployment Phase

Composition in the deployment phase can potentially lead to faster system development
than design time composition, since binary components are bought from component
suppliers and composed using (ideally pre-existing) composition operators, which can
even be done without source code development. However, composition at component
deployment time poses new challenges not addressed by current component models.
These stem mainly from the fact that in the design phase, component developers design

2 In C2 [17] new components can be added to an assembly at deployment time since C2 com-
ponents can broadcast events; but new events can only be defined at design time.
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Runtime
InsA InsB

o= r—----- |
|
|
|

|
w) TMI | ) TM2
L BT
4§ 4ED1. 1f  fED2
Execution Environment Execution Environment

TM = Threading model
ED = Environmental "
dependencies Is the assembly conflict—free?

Fig. 3. Composition in deployment phase

and build components (in source code) independently. In particular, for a component,
they may (i) choose any threading model; and (ii) define dependencies on the execution
environment. This is illustrated by Fig. 3.

A component may create a thread inside it, use some thread synchronisation mech-
anisms to protect some data from concurrent access, or not use any synchronisation
mechanisms on the assumption that it will not be deployed into an environment with
concurrency.

Also each component supplier may use some mechanisms inside a component that
require some resources from the system execution environment, thus defining the com-
ponent’s environmental dependencies. For instance, if a component uses socket com-
munication, then it requires a network from the execution environment. If a component
uses a file, then it requires file system access. Note that component suppliers do not
know what execution environments their components will be deployed into.

In the deployment phase, the system developer knows the system he is going to build
and the properties of the execution environment for the system. However, he needs to
know whether any assembly he builds will be conflict-free (Fig. 3), i.e. whether (i) the
threading models in the components are compatible; (ii) their environmental dependen-
cies are compatible; (iii) their threading models and environmental dependencies are
compatible with the execution environment; and (iv) their emergent assembly-specific
properties are compatible with the properties of the execution environment if compo-
nents are to be composed using a composition operator. The system developer needs to
know all this before the runtime phase. If problems are discovered at runtime, the sys-
tem developer will not be able to change the system. By contrast, if incompatibilities are
found at deployment time, the assembly can still be changed by exchanging components.

By the execution environment we mean either the deskfop or the web environment,
and not a container (if any) for components. These two environments are the most wide-
spread, and differ in the management of system transient state and concurrency. Since
the component developer does not know whether the components will be deployed on
a desktop or a web server, the system developer has to check whether the components
and their assembly are suitable to run in the target execution environment.

2.3 Deployment Contracts

Deployment contracts express dependencies between components, and between them
and the execution environment. As shown in [1], in most current component mod-
els a deployment contract is simply the interface of a component. In EJB and CCM,
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% %\
Execution Environment Execution Environment

DD = Deployment descriptor ? = Deployment contract

Fig. 4. Deployment contracts

deployment contracts are deployment and component descriptors respectively. As
shown in Fig. 4, a deployment (or component) descriptor contractualises the manage-
ment of a component by a container. However, the information about components inside
the descriptors is not used to check whether components are compatible. Nor is it used
to check whether a component can be deployed in an execution environment.

By contrast, our approach aims to check conflicts between components; and, in the
presence of a component container, between the container and the execution environ-
ment; in the absence of a container, between components and the execution environ-
ment. This is illustrated by Fig. 4, where the question marks denote our deployment
contracts, in the presence or absence of containers.

We can also check our deployment contracts, so our approach addresses the challenge
of deployment time composition better than existing component models that allow de-
ployment time composition, viz. the. NET component model and JavaBeans. In the .NET
component model, no checking for component compatibilities is done during deploy-
ment. In JavaBeans, the BeanBox into which beans are deployed, is deployed on the
desktop environment, and it checks whether beans can be composed together by check-
ing whether events emitted by a source bean can be consumed by the target bean, by
matching event source with event sink. However, this check is not adequate with regard
to threading models and environment dependencies, as shown by the following example.

Example 1. Consider a Java bean that creates a thread inside itself to perform some
long-running task in the background and sends an event to another bean from within
that thread. The target bean may have problems. For example, if the target bean makes
use of a COM component that requires a single-threaded apartment, and the bean is
invoked from different threads, the component assembly is bound to fail.

This shows that the threading model of the source bean, namely sending an event
from an internally created thread, and the environmental dependency of the target bean,
namely the use of the COM component requiring a single-threaded apartment, are in-
compatible. The assembly will fail at runtime even though the BeanBox’s check for
component (event) compatibility is passed.

3 Defining Deployment Contracts

In this section we discuss how we define suitable deployment contracts. Our approach is
based on metadata about component environmental dependencies and threading mod-
els. To determine and create suitable metadata, we studied the two most comprehensive,
operating system-independent frameworks [9] for component development: J2EE [23]
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and .NET Framework [25]. In particular, we studied the core APIs of these two frame-
works in order to identify where and how a component can incur environmental de-
pendencies and influences on its threading model. The comprehensiveness and wide
application of these frameworks should imply the same for the metada we create. We
define deployment contracts using these metadata® as attributes that the component de-
veloper is obliged to attach to components he develops.

3.1 Environmental Dependencies

A component incurs an environmental dependency whenever it makes use of a resource
offered by the operating system or the framework using which it is implemented. For
each resource found this way we created an attribute expressing the semantics of the
environmental dependency found. Each attribute has defined parameters and is there-
fore parameterisable. Moreover, each attribute has defined attribute targets from the
set {component, method, method’s parameter, method’s return value, property}. An
attribute target defines the element of a component it can be applied to.

To enable a developer to express resource usage as precisely as possible, we allow
each attribute to have (a subset of) the following parameters: 1) ‘UsageMode’: {Create,
Read, Write, Delete} to indicate the usage of the resource. Arbitrary combinations of
values in this set are allowed. However, here we assume that inside a component, cre-
ation, if specified, is always done first. Also, deletion, if specified, is always done last;
2) ‘Existence’: {Checked, Unchecked} to indicate whether the component checks for
existence of a resource or makes use of it assuming it is there; 3) ‘Location’: {Local,
Remote} to indicate whether a resource required by component is local on the machine
the component is deployed to or is remote; 4) ‘UsageNecessity’: { Mandatory, Optional }
to indicate whether a component will fail to execute or will be able to fulfil its task if
the required resource is not available.

Meaningful combinations of the values of these parameters allow an attribute to ap-
pear in different forms (120 for an attribute with all 4 parameters) which have to be
analysed differently.

In addition to these four parameters, any attribute may have other parameters specific
to a particular environmental dependency. For instance, consider an attribute on a com-
ponent’s method expressing an environmental dependency to a COM component shown
in Fig. 5. (Such a component was used in Example 1.) The component has a method
“Method2” that has the attribute “UsedCOMComponent” attached. The attribute has
(1) shows the COM GUID used by the component; (2) says that three parameters:

public class B
{ [UsedCOMComponent(''DC577003-3436-470c—8161-EA9204B11EBF", 1)

COMA ppartmentModel.Singlethreaded, ?2)
UsageNecessity.Mandatory)] A3)

}public void Method2(...) {...}

Fig. 5. A component with an environmental dependency

3 A full list and details can be found in [14].
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Table 1. Categories of resource usage and component developer’s obligations

1 Usage of an operating-system resource. For instance: Files, Directories, Input/Ouput Devices
like Printers, Event Logs, Performance Counters, Processes, Residential Services,
Communication Ports and Sockets.

2 Usage of a resource offered by a framework. For instance: Application and Session State
storages offered by J2EE and .NET for web development, Communication Channels to
communicate with remote objects.

3 Usage of a local resource. For instance: Databases, Message Queues and Directory
Services.

4 Usage of a remote resource. For instance: Web Services or Web Servers, Remote Hosts,
and resources from Category 3 installed remotely.

5 Usage of a framework. For instance: DirectX or OpenGL.

6 Usage of a component from a component model. For instance: a Java Bean using a COM
component via EZ JCOM [8] framework.

the used COM component requires a single-threaded environment; (3) says that the
usage of the COM component is mandatory. Furthermore, implicitly the attribute says
that the component requires access to a file system as well as Windows Registry since
COM components have to be registered there with GUID.

We have analysed the pool of attributes we have created, and as a result we can define
categories of resource usage for which the component developer is obliged to attach the
relevant attributes to their component’s elements. The categories are shown in Table 1:

Using binary components with relevant attributes from the categories in Table 1, it
is possible at deployment time to detect potential conflicts based on contentious use of
resources from Table 1.

Finally, metadata about environmental dependencies can be used to check for mutual
compatibility of components in an assembly. For instance, if a component from an
assembly requires continuous access to a file in the file system in the write mode but
another component in the assembly also writes to the same file but creates it afresh
without checking whether it has existed before, the first component may lose its data
and the component assembly may fail to execute.

3.2 Threading Models

A component can create a thread, register a callback, invoke a callback on a thread [4, 5],
create an asynchronous method [11], make use of thread-specific storage [21] or access
a resource requiring thread-affine access,* etc. For each of these cases, we created an
attribute of the kind described in Section 3.1 expressing the semantics of the case.

For instance, consider an attribute expressing the creation of a thread by a compo-
nent shown in Fig. 6. (Such a component was used in Example 1.) The component
has a method “Method1” that has the attribute “SpawnThread” attached. The parameter
(1) indicates the number of threads spawned. If this method is composed with another
component’s method requiring thread affinity, the composition is going to fail.

* Thread-affine access to a resource means that the resource is only allowed to be accessed from
one and the same thread.
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ublic class A

[SpawnThread(1)] @
public void Method1(...) {...}
}

Fig. 6. A component with a defined threading model

Table 2. Categories of threading issues and component developer’s obligations

1 Existence of an asynchronous method.

2 Registration or/and invocation of a callback method.

3 Existence of reentrant or/and thread-safe methods.

4 Existence of component elements requiring thread-affine access.

5 Existence of Singletons or static variables.

6 Spawning a thread.

7 Usage of Thread-specific storage.

8 Taking as a method parameter of returning a synchronisation primitive.

‘We have analysed the pool of attributes we have created, and as a result we can define
categories of threading issues for which the component developer is obliged to attach
the relevant attributes to their components. These categories are shown in Table 2:

Using binary components with attributes from the categories shown in Table 2, it is
possible at component deployment time to detect potential conflicts based on inappro-
priate usage of threads and synchronisation primitives by components in an assembly.
It is also possible to point out potential deadlocks in a component assembly.

In total, for both environmental dependencies and threading models, we have created
a pool of about 100 metadata attributes>. Now we show an example of their use.

Example 2. Consider Example 1 again.The two incompatible Java beans are shown in
Fig. 7 with metadata attributes from Sections 3.1 and 3.2. Using these attributes we can
detect the incompatibility of the beans at deployment time.5

A B

Method1() Method2()
Desktop

Is the assembly conflict-free?

Fig.7. Example 1 using metadata attributes

In the design phase, The two beans are the ones in Figs. 5 and 6. In the deployment
phase, by performing an analysis of the metadata attributes attached to the compo-
nents, we can deduce that method “A.Method1()” invokes the method “B.Method2()”

5 In .NET Framework v2.0 there are about 200 attributes, but they are only checked at runtime.
% Note that this problem may also arise in other component models.
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on an internally created thread. Therefore, if method “A.Method1()” is invoked sev-
eral times, each time a new thread is created that makes an invocation of the method
“B.Method2()”. Therefore, the COM component used by method “B.Method2()” is not
going to be called from one thread and its requirement for a single threaded apartment
cannot be fulfiled in such composition of components A and B. Therefore, the system
developer can be warned not to do such composition.

Besides this, using a COM component requires use of a file system, where the com-
ponent resides, and Windows Registry, where it must be registered. The system de-
veloper can also be warned if these resources are unavailable in the system execution
environment.

Moreover, in Fig. 7 the components are deployed into the desktop environment. In
this environment, there is a guarantee that the main thread of the system is always
the same for the lifetime of a system instance. Therefore, the system developer need
not be warned that the execution environment may cause problems. Note that in the
web environment there is no guarantee for the thread affinity of the main thread. If the
assembly in Fig. 7 was deployed into the web environment, it would also fail since
the COM component used by the component B would be accessed by different threads
imposed by the web environment.

3.3 Implementing Retrievable Metadata

The attributes we have created must be retrievable at deployment time, i.e. they must be
retrievable from binaries. In this section, we explain how we implement them.

Our implementation draws on .NET’s facility for defining custom attributes’. A cus-
tom attribute in .NET is a class derived from the .NET’s class System.Attribute. An
example of an attribute from the attribute pool we have defined is shown below:

[AttributeUsage (AttributeTargets.Class |AttributeTargets.Method|
AttributeTargets.Property, AllowMultiple=true) ]
public class UsedWebService : System.Attribute ({
public UsedWebService(string url, string userName,
string pwd, UsageNecessity usageNecessity) {...} ... }

The attribute above is called ‘UsedWebService’. It has a constructor, which takes as
parameters the url to the web service, credentials used when accessing the web service
as well as whether the web service usage is mandatory for the component.

Furthermore, above the attribute declaration ‘public class UsedWebService : Sys-
tem.Attribute’, the usage of the attribute is specified by a .NET built-in attribute ‘At-
tributeUsage’ that indicates which elements of components the attribute is allowed to
be applied to, as well as whether multiple attributes can be applied to the same ele-
ment. Here the attribute ‘UsedWebService’ can be applied to either a whole class (we
model components as classes) or a component’s method or property. Here ‘AllowMul-
tiple=true’ means that the attribute ‘UsedWebService’ can be applied multiple times to
the same component element. That is, if a component makes use of several web ser-
vices, several ‘UsedWebService’ attributes can be applied to indicate the component’s
environmental dependencies.

7 In Java, Annotations can be used to express the metadata. However, they are somewhat less
flexible than .NET Attributes.



10 K.-K. Lau and V. Ukis

To retrieve attributes from a binary component, we use .NET’s Reflection facility
from System.Reflection namespace. For instance, to retrieve attributes at component
level, the following code is executed:

Type compType = Type.GetType (componentName) ; (1)
object[] attributes = compType.GetCustomAttributes (false); (ii)

(i) loads the component type from the binary component using component name in a
special format, and (ii) retrieves all the attributes attached to the component. Note that
no component instantiation has been done.

To retrieve attributes on component’s properties, the following code is executed:

Type compType = Type.GetType (componentName) ; (1)
foreach (PropertyInfo prop in compType.GetProperties()) (i)
{object[] attributes = prop.GetCustomAttributes(false);} (iii)

(i) loads the component type from the binary component, (ii) iterates through all the
properties inside the component, and (iii) retrieves all the attributes attached to the
current property.

Attributes attached to component’s methods, method’s parameters and return values
can be retrieved in a similar but more complicated manner.

Being able to retrieve the attributes at deployment time enables us to check deploy-
ment contracts before component instantiation at run time.

4 Checking Deployment Contracts

Given an assembly of components with deployment contracts and a chosen execution
environment in the deployment phase, as illustrated by Fig. 4, we can use the deploy-
ment contracts to determine whether the assembly is conflict-free. In this section we
explain how we do so.®

The checking process first loads the binary components, and then for each binary
retrieves the attributes at all levels (component, property, method, and method input
and return parameters). The checking task is then divided into 2 sub-tasks: (i) Analysis
of mutual compatibility of deployment contracts of components in the assembly with
respect to usage of resources in the assembly’s execution environment; (ii) Analysis of
mutual compatibility of deployment contracts of components in the assembly with re-
spect to their threading models in consideration of state and concurrency management
of assembly’s execution environment. Both sub-tasks consist of checking the deploy-
ment contracts involved. The results of the checking range over {ERROR, WARNING,
HINT} with the obvious meaning.

For (i), we perform the following: For each attribute at any level we determine re-
source(s) required in the execution environment. If a resource is not available in the
execution environment, an ERROR is issued.

Furthermore, we follow component connections in the assembly and consider how
resources are used by the individual components by evaluating attached attributes’

8 We present only an outline here.
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parameters. Once an attribute representing a resource usage is found on a component,
we follow the chain of components till another component with an attribute represent-
ing the usage of the same resource is found either at method or property or compo-
nent level. Once such a component is found, we check the “UsageMode” parameters
of the attributes on the two components for compatibility and issue ERROR, WARN-
ING or HINT depending on the parameters’ values. After that, we again follow the
chain of components till the next component with an attribute representing the usage
of the same resource is found and check the values of the parameter “UsageMode”
on corresponding attributes of the component and the previous one in the chain. This
process is repeated till all attributes representing resource usage on all components are
processed.

Moreover, specific parameters of each attribute are analysed and WARNINGs and
HINTS are issued if necessary. For instance, if attributes’ parameters indicate that com-
ponents in a component assembly use a database and not all components uniformly use
either encrypted or unencrypted database connection, a WARNING is issued.

Another example is usage of cryptography files. If a cryptography file is used, it
is hinted which cryptography algorithm has been used to create the certificate. This
information is useful to the system developer due to the fact the different cryptogra-
phy algorithms have different degrees of security and different processing times when
checked. Depending on system requirements a specific cryptography algorithm may or
may not be suitable.

A further example is represented by communication channels. If a communication
channel is used, it is hinted which communication protocol for data transfer and which
serialisation method for data serialisation is used. This information is used by the sys-
tem developer, who knows system requirements, to judge whether the component is
suitable for their system.

For (ii), we perform the following: We follow component connections in the assem-
bly to determine for each component if it is stateful or stateless, and multithreaded or
singlethreaded. This can be done by evaluating corresponding attributes on a compo-
nent. After that we determine if the assembly is stateful or stateless, and multithreaded
and singlethreaded depending on the components in the assembly. If at least one com-
ponent in the assembly is stateful, the assembly is stateful. Otherwise, it is stateless. If
at least one component in the assembly is multithreaded, the assembly is multithreaded.
Otherwise, it is singlethreaded.

Following this, we check whether state management of the assembly’s execution
environment is suitable for the assembly. Furthermore, we check whether concurrency
management of the assembly’s execution environment is suitable for the assembly. We
issue ERRORs, WARNINGS or HINTSs depending on the level of incompatibility.

Apart from that, if a component can repeatedly issue a callback to another one on an
internally created thread, and the callback method either requires thread-affine access;
or accesses component’s transient state in not read-only mode, or accesses a singleton
or a static variable, and no component element enclosing it is marked as reentrant or
thread-safe, an ERROR is issued pointing out a likely state corruption problem.

Moreover, if synchronisation primitives are exchanged between components, a
WARNING is issued pointing out a possible cause for a deadlock.
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5 Example

To illustrate the usefulness of deployment contracts we show how they can be applied
to a design pattern described in [4, 5]. The design pattern is for systems including one
component that loads data in the background and another one that displays the data.
Furthermore, while the data is being loaded in the background, the loading compo-
nent notifies the one displaying the data about the chunks of data already loaded. The
component displaying data can either display the chunks of data already loaded, thus
implementing so-called streaming, or just display a visualisation of it, e.g. a progress
bar, which advances each time the loading component sends a notification that a chunk
of data has been loaded.

Fig. 8 shows two such components. Component A has two methods “DisplayData”,
which displays loaded data, and “DisplayProgress”, which displays a progress bar. A’s
developer knows that the method “DisplayProgress” may be used as a callback method
by another component, which loads the data. They also know that a callback may be
invoked on different threads. Since no synchronisation of multiple threads is done inside
the component, state corruption will arise if it is used concurrently from multiple threads.
Therefore, in the design phase, the component developer is obliged to attach the attribute
“RequiredThreadAffineAccess” at component level (in the design phase) to let the system
developer know that the component must not be used in multithreaded scenarios.

Is the assembly
conflict—free?

Fig. 8. Implementation of a design pattern for components with use of metadata attributes

Component B has two methods: “RegisterProgressCallback” and “LoadData”. The
method “RegisterProgressCallback” registers a callback of another component with the
component. In this situation, the component developer is obliged to attach the attribute
“CallbackRegistration” to the component’s method. The method “LoadData” loads the
data. Moreover, while the data is being loaded, the method invokes a callback to notify
the component’s user that a certain chunk of data has been loaded. In this situation,
the component developer is obliged to attach and parameterise the attribute “IssueCall-
back”. The attribute parameters show that the method will issue the callback registered
with the method “RegisterProgressCallback”. The thread executing the callback will
be an internally created one. Furthermore, the callback is mandatory. Therefore, the
component must be composed with another component in such a way that the method
“RegisterProgressCallback” is called before the method “LoadData” is called.

In the deployment phase, suppose the system developer chooses the desktop as the
execution environment. Furthermore, suppose the system developer decides to compose
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components A and B in the following way: since A displays the data and needs to know
about chunks of data loaded, its method “DisplayProgress” can be registered with B
to be invoked as a callback while the data is being loaded by B. Once the data has
been loaded, it can be displayed using A’s method “DisplayData”. B offers a method
“RegisterProgressCallback” with the attribute “CallbackRegistration” attached. There-
fore, this method can be used to register component A’s method “DisplayProgress” as
a callback. After that, B’s method “LoadData” can be called to initiate data loading.
While the data is being loaded, the method will invoke the registered callback, which is
illustrated by the attribute “IssueCallback” attached to the method.

The scenario required by the system developer seems to be fulfilled by assembling
components A and B in this way. To confirm this, he can check the deployment contracts
of A and B in the manner described in the previous section. We have implemented a
Deployment Contracts Analyser (DCA) for automating the checking process. For this
example, the result given by DCA is shown Fig. 9.

DCA finds out that component A has a component-level attribute “RequiredThread-
AffineAccess” that requires all its methods to be called always from one and the same
thread. The method “DisplayProgress” will be called from a thread internally created
by the method “LoadData”. But the method “DisplayData” will be called from the main
thread. This means that methods of A will be called from different threads, which con-
tradicts its requirement for thread-affine access. Furthermore, if data is loaded several
times, the method “B.LoadData(...)” will create a new thread each time it is called
thus invoking the method “A.DisplayProgress(...)” each time on a different thread. This
means that A and B are incompatible.
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A component from the assembly AB has to be replaced by another one. Then a de-
ployment contracts analysis has to be performed again. This process has to be repeated
until an assembly of compatible components, i.e. a conflict-free assembly, is found.
Once a conflict-free assembly is found, it can be executed at runtime.

6 Evaluation

The idea of deployment contracts based on a predefined pool of parameterisable at-
tributes can be applied to any component model supporting composition of components
at deployment time. We have implemented the idea in .NET, and since the .NET com-
ponent model supports deployment time composition (Fig. 2), our implementation is a
direct extension of the .NET component model with about 100 new attributes, together
with a deployment-time analyser.

Our attributes are created by analysing the APIs of J2EE and .NET frameworks.
However, the idea is general and therefore other frameworks for component develop-
ment can be studied to create more attributes, thus enabling more comprehensive rea-
soning by extending deployment contracts analysis.

Our pool of metadata for component deployment is general-purpose since it is cre-
ated by analysing general-purpose frameworks. Other pools of metadata for component
deployment, see [12] for a survey, are mostly not general-purpose. For example, MetaH
has a set of metadata for the domains of flight control and avionics; the CR-RIO Frame-
work has metadata for distribution and processing policies.

Use of metadata for component deployment in current component models [12] such
as EJB and CCM is restricted to component deployment descriptors that are XML spec-
ifications describing how to manage components by the component container. Specifi-
cation of metadata in an easily changeable form like XML has the disadvantage that it
can be easily tampered with, which may be fatal for system execution. Therefore, our
metadata is contained in the real binary components, cannot be easily tampered with
and is retrieved automatically by the Deployment Contracts Analyser.

Moreover, metadata about components in deployment descriptors is not analysed for
component mutual compatibility. Although deployment descriptors allow specification
of some environmental dependencies and some aspects of threading, the information
specifiable there is not comprehensive and only reflects features that are manageable
by containers, which are limited. By contrast, our metadata set is comprehensive and
the component developer is obliged to show all environmental dependencies and as-
pects of threading for their component. In addition, our deployment contracts analysis
takes account of properties of the system execution environment, as well as emergent
assembly-specific properties like e.g. transient state, which other approaches do not do.

Furthermore, in current component models employing metadata for component de-
ployment, metadata is not analysed at deployment time. For instance, in EJB and CCM
the data in deployment descriptors is used by containers at runtime but not at deployment
time. The deployment descriptor has to be produced at deployment time but its contents
are used at runtime. In .NET, only metadata for graphical component arrangement is
analysed at deployment time. By contrast, in our approach all the metadata is analysed
at deployment time, which is essential when components come from different suppliers.
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Currently the J2EE and .NET frameworks provide compilers for their components.
However, if components are produced and compiled independently by component de-
velopers and composed later in binary form by system developers, no means for compi-
ler-like checking of composition is provided. By contrast, our Deployment Contracts
Analyser can check components for compatibility when they are in binary form and
ready to be composed by a compositon operator.

Using our attributes, developers have extensive IDE support in the form of Intel-
liSense. Moreover, .NET developers should be familiar with the concept of attributes thus
making it easy for them to employ the proposed approach using new attributes. Thanks
to various parameters on each attribute, the component developer can flexibly specify
how resources are used inside components and which threading aspects are available.

Furthermore, although EJB specification forbids component developers to manage
threads themselves, there is nothing in current EJB implementations that would prevent
the developers to do so. If enterprise beans manage threads themselves, they may in-
terfere with the EJB container and cause the running system to fail. By contrast, our
approach checks threading models of components for compatibility before runtime,
thus enabling the system developer to recognise and prevent runtime conflicts before
runtime.

7 Conclusion

In this paper,we have shown how to use metadata to define deployment contracts of com-
ponents that express component’s environmental dependencies and threading
model. Such contracts bind two parties: (a) the component developer, who develops com-
ponents, and (b) the system developer, who develops systems by composing pre-existing
components using composition operators. The former is obliged to attach the attributes
to component’s elements in specified cases. The latter is guaranteed to be shown conflicts
among the third-party components in assemblies they create at deployment time.

We have also shown how deployment contracts analysis can be performed to help
the system developer spot these conflicts. Most importantly, incompatible components
in an assembly can be replaced by other, compatible, ones to ensure conflict-freedom
of the assembly, before runtime.

Besides checking deployment contracts at deployment time, we have also imple-
mented a generic container for automated binary component composition [13] using
special composition operators — exogenous connectors [15]. Our future work will com-
bine the generic container and the Deployment Contracts Analyser, thus allowing auto-
mated component composition only if the analyser does not discover any conflicts with
component assembly.
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Abstract. The most important contribution to the success or failure of a soft-
ware project comes from the choice of the programming languages being used
and their support in the target environment. The choice of a suitable implementa-
tion language is not a guarantor for success, but an unsuitable language may result
in a long, error-prone, and costly implementation, often resulting in an unstable
product. In this paper, we present GLoo, a framework for modeling and reason-
ing about open-ended language mechanisms for object- and component-oriented
software development. At the heart of GLoo is a small dynamic composition lan-
guage that provides abstractions to (i) define and/or import reusable software
components, (ii) introduce new compositional language abstractions, and (iii)
build executable and reusable component-oriented specifications. To demonstrate
its flexibility and extensibility, we then present an encoding of the traits concept
as an example of how to add support for a new and readily available language
abstraction to the GLoo framework.

1 Introduction

Successful software systems have to abide by the Laws of Software Evolution [12],
which require that software systems must be continually adapted, or else they become
progressively less useful in a real-world environment. For this reason, software systems
must be extensible, so that new behavior can be added without breaking the existing
functionality, and composable, so that features can be recombined to reflect changing
demands on their architecture and design.

By placing emphasis on reuse and evolution, component-oriented software technol-
ogy has become the major approach to facilitate the development of modern, large-scale
software systems [18,22,26]. However, component-oriented software development is in
itself an inherently dynamic process in which we need to be able to deal with different
component models, incorporate new composition techniques, and extend the means for
specifying applications as compositions of reusable software components with new ab-
stractions on demand [4]. Unfortunately, general-purpose programming languages are
not suitable for this task, since they are not tailored to software composition [19]. As a
consequence, when using a general-purpose programming language to specify applica-
tions as compositions of reusable software components one often has to use awkward
formulations due to unsuitable language constructs, and lengthy formulations due to an
unsuitable level of abstraction at which compositional abstractions can be expressed.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 17-32, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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Consider, for example, the composition of some orthogonal behavior originating
from different sources, say different base classes. We can use multiple inheritance for
this purpose. However, while multiple inheritance appears to provide an appropriate
mechanism to express the desired functionality, “there is no good way to do it” [30].
Consequently, multiple inheritance has been mostly abandoned in modern language ap-
proaches in favor of single inheritance, which provides a more controllable way to build
classes. Unfortunately, the lack of multiple inheritance often results in unsuitably struc-
tured class hierarchies when specifying the simultaneous support for totally orthogonal
behavior. In addition, such class hierarchies may be hard to maintain due to frequent
occurrences of code duplications in different places.

The component-based software development approach has emerged from the object-
oriented approach, which has already shown a positive influence on software evolution
and reuse. These aspects do, however, not depend on object-oriented techniques [22].
Moreover, the specification of applications as compositions of reusable components re-
quires a language paradigm different from the one being used to define the components
themselves. While object-oriented programming languages are well suited for imple-
menting components, a specially-designed composition language is better for building
applications as compositions of reusable software components [24].

We advocate a paradigm that combines the concepts of dynamic binding, explicit
namespaces, and incremental refinements. Dynamic binding is a key element in a soft-
ware development approach that, without affecting its previous behavior, allows for new
functionality to be added to an existing piece of code [5]. On the other hand, explicit
namespaces [3, 14] in concert with incremental refinements provide a suitable means
to directly specify the sets of both provided and required services of components [14].
From a technical point of view, explicit namespaces serve as a lookup environment with
syntactic representations to resolve occurrences of free variables in programs. However,
the values bound in these namespaces may also contain occurrences of free variables. To
resolve those, we can use incremental refinements that allow for a phased recombination
of mappings in a namespace to new, updated values. The notion of incremental refine-
ment is based on \F-contexts [14]. A AF-context is a term that is evaluated with respect
to a local lookup environment. For example, the A\F-context a [b] denotes a term a,
whose meaning depends on the values defined in b, if a contains free variables. Thus,
b denotes the requirements posed by the free variables of a on its environment [17].

In this work, we present a framework for modeling and reasoning about open-ended
language mechanisms for object- and component-oriented software development. At
the center of this framework is the small dynamic composition language GLoo de-
signed in the spirit of PICCOLA [13, 2], which has already demonstrated the feasibility
of a high-level composition language that provides component-based, compositional in-
terfaces to services defined in a separate host language. However, PICCOLA is far from
providing the ease and flexibility required to build reliable component-based applica-
tions due to a conceptual gap between the mechanisms offered by PICCOLA and the
component-based methodology that it is supposed to support.

GLoo is essentially a pure functional language and therefore fosters a declarative
style of programming. The core elements of GLoo are first-class namespaces, methods,
and variables, but no predefined statements like conditionals, loops, and assignment.
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GLoo also provides built-in support for most operators found in Java or C#, but their
semantics is partially open. That is, with the exception of the core integer operations
addition, subtraction, multiplication, and division, for which GLoo provides a built-in
implementation, all operators remain undefined and their actual semantics has to be
provided by the application programmer. GLoo only specifies priority and associativity
for operators, which cannot be changed.

One of the key innovations of GLoo with respect to PICCOLA is a built-in gateway
mechanism to directly embed Java code into a GLoo specification. This mechanism is
based to the AF-concept of abstract application [14] and allows for code abstractions
defined in both GLoo and Java to coexist in one specification unit.

The rest of this paper is organized as follows: in Section 2, we briefly describe the
main features and design rationale of GLoo and discuss briefly related work in Sec-
tion 3. We present the design and implementation of our encoding of the traits concept
in GLoo in Section 4. We conclude this paper in Section 5 with a summary of the main
observations and outline future directions in this area.

2 The GLoo Language

2.1 Design Rationale

A successful component-based software development approach not only needs to pro-
vide abstractions to represent different component models and composition techniques,
but it has to provide also a systematic method for constructing large software systems
[4]. Unfortunately, rather then high-level plugging, most existing component frame-
works offer, in general, only low-level wiring techniques to combine components. We
need, however, higher-level, scalable, and domain-specific compositional mechanisms
that reflect the characteristics and constraints of the components being composed [24,2].
The ability to define these mechanisms will provide us with more effective means to do
both to reason about the properties of composition and to enhance program comprehen-
sion by reducing the exposure of the underlying wiring mechanisms to the component
engineer.

The design of GLoo targets a problem-oriented software development approach that
provides a paradigm for both programming in-the-small and programming in-the-large
[6]. More precisely, GLoo aims at a higher-level and scalable programming approach
to encapsulate domain expertise that provides support for the definition of domain-
specific abstractions enabling the instantiation, coordination, extension, and composi-
tion of components. These domain-specific abstractions can be defined in GLoo, Java,
or both.

2.2 The Core Language

The core of GLoo is the AF-calculus that combines the concepts of dynamic bind-
ing, explicit namespaces, and incremental refinement in one unifying framework. More
precisely, the AF-calculus is a substitution-free variant of the A-calculus in which vari-
ables are replaced by forms [15] and parameter passing is modeled by means of ex-
plicit contexts [1,3]. Forms are first-class namespaces that provide a high-level and
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F,G,H = (||) empty form V=€ empty value
| (] X1]) form variable | a abstract value
| (| F,1=V]) binding extension | M AF — value
| (| F#G) form extension
| (|F\G)) form restriction M,N == F form
| (J|F—1)) form dereference | M. projection
| (|FIG])) form context | (\X: M) abstraction
| MN application
| MI[F] AF — context

Fig. 1. GLoo-style syntax of the AF-Calculus

language-neutral abstraction to represent components, component interfaces, and their
composition. Explicit contexts, on the other hand, serve as a syntactic representation
that mimic A-calculus substitutions, that is, they provide the means for a fine-grained
and keyword-based parameter passing mechanism.

The design of the A\F-calculus, like Dami’s AN-calculus [5], tackles a problem that
arises from the need to rely on the position and arity of parameters in mainstream pro-
gramming languages. Requiring parameters to occur in a specific order, to have a spe-
cific arity, or both, imposes a specification format in which we are required to define
programming abstractions that are characterized not by the parameters they effectively
use, but by the parameters they declare [5]. However, in a framework especially de-
signed for software composition this can hamper our ability to adapt existing software
components to new requirements, because any form a parameter mismatch has to be
resolved explicitly and, in general, manually.

The syntax of the A\F-calculus is given in Figure 1. The AF-calculus is composed
from the syntactic categories forms, values, and terms. Every form is derived from the
empty form (]|). A form can be extended by adding a new mapping from a label to a
value using binding extension, or by means of form extension that allows for a form
to be extended with a set of mappings. The difference between these two extension
mechanisms lies in the way the values € and (||) are handled. If we extend a form F
with a binding [ = £ using binding extension, then the resulting form F’ is equiva-
lent to a form F” that does not contain a binding for label . In other words, binding
extension can be used to hide existing mappings in a form. Form extension, on the
other hand, is blind for bindings involving the values £ and (||). That is, if the ex-
tending form contains bindings that map to those values, then these bindings do not
contribute to the extension operation. For example, (| (| I = a,m = b|) # (]l =
d,m =E&n =cl|)|)yields (|l = d,m = b,n = ¢ |). Form restriction can be con-
sidered the inverse to form extension, which can be used to remove bindings from a
form. In combination, both form extension and form restriction play a crucial role in a
fundamental concept for defining adaptable and extensible software abstractions [15].
Finally, form dereference allows for a form-based interpretation of a value, whereas
a form context (| F' [G] |) denotes a form F, whose meaning is refined by the lo-
cal lookup environment GG that may contain bindings for occurrences of free variables
in F.
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Forms and projections take the role of variables in terms. In a term, a form serves
as an explicit namespace that allows for a computational model with late binding [14].
Abstraction and application correspond to their counterparts in the A-calculus, whereas
a A\ JF-context is the counterpart to a form context. In contrast to A-calculus, however,
the evaluation of an abstraction allows for an incremental refinement of its body. More
precisely, the evaluation of an abstraction yields a closure that associates the current
evaluation environment with the body of that abstraction. For example, if we evaluate
the abstraction (\X :: M) using the form F as an evaluation environment, then the
result is a closure (\X :: M[F]) in which F serves as a local lookup environment for
free occurrences of variables in M. The resulting closure can be subjected to further
evaluations that will allow for additional lookup environments to be added. However,
to retain a static scoping mechanism for occurrences of free variables in the body of
an abstraction, the order in which these additional lookup environments are added is
significant. For example, if we reevaluate the closure (\X :: M[F]) in a new evalua-
tion environment G, then we obtain a closure (\X :: (M[F])[G]) in which G serves
as an incremental refinement of M [F)]. Bindings defined in F' have precedence over the
ones defined in G, but bindings in G may provide values to resolve free occurrences of
variables in F' and therefore allow for a local refinement of the meaning of M. Para-
meter passing works in a similar way. If we apply a value H as argument to the closure
(\X :: (M[F))[G]), then we have to evaluate (M [F])[G] in an evaluation environment
(| X = H |), that is, we have to evaluate the term ((M[F])[G])[(] X = H |)]. In other
words, parameters are passed to functions using a keyword-based mechanism. For a
complete definition of the evaluation rules, the interested reader is referred to [14].

2.3 GLoo Specification Units

From a technical point of view, component-oriented software development is best sup-
ported by an approach that favors a clear separation between computational and com-
positional entities [24]. This requirement is captured by the maxim

“Applications = Components + Scripts.” [24]

The definition of the GLoo language follows this maxim. A GLoo specification unit
defines a value or component that can be recombined with values and/or components,
which are defined in other specification units. In other words, a GLoo specification unit
defines a single A\F-context that can locally define new abstractions or import defini-
tions from other AF-contexts in order to construct a new value or component.

GLoo specification units add support for basic data types, an import facility, term se-
quences, a delayed evaluation of terms, computable binders, and a Java gateway mech-
anism to the core language. These amendments solely serve to enrich the versatility of
values, but do not change the underlying computational model of the A F-calculus.

As a first example, consider the specification given in Listing 1. This script defines
IntRdWrClass, a class that is composed from the class IntClass and the traits
TWriteInt and TReadInt. The concepts of classes and traits [23] are not native
to GLoo. GLoo is not an object-oriented programming language per se. However, by
importing the units LanguageOfTraits.1f and IntClass.1f into the scope
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let
Services = load "System/Services.lf"
load "Extensions/LanguageOfTraits.lf"

IntMetaClass = load "Classes/IntClass.lf"

TReadInt = load "Traits/TReadInt.lf"

TWriteInt = load "Traits/TWriteInt.lf"
in

IntMetaClass (trait "TRAWrInt" join TWriteInt with TReadInt)
end

[=INICCREN e LT, I SRS S

—_

Listing 1. The GLoo script IntRdWrClass.1f

defined by IntRdWrClass.1f, this unit now provides support for the required
object-oriented language features.

Every GLoo script defines a top-level let-block that contains a possibly empty set
of declarations and a single value. The declarations are evaluated sequentially. Thus,
the second declaration is evaluated in an environment in which the first binding is vis-
ible, and so on. There are five declarations in the script IntRdWrClass.1f. The
integration of the core system services is defined in line 2. The unit Services.1lf
defines the basic programming abstractions for printing as well as 10, and provides
also, for example, a standard implementation for conditionals. The declaration in line
3 extends the current scope with a traits domain sublanguage that provides support
for defining, composing, and manipulating traits. The abstractions defined in the unit
LanguageOfTraits.1f serve as syntactic and semantic extensions (i.e., keywords)
to the GLoo language. Using this technique, we can focus on what an application of-
fers (i.e., a programming approach supporting traits), without entering into the details
of how it is implemented. The declarations in lines 5-7 introduce the components that
we want to combine to the current scope. The reader should note that we do not ac-
quire any explicit support for an object model. The object model is encapsulated in
IntClass.1f. The details of the underlying object model of class IntClass do
not pollute the declaration space of IntRdWrClass.1f. We know, however, that
IntMetaClass is a function that may take a trait as argument.

The result of evaluating the unit IntRdWrClass.1f is a class IntRdWrClass
that is composed from the class IntClass and the result of the composition of the
traits TWriteInt and TReadInt, thatis, the composite trait TRAWr Int. The under-
lying object-oriented programming abstractions guarantee the soundness of this
composition. However, the details of the verification progress are encapsulated in the
corresponding GLoo units and are not exposed to the current scope.

2.4 The Gateway Mechanism

The built-in gateway mechanism of GLoo provides an approach to directly incorporate
Java code into the scope of a GLoo specification unit. The gateway mechanism can
be used for the specification of glue code to adapt components to fit actual composi-
tional requirements [24], and to extend the GLoo language either by defining supported
operators, adding new value types, or incorporating new and readily available program-
ming abstractions. Gateway code is enclosed in %{...}%, which is treated as a single
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let
println = %{ System.out.println( aArg.toString() ); return aArg; }%

eval = %{ //check for lazy value
if ( aArg instanceof LazyValue )
// force evaluation of lazy values
aArg = (((LazyValue)aArg).getValue()).evaluate( new EmptyForm() );

return aArg;, }%
in
(| println = println, eval = eval |)
end

Listing 2. Selected abstractions provided by Services.1lf

token by the GLoo compiler. The Java code enclosed in %f{...}% is transformed into
a static member function, which is emitted to a predefined runtime support class. The
GLoo compiler uses com.sun.tools.javac to compile this runtime support class after all
gateway specifications have been collected. If no errors are detected, then the gener-
ated runtime class is loaded into the GLoo system as a temporary runtime extension to
support the evaluation of the top-level GLoo specification unit.

To illustrate the use of the gateway mechanism, consider Listing 2 that shows an
extract of the specification unit Services.1£. This example illustrates how the func-
tions printlnand eval can be defined in GLoo. The function print 1n implements
the output of the standard textual representation of each data type. It relies on the fact
that all supported GLoo values have to override the Object . toString () method,
so that a proper textual representation can be produced, if necessary. In addition, the
reader should note that every gateway function takes one argument, named aArg, and
has to return a value of a type that is a subtype of the GLoo type Value. For this rea-
son, println returns its argument, which not only satisfies the protocol of gateway
functions, but also allows applications of the function println to occur in positions,
where its argument is required.

GLoo uses a strict evaluation model, that is, terms are evaluated as soon as they be-
come bound to a variable or applied to a function. On the other hand, functions in GLoo
are characterized by the arguments they use, not by the ones they define. Unfortunately,
these competing aspects pose a serious conflict, because the strict evaluation model
forces all arguments to a function to be evaluated before they are applied to it, even
though the function may never use them. For this reason, GLoo also provides a special
modifier (i.e., the symbol ’$’) to explicitly mark a term lazy. The lazy modifier is, for
example, crucial to the definition of choice statements, where the individual branches
must not be evaluated before a corresponding guard evaluates to the value frue (e.g., the
if-statement).

The evaluation of a lazy term is delayed until its evaluation is explicitly triggered
by a corresponding program abstraction. This is the purpose of the function eval. The
eval function, as shown in Listing 2, taps directly into the GLoo evaluation machinery.
More precisely, this function checks, whether its argument aArg needs to be evaluated
or not by checking if it is an instance of type LazyValue. In such a case, eval forces
the evaluation of aArg by calling its evaluate method using an empty evaluation
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let
if = %${ /*Java code defining the ternary procedure if-then-else */ }%
in
(l
if 1 = (\Bool:: if (| condition = Bool,
then = (\Arg:: eval Arg),
else = (\arg:: (|])) |) ),
if 2 = (\Bool:: if (| condition = Bool,
then = (\Then:: (\Else:: eval Then)),
else = (\Then:: (\Else:: eval Else)) |) )
1)
end

Listing 3. Definition of conditionals in Services.1lf

environment (i.e., an empty form). This approach allows programmers to switch to a
lazy evaluation model for selected arguments, and to determine when such arguments
should be evaluated, if at all.

2.5 Support for the Definition of Language Abstractions

The specification shown in Listing 3 illustrates how conditionals can be defined in
GLoo. In this example, we define an if-statement for both a single-armed and a two-
armed version. The underlying semantics of the if-statement is implemented in the
ternary gateway function if, whose visibility is restricted to the scope of the speci-
fication unit Services.1f. The functions 1f 1 and if 2 both define a wrapper for
the local if function in order to implement the desired corresponding behavior of a
single-armed and two-armed if-statement, respectively. More precisely, 1f 1 and 1f 2
both define appropriate continuations to consume the remaining arguments to a given
if-statement. In the case of 1 f 1, the continuations either force the evaluation of the
next argument (i.e., the value Bool denotes true) or simply discard it (i.e., the value
Bool denotes false). On the other hand, the continuations defined by if 2 have to
consume two arguments in turn, but evaluate only the one that corresponds to the truth
value denoted by Bool. The reader should note that all arguments except Bool have
to be marked lazy in order to prevent their premature evaluation, which could interfere
with the commonly accepted conceptual model underlying the if-statement.

3 Related Work

Python [16], Perl [29], Ruby [27], Tcl [31], CLOS [25], Smalltalk [10], Self [28], or
Scheme [7] are examples of programming languages in which programs can change
their structure as they run. These languages are commonly known as dynamic pro-
gramming languages and scripting languages [21], respectively. However, the degree
of dynamism varies between languages. For example, Smalltalk and Scheme are lan-
guages that permit simultaneously synfactic and semantic extensions, that is, everything
is available for modification without stopping to recompile and restart. Python, Perl,
JavaScript, and Self, on the other hand, support only semantic extensions either by dy-
namic (re-)loading of runtime modules, runtime program construction, or copying and
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modifying prototypes. However, program extensions defined in this way can only be ex-
pressed in either the language itself, C/C++, or a corresponding API. Extensions written
in other languages may not be integrated as easily.

Since Smalltalk and Scheme both provide support for syntactic extensions, these
languages are also examples of so-called open-ended programming languages. Open-
ended languages allow for extending the language with new programming abstractions
on demand. However, in the case of Smalltalk and Scheme, these extensions can only
be defined in the very same language as the host language. An extreme example of
an open-ended language is CDL [11], which is a programming language with an empty
kernel. More precisely, CDL admits only one type, the word, which can be interpreted in
the language only by means of macros. No other predefined concrete algorithms, types,
or objects exist in the language. CDL provides, however, construction mechanisms for
algorithms. Types and objects, on the other hand, cannot directly be expressed in the
language. These have to be supplied by means of CDL’s extensions mechanisms, which
enable one to borrow new language constructs from outside the language. Language
extensions are defined in macro libraries that serve as semantic extensions (CDL does
not support syntactic extensions). In practice, these macro libraries are organized as
standard API’s capturing a specific application domain. As a result, programming in
CDL is not much more cumbersome than programming in a mainstream and general-
purpose programming language like C, Java, or C#.

4 A Model for Traits

In this section, we present a model of traits [23] as an example of how to add support
for a new language abstraction to the GLoo framework.

Traits offer a simple compositional model for factoring out common behavior and
for integrating it into classes in a manner consistent with inheritance-based class models
[23]. Traits are essentially sets of related methods that serve as (i) a building block to
construct classes, and (ii) a primary unit of code reuse. Reuse is a primary tenant in a
component-oriented software development approach and it is, therefore, natural that we
seek to explore the means for providing support for traits in the GLoo framework.

Unfortunately, to view a trait simply as set of methods is rather misleading, as traits
require a rich supporting infrastructure in order to unfold their expressive power. Schirli
et al. [23] characterize the properties of traits as follows:

e A trait exposes its behavior by a set of provided methods.

e A trait declares its dependencies by a set of required methods that serve as argu-
ments to the provided behavior.

e Traits are stateless. A trait does not define any state variables, and its provided
behavior never refers to state variables directly.

e Classes and traits can be composed to construct other classes or traits. Trait com-
position is commutative, but conflicts have to be resolved explicitly and manually.

e Trait composition does not affect the semantics of both classes and traits. Adding
a trait to a class or trait is the same as defining the methods obtained from the trait
directly in the class or trait.
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let
read = (\():: Services.print "Input number: "
Services.stringToInt (Services.readString (||)))
TReadIntProvides =
(l
readInt = (\():: (self (|]|)).setIntField (| aIntField = read (|]|) |))
[
TReadIntRequires =
(l
readInt = (| setIntField = "Int -> Unit" |)
[
in
trait "TReadInt" provides TReadIntProvides requires TReadIntRequires
end

Listing 4. Definition of trait TReadInt

In addition, to facilitate conflict resolution, Schirli et al. [23] propose two auxiliary
operations: method aliasing, and method exclusion. These operations together with a
suitable flattening mechanism for trait composition are required in a comprehensive
approach that provides support for the traits concept in a class-based programming
model.

The first two trait properties can easily be mapped to the concept of explicit names-
paces. Unfortunately, trait composition, method aliasing, and method exclusion require
an additional compile-time support that is not part of the GLoo framework by default.
However, as we have shown in earlier work [20], object- and component-oriented ab-
stractions can most easily be modeled if they are represented as first-class entities.
We can use this approach to define a meta-level architecture that provides the means
to differentiate the compositional aspects from the programming aspects of the traits
concept.

4.1 Specifying Traits in GLoo

Programmatically, we define a trait as illustrated in Listing 4. The specification shown in
Listing 4 defines a trait, called TReadInt, that defines one provided method readInt,
and declares the method set IntField with the signature Int -> Unit as arequired
method of readInt. The focus of this work is on a suitable representation of traits, not
on a type system for traits. It is, however, highly desirable to provide additional infor-
mation regarding their compositional constraints for required methods of a trait. For
this reason, we utilize the type syntax proposed by Fisher and Reppy [8] for a statically
typed calculus of traits, classes, and objects, but the type annotations are for documenta-
tion purposes only. A future model of traits in GLoo may also define a type verification
process that takes these annotations to perform additional checks.

The general format of a trait specification follows the structure used to define the trait
TReadInt. Within the local scope of a trait, we define the sets of provided and required
methods. The set of provided methods is a form that maps the provided methods to their
corresponding implementations. In method bodies, the term (self (| |)) yields the
current instance, and allows for dynamic binding of methods. Provided methods may
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let
MetaTraits = load "Extensions/Traits.lf"
in
(l
trait = (\Name:: (\Cont:: Cont (| traitName = Name |))),
provides = (\Args:: (\P:: (\Cont:: Cont (| Args, provides = P |[)))),
requires = (\Args:: (\R:: MetaTraits.newTrait (\ Args, requires = R \)))
join = (\Args:: (\L:: (\Cont:: Cont (| Args, left =1L |)))),
with = (\Args:: (\R:: MetaTraits.composeTraits (| Args, right = R |)))

end

Listing 5. Selected abstractions provided by LanguageOfTraits.1f

also rely on some private behavior not exposed to clients. For example, the method
readInt calls the private method read to fetch an integer value from the console.

The set of required methods is also represented by a form. However, each binding in
that form maps to another form that records all methods, including their signatures, a
given provided method depends on. This format is more verbose than the original spec-
ification of Schirli et al. [23], but it addresses a problem that can occur when defining
the exclusion of a method in a trait. In such a case, we need to add the excluded method
potentially to the set of required methods. In order to decide this question, we need to
explore all remaining provided methods. Without the additional structure in our model,
we have to extend the search to the source code of the provided methods, which may
not be accessible anymore at the time of the search.

The required core abstractions to define traits are shown in Listing 5. The bind-
ings defined in the unit LanguageOfTraits.1f serve as language extensions to
an importing scope. The associated functions are defined in continuation-passing style
(CPS) that mimics the parsing process of the corresponding syntactic categories. For
example, trait is a function that takes a name of a trait and returns a function that
consumes a continuation to construct a new trait. The continuation can be either the
function provides to build a new trait or the function join to compose a trait with
another trait. Both provides and join yield a function that takes a final continua-
tion to actually perform the desired operation. In case of provides, we need to use
the function requires that passes its arguments to meta level function newTrait to
register a new trait with the meta level trait infrastructure. The function join, on the
other hand, requires the function wi th that passes its arguments to composeTraits,
a meta level function to construct a composite trait.

4.2 Operational Support for Traits

In order to add support for the traits concept to the GLoo framework, we represent traits
at both a meta level and a programming level. The meta level defines the abstractions
to (i) compose traits, (ii) alias methods, (iii) exclude methods, and (iv) encode meta-
data associated with traits. The programming level, on the other hand, provides a set
of high-level abstractions to define and use traits. The programming level completely
encapsulates the meta level and therefore shields the application programmer from the
underlying complexity of the traits concept. Moreover, both the meta level and the pro-
gramming level constitute a narrow-focused domain-specific sublanguage that enables
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composeTraits =
(\Arg::
let
left = getTraitInfo Arg->left
right = getTraitInfo Arg->right
in
Services.if_2
(is_trait_composition_sound
(| common = Services.intersection (| left = left->provides,
right = right->provides |[),

left_origins = left->origins,
right_origins = right->origins |))
($ let
provides = (| (| left->provides |) # (| right->provides |) |)
requires =
filter required
(| required = (| (| left->requires |) # (| right->requires |) |[),
provided = provides |)
origins = (| (| left->origins |) # (| right->origins |) |)
in
registerTrait (| traitName = Arg.traitName, provides = provides,
requires = requires, origins = origins |)
end)

($ (Services.error "Conflicting trait methods encountered!")
end)

Listing 6. Definition of method composeTraitsin Traits.1lf

us not only to use traits in GLoo specifications, but also to reason about the features and
constraints of the traits concept.

The meta level support for traits is defined in the unit Traits.1f that defines
an internal representation of traits called MetaTrait. A MetaTrait encodes the
metadata associated with every trait. It records (i) the trait name, (ii) the set of provided
methods, (iii) the set of required methods, and (iv) the origins of all provided methods.
The latter is used for conflict resolution and enables us to check whether conflicting
methods originate from the same trait in which case the conflict is resolved immediately.

The meta level also defines the functions registerTrait, filterRequired,
and is trait composition sound to name a few. These functions' are used
to define the function composeTraits (cf., Listing 6), which takes two traits and
builds their union, if possible. The purpose of is trait composition sound
is to check that the provided methods of the two traits being composed are pairwise
distinct. In order to verify this condition, we also pass the origins of both traits to
is trait composition sound. We acquire the origins of both traits by calling
the function getTraitInfo, which returns the metadata associated with the corre-
sponding trait. If the soundness test succeeds, then we are actually composing both
traits by building (i.e., flattening) the new sets of provided and required methods, and
the new joined origins. We pass these data together with the corresponding trait name
to the meta-function registerTrait, which (i) registers the newly composed trait
with the meta-level infrastructure, and (ii) returns the programming representation of it.

The unit Traits . 1f also defines functions for method exclusion and method alias-
ing. These functions take a trait and a list of method names to either be excluded or

! A detailed presentation of these functions has been omitted due to a lack of space.
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aliased. The structure of these functions resembles the one of composeTraits. How-
ever, a detailed presentation of them has been omitted due to lack of space.

4.3 Using Traits

In the previous section, we have presented the core abstractions for trait construction
and composition. In this section, we illustrate briefly how to composes classes and
traits.

Trait composition is commutative, that is, the composition order is irrelevant. Con-
flicts must be explicitly resolved. However, Schérli et al. [23] define two additional
criteria that must be also satisfied in the case of the composition of classes and traits:

1) “Class methods take precedence over trait methods.”

)

2) “Trait methods take precedence over superclass methods.

In order words, the provided methods of a trait have to be inserted into a class between
its inherited behavior and the behavior defined by that class. This is a logical conse-
quence of the flattening property that requires that methods obtained from a trait must
behave as if they were defined in the class directly [23].

To illustrate the composition of classes and traits, consider the GLoo specification
unit shown in Listing 7. This unit defines a meta-class of the class IntClass that
defines two public methods getIntField and setIntField, and a private in-
stance variable fIntField. The general structure of a class definition is given by
three abstractions: (i) a incremental modification, (ii) a generator, and (iii) a class wrap-
per [15]. In the case of class IntClass, these abstractions are deltaIntClass,
IntClassG, and IntClassW, respectively. These abstractions not only define the
required behavior of class TntClass, but also the underlying object model?, which,
in the case of IntClass, adheres to Java semantics.

We use the abstractions deltaIntClass, IntClassG, and IntClassWto con-
struct a meta-class of class IntClass. This meta-class is actually a function that may
take a trait as argument. To instantiate a class, we have to call this function using either
a trait or an empty form as argument. The latter will simply instantiate the correspond-
ing class, since we have applied an empty extension. If we, however, apply a proper
trait, then the behavior defined by this trait is composed with the behavior defined by
the class in accordance with the criteria for the composition of classes and traits. First,
we verify that the composition is closed, that is, all required trait methods are imple-
mented by the class. Secondly, we merge the methods of both the trait and the class. By
using form extension class methods are given precedence over trait methods. The result
denotes a new incremental modification of the class that is obtained from the composi-
tion of the original incremental modification and the trait methods. The class generator
finally merges any present inherited behavior with the new incremental behavior® to
create instances of the extended class.

2 These two aspects should be specified in different scopes in order to separate the concerns and
to raise the level of abstraction. We have proposed a solution for this problem in [15].
3 The class IntClass does not inherit any behavior, hence this step is the identity function.



30 M. Lumpe

let
fix = load "System/fix.1lf"
in
(\Trait::
let
IntClassBehavior =
(l
getIntField = (\():: State.fIntField ),
setIntField = (\Args:: self (| State, fIntField = Args.alIntField |) )
[
deltaIntClass =
let
pureTrait = Traits.pureTrait Trait
in
(Services.if_1
(Services.not_empty pureTrait)
(s let
allRequired =
Traits.buildAllRequired(Traits.getTraitInfo Trait)->requires
inU:\BPO\Lncs\4063\Editing\40630017\40630017.tex
(Services.if_1
(Services.not_empty
(] (] allRequired |) \ (| IntClassBehavior |) |))
($ (Services.error "Composition incomplete!")))
end) ) ;
(| pureTrait # IntClassBehavior |
end
IntClassState = (| fIntField = 0 |)
deltaClass = (\State:: deltaIntClass)
IntClassG =
(\OArgs:: deltaClass
(| OoArgs # (|IntClassState\(|fIntField=OArgs.fIntField |) |)|))
IntClassW = (\OArgs:: (fix (\ f=(\self:: IntClassG) |)) OArgs)
in
(| Ww=IntClassW, G=IntClassG |)
end)
end

Listing 7. Definition of the (meta-)class IntClass

5 Conclusion and Future Work

In this paper, we have presented GLoo, a framework for modeling and reasoning about
component-oriented language abstractions. At the center of this framework is a small
dynamic composition language that is based on the AF-calculus [14]. The main tenants
of the GLoo programming paradigm are dynamic binding, explicit namespaces [3], and
incremental refinement. These concepts together with a built-in gateway mechanism to
incorporate Java code directly into the scope of GLoo specification units provides us
with the means for a problem-oriented software development approach.

To demonstrate how a domain-specific sublanguage can be defined, we have imple-
mented the traits concept [23] in GLoo. The language of traits is defined as a readily
available language abstraction that can be loaded on demand. The specific added value
of this abstraction is a clear separation between compositional and programming as-
pects of traits, which facilitates both the construction and the composition of traits.

We have studied the encoding of classes, traits, and objects in GLoo. We need,
however, also support for the integration of external software artifacts into the GLoo
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framework. We plan, therefore, to further explore the gateway concept in order to in-
corporate existing Java classes and components. Like the language of traits, we envi-
sion a narrow-focused domain sublanguage of classes and components that will allow
application programmers to use existing Java abstraction as they were defined in GLoo
directly.
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Abstract. Most methods for designing component-based systems and
verifying their compatibility address only the syntactic compatibility of
components; no analysis of run-time behavior is made. Those methods
that do address run-time behavior suffer from state-explosion: the expo-
nential increase of the number of global states, and hence the complexity
of the analysis, with the number of components. We present a method
for designing component-based systems and verifying their behavioral
compatibility and temporal behavior that is not susceptible to state ex-
plosion. Our method is mostly automatic, with little manual deduction
required, and does not analyze a large system of connected components
at once, but instead analyzes components two-at-a-time. This pair-wise
approach enables the automatic verification of temporal behavior, us-
ing model-checking, in time polynomial in the number and size of all
components. Our method checks that behavior of a pair of interacting
components conforms to given properties, specified in temporal logic.
Interaction of the components is captured in a product of their behav-
ioral automata, which are provided as a part of each component’s in-
terface. We demonstrate the effectiveness of our method by applying
it to the design and verification of a component-based elevator control
algorithm.

1 Introduction

Monolithic software systems are fragile and unreliable. Component-based soft-
ware engineering (CBSE) [34, 38, 19] alleviates this inherent software problem.
Third-party composition of software systems, comprising reliable components
from trustworthy third-party providers, reduces the system’s overall fragility. In
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practice, however, part of the fragility is merely shifted from the component arti-
facts to the connectors and the composition process [28]. When the composition
is unreliable, component systems are just as fragile and unreliable as monolithic
software. Improving the theoretical and practical foundation of third-party com-
position techniques is thus essential to improving overall component software
reliability.

In this paper, we lay a foundation for a new component model which sup-
ports behavioral interoperability and is based on the use of temporal logic and
automata to specify and reason about concurrent component systems. Unlike
other temporal logic and automata-based methods for software components, our
work avoids using exhaustive state-space enumeration, which quickly runs up
against the state-explosion problem: the number of global states of a system is
exponential in the number of its components. We present formal analysis and
synthesis techniques that addresses issues of behavioral compatibility among
components, and enables reasoning about global behavior (including temporal
behavior, i.e., safety and liveness) of an assembly of components.

We illustrate the model concretely by means of an example design for an
elevator system, which can scale up in size (number of floor and button compo-
nents) and still be model-checked. Designing a component-based elevator system
that can be scaled up is a canonical Software Engineering problem since it runs
up against state-explosion. Our methodology, however, permits model-checking
in time polynomial in the number and size of components.

2 Problem and Approach in a Nutshell

For two components, which were independently developed, to be deployed and
work together, third-party composition must allow the flexibility of assembling
even dissimilar, heterogeneous, precompiled components. In achieving this flex-
ibility, a delicate balance is preserved between prohibiting the connecting of
incompatible components (avoiding false positives), while permitting the con-
necting of “almost compatible” components through adaptation (avoiding false
negatives). This is achieved during assembly through introspection, compatibil-
ity checks, and adaptability.

CBSE builder environments typically apply two mechanisms to support
third-party composition. First, to check for interface compatibility, builders use
introspection. Introspection is a means of discovering the component interface.
Second, builders support adaptability by generating adapters to overcome dif-
ferences in the interface. Adapters are a means of fixing small mismatches when
the interfaces are not syntactically identical.

The goal in behavioral compatibility for components is to develop support in
CBSE for behavioral introspection and behavioral adaptability that can be scaled
up for constructing large complex component systems. While there is progress
in addressing behavioral introspection and adaptability [40, 35, 39, 36, 37| there
is little progress in dealing with the state explosion problem.
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2.1 The State Explosion Problem

Many current mechanical methods for reasoning about behavior (of finite state
systems) generally rely on some form of exhaustive state-space search to gen-
erate all the possible behaviors. These methods are thus susceptible to state
explosion: the number of global states of a concurrent system consisting of n
components, each with O(l) local states, is in O(I™). Approaches to dealing with
state explosion include compositional verification [29, 18, 13, 9, 8, 25] (and the
strongly related assume-guarantee reasoning [1, 20]), abstraction [30, 12, 23, 24],
and symmetry reduction [15, 16, 11, 10].

Current methods typically rely on defining finite-state “behavioral” automata
that express state changes. The automata-theoretic product of the behavioral
automata of two components will then describe the resulting behavior when
these two components are connected. Thus, the two components can be checked
for compatibility by model checking this product. When a third component is
subsequently connected to the first two, one then needs to generate the product
of all three behavioral automata. Thus, this fails to provide a practical method
for checking large systems, since taking the product of n automata incurs state
explosion.

2.2 Avoiding State-Explosion by Pair-Wise Composition

To overcome state-explosion, we eschew the computation of the product of all n
behavioral automata. Instead, we compute the products of pairs of behavioral
automata, corresponding to the pairs of components that interact directly.! In
the worst case, where all components interact (where the largest component has
O(1) local states), this has complexity O(n?1?). This low polynomial complexity
means that our method scales up to large systems. We verify temporal behavior
“pair-properties” of these “pair-products.” These give us properties of the inter-
actions of all component-pairs, when considered in isolation. We then combine
such “pair-properties” to deduce global properties of the entire system by means
of temporal logic deductive systems [17]. Since the pair-properties embody the
complexity of the component interaction, this deductive part of the verification
is quite short.

Our approach involves abstraction in going from a component to its be-
havioral automaton. It applies even when all components are functionally dif-
ferent, and so is not a form of symmetry reduction. Our approach combines
pair-properties verified of each pair-product to deduce the required global prop-
erties. Each pair-product represents two components interacting in isolation.
Our approach therefore does not involve the usual “assume-guarantee” proof
rule typical of compositional approaches, where each component is verified cor-
rect using the assumption that the other components are correct, with due care
taken to avoid cyclic reasoning.

! For clarity, we assume all connectors involve exactly two components. The method-
ology can be easily generalized to verify connectors between multiple components.
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The main insight of this paper is that components can be designed to enable
this pair-wise verification, thus supporting behavioral compatibility checks that
scale up to large complex systems [7].

3 Technical Preliminaries

I/0 automata We augment the standard definition of I/O automata [31] to ac-
commodate propositional labelings of states. An augmented input/output (I/0)
automaton A is a tuple

(states(A), start(A), sig(A), steps(A), prop(A), label (A))

as follows. states(A) is a set of states; start(A) C states(A) is a nonempty set
of start states; sig(4) = (in(A), out(A),int(A)) is an action signature, where
in(A), out(A) and int(A) are pair-wise disjoint sets of input, output, and inter-
nal actions, respectively, (let acts(A) = in(A) U out(A) U int(A)); steps(A) C
states(A) x acts(A) x states(A) is a transition relation; prop(A) is a set of
atomic propositions; and label(A) : states(A) +— 2P™P(4) is a labeling func-
tion. If states(A), acts(A) and prop(A) are all finite, then A is a finite-state 1/O
automaton. label(A)(s) gives the atomic propositions that are true in state s.
Let s,s’,u,u/,... range over states and a,b,... range over actions. Write
508" iff (s,a,5") € steps(A). We say that a is enabled in s. Otherwise a is dis-
abled in s. I/O automata are required to be input enabled: every input action is
enabled in every state. An execution fragment « of automaton A is an alternating
sequence of states and actions sgaqs1a28s . .. such that (s;, a; 1, s:41) € steps(A)
for all 7 > 0, i.e., a conforms to the transition relation of A. Furthermore, if «
is finite then it ends in a state. An execution of A is an execution fragment that
begins with a state in start(A). execs(A) is the set of all executions of A. A
state of A is reachable iff it occurs in some execution of A. Two I/O automata
are compatible iff they have no output actions and no atomic propositions in
common, and no internal action of one is an action of the other. A set of I/O
automata is compatible iff every pair of automata in the set is compatible.

Definition 1 (Parallel Composition of I/O automata). Let A,..., A,
be compatible 1/O Automata. Then A = Ay || --- || Ay is the I/O automa-
ton? defined as follows. states(A) = states(Ay) x --- x states(A,,); start(A) =
start(Ay) x -+ X start(Ay); sig(A) = (in(A), out(A),int(A)) where out(A) =
Uicicn 0ut(A:), in(A) = Ujcic,, in(A;) — out(A), int(A) = U <<, int(A:);
steps(A)  C  states(A) x acts(A) x states(A) consists of all the triples
({51,---s8n),a,{t1,...,tn)) such that Vi € {1,...,n} : if a € acts(4;), then
(si,a,t;) € steps(A;), otherwise s; = t;; prop(A) = Uj<i<, prop(4A;); and
label(A)({s1,---,5n)) = Uycic, label(A;)(s;). o

2 Formally, A is a state-machine. It is easy to show, though, that A is in fact an I/O
automaton.
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Let A= A;]l---| A, be a parallel composition of n I/O automata. Let s be a
state of A. Then s[A; denotes the i’th component of s, i.e., the component of s
that gives the local state of 4;,7 € {1,...,n}. Let o = {i1,...,im} C {1,...,n}.
Then s[ A, denotes the tuple {s;[A4;,,...s;14;,). A subsystem of A is a parallel
composition A;, || --- || 4;,,, where {i1,...,im} € {1,...,n}. We define the
projection of an execution of A onto a subsystem of A in the usual way: the
state components for all automata other than A, ,..., A4; are removed, and so
are all actions in which none of the 4;,,..., A; participate:

Definition 2 (Execution projection). Let A = Ay || --- || An be an I/O
automaton. Let o = spa151a282...55-1a;55... be an execution of A. Let ¢ =
{ir,. ., im} C{1,...,n}, and let A, = A;, ||---|| Ai,,. We define alA, as the
sequence resulting from removing all ajs;j such that a; & acts(A,) and replacing
each s; by sjlA,.

Proposition 1 (Execution projection). Let A = Ay || --- || A, be an I/O
automaton. Let o € execs(A). Let ¢ = {i1,...,im} C {L,...,n}, and let A, =
Ai |-+l As,,. Then alA, € execs(Ay,).

Proof. Immediate from the standard execution projection result for I/O au-
tomata [31], when considering the subsystem A, as a single I/O automaton.

4 Formal Methods for Composition Correctness

Attie and Emerson [4, 5] present a temporal logic synthesis method for shared
memory programs that avoids exhaustive state-space search. Rather than deal
with the behavior of the program as a whole, the method instead generates
the interactions between processes one pair at a time. Thus, for every pair of
processes that interact, a pair-machine is constructed that gives their interaction.
Since the pair-machines are small (O(I?)), they can be built using exhaustive
methods. A pair-program can then be extracted from the pair-machine. The
final program is generated by a syntactic composition of all the pair-programs.

Here, we extend this method to the I/O automaton [31] model, which is
event-based. Unlike [4, 5], which imposed syntactic restrictions (variables must be
shared pairwise), the method presented here can be applied to any component-
based system expressed in the I/O automaton notation. It is straightforward
to extend the results presented here to any event-based formalism with a well-
defined notion of composition.

The method of [4] is synthetic: for each interacting pair, the problem specifica-
tion gives a formula that specifies their interaction, and that is used to synthesize
the corresponding pair-machine. We also consider the analytic use of the pair-
wise method: if a program is given, e.g., by manual design, then generate the
pair-machine by taking the concurrent composition of the components one pair
at a time. The pair-machines can then be model-checked for the required con-
formance to the specification. If the pair-machines behave as required, then we
can deduce that the overall program is correct.
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In our method, the desired safety and liveness properties are automatically ver-
ified (e.g., by model checking) in pair systems and the correctness of the whole sys-
tem deduced from the correctness of these pair systems. We start with formally
proving the propagation of safety and liveness properties from pair systems to
the large system. We use propositional linear-time temporal logic [33, 17] without
the nexttime modality (LTL-X), and with weak action fairness, to specify prop-
erties. LTL-X formulae are built up from atomic propositions, boolean connec-
tives, and the temporal modality U (strong until). LTL-X semantics is given by
the |= relation, which is defined by induction on LTL-X formula structure. Let o =
50a151a252 . . . be an infinite execution fragment of A, o' = 5;a;115;410i42542 - - .,
a suffix of v, and p be an atomic proposition. Then A, a |= p iff p € label(A)(so),
and A,a = fUgiff 3i > 0: A0 EgandVj € {0,...,i— 1} : A, | f. We
define the abbreviations Ff = trueUf (“eventually”), Gf = —F~f (“always”),

fUwg = (fUg) V Gf (“weak until”), and DFof = GFf (“infinitely often”).

Fairness constraints allow us to filter away irrelevant executions. We use weak
action fairness: an execution fragment « of A is fair iff it is infinite and every
action of A is either infinitely often executed along « or infinitely often disabled
along a. Define A,s |=¢ f iff f holds along all fair execution fragments of A
starting in s, and A |= f iff f holds along all fair executions of A.

Let A = Ay || --- || An be the large system, and let A;; = A; || A; be a
pair-system of A, where 4,5 € {1,...,n},i # j. Then, if A;; =g fi; for some
LTL-X formula f;; whose atomic propositions are all drawn from prop(4;;), we
would like to also conclude A [=g fi;. For safety properties, this follows from
execution projection. For liveness properties, we need something more, since the
projection of an infinite execution of A onto A;; could be a finite execution of A;;,
and so the liveness property in question may not be satisfied along this finite
projection, while it is satisfied along all the infinite extensions. We therefore
require that along an infinite global execution «, for every pair-system A;;, an

o0
action involving A;; occurs infinitely often along «. Write A, = Fex(A4;;)
iff & contains infinitely many actions in which A; or A; or both participate in
o0
(this implies that « is infinite). Write A,s |=q Fex(A;;) iff for every infinite
o0

fair execution « starting in s: A, = Fex(A4;;). If s = {s1,...,5,) is a state
of A, then define slij = (s;,s;), i.e., s[ij is the projection of s onto the pair-
system A;;.

Theorem 1. Let A= Ay ||| Ayp be an I/O automaton. Leti,j € {1,...,n},

i # j, and let A;j = A; || A;. Assume that A, u = Olgex(Aij) for every start
state u of A. Let s be a reachable state of A, and let fi; be an LTL-X formula
over prop(A;;). Then

Aij,SMj ':(I) fij implies A,S ':(I) fij~
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The proof of Theorem 1 is available in the full version of the paper.? By applying
the above result to all pair-programs, we obtain:

\(Aij =g fi;) implies A =g A fi-
ij

j
We then show that the conjunction A, J fij of all the pair-properties implies the
required global correctness property f, ie., (A;; fij) = f. This leads to the
following rule of inference:

Nij(Aij Eo fij) (Nij fis) = |
AkEg f '

4.1 Characterizing the Global Properties That Can Be Verified

A natural question that arises is: how much verification power do we give up by
the restriction to pairs? Are there interesting global properties that cannot be
verified using our approach?

Let e; (i > 1) denote an event, i.e., the execution of an action. Let part(e;)
denote the components that participate in e;. With respect to safety, we consider
event ordering, i.e., e; < e,, meaning that if e; and e, both occur, then e;
occurs before e,. This can be verified by finding events eo,...,e,, such that,
for alli = 1,...,m — 1, e; < e;41 can be verified in some pair. That is, there
exist components A € part(e;), A" € part(e;41), and A || A is a pair system
that satisfies e; < e; 1. With respect to liveness, we consider leads-to properties,
i.e., e; ~ e,, meaning that if e; occurs, then e, subsequently occurs. This can
be verified by a similar strategy as outlined above for e; < e,. Event ordering
is sufficiently powerful to express many safety properties of interest, including
mutual exclusion, FIFO, and priority. Leads-to is sufficiently powerful to express
many liveness properties of interest, including absence of starvation and response
to requests for service.

More generally, any global property that can be expressed by an LTL formula
f which is deducible from pair-formulae f;; can be verified. A topic of future
work is to characterize this class of LTL formulae exactly.

4.2 Behavioral Automaton of a Component

A behavioral automaton of a component expresses some aspects of that compo-
nents run-time (i.e., temporal) behavior. Depending on how much information
about temporal behavior is included in the automaton, there is a spectrum of
state information ranging from a “maximal” behavioral automaton for the com-
ponent (which includes every transition the component makes, even internal
ones), to a trivial automaton consisting of a single state. Thus, any behavioral
automaton for a component can be regarded as a homomorphic image of the
maximal automaton. This spectrum refines the traditional white-box/black-box

3 http://www.cs.virginia.edu/~lorenz/papers/cbse06/
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Table 1. The interoperability space for components

Compatibility: Interface  Automaton Behavioral

Export interface interface + automaton complete code

Reuse black box adjustable white box

Encapsulation highest adjustable lowest

Interoperability unsafe adjustable safe

Time complexity linear polynomial for finite state undecidable

Assembly properties none provable from pair complete but impractical
properties

Assembly behavior none synthesizable from complete but impractical

pair-wise behavior

spectrum of component reuse, ranging from exporting the complete source code
(maximal automaton) of the component—white-box, to exporting just the in-
terface (trivial automaton)—black box. Table 1 displays this spectrum.

The behavioral automaton can be provided by the component designer and
verified by the compiler (just like typed interfaces are) using techniques such
as abstraction mappings and model-checking. Verification is necessary to ensure
the correctness of the behavioral automaton, i.e., that it is truly a homomorphic
image of the maximal automaton. Alternatively, the component compiler can
generate a behavioral automaton from the code, using, for example, abstract
interpretation or machine learning [32]. In this case, the behavioral automaton
will be correct by construction. We assume the behavioral automaton for third
party components is provided by the component designer.

4.3 Behavioral Properties of a Pair-Program

In general, we are interested in behavioral properties that are expressed over
many components at once. We infer such properties from the verified pair-
properties. Such inference can be carried out, for example, in a suitable deduc-
tive system for temporal logic. The third-party assembler would have to specify
the pair-properties and the pairs of interacting components and then carry out
the deduction.

It is usually the case that the pairs of interacting processes are easily identi-
fiable just based on the nature of process interactions in a distributed system.
For example, in mutual exclusion, a pair-program is two arbitrary processes; in
the elevator example the pair-program involves a floor component and an el-
evator controller component. Sometimes pair-properties to be verified are the
same as the global specification, just projected onto a pair. For example, in mu-
tual exclusion, the global property is just the quantification over all pairs of the
pair-property given for some arbitrary processes i and j, i.e., /\;; G=(C; A Cj),
where C; is a state of a process P; corresponding to this process being in the
critical section.

However, sometimes pair-properties are not straightforward projections of the
required global properties. These pair-properties have to be derived manually.
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Then we have to prove that the conjunction of these pair-properties implies
the global specification by the means of temporal logic deductive systems [17].
These proofs are usually quite small (e.g., 27 lines for the elevator example) and
straightforward.

4.4 Verification of Behavioral Properties of the Large Program

At the verification stage the component assembler would have to choose a model-
checker which he plans to do verification in, then provide to the model-checker a
description of a behavioral automaton of the pair-program and the pair-properties
in a suitable format. If verification is successful then the pair-properties hold in
the global program and, as proven during the assembly phase, conjunction of these
pair-properties implies the global property of the program. If verification is not
successful then the third party assembler would have to either swap in a different
component and repeat verification process or change the global property to be
verified.

5 Implementation: Pair-Wise Component Builder

We now describe the working of a pairwise verification methodology in a pair-
wise component builder tool. This tool allows for interactive component design
and pair-wise verification. The pair-wise builder is based on Sun’s Bean Devel-
opment Kit (BDK) and the ContextBox [27, 26] software. Verification is done
using the Spin model-checker [21] that uses LTL as a specification language and
Promela as a modeling language. The goal is to provide the user with a list of
design recommendations that should be considered when developing components
in order to be able to use the tool for the subsequent component composition
and verification.

A builder is used for creating a compound component out of subcomponents.
The builder hence has two main functions:

— governing the connecting activity and dealing with problems of interoper-
ability; and
— encapsulating the assembled components into the compound component.

Traditionally, builders focus on interoperability in the restricted sense of only
considering interface compatibility, and support for system behavior predic-
tion [14] is not available. In our framework, behavioral compatibility can also
be checked. Hence, within our framework we implement a stronger notion of a
builder, which, in addition to interface compatibility, can also deal with:

— temporal behavior of connectors, since we accommodate a stronger notion of
interoperability, which encompasses both the interface between components
and the temporal behavior of their connection (i.e., pair-properties), and

— global temporal behavior, that is, the temporal behavior of the assembled sys-
tem. The deductive proofs that infer such properties of this global behavior
from the known pair-properties are carried out within the builder.
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For a component to be pair-wise composable in our builder, one takes the
following steps. The component interface must be a collection of separate in-
terfaces, each interface addressing a related connector. This corresponds to a
JavaBeans component implementing several event listener interfaces, but does
not need to be necessarily fine grained. This interface separation enables captur-
ing only interface information relevant to a pair-system, which is model-checked
during third-party assembly.

The inputs to our builder tool are components that have separate interfaces
per connector. In the BDK this corresponds to a component’s BeanInfo hav-
ing a list of named operations that can be invoked by events. These functions
are grouped and labeled according to components whose events this component
subscribes to. Pair-wise composable components, as part of their BeanInfo, also
have a high level description in Promela of their behavioral automata. The com-
ponents are connected in the builder. As a result, relevant changes are made
to their state machines to reflect components subscribing to each others events
(i.e., Promela code of a pair-program is generated based on the interfaces and
the behavioral automata of the pair).

Depending on component assembly, the user specifies properties of the model
(as LTL formulae) that she wishes to verify. Properties can be over a single
component or over a pair of components that were connected. The builder com-
municates the LTL specification and the generated Promela description of the
pair-program to the Spin interface. Then Spin model-checks the LTL formulae.
Since model checking is over pair-systems, it is efficient. If violation of a property
is detected, the user can modify either (1) the component, or (2) the component
system design or (3) the properties, and then repeat the process.

6 Case Study: Elevator System

We now present a case study of a component-based algorithm that was pair-wise
verified using our pair-wise component builder. This component-based elevator
algorithm was implemented with a collection of interfaces to enable pair-wise
verification. The elevator model consists of four types of components: floor com-
ponents (numbered 1 to N), panel button components, the user component, and
the controller component. The controller component (controller) represents the
elevator, and hence implements the elevator’s movement. Each floor component
(floor(f)) represents a specific floor and maintains information about the floor
and requests for this floor. Each panel button component (panelbutton(f)) repre-
sents a specific panel button inside an elevator. The events that floor components
and controller component listen to (up requests and down requests for each floor)
are generated by the user component (user) and by the buttons on the panel
from inside the elevator.

6.1 Informal Description

When moving upwards, the elevator controller satisfies requests in the upwards
direction up to where it perceives the uppermost currently outstanding request
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to be, where this can be a panel request or a floor request in either direction.
The elevator then reverses its direction and proceeds to satisfy the requests in
the downwards direction until reaching what it perceives to be the lowermost
currently outstanding request, then reverses again, etc. As the elevator passes
floor f, it checks in with the floor(f) controller to determine if it needs to stop
floor f due to an outstanding request in the direction of its movement, and stops
if floor(f) so indicates. The controller maintains the following information.
Controller (elevator cabin):

int g—current elevator location

int top—the uppermost requested floor, set to 0 when this floor is reached
int bottom—the lowermost requested floor, set to 0 when this floor is reached
boolean up—true if the direction of the elevator movement is up, false if down
boolean stop—true if the elevator is not moving

Upon reaching the uppermost (lowermost) requested floor, the controller
sets top (bottom) to 0, which is an invalid floor number. This indicates that
the uppermost (lowermost) request currently known to the controller has been
satisfied.

When a request for floor f is issued, an event is sent to the floor(f) component,
where records the request, and also to the controller, which updates its top and
bottom variables if necessary.

There are N floor components. Each floor component’s state captures
whether floor f is requested in either direction.

Floor(f), (f=1,...,N):

bool up(f)—true if the floor is requested for a stop in the upwards direction
bool down(f)—true if the floor is requested for a stop in the downwards direction

There are three types of event generators (button up at the floor, button
down at the floor, floor number button on the panel), but only two event types
(requests) are generated.

down button pushed at a floorf generates a downwards(f) request.

up button pushed at a floor f generates an upwards(f) request.

floor f pushed on the panel inside an elevator, generates either a upwards(f) or
downwards (f) request based on the elevator position.

The upwards (f) and downwards (f) events are randomly generated by a user
component and N separate panel-button components that implement the panel
buttons. The correctness of the algorithm obviously depends on correct main-
tenance of the top and bottom variables so that none of the requests are lost.
It is important to update these variables not only when the new requests are
issued but also to make sure they get reset after being reached, so that no sub-
sequent requests are lost. Our update algorithm guarantees that all the requests
are taken into account (only once).

6.2 Specification

There are two requirements that the elevator model must satisfy. (1) Safety: an
elevator does not attempt to change direction without stopping first, since this
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would damage the motor, and (2) Liveness: every request for service is eventually
satisfied

When connecting the controller component to the floor component, the
builder would typically generate a CommandListener adapter, which subscribes
to request events, so when an upwards request event is received from the floor,
it invokes the up method of the controller. Now, the motor, due to physical
constraints, cannot be switched from going up to going down without stopping
first. Builders in current systems would not detect if the request sequence vio-
lated this constraint, and consequently the motor could be damaged at runtime.
The safety property that we verified is the following:

If the elevator is moving up (down) then it continues doing so until it stops.
The LTL formula for this is:

G(up = upUystop) A G(—up = (—up)Uystop) (1)

Where boolean up indicates direction of elevator movement and boolean stop
indicates whether the elevator is moving or not. Recall that G is the “always”
modality: Gp means that p holds in all states from the current one onwards. U,,
is “weak until”: either p holds from now on, or g eventually holds, and p holds
until then. This property can be verified by checking the controller alone, and
so is not challenging, since the controller by itself has only a small number of
states.

The interesting property that we verified is liveness: if a request is issued, it
is eventually satisfied. The LTL formulae for this are:

G(up(f) = F(g = £ A stop Aup)) (2)

G(down(f) = F(g = £ A stop A —up)) (3)

Where g is the elevator location variable and f is the number of the requested
floor; up(£) and down(f) indicate request for floor f in a certain direction. Fp
means that p eventually holds.

6.3 Model-Checking

Our interconnection scheme enables the separation of the state spaces of the
various components. Instead of constructing the global product automaton of NV
floor components, the user component, N panel buttons, and the controller com-
ponent in the elevator system, we only construct N different pair-machines, and
model-check each pair-machine separately. A pair-machine consists of a con-
troller component and a single floor component, for each floor. We can then
verify behavioral properties of each of these pair-machines in isolation, and
then combine these properties deductively to obtain properties of the overall
system.
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Safety. Safety is a property local to the controller component, hence, it can
be verified within the component. Since the controller component was model-
checked in isolation, we needed to ensure that we are model-checking it in
a correct environment (i.e., random request sequences). This is done through
input-enabledness of the behavioral automaton. This ensures that if there is a
transition that depends on the input from some other component we replace
this transition by a set of transitions that embody all the possible input values
from the other component (i.e., one transition per input value). The controller
component non-deterministically chooses one of these transitions. During model-
checking such input-enabledness creates an environment that produces the same
execution traces as the product behavioral automaton of the two components.
However, we avoid the extra states that would have been contributed by the sec-
ond component that are unnecessary for this verification confined only to this
component.

Liveness. We verified that liveness holds in our model by checking the model
against the LTL formula (2). We verified liveness in the model with various
number of floors N. This amounted to model-checking a system with N floor(f),
N panelbutton(f), 1 controller, and 1 user.

To achieve pair-wise verification we needed to decompose the liveness prop-
erty into pair-properties. Our pair consisted of a controller component and a
floor component, where our pair-model was input-enabled for the input coming
from other components. The pair-properties were manually derived for this pair-
program. The global liveness property (the LTL formulae (2, 3)) of a system as a
whole was deduced from the conjunction of the following pair-properties. These
pair-properties were checked for each of N pairs controller || floor(f). Define

p~ q= G(p= Fq).

When request is issued, it gets processed by the controller:

(p 1.1) up(f) ~ top > f Nup(f) \ bottom < f
(p 1.2) down(f) ~ top > f N\ down(f) \bottom < f

The controller actually moves up or down without changing its direction:
(p 2.1) (9=go < f Aup(f) Aup A\ bottom < f < top) ~
(9 =90+ 1< f ANup(f) Aup \bottom < f < top)
(p22) (9=g0 2 f Aup(f) A ~up \bottom < f < top) ~
(9=290—1<fAup(f) \—up A bottom < f < top)
(p 2.3) (g =90 < fA\down(f)\up/bottom < f < top) ~
(9 =90+ 1< fAdown(f)\up)\bottom < f < top)
(p 2.4) (9 =go0 > f N\down(f) N\ —up A bottom < f < top) ~»
(g =90 —1< fAdown(f) A\ —up\bottom < f < top)

The controller stops once reaching the requested floor:
(p3.1) (up(f) Aup Ng = f) ~ (stop\g = f N-up(f))
(p 3.2) (down(f) A\—~up A g = [f)~ (stop Ag = f \ ~down(f))



46 P.C. Attie et al.

The controller reverses direction at the top and the bottom:
(p 4.1) (g = bottom \ up(f) \ ~up A bottom < f < top) ~
(g = bottom A\ up(f) A\ up \ bottom < f < top)
(p 4.2) (g =top Aup(f) Aup A\ bottom < f < top) ~
(g = top A up(f) \ —up A\ bottom < f < top)
(p 4.3) (g = bottom A\ down(f) \ —~up \ bottom < f < top) ~
(g = bottom A\ down(f) \ up A bottom < f < top)
(p 4.4) (g = top A\ down(f) \up A\ bottom < f < top) ~
(g = top \ down(f) N\ —up A bottom < f < top)

Boundary (efficiency) condition
(p 5) G(bottom < g < top)

6.4 Verification Results

We constructed models with N = 3,5,7,9,10, 12, 30, 100, where N is the number
of floors. The systems were model-checked as a whole system and pair-wise.*
The number of states in a whole system grew too large for Spin to model-check
above N = 10. On the other hand, model-checking pair-wise was achieved up to
N = 100 without experiencing exponential blow up. In the verification results
(Table 2), “number of transitions” is the number of transitions explored in the
search. This is indicative of the amount of work performed in model-checking the
given properties, for the given value of N. Pair-wise model checking first suffers
from some overhead due to the Spin model representation for N < 10, and then
shows a polynomial increase in N, as expected from the theoretical analysis.

Table 2. Spin model-checking performace for an elevator system

Number of Whole system Pair-wise

Floors (N) # Transitions Run Time # Transitions Run Time
3 3.6 x 10® 45 4.6 x 10° 1

5 5.6 x 108 74 5.1 x 10* 1

7 7.6 x 10° 121 2.4 x 10° 1

9 9.4 x 10® 169 7.7 x 10° 1

10 8.9 x 10® 170 1.2 x 10° 1

12 N/A N/A 2.9 x 10° 1

30 N/A N/A 1.9 x 108 8

100 N/A N/A 1.9 x 10° 109

7 Conclusion and Related Work

Component-based systems are widely acknowledged as a promising approach
to constructing large-scale complex software systems. A key requirement of a

41.7 GHz with 8Gb of RAM.
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successful methodology for assembling such systems is to ensure the behavioral
compatibility of the components with each other. This paper presented a first
step towards a practical method for achieving this.

We have presented a methodology for designing components so that they can
be composed in a pair-wise manner, and their temporal behavior properties ver-
ified without state-explosion. Components are only required to have interface
separation per connector to enable disentanglement of intercomponent commu-
nication and specification of the externally visible behavior of each component
as a behavioral automaton.

Vanderperren and Wydaeghe [40, 35, 39, 36, 37] have developed a component
composition tool (PascoWire) for JavaBeans that employs automata-theoretic
techniques to verify behavioral automata. They acknowledge that the practicality
of their method is limited by state-explosion. Incorporating our technique with
their system is an avenue for future work.

DeAlfaro and Henzinger [2] have defined a notion of interface automaton,
and have developed a method for mechanically verify temporal behavior prop-
erties of component-based systems expressed in their formalism. Unfortunately,
their method computes the automata-theoretic product of all of the interface
automata in the system, and is thus subject to state-explosion.

Our approach is a promising direction in overcoming state-explosion. In addi-
tion to the elevator problem, the pairwise approach has been applied successfully
to the two-phase commit problem [5], the dining and drinking philosophers prob-
lems [4], an eventually serializable data service [6] and a fault-tolerant distributed
shared memory [3]. Release of the pair-wise component builder will contribute to
the ease of the exploitation of our methodology and its subsequent application.
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Abstract. We present a novel approach which facilitates formal verification of
component-based software application families using model checking. This ap-
proach enables effective compositional reasoning by facilitating formulation of
component properties and their environment assumptions. This approach inte-
grates bottom-up component verification and top-down system verification based
on the concept of application family architectures (AFA). The core elements of an
AFA are architectural styles and reusable components. Reusable components of
a family are defined in the context of its architectural styles and their correctness
properties are verified in bottom-up component compositions. Top-down system
verification utilizes architectural styles to guide decomposition of properties of
a system into properties of its components and formulation of assumptions for
the component properties. The component properties are reused if already veri-
fied; otherwise, they are verified top-down recursively. Architectural style guided
property decomposition facilitates reuse of verified component properties. Pre-
liminary case studies have shown that our approach achieves order-of-magnitude
reduction on verification complexities and realizes major verification reuse.

1 Introduction

Model checking [1] has great potential in formal verification of software systems. The
massive effort required for model checking whole systems “from scratch” has, how-
ever, hindered application of model checking to software. The observations that many
software systems are members of families of related systems which share common ar-
chitectural styles and common components and that compositional reasoning [2, 3] is
one of the most effective methods for reducing model checking complexities suggest
component-based software verification, where verification of whole systems is based
on compositional reasoning and on reuse of verified component properties.

A key challenge in component-based verification is formulation of component prop-
erties and their environment assumptions, i.e., what properties to verify on a component
and what are the assumptions under which the properties should be verified. This chal-
lenge is largely due to lack of knowledge about possible environments of components.
In the state of the art, property and assumption formulation is often ad-hoc and system-
specific. There has been recent research [4, 5] on automatic generation of assumptions
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for safety properties of components. However, formulation of component properties and
formulation of assumptions for liveness properties still needs to be addressed.

This paper presents and illustrates a novel approach which facilitates formal veri-
fication of component-based software application families using model checking. This
approach contributes to addressing the component property and assumption formulation
challenge through extending the concept of software architectures to the concept of ap-
plication family architectures (AFA). An AFA of an application family consists of the
computation model, component model, architectural styles, and reusable components
of the family. Intuitively, the AFA concept addresses lack of knowledge about possible
environments of components by capturing common usage patterns and compositions of
components and provides a hierarchy of reusable components with verified properties.

In this approach, bottom-up component verification and top-down system verifica-
tion are integrated based on assume-guarantee compositional reasoning [2, 3] and the
AFA concept. The integration works as follows. Basic reusable components of a fam-
ily are derived from its architectural styles and are developed bottom-up as the family
is initialized. Properties of these components are derived from the architectural styles
and verified in the environments defined by these styles. The properties then serve as
abstractions of the components in bottom-up verification of larger composite compo-
nents. Top-down verification of a member system utilizes architectural styles to guide
decomposition of properties of the system into properties of its components and formu-
lation of environment assumptions of the component properties. The component prop-
erties are reused, if already verified; otherwise, they are verified top-down recursively.
Architectural style driven property decomposition addresses formulation of component
properties and their assumptions, and facilitates reuse of verified properties of reusable
components. Additional reusable components may be introduced as the family evolves.

Preliminary case studies on web service based systems have shown that our approach
is very effective in scaling verification: It achieved order-of-magnitude verification com-
plexity reductions for non-trivial component-based systems and realized major verifi-
cation reuse. The cost of our approach lies in configuring and evolving the AFA of a
family and is amortized among member systems of the family. Further case studies are
under way to evaluate if benefits obtained in verification and reuse justify the cost.

The rest of this paper is organized as follows. In Section 2, we introduce the concept
of AFA and present an AFA for the domain of university information systems (UIS)
based on web services. In Section 3, we discuss integrated bottom-up and top-down
verification for an application family, which is illustrated with its application to the UIS
domain in Section 5. In Section 6, we analyze the effectiveness and cost of integrated
verification. We discuss related work in Section 7 and conclude in Section 8.

2 Application Family Architectures (AFAs)

AFAs extend the concept of software architectures [6, 7] and target model checking of
component-based application families. An AFA for an application family is derived via
domain analysis of this family. It captures common architectural styles of the systems
in this family, which suggest properties that need to be verified on these systems and
provide knowledge about possible composition environments for reusable components.
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It also catalogs reusable components and their verified properties. An AFA is a 4-tuple,
(computation model, component model, architectural style library, component library):

The computation model defines the basic elements of a system: (1) the basic func-
tional entities, (2) the interaction mechanism of these entities, and (3) the units of
execution, and specifies the execution semantics in terms of these basic elements.
— The component model defines the concept of component, specifying the elements of
a component: executable representation, interfaces (including functional interfaces
and component properties), etc. It also defines the component composition rule.

— The architectural style library contains the common architectural styles that appear
in systems of this family. An architectural style specifies the types of components
that can be used in this style, the component interactions under this style, and a set
of properties required by this style on these components and on their composition.

— The component library contains the reusable components that have been constructed

for developing systems in this family. These components are reused in development

of new systems. This library is expanded when new components are introduced.

2.1 AFA for University Information System

To illustrate this concept, we present an AFA for the domain of university information
systems (UIS). A modern university is supported by many information systems such as
the registration system, the library system, and the event ticketing system. Their central
functionality is to process various electronic transactions. These systems are required
to correctly process these transactions following the designated protocols.

Computation Model. An emerging trend is to develop information systems using web
service technologies. Components of such systems are web services, implemented in
program languages such as Java and C# or design-level executable languages such as
Business Process Execution Language for Web Services (BPEL4WS) [8]. We formalize
(with simplifications) the semantics of web service based systems as an Asynchronous
Interleaving Message-passing (AIM) computation model. In this model, a system is
a finite set of interacting processes. The processes interact via asynchronous message-
passing. A system execution is an interleaving of the state transitions of these processes.
In our previous work [9], we have developed the ObjectCheck toolkit which supports
model checking of systems that follow the AIM semantics. We employ ObjectCheck as
the model checker for verifying components and systems of the UIS family.

Component Model. Web services, the components in web service based systems, can
be primitive (directly implemented) or composite (composed from simpler web ser-
vices). Their interfaces are specified in XML-based interface specification languages,
Web Service Definition Language (WSDL) [10] and Web Service Choreography Inter-
face (WSCI) [11]. WSDL defines the message types supported by a web service. WSCI
defines how the message types are interrelated in a choreographed interaction with the
web service.

Component — A component C' is a pair (E, {S}). E is the executable specification
of C. Conceptually, E is a set of interacting AIM processes. (A primitive component
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may contain multiple AIM processes.) Practically, E' can be implemented in Java, C#,
or BPELAWS. {S} is a set of services and each service S is a pair (M, F') as follows.

— M is the messaging interface through which C' provides the service .S and requests
the services necessary for providing S. M contains input and output message types
and is specified in WSDL.

— F is the functional specification of the service S and is a pair (provides, requires).
The provides is a pair (P(pro), A(pro)) where P(pro) is the temporal proper-
ties that define the service S and A(pro) specifies the assumptions of P(pro) on
the components that request S. To provide S, C' often requires other services. The
requires is a set and each entry of the set is a pair (P(req), A(req)). A(req) speci-
fies the assumptions on a service S’ required by C. P(req) specifies the properties
of C necessary for enabling the assumptions in A(req), i.e., when C requests the
service S’, it must behave as P(req) specifies. The properties and assumptions are
formulated on the message types in M and are specified in WSCI.

This component definition facilitates assume-guarantee compositional reasoning by
specifying properties with their assumptions and guides verification reuse by grouping
properties and assumptions into the provides and requires format.

Component Composition — Composition of a set of components, Cy, ..., Cp,_1, cre-
ates a composite component, C' = (E, {S}), which provides services that aggre-
gate the services provided by Cy, ..., Cp,—1. Suppose the services (Mo, Fp), ...,

(Myp—1, F,—1) of Co, ..., Cp,—1 are used to compose the service (M, F') of C. (n
can be bigger than m since multiple services of a component may be involved.)

— FE is constructed from Ej, ..., E,,_1 by establishing mappings between incoming
message types in M; and outgoing message types in M, 0 < 4, j < n, in order to
fully or partially satisfy the requires of F; with the provides of F.

— M includes all message types in Mo, ..., M, _1 that are needed for C to interact
with its environment. F' is defined on M. The provides of F' is derived from the
provides of one or several F;’s. The requires of F' is derived from all entries in the

requires of Fy, ..., F},_1 that are not satisfied inside the composition.
F is verified on an abstraction of Cy, ..., C,,_1 constructed from Fy, ..., F,,_1. The
abstraction includes all properties in the provides and requires of Fy, ..., F,,_1 whose

assumptions are satisfied by the composition or the assumptions in the provides and
requires of F'. F' is verified by checking the properties in the provides and requires of
F’ on the abstraction. (See [12] for details of abstraction construction.)

Architectural Style Library. An architectural style is a triple, (component templates,
service invocation graph, properties). The component templates are specified by com-
ponent service interfaces which can be complete or partially defined, i.e., with partially
defined messaging interfaces and (provides, requires) pairs. A component matches a
component template if its interfaces match the interfaces of the component template.
The service invocation graph is a directed graph that defines how the requires of the
component templates are satisfied by the provides of other component templates. In
a composite component following this style, the provides and requires of the sub-
components corresponding to the component templates must conform to the satisfaction



54 F. Xie and J.C. Browne

relationships. The properties are required to hold on a composite component following
this style. They are formally defined on the interfaces of the component templates if the
interfaces provide sufficient semantic information; otherwise, they are informally spec-
ified. A component is reusable if it matches a component template and its functionality
is common across multiple composite components following this style.

The UIS architectural style library includes (but not limited to) the following styles:

— Three-tier architecture. (1) Component templates: The application logic, the busi-
ness logic, and the database engine. The database engine is reusable. (2) Service
invocation graph: This style features layered service invocation. The user logic in-
vokes the business logic which, in turn, invokes the database engine. (3) Properties:
The three components interact properly to ensure that their composition correctly
processes each transaction received. The properties are informally specified due to
insufficient semantic information about the transactions.

— Agent-dispatcher. (1) Component templates: A pool of agents and a dispatcher man-
aging the agents. The dispatcher is a reusable component while the agents are dif-
ferent for different transactions, however, the agents conform to a partial interface
whose provides is partially determined by the requires of the dispatcher. (2) Ser-
vice invocation graph: The environment of a composite component following this
style invokes the services of the dispatcher and agents. The dispatcher invokes the
service of the agents. An agent provides services to the environment of the compos-
ite component and the dispatcher via the same messaging interface. (3) Properties:
Upon a request from the environment if a free agent exists it must be dispatched.
A dispatched agent is eventually freed. The properties are formally defined on the
interfaces of the dispatcher template and the agent template.

Systems in the UIS family are transaction-oriented and circular service invocation
is not permitted. The service invocation graphs are directed and acyclic. Dependencies
between a service requester and its provider are captured in their requires and provides.
Such dependencies do not cause circular reasoning due to the sequencing relationships
among the messages of two interacting sub-components in executing a transaction.

Component Library. Basic reusable components of the UIS family, such as the data-
base engine, are derived from its architectural styles. The desired properties of the data-
base engine assert that it correctly handles each query. The properties have assumptions
that databases are locked before and unlocked after they are queried and if multiple
databases are accessed, they must be locked in a proper order to avoid deadlocks. The
properties and their assumptions are parameterized by how many and what databases
are accessed simultaneously. An instantiation of the properties for accessing a single
database is shown in Figure 1. Space limitation prohibits showing the WSCI repre-
sentations of the properties and assumptions. Instead, in Figure 1, the properties and
assumptions are concisely specified in an w-automaton based property specification
language [9]. Each assertion is instantiated from a property template and is correspond-
ing to an w-automaton. Properties in this language are intuitive, for instance, the first
assertion in Figure 1 asserts that after receiving a lock message, the database engine
will eventually reply with a locked message. These specifications are translated from
the WSCI specifications when the properties are verified using the ObjectCheck toolkit.
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Provides:

P(pro):
After(Lock) Eventually(Locked); Never(Locked) UnlessAfter(Lock);
After(Locked) Never(Locked) UnlessAfter(Lock);
After(Unlock) Eventually(Unlocked); Never(Unlocked) UnlessAfter(Unlock);
After(Unlocked) Never(Unlocked) UnlessAfter(Unlock);

A(pro):
After(Lock) Never(Lock) UnlessAfter(Unlocked);
After(Locked) Eventually(Unlock); Never(Unlock) UnlessAfter(Locked);
After(Unlock) Never(Unlock)UnlessAfter(Locked);

Fig. 1. Properties of Database Engine

(For simplicity, only properties that are related to locking/unlocking are shown and the
transaction identifiers are omitted from the messages.) The properties in P(pro) define
the desired behaviors of the database engine. The assumptions in A(pro) specify the
required behaviors of other components requesting the service. The database engine
requires no other services. Besides the database engine, the agent-dispatcher style sug-
gests the dispatcher service. These components are the initial components in the library.

2.2 Relationships of AFA to Verification

AFA extends the concept of software architectures to enable operational support for
bottom-up component verification, top-down system verification, and their integration.
The inclusion of a computation model and a component model in an AFA relates soft-
ware architectures to component implementations and compositions, thus making the
concept of software architectures operational for verification. The computation model
guides the selection of model checkers. The component model provides compositional
structures necessary for compositional reasoning. The architectural styles suggest com-
ponent properties and how these properties are decomposed if needed.

3 Integrating Bottom-Up and Top-Down Verification

In this section, we present how the AFA concept facilitates bottom-up component verifi-
cation, top-down system verification, and their integration. Our approach utilizes archi-
tecture styles captured by the AFA to guide property formulation and decomposition,
and reduces complexities of verifying member systems based on compositional reason-
ing and on reuse of verified properties of reusable components available in the AFA.

3.1 Bottom-Up Component Verification in Family Initialization

As an application family is initialized, its basic reusable components are derived from
its architectural styles. The properties of the components are formulated according to
these styles. The assumptions of the component properties are also formulated accord-
ing to how the components interact under the architectural styles. Derivation of reusable
components and formulation of properties and assumptions requires manual efforts.
Verification of the component properties follows the bottom-up approach developed in
our previous work [12]. The properties of a primitive component, which is developed
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from scratch, are directly model-checked. The properties of a composite component,
instead of being checked on the component directly, are checked on its abstractions that
are constructed from the verified properties of its sub-components. If the properties of
the composite component cannot be verified on the abstractions, the abstractions are
refined by introducing and verifying additional properties of the sub-components.

3.2 Top-Down System Verification in Member System Development

Development of a member system of an application family is top-down. The system is
partitioned into its components which are reused from the component library, directly
implemented, or partitioned recursively. A system is a composite component. There-
fore, we discuss how a composite component is verified as it is developed top-down.
For a composite component following an architectural style, we integrate verification
into its top-down development and utilize the architecture style to guide the decompo-
sition of its properties into the properties of its sub-components.! We assume that the
component interface has been designed. The properties of the composite component
are formulated in the (provides, requires) format based on the interface and according
to the architectural style. For architecture styles with informally specified properties, for
instance, the 3-tier architecture, the property formulation requires manual efforts. The
composite component is developed and verified using a top-down process as follows:

1. Composite component layout. The component is partitioned into its sub-components
according to the architectural style. The sub-component interfaces are defined and
the sub-component interactions are specified. This step requires manual efforts of
the designers. The representation for sub-component interactions, for instance,
High-level Message Sequence Charts (HMSC) [13] for the UIS family, are selected
in conformance to the computation model and the component model of the family.

2. Architectural style driven property decomposition. The properties of the compos-
ite component are decomposed into the properties of its sub-components. The de-
composition is guided by the architectural style and based on the sub-component
interactions. How architectural styles guide property decomposition is discussed in
detail in Section 4. The validity of the decomposition is established by ensuring that
the properties of the sub-components imply the properties of the composite compo-
nent and there exists no circular reasoning among sub-component properties. For a
well-studied application domain, this step can be largely automated.

3. Reuse or recursive development of sub-components. The architectural style sug-
gests whether a sub-component is reusable. There may be a set of components in the
library which are reusable in a given sub-component role even though they are dif-
ferent in their interfaces or properties. A component is selected from the set based
on their interfaces and properties. If no qualified component is found for a sub-
component or it is suggested to be application-specific by the architectural style, it
needs to be developed. If the sub-component is primitive, it is implemented, and its
properties are verified through direct model checking of its implementation. If the

! A composite component may or may not follow an architecture style. A composite component
following no style can be verified through compositional reasoning based on user-guided de-
composition of properties of the composite component into properties of its sub-components.
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sub-component is composite, it is developed and verified top-down. If it follows an
architectural style, the top-down process discussed herein is applied recursively.

4. Composition. After all the sub-components are selected from the library or recur-
sively developed, they are composed to construct the composite component by us-
ing the composition rule in Section 2.1 following the architectural style.

In each step of this process, failure to achieve the goal of the step will lead to revisions
and re-executions of the previous steps or abortion of this process.

3.3 Bottom-Up Component Verification in Component Library Expansion

In the top-down development and verification of a member system, new components
may be introduced. Some of these components are application-specific while the others
are reusable. The properties of the reusable components have been established when
the system is verified. These newly introduced reusable components may be further
composed among themselves or with the existing reusable components to build larger
reusable components bottom-up. Such a composite component is identified in the de-
velopment of the member system and its sub-components together achieve a reusable
functionality. The interface of the composite component is derived from the interfaces
of its sub-components. The properties of the composite component are verified on its
abstractions constructed from the properties of its sub-components. The sub-component
properties are available from either verification of the member system or the component
library. All these reusable components are then included into the component library.

3.4 Interactions of Bottom-Up and Top-Down Verification

Bottom-up and top-down verification are synergistic in their integration into the devel-
opment lifecycle of an application family. Bottom-up component verification in family
initialization provides the basis for verification reuse. Top-down member system devel-
opment and verification expands the component library by introducing new reusable
components and by enabling bottom-up construction and verification of larger reusable
components. Component library expansion raises the level of component reuse and re-
duces the number of decompositions needed in top-down verification of a new system.

4 Architectural Style Driven Decomposition

The central step of top-down system verification is the architectural style driven prop-
erty decomposition. In this step, the properties of a composite component (a system
is a composite component) are decomposed into the properties of its sub-components
based on the architectural style guiding the composition and on the sub-component in-
teractions. For a well-studied domain, the decomposition procedure can be largely auto-
mated. How the decomposition procedure operates also depends on the representations
of architectural styles, component interfaces, component interactions, and properties.
We present a decomposition procedure for the UIS family. (With slight modifica-
tions, this procedure can be generalized to many other transaction processing centric
families.) Given a composite component C' and a service (M, F) that C' is expected
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to provide, the procedure decomposes the properties and assumptions in the provides
and requires of F' into the properties and assumptions of the sub-components of C' fol-
lowing the architectural style of C'. Properties and assumptions of a sub-component are
grouped to define the services provided and required by the sub-component.

Under the UIS architectural styles, component interactions are transaction-oriented.
To provide the service S, the sub-components Cy, . .., Cy,—1 of C' interact following a
transaction: a sequence of message communications through the messaging interfaces
of (Y, ..., C,—1. Component interfaces are service-oriented: a component provides a
service and to provide the service, it requires services from other components.

We assume as C' is designed, the interactions among Cj, ..., C;,_1 are specified
as a High-level Message Sequence Chart (HMSC) [13]. A HMSC allows branching
upon different messages, repetitions of sub-sequences, and skips of sub-sequences. We
also extend HMSCs by grouping the messages interactions among the sub-components
according to service invocations. The message interactions for invoking a service are
explicitly annotated. The external component that requires the service of C' (denoted by
P-ENV) and the set of the external components that provide the services required by C
(denoted by R-ENV) are also represented in the HMSC. The message communications
with P-ENV and R-ENV are derived from the provides and requires of F'. Specifying
HMSCs adds little extra costs to the design process of message-passing based systems.

The decomposition procedure for compositions whose service invocation graphs
have tree structures is given as pseudo code in Figure 2. (Space limitation prohibits

procedure Decompose (style, comp-set, hmsc, current, parent)
begin
if (current == P-ENV) then
{children} = Find-Children (style, comp-set, hmsc, current);
foreach child € {children} do
Decompose (style, comp-set, hmsc, child, current);
endfor;
elseif (current ¢ R-ENV) then
provides = Derive-Provides-from-HMSC (hmsc, current, parent));
{children} = Find-Children (style, comp-set, hmsc, current);
foreach child € {children} do
req = Derive-Requires-from-HMSC (hmsc, current, child);
requires = requires U {req};
Decompose (style, comp-set, hmsc, child, current);
endfor;
Attach-Service-to-Component (current, (provides, requires));
endif;,
end;

Fig. 2. The decomposition procedure

presenting the more complex decomposition procedure for compositions with directed
acyclic service invocation graphs, which follows the same basic idea.) It inputs the ar-
chitectural style guiding the composition, the set of sub-components represented by
their messaging interfaces, the HMSC, the current sub-component whose service is
to be derived, and the parent sub-component that requires the service of the current
sub-component. The parent-children relationships among the sub-components are de-
termined by the service invocation relationships among the sub-components defined in
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the architectural style and the service annotations in HMSC. A component may appear
in the children set of another components multiple times if it provides multiple services
to its parent. The procedure is invoked with P-ENV as the current and NULL as the
parent since P-ENYV is the root of the transaction, and invokes itself recursively.

1. If current is P-ENV, the procedure locates all sub-components providing services
to P-ENV and invokes itself recursively on each of these sub-components.

2. If current is not P-ENV and also not in R-ENV, the procedure first derives the pro-
vides of current from its interactions with its parent (the sub-component to which
it provides the service). The procedure then finds all children of current (the sub-
components that provide services to current), derives each entry of the requires of
current from the interaction with each child, and invokes itself recursive on each
child. The service, (provides, requires), is then associated with current.

3. If current is in R-ENV, then nothing need be done.

Deriving the provides and requires of current from the HMSC is essentially pro-
jecting the HMSC onto current and the sub-components that interact with current. To
derive the provides, the interactions of current with its parent are projected. To derive
an entry of the requires, the interactions of current with one of its children are pro-
jected. The properties and assumptions in the provides and the requires are specified
as WSCI processes. A WSCI process is a simple state machine that captures the be-
haviors of a sub-component as specified in the HMSC: receiving incoming messages
and responding with outgoing messages. The derivation algorithm is straightforward.
Receiving and sending messages in the HMSC is captured as atomic messaging activi-
ties in the WSCI process. Sequencing relationships among messages in the HMSC are
captured by sequence activities in the WSCI process. Branchings according to different
messages received in the HMSC are captured by choice activities in the WSCI process.

Space limitation precludes presentation of a detailed correctness proof of the decom-
position procedure. The intuition is as follows. The procedure always terminates since
it goes through each component following an order determined by the architectural
style. The procedure ensures that the composition of the derived services of the sub-
components implies the service of the composite component. The requires of P-ENV is
satisfied by the provides of its children sub-components whose requires are satisfied by
their children recursively. The requires of the sub-components that interact with R-ENV
are satisfied by the provides of R-ENV. Therefore, the composite provides the requires
of P-ENV if R-ENV provides the requires of the composite. In addition, the acyclic ser-
vice invocations among the sub-components and the sequencing relationships among
the messages of two interacting sub-components prevent circular reasoning.

5 Integrated Bottom-Up and Top-Down Verification of UIS

5.1 Bottom-Up Component Verification in Family Initialization

As the UIS family is initialized, its architectural styles suggest two reusable compo-
nents: the database engine and the dispatcher. Verification of database engines is out of
the scope of this paper. We assume that the properties of the database engine hold. The
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Provides:

P(pro): After(Login) Eventually(TryLater + Dispatch); Never(TryLater + Dispatch) UnlessAfter(Login);
After(TryLater + Dispatch) Never(TryLater + Dispatch) UnlessAfter(Login);

A(pro): (Empty)

Requires:

A(req): After(Dispatch) Eventually(Free); Never(Free) UnlessAfter(Dispatch);
After(Free) Never(Free) UnlessAfter(Dispatch);

P(req): After(Dispatch) Never(Dispatch) UnlessAfter(Free);

Fig. 3. Properties of Dispatcher

dispatcher is a primitive component. Its properties and their assumptions are shown
in Figure 3. The properties in P(pro) and P(req) are checked on the dispatcher un-
der a non-deterministic environment whose interface complements the interface of the
dispatcher and which is constrained by the assumptions in A(pro) and A(req). The prop-
erties were verified in 0.9 seconds and 0.16 megabytes which are order-of-magnitude
lower than the time and memory usages for verifying a system utilizing the dispatcher
service (see Section 6). No composite reusable components are introduced in family
initialization.

5.2 Top-Down System Verification in Member System Development

We illustrate top-down system verification through verifying the registration system
from the UIS family. The registration system is structured following the 3-tier architec-
ture. It consists of three components: the application logic, the business logic, and the
database engine. The interactions among these components and the environment of the
registration system are captured by a HMSC. Upon a login request, the system execu-
tion may take three branches: (1) log the user in; (2) reject the user; (3) ask the user to
try later. For illustration purposes, the first two branches are shown in Figure 4 as two

v ] [ Amiom] [ Boteme | [Dmwme ] [ Fow | [ moiose] [ Bwiome] [ Daes
Login Login

AuthReq AuthReq
Lock(A) Lock(A)
Locked(A) Locked(A)
Unlock(A) Unlock(A)
Unlocked(A) Unlocked(A)

AuthReply AuthReply

Loggedin Rejected
1==-=1  AddClassReq/
| DelClassReq AddClass/

DelClass
Lock(C)
Locked(C)
Lock(s)
Locked(S)
Unlock(S)
Unlocked(S)
Unlock(C)

AddRes/ Unlocked(C)

AddClassReply/ DelRes
DelClassReply

| Logout

LoggedOut

Fig. 4. A flattened view of the HMSC for component interactions under the 3-tier architecture
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MSCs with the following extensions: The forward dashed arrow denotes the skip of a
sub-sequence and the backward dashed arrow denotes the repetition of a sub-sequence.
For instance, after a user logs in, she may or may not add or delete classes, and she may
add or delete multiple classes. In Figure 4, service annotations that group messages into
service invocations are not shown for simplicity. The message interactions between the
application logic and the business logic are grouped into two service invocations: one
for authentication and the other for adding or deleting classes. Similarly, the message
interactions between the business logic and the database engine are grouped into two
service invocations: one for access to the authentication database and the other for si-
multaneous access to the class database and the student database.

The 3-tier architecture requires verifying that the registration system follows the des-
ignated message sequences for a registration transaction when interacting with a well-
behaved user. Essentially, we verify that the system interacts with such a user following
the message sequences between P-ENV and the application logic in Figure 4.

The properties of the registration system can be automatically derived from the
HMSC as follows. A WSCI process is created from the HMSC and captures the mes-
sages from P-ENV to the system, the response messages of the system, and the se-
quencing relationships among the messages observed by the system. Essentially, the
WSCI process is obtained from the HMSC by projecting the interactions between the
system and P-ENV onto the system. Space limitation prohibits showing the WSCI
process. Instead, its formal translation is shown in Figure 5. The temporal predicates
in P(pro) encode the WSCI process, i.e., capturing the temporal relationships among
the messages, for instance, the first three predicates in P(pro) capture the temporal
relationships between Login and LoggedlIn, Rejected, and TryLater. A(pro) is derived
from the HMSC by projecting the interactions of P-ENV and the system onto P-ENV.
For instance, the first predicate in A(pro) specifies an assumption on P-ENV that it
never sends an AddClassReq, DelClassReq, or Logout message unless after it receives a
LoggedIn message. The properties in P(pro) and the assumptions in A(pro) are inter-
dependent and together they capture the message interactions between P-ENV and
the system. Since the registration system requires no other services, its requires is
empty.

Provides:

P(pro):
After(Login) Eventually(LoggedIn+Rejected+TryLater);
Never(LoggedIn+Rejected+TryLater) UnlessAfter(Login);
After (LoggedIn+Rejected+TryLater) Never (LoggedIn+Rejected+TryLater) UnlessAfter(Login);
After(AddClassReq) Eventually(AddClassReply); Never(AddClassReply) UnlessAfter(AddClassReq);
After(AddClassReply) Never(AddClassReply) UnlessAfter(AddClassReq);
After(DelClassReq) Eventually(DelClassReply); Never(DelClassReply) UnlessAfter(DelClassReq);
After(DelClassReply) Never(DelClassReply) UnlessAfter(DelClassReq);

After(Logout) Eventually(LoggedOut); Never(LoggedOut) UnlessAfter(Logout);
After(LoggedOut) Never(LoggedOut) UnlessAfter(Logout);

A(pro):

Never(AddClassReq+DelClassReq+Logout) UnlessAfter(LoggedIn);

After(AddClassReq) Never (AddClassReq+DelClassReq+Logout) UnlessAfter(AddClassReply);
After(DelClassReq) Never (AddClassReq+DelClassReq+Logout) UnlessAfter(DelClassReply);
After(LoggedIn) Eventually (Logout); After(Logout) Never(AddClassReq+DelClassReq+Logout);

Fig. 5. Properties of Registration System
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The properties of the registration system are decomposed into the properties of its
sub-components by the decomposition procedure in Section 4. The procedure starts
with P-ENV and invokes itself recursively on the three sub-components of the sys-
tem following the service invocation graph of the 3-tier architecture. The first com-
ponent whose properties are derived is the application logic. The derived properties
and assumptions of the application logic are shown in Figure 6. The application logic

Provides: (same as the provides in Figure 5.)

Requires 1:

A(req):
After(AuthReq) Eventually(AuthReply); Never(AuthReply) UnlessAfter(AuthReq);
After(AuthReply) Never(AuthReply) UnlessAfter(AuthReq);

P(req): After(AuthReq) Never(AuthReq) UnlessAfter(AuthReply);

Requires 2:

A(req):
After(AddClass) Eventually(AddRes); Never(AddRes) UnlessAfter(AddClass);
After(AddRes) Never(AddRes) UnlessAfter(AddClass);
After(DelClass) Eventually(DelRes); Never(DelRes) UnlessAfter(DelClass);
After(DelRes) Never(DelRes) UnlessAfter(DelClass);

P(req):
After(AddClass) Never(AddClass+DelClass) UnlessAfter(AddRes);
After(DelClass) Never(AddClass+DelClass) UnlessAfter(DelRes);

Fig. 6. Properties of Application Logic

provides the registration service to P-ENV. The procedure derives the provides inter-
face of the application logic from its message interactions with P-ENV. The provides
interface is derived by projecting the message interactions between P-ENV and the ap-
plication logic and it is essentially the same as the provides interface of the registra-
tion system. The procedure determines from the HMSC that to provide the registration
service, the application logic requires two services from the business logic: one for au-
thentication and the other for adding or deleting classes. The corresponding requires
entry for each of the two services is derived from the message interactions with the
business logic. The A(req) is derived by projecting the message interactions onto the
business logic while P(req) is derived by projecting the message interactions onto the
application logic.

Following the service invocation relation between the application logic and the busi-
ness logic, the decomposition procedure is invoked to derive the properties of the busi-
ness logic. Based on the HMSC service annotations, the procedure is invoked for each
service that the business logic provides. The properties are shown in Figure 7, capturing
the services provided to the application logic and required from the database engine.

The database engine processes two types of service invocations: access to the au-
thentication database and simultaneous access to the student and class databases. The
properties and assumptions in the provides of the database engine are the same as the as-
sumptions and properties in the requires of the business logic. The database engine has
no requires. The properties and assumptions of the two service invocations differ since
they are instantiated differently. The database engine introduced in the family initializa-
tion is selected for reuse since it has a matching messaging interface and its properties
(or assumptions), instantiated by how many and what databases are accessed, imply (or
are implied by) the properties (or assumptions) derived in the top-down decomposition.



Verification of Component-Based Software Application Families 63

/* Service 1 */
Provides:

P(pro) (or A(pro), respectively) is the same as A(req) (or P(req)) of Requires 1 of Application Logic.
Requires:

A(req) (or P(req), respectively) is same as P(pro) (or A(pro)) of Provides of the DB engine in Figure 1.
/* Service 2 */
Provides:

P(pro) (or A(pro)) is same as A(req) (or P(req)) of Requires 2 of Application Logic.)
Require:
A(req):
After(Lock(C)) Eventually(Locked(C)); Never(Locked(C)) UnlessAfter(Lock(C));
After(Locked(C)) Never(Locked(C)) UnlessAfter(Lock(C));
After(Lock(S)) Eventually(Locked(S)); Never(Locked(S)) UnlessAfter(Lock(S));
After(Locked(S)) Never(Locked(S)) UnlessAfter(Lock(S));
After(Unlock(S)) Eventually(Unlocked(S)); Never(Unlocked(S)) UnlessAfter(Unlock(S));
After(Unlocked(S)) Never(Unlocked(S)) UnlessAfter(Unlock(S));
After(Unlock(C)) Eventually(Unlocked(C)); Never(Unlocked(C)) UnlessAfter(Unlock(C));

After(Unlocked(C) Never(Unlocked(C)) UnlessAfter(Unlock(C));

P(req):

After(Lock(C)) Never(Lock(C)) UnlessAfter(Unlocked(C));

After(Locked(C)) Eventually(Lock(S)); Never(Lock(S)) UnlessAfter(Locked(C));
After(Lock(S)) Never(Lock(S)) UnlessAfter(Locked(C));

After(Locked(S)) Eventually(Unlock(S)); Never(Unlock(S)) UnlessAfter(Locked(S));
After(Unlock(S)) Never(Unlock(S)) UnlessAfter(Locked(S));

After(Unlocked(S)) Eventually(Unlock(C)); Never(Unlock(C)) UnlessAfter(Unlocked(S));
After(Unlock(C)) Never(Unlock(C)) UnlessAfter(Unlocked(S))

Fig. 7. Properties of Business Logic

The structure of the application logic follows the agent-dispatcher style. For each
user request, the dispatcher dispatches an agent to serve the user if there exists a free
agent; otherwise, it asks the user to try later. The properties of the application logic are
decomposed into the properties of the dispatcher and the agents. Based on the derived
properties for the dispatcher, the dispatcher that has been introduced and verified when
the UIS family is initialized is selected for reuse. The provides and requires of the
agents are largely the same as those of the application logic except the properties and
assumptions that are related to agent dispatching, which are shown in Figure 8.

Provides:
P(pro):

After(Dispatch) Eventually(LoggedIn+Rejected); Never(LoggedIn+Rejected) UnlessAfter(Dispatch);
After(LoggedIn+Rejected) Never(LoggedIn+Rejected) UnlessAfter(Dispatch);
After(Dispatch) Eventually(Free); Never(Free) UnlessAfter(Dispatch);
After(Free) Never(Free) UnlessAfter(Dispatch);
A(pro): After(Dispatch) Never(Dispatch) UnlessAfter(Free);

Fig. 8. Properties and Assumptions of Agents Related to Dispatching

The business logic is partitioned into the authentication processor and the registration
processor. Each implements a service of the business logic shown in Figure 7.

5.3 Bottom-Up Component Verification in Component Library Expansion

As the registration system is developed, the authentication processor is introduced in
the business logic layer and it interacts with the database engine to provide the user
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authentication. The two components is composed bottom-up to build an authentication
service that processes authentication requests and replies to these requests. The desired
properties of the authentication service is shown in Figure 9. The properties, instead

Provides:

A(req):
After(AuthReq) Eventually(AuthReply); Never(AuthReply) UnlessAfter(AuthReq);
After(AuthReply) Never(AuthReply) UnlessAfter(AuthReq);

P(req): After(AuthReq) Never(AuthReq) UnlessAfter(AuthReply);

Fig. 9. Properties of Authentication Service

of being checked directly on the authentication service, is checked on its abstraction.
The abstraction is constructed from the verified properties of the authentication proces-
sor and the database engine. The properties of the authentication processor have been
established in the top-down system verification while the properties of the database en-
gine have been established in the family initialization. The introduction of the authenti-
cation service suggests the introduction of a new architectural style: 3-tier architecture
with authentication, as shown in Figure 10. In development of new systems such as the

| Application Logic |——| Business Logic |—>| Database Engine

Fig. 10. 3-tier architecture with authentication

library system and the ticket sale system, the new style can be selected to structure these
systems and, therefore, facilitate reuse of the authentication service and its properties.

6 Effectiveness and Cost of Integrated Verification

Our integrated approach has major potential for improving reliability of a component-
based application family. It enables effective verification of member systems of the
family by greatly reducing verification complexities of the systems and facilitating ver-
ification reuse. Direct verification of the properties of the registration system with a
configuration of 3 concurrent users and 2 agents takes 7034.27 seconds and 502.31
megabytes and it does not scale to large configurations. In verifying the same system
with our approach, only the properties of the agent, the authentication processor, and
the registration processor must be verified and the properties of other components are
reused. The time and memory usages for verifying these components are shown in Ta-
ble 1. It can be observed that our approach achieves order-of-magnitude reduction in
verification time and memory usages. Our approach scales to member systems of large
configuration via systematic partition of a system into components of manageable size.
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Table 1. Verification time and message usage

Agent Authentication Processor Registration Processor
Time (Seconds)  0.75 0.1 4.09
Memory (MBytes) 0.29 0.31 0.31

The cost of our approach lies in initializing, maintaining, and evolving the AFA:
identifying and capturing architectural styles, bootstrapping the component library, and
expanding the library. The cost, however, is amortized across the member systems of
an application family. Architectural style driven property decomposition procedures are
often reused across multiple application families, for instance, the decomposition pro-
cedure in Section 4 can be reused across many transaction processing centric families.
We are currently conducting further case studies on families of web service based sys-
tems and embedded systems to evaluate whether the cost of applying our approach can
be justified by the benefits obtained in system verification and verification use.

7 Related Work

The concept of AFAs extends the concept of software architectures [6, 7] and targets
verification of families of component-based systems. Space limitation prohibits full
coverage of related work on software product families. The Product Line Initiative [14]
at SEI focuses on design and implementation issues for software product families. Our
work differentiates by focusing systematic verification of software application families.

Pattern reuse is often conducted at two levels: design level and architectural level.
Design patterns [15] are concerned with reuse of programming structures at the algo-
rithmic or data structure level. Architectural styles (a.k.a., architectural patterns) [6, 7]
are concerned with reusable structural patterns of software systems with respect to their
components. Architectural styles have been applied in system design, documentation,
validation, etc. Our research utilizes architectural styles of a component-based applica-
tion family to facilitate component property formulation and decomposition.

A major challenge to assume-guarantee compositional reasoning is formulation of
component properties and their environment assumptions. There are approaches [4, 5]
to automatic generation of assumptions for safety properties of components. Our ap-
proach addresses this challenge via architectural style guided property formulation in
bottom-up component verification and via architectural style driven property decompo-
sition in top-down system verification. It handles both safety and liveness properties and
complements automatic assumption generation for safety properties of components.

8 Conclusions and Future Work

We have presented a novel approach to formal verification of software application fam-
ilies. This approach synergistically integrates bottom-up component verification and
top-down system verification into the development lifecycle of software application
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families. Its application to the UIS family has shown that it enables verification of non-
trivial systems and reuse of major verification efforts. Currently, we are conducting
further case studies to evaluate whether the benefits obtained by our approach in system
verification and verification reuse can justify the cost of our approach.
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Abstract. The Analytic Hierarchy Process (AHP) has been successfully
used in the past for the selection of components, as presented in case stud-
ies in the literature. In this paper, an empirical study using AHP to rank
components is presented. The components used in the study are for data
compression; each implements one of the Arithmetic Encoding (AREC),
Huffman coding (HUFF), Burrows-Wheeler Transform (BWT), Fractal
Image Encoding (FRAC), and Embedded Zero-Tree Wavelet Encoder
(EZW) algorithms. The ranking is a semi-automated approach that is
based on using rigorously collected data for the components’ behavior;
selection criteria include maximum memory usage, total response time,
and security properties (e.g., data integrity). The results provide a clear
indication that AHP is appropriate for the task of selecting components
when several criteria must be considered. Though the study is limited
to select components based on multiple non-functional criteria, the ap-
proach can be expanded to include multiple functional criteria.

1 Introduction

The selection of components is recognized as a challenging problem in component
based software engineering [1,2, 3], as there are complex technical, legal, and
business considerations that need to be simultaneously and iteratively addressed
as development proceeds. When selecting a component, the number of criteria
can be large. Established metaheuristic search techniques [4] from the artificial
intelligence community have been proposed to search for software components
including genetic algorithms [5,6] and evolutionary algorithms [7]. Alternative
approaches using multi-criteria decision making (MCDM) techniques have also
been employed as a solution to this problem [2,8,9,10,11,12]. One well known
MCDM technique is the Analytic Hierarchy Process (AHP).

Case studies are available in the literature that report the successful use of the
AHP approach [9, 10, 11]. The data supporting the description of the components
in these studies appears to be obtained from vendor specifications, etc. Here,
we rigorously collect data about the components as the foundation for their
selection. We note that other sources [1,13] have provided arguments against
the use of the AHP approach for the selection of components; this is discussed
in Section 4.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 67-81, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In this paper we present an empirical study for the ranking, using AHP, of
components based on non-functional criteria. To the best of our knowledge, no
such work is currently available. A relatively small number of empirical studies
in component based software engineering have become available over the years,
which include the representation and selection of UNIX tool components [14],
support for regression testing of component based software [15], design of a
knowledge base used for business components [16], variations in COTS-based
software development processes used in industry [17], and the use of fuzzy logic
to specify and select components based on a single selection criterion [18]. Due to
the very limited number of empirical studies available in the area of component
based software engineering, this study makes a substantial contribution to the
literature.

The results of this study provide a clear indication of the suitability of AHP
for this task. In addition, the approach can be extended to incorporate functional
requirements and the possible integration of components when no suitable alter-
native implements all required functionality.

The remainder of this paper is organized as follows. A general description of
AHP is presented in Section 2. An empirical study for the selection of components
for non-functional requirements using AHP is the subject of Section 3. Section 4
presents relevant related work. Conclusions and extensions of the work described
in this paper are addressed in Section 5.

2 Analytic Hierarchy Process (AHP)

The problem of selecting the best alternative from a set of options that are
characterized by criteria that may be qualitative, quantified with different units
of measure, and conflict with each other has been under investigation for cen-
turies [19]. The decision making approaches proposed to address this problem
are called multi-criteria decision making (MCDM) methods. There are numer-
ous MCDM methods available including the Weighted Sum Method, Weighted
Product Method and Analytic Hierarchy Process (AHP) [20, 21].

The AHP method has three main steps [22] (refer to Figure 1). The first step
is to structure the decision making problem as a hierarchical decomposition, in
which the objective or goal is at the top level, criteria used in the evaluation are
in the middle levels, and the alternatives are at the lowest level. The simplest
form used to structure a decision problem consists of three levels: the goal at the
top level, criteria used for evaluation at the second level, and the alternatives
at the third level. We use this form to present the second and third steps in
the AHP.

The second step is to create decision tables at each level of the hierarchical
decomposition. The matrices capture a series of pairwise comparisons (PC ma-
trices) using relative data. The comparison can be made using a nine point scale
or real data if available. The nine point scale includes: [9,8,7,...,1/7,1/8,1/9],
where 9 means extreme preference, 7 means very strong preference, 5 means
strong preference, and continues down to 1, which means no preference. The
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Fig. 1. General structure of the AHP approach

reciprocals of the above levels are also available. For example, if a comparison

between “a” and “b” is evaluated as 7, then the comparison between “b” and
“a” is 1/7.
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For the top level of the decomposition, a single importance matrix (IM) is
defined, which captures the relative importance of each criterion; these are con-
sidered in the second level. For example, if the evaluation criteria are response
time (RTP), memory usage (MU), data security (DS), and data integrity (DI),
then the decision maker compares their importance, two at a time in a four
by four matrix. For example, a decision maker may determine that the RTP is
strongly preferred to DI. In this case the pairwise comparison of RTP/DI has
the value 5; DI/RTP has the inverse value 1/5. In AHP, the values captured in
the IM reflect the relative importance of criteria, i.e., the requirements, from the
decision maker’s perspective. The IM does not capture additional relationships
among the criteria, such as synergistic or conflicting relationships. The criteria
are assumed to be independent. This is likely to be the case in many decision
making situations, in which the conflicting or synergistic relationships among
the requirements are not well understood.

The IM for the top level provides a means to prioritize the requirements for
the decision making process. Using the comparison data in the matrix a priority
vector can be calculated, for example, with an eigenvector formulation. This
priority vector is used in the third step, when the priorities are aggregated.

The decision tables for the middle level capture a pairwise comparison (PC)
matrix for the alternative solutions for each evaluation criterion. Consequently,
each evaluation criterion has a PC%. For example, if there are four evaluation
criteria and five alternatives to choose from, then this results in four PC that
are five by five. The priority vector for each of these decision tables is calculated.
Here again, an eigenvector calculation can be used. The priority vector can be
represented in normalized form, such that the sum of the elements is equal to
one. This vector is used in the third step, when the priorities are aggregated.
In AHP, the values captured in a PC matrix do not explicitly capture other
relationships such as synergistic or conflicting relationships that are present in
the alternative solutions.

The third step aggregates, or synthesizes, the priorities so that the “best”
alternative can be chosen. Options for the aggregation include a distributive
mode and an ideal mode. As these two options have been shown to give the
same result 92% of the time [23], we present the distributive mode here and
refer the reader to [23] for a discussion of the ideal mode. The distributive mode
calculation uses the priority vector calculated in step one as a weight vector,
W, and the normalized priority vectors calculated in step two to define a new
matrix A. Each element A;; represents the normalized priority calculated in
step two for alternative i and evaluation criteria j. To calculate an alternative’s
overall priority, each row in the matrix is multiplied by the weight vector and
the multiplied elements are added together:

4
Alternative priority i = Z(wi * Agj) (1)
j=1

The alternative with the largest value represents the best alternative.



Multi Criteria Selection of Components Using the AHP 71

3 Empirical Study

An empirical study of how to select components based on non-functional criteria
is addressed in this Section. First, a set of available components is described in
Section 3.1. This is followed by Section 3.2, which presents all the steps to rank
these components according to two distinct scenarios.

3.1 Compression Components

Though there exist a large number of compression techniques, the subset used in
this section has been reduced to five compression components: Arithmetic En-
coding (AREC), Huffman coding (HUFF), Burrows-Wheeler Transform (BWT),
Fractal Image Encoding (FRAC), and Embedded Zero-Tree Wavelet Encoder
(EZW). It is our understanding that they provide a broad spectrum in terms
of the features of interest (e.g., response time, compression ratio, quality, etc).
Source code for these components is available over the Internet. As a first step,
the credibility of the source code for both compression and decompression has
been assured based on available reviews and references given by various web
sites, a thorough code walk through, and testing the components. In some cases
the source code has been modified so that it could compile in the lab environ-
ment using the g++ compiler (with default settings) on Sun Solaris. A brief
description of the components/techniques used in the case study follows.

— Huffman Coding: this is a lossless approach based on statistical features of
the file to be compressed. The more frequently the occurrence of a symbol,
the smaller the bit code used to represent it.

— Arithmetic Coding: differently from Huffman Coding, this approach assigns a
floating point output number to a sequence of input symbols. The number of
bits in the output number is directly proportional to the size and complexity
of the sequence to be compressed. It is also a lossless method.

— Burrows-Wheeler Transform: this method is based on sorting the input se-
quence in a certain way to improve the efficiency of compression algorithms.
As the previous two methods, it is also a lossless approach.

— Embedded Zero-Tree Wavelet Encoder: this approach is based on the use
of wavelet transforms to compress images (2D-signals). Extensions to other
signal dimensions is also possible. Images are compressed using a progressive
encoding with increasing accuracy. The better the accuracy, the better the
quality of the image. Therefore, this is not a lossless approach.

— Fractal Image Encoding: this method is based on the representation of an
image as an iterated function system (IFS). Blocks of the image that are
similar are then equally represented. This is also a loss data approach.

Based on the characteristics of compression algorithms, four attributes are
analyzed here: total execution time (TET), compression ratio (CR), maximum
memory usage (MU), and root mean-square error (RMSE), where total execution
time is the combination of compression plus decompression time and RMSE is
a quality measure. Other features can be easily included according to users’
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needs. A set of 271 images were collect to evaluate the components. To capture
the performance for small, medium, and large images, their size were uniformly
distributed in the range from 10KB to 10MB. Also, different types of images
were used (e.g., raw, pgm, jpg, and png). To compute the averages and standard
deviations in Table 1, each component was executed 10 times for all the images.

Table 1. Average and standard deviation results for the five compression components
and each feature of interest

TET (in s) MU (in KB) CR RMSE

avg std avg std avg std avg std
HUFF 111.3 1324 2135270 21.63 1.167 0.379 0 0
AREC 180.3 237.3 2135103 3.37 1.248 0.555 0 0
BWT 473.3 371.1 2137885 603.5 3.334 13.277 0 0

FRAC 89.5 73.3 2138986  2155.99  58.427  104.68  50.55  32.43
EZW 380.4 4854 2142957 4732 4.226 0.837 39.35 2791

3.2 AHP Steps

The three steps defined in Section 2 and seen in Figure 1 are presented next in
the context of the selection of components for image compression.

AHP Step 1. At this point the structure of the problem has already been
defined as a three level hierarchical decomposition. The problem is the selection
of image compression components; the four criteria of interest have been defined.
The data for each of the available alternatives have also been collected, providing
2710 data points for each alternative.

AHP Step 2. The first step after defining the features to be considered in
the computation of the rank of the five components is to decide their relative
importance. Using Saaty’s scale [22], the user defines the relative importance of
each feature compare to each other. Since four features are under consideration
here, a 4 X 4 matrix, as seen in Table 2 results. For example, if the user defines
that TET is two times more important than CR then IM; 2 = 2; consequently,
IM; 52 = 1/2 in Table 2. If quality (represented by RMSE) is three times more
important than MU then IMs3 4 = 3 and IMy 3 = 1/3, as seen in Table 2.

Table 2. Importance Matrix (IM) for the four features of interest for scenario 1

TET CR RMSE MU

TET 1 2 1/3 5
CR 1/2 1 4 3
RMSE 3 1/4 1 2
MU 15 1/3  1/2 1
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The goal of creating the IM is to facilitate the computation of the weights
of each feature. It is, in general, difficult for the user to directly compute the
weights. Using the AHP approach, the user decides the relative importance of
just two features, which greatly eases the task. The weights can now be computed
by finding the eigenvector associated with the largest eigenvalue of IM. In this
case, the eigenvector is

™ =10.5373 0.6616 0.5035 0.1417 |© (2)

In order to avoid scale issues, the values in /™ are normalized to 1 using to

Eq. 3. The measurements under consideration here are all in a ratio scale which
is closed for arithmetic operations. Therefore, the normalized results obtained
from Eq. 3 maintain the same scale properties as the original data.

R (3)
z 4
Zj:l ‘T]IM

. . N
The new normalized weights /™" for the features are now:

MmN T
x = [ wrEr Wor WRMSE WMU |

=[0.2914 0.3588 0.2730 0.0768 | T (4)

As can be verified from Eq. 4, the sum of the weights is 1. Also, it is clear that
compression ratio (the weight of CR is represented by the second value in the
vector) plays a more important role in the users selection while memory usage
(the weight of MU is represented by the fourth value in the vector) has almost
no influence. The other two features have similar importance.

The next step on the AHP approach is to compute pair-wise comparison
matrices (PC matrices) for each feature. Using the average values of TET from
Table 1 we can compute the entries for PCTFT. Each entry is computed using
Eq. 5 below.

TET;
TET, 5)

where TETy, for k = {1(AREC),2(HUFF),3(BWT),4(EZW),5(FRAC)} is
the average total execution time (extracted from Table 1) for each of the al-
ternatives. For example, TETarpc = 180 and TETxgyrr = 111 resulting in
PC’{ ET = 1.62. It should be noticed that execution time has an inverse ef-
fect, that is, the lower the execution time the better. Therefore, the numerator
and denominator in Eq. 5 are inverted. The same is true for RMSE and MU.
Table 3 presents the results of the pair-wise comparison for PCTET . As before,
to find the rank/weight for execution time for each alternative, we compute the
normalized (to avoid scale issues when comparing, for example, execution time
with RMSE) eigenvector associated with the largest eigenvalue for PCT®T . This
results in the values in Eq. 6

TET __
PG =

2TETY — [ 0.1819 0.2947 0.0693 0.0862 0.3679 |” (6)
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Table 3. Pair-wise comparison (PC7F7) matrix for total execution time (TET) for
the five available components

TET AREC HUFF BWT EZW FRAC
AREC 1.0000 0.6172  2.6252 2.1101  0.4945
HUFF 1.6203 1.0000  4.2536 3.4189  0.8012
BWT 0.3809 0.2351  1.0000 0.8038 0.1883
EZW 0.4739 0.2925 1.2441 1.0000 0.2343
FRAC 2.0224 1.2482  5.3093 4.2675  1.0000

Based solely on execution time and Eq. 6, the rank for the components would
be: 1¥:-FRAC, 2"?-HUFF, 3"¢-AREC, 4'"-EZW, and 5"*-BWT. Sorting the ex-
ecution time column of Table 1 leads to the exactly same order which is a good
indication of the accuracy of the approach. Therefore, one could argue against
the computation of eigenvalues and eigenvectors when it is much easier to sim-
ply sort the average execution time. This could be true when only one criterion
is being considered, but does not apply for multi-criteria problems as the one
described here. Therefore, we need to consider the computation of weights for
the remaining features.

Table 4. Pair-wise comparison (PC™Y) matrix for memory usage (MU) for the five
available components

MU AREC HUFF BWT EZW FRAC
AREC 1.0000 1.0001  1.0013 1.0037 1.0018
HUFF  0.9999 1.0000 1.0012 1.0036 1.0017
BWT 0.9987  0.9988  1.0000 1.0024  1.0005
EZW 0.9963 0.9964 0.9976 1.0000 0.9981
FRAC  0.9982 0.9983  0.9995 1.0019 1.0000

Table 5. Pair-wise comparison (PC?*M5E) matrix for root mean square error (RMSE)
for the five available components

RMSE AREC HUFF BWT EZW FRAC
AREC 1.0000 1.0000  1.0000 40.3588 51.5568
HUFF 1.0000 1.0000  1.0000 40.3588 51.5568
BWT 1.0000 1.0000  1.0000 40.3588 51.5568
EZW 0.0248 0.0248  0.0248 1.0000 1.2775
FRAC 0.0194 0.0194 0.0194 0.7828  1.0000

The pair-wise comparison matrices PCMY for memory usage and PCTtMSE
for root mean square error are computed similarly to what has been done to
PCTET | They are shown, respectively, in Tables 4 and 5. To avoid division
by zero problems, a value 1 has been added to each entry, related to RMSE,
in Table 1. Now, following exactly the same steps used in the computation of
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acTETN, the eigenvectors z™ U™ and 2BMSEY are computed and the results are
shown in Eqgs. 7 and 8.

MUY = [ 0.2003 0.2003 0.2000 0.1995 0.1999 |7 (7)

LBMSEY _ 03285 0.3285 0.3285 0.0081 0.0064 |” (8)

As expected, due to only small variations on the amount of memory used by
each approach, there is little difference in the weights in 2MU" . Also, as can be
seen in Eq. 8, the weights for AREC, HUFF, and BWT are the same and are
much larger than the weights for EZW and FRAC. This behavior is expected
since the first three are lossless approaches.

The computation of the weights for Compression Ratio (CR) presents a small
distinction when compare to the previous features. The computation of the
weights for TET, MU, and RMSE are based on an inverted gain, i.e., the smaller
the value, the better. This is captured in Eq. 5 by switching the numerator and
denominator. In the case of CR (the larger the ratio the better), such inversion
is not necessary which leads to the use Eq. 9.

CR;

PCOCE —
CLJ CR]‘ (9)

Table 6. Pair-wise comparison (PC“®) matrix for compression ratio (CR) for the five
available components

CR AREC HUFF BWT EZW FRAC
AREC 1.0000 1.0691 0.3743 0.2953 0.0214
HUFF 0.9354 1.0000 0.3501 0.2762 0.0200
BWT 2.6717 2.8563 1.0000 0.7890 0.0571

EZW 3.3861 3.6201 1.2674 1.0000 0.0723
FRAC  46.8079  50.0414  17.5198  13.8234  1.0000

Using the values from Table 1 and Eq. 9 leads to matrix PC" presented in
N
Table 6. The computation of the normalized eigenvector %" is done as before

resulting in the values presented in Eq. 10
2CRY = [0.0182 0.0171 0.0488 0.0618 0.8541 |~ (10)

AHP Step 3. The final step in the computation of the rank for the five com-
ponents is to combine the weights for each feature [ wrpr wer WrMSE WMU |
(line 1 in Table 7) with the weights computed for all the pair-wise compari-
son matrices. Each column in Table 7 correspond respectively to acTETN, 2CRY
acRMSEN, and zMU" Now, using Eq. 1 from Section 2 leads us to the results
in Table 8. All the values used up to this point are referred to as Scenario 1 in

Table 8.

)
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Table 7. Synthesis Matrix (SM) for the ranking of the five compression components

TET CR RMSE MU
wrgr = 0.2914 wer = 0.3588 wrmse = 0.2730 wyr = 0.0768
AREC 0.1819 0.0182 0.3285 0.2003
HUFF 0.2947 0.0171 0.3285 0.2003
BWT 0.0693 0.0488 0.3285 0.2000
EZW 0.0862 0.0618 0.0081 0.1995
FRAC 0.3679 0.8541 0.0064 0.1999
Table 8.

Alternative Scenario 1 - Rank  Scenario 2 - Rank
Components  Value  Position  Value  Position
AREC  0.164627  (3)  0.236828 (2

)
HUFF  0.197080  (2)  0.263210 (1)
BWT 0.142737  (4) 0214710  (4)
EZW 0.064837  (5)  0.052667  (5)
FRAC 0430719 (1) 0232586  (3)

FRAC has the first position in the rank, as seen in Table 8. This is clearly
the best choice as FRAC has the best response time (TET) and by far the best
compression ratio (CR). These two features have the two highest weights, as
seen in Eq. 4. The difference of these two features for FRAC is so large that it
compensates the poor quality of the compressed images (due to a high RMSE).
The second and third positions in the rank, respectively HUFF and AREC,
present average execution time and reasonably compression ratio when compare
to the two approaches in the bottom of the rank. In addition, they are lossless
approaches justifying their rank placement. EZW is clearly the last place in the
rank; it has poor response time, the compression ratio is not outstanding, and
RMSE is high. We can conclude that, for this scenario, the rank computed using
AHP has been able to capture the user’s preference in an adequate manner.

Now let us assume a different scenario, refer hereafter as Scenario 2. To com-
pute the rank of the components for a new scenario, only the importance matrix
needs to be changed. That is, what is changing are the user’s preferences (cap-
tured now by a new IM in Table 9) and not the comparative behavior of the
components (still captured by PCTFT pCCR pCEMSE and PCMU). As can
be seen in Table 9, quality (RMSE) has now a much higher importance than in
the previous scenario.

The new normalized weights 2/ " for scenario 2 are presented in Eq. 11.

2" = [0.2353 0.1445 0.5240 0.0961 |7 (11)

Replacing the values from Eq. 11 in Table 7 leads to the results of Scenario 2
in Table 8. As can be seen, the increase of the importance for quality (RMSE)
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Table 9. Importance Matrix for the four features of interest for scenario 2

TET CR RMSE MU

TET 1 2 1/5 5
CR 1/2 1 1/4 3
RMSE 5 4 1 2
MU 15  1/3  1/2 1

results in two lossless components (HUFF and AREC) overtaking FRAC in the
rank. Again, AHP has been able to properly select the best alternatives under
a given scenario. Additional scenarios were also used in this study. In all cases,
the AHP approach has been able to rank the components and identify the best
alternative.

As we can see from the two scenarios described above, changes in IM lead to
changes in the selection of components. Therefore it is important to know how
sensitivity is IM to these changes. Initial experiments indicate that the sensitivity
depends not only on the values of IM but also on the values for SM. That is,
if the values in one column of SM are close, a small change in IM may change
the rank of the components. However, if the values are far apart, changes in IM
need to be more significant in order to affect the rank.

4 Related Work

Diverse approaches to component selection have been proposed such as processes
that use MCDM [2, 8,9, 10, 11, 12], keyword matching combined with knowledge
based approaches [24, 25], analogy based approaches (including case based rea-
soning) [26,27,28], and fuzzy logic [18,29)].

The AHP, an established MCDM approach, has been adopted in component
selection approaches that have reported successful case studies [9, 10, 11]. OTSO,
for example, is one of the earliest component selection approaches that uses
AHP [9]. The OTSO process is composed of subprocesses to search, screen, and
evaluate component alternatives; there is an additional subprocess to rigorously
define the evaluation criteria. The evaluation definition subprocess refines the
requirements for the components into a hierarchical decomposition. The evalua-
tion criteria include functional, quality (non-functional), business concerns, and
relevant software architecture. The AHP was selected in OTSO for the compo-
nent evaluation because it provided a systematic, validated MCDM approach.
The OTSO approach has been applied in two case studies with Hughes corpora-
tion in a program that develops systems to integrate and make available Earth
environment data from satellites [9]. One study has involved the selection of a hy-
pertext browser tool. Initially, the search resulted in over 48 tools; the screening
process reduced this to four tools which were evaluated with respect to evalua-
tion criteria refined from the initial requirements. The evaluation required 322
pairwise comparisons by the evaluators. This was deemed feasible because AHP
tool support was used. The results of the case study indicated that the AHP
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approach produced relevant information for component selection and the infor-
mation was perceived as more reliable by decision makers. ArchDesigner [30, 31]
is another example of a component selection approach based on AHP. Their
results are also a indication of AHP’s applicability for the component selection
problem.

The strengths and limitations of using AHP have been discussed within the
context of component selection [1,13]. The strengths presented include that it
only requires a pairwise comparisons of alternatives and a pairwise weighting
of selection criteria, which reduces the burden on experts and it enables consis-
tency analysis of the comparisons and weights, which allows the quality of the
information on the criteria and alternatives to be assessed. In addition, the AHP
allows the use of a relative ratio scale [1..9] or real data for the comparisons [23]
and has been successfully used in component selection approaches, as reported
in case studies.

The limitations presented include the assumption of independence among the
evaluation criteria, the difficulty in scaling the approach to problems with a large
number of comparisons, which would burden the experts in a manual approach,
and determining if the AHP is the best approach among the many MCDM al-
ternatives available. Stating these limitations, the approach has been questioned
by some for its usefulness in component based software engineering.

Given the arguments that support and question the use of AHP in component
selection, we believe a more extensive empirical study investigating the effective-
ness of using the AHP approach for component selection in a semi-automated
approach is needed.

5 Conclusions and Future Work

An empirical study is presented in this work to investigate using the AHP ap-
proach to select components using non-functional criteria. The application of
AHP has been constrained to non-functional attributes of functionally equiva-
lent components. The approach is semi-automated, to provide scalability. The
importance matrix, which reflects the required behavior of the component, is cre-
ated manually. Data about the non-functional behavior of a set of compression
components are collected including memory usage, response time, root mean
square error, and compression ratio; the data are used to automatically cre-
ate the pairwise comparison decision tables for the criteria. The data collected
about the behavior of the components (e.g., criteria such as memory and re-
sponse time) reflect the intrinsic synergistic and conflicting relationships among
the criteria in the components. Once the importance matrix and the pairwise
comparison tables are available, the data are synthesized and a ranking is auto-
matically calculated. The results of the study indicate the AHP is an effective
ranking approach. This approach can be applied to the selection of components
using other non-functional criteria, however, designing the data collection for
the components’ behavior may be non-trivial.
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The limitations of the study include that a comparison on the use of AHP
and alternative MCDM techniques is not considered. This study needs to be
conducted in the future work. In addition, the limitation of using the AHP
with respect to the assumption of independence is not addressed in this study.
In the future, the composition of multiple components that will integrate to-
gether and provide a set of functional capabilities with minimal overlap will be
investigated. The extension can be considered as follows. First, non-functional
requirements can be used to rank the components as done in this paper, let us
refer to this rank as R, y. Now, let us assume that a set of K functionalities is
desired F = {f1, fa,..., fx }. An IM matrix comparing the relative importance
of each functionality f; can be used to define their weights. PC' matrices can then
be constructed to verify which alternative implements each of the functionali-
ties. The availability of these matrices allows for the computation of a new rank
Ry accounting for the functional requirements. Ranks R, ¢ and Ry can now be
combined to compute the final rank of the available components. Let us assume
a component C; is the first choice in that rank.

It is likely that the selected component C; does not implement all the desired
functions. In this case, the process above can be repeated for the remaining
components but now focusing only on the functionality that is not implemented
by C. This process can be repeated until all functional requirements have been
satisfied. Clearly, there are compositional issues that still need to be addressed.
However, the goal of this section is to present a potential expansion of the use
of AHP and not to validate it.
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Abstract. This paper presents a software component search engine,
from the early specification and design steps to two experiments per-
formed to evaluate its performance. After the experience gained from the
use of this first version, several improvements were introduced. The cur-
rent version of the engine combines texrt mining and facet-based search.
The experiments indicated, so far, that using these two techniques to-
gether is better than using them separately. From the experience ob-
tained in these experiments and in industrial tests, we point out possible
improvements and future research directions, which are presented and
discussed at the end of the paper.

1 Introduction

In a software development process, reuse is characterized by the use of software
products in a situation that is different from when and where they were originally
constructed. This idea, which is not new [1], brings crucial benefits to organiza-
tions, such as reduction in costs and time-to-market, and quality improvement.

Component repositories are among the factors that promote the success in
reuse programs [2,3]. However, the simple acquisition of a component reposi-
tory does not lead to the expected benefits, since other factors must also be
considered, such as management, planning, reuse processes, among others [4, 5].

Current component managers and repositories are, mostly, products that work
only with black-boz components [6], i.e., components that are packaged without
the source code, inhibiting tasks such as adaptation and evolution. Moreover, the
adoption of this kind of repository often implicates in reengineering the software
factories, since making components available for reuse repositories (documen-
tation, packaging) have to follow some predetermined criteria [4]. Additionally,
these repositories represent isolated solutions, not associated to commonly used
development tools such as Eclipse [7]. This increases the barrier for their adop-
tion and utilization.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 82-97, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Thereby, an initial way of stimulating the reuse culture in organizations, and
obtaining its initial benefits [8], must concentrate in offering subsidies and tools
for the reuse of white-box components - where the source code is available - and
already existent source code, whether from the organization itself, from previous
projects, or from repositories available on the Internet.

In this context, this paper presents the specification, design and implementa-
tion of an architecture for a component search engine, to help promoting reuse
during software development, and solving the mentioned problem. In previous
work [9] we introduced the search engine and described our initial experience in
its specification and construction. This paper makes two novel contributions:

— Some refinements on the search engine;

— An experiment that evaluates the feasibility of Maracatu search engine use
in industrial contexts, aiding in the software development process with reuse
of components or source code parts.

2 Basic Component Search Requirements

Current research in component search and retrieval has focused in key aspects and
requirements for the component market, seeking to promote large scale reuse [9].

Lucrédio et al. [9] present a set of requirements for an efficient component
search and retrieval engine, standing out:

a. High precision and recall. High precision means that most components
that are retrieved are relevant. High recall means that few relevant components
are left behind without being retrieved.

b. Security. In a global component market, security must be considered a pri-
mordial characteristic, since there is a higher possibility that unauthorized indi-
viduals try to access the repository.

c. Query formulation. There is a natural loss of information when users for-
mulate queries. According to [10], there is a conceptual gap between the problem
and the solution. Components are often described in terms of their functional-
ities, or the solution (“how”), and the queries are formulated in terms of the
problem ( “what”). Thus, a search engine must provide means to help the user
in formulating the queries, in an attempt to reduce this gap.

d. Component description. The search engine is responsible for identifying
the components that are relevant to the user, according to the query that is
formulated and compared with the components descriptions.

e. Repository familiarity. Reuse occurs more frequently with well-known
components [11]. However, a search engine must help the user in exploring the
repository and gaining knowledge about other components that are similar to
the initial target, facilitating future reuse and stimulating component vendors
competition [12].

f. Interoperability. In a scenario involving distributed repositories, it is in-
evitable not to think about interoperability. In this sense, a search engine that
functions in such scenario must be based on technologies that facilitate its future
expansion and integration with other systems and repositories.
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g. Performance. Performance is usually measured in terms of response time. In
centralized systems, this involves variables related to the processing power and
the search algorithms. In distributed systems, other variables must be considered,
such as, for example, network traffic control, geographic distance and, of course,
the number of available components.

These requirements, however, are related to a component market that is based
on black-box reuse. To a search engine that also retrieves white-boxr components
and reusable source code, different requirements must be considered, as presented
next.

2.1 Features and Technical Requirements

A search engine based on white-box reuse should consider the evolving and dy-
namic environment that surrounds most development organizations. Differently
from black-box reuse, where there is usually more time to encapsulate the compo-
nents and to provide well-structured documentation that facilitates searching,
most development repositories contain work artifacts, such as development li-
braries and constantly evolving components. Documentation is usually minimal,
and mostly not structured.

In this sense, such engine should support two basic processes: i) to locate
all reusable software artifacts that are stored in project repositories, and to
maintain an index of these artifacts. The indexing process should be automatic,
and should consider non-structured (free text) documentation; and ii) to allow
the user to search and retrieve these artifacts, taking advantage of the index
created in process i).

Since in this scenario the artifacts are constantly changing, the first process
must be automatically performed on the background, maintaining the indexes
always updated and optimized according to a prescribed way. On the other
hand, the developer is responsible for starting the second, requesting possible
reusable artifacts that suits his/her problem. For the execution of these two
basic processes, some macro requirements should be fulfilled:

i. Artifacts filtering. Although ideally all kinds of artifacts should be consid-
ered for reuse, an automatic mechanism depends on a certain level of quality that
the artifact must have. For example, a keyword-based search requires that the
artifacts contain a considerable amount of free text describing it, otherwise the
engine cannot perform the keywords match. In this sense, a qualitative analysis
of the artifacts must be performed, in order to eliminate low-quality artifacts
that could prejudice the efficiency of the search.

ii. Repositories selection. The developer must be able to manually include the
list of the repositories where to search for reusable artifacts. It must be possible,
at any moment, to perform a search on these repositories in order to find newer
versions of the artifacts already found, or new artifacts.

iii. Local storage. All artifacts that were found must be locally stored in a
cache, in order to improve performance (reusable components repository
centralization).



From Specification to Experimentation 85

iv. Index update. Periodically, the repositories that are registered must be
accessed to verify the existence of new artifacts, or newer versions of already
indexed artifacts. In this case, the index must be rebuilt to include the changes.
v. Optimization. Performance is a critical issue, specially in scenarios where
thousands of artifacts are stored into several repositories. Thus, optimization
techniques should be adopted. A simple and practical example is to avoid to an-
alyze and index software artifacts that were already indexed by the mechanism.
vi. Keyword search. The search can be performed through keywords usage,
like most web search engines, in order to avoid the learning of a new method.
Thus, the search must accept a string as the input, and must interpret logical
operators such as “AND” and “OR”.

vii. Search results presentation. The search result must be presented in the
developer’s environment, so he/she can more easily reuse the artifacts into the
project he is currently working on.

3 Design of the First Maracatu Search Engine

Maracatu architecture was designed to be extensible to different kinds of reusable
artifacts, providing the ability to add new characteristics to the indexing, rank-
ing, search and retrieval processes. This was achieved through the partitioning of
the system into smaller elements, with well-defined responsibilities, low coupling
and encapsulation of implementation details.

However, as in any software project, some design decisions had to be made,
restricting the scope and the generality of the search engine. Next we discuss
these decisions, and the rationale behind them:

Type of the artifacts. Although theoretically all kinds of artifacts could be
indexed by the search engine, a practical implementation had to be limited to
some specific kinds of artifact. This version of Maracatu is restricted to Java
source code components, mainly because it is the most common kind of artifacts
found, specially in open source repositories and in software factories.

CVS Repositories. Maracatu was designed to access CVS repositories, because
it is the most used version control system, and also to take advantage of an
already existent API to access CVS, the Javacvs API [13].

Keyword indexing and component ranking. To perform indexing and rank-
ing of the artifacts, the Lucene search engine [14] was adopted. Lucene is a web
search engine, used to index web pages, and it allows queries to be performed
through keywords. It is open-source, fast, and easy to adapt, and this is the
reason why it was chosen to become part of Maracatu architecture.

Artifacts filtering. As a strategy for filtering the “quality” artifacts (with high
reuse potential), the JavaNCSS [15] was used, to perform source code analysis
in search for JavaDoc density. Only components, with more than 70% of its
code documented, are considered. This simple strategy is enough to guarantee
that Lucene is able to index the components, and also requires little effort to
implement.
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User environment. Maracatu User Interface, where the developer can formu-
late the queries and view the results, was integrated to Eclipse platform, as a
plug-in, so that the user does not need to use a different tool to search the
repositories.

Maracatu architecture is based on the client-server model, and uses Web Ser-
vices technology [16] for message exchange between the subsystems. This im-
plementation strategy allows Maracatu Service to be available anywhere on the
Internet, or even on corporative Intranet, in scenarios where the components are
proprietary.

Maracatu is composed of two subsystems:

Maracatu Service: This subsystem is a Web Service, responsible for indexing
the components, in background, and responding to user’s queries. It is composed
of the following modules: the CVS module, which accesses the repositories in
the search for reusable components; the Analyzer, responsible for analyzing the
code in order to determine if it is suitable for indexing; the Indexer, responsi-
ble for indexing the Java files that passed through the Analyzer, also rebuilding
the indexes when components are modified or inserted; the Download module,
which helps the download (check-out) process, when the source code is trans-
ferred to the developer machine, after a request; and the Search module, which
receives the parameters of a query, interprets it (for example, “AND” and “OR”
operators), searches the index, and returns a set of index entries.

Eclipse plug-in: This subsystem is the visual interface the developer sees. It
acts as a Web Service client to access Maracatu Service.

The first version of Maracatu can be seen in Figure 1, which shows Maracatu
plug-in' being used in Eclipse development environment (1).

| _; Java - SearcherFactory.java - Eclipse Platform

FF- o [$-0-%- | EHG- B [@F | 408 5 -we-

= 0| [1) searchPluginU... 4% org.done.mar... m Assignmen... ?:3 Searc|

MARACATU
package org.done.maracatu.service.webservice:
vimpnﬂ. Java.ucil.ArrayListc;
‘public class AssignmentCormand ( (3)
public AssignmentCormweand () {

Keyword | "Search” and "Retrieve”

S8 AssignmentCommand.java

Module: OpenPart super () ;
Double dlick here to download, ]
- DBConnection.java * private String commandSearch;
Module: PLABZ (2) public ArraylList search(String searchComponent){
Double click here to download. ArrayList col = new ArraylList():
=) Assembler.java col.add (1, searchComponent) ;
Module: OpenPart

return col;
Double dlick here to download.

T u y

Fig. 1. Maracatu running on Eclipse environment

! The version 1.0 of the plug-in may be obtained on the project site http://
done.dev. java.net
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The Figure shows a screen of the plug-in (2), where the developer may type
a string to retrieve the components. In the example, a search was performed
with the string “Search” & “Retrieve”, obtaining as a result the following com-
ponents: AssignmentCommand, DBConnection, Assembler, among others. From
this result, it is possible to identify which project (repository) this component
belongs to (represented in “Module”), and download the component to the local
machine. Next, the developer may import the component into his/her Eclipse
project (3). In the example of the Figure, the developer has chosen the Assign-
mentCommand.

The first version of Maracatu plug-in implementation contained 32 classes,
divided into 17 packages, with 955 lines of code (not counting comments).

4 Maracatu Search Engine: Current Stage

After the first release of Maracatu, and its initial utilization in the industry,
several enhancements started to be suggested by its users. Some of these were
added, giving origin to the current version of the tool. Maracatu’s first version
was used to aid in the second version development. It helped the team to under-
stand how to use some API, consulting the open source code as example of its
use and to reduce the time to release the second prototype.

Next sections describe the new features that were included. The improvements
took place both in the client (plug-in) and in the server side (Maracatu Service).

4.1 Usability Issues

As expected, the first problems detected by the users were related to the User
Interface. In this sense, improvements were introduced into Maracatu’s Eclipse
plug-in:

i) Component pre-visualization: Before actually downloading a component,
it is interesting to have a glimpse on its content, so that the user may determine if
it is worth to retrieve that component or not. This saves considerable time, since
the check-out procedure, needed to download a component from CVS, requires
some processing. In this sense, two options were implemented, as shows Figure
2. The user may choose, in a pop-up menu (1), either to see a text (2) or UML
(3) version of the component, which he/she can then analyze before actually
downloading the component. The UML was obtained by a parser which analyze
the Java code and perform a transformation to write the UML.

ii) Drag and Drop functionality: With this new feature, components listed
in the tree view can be directly dragged to the user workspace project, been
automatically added to the project.

iii) Server Configuration: In the first version of Maracatu, the repositories
addresses were not dynamically configurable. The user could not, for example,
add new repositories without manually editing the server’s configuration files.
In order to solve this inconvenience, a menu item was added, to show a window
where the user can configure which repositories are to be considered in the search.
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Fig. 2. Class Viewer and UML Generator
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4.2 Facet-Based Search

The current version of Maracatu supports Facet-Based classification and search
[17] of the components. Components now can be browsed by platform, compo-
nent type and component model. It is also possible to combine facet-based search
with text-based search. By choosing only the desired facets, the search universe
is reduced, improving the search performance.

A new module, called Classifier, was introduced in the server-side of Mara-
catu’s architecture. This module is responsible for:

i) Reading the components from Maracatu’s repository, identifying the facets
to be extracted and inserted in the new search method. The extractor looks for
pre-defined facets, defined in a configuration file, together with rules for their
identification. Currently the rules consist of a combination of correlated terms
that must appear inside a component’s code in order to determine if it is classified
within the facet. New facets can be inserted by modifying this configuration file.
ii) After the identification and extraction of the facets, components are classified
according to them. The extraction and classification works together.

In the client side (Eclipse plug-in), modifications were made on the interface,
with a “selector” for each facet, allowing the developer to select the desirable
values for each one. The field for typing the regular text-based query was main-
tained, so the user may combine facet-based search with text-based search. The
search is now preceded by a filtering, which excludes components that do not
satisfy the constraints (facets). The keyword-based search is then performed over
the filtered result.
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Currently, Maracatu is capable of classifying components according to three
facets (F), with the following values:

F1: Platform - Values: J2EE, J2ME or J2SE;

F2: Component Type - Values: Web Services, GUI, Networking, Infrastructure,
Arithmetic, Security, Java 3D or Data Source; and

F3: Component Model - Values: EJB, CORBA or JavaBeans.

The user may choose combinations of these facets and values, performing
queries such as: retrieve all Infrastructure or Networking components that are
developed for J2EE Platform in the EJB Component Model.

5 Practical Usage in the Industry

Currently, the second version of Maracatu is being used in the industrial context,
at C.E.S.A.R.2, a Brazilian company. It is initially being used in two projects,
developed by RiSE? group. These projects involve the development of a compo-
nent manager and a shared component library for Brazilian companies. The two
projects are supported by the Brazilian Government, under a budget of around
$1.5 millions. The team that uses Maracatu in these projects is composed by
13 members, divided as follows: project manager (1), software quality engineer
(1), software configuration manager (1), team leader (1), technical leader (1)
and software engineers (8). The experience gained in this usage is important to
identify opportunities for new features and improvements.

These projects’ repository contains 5 sub-projects, involving around 4200 ar-
tifacts created and shared by the development team. These artifacts may be
reused in different ways, offering different kinds of contribution to new projects:
source code can be directly reused, but they can also serve as examples of some
particular implementation or structural design.

The second version of Maracatu plug-in implementation contained 106 classes,
divided into 55 packages, with 3844 lines of code (not counting comments).

6 Experiments

Two experiments were performed in order to analyze and compare the mecha-
nisms of keyword matching and facet searching. The goal was to verify if the
second version became more useful than the first one, since the facet mechanism
was included.

For each experiment, four metrics were considered: the recall, the precision
and the f-measure. Recall is the number of relevant components retrieved over
the number of relevant components in the database [18]. The precision is the
number of relevant components retrieved over the total number of components
retrieved. Recall and precision are the classic measures of the effectiveness of

2 Currently, this company has about 700 employees and is preparing to obtain CMMi
level 3.
3 http://www.cin.ufpe.br/~rise
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an information retrieval system. Ideally, a search mechanism should have good
precision and good recall. To assess this, mechanisms can be evaluated through
the f-measure, which is the harmonic mean of precision and recall [19]. The closer
the f~measure is to 1.0, the better the mechanism is. But this will only occur if
both precision and recall are high. If some mechanism have excellent precision,
but low recall, or excellent recall, but low precision, the f-measure will be closer
to zero, indicating that this mechanism does not perform well in one of these
criteria.

6.1 Context

According to Prieto-Diaz [17] the facet approach provides higher accuracy and
flexibility in classification. The facet searching is based on the controlled vocab-
ulary and relies on a predefined set of keywords used as indexing terms. These
keywords are defined by experts and are designed to best describe or represent
concepts that are relevant to the domain question.

From these experiments, we expect to obtain similar results, i.e., the facet
approach should have better accuracy in classifying the components, and there-
fore the recall should be higher. On the other hand, free text search should have
higher precision, since it only retrieves components that has terms provided in
the query. If our results are correct, the combination of text and facet-based
search should provide the best results, resulting in higher f-measure than the
isolated approaches. These results would indicate that Maracatu’s mechanisms
were consistently implemented, and that the theory behind it is well-founded.

We considered that values close to 50 % for recall and values close to 20 %
for precision are satisfactory, since they come close to measurements made by
other authors [20,11]. However, these values are only considered as a reference,
and these results were not included in the hypotheses of the experiments.

The dependent variables for the experiments are recall, precision, search time,
and f-measure. The independent variable is the searching method with three
approaches: keyword, facet, and keyword + facet. Differences in subjects’ skills
were also considered, to explain the results.

The null hypotheses, i.e., the hypotheses that the experimenter wants to reject,
are:

— Hy,: facet-based search has lower recall than keyword search

— Hop: keyword-based search has lower precision than facet-based search

— Hy.: the combination of facet-based and keyword-based search does not have
a greater f-measure than the isolated approaches

By rejecting these hypotheses, we expect to favor the following alternative
hypotheses:

— Hjy: facet-based search has higher recall than keyword search

— Hjy: keyword-based search has higher precision than facet-based search

— Hj: the combination of facet-based and keyword-based search have a greater
f-measure than the isolated approaches
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If null hypotheses Hy, and Hy, are rejected, the results would indicate the
theory that facet-based search retrieves more relevant components, and that
keyword-based search is more precise. But the main result to be expected comes
from null hypothesis Hy.. If rejected, the results would indicate that the combi-
nation of facet-based and keyword-based search takes advantage of the best of
each approach, producing a better overall result. By following this rationale, the
new version of Maracatu is more useful than the first one.

6.2 Preparation of the Experiments

In the first experimental environment, a repository was divided into 14 index files
for 4017 source code components distributed in 8 different projects from Java.net
(http://java.net/) and SourceForge (http://www.sourceforge.com) devel-
opers site, and two RiSE projects. The second experimental environment had a
repository divided into 14 index files for 3819 source code components distrib-
uted in 7 different projects, from the same developers site.

One particularly challenging task is to obtain a precise measure of the recall,
since the experimenter needs to know exactly how many relevant components
exist in the repository for each query. To overcome this problem, both experi-
ments adopted the same strategy: one of the projects inserted into the repository,
called known project, (with about 200 components), was from a very specific
domain, and was very well known by an expert. In this way, he could provide
a number of relevant components for each query with some assurance, since he
has a good knowledge of that project. Each experiment had a different known
project.

The experiments were conducted in a single machine, a Compaq Presario with
2,4 GHz, 512 MB RAM and Windows XP SP1. The subjects in this study were
4 researches of the RiSE Group and C.E.S.A.R, primarily software engineers and
analysts. Each subject was given a set of ten queries for each searching method
(keywords, facets and keywords + facets), and was asked to find all items in the
repository relevant to the query. The expert for each known project should be
consulted in this activity.

The queries were elaborated with the help of the expert for each known
project, and were specific to its domain, so that the number of relevant com-
ponents outside the known project - which would be unknown to the expert -
would be minimum.

6.3 Analysis of Experimental Results

Recall. Table 1 shows the recall results for both experiments. For each approach,
the table shows the mean of the recall for the ten queries, the standard deviance
and the variance.

In experiment 2, if we consider the worst case of the standard deviance, the
null hypothesis Hy, - facet-based search has lower recall than keyword search-
fails to be rejected, since there is a possibility that keyword-based approach
has greater recall than facet-based. However, in experiment 1, even considering



92 V.C. Garcia et al.

Table 1. Recall for both experiments

Approach Experiment 1 Experiment 2
Recall Std.Dev. Variance Recall Std.Dev. Variance
Keyword 0,4356 0,1434 0,0206 0,4867 0,2813 0,0791
Facet 0,8046 0,1562 0,0244 0,6936 0,2749 0,0756
Kw./Facet 0,4584 0,1646 0,0271 0,3158 0,2665 0,0710

the worst case of the standard deviance, the null hypothesis Hy, is rejected.
This favors alternative hypothesis H;: facet-based search has higher recall than
keyword search.

Precision. Table 2 shows the precision results for both experiments. For each
approach, the table shows the mean of the precision for the ten queries, the
standard deviance and the variance.

Table 2. Precision for both experiments

Approach Experiment 1 Experiment 2
Precision Std.Dev. Variance Precision Std.Dev. Variance
Keyword 0,2084 0,2745 0,0753 0,1556  0,2655 0,0705
Facet 0,0071 0,0102 0,0001 0,0155 0,0238 0,0006
Kw./Facet 0,2616 0,2786 0,0776 0,2530 0,4658 0,2169

In both experiments, if looking only at the mean values, one may tend to
think that null hypothesis Hgp - keyword-based search has lower precision than
facet-based search - was rejected. However, although this is probably true, it is
not guaranteed by statistical results, since the standard deviance was too high,
which may indicate that the mean could drastically change. However, in practice,
due to the high difference in the mean values in both experiments, we can favor
the alternative hypothesis Hs: keyword-based search has higher precision than
facet-based search.

f-measure. Table 3 shows the f~measure results for both experiments. For each
approach, the table shows the mean of the f-measure for the ten queries, the
standard deviance and the variance.

By looking at these results, we may immediately discard the facet-based ap-
proach, since it has a very low f-measure for both experiments. However, null
hypothesis Hy. - the combination of facet-based and keyword-based search does
not have a greater f-measure than the isolated approaches - cannot be statisti-
cally rejected by these results. If we look at both experiments, and if we consider
the worst case of the standard deviance, the mean could change drastically, and
the f-measure for the keyword approach could be higher than the keyword +
facet approach.
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Table 3. F-measure for both experiments

Approach Experiment 1 Experiment 2
F-meas. Std.Dev. Variance F-meas. Std.Dev. Variance
Keyword 0,2544 0,2584 0,0668 0,2109 0,3181 0,1012
Facet 0,0136 0,0189 0,0004 0,0294 0,0443 0,0020
Kw./Facet 0,3127 0,2592 0,0672 0,2361 0,2559 0,0655

However, in practice, considering just the mean values, both experiments tend
to reject Null hypothesis Hy., since in both cases the combination of facets and
keywords had a greater f-measure. Thus, if we had to make a decision, we would
favor alternative hypothesis Hs: the combination of facet-based and keyword-
based search have a greater f-measure than the isolated approaches. However,
more experiments are needed in order to provide a more solid confirmation of
this hypothesis.

6.4 Discussion

Subject preferences for the searching methods was obtained by asking the sub-
jects to answer which approach was preferred. Keyword + facet was ranked
higher, followed by keyword and only then the facets.

The three null hypotheses were practically rejected, although not statisti-
cally. This favors the alternative hypotheses, and specially Hs, which states that
the new version of Maracatu, combining facet-based search with keyword-based
search, is more useful than the first one, which only had keyword-based search.

As expected, the recall and precision rates, in the best cases, were very close to
the values obtained by other authors [20] [11] (50% recall and 20% for precision).
We can not say which mechanism is better, nor that these mechanisms are
similar, since several other factors could influence the result. The same set of
components and queries should be replicated to all mechanisms in order to obtain
a more meaningful comparison result. However, this indicates that the research
on Maracatu is on the right direction.

7 Related Work

The Agora [21] is a prototype developed by the SEI/CMU%. The objective of the
Agora system is to create a database (repository), automatically generated, in-
dexed and available on the Internet, of software products assorted by component
type (e.g. JavaBeans or ActiveX controls). The Agora combines introspection
techniques with Web search mechanisms in order to reduce the costs of locating
and retrieving software components from a component market.

The Koders [22] connects directly with version control systems (like CVS
and Subversion) in order to identify the source code, being able to recognize

4 Software Engineering Institute at Carnegie Mellon University.
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30 different programming languages and 20 software licenses. Differently from
Maracatu, which can be used in an Intranet, Koders can be only used via its Web
Site, which makes it unattractive for companies that want to promote in-house
reuse only, without making their repositories public.

In [23], Holmes and Murphy present Strathcona, an Eclipse plug-in that locates
samples of source code in order to help developers in the codification process.
The samples are extracted from repositories through six different heuristics. The
Strathcona, differently from Maracatu, is not a Web Service client, and thus it
is not as scalable as Maracatu. Besides, Maracatu can access different remotely
distributed repositories, while the Strathcona can access only local repositories.

Another important research work is the CodeBroker [11], a mechanism for
locating components in an active way, according to the developer’s knowledge
and environment. Empirical evaluations have shown that this kind of strategy
is effective in promoting reuse. From the functional view, Maracatu follows the
same approach as CodeBroker, except for being passive instead of active.

8 Maracatu’s Agenda for Research and Development

As a result of the research and tests made with the tool, the team responsible for
the project identified the necessity for the development of new features and new
directions for research. A formal schedule of these requirements is being defined
by C.E.S.A.R. and RiSE group, and will address the following issues.

8.1 Non-functional Requirements

Usability. Macaratu’s usability might be enhanced with features such as giving
the user the possibility to graphically view the assets and its interdependencies.
This would help the user to keep track of assets cohesion and to learn more about
the assets relationships and dependencies. Another usability feature could be to
highlight the searched text. And finally, it would be interesting for the user to
select the repositories he/she wants to search, as an additional filter.
Scalability. On the server side, there are not features for load balancing. This
will be an important feature in the future, as the tool starts to be used with a
larger number of developers simultaneously searching for assets on the Intranet
or even on the Internet.

Security. A common problem that a company may face when promoting reuse
is the unauthorized access to restricted code. The idea is to improve software
reuse, but there are cases where not every user can access every artifact. User
authentication and authorization need to be implemented in order to solve these
questions.

8.2 Functional Requirements

Improved facet search. The facet search might be enhanced, by using more
complex, flexible and dynamic rules. Currently, facet rules are specific for Java
source code, and use a very simple structure. A rule engine should be used to
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improve it. This would bring the necessary flexibility for the administrator or the
developer to define specific semantic-aware rules to associate pre-defined facets.
Besides, a more flexible facet extractor would be easier to adapt to organizational
structures, facilitating the adoption of the search engine.
Semantic Search. Semantic search might be added to improve recall, since it
would retrieve not only the specific assets the user searched for, but also others
that are semantically related. Current facet search is a form of semantic search,
since the facets are semantically defined to represent and group some information
on the repository. However, new semantic engines could provide more benefits.
Specialized Algorithm. On its second prototype, Maracatu uses the Lucene
Search system to index and retrieve source code. This algorithm is not optimized
or specialized for source code search. A feature that might be added is to count
the source code dependencies when indexing and ranking it. So a developer could
choose to retrieve the assets with less dependencies, for example. One example
of such work can be seen on Component Rank [24].
Metrics. The use of more complex metrics than JavaNCSS might be interesting.
Currently the only metric information used is the amount of Javadoc documen-
tation. We can evaluate other code quality features in order to improve the filter
process.
Query by reformulation. There is a natural information loss when the reuser
is formulating a query. As pointed out by [10], there is also the conceptual gap
between the problem and the solution, since usually components are described
in terms of functionality (“how”), and queries are formulated in terms of the
problem ( “what”). In [11], the authors state that retrieval by reformulation “is
the process that allows users to incrementally improve their query after they
have familiarized themselves with the information space by evaluating previous
retrieval results.”.
Information Delivery. Most tools expect user’s initiative to start searching for
reusable assets. Unfortunately, this creates a search gap, because the user will
only search for components he/she knows or believes to exist in the repository
[11]. On the other hand, using context-aware features, the tool can automatically
search for relevant information without being requested, bringing components
that the user would not even start looking for, increasing the chance of reuse.
We are aware that this is not a definitive set of improvements. However, these
are proved solutions that could increase Maracatu’s performance and usefulness.

9 Concluding Remarks

Since 1968 [1], when Mcllroy proposed the initial idea of a software component
industry, the matter has been the subject of research. Over from decades [9], the
component search and retrieval area evolved, with mechanisms that, initially,
facilitated the reuse of mathematical routines, up to robust mechanisms, which
help in the selection and retrieval of black-box components, either in-house or in
a global market.
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In this paper, we presented Maracatu, a search engine for retrieving source
code components from development repositories. The tool is structured in a
client-sever architecture: the client side is a plug-in for Eclipse IDE, while the
server side is represented by a web application responsible for accessing the repos-
itories in the Internet or Intranets. Two versions of the engine were developed
so far, with new features being added as it is used in industrial practise. We also
presented two experiments, comparing the text matching mechanism (first ver-
sion) with the facet mechanism implemented in the last version. The experiment
showed that the facet-based mechanism alone does not have good performance
but, when combined with text-based search, is a better overall solution.

Additionally, we discussed Maracatu’s agenda for future research and devel-
opment, listing it features still to be implemented. Issues concerned with usabil-
ity, scalability and security gain importance in future releases, as pointed out
by the experiments and pactical usage. Particularly, the facet searching mecha-
nism could benefit from more sophisticated, flexible and dynamic rules. Semantic
search would be another important approach to be studied, as well as more spe-
cialized algorithms for component ranking.

In the view of the RiSE framework for software reuse [25], Maracatu is a
search tool to incorporate the first principles and benefits of reuse into an or-
ganization. However, reusability will not occur by itself, and it is an illusion
to think that the adoption of tools could do it either. There must be a strong
organizational commitment to reuse program; adherence to a reuse process; an
effective management structure to operate a reusability program with the re-
sources and authority required to provide the overall culture to foster reuse.
Maracatu facilitates the task of reusing software artifacts, but we hope that the
first benefit it brings can encourage project managers and CIOs to pay attention
to the software reuse as a viable and mandatory investment in their software
development agenda.
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Abstract. One of the distinguishing features of distributed systems is
the importance of the interaction mechanisms that are used to define
how the sequential components interact with each other. Given the com-
plexity of the behavior that is being described and the large design space
of various alternatives, choosing appropriate interaction mechanisms is
difficult. In this paper, we propose a component-based specification ap-
proach that allows designers to experiment with alternative interaction
semantics. Our approach is also integrated with design-time verification
to provide feedback about the correctness of the overall system design. In
this approach, connectors representing specific interaction semantics are
composed from reusable building blocks. Standard communication inter-
faces for components are defined to reduce the impact of changing inter-
actions on components’ computations. The increased reusability of both
components and connectors also allows savings at model-construction
time for finite-state verification.

1 Introduction

One of the distinguishing features of distributed systems is the importance of
the interaction mechanisms that are used to define how the sequential com-
ponents interact with each other. Consequently, software architecture descrip-
tion languages typically separate the computational components of the system
from the connectors, which describe the interactions among those components
(e.g., [1,2,3,4]). Interaction mechanisms represent some of the most complex
aspects of a system. It is the interaction mechanisms that primarily capture the
non-determinism, interleavings, synchronization, and interprocess communica-
tion among components. These are all issues that can be particularly difficult to
fully comprehend in terms of their impact on the overall system behavior.

As a result, it is often very difficult to design a distributed system with
the desired component interactions. The large design space from which devel-
opers must select the appropriate interaction mechanisms adds to the difficulty.
Choices range from shared-memory mechanisms, such as monitors and mutual
exclusion locks, to distributed-memory mechanisms, such as message passing and
event-based notification. Even for a single interaction mechanism type, there are
usually many variations on how it could be structured.
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Because of this complexity, design-time verification of distributed systems is
particularly important. One would like to be able to propose a design, use verifi-
cation to determine which important behavioral properties are not satisfied, and
then modify and reevaluate the system design repeatedly until a satisfactory de-
sign is found. With component-based design, existing components are often used
and glued together with connectors. In this mode of design, one would expect
that the interaction mechanisms represented by the connectors would need to be
reconsidered and fine-tuned several times during this design and design-time ver-
ification process, whereas the high-level design of the components would remain
more stable. If using a finite-state verifier, such as SPIN [5], SMV [6], LTSA [7],
or FLAVERS [8], a model of each component and each connector could be cre-
ated separately and then the composite system model could be formed and used
as the basis for finite-state verification.

A major obstacle to the realization of this vision of component-based design
is that the semantics of the interactions are often deeply intertwined with the
semantics of the components’ computations. Changes to the interactions usually
require nontrivial changes to the components. As a result, it is often difficult and
costly to modify the interactions without looking into and modifying the details
of the components. Consequently, there is little model reuse during design-time
finite-state verification.

In this paper, we propose a component-based approach that allows designers
to experiment with alternative interaction semantics in a “plug-and-play” man-
ner, using design-time verification to provide feedback about the correctness of
the overall system design. The main contributions of our approach include:

— Defining a small set of standard interfaces by which components can commu-
nicate with each other through different connectors: These standard inter-
faces allow designers to change the semantics of interactions without having
to make significant changes to the components.

— Separating connectors into ports and channels to represent different aspects
of the semantics of connectors: This decomposition of connectors allows us
to support a library of parameterizable and reusable building blocks that can
be used to describe a variety of interaction mechanisms.

— Combining the use of standard component interfaces with reusable building
blocks for connectors: This separation allows designers to explore the design
space and experiment with alternative interaction semantics more easily.

— Facilitating design-time verification: With the increased reusability of com-
ponents and connectors, one can expect savings in model-construction time
during finite-state verification.

This paper presents the basic concepts and some preliminary results from an
evaluation of our approach. Section 2 illustrates the problem we are trying to
address through an example. Section 3 shows how the general approach can be
applied to the message passing mechanism. In section 4, we demonstrate through
examples how designers may experiment with alternative interaction semantics
using our approach. Section 5 describes the related work, followed by conclusions
and discussions of future work in Section 6.
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2 An Illustrative Example

As an example, consider a bridge that is only wide enough to let through a single
lane of traffic at a time [7]. For this example, we assume that traffic control
is provided by two controllers, one at each end of the bridge. Communication
between controllers as well as between cars and controllers may be necessary
to allow appropriate traffic control. To make the discussion easier to follow,
we refer to cars entering the bridge from one end as the blue cars and that
end’s controller as the blue controller; similarly the cars and controller on the
other end are referred to as the red cars and the red controller, respectively. We
start with a simple “exactly-N-cars-per-turn” version of this example, where
the controllers take turns allowing some fixed number of cars from their side to
enter the bridge. Note that since each controller counts the fixed number of cars
entering and exiting the bridge, no communication is needed between the two
controllers.

For an architectural design of this simple version of the system, one needs
to identify the components and the appropriate interactions among the compo-
nents. It is natural to propose a system composed of a BlueController compo-
nent, a RedController component, and one or more BlueCar components and
RedCar components. In such a distributed system, message passing seems to
be a natural choice for the component interactions. Four connectors then need
to be included to handle message passing among the components as indicated
in Figure 1: a BlueEnter connector between the BlueCar components and the
BlueController component, a BlueFzit connector between the BlueCar compo-
nents and the RedController component, and similarly a RedEnter connector
and a RedFzxit connector.

As described in Figure 1(a), a car sends an enter request message to the
controller at the end of the bridge it wants to enter and then proceeds onto the
bridge. When it exits the bridge, it notifies the controller at the exit end by send-
ing an exit request message. Controllers receive enter request and exit request
messages, update their counters, and decide when to switch turns. Since there
may be multiple cars that communicate with each controller, messages are
buffered in the connectors between car components and controller components.

Astute readers will notice that according to the description in Figure 1(a),
cars from different directions can be on the bridge at the same time, which could
cause a crash. This is due to an erroneous design in the component interactions.
With this design, a car sends an enter request message and immediately goes
onto the bridge without confirming that its request has been accepted by the
controller. This controller, however, may still be waiting for exit requests from
cars from the other direction, and the enter request message from this car may
still be in the buffer, waiting to be retrieved and handled. Therefore, a car may
enter the bridge while there are still cars traveling in the opposite direction.
Obviously, what is needed here is synchronous communication between a car
and its controller rather than asynchronous communication.

One way to fix this problem is to have the controller send a go ahead message
after receiving each enter request to authorize that car to enter the bridge. After
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Fig. 1. Architecture design and illustration of component interactions for the single-
lane bridge example

sending the enter request, the car would wait for this acknowledgement before
entering the bridge, as shown in Figure 1(b) (the highlighted areas indicate the
changes). These changes, involving both the car components and the controller
components, effectively make the communication between them synchronous and
solve the problem caused by the asynchronous communication.

This example shows the typical design practice in which the semantics of
the interactions are not specified independently, but instead are spread among
the connectors and the components. This is a trivial example, but it is easy
to envision how the intertwined semantics of the connectors and components
increases the challenge of discovering and correcting errors in the design of more
complex systems. Therefore, we prefer an approach that allows us to modify
connectors and components more independently of each other.

3 Plug and Play with Message Passing

As illustrated in the example above, changing from asynchronous message pass-
ing to synchronous message passing requires changes in the components, not
just in the connectors. In practice, designers must consider a wide range of al-
ternative semantics when selecting the appropriate interaction mechanism for
a connector. If it is subsequently discovered, perhaps through verification, that
the selected interaction mechanism is wrong, then it is likely that, not only the
connector, but the associated components will need to be modified and then
reevaluated. Therefore, the impact of changes in connectors on components will
not only make it more challenging for designers to find a suitable design, but
will also affect the maintainability and reusability of the system components.
Our approach tries to address these problems by decomposing connectors into
ports and channels, by representing the semantic variations for both ports and
channels as building blocks that can be assembled to provide the desired inter-
action mechanism, and by designing these building blocks so that components
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can communicate through standard interfaces that are designed to work with
any kinds of connectors.

In this section, we show how our plug-and-play approach can be realized for
message passing, one of the most commonly used interaction mechanisms for dis-
tributed systems. We first present examples of building blocks that are derived
from a variety of commonly used message passing semantics. We then define
standard component interfaces and show how connectors and components com-
municate with each other through a set of protocols. We also discuss how finite-
state verification can be employed to facilitate the plug-and-play style of design.
Finally, we mention that this approach is not restricted to message passing, but
can be applied to many of the most common interaction mechanisms. In partic-
ular, we discuss briefly how this can be accomplished for the publish/subscribe
interaction mechanism.

3.1 Message Passing Variations and Building Blocks

Many languages such as CSP [9] and Linda [10] incorporate message passing
facilities. There are also message passing libraries such as MPI [11]. Although the
fundamentals of message passing interactions are sending and receiving messages,
there are a surprising number of semantic variations for these two operations, as
well as variations in the communication media used to store and deliver messages.

For example, a synchronous send operation will block the sender until the
message is delivered to the recipient, while other variations would allow the
sender to continue execution immediately or as soon as the message is stored
in the buffer. Similarly, a receiver component may be blocked or may return
immediately when a desired message cannot be retrieved from the buffer at the
moment. A receive may also allow messages to be selectively retrieved from
the buffer based on a matching criteria. Other variations of message passing
semantics involve the message buffers, such as the size of the buffer and the
ordering of messages been stored and delivered.

With such variations, determining a particular kind of message passing inter-
action for a system essentially means selecting a combination of these semantics.
As we have demonstrated in the previous sections, this large design space may
make it difficult for designers to choose the correct and desirable semantics. Our
approach helps designers with such choices by creating building blocks that cap-
ture the different combinations of the variations for each aspect of the message
passing semantics, and therefore allowing designers to experiment with the vari-
ations by plugging and playing with these building blocks. Our building blocks
include different kinds of send ports, receive ports, and channels that together
cover a number of variations for the most commonly used message passing se-
mantics. A small sample of the message passing building blocks, selected to
include those used in our examples, is given in Figure 2.

Figure 3(a) shows an example of how one may specify an asynchronous mes-
sage passing communication between a pair of sender and receiver components.
The connector is composed of an asynchronous blocking send port, a blocking
receive port, and a channel that buffers one message. Through this connector,
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Asynchronous| it for a message from the sender and sends a confirmation back immediately
Nonblocking | the message may or may not be accepted and handled by the channel.

Asynchronous| wyis for a message from the sender and sends a confirmation back
Blocking AFTER the has been accepted by the channel.

Send Asynchronous| Waits for a message from the sender and forwards it to the channel. If the message

Port Checki cannot be accepted by the channel, it returns and sends a notification to the sender;
ecking Otherwise it blocks until the is accepted and sends a_confirmation back to the sender.
Synchronous | Waits for a message from the sender and sends a confirmation back AFTER it is notified
Blocking by the channel that the message has been received by the receiver.

Synchronous Similar to "asynchronos checking send" except that when the message can be accepted
by the channel, it blocks until the message is received by the receiver and then sends a

Checking confirmation back to the sender.
Blocking Waits for a "receive request"” from the receiver and forwards it to the channel. It blocks until
Receive a desired message is retrieved from the channel and sends a confirmation to the receiver.
Port Nonblocking Similar to "blocking receive" except that it returns immediately if no desired message can be
retrieved currently. It then sends a notification along with an empty to the receiver.
1-slot buffer | A buffer of size 1.
Cl 1 | FIFO queue | A FIFO queue of size N.

Priority queue | A priority queue of size N.

Fig. 2. A set of message passing building blocks

the sender component sends a message without waiting for an acknowledgement
from the receiver but blocks until the message is stored in the channel. The
receiver component blocks until a message can be received. By replacing the
asynchronous send port with a synchronous one from the library, the new con-
nector in Figure 3(b) allows the sender to block not only until the message is
stored in the channel but also until it has been delivered to the receiver. Simi-
larly, channels can also be easily replaced. For example, the single-slot buffer can
be replaced by a FIFO queue channel that holds up to 5 messages, when mes-
sages need to be buffered (as shown in Figure 3(c)). Moreover, the replacement
of channels can be done independently of the replacement of ports. This kind
of “plug-and-play” development facilitates experimentation with alternative in-
teraction semantics. We have also found that our approach helps reduce the
effort needed for repeated model construction when designers use design-time
finite-state verification to check their design choices.

3.2 Component Interfaces and Protocols Among Building Blocks

In this section , we describe the standard component interfaces for sending and
receiving messages and the protocols used between these interfaces and differ-
ent kinds of connectors. The component interfaces are used as follows: A sender
component first issues a send command and then waits to receive a SendStatus
message from the connector; similarly, a receiver component first sends a receive
request to the port, waits for a RecvStatus message, followed by another message
from the connector that may contain the requested data. These interfaces are
designed to work with connectors having different send and receive semantics.
For example, in the case of asynchronous message passing, the connector returns
the SendStatus message to the sending component immediately, while for syn-
chronous message passing, the connector returns the SendStatus until after the
sender’s message has been delivered. The RecvStatus message indicates whether
the requested message has been successfully retrieved, that is, whether the sub-
sequent message contains the real data. Different connectors may send these
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Fig. 3. Constructing message passing connectors

messages at different stages of retrieving a message. Moreover, always sending
a message after the RecvStatus allows this interface to work with nonblocking
receives that allow failure of retrieving messages.

To see how different connectors may interact with these interfaces, one has to
first understand the important role of ports in supporting the kind of plug-and-
play design we propose. In our approach, connectors are decomposed into chan-
nels that represent the communication media (in this case the message buffers),
and ports that capture the synchronization semantics of the communication.
This separation frees components from being tied to any specific synchronization
semantics and therefore allows easy manipulation of all aspects of interaction se-
mantics. It is the ports that handle the interleavings of communications between
components and channels and deciding when a specific status or data message
should be forwarded, hiding all the details from both components and channels.

Using a notation similar to Message Sequence Charts, Figure 4 and 5 show
the typical protocols used between components, ports and channels for sending
and receiving messages. In Figure 4,we see that for both asynchronous send
and synchronous send, the same set of protocols are used between the sender
component and the send port, and between the send port and the channel.
It is the send port that controls the relaying and interleaving of the internal
events, and thus whether the message passing is synchronous or asynchronous.
In Figure 4(a), the asynchronous send port returns the sendOk message to the
sending component without waiting for the channel to deliver the message and
simply discards the receiveOk message from the channel when it arrives. The
synchronous send port in Figure 4(b) waits to receive the receive Ok message from
the channel before sending sendOFk to the sending component, which is therefore
blocked until after the message m is received. Neither the sending component nor
the channel needs to know whether the connector is implementing synchronous or
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[ sender] [send port ] lchannel ] [ sender] [send port ] [ channel ]
send m __ send m
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m - -
SendStatus = %’receiveok”
""sendOk""
— SendStatus =
"receiveOk" < sendOk
time time

(a) Asynchronous Blocking Send (b) Synchronous Blocking Send

Fig. 4. Example scenarios of message passing interactions (using send ports)

asynchronous message passing; the designer can swap one send port for another
to switch the semantics of the connector.

Similarly, Figure 5 shows that same protocols can be used for both block-
ing receive and nonblocking receive. In Figure 5(a), after forwarding the Re-
ceiveRequest from the receiver to the channel, the port blocks until an outOk
message is received from the channel indicating that the desired message is avail-
able. A recvSucc confirmation is then sent to the receiver following the retrieved
message. To implement the semantics of nonblocking receive (Figure 5(b)), a
receive port may immediately return when the desired message is not available
(outFail) by sending a recvFail message followed by an empty message to the
receiving component. In a fashion similar to that illustrated above, we are able
to support the plug-and-play of a number of different send and receive ports as
well as channels defined in Figure 2.

3.3 Design-Time Verification

In addition to providing a convenient and efficient way of specifying and
experimenting with various interaction semantics, we also support design-time
verification for checking specification properties of the system. For finite-state
verification techniques such as model checking, formal models of the system
need to be constructed before verification can be applied. For the purpose of
our approach, predefined and reusable formal models can be created for each
building block in our library. Formal models of the selected building blocks are
then composed at verification time with formal models of the components to
form a system model that is then checked against the properties specified. Note
that the designer is responsible for providing the models of the components and
specifying the properties.

Through verification, designers may find unexpected behaviors or errors in
their system design. If the problems are caused by the interaction mechanisms,
changes can be made by simply adjusting the building blocks of the connectors,
perhaps without having to modify the components. When this occurs, there is
no need to recreate the component models. Moreover, predefined models for the
building blocks can be used in most cases to represent the modified interaction
mechanisms, also reducing the cost of model construction.
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Fig. 5. Example scenarios of message passing interactions (using receive ports)

To evaluate our approach, we have used SPIN [5] to verify a series of designs
using our building blocks. In our evaluation, the formal models of components
and building blocks are described in Promela, the input language of SPIN. We
use the default message passing operations (“?” and “!”) in Promela to imple-
ment the communications among components, ports and channels. Each port is
a Promela proctype that takes two Promela native channels as parameters for
communications with the component and the channel that are connected to this
port. For the purpose of the evaluation, we have coded models in a way that re-
flects our goal of reusable and parameterizable building blocks. For a particular
choice of interaction mechanisms, it might well be possible to implement connec-
tors more directly using features of the Promela language. The full description
of the Promela models for the building blocks is given in [12].

Notice that by using SPIN and Promela to support design-time verification,
we are showing only one possible way to combine our design approach and ver-
ification. Our approach is not tied to particular formalisms or verification tech-
niques. In fact, we have defined the same set of building blocks in the process
algebra FSP and used LTSA [7] to verify the system designs. It is reasonable
to expect, however, that when using different formalisms and verification tech-
niques, specialized optimizations will need to be developed.

3.4 Other Interaction Mechanisms

Although here we have described this approach for message passing interactions,
we believe that the overall approach can be applied to most commonly used inter-
action mechanisms. To validate this claim, we have also applied this approach to
publish /subscribe interactions, another commonly used interaction mechanism.
In publish/subscribe systems, the fundamental communications between com-
ponents and connectors are the announcement of events by components, the de-
livery of events to components, and the subscription or unsubscription by which
components indicate their interest in particular events. It is straightforward to
map these communications to sending and receiving messages; therefore they
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Fig. 6. An initial design of the “exactly- N-cars-per-turn” single-lane bridge

can be described using available message passing building blocks. In message
passing, it is almost always the case that the sender initiates the communica-
tion by pushing messages to the connector and the receiver pulls messages from
the connector. Unlike message passing, however, most publish/subscribe systems
support one or more combinations of push/pull on both the publisher side and
the subscriber side. To describe these semantics, new kinds of send and receive
ports that capture such push/pull semantics are defined. A more detailed dis-
cussion about the building blocks for publish/subscribe can be found in in [12].

4 The Single-Lane Bridge Example Revisited

We now return to the single-lane bridge example introduced in Section 2 to
illustrate how the techniques described above facilitates iterative exploration
and verification of designs. Figure 6 shows an architecture design of the exactly-
N-cars-per-turn version of the system. All the cars from the same direction
(indicated as having the same color) communicate with the controller at each
side through a single connector. For the initial design, asynchronous message
passing is chosen for both the communication between a car and the controller
on its entering side and the communication between the car and the controller
on the other side. FIFO queues are selected for buffering messages.

One important property of the system that we want to check is that cars
traveling in opposite directions can never be on the bridge at the same time. By
composing the Promela models of the components provided by the designer and
the prebuilt models of the building blocks from the library, we can use SPIN to
determine whether the system satisfies the property. In this case, of course, SPIN
produces a counterexample in which a blue car sends an enter request message
and enters the bridge, followed by a red car sending an enter request message and
entering the bridge. As noted above, the problem is obviously the result of the
careless design of the asynchronous communication between cars and the con-
troller handling enter requests, which allows cars to enter the bridge before their
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enter requests have even been received by the controller. With our approach, the
erroneous design can be easily corrected by replacing the asynchronous blocking
send ports for sending enter requests with synchronous ones, and no changes in
the components are necessary. To confirm that the system now satisfies the prop-
erty, the verification can be repeated with the formal models of the asynchronous
ports replaced by those of the synchronous ones.

In fact, astute readers may notice that the FIFO queues used for buffering
exit request messages are not necessary since the exact ordering in which the
exit request messages are received does not matter. Therefore, the FIFO queue
channels used in BlueFzit and RedFzit connectors can be safely replaced with
single-slot buffers. This modification again requires no further changes in other
parts of the architecture. Similarly, the modified design can be re-verified as
before to make sure the system still satisfies the property.

Of course, not all modifications to a system require only simple changes in
the interaction mechanisms. Suppose that, in order to improve traffic flow, the
designer wishes to modify the bridge system so that when there are fewer than NV
cars crossing the bridge from one side, the turn can be yielded without waiting
for N cars to cross, allowing cars from the other side to enter the bridge. To
change the previous design of the single-lane bridge into this “at-most-N-cars-
if-waiting” version, additional communication between the controllers needs to
be added. Although this functional change of the system unavoidably requires
changes in the controller components, we can see that with our approach, we
can reduce the impact of these changes on both the design and the verification.

Figure 7 shows a possible architecture for the modified system, with two new
connectors between the controllers to allow the communication of the current
traffic status at each end. The interactions between two controllers are repre-
sented in a synchronous message passing connector composed of a synchronous
blocking send port, a nonblocking receive port, and a reliable single-slot buffer.
Since the controllers now have to actively poll enter request messages from cars
to check if there is any car waiting to enter the bridge, we also need to change
the blocking receive ports used by the controllers in the previous design into
nonblocking ones. To verify that this new system still prevents crashes on the
bridge, the component models need to be modified to reflect the new communi-
cations. Models of the new connectors, however, can be constructed from models
of the building blocks in the library.

A third and more realistic variation of the single-lane bridge example might
involve traffic control of emergency vehicles. Although this again cannot avoid
functional changes in the components, the necessary changes in the interaction
mechanisms would not affect the components and can be made easily. For exam-
ple, the FIFO queues used for buffering enter request messages may be replaced
with priority queues to handle emergency requests. The new design can be ver-
ified again in the same manner as described above. The detailed design and
formal models of the three versions of the example are described in [12].

Through this example, we illustrate how our plug-and-play approach, inte-
grated with design-time verification, may assist the designer exploring a series
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Fig. 7. The architecture design of the “at-most- N-cars-if-waiting” single-lane bridge

of system designs. With our approach, the impact of each change can be kept
relatively local, in that components only need to be modified when they must
handle new functionality. Changes in a connector can be made relatively easily
by selecting alternative building blocks to define that connector.

5 Related Work

The limitations and frustrations of component-based development are well
known (e.g., [13,14]). Previous work, such as [15, 1,2, 3, 4, 16], has proposed
treating connectors as first-class entities in component-based development, al-
though [16] in particular, has put the focus at a lower level of abstraction (pro-
gramming level) than what we are interested in.

The idea of specifying complex connectors and modeling them for verifica-
tion is, of course, not new. The Wright architecture description language [1], for
example, uses the CSP process algebra to describe arbitrary connectors. The Ar-
chitectural Interaction Diagrams (AIDs) of Ray and Cleaveland [17] use process
algebra methods to construct connectors hierarchically. Constraint automata
based approaches have also been proposed to specify and analyze the semantics
of connectors composed from a set of primitive channels [18,19]. In approaches
like these, the burden is on the designer to construct connectors with the right
semantics from powerful, but low-level, primitives. Our approach is aimed more
at providing a library of building blocks from which connectors representing
widely used interaction mechanisms can be easily constructed, offering “ready-
to-use” pieces that hide from the user most of the details of how these pieces
are actually constructed and modeled. The interaction mechanisms we describe
are at a lower level of abstraction than the communication patterns described
in [20]. Our approach defines finer-grained patterns that express specific seman-
tics of interactions, and provide a mechanism that allows the designer to work
with the detailed semantics.
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Although a similar notion of ports has been proposed in architectural descrip-
tion languages such as ACME [21] and ArchJava [22], in our approach, ports are
used to explicitly capture some of the most important aspects of interaction
semantics such as synchronization, and therefore are treated as parts of connec-
tors. Our definition of ports makes it possible to support standard component
interfaces that allow connectors to be modified or replaced with minimal impact
on the components. The mechanism we use to realize this is closely related to
the connector wrappers of [23], although their emphasis is on adapting existing
connectors whereas ours is on building up new connectors that can be easily
exchanged for one another. The term building blocks has been often used in dif-
ferent contexts. For example, in [24], building blocks are referred to as parts
of software used to build a system. The building blocks in our approach are
design-level elements used to construct connectors representing interactions.

Our work on the semantics of interaction mechanisms is related to the work on
categorizing connectors (e.g. [25,26]). In particular, our analysis of the variations
of message passing semantics is similar in spirit to the analysis of publish/sub-
scribe systems in [27]. There has been extensive work on applying verification to
systems employing a single type of interaction mechanism (e.g. [28,29,30]). Our
approach is intended to support many kinds of mechanisms, rather than being
restricted to a single type.

A number of middleware frameworks support component-based development,
although each typically allows a somewhat limited range of interaction mecha-
nisms and provides no direct support for verification. Some work, such as the
Cadena system [31], has been directed at providing verification support for sys-
tems built on standard middleware. There is also work on the verification of
middleware-based software architecture [32]. A number of tools and approaches
have also been proposed for assembling existing components into applications,
including mediators [33], Piccola [34], and various techniques for wrapping com-
ponents. Our interest here is more in the choice of interaction mechanisms be-
tween components and less on the adaptation of existing components to interact
with each other. Our approach also differs from previous work on architectural
evolution (e.g., [35,36]) in our focus on supporting the exploration of different
interaction mechanisms at the design stage and our emphasis on modeling and
verification.

6 Conclusion and Future Work

In this paper, we propose a compositional specification approach that helps de-
signers more easily experiment with different interaction mechanisms between
components. By decomposing the connectors into ports and channels, and us-
ing ports as mediators between components and channels, we are able to keep
the interface of the components simple and standardized so that changes to the
interaction mechanisms can be made with little or no modification to the compo-
nents. The decomposition also allows us to build a library of ports and channels
as reusable building blocks to construct connectors with different semantics. Our
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approach is also integrated with finite-state verification techniques, facilitating
design-time verification and the early detection of design errors. Using our ap-
proach, designers may experiment with their choice of design for a variety of
interaction semantics by simply plugging in, or replacing, building blocks and
then using verification to check their design choices. Since this design process
may be repeated to reflect system changes, our approach allows considerable
reuse of the models of components and connectors. Consequently, we also save
on model-construction time while doing the finite-state verification.

We are currently implementing our approach by developing plugins to the ar-
chitecture design environment AcmeStudio! developed at CMU. Our prototype
tool will allow designers to define and use building blocks to specify component
interactions. It will also allow the specification of component models and the use
of a model checker to verify the design. We are also carrying more case studies
to demonstrate and further evaluate our approach.

We intend to explore other commonly used interaction mechanisms and, when
necessary, to construct additional building blocks to express their semantics.
There are a number of interesting issues related to design-time verification. For
instance, optimizations could be developed to reduce the system models that
are composed from the building blocks and models of the components; these
depend, of course, on the particular modeling formalism and verification tools
being applied. We need to explore these optimizations and learn when they can
be profitably applied.

Acknowledgements

This material is based upon work supported by the National Science Founda-
tion under awards CCF-0427071 and CCR-0205575 and by the U.S. Department
of Defense/Army Research Office under award DAA-D19-01-1-0564 and award
DAAD19-03-1-0133. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation or the U. S. Department of
Defense/ Army Research Office. We are grateful to Prashant Shenoy for helpful
conversations about this work.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. on
Softw. Eng. and Methodol. (1997) 140-165

2. Shaw, M., Garlan, D.: Softw. Architecture:Perspectives on an Emerging Discipline.
Prentice-Hall (1996)

3. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In: Proc. 5th European Softw. Eng. Conf., Sitges, Spain (1995)
137-153

1 Available at http://www.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html



112

4.

5.
6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

S. Wang, G.S. Avrunin, and L.A. Clarke

Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4) (1992) 40-52

Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Boston (2004)
K.L.McMillan: Symbolic Model Checking: An approach to the State Explosion
Problem. Kluwer Academic (1993)

. Magee, J., Kramer, J.: Concurrency State Models and Java Programs. John Wiley

and Sons (1999)

. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for

verifying properties of concurrent software systems. ACM Trans. on Softw. Eng.
and Methodol. 13(4) (2004) 359-430

. Hoare, C.A.R.: Communicating Sequential Processes. Englewood Cliffs,

NJ:Prentice-Hall Intl. (1985)

Carriero, N., Gelernter, D.: Linda in context. Comm. ACM 32(4) (1989) 444-58
Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. MIT Press (1996)

Wang, S., Avrunin, G.S., Clarke, L.A.: Architectural building blocks for plug-and-
play system design. Technical Report UM-CS-2005-16, Dept. of Comp. Sci., Univ.
of Massachusetts Amherst (2005)

Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch, or, why it’s hard
to build systems out of existing parts. In: Proc. 17th Intl. Conf. on Softw. Eng.,
Seattle, Washington (1995) 179-185

Inverardi, P., Wolf, A.L.: Uncovering architectural mismatch in component behav-
ior. Science of Computer Programming 33(2) (1999) 101-131

Balek, D., Plasil, F.: Software connectors and their role in component deploy-
ment. In: Proc. Third Intl. Working Conf. on New Developments in Distributed
Applications and Interoperable Systems, Deventer, The Netherlands (2001) 69-84
Gensler, T., Lowe, W.: Correct composition of distributed systems. In: Tech. of
Object-Oriented Languages and Systems. (1999)

Ray, A., Cleaveland, R.: Architectural interaction diagrams: AIDs for system mod-
eling. In: Proc. 25th Intl. Conf. on Softw. Eng. (2003) 396-406

Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component con-
nectors in reo by constraint automata: (extended abstract). Electr. Notes Theor.
Comput. Sci. 97 (2004) 25-46

Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in compo-
sitions of software architectural primitives. In: 19th IEEE Intl. Conf. on Automated
Softw. Eng. (2004) 371-374

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc.,
New York, NY, USA (1996)

Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In Leavens, G.T., Sitaraman, M., eds.: Foundations of Component-
Based Systems. Cambridge University Press (2000) 4768

Aldrich, J., Chambers, C., Notkin, D.: Archjava: Connecting software architecture
to implementation. In: Proc. 26th Intl. Conf. on Softw. Eng., Orlando, FL, USA,
ACM (2002)

Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proc. 2003 Intl. Conf. on Softw. Eng., Portland, Oregon (2003)

van der Linden, F.J., Mller, J.K.: Creating architectures with building blocks.
IEEE Softw. 12(6) (1995) 51-60



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Architectural Building Blocks for Plug-and-Play System Design 113

Hirsch, D., Uchitel, S., Yankelevich, D.: Towards a periodic table of connectors.
In: Proc. Third Intl. Conf. on Coordination Languages and Models, London, UK
(1999) 418

Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connec-
tors. In: Proc. 22nd Intl. Conf. on Softw. Eng., Limerick, Ireland (2000) 178-187
Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems.
In: Proc. 10th Intl. SPIN Workshop on Model Checking of Softw., Portland, Oregon
(2003)

Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of
implicit invocation systems. In: Proc. 11th ACM Symp. on Found. of Softw. Eng.,
Finland (2003)

Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate pub-
lish /subscribe architectures. In: Proc. Specification and Verification of Component-
Based Systems, Helsinki, Finland (2003) 35-41

Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: Proc. 9th European Softw. Eng. Conf. / 11th ACM SIGSOFT Intl. Symp. on
Found. of Softw. Eng., Helsinki, Finland (2003) 257-266

Childs, A., Greenwald, J., Ranganath, V.P., Deng, X., Dwyer, M.B., Hatcliff, J.,
Jung, G., Shanti, P., Singh, G.: Cadena: An integrated development environment
for analysis, synthesis, and verification of component-based systems. In: Proc. of
Fund. Approaches to Softw. Eng., 7th Intl. Conf. (2004) 160-164

Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of
middleware-based software architecture descriptions. In: Proc. 26th Intl. Conf.
on Softw. Eng., Washington, DC, USA, IEEE Computer Society (2004) 221-230
Sullivan, K.J., Notkin, D.: Reconciling environment integration and software evo-
lution. ACM Trans. Softw. Eng. Methodol. 1(3) (1992) 229-268

Achermann, F., Lumpe, M., Schneider, J.G., Nierstrasz, O.: Piccola — a small com-
position language. In Bowman, H., Derrick, J., eds.: Formal Methods for Distrib-
uted Processing — A Survey of Object-Oriented Approaches. Cambridge University
Press (2001) 403-426

Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for
architecture-based software development and evolution. In: Proc. 21st Intl. Conf.
on Soft. Eng., Los Angeles (1999) 44-53

van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N.: Taming archi-
tectural evolution. In Inverardi, P., ed.: Proc. 8th European Softw. Eng. Conf./9th
Symp. on the Found. of Softw. Eng., Vienna (2001) 1-10



A Symmetric and Unified Approach Towards
Combining Aspect-Oriented and
Component-Based Software Development

Davy Suvée, Bruno De Fraine, and Wim Vanderperren

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium
{dsuvee, bdefrain, wvdperre}@vub.ac.be

Abstract. In this paper, we propose a novel approach towards inte-
grating the ideas behind Aspect-Oriented and Component-Based Soft-
ware Development. Our approach aims at achieving a symmetric, unified
component architecture that treats aspects and components as uniform
entities. To this end, a novel component model is introduced that does
not employ specialized aspect constructs for modularizing crosscutting
concerns. Instead, an expressive configuration language is provided that
allows to describe both regular and aspect-oriented interactions amongst
components. This paper presents the ongoing FuseJ research, a first ex-
periment for realizing this symmetric and unified aspect/component ar-
chitecture.

1 Introduction

Aspect-Oriented Software Development (AOSD) [11] is a recent software engi-
neering paradigm that aims at improving the separation of concerns offered by
present-day software engineering methodologies. A proper separation of con-
cerns is crucial for implementing comprehensible, reusable and maintainable
software applications [15]. AOSD research argues that by employing classic
software engineering approaches, including Component-Based Software Devel-
opment (CBSD) [5], the implementation of certain concerns, such as logging,
security and caching, cannot be confined into a single logical module. These
concerns are called crosscutting as their implementation virtually crosscuts the
traditional decomposition of an software application. AOSD provides a solution
for modularizing these crosscutting concerns by introducing a new modulariza-
tion entity, called an aspect.

Currently, a wealth of technologies are available that all aim at integrating the
ideas of both AOSD and CBSD. Examples of such technologies include JAC [16],
JAsCo [20], Caesar [14], CAM/DAOP [18], JBoss/AOP [4], AspectWerkz [3] and
Spring/AOP [8]. Some AOSD technologies introduce an asymmetric, AspectJ-
like [10] approach, where crosscutting concerns are implemented through means
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of a dedicated aspect language. Other, framework-based AOSD technologies im-
plement aspects through the base programming language. Although framework-
based approaches allow for a more straightforward integration of aspects within
the standard software development process, they still enforce aspects to imple-
ment a set of so-called aspect interfaces. Hence, similar to asymmetric AOSD
approaches, aspects are still considered, treated and implemented as different
kinds of entities within the application. This explicit distinction between aspects
and components however induces several disadvantages. Inherently, the behavior
provided by aspects is not that different from regular component behavior. Both
implement some functionality required within the application and it is only the
way in which they interact with the rest of the software system that differs. The
crosscutting composition mechanism of current aspect modules however, resides
itself tangled with the behavior of the concern, explicitly ruling out other ways of
integrating its behavior within the application. In addition, the reusability and
applicability of existing software components is constrained. Nowadays, several
mature, feature-rich components are available that for instance allow managing
the security issues within an application. At the moment however, there is no
elegant and straightforward solution available for integrating the behavior of
existing components in an aspect-oriented fashion.

The research presented in this paper aims at exploring the possibilities and
advantages of introducing a symmetric, unified approach towards combining the
ideas and concepts of AOSD and CBSD. Instead of introducing and considering
aspects as specialized entities, we propose to apply aspect-oriented composition
mechanisms upon the existing component constructs. On the one hand, this al-
lows aspects to straightforwardly adopt the same characteristics of components,
namely being reusable and independently deployable while at the same time
exposing and adhering to a contractually specified interface [21]. On the other
hand, the decision whether components should be integrated in a regular or
an aspect-oriented manner can be postponed until component composition time
and can easily be changed afterwards.

The remainder of this paper presents the ongoing FuselJ research [19], a first
experiment for achieving a symmetric and unified aspect/component architec-
ture. The next section introduces the FuseJ component model and its configura-
tion language by presenting a small case study situated in a Peer-To-Peer (P2P)
file sharing environment. Section 3 discusses related work. Finally, we present
our conclusions and future work.

2 The FuseJ Approach

In order to achieve a seamless unification between aspects and components,
FuseJ mingles ideas from the AOSD and CBSD world in a simple, expressive
component model and introduces a novel configuration language for describing
the aspect/component composition. As a small case study, we employ a simpli-
fied and partial implementation of a P2P file sharing application. The down-
load controller subsystem is responsible for managing the retrieval of shared file
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1 interface TransferI {

2 byte[] getFileFragment(String aFileName)

3 FileFragementInfo findFileFragment(String aFileName);
4 }

;5 interface NetworkI {

5
6
7 void send(String host, String info);
8 byte[] get();

11 service TransferS {

12 provides TransferI;
13 expects NetworkI;
14 }

Listing 1. The TransferS service specification

fragments from remote hosts. It features four components, namely Transfer,
Network, Optimizer and Logger. The Transfer component retrieves file frag-
ments and employs the functionalities offered by the Network component to
communicate with remote hosts. The Optimizer component is responsible for
optimizing the file fragment transfer strategy depending on several user crite-
ria: one user could be interested in first downloading file fragments that are not
very well spread, while other users could be interested in first downloading file
fragments from hosts that have a broadband connection. Instead of hard-coding
and tangling the logic of these various transfer strategies within the implemen-
tation of the Transfer component itself, one can better opt for modularizing
these strategies as aspects. The next subsections illustrate how FuseJ implements
both regular and crosscutting concerns as components and elucidates how the
FuseJ configuration language helps at integrating and composing them in the
P2P download controller subsystem.

2.1 FuseJ Component Model

FuseJ employs a simple, straightforward Java-based component model, built
upon the well-known concept of provided-expected interfaces. Its main objec-
tive is to keep coupling amongst components as low as possible, hence achiev-
ing maximum reusability. To this end, FuseJ proposes the concept of a service
specification. A service specification defines the set of operations implementing
components should provide to and can expect to be offered by the environment
in which they are eventually deployed. The provided and expected operations of
a service specification are described in terms of regular Java interfaces.

Listing 1 illustrates the TransferS service specification. Components that
implement this service specification are required to provide an implementation
for operations that are part of the TransferI interface, while at the same time
they can employ operations that are part of the NetworkI interface within their
internal implementation. Hence, the set of provided interfaces make up the pub-
licly accessible interface of the component, while the expected interfaces describe
the set of interaction points with operations offered by other components.

Listing 2 illustrates the simplified implementation of the TransferC com-
ponent that implements the TransferS service specification. This component
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class TransferC implements TransferS {

1
2

3 public byte[] getFileFragment(String aFileName) {

4 FileFragementInfo info = findFileFragment(aFileName);

5 send(info.host(), "get|" + aFileName + "|" + info.filefragement());
6 return get(); }
7

8

9

0

1

public FileFragementInfo findFileFragment(String aFileName) {
/* Code for sequential retrieval of file fragments */ }

Listing 2. The TransferC component implementation

is required to provide an implementation for all operations defined within the
TransferI interface. Whenever the TransferC component is ordered to retrieve
a shared file fragment, it employs the findFileFragment operation. The default
implementation of the findFileFragment operation employs a non-optimized
download strategy, namely a sequential retrieval of file fragments. When a spe-
cific file fragment to download is found, the ezpected operations send and get
are employed in order to retrieve the file fragment from a remote host. All opera-
tions that are part of the expected interfaces of a component (e.g. the send/get
methods) can be transparently invoked from within the component implementa-
tion. Hence, the entire implementation of a concrete component is implemented
in terms of its own service specification, this way minimizing coupling with other
concrete service specifications and components.

The FuseJ component model does not support the language level specification
of non-functional properties typically encountered in CBSD systems, such as
quality of service, security and life-cycle management. As these kind of non-
functional properties have already been identified as being crosscutting [7], FuseJ
provides and models these properties as regular components, which are later on
composed with specific application concerns in an aspect-oriented fashion. The
next section describes how components are composed/integrated into a single
application by making use of the FuseJ configuration language.

2.2 FuseJ Configuration Language

For describing the component composition process, the FuseJ configuration lan-
guage makes use of an explicit configuration construct, a concept borrowed from
architecture systems [6]. A configuration acts as a kind of mediator, which pre-
scribes how two or more components should interact by linking provided / expected
operations. Listing 3 illustrates the structure of a FuseJ configuration entity.
Each configuration configures two or more components and the resulting compo-
sition again complies with a particular service specification. Each configuration
is built up out of one or more linklets. Each linklet links the operations defined
in one or more components and is generally built up out of four individual parts:

— A target role that enumerates the set of operations to execute (line 3).
— A source role that enumerates the set of operations that act as trigger
(line 4).
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configuration <name> configures (<comp>|<serv>)+ as <serv> {
(linklet <linkname> {
execute |expose : (<compop>|<servop>)+
for |before|after|around|as : (<compop>|<servop>)+
(where: (<parameter_mapping>)+)?
(when: (<compop>|<servop>)+)?

H+

0 N U AW N e

Listing 3. General structure of a FuseJ configuration entity

— An optional property mapping that enumerates the set of property map-
pings, described in terms of source, target or external operations (line 5).

— An optional condition specification that enumerates the set of precondi-
tions, described in terms of source, target or external operations (line 6).

As FuseJ implements both regular and crosscutting concerns as basic compo-
nents in order to achieve unification, the distinction between both, namely the
way in which their interaction takes place, emerges at the configuration level.
In its most basic form, a linklet links up two operations, either defined at the
component or the service level.

configuration TransferNetC configures
TransferC, NetworkC as TransferNetS {

linklet send { TransferNetC

1
2
3
4
5 execute: TransferC
6
7
8

NetWorkC

NetworkC.sendData(Ip ip, String st); (Eﬂhmg)<¥<gwwm )( ond }i;(smmh)
o

for: ( 2 tndFioFrag get getData
TransferC.send(String ho, String st); E) C_WZ:ilE::T_DA*

9 where:

10 ip = IpConvertC.convert(ho);
11 }

12

13 linklet get { ... }

14 }

Fig. 1. A component-based interaction between the TransferC - NetworkC components

Figure 1 illustrates a configuration that specifies two regular, component-
based interactions. It configures the TransferC and NetworkC components as
the new TransferNetC component that complies with the TransferNetS service
specification. Two separate linklets are employed. The send linklet interconnects
the send and sendData operations of respectively the TransferC and NetworkC
components. Hence, whenever the TransferC component employs the expected
send operation, the provided sendData operation of the NetworkC component is
executed. A linklet also prescribes how operation properties (i.e. input and out-
put parameter) are matched. Properties employed within the source and target
roles of a linklet are specified through a unique identifier. When these specified
identifiers match in both a source and target role (e.g. the st parameter), they
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are automatically reified. When this is not possible (because of distinct parame-
ter types), the where-clause declares how the mapping takes place (e.g. the ho
String parameter that gets converted to a parameter of type Ip).

In order to comply with the TransferNetS service specification, the config-
uration implicitly exposes the getFileFragment and findFileFragment oper-
ations of the TransferC component, although a separate expose-as linklet can
be employed if required. The newly configured TransferNetC component can
be employed within other configurations, hence supporting the hierarchical con-
struction of applications.

1 configuration LoggedTransferNetC configures P ————
2 TransferNetC, LoggerC as TransferNetS { cggedrransiertie

3 Logger
4 linklet log {

5 execute:

6 Logger.log(String st); o

7 before: 2

8 TransferNetC.*(..); = TransferNetC
9 where: as

10 st = Source.getMethodSignature(); ~  \ oferag <

11 ¥ as %

12
13}

Fig.2. An aspect-oriented before interaction between the TransferNetC - LoggerC
components

Next to regular, component-based interactions, a configuration can also de-
scribe aspect-oriented interactions, this by declaring the source role as being
advised. At the moment, three kinds of crosscutting interactions are supported,
namely before, after and around. The before and after interactions trigger the
behavior of additional operations, which act as advice, before or after an advised
operation. The configuration illustrated in Figure 2 for instance, makes sure that
each execution of an operation that is part of the TransferNetC component is
logged for future reference. For this, quantification is employed in order to select
the appropriate methods that should be advised by the Log operation of the
Logger component. The where clause inits the st parameter with the method
signature of the triggering operation. For this, it accesses the Source object, a
component that is the run-time reification of the operation that triggered the
interaction (i.e. join point). In a similar fashion, Target allows to access the
run-time reification of the operation that is executed by the interaction.

An around interaction wraps and possibly replaces the original behavior of
an operation. FuseJ models the continuation of an around advice, which cor-
responds with the proceed concept in asymmetric AOSD approaches, through
means of an explicit proceed operation, specified as an expected operation. Fig-
ure 3 illustrates a configuration that specifies a crosscutting around interaction
through its optimize linklet. It recuperates the LoggedTransferNetC component
and wraps the behavior of its findFileFragement operation with the optimize
operation declared by the OptimizerC component. Depending on whether the
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1 configuration OptimizedLoggedTransferC configures OptimizedLoggedTransferC
2 LoggedTransferNetC, OptimizerC as TransferNetS {
3
4 linklet optimize {
5 execute:
subjectedop

6 OptimizerC.optimize(String £); g -

3
7 around: E
8 TransferNetC.findFileFragment(String f);
9 } LoggedTransferNetC|
10 as

FileF FileFr

11 linklet optimizeproceed { } goFioFrag
i = Lamen)
13}

Fig. 3. An aspect-oriented around interaction between the Logged TransferNetC - Op-
timizerC components

request can be optimized, the original file fragment retrieval behavior of the
TransferNetC component is either executed or not. For this, the subjectedop
expected operation of the OptimizerC component is back-linked to the advised
operation through the optimizeproceed linklet.

3 Related Work

Several aspect-oriented technologies have been introduced that also aim at avoid-
ing a specialized aspect module. Multi-Dimensional Separation Of Concerns is
one of the first approaches that promotes the simultaneous modularization of
multiple concerns, without one dominating the other [13]. HyperlJ, its practical
realization, captures concerns in so called hyperslices. Hypermodules are used to
compose a set of hyperslices in order to build up the application. One of the main
differences between HyperJ and FuseJ however, is that FuseJ concentrates on
describing interactions between components, while HyperJ focuses on describing
mappings. In many cases, the HyperJ approach requires components to share
common method names and arguments, which easily gives raise to problems
when combining independently specified third-party components.

Invasive Software Composition is a component-based approach that unifies
several software engineering techniques, such as architecture systems and generic
and aspect-oriented programming [2]. Invasive Software Composition aims at
improving the reusability of software components. To this end, software com-
ponents are equipped with both explicit and implicit hooks. These hooks are
composed using a separate composition mechanism. Hooks are similar to the
provided / expected operations of FuseJ components. Fuse] component opera-
tions however, only expose the component’s public interface, while hooks can
be attached at any programming construct. Hence, hooks support a finer level
of granularity and the resulting composition has more expressive power. The
downside however is that, as the internals of a component are not contractu-
ally specified, the composition could easily break later on when the component
implementation evolves.
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More recently, two approaches, namely FAC [17] and DyMac [12], have emerged
that, similar to FuselJ, specifically aim at eliminating the dissimilarities between
aspects and components. When FAC and DyMac are employed, software appli-
cations are decomposed into regular components and aspect components, where
an aspect component is a regular component that modularizes the behavior
of a crosscutting concern. Similar to FuseJ, dedicated binding constructs are
introduced that specify the (crosscutting) interactions amongst individual com-
ponents. In contrast with FuseJ however, FAC and DyMac do not strive for a
full unification between aspect and components. Component methods that are
employed as advices still need to comply to a particular set of requirements (for
instance method names and argument types), which obstructs a full symmetric
model for aspects and components.

4 Conclusions and Future Work

In this paper we present the ongoing FuseJ research, a symmetric and unified
approach towards combining the ideas and concepts of aspects and components.
To this end, the FuseJ research introduces a novel component model that does
not employ specialized aspect constructs for modularizing crosscutting concerns.
Instead, aspect-oriented composition mechanisms are provided through means
of an expressive component configuration language that allows to describe both
regular and aspect-oriented interactions amongst components. Next to the fea-
tures described in this paper, the FuseJ configuration language also provides
support for more advanced aspect-oriented mechanisms including more involved
pointcut designators such as cflow, dynamic triggering conditions and aspectual
polymorphism. A first prototype implementation of the FuseJ component archi-
tecture is available.

Although the FuseJ unified aspect/component architecture yields several ad-
vantages, some aspect-oriented encapsulation and composition techniques still
need to be integrated in order to achieve full AOSD expressiveness. For instance,
the integration of aspect precedence/combinations still needs to be examined. In
addition, experiments will be conducted that investigate the applicability of as-
pects at the architectural level itself.
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Abstract. A great deal of languages have emerged and have demonstrated the
advantages that Aspect-Oriented Programming offers. For this reason, the
aspect-oriented approach is being introduced into the early phases (analysis and
design) of the software life cycle. In this work, we present an Aspect-Oriented
Architecture Description Language (AOADL) to specify software architectures
of complex, dynamic and distributed software systems. This AOADL follows
the PRISMA approach, which integrates the advantages of Component-Based
Software Development (CBSD) and Aspect-Oriented Software Development
(AOSD). The PRISMA AOADL combines components and aspects in an
elegant and novel way achieving a better management of crosscutting-concerns.
In addition, it is independent of the technology, and it has great expressive
power in order to facilitate the automatic code generation from its
specifications. In this work, we demonstrate how PRISMA AOADL improves
the management, maintainability and reusability of software architectures
introducing the notion of aspect in its ADL.

1 Introduction

Nowadays, software systems are becoming more and more difficult to develop due to
their complex structures, non-functional requirements and distributed and dynamic
nature. Two approaches of software development have emerged to overcome these
needs: Component-Based Software Development (CBSD) [7, [27] and Aspect-
Oriented Software Development (AOSD) [2].

On the one hand, CBSD reduces the complexity of software development and
improves its maintenance by increasing software reuse. CBSD decomposes the
system into reusable entities called components. By extension, this advantage is
provided by software architectures [8] due to the fact that architectural models are
constructed using components. As a result, software architectures have emerged as a
solution for the development process of complex software systems.

On the other hand, AOSD allows the separation of concerns by modularizing
crosscutting concerns into a separate entity, the aspect. The encapsulation of the
aspect permits the reusability of the same aspect in different objects, and the evolution
of an aspect without affecting the other objects and aspects. The main emphasis in this
approach has been made at the implementation level, by introducing the Aspect

1. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 123 —138, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Oriented Programming (AOP) as a new paradigm of software development. A great
number of aspect-oriented programming languages have been proposed and have
demonstrated that AOP improves the structure and reusability of the code [10].

PRISMA is an approach to develop complex software systems that has been
designed taking into account different solutions of interest: CBSD and AOSD. This
approach provides a model and an Aspect-Oriented Architecture Description
Language (AOADL). The model defines software architectures by integrating aspect-
oriented software development (AOSD) and component-based software development
(CBSD). This integration is directly reflected in its AOADL. In this work, we
specially focus on the demonstration of the improvement of the reusability, the
development, and the maintainability of architectures using the PRISMA AOADL.

PRISMA AOADL defines the semantics of the architectural models in a formal
way in order to validate and verify PRISMA architectural models and to
automatically generate source code from the PRISMA AOADL. It is important to
keep in mind that the PRISMA language is independent of the technology and it has
great expressive power. These properties allow us to generate code from its specifi-
cations and to choose among different technologies at the time of generating the code.
For this reason, we can compile the same PRISMA architectural model into different
programming languages and technologies, thereby reducing the development time and
preserving the traceability between an architectural model and its application code.

The structure of the paper is the following: Section 2 presents a brief summary of
related work. Section 3 gives an overview of the PRISMA approach and presents in
detail the PRISMA AOADL by demonstrating its main advantages. Conclusions and
further work are presented in the last section.

2 Related Work

A wide variety of models based on the separation of concerns have been proposed
[21], [28], etc. However, the most widely used is the Aspect-Oriented Paradigm
(AOP). Aspect-Oriented models can be classified into two different categories: static
models and dynamic models. The static models are not able to change aspects and
their weaving at run-time, whereas the dynamic ones offer this advantage. Examples
of dynamic models are the Mask Model [22] and the Dynamic Aspect-Oriented
Platform (DAOP) [18].

A well-accepted aspect-oriented programming language is Aspect] [10], which is
an extension of Java, where the code is separated into aspect and non-aspect code
(objects). However, based on experiments implementing different aspects such as
persistence and distribution [25], this model has many drawbacks (static, limited
reusability). Therefore, in [19], work has been done to provide dynamic weaving
using the Java Virtual Machine Debugger Interface (JVMDI).

AOP is being transferred to other platforms such as .NET by means of extensions.
However, the existing .NET approaches for supporting AOP are still in an early phase
and only Rapier-Loom.Net [23] supports mechanisms for adding or removing aspects
dynamically. However, it defines the weavings inside the aspects thereby losing their
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reusability. EOS [20] is another dynamic approach that is able to attach aspects at the
instance level by means of events. However, none of these approaches takes into
account the emerging relations that result from the aggregation of various aspects at
the same point of the base code (joinpoint). The JAsCo [26] approach is presented as
a solution of this lack. It provides an expressive language that permits the definition
of relations among aspects. JAsCo integrates AOSD and CBSD at the implementation
level by extending the JavaBeans and introducing connectors to perform dynamic
aspect weaving by preserving the aspect reuse. The inconvenience of this approach is
that the dynamic weaving of aspects to the base code is referential but not inclusive.
As a result, base code and the aspects are not inside the same entity when they are
instantiated and the code mobility is limited. As mobility is an essential feature of
software components, PRISMA AOADL provides all these needed properties at the
same time. These properties are the following: dynamic weaving (run-time evolution),
the join of the base code and the aspects inside the same entity (mobility support), and
the reuse of aspects (reusability). Finally, an important difference between these AOP
approaches and PRISMA AOADL is the technological independence; all these
properties are going to be integrated at the architectural level of the software
development process, instead of integrating them at the implementation level.

A wide variety of ADLs have been proposed at the architectural level, an
interesting comparison between these languages has been made in the work by [11].
Some proposals for the integration of the software architecture and the AOSD have
emerged in order to take advantage of both approaches [5]. Each one introduces
aspects in their Architecture Description Languages (ADLs) in a different way: as a
component [13], as a connector among components [18], as a view of the architecture
[9], etc. However, PRISMA introduces the aspect in its ADL as a new concept
without simulating it with any other architectural term (components, connectors,
views, etc).

Our approach does not only introduce aspects as new requirements [13], it takes
advantage of the notion of aspect from the beginning of the system definition. Also,
the complete view of the software architecture is not lost by the use of aspects as [9].
Moreover, at the configuration level, when the architectural elements are instantiated,
we do not lose the structural and architectural view of the system due to the fact that
our components are connected by means of connectors instead of aspects [18]. As
Shaw presents in her work [24], the specification of software systems with complex
coordination protocols is too difficult without the connector architectural element.
This is because the connector provides the separation of the component interaction
achieving a higher level of abstraction, modularity and architectural view of the
system. TranSAT [3] is another approach that incorporates aspects that refine the
original component specification and generates another one that includes them
without losing the black box view of the component. However, this approach is only
focused on technical aspects.

In [4], the main requirements for developing aspect-oriented software architectures
are presented. They are the linguistic support for weaving aspects, dynamic adap-
tability, and reusability. PRISMA AOADL is presented as a good solution to specify
aspect-oriented software architectures because it satisfies these requirements.
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3 PRISMA: An Aspect-Oriented Architecture Description
Language (AOADL)

The PRISMA approach allows the definition of software architectures of complex
software systems by integrating AOSD and CBSD. PRISMA uses AOSD to separate
the crosscutting concerns (distribution, security, context-aware, coordination, etc.) of
the architecture in aspects. In this way, the PRISMA architectural elements are
defined by using aspects to define their behaviour.

A PRISMA architectural element can be analyzed from two different views,
internal and external. The internal view (see Figure 1) shows an architectural element
as a prism with each side of the prism being an aspect that is imported by this
architectural element. This represents that an architectural element of PRISMA is
formed by a set of aspects and weavings relationships among aspects. Whereas, the
external view (see Figure 2) is an architectural element that encapsulates its
functionality as a black box, and by means of its ports publishes and receives a set of
services to and from the rest of the architectural elements.

ppesenTATION PERSISTE,

== component ==
a:s.-,mu;; — port_2 [ ] Architectural Element [ popg g
!
T Weaving
Fig. 1. Internal View of an Architectural Fig. 2. External View of an Architectural
Element Element

The PRISMA AOADL defines the architectural elements at different levels of
abstraction: the type definition level and the configuration level. The type definition
level defines architectural types with a high abstraction level. Its main advantages are
software reuse and complexity reduction by integrating components and aspects. The
PRISMA types defined at this level are stored in a PRISMA repository so that they
can be reused by other types or specific architectures.

The configuration level designs the architecture of software systems by creating
and interconnecting instances of the defined architectural elements in the type
definition level. In other words, we specify the topology of a specific software system
at this level.

In the following sections, a very simple banking system example is going to be
used to illustrate the PRISMA AOADL. An information system that contains a client-
server architecture between two components is defined. By this simple banking
system, we present the specification of different aspects (coordination, distribution
and functional aspects) and architectural types.

There are two components that are involved in the banking system and are
connected with each other: an ATM and an Account. The ATM is the client
component that requires withdrawal and balance services from the Account. The
Account is the server component that offers the required services to the ATM. The



Designing Software Architectures with an AOADL 127

ATM stores an ATM number that identifies it (numberld), the amount of money
available in the ATM (money) and where the ATM is located (address). The Account
stores an account number that identifies it (numberld), the amount of money (money),
and the postal address of its owner (address). The system has a connector
ATMAccount that controls the communication process between the two components.
In order to simplify the example we do not take the persistence aspect into account
and we assume that the information is stored in the main memory.

3.1 The Type Definition Level

The type definition level of PRISMA defines architectural patterns (complex comp-
onents) and the first-class citizens of the language: interfaces, aspects, components,
and connectors. They are stored in the PRISMA repository in order to be reused.

3.1.1 Interfaces

An interface publishes a set of services. It describes the signature of the services that
can be invoked or requested through that interface. The arguments that define a
service can be input or output. Input arguments are necessary to perform the
execution of a service, and output arguments will store the result of the service
execution. Interfaces publish services without taking into account the ports and
aspects that are going to use them. In the following, we present some interfaces of the
banking system.

Interface ICreditCardTransactions
withdrawal (input Quantity: currency, output MyMoney: currency) ;
balance (output MoneyBalance:currency) ;
changeAddress (input NewAdd: string);

End_Interface ICreditCardTransactions;

Interface IMobility
move (input NewLoc:loc) ;

End_Interface IMobility;

3.1.2 Aspects

An aspect defines the structure and the behaviour of a specific concern of the
software system. Examples of concerns are functionality, coordination, safety,
distribution, among others. A common syntax of aspects has been defined. This
common syntax is going to be presented using the functional aspect.

¢ Functional Aspect

The head of an aspect specifies its name and the kind of concern it defines: functional,
distribution, coordination, etc. Moreover, interfaces whose semantics is defined by
the aspect are detailed next to the reserved word using. We are going to define a
functional aspect which specifies the semantics of the ICreditCardTransaction
interface (see Figure 3, n° 1).
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Attributes are specified inside an aspect. These attributes are necessary to store
information about the characteristics of the aspect. Attributes are preceded by the
Attributes reserved word and they have a name and a type (see Figure 3, n°® 2). This
type defines the kind of values that the attribute can store. There are three kinds of
attributes:

e Constant: Their stored values cannot change
e Variable: The stored values can be modified
e Derived: The value is calculated on demand applying its derivation rule.

An aspect defines the semantics of services. The set of services specified in an
aspect must contain the begin service, the end service, and the interface services that
this aspect uses (see Figure 3, n® 3). Begin and end services do not mean that it is
possible to instantiate an aspect by itself; they make a reference to the creation and
destruction services of the architectural element that the aspect will belong to, and
where it will be instantiated. The semantics of services is defined by means of
preconditions and valuations. Preconditions establish the condition that must be
satisfied to execute a specific service (see Figure 3, n° 5). Valuations specify the
changes in the value of attributes and parameters by the execution of services (see
Figure 3, n° 4).

With regard to services, it is important to take into account that the same service
can have two different behaviors: client and server. The client behavior is when a
service is invoked by an aspect. The server behavior is when a service is offered and
processed by an aspect. Sometimes, it is necessary to distinguish between these two
behaviors. The syntactical difference between client or server service is the reserved
word in, out and in/out.

The aspect example shown in Figure 3 has a precondition to indicate when the
service withdrawal can be executed and the valuation of the withdrawal indicates how
the money attribute is updated when this service is executed. The precondition ensures
that there is enough money to be able to withdraw the required quantity, and the
valuation of the withdrawal updates the quantity of the available money. Services,
preconditions and valuations are preceded by the reserved words Services,
Preconditions, and Valuations, respectively.

It is necessary to specify the protocol to describe the order and the state in which a
service could be executed (see Figure 3, n°7). The protocol is a textual specification of
a transition state machine.

An aspect also defines the set of roles that can be played taking into account the
semantics of the services. They are called played_roles (see Fig 3, n°6). A played_role
is a projection of the protocol that defines the partial behaviour belonging to a specific
role. This role must be compliant with the signature and the process of the protocol.
As a result, the played_role is performed inside the global behaviour of the protocol,
and its calculations are a subset of the calculations of the protocol.

Every service that composes a played_role belongs to the same interface. This is
specified at the beginning of the played_role specification with the for keyword and
the name of the interface. A played_role is a partial view of the protocol that has its
own meaning, a specific behaviour that can be later associated to a port. This
association allows us to define the behaviour of ports.The formal language that we
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used to describe the Played_Roles and Protocols is the poliadic m-calculus [12]. The
main advantage of this language is the fact that it allows us to describe processes and
services that can be executed concurrently in a simple way.

1 Functional Aspect BankInteraction using
ICreditCardTransaction
2 Attributes
numberId: number;
name: string;
address: string
money: currency;
3 Services
begin;
in/out withdrawal (input Quantity: currency, output
MyMoney:currency) ;
4 Valuations
[in withdrawal (Quantity, MyMoney) ]
money := money - Quantity;
MyMoney := Quantity;
in/out balance (output MoneyBalance:currency) ;
4 Valuations
[in balance (MoneyBalance) ]
MoneyBalance := money;

in/out changeAddress (input NewAdd: string) ;

4 Valuations
[in changeAddress (NewAdd) ]
address := NewAdd;
end;
5 Preconditions

in withdrawal (Quantity)
if Quantity <= money;
6 Played_Roles
BANK for ICreditCardTransaction ::=
(withdrawal ? (Quantity, MyMoney)
- withdrawal ! (Quantity, MyMoney))
+
(balance ?(Quantity, MyMoney)
- balance ! (Quantity, MyMoney))
+
(changeAdress ? (Newadd)
- changeAdress ! (Newadd)) ;
CUSTOMER for ICreditCardTransaction:: =
( withdrawal ! (Quantity, MyMoney)
- withdrawal ?(Quantity, MyMoney))
+
(balance ! (Quantity, MyMoney)
- balance ?(Quantity, MyMoney)
+
(changeAdress ! (Newadd)
- changeAdress ? (Newadd)) ;

7 Protocol
BANKINTERACTION ::= begin - TRANSACTION;
TRANSACTION = (BANK || CUSTOMER) —> TRANSACTION + end;

End_Aspect BankInteraction;

Fig. 3. BankInteracation Functional Aspect
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e Distribution Aspect

This aspect has the same sections of a functional aspect with some predefined
attributes and services. The distribution aspect [1] specifies the locations of the
instances. However, if the location is specified in the distribution aspect, the same
distribution aspect cannot be reused in different architectural elements if instances are
distributed in different locations. This problem is solved using the PRISMA AOADL
due to the fact that it is separated into the Type Definition Language and the
Configuration Language. Thus, the Type Definition Language specifies that a type
has a location without assigning it a value. The value of the location is assigned when
architectural elements are instantiated in the Configuration Language.

Distribution Aspect ExtMbile using IMobility
Attributes
id: nat;
location: LOC NOT NULL;
Services
in move (input NewLoc:LOC) ;
Valuations
[in move (NewLoc)] location:= NewLoc;
Played_Roles
MOVEMYSELF: := IMobility.move ? (NewLoc) ;
Protocols
EXTMBILE = begin - MOVEMENT;
MOVEMENT = MOVEMYSELF - MOVEMENT +
end;
End Distribution Aspect ExtMbile;

Fig. 4. ExtMbile distribution aspect

The distribution aspect presented in Figure 4 specifies the behaviour of a mobile
architectural element enabling the change of the location attribute by the move service
valuation. The attribute location has an abstract data type called LOC. This data type
hides the different mechanisms of locations of an architectural element at a physical
level, e.g. it can be a URL, an IP, etc. The location attribute should have a value when
an architectural element is instantiated; this is indicated by the NOT NULL.

e Coordination Aspect

This aspect presents the same sections as a functional one. The difference between
both aspects is their purpose, functionality is for computation and coordination is for
synchronization of architectural elements. Figure 5, shows the coordination aspect
which allows the synchronization of two architectural elements whose port type is the
ICreditCardTransaction interface.

In Figure 5 the BankCoordination coordination aspect does not have attributes
because it does not perform computations, it only synchronizes. However, a
coordination aspect can have attributes to take coordination decisions in complex
protocols. Figure 5 also shows that the coordination played roles are the opposite
processes of the functional played_roles (see Figure 3). This is due to the fact that the
coordinator units have the opposite process view of the computational units, i.e., an
output action for a computation unit is an input action for a coordinator unit and vice
versa.
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Coordination Aspect BankCoordination using ICreditCardTransaction
Services
begin;
in/out withdrawal (input Quantity: currency, output
MyMoney:currency) ;
in/out balance (output MoneyBalance: currency) ;
int/out changeAddress (input NewAdd: string);
end;
Played_Roles
CUSTOMER for ICreditCardTransaction ::=
(withdrawal ? (Quantity, MyMoney)
- withdrawal ! (Quantity, MyMoney))
+
(balance ?(Quantity, MyMoney)
- balance ! (Quantity, MyMoney))
+
(changeAdress ? (Newadd)
- changeAdress ! (Newadd)) ;
BANK for ICreditCardTransaction:: =
( withdrawal ! (Quantity, MyMoney)
- withdrawal ? (Quantity, MyMoney))
+
(balance ! (Quantity, MyMoney)
- balance ?(Quantity, MyMoney)
+
(changeAdress ! (Newadd)
- changeAdress ? (Newadd)) ;
7 Protocol
BANKCOORDINATION ::= begin - STNCHRONIZE;
SYNCHRONIZE ::=
(CUSTOMER.withdrawal ? (Quantity, MyMoney)
- BANK.withdrawal! (Quantity, MyMoney))=> SYNCHRONIZE
+
(CUSTOMER .balance ?(Quantity, MyMoney)
- BANK.balance! (Quantity, MyMoney)) =2 SYNCHRONIZE
+
(CUSTOMER .changeAdress ? (Newadd) )
- (BANK.changeAdress ! (Newadd)) = SYNCHRONIZE
+
(BANK.withdrawal ?(Quantity, MyMoney)
- CUSTOMER.withdrawal! (Quantity, MyMoney))=>SYNCHRONIZE
+
(BANK.balance ?(Quantity, MyMoney)
- CUSTOMER.balance ! (Quantity, MyMoney)) = SYNCHRONIZE
+
(BANK.changeAdress ? (Newadd) )
- (CUSTOMER .changeAdress ! (Newadd)) = SYNCHRONIZE
+ end;
End_Coordination Aspect BankCoordination;

Fig. 5. BankCoordination Coordination Aspect

3.1.3 Components and Connectors

A simple architectural element is specified with the set of ports, the aspects it is
formed of, and the aspect weavings. It can be noticed from the aspects specification in
section 3.1.2, that an aspect definition does not include the points where an aspect
needs to coordinate with the rest of other aspects (aspect weavings). In this way,
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aspects are completely maintainable and reusable. Therefore, when architectural
elements are defined they import the aspect types from the PRISMA repository and
define their weavings. An aspect weaving is specified by determining the aspects that
participate in the weaving, the services of the aspects where they are weaved, and the
weaving methods. A weaving that relates service sl of aspect Al and service s2 of
aspect A2 can be specified using the following operators:

o A2.5s2 after Al.sl: A2.s2 is executed after Al.sl
e A2.s2 before Al.sl: A2.s2 is executed before Al.sl
e A2s2instead Al.sl: A2.s2 is executed in place of Al.sl

Component Account

Functional Aspect Import BankInteraction;
Distribution Aspect Import ExtMbile;

Weavings
BankInteraction.changeAddress (NewAdd: string)
before
ExtMbile.move (NewAdd: string) ;

End_Weaving;

Ports
AccountCnct: ICreditCardTransactions
Played_Roles BankInteraction.CUSTOMER;
AccountSys: ICreditCardTransactions
Played_Roles BankInteraction.CUSTOMER;
End_Ports;
End_Component Account;

Component ATM

Functional Aspect Import BankInteraction;
Distribution Aspect Import ExtMbile;

Ports
ATMCnct: ICreditCardTransactions
Played_Roles BankInteraction.BANK;
End_Ports;
End_Component ATM;

Fig. 6. Definition of Components

Simple architectural elements in PRISMA are components and connectors. A
component is an architectural element that captures the functionality of the
information system and does not act as a coordinator between other architectural
elements; whereas, a connector is an architectural element that acts as a coordinator
between other architectural elements. In order to better understand how to specify
components and connectors, we show their syntax by means of the specification of
the ATM and Account components and the connector that connects them.

The specified aspects in section 3.1.2 are going to be reused to define the
architectural elements of the example. The same ExtMbile distribution aspect (see
Figure 4) specifies the Account and ATM components (see Figure 6), and the
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ATMAccount connector (see Figure 7). The BankInteraction functional aspect (see
Figure 3) is reused in the Account and ATM components (see Figure 6). The
BankCoordination coordination aspect (see Figure 5) is used to define the connector
ATMAccount (see Figure 7). However, it is important to note that these aspects could be
reused to create other architectural elements. We present the synchronization between
aspects in the Account component; for example, when the customer address changes
(ChangeAddress), the account of this customer must be moved to another place nearer
to his/her new address (see weaving section in the Account component in Figure 6).

Connector ATMAccount

Coordination Aspect Import BankCoordination;
Distribution Aspect Import ExtMbile;

Port
ATM: ICreditCard_Transactions
Played_Roles BankCoordination.BANK;
Account: ICreditCard_Transactions
Played_Roles BankCoordination.CUSTOMER;
End_Port;
End_Connector ATMAccount;

Fig. 7. Definition of Connectors

3.1.4 Systems, Attachments and Bindings
PRISMA components can be simple or complex. The complex ones are called
systems. A PRISMA system is a component that includes a set of connectors,
components, and other systems that are correctly linked.

A system is specified as a pattern so that it can be reused in any software
architecture that could be necessary. The difference between a system and a simple
component is that it needs attachments and bindings:

-Attachments: They are connection relationships that establish the connection
among ports of components and connectors.

- Bindings: They are connection relationships that establish the connection among
the system (complex component) and the architectural elements it contains. The
bindings allow the system to define its exterior behaviour (ports) by means of the
architectural elements it contains.

Figure 8 shows the definition of the SimpleBank type. The set of architectural
elements, that are necessary to define the system, are imported, and the number of
instances that can be specified at configuration time are constrained. In the
specification of the SimpleBank system (see Figure 8), this number is not specified
and the default value (min=1, max=n) is applied to each type. In addition, the
connections among the different types of architectural elements are specified in order
to define the architectural pattern. The SimpleBank type has two types of attachments.
They establish the connections among ports of components (ATM, Account) and ports
of connectors (ATMAccount). Each type constrains the cardinality of the attachment at
configuration time. The SimpleBank bindings establish the connection among the
systems ports (SimpleBank) and the connectors or/and components ports (Account)
that the system is composed of (see bindings section). Each type constrains the
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cardinality of the binding at configuration time. The cardinality constrains of the
system allow us to define a specific pattern of communication that must be satisfied at
the configuration time.

System SimpleBank
Ports
Banksystem: ICreditCardTransactions;
End_Port;

Import Architectural Elements ATM, Account, ATMAccount;

Attachments
Account.AccountCnct (1..n) €= (1..1) ATMAccount.Account;
ATM.ATMCnct (1..n) €= (1..1) ATMAccount.ATM;
End_Attachments;

Bindings
SimpleBank.Banksystem (1..1) €= (1..n) Account.AccountSys;
End_Bindings;
End System SimpleBank;

Fig. 8. SimpleBank system specification

=2 componert | system ==
SimpleBank

Accourt (== component | connector ==| AT

Banksystem

C

== component ==
ATM

AccountSys

Fig. 9. SimpleBank system graphical representation’

Figure 9 illustrates the graphical view of the architecture that has been specified in
Figure 8.

3.2 The Configuration Level

The configuration level is used to define a specific architectural model for a software
system. In order to do this all required connectors, components and systems types
should be instantiated, and attachment and binding instances should be added among
them. At this moment, constraints that have been defined in systems are validated in
order to ensure the pattern satisfaction. An example of a configuration is to define a

! The figure has been designed using the Poseidon Tool, http://www.gentleware.com
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specific architectural model for a bank by reusing the system type that we have
defined in the previous section (see Figure 10).

Architectural Model
MySimpleBank = new SimpleBank () {
MyFirstCustomer = new Account (0000001, Jose, Main Street 20,
100, mainhost) ;
MainATM = new ATM{ATM1, MainBranchATM, London Road, 1000000,
localhost) ;
BankController = new ATMAccount ()
Attachments
MyFirstCustomer.AccountCnct € BankController.Account;
MainATM.ATMCnct €—> BankController.ATM;
End_Attachments;
Bindings
MySimpleBank.Banksystem €= MyFirsCustormer.AccountSys;
End_Bindings;
Y
End_Architectural Model;

Fig. 10. Architectural Model of the MySimpleBank Bank System

== compaonert | system ==

inpleB ank: SimpleBank
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Banksystem . BankController: ATMACcoul
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<= component ==

MyFirstCustomer: Account

== camponent ==
[] MainATMEATM

ACCOUNtSYS.

AcoountCnd ATMCnct

Fig. 11. Graphical representation of the MySimpleBank Architectural model’

Properies [gtyle | | |

Properties I_Etyle l l

‘MyFirsCustomer ‘

Name |h113r5imp|eElank | Name

Mamespace |BankSof‘b.mareArchitecture |E“EJ Namespace |Elank80fhmareﬁrchitecture |t||z|
Tvpe |SimpIeEIank . |E“EJ Type | Account |t||i|
todifiers IE] active Muodifiers |:| active

Fig. 12. Information related to the instantiation from the types of PRISMA library"

Figure 11, shows the graphical representation of the MySimpleBank system
instance defined in Figure 10. Underlined names indicate that they are instances of a

type (see Figure 12).
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4 Conclusions and Further Work

In this paper, an AOADL to specify complex, dynamic and distributed information
systems has been presented in detail. This language allows us to define PRISMA
architectural models. The structure, design and maintainability of architectures
specified in the PRISMA AOADL are improved by reusing entities at different levels
of granularity (interfaces, aspects, components, connectors and systems). This
reusability is achieved by means of the division of the language into two levels of
abstraction and the integration of AOSD and CBSD into the language. The stored
types defined at the type definition level can be reused by the configuration level to
define a specific software architecture. In addition, the fact that interfaces and aspects
are first-class citizens of the language increases the reusability because an interface
can be used by several aspects and an aspect can be used by several architectural
elements. The example of the paper has demonstrated this high level of reusability by
reusing an interface to define two aspects, a distribution aspect to define two
components and one connector, and other functional aspect to define two components.

We have used a simple example to present the language in order to facilitate the
understanding of the language capabilities to the reader instead of using a complex
one. However, it is important to keep in mind that PRISMA does not specify simple
architectural systems for academic projects such as: pipelines, filters, blackboards,
etc. PRISMA AOADL is being used to specify industrial projects where the software
systems are complex, open, and active such as the TeachMover robot [16] and
EFTCoR [17]. EFTCoR is a robot family that cleans the hulls of ships.

The PRISMA AOADL provides a better management of evolution and main-
tenance of crosscutting-concerns and software architectures. The maintenance of
crosscutting-concerns is improved due to the fact that if we want to change the
features of a specific concern, we only need to modify or change the aspect that
defines the concern, and every architectural element that imports it will be updated.
However, other approaches that use non-aspect-oriented ADLs need to look for each
statement that is related to the concern in the tangled code of every architectural
element of the system. The maintenance of software architecture is improved because
the PRISMA approach supports evolution by means of a meta-level which provides a
set of evolution services to evolve software architectures at run-time [16].

The PRISMA AOADL has a graphical notation that is based on a UML profile. As
a result, PRISMA reduces the complexity in software development by providing a
graphical notation and a modelling tool to support more intuitive and friendly
software architecture modelling [14].

It is important to take into account that most ADLs only allow us to specify the
skeleton of architectures and the services that are interchanged among their different
architectural elements. However the PRISMA AOADL has a great expressive power
to specify more features and requirements related with the software system by means
of aspects in order to facilitate the code generation. We are currently developing the
model compiler using DSL tools [6]. This is going to permit the compilation of the
same PRISMA architectural model into different programming languages and
technologies, thereby reducing the development time and preserving the traceability
between an architectural model and its application code. We are improving the
graphical modelling tool using DSL tools and we are starting to generate C# code and
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PRISMA specifications from graphical PRISMA architectural models. Despite the
fact that .NET framework does not provide support for the Aspect-Oriented approach,
we are able to execute the C# code generated using our model compiler by developing
a .NET middleware for our PRISMA approach called PRISMANET [15].
PRISMANET extends the .NET technology by the execution of aspects on the .NET
platform, the reconfiguration of software architectures (local and distributed) and the
addition and removal of aspects from components at run-time.

As future work, we are going to introduce validation and verification techniques in
our modelling tool. Currently, we support cardinality constrains to define architectural
patterns (systems). We are going to extend the language to support other kinds of
constrains. In addition, we want to measure the benefits of the language with several
case studies.
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Abstract. This paper presents AOKell, a framework for engineering
component-based systems. This framework implements the Fractal
model, a hierarchical and dynamic component model. The novelty of
this paper lies in the presentation of AOKell, an implementation of the
Fractal model with aspects. Two dimensions can be isolated with Frac-
tal: the functional dimension, which is concerned with the definition of
application components, and the control dimension, which is concerned
with the technical services (e.g. lifecycle, binding, persistence, etc.) that
manage components. The originality of AOKell is, first, to provide an
aspect-oriented approach to integrate these two dimensions, and sec-
ond, to apply a component-based approach for engineering the control
dimension. Hence, AOKell is a reflective component framework where
application components are managed by other, so-called, control com-
ponents and where aspects glue together application components and
control components.

1 Introduction

Software components are more and more used in various application domains.
This trend is supported by the fact that many component models are available,
coming either from the industry such as Sun EJB [1], Microsoft . NET/COM+,
OMG CCM [2], OSGi [3], or from research teams (e.g. ArchJava [4], Fractal [5],
FuseJ [6], K-Component [7], OpenCOM [8]).

In our opinion, the domain of component-based software engineering is char-
acterized by two main requirements: the need for components goes beyond the
boundaries of programming languages, and components need to be used in var-
ious execution contexts, such as embedded applications with strong constraints
in terms of memory footprint and execution costs, information systems hosted
on application servers, or grid computing. In this paper, we argue that the chal-
lenge for component models is to be able to handle these requirements. So far,
existing component frameworks are mostly seen as closed, black box entities
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which provide artefacts to design and program applications with components.
The components are handled by the framework, which provides a set of services
to manage these application components. Yet, this set of services is most of the
time closed. This is the case for example, with the EJB [1] component model,
where new services cannot be added to the container.

In this paper we propose AOKell, which is an open implementation in Java
of the Fractal component model. By implementation, we mean a software in-
frastructure for defining and executing components. The implementation is open
in the sense that the services provided by the AOKell framework are fully accessi-
ble and programmable. By giving programmers a way to engineer these services,
AOKell eases the task 