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Preface

This volume of Springer’s Lecture Notes in Computer Science series records
the proceedings of the 8th International Workshop on Digital Mammography
(IWDM), which was held in Manchester, UK, June 18–21, 2006. The meetings
bring together a diverse set of researchers (physicists, mathematicians, computer
scientists, engineers), clinicians (radiologists, surgeons) and representatives of
industry, who are jointly committed to developing technology, not just for its
own sake, but to support clinicians in the early detection and subsequent patient
management of breast cancer. The conference series was initiated at a 1993
meeting of the SPIE in San Jose, with subsequent meetings hosted every two
years by researchers around the world. Previous meetings were held in York,
Chicago, Nijmegen, Toronto, Bremen, and North Carolina.

It is interesting to reflect on the changes that have occurred during the past
13 years. Then, the dominant technology was film-screen mammography; now it
is full-field digital mammography. Then, there were few screening programmes
world-wide; now there are many. Then, there was the hope that computer-aided
detection (CAD) of early signs of cancer might be possible; now CAD is not
only a reality but (more importantly) a commercially led clinical reality. Then,
algorithms were almost entirely heuristic with little clinical support; now there is
a requirement for substantial clinical support for any algorithm that is developed
and published. However, upon reflection, could we have predicted with absolute
certainty what would be the key questions to be addressed over the subsequent
(say) six years? No! That is the nature, joy, and frustration of research. There
are more blind alleys to explore than there are rich veins that bring gold (in all
senses of that analogy!).

What are the current preoccupations? What are currently the ideas that we
believe will bear handsome fruit over the next 20 years? These are reflected in the
programme, and in the choice of invited speakers. However, it is first important
to realize that what have been identified as the major challenges over the past
13 years continue to be challenges: robust, reliable, efficient algorithms for CAD,
segmentation, registration, and texture analysis await definitive solution, as they
do in image analysis generally (and mammography poses additional challenges).
Second, the challenges of delivering the technology effectively to end-users remain
unmet: what are the optimal prompts? How do you deliver CAD in large rural
areas? How do you deliver mammographic image analysis over the emerging
Grid? How do you integrate film-screen mammography with full-field digital?
How do you fuse mammography with other imaging modalities, such as MRI,
ultrasound, and PET. . . These observations explain about half of the sessions,
as they did at previous meetings (though we all believe we have made progress)!

Like great music, however, for all the increasingly understood and recur-
rent themes there are some newer ones that press for attention! Among these



VI Preface

we can clearly identify tomosynthesis—subject of an invited address by Prof.
Dan Kopans at UNC in 2004 and now increasingly a commercial and clinical
reality—and the estimation and analysis of breast density—again, the subject
of an invited address by Prof. Norman Boyd at UNC in 2004. However, with the
exquisite hindsight of reflection on the past we will—six years hence—be able to
identify a number of other emergent themes, although not only are we not able
to see them clearly but would probably reject them as marginal! These might
be fusion of mammography with other modalities and x-ray imaging techniques
that currently seem avant garde.

A successful conference is a blend of inspired organization, financial support,
scientific insight; but, ultimately, the quality of the papers that were submit-
ted. Two of us (Sue, Mike) were charged by the IWDM Scientific Committee
to organize a meeting in the UK. We invited four-page outline papers, as op-
posed to the paragraphs that had previously been submitted. We believe that
this simultaneously increased the quality and decreased the number of submis-
sions. Each four-page abstract was assessed independently by at least two, often
three, members of the Scientific Committee, and the final eight-page submissions
were assessed independently by at least two members. We believe that the final
proceedings, which you have in your hand, constitute a state-of-the-art state-
ment of mammographic image analysis, its underlying physics, and clinical pull-
through. The invited addresses by Julietta Patnick—director of the UK national
breast screening programme—and Profs. Andrew Maidment—digital mammog-
raphy and tomosynthesis—and Etta Pisano—author inter alia of the influential
DMIST trial—were not included in the published proceedings; but their influ-
ence on the future of the research of the community, and its pull-through into
practice, cannot be over-emphasized.

Finally, in keeping with the multi-disciplinary nature of the meeting, the
meeting was supported by sponsors and there was an excellent industrial expo-
sition, pulled together by Reyer Zwiggelaar. The timely and efficient production
of the reviews, final versions, arrangements, etc. depended fundamentally on Dr.
Chris Rose and the remarkable CAWS website at Manchester.
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Abstract. The volume of dense breast tissue can be calculated from an x-ray 
mammogram by imaging a calibrated step-wedge alongside the breast and 
determining the compressed breast thickness.  Previously published work used a 
step-wedge made of PTFE with a maximum height of 35mm, length 175mm 
and width 15mm. Although fulfilling all theoretical requirements, it can be 
difficult to find space on the film for a large step-wedge when examining bigger 
breasts. Furthermore, the step-wedge is lead-lined, making it heavy and difficult 
to attach to the bucky. A more compact aluminium step-wedge has been 
designed to overcome these limitations, and experiments have been carried out 
on a prototype to evaluate its performance. Initial results show that the 
maximum and minimum heights of the prototype step-wedge are inadequate to 
sufficiently cover the range of optical densities within a breast image at the 
higher and lower exposures required for 6cm and 2cm Perspex (>200mAs and < 
40mAs respectively).  However, the step increment appears to be satisfactory.  
Analysis of the mean pixel value and standard deviation within Regions of 
Interest of varying size and position indicates an optimum step length of 3mm.  
A new step-wedge has been constructed with an improved specification 
informed by the evaluation of the prototype. 

1   Background 

Increased breast density is associated with a higher risk of developing cancer [1, 2, 3, 
4]. Various techniques exist for estimating or measuring dense tissue [5, 6, 7, 8, 9, 
10]. One such method involving the use of a calibrated step-wedge has been used 
previously to study women at increased risk of developing cancer [11, 12].  This 
method, however, suffers from a number of limitations, and we now examine in detail 
the design considerations for a step-wedge, using a new aluminium prototype for 
evaluation purposes, and hence develop a specification for a wedge suitable for use in 
routine clinical practice.  

In order to quantify dense breast tissue, a calibrated step-wedge can be imaged 
alongside the breast, with radio-opaque magnification markers on the compression 
paddle to enable determination of breast thickness at a series of points.  The density at 
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each pixel in the resulting mammogram is then matched to the equivalent density in 
the calibrated step-wedge. The corresponding thickness of the step-wedge at this 
point, combined with breast thickness measurement, allows composition to be 
uniquely determined at each pixel. 

The original step-wedge [13] was constructed of PTFE (polytetrafluoroethylene / 
Teflon). It had 25 steps, each of height 1mm and length 5mm, giving a maximum 
height of 25mm and a total length of 125mm.  The width of all steps was 12mm.  It 
was necessary to shield the sides of the wedge with lead to ensure that only those 
parts of each step where x-rays have travelled through the whole thickness of the 
wedge are imaged.  The wedge is positioned at the top left-hand corner of the breast 
support platform (bucky) and is therefore exposed to x-rays traveling at an oblique 
angle. Without lead shielding the image becomes blurred by x-rays that only pass 
through part of the wedge, causing the grey level to vary across each step. 

It was found that at the higher exposure factors required for greater breast 
thickness and density, the optical density of the step-wedge on the image increased to 
the extent that the 25mm step-wedge did not adequately cover the range of optical 
densities expected within the breast [12].  An additional 10 steps were added 
increasing the overall height to 35mm and the length to 175mm.  A further limitation 
was that when placed near the edge of a 24×30cm breast support platform, the 
distance from the point directly below the x-ray source increased, causing the x-rays 
pass through the step-wedge at a more oblique angle and reducing the usable width.  
The width of the 35mm step-wedge was therefore increased to 15mm, giving a usable 
width of 4mm at height 35mm. 

Despite fulfilling the theoretical requirements to enable calibration, in practice the 
35mm step-wedge was sometimes too big to fit alongside larger breasts and the lead 
lining made it a relatively heavy, unwieldy device that could not easily be attached to 
the bucky [14].  A further limitation of the PTFE wedge was that analysis required 
accurate identification of step positions in the digital image. Typically, one end of the 
wedge was overexposed and the other underexposed, so finding the ends accurately 
was non-trivial. 

2   Method 

In order to optimize the specification for a new step-wedge that will overcome the 
limitations shown by the PTFE wedge, a prototype wedge made of aluminium has 
been constructed and evaluated. 

2.1   Step-Wedge Material  

PTFE was used previously because it has a similar mass attenuation coefficient to 
breast tissue, but a higher density than most plastics, allowing a larger range of 
attenuation to be achieved without requiring too great a thickness.  PTFE would also 
minimise beam hardening effects, which could have been significant in the original 
analysis method. However, the calibration method is now much less sensitive to these 
effects and enables higher atomic number materials to be considered. 
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Aluminium was initially proposed as an alternative material, despite concerns that 
the increment in step height required would be too small to be machined with any 
degree of accuracy. However, it is possible to machine a step-wedge from a single 
block of aluminium using 0.2mm increments in step height.  Compounds were 
rejected to avoid problems with inhomogeneity.  Magnesium was also considered as it 
has a slightly lower density and mass attenuation coefficient than aluminium.  
However, magnesium was discounted for safety reasons as it is classed as a severe 
irritant and is also highly flammable. 

2.2   Step-Wedge Dimensions 

A 28kV molybdenum spectrum with 0.03mm molybdenum filtration was generated 
using specialist software [15].  Although the mean photon energy of the spectrum was 
16.3keV, photon attenuation by a number of materials was considered at 20keV.  The 
corresponding thickness of aluminium required to give the same photon attenuation as 
a range of thicknesses of adipose tissue, fibroglandular tissue and PTFE was 
calculated.  Equations were solved using the density and mass attenuation coefficient 
[16] of each material, with the only unknown in the equation being the thickness of 
aluminium. This yielded results of 1mm and 8mm for minimum and maximum step 
height respectively, with step increments of 0.2mm. 

2.3   Construction of a Prototype Aluminium Wedge 

For evaluation purposes a prototype aluminium step-wedge was constructed, in which 
the step length was varied to enable investigation of the optimum length.  Ideally the 
step-wedge should be as compact as possible, but each step must allow the sampling 
region to be large enough to ensure that any variations due to inhomogeneity in the 
material are averaged out, giving an accurate greyscale value.   

Lead lining is not necessary as the smaller dimensions of the wedge have reduced 
the problem of shadowing.  The usable width of each step is greater for the same 
reason.  Notches were introduced every third step on the prototype step-wedge to aid 
with step identification on the digitized x-ray image.  A comparison of the aluminium 
prototype and the PTFE step-wedge is shown in Figure 1. 

2.4   Evaluation of Step-Wedge 

Evaluation of the prototype step-wedge has been carried out in order to determine if 
the dimensions are adequate. In the initial experiments, the prototype aluminium step-
wedge was imaged alongside 2, 4, 6 and 7cm of Perspex on a Lorad M-IV 
mammography unit.  The Autofilter mode which is used in clinical practice was used 
in this study, so that a wide range of exposure factors was covered.  Measurements 
were made using the 18×24 and 24×30cm buckies.  The same exposures were 
repeated using the 35mm PTFE step-wedge placed in the same location on the bucky.  
The optical density of each step on the aluminium and PTFE step-wedge images was 
measured using a Parry Transmission Densitometer DT1105 with a 1.0mm aperture.   
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Fig. 1. Comparison of PTFE step-wedge (rear) with prototype aluminium step-wedge (front) 

The films were digitized using a Kodak LS85 digitizer at a pixel size of 50 μm and a 
pixel depth of 12 bits (4096 grey levels). The grey level is linearly related to optical 
density (OD) in the range 0.03-4.1 OD [17]. This particular digitizer produces images with 
grey level 0 (corresponding to an OD of zero) displayed as white and grey level 4096 
(corresponding to the maximum OD value) displayed as black. The pixel depth was 
reduced to 8 bits (256 grey levels) after digitizing, using a window based on the maximum 
and minimum OD present in the image.  This was to reduce file sizes of the stored images.  
The images were analysed using ImageJ [18], a Java-based software application. 

3   Results  

Step-height increment was assessed by comparing the PTFE and aluminium step-
wedges imaged alongside 4cm Perspex under identical exposure conditions (25kV, 
molybdenum target and filter, 135mAs). The incremental change in optical density in 
the aluminium step-wedge was equal to or less than that in the PTFE step-wedge, 
suggesting that a step increment of 0.2mm is satisfactory.  Under these conditions, the 
image of the prototype aluminium step-wedge was acceptable (Figure 2) with the 
inclusion of a range of optical densities from 0.25 to 3.70 being covered. 

 

Fig. 2. Aluminium prototype step-wedge imaged alongside 4cm Perspex   
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However, at the higher exposure factors required to expose 6cm Perspex in 
Autofilter mode (29kV, rhodium target, 241mAs), the lowest optical density was 1.0, 
suggesting that the maximum height is insufficient.  Conversely, for the lower 
exposure factors required to expose 2cm Perspex (24kV, molybdenum target, 
32mAs), the highest optical density was 2.1, suggesting that the minimum height is 
too great. Therefore the current height dimensions of the prototype step-wedge are 
likely to be inadequate to sufficiently cover the range of optical densities within a 
breast image over the full range of exposures (Figure 3).   
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Fig. 3. Optical densities on the step-wedge for three films using different thicknesses of 
Perspex 

The unexpected upturn in the curves at the maximum step-wedge thickness of 8 
mm has been observed in previous work [19]. It is thought to be an artifact, attributed 
to the fact that on the image, only a very small area of the last step is visible for which 
the x-rays have passed through the whole step-wedge thickness, with the remainder of 
the step appearing as heavily shadowed.   

Step width was assessed by analyzing line profiles of mean pixel value across the 
width of each step within the step-wedge exposed alongside 4cm Perspex at 25kV, 
135mAs. Although step width was 200 pixels, all profiles covered a distance of 183 
pixels (Figure 4). Step edges were difficult to differentiate from the background and 
care was taken with the positioning of the line profile to avoid the inclusion of 
background pixels. 

Within each step, there is a relatively uniform region where fluctuation in pixel 
value is low. However, it can be seen that there is an “edge effect” which becomes 
more significant as step height increases. Step width is currently 10mm.  Figure 4 
suggests that only the central 5mm (pixel distance 50 – 150) can be used to determine 
the true mean pixel value within the step.    
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Fig. 4. Profiles of pixel value across the width of each step.  The height of each step is given in 
the key. 

Analysis of step length yielded further evidence of the edge effect.  Mean pixel 
value and standard deviation were measured within Regions of Interest (ROIs) of 
varying area and position drawn within a number of steps on the step-wedge imaged 
alongside 4cm Perspex at 25kV, 135mAs. This enabled evaluation of the effect of 
step length and step height on signal and noise. The ROIs are shown in Figure 5. 

ROIs labeled 1 to 5 had an area of 100 pixels squared and were positioned at the 
centre and four corners of each step. The area of ROIs labeled (a) and (b) remained 
constant over all steps but the area of ROI (c) was varied according to step length and 
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Fig. 5. Regions of Interest (ROIs) used to determine the effect of ROI area and position on 
mean pixel value and standard deviation  
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Table 1. The effect of step height and ROI area on mean pixel value and standard deviation 
(s.d). (a) Inner ROI = 800 pixels squared; (b) Middle ROI = 3300 pixels squared; (c) Outer ROI 
= 7500 pixels squared (3mm step length), 11900 pixels squared (4mm step length), 15300 
pixels squared (5mm step length). 

 (a) Inner ROI (b) Middle ROI (c) Outer ROI 
Step 

height 
(mm) 

Step 
length 
(mm) 

Mean 
Pixel 
Value 

s.d 
Mean 
Pixel 
Value 

s.d 
Mean 
Pixel 
Value 

s.d 

1.0 3 227.4 2.08 227.5 2.20 227.6 2.29 
1.2 4 223.9 2.18 224.0 2.15 224.1 2.38 
1.4 5 217.1 2.53 217.2 2.43 217.9 2.66 
1.6 3 208.7 1.96 208.8 2.03 209.3 2.33 
1.8 4 196.4 1.79 196.7 1.94 198.1 3.05 
2.0 5 181.5 1.52 182.0 1.85 184.0 3.65 
2.2 3 159.9 2.33 161.0 2.82 163.5 5.02 
2.4 4 137.8 2.14 138.8 2.94 143.4 8.17 
2.6 5 109.1 2.64 110.9 3.82 118.1 11.38 
2.8 3 82.9 2.69 84.8 4.49 90.0 10.12 
3.0 4 63.2 2.35 64.9 3.81 73.2 13.71 
4.0 5 24.3 0.83 25.2 1.72 30.3 8.66 
5.0 3 20.0 0.39 20.3 0.70 21.6 2.62 
5.2 4 19.5 0.50 19.8 0.72 22.3 4.77 

 
was chosen to cover as much of the step as possible without including background 
pixels or overlapping another step. 

The results for mean pixel value within ROI 1 (Figure 5) were very similar to those 
quoted in Table 1 with standard deviation being comparable to or lower than the 
values for the inner ROI (a).  The standard deviation for the corner ROIs 2 – 5 was 
significantly greater, particularly as step height increased, thus providing further 
evidence of the edge effect. As a result, the mean pixel values differed considerably 
from those at the centre.   

4   Discussion 

Results show that mean pixel value remains almost constant regardless of the area of 
the region of interest (ROI), provided that the region does not include pixels close to 
the edge of the step.   In addition, the standard deviation decreases with decreasing 
area suggesting that quantum noise and impurities within the image are not limiting 
factors and there is no need for a large ROI to ‘average out’ these effects.  The step 
lengths within the prototype are 3, 4 and 5mm.  Given that the step-wedge should be 
as compact as possible, a step length of 3mm is therefore considered to be the 
optimum.   

Although shadowing of the edge pixels is not apparent on visual inspection, it is 
demonstrated by the line profiles across the width of each step.  Further evidence is 
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given by the fact that the small ROIs (100 pixels squared) positioned at the corners of 
each step exhibit a much greater standard deviation than a ROI positioned at the 
centre.  Similarly, the standard deviation within the outer ROIs was greater than that 
within the inner and middle ROIs, particularly at the larger step heights.  The “edge 
effect” becomes increasingly significant as step height increases, to the extent that the 
usable step width is reduced to approximately 5mm. 

The major drawback with using a PTFE step-wedge was that in order to encompass 
the range of densities encountered in clinical practice, all three dimensions were too 
great.  In addition, the radiographers found the lead lining made the step-wedge heavy 
and difficult to attach to the bucky. Our initial results using aluminium indicate that 
this should prove to be more acceptable.  

Because aluminium has a higher effective atomic number than breast tissue (Z=13 
compared with Zeff~7), beam hardening effects imply that equal pixel values under the 
step wedge and breast will not represent equal photon or energy fluences. However, in 
the calibration method used such effects should not be significant. Essentially, the 
breast tissue transmission is calibrated against a phantom consisting of various 
thicknesses of epoxy resin based tissue substitutes AP6 and WT1 to simulate fat and 
dense tissue respectively [20]. The step wedge merely provides a practical 
intermediate step, since the tissue equivalent phantoms would be too large to include 
alongside the breast. In other words, it is not essential for the step wedge to provide 
the same absolute transmission as the breast or phantom, as long as the relative values 
are the same. However, this will only hold true as long as the calibration x-ray 
spectrum and clinical x-ray spectrum are the same. It may therefore be necessary to 
generate separate calibration curves for different spectra, although previous work with 
a PTFE step wedge (Zeff=8.5) showed no measurable difference between a wide range 
of x-ray beam qualities [19]. 

In principle, the method described can be used for quantifying dense breast tissue 
from digitally acquired mammograms. However, it may be possible to simplify the 
procedure. By analysing the raw pixel values one can take advantage of the known 
wide dynamic range and linearity of digital detectors, thereby avoiding the complex 
non-linear, film processing dependent relation between film density and exposure. A 
much simpler step-wedge consisting of only a very few steps may suffice. In fact, 
Kaufhold et al [21] have shown that it may be possible to eliminate the need for a 
step-wedge entirely by normalising the mammograms and calibration data to a fixed 
mAs.  
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Abstract. In medical image analysis a ground truth to compare results
against is of vital importance. This ground truth is often obtained from
human experts. The aim of this paper is to discuss the problem related
to the use of markings made by an expert panel. As a partial solution, we
propose a method to relate markings to each other in order to establish
levels of agreement. By using this method we can assess the performance
of, for instance, segmentation algorithms.

1 Background

Performance evaluation is essential for providing a scientific basis for image anal-
ysis in general and for medical image analysis in particular. In order to evaluate
the performance of an image analysis system the output of the system has to be
correlated to a true value. This true value is often referred to as ground truth,
golden truth, golden standard, etc. In some cases it can be difficult and highly
controversial for a layman to assess the true value that the image analysis system
is supposed to achieve. In these cases the solution often involve human domain
experts who define the true value.

Several researchers in image analysis have studied the evaluation of segmenta-
tion algorithms based on ground truth obtained from a group of experts. Many
of them emphasize the importance of an objective ground truth. Zou et al. [13]
presented systematic approaches to validate the accuracy of automated image
segmentation. Based on the Expectation-Maximization algorithm for computing
a probability estimate of the ground truth segmentation from a group of expert
segmentations presented in [12], the authors modeled the probabilistic segmen-
tation results using a mixture of two beta distributions with different shape
parameters for the interpretation of the tumor class. Furthermore, Warfield et
al. [12] present a simultaneous measure of the quality of each expert, which en-
ables the assessment of an automated image segmentation algorithm, and direct
comparison of expert and algorithm performance. Smyth [11] and Bromiley et
al. [3] have also addressed the problems related to algorithm evaluation based on
uncertain ground truth. Olsén and Georgssson [9] and Olsén [8] addressed these
problems in relation to segmentation methods concerning mammography.

The aim of this paper is to discuss the problem of assessing ground truth
and to provide a novel method of estimating ground truth in the case of binary
markings in Z

n.
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c© Springer-Verlag Berlin Heidelberg 2006
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2 Theoretical Background

We assume that we have K different domain experts who all marked some prop-
erties p regarding anatomical landmarks depicted in L images. A measure of
agreement can be defined as

Λp
i =

μ(Ap
1 ∩ Ap

2 ∩ . . . ∩ Ap
K)

μ(Ap
1 ∪ Ap

2 ∪ . . . ∪ Ap
K)

. (1)

where i = 1, 2, . . . , L and μ(·) is a measure of the set (i.e. the numbers of points
if A is discrete).

In the general case, a ground truth can be any subset Ai ⊂ Z
n, where n is the

spatial dimensionality of the media, i.e. n = 1 for a signal, n = 2 for an image,
n = 3 for a volume etc. In passing, it is noted that the dimensionality of the set
Ai may be lower than n. Examples of this are; marking a line in an image, a
point in a volume etc.

We define the distance from a point p to a set S ⊂ Z
n to be D(p, S) =

inf{d(p,q) | q ∈ S}, where d(·, ·) is some metric defined on Z
n. We note that

D(p, S) = 0 if p ∈ S. The distance can be estimated efficiently by using a
distance transformation [1].

A distance between two discrete sets S and U can then be defined as

D(S, U) =
∑
p∈S

D(p, U) +
∑
q∈U

D(q, S). (2)

The distance between a set S and an ensemble of sets A = {A1, . . . , AK} is
given by

DA(S) =
∑

Ai∈A

D(S, Ai). (3)

It is easily seen that if we have different overlapping sets Si, then the set
with the smallest measure contained in the intersection of the sets (i.e. the set
marking the smallest area if the underlying dimensionality of Si is 2) is likely
to minimize DA(Si). This property makes a distance measure such as the one
defined in Eq. 3 unsuitable for comparing a marking to that of a set of experts.
It can be said that the distance defined in Eq. 3 penalizes sets that fill the plane
and thus we need to add a measure of how well a set S ”fills” the ensemble A.
In order to construct such a measure we define an occurrence operator

φS(p) =
{

1 if p ∈ S
0 otherwise

for every set S of points. By using φ(·) the ensemble A now gives rise to a
measure of the subsets S of Z

n, which is defined by

MA(S) =
∑

Ai∈A

∑
p∈S

φAi(p). (4)

Given an ensemble of ground truths A, any set S that maximizes MA(S)
whilst simultaneously minimizing DA(S) is said to be in good agreement with
the ensemble.
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For a set S and the ensemble A shown in Figure 1(a), r = MA(S) and s =
DA(S) are calculated using Eq. 3 and 4, see Figure 1(b)-1(g) and Figure 1(h). By
projecting the vector (r, s)T onto a base vector (a, b)T an estimate of the agree-
ment between the set S and the ensemble A is obtained (Figure 1(i)). The values of
the components of the base vector (a, b)T are obtained as follows. For a, a positive
value is chosen because a a corresponds to r, which is to be maximized. Similarly,
a negative value is chosen for b as s is to be minimized. The relative size of |a| and
|b| determines the weight we put on the measures. Typically they get the same
weight, and thus the two elements of the vector should be the same value but of
opposite sign. The actual numerical value chosen, only scales the subspace and is
not important as long as it is positive. We used a = 1 and b = −1.

The agreement of a set S with an ensemble A can thus be expressed as

α(S,A) = (r, s)(1,−1)T = MA(S) − DA(S). (5)

The scaling of the function α is rather arbitrary and depends on the measures of
the involved sets etc. Thus it only makes sense to compare different sets Si with an
ensemble A and to say that the Si that maximizes α(Si,A) is most in agreement
with the ensemble A. Furthermore, it is possible to use α in the following way.
Suppose we have a set S (for example a proposed segmentation of the glandular
tissue) and an ensemble A (expert markings of the glandular tissue). First we let
AK+1 = S and define A′ = {A1, . . . , AK , AK+1}. Then we calculate

αk = α(Ak,B) (6)

where B is A′ minus Ak and k ∈ {1, . . . , K + 1}. The value αk describes how
member k of the ensemble A′ fit in with the rest of the members. Let kmin be
the k that minimizes αk. If kmin �= K + 1 then we can say that the proposed set
S mixes in with the ensemble. When using ensembles, the values ri and si are
normalised to zero mean and unit variance prior to projection. The is done to
ensure that we have a proper scaling of the values.

3 Results

3.1 Data Set

In order to gather data about the way in which human experts assess the ground
truth in mammograms, we developed a questionnaire1. It forms the basis for a
study in which we asked three radiologists and two groups of several radiographs
to evaluate 200 randomly selected mammograms (cases) from two different stan-
dard databases, i.e. the Digital Database for Screening Mammography (DDSM)
and Mammographic Image Analysis Society Database (MIAS). The experts were
asked to mark/outline anatomical features as well as answer questions concern-
ing their decision making. The utility of gathering the markings of anatomical
landmarks is to determine diagnostic quality of mammograms, see Olsén [10].
1 http://www.cs.umu.se/̃ colsen/study.html
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Fig. 3. The ensemble A′ with respect to αk in increasing order. Above each member of
the ensemble is the reference to the human expert (A1 − A5) or the computer method
(A6). Below each member the corresponding value αk is given.

Even though the general method described above is in no way restricted to the
case of mammograms, the study provides material for illustrating and evaluating
this method.

3.2 Estimating Ground Truth

We have compiled all of the 200 cases of mammograms assessed by each of the
five experts. This gives us 1000 markings for the anatomical landmark, namely
glandular tissue. Based on the outlines of the glandular tissue on the question-
naire we have estimated the agreement among them based on Eq. 1 where K = 5
and L = 200. In Fig. 2(a) it is seen that amongst the 200 cases the agreement
as calculated by Eq. 1 is in the range 0.05− 0.85. In fact, the values are linearly
spaced between these extremes and thus we can safely say that Eq. 1 is of little
use to us. This indicates that it would be meaningful to work on an objective
ground truth. However, since we do not know the ground truth of the marking
of the glandular tissue we still need to base the estimated ground truth on the
expert answers from the data collected.

In Mukhdoomi [7], a segmentation algorithm for extracting the glandular tissue
in mammograms was proposed. (Although the algorithm itself is of no importance
here, let us mention that it is divided into two main phases. In the first phase,



Assessing Ground Truth of Glandular Tissue 15

an optimal threshold value is calculated that gives a preliminary glandular tissue
segmentation. Such an optimal threshold is found through the LLBP approach de-
scribed in [2, 5, 6], that is based on the principle of minimizing cross-entropyvalues
between an image and its thresholded version over a certain range of threshold val-
ues.) We have evaluated the algorithm using our method. The marking resulting
from that algorithm is here denoted A6. Let us consider the markings produced
by the five experts in a typical case (A1 − A5). Following the method proposed
in Section 2, the value αk was calculated for each marking of the ensemble using
Eq. 6. As can be seen in Fig. 3 human expert A1 is the one that is in least agree-
ment with the rest of the experts, whilst expert A2 is in best agreement with the
ensemble in this particular case. In this case, the segmentation done by the pro-
posed automatic segmentation algorithm A6 mixes in with the human experts.

Table 1. The rank sum given by Eq. 7. Rank 1 corresponds to the best agreement and
rank 6 to the least agreement.

(a) Rank sum, were
A6 is a marking from
the system.

Rank sum Expert
1 359 A4

2 365 A2

3 434 A5

4 436 A3

5 480 A6

6 488 A1

(b) Rank sum, were
A′

6 is a marking from
a random case.

Rank sum Expert
1 330 A5

2 354 A4

3 356 A2

4 428 A3

5 481 A1

6 634 A′
6

Table 2. Histogram over the rank values. Rank 1 corresponds to the best agreement
and rank 6 to the least agreement.

(a) Histogram over the
rank values, were A6 is a
marking from the system.

Rank
Expert 1 2 3 4 5 6

A1 5 21 21 22 28 25
A2 31 25 19 20 15 12
A3 12 16 35 26 15 18
A4 29 29 20 20 12 12
A5 22 18 15 21 29 17
A6 23 13 12 13 23 38

(b) Histogram over the
rank values. A′

6 is a mark-
ings from a random case.

Rank
Expert 1 2 3 4 5 6

A1 8 14 25 28 30 18
A2 20 37 30 15 14 7
A3 7 30 28 27 17 14
A4 26 31 26 19 14 7
A5 57 9 12 18 15 12
A′

6 5 2 2 16 33 65

If we run the test on all expert cases, case A6 still mixes in with the human
experts (A6 in Table 1(a)) and if we had to choose one expert to represent the
ensemble it would be A4. If we instead randomly pick a marking from any other
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different case from the database (A′
6 in Table 1(b)) it is, as expected, on average

the one that is considerably in least agreement with the rest of the experts.
The rank sum for i is:

RankSumi =
∑

j

Eij · j, (7)

where i = 1, . . . , 6, j = 1, . . . , 6 and Eij is a histogram over the rank values for
each of the markings. An example of a histogram is given in Table 2.

4 Discussion

As mentioned earlier, several researchers in image analysis have studied the
evaluation of segmentation algorithms based on using a group of experts as
ground truth. This experience made many of them emphasize the importance of
an objective ground truth. The reason for the importance of an objective ground
truth is due to the large variation among the markings done by the group of
experts. For example, a large variation among human experts in radiology is
very common, see e.g. Gual-Arnau et al. [4]. During discussions several experts
have communicated that this is actually the case in practice as well. They also
realize the problems this involve, especially while developing objective computer
aided tools. Therefore, the aim of this paper has been to discuss the problem of
assessing ground truth with large inter-variation and to propose a novel method
of estimating ground truth in the case of binary markings in Z

n.
Even though the proposed method for estimating ground truth still needs to

be evaluated further, it can be used for assess the agreement amongst domain
experts. The fact that a random segmentation “stands out” from the rest of the
markings in the sense that it is given the lowest value αk (on average) indicates
a minimum level of soundness of the proposed method. It is, however, hard
to assess the performance of the method. One way would be to study how an
initially agreeable marking becomes less agreeable if it is transformed in different
ways. This is subject to future work.

5 Conclusions

We have shown that the classical measure of agreement (Eq. 1) is of no use if the
variance amongst the domain expert is high. We have also proposed a method
for assessing agreements amongst domain experts and show how this method
can be used to assess the performance of segmentation methods.
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Abstract. Methods for improving the accuracy of a technique for estimating 
volumetric breast density are described. A breast tissue-equivalent phantom 
encompassing a range of thicknesses and compositions of tissue is used to 
evaluate the sources of error in the technique. The image acquisition parameters 
that can affect the accuracy of calibration are considered, and sensitivity to 
these factors is evaluated. The robustness of the technique was tested by 
obtaining calibration images on 24 mammography machines, at 18 different 
sites, over a period of 3 years. The ability to use a single calibration on all 
machines of a given model type was assessed by comparing effective linear 
attenuation coefficients of fat and fibroglandular tissues, derived from the 
calibration phantom images obtained from various machines.   

1   Introduction 

Mammographic density has been proven to be strongly associated with breast cancer 
risk. Various quantitative methods for measuring breast density have been developed, 
based on the assessment of the fractional area of the breast occupied by fibroglandular 
tissue [1], [2]. These methods are subjective and results may vary, depending on the 
imaging conditions (tube potential, tube current and anode/filter materials) as well as 
the type film used. Furthermore, the effect of breast thickness may confound the 
determination of tissue composition. A more accurate and relevant measure of the 
amount of dense breast tissue is likely to be achieved using volumetric quantification 
of breast density. Highnam and Brady [3] approached this problem by estimating the 
primary energy at the receptor by mathematically removing the scattered radiation 
and glare. Their method is limited by the accuracy of the reported attenuation 
coefficients from the literature, variability of the film response to exposure and the 
uncertainty in breast thickness estimation [4]. 

Our volumetric technique involves the direct calibration of mammography units 
using a plastic step phantom composed of breast tissue equivalent materials [5].  
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2   Method 

Calibration was accomplished by imaging a plastic phantom composed of steps 
providing 8 different thickness and 5 different breast tissue-equivalent compositions 
ranging from 100% fat to 100% fibroglandular tissue. Calibration images were 
obtained for all possible kV and anode-filter combinations that are used clinically. An 
aluminum step wedge, placed at the distal corner of the image receptor was imaged at 
the same time as the calibration phantom, and also as part of every clinical 
mammogram. 

The aluminum step wedge was placed to track any subsequent variations in optical 
density that might be caused by variations in the mAs, film-processing, film-
emulsion, as well as by scattering, beam hardening and reciprocity law failure of the 
film-screen systems. X-ray field non-uniformities were corrected by obtaining images 
of a plastic annular spherical phantom. Optical sensitometry data were used to convert 
the image pixel intensities to log relative exposure (LRE) values, which is a 
representation of the transmitted x-ray intensity plus contributions from scatter and 
glare. A surface relating the percent density, total thickness, and LRE was then 
constructed from the plastic step phantom for each kV and anode-filter combination 
and each image receptor size of the mammography unit used clinically. A ‘useful 
thickness range’ was selected for each tissue type calibration curve taken from the 
step phantom. This is where the signal values fall on the ‘straight line’ part of the 
sensitometric curve. The very short dynamic range of the film-screen systems made 
the polyenergetic approximation of the calibration surface almost impossible and, 
therefore, a monoenergetic approximation was made in the useful thickness range for 
each exposure technique. A ‘linearised’ three-dimensional surface relating the log 
relative exposure, breast composition and thickness was then generated. 

From the exposure parameters for the mammogram, the compressed breast 
thickness and the image signal value at each pixel location, the fraction of the path 
through the breast that is composed of fibroglandular tissue can be extrapolated from 
the calibration surface, obtained for the same kV and anode-filter combination on the 
same machine and image receptor size. The total breast volume and the volume of 
fibroglandular tissue in the entire breast can also be calculated to yield the volumetric 
breast density (VBD). 

The robustness of the VBD technique was tested by obtaining calibration images at 
six-month intervals from 24 mammography machines at 18 different sites over a 
period of 3 years. Calibration images included a set of slab phantoms made of breast 
tissue equivalent material on which the VBD measurements were calculated. The 
processed films were digitized using a Lumisys 85 digital laser film scanner, at 12 bits 
and a pixel size of 260 μm. Optical sensitometry was performed using the same 
mammographic film and processing employed for clinical use from each site on the 
same day as calibration images were obtained. The resulting calibration curves were 
then compared to test the ability of the aluminum step wedge to capture all of the 
inherent variations. The various parameters that could affect the accuracy of VBD 
values were studied during this period of time, including a) design of the aluminum 
stepwedge, b) variations in exposure, c) variations in film processing and film-screen 
combinations, d) shift in the kVp and tube replacement, and e) beam hardening and 
scatter. 
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2.1   Design of a New Aluminum Step Wedge 

The aluminum wedge described in our previous paper [5] consisted of 7 steps, each of 
dimension 6 x 13 mm x 1.5 mm thick. With this step wedge, occasionally no step 
provided a measurement lying in the straight-line portion of the sensitometric curve. 
Therefore, a new aluminum wedge with 8 steps, increasing from 1.5mm (~3 HVL) in 
0.5 mm increments to a maximum of 5 mm to cover a broader range of transmission 
was designed. One important goal for designing this thinner stepwedge was to ensure 
that at least two steps provided optical densities within the “straight-line” portion of 
the film characteristic curve.  

2.2   Variations in Exposure 

The exposure (mAs and kVp) used for initial imaging of the calibration phantom is 
based on the factors that would be used by the automatic exposure control (AEC) for 
imaging a breast of a particular thickness and composition. For individual clinical 
images, where the mAs may differ, the calibration surface (for the appropriate kV and 
target/filter) is then shifted to match the actual mAs, using the image of the Al step 
wedge as a reference.  Because the AEC selects the exposure values based on the 
compressed breast thickness and composition, a lower mAs value will be used to 
image the thinner steps of the plastic step phantom and a higher mAs will be used for 
properly exposing the thicker regions at a given kVp. To test whether a calibration 
image acquired at a given kVp and single mAs value is sufficient to correct for 
exposure variations, three calibration images with different mAs values for a given 
kVp were obtained. A shift in the transmitted energies from the medium exposure to 
the lower and higher exposure values was then calculated from a step of the 
aluminum wedge which gave LRE values in the “straight-line” portion of the 
sensitometric curve (Al_shift). 

By doing a logarithmic subtraction of the transmitted energies, the shift required to 
correct for the exposure can be estimated by taking the logarithm of the ratio of mAs 
values used (Fig. 1). 

      
(a)                                                             (b) 

Fig. 1. (a) Calibration curve (Fibroglandular) obtained at 100 mAs is linearly shifted up or 
down to correct for exposure differences (20 mAs and 450 mAs) using Al_shift. b) Shift using 
the log of mAs ratio does not make calibration lines match. 
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For a simple change of exposure, with no change in kVp, the Scatter to Primary 
ratio is constant for the same thickness. When the thickness of the object is changed at 
the same time as the exposure is changed, beam hardening and scatter to Primary ratio 
will affect the simple exposure correction, since the x-ray beam is polyenergetic.  

According to the reciprocity law, the response of the film to radiation exposure of a 
given spectral quality will remain unchanged if technique factors (mA, time, distance, 
grid) are adjusted so that mAs remains constant. Failure of this law was verified by 
taking three images of an aluminum stepwedge at 40 kVp, keeping mAs constant and 
varying the mA and time (Figure 2). The reciprocity law failure will result in a loss of 
optical density on the film for long exposure times and therefore a simple exposure 
correction will not be sufficient. 
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Fig. 2. The response of the film to exposure changes when mAs is kept constant, changing the 
mA and time (Reciprocity law failure) 

2.3   Variations in Film Processing 

Film sensitometry can vary on a day-to-day basis due to changes in emulsion, changes 
in the processing chemistry or replenishment, or changes in the developer temperature 
and time. By monitoring the daily sensitometric variations over a three-year time 
period, it was found that the film speed and contrast values could vary by more than 
±0.15 OD units from the values obtained on the calibration day. We have developed a 
model to simulate the daily sensitometry curve from three parameters: Dmax (the 
maximum signal value on the film), contrast (the density difference on the straight 
line portion of the sensitometric curve), and speed (OD at the mid-point of the 
sensitometric curve), that are all measured in the daily QC program at each clinical 
site. Using these parameters, the sensitometric curve on the day on which any 
mammogram is taken can be reproduced.  

If there is a major variation in the speed or contrast due to the changes in the film 
screen system, or due to other processor related problems, the sensitometric curve for 
that specific day can be produced using Eqn 1, 
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where D is the predicted optical density, α is related to the contrast, β is the LRE 
corresponding to the speed point. 

2.4   kV Shift and Tube Replacement 

For some mammography units, a slight shift in kV was noted after the acquisition of 
the initial set of calibration images. At two other sites, x-ray tube replacements took 
place after the acquisition of the initial set of calibration images. The calibration 
images obtained before and after the kVp shift and tube replacement were then 
compared to monitor changes in the calibration.  

2.5   Beam Hardening and Scatter 

We assume that in the “useful thickness range” of the calibration phantom image, an 
approximation of monoenergetic transmission may be used due to the limited 
dynamic range film-screen images, and that differences in beam hardening and scatter 
become noticeable only over a wider range of thickness. To verify this assumption, 
the logarithmic transmission of x-ray intensity through the fibroglandular and fat steps 
of the calibration phantom at a number of kVps were calculated using poly-energetic 
Molybdenum spectra. Fig. 3 shows a comparison of the theoretically obtained x-ray 
intensity values (logarithmic) for fibroglandular steps with the experimentally 
measured log relative exposure values (screen light intensity) for the same steps at 
25kVp. We notice from the theoretically-obtained surface that the effect due to beam 
hardening is small and the transmitted intensity is almost “monoenergetic”. This is 
because the absorber itself acts as a filter and absorbs most of the low energy photons 
from the already filtered incoming spectra. To further study the robustness of our 
volumetric technique, effective “attenuation” coefficients calculated from the slope 
values (at the “useful thickness range”) of the experimentally measured fat and 
fibroglandular calibration curves were compared on several mammography units.  

 
Measured LRE = -0.3762x + 3.0919

Theoretical LRE = -0.3702x + 4.2837
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Fig. 3. A comparison of the theoretical and experimental log relative intensity values for 
fibroglandular tissue. Note that the slopes on both curves match for the “useful thickness range”. 
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3   Results and Discussions 

Calibration images acquired for 3 different exposure values (low, medium and high) 
for each kVp verified that mAs variations can be properly corrected with the 
aluminum stepwedge, provided that a step yielding an optical density in the linear 
region of the characteristic curve was used to shift the calibration surface. The 
calibration images taken at different times over a three-year period were tested against 
a set of ‘baseline’ calibration images to verify that the aluminum stepwedge data 
adequately corrects for the combined variations in optical density caused by exposure 
differences, film processing, film emulsion, changes in the film-screen combinations, 
mAs, reciprocity law failure, scatter and glare etc. 

Table 1. Error in VBD estimate when there is a change in the film characteristic curve due to 
variations in the film processing/emulsion or film screen combination. The results also show 
that a simple correction using mAs ratio only is inadequate. 

 
Error in VBD 

Speed+0.1 
Cnt+0.1 

Speed+0.2 
Cnt+0.2 

Speed+0.4 
Cnt+0.4 

Speed+0.6 
Cnt+0.6 

Al_shift <3% <3% ~4% ~5% 

mAs ratio 5% 9% 20% 30% 

 
The Aluminum shift method is found to correct for the widest expected variations 

in film processing (±0.2 OD). Our experimental results indicate that if there is a larger 
change in the film characteristic curve, e.g. due to a change in the film processing or 
film-screen combination, a new film response curve should be modelled using Eqn. 1.  

The calibration images obtained before and after a shift in kV and a tube 
replacement were tested and only very slight variations in the calibration surface were 
observed due to these changes. The results are summarized in Table 2. 

Table 2. Accuracy of VBD calculations made on the breast tissue equivalent phantoms before 
and after the replacement of an x-ray tube and kV shift (~0.5 kV) is shown. The tube 
replacement did not cause any change in the x-ray spectra. 

Error in VBD 30 % tissue 50% tissue 70% tissue 
Before the kV shift and Tube replacement <2% <2% <2% 
After the Tube replacement <2% <2% <2% 
After the kV shift <3% <3% <3% 

 
A monoenergetic approximation is found to be appropriate for the limited dynamic 

range of an individual film-screen image. The slope of the each calibration surface 
obtained for different target/filter/kV combinations is analogous to a measurement of 
the effective linear attenuation coefficients of the breast tissues. These were compared 
for the values obtained from machines of a common model type and also to the 
theoretically obtained attenuation coefficients using the polyenergetic Mo spectra at a 
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given kVp. They were found to match closely. The results are summarized in Table 3. 
A good match was also found between the calculated attenuation coefficients of fat 
and fibroglandular tissues and reported values in the literature measured at the K-edge 
energy of molybdenum [6]. 

Table 3. μ values calculated using the calibration data from 3 types of machines at various 
sites. The measured μ values closely match values calculated from the theoretical model.    

  100% Fibroglandular 100% Fatty 

Machine Units Mean(μ) Stdev Mean(μ) Stdev 
Lorad MIV 7 0.88 0.03 0.58 0.03 

GE 800T 4 0.86 0.03 0.56 0.02 

Siemens 4 0.87 0.01 0.58 0.01 

Theoretical  0.87  0.56  

4   Conclusions 

We have studied the dependence of volumetric breast density measurements made 
from digitized mammograms on various parameters including exposure, film 
processing, changes in the film-screen combinations, tube replacements and kVp 
shifts. Methods for improving the accuracy of the technique were discussed.  We 
found that exposure variations and other system changes can be tracked by measuring 
a step on the image of the Al wedge which falls in the straight-line portion of the 
sensitometric curve. The wedge was also found to be very useful in successfully 
capturing film reciprocity law failure. The effective linear attenuation coefficients 
derived from the calibration phantom and the theoretical measurements matched very 
well on a number of units suggesting that a single calibration per machine may be 
sufficient in future. 

To further improve the accuracy of the technique, attempts to remove the effects of 
scatter and glare will be made by comparing the experimentally-obtained and 
theoretically-modelled log intensity values from the calibration phantom.  In addition, 
reciprocity law failure will be characterized more thoroughly.  

References 

1. Wolfe, J.N.: Risk for Breast Cancer Development Determined by Mammographic 
Parenchymal Pattern. Cancer. Vol. 37 (1976) 2486-2492 

2. Boyd, N.F., Byng, J.W., Yaffe, M.J.: Quantitative Classification of Mammographic 
Densities and Breast Cancer Risk: Results From the Canadian National Breast Screening 
Study. Journal of the National Cancer Institute. Vol. 87 (1995) 670-675  

3. Highnam, R., Brady, M., Shepstone, B.: A Representation for Mammographic Image 
Processing. Medical Image Analysis. Vol. 1 (1996) 1-18  

4. Blot, L. Zwiggelaar, R.: A volumetric approach to glandularity estimation in mammography: 
a feasibility study. Physics in Medicine and Biology. Vol. 50 (2005) 695-708  



 Volumetric Breast Density Estimation on Mammograms 25 

 

5. Pawluczyk, O., Augustine, B.J., Yaffe, M.J., Mawdsley G.E.: A volumetric method for 
estimation of breast density on digitized screen-film mammograms. Medical Physics. Vol. 
30 (2003) 352-364  

6. Johns, P.C., Yaffe, M.J.: X-ray Characterisation of normal and neoplastic breast tissues. 
Physics in Medicine and Biology. Vol. 32 (1987) 675-695  



Susan M. Astley  et al. (Eds.): IWDM 2006, LNCS 4046, pp. 26 – 33, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Alternative Approach to Measuring Volumetric 
Mammographic Breast Density 

Christopher Tromans and Michael Brady 

Wolfson Medical Vision Laboratory,  Department of Engineering Science,  
University of Oxford, Parks Road, Oxford, UK, OX1 3PJ 

cet@robots.ox.ac.uk 

Abstract. The effect on the measurement of volumetric breast density of varia-
tions in physical and chemical properties of adipose and fibroglandular tissue 
reported in a number of studies is investigated using the authors’ model of 
mammographic image formation.  This model is developed specifically for the  
measurement of breast density.  The effect of varying stromal composition, a 
popular histopathological explanation of mammographic density, is also dis-
cussed.  Given the uncertainties in tissue attenuation highlighted by this study, 
as well as noise, and acquisition model error, the validity of this measurement is 
discussed, together with alternative measurement scales.   Several issues are 
considered, including the effect of beam quality on normalisation accuracy, and 
the measurement failure which can occur when clinical data falls outside the 
limited range defined by 100% adipose to 100% fibroglandular tissue. 

1   Introduction 

The correlation between radiological features of the breast and the likelihood of the 
breast containing, or subsequently developing, a malignant lesion, is termed breast 
density.  Work in this area was pioneered by Wolfe in 1969 [1] who proposed a four 
category classification for assessing mammographic parenchymal patterns: in particu-
lar this considered the prominence of ductal patterns and the occurrence of connective 
tissue hyperplasia.  Wolfe presented findings showing that each of the four groups, 
from lowest to highest density, had an incidence of developing breast cancer of 0.1, 
0.4, 1.7 and 2.2 [2].  Boyd et al [3] defined a six category classification (SCC) system 
which focuses on mammographic hyperplasia.  Both these measures suffer from 
reader subjectivity, which caused Byng et al [4] to develop a interactive thresholding 
technique to segment, and thereby quantify, mammographic hyperplasia.  Such meas-
ures are termed “area measurements” since they ignore the third dimension, and treat 
the projected image as entirely representative. 

To take account of the three-dimensional breast, “volumetric measurements” of 
breast density have been developed.  Such measures approximate the quantities of fi-
broglandular and adipose tissue present in the cone between a detector pixel, and the 
x-ray focal spot, using the likely x-ray attenuation coefficients of these tissues. 

In 1996 Highnam and Brady proposed [5] the hint representation which measures 
volumetric density.  They developed a model of image formation considering the path 
of x-ray photons from point of emission in the x-ray tube, to absorption at the detector.  
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Several alternative techniques of measurement have been subsequently proposed, for 
example Kaufhold et al [6], which approximates a transfer function describing imaging 
formation gleaned from tissue equivalent phantom images. 

Inspired by Highnam and Brady’s work [7], a second generation of their model has 
been developed [8].  The extra power made available by modern computers has en-
abled the removal of many of their simplifying assumptions.  Features of the en-
hanced model include: a ray tracing architecture, removing the parallel beam ap-
proximation; consideration of self-filtration within the tube target to model spatial 
inhomogenity of the x-ray beam; a theoretical scatter model removing the need for in-
terpolation from empirical data; and an enhanced detector calibration procedure.  Our 
findings are presented here, using our enhanced model, concerning the significant im-
pact on density readings of the likely variation in x-ray attenuation of fibroglandular 
and adipose tissues within the population, and also consider the impact of the various 
sources of error present within the model. 

2   The Histopathology of Mammographic Density 

The most common form of breast cancer is a carcinoma, a tumour arising from epithe-
lial malignancies.  It has therefore been suggested that epithelial hyperplasia results in 
high mammographic density.  In this case, a large number of cells exist, increasing the 
likelihood of mutation, and hence risk.  Several studies however, including that of 
Alowami et al [9], have found no correlation between density of ductal units and areas 
of high mammographic density.  Alowami et al did however report that such areas 
showed significantly higher collagen density and extent of fibrosis within the stroma.  
The stroma is a major tissue fraction, orders of magnitude larger than that of the epi-
thelium, and so its composition is likely to have a discernable effect on the x-ray at-
tenuation of the breast.  The key question concerns the link, should it exist, between 
cancer development and stromal composition. 

3   The Difficulty of Measuring Tissue Composition 

The ratio of fibroglandular to adipose tissue may be approximately measured using a 
model of image formation by varying the tissue ratio in the modelled breast at each 
pixel until such a value is reached that the simulated pixel intensity matches that in 
the acquired image.  Errors in the model, both systematic and random, will inevitably 
result in the incorrect ratio of tissues being calculated.  Consideration in this paper is 
given to two such sources of uncertainty.  The first is that which arises from inconsis-
tencies between the various components of the image formation model, and their 
counterparts in reality.  A certain level of uncertainty is expected due to effects such 
as stochastic noise and engineering tolerances in the manufacture of components.  
Whilst every effort may be made to limit the resulting errors, perfection will never be 
achieved, and a compromise has to be struck at a acceptable level of uncertainty.  In-
accuracies within the model of image formation are dependant on a number of factors, 
such as beam quality; thickness of the item under investigation; exposure time; and 
the portion of the image receptor transfer characteristics in which the image is  
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recorded.  The second source of uncertainty considered is that which arises from er-
rors in the attenuation coefficients of adipose and fibroglandular tissue occurring due 
to natural variation within the population. 

3.1   Errors in the Model of Image Acquisition 

Experimental validation is performed through the comparison of simulated images 
with those acquired using a GE Senographe 2000D in current clinical use. The model 
is configured to match the design of the 2000D, and the x-ray tube and image receptor 
are calibrated to match the specific machine according to the procedure described in 
[8]. Tissue equivalent resins, manufactured by CIRS (which are designed using the 
compositions reported by Hammerstein et al [10]), are used for the phantom material 
in order that the results are as close as possible to those likely in human tissue.  In or-
der that both the attenuation and scattering properties are investigated, a series of im-
ages were acquired employing the beam stop method: a method which provides a 
measure of the primary beam, together with an indirect measurement of scattering 
characteristics.  A series of lead apertures of varying diameters are placed on top of 
the phantom, which itself sits on the breast table. The sides of the phantom are 
shielded using lead to prevent any radiation reaching the image receptor which has 
not passed through the aperture.  The diameter of the aperture governs the volume of 
scattering material contributing to the energy incident upon the small group of detec-
tor pixels at the centre of the aperture shadow. The scattering characteristics of the 
material dictate the magnitude of the energy contributed by each infinitesimally small 
scattering point, and thus measuring the pixel intensities at the centre of the shadow 
provides an indirect measure of the characteristics, together with the attenuation be-
tween the scatter origination point and the image receptor.  The median pixel intensity 
for a circle of pixels covering an area of approximately 1mm is used as the aforemen-
tioned measurement in order to provide a degree of robustness to noise.  The primary 
component is measured through the use of a magnification tower which holds the 
phantom, with the smallest diameter aperture upon it, as close to the tube window as 
possible (around 450mm above the breast table on the 2000D).  The pixel intensity is 
measured in an identical fashion, through averaging across a 1mm diameter circular 
area in the centre of the aperture shadow.  Due to the magnifying effect of the large 
distance between the scatter originator and the image receptor only photons scattered 
over a very limited range of angles will be present, and so the measurement will con-
sist almost solely of the primary component. Table 1 summarises the experimental re-
sults for 60mm adipose and fibroglandular phantoms, exposed at 29kVp, Mo-Mo, 
100mAs. The ‘%Uncertainty’ values are the relative magnitude, expressed as a per-
centage of the energy experimentally measured, of twice the standard deviation of the 
pixel intensities within the 1mm circular area at the centre of the aperture shadow 
(that from which measurements are taken).  The ‘%Error’ is that between the experi-
mental and simulated values.  A graph visualising the simulated and measured values 
for both tissue equivalent phantoms is included as Figure 1. 

Inspection of Figure 1 and Table 1 suggests a good agreement between the simu-
lated and measured imparted energies.  The variation in relative error with aperture 
diameter is approximately constant, and the error is of a similar magnitude to that 
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Table 1. The results of the experimental model validation 

 Primary 2 5 10 15 
%Uncertainty 2.55 2.90 2.71 2.30 2.21 
%Error 12.34 10.99 11.16 11.37 11.63 
 20 25 30 35 40 
%Uncertainty 2.27 2.28 2.69 2.00 2.19 

Adipose 

%Error 12.13 12.09 12.57 12.90 13.42 
 Primary 2 5 10 15 
%Uncertainty 5.41 6.20 4.72 4.65 4.90 
%Error 9.40 9.49 8.68 8.28 7.46 
 20 25 30 35 40 
%Uncertainty 3.66 4.19 4.13 4.13 4.00 

Fibroglandular 

%Error 7.32 7.26 7.24 7.96 8.67 
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Fig. 1. The relationship between aperture diameter and energy imparted to the image receptor 

seen in the primary component alone; which suggests the scatter model is performing 
well. The error in the primary component is likely to be due to errors in the modelled 
attenuation of the incident beam by the phantom, although inaccuracies within the 
calibration of the image receptor transfer characteristics may also contribute. The at-
tenuation characteristics of the phantom materials are dependant on x-ray photon en-
ergy, and although the total energy of the incident beam is calibrated, the energy spec-
trum is calculated by modelling [8].  Error from this source may be quantified through 
the use of normalised attenuation curves.  The primary component of the x-ray beam 
traversing PMMA phantoms varying in thickness between 30mm and 45mm in steps 
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of 5mm were measured and simulated under identical exposure conditions. The at-
tenuation ratio of each thickness relative to the 30mm thickness were calculated, and 
the results are presented in Table 2. 

Table 2. Normalised errors in primary beam attenuation in PMMA exposed at 28kVp, Mo-Mo 

Thickness (mm) Measured Ratio Simulated Ratio %Error 
30 1.0 1.0 0 
35 0.679 0.667 1.27 
40 0.465 0.450 1.58 
45 0.319 0.307 1.19 

The magnitude of the error in energy imparted to the image receptor due to errors 
in attenuation characteristics such as those apparent in Table 2 depends upon the ex-
posure, since they are discrepancies in the proportion of the x-ray photons within the 
incident spectrum that are attenuated. 

3.2   Natural Variation in Tissue Composition  

Natural variation in tissue composition of both categories will inevitably exist within 
the population.  The fibroglandular category is particularly broad, encompassing what 
is effectively “everything other than fat” which includes connectives tissues of all va-
rieties as well as functional glandular components.  The observations of Alowami et 
al [9] as to the “significantly higher collagen density and extent of fibrosis” in breasts 
exhibiting high mammographic density suggests that it is in fact the degree of varia-
tion within this category that is of interest.  A review of the literature reveals various 
physical and chemical compositions for the two tissues, and these are summarised in 
Table 3. 

Table 3. Summary of physical and major elemental composition of breast tissues 

Tissue H C N O Density (g cm-3) 
Adipose (Hammerstein [10]) 11.2 61.9 1.7 25.1 0.93 
Adipose (ICRU 44 [11]) 11.4 59.8 0.7 27.8 0.95 
Adipose (Poletti [12]) 12.4 76.5 0.4 10.7 0.92 
Fibroglandular (Hammerstein [10]) 10.2 18.4 3.2 67.7 1.04 
Fibroglandular (ICRU 44 [11]) 10.6 33.2 3.0 52.7 1.02 
Fibroglandular (Poletti [12]) 9.3 18.4 4.4 67.9 1.04 

Inspection of Table 3 suggests significant variation in the results of the various 
studies. The ICRU44 study takes results from the work of Woodard [13], who noted 
widely varying compositions, for example lipid proportions in adipose tissue varying 
between 61.4% and 87.3%.  The purity of the samples of each type must also be con-
sidered.  Poletti et al [12] pack their samples into a “cylindrical container with 8mm 
diameter”, however adipocytes have a diameter of up to 100μm, and histological sec-
tions can be approximately 5μm in thickness.  Orders of difference in magnitude in 
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sample sizes therefore exist between histological work like that of Alowami et al, and 
physical property measurement. 

To investigate the effect of the variation seen in Table 3,  Table 4 and Figure 2 
show the variation in energy imparted, calculated using the model of image formation 
configured and calibrated to match the GE Senographe 2000D, with tube voltage (and 
hence beam quality) for the varying definitions of tissue composition.  The simulation 
was configured to mimic the experimental technique to measure the primary beam us-
ing a small aperture and magnification tower described previously.  The phantom 
used was a 60mm thickness of homogenous material and the exposure conditions 
were Mo-Mo, 100mAs. 

Table 4. The relative difference in simulated energy imparted for Poletti and ICRU44 tissue 
compositions compared to that of  Hammerstein 

 Poletti ICRU 44 
Tube Voltage (kVp) Adipose Fibroglandular Adipose Fibroglandular 

25 74.62% 12.94% -19.89% 60.00% 
28 68.46% 12.62% -18.85% 55.34% 
32 59.19% 9.94% -16.90% 42.59% 

 
Fig. 2. The effect on primary energy imparted of the varying tissue compositions in table 2 

Inspection of Table 4 and Figure 2 reveals significant differences in the x-ray char-
acteristics of what are various measurements of tissue compositions which are gener-
ally assumed constant in work in breast density. For example, the discrepancy be-
tween Poletti et al’s measurements and those of Hammerstein in both Oxygen (10.7% 
to 25.1%) and Carbon (76.5% to 61.9%) in adipose tissue produces a difference in 
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imparted energy of between 59.2% and 74.6% depending upon beam quality.  Like-
wise, in the fibroglandular case the discrepancy between the ICRU measurements and 
those of Hammerstein in both Oxygen (66.7% to 52.7%) and Carbon (18.4% to 
33.2%) result in a difference in energy imparted of between 60.0% and 42.6%, again 
depending on beam quality. 

4   Discussion 

The results in Figure 1 show a good agreement between the experimental readings as-
certained on the GE Senographe 2000D and the simulated values using the CIRS tis-
sue equivalent phantoms.  Given the results presented here, and further studies not 
presented due to limitations of space [8], an upper bound of 15% may be placed on 
the magnitude of the error within the model.  The error in many cases is likely to be 
smaller than this, depending on a number of factors, such as beam quality; thickness 
of the item under investigation; exposure time; and the portion of the image receptor 
transfer characteristics in which the image is recorded.  Errors in the tube spectrum 
have been found to be significant through comparison of simulated and measured at-
tenuation curves. 

The variations in the elemental compositions and specific gravity found amongst 
the various measurements on breast tissues reported in the literature lead to significant 
variations in x-ray attenuation; as large as 75% in some cases.  A study into the varia-
tion in elemental and physical properties arising from the stromal changes observed 
by Alowami et al, so that an analysis of the effect on x-ray attenuation such as that 
presented here may be carried out, would be very valuable. 

Considerable evidence is presented to the effect that the validity of the widespread 
assumption that the breast consists of two approximately constant tissues in terms of 
x-ray attenuation properties is severely limited.  This presents complications to tech-
niques which attempt to measure “glandularity” of the breast, that is the ratio of  
adipose-to-fibroglandular tissue present.  The variations observed, together with the 
errors in the model of image formation, are likely to result in measurement failures 
where the attenuation of the breast is greater than that of 100% fibroglandular tissue, 
and less than that of 100% adipose tissue.  Of course, where measurements do fall 
within this range their accuracy will be limited.  Complications also arise over the 
significant variation which exists in total attenuation of the varying tissue composi-
tions with incident photon spectrum, since unless the actual attenuation characteristics 
of the breast are known to a reasonable degree of certainty, significant variations in 
the measured composition will be seen with beam quality.  

A further question that arises, given Alowami et al’s [9] observations, is whether 
the ratio of adipose-to-fibroglandular tissue is the quantity of interest.  Their work 
suggests a technique for measuring the variation in fibroglandular (stromal) composi-
tion is the more useful.  Quantifying such an effect from a single image is limited to 
measuring the attenuation per unit traversal distance of the breast at each pixel.  Since 
a polyenergetic spectrum is used the complication here comes from the attenuation 
varying with energy, but no feasible technique existing for separating individual ener-
gies.  A possible solution is to measure the attenuation relative to that of some known 
material.  However said material is required to mimic as closely as possible the  
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attenuation characteristics of the breast across all photon energies present in the mam-
mographic spectra in clinical use.  The limitation of the use of a single image is that 
breasts exhibiting high attenuation may be possessing either a higher proportion of fi-
broglandular tissue than that of adipose, or a higher density of collagen within the con-
nective stroma giving rise to a higher attenuating form of fibroglandular tissue.  The re-
sults in Table 4 suggest it may be feasible to distinguish between these cases if two 
images are acquired at different beam qualities since a variation in attenuating character-
istics with both tissue type and composition is observed under these conditions. 

A number of issues in this paper have been raised which require multi-disciplinary 
study in order to resolve.  The importance of constantly considering the underlying 
biological and physical phenomena, and the accuracy in which they can be measured 
using mammography is clearly apparent. 
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Abstract. This paper describes initial steps towards the development
of a Computer Aided Detection (CAD) system based on breast density
pattern classes. We present evidence that the sensitivity and specificity of
such a system will improve if it is developed for, and applied to, specific
breast density classes.

1 Introduction

Mammographic CAD systems are increasingly used clinically to support radi-
ologists in their evaluation of mammograms. Modifications to the UK National
Breast Screening Programme, such as requirements for an additional mammo-
gram view, extension of the age range of women invited to screening, combined
with the demographic increase resulting from the baby boom generation entering
the screening programme are resulting in a huge increase in film reading [2] at
a time when it is increasingly difficult to recruit and train skilled mammogram
readers. The additional workload necessitates the introduction of alternative
strategies for film screening, such as computer-aided detection systems. Possible
solutions to this problem include the use of CAD systems to detect and prompt
for abnormalities in mammograms, the introduction of pre-screening [4] and the
use of image enhancement methods to facilitate viewing, such as the Standard
Mammogram Form [6] and texture classification [8].

Pre-screening involves automatic classification into either normal or suspicious
categories, followed by viewing of the suspicious cases by the radiologist along
with a small sample of the other images for case control [3]. Sensitivity and
specificity are two of the figures of merit used to evaluate the performance of such
systems. In pre-screening, the overall sensitivity of sorting normal and suspicious
categories is limited by the sensitivity of the system. It may be possible, however,
to pre-screen a more limited set of films, such as those that are predominantly
fat with greater success [4]. This is one area in which breast pattern density
classification is potentially useful.

The Breast Imaging Reporting and Data System (BIRADS) breast density
categorization provides a means for such a classification. The American College of
Radiologists suggests that breast composition should be reported in all patients
using the BIRADS classification [1]. The classification categories are:
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1. The breast is almost entirely fat.
2. There are scattered fibroglandular densities.
3. The breast tissue is heterogeneously dense. This may lower the sensitivity of

mammography.
4. The breast tissue is extremely dense, which could obscure a lesion on mam-

mography.

Breast pattern classification algorithms [9] may be used, for example, to select
mammograms belonging to the first BIRADS category in order that they can be
evaluated by pre-screening. Of course, this is the category of image that human
film readers can also dismiss most easily. However, a majority of women in the
screening programme belong to the age group 50-69 years of age, for whom a
large proportion have predominantly fatty breasts. It follows that the benefits
of pre-screening this group of mammograms, if only in terms of radiologist time,
are potentially significant.

2 Method

We have investigated the performance of a mammographic image analysis sys-
tem developed recently by [7] by evaluating the performance of the algorithm
on different breast density classes. The aim is to evaluate how the specificity
and sensitivity of CAD systems can be affected when these systems are used
only for the assessment of mammograms that belong a specific BIRADS
category.

The algorithm developed in [7] proposes a segmentation method for delineat-
ing regions of interest (ROIs) in mammograms. A topographic representation,
called the iso-level contour map is used, in which a salient region forms a dense
quasiconcentric pattern of contours. The topological and geometrical structure
of the image is analysed using an inclusion tree that is a hierarchical representa-
tion of the enclosure relationships between contours. The “saliency” of a region is
measured topologically as the minimum nesting depth (Figure 1). The algorithm
was developed for prompting suspicious regions independent of the density class
the mammogram belonged to.

The results of the algorithm, along with the minimum nesting depth for de-
tection, were available for the suggested assessment. They were based on a set
of 400 mammograms with masses varying in size and subtlety selected from
various pathological categories in the digital database for screening mammogra-
phy (DDSM) database [5]. Since the aim of [7] was mass detection and breast
segmentation, unfortunately, no normal cases were included in the available
evaluations.

The mammograms are first classified into one of the four BIRADS classes.
The detected regions, according to minimum depth, are used to create ROC
(True Positive Fraction versus False Positive Fraction) curves in order to eval-
uate the performance of the algorithm under different breast pattern density
scenarios.
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Fig. 1. Segmentation results using Hong’s and Brady’s algorithm. The base contours
and their minimum nesting depth measure.

3 Results-Discussion

Figure 2 shows the ROC curve for the evaluation of the algorithm applied sepa-
rately to each breast pattern class. The detection system clearly performs better
if applied to breasts belonging either the first or second BIRADS classes. The
results show that the detection algorithm (despite the fact that it was created
without taking density into account) has better sensitivity and specificity and
sensitivity.

The results suggest that taking breast density information into account for
the development and application of CAD systems can significantly improve their
performance. Despite the fact that the developed methods will not be applicable
to all mammograms, they can still result in a reduction of the increasingly heavy
demand on radiologists and radiographers that are currently being overwhelmed
by the masses of mammograms that need evaluation. Breast density classification
may provide an important stepping stone for the development of CAD systems
with better sensitivity and specificity for at least a certain number of different
breast pattern classes.
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Fig. 2. The set of ROC curves of the detection system for each BI-RADS class sepa-
rately along with the ROC curve of the system applied to mammograms in general,
independently of breast pattern, for comparison
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Abstract. Breast density segmentation and classification methods are
combined to enable the automatic and quantitative comparison of tem-
poral mammograms of women using Hormone Replacement Therapy
(HRT). The results are based on registration and density quantifica-
tion, so that potentially the clinician may be informed about substantial
localised breast density changes. The measures use texture based density
segmentation as well as a normalized representation of mammograms.

1 Introduction

Hormone Replacement Therapy (HRT) replaces the hormones a woman’s body
ceases to produce after the menopause. However, the use of HRT in post-
menopausal women has created controversy, not least, because its effects are
difficult to characterise and quantify. According to the Million Women Study in
the UK [1], HRT use is associated with increased incidence and risk of breast
cancer mortality, especially so for combined oestrogen-progesterone therapy. The
risk increases with the duration of use and decreases after cessation. It seems
that this may be due to localised increases in breast density, a known risk factor
for breast cancer [2].

The response to HRT is specific to the individual. The changes due to HRT are
neither necessarily homogeneous nor global, rather, they depend on the hormonal
receptivity of the epithelial elements. Therefore, HRT use may result in density
increases both locally, or in the breast pattern, globally. The changes can be
characterised as:

– Tissue regeneration: increase in breast density over time.
– No change: no obvious change in breast density.
– Involution: decrease in breast density over time.

The type and degree of change depends on the receptivity of the hormones
by the individual, and on the combination of hormones used. Localised tissue
changes visible in a mammogram may signal the development of a new cancer,
especially if breast cell proliferation occurs in high risk areas such as the Upper
Outer Quadrant of the breast. For all of these reasons, there is broad consensus
that women taking HRT should be monitored more carefully and more frequently
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for breast cancer. Density segmentation, mammogram registration and local tis-
sue density quantification can be incorporated into a clinical framework to assess
the general effects of exogenous factors such as HRT.

The Standard Mammogram Form (SMF) representation of interesting tissue
introduced by Highnam and Brady [3] is a method to normalise mammograms
by calculating anatomical information from the mammogram image. In the re-
sulting SMF image, each pixel represents the thickness of ‘interesting’ (non-fat)
tissue of the compressed breast above that pixel. This effectively provides ob-
jective quantitative information about the breast anatomy. Changes of fatty to
glandular tissue are precisely changes in non-fatty i.e. ‘interesting’ tissue. This
information, combined with the information obtained using the texture-based
approaches, can potentially provide both local and global quantitative informa-
tion about density changes.

This paper describes how texture-based breast parenchymal density classifica-
tion [4] and SMF may be combined with breast registration to enable automatic
and quantitative comparison of temporal mammograms of women using HRT.

2 Method

Initially, the method needs to evaluate whether tissue density has changed due to
use of HRT. To this end, two measures, one based on a texture-based segmented
representation, the other based on the SMF representation are computed. For
the texture based representation each pixel in the mammogram is replaced by
the texton (texture primitive element) in the texton dictionary which lies closest
to it in the texture feature space [5]. The texton value is achieved following
texture classification as presented in [6]. The texton dictionary is obtained by
clustering mammogram filter responses with the MR8 filter bank [6] using the
following procedure: all filtered responses are aggregated over all the randomly
selected training images and the k-means algorithm [7] is used to compute n
cluster centres. The training test included mammograms of women using HRT
and women who were not using HRT. As usual, the cases of mammograms in
this training set were excluded from the test set of mammograms for which the
results are presented. The measure using breast density analysis, mean texture
based difference,

ΔTμ = Tμ(current) − Tμ(previous)
is based on evaluating the difference between the mean texton values Tμ rep-
resenting the breast area in each of the temporal mammograms. The different
density classes are assigned numbers/labels Tl from 1 to n, the total number of
textons used to segment the mammograms,according to the energy of the texton
they represent. The mean texture based density value is given by:

Tμ =
1

Nb

Nb∑
i=1

Tl(i) (1)

where Nb is the total number of pixels in the breast area. The second measure,
difference sum of interesting tissue,
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ΔSint = (Sint(current) − Sint(previous))/(Sint(previous))

is based on the normalised difference in the sum of interesting tissue Sint [8] in
the SMF representation of the corresponding temporal pairs of mammograms:

Sint =
Nb∑
i=1

hint(pi) (2)

where pi corresponds to pixel i in the breast area. (Of course, the texture segmen-
tation algorithm could also be directly applied to SMF images.) These difference
measures can be used to evaluate a global increase or decrease in breast density
due to use of HRT in order to recommend further investigation. The density
changes are evaluated globally as either regeneration or involution, as shown in
Table 1. Although “no change” in breast density is not as important as tissue
regeneration, it is included in the same classification.

Table 1. Rules to assess global mammographic density changes due to HRT between
temporal mammogram sequences

Difference Measures Corresponding Change in Breast Density
ΔT μ > 0 or ΔSint > 0 Tissue Regeneration or No Change

ΔTμ < 0 and ΔSint < 0 Involution

To achieve this, a two-step registration algorithm using internal landmarks
and Thin Plate Splines is applied to register the SMF images and the texture seg-
mented mammograms [9]. The resulting difference images combine registration
with normalisation, and can in turn show where the changes occur and how sig-
nificant they are, providing the clinician with local change information. If there
is an apparent increase in breast density, the issue will need to be investigated
further and monitored closely.

3 Results and Discussion

The algorithm was evaluated on a pilot dataset of 15 pairs of temporal mammo-
grams (with a three year time interval) of women taking HRT belonging to the
Screen Database collected in Oxford [10]. The ground truth was defined by a ra-
diologist who examined the original mammogram pairs and classified global and
local density changes. Seven mammograms were judged to exhibit involution,
six mammograms were judged to exhibit tissue regeneration, and two mammo-
grams were judged to exhibit “no change”. The global density change evaluation
results are presented in Table 2. It must be noted that there was enough tis-
sue regeneration to result in a global breast pattern class change in only two
of the included regeneration pairs. Global density classification is followed by
registration in order to evaluate local difference changes.
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Table 2. Results on the agreement of the evaluation of global density changes with
clinician’s ground truth

Density change measure ΔTμ ΔSint ΔTμ and ΔSint

Agreement in regeneration and no change pairs 88% 62% 88 %
Agreement in Involution pairs 71% 85% 85%

a. Target mammogram b. Source mammogram c. Registered mammogram

d. Difference before registration e. Difference after registration
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Fig. 1. A pair of right temporal mammograms of a woman on HRT exhibiting involu-
tion. Registration and differences on the original mammograms.

The example that follows corresponds to a woman who had been using HRT
for a period of 4 years exhibiting tissue involution. Figures 1, 2 and 3 show the
right temporal pair of mammograms of the woman exhibiting involution. As can
be seen from the colour difference images after registration, the target image
exhibits lower density (Figure 2 (e)) as well as lower height of non-fat tissue
(Figure 3 (e)). This is especially obvious in the upper outer quadrant of the
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a. Texture target image b. Texture source image c. Texture registered image

d. Difference before registration e. Difference after registration
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Fig. 2. The pair of right temporal texture segmented mammograms of the same woman
on HRT exhibiting involution. Registration and differences on the texture segmented
representation.

breast. The texture difference image shows where the involution takes place and
how it is distributed throughout the breast region.

4 Conclusions

The method shows that there are ways to evaluate density changes quantita-
tively, and enables close monitoring of any changes. The performance was eval-
uated by assessing the agreement with the radiologist’s assessment. The results
suggest how the use of texture based segmentation and density based classifica-
tion may have a role to play in the clinical framework of mammographic image
analysis. They are also encouraging for developing computer tools that automat-
ically monitor changes in mammographic density between successive scans.
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a. SMF target image b. SMF source image c. SMF registered image

d. Difference before registration e. Difference after registration
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Fig. 3. The pair of right temporal SMF images of the same woman on HRT exhibiting
involution. Registration and differences on the texture segmented representation.
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Abstract. We have developed a Monte Carlo model to examine the cancer de-
tection rate in screening mammography. We simulated the situation where 
screening was implemented for 9 years and then CADe was implemented for an 
additional 9 years. We investigated the effectiveness of two different methods 
for measuring changes in cancer detection rate. The first method was a sequen-
tial method in which the radiologist first reads without CADe and then immedi-
ately reads with CADe. The second method is temporal comparison where the 
cancer detection rates for two periods of time are compared: one without the use 
of CADe and one when CADe is in use. The model predictions have important 
implications for clinical studies of CADe. The temporal method is unlikely to 
measure a real affect, because the effect is small. A sequential method can 
measure an increase in the number of cancers detected because of CADe, but it 
cannot measure an overall increase in the cancer detection rate of the screening 
program. 

1   Introduction 

Computer-aided detection (CADe) has been proposed as a method for reducing the 
number of missed cancers.  There have been six clinical studies of CADe published to 
date. The first by Freer and Ulisseys showed a 19.5% increase in the number of can-
cers detected with an increase in the recall rate from 6.5% to 7.7% when CADe was 
used [2]. Gur et al. reported that when CADe was used, the cancer detection rate in-
creased from 3.49 to 3.55 with virtually no change in the recall rate [3].  Feig et al. 
performed a subanalysis of the Gur study and found that the low volume readers had a 
19.7% increase in cancer detection rate, while the high volume readers had a 3.2% 
decrease [4].  Birdwell et al. measured a 7% increase in cancers detected due to CADe 
with 8% increase in recall rate [5].  Cupples et al. found a 16% increase in cancer de-
tection rate with an 11% increase in recall rate [1].  Helvie et al. found a 10% increase 
in both number of cancers detected and recall rate, although it was a relatively small 
study [6].  Khoo et al. found a 1.7% increase in the number of cancers detected with a 
6% increase in the recall rate [7].  This study was done in the context of double read-
ing. None of the differences in any of the studies reach statistical significance. 

On the surface, these studies seem to be contradictory, however, different methods 
were used to measure the effectiveness of CADe.  The Freer, Helvie, Birdwell, and 
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Khoo studies used a sequential method. In this method, the radiologist first reads the 
mammograms without any computer assistance and he or she renders an interpreta-
tion. Immediately after, the radiologist reviews the computer analysis of the mammo-
grams and renders another interpretation. By comparing the number of cancers  
detected in each of the two reading conditions, the impact of CADe was measured. 
The Gur and the Cupples studies used a temporal method based on historical compari-
sons. In this method, clinical data is collected retrospectively from two time periods. 
The first time period is from mammograms read without using CADe and the second 
time period is from mammograms read using CADe. A comparison of the cancer 
detection rates in the two time periods is a measure of the effectiveness of CADe. 

The goal of the present study is to use a computer model of CADe in screening 
mammography to understand how these two methods can lead to different conclu-
sions.  We will show that the results of the clinical studies are not unexpected.    

2   Method 

An outline of the model is given in Figure 1. The model was implemented in Excel 
(Microsoft Corporation, Redmond, WA). Each decision outlined in the flowchart was 
implemented using a random number and comparing it to the probability of an event  
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Fig. 1. Schematic of model. t0 is the time the cancer starts to grow. This process is performed 
once for each cancer in the simulation. 
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occurring. Each cancer was followed from the time it was initiated until it was de-
tected. It was also assumed that 125 cancers developed every year for 30 years at 
equal intervals between cancer initiations. In total, 100 runs consisting of 4000 cancer 
cases each were averaged.  We assumed the tumor grew by doubling in volume at a 
given fixed rate. Although the first cancer started growing at year 0, screening did not 
start until year 11 and CADe was implemented starting in year 20. 

In our model, cancers could be detected either in the interval between mammogra-
phy screening (interval cancers), by the radiologist unaided, or by the radiologist 
using CADe to find a cancer that they initially overlooked.  If the cancer grew unde-
tected to larger than 5 cm in diameter, it was assumed to be detected as an interval 
cancer. Cancers could be missed by the radiologist unaided or by the radiologist using 
CADe. The cancer detection rate (number of cancers detected per 1000 women 
screened) was measured for without and with CADe being implemented. 

We modeled the cancer as growing at a fixed rate using two different assumptions.  
The first is that all cancers had the same growth rate, with a volume doubling time of 
157 days. The second is that the cancers had different growth rates.  The growth rates 
were generated by randomly selecting from a normal distribution of mean of 147 days 
and a standard deviation of 90 days, except negative growth rates were not allowed.  
This resulted in the population having both fast growing and slow growing cancers 
(median value=157 days), which is more realistic clinically.  A universal growth rate 
was modeled to illustrate some of the conclusions more clearly. 

We assumed the following default conditions: the size threshold for detection was 
0.5 cm, that 20% of cancers that were greater than the size threshold were detected as 
interval cancers, the sensitivity of the radiologist was 75% and that of the missed 
cancers 50% were detect by the radiologist when using CADe. All these parameters 
were systematically varied to examine their affects on our results. Except were noted 
in the text, the conclusions of this paper are unaffected by choice of these parameters.  
Due to space limitations, we show only a subset of these results. 

3   Results 

Figure 2A shows the cancer detection rate as a function of time when all cancers grow 
at the same rate. The plots are averaged over 100 trials (with 4000 cancers in each 
trial). Smooth curves are obtained since the data are equivalent to averaging 100 
screening trials with each trial screening 25,000 women every year for 30 years.  As 
expected, when screening is implemented the prevalent screen has a higher detection 
rate and after about 3 years a steady state is reached (incident screening). Similarly, 
when CADe is introduced, in year 20, there is an initial increase in the cancer detec-
tion rate and after 2 years a steady-state is reached. The reason for the initial increase 
in cancer detection rate when CADe is introduced is the presence of missed cancers 
that are found by the aided radiologist from the previous years and the reduction in 
the number missed in the current year.  

Ignoring the prevalence screens both with and without CADe, the difference in 
cancer detection rate between with and without CADe is small, 4%.  However, by using 
CADe the radiologist is able to detect 14 more cancers (17% increase) (lower curve in 
the Fig. 2A).  Since these cancers are no longer available for detection in subsequent 
years, the unaided cancer detection rate actually decreases when CADe is used.  
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Fig. 2. The number of cancers detected per year in a screening population as a function of time. 
CADe is introduced in year 20. (A) All cancers grow with the same doubling time and the 
curves are averaged over 100 trials. (B) A single trial result is shown and the cancers have a 
distribution of doubling times. The lower curve in each plot, labeled CADe Cancers, is the 
number of cancers found because the radiologist used CADe. The horizontal lines with arrow-
heads indicate two time periods to compare the benefits of CADe for the historical comparison 
method and the vertical line indicates the difference in the radiologist’s cancer detection with 
and without computer aid. 
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4   Discussion 

4.1   Comparison of Methods for Clinical Evaluation of CADe 

As shown in Fig. 2A, using CADe will not substantially increase the cancer detection 
rate. If the interval cancer rate were 0, then the cancer detection rate before and after 
CADe is introduced would be he same. The two horizontal lines in Fig. 2 show two 
time periods (each 2 years long) over which the number of cancers detected could be 
compared using the temporal (historical comparison) method.  Thus, a temporal com-
parison of cancer detection rate will under ideal conditions measure only a small advan-
tage for using CADe. A sequential comparison, as given by the vertical line in Fig. 2, 
indicates a substantial increase in the cancer detection rate when CADe is used. 

The situation for measuring the effects of CADe are even more difficult as shown 
in Fig. 2B. Here the results are for when cancers grow at different rates for a single 
trial. There is a large variation in the cancer detection rate because the number of 
detectable cancers in the population varies from year to year, because the cancers 
grow at different rates. In addition, because the number of patients screened is small 
in this plot, there is also an increase in variability in the results. We have neglected 
reader variability, which would of course make it even more difficult to measure 
small differences due to the affects of CADe. 

CADe will help radiologists find more cancers in a given year than they would find 
if they did not use CADe. This change can be large enough to be measured in a large 
study even if there is a large variation in the growth rate of cancers (Fig 2B). There-
fore, it maybe possible to use the sequential method to measure an increase in the 
number of cancers detected when CADe is used.  

Another factor that is important when measuring the benefits of CAD is whether 
the prevalence CADe screen period is included. If it is, then the measured benefits 
will be larger than one would measure using only the steady-state time periods.  

4.2   Comparison of Methods for Clinical Evaluation of CADe 

As shown in Fig 2, there is a large variation in measuring the number of cancers de-
tected per year in a screening study. As a result, almost any result is possible: CADe 
increases the cancer detection rate, CADe makes no difference and even CADe re-
duces the cancer detection rate. All three results have appeared in the literature when 
a temporal comparison is used [1, 3, 4].  This is verified by Table 1 where the results 
from 9 simulations are given. The table shows values between 0 and 25 cancers can 
be measured giving an increase in the number of cancers detected from 0% to 48%.  
The average value in the table is 11.9, which is a 23% increase in cancers detected 
when using CADe. 

In Table 1, two different time periods are reported.  The values for a period of 1 year 
(i.e., a 1-yr period in which the number of cancers detected without CADe is measured 
and compared to a 1-yr period when CADe is used) are higher than the 2-year period. 
This is because the 1-year period only includes the CADe prevalence screen (the peak at  
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year 20 in Fig. 2) and thus is higher than subsequent years. All clinical CADe studies 
include the CADe prevalence screen and therefore are optimistically biased. Even the 
Cupples study, which used a 2-year period to measure the cancer detection rate, is bi-
ased by the CADe prevalence screen. In that study, the average time between screens 
was 21 months with a median time of 14 months.  Thus most of the women who were 
screened in the CADe time period were having their first mammogram where CADe 
was used.  

All published studies using the sequential method measure at least a 10% increase 
in the number of cancers radiologists detected when using CADe. The exception is 
the Khoo.  However, in their study double reading was used and the screening interval 
was three years. Our model does not include double reading and we only modeled 
annual screening. Thus we cannot make reliable predictions of the Khoo study. 

Table 1. A comparison of the number of cancers detected per year with and without CADe as 
measured using a temporal comparison. The time period refers to the number of years meas-
urements are made without and then with CADe. Ten different realizations are shown.  It is 
assumed that 67 new cancers begin growing each year, but each cancer grows at a different 
rate.  On average, 52 of those cancers are detected per year by mammography. This about the 
size of the Cupples [1] and Freer [2] studies. 

Trial Number Method Time 
Period 1 2 3 4 5 6 7 8 9 

Temporal 1 yr 16 15 9 20 2 25 10 8 18 
Temporal 2 yrs 7.5 14 9.5 11 6.5 17 0 12 13 

4.3   Assumptions and Limitations of This Study 

We made a number of assumptions in our current model: the radiologist’s sensitivity 
(75%), CADe sensitivity (75%), size threshold for detection (0.5 cm), and the interval 
cancer rate (15%), cancer volume doubling time (157 days). To study the effects of 
these parameters, we systematically varied them to span the full parameter space. An 
example is shown in Figure 3. The major conclusions of this study are unaffected of 
the exact choice of these parameters.   

We also assumed that if the computer detected a cancer that the radiologist missed 
unaided, then the radiologist would always recognized that the computer detected a 
missed cancer. This not true clinically and we will incorporate this into future studies.  
In addition, we have not addressed the issue of computer false detections and radiolo-
gists’ recall rate. This is the topic of an ongoing study. 

There are also assumptions made because we have at present only a simple model.  
We do not use a Gompertzian model of tumor growth [8], we assume patients are 
screened at exactly 1 year intervals, technically all on the same day, and all women 
begin screening in the same year. How these assumptions affect the results and con-
clusions of our study are unknown. A sophisticated model is required to study these 
factors and we are currently developing such a model. 
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Fig. 3. An example of plots used to study the effects of changing the radiologist’s sensitivity 
(RadSen), the computer’s sensitivity (CADsen), and the threshold size for detection. In each 
plot there are 8 curves for thresholds of 0.5 cm (top curve) to 1.2 cm (lowest curve) in 0.1 cm 
increments. Except for the prevalence screens (years 11-13) all curves overlap indicating that 
the size threshold does not affect the number of cancers detected. Although the difference 
between the upper sets of curves and the lower sets of curves (years 20-29) change depending 
on the radiologists and CADe sensitivities, the differences between without CADe (years 11-
19) and with CADe (years 20-29) remain the same. Therefore, the conclusions of our study are 
valid over a range of radiologist and CADe sensitivities and size thresholds.   

4   Conclusions 

In summary, our model can explain differences in reported clinical performances of 
CADe. It appears that to measure the effects of CADe the sequential method is more 
likely to be successful than the temporal comparison. There are, however, significant 
potential biases with this method that are difficult to control [3, 5]. Further, even 
though an individual radiologist will find more cancers when he or she uses CADe, 
the overall cancer detection rate will not be greatly increased.   

The reported clinical studies are probably not measuring the best endpoint. The 
usefulness of CADe is not to increase the cancer detection rate, but to detect the can-
cers at an earlier time point in screening.  Measuring the stage or size of cancers may 
be a more appropriate. We will model this in the future. Ultimately the affect on mor-
tality is real endpoint, but this is not practical to measure in real life.  
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Use of Prompt Magnitude in Computer Aided
Detection of Masses in Mammograms
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Abstract. Systems for computer aided detection of masses may be used
more effectively when they are used for interpretation of suspect ab-
normalities, instead of solely using them as a prompting aid to avoid
oversights. To use CAD algorithms for detection of masses as a deci-
sion aid it may be helpful to display suspiciousness of regions computed
by CAD. In this paper the quality of probabilities computed for masses
by a commercial CAD system is studied in two ways: 1) by comparing
standalone performance of the system to that of experienced screening
radiologists, and 2) by determining results of independent double read-
ing with CAD. The study involves results of 15 readers who each read
500 mammograms, and two releases of the CAD algorithm. Independent
double reading results are obtained by combining probabilities of the
CAD system with the reader assessment for each localized finding re-
ported by the reader, and by computing the fraction of cancers localized
correctly as a function of false positive referrals. It was found that stan-
dalone performance of CAD is less than that of any reader in the study.
Nevertheless, it was found that performance improves significantly with
independent CAD reading, and that use of an improved CAD algorithm
lead to significantly better results of the combined reader with CAD.

1 Introduction

In computer aided detection (CAD) systems prompts are displayed on regions
identified by a computer as suspicious for breast cancer, after the reader has
inspected the mammogram without CAD. These prompts may help radiologists
to find cancers that initially were overlooked. Results of some prospective studies
confirm that screening results are improved when CAD is used [1],[2]. However,
considering the high sensitivity of CAD systems, it is also felt that the technology
is less effective than expected, particularly for masses, architectural distortion
and asymmetry. The reason for this is that it frequently occurs that radiologists
do not act on prompts that later appear to be true positives. This suggest that
these cancers were not missed by oversight but misinterpreted. Also in experi-
mental studies evidence is found that the majority of screening errors related to
masses may be due to misinterpretation rather than oversight [3], [4].

In a previous study it was found that radiologist may be able to use CAD
prompting systems to help with interpretation of masses. The use of the sys-
tem should be radically different though from what is currently recommended.

Susan M. Astley et al. (Eds.): IWDM 2006, LNCS 4046, pp. 54–60, 2006.
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Instead of ignoring prompts on regions already inspected, the reader should re-
consider decisions with respect to these regions with the use of CAD. On the
other hand, prompts of the computer on regions not identified as potential ab-
normalities might better be ignored, unless it is a clear abnormality that was
overlooked. In this paper this way of using CAD mass prompts explored further.
First, a comparison is made of the standalone performance of a CAD system with
that of experienced screening radiologists. This comparison shows that probabil-
ities, or suspiciousness levels, of prompted regions computed by the CAD system
correlate well with radiologists’ findings. Second, we conduct an experiment with
two versions of a CAD system, of which the most recent one has higher detection
performance. It is investigated if the higher performance of CAD leads to better
detection results if probabilities of the CAD system are independently combined
with human reader assessments, focusing on areas identified by the readers as
potential abnormalities.

By comparing ratings of suspiciousness of CAD and human readers it may
be understood better how CAD can assist readers with interpretation. Because
of the large number of false positives, in practice readers do not have much
confidence in CAD as a decision aid. By showing that performance of a CAD
system is in fact close to that of a human reader it may be more easy for a
radiologist to recognize it as a system that can truly help with screening.

2 Observer Data and CAD System

In this study we make use of data from an observer study, which has been
described in detail previously [3]. Fifteen experienced screening radiologists from
different countries were involved in this study of which five can be regarded as
leading experts in the area of breast cancer screening. In the study they read
500 mammograms of which 250 were priors of cancer cases. It turned out that
in 142 cases a visible lesion could be seen in the prior. In 116 of these cases a
mass, architectural distortion or an asymmetry was the major sign. These were
selected as the true lesions in this investigation.

In the observer study radiologists had been asked to mark and rate all regions
that attracted their attention, also those that they would normally not recall. For
their ratings they used a scale of suspiciousness ranging from 0 to 100%. They read
the mammograms with priors, as is common in screening. So in fact in the study
the priors and former priors of the cancer cases were presented, randomly mixed
with the 250 normal cases, which also consisted of two subsequent screenings. In
total, the 15 readers marked 7173 findings in the selected sample of cases.

In this study we use mass detection results of the R2 ImageChecker. Two
versions of the system were used, with software releases from 2001 and 2004.
Each mass prompt of the system had a measure indicating importance of the
prompt, which is intended to be used in combination with a threshold to select
prompts to be displayed.
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Fig. 1. Mass detection performance of CAD and 10 experienced screening radiologists
(upper) and 5 experts (lower). Each point represents an operating point of a radiologist.
The solid and dashed lines show CAD results of two software versions. In practice,
operating points in European screening programs are in the range of 0.005 - 0.02
FP/image.
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3 FROC Performance of the Readers

It is common practice to report CAD performance by FROC curves, while ob-
server performance is usually determined by one operating point or by ROC
analysis. However, the observer data collected in our study allowed computa-
tion of both ROC and FROC results for the readers, as they marked locations
of abnormalities. Using FROC analysis, a direct comparison between radiolo-
gists and CAD could be made. True positive detections were determined by a
distance criterion. If a CAD mark or an annotation of a radiologist was close
enough to a true cancer location a true positive was counted. For the radiologists
we used a distance of 2.5 cm. For CAD a smaller distance criterion of 1.5 cm
was used. These thresholds were chosen taking into account 1) the inaccuracy
of the radiologists’ annotations (which were drawn on small paper printouts of
the mammograms) and 2) the fact that there were many CAD marks, making
the risk of erroneously counting a true positive CAD mark due to a nearby false
positive relatively high. Case based FROC curves were computed, i.e. a true
positive was counted if a cancer is found in either the CC or the MLO view.

The false positive rate was determined based on findings in the 250 normal
cases. For the radiologists only lesion based findings were available, i.e. if a lesion
was visible in two views this was scored as one finding. Therefore, to construct
FROC curves of the radiologists two false positives were counted per finding if
both the MLO and CC view were present (actually the majority of the cases
only had the MLO view).

Results are shown in figure 1. The points indicate operating points of the
radiologists determined by varying the detection threshold. Results of the five
experts are displayed in a separate figure. The lines shows the CAD results.

4 Effect of Improved CAD Performance on Independent
Combination of Readers with CAD

To independently combine observer scores with CAD the scale of importance of
CAD marks was converted a standardized level of normality L, using the normal
cases in the set. L indicates how often a false positive CAD mark would occur if
the threshold was set to the level corresponding with L. For a given reader, the
level of suspiciousness of an observed finding combined with CAD was computed
by SR+CAD = SR + f(L) with L the level of normality of the region and SR the
reader score for the finding. It is noted that the reader read the cases without
CAD. Only locations where the reader marked a finding are evaluated in this
scheme, so CAD marks on areas not marked by the reader are not taken into ac-
count. The weight function f(L) was chosen to be linear with log(L) and was the
same for all 15 readers. Parameters were optimized separately for the two CAD
software versions, which resulted in higher weights for the latest software version.

In mammograms were both CC and MLO views were available and CAD hit
the region in both views the level of the mass marker with the lowest value of
L was assigned to the finding. When CAD did not hit the region the finding



58 N. Karssemeijer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1

T
ru

e
 P

o
s
it
iv

e
 F

ra
c
ti
o

n

False Positive Fraction

Double

 Single + CAD

 Single

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1

T
ru

e
 P

o
s
it
iv

e
 F

ra
c
ti
o

n

False Positive Fraction

Double

 Single + CAD

 Single

Fig. 2. Mean sensitivity for visible masses on prior mammograms, obtained by single
reading, independent double reading, and independent interpretation with CAD, as a
function of the false positive fraction. In the left figure results with the software version
from 2001 are shown. The right figure shows the results with the newer version of 2004.

Table 1. Mean sensitivity in the range of false positive fractions less than 0.1, for read-
ing without CAD and for reading with CAD using the two different software versions

Radiologist Without CAD CAD V2001 CAD V2004

1 42.6 52.4 51.7
2 45.5 57.9 57.2
3 55.9 58.9 57.0
4 35.1 42.3 46.1
5 37.8 48.4 49.5
6 34.3 39.8 43.2
7 40.2 43.6 44.4
8 40.3 46.9 54.5
9 34.2 45.7 47.3
10 41.1 48.8 51.9
11 48.0 50.6 50.0
12 49.9 51.3 51.8
13 47.7 54.5 56.8
14 53.3 54.8 57.6
15 43.1 44.3 46.9

Average 43.3 49.3 51.1
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was given the highest level of normality, thus maximally degrading the reader’s
score. To determine if a mass marker corresponded with a finding of a reader we
used the distance between the center of mass of the area drawn by the reader
and the location of the mass marker. If this distance was smaller than 1.5 cm a
hit was counted, otherwise the marker was regarded as unrelated to the finding.

By varying a detection threshold applied to the level of suspiciousness “lo-
calized response” (LROC) curves were constructed that show the fraction of
correctly localized lesions (sensitivity) as a function of the false positive fraction
[5]. A false positive was counted when a case had at least one false positive find-
ing that exceeded the detection threshold. LROC results are shown in figure 2.
Also mean results of independent double reading are displayed. These were ob-
tained by combining each reader with all other readers, and simply averaging
their scores to obtain a mean level of suspiciousness for the pooled set of find-
ings of each reader pair. In this way fifteen curves were obtained for each reader,
which were subsequently averaged. Table 1 shows the result form each individ-
ual reader. Mean sensitivity in the range of false positive fractions less than 0.1
was taken as performance indicator. The improvement obtained when using the
newer CAD algorithm was statistically significant (p=0.014, paired t-test).

5 Discussion

As expected, the performance of CAD is lower than that of any radiologist
in the study. However, the difference with the performance of the screening
radiologists is not very large. It may be expected that the gap will be bridged in
the near future when new CAD algorithms become available. It is also noted that
all radiologist in the study were very experienced and motivated. The average
performance of radiologists in practice may be lower than what we found. Results
also show that the difference between the five expert radiologists and CAD is
relatively large, almost a ten-fold reduction in false positives of CAD would be
needed to reach the level of performance of the experts.

FROC results show that the perception that some radiologists have that CAD
is extremely poor on masses is not justified, because the difference between CAD
and the human readers is not that large. Negative perception of CAD may be due
to the operating point used in the clinical sites: radiologists only see the prompts
and have no access to the probabilities of the CAD marks. They cannot easily
relate CAD results to their own performance, because they operate at a much
lower false positive rate. Moreover, in a screening situation most of what they
see are the false positives, because the number of cancers in the population is
low. The problem of relating the CAD system to their own level of performance
will be worse in sites where the recall is low, like in Europe. For instance, when
a radiologists operates at a four percent recall rate his number of false positives
per image is about 20 times lower than the setting of the CAD system (around
0.02 FP/image).

Results of independent combination of CAD with observer data demonstrate
that CAD can be used in practice as an interpretation aid, i.e. to help deciding
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which cases should be recalled. This way of using CAD may be greatly facilitated
if probabilities computed by CAD were made available for the reader. Further
study is needed to determine how these probabilities, which can be seen as
prompt magnitude, should best be displayed. For instance, a color scale or marker
size could be employed.

It was found that improvement of the CAD algorithm lead to improved com-
bined performance, which is what one would expect. This improvement was
statistically significant. Independent reading with CAD almost reached the level
of performance of independent double reading of two experience radiologists.
The weight given to CAD, optimized over the whole set of observers, was also
larger with the improved algorithm, which is consistent with the larger benefit
it gave. If CAD keeps improving and reaches the level of a single reading by a
radiologist double reading with CAD is expected to become as effective as true
double reading.
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Abstract. The UK National Health Service Breast Screening Programme 
(NHSBSP) provides free mammographic screening for all women between the 
ages of 50 and 69. This paper examines in detail the way in which the pro-
gramme is implemented in one of the busiest breast screening centres, discuss-
ing the implications of current practice for the introduction of computer aided 
detection systems. The paper also investigates the different types of abnormality 
that arise in older and younger women within the screening age group, and dis-
cusses how this is likely to affect prompting systems.   

1   Breast Cancer Screening 

The National Health Service Breast Screening Programme (NHSBSP) was established 
in England and Wales in 1988 [1] and achieved national coverage in 1995. Initially, 
women between 50 and 64 were invited for screening every three years, with two 
view mammography at their first visit and single view mammography thereafter. 
Recently, the programme has been extended to include women up to the age of 69, 
with two view mammography at every visit [2]. The gold standard for film reading is 
double reading with arbitration by a third reader [3]. All screening centres in the UK 
are carefully monitored to ensure that the standard of screening offered to women is 
consistently high, but within the programme there is considerable variation in local 
practice.   

The screening process involves two view mammography, carried out either in a 
mobile unit or at a hospital base. Women with a normal screening outcome are noti-
fied within two weeks.  If a significant abnormality is detected, the woman is recalled 
for further assessment combining clinical examination with further imaging (mam-
mography and ultrasound) and proceeding to needle biopsy where indicated. It is 
predicted that the programme will save 1250 lives per year by 2010 [2]. 

Quality assurance and monitoring play an important role in maintaining the effec-
tiveness of screening. A number of factors including cancer detection rates and posi-
tive predictive values are recorded for each Breast Screening Unit. Both regional and 
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national systems are involved in monitoring these criteria and in taking action if re-
quired. Although the NHSBSP criteria are based on single reading only, double read-
ing of mammograms is a well-established practice in the UK; by 2003, more than 
three quarters of mammograms were being double read [4]. Reading regimes vary 
from centre to centre, with the final decision to recall made by consensus, by arbitra-
tion, or if either reader recommends it.    

The national programme has responded positively but cautiously to the advent of 
new technology such as digital acquisition, soft copy reading and CAD. In this paper 
we examine the way in which a busy screening centre within the NHSBSP operates in 
practice, and discuss the implications of our findings for the introduction of new tech-
nology such as computer-aided detection (CAD). 

2   Current Practice 

2.1   The Film Reading Process 

The current practice in one busy breast screening centre is, where possible, double 
reading by a radiologist and a radiographer trained in film reading. At this stage the 
readers score cases, with 1 being a recommendation for return to routine screening, 
and a score of 2 or more requiring a discussion with the other reader (consensus). 
Following this, a decision is made to either return the woman to routine screening, 
refer the case for arbitration, request previous films, request a technical recall, or 
recall the woman for further assessment.  

Analysis of 1174 screening mammograms read in the screening centre over 15 con-
secutive working days showed that 98.5% of those were double read by a consultant 
radiologist and a radiographer trained in film reading. Of these, 218 women were 
recommended for a consensus discussion by one or both readers. Overall, radiogra-
phers identified 155 of these cases and radiologists 141, with an overlap of 78 cases 
recommended by both readers. This difference between radiologists and radiogra-
phers was not significant (p=0.272) but radiographers were more likely to request a 
recall on technical grounds. 

Of the 218 sets of films that were subject to consensus discussion by the radiogra-
pher and radiologist, 154 (70.6%) were identified as requiring: further assessment, 
arbitration, technical recall or requests for previous films. The remaining 64 women 
were returned to routine screening. 

During the consensus discussion, of the 33 women recommended for recall by ra-
diographers but not radiologists, 5 women (15.2%) went to arbitration, but of the 32 
women recommended for recall by the radiologist but not the radiographer 18 women 
(56.3%) actually went to arbitration indicating that the radiologists were more influ-
ential in the consensus process. Of the 33 sets of mammograms that went to arbitra-
tion following consensus 11 (33%) were recalled for further assessment, whilst the 
remaining 22 were returned to routine screening. 

2.2   Implications for the Introduction of CAD 

CAD systems are used to aid image interpretation; they are intended to draw the 
reader’s attention to suspicious regions that have been identified by detection  
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algorithms and might otherwise have been overlooked. The way in which they are 
used in practice depends on existing national and local strategies. In the case of the 
screening centre discussed above, the film reading process involves a series of stages: 
independent reading, consensus and arbitration. If a CAD system is introduced, the 
initial reading stage could be undertaken either by radiographers using CAD or by 
radiologists using CAD. Research is currently underway to determine whether these 
are equivalent in terms of cancer detection and recall rate. A key objective will be to 
replace double reading with single reading using CAD, but this can only be achieved 
if the two regimes are equivalent. A recent retrospective trial conducted in the UK 
found that single reading with CAD increased the pick-up of early cancers, but at the 
expense of an increased rate of recall of normal women [5]. 

With CAD, a reader will first look at the mammograms without any prompting, 
then access the prompts and look again. The unprompted review corresponds to inde-
pendent reading in the existing regime. Currently, readers have the option of referring 
cases for consensus with the other reader. When single reading with CAD, all the 
available evidence will have been taken into account during the second prompted look 
at the images. 

The option of discussing cases with another reader after reading with CAD would 
be a valuable reassurance and safety net. In a recent study, the detection of early can-
cers was increased at a screening centre employing this method, but again, the rate of 
recall of normal women was also increased [6]. One possibility is that all cases identi-
fied as suspicious by the single reader with CAD are discussed with a second reader. 
This is neither consensus in the original sense (since the second reader is reading only 
cases believed by the first reader to require additional expertise) nor arbitration (since 
only a single reader has been involved up to that point). Neither is it arbitration be-
tween the human and machine, as the first reader has the opportunity to discard 
prompts, and cases referred to the second reader may be unprompted.  

Currently, 12-13% of cases are recommended for consensus. If these are referred to 
a second reader, this represents a significant proportion of all cases that will, in effect, 
be double read with CAD. The implications of this must be taken into account in 
analysis of the cost-effectiveness of the process, particularly since the reading proce-
dure with CAD is more time consuming than unprompted reading. The proportion 
could, however, be reduced by excluding technical recalls and unequivocally abnor-
mal cases. For cases which are double read with CAD, the arbitration process could 
be retained. 

3   Types of Cancer 

The performance of CAD systems depend on a variety of factors including breast 
density, size and type of abnormality. The effectiveness of CAD prompting may thus 
vary depending on the age of the woman at the time of screening, the screening inter-
val, and whether it is a prevalent or incident screening round. We have analysed 
screening mammograms from women in two age groups (55-59 and 65-69) to deter-
mine whether the cancers detected in these two groups were, in fact, similar. 
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3.1   Type of Cancer vs Age 

In 2004, 28,855 women were screened in the centre described above. Of these, 57% 
had been screened routinely in the last 5 years, and 23% had not attended since a 
previous routine screen more than five years before. 13% were attending for the first 
time, and the remainder were either self-referrals, women who had missed their first 
screen or women recalled less than three years after a previous screen.  

A total of 208 women (0.7%) were diagnosed as having breast cancer. 24% of 
these were aged between 55 and 59, and 29% were between 65 and 69. In these two 
age groups, the older women presented with more masses (60% vs 36%) whereas the 
younger group had more asymmetries and stromal deformities (28% vs 15%). There 
was no significant difference between the groups in terms of types of cancer (ductal, 
lobular, DCIS etc.), grade of tumour or tumour size. Figure 1 shows the types of can-
cer found in the two groups, and figure 2 shows the proportion of different mammo-
graphic abnormalities. 

Both groups of women had already been in the screening programme for at least 
five years, so would be expected to have had a previous screen within that period. 
However, the number of years since previous mammography was significantly higher 
(p<0.001) for the women in the older group, with a median of 5 (range 1-9) in com-
parison with a median of 3 (range 2-7) in the younger group. Overall, 62% of the 
older women had an interval of greater than the recommended three years, whereas 
only 26% of the younger women exceeded this duration. Despite this, there was no 
evidence that these women presented with a larger tumour size than women in the 
younger group.    

 

Fig. 1. Proportions of cancer types found in mammograms of women in different age groups 



 Current Screening Practice: Implications for the Introduction of CAD 65 

 

Fig. 2. Proportions of different mammographic abnormalities found in the two age groups 

3.2   Type of Abnormality and CAD  

CAD systems usually prompt lesions within a given size range. For microcalcifica-
tions, systems use rules to establish whether particles are clustered, and how many 
particles constitute a significant cluster. Since clustering rules are generally based 
only on a single view and often require as few as three particles, it is possible for false 
clusters to be prompted, although where two views are available, these should be 
easily dismissed. The largest masses encountered in screening are very obvious, either 
because of locally increased density or by virtue of asymmetry between the right and 
left breasts. Provided that the reader is aware of any cut-off in size of lesions 
prompted, this is not a problem.  For smaller masses, sensitivity of CAD is high; one 
study reported a sensitivity of 92% for lesions less than 5 mm in size [14]. 

Different types of breast cancer present in different ways; in one study of 94 inva-
sive lobular carcinoma lesions, 60% presented as masses, of which 71% were spicu-
lated, and 21% as architectural distortions. The remainder appeared as asymmetries or 
calcifications [15]. Another study measured CAD sensitivity for different pathologies, 
and found that CAD was particularly sensitive in the detection of ductal carcinoma in 
situ and lobular carcinoma [16] The performance of CAD depends on appearance 
rather than diagnosis, with microcalcification clusters generally the most successfully 
prompted., followed by masses. One study of the performance of CAD on cancers 
missed at screening  show that 70% of these are masses, and that CAD could prompt 
73% of these correctly [17].    

Asymmetries and stromal deformities are more difficult to detect automatically 
than masses. In a study of the performance of two commercial CAD systems, fewer 
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than 40% of cases were prompted correctly [18]. For younger women in whom these 
signs of cancer are more common, this is compounded by the relatively high density 
of glandular tissue in the breasts.   

3.3   Breast Density and CAD 

The sensitivity and specificity of CAD systems depends on breast density as well as 
the type of abnormality [7,8]. One study examined 906 cancer cases and 147 normal 
cases, and found that the prompting rate for cancers ranged from 90% in fattier 
breasts (BI-RADS 1 and 2) to 88% in denser breasts (BI-RADS 3 and 4) [8]. More 
detailed analysis showed that the prompting of microcalcifications was similar in the 
two density classes, however the sensitivity of the CAD system to masses was signifi-
cantly reduced in denser breasts. There were also found to be more false prompts in 
dense breasts. These results are supported by a smaller, earlier study of the perform-
ance of CAD on 264 mammograms classified into four density groups, each contain-
ing  approximately 60% normal and 40% cancer cases. Although the numbers of 
cancer cases were smaller, the authors found a significant decrease in sensitivity with 
increasing density, but they did not report any difference in the false prompt rate.  In 
another recent smaller study involving 127 cancer cases, the authors looked at both 
the overall breast density and that of the local background to each lesion. They also 
concluded that the effects of breast density were greatest when detecting masses in 
dense breasts [10]. 

Increased breast density is associated with an increase in the risk of developing 
cancer [11, 12], but it has also been reported to increase the risk of having a false 
positive mammogram [13]. Given that CAD specificity may be reduced in dense 
breasts [8], and that readers tend to have higher recall rates with CAD [5], the detec-
tion of masses in dense breasts should clearly be a key area of focus for future CAD 
research. 
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Abstract. We develop a novel CAD detection system that can help a
radiologist to detect masses in mammograms. The proposed algorithm
concurrently detects the breast boundary and the pectoral muscle. Then,
a clustering and morphology based segmentation algorithm is applied to
the enhanced mammography image to separate the mass from the normal
breast tissues. This technique outlines the shape of candidate masses in
mammograms. To maximize detection specificity, we develop a two-stage
hybrid classification network. First, an unsupervised classifier is used to
classify suspicious opacities as suspect or not. Then, a few supervised
interpretation rules are applied to further reduce the number of false
detections. Using a private mammography database and the publicly
available USF/DDSM database, experimental results demonstrate that
a sensitivity of 94% (resp. 80%) can be achieved at a specificity level of
1.02 (resp. 0.69) false positives per image. Even in dense mammograms,
the CAD algorithm can still correctly detect subtle masses.

1 Introduction

Classical computer-assisted detection of masses in mammographic images gener-
ally requires a multistage algorithm that includes detection of candidate masses,
pattern recognition techniques to classify the candidate objects, and a method
to eliminate false detections and to determine if a mass exists. Wavelet or mor-
phological techniques are generally used to enhance the mammography image.
Supervised classifiers such as neural networks, fuzzy neural classifiers, bayesian
classifiers or rule-based classifiers are applied to discriminate between normal
and suspicious objects. These classical supervised classifiers generally require
the learning of a rather large number of parameters.

Specificity levels of automatic mass detection methods in mammography are
generally rather low. To improve detection scores, te-Brake, Karssemeijer and
Hendriks [4] have introduced features that are related to image characteristics
that radiologists use to discriminate real lesions from normal tissue. Approxi-
mately 75% of all cancers were detected in at least one view at a specificity level
of 1.0 false positive per image.
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Yates, Evans and Brady [22] have proposed a pre-processing step for improv-
ing te-Brake’s mass-detection algorithm. Their method, that is based on wavelets
and phase congruency, removes the locally linear fine detail structure, whilst
retaining the larger underlying mass structure. The resulting ROC curve has
shown that this removal technique improves the mass detection rate. Hong and
Brady [11] have proposed a segmentation method for delineating regions of inter-
est in mammograms. Their algorithm concurrently detects the breast boundary,
the pectoral muscle, and dense regions that include candidate masses. A topo-
graphic representation called the iso-level contour map has been used to estimate
the saliency of each suspicious region. This method has achieved a satisfactory
performance as a prompt system for mass detection.

An adaptive, multiscale method for mass detection using a circular ring tem-
plate and a nonparametric test has been presented by Khan et al. [12]. Training
data corresponding to the local background intensity level is extracted from the
outer ring of the template while test data for mass detection is obtained from
the inner disk. Experimental results show a sensitivity of 1.0 and a false positive
rate of 1.40 per image on 30 images. Detection algorithms often fail to detect
masses with a partial loss of region, that are located on the edge of the film.
To overcome this problem, Hatanaka et al. [8] have proposed to identify partial
loss masses by their similarity to a sector-form model in the template matching
process. The true-positive fraction is 0.97 (resp. 0.84) when the number of false
positives (FP) is 1.20 (resp. 1.49) per mammogram on 335 (resp. 1075) digitized
mammograms. Petrick et al. [18] have designed an object-based region-growing
technique to improve mass segmentation. As a preprocessing step, this segmenta-
tion method utilizes the density-weighted contrast enhancement (DWCE) filter
to adaptively enhance the contrast between the breast structures and the back-
ground. Each suspicious opacity is classified as a mass or normal tissue based
on morphological and texture features. This segmentation scheme detected 90%
(resp. 80%) of 253 biopsy-proven breast masses at a specificity level of 4.2 (resp.
2.0) false positive per image.

Cheng and Muyi-Cui [6] have recently presented a novel fuzzy neural net-
work approach to detect malignant mass on mammograms. They analyzed 670
ROIs from mammograms of the DDSM database. The true-positive fraction is
0.92 when the number of FPs is 1.33 per mammogram. But, this FP score is
underestimated because only a few ROIs have been analyzed per mammogram
instead of full mammograms. Hence, it cannot be compared to other specificity
scores. Heath et al. [10] have introduced a mass detection algorithm by relative
image intensity that estimates the degree to which a surrounding region of a
point decreases in intensity. This algorithm requires neither the training of pa-
rameters nor the normalization of images. Detection performances and FROC
curves have been estimated using datasets from the MIAS and DDSM databases.
Experimental results show a sensitivity of 0.65 (resp. 0.70) and a false positive
rate of 1.75 (resp. 1.60) per image on 246 MIAS images (resp. 160 USF images).

Performances of other recently published CAD algorithms for mass detection
are presented in figure 3. Published detection scores show that the simultaneous
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achievement of a high sensitivity (more than 0.95) and an acceptable specificity
(less than 1 false positive per image) has not yet been achieved by published
CAD algorithms. The objective of this paper is to get better detection scores
using either an unsupervised classification approach or an hybrid algorithm.
Performance evaluation of these two CAD algorithms will be carried out using
image data from two mammography databases.

2 Methods

This paper focuses on a methodological approach that (i) removes the locally
linear fine detail structure using a morphological algorithm based on successive
geodesic openings by linear structuring elements of various orientations, and
(ii) eliminates false positives using an unsupervised classifier in synergy with a
parcimonious supervised classifier based on a few interpretation rules.

2.1 Detection of Breast Boundary and Pectoral Muscle

The first step of our approach is a pre-processing step that detects the breast
boundary and the pectoral muscle using a novel approach based on image seg-
mentation by multidimensional clustering of pixels, on optimized thresholding
to get an initial breast segmentation and on an object-based region-growing
technique to improve breast segmentation. The region-growing technique uses
gray-scale and gradient information to adjust the initial breast borders and to
avoid merging between the breast and adjacent background bright markings.

2.2 Computer Perception of Suspicious Opacities

The second step of our approach is to perform the computer perception of objects
of interest, i.e. of suspicious opacities. First, we remove the locally linear fine de-
tail structure using morphological algorithms and we filter the mammographic
image using anisotropic diffusion. Then, dense regions that include candidate
masses are localized and a clustering and morphology based segmentation algo-
rithm is applied to the smoothed mammography image to outline the shape of
candidate masses in mammograms. Finally, candidate masses are characterized
using standard shape features as well as photometric features that are invariant
to monotone transformations of the grey-level scale. The aim of such an invari-
ant representation is to efficiently process mammograms acquired and digitized
by various mammography devices.

2.3 Computer Classification of Suspicious Opacities

The third step is to perform the computer classification of objects of interest and
to decide if a suspicious opacity is a normal structure or a mass object. We use
an hybrid classification approach that integrates an initial unsupervised cluster-
ing and a parcimonious supervised classification. In our unsupervised CAD al-
gorithm, suspicious opacities are classified as suspect or not by using clustering
algorithms [3] and unsupervised semantic rules that allow to quickly eliminate
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the overwhelming majority of non-mass objects in a mammogram from any fur-
ther consideration. Then, our hybrid CAD algorithm integrates the unsupervised
CAD algorithm and a supervised classifier, in which a few expert supervised inter-
pretation rules are applied to further reduce the number of false detections and to
determine at each location in the mammogram if a mass object is present or not.

3 Experiments

3.1 Data

First database: In this work, we have used a first set of 100 mammograms
to test the performance of the detection method. These mammograms came
from a private database. This dataset included spiculated, circumscribed, low-
contrasted and subtle masses. All mammograms have been digitized at 50μm
and then subsampled to 200μm.

Second database: The second data set used in our experiments is the Digital
Database for Screening Mammography (DDSM) (Heath et al. [9]). Thirty nine
cases representing 156 images were selected and analyzed, each digitized on a
Howtek MultiRAD scanner and having at least one confirmed malignant mass.
The spatial resolution of the USF/DDSM images is 43.5 microns, with 12 bits per
pixel. Mammography images were subsampled to 174μm for computer detection
of masses. The image difficulty is characterized by American College of Radiology
(ACR) breast density ratings and a subtlety rating ranging from obvious (scale
5) to very subtle (scale 1).

3.2 Results

Hybrid detection of supra and infracentimetric masses: Our CAD algo-
rithm has been first applied to the analysis of 100 mammograms from the first
database containing 45 masses, divided into 5 training mammograms and 95
testing mammograms. Our hybrid detection algorithm has achieved a sensitivity
of 95% at a specificity level of 1.07 false positive per image. Even in dense mam-
mograms, the proposed CAD algorithm can still correctly detect subtle masses.
Furthermore, our mass segmentation algorithm correctly delineates 95.6% of the
lesions, without any oversegmentation. In comparison, the radial gradient index
and probabilistic segmentation algorithms proposed by Kupinski and Giger [13]
correctly delineates 92% and 96% of the lesions in their own database.

Unsupervised detection of supracentimetric masses: The detection of
supracentimetric masses has been performed using our unsupervised CAD algo-
rithm. Experimental results show a sensitivity of 93.9% (resp. 79.6%) at a false
positive rate of 1.02 (resp. 0.69) per image on 100 (resp. 156) images from the
private (resp. USF/DDSM) database. Hence, there are less false positives with
USF images, but more missed detections. This is because the USF database
contains more difficult cases, with less contrasted or barely perceptible masses.



72 M. Bruynooghe

Radiologists make errors that can be categorized into three types [7] : search,
detection and interpretation. Most errors are found to be the interpretative ones.
It is also true for our unsupervised CAD algorithm : masses that are initially
correctly detected may then be missed during classification of candidate masses,
and false positives are not enough eliminated. Nevertheless, remaining obvious
false positives should be easily eliminated using a statistical supervised classifier
in synergy with our unsupervised CAD algorithm.

Number Total Number of Number of True False
of number of supracentimetric detected positive positives

images masses masses masses rate per image
100 44 33 31 93.9% 1.02

Fig. 1. Detection scores of our unsupervised CAD algorithm for 100 images of the first
database when applied to the detection of supracentimetric masses

Subtlety Number Total Number of Number of True False
level of number of supracentimetric detected positive positives

(1 to 5) images masses masses masses rate per image
1 20 10 3 2 66.6% 0.65
2 28 14 7 4 57.1% 0.61
3 28 16 12 9 75.0% 0.54
4 36 19 11 8 72.7% 0.67
5 44 22 16 16 100.0% 0.89

1 to 5 156 91 49 39 79.6% 0.69

Fig. 2. Detection scores of our unsupervised CAD algorithm for 156 images of the
USF/DDSM database when applied to the detection of supracentimetric masses of
various subtlety levels varying from very subtle (level 1) to very obvious (level 5)

4 Discussion

4.1 Segmentation of Objects of Interest

Segmentation of objects of interest is one of the most difficult and common
challenges facing CAD systems, as pointed out by Allen et al. [1] who proposed
a normalized active contour technique to perform breast delineation or mass
segmentation. Their segmentation method uses a level-set implementation of
active contours and mimimizes an energy function. Each of the four energy terms
competes with the others and their relative strengths are determined by four
parameters whose optimal values may vary from one database to another one.
This is also true for the dynamic programming algorithm proposed by Timp et
al. [20] that minimizes a composite cost function. In contrast to these algorithms,
our segmentation algorithm does not require the estimation of such weighting
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Authors Publication Sensitivity False Positives Nb. of testing Database
Date Score per image images

Campanini et al. [5] 2004 80% 1.10 USF
Khan et al. [12] 2002 100% 1.40 30

Paquerault et al. [14] 2002 73% 1.00 338
Hatanaka et al. [8] 2001 97% 1.20 335

84% 1.49 1075
Sahiner et al. [19] 2001 80% 1.50

Mudigonda et al. [17] 2001 85% 2.45 56 MIAS
Lihua-Li et al. [16] 2001 68% 3.72 79
Petrick et al. [18] 2001 89% 2.00 253
Heath et al. [10] 2000 65% 1.75 246 MIAS

70% 1.60 160 USF
Bin-Zheng et al. [2] 1999 80% 0.76 433
te Brake et al. [4] 1999 75% 1.00 132

Our hybrid algorithm 2006 95% 1.07 95 Private
Our unsupervised 2006 93.9% 1.02 100 Private
CAD algorithm 79.6% 0.69 156 USF

Fig. 3. Performances of our two CAD algorithms compared to published detection
scores. Our detection specificity is better than by Campanini et al. [5] and Heath et al.
[10] who also used the USF/DDSM database.

parameters. Visual observation of segmented breasts and masses shows that it
generally produces acceptable segmentations. But, such a visual observation is
a subjective one and we project to later realize a performance evaluation of our
segmentation algorithm including a comparison to well known methods of breast
or mass segmentation.

4.2 Improvement of Detection Specificity and Sensitivity

Improving detection specificity without decreasing sensitivity is another difficult
challenge facing CAD systems. Most researchers detect masses using supervised
classification. False positives are eliminated using a supervised statistical classi-
fier, such as a neural network or a nearest neighbour classifier for example. In
this paper, we introduced a different approach based on unsupervised or hybrid
classification. Experimental results have demonstrated the potential of such an
approach to improve specificity scores. We will later introduce texture features,
add a second resolution level and use a complementary supervised classifier to
improve detection sensitivity without decreasing detection specificity.

4.3 Comparing Performances of Different CAD Algorithms

Our hybrid CAD algorithm has detected 95% of all supra and infracentime-
tric masses using the private database. With our unsupervised CAD algorithm,
93.9% (resp. 79.6%) of all supracentimetric masses were detected at a specificity
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level of 1.02 (resp. 0.69) false positive per image for mammograms of the private
and of the USF/DDSM databases. These detection performances are comparable
or slightly better than most of published scores. Furthermore, our detection
specificity is better than by Campanini et al. [5] and Heath et al. [10] who
also used the USF/DDSM database. Nevertheless, performances of various CAD
algorithms vary from one database to another one, as shown by published scores
as well as by our results. Comparing performances of different CAD algorithms
is generally problematic. This is because researchers almost always use their
own image database for evaluation [21]. The consequence is that it is difficult
to demonstrate that a new CAD algorithm makes a practical advance in the
state-of-art. To allow such a comparison, a large scale evaluation of our CAD
algorithm will be later performed using several publicly available databases.
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Abstract. The objective of the study was to assess the potential of a CAD de-
vice with computer aided classification capabilities to reduce interventional 
procedures for BI-RADS category 4A lesions. 113 such lesions (17 masses, 96 
clusters), forwarded for biopsy (103 benign) were analyzed retrospectively by a 
CAD device that generated descriptors. The device extracted quantitative fea-
tures characterizing the lesions by shape, margins, size and distribution. De-
scriptors taken from the BI-RADS lexicon for the appearance of the lesion were 
generated based on the values of the quantitative features. A paradigm based on 
the computer generated descriptors was developed to assist in assigning a level 
of suspicion. The paradigm deemed malignant, all 10 malignant cases of the 
study (100% sensitivity) and correctly classified 38 of the 103 benign lesions. 
The CAD-generated descriptors, thus, eliminated 36.9% of unnecessary biop-
sies without decreasing the sensitivity. 

1   Introduction 

Computer Aided Diagnosis (CAD) in mammography [1] has received FDA approval 
and entered the mainstream of clinical practice. Its exact role, however, has yet to be 
defined [2,3], and its widespread implementation is hindered by the relatively large 
number of false marks [4]. Also, the current generation of CAD systems serves only 
as a second reader, designed to avoid missed lesions [5], without offering the radiolo-
gist a second opinion regarding the nature of the finding. As with all screening tests, 
mammography is subject to a lack of specificity, which leads to further evaluation of 
suspicious findings [6]. The need for breast biopsy, frequently with benign results 
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[7,8], has both a financial and psychological cost, which can be cut by increasing the 
specificity of diagnosis in mammography. 

The addition of classification capabilities could potentially improve the efficacy of 
such systems by calculating the level of suspicion of any finding either detected by 
the first tier of the system, or considered suspicious by the radiologist. Several ma-
chine learning methods based on neural networks and Support Vector Machines have 
been applied for the classification of mammographic lesions [9,10]. It was found that 
for microcalcifications, a classifier based on kernel-based methods, such as Support 
Vector Machines and Kernel Fisher Discriminant, yielded a significantly better per-
formance than neural network [11].  

In this study a classification scheme, based on Kernel Fisher Discriminant, is de-
scribed, and its use is tested in a subdivision of BI-RADS category 4 cases with both 
benign and malignant pathologies. BI-RADS category 4 includes findings that do not 
have the classic appearance of malignancy but have a wide range of probability of 
malignancy. It is the most problematic and subjective category resulting in a high per-
centage of benign biopsies. Category 4A is a subdivision, which includes findings 
with the lowest level of suspicion, for which interventional procedures are neverthe-
less still recommended. It has been shown that the BI-RADS descriptor categories 
stratify suspicious micro-calcifications appropriately into intermediate and higher 
probability of malignancy groups [12]. In this study, an attempt was made to further 
refine which lesions in this BI-RADS category, in fact, should be sent for biopsy, by 
the use of computerized descriptors reflecting the appearance of the lesions in the 
mammogram. The descriptors generated by the CAD device are similar to those used 
by the BI-RADS lexicon and are familiar to the radiologist. 

2   Methods and Material 

One hundred and nine cases with 113 lesions (17 masses, 96 clusters) were retrospec-
tively culled from the archives of a university-affiliated facility. All the cases had 
been prospectively assigned BI-RADS 4A and forwarded for stereo-tactic biopsy. The 
mean age of the patients was 54.1 ± 8.6 years (range 33–72). The Institutional Review 
Board at the institution approved the use of these cases for the study, and did not re-
quire informed consent because the study was retrospective and patient anonymity 
was strictly enforced in all aspects of the study. Of the 113 BI-RADS category 4A le-
sions, 15 masses and 88 clusters proved to be benign at pathology.  

The mammograms of the 109 cases were digitized at high resolution (600 dpi, 12 
bit) by a prototype CAD device developed by Siemens CAD, Israel [13,14] and the 
digital images were displayed on the computer screen for further analysis. All 113 le-
sions were analyzed retrospectively by a radiologist using the CAD device with clas-
sification capabilities. The radiologist interactively defined an ellipse encompassing 
the lesion, on the digital image, and activated the classification algorithm. 

For mass lesions the CAD device automatically extracted quantitative features that 
characterized the mass encompassed by the ellipse. These features characterized the 
masses by their shape, definition of margins and speculation. Speculation was consid-
ered to be a structure composed of lines radiating from a centroid, rather than a saw-
tooth border of a lesion with a distinct margin. Therefore, this analysis could also be 
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applied to areas of architectural distortion, to focal asymmetries, to masses that appeared 
smoothly marginated, and to masses in which the margins were partially obscured.  

For clusters of micro-calcifications, the CAD device automatically highlighted, in 
the first stage, an initial selection of potential micro-calcifications within the ellipse 
encompassing the cluster. The algorithm then allowed the radiologist to alter target 
selection, by modifying two detection filters in order to include only appropriate 
bright spots, which represent calcifications. The new selection of targets was updated 
in real time on the computer screen, and once the radiologist was satisfied with the se-
lection of targets, the algorithm proceeded with automated extraction of features that 
characterize the cluster encompassed by the ellipse. For clusters two groups of fea-
tures are automatically extracted by the computer as described in detail elsewhere 
[15]. The features in the first group reflect the shape, size and brightness of the indi-
vidual micro-calcifications and those in the second group reflect the distribution of 
the calcifications within the cluster and cluster geometry.  

Based on the extracted quantitative features, the classification algorithm, in the 
second stage, automatically generates descriptors taken from the BI-RADS lexicon, 
reflecting the appearance of the lesions in the mammogram. Descriptors that illustrate 
the appearance of a benign lesion are generated when low numerical values are ob-
tained for the extracted features and descriptors that illustrate malignant lesions are 
generated when high values are obtained for the extracted features. The cut-point val-
ues for defining high and low numerical values for each of the extracted features were 
determined by the use of a separate training database with proven pathology results, 
which did not include any of the 109 cases described in the present study. The train-
ing database consisted of 500 cases of mammographically detected lesions with 
proven pathology, that were retrospectively collected from the archives of four other 
university-affiliated facilities, not including the facility from which the study cases 
were obtained. This database consisted of 289 mass lesions (161 malignant, 128 be-
nign) and 211 clusters of micro-calcifications (94 malignant, 117 benign). 

Figure 1 displays the descriptors that are generated by the classification algorithm 
for mass lesions based on their shape, margins and spiculation. The descriptors high-
lighted in white are generated for features with low values and describe the appear-
ance of benign masses, while those highlighted in grey are generated for features with 
high values and describe the appearance of malignant masses. 

The CAD-generated BI-RAD descriptors are displayed to the user for further as-
sessment of the finding, as displayed in the example of a malignant mass in Figure 2. 

For clusters, two sets of descriptors are generated by the CAD device. Figure 3 de-
scribes the first set of descriptors that are generated by the classification algorithm 
based on the appearance of individual calcifications in the lesion. Figure 4 describes 
the second set of descriptors that are based on the distribution of the calcifications 
within the cluster. The descriptors highlighted in white are generated for features with 
low values and describe the appearance of benign clusters, while those highlighted in 
grey are generated for features with high values and describe malignant masses. 

A lesion is often assigned a combination of descriptors, some reflecting a benign 
appearance and some reflecting a malignant appearance, and then the resulting course 
of action is still to be defined. A paradigm was developed to assist the radiologist in 
assigning a level of suspicion, based on the computer generated descriptors. Accord-
ing to the paradigm a mass was considered benign if there was no evidence of  
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Fig. 1. BI-RADS descriptors generated by the CAD device for masses, based on their shape, 
margins and spiculation 

 

Fig. 2. The CAD-generated BI-RAD descriptors displayed to the user for a malignant mass 

spiculation or if the mass was rounded and well circumscribed. Otherwise the mass 
was assigned a high level of suspicion and considered malignant. According to the para-
digm developed for clusters, a cluster was considered benign, if the calcifications were not 
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Fig. 3. BI-RADS descriptors generated by the CAD device for clusters, based on the appear-
ance of individual calcifications 
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Fig. 4. BI-RADS descriptors generated by the CAD device for clusters, based on the distribu-
tion of the calcifications in the cluster 

tightly clustered or if all the other 5 descriptors for the cluster reflected typically benign 
calcifications. In the latter category the calcifications are not amorphous, not branching 
nor fine-linear, not pleomorphic in shape, not segmental in distribution and the cluster is 
not of high density. Otherwise the cluster was considered malignant. 

The advanced classification scheme generated descriptors characterizing all the 
113 BI-RADS category 4A lesions included in the present study and the level of sus-
picion assigned by the paradigm based on the computer generated descriptors was 
compared with the pathology outcome of each lesion. 

3   Results 

According ACR BI-RADS suggestions, in all Category 4A lesions, biopsy should be 
considered, and the patient and her physician should make an informed decision on the 
ultimate course of action. All the BI-RADS Category 4A lesions, in this study were 
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forwarded for biopsy. Table 1 displays the results of the conventional interpretation ver-
sus the pathology outcome.  As can be realized from Table 1, the conventional interpre-
tation resulted for BI-RADS Category 4A lesions, in a Sensitivity of 100%, a Specificity 
of 0%, a Positive Predictive Value (PPV) of 8.8% and an overall accuracy of 8.8%. 

Table 1. Results of the conventional interpretation of the BI-RADS Category 4A lesions 

  Conventional Interpretation  

  + - Total 

Pathology 
+ 10 0 10 

Results - 103 0 103 

 Total 113 0 113 

 
Table 2 displays the results of the computerized analysis, based on the CAD-

generated descriptors, versus the pathology outcome. The paradigm, based on the 
CAD-generated BI-RADS descriptors, deemed malignant, all the 10 malignant BI-
RADS Category 4A lesions, included in the study, yielding a sensitivity of 100% for 
that category. Of the 103 benign lesions, the computerized descriptors correctly clas-
sified 38 benign cases, yielding a specificity of 36.9% for BI-RADS Category 4A le-
sions. Of the 15 benign masses in the BI-RADS 4A Category, the paradigm deemed 
12 masses benign, yielding a specificity of 80% for masses. Of the 88 benign clusters 
in the BI-RADS 4A Category, the paradigm deemed 26 clusters benign, yielding a 
specificity of 30% for clusters. The paradigm, based on the CAD-generated BI-RADS 
descriptors, yielded a Positive Predictive Value (PPV) of 13.3% and an overall accu-
racy of 42.5%, for the BI-RADS 4A Category lesions. 

Figure 5 displays the performance of the paradigm based on the BI-RADS descrip-
tors derived from the computer extracted quantitative features, compared to the results 
of the conventional assessment. This figure demonstrates the increase in the PPV and 
in the accuracy of diagnosis, caused by the use of the classification scheme, without 
any loss of sensitivity. 

Table 2. Results of the computerized analysis, based on the CAD-generated descriptors, versus 
the pathology outcome. In this analysis the lesions were considered benign or malignant ac-
cording to the outcome of the paradigm, using the BI-RADS descriptors. 

 
 

 Computerized analysis based 
on CAD-generated descriptors 

 

  + - Total 

Pathology
+ 10 0 10 

Results - 65 38 103 

 Total 75 38 113 
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Fig. 5. The performance of the computerized analysis, compared to the conventional assessment 

4   Conclusion 

BI-RADS category 4A includes findings with the lowest level of suspicion, for which 
interventional procedures are, nevertheless still recommended. A very high percent-
age of biopsies performed in this category, results in a benign outcome. This study 
was performed to explore the hypothesis that computerized classification of the le-
sions in this category can reduce the number of unnecessary biopsies without affect-
ing the sensitivity of diagnosis.  

The use of a computerized analysis, based on BI-RADS descriptors generated by 
the CAD device, for BI-RADS 4A lesions, significantly increased the accuracy of di-
agnosis, from 8.8% to 42.5%, compared to conventional interpretation. The paradigm 
developed to assist the radiologist in establishing a course of action, based on the 
computer generated descriptors, eliminated 36.9% of unnecessary biopsies without 
decreasing the sensitivity. The paradigm for interpreting a finding based on these de-
scriptors may well assist the radiologist in the complex task of assessing BI-RADS 
category 4A lesions. 
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Abstract. Computer aided detection systems for mammography typically use
standard classification algorithms from machine learning for detecting lesions.
However, these general purpose learning algorithms make implicit assumptions
that are commonly violated in CAD problems. We propose a new ensemble al-
gorithm that explicitly accounts for the small fraction of outlier images which
tend to produce a large number of false positives. A bootstrapping procedure is
used to ensure that the candidates from these outlier images do not skew the sta-
tistical properties of the training samples. Experimental studies on the detection
of clusters of micro-calcifications indicate that the proposed method significantly
outperforms a state-of-the-art general purpose method for designing classifiers
(SVM), in terms of FROC curves on a hold out test set.

1 Introduction

In computer aided diagnosis (CAD) applications the goal is to detect structures of in-
terest to physicians in medical images: e.g. to identify potentially malignant lesions in
mammography. In an almost universal paradigm, this problem is addressed by a 3 stage
system: identification of potentially unhealthy candidate regions of interest (ROI) from
a medical image, computation of descriptive features for each candidate, and classifica-
tion of each candidate (e.g. normal or diseased) based on its features.

This paper focusses on automatic algorithms for designing (i.e. learning) pattern
classifiers for the third stage. Automatic learning algorithms are an important part of
the modern methodology for efficiently designing computer aided diagnostic products.
Besides improving the diagnostic accuracy, these technologies greatly reduce the time
required to develop algorithms that act as “second readers”.

In the context of computer aided mammography, many standard algorithms (e.g.
support vector machines, Back-propagation for Neural Nets, Kernel Fisher Discrimi-
nants) have been used to learn classifiers for detecting malignant lesions in computer
aided mammography [1, 2, 3]. However, these general purpose learning methods make
implicit assumptions that are commonly violated in CAD applications, often resulting
in sub-optimal prediction accuracy for the classifiers that they learn. For example, these
methods almost universally assume that the training samples are independently drawn
from an identical—albeit unobservable—underlying distribution (i.i.d. assumption).

Susan M. Astley et al. (Eds.): IWDM 2006, LNCS 4046, pp. 84–91, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We propose a new ensemble algorithm that is designed to improve the classification
accuracy. This algorithm explicitly accounts for the fact that a set of outlier images
tend to produce a large number of false (true) positives in the training set used to learn
classifiers, whereas many other images only contribute relatively few positive (negative)
samples each. A bootstrapping procedure is used to ensure that the candidates from
these outlier images do not skew the statistical properties of the training set.

When we learnt a classifier using a standard state-of-the-art method—support vector
machine (SVM)—for detecting clusters of micro-calcs, the resulting system performed
(generalized) poorly on a hold out set of test samples, in terms of per-image sensitivity
& per-patient sensitivity. By contrast, the proposed methods significantly improved the
ROC curves, especially in the operating region of interest (around 0.2 FP per image).

The rest of the paper is organized as follows. Section 2 highlights some of the as-
sumptions that underly almost all algorithms for learning pattern classifiers, and in-
dicates why some of them may be inappropriate for CAD. Based on this analysis,
Section 3 develops a novel method for learning classifiers that detect clusters of mi-
crocalcifications. Experimental results are provided in Section 4. We conclude with a
discussion of the broader applicability of the proposed algorithm and some ideas for
future extensions in Section 5.

2 Common Assumptions While Learning Pattern Classifiers

2.1 Creation of the Training Data

During the design of a CAD system, considerable human intervention and domain
knowledge engineering is employed in the first two stages of a CAD system for (a)
candidate generation (CG): identifying all potentially suspicious regions in a candidate
generation stage with very high sensitivity, and (b) feature-extraction: description of
each such region quantitatively using a set of medically relevant features. For exam-
ple quantitative measurements based on texture, shape, intensity and contrast and other
such characteristics may be used to characterize any region of interest (ROI). Subse-
quently, for learning the classifier to be used in the third stage, a training dataset is
created by obtaining features which describe each candidate ROI in the training im-
ages, and class labels are assigned to them based upon the overlap and/or distance from
any radiologist-marked (diseased) region.

2.2 Characteristic Properties of the Data

A few important characteristics of the data are relevant for designing classifiers that
generalize well. First, there is a form of stochastic dependence between the labeling
errors of a group of candidates, all of which are spatially proximate to the same radi-
ologist mark. Further, the features used to describe spatially adjacent or overlapping
samples are also highly correlated. As a result, both the labels and the features for the
training samples from an image tend to be highly correlated: the inter sample correlation
is particularly high for spatially adjacent candidates.

Second, some types of biological or image structures tend to be identified much
more often by CG algorithms in the form of many spatially adjacent candidates. This
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introduces a sampling bias in the training dataset: i.e. the CG algorithm tends to have
varying levels of sensitivity to different type of structures. Also, some training images
tend to contain far more false positive candidates as compared to the rest of the training
database, due to noise or various imaging artifacts present in them.

2.3 Shortcomings in Standard Classification Algorithms

In the CAD literature, many machine learning algorithms—such as neural networks,
support vector machines (SVM), and Fisher’s linear discriminant—have been em-
ployed to train classifiers. However, almost all the standard methods for classifier design
explicitly make certain assumptions that are violated by the somewhat special charac-
teristics of the data as discussed above.

In particular, most of the algorithms assume that the training samples or instances
are drawn identically and independently from an underlying (unknown) distribution.
However, as mentioned above, due to spatial adjacency of the regions identified by a
candidate generator, both the features and the class labels of several adjacent training
candidates are highly correlated.

Further, the standard methods for classifier design implicitly assume that the appro-
priate measure for evaluating the classifier is based only on the accuracy of the system
on a per-lesion basis. In other words, these algorithms try to most correctly classify each
candidate from the CG algorithm; they do not account for the sampling bias introduced
by the common tendency of CG algorithms to produce more candidates corresponding
to certain types of structures and fewer candidates corresponding to others.

The appropriate measure of accuracy for evaluating a CAD system is different from
the standard measures that are optimized by conventional classifiers. In particular, even
if one of the candidates that refers to the underlying malignant structure is correctly
highlighted to the radiologist, the lesion is detected. Thus, correct classification of every
candidate instance is not as important as the ability to detect at least one candidate
that points to a malignant lesion. At another level, in many CAD problems it is even
more relevant to measure the accuracy in terms of FROC curves plotting the per-patient
sensitivity—the fraction of diseased patients correctly identified by the system—versus
the rate of false positives per patient.

These considerations motivated the development of a novel algorithm for learning
ensemble classifiers in an effort to adjust for the sampling bias of the CG algorithm and
the correlations between subsets of samples for the same image or patient.

3 Learning Ensemble Classifiers for CAD Using Bagging

Instead of learning a single classifier, we learn a set (ensemble) of k classifiers. The final
prediction of the ensemble is obtained by weighted voting, i.e. the final prediction is
obtained by averaging the predictions of the classifiers in the ensemble. Furthermore, in
order to promote diversity in the ensemble, we use the technique known as bagging [4],
where each classifier is trained on a random redistribution of the training set. In our case,
each classifier’s training set is generated by randomly drawing, without replacement,
N+ positive examples and N− negative examples from the original training set.

Most machine learning algorithms tend to be biased toward the majority class when
provided with a very unbalanced training set, i.e. the number of negatives samples (false
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positive candidates) is much larger that the number of positive samples. In order to
address this issue and to reduce computational complexity, for each of the classifiers
in the ensemble we chose N− to be a relatively smaller number (N− = 1000 was
chosen by tuning in our experiments). The number of positives N+ was chosen as a
function of the number of positive images in the training set. For each positive image
in the training set only i positive samples were randomly chosen from all the positive
candidates in the image.

Each one of the linear classifiers in the ensemble is obtained using the Relevance
Vector Machine algorithm (RVM) [5]. RVM is a Bayesian formulation for learning
logistic regression classifiers. It relies on a form of automatic relevance determination
(ARD) to select a small subset of diagnostically useful features while simultaneously
learning a linear classifier. Enforcing each member of the ensemble to depend on a
small number of features also promotes diversity of the ensemble since each classifier
tends to make predictions based on different features.

Next, we present our proposed algorithm to learn an ensemble classifier for detecting
clusters of micro-calcifications from digital mammograms:

Algorithm 1. BuildEnsemble return: W =
[
w1, . . . , wnc

]
:

0. Given
– the number nc that defines the number of classifiers in the ensemble.
– The training set comprised of a matrix A ∈ Rm×n (m is the number of points

and n is the number of input features and the vector l ∈ {1,−1}m containing
the labels.

– The number of positive points N+ and negative points N− to be randomly
selected to train each one of the nc classifiers members of the ensemble.

1. initialize k = 0
2. If k = nc, stop, return the matrix W ∈ Rn×nc hyperplane coefficients W =[

w1, . . . , wnc
]

3. otherwise, generate training set for classifier k by randomly drawing, without re-
placement, N+ positive examples and N− negative examples from the original
training set.

4. Obtain the coefficients wk for classifier k using a general purpose RVM classifier.
5. do k = k + 1; go to step 2.

Given an unseen sample (column vector) x ∈ Rn, the final ensemble classifier pre-
diction is given by:

pred(x) =
1
nc

nc∑
k=1

1
1 + exp(−xT wk)

.

4 Experiments

Our numerical experiments were performed in a dataset consisting of 37098 microcal-
cification clusters candidates extracted from 1891 digitized film-screen mammography
(FSM) images belonging to 621 cases (242 Malignant and 379 normals). Each candi-
date consists of a vector of 1051 descriptors or features that were extracted from the
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microcalcification clusters candidates based on shape, texture, density , etc. The im-
ages of all the cases were digitized at high resolution (600 dpi, 12 bit) by a prototype
CAD device developed by Siemens CAD, Israel. In order to validate the generalization
performance of the proposed system, the available 621 cases were randomly divided
into two subsets:

– A training set comprised of 945 images from 311 cases (190 normals and 121
malignants). 744 of the The 945 images belong to the normal cases (normal images)
and the remaining 201 images belong to the malign cases. The total number of
candidates (generated by the CG algorithm) in the training set is 18459, only 443
of these candidates are real microcalcification clusters, the remaining 18016 are
false positives.

– A testing or validation set comprised of 946 images from 310 cases (189 normals
and 121 malignants). 754 of the The 946 images belong to the normal cases (nor-
mal images) and the remaining 192 images belong to the malign cases. The total
number of candidates in the training set is 18639; 462 of these candidates are real
microcalcification clusters, the remaining 18177 are false positives.
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Fig. 1. Histograms for all the candidates, malignant candidates only, and for normal candidates.
Notice that some of the outlier images in both the training and the testing set have an unusually
large number of positive and negative candidates.
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The number of positive candidates to be randomly chosen from each positive image
is denoted as i. Therefore, the final number of positive candidates depends on the choice
of i and the number of positive images. Since our training set contains 201 malignant
images, when i = 2, this results in randomly choosing up to 402 positive candidates
to be included in the training set. In other words,up to 2 candidates were chosen from
each malignant image; some images may not have 2 positive clusters, in that case only
one was picked. Our choice of i = 1 gave the best results. The number of classifiers in
the ensemble k was empirically fixed to 101.

The idea behind this positive samples sampling scheme is to drive the ensemble clas-
sifier performance to be optimized to maximize the sensitivity per image instead of sen-
sitivity per individual cluster. In other words, by sampling positive clusters uniformly
across all the positive images, the classifier gets to learn a more heterogeneous concept
of malignant clusters. By using all the positives candidates, the classifier may get bi-
ased by some of the rare images with an unusually large number of positive candidates
(see Figure 1). These outlier images are not representative of the general population of
positive images.

4.1 Comparison to a Standard SVM

We compared the accuracy of our algorithm against an efficient implementation of a
SVM [6]. Since SVMs have a tuning parameter—the tradeoff between the accuracy
and the regularization terms—we used cross-validation to select it based on the train-
ing set. Although most conventional methods for classifier design focus exclusively on
maximizing accuracy at a cluster level, CAD applications are frequently evaluated in
different terms. It is clinically important to also measure: (a) sensitivity while detecting
images with malignant clusters; and (b) sensitivity while detecting patients with malig-
nant clusters). Figures 2,3 and 4 show that our proposed method is considerable more
robust and generalize better on the unseen data at all levels (per cluster, per image and
per patient respectively).
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Fig. 2. Comparisons of a SVM and the proposed ensemble for cluster detection
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Fig. 3. Comparisons of a SVM and the proposed ensemble for correctly detecting at least one
malignant cluster in an image (with a malignant cluster)
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Fig. 4. Comparisons of a SVM and the proposed ensemble for correctly detecting at least one
malignant cluster in a patient (with a malignant cluster)

As can be seen in these figures, at the 0.15 FP/image level our ensemble method
obtained:

– 66.5% testing set sensitivity at the cluster level compared to 62.3% testing set sen-
sitivity obtained by the SVM algorithm.

– 88.8% testing set sensitivity at the image level compared to 79.5% testing set sen-
sitivity obtained by the SVM algorithm.

– 100.0% testing set sensitivity at the patient level compared to 95.0% testing set
sensitivity obtained by the SVM algorithm.

5 Discussions and Future Work

Most researchers in computer aided diagnosis have assumed that the training data for
learning classifiers satisfies some general assumptions like sample independence, and
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an identical distribution for all patients. Hence, many previously published papers in
the mammography literature use general purpose algorithms to learn classifiers without
acknowledging that their assumptions are commonly violated in CAD applications.

In this paper, we highlighted several characteristics of the data that make the use of
standard algorithms inappropriate in digital mammography, e.g. samples from the same
patient are strongly correlated. Further, all training samples are not drawn from the
same (identical) distribution, e.g. the distribution of samples drawn from a very dense
breast is clearly different from the samples drawn from a fatty breast. The results of this
article show that explicitly accounting for these factors can improve the sensitivity and
decrease the number of false positives per case, leading to a real clinical benefit. This
improvement is particularly significant on an independent test set, especially in terms
of per-image and per-patient sensitivity.

Nevertheless, even further gains in accuracy may be achievable by improving the sta-
tistical models for the data that are employed while learning these classifiers. Although
our current model ignores this, in future work we intend to explicitly account for the
fact that the correlation between samples is a function of the spatial distance between
them. We are also investigating models that account for the fact that samples from the
same patient are also correlated though they may be from different images.
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Abstract. We performed a reading session to examine the validity of computer- 
aided detection for mammograms using a 3-megapixel liquid crystal display 
(LCD). Digital mammograms of 225 patients (ROLAD M-IV and FCR9000, 100 
μ/pixel), were divided into 3 data sets (each set consisting of 75 patients, 
including 30 with pathologically proven breast cancer) for this reading session. 
Fifteen physicians interpreted these three data set using 3 different imaging 
modalities; hard copy, LCD without computer-aided detection (CAD), and LCD 
with CAD.  Then they categorized the images into 4 ranks according to the 
confidential levels of cancer. Sensitivity and specificity were calculated 
individually for each of the 3 different modalities, and then ROC analysis was 
performed. The sensitivity, specificity, and Az values showed no significant 
differences between LCD with out CAD and hard copy. Also, no significant 
differences were found between LCD with CAD and the other modalities for 
these 3 values. The results of this study indicate that it is reasonable to use a 
3-megapixel LCD for interpretation of digital mammograms instead of 
conventional hard copy. Nevertheless, because the usefulness of the CAD system 
has not been fully ascertained, further studies are required. 

1   Background 

The morbidity and mortality rate of breast cancer in Japan are showing a tendency to 
increase. Since early detection of breast cancer is essential to decrease deaths from this 
disease, the importance of screening for breast cancer by mammography (MMG) is 
currently emphasized.  Therefore, MMG will be introduced for breast cancer screening 
and the frequency of reading mammograms will increase rapidly as a result.  However, it 
is feared that the number of interpreters specializing in diagnosis of mammograms will 
not be adequate to cope with such a rapid increase in demand.  On the other hand, it has 
been reported that the false-negative rate of MMG for breast cancer screening is above 
the acceptable range.  Since the quality of image interpretation largely depends on the 
training, experience, and diligence of the interpreter performing the task, it is important 
to develop an image reading system that can cope with such a rapid increase in the 
frequency of reading mammograms, while ensuring the high quality of interpretation. 
                                                           
* Corresponding author. E-mail address is ykuroki@east.ncc.go.jp 
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Computer-aided detection (CAD) is one of the methods that can be used to solve this 
problem. Computer technology has made rapid advances in recent years, and CAD has 
been reported to be useful for cancer screening by chest CT.  Application of CAD to 
MMG has been performed clinically since the U.S. Food and Drug Administration 
approved the first commercial CAD system in 1998.  Digitization of information is 
essential for the use of CAD, and 2 methods are available for this purpose, which are 1) 
the digitization of conventional radiographic films and 2) direct use of digital data 
obtained by digital radiography, including computed radiography (CR).  The diagnostic 
accuracy of MMG performed with CR (CR-MMG) is adequate in the case of hard copy.  
However, to use a system employing CAD more efficiently, it is obvious that a liquid 
crystal display (LCD) should be employed instead of the hard copy.  However, it is 
necessary that the accuracy of image interpretation using LCD should be equal to that 
of using hard copy.  In the present study, we performed a large-scale reading session to 
compare the diagnostic accuracy between LCD and hard copy in order to investigate 
the usefulness of a CR-MMG CAD system. 

2   Materials and Methods 

At the National Cancer Center Hospital East, CR-MMG was performed in 1,300 
patients over 1 year from 1998 to 1999 using LORAD M-IV () and FCR9000 (Fuji 
Photo Film, Tokyo, Japan).  The sampling size was 0.1 mm.  From these 1,300 patients, 
90 patients with pathologically confirmed breast cancers ( 20 mm) and 135 patients 
without breast cancer based on pathological examination or follow-up were selected.  
These 90 breast cancer patients and 135 patients without breast cancer (225 patients in 
total) were divided into 3 data sets, each of which comprised 75 patients including 30 
with breast cancer.  During the process of obtaining patients for the data sets, patients 
for whom it was excessively difficult to make a diagnosis and patients whose images 
were not obtained in adequate body positions were excluded by consensus between 3 
radiologists who were experienced in reading mammograms, so that the difficulty of 
diagnosis was equalized among the data sets.  Patients with bilateral breast cancer and a 
history of prior treatment for breast cancer were also excluded. 

The LCD used for this reading session was an SL-IC300G (Fuji Photo Film, Tokyo, 
Japan).  This was a so-called 3-megapixel LCD with a matrix of 2,048 × 1,536 pixels.  
The pixel size was 0.207 mm, the brightness was 500 cd/m2, the contrast ratio was 
600:1, and the gray scale resolution was 766.  When reading the images, increasing the 
magnification and changing the window level/window width were possible. As the 
hard copy for this reading session, laser prints from a DryPix7000 (Fuji Photo Film, 
Tokyo, Japan) and DI-AL films (Fuji Photo Film, Tokyo, Japan) were used. We 
employed 12 bit D/A conversion, 0.05 mm writing, and 3.6 Dmax. For the 
characteristic curve of CR, pure T-gradation and pattern enhancement processing for 
mammography (PEM) were combined.   

The CAD software used for this reading session was developed jointly by Tokyo 
University of Agriculture and Technology, Fuji Photo Film Co., Ltd., and us. Image 
data were transmitted directly from the FCR9000 to a computer for CAD. Candidate 
regions of tumor masses and microcalcifications were calculated separately using 
different programs. These regions were indicated with arrows and rectangles for 
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masses and microcalcifications, respectively, on the LCD display.  Approximately 2 
minutes was required for assessment of 4 images from 1 patient.  The performance of 
CAD with data sets used for this reading session was as follows; true positive rate of 
91.5% (83% for masses and 100% for microcalcifications), and false positive of 
2.8/case (1.4/case for masses and microcalcifications).   

A total of 4 images obtained from each patient were used for this reading session.  
These were bilateral mediolateral oblique and craniocaudal views.  The 3 data sets, 
each of which contained 75 patients including breast cancer patients, were assigned at 
random to 1 of 3 modalities: hard copy, LCD without CAD, and LCD with CAD.  
Images were diagnosed by 15 interpreteres qualified for MMG assessment who did not 
know the results.  Before the image reading session, they received training in use of 
CAD for approximately 30 min with images of 10 patients who were not included in 
any of the data sets used for this session.  In addition, they were given an explanation of 
the estimated number of breast cancer patients included in each data set and the 
performance of CAD.  Each interpreter interpreted 900 films obtained from the 225 
subjects with no duplications. 

During image reading, the site of a suspected lesion was marked on the test paper, and 
the confidential level of cancer was expressed using the following 4 ranks; confidential 
level (0) “no cancer (no mark),” confidential level (1) “possible cancer,” confidential 
level (2) “probable cancer,” and confidential level (3) “definite cancer.”  Based on these 
confidential levels, ROC analysis was performed using ROCkit as software.  Confidential 
levels (0) and (1) were considered negative, while confidential levels (2) and (3) were 
regarded as positive when performing the calculation of sensitivity and specificity.  The 
imaging findings suggestive of breast cancer were classified as a mass lesions pattern, a 
microcalcifications pattern, and a mass lesions plus microcalcifications pattern. Then the 
mass lesions pattern was further classified as a typical mass lesions pattern and a FAD or 
architectural distortion (AD) pattern.  Sensitivity of image interpretation was compared 
between LCD with CAD or without CAD. 

3   Results 

In the whole subjects, the sensitivity value was 0.64 for hard copy, 0.64 for LCD, and 
0.59 for CAD.  The specificity value was 0.95 for hard copy, 0.96 for LCD, and 0.97 for 
CAD.  The Az value was 0.89 for hard copy, 0.90 for LCD, and 0.91 for CAD.  There 
were no significant differences in the sensitivity, specificity, or Az values among the 
modalities used. 

 
Overall results of three modalities 

Modality Az value Sensitivity Specificity 
Hard copy 0.89 0.64 0.95 

LCD without CAD 0.90 0.64 0.96 
LCD with CAD 0.91 0.59 0.97 

 
Breast cancer was detected in 174 images.  A mass lesions pattern was noted in 136 

images, while a microcalcifications pattern and a mass lesions plus microcalcifications 
pattern (CALC) were seen in the other 38 images.  A mass lesions pattern was classified 
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as typical mass lesions pattern (MASS) and a FAD or AD pattern (FAD/AD) noted in 
75 images and 61 images, respectively.  The table shows the relationship of each 
detection patterns by CAD and the sensitivity of each modality. 

 
Correlation of sensitivity and modalities in MASS 

Modality CAD positive CAD negative 
LCD without CAD 0.95 0.40 

LCD with CAD 0.93 0.30 
 

Correlation of sensitivity and modalities in FAD/AD 

Modality CAD positive CAD negative 
LCD without CAD 0.65 0.42 

LCD with CAD 0.72 0.29 
 

Correlation of sensitivity and modalities in CAL 

Modality CAD positive CAD negative 
LCD without CAD 0.90 1.00 

LCD with CAD 0.93 0.60 
 

When we paid our attention to cases that CAD could point out lesions accurately 
(CAD positive), regardless of employment of CAD, sensitivity had no statistic 
difference about MASS, FAD/AD, neither of CALC. On the other hand, in cases of 
CAD could not point out lesions accurately (CAD negative), when CAD was 
employed, we understood that sensitivity was low statistically about FAD/AD, though 
there was no difference about MASS. Also when CAD failed to indicate 
microcalcifications, interpreters tend to overlook it. 

4   Discussion 

Introduction of CAD is considered essential for coping with an increase in the number of 
subjects undergoing MMG for breast cancer screening in the future and for ensuring the 
quality of mammogram interpretation.  There is little doubt that Interpretation with CAD 
by using LCD is the most appropriate combination for efficient application of CAD. 

As a prerequisite for image reading by LCD, it was necessary to confirm that the 
diagnostic accuracy of LCD was at least as high as that obtained with conventional hard 
copy.  In the present study, the 3-megapixel LCD was clearly inferior to hard copy with 
regard to resolution and gray scale resolution, but there were no significant differences 
of Az value, sensitivity, or specificity between the two modalities. This was 
presumably because LCD images could be change imaging parameters such as window 
level/width and magnified ratio appropriately and enhanced by image processing 
techniques including PEM for the diagnosis of microcalcifications. Since CAD is 
excellent for detection of microcalcifications, a combination of CAD and LCD with 
image processing techniques and magnification may be very useful for the diagnosis of 
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microcalcifications. For the diagnosis of mass lesions, it appears that the interpreters 
could make up for the disadvantage of lower gray scale resolution by adjusting the 
window level/width of LCD. Since the density of mammary glands varies in each 
patient, it is more appropriate to perform image reading while adjusting the window 
level/width according to the density of the mammary glands in each patient than with 
fixed settings as in hard copy. Owing to these characteristics of LCD, its diagnostic 
accuracy was presumably as high as that of hard copy despite the disadvantages of 
lower resolution and gray scale resolution. 

In the present study, the Az value and specificity of CAD tended to be higher than 
those of LCD and hard copy, but no statistically significant differences were noted 
among the three modalities. When detection by CAD and its sensitivity were 
investigated in detail, there were no significant differences of sensitivity between the 
modalities in relation to the detection of typical mass lesions and microcalcifications 
for which diagnosis was relatively easy. On the other hand, in the FAD or AD group in 
which diagnosis was difficult, there were no significant differences of sensitivity 
between the modalities when candidate lesions could be indicated by CAD, while the 
sensitivity of CAD was significantly lower than that of LCD when candidate lesions 
could not be indicated by CAD.  These results suggest that the interpreters tended to 
place too much confidence in the results of CAD when diagnosis was relatively 
difficult. CAD should not be regarded as a second interpreter, but should be used to 
prevent overlook. However, in the present study, the interpreters presumably used 
CAD as another interpreter and depended on its results when they had difficulty in 
making a diagnosis, in result CAD was not used appropriately. Prior to using CAD, 
interpreters should be given a full explanation of its performance and appropriate use 
and should be trained so that they can use it appropriately. It is conceivable that the 
inappropriate use of CAD was one of the causes of failure to statistically confirm its 
usefulness in the present reading session. Further studies will be necessary to define the 
value of CAD, including training methods for its appropriate use. 

5   Conclusion 

It was confirmed statistically by the present study that the diagnostic accuracy of 
3-megapixel LCD was as high as that of interpreting conventional hard copy. The 
usefulness of CAD was not confirmed statistically, presumably because of insufficient 
training of the interpreters. It is therefore necessary to conduct further studies on the 
value of CAD, including training methods for appropriate using CAD. 
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Abstract. Computer-aided detection (CAD) systems place prompts in digital 
images to attract readers’ attention to potential malignancies. A reader must 
then decide whether or not prompted regions correspond to genuine 
abnormalities and has the option of disregarding falsely prompted regions.  In 
this paper we investigate different readers’ performance with CAD in the 
context of breast screening. In a retrospective study, eight consultant 
radiologists each read over 1000 screening mammograms comprising normal 
cases, screen detected cancer cases and cases that were detected as cancers 
subsequently. We present their results in terms of cancer detection and recall 
rates, and relate this to their previous experience of film reading. Our results 
show that the detection of cancers did not differ significantly between readers, 
although more experienced film readers were less likely to recommend that 
normal cases should be recalled.  

1   Introduction 

Computer-aided detection (CAD) systems can be used to prompt abnormalities that 
might otherwise be overlooked by a film reader [1]. In order to achieve sufficient 
sensitivity to genuine abnormalities, CAD algorithms also prompt normal regions 
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which have some abnormal features [2]. It is the responsibility of the reader using the 
CAD system to decide whether prompted regions are actually abnormal, or whether 
the prompts should be disregarded.  

Readers in the UK Breast Screening Programme are closely monitored and subject 
to a number of regulations to ensure good performance; readers must read more than 
5,000 screening mammograms per year, participate in clinical meetings and 
assessment clinics, and have their performance evaluated on a set of difficult 
mammograms. Despite this, there is still variation in performance between readers. 
Some of this may be due to experience; the most experienced readers in the breast 
screening programme have read many tens of thousands of films, whilst newly 
eligible readers will have read a much smaller number.  

Computer-aided detection has been suggested as a way of improving the 
performance of readers, but different readers may respond in different ways to CAD 
prompts [3]. In this paper we use data from a study comparing double reading to 
single reading with CAD to investigate whether there were significant differences in 
performance with CAD between the eight consultant radiologists who took part. 

2   Methods 

In the CAD Evaluation Trial (CADET) [4], 10,096 mammograms, originally double 
read in 1996, were re-read in 2003 by a single reader using an ImageChecker M1000 
CM System (R2 Technology, Inc. Sunnyvale, CA) with software version 5.0, a 
CheckMate Ultra Display Unit with PeerView and Variable Sized Markers [5]. The 
case-mix was a cohort from the UK National Health Service Breast Screening 
Programme (NHSBSP) enriched by 50% by the random removal of normal cases. The 
cases were randomised in such a way that readers did not re-read in 2003 any cases 
that they had previously read in 1996. 

The eight radiologist readers in the CADET study had between 2 and 15 years 
experience when the films were single read with CAD, and those who also 
participated in double reading in 1996 had between 1 and 8 years experience at that 
time. Other readers also participated in the double reading process, and overall the 
levels of experience of the readers in 1996 and 2003 were approximately similar.  

The eight radiologists were based at two screening centres, each of which had 
different protocols for recalling cases. When single reading with CAD, these 
protocols were followed as closely as possible. In one of the screening centres 
(Aberdeen) a case was recalled when double reading if either reader recommended it. 
When single reading with CAD, a case was recalled if the single reader recommended 
it. In the second centre (Manchester) the recall process in double reading involved 
each of the readers scoring the case, and depending on the maximum score cases were 
either returned to normal screening, discussed with another reader or recalled. When 
single reading with CAD, cases were also scored and treated in a similar way. All 
readers in the CADET study underwent a two month training period in the use of 
CAD prior to commencing reading [6]. 

In this analysis we review the cancer detection rates for each reader (single reading 
the 1996 films with CAD) for those cases which had cancer detected by double 
reading in 1996, and those for which cancer was detected subsequently as interval 
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cancers, at the next screen in 1999 or up to three years later. We also examine the 
recall rate for the cases that were normal (confirmed by two subsequent normal 
screens), and investigate whether differences are due to experience or to the different 
recall protocols at the two screening centres.  

3   Results  

Table 1 shows the breakdown of cases read with the aid of CAD by each of the eight 
consultant radiologists in CADET. The cancer cases labelled ‘evaluation screen’ are 
those detected in 1996 during the original double reading. It should be noted that 
those cancer cases labelled ‘subsequent’ were not detected in the 1996 films by the 
original double reading, nor were these films reviewed to determine whether they 
contained any visible signs of early cancer. The cancer detection rates for the cancer 
cases and recall rates for the normal cases are shown in table 2. 

Table 1. Number of cases read using CAD by each of the eight radiologist readers in the 
CADET study. The cancer cases are split into those identified at the original double reading in 
1996 (evaluation screen) and those detected as interval cancers or subsequently. 

Reader  1 2 3 4 5 6 7 8 
Evaluation 
screen 

3 11 5 16 9 11 11 19 
Cancer 
cases 
read 
with 
CAD 

Subsequent 29 22 40 52 16 32 24 15 

Normal Cases  1210 1108 1202 1188 1253 1289 1301 1230 

 
Cancers detected at the evaluation screen (the original double reading in 1996) 

were definitely visible in the images. It can be seen from table 2 that the proportion of 
these evaluation screen cancers amongst the cancer cases read with CAD varies from 
reader to reader. For example, less than 10% of those read by reader 1 were detected 
at the original double screening, whereas more than 55% of those read by reader 8 fell 
into this category.  

The detection rates of cancers did not differ significantly between readers (p=0.8), 
although the number of cancer cases is relatively small. The recall rates of normal 
cases did, however, differ significantly among readers (p<0.001), with readers 6 and 7 
having particularly high recall rates. 

Table 2. Number (%) of cancer cases detected by each of the eight radiologist readers in the 
CADET study, and number (%) of normal cases recalled by each reader 

Reader 1 2 3 4 5 6 7 8
Cancer
cases
detected
with
CAD

Evaluation
screen

1 (33) 10 (91) 5 (100) 14 (88) 9 (100) 10 (91) 10 (91) 17 (89)

Subsequent 6 (21) 3 (14) 8 (20) 11 (21) 2 (13) 10 (31) 7 (29) 3 (20)

Recalled normals 71 (6) 58 (5) 84 (7) 85 (7) 52 (4) 156 (12) 153 (12) 84 (7)  
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In 1996, only readers 1, 2, 3, 5 and 6 took part in double reading the CADET cases, 
and a number of other readers were also involved. During the double reading process 
the recall decision was made either as a result of both readers’ judgements, or on the 
basis of a single reader’s judgement, depending on the screening centre, so it is not 
possible to directly compare cancer detection rates and recall rates for individual 
readers with and without CAD.  We do, however, have data showing the outcomes for 
cases in the CADET study that were double read in 1996 (table 3). Two of the readers 
(5 and 6) had particularly good sensitivity when double reading in 1996, although 
their recall rate for normal cases was similar to that of the other readers. 

Table 3. CADET cases double read in 1996 by five radiologists who subsequently read with 
CAD. Note that all recall decisions were taken jointly with another radiologist. 

Reader Number of 
normal 
mammograms 
read in 1996 

Number of 
normal cases 
recalled (%) 

Number of 
cancer 
mammograms 
read in 1996 

Number of 
cancer cases 
recalled (%) 

1 2477 129 (5) 90 26 (29) 
2 2253 131 (6) 81 12 (15) 
3 1266   81 (6) 57 15 (26) 
5 4849 276 (6) 135 59 (44) 
6 2049 114 (6) 54 30 (56) 

In figure 1, the recall rate for single reading with CAD is shown by years of 
screening experience for cancers that had been originally detected by double reading 
in 1996. Figure 2 shows recall rate for cases in which cancer was diagnosed 
subsequently. Logistic regression relating the probability of identification for recall to 
years of experience showed no significant effect, either for the 1996 screen detected 
cancers (p=0.9), subsequent cancers (p=0.9) or all cancers combined (p=0.5).  

Figure 3 shows the recall rate by years of experience for the normal cases. There 
was a significant negative relationship between years of experience and proportion of 
normal subjects recalled (p=0.01). This is further illustrated in Table 4 where we split 
the readers by less than and more than ten years’ experience. Those with 10 or more 
years of experience were less likely to recall normal subjects (OR = 0.83, 95% CI 
0.71-0.92).  

Table 5 shows recall rates by the single reader with CAD for normal cases, 1996 
screen-detected cancers and subsequently diagnosed cancers. Manchester had 
significantly higher rates of recall both for normal women screened (p<0.001) and for 
all cancers combined (p=0.002). There was no significant difference between the two 
centres for 1996 cancers only, or for subsequent cancers only, although this may be 
due to low statistical power with relatively small numbers. 

When centre and experience were assessed mutually adjusted in a multiple logistic 
regression analysis, these results remained unaltered: for normal cases there were 
significantly higher recall rates in Manchester and significantly lower recall rates for 
readers with more experience; for all cancers combined there were significantly 
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Fig. 1. The percentage of cancers screen found by double reading in 1996 that were detected by 
single reading with CAD, plotted against the number of years of previous breast screening 
experience for each reader 
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Fig. 2. The percentage of cancers found subsequently that were detected by single reading with 
CAD, plotted against the number of years of previous breast screening experience for each 
reader 



102 S.M. Astley  et al. 

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Years of experience

N
o

rm
al

 c
as

es
 r

ec
al

le
d

(%
)

 

Fig. 3. The percentage of normal cases that were recalled by single reading with CAD, plotted 
against the number of years of previous breast screening experience for each reader 

Table 4. Recall of normal cases by single reading with CAD, shown for readers with less than 
10 years screening experience, and readers with 10 years or more screening experience 

Experience Cases read Cases recalled (%) OR for recall (95% CI) 
10 years or more 4860 337 (7) 1.00 (-) 
<10 years  4921 406 (8) 0.83 (0.71-0.97) 

Table 5. Recall of cases by single reading with CAD, shown for the two different screening 
centres in the CADET trial 

Category Centre Recall rate 
Aberdeen 6.3% Normal 
Manchester 8.8% 
Aberdeen 85.7% Cancer 1996 screen 
Manchester 92.0% 
Aberdeen 19.6% Subsequent cancer 
Manchester 25.3% 
Aberdeen 32.6% All cancers 
Manchester 49.6% 
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higher recall rates in Manchester, and no significant effects of experience; and no 
significant effects of centre or experience were observed within the 1996 cancers and 
within the subsequent cancers. 

4   Discussion 

CADET was a retrospective trial undertaken at two UK breast screening centres, 
comparing double reading and single reading with CAD. Although the dataset was 
relatively large (10,096 cases), it contained only a small proportion of cancer cases 
since the trial was intended to provide information about the performance of readers 
using CAD in a screening setting, where the vast majority of cases are normal. 
Consequently, the number of cancer cases read with the aid of CAD by each 
individual reader was small and we were not able to demonstrate a significant 
difference in sensitivity between the readers. Furthermore, there were two different 
categories of cancer cases: cases in which there were visible signs of cancer detected 
at the original 1996 screen by double reading, and cases in which cancer was 
identified at a later stage, some of which had visible signs of abnormality in the 1996 
films, and some of which didn’t. The proportions of these two categories allocated to 
the individual readers varied. It is possible that, with the small numbers of cancer 
cases allocated to different readers, differences in numbers and types of visible 
cancers could affect the results. In order to asses this, the cancer cases allocated to 
each reader would have to be reviewed to determine whether they were comparable in 
terms of visibility. 

Previously published studies have shown either no increase in recall rate, or only a 
slight increase, with the use of CAD [1,7,8]. It is apparent that two of the radiologists 
in CADET had much higher recall rates of normal cases than the others, recalling 
12% of normal cases. This level is greater than would be acceptable in clinical 
practice; even given the 50% enrichment of the CADET case-mix we would expect 
recall rates to be in the range 7-10%. There are a number of possible reasons for this. 
Firstly, CADET had a retrospective design, so the readers were aware that there were 
not the same constraints on them as there would be in routine reading, namely that 
women recommended for recall would not actually be subject to unnecessary further 
investigation should their mammograms turn out to be normal. There may have been 
a tendency for some readers to attempt to detect the very early cancers that were 
missed in the original double reading at the expense of the recall rate for normal 
cases. It is worth noting that both the readers who had high recall rates also had high 
cancer detection rates for the early cancers. 

In 1996, when the cases were double read without CAD, all the readers who 
participated had broadly similar recall rates, albeit in conjunction with a second 
reader. Furthermore, when the cases were re-read all eight readers were participating 
in a national screening programme with stringent quality control procedures; when 
reading without the aid of CAD they were thus operating within normal limits. One 
possible reason for the significant variation in recall rates when reading with CAD is 
a difference in the ability or willingness of readers to dismiss prompts marking 
abnormal regions of the mammograms. This may resolve with further experience, but 
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as yet there is insufficient data to determine how performance with a CAD system 
changes over time. 

The results show that readers with greater experience of breast screening recalled 
significantly fewer normal cases when single reading with CAD than did less 
experienced readers. This could be due to more experienced readers having greater 
confidence in rejecting CAD markers placed in normal regions. Further analysis 
showed that this effect was not due to the difference in reading protocols between the 
two screening centres.   

The results showed a significant difference in recall rates between the two 
screening centres, with higher recall rates for both normal and cancer cases in the 
centre that employed a form of arbitration to decide whether to recall equivocal cases. 
Some of this effect may be attributed to differences in the case mix between the two 
centres, but nevertheless it merits further investigation: it may be that in order to 
achieve sensitivities comparable to double reading, a single reader using CAD must 
refer a proportion of cases for arbitration by a second reader. 
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Abstract. We evaluated the impact of integration of CAD (Computer-Aided 
Detection) system and human observers in digital mammography. We com-pared 
the diagnostic efficacy of non-informed observers and informed observers 
regarding the CAD system’s ability (average FP (false positive) per four images 
and sensitivity of microcalcifications and mass) to detect cancer. With the 
informed-group, we previously informed them of the accuracy of CAD. In each 
group, observers recorded the diagnosis before utilizing the CAD system and after 
utilizing the CAD system according to BI-RADs category and to six additional 
categories associated with diagnostic confidence. Regarding diagnostic accuracy, 
with the informed group, sensitivity and NPV were improved without an increase 
in FP. On the other hand, the diagnostic accuracy of human observers was in-
fluenced by prior notification of CAD’s accuracy and by CAD’s performance in 
cancer detection itself. 

1   Introduction 

Recently, the performance of CAD has been improved and CAD is being used 
clinically in digital mammography1-5. In this paper, we evaluate the impact with 
respect to diagnostic accuracy of integrating CAD and human observers in a clinical 
environment, specifically that of digital mammography. 

2   Methods 

We utilized an indirect FFDM (full field digital mammography) system: Computed 
Radiography (CR) system (FCR 5000MA Plus: FUJIFILM, Japan) with 50 microns and 
non-commercial CAD developed by FUJIFILM, Japan. The CR images were diagnosed 
utilizing soft-copy reading system. The monitors were LCD (Liquid Crystal Display) 
with 5M pixels (EIZO NANAO CORPORATION, Japan). The clinical cases in this 
study were randomly selected from screening mammograms. The total number of cases 
was 50 including 23 malignant cases ( five cases with masses and microcalcifications, 
five cases with masses, eight cases with microcalcifications, and five cases with FAD 
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(focal asymmetric density) or distortion) and 27 benign cases. The number of observers 
was ten. Three observers were radiologists and seven observers were breast surgeons. 
All of them were experienced at reading mammograms and passed the examination of 
reading mammograms in accordance with the committee in charge of the quality control 
manual for mammography screening in Japan. Their sensitivities and specificities were 
all over 85.0%. There were two randomly selected groups of observers: non-informed 
observers and informed observers with regard to the CAD system’s accuracy. Before 
this study, we instructed observers in ten cases utilizing other cases including 
malignancies and normal cases in which CAD pointed out the lesion. The informed-
observers were previously informed of the ability of the CAD system with regard to 
detection rate in microcalcifications and masses and the number of FP per four images. 
The non-informed observers were not given information regarding accuracy of CAD 
which was a follows: the average FP marker rate was 1.6 markers per normal 4-view 
case, sensitivity in calcification was 100.0% and sensitivity in mass was 71.1%.  
Observers recorded the diagnosis and the schema before utilizing CAD and after 
utilizing CAD according to BI-RADs category and to six categories associated with 
diagnostic confidence of malignancy (definitely malignant: 6, probably malignant: 5, 
maybe malignant: 4, maybe not malignant: 3, probably not malignant: 2, and definitely 
not malignant: 1). Categories 1 to 3 were evaluated as benign and 4-6 were evaluated as 
malignant. Diagnostic accuracy was evaluated with respect to sensitivity, specificity, 
NPV (negative predictive value), PPV (positive predictive value), and ROC analysis 
utilizing ROCKIT software (Version 0.9.1 BETA).  

3   Results 

1) Sensitivity, Specificity, PPV, and NPV (Table 1-2.) 

Table 1. Sensitivity, Specificity, PPV, and NPV with the Non-Informed Group 

a) Pre-CAD 
                 Sensitivity  Specificity     PPV NPV   
Observer1       0.739            0.974                     0.895         0.967 
Observer2       0.609           1.000                      1.000         0.952 
Observer3       0.782            0.974                     0.900         0.972 
Observer4       0.696            0.987                     0.941         0.962 
Observer5       0.783           1.000                      1.000         0.973 
Average   0.722           0.985                      0.947         0.965 

b) Post-CAD 

Sensitivity  Specificity PPV  NPV   
Observer1       0.739                 0.974                  0.895              0.967 
Observer2       0.609                1.000                   1.000              0.952 
Observer3       0.782                0.974                   0.900              0.972 
Observer4       0.696                0.987                   0.941              0.962 
Observer5       0.783                1.000                   1.000              0.973 
Average   0.722                0.985                   0.947              0.965 
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Table 2. Sensitivity, Specificity, PPV, and NPV with the Informed Group 

a) Pre-CAD 
                 Sensitivity  Specificity PPV NPV   
Observer1      0.522           1.000                  1.000          0.941 
Observer2       0.739            0.987                  0.944          0.947 
Observer3       0.739            0.961                  0.850          0.967 
Observer4       0.565            0.987                  0.929          0.946 
Observer5       0.739            0.948                  0.810          0.966 
Average  0.661            0.977                  0.907          0.953                    

b) Post-CAD 
                   Sensitivity  Specificity   PPV       NPV    
Observer1      0.565           1.000                      1.000             0.947 
Observer2       0.739            0.987                     0.944             0.947 
Observer3       0.739            0.961                     0.850             0.967 
Observer4       0.565            0.987                     0.929             0.946 
Observer5       0.739            0.948                     0.810             0.966 
Average   0.669            0.977                     0.907             0.955  

With the non-informed group, averaged data of sensitivity, specificity, PPV, and 
NPV in pre-CAD were 0.722, 0.985, 0.947, and 0.965. With the informed group, 
averaged data of sensitivity, specificity, PPV, and NPV were 0.661, 0.977, 0.907, 
and 0.953. There was no statistically significant difference between two groups 
with regard to each parameter by unpaired-t test (P=0.326, P=0380, P=0.352, 
P=0.115>0.05). 

With the non-informed group, averaged data of sensitivity, specificity, PPV, 
and NPV did not show any changes with or without CAD. On the other hand, with 
the informed group, averaged data of sensitivity and NPV were improved 
compared to those in pre-CAD because one observer could detect malignant 
microcalcifications utilizing CAD. However, there was no significant difference 
between the data in pre-CAD and in post-CAD by paired-t test (P=0.897>>0.05 
and P =0.873>>0.05). 

2) ROC Analysis (Table3.) 

The A(z) value showed that with the non-informed group, two observers in post-CAD 
showed better performances compared to those in pre-CAD, two observers showed 
worse performances in post-CAD, and one observer showed no difference. In 
average, there was no significant statistical difference between pre-CAD and post-
CAD (P=0.382 0.05). On the other hand, with the informed group, four of five 
observers showed better performances in post-CAD. One observer showed no 
difference. Averaged data showed higher performances utilizing CAD, however, there 
was no significant difference between pre-CAD and post-CAD P=0.116>0.05). 
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Table 3. A(z) values by ROC Analysis with the Non-Informed Observers in Pre-CAD and 
Post-CAD  

a) Non-Informed Group 
Pre CAD                     Post CAD  

Observer 1          0.889        >                0.888 
Observer 2          0.930        <                0.950 
Observer 3          0.881        =                0.881 
Observer 4          0.835        >                0.830 
Observer5           0.836        <                0.844 
Average   0.874         <                0.879        

Calculated by Paired-t Test 
          P=0.382>>0.05 

b) Informed Group 

                  Pre CAD                     Post CAD 
Observer1        0.891       <                0.918 
Observer2        0.949        =               0.949      
Observer3        0.935        <               0.940 
Observer4        0.955        <               0.957 
Observer5        0.923        <               0.945      
Average 0.931       <               0.942  

Calculated by Paired-t Test 
P=0.116 >0.05 

3) Changes regarding diagnostic efficacy in pre-CAD and post-CAD (Table4.) 

With the non-informed group, categorical changes were inconsistent both in benign 
cases and malignant cases. In particular, two observers under-diagnosed malignant 
cases. One case presented malignant microcalcifications where CAD pointed out the 
lesion and another was a malignant case with distortion in which CAD did not point 
out the lesion. With the informed group, no observers under-diagnosed malignant 
cases whether or not the CAD system pointed out the lesion. One observer over-
diagnosed benign cases while four observers’ diagnostic accuracy in malignant cases 
was improved. In addition, diagnostic efficacy regarding the cases with masses and 
microcalcifcations was improved in four cases and two in four cases were diagnosed 
as malignant. On the other hand, in two cases with distortion, the diagnostic efficacy 
was improved, though none was not diagnosed as malignant. 

4   Discussion 

We conducted this study in connection with a query and a hypothesis. Human 
observers could not depend 100% on CAD system unless the system had 100% 
reliability in cancer detection. Many papers have reported the usefulness of CAD 
systems1)-5) without mentioning this important point. 
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Table 4. Changes regarding Diagnostic Efficacy in Pre-CAD and Post-CAD 

a) Non-Informed Group 

Benign                                           Malignant                    
                     Up /   No Change   /   Down                   Up   /   No Change/   Down   

Observer1      1   /     76    /   0                          *1   /     22     /      0   
                                                                       (microcalc) 

Observer2      0   /     74    /   3                            0   /      23    /      0  
 
Observer3      0   /     76    /   1                            0   /      22    /     *1 
                                                                                                     (microcalc) 

Observer4      1   /     76    /   0                            0   /       23   /      0  
 
  Observer5      0   /     76    /   0                           *1 /       21   /   **1  

                                                                               (FAD)                    (distortion) 

b) Informed Group  

Benign                                      Malignant                    
                       Up / No Change / Down                Up / No Change/ Down   

Observer1       0   /   77    /   0                         *3       /    20    /  0     
                                                         (mass+nicrocalc:2, distortion:1) 

Observer2       0   /   77    /   0                           0       /   23     /  0 
 

Observer3       3   /   74   /    0                         *1       /    22   /   0 
                                                               (distortion) 

Observer4      0    /   77   /    0                         *1      /    22   /   0    
                                                            (mass+microcalc) 

Observer5      0   /    77   /    0                         *1      /    22   /   0   
                                                              (mass+microcalc) 
                                                                                     
   *: CAD system detected 
 **: CAD system not detected 

The present ability of CAD in mammography is limited. In cases with micro-
calcifications, the CAD system can surpass human observers’ diagnostic ability with 
accuracies approaching nearly 100%. On the other hand, in cases with masses, FAD, 
and distortion, the CAD system can not surpass experienced readers’ ability.  So it 
would be not useful to improve diagnostic accuracy in human observers even if they 
had experienced many cases over a long period. Rather than that, under current 
conditions, we should inform how good or bad the CAD system is and prioritize 
human observers’ skill at diagnosis to revise CAD system’s weak points. The study 
showed positive results that proved our hypothesis. 

In accordance with the results of this study, diagnostic accuracy can differ with or 
without information about CAD system’s ability. With the informed group that 
acknowledged the CAD system’s performance from both strong aspects such as 
microcalcifications and weak aspects such as masses, distortion, and FAD, total 
diagnostic accuracy was improved. In particular, in cases with microcalcifications 
where the CAD system has 100% sensitivity and a relatively lower FP marker rate in 
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this study, human observers can improve their diagnostic accuracy without an 
increase in FPs. On the other hand, with the non-informed group, some observers 
were confused by CAD’s detection and as a result, their diagnostic accuracy 
deteriorated. Despite chances of ruling out malignant cases in accordance with CAD, 
they nevertheless diagnosed accurately by themselves without utilizing CAD. 

In conclusion, human observers should be notified about the accuracy of the CAD 
system in cancer detection before they utilize it in order to improve the synergy 
between the CAD system and the human observers. Such a step will positively 
influence observers regarding the reliability of CAD system.   

In addition, it might be effective to install test images to evaluate the human 
observers’ and the CAD system’s ability in cancer detection before utilizing the CAD 
system. This could help the users understand what particular aspects of the CAD system 
could assist them or in what ways they might have to compensate for the CAD system. 
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Abstract. Many rural areas do not have reliable or adequate access to breast 
cancer evaluation facilities and care. With the advent of digital mammo-graphy 
it is possible to send high quality mammographic images across teleradiology/- 
telemedicine networks for interpretation at certified mammo-graphy centers. 
We have a statewide telemedicine network upon which telemammography is 
conducted with a number of very rural locations. Strict turn-around times for 
interpretation are guaranteed in contractual agree-ments. We are also testing the 
use of ultra-rapid pathology clinics for women with positive mammograms and 
real-time consultation with oncologists to reduce the time it takes for rural 
women to receive care. 

1   Background 

Breast cancer is the most common cancer of women in the United States. It is the 
second leading cause of cancer deaths.  The National Cancer Institute predicted that 
213,000 new breast cancer cases would be diagnosed in 2005, with 41,000 estimated 
deaths. [1] Breast cancer is typically detected during screening that, for the majority of 
women, relies on mammography and clinical breast exams. It is estimated that over 48 
million mammograms are performed every year and the number is increasing. Less than 
one million (2-5%) require a subsequent biopsy. [2] However, the majority of biopsies 
(65% to 80%), result in benign diagnoses with malignancy being found in only 1 in 10 
women who undergo breast biopsy. [3] In rural, medically underserved areas, mammo-
graphy rates are lower for a variety of reasons, including lack of dedicated screening 
facilities and/or personnel, poor compliance and large distances between patients and 
clinics (making it difficult to return for follow-up care). Telemammography has been 
found to alleviate significantly this problem in many rural areas. 

The entire breast cancer detection process from mammography to clinical consulta-
tion with the oncologist is usually about 28 days. Once an abnormal mammogram is 
diagnosed, a diagnostic biopsy performed at the mammography center or by a surgeon 
typically follows.  The tissue is then processed and read by a pathologist who 
generates a report and sends it back to the surgeon.  If the diagnosis is malignant, the 
patient schedules a meeting with the medical oncologist for consultation and a 
treatment plan. The timeframe is even longer for women in rural areas who typically 
need to travel to an urban hospital for many of these procedures. Whether urban or 
rural, however, the long wait time between initial diagnosis, pathology results and 
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possibly oncology consultation can be extremely stressful for the patient. Tele-
medicine and digital radiology and pathology are ways to reduce those waiting times 
and the time it takes for a woman with breast cancer to receive definitive care. We 
describe here some of the ways that we have developed to help improve breast care 
for women in both rural and urban areas by reducing the waiting times for various 
steps in the breast care timeline. 

2   Methods 

Our telemedicine program (Arizona Telemedicine Program, ATP) has a scalable 
T-1/ATM (asynchronous transfer mode) broadband telecommunications system that 
connects over 150 sites using real-time and store-and-forward applications. The network 
is used for a variety of telemedicine related activities including clinical, educational and 
administrative. We began providing teleconsultations in May of 1997. Teleradiology 
represents the most common use of the network, with over 100,000 cases transmitted 
and interpreted in 2005. In 2005 seven rural sites used the telemammography service, 
sending over 3,500 cases to the hub for interpretation. Contracts with the sites for 
telemammography specify a turn-around time (from receipt to generation and trans-
mission of a report back to the site) of no more than 30 minutes. We have tracked turn-
around times to verify compliance with the agreements.  

Pilot studies were carried out to study the feasibility of establishing ultra-rapid breast 
clinics. The first study surveyed patients at the university breast clinic to determine if 
and how much women would be willing to pay for faster pathology results if the needed 
a biopsy. A 13-question survey (available in both English and Spanish) was distributed 
to all patients signing in for an exam who agreed to participate (and signed a consent 
form) over a 2-month period. All questions were Likert-scale responses and non-
parametric tests were used to statistically analyze the results. 

In a separate investigation we studied digital scanning of pathology specimen 
slides to insure rapid processing and transmission for interpretation could accom-
plished. Sixteen benign and 14 malignant surgical breast biopsy cases from an 
existing database were selected by a referee pathologist and scanned digitally. We 
used the DMetrix virtual slide processor that samples images at 0.47 microns/pixel to 
scan a series of breast specimen images for interpretation on a color computer display 
monitor compared to the original slide images (traditional light microscopy). 
Diagnostic accuracy and reading times were recorded. Readers (4 board certified 
pathologists) classified each image as benign, equivocal or malignant and rated image 
quality as excellent, good, fair or poor.  

The final pilot study tested the teleoncology component. Patients requiring a core 
biopsy were approached sequentially for participation at the breast center. The study 
was explained to them and if they agreed to participate they entered the Ultra-Clinic 
arm of the study. To date, eight patients have participated. Following biopsy, tissue 
was processed by Vacuum Histoprocess and ultra-rapid fixation, converted to a digital 
image by the DMetrix scanner, and sent via the telemedicine network to be read via 
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telepathology.  The patient then went to the telemedicine suite to receive the results. 
The teleoncologist presented all results and all questions were answered. The time 
course of the entire process was recorded. Control data for the pilot study was 
obtained from a cohort of patients using patient charts that also recorded the times for 
each of the events studied. 

3   Results 

For the teleradiology component (an established service) we found over 90% com-
pliance with the 30-minute turn-around time required in the service contracts at all 
sites. Discrepancies occurred for the most part due to transmission difficulties, not 
prolonged times once the images arrived at the interpretation workstation. 

The willingness to pay for pathology services study had 312 responses. If diagnosed 
with cancer, 92% of the respondents in this study reported they would seek an expert 
second opinion. The data were unevenly distributed (χ2 = 51.14, df = 4, p < .001) with 
33% of the participants reporting a willingness to travel over 50 miles and 47% willing 
to travel between 11 and 50 miles (see Figure 1).  
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Fig. 1. Percentage of respondents corresponding to the number of miles they would drive to obtain 
a second opinion 

When asked if they would pay a co-payment for a second opinion if their insurance 
covered the benefit, 97% of those surveyed responded affirmatively. Thirty-five 
percent of respondents reported they would pay more than $50 for such a service. The 
distribution of values suggested that significantly more of the individuals surveyed 
would be willing to pay $25 or more than those willing to pay less than $25 
(χ2 = 139.52, df = 5, p < .0001) (see Figure 2). 
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Fig. 2. Percentage of respondents corresponding to the amount of co-payment they would be 
willing to expend for a second opinion 

When asked about how they would like to receive their results, the majority 
preferred to see the pathologist in person (see Figure 3). 
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Fig. 3. Respondent preferences regarding mode of communication with pathologists 

The diagnostic accuracy study comparing virtual (see Figure 4) versus traditional 
viewing of pathology specimens showed that performance with the digital slides 
viewed on a computer display are equivalent to viewing traditional slides (kappa 
greater than 0.90 for all readers). Out the 120 total diagnoses rendered (4 pathologists 
x 30 cases) there were only 3 incorrect diagnoses with the virtual slides, each by a 
different pathologist. The most experienced pathologist had no errors. Two 
pathologists read the same case as benign when it was malignant and another called a 
benign case malignant. In the light microscopy condition, all three of these cases were 
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called equivocal so they were very difficult cases to begin with. In terms of image 
quality, 56.6% of the virtual images were rated excellent, 39.2% good, 4.2% fair and 
0% poor. The viewing times however were significantly longer (> 1 minute per slide 
versus < 30 sec on average per slide for virtual versus traditional), although these are 
likely to decrease as better user interfaces are developed. 

 

Fig. 4. Typical virtual pathology slide of breast core biopsy samples 

For the ultra-rapid clinic pilot study, the elapsed time (from mammogram to defini-
tive oncology care) data were analyzed comparing the control (patients receiving 
traditional care) and pilot groups (ultra-rapid) using the non-parametric Mann-Whitney 
U Test. Although the results did not reach statistical significance because of the very  
 

 

Fig. 5. Box plots of elapsed time from mammography to definitive oncology care 
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small sample size (Z = -1.804, p = 0.0713), there was a clear trend towards the pilot 
group having a shorter elapsed time to definitive oncology care. Figure 5 shows box 
plots of the two data sets. The median elapsed time for the pilot group was 2 months 
and for the control group was 2.5 months. The “whiskers” on the bar graph show the 
variability in the data, with 3 months being the longest elapsed time for the pilot 
group and 5 months being the longest for the control group. 

4   Discussion 

We have an established telemammography program that is serving a number of rural 
sites, providing diagnostic results within 30 minutes of receipt of the case. This allows 
women at the rural sites to receive follow-up care they may need on the same day or 
at least to schedule follow-up care on the same day. Without telemammography 
services, these women would either have no mammography services or the effort 
involved in getting to the clinic, getting results and coming back for more care would 
be too difficult. Many of these rural women simply do not get breast care without 
telemammography. There are a number of other teleradiology programs in the US and 
world and many include telemammography. We have not seen any data however on 
the business model that we use – requiring turn-around times within a specified period 
of time. It is our belief that by requiring reports back within a specified time of image 
acquisition, we are improving the care of rural patients. 

The willingness-to-pay survey results show that women do want pathology 
results faster than they currently do and, at least for the urban women in our sample, 
are willing to pay for it and travel short distances for it. We still need to determine 
if rural women would respond in the same manner. Not surprisingly, the majority of 
women prefer to hear the news about their biopsy reports in-person with the 
pathologist. Receiving a phone call, letter or e-mail is generally not acceptable. In 
this survey we did not inquire about willingness to receive the news via 
videoconferencing. Although videoconferencing does not allow the patient to 
actually be with the pathologist, it does allow for a real-time, face-to-face encounter 
with the clinician. Most other telemedicine applications that use real-time 
videoconferencing are found to be quite satisfactory by both clinicians and patients 
and we have little doubt that this would be acceptable for women receiving the 
results of their breast biopsies.  

So far, the few women who have received their biopsy results via video-
conferencing in the Ultra-Clinic study have been quite satisfied with their results. So 
far 3 of the 8 patients (38%) were diagnosed with breast cancer while the other 5 had 
either a benign condition or a false positive result. No formal satisfaction surveys 
were distributed in the pilot study, but all of the women (no matter what the 
diagnosis) expressed high satisfaction with the same-day videoconferencing process. 
All noted that although stressful, it was far less stressful than having to wait days or 
weeks for the results. We are now implementing a full-blown Ultra-Clinic program at 
the breast center for same-day biopsy results and oncology consultations. [4] The goal 
is to have results within 3-4 hours rather than days or weeks. 
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Abstract. Currently, the majority of lumpectomy and excisional biopsy 
procedures are performed using the wire localization (WL) technique; however, 
this technique suffers from several drawbacks including inaccuracy in 
placement of the wire, possible displacement of the wire prior to surgery, and 
ambiguity of the lesion’s location along the wire. We propose dual modality 
surgical guidance (DMSG) as a means to overcome many of the problems 
associated with WL. The approach uses a dual modality (digital mammography 
and breast scintigraphy) breast imaging system developed in our lab to place a 
small radioactive marker (a radiomarker), directly into the lesion. Here we 
present the results of measurements of the localization and injection accuracy of 
our system. The localization accuracy, evaluated by determining the difference 
between the known and measured inter-well separations, were within 0.76 mm 
(standard deviation of 0.46 mm) of the true distances for x-ray imaging and 
within 0.66 mm (standard deviation of 0.43) for gamma imaging. Our 
maximum error in injection accuracy in any of the three Cartesian coordinates 
was 1.8 mm. On average, the errors were 0.6, 0.4, and 0.9 mm for x, y, and z 
respectively. The results of these phantom tests provide encouragement that our 
upright digital mammography unit can accurately a) locate a lesion in three 
dimensions, b) inject a radiomarker into the lesion, and c) assess the offset 
between the lesion and radiomarker centers.  

1   Introduction 

Major clinical trials have shown that for patients with Stage II breast cancer, the 
survival rate of women receiving breast conservation therapy (lumpectomy/ radiation) 
is similar to that of women undergoing mastectomy [1]. Furthermore, no increased 
risk of second malignancies has been demonstrated in patients who select breast 
conservation therapy as opposed to mastectomy [2]. Thus, there has been a shift away 
from mastectomy and towards breast conserving procedures. Concurrently, recent 
advances in mammography have significantly improved the detection of early stage 
breast cancers, presenting surgeons with the increasingly difficult tasks of lesion 
localization and complete lesion excision.  

Currently, the majority of lumpectomy and excisional biopsy procedures are 
performed using the wire localization (WL) technique. In WL, a guide wire is placed 
through the lesion on the day of surgery. Along with the mammographic images, the 
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Fig. 1. Photo of the dual modality scanner 
modified to perform radiomarking 

surgeon uses the wire, which extends through the skin, to locate the tissue to be 
excised. Although this is the current standard of practice, the WL technique suffers 
from several drawbacks including, 1) ambiguity in the location of the lesion along the 
wire, 2) the possibility that the wire can get displaced prior to surgery, and 3) the fact 
that the entry point of the wire and its orientation within the breast cannot be relied 
upon as an optimum entry point and path for incision and dissection. One 
consequence of uncertain intraoperative lesion localization is the increased likelihood 
of positive margins, potentially necessitating a second surgery. Efforts to avoid this 
can result in the removal of needlessly large masses of breast tissue to reduce the risk 
of residual malignancy. Also, since WL must be performed on the day of surgery due 
to risk of displacement of the protruding wire, surgical procedures requiring it cannot 
be scheduled early in the surgical schedule. These consequences result in increased 
cost, morbidity and trauma for the patient, and increased logistical problems for the 
surgeons and radiologists involved, and have motivated the search for alternative, 
more accurate methods for intraoperative localization of nonpalpable breast lesions.  

One possible solution to the problems associated with WL is to provide the 
surgeon with intraoperative guidance by means of a small radioactive marker, placed 
directly into the lesion. During surgery a hand-held gamma probe is used by the 
surgeon to locate and excise the marked lesion. Such an approach has been tested by 
researchers at the H. Lee Moffit Cancer Center at the University of South Florida 
(using implanted radiotherapy (125I) seeds as radiomarkers) and investigators at the 
European Institute of Technology in Italy (using 99mTc-labeled macroaggregated 
albumin), and has shown promising results [3-6](De Cicco et al., 2002; Gennari et al., 
2000; Gray et al., 2001). Our approach, 
known as dual modality surgical guidance 
(DMSG), uses an upright dual modality 
(digital mammography and breast 
scintigraphy) breast imaging system 
developed in our lab. A photo of the 
system is shown in figure 1. In this 
approach, the x-ray component of the dual 
modality breast scanner is used to identify 
the 3-dimensional location of the lesion 
within the breast. A 3-axis translation 
system, mounted on the mammography 
unit, is then used to accurately inject a 
small amount of a radiolabeled substrate 
(radiomarker) into the center of the lesion. 
The gamma imaging component is then 
used to verify the position of the 
radiomarker relative to the lesion as seen 
on the x-ray images.  

Here we present the results of 
measurements of the localization and 
injection accuracy of our system. 
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2   Methods 

2.1   System Description 

The scanner is based on a modified Lorad M-III upright mammography unit. The 
cassette holder and grid have been replaced with a CCD-based digital x-ray detector 
built under NIH funding [7]. A small field of view (10 cm x 10 cm) gamma camera is 
mounted on the gantry arm below the x-ray tube, and is positioned along the arm 
using a stepper-motor driven translation stage. The gantry arm is driven by a servo 
motor by way of a worm gear. Thus positioning of the x-ray tube, x-ray detector, and 
gamma camera are accomplished via computer control. The breast support, 
compression paddle, and 3-axis injection stage are mounted to the main 
mammography unit support frame by way of a stainless steel rod, but are independent 
of the rotational motion of the gantry arm itself. For accurate radiomarking, the 
scanner must first identify the location of the lesion within the breast, and then must 
move the needle tip precisely to that location.  
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Fig. 2. Diagram of the common coordinate system defined by the x-ray system. The line segment 
SF is the surface normal to the x-ray detector that intersects the x-ray focal spot. The z-axis is 
defined so that it intersects the AOR perpendicularly at the point on the AOR nearest to SF.   

Since the scanner is comprised of three separate subsystems (x-ray, gamma ray, 
and needle translation), each with its own coordinate system, it is necessary to define 
a common coordinate system. We have chosen to define the origin of this common 
coordinate system to be the point lying on the axis of rotation (AOR) of the gantry 
arm that is closest to the detector surface normal intersecting the source focal spot, 
line segment SF in figure 2. Note that under ideal gantry alignment, the line segment 
SF intersects the AOR, however for generality our localization equations do not make 
that assumption. The y-axis is defined to be the gantry arm rotation axis, with the 
positive y direction pointing away from the patient. The x-axis is defined to be along 
the line perpendicular to the AOR and to the line SF when the gantry arm is in its 
central (θ = 0) position.  Positive x points towards the patient’s right. The z-axis is 
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perpendicular to the AOR, but not necessarily parallel to SF, since in general the 
AOR may not be perpendicular to the detector surface normal. Positive z points 
towards the source. 

2.2   Localization Studies 

We have made preliminary measurements of the scanner’s ability to localize objects 
in space using both x-ray and gamma ray imaging. The phantom consists of a thin-
walled acrylic box with a 9 x 9 square array of holes in the bottom surface, each 
separated by 1 cm in both dimensions. A series of acrylic standoffs of various heights 
(0.5, 1.5, 2.5, 3.5, and 4.5 cm) can be attached to the inside of the bottom surface. A 
hole approximately 1 mm in diameter and 1 mm deep is drilled on the top surface of 
the standoffs to form wells to hold a 
few drops of a radioactive and 
radio-opaque solution. A mounting 
rod is attached to one end of the 
phantom, located on its symmetry 
axis, permitting the phantom to be 
mounted approximately on the 
rotation axis of the gantry arm of 
the scanner. Well-defined well 
positions within the phantom mean 
that the Euclidian distance (defined 
as the square root of the sum of the 
squares of the x, y, and z positions) 
between any two wells is precisely 
known. Since the absolute positions 
in space of the wells are not 
precisely known, we have evaluated 
the localization accuracy of the 
system in terms of its ability to 
measure the distance between pairs 
of wells. A stronger test of absolute 
localization accuracy is presented 
below in the needle positioning 
accuracy studies. For the 
localization tests, each well of the phantom was filled with approximately 50 μCi of a 
solution of 99mTc and Gd-DTPA, allowing the wells to be seen by both detectors. X-
ray and gamma ray images were obtained at gantry arm angles of θ = ± 15, 25, 30, 45 
and 60°. Well coordinates were calculated using stereo pairs of images (e.g. θ = ± 
30°) and compared to the known locations [8]. 

2.3   Needle Positioning Accuracy Studies 

Preliminary measurements have also been made of the scanner’s ability to accurately 
position a needle at a precise point in space. A compressible, tissue equivalent breast 

 

Fig. 3. Photo of the needle positioning system 
mounted on the gantry. The x-ray detector, angled 
for a stereotactic view, can be seen beneath the 
breast support. 
 



122 P.J. Goodale, P. Raghunathan, and M.B. Williams 

 

phantom containing randomly distributed simulated lesions (Fluke Biomedical, 
Cleveland, OH) was positioned on the scanner and stereo images were obtained at 
gantry arm angles of θ = ± 15, 25, 35 and 45°. The coordinates of several of the 
simulated lesions inside the phantom were determined using stereo pairs of x-ray 
images. For each lesion, the needle was then translated to the x and y positions given 
by the lesion coordinates. With the needle mounted to the z-stage, the needle was 
manually lowered to the z position of the lesion center.  To confirm that the final 
location of the needle tip was coincident with the center location of the lesion, stereo 
views were again obtained of the phantom and the 3-D coordinates of the needle tip 
were determined. To test consistency, and to evaluate possible deflection of the lesion 
during needle insertion, these images were also used to re-calculate the 3-D 
coordinates of the lesion center. A photo of the needle positioning system and the 
compressible phantom is shown in figure 3. 

3   Results 

3.1   Localization Studies 

Table 1 shows, for both modalities, the average absolute difference between the 
known and measured inter-well separations for stereotactic angles of ± 25 degrees. 
Similar results were obtained for other stereotactic angles between ± 10 and ± 60 
degrees. The measured Euclidian distances were within 0.76 mm (standard deviation 
of 0.46 mm) of the true distances for x-ray imaging and within 0.66 mm (standard 
deviation of 0.43) for gamma ray imaging. The maximum Euclidian distance error 
reported by the two modalities was 1.63 mm.  

Table 1. Error in the localization data obtained from x-ray and gamma ray imaging 

 Number of 
Distances Evaluated 

Average Error 
(mm) 

Standard 
Deviation (mm) 

X-Ray Imaging 15 0.76 0.46 

Gamma Ray Imaging 6 0.66 0.43 

3.2   Needle Positioning Accuracy Studies 

Table 2 shows the errors between the measured lesion centers and the placement of 
the needle tip. For stereo angle pairs of θ = ± 25 degrees the maximum error in any of 
the coordinates was 1.8 mm. On average, the errors were 0.6, 0.4, and 0.9 mm for x, 
y, and z respectively. The Euclidian errors were 1.0, 1.8, and 1.3 mm for lesions 1, 2, 
and 3 respectively.  Similar results were obtained using stereotactic angles of ±15, 
±35, and ±45 degrees. 
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Table 2. Error between lesion center and needle tip placement 

Error: Lesion Center-Needle Tip 
Lesion # Stereo Angles 

x (mm) y (mm) z (mm) 

Euclidian 
Error (mm) 

1 ± 25  -0.4 -0.8 -0.4 1.0 

2 ± 25  0.3 0.1 -1.8 1.8 

3 ± 25  1.2 -0.2 0.4 1.3 

4   Discussion 

Accurate intraoperative guidance is necessary for reliable surgical biopsy and 
lumpectomy of nonpalpable breast lesions. The use of a radiomarker could potentially 
overcome some of the limitations of wire localization in this regard. A prototype 
integrated system for the x-ray-guided injection of the radiomarker and measurement 
of its location has been built. Preliminary evaluations of the system’s ability to 
localize the lesion and to position the needle accordingly are encouraging, but further 
improvements can be made. Although the error between the lesion center and the 
needle tip is currently larger than our goal of  1 mm for two of the three 
measurements (maximum error = 1.8 mm), improved performance is likely to be 
obtained by fine tuning the orientation of the translation stages so that their translation 
directions are more precisely parallel to the x, y, and z axes of the common reference 
frame established by the x-ray imaging system. Also, the effects of operator 
variability in the identification of the locations in the stereotactic images of the lesion 
and needle tip must be further evaluated, as does possible flexing of the relatively 
small bore (20 gauge) needle. These improvements will be made prior to the 
beginning of clinical evaluation, scheduled for the fall of 2006.  
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Abstract. Two-view mammography is known to be more effective than one-
view in increasing breast cancer detection and reducing recall rates. In addition, 
there is evidence that computer aided detection (CAD) systems are able to 
prompt malignant abnormalities that have been overlooked by a human reader. 
Using data from the UK NHS Breast Screening Programme (NHSBSP) we 
compared double reading with single reading using a CAD system, to assess the 
relationship between CAD and number of views in terms of the sensitivity of 
the screening regime to cancer detection and the recall rate of normal cases. 
CAD appeared to contribute to an increased cancer detection rate with single-
view mammography without significantly increasing the recall rate. For two-
view mammography, there was no significant change in sensitivity using CAD 
but a significantly higher recall rate. However, single-view mammography was 
used in incident rounds in which previous mammograms were available 
whereas two-view mammography was used in the prevalent round where no 
previous mammograms were available.  

1   Introduction 

It is known that two-view mammography has substantially superior sensitivity to 
single-view in screening and symptomatic examinations [1][2]. It is also known that 
computer aided detection (CAD) systems can prompt malignant abnormalities 
overlooked by a human reader [3][4]. In the UK National Breast Screening 
Programme, the policy of two-view mammography at first screen followed by single-
view thereafter has recently been replaced by a policy of two-view mammography at 
every round. In this paper, we use data from a study comparing the original double 
reading with single reading using a CAD system, in which prevalent round 
mammograms were two-view and incident round mammograms were single-view, to 
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assess the relationship of the single reader using CAD and number of views in terms 
of the sensitivity of the screening regime to cancer detection rate and the recall rate of 
normal subjects. 

2   Methods   

In CADET [5], 10,096 mammograms, originally double read in 1996, and with the 
cancer casemix enriched by 50%, were reread by a single human reader assisted by 
the R2 ImageChecker CAD system with software version 5.0. Of the 10,096 
mammograms 315 had cancers diagnosed at the original mammogram or up to six 
years later. We had data on number of views for all 315 of the cancers and for 9733 of 
the 9781 normal cases (99.5%). We retrieved prompt data on 309 cancers (98%). 
Reading conditions from 1996 were replicated in that incident round mammograms 
were hung with the previous examination undertaken three years earlier.  

3   Statistical Analysis   

We first compared two reading regimes for single-view with two-view mammograms 
separately, using the McNemar’s test. Further analysis was by logistic regression 
estimating the effects of number of views, tumour size, breast density, and node status 
on the odds of being recalled by the original double reading and by the single reader 
with CAD. This yielded odds ratio estimates of the relative risk of being recalled, and 
the deviance chi-squared tests for the significance of the association of the factors 
with the chance of being recalled. In addition, for the single reader with CAD, we also 
estimated the association with when the tumour was diagnosed.     

4   Results 

Table 1 shows the detection rates of all cancers diagnosed at or after the original 1996 
screen by number of views for the original double reading and for the single reading 
with CAD. 

Table 1. Detection rate of cancers and recall rate of normal subjects by use of CAD and 
number of views 

Single View Two view
Outcome CAD No CAD CAD No CAD
Detection rate 95/241(39%) 73/241(30%) 31/74(42%) 30/74(41%)
Recall rate 420/6879(6%) 315/6879(5%) 319/2854(11%) 241/2854(8%)  

 
For single-view there is a very significant difference in sensitivity (p=0.0003), with 

single reading using CAD being more sensitive than the previous double reading. 
However, it also confers a significant increase in recall of normal cases (p<0.0001). 
For two-view there is no significant difference in sensitivity (p=0.9), but again a 
significant increase in recall of normal cases with CAD (p<0.0001). There were no 
significant differences between single-view sensitivity and two-view sensitivity either 
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with or without CAD. With CAD, two-view had significantly higher recall rates of 
normal cases than single-view (p<0.0001). Similarly, without CAD, the recall rates 
were significantly higher for two-view mammography (p<0.0001). It should be noted, 
however, that the results are confounded by incident/prevalent screen status. Due to 
the screening policy in place in 1996, the two-view cases were mostly prevalent 
screen and the single-view mostly incident screen where the previous round 
mammograms were hung for comparison.  

Table 2 shows the CAD prompts (of the true tumour region as determined by 
retrospective review of all imaging and clinical/pathological information).  

Table 2. CAD prompts in the tumour region by number of views and tumour feature on 
mammogram 

 
Single view 

 
Two view 

 
 
 
Feature 

 
Prompted 

Not 
Prompted 

Prompted 
in MLO 

only 

  Prompted 
in CC 
only 

Prompted 
in both 
views 

Not 
Prompted 

Mass 60 (54M) 108 6 (4M)   6 (5M) 11 (10M) 19 
Microcalc 38 (29C) 36 3 (3C)   1 (0C) 9 (8M) 12 

 
The figures in parentheses give the number actually prompted as that type of 

lesion. With single view mammography, 60 out of 168 masses were prompted, 54 
with a mass prompt, six with a microcalcification prompt. With single view, 51% of 
microcalcifications and 36% of masses were prompted. This difference in prompt 
rates was significant (p=0.04). For two-view mammography, 57% of micro- 
calcifications and 55% of masses were prompted (no significant difference). In those 
with two view mammography, there was no significant difference between CC and 
MLO with respect to the likelihood of a prompt.  

Table 3 shows the effects of number of views, tumour size, breast density and node 
status on the odds of recall by the original double reading. The only significant 

 
Table 3.  Univariate and multivariate logistic regression results for effects of number of views, 
tumour size node status and density on recall of cancers by double reading 

Univariate Multivariate
Factors Category OR 95% CI OR 95% CI
View Double 1 - 1 -

Single 0.63 (0.37, 1.08) 1.09 (0.48, 2.48)

Tumour size 1-9 1 - 1 -
10-14 1.69 (0.80, 3.59) 2.91 (1.00, 8.46)
15-20 2.12 (1.05, 4.25) 3.35 (1.18, 9.52)
20+ 0.70 (0.29, 1.69) 0.84 (0.25, 2.86)

Breast density (per 1%) 1.01 (1.00, 1.02) 1.02 (1.00, 1.03)

Node status Positive 1 - 1 -
Negative 0.47 (0.24, 0.93) 0.54 (0.24, 1.21)
Others 0.88 (0.40, 1.93) 1.56 (0.56, 4.39)  
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effects, whether in the univariate analysis or in the multivariate analysis with factors 
adjusted for each other, were those of tumour size and breast density. For tumour size, 
the chances of recall increase with size, except for the largest category, greater than 
50mm, for which there were only 7 cases. In the adjusted analysis, the effect of the 
density was borderline significant (p=0.06), but the result suggested a 2% increase in 
density. 

Table 4 shows the corresponding results for effects on recall by the single reader 
with CAD, with the addition of when the tumour was diagnosed. The only significant 
effects, both univariate and multivariate were the density and when the tumour was 
diagnosed. Recall was much more likely for tumours diagnosed at the original 1996 
screen, reflecting the higher rate of agreement between double reading and single 
reading with CAD.  There was a 2% adjusted increase in the odds of recall per 1% 
increase in density. 

Table 4.  Univariate and multivariate logistic regression results for effects of number of views, 
tumour Size, node status, density, and including when the tumour was diagnosed (outcome) on 
recall of cancers  with single reading with CAD 

Univariate Multivariate
Factors Category OR 95% CI OR 95% CI
View Double 1 - 1 -

Single 0.90 (0.53, 1.53) 1.29 (0.49, 3.39)

Tumour size 1-9 1 - 1 -
10-14 1.03 (0.50, 2.13) 0.57 (0.17, 1.91)
15-20 1.74 (0.90, 3.38) 1.52 (0.51, 4.51)
20+ 0.80 (0.36, 1.76) 0.61 (0.17, 2.16)

Breast density (per 1%) 1.01 (1.00, 1.02) 1.02 (1.00, 1.04)

Node status Positive 1 - 1 -
Negative 0.57 (0.30,1.07) 1.20 (0.47, 3.09)
Others 0.82 (0.39, 1.74) 1.14 (0.33, 3.89)

Outcome Cancer at 1996 screen 1 - 1 -
Cancer at subsequent screens 0.03 (0.01, 0.07) 0.03 (0.01, 0.09)
Intervals cancer 0.04 (0.02, 0.11) 0.04 (0.01, 0.14)  

5   Discussion 

The above suggests that with single-view mammography, CAD contributes to an 
increased cancer detection rate. The fact that this was achieved without a substantial 
increase in recall of normal cases is probably due to the fact that the single view 
mammograms pertained to incident screens and therefore, for these, there were 
previous mammograms available for comparison. This is due to the policy of the UK 
Breast Screening Programme in 1996. At that time, prevalent screens used two-view 
mammography and incident screens single-view. Thus, if the original 1996 
mammography was single-view, this would imply that there would be pre-1996 
mammography for comparison. If it was two-view, then the 1996 screen would have 
been a prevalent screen with no prior mammograms. The large increase in recall rate 
with CAD for two-view mammography is therefore similarly likely to be due to 
prevalent round examinations with no previous mammograms available.  
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There was no clear benefit of CAD observed for two-view mammography in terms 
of cancer detection,  although this finding must be regarded as suggestive, since there 
was a relatively small number of two-view mammograms available for this study, and 
because of the confounding with incident/prevalent screen status. There was, 
however, a higher recall rate of normal subjects with CAD amongst the two-view 
subjects. Interestingly, the higher CAD prompt rate of tumours with two-view 
mammography applied mainly to masses. Prompts of calcifications were equally 
common for one-view and two-view mammography. 

When considered in terms of factors influencing recall by the original 1996 double 
readers and the single reader with CAD separately, some interesting results emerged. 
With reading regimes (double and single with CAD) number of views did not affect 
cancer detection rates. For the original double reading, significant associations with 
recall of cancer cases were observed only for higher density and larger tumour size, 
except for the largest category, > 50 mm.  

It is of interest that there was a greater likelihood of recall by either regime with 
increased breast density. Breast cancers occur more frequently in dense breasts, and 
there is probably greater uncertainty in reading dense mammograms. Human reader 
awareness of both of these facts probably contributes to the higher recall rates in 
dense breasts.  

Cancers previously recalled by double reading were much more likely to be 
recalled by the single reader with CAD. This is consistent with our finding of very 
high agreement rates between the two reading regimes [5]. 

The major implication of this work is the clear increase in recalled cancers with 
CAD when there are prior mammograms for comparison. When prior mammograms 
are available, there is also a lesser human cost in terms of recalled normal subjects. 
The R2 system prompts a large proportion of mammograms and this can lead to 
increased false positive screens as can be seen from our results for two-view 
mammography (i.e. prevalence screen). This tendency is much mitigated if there are 
prior mammograms. 

It is likely that future CAD system will aim at improving specificity, and more 
accurate prompting of masses, bringing the sensitivity in line with that for 
microcalcifications.    
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Abstract. We have analysed data from a subgroup of thirty-nine women who 
had previously gained more than 10kg in adult life, and who were amongst 
those recruited from a family history clinic to a study examining the effects of 
diet and exercise on breast cancer risk. At entry to the study and after 12 
months they underwent a series of investigations, including mammography 
during which markers were attached to the compression plate to allow accurate 
measurement of breast thickness. A calibrated stepwedge was placed adjacent 
to the breast to enable quantitative analysis. The proportions of glandular and 
fatty tissue were calculated at each pixel from the stepwedge and thickness data 
and from these, the percentage gland in the breast was computed, both by area 
and by volume. Statistical analysis showed that the volume of glandular tissue 
was not related to breast size. Over the 12 month period, the majority of the 
women lost weight, while some gained weight. It was found that weight change 
was correlated with change in the volume of fat in the breasts, with those 
women who lost the largest amount of weight showing the greatest reduction in 
volume. There was little change in volume of glandular tissue for any of the 
women. Percentage gland is often used as an indication of risk of developing 
breast cancer. These results suggest that measures of percentage of gland (e.g. 
Boyd groups) may be dominated by excess breast fat in overweight women. 

1   Introduction 

Increased breast density has been associated with an elevated risk of breast cancer by 
a number of researchers, most notably Wolfe [1] and Boyd [2].  This is of particular 
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interest because whilst there are many different risk factors for breast cancer which 
cannot be altered (e.g. age, parity and family history), breast density can be modified 
by a variety of methods including diet, exercise and drugs.  

Measurement of breast density is generally carried out by radiologists, either by 
categorising the parenchymal patterns into one of the groups proposed by Wolfe [1], 
or by estimating the percentage of dense tissue in the breast [2,3,4]. However, these 
forms of assessment are subjective and do not accurately reflect the three dimensional 
nature of the breast and its component tissues. The X-ray mammogram is a two-
dimensional projection of a three-dimensional structure, with the brightness at any 
given point in the image depending on the thickness of glandular and other dense 
tissue projected onto that point. The arrangement of glandular tissue within the breast 
depends on the way in which the breast is compressed, so measures of the area 
occupied by dense tissue will vary depending on compression. Furthermore, the 
overall brightness of the image depends on the imaging parameters, which in turn 
vary depending on factors such as the degree of compression used, the positioning of 
the woman and the composition of the breast. The impact of these factors on 
radiologists’ estimates of glandular density has not been quantified. There may also 
be ambiguity in locating the breast border over which percentage area is estimated. 
For example, in the medio-lateral view, the pectoral muscle is often excluded from the 
analysis, although in some mammograms, the glandular tissue may overlap this 
region. Finally, some approaches to measuring breast density rely on delineation of 
the breast border and glandular region, and hence calculation of  the percentage of the 
area of the breast occupied by gland, whereas others attempt to take into account the 
relative densities of different regions and treat the density as a volume.  

In recent years, semiautomated and automated methods have been developed to 
measure more accurately the proportion of dense tissue in the breast by means of 
analysis of X-ray mammograms. The most simple methods are designed to facilitate 
thresholding of images [5]; however, these suffer from many of the limitations 
described above. Apart from these there are three principal approaches: firstly, a 
method based on the physical parameters of the imaging process developed in Oxford 
[6]; secondly a technique using a step wedge to calibrate grey levels developed in 
Toronto [7] and thirdly another step-wedge based method developed in Manchester 
[8,9]. The advantage of these approaches is that they enable calculation not only of 
the percentage of dense tissue, but also of the volumes of dense and fatty tissue in the 
breast. 

In this paper we describe the application of the automated method developed in 
Manchester to a group of women participating in a study examining the effects of diet 
and exercise on the risk of developing breast cancer, and present our results relating 
measures of gland and fat to weight change. 

2   The Lifestyle Study 

The lifestyle study  [10] aims to evaluate the effect of diet and exercise on women at 
increased risk of developing breast cancer. Premenopausal women in the age range 
35-45 were recruited to the study. All had a family history of breast cancer, and had 
gained at least 10kg of weight since the age of 18. Half the participants were offered 
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specific dietary advice and encouraged to adhere to an exercise regime. All were 
assessed at baseline, and followed up at 12 and 24 months with a view to determining 
whether diet and exercise (and any resulting weight loss) have altered their risk of 
developing breast cancer. A variety of methods was used to assess these women, but 
the work described in this paper focuses on the relationship of weight change to 
change in breast density. 

3   Method 

Two methods of measuring the quantity of dense breast tissue were used in this study: 
an automated technique developed in Manchester [9] and expert radiologists’ 
estimation of percentage gland. In the automated technique, a calibrated stepwedge is 
placed alongside the breast during mammography, and markers on the compression 
plate enable accurate measurement of compressed breast thickness, allowing for tilt of 
the compression plate. Data from the stepwedge and images was then used to measure 
total breast volume and glandular volume, and hence the percentage of dense breast 
tissue (by volume) and the volume of fat. Two radiologists experienced in estimating 
percentage gland also assessed every film by viewing digitised images on a computer 
screen.  The films were re-randomised and the assessment repeated to enable 
calculation of intra observer variability. 

At entry into the study (0 months), some of the women were not eligible for 
mammography with the stepwedge and compression markers, as they had recently 
undergone routine mammography. Some women also withdrew from the study during 
the twelve month period. The availability of images for automated assessment is 
summarised in table 1. 

Table 1. Availability of data for automated measurement of breast density 

 With stepwedge Without stepwedge Total 
0 Months 160 116 276 
12 Months 224 16 240 
Total 384 132 516 

4   Results 

Some women in the group which had intervention (exercise and dietary advice) did 
lose weight, but for others, either no change or an increase in weight was measured at 
the end of the twelve month period. There was a similar pattern in the control group. 
For this reason, the data were analysed in terms of weight change rather than 
comparing control and intervention groups. The weight change data are represented in 
figure 1, and the results are summarised in figure 2.   

Both radiologists were very consistent in estimating percentage gland, with intra 
class correlation coefficients of 0.936 and 0.964. The correlation between the two 
readers was 0.836, with a 4.1% difference between the means. The difference 
between the readers increased systematically with density. 
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Fig. 1. Histogram of change in weight in kg of women in the study over a 12 month period  

The most consistent radiologist’s estimate was compared with the percentage gland 
calculated from the automated technique. Here the correlation coefficient was 0.806, 
but the difference between the means was much larger (17.8%). The automated 
method had the lower mean, and once more this was a difference that systematically 
increased with increasing density. 

The breast volume measured using the automated technique was compared with 
the woman’s weight to determine whether weight and breast volume were related. 
There was found to be a significant relationship with a correlation of 0.799 (p<0.001) 
at entry, and a similar result at 12 months, with heavier women having larger breast 
volumes. There was no significant relationship between weight and glandular tissue 
volume. 

There was a significant correlation between change in weight and change in breast 
volume, with breast volume increasing in women who gained weight and decreasing 
in women who lost weight. The correlation coefficient was 0.787 (p<0.001).  No 
statistically significant relationship was found between change in glandular volume 
and change in weight over the 12 month period. The correlation coefficient was -
0.294 (p=0.091). 

Figure 2 illustrates the changes in the parameters measured (breast volume, 
glandular volume and percentage gland) in women with weight loss greater than 5kg 
over the twelve month period, in those with weight loss less than 5kg and in those 
women who put on weight. It shows that there was little change in either glandular 
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Fig. 2. Change in breast volume, glandular volume and percentage gland (by volume)  

volume or percentage gland with weight change, and that these measures are 
dominated by the significant change in breast volume.  

5   Discussion 

In this study, an automated measure of breast density was used to investigate the 
effect of weight loss on a population at increased risk of developing breast cancer. 
The method was compared with an expert radiologist’s assessments of percentage 
gland. It was found that the measures were correlated, but the mean percentage gland 
calculated automatically was nearly 18% lower than that estimated by the radiologist.  
This could in part be due to the method used to calculate percentage gland in the 
region where the breast is no longer in contact with the compression plate (near the 
edge of the breast). In the version of software used for this study, a rectangular profile 
was assumed; this error has subsequently been corrected, and an elliptical model has 
been incorporated in the method [9].  The results of the study show a significant 
decrease in breast volume with weight loss (and increase with weight gain). This is 
much larger than any measured change in glandular volume and dominates measures 
of change in percentage gland which are calculated from both breast volume and 
glandular volume.  Previously, authors have noted that women with high body mass 
indices are less likely to have high-risk mammographic patterns [11]. Our results 
support this in that they suggest that women who are overweight tend to have larger 
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breasts, with the excess being predominantly fat, so measures of risk based on the 
percentage of the breast that is occupied with dense glandular tissue will be artificially 
low.  
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Abstract. Tomosynthesis provides a major advance in image quality compared to 
conventional projection mammography by effectively eliminating the effects of 
superimposed tissue on anatomical structures of interest. Early tomosynthesis 
systems focused primarily on feasibility assessment by providing 3-dimensional 
images to determine performance advantages.  However, tomosynthesis image 
quality depends strongly on three key parameters:  1) detector performance at low 
dose, 2) angular range and number of projections acquired in the tomosynthesis 
scan, and 3) reconstruction algorithm processing characteristics used to create 
slice images from the measured projections.  In this work, a new GE mammo-
graphy tomosynthesis research system was developed that incorporates key 
improvements in each of these three areas compared to an early feasibility 
prototype system in use at Massachusetts General Hospital from 2000 to 2004. 
The performance gains that can be achieved by these enhancements are cha-
racterized, and clinical images acquired with the system at the University of 
Michigan Cancer and Geriatrics Center are presented.  The advanced research 
system also provides the ability to acquire mechanically co-registered x-ray 
tomosynthesis and ultrasound images of the breast, and initial dual modality 
images are also presented. 

1   Method 

An x-ray tomosynthesis/ultrasound dual modality prototype system suitable for clini-
cal evaluation has been developed to assess the potential to further improve breast 
cancer diagnosis. The tomosynthesis system is based on the Senographe DS image 
chain (GE Healthcare, Milwaukee, WI). Key x-ray subsystems include the x-ray 
source (tube and generator), the detector, the patient positioner, and the recon-
struction and review hardware. The tube and generator from the Senographe DS 
digital mammography system have been modified to provide 50% higher current on 
the Rh target. This allows shorter x-ray exposure times and minimizes the possibility 
of patient motion during the tomosynthesis exam.  
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The detector is a high performance, next generation a-Si/CsI flat panel design that 
achieves significant improvement in DQE at typical tomosynthesis dose levels [1].  It 
consists of a matrix of 1920 x 2304 pixel elements at a pitch of 100um.  In order to 
enable low dose imaging, the noise floor of the detector was significantly reduced by 
altering the ratio of the electronic noise (EN) to the conversion factor (CF, signal per 
incident x-ray).  This ratio describes the electronic noise of the detector in units of x-
rays and governs how the DQE falls off with decreasing exposure (Figure 1). While 
12-24 x-rays of noise may be acceptable for current 2D screening applications, 3-6 x-
rays of noise are required for tomo applications, which may be acquired at 10 to 20 
times lower dose per projection than a standard mammogram. By optimizing the 
scintillator and optical transport properties of the flat panel and adding a storage 
capacitor at each pixel, this electronic noise reduction was achieved while expanding 
the overall dynamic range of the detector. 
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Fig. 1. DQE reduction factor vs. exposure as a function of electronic noise ratio (EN/CF) [1] 

A specialized patient positioner was designed to provide a more flexible 
acquisition geometry with provision for dual modality XR/US imaging. During the 
tomosynthesis acquisition, the tube traverses an arc above the patient, with the point 
of rotation at the level of the breast support. The compressed breast remains 
stationary above the non-rotating detector surface during the examination.  The 
system acquires 21 projection images over a wide angular range of 60 degrees in 
under 8 sec in order to minimize patient motion during the exam.  Larger angular 
range provides greater depth resolution and more projections reduce the level of 
streak artifacts in the images.  The prototype system installed at the University of 
Michigan is shown in Fig. 2. 
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Fig. 2. Photograph of the prototype tomosynthesis system installed at the University of 
Michigan Cancer and Geriatric Center 

Images from the research system are reconstructed using a generalized filtered 
backprojection (GFBP) reconstruction algorithm [2], consisting of a 2D filtering 
operation on the projections, followed by an order-statistics based backprojection step 
(OSBP). The slice images are typically reconstructed on a 100um x 100um grid (full 
detector resolution) with a slice spacing of 500um. The 2D filtering is effective in 
enhancing contrast of structures and managing statistical image noise (quantum and 
electronic), while the OSBP step is useful in managing out-of-plane artifacts. This 
flexible algorithm is non-iterative (i.e., fast) and flexible. 

2   Results 

Results of the analysis of reconstructed image quality using a wire phantom are illus-
trated in Figure 3. In particular, the figure shows vertical cross-sections through 
volumetric reconstructions of various wires, where the image gray scales are norma-
lized such that the brightest point and the background in all images are at the same 
gray-scale. GFBP exhibits higher contrast and reduced artifacts as compared to simple 
backprojection. Also, the beneficial effects of larger angular range (leading to 
improved depth-resolution) and larger number of projections (leading to reduced 
artifact contrast) are demonstrated. 
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Fig. 3. Cross-sections of reconstructions of the wire phantom containing 4 wires, with 
diameters (from left to right) of 0.05, 0.79, 1.59, and 2.38mm respectively. Upper left image: 
GFBJ, 21 views, 60 degrees. Upper right image: GFBP, 11 views, 30 degrees.  Lower left 
image: Simple Backprojection, 21 views, 60 degrees. Lower right image: Simple Back-
projection, 11 views, 30 degrees. 

Profiles through the wires are shown in Figure 4.  Note that the horizontal 
resolution is essentially independent of number of projections and scanning angle, but 
that vertical resolution improves as scanning angular range is increased. 

 

Fig. 4. a) Horizontal cross-section through reconstructed wire (left), and b) vertical cross-
section through reconstructed wire (right); the x-axis is in 0.1mm (= 1 pixel) units. Solid: 
GFBP, 21 views, 60 degrees. Dotted: GFBP, 11 views, 30 degrees. Dash-dotted: Simple 
Backprojection, 21 views, 60 degrees. Dashed: Simple Backprojection 11 views, 30 degrees.  



 Mammography Tomosynthesis System for High Performance 3D Imaging 141 

The research system is used routinely for research imaging of patients. 
Tomosynthesis images are reconstructed from 21 low-dose projection images 
acquired over an angular range of 60 degrees in less than 8 sec. Reconstruction of 
patient images is done with both the GFBJ [2] and the SART algorithm [3].   

Projection images acquired with the system are presented in Figure 5.  The first, 
middle and last images acquired in the projection sequence are presented to the 
technologist during the exam as an initial quality check. The technologist checks for 
correct positioning, patient motion, and generally appropriate exposure parameters. 

 

Fig. 5. Projection images acquired with the tomosynthesis research system at tube positions of  
a) –30 degrees, b) 0 degrees, and c) 30 degrees.  Total dose in a tomo scan ranges from 150% to 
200% of the dose in a standard mammographic view, so the dose in a single tomo projection is 
approximately 7 – 10% of that in a standard mammographic view. 

A comparison of a conventional projection mammography image to two tomographic 
slices is shown in Figure 6. Note the soft tissue detail visible in the tomo slices and the 
enhanced visibility of the lateral vein in one tomographic slice, compared to the 
mammogram where only the thickest, central part is seen.  The blood vessel present in 
the first tomographic slice has disappeared in the adjacent slice, 3 mm away.  

A comparison of conventional mammography to an ultrasonic scan is shown in 
Figure 7. The ultrasound is a sagittal view at the location of the top arrow in the 
mammogram. Note the boundary between the anechoic and echogenic regions 
indicated by the arrow in the ultrasonic image. 

Finally, a comparison of a conventional mammogram with the co-registered 
ultrasonic image is shown in Figure 8.  Both tomosynthesis and ultrasonic images for 
all the slices through the breast are, of course, available from the physically co-
registered acquisitions. 
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Fig. 6. Comparison of conventional digital mammogram with tomographic slices.  A. 
Mammogram in Cranio Caudal (CC) view. B. Tomographic slice at 25 mm deep.  C. 
Tomographic slice at 28 mm deep.  Note the disappearance of much of the 3.8 mm diameter 
vessel (upper arrow) in this tomographic slice (C), separated by 3 mm from (B).  Note also the 
changing soft tissue detail throughout the two slices. 

 

Fig. 7. Comparison of conventional mammogram to co-registered ultrasonic image.  A.  
Mammogram in Cranio Caudal (CC) view.  The bottom arrow denotes a glandular tissue 
boundary and the superficial vessel seen more clearly in the tomogram in Fig. 6.  B. 
Ultrasonic image in sagittal slices normally acquired for CC views (twice the scale of the 
mammogram).   
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Fig. 8. Comparison of ultrasound images with tomographic slices in normal volunteer. A. 
Reconstructed axial ultrasound image (C scan). B. Tomographic slice showing subcutaneous 
vessel near the bottom of the image. C. Axial ultrasound slice 15 mm from the skin, D. 
Corresponding tomographic slice. E. Axial Ultrasound 25 mm deep, corresponding to tomo- 
graphic image in Fig. 8B.  

3   Discussion 

A dual modality, x-ray tomosynthesis/ultrasound imaging prototype system has been 
designed, built, and tested, and characterized.  Significant performance enhancements 
have been realized by incorporating a new, high performance aSi flat panel detector 
optimized for low dose acquisitions, a large tomosynthesis acquisition angular range 
with a substantially increased number of projections compared to previous systems, and 
a fast, flexible reconstruction algorithm with artifact management incorporated directly 
into the reconstruction process. The system is in clinical evaluation at the University of 
Michigan Cancer and Geriatric Center in Ann Arbor and at Via Christi Regional 
Medical Center in Wichita, Kansas. 

This work was supported in part by Grant No. 5RO1 CA091713 from the National 
Cancer Institute and by Grant No. MDA9050210012 from the U.S. Office of Naval 
Research, through subcontract 65092 from the Henry M. Jackson Foundation for the 
Advancement of Military Medicine.  
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Abstract. Digital breast tomosynthesis promises solutions to many of the 
problems currently associated with projection mammography, including 
elimination of artifactual densities from the superposition of normal tissues and 
increasing the conspicuity of true lesions that would otherwise be masked by 
superimposed normal tissue.  We have investigated the performance of a novel 
tomosynthesis system in a clinical setup. The novel system uses 48 photon 
counting, orientation sensitive, linear detectors which are precisely aligned with 
the focal spot of the x-ray source.  The x-ray source and the digital detectors are 
scanned in a continuous motion across the patient; each linear detector 
collecting an image at a distinct angle. The results from an assessment of image 
quality and the initial clinical trial of this device are presented.  Initial results 
provide anecdotal evidence supporting the superiority of tomosynthesis over 
projection mammography. 

1   Background 

There are a number of problems currently associated with projection mammography, 
including decreased conspicuity of true lesions that are masked by superimposed 
normal tissue and artifactual densities from the superposition of normal tissues [1]. 
Tomosynthesis is a promising solution to overcome these problems [2-5]. However, 
tomosynthesis systems based on area flat-panel detectors themselves suffer from a 
number of fundamental limitations. First, the requirement of sequential image 
acquisition limits the number of images acquired; acquiring an insufficient number of 
images results in image artifacts [6, 7]. Second, electronic noise, ghosting and lag 
found in each of the source projection images are added in the reconstruction process, 
resulting in excessive noise in the reconstructed images.  Third, the long readout time 
of current flat panel detector technology results in image blurring, both from patient 
motion, and from the continuous scanning motion used in some systems.  
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2   Imaging System 

A novel tomosynthesis system has been developed [6-10].  The system uses 48 
photon-counting, orientation sensitive, linear detectors which are precisely aligned 
with the focal spot of the x-ray source.  The x-ray source and the digital detectors are 
scanned in a continuous motion across the patient; each linear detector collecting an 
image at a distinct angle.   

The 48 simultaneously collected images are of very high image quality due to 
several special characteristics of this detector technology.  First, the detectors are 
insensitive to scattered radiation; the detector geometry ensures that only primary 
photons emanating from the focal spot of the x-ray source will elicit a response from 
the detector. Second, the detector does not contribute any electronic noise; the strong 
gaseous amplification of each photon interaction allows a simple threshold to exclude 
electronic noise from being counted and included in the final image. Third, the image 
pixels are very small (60 μm) avoiding motion blurring from long scanning times of 
each sub-image. Finally, the detector technology does not have any residual image, 
ghosting or blooming artifacts.   

Data appropriate for tomosynthesis is acquired over a region 24x30 cm2 within 15 
seconds. The resulting 48 projection images are then reconstructed using filtered 
back-projection to produce a volumetric data set of tomographic images. The images 
are presented on a dedicated primary review workstation for interpretation.   

The imaging system is typically operated with a tube potential of between 30 and 
40 kVp with a W-target anode and Al filtration. The mean glandular dose for a 
tomosynthesis image is typically less than or equal to a normal film/screen 
mammogram.  The system is shown in Figure 1. 

Fig. 1.  The imaging system is shown.  The system is capable of both projection mammography 
and tomosynthesis. The system is wider than conventional systems to accommodate the 
scanning detector and x-ray source. 
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3   Clinical Trial 

Method: An initial clinical study of this novel tomosynthesis system has recently 
been completed. Enrolment was limited to 20 patients.  The study was conducted with 
IRB oversight. All patients provided informed consent.  Patient recruitment was 
limited to women having clinical and/or mammographic findings; specifically, they 
either had to be recalled after an abnormal screening mammogram or be referred by a 
physician after suspicious physical findings.   

For each patient, analog film images were first taken at Danderyd Sjukhus 
(Danderyd, Sweden). Later the same day, digital tomosynthesis images were taken of 
the same breast by the same radiologic nurse.  The digital tomosynthesis images were 
then reviewed by a trained radiologist. 

Dosimetry: Twenty patients were enrolled in the clinical trial.  The film-screen 
radiographs were acquired at either 30 or 31 kVp, with an average entrance skin air 
kerma (ESAK) of 6.68±4.83 mGy, and average glandular dose (AGD) of 
1.46±0.73 mGy. By comparison, the tomosynthesis images were acquired at 30-35 kVp 
and 140-180 mA, resulting in an average ESAK of 4.98±0.61 mGy, and an AGD of 
1.42±0.16 mGy. 

Clinical Evaluation: Our initial goal was to seek anecdotal proof that the 
tomography system provided clinically acceptable breast images.  Criteria included 
breast positioning, resolution of high-contrast structures such as calcifications and 
clips, and conspicuity of larger low-contrast objects such masses and cysts.   

A preliminary analysis indicates that the image quality achieved to date is 
clinically acceptable. Figure 1 demonstrates the system being used for a medial-lateral 
oblique (MLO) mammogram.  Breast positioning for both MLO and cranio-caudal 
(CC) mammograms appear to be acceptable [7].  The MLO images, when 
reconstructed near the mid-plane of the breast, typically show that the pectoralis 
muscle extends below the line drawn perpendicular to the muscle that passes through 
the nipple.  The CC images typically show the posterior margin of the glandular tissue 
(for example, see Fig. 2).   

The images to date have shown very high spatial resolution.  In general, we see 
more calcifications in the tomosynthesis images than in the screen-film 
mammograms. Further, the calcifications in the tomosynthesis images are generally 
better resolved (sharper margins and higher contrast) than in the screen-film images.  
We find that calcifications rapidly disappear when out-of-plane.  These observations 
are consistent with our previous findings with phantoms and animals, and are likely 
due to the choice of angular range, number of projection images and pixel size.[6]   

The images (see Fig. 2) depict the breast anatomy well.  The glandular tissue, 
adipose tissue, Cooper’s ligaments, blood vessels, lymph nodes and other structures 
of the breast are well visualized.  In the 20 women studied we found one cancer which 
was quite obvious in the tomosynthesis image, and only marginally visible in the 
screen-film image. While anecdotal, we believe that these early images provide 
convincing evidence of the superiority of both tomosynthesis and our approach of 
simultaneously acquiring multiple images with a scanning photon-counting detector.  
We believe that the system is capable of producing images with clinically acceptable 
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Fig. 2.  Reconstructions from 2 patients.  The patient on the left has numerous calcifications 
that are clearly seen. The patient on the right has a spiculated mass, which on biopsy was 
identified as a ductal carcinoma.   

quality, and having adequate tissue penetration and breast positioning.  Admittedly, 
these results are preliminary and lack statistical significance. 

4   Assessment of Image Quality 

Image quality has been assessed by multiple methods, including the assessment of the 
modulation transfer function (MTF) and the noise power spectrum (NPS).   

MTF:  The MTF in the scanning and strip (i.e., parallel to the linear detector strips) 
directions have been measured.  The MTF was measured using a slanted edge 
method [11].  The edge was measured in an image reconstructed with simple back-
projection, in the plane of the edge.  Figure 3 shows the measured MTF in the 
scanning direction.  These data are shown compared to theoretical calculations.  The 
theoretical MTF can be decomposed into 2 main sources of blurring.  The first is 
related to scanning unsharpness.  The detector is read out each time the detector array 
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is translated 60 μm.  Thus, the scanning unsharpness can bm.  Thus, the scanning unsharpness can be represented by a sinc 
function.  The second source of unsharpness is related to the image acquisition 
geometry; the collimator is at a fixed distance above the breast and the x-ray focal 
spot is of known size and shape.  Thus, it is possible to calculate the blurring due to 
the collimator width and geometric unsharpness as the product of two sinc functions, 
assuming that the focal spot has a rectangular intensity profile. The product of these 
two sources of unsharpness is specified as the “Total” in Figure 3. The similarity of 
the measured and experimental data is noteworthy.  The discrepancy seen is likely 
due to deviation from the assumption of a rectangular focal spot.   

Figure 4 shows the measured MTF in the scan and strip directions. The resolution 
in the strip direction is lower than that in the scan direction. This degradation is still 
under investigation; however, it is likely due to simultaneous triggering of adjacent 
channels in the detector. 
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Fig. 3. System MTF of tomographic images in the scanning direction. Both measured and 
theoretical data are presented. The theoretical unsharpness is divided into two terms: scanning 
unsharpness, and collimator and geometric unsharpness. Their product is labeled “Total”. The 
theoretical total MTF is quite similar to the measured MTF. 

NPS: Images to calculate the NPS were acquired at 35 kVp with a W-target x-ray 
tube and 0.5 mm Al filtration.  A uniform block of PMMA 40 mm thick was imaged.  
From these projection images, 128 planes with 0.3 mm separation were reconstructed 
using both simple backprojection and filtered backprojection.  Using these data, a 
volume of interest (VOI) 38×60×200 mm (128×1024×3328 pixels) was selected with 
the largest dimension parallel to the chest wall.  The VOI size and orientation were 
chosen to minimize the heel effect.  A VOI 200 mm long is acceptable due to the 
scanning geometry. The VOI was then divided into 128×128×128 voxel cubes 
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Fig. 4. MTF of tomographic images in the scan and strip directions. The MTF in the strip 
direction is reduced com-pared to the scan direction due to simultaneous trig-gering of adjacent 
channels.  

overlapping by 64 pixels in both the x and y directions. A 3D spectral estimate was 
calculated for each cube, and these estimates were averaged to calculate the NPS. 

The NPS are shown in Fig. 5 for the case of simple (a, c) and filtered (b, d) back-
projection, presented logarithmically. The same grayscale is used for the simple and 
filtered spectra.  The axes are labeled with the spatial orientation corresponding to 
the spatial frequencies shown, where X denotes the direction along the chestwall, Y 
denotes the orthogonal direction from the chestwall to the nipple, and Z is the 
direction perpendicular to the detector.  The origin is located at the center of the 
cube. 

There are many notable features in the NPS. As shown previously, the NPS of the 
projection images produced with the system are essentially white [7].  Restated, there 
is little correlation in the images. This can be seen in Fig. 1a and c, where the NPS 
can roughly be segmented into areas of white noise (the uniform light gray regions) 
and no noise (the uniform dark gray regions). This segmentation allows us to define 
the null space [12] of the imaging system as the latter region. An examination of the 
null space clearly demonstrates one of the benefits of photon-counting detectors in 
tomosynthesis, as there is virtually no noise in the regions of space not supported by 
the angular sampling. The complement to the null space clearly demonstrates which 
spatial frequencies are supported in the reconstruction. 

Comparing Figs. 1a and c to Figs. 1b and d, the effect of the filter is made clear.  In 
the example shown, the filter that was used suppressed high spatial-frequencies in the 
X-direction.  This is consistent with the two large dark bands running vertically in the 
Z-direction on the lateral sides of the X-Z face (Fig 1b and d).  Very low spatial 
frequencies in the X-direction are also suppressed, as can be seen by the dark vertical 
band that divides the X-Z face and X-Y face (Fig. 1b). 
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Fig. 5.  The logarithm of the NPS is shown in 3D for the case of simple (a, c) and filtered (b, d) 
back-projection.  The axes are labeled with the spatial orientation corresponding to the spatial 
frequencies shown (X, the direction along the chestwall; Y, the orthogonal direction from the 
chestwall to the nipple; Z, the direction perpendicular to the detector). 

5   Discussion 

A novel tomographic imaging system has been developed.  The detector technology is 
the first to have been developed specifically for tomosynthesis imaging.  As such, it 
offers numerous technical advantages over tomosynthesis with flat panel detectors.  
The first clinical trial of the system is complete.  Initial clinical results demonstrate 
outstanding image quality and diagnostic value.  To date, these results are anecdotal.  
A retrospective reader trial is planned to determine more quantitative measures. 

The clinical trial was performed at a dose comparable to screen-film 
mammography. It is important to realize that the dose in a digital image is somewhat 
arbitrary, as the system is linear and has very wide dynamic range. However, there are 
two relevant questions: (1) is the resultant image x-ray quantum noise limited to high 
spatial-frequency; and (2) are the images of clinical quality. We believe that the NPS 
analysis establishes the former. We further believe that the outstanding image quality 
of the clinical images to date provide anecdotal proof of the latter. Thus, it is notable 
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that the tomosynthesis images were acquired at a lower dose than the screen-film 
mammograms, yet appear to have comparable or superior image quality. 
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Abstract. This paper presents doctoral thesis of three-dimensional digital breast 
tomosynthesis in the early diagnosis and detection of breast cancer. The pur-
pose is to prove that digital breast tomosynthesis has the potential to provide 
clinically important information, which cannot be obtained with conventional 
breast imaging methods. Three-dimensional digital breast tomosynthesis seeks 
to (1) determine whether a mammographic finding is the result of a ‘real’ lesion 
or the superimposition of normal parenchyma structures, (2) detect subtle 
changes in breast tissue, which might otherwise be missed, and (3) to reduce the 
number of biopsies performed as well as verify the correct biopsy target if the 
procedure is needed. This study presents digital breast tomosynthesis in diag-
nostic mammography by comparing digital breast tomosynthesis with screen-
film and digital mammograms clinical performance, evaluates Tuned Aperture 
Computed Tomography capability as a 3D breast reconstruction algorithm in 
the limited angle tomosynthesis system, and demonstrates technical perform-
ance of a real-time amorphous-selenium flat-panel detector in full field digital 
breast tomosynthesis. The results indicate that breast tomosynthesis has the po-
tential to significantly advance diagnostic mammography. Tomosynthesis of the 
breast will increase specificity. Study also suggests that tomosynthesis might 
facilitate the detection of cancers at an earlier stage and a smaller size than is 
possible in two-dimensional mammography [1]. 

1   Introduction 

Two-dimensional (2D) mammography plays a most important role in all aspects of 
breast cancer detection, diagnosis and treatment. Although it is well known that 2D 
mammography has limitations and it is not capable of detecting all breast cancers, 
there is no question that mammography is an important imaging technique for detect-
ing and diagnosing breast cancer. Challenges of 2D mammography are structured 
noise, which is created by the overlap of normal dense tissue structures within the 
breast. This may obscure the findings causing lesions to be missed (reduction of diag-
nostic sensitivity). Breast tissue may also simulate the presence of a cancer that does 
not actually exist. This causes a loss of diagnostic specificity. Currently 2D mammog-
raphy is the only x-ray imaging modality accepted for breast cancer screening, but for 
years researchers have tried to find improved technologies and new methods to  
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supplement 2D mammography and provide better sensitivity and specificity. Digital 
breast tomosynthesis (DBT) is a method that was first described many years ago, but 
could not be easily applied until the development of fast read-out digital detectors. 
The goal of breast tomosynthesis is to make available a method for screening and 
diagnostic mammography, which provides higher sensitivity and specificity than 
routine mammography [1], [2], [3]. 

1.1   Digital Breast Tomosynthesis 

The ability to produce tomographic sections through the body with x-rays to eliminate 
structured noise was developed decades ago. In the late 1970’s, linear and poly-
cycloidal tomography was used to evaluate many organ systems. During exposures 
that lasted several seconds, the x-ray tube was moved in one direction while the film 
receptor was moved in the opposite direction. Only structures in the plane of interest 
stayed perfectly aligned and in sharp detail during the exposure, while structures that 
were out the plane on interest were blurred by the motion. Only the structures at the 
fulcrum of movement stayed registered. To see another plane, the fulcrum of the mo-
tion was shifted, and another exposure was made. Commonly used to evaluate other 
organ systems, such as kidney and chest, this technique was not feasible for breast 
evaluation. Breast tomosynthesis acquires multiple images as the x-ray source moves 
through an arc above the stationary compressed breast and digital imaging detector. 
As the acquisition begins, the beam moves through a series of positions in different 
degrees. Once the projections of the breast are obtained during a tomosynthesis se-
quency, they must be reconstructed into a data set and displayed in a manner suitable 
for review by a radiologist [2], [4], [5]. 

 

Fig. 1. Principle of breast tomosynthesis imaging 

With stereotactic tubehead movement, the digital mammography system acquires 
a number of projection images with different angles, shown in figure 1. The total 
arc varies between 30˚ to 60˚. The number of projection images varies from 7 to 25 
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exposures. The patient is seated during the tomosynthesis study since the complete 
set of exposures must be accomplished with the breast held in compression while 
the patient remains motionless. The time of complete acquisition varies from 8 to 
90 seconds. After each exposure, the tube moves to the next position and stops to 
acquire the next image [1].  

The projection images obtained during a tomosynthesis sequence must be recon-
structed. As the x-ray source moves along an arc above the breast, algorithms allow 
reconstruction of arbitrary planes in the breast from limited-angle series of projec-
tions. Almost every research group has their own specific way to perform a tomosyn-
thesis study. Many important parameters for breast tomosynthesis have an effect on 
quality of three-dimensional (3D) data, and are currently under evaluation among 
many research groups: 

• Number of projection images 
• Total dose of the tomosynthesis study 
• Slice ‘thickness’ 
• Number of slices 
• Type of detector technology 
• Type of detector motion  
• Radiation source  
• Quality of x-ray beam 
• X-ray tube  
• Acquisition time 
• Detector calibration 
• Reconstruction time 
• 3D data visualization  
• 3D workstation 
• Compression force  
• Reconstruction algorithms 
• Post-processing  
• Algorithm development of gridless full field digital mammography  
• Angle dependent projection image pre-processing [1]. 

The following reconstruction algorithms have studies in breast tomosynthesis: 

• Shift-and-add SAA 
• Tuned Aperture Computed Tomography TACT 
• Back Projection BP 
• Filtered Back Projection FBP 
• Iterative Matrix Inversion Tomosynthesis MITS 
• Maximum-Likelihood Algorithm ML 
• Algebraic Reconstruction Technique ART 
• Gaussian Frequency Blending GFB. 
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2   Materials and Methods 

2.1   Study Objectives 

There were five main objectives in the study design [1]: 

1. Investigate digital breast tomosynthesis in diagnostic mammography by 
comparing digital breast tomosynthesis images and screen-film or digital 
mammograms clinical performance. Study digital breast tomosynthesis as an 
improved clinical method having greater possibility to: 

• Distinguish possible malignant from benign  
• Analyze lesion margins 
• Interpret confidently the finding as a summation. 

2. Evaluate Tuned Aperture Computed Tomography (TACT®) capability as 3D 
breast reconstruction algorithm in the limited angle tomosynthesis system. 

3. Demonstrate technical and clinical performance of a real-time amorphous-
selenium (a-Se) flat-panel detector (FPD) in full field digital breast tomosyn-
thesis. 

4. Feasibility study combining diagnostic breast tomosynthesis and ultrasound 
imaging of the breast with clinical information in diagnostic mammography. 

5. Evaluate digital spot image quality (= tomosynthesis projection images) 
against screen-film and diagnostic mammography. 

This paper concentrates on the first objective; investigate digital breast tomosynthesis 
in diagnostic mammography by comparing digital breast tomosynthesis images and 
screen-film or digital mammograms clinical performance and study digital breast 
tomosynthesis as an improved clinical method. 

2.2   Clinical Patients 

The patient data included in this thesis is comprised of 250 patients. 150 patients were 
enrolled in Finland and 100 were enrolled in the USA. Screen-film and digital mam-
mograms included right and left mediolateral oblique (MLO) and craniocaudal (CC) 
views. Diagnostic mammography (also called work-up) included lateromedial (LM) 
and coned-down magnification views [1]. 

2.2.1   Helsinki University Central Hospital (HUCH) Mammography 
Department, Helsinki, Finland 

Diagnostic digital breast tomosynthesis examinations were performed on 150 asymp-
tomatic women. The key investigation, which was digital breast tomosynthesis  in 
diagnostic mammography, consisted of 60 asymptomatic-women. The potential value 
of digital breast tomosynthesis was investigated by testing its ability to resolve ambi-
guities possible lesions in the screening examination. The women were selected for 
the study based on the fact that it was not possible to exclude the presence of breast 
cancer based on their screening mammography exams. Some abnormal findings seen 
on the images were architectural distortion, stellate look-a-like lesions, parenchymal 
asymmetry and density changes. Some lesions included micro-calcifications, which 
were either clusters or diffusely distributed. The morphology of the micro-
calcifications was casting, granular, punctate, or miscellaneous. Adjunctive diagnostic 
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methods were core biopsy, fine needle aspiration biopsy (FNAB) or vacuum assisted 
biopsy. Cytological and histological results for benign findings were: fibrocystic 
change, tumor phylloides, cysts, fibroadenomas, fibrosis, adenosis, atypical ductal 
hyperplasia (ADH), ductal cancer in situ (DCIS) and lobular cancer in situ (LCIS). 
Results for malignant findings were ductal and lobular cancers, both grades 1 and 2 
were found. The pathological anatomy diagnosis (PAD) from the surgery specimens 
varied in the following ways: ductal, lobular, mucinosum, tubulobular, multifocal 
tubular, invasive micropapillare cancers, fibroadenomas, adenosis, DCIS, LCIS, ra-
dial scars, tumor phylloides, and papillomas. The grade of malignant tumor varied 
between 1 and 3[1], [4], [6], [7]. 

2.2.2   Jane Brattain Breast Center, Park Nicollet Clinic, Minneapolis, USA 
The total number of women participating in the study were 100 (ages 45 to 80). All 
patients were recalled because additional information was needed to better determine 
treatment planning or because it was not possible to exclude the presence of breast 
cancer after screening mammography. A total of 43 invasive cancers and 3 ductal in 
situ carcinomas (DCIS) were detected and diagnosed. The 54 benign cases included 
lobular carcinoma in situ (LCIS), atypical ductal hyperplasia (ADH), fibrocystic 
change, fibroadenoma, cyst, scar, intracystic papilloma, hemangioma, benign 
microcalcifications, and summation of breast tissue [8]. 

2.3   Evaluation of Clinical Data 

Clinical image quality was evaluated independently by three experienced radiologists 
using the Likert scale or specific breast tomosynthesis evaluation form. The statistical 
method which was used was t test. 

2.4   Digital Breast Tomosynthesis Systems 

A small field of view digital breast tomosynthesis system, Diamond-Delta 32 TACT 
(Instrumentarium Imaging, now part of GE Healthcare) and the prototype of full field 
 

 

 

Fig. 2. On the left side Diamond Delta 32 for diagnostic breast tomosynthesis system. This 
system incorporates a CCD small-area detector with 48 m pixel size, and is using TACT 3D 
technology. On the right side the prototype of tomosynthesis FFDM system (Diamond DX) 
based on a-Se technology with 85 m pixel size. 
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digital breast tomosynthesis system, Diamond DX (Instrumentarium Imaging, now 
part of GE Healthcare) were the two tomosynthesis systems used mainly for the re-
search of this thesis (figure 2.). 

3   Results 

3.1   t Test 

The result of the t test shown in table 1 indicates that the clinical image quality is better 
in breast tomosynthesis slices than in SFM and DFM. The results indicate that breast 
tomosynthesis has the potential to significantly advance diagnostic mammography. 

3.2   Specificity Analysis 

The comparison of digital breast tomosynthesis slice images versus screening FFDM 
images and tomosynthesis volume model versus screening FFDM images were 
evaluated by three experienced radiologists. Results are presented in two tables. Table 2 
summarizes the benefits of benign cases and table 3 explains the benefits of malignant 
cases. Digital breast tomosynthesis was found to be an improved method by providing 
greater opportunity to distinguish possible malignant from benign, analyze lesion 
margins and interpret confidently the finding as a summation. 

Table 1. t test results [4], [6], [7] 

(N=180) t value Std. Error t test; (P < 0.001) 
tomosynthesis slice images 
versus screen-film 
mammography (SFM) images 

1.23 0.15 accept 

tomosynthesis slice images 
versus diagnostic film 
mammography (DFM) images 

0.82 0.15 accept 

Table 2. Digital breast tomosynthesis (DBT) an improved clinical method studying the follow-
ing benign cases [8] 

Indication for digital breast 
tomosynthesis (DBT)  

clinical benefit 

Number of cases 
where DBT was bet-

ter (N=53) 

Diagnostic benefit 
of tomosynthesis by 

increasing specificity 
Probably benign lesion; analyze 

the lesion margins 
20 38% (20/53 cases) 

Summation of the breast tissue 14 26% (14/53 cases) 
Number of unnecessary biopsies 36 68% (36/53 cases) 
Analyze the finding; abnormal-

ity is present or not 
40 75% (40/53 cases) 

Reduce number of follow-up 
exams 

30 57% (30/53 cases) 
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Table 3. Digital breast tomosynthesis (DBT) an improved clinical method studying the 
following malignant cases [8] 

Indication for digital breast 
tomosynthesis (DBT)  

clinical benefit 

Number of cases 
where DBT was bet-

ter (N=47) 

Diagnostic benefit 
of tomosynthesis by 

increasing specificity 
Analyze tumor margins 30 64% (30/47 cases) 

Multifocality, multicentricity 10 21% (10/47 cases) 
Detection of small non-palpable 

breast cancers 
3 6% (3/47 cases) 

4   Discussions and Conclusion 

Breast tomosynthesis shows promise of better breast cancer detection and diagnosis, 
even though there are many challenges in technology and clinical performance that lie 
ahead. Breast tomosynthesis needs clinical acceptance in order to play a successful 
role in breast cancer detection, diagnosis and treatment. In order to gain clinical ac-
ceptance a number of trials must be conducted which provide conclusive evidence 
that breast tomosynthesis screening is associated with a significant reduction in breast 
cancer mortality. Screening and diagnostic breast tomosynthesis trials have achieved 
good results with an acceptable increase in specificity and sensitivity for detecting 
and diagnosing challenging breast cancer cases. The goal of breast tomosynthesis is 
the detection of a high percentage of early stage breast cancers while maintaining an 
acceptable recall rate, biopsy rate and biopsy yield [1].  

The first measure is sensitivity, which assesses the ability of radiologists to detect 
breast cancer on mammography, should be better than 85%. Follow-up on all cases, 
both positive and negative ones, is necessary to determine sensitivity accurately. Al-
though the primary role of the radiologist is to detect early breast cancers, it is also 
important to have an acceptable recall rate. In mammography, the term ‘false-
positive’ can be used to refer to two situations: recall for evaluation when cancer is 
not present or a biopsy recommendation for which benign disease is found. The num-
ber of false-positives should be as low as possible, without significantly reducing the 
breast cancer detection rate. Ideally the recall-rate should be less than 10%. Less than 
1% of screening cases should lead to biopsy, and of those cases, the positive biopsy 
yield should be greater than 25% [9], [10]. 
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Abstract. Visibility of lesions in mammography are significantly reduced by 
the presence of anatomical, or structure, noise. Breast tomosynthesis offers the 
possibility of reducing this noise. We have compared the detection of low con-
trast and microcalcification objects with tomosynthesis imaging as a function of 
dose to full field digital mammography (FFDM) performed at a standard 
screening dose. The measurements were performed with a variety of phantoms 
and complex backgrounds. The complex backgrounds greatly reduced object 
visibility using FFDM; much less so for the tomosynthesis images. In summary, 
visibility of low contrast objects using tomosynthesis was superior to visibility 
of these objects in FFDM, even when the tomosynthesis imaging was per-
formed at 1/4 or less of a FFDM dose. Tomosynthesis also showed superior 
visibility to FFDM for 160-180 micron microcalcifications at 1/2 the FFDM 
dose. 

1   Background 

The sensitivity of conventional two-dimensional mammography can be limited by the 
presence of structures in the breast, which obscure detection of pathologies of inter-
est[1]. Three dimensional imaging techniques reduce tissue overlap and improve 
visibility of low contrast details. Tomosynthesis is a method of performing high reso-
lution limited angle tomography, at mammographic dose levels.  Because the intrinsic 
contrast of tomosynthesis slices is very high, through the reduction of tissue overlap, 
it is of interest to estimate what tomosynthesis dose levels might provide equivalent 
detection efficiency compared to FFDM. 

2   Method 

Object visibility was measured using phantoms. Three types of phantoms were used.  
Two were contrast detail phantoms: the CDMAM phantom[2] and RMI-180 mam-
mography contrast detail phantom[3]. The CDMAM phantom has gold discs with 
diameters from 0.06 to 2 mm and thickness 0.03 to 2 microns. The RMI-180 phantom 
has holes in acrylic with diameters from approximately 0.3 to 7 mm and depths from 
0.06 to 1 mm. A third phantom contained calcifications grouped into sizes 160, 180 
and 250 microns.   
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    These phantoms were imaged on top of complex backgrounds of varying types. 
The backgrounds were cadaverous 4.5 cm thick breast tissue and a piece of 2.5 cm 
thick beef.   

The phantom/background combinations were imaged with a FFDM system at con-
ventional U.S. screening dose (~1.7 mGy for 4.2 cm standard breast), and with a to-
mosynthesis system at a variety of doses (1.45, 0.73, 0.36, and 0.18 mGy for 4.2 cm 
standard breast).   

Tomosynthesis acquisitions on a prototype system were performed, the raw data 
reconstructed, and the reconstructed slice at the appropriate height for the phantom 
objects was identified.  Four experienced readers viewed all the images.  For the mi-
crocalcification targets, the number of visible specks at each microcalcification size 
was totaled for each image and used as a scoring metric.  For the contrast detail phan-
tom, contrast detail curves were generated for the FFDM and the tomosynthesis im-
ages at the different doses.   

2.1   Acquisition Method 

The FFDM images were acquired on a standard digital mammography system (Se-
lenia, Hologic, Inc.). The tomosynthesis images were acquired using  a digital tomo-
synthesis prototype[4], which is a Selenia FFDM system modified to accommodate 
tomosynthesis acquisitions. This system acquired 11 views over a 15-degree scan.  
The phantoms were imaged twice at each dose level, moving the phantom relative to 
the background between exposures to avoid biasing the results by inadvertent ar-
rangements between the objects and the obscuring background structures. 

2.2   Reconstructions 

The data acquired using the tomosynthesis systems were reconstructed using a filtered 
back projection algorithm. The images were reconstructed in a matrix with pixel spac-
ing of 100 microns and a slice separation of 1 mm. 

2.3   Reading and Scoring 

Four experienced readers evaluated the images in a darkened room using a softcopy 
workstation with dual 3 MP flat panel monitors. Readers were free to magnify and 
window/level, and to spend as much time as desired on every image. In the case of the 
tomosynthesis images, only one slice was scored- the in-focus slice where the objects 
were visible with the greatest sharpness. 

Contrast detail phantoms were scored using the following criteria. For each disc 
diameter, the score was the thinnest visible disc, not allowing skipping over larger 
sized invisible discs. No other corrections were made to these scores. With the CD-
MAM phantom, only the central disc in each square was evaluated. The contrast de-
tail results were averaged over the four observers and over the two sets of acquisitions 
for each phantom and background combination.   

The microcalcification scoring proceeded differently. The phantom consisted of 
groups of microcalcifications of differing sizes. The number of microcalcifications in 
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each size group was known from the phantom manufacturer, and from imaging the 
phantom in the absence of structured background, when they could all be seen.  For 
each size group, the reader would count the number of visible microcalcifications. 

3   Results 

The phantom results are shown as a function of FFDM and tomosynthesis (tomo) 
dose. FFDM was imaged at only one dose, approximately 1.7 mGy for 4.2 standard 
breast, referred to a FFDM 1x dose. The tomo dose levels will be referred to as 1x, ½ 
x, ¼ x, 1/8 x, and correspond to the dose levels of 1.45, 0.73, 0.36, and 0.18 mGy for 
4.2 cm standard breast. 

3.1   Contrast-Detail Phantoms 

Contrast detail curves at each tomosynthesis dose level and for the FFDM images 
were averaged over the four observers.    Without exception, the contrast detail per-
formance of the tomosynthesis images at 1.45 mGy greatly exceeded the FFDM per-
formance at similar 1.7 mGy dose.  As the tomo dose was decreased, image noise 
predictably increased, but object visibility remained high relative to FFDM, due to the 
reduction of structure noise. 

One example set of images is seen in Figure 1. The tomosynthesis image at 1/8x 
dose is grainy, but still has superior disc visibility to the FFDM image at 1x dose. 

 

Fig. 1. RMI-180 contrast detail phantom with cadaverous breast tissue complex background 
imaged with both FFDM and tomosynthesis 

Figs. 2-4 shows the contrast detail performance for two different complex back-
grounds and the two different phantoms. The area of the cadaverous breast was too 
small to cover the CD-MAM phantom so that imaging combination was not per-
formed. These results are averaged over the four observers and over the two relative 
positionings of the phantom and the background. 
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Fig. 2. Contrast detail curves for CD-MAM imaged with meat complex background 
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Fig. 3. Contrast detail curves for RMI-180 CD imaged with meat complex background 

The CD-MAM phantom showed roughly equivalent contrast detail performance 
between FFDM at 1x dose and tomo at ¼ x dose. The RMI-180 phantom showed 
similar performance for tomo at ¼ -1/8x dose compared to FFDM.  The slightly supe-
rior relative tomo performance with the RMI phantom compared to the CD-MAM 
phantom might be a reflection of the larger axial extent of the RMI phantom, and 
hence the greater blurring of the out-of-plane background texture.   

 



164 A.P. Smith et al. 

1

0.1

1
FFDM 1x dose

 Tomo 1/8x dose
 Tomo 1/4x dose
 Tomo 1/2x dose
 Tomo 1x dose

O
b

je
ct

 t
h

ic
kn

es
s,

 m
m

Object diameter, mm  

Fig. 4. Contrast detail curves for RMI-180 CD imaged with cadaverous breast tissue complex 
background 

An alternative metric of performance is the ratio of visible discs using FFDM to 
the number of visible discs using tomo. This is given in Table 1, shown averaged over 
all phantoms and background combinations. Tomo outperforms FFDM in disc visibil-
ity when the tomo dose is 1/4x or higher than the FFDM dose. 

Table 1. Ratio of # of visible discs seen in FFDM to # of visible discs seen in Tomo 

Tomo dose (# seen in FFDM)  ÷ (# seen in Tomo) 
1 x  60% 
½ x  77% 
¼ x 97% 
1/8 x 146% 

3.2   Calcification Phantom Objects 

The calcification objects were scored by summing the number of specks visible at each 
object size. These results are tabulated in Table 2. There werea total of 6 calcification 
objects of size 160 microns, 18 of size 180 microns, and 20 of size 250 microns. 

Table 2. Number of calcifications seen with FFDM and tomo at varying doses 

Calcium 
object size, 
microns 

FFDM 
score 

Tomo score 
@ 1x dose 

Tomo score 
@ ½ x dose 

Tomo score 
@ ¼x dose 

Tomo score 
@ 1/8x dose 

160 2.5 4 2.5 0 0 
180 13.5 15 15 12 5 
250 20 20 20 20 19.5 
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All the 250-micron calcium objects in a complex background could be seen both 
with FFDM and with tomosynthesis at all dose levels.  The tomosynthesis images at 
1/2x dose had similar detection performance to the FFDM images at the standard dose 
level for the 160 and 180 micron sizes. 

3.3   Clinical Microcalcification Results 

Clinical trials are being conducted whereby patients are imaged with both FFDM and 
the tomosynthesis prototype, at matched doses. The clinical protocol was approved by 
the hospital’s Institutional Review Board and informed patient consent is obtained.  
Although the tomo acquisition is performed at only the 1x dose, we are able to 
simulate acquisitions at lower doses by reconstructing the data with a subset of the 
acquisition projections. We have studied this for two microcalcification cases 
performing reconstructions at 1x, ½x, and 1/3x the standard dose, and compared the 
results to the FFDM image at 1x dose.   

 

Fig. 5. Image of microcalcifications using FFDM at 1x dose, and tomo at 1/3, 1/2, and 1x doses 

 

Fig. 6. Image of microcalcifications using FFDM at 1× dose, and tomo at 1/3, 1/2, and 1x doses 

The linear microcalcifications in Fig 5 have a width of about 200-300 microns, and 
the individual microcalcifications seen in Fig 6 also have a size of about 200-300 
microns. For both of these patients, the contrast and overall visibility of these micro-
calcifications was superior with tomo at reduced dose compared to the FFDM at stan-
dard dose. In other patients, especially where there was little tissue structure noise, 
there was no advantage in tomo relative to FFDM. 
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4   Discussion 

These studies suggest that tomosynthesis can provide similar low contrast detection 
performance at reduced dose relative to conventional two-dimensional digital mam-
mography. In general, the FFDM visibility of low contrast objects in the contrast 
detail phantom was severely degraded by the addition of structure noise. Readers of 
FFDM could only visualize 60% of the discs visible on tomo images at matching 
doses. FFDM scoring matched tomo scoring when tomo was approximately 1/4x the 
FFDM dose. Calcification objects were less affected by structure noise of the complex 
backgrounds, however tomosynthesis still offered a detection advantage at a similar 
dose to FFDM. 

These experiments do not perfectly simulate the imaging task in a real breast, as 
the objects for detection were at a different plane from the structure noise. They were 
separated by 5-10 mm. In a real breast, the lesions are interspersed amongst the breast 
parenchyma. Clearly, the further away the plane of the objects is from the source of 
the structure noise, the greater is expected to be the performance of tomosynthesis.  
Despite this experimental limitation, the results are still relevant for a number of rea-
sons. A typical breast is perhaps 5 cm thick, so if the lesion is randomly located in this 
volume it will likely be separated in depth from the majority of breast tissue by 1 or 
more cm, and thus this experiment approximates this condition. The other reason is 
that tomosynthesis is not expected to offer any imaging advantage to FFDM when a 
object is embedded within a homogeneous region of breast tissue with similar radio-
graphic density. Tomosynthesis is designed to improve imaging by removing contri-
butions from out-of-plane objects. These experiments were designed to estimate pre-
cisely this effect. 

Quantum noise is often not the limiting factor in the detection of low contrast  
objects in mammography.  We have demonstrated that tomosynthesis images offer 
superior low contrast object visibility compared to FFDM, even at reduced dose and 
therefore higher quantum noise. Microcalcification visibility was also superior, al-
though less dramatically than for larger masses. Preliminary patient images of micro-
calcifications, for example, show improved contrast with tomo at similar or lower 
dose to FFDM in some, but not all, cases. Clinical validations of these preliminary 
conclusions are underway, to determine a clinically adequate tomosynthesis dose 
level.   
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Abstract. Tomosynthesis reconstruction that produces high-quality images is a 
difficult problem, due mainly to the highly incomplete data. In this work we 
present a motivation for the generalized filtered backprojection (GFBP) 
approach to tomosynthesis reconstruction. This approach is fast (since non-
iterative), flexible, and results in reconstructions with an image quality that is 
similar or superior to reconstructions that are mathematically optimal. Results 
based on synthetic data and patient data are presented. 

1   Tomosynthesis Reconstruction – Background 

Tomosynthesis focuses on one of the most important problems in mammography, 
namely superimposed normal tissue being interpreted as suspicious or hiding a lesion. 
The goal of advanced tomosynthesis reconstruction approaches is to overcome the 
following problems: 

1. Reduced contrast of structures (the contrast of a structure in a projection 
image is a function of its attenuation and its thickness – ideally, however, 
only the attenuation should be reflected in the reconstructed gray scale 
values, while the thickness is reflected in the spatial distribution of the data); 

2. Artifacts and so-called “structured noise” (due to out-of-plane structures); 
3. Image noise (“statistical noise” - quantum and detector noise). 

Until recently, simple backprojection (BP), which is also referred to as “shift-and-
add” reconstruction, has been considered the standard reconstruction approach in 
tomosynthesis. However, it addresses only the image noise problem. Improvements 
due to other, more advanced reconstruction approaches are generally limited, and may 
have significant drawbacks. For example, the high-pass filtering in a filtered back-
projection (FBP) type approach [1,2] (although differently motivated) addresses the 
contrast enhancement requirement. However, it also increases the contrast of artifacts, 
and creates potentially “noisy” reconstructions, unless the filter is suitably optimized. 
Artifact management is addressed in order-statistics based backprojection (OSBP) 
approaches [3,4], but these techniques do not result in any contrast enhancement. 
Other advanced reconstruction approaches (e.g., ML-maximum likelihood [5,6], 
algebraic reconstruction technique (ART) [7], matrix inversion tomosynthesis (MITS) 
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[8]) are more involved, and a straightforward interpretation and evaluation of their 
effects on image quality and their effectiveness in addressing the problems above, 
becomes difficult. These approaches generally aim at maximizing the agreement (in 
some mathematical sense) of the reconstructed 3D volume with the acquired 
projection data.  

The number of alternative reconstruction algorithm families, and the different 
choices within each family make a fair comparison of algorithms difficult. In one 
comparison study [1], ML was found to represent a good compromise in image 
quality (when compared to BP and FBP), while another comparison study [2] found 
generalized filtered backprojection (GFBP) superior, followed by ART (compared 
against OSBP and FBP). Some other comparisons [4,5] found tomosynthesis image 
quality superior to standard projection images, with varying results for the 
comparison among reconstruction algorithms. However, the scope of all of these 
studies has been too limited to even hint at a definitive answer as to what 
reconstruction algorithm may be “best”, although they help illustrate some of the 
desirable properties of a “good” reconstruction algorithm.  An additional problem in 
the comparison of reconstruction algorithms is that, unlike in CT reconstruction 
where complete or nearly complete data exist, in tomosynthesis the data are highly 
incomplete, and consequently most mathematical optimality criteria (which are used 
in many reconstruction algorithms) may not be appropriate as a measure for image 
quality. 

2   Superior Reconstructions That Are “Non-optimal” 

As an example of a mathematically optimal reconstruction we consider the so-called 
“minimum-norm solution”, which is achieved (theoretically) by several different 
reconstruction algorithms (e.g., MITS and additive ART). Although generated in a 
different manner, this solution can be represented as a simple backprojection of 
“suitably modified” projection images; this is obvious from the fact that the basis 
functions that span the vector space containing the minimum-norm solution is 
spanned by the intersection of individual rays with the imaged volume.  

From this basic observation it follows that the minimum-norm solution, although 
optimal in a mathematical sense, is not very effective in managing the artifact 
problem (since the backprojection operator, by its very definition, creates “streaks”). 
Furthermore, the minimum-norm solution can be seen to have a high-pass filtering 
characteristic, but only in the scanning direction of the x-ray tube. That is, it enhances 
the contrast, but favors one orientation over another. Both properties are illustrated in 
Figure 1, which shows reconstructions (BP, ART, GFBP) from simulated projections 
of identical wires of 1cm length and 1mm diameter, in two different orientations. The 
images are normalized such that the brightest point and the background assume the 
same gray level in all images. Note the out-of-plane artifacts from the wires, as well 
as the different in-plane appearance of the two wires, for the ART reconstruction 
(center column).  
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Fig. 1. Reconstructions of a phantom containing 1cm long wires with 1mm diameter. 1st row: 
in-plane reconstruction; 2nd and 3rd row: vertical slices through the reconstructed dataset, 
through each of the wires. Left column: BP; center column: ART; right column: GFBP. The 
images are based on simulated data: 21 projections, acquired over 60 degrees total angular 
range.  

These observations suggest that the minimum-norm solution can be approximated 
by a filtered-backprojection type reconstruction that is similar to the standard FBP 
approach; specifically, a 1D high-pass filter followed by simple backprojection. 
However, due to the mentioned drawbacks, a strong argument exists for a 
reconstruction approach with improved image quality (as compared to the minimum-
norm solution), as described in the following section.  

3   Generalized Filtered Backprojection (GFBP) 

The proposed GFBP reconstruction approach consists of the following two steps: (1) 
2D high-pass filtering of projections, optimized as a compromise between balanced 
contrast enhancement and noise management, and (2) backprojection with artifact 
management.   

The 2D high-pass filter is designed as a “scale-enhancing” filter. The projection 
image is decomposed into different scales (corresponding to different size structures), 
and each scale is enhanced with a factor that is given by the ratio of the overall 
thickness of the compressed breast to the size of the structure, therefore boosting the 
contrast of a structure to its “optimal” level. This enhancement factor is based on an 
isotropic shape assumption, and designed to reverse the relative loss of contrast for 
small structures, which is illustrated in Figure 2. For fine scales, this factor is 
modified to reduce image noise in the reconstruction. In this approach, a certain 
“scale” of the image is generated as the difference of the image convolved with (unit-
integral) Gaussian kernels of different width. Note that the contrast enhancement in 
this approach is independent of orientation of the imaged structure, as illustrated in 
Figure 1 (top right). 
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Fig. 2. Illustration of the relative loss of contrast in projected structures, for structures of the 
same attenuation. Note the reduced contrast of the small structure as compared to the bigger 
structure (indicated by the arrows). 

Initial work with OSBP for artifact management did not include any image filtering 
and only the minimum or maximum of the backprojected values were chosen at any 
given voxel location [4]. The minimum operator, for example, picks at any given 
location the darkest backprojected grayscale value, therefore essentially eliminating 
bright out-of-plane artifacts due to high-contrast calcifications. Only where all 
backprojected images have a high grayscale value (thus indicating “calcification 
present”) will a bright structure appear in the reconstruction. In a more general 
scenario, the average value of all but the Nmin smallest and Nmax largest values is taken 
[3]. Since the high-pass filter will enhance the contrast of (small) structures, and also 
create some “overshoot”, a small number of largest and smallest values need to be 
disregarded for efficient artifact management. Some effects of this artifact 
management strategy are illustrated in Figure 1, as well as in Figure 4 (below). 

4   Results 

The GFBP reconstruction was performed on datasets acquired with a tomosynthesis 
prototype (see [9] for details), acquiring 21 projections aver a total tomographic angle 
of 60 degrees. Each acquisition is performed in less than 8 seconds. The scale-
enhancing filter for this angular range was chosen to be non-isotropic: The high-pass 
filtering is two-dimensional, but with a general preference for the scanning direction 
(see also discussion below). In Figure 3 we show three different tomosynthesis slices 
of a patient dataset, separated by approximately 8mm.  

In Figure 4 we show an artifact comparison for 11 vs. 21 projections, and we 
illustrate the additional benefit of the artifact management in the backprojection. The 
imaged object was a spherical, relatively high-contrast marker. The 11 view 
reconstruction is based on a subset of 21 projections, spanning the same angular 
range. All the images are normalized such that in each reconstruction the marker 
itself, as well as the background, were at the same respective gray scale levels.  

It is clear that the increased number of projections alone already reduces the 
relative impact of the artifacts. The added benefit of the artifact management is also 
obvious. Note that the 11 projection reconstruction uses a subset of the images, and 
corresponds therefore to an acquisition with about 50% of the dose of the 21 
projection dataset (with the corresponding relative increase in quantum noise). 
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Fig. 3. Slices through a reconstructed patient dataset, about 8.0 mm apart. Note the varying 
anatomical characteristics as a function of depth.  

 

Fig. 4. Reconstructions comparing out-of-plane artifacts due to a spherical marker. From left to 
right: GFBP, 11, views, no artifact management; GFBP, 11, views, with artifact management, 
GFBP, 21 views, no artifact management; GFBP, 21 views, with artifact management. The 
images were normalized such that the respective gray values for the background and the marker 
itself were the same in all datasets. 
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5   Further Improvements 

As discussed above, mathematical optimality criteria alone do not automatically 
ensure a superior image quality: the corresponding reconstructions may exhibit non-
isotropic high-pass filtering characteristics, and insufficient management of streak 
artifacts. Instead of pursuing a suitable modification of the optimality criterion (a 
complicated and challenging task), our present strategy is to focus solely on 
optimizing reconstruction image quality. 

Modifications to the outlined GFBP reconstruction method that further improve 
image quality (potentially moving further away from theoretical “optimality”) and 
that are easy to implement include the following options. 

1) Optimization of the filter functions. A purely isotropic (i.e., rotationally 
symmetric) filter works best for small tomographic angles, while more anisotropic 
filters will be more suitable for larger tomographic angles (in the limit we would 
expect the filter to approach the 1D ramp-filter in the scanning direction known from 
computer tomography (CT)). The filter functions may also be varying from view to 
view. The fine-scale (or high-frequency) enhancement should be chosen as a 
compromise between noise management and enhancement of fine structures (e.g., 
calcifications). 

An additional criterion in the filter optimization may be the out-of-plane spread of 
structures, where the edge-enhancing properties of the filter can be tuned such that 
enhanced (interior) contrast of structures and (exterior) overshoot enable a canceling 
effect, thereby improving the depth-resolution in the reconstruction. 

2) More flexible artifact management. The OSBP operator described above may be 
replaced, for example, with a weighted backprojection operator. Here the simple 
averaging of backprojected values (as performed in a simple backprojection 
reconstruction) is replaced by a weighted averaging, where low and high gray scale 
values are given a lower weight. The weights will be chosen as a function of the gray 
scale values in the image. The effect is very similar to the OSBP-type operator: If all 
projections indicate “calcification present”, then all corresponding gray scale values 
have a similar (low) weight, therefore reconstructing a bright structure. If only few 
images indicate “calcification present”, then their relative lower weights will tend to 
suppress the out-of-plane artifact due to the calcification. By choosing the weights 
and the (maybe locally varying) mapping from gray scale values to the associated 
weights, the degree of artifact suppression can be tuned to an “optimal” image quality. 
Note, however, that with increasing number of projection images generally the total 
image quality improves, and the relative benefit due to artifact management strategies 
decreases. This was illustrated in the comparison in Figure 4.  

Note furthermore that, due to the interaction between artifact management and 
filter design, both components will need to be optimized simultaneously.  

3) Using additional image information. The previous arguments for filter design and 
artifact management were established with the interior of the imaged breast in mind. 
The artifact management will also be efficient, for example, in managing out-of-plane 
artifacts due to the skinline. However, with an easily accomplished prior segmentation 
of the breast in the projection images, there is now an even simpler tool for managing 
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this type of effects: The segmentation can be used to label pixels in the projections as 
“air” or “tissue”, and any location in the reconstruction where a single backprojected 
image indicates “air”, the reconstruction is set to zero (= attenuation of air). 

One can observe that the filter also artificially enhances the skinline contrast (since 
the argument used for the design of the scale-enhancing filter does not fully apply 
near the skinline). Therefore, in combination with the skinline segmentation, one may 
choose to apply a thickness compensation (see, e.g., [10]) to the projection images, 
i.e., adjusting the low-frequency content of the image (within the breast) to counteract 
the reduced tissue thickness near the skinline. Typically this compensation sets the 
local dc value in the images near the skinline to a value corresponding to about 100% 
fatty tissue (of the full compressed thickness), without changing the fine-scale image 
content. Now setting the “air” pixels in the projection images to this same gray scale 
value, the artificial enhancement of the skinline can be avoided.  

6   Summary 

By optimizing the GFBP reconstruction algorithm outlined in this paper, one will 
obtain an image quality that is optimal for the class of “direct”, i.e., non-iterative 
reconstruction algorithms. This class of algorithms requires significantly less 
computational power (or time) than iterative algorithms (e.g., ART, ML). Furthermore, 
the potential image quality benefits of the iterative methods (which generally optimize 
some mathematical criterion) have yet to clearly materialize. As laid out above, 
mathematical optimality alone is by no means a guarantee for good image quality, 
unless measured with the appropriate (and yet to be developed?) criterion. Indeed, in 
[1] the author states that “…the BP algorithm provided best SDNR [signal difference 
to noise ratio] for low-contrast masses,…; the FBP algorithm provided the highest 
edge-sharpness for microcalcifications; the information of both were well restored with 
balanced quality by the ML algorithm,…”.  

Obviously, although based on a mathematical optimality criterion, ML only 
achieved the best compromise in image quality between the algorithms considered, 
but didn’t show outstanding results in a single one of the considered image quality 
criteria. On the other hand, both BP and FBP are part of the GFBP family of 
algorithms, both exhibiting relatively poor image quality. By using “optimized” 
GFBP, clearly a compromise with similar, if not superior image quality than ML can 
be reached, at a significantly lower computational cost. A similar conclusion can be 
drawn, e.g., when comparing reconstruction image quality in GFBP against ART or 
other iterative reconstruction approaches. 
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Abstract. The main limitations of conventional projection mammography con-
sist in tissue overlap and missing depth information. These deficiencies are in-
tended to be reduced by the new technique of digital breast tomosynthesis. 
From a set of radiographic projections, acquired at different view angles in a 
linear tomosynthesis research system setup, 3-D slices of the scanned breast re-
gion are reconstructed. As the method of choice for the reconstruction we use 
filtered backprojection. By applying different filters with task-adapted parame-
ters this method allows to control the image quality regarding noise, spatial 
resolution and artifacts. In order to investigate the basic effects of the various 
settings in the filtering step the method is first applied to simulated data. The 
impact of the selected filter functions is then demonstrated with clinical data. 

1   Introduction 

To overcome the limitations of tissue overlap and missing depth information in con-
ventional (digital) mammography, the application of 3-D imaging methods to the 
breast seems appropriate.  Digital breast tomosynthesis benefited by the progress in 
several key technologies such as flat detectors, reconstruction and post-processing al-
gorithms, has become an interesting research topic within the last few years. Initial 
investigations on this technique have been promising and provide the opportunity to 
overcome drawbacks of conventional mammography by acquiring several views of 
the breast from different angles and reconstructing a 3-D data set. Separating lesions 
from overlapping dense fibroglandular tissue, tomosynthesis is expected to improve 
both detectability and characterization, while the applied dose can be kept comparable 
to mammography. 

In Ref. [1] Grant described 1972 a type of geometric tomography he called tomo-
synthesis, which uses a conventional X-ray source and a digital detector to produce a 
virtually unlimited number of tomographic images at arbitrary depth in the patient. To 
date successful reconstruction and post-processing algorithms have included filtered 
backprojection, traditional shift-and-add reconstruction coupled with matrix inversion 
or constrained iterative restoration deblurring methods, and algebraic iterative recon-
struction procedures [2-6]. The challenge for reconstruction algorithms consists in op-
timizing the image quality from the limited, incomplete sampling of the object. 
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In this paper, we present results of the filtered backprojection with various filtering 
setups, carried out for a prototype breast tomosynthesis system. In section 2 we de-
scribe the optimized filtered backprojection method and the corresponding filter  
design. The achieved image quality of the reconstruction results for simulated and 
clinical data is presented in section 3.  

2   Filtered Backprojection for Linear Tomosynthesis 

The acquisition system we employ is based on the Siemens full-field digital mam-
mography x-ray generator modified for linear tomosynthesis. The X-ray tube moves 
over an arc of up to ±25o relative to the pivoting point. During a single X-ray scan, 
multiple X-ray pulses are generated synchronized with the detector read/integrate cy-
cle and X-ray tube motion.  

The reconstruction approach described here is based on filtered backprojection [3]. 
It allows a systematic filter design, an optimized image quality specific to the applica-
tion and strategies for reducing artifacts caused by inherent incomplete sampling. It 
can also easily be implemented. Due to its pipelined structure pre- and postprocessing 
steps can be taken into account as well. 

 

 

Fig. 1. (a) Moving the X-ray tube over an arc from angle –α to α the Fourier space data are ac-
quired in a double wedge domain. (b) The introduction of a slice profile filter function Hprofile 

(ωz) ensures a constant depth resolution over a wide range of spatial frequencies. 

The tube motion on an arc over the stationary detector is a linear sampling path in 
y-orientation with varying magnification and can be treated in parallel beam approxi-
mation. This approximation is acceptable for the filter design since the associated in-
accuracies are small compared to the effects induced by the incomplete tomosynthetic 
sampling. The backprojection step for the filtered data is performed with the appro-
priate high accuracy by using projection matrices for each view, which are determined 
from the angular information provided by the system [7]. 

The filtering operations are derived in 3-D Fourier space and can be performed 
herein. Advantageously, they may be transformed into 2-D projection frequency space 
by a simple coordinate transformation. The Fourier-Slice theorem states that, in Fourier 
space, to each projection of the object a plane perpendicular to its beam direction  

(a) (b) 
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corresponds. Collecting the projections during one tomosynthesis scan will thus not fill 
the entire Fourier space but only a double wedge region as shown in Fig. 1a. 

We assume that the system modulation transfer function (MTF) can be split into a 
filter function and a projection-backprojection part [8]:  H(ω) = Hfilter (ω)·HP(ω).

Then, an appropriate filter function in Fourier space for linear sampling in y orien-
tation can be chosen as 

Hfilter(ωy,ωz)=Hspectrum(ωy)⋅Hprofile(ωz)⋅Hinverse(ωy,ωz) (1)

where Hinverse inverts the modulation transfer function HP of the projection–
backprojection process in the double wedge frequency region and is proportional to a 
ramp-type filter. With realistic noisy data, the ramp filter is known for emphasizing 
noise. In order to suppress high frequencies and thereby noise an appropriate spectral 
filter Hspectrum may be employed. We choose a von Hann (‘Hanning’) window with ad-
justable parameter A (A>0) for this purpose. 

After inversion and even after applying a spectral filter in ωy, the ωz-border of the 
sampled region in Fourier space (cf. Fig 1b) still consists of a sharp step-function in 
ωz. This discontinuity will create a corresponding ringing in the spatial domain, in-
creasing the out-of-plane artifacts already present from the incomplete sampling. 
Therefore, a slice profile function can suppress these artifacts [3] controlling the spa-
tial slice thickness. This behavior can be achieved with the third filter part Hprofile(ωz),
which we call ‘slice profile function’ or ‘slice thickness filter’: 
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The parameter B (B>0) controls the cutoff-frequency in ωz and thus, via inverse 
Fourier transformation of Hprofile, also the width of the slice profile function in object 
space. The incomplete sampling generally prevents from obtaining a constant slice 
thickness and thus generates out-of-plane artifacts. Fig. 1b illustrates how these can 
be largely reduced for spatial frequencies ωy above a certain limit. If the cutoff on the 
z-frequency scale is inside the sampling region, a slice thickness is well defined here. 
For small y-frequencies, i.e. for ωy < ωz-max/tan(α), however, the slice thickness in-
creases with decreasing y-frequencies. Thus in tomosynthesis, the slice thickness can-
not be held constant, with its effective value depending on the frequency content of 
the object. 

The ramp-type behavior of the inverse MTF filtering, in case of incompletely sam-
pled data, leads to suppression of low frequencies, which might be visible in clinical 
data as intensity drop towards the breast center. Motivated by this issue, we designed 
a new filter, labeled as ‘frequency selective contrast enhancement filter’ (FSCE), with 
two adjustable filter parameters C and D: 
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A closer look at the filter definition reveals that the filter splits into two parts: the 
constant component C and the remaining second addend. The constant transmits all 
frequencies and thus determines the level of blending with the unfiltered projections. 
The second term is designed for replacing the inverse MTF filtering. In order to retain 
a low noise level, the spectral filtering Hspectrum should be combined. 

Fig. 2. Slice through the center of the ball of 2 mm diameter for MTF inversion filtering only 
(a) and for MTF and spectral filtering with different cutoff parameters: (b) MTF * spectral 
[A=0.25ωN], (c) MTF * spectral [A=0.125ωN], (d) MTF * spectral [A=0.0625ωN]. The scan 
direction is vertical (y). (e) Profiles through the different reconstructions of the ball in scan di-
rection. The unit of the horizontal axis is the reconstruction voxel size (0.1 mm). ωN is the Ny-
quist frequency of the projections. 

3   Results and Discussion 

3.1   Filter Evaluation on Phantom Data 

The influence of the various filters on the image quality is first studied on simulated 
data. This ensures 3-D slices to be free from artifacts caused by noise, object move-
ment or possibly inexact geometry computation and enables quantitative evaluation.  

Fig. 2 shows the impact of the spectral filter on the visual acuity of the recon-
structed object. The simulation phantom, in this example, consists of a high-contrast 
ball with 2 mm diameter. With the decreasing filter parameter A of the Hanning  

(d) 

(a)

(e)

(c)(b) 
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window the ball looses sharpness in scan direction. At the same time the artifact am-
plitude coming from the incomplete MTF inversion (ramp-type) is reduced as well, 
which can be seen from the profile through the ball (Fig. 2e). 

The effect of the slice thickness filter is demonstrated in Fig. 3. Slices recon-
structed solely with MTF inverse filtering (Fig. 3a) exhibit very strong long-range 
out-of plane artifacts. In case of objects aligned in scan direction, as in our example, 
the out-of-plane artifacts even interfere with each other and may give the false im-
pression of an existing object in neighboring slices. Employing, additionally to the 
MTF inversion filter, the slice thickness filter, with an appropriate value for the pa-
rameter B, the reconstructed object will be more uniformly spread out over the slice 
as a consequence of defining an appropriate slice sensitivity profile. The out-of-plane 
artifacts are visibly reduced (Fig. 3c) and thus also their mutual interference on the 
neighboring slices. 

Fig. 3. Slices of two 1 mm balls in the xy-plane reconstructed with MTF inversion filter solely 
(a) and in combination with the slice thickness filter with parameter B = 0.085ωN (b) and B = 
0.0425ωN (c). The first row presents the central slices through the balls’ center and the second 
row shows slices at a distance of 3 mm. (d) Mean intensity z-profile plot of the upper ball 
through 21 slices. 

(a) (b) (c) 

(d) 
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3.2   Application to Clinical Data 

In this section we present results obtained with clinical data. All tomosynthesis data 
sets were acquired over an angular range of ±25o with 25 or 49 projections. The total 
dose was approximately the same as for the corresponding screen/film mammogram. 

The slices presented in Fig. 4 nicely demonstrate the impact of different recon-
struction parameters on the image quality. This 45 mm compressed left breast re-
ceived a tomosynthesis scan in cranio-caudal (CC) position. The slice is located 3 mm 
above the patient table. In the backprojection method with only MTF inverse filtering 
the image noise is emphasized (Fig. 4a). Applying in addition the spectral filter will 
lead to noise suppression (Fig. 4b). The effect of noise reduction depends on the filter 
parameter A. Decreasing A and thus the cutoff frequency, leads to more noise sup-
pression, but also to lower visual acuity. The intensity decrease towards the breast 
middle is visible in both cases and is caused by the ramp-type filtering of the incom-
pletely sampled data set. This artifact can be reduced by replacing the inverse MTF 
filtering with the described FSCE-filter (Fig. 4c). 

Fig. 4. Slice 3 mm above the patient table of a 45mm compressed breast in CC view recon-
structed with (a) inverse MTF filtering, (b) MTF and spectral filter (Hanning) [A=0.5ωN], (c) 
FSCE-filter instead of MTF inversion filter with C=0.003ωN and D=0.85ωN combined with 
Hanning [A=0.55ωN]

As already demonstrated on the simulated ball phantom, the slice thickness filter 
can be used to reduce the out-of-plane artifacts. On the slice presented in Fig. 5a this 
artifacts are clearly visible around the microcalification, which therefore appears de-
formed. Applying the slice thickness filter will reduce this artifacts leading to a better 
definition of the microcalcification (Fig. 5b). The risk to overlook existing microcalci-
fiation may be reduced. Since the slice thickness filter smoothes the image, the pa-
rameter A of the combined spectral filter has to be adjusted.  

(a) (b) (c) 
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Fig. 5. Reconstruction of a slice 47 mm above the patient table of a 60 mm compressed breast 
in MLO view with (a) MTF inversion filter and spectral filter with A = 0.5ωN, (b) MTF inver-
sion filter with spectral filter [A = 1.5ωN] and slice thickness filter [B = 0.07ωN] 

 
Fig. 6. Reconstructed ‘mammogram’ (a) by applying the slice thickness filter forming a ‘total  
volume slice’ and (b) the digitized analog mammogram (Duke University Medical Center) 

 

The application of the slice thickness filter for generating a certain slice thickness 
can be considered as an alternative to the averaging over several consecutive slices to 
form thicker slabs. Reconstructing one single slice, we call it ‘total volume slice’, 
with the thickness of the total compressed breast and using the slice thickness filter, it 
is even possible to retrieve a mammogram of the scanned breast. Figure 6a shows a 

(a) (b) 

(a) (b) 
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‘total volume slice’ of a 6 cm compressed breast in comparison to the screen/film 
mammogram of the same breast (Fig. 6b).

4   Conclusion

We have demonstrated the effects of the various filter processes with simulated and 
with clinical data acquired with a research tomosynthesis system. Whereas the simu-
lations provide basic insight into the filter operations, the clinical tomosynthesis scans 
demonstrate that the method presented here is very flexible with regard to image qual-
ity. Slice images with problem-adapted noise characteristics and slice thickness can 
be obtained, even ‘mammograms’ can be reconstructed as thick slabs. 
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Abstract. Digital breast tomosynthesis (DBT) is a tomographic technique in 
which individual slices through the breast are reconstructed from x-ray 
projection images acquired over a limited angular range. In contrast-enhanced 
DBT (CE-DBT) functional information is observed by administration of an 
radiographic contrast agent. The uptake of iodine in the breast is very small and 
causes changes in x-ray transmission that are smaller than 5%. This presents 
significant technical challenges if quantitative assessment of contrast agent 
concentration in tissue is desired. We modeled CE-DBT acquisition by 
simulating x-ray spectra from 40 to 49 kV. Comparison of attenuation data of 
our simulated and measured spectra were found to agree well.  We investigated 
the effect of patient motion and scatter on iodine uptake. These parameters were 
evaluated by means of experiments and theoretical modeling.  

1   Background 

Digital breast tomosynthesis (DBT) is a tomographic technique for imaging the breast 
morphology at a dose comparable to digital mammography.  However, as breast 
tumor growth and metastasis are accompanied by neoangiogenesis, a functional 
tomographic imaging technique is desired.  Contrast-enhanced digital breast 
tomosynthesis (CE-DBT) [1] would potentially integrate the benefits of both CE 
digital mammography [2, 3] and DBT [4-7]; thus, providing both functional 
information and improved breast cancer morphology by minimizing the 
superimposition of nonadjacent breast tissues that occurs with projection 
mammograms.  Temporal analysis of contrast enhancement may further help to 
distinguish benign and malignant lesions. 

The uptake of iodine in the breast is very small and thus causes only small changes 
in x-ray transmission; typically less than 5%.  This presents significant technical 
challenges if quantitative assessment of contrast agent uptake is desired [1].  
Technical factors that significantly influence quantitative analysis of CE-DBT exams 
are exposure reproducibility, linearity of the detector as a function of position, 
temporal response of the detector, scatter and patient motion. In this paper, we will 
discuss scatter, and patient motion. 
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2   Methods 

We have used a modified GE 2000D under IRB approval to gain initial experience in 
CE-DBT. In the experiments described, we have used temporal subtraction. High 
energy images are acquired before and after administration of an iodinated contrast 
agent. Logarithmic subtraction of these images is then performed. The signal 
intensities (SI) of the resulting images are proportionally to the uptake of iodine. 

2.1   Spectrum 

To model the acquisition process, x-ray spectra in the range of 40 to 49 kV were 
simulated by extrapolating Boone’s model [8]. We validated our simulations using a 
least-squares comparison ( 2 values) between attenuation data from our simulated 
spectra and attenuation data measured with the GE Senographe 2000D. We used high-
purity Al filters to determine the attenuation curves.  Minimum 2 values were found 
by adjusting the kV (kVequivalent) and adding or subtracting Al (Alequivalent) to the 
simulated spectra.  We also compared the half value layers (HVL) and quarter value 
layers (QVL) of the simulations and the measurements. In this paper, we compare 
simulated and measured attenuation data from a Mo-target with 1 mm Al filtration, 
and a Rh-target with 0.27 mm Cu filtration. 

2.2   Scatter 

We performed CE-DBT without a grid.  Scatter, S, was estimated by extrapolation of 
signal intensity measurements under Pb-disks with diameters of 3.9 to 23 mm to a 
disk of zero diameter. Scatter fractions (SF) were then calculated as the fraction of S 
to the SI value in the open field at the same position, which consist of S and primary 
radiation, P. These measurements were repeated as a function of position in 50% 
glandular-50% adipose breast equivalent phantoms (CIRS, Norfolk, VA), and various 
breast equivalent thickness. The phantoms were positioned so as to mimic the MLO 
breast position, including higher order scatter from the chest. A 49 kV spectrum with 
a 0.27 mm Cu filter was applied. 

As part of our clinical CE-DBT trial, we have measured SF in the MLO projection 
images of 6 patients. Pb-disks 12 mm in diameter were positioned on top of the 
compression plate while the breast was compressed and a series of projection images 
was acquired over a 50° arc (as measured at the fulcrum, 20 cm above the breast 
support). SF were then calculated from the SI measured in the shadows of the Pb-disks, 
giving S, and the SI was also measured at the same position in the previously acquired 
pre-contrast projection images, thus giving P + S. The SF in the clinical data were 
compared with the SF calculated from the 12 mm Pb-disks in the phantom images.  The 
same mammography unit and spectrum were used as in the phantom measurements. 

We modeled the effect of scatter on the quantification of the iodine concentration 
for various breast thicknesses. We simulated a Senographe 2000D tube operated at 
49 kV with a Rh target and 0.27 mm Cu filtration. Our simulation includes the 
attenuation of the Be-window, Cu-filter, compression plate, air, ICRU-44 breast 
tissue, and the CsI detector material. We used the SF measured near the center of the 
breast equivalent phantoms. We calculated the contrast as a function of iodine uptake 
for the various breast thicknesses and then calculated the error in the iodine 
concentration estimate due to the scatter. 
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2.3   Patient Motion 

In temporal subtraction, pre- and post-contrast images are subtracted. Any breast 
motion between series will result in artifacts and an erroneous estimate of the iodine 
uptake will be calculated. In our clinical trial, the total acquisition time could exceed 
10 minutes, depending on the experimental protocol. Thus, breast motion is inevitable.   

We developed a measure to demonstrate the effect of breast motion on the 
estimated iodine uptake. In 12 patient images, we selected ROIs where the breast 
thickness was constant. The relative SI variations, corrected for scatter by using 
measured SF, were calculated between pixel positions that are x apart from each 
other. We varied x from 1 to 128 pixels (0.1 - 12.8 mm). These measurements were 
calculated for displacements in the horizontal and vertical direction. The relative SI 
variations were related to corresponding iodine concentrations using our simulation.  
These simulations considered a Senographe 2000D x-ray tube operated at 49 kV with 
a Rh-target and 0.27 mm Cu filtration. The simulation includes the attenuation of the 
Be-window, Cu-filter, compression plate, air, ICRU-44 breast tissue, and the CsI 
detector material. 

3   Results 

3.1   Spectrum 

A comparison of the simulated and measured attenuation data are presented in 
Tables 1 and 2. The measured attenuation data in Table 1 are from a GE Senographe 
2000D operated with a Rh-target and 0.27 mm Cu filtration. The tube has a 0.69 mm 
Be window, and a 2 mm compression plate was in the x-ray beam. The measured 
attenuation data in Table 2 are from a GE DMR. The Mo-target x-ray source was used 
with 1 mm Al filtration. The x-ray tube window was composed of 0.69 mm thick Be 
and a 2 mm compression plate was again in place.  

Table 1. Comparison of the measured and simulated attenuation data for a Rh-target tube 
filtered with 0.27 mm Cu 

Measured Simulated  nominal 
kV 

 
kVequivalent 

 
Alequivalent HVL QVL HVL QVL  2 

34 33.5 0.0 1.711 3.532 1.713 3.579 0.00009 
40 39.4 0.0 2.232 4.750 2.238 4.738 0.00012 
46 45.5 0.0 2.779 5.978 2.787 5.978 0.00005 
49 48.4 0.0 3.060 6.619 3.063 6.578 0.00006 

Table 2. Comparison of the measured and simulated attenuation data for a Mo-target tube 
filtered with 1 mm Al 

Measured Simulated  nominal 
kV 

 
kVequivalent 

 
Alequivalent HVL QVL HVL QVL  2 

22 21.1 0.075 0.388 1.285 0.385 1.286 0.00007 
28 28.0 0.100 0.538 1.844 0.540 1.841 0.00005 
34 35.0 0.050 0.607 2.050 0.609 2.197 0.00009 
40 39.4 0.100 0.654 2.420 0.649 2.442 0.00070 
46 45.4 0.150 0.698 2.734 0.686 2.736 0.00071 
49 49.0 0.175 0.739 2.907 0.703 2.911 0.00422 
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Fig. 1. (a) Geometry of the scatter measurements; 50% glandular, 50% adipose breast 
equivalent phantoms were used. The black dots indicate the positions where SF were measured.  
The distance between the ticks on the horizontal and vertical rulers is 2 cm. (b) Image of 
12 mm diameter Pb-disks exposed on top of a breast in the MLO position. Breast thickness is 
shown in the upper right corner. (c) SF as a function of breast thickness in 0° projection images 
of 50% glandular-50% adipose breast equivalent phantoms (open triangles) and six clinical 
breast images (solid diamonds). 

Shown are kVequivalent and Alequivalent of the simulated spectra for a nominal kV that 
results in the smallest 2. The measured and simulated estimates of the HVL and QVL 
are also presented. The simulated values are those that minimize the 2. The results in 
both tables demonstrate that the extrapolation of the Boone’s spectral models agree 
well with our measurements. 
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3.2   Scatter 

Figure 1a and b show the geometry used for the scatter measurements in the breast 
tissue-equivalent phantoms and in the patient data. Using the method of extrapolating 
the SF to zero disk diameter in breast equivalent phantoms demonstrates that scatter 
fraction increases with thickness, as expected. We measured SF = 0.29 for a 20 mm 
phantom, 0.43 for a 40 mm phantom, 0.52 for a 60 mm phantom, and 0.57 for a 
80 mm phantom as measured near the center of the phantom.   

Figure 1c illustrates SF derived from the shadows under 12 mm Pb-disks as a 
function of breast thickness. The SF correspond to the various positions in the field of 
view as indicated in Fig 1a and b. This analysis shows that the SF in real 
mammograms are similar to the SF measured in breast-equivalent phantoms for 
corresponding thicknesses. 

Figure 2 shows the extent to which the iodine concentration will be underestimated 
if a correction for scatter is not applied. The amount by which the iodine 
concentration will be underestimated is dependent upon the breast thickness.  
Consider, for example, the situation were the breast has an actual iodine concentration 
of 2 mg/cm2. Failure to correct for scatter will result in an error in the estimated 
iodine concentration of 29% for a 20 mm thick compressed breast and 50% for a 
80 mm thick compressed breast. Note that even if images are produced with a grid, 
the iodine concentration is still underestimated. This has relevance for those 
attempting to perform contrast-enhanced digital mammography. 
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Fig. 2. Iodine concentration will be underestimated if not corrected for scatter. The simulation 
used a Rh target, 49 kV and 0.27 mm Cu filter. No grid was used if not specified. 
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3.3   Patient Motion 

Figure 3 shows a clinical example of patient 
motion. The image was produced by subtracting a 
post-contrast reconstructed image of the breast 
from a pre-contrast reconstructed image. Two lead 
BBs are shown attached to the skin near the nipple. 
The arrows indicate patient motion. In our clinical 
trial, we consistently noted the greatest motion in 
the dependent (lower) portion of the breast.  

We have attempted to estimate the magnitude 
of motion artifacts by simulating breast motion. 
Figure 4 illustrates the influ- ence of displacements 
simulating patient motion on the relative SI 
variation and equiv- alent iodine concentration. 
The data were calculated from images of 12 
women. As an example, 25% of the 6 mm 
displacements have on average a 1% relative SI 
variation; this corresponds with a 0.5 mg/cm2 
iodine uptake. However, it is relevant to note that a 
displacement of as little as one pixel can result in 
more than a 5% change in signal intensity, which 
can potentially exceed the anticipated signal from 
the iodine contrast agent. As such, it is imperative 
that motion be minimized. 
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Fig. 4. Example of a ROI extracted from a projection mammogram acquired with a Rh-target 
x-ray tube at 49 kV with 0.27 mm Cu filtration (left). Relative SI variation between pixel 
displacements and the corresponding equivalent iodine concentration from 12 projection 
images are shown (below). The error bars represent standard deviations. 

Fig. 3. Example of patient motion 
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4   Conclusion 

CE-DBT offers the potential to visualize the vascular characteristics of breast lesions 
as an adjunct to mammography.  Based upon our initial clinical experience, and the 
work reported here, it is clear that the quantization of the iodine uptake for CE-DBT 
is complex.  For the design of a CE-DBT system, attention should be paid to scatter 
and patient motion.  At the current time, we are working on the reduction of patient 
motion and we are evaluating alternative subtraction methods using dual energy 
CE-DBT.  We expect that these may minimize patient motion artifacts. 
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Development of an Analytic Breast Phantom
for Quantitative Comparison of Reconstruction
Algorithms for Digital Breast Tomosynthesis
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Abstract. We are developing an analytic breast phantom that allows for
quantitative comparison of reconstruction algorithms for digital breast
tomosynthesis. The phantom consists of simple shapes and aims at cap-
turing the main features of the breast. Projection data can be computed
analytically. We present volumes reconstructed from the phantom data
using the filtered backprojection, expectation maximization and total
variation algorithms. Our results indicate that the TV algorithm achieves
highest contrast for mass lesions and best in-depth resolution.

1 Introduction

Digital Breast Tomosynthesis (DBT) is an emerging modality for breast imaging
[1, 2]. Currently, several manufacturers have produced prototype units [1, 3, 4]
using different imaging geometries and reconstruction algorithms, such as filtered
back projection (FBP) [4, 3], iterative transmission expectation maximization
(TEM) [1, 5], and matrix inversion tomography [6].

Researchers and manufacturers have presented clinical images produced by
their systems, allowing only for qualitative image comparison. However, no quan-
titative comparison of imaging systems or reconstruction algorithms exist. Wu
and coworkers [2] have compared image-quality parameters in volume images of
the ACR phantom, reconstructed with the TEM, FBP and simple backprojec-
tion algorithms. The purpose of this current work is to develop a breast phantom
that is composed of simple shapes, to allow researchers to easily compute ana-
lytic projection data for quantitative algorithm evaluation. A similar phantom,
the well-known Shepp-Logan phantom, has been used in CT reconstruction work
as a standard phantom simulating the human head.

While the Shepp-Logan phantom does not reflect every detail of a human
head, it captures prominent features that can cause reconstruction artifacts,
such as the highly attenuating scull. Projection data for such simple phantoms
can be computed analytically, eliminating quantization errors.

The breast phantom that we are presenting in this work represents the breast
as a truncated ellipsoid. It includes representations of a pectoralis muscle and
fibroglandular tissue regions. In the current implementation, mass lesions are
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also included in different tissue backgrounds. If necessary, other structures, such
as microcalcifications, can also readily be incorporated into the phantom. We
have used existing FBP and expectation-maximisation (EM) algorithms and a
new total variation (TV) algorithm to reconstruct the breast volume from a
sequence of projection data generated from this new breast phantom. Imaging
geometry is similar to that of the first GE prototype unit [1].

2 Methods

The breast phantom, as shown in Fig. 1, is composed of several components.
Each component is either an ellipsoidal object, or a volume bound by intersecting
surfaces. Surfaces can be either planar, ellipsoidal, cylindrical, or conical. This
set of surfaces allows one to construct a large number of shapes while enabling
analytic computation of the path integrals. In our phantom, the overall shape of
the breast was a truncated ellipsoid. The pectoralis muscle was represented by a
rectangular slab. The ensemble of ductal structures was represented by a crescent
shaped object, created from two intersecting ellipsoids. Three mass lesions were
included in the breast phantom, located within the fatty tissue, embedded in
dense fibroglandular tissue, and one mass lesion within the fatty tissue but with
overlaying dense tissue.
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Fig. 1. Slices through the breast phantom along the three spatial directions. The dif-
ference in attenuation coefficient between the crescent-shaped fibroglandular tissue and
the mass within that dense tissue is only 0.015 cm−1. Axis units are mm.
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Table 1. Dimensions and attenuation coefficients of the objects used to build the
breast phantom. Length units are cm.

breast volume,

shape: truncated ellipsoid

μ = 0.245/cm

boundary surface 1: ellipsoid
half axes

12.0
10.0
5.0

center
5.0
0

-15.0

x
y
z

boundary surface 2: plane

boundary surface 3: plane

boundary surface 4: plane

n = z   z = -12.5

n = -z   z = -17.5

n = -x   x = 5.0

fibroglandular region,

shape: crescent

μ = 0.3931/cm

boundary surface 1: ellipsoid
half axes

10.0
8.0
3.0

center
5.0
0

-15.0

x
y
z

boundary surface 2: sphere, r = 12.0
center
-5.0

0
-15.0

x
y
z

nipple,

shape: truncated cylinder

μ = 0.245/cm

boundary surface 2: ellipsoid
half axes

12.0
10.0
5.0

center
5.0
0

-15.0

x
y
z

boundary surface 1: cylinder
r = 0.5
l = 12.5
axis along x

dense tissue region,

shape: ellipsoid

μ = 0.3931/cm

boundary surface: ellipsoid
half axes

1.0
1.0
0.2

center
7.5
0

-14.0

x
y
z

mass,

shape: ellipsoid

μ = 0.40768/cm

boundary surface: ellipsoid
half axes

0.5
0.5
0.3

center 3
13.0

0
-15.0

x
y
z

center 1
7.5
0

-16.0

center 2
10.0

0
-15.0

x
y
z

pectoralis muscle,

shape: rectangular box

μ = 0.3972/cm

side length
5.0
30.0
5.0

center
2.5
0

-15.0

x
y
z

The shapes, dimensions and attenuation coefficients of the obects used to build
the phantom are listed in Table 1. The reference frame for the breast phantom
is such that the breast points towards the positive x-direction. The x-ray source
motion is in the y − z-plane at x = 0. The coordinate origin is located at the
source pivoting point.
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3 Materials

Attenuation coefficients for breast tissues were taken from Johns and Yaffe [7]
and from the online table of NIST x-ray data for 30 keV photons. We generated
projection images from the new breast phantom at 11 projection views at equally
spaced angular intervals, with the x-ray source covering an arc of 50 degrees.
The source pivoting point was located 20cm above the detector surface. Source
to detector distance was 66 cm. Pixel size in the projection data array was 1 mm.

We used FBP, EM and TV algorithms to reconstruct volume images from the
data generated as described above. The FBP algorithm involved a simple ramp
filter. The EM algorithm and TV algorithms are described in [8, 9].
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Fig. 2. FBP reconstruction. Slices through the reconstructed image volumes along the
detector surface, and along the in-depth direction. Axis units are mm.

x−y plane, z=30

50 100 150 200 250 300

50

100

150

x−z plane, y=150

20 40 60

50

100

150

Fig. 3. EM-reconstruction. Slices through the reconstructed image volumes along the
detector surface, and along the in-depth direction. Axis units are mm.
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4 Results

Slices through the reconstructed volumes for the three algorithms investigated
are shown in Figs. 2-4. The main features of the phantom are reproduced by
all algorithms, namely the fatty and dense portions of the breast. The mass in
the fatty region of the breast is conspicuous in all reconstructions. The mass
in the fibroglandular region of the breast cannot be perceived in the FBP re-
construction. Resolution along the in-depth direction is lowest for FBP recon-
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Fig. 4. TV reconstruction. Slices through the reconstructed image volumes along the
detector surface, and along the in-depth direction. Axis units are mm.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y [mm]

at
te

nu
at

io
n 

[c
m

−
1 ]

 

 

Phantom
FBP
ML−EM
TV

Fig. 5. Attenuation coefficients perpendicular to the source motion, at the center of
the phantom, and in the in-depth direction
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Fig. 6. Attenuation coefficients perpendicular to the source motion, at the center of
the phantom, and in the in-depth direction

struction. EM produces spikes along the border. For quantitative comparison,
profiles through the reconstructed volumes are shown in Fig. 5 perpendicular to
the source motion, and in Fig. 6 along the in-depth direction. EM and TV re-
construction resolve the mass within dense tissue. Along the in-depth direction,
TV reconstruction is the only algorithm that reproduces the overall shape of the
breast. None of the algorithms maintain a constant attenuation from the edge
of fibroglandular tissue out to the skin border.

5 Discussion and Conclusion

We have developed a new breast phantom that allows for quantitative com-
parison of reconstruction algorithm properties. The phantom and therefore the
reconstructed image volumes are relatively simple, allowing to investigate al-
gorithm properties in the absence of noise. The performance of the FBP al-
gorithm will likely improve with an improved filter design. However the goal
of this work was the development of the phantom, rather than algorithm de-
velopment. Furthermore, results presented here are obtained with one imaging
geometry. This phantom also allows to investigate how imaging geometry affects
the reconstructed image volume. We hope that this phantom will prompt other
researchers to quantitatively compare their algorithms. In the future, the breast
phantom can be readily extended to include additional features, such as micro-
calcifications. In addition, physical factors, such as the spectrum of the x-ray
beam, can be included.
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Abstract. Establishing spatial correspondence between features visible
in x-ray mammograms obtained at different times has great potential
to aid assessment of change in the breast and facilitate its quantifica-
tion. The literature contains numerous non-rigid registration algorithms
developed for this purpose, but quantitative estimation of registration
accuracy is limited. We describe a novel validation method which simu-
lates plausible mammographic compressions of the breast using an MRI
derived finite element model. Known 3D displacements are projected
into 2D and test images simulated from these same compressed MR
volumes. In this way we can generate convincing images with known
2D displacements with which to validate a registration algorithm. We
illustrate this approach by computing the accuracy for a non-rigid regis-
tration algorithm applied to mammograms simulated from three patient
MR datasets.

1 Introduction

In order to determine the presence or classification of breast cancer from x-ray
mammograms, radiologists routinely compare images. This comparison may be
made with mammograms obtained on a previous occasion, with alternate views
of the same breast obtained during the same screening visit, or with the same
view of the other breast as a means of determining any asymmetry that might
be present. Clearly this comparison helps to confirm or refute the radiologist’s
appraisal of the disease and may enable an assessment of change and hence
disease progression to be made.

While there have been several proposed methods for registering x-ray mam-
mograms they are all generally flawed as they fail to take into account the
complex 3D displacements of anatomy that contribute to the changes seen on
the conventional x-ray projection of the compressed breast. In other words the
applied transformations are diffeomorphic in the 2-dimensional plane, specifying
a one to one correspondence between points in the registered images. In addi-
tion quantitative validation, when performed, is most commonly limited to the
error associated with matching particular lesions identified by a clinician. This
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approach is limited to the region of the lesion and dependent upon the visibility
of the lesion in each view.

We propose a new method for evaluation of strategies for establishing this
correspondence which uses 3D displacements obtained from computational bio-
mechanical models of the breast. Our method simulates plausible mammographic
compressions of the breast using an MRI derived finite element (FE) model. The
resulting 3D displacements are then projected into 2D. X-ray mammograms
are simulated from these same compressed MR volumes, generating convinc-
ing images with known 2D displacements with which to perform a registration
validation. To illustrate this approach we compute the accuracy of non-rigid
registrations of mammograms simulated from three patient MR datasets. The
registration algorithm evaluated has previously proved accurate in 3D MR breast
registrations [1].

We intend to use this method to aid development ofnew registrationalgorithms.

2 Methods

2.1 An MR Derived FE Model of Breast Compression

At the heart of our validation method is data describing the typical relative dis-
placementof breast tissue causedby compressionappliedduring routinex-raymam-
mography on separate occasions. This data was obtained using a FE model of the
breast, constructed from segmented MR images and implemented using the FE
software package ANSYS [2].

TheFEmodels consisted of between 40,000 and 70,000 10-noded tetrahedral ele-
ments. Plate compressionswere simulatedbyapplying surfacedisplacementbound-
ary conditions, with displacements only specified in the direction perpendicular to
the plates. This allows slippage along the plates to occur. Nodes adjacent to the
pectoral muscle were constrained to have zero displacements as in [3]. All other
nodes were allowed to move freely. Fatty, glandular and tumourous tissues were
modelled as homogeneous, isotropic materials with linear elasticities of 1kPa and
1.5kPa, respectively, in accordancewith tests extending the work reported in [4, 5].
Elasticity of tumorous tissue was varied between 3.6kPa and 10.8kPa to produce
realistic variation in the data. In comparison to previous studies, our FE config-
uration was selected based on the accuracy of linear, non-linear and hyperelastic
models to predict the location of internal breast structures after a 20% in-vivo com-
pression for two volunteers [5]. This evaluation included models covering the wide
range of reported elastic properties [6, 7] and variations to it [8, 9]. Linear mod-
els performed as well as non-linear models for these deformations. The three tissue
types (fat, glandular and tumourous) were manually thresholded from the MR vol-
ume (after correction for inhomogeneities), and implausible regions resulting from
this segmentation were removed in a subsequent manual processing step. A Pois-
son’s ratio of 0.475 was chosen to allow for volume changes due to reduced blood
volume as a result of the compression.

Cranio-caudal compressions for different patient visits were simulated by vary-
ing both the percentage compression, α, and the angle from the cranio-caudal axis
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(in the coronal plane) at which this compression is applied, β. Combinations of
these two parameters produced N FE model deformations, Ci(αi, βi) : i = 1 . . .N ,
and these in turngeneratedmultiplepairsof compressiondifferences,{Cpq([αp, βp],
[αq, βq]) : αp �= αq orβp �= βq}, for eachpatient,where eachdifference encapsulates
the relative deformation of breast tissue that might occur between mammograms
acquired on two separate occasions.

2.2 3D to 2D Projection

Using a perspective ray-casting algorithm both the MR volumes and their respec-
tive displacement fields can be projected into two dimensions as follows.

The 3D data set is placed at a particular location, txyz , and orientation, θxyz ,
in 3D space (for a given patient), relative to the virtual x-ray source position (the
origin) and close to the 512× 512 pixel, 0.5× 0.5mmresolution simulated detector
plane. The focal length of this virtual x-ray set was fixed at a mammographically
realistic 660mm (i.e. parameters k1 and k2, the ratios of the x-ray pixel sizes to the
focal length, equal 660), and for the purposes of these experiments the position of
the x-ray normal from source to detector, (u0, v0), was placed at the centre of the
detector plane (u0 = v0 = 128mm).

The equation of a ray, ψ, passing through the 3D data set from the x-ray source
to a point, (u, v), on the 2D detector plane is obtained by solving:

P (k1, k2, u0, v0) T (txyz) R(θxyz) ·

⎛⎜⎜⎝
x
y
z
1

⎞⎟⎟⎠ = λ

⎛⎝u
v
1

⎞⎠ , (1)

where the perspective projection matrix P (k1, k2, u0, v0), translation vector
T (txyz), and rotation about x, y and z axes R(θxyz), describe the pose and pro-
jection of the 3D data set relative to the detector. λ is an arbitrary perspective
magnification factor.

The trajectory of ray, ψ, will cause it to traverse na axial, nc coronal and ns

sagittal planes of voxels in the 3D data set, V . The highest sampling of the ray’s
profile is obtained by sampling V at planes, ρ, such that the greatest number of
intersections with the ray is obtained, i.e.

ρ =

⎧⎨⎩
axial if na ≥ nc and na ≥ ns

coronal if nc > na and nc ≥ ns .
sagittal if ns > na and ns > nc

(2)

The ray’s profile is then given by

ψ(txyz , θxyz, u, v) = {ψ(txyz , θxyz, u, v, ι) : ι = 1 . . . nρ}
= {V (xι, yι, zι) : ι = 1 . . . nρ} , (3)

where V (xι, yι, zι) is the intensity value from bi-linearly interpolating the neigh-
bouring pixel values at the intersection of the ray with the ι’th ρ plane.
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2.3 X-Ray Simulation from MR

Simulation of x-rays from MR enables us to generate realistic images with which
to test a registration algorithm. In addition, because these digitally reconstructed
radiographs (DRRs) are by definition in correspondence with the 3D MR and the
3D displacement field, we know the ground truth deformation between any given
pair of DRRs generated in this way (figure 1).

Fig. 1. Left: cranio-caudal x-ray mammogram simulated from an MR volume with com-
pression, C(50%, 0◦) for patient ‘C’. Right: the relative mean displacement field between
two compressions, Cp(60%,-5◦) and Cq(50%, 5◦), for this same patient.

In the DRR calculation described here we have ignored the contribution from
fat because it is much more transparent to x-rays than either glandular tissue or
tumour, but also because it contributes little to the texture of a mammogram and
hence to the task of establishing correspondence between mammograms.

The manual segmentation described in section 2.1 was alsoused here to estimate
the probability of glandular and tumourous tissue with MR intensity (IMR), for the
production of DRRs. A look-up table, L, was generated for this purpose from the
ratio of the histograms of combined glandular and tumourous tissue intensities,
HG, and total intensity, HT :

L(IMR) =
HG(IMR)
HT (IMR)

. (4)

Rays were cast through the MR volume, V , from each pixel location, (u, v), in
the DRR as described in section 2.2. The look-up table was then used to convert
the MR intensities to an estimated probability of glandular tissue or tumour, and
these values were integrated to produce the DRR intensity DRR(u, v):

DRR(u, v) = cos(φ)
nρ∑
ι

L (ψMR(txyz , θxyz, u, v, ι)) , (5)

where the termφ is the angle between the ray,ψMR, and the detector plane normal.
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2.4 2D Displacement Fields

The 3D relative-displacement fields for a pair of compressions Cp(αp, βp) and
Cq(αq, βq), are projected into 2 dimensions by treating the 3 displacement compo-
nents as 3 images and creating rayprofiles using themethoddescribed in 2.2.Corre-
sponding points on the three component rays, δx(ι), δy(ι), δz(ι), are then combined
to create a ray profile of 3D displacements, ψΔpq ,

ψΔpq(txyz , θxyz, u, v) = {δx(ι), δy(ι), δz(ι) : ι = 1 . . . nρ} . (6)

Each of these 3D vector displacements are then projected into 2D using the per-
spective projection matrix, M , where:

M = P (k1, k2, u0, v0) T (txyz) R(θxyz) (7)

obtained by solving equation 1.

2.5 Registration Error Calculation

The output of a registration algorithm can be expressed as a list of “shipments”
mREG(u, v, j) from pixel coordinates (u, v) ∈ Kp in the source image to (contin-
uous) pixel coordinates (u′, v′) ∈ Kq in the target image. In general, for a con-
ventional 2D registration, a single displacement (in the opposite direction: from
target to source), is obtained at each pixel in the image (i.e. j = 1) and the mass
associated with this displacement (or shipment) is equal to the pixel intensity in
the source image. By considering the more general case of multiple shipments at
each point in the image, we allow for subsequent registration developments which
produce solutions closer to the true 3D movement of tissue in the mammogram.

For each experiment described below, we are establishing the transformation be-
tween two DRRs simulated from a pair of compressions, Cp(αp, βp) and Cq(αq, βq)
(section 2.1). In the following we have dropped the txyz , θxyz, [αp,
βp], [αq, βq] parameterisation for clarity. For each combination of Cp and Cq we
know the corresponding 3D deformation and hence can calculate the 3D displace-
ments,ψΔpq(u, v, ι)andassociated intensities,ψMR(u, v, ι), to transformthe source
volume into the target volume. By projecting these displacements and intensities
into 2D, we obtain

mGT (u, v, ι) = cos(φ)L (ψMR(u, v, ι)) , (8)
δGT (u, v, ι) = M(ψΔpq (u, v, ι)) , (9)

where M represents the projection from 3D to 2D obtained by solving equation 1.
From equations 8 and 9 we can generate a ground truth registration for each pixel
in the source DRR, which specifies a list of intensities, mGT (u, v, ι), and their dis-
placements, δGT (u, v, ι), at each point, (u, v), in the image.
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Fig. 2. The registration error at each pixel (u, v) is equal to the minimum work∑
me(u, v, j, ι) de(u, v, j, ι) required to redistribute the computed registration “ship-

ments” mREG(u, v, j) (open circles) to coincide with the ground truth shipments
mGT (u, v, ι) (closed circles)

As illustrated in figure 2, the registration error at each pixel is then defined as
the minimum work, e(u, v), required to reconcile the shipments computed by the
registration algorithm, mREG, with these ground truth shipments, mGT :

e(u, v) =
∑

j

∑
ι

me(u, v, j, ι) de(u, v, j, ι)

: me(u, v, j, ι) ≥ 0 , (10)

where de(u, v, j, ι) is the corresponding Euclidean distance moved. To obtain the
mean registration error for a pair of compressionsCp(αp, βp), Cq(αq, βq) we simply
sum over all the pixels in the source image and normalise by the total mass moved:

Epq =

∑
(u,v)∈Kp

e(u, v)∑
(u,v)∈Kp

∑
j

∑
ι me(u, v, j, ι)

. (11)

Epq represents the mean registration error, for glandular tissue, in mm.

3 Results

To illustrate our validation methodology we have computed the registration error
for a non-rigid registration algorithm [1] applied to a set of test images.

The test set of cranio-caudal image pairs was created for percentage compres-
sions, α = {50%, 60%, 70%} and orientations, β = {−10◦,−5◦, 0◦, 5◦, 10◦}. Each
combination of α and β produced 15 FE model deformations, C(α, β), and these in
turn generated 210 pairs of compression differences, (Cpq([αp, βp], [αq, βq]) : αp �=
αq or βp �= βq), for each patient.

Table 1 shows the mean errors for performing non-rigid registrations on these
test images. This “fluid” registration algorithm registered the images to a mean ac-
curacy of between 1.0 and 2.3mm, reducing the initial mean misregistrationswhich
varied between 1.3 and 3.3mm.
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Table 1. Registration errors for each of three patients and all compression combinations.
The last column, NF <N , gives the percentage of these 210 registrations for each patient
for which the non-rigid registration gave an overall error less than that observed when no
registration is performed.

Patient No Reg’n Non-Rigid Reg’n Success
Mean (Var) Mean (Var.) NF <N

A 2.4 (1.0) 1.6 (0.5) 96%
B 1.3 (0.3) 1.0 (0.2) 89%
C 3.3 (2.1) 2.3 (1.1) 84%

The initial mean misregistration figures of 2.4, 1.3 and 3.3mm are low due to in-
cluding percentage compressions which were the same for both target and source,
(i.e. αp = αq), with only the angle at which this compression was applied vary-
ing, (βp, βq). The initial misregistration for this subset of test images varied from
0.3 to 4.6mm, whereas when the difference between the applied compressions was
20% (i.e. {αp, αq} ∈ {70%, 50%} : αp �= αq) the range of initial misregistrations
increased to 1.4 to 7.2mm.

Of the “failed” registrations in table 1 (registrations for which the non-rigid reg-
istration failed to decrease the overall misregistration), all correspond to compres-
sion pairs, Cpq, where the percentage compressions were the same for both target
and source images (αp = αq), and only the angles, (βp and βq), at which the com-
pressions were applied varied. The differences between these image pairs are caused
by the different layers of breast tissue moving over one another. This is exactly the
deformation that we know cannot be recovered by a two-dimensional diffeomor-
phic transformation. Such transformations imply a one-to-one correspondence be-
tween points in the source and target images. Clearly this is not the case for x-
ray mammograms due to the perspective projection of the variably compressed 3D
breast. For this reasonnew registration algorithms are requiredwhichproducenon-
diffeomorphic transformations that can capture the point-locusnature of the corre-
spondenceproblem (i.e.“multiple registration shipments”,mREG(u, v, j) : j > 1).
We are developing such an algorithm and will be able to use the same approach de-
scribed here to validate the resulting program. It is necessary to develop such an
evaluation strategy if we are to judge whether or not a particular algorithm is im-
proving spatial correspondence.

4 Conclusion

This paper describes a novel validation technique for x-ray mammogram registra-
tion. Our approach uses real MR breast images from which realistic x-ray mammo-
grams are simulated. By applying known compressions at a range of orientations
we reproduce plausible deformations of the breast which might have occurred dur-
ingmammography on separate occasions. Projections of these knowndeformations
can thenbeused to compute the accuracy of a registration algorithm. It isour inten-
tion to use this validation technique to develop new registration algorithms which
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will be able to distinguish 3D movement of tissue between two x-ray mammograms
from changes in the volume of (normal or abnormal) glandular tissue. In addition
further assessment of the FE model accuracy for larger deformations will clarify
the adequacy of the current model configuration.
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Abstract. In this paper, we present a new method for simultaneously
registering mammograms and detecting abnormalities. We assume that
pixels can be divided into two classes: normal tissue and abnormalities
(lesions). We define the registration constraints as a mixture of two distri-
butions which describe statistically image gray-level variations for both
pixel classes. The two distributions are weighted at each pixel by the
probability of abnormality presence. Using the Maximum A Posteriori,
we estimate the registration transformation and the probability map of
abnormality presence at the same time. We illustrate the properties of
our technique with some experiments and compare it with some classical
methods.

1 Introduction

Mammograms are often interpreted by comparing left and right breast images
or different mammograms of a same patient. Mammogram comparisons help
radiologists to identify abnormalities and determine their clinical significance [1].
In the CAD context, image comparisons are not straightforward. The registration
of images must be carried out to compensate for some normal differences that
can cause high false-negative rates in abnormality detection schemes [2].

Several researchers have used the subtraction of registered images as a com-
parative means by which to detect abnormalities [3]. The obtained asymmetry
image is then thresholded to extract suspicious regions. Thus, the success of the
detection task depends on the preliminary registration process.

On the other hand, the registration problem is usually expressed as a mini-
mization of an energy composed of a regularization term and a similarity term.
Usually, similarity criteria rely on some assumptions about gray-level dependen-
cies between images [4], which are not valid in the presence of abnormalities. The
registration can be improved by including in the model some knowledge about
these abnormalities, as it was done in [5, 6, 7] and for the optical flow estimation
in [8].
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In this paper, we present a mixture-based technique where pixels are classified
into a normal tissue class and an abnormality class. The registration constraints
are then defined as a mixture of two distributions describing gray-level character-
istics of the two classes and which are weighted at each pixel by the probability
of abnormality presence. The main feature of our model is the possibility to com-
bine image registration and the detection of abnormalities, so as to take proper
advantage of the dependence between the two processes.

The mixture-based technique and its mathematical formulation are presented
in Section 2. In Section 3, we illustrate the method behavior on some examples
and compare it with some classical techniques.

2 Method

Let I and J be two images defined on a discrete grid Ωd associated to Ω = [0, 1]2

and called respectively source image and target image. Image coordinates are
matched using transformations φ which map Ωd into itself. We assume that
lesions may be present in the images. Let L be the lesion map which associates
to each pixel of Ωd its probability to belong to a lesion in I or J . Assuming that
all variables are realizations of some random fields, Bayes rule can be expressed
as:

p(φ, L|I, J) =
p(I, J |L, φ) p(φ) p(L)

p(I, J)
.

For the sake of simplicity, we have assumed in the above formula that the de-
formation φ and the lesion map L are independent (i.e. p(φ, L) = p(φ)p(L)).
We can estimate the pair (φ, L) as the solution of the Maximum A Posteriori
(MAP):

(φ̃, L̃) = arg max(φ,L) p(I, J |φ, L) p(φ) p(L) .

To ensure that the transformations remain smooth, we assume that they arise
from the Gibbs distribution:

p(φ) =
1

Cst
e−Hd(φ) , (1)

where Hd is a discrete elasticity potential [9] (a continuous version is given
by Equation (5)). We also assume that the lesion map arises from a Gibbs
distribution:

p(L) =
1

Cst
e−Rd(L) , (2)

where Rd is a discrete energy of regularization. We use in this paper an energy
restricting the amount of abnormal pixels in the images via a real parameter αL:

Rd(L) = αL

∑
x∈Ωd

L(x) .

More specific terms should be defined to describe the spatial configurations of
each type of lesion. We will investigate the use of such energies in the future.
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In order to define the likelihood p(I, J |φ, L), we assume that, given the trans-
formation φ, the probability of the pair of images (I, J) depends only on the
registered images Iφ = I ◦ φ and J , and that pixels are independent. Hence, we
can write

p(I, J |φ, L) =
∏
x

p(Iφ(x), J(x)|L(x)).

The probability of the pair (Iφ(x), J(x)) depends on the class of the pixel
x. Each class is characterized by a probability distribution, denoted by pN
for the normal tissue and pL for the lesion. Thus, the probability distribution
p(Iφ(x), J(x)|L(x)) can be defined as a mixture of the two class distributions

p(Iφ(x), J(x)|L(x)) = (1 − L(x))pN(Iφ(x), J(x)) + L(x)pL(Iφ(x), J(x)). (3)

The normal tissue class. We assume that image differences generated by
normal tissue have a discrete centered Gaussian distribution with variance σ2:

pN(Iφ(x), J(x)) =
1

Cst
exp(−| Iφ(x) − J(x) |

2σ2

2

),

The lesion class. For the sake of simplicity, we assume that a lesion is present
in the target image J . We simply characterize the lesion as a region which is
brighter in the target image than it is in the source image. Hence, we get the
following distribution

pL(Iφ(x), J(x)) =
{

0 if Iφ(x) > J(x)
Cst otherwise,

Numerical resolution

Up to now, we have formulated a Bayesian registration model in a discrete
setting. We now transform the discrete model into a continuous model so as
to be able to use variational resolution techniques. First, using the negative-
log function, we rewrite the MAP estimate as an energy minimization problem.
Then, we define a continuous version of the obtained energy by interpolating all
functions by the finite element method and replacing sums on the pixel grid Ωd

by integrals on Ω. Thus, we have to minimize the energy:

E(φ, L) = H(φ) + R(L) −
∫

Ω

log(p(Iφ(x), J(x))) dx, (4)

where the probability distribution p(Iφ(x), J(x)) is the obtained continuous ver-
sion of the mixture distribution given by Equation (3). H(φ) is the elasticity
potential defined as∑

i,j=1,2

∫
Ω

[λ
∂ui(x)

∂xi

∂uj(x)
∂xj

+ μ(
∂ui(x)
∂xj

+
∂uj(x)

∂xi
)2]dx, (5)

where u = φ − id, and λ and μ are the Lame elasticity constants.
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The term R(L) is the following energy:

R(L) = αL

∫
Ω

L(x) dx .

As in [10, 6], we use a gradient descent algorithm on the energy E and finite
elements to approximate solutions of the minimization problem.

3 Results

3.1 Experiment 1: Comparison Results

We illustrate the characteristics of this mixture-based technique by comparing
its performance with two other registration techniques. The first one is the min-
imization the Sum of Square Differences (SSD). The second one is a registration
technique proposed in [6], which is related to M-estimation in robust Statistics.
We apply the algorithms to the pair of bilateral mammograms (21, 22) of the
MIAS database [11], for which the target image contains an asymmetric density
(bright circular region at the bottom of Image 1(b). Registrations obtained with
the SSD and the M-estimation techniques tend to incorrectly match the lesion
with the bright tissue in the source image and thus reduce image differences due
to the lesion (Images 1(d),1(e)). This is corrected by the mixture-based tech-
nique where images are correctly registered while differences due to the lesion
are preserved (Image 1(f)).

In order to test the detection performance of the mixture-based technique, we
compare a lesion binary image obtained by thresholding the lesion map L̃, to
the ones obtained with the SSD and the M-estimation methods by thresholding
the images of differences. Figures 1(g)-(i) show the binary lesion images obtained
with the three techniques for the same amount of abnormal pixels. We can notice
that the mixture-based method reduces the number of false-positives.

For evaluating and comparing the three algorithms without the influence of a
threshold value, we have presented on Figure 2 the FROC curves obtained with
the three methods. The FROC curve plots the sensitivity (fraction of detected
true positives, calculated by using the expert segmented image) as a function of
the number of false positives. For the mixture-based technique, we have presented
the FROC curve obtained with αL = 0.1. When using different values of the
weight αL, we have obtained similar FROC curves.

As observed on Figure 2, the FROC curve associated to the mixture-based
method is the highest. So, the detection by the mixture-based technique is more
sensitive. For instance, for 10000 false positive pixels (2% of image pixels), the
detection rate grows from 0.632 for the SSD and 0.627 for the M-estimation
based method, to 0.947 for the mixture based method.

3.2 Experiment 2: The Prior Lesion Term

In this experiment, we study the influence of the weight associated to the reg-
ularization term RL(L) = αL

∫
Ω L(x) of the lesion map L. We use the pair
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 1. Registration of bilateral mammograms. (a) Source image I, (b) Target image
J, (c) The difference between the images before registration. The difference between
the images after the registration using (d) the SSD method, (e) the M-estimation
method, (f) the mixture-based method. Detection results containing 4180 pixels ob-
tained with (g) the SSD method, (h) the M-estimation based method, (i) the mixture-
based method.
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Fig. 2. FROC curves for the three detection methods

(117 − 118) of the MIAS database (Images 3(a) and 3(b)) ; the images are seg-
mented and the registration is initialized using a geometric approach based on
the matching of the contours [2].

We have applied the mixture-based technique to the pair of images (3(c),
3(d)), using the lesion class distribution described in Section 2, for different
values of the weight αL. Results are presented in Figure 4.

As shown on Figure 4, we can use the weight αL to limit the quantity of le-
sion pixels present in the image. High values of this weight restricts the amount
of lesion pixels. However, the lesion map contains isolated pixels which, clearly,
do not belong to any lesion. The use of the sum of the lesion map as the prior
potential does not take this into account. More sophisticated terms should take
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(a) (b) (c) (d) (e)

Fig. 3. Registration of bilateral mammograms. (a) Source image I, (b) Target image
J, (c) the segmented and pre-registered source image, (d) the segmented target image,
(e) the expert-segmented image.

(a) (b) (c)

Fig. 4. The influence of the weight αL associated to the prior on the lesion map. The
lesion map obtained for (a) αL = 0, (b) αL = 0.001, (c) αL = 0.01.

into account the morphology of the lesion depending on its type: masses, calcifi-
cations, architectural distortions, ... In the future, we will investigate the design
of prior terms adapted to each type of lesion.

3.3 Experiment 3: The Lesion Class Distribution

In this experiment, we use the same image pair of Figure 3. We apply the
mixture-based method with different lesion class distributions.

First example. If we have no information about the photometric characteristics
of the lesion, we should use an uniform distribution:

pL(Iφ(x), J(x)) =
1

Cst
.

Second example. As explained in Section 2, one can also suppose that a lesion
is just a region in one image that is more bright that its correspondent in the
second image. If we assume that the lesion is present in the target image, we
get:

pL(Iφ(x), J(x)) =
{

0 if Iφ(x) > J(x)
Cst otherwise,
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Third example. If we have more precise information about the gray-level values
of lesion pixels, we can use a probability distribution of the form:

pL(Iφ(x), J(x)) =

{
0 if Iφ(x) > J(x)

1
Cst exp(− (J(x)−m)2

2σ2 ), otherwise,

where m is the mean value of the lesion brightness and σ its standard deviation.
In this experiment, m and σ are determined using the images and the expert-
segmented lesion image ( m = 215 and σ = 5). More generally, one can use a full
database to estimate these parameters. Detection results (lesion maps) obtained
with these three terms are shown on Figure 5.

(a) (b) (c) (d)

Fig. 5. Detection results with different lesion class distributions. Lesion map obtained
with: (a) the first model, (b) the second model, (c) the third model. (d) Expert-
segmented lesion.

As shown on Figure 5(a), when using an uniform model (which corresponds
to the case when the lesion can be present either in the target image or in the
source one), the algorithm tends to consider all asymmetric regions as lesions.
The detection results are improved by using more information. If we suppose
that the lesion is present in the target image, we can use the second distribution
which produces better results. In practice, this is the case for the detection of
the apparition, or change, of a lesion in a temporal sequence. In the third case,
we have more precise information about the gray-level values of lesion pixels in
the form of a Gaussian distribution with a known mean value and standard-
deviation. With the third distribution, we get the best detection results: false
positive are reduced and the lesion map is concentrated on the real lesion. In
practice, one can estimate the parameters of the Gaussian distribution from a
database.

4 Conclusion

We have presented a method for simultaneously registering mammograms and
detecting abnormalities. Thanks to a combined approach, the mixture-based
method improves the mammogram registration and reduces the false-positives
rate for the lesion detection. In the future, we will focus on the design of lesion
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models for different types of lesions, and the estimation of the distribution pa-
rameters for both lesion and normal tissue classes. Furthermore, we will test the
mixture-based method on a mammogram database.
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Abstract. The detection of architectural distortions and abnormal struc-
tures inmammographic images can bebased on the analysis of bilateral and
temporal cases. This paper presents a novel method for mammographic
image registration inspired by existing robust point matching approaches.
This novel method is compared with other registration approaches pro-
posed in the literature using both quantitative and qualitative evaluation
based on similarity metrics and ROC analysis (ground truth provided by
an expert radiologist). Initial evaluation is based on mammographic data
of 64 women with malignant masses which indicates the accuracy and ro-
bustness of our method.

1 Background

Image registration has been widely used in medical applications for quite a while
now, and the analysis of mammographic images is not an exception. An added
difficulty of trying to register mammographic images is their projective nature.
Nevertheless, different approaches have been adopted to obtain an alignment and
minimise effects due to acquisition factors such as patient movement, breast com-
pression and other image related factors (film exposure and energy). Most of the
published approaches (including the early works of Sallam and Bowyer [1] and
Karssemeijer and te Brake [2]) use breast boundary information as it is relatively
easy to extract and provides important information about the breast deforma-
tion. Another group of approaches can be classified as being intensity based,
where the deformation is recovered maximising a measure of similarity between
images. The use of an intensity measure to recover global transformations has
been reported to obtain robust results [3], but can not account for severe local
distortions and additional steps are needed. In addition to the breast boundary,
information about the deformation of internal regions is also necessary in order
to obtain a robust registration. This has been used by different authors [4,5,1].
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Although non-linear registration (warping methods) of mammographic im-
ages has been regarded by some authors as non-appropriate [3], it is our belief,
which is corroborated by other authors [5], that non-linear transformation can
also be successfully used. However, special care has to be taken in choosing the
transformation function and its parameters (in particular, regularisation factors
which ensure smoothness and continuity). It is true that a naive implementation
can lead to non-realistic transformations.

The method presented here is an evolution of our initial proposal [4], focusing
now on providing a robust framework for establishing point correspondence be-
tween mammograms. The novelty of this paper is twofold. Firstly, we introduce
and adapt different concepts of robust point matching approaches to the pro-
posed registration approach. Secondly, an evaluation is presented comparing our
method to other existing approaches in terms of similarity measures and ROC
curves using a relatively large number of cases. Although initial results, this work
shows that image registration can be successfully used to asses temporal changes
in mammograms such as involution of breast tissue, the detection of masses or
architectural distortions.

2 Method

The registration methodology presented here is based on robustly matching in-
terest points in two mammographic images of the same view (either MLO or
CC). The algorithm extracts interest points found in the boundary and the in-
ternal breast region, and applies a robust point matching approach obtaining
a non-linear transformation. Registered images are used for detecting possible
abnormalities in contralateral mammograms (comparing left and right breasts)
by subtracting images and measuring local measures of similarity.

An initial pre-processing step segments the breast boundary and extracts in-
terest points from the boundary and internal regions. A distinction between
boundary and internal structures is made. Boundary information is used to re-
strict the detection area of internal structures and is also a good initial estimate
of the breast deformation. In this paper, the breast boundary is obtained by
simple thresholding and morphological opening operations. Subsequently, inter-
est points are obtained from this boundary by computing their maximal local
curvature. Interest points internal to the breast are also extracted using a crite-
ria of local maximal curvature after a line detection algorithm is applied to the
breast region. This pre-processing is similar to the one presented in [4].

2.1 Point Matching Algorithm

The idea behind the registration methodology of this paper is inspired by robust
point correspondence methods proposed by various authors [6,7,8]. The common
approach from the cited methods is the use of an iterative process in order to
minimise correspondence errors. Those errors are related to a cost matrix (Cij)
which describes the cost of matching one point i in one image (row i) with
a point j in the second image (column j). The elements of this matrix are
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obtained using different point error measures such as Euclidean distance, shape
contexts [7], local intensity information, gradient, etc. Additionally, relaxation
labelling or soft assign methods can be applied to the cost matrix in order to
minimise ambiguous matchings as in [8]. Relaxation methods are not applied in
this work but will be investigated in the future. The minimisation of the cost
matrix yields potential point matches which are used for transforming one point
set (p) in order to match the other (q). The transformed points p and q are used
for building the cost matrix for the next iteration. The stopping criteria of the
iterative process is usually stated in terms of a maximum number of iterations
or if the number of matches does not change with respect the last iteration.

Cost matrix. The Euclidean distance between points has perhaps been the
most common distance measure for point matching. This is the case of Closest
Iterative Point based methods (ICP) [6]. Shape Contexts (SC), originally pro-
posed by Belongie et al. [7] are rich shape descriptors based on building local
point distribution histograms. Thus, at a point level pi, SC provide information
about point distribution relative to that point pi. A cost of matching points in
both images can be obtained by comparing those local histograms. Normalised
Cross-Correlation (NCC) is a well known measure of similarity which has been
used for many applications in computer vision. Perhaps one of the most common
is template matching, obtaining the position of a known template in a larger im-
age. NCC computed within a local grey-level neighbourhood will be used as our
third distance measure. The main drawback of using local similarity measures
is that shape and point relationships are under-represented. For this reason,
NCC will be used in combination of the above measures to ensure topological
point relationships. Given the set of costs Cij , one-to-one matches are obtained
minimising the total matrix cost H(π) =

∑
i C(pi, qπ(i)), where π(i) denotes all

permutation. This minimisation (optimal assignment problem) is obtained using
the Hungarian method, as in [7].

Transformation. Points are transformed using the matches found in the previ-
ous step. In the first iteration, an affine transformation is used in order to recover
global misregistration. In subsequent iterations, the Thin-Plate Splines (TPS) is
used to obtain a smooth transformation between matched points. For a set of
d dimensional points x, the Thin-Plate approximation function is defined as a
sum of d independent functionals Jd

m minimising a measure of bending energy
(related to m order derivatives, m = d = 2 is used here).

Jd
m(u) =

d∑
k=1

Jd
m(uk) (1)

The solution, u(x), is obtained by solving a linear system of equations,

u(x) =
M∑

ν=1

aνφnu(x) +
n∑

i=1

wiU(|pi − x|) (2)
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where φnu(x) defines the TPS behaviour away from the control points, U are
the thin plate basis functions and aν and wi are the parameters of the trans-
formation. The smoothness of the TPS transformation can be controlled by
introducing a regularisation term (λ) in the transformation (see [9]) weakening
the interpolation condition (qi = u(pi)).

Jλ(u) =
1
n

n∑
i=1

|qi − u(pi)|2 + λJd
m(uk) (3)

For λ values close to zero, the transformation interpolates exactly for each con-
trol point (the original TPS transformation), while for larger values we obtain
smoother approximating transformations. This regularisation is used in the iter-
ative process, where larger λ values are used in the initial iterations decreasing
its value depending on an error fitness measure.

Outliers. The Hungarian method obtains optimal matches for all points in the
cost matrix. For some applications, and mammographic registration is one of
them, a large number of outliers is expected in both images. In this sense, the
original cost matrix is enlarged with a percentage of dummy points, points to
which real points will be assigned if a better match is not found. The number
of dummy matches depends on two parameters defined experimentally: the cost
of matching to a dummy point (which should be small enough to allow dummy
matches but at the same time large enough to obtain a significant number of
real matches) and also the number of dummy points allowed (as a percentage
of the total number of points). Experimentally, and although exact values are
not particularly critical, we have experienced that a dummy point percentage of
30−40% with a cost of 0.1 provide the best results. Moreover, not all matches are
taken into account, only those with minimal cost compared to its neighbourhood
are selected as final matches. This neighbourhood criteria is implemented as a
graph proximity problem.

3 Results

3.1 Qualitative Results

Here we qualitatively show the results of the registration algorithm. The de-
scribed point matching algorithm is applied in two different steps. Initially,
breast boundary points alone are used as interest points for finding potential
matches. Subsequently, a second matching process is started in order to obtain
matches for the internal points. The matching in this second step is constrained
by the transformation found in the boundary matching process. This constraint
is applied to the cost matrix where matches for boundary points are enforced to
remain constant. Fig. 1 shows the different steps of the registration.

Fig. 2 shows original images and registration results and the difference image
using the proposed method (rpm) of the example matched in Fig. 1.
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Fig. 1. Registration using breast boundary (BB) and internal points (IP) in different
iterations. Crosses (circles) refer to control points from the reference (target) images.

Reference (left) Target (right) rpm Difference

Fig. 2. Example of registration results using the rpm approach

3.2 Quantitative Evaluation

A total of 128 mammographic images obtained from the DDSM mammographic
database [10] are used as initial evaluation. These include 64 different patients
with left and right MLO images where a malignant mass has been detected and
annotated as ground truth. The difference image (after histogram matching) is
computed from the registered images for each patient. In the ideal case of a
perfect registration, this image is likely to highlight the suspicious region. The
idea is that results from the difference image could be used for mass detection or
at least to reduce the number of false positives in mass detection algorithms. An
evaluation on the distance parameters of the proposed method is firstly given,
and subsequently, a comparison with other approaches is performed.

Distance Function. As mentioned before, different distance measures can be
used for computing the cost matrix. Various experiments have been carried out
in order to assess the benefits of each distance measure and its relative im-
portance. Distance measures evaluated are Euclidean distance (E) and shape
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contexts (SC) each one weighted with the intensity information provided by the
normalised cross-correlation (NCC). The results of four different experiments
(A, B, C, D) are shown in Fig. 3. Each experiment evaluates the weighting fac-
tor (α) between the two distance measures used. In experiments A and B the
measures evaluated are E and NCC for boundary (A) and for boundary and
internal points (B). Experiments C and D use SC and NCC again for bound-
ary (C) and internal points (D). A different curve is shown for each experiment
showing the goodness of the registration as a function of the weighted distance
measures. Goodness of the registration is computed using the mean value of a
similarity measure (i.e. mutual information) for all 64 patients. As expected, and
corroborated by visual inspection of the registered images, the worst results are
obtained using only breast boundary points (experiments A and C). For exper-
iments using internal points (B and D), boundary matches are initially found
using the best results of the experiments A and C. Therefore, better registra-
tion results should be obtained assuming that those internal points are correctly
detected. This is corroborated by the experiments, where B and D outperform
the best results of the experiments using boundary points alone. The experiment
also shows that Euclidean distance alone provides good registration results while
shape contexts needs additional grey level information to reach similar levels.

Comparing with other approaches. This section shows the initial results
of the proposed method compared to other approaches. The approaches eval-
uated are global image registration using affine transformation maximising a
mutual information measure (miat), image registration using our previously pre-
sented approach based on point matching and thin-plate splines [4] (linreg and
linregBB) and the proposed method (rpm and rpmBB). Here, BB denotes that
the same method is used but only taking the breast boundary into account. The
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Fig. 3. Evaluation results of the relative importance of the distance measures in the
final registration result: Experiments A (dashed), B (solid) and C (dot dashed) and D

(dotted)
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miat implementation is similar to one of the evaluated methods presented in [3].
Fig. 4a shows evaluation results in terms of box plots computed from similarity
measures (mutual information) between the reference image (left breast) and the
registered image (right breast) using the different approaches. From the plots,
we can conclude that the proposed method obtains a similar accuracy to the
linreg method with a slightly higher mean value and more robust and stable
results (note the outlier in the linreg method). Results also show, as reported
by various authors, that although using breast boundary information alone ob-
tains good results, accuracy and robustness is increased when information from
the internal breast structure is included. Additional evaluation results are shown
in Fig. 4b, which shows ROC curves obtained from the difference image com-
pared to the annotation ground truth provided by radiologists. The ROC curve
is build by measuring the true positive and false positive fraction as a function
of a threshold of the difference image compared to manual segmentations pro-
vided by a radiologist. In this case, although curves get close for the cases of
linreg, linregBB and rpm, analysing the Area Under the Curve (AUC) value
our proposal has a slightly worst results.

In summary, the proposed method obtains better results compared to the miat
method which is in contrast with the results published in [3]. This will need further
investigation but could be due to particular implementations or to pre-processing
steps (i.e. pectoral muscle suppression). Compared to the linreg method, similar
but more robust results are obtained. Both approaches share common methodolo-
gies which explains the similarity of the results. A comparison with other recently
published approaches [5] can not be directly stated from this work but additional
evaluation procedures will be proposed and included in the future work.
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Fig. 4. (a) Box plots and (b) ROC curves for different registration methods: miat (bold
dotted), linregBB (dotted), linreg (dash dotted), rpmBB (dashed) and rpm (solid).
AUC values for each method are 0.714, 0.739, 0.747, 0.722 and 0.730, respectively.

4 Conclusions

A novel registration algorithm has been presented based on the application of
robust point matching concepts. Quantitative and qualitative results have been
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presented that show the validity of our approach. Although initial results are
presented, a comparison with other approaches has been provided, showing re-
duced error rates for the developed method. Future work will focus on extending
the number of cases including temporal studies from our local database. Addi-
tional evaluation in terms of landmark error measures will be presented with the
aim to obtain better comparison with other approaches.
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Abstract. An improved image similarity method is introduced to rec-
ognize breast cancer, and it is incorporated into a computer-aided breast
cancer detection system through Bayes Theorem. Radiologists can use
the differences between the left and right breasts, or asymmetry, in mam-
mograms to help detect certain malignant breast cancers. Image similar-
ity is used to determine asymmetry using a contextual and then a spatial
comparison. The mammograms are filtered to find the most contextually
significant points, and then the resulting point set is analyzed for spatial
similarity. We develop the analysis through a combination of model-
ing and supervised learning of model parameters. This process correctly
classifies mammograms 84% of the time, and significantly improves the
accuracy of a computer-aided breast cancer detection system by 71%.

1 Introduction

Breast cancer remains a leading cause of cancer deaths among women in many
parts of the world. In the United States alone, over forty thousand women die of
the disease each year [1]. Mammography is currently the most effective method
for early detection of breast cancer [2]. For two-thirds of the women whose ini-
tial diagnosis of their mammogram is negative but who actually have breast
cancer, the cancer is evident upon a second diagnosis of their mammogram [2].
Computer-aided detection (CAD) of mammograms could be used to avoid these
missed diagnoses, and has been shown to increase the number of cancers detected
by more than nineteen percent [3]. Measuring asymmetry, which consists of a
comparison of the left and right breast images [4], is a technique that could be
used to improve the accuracy of CAD. An automated prescreening system only
classifies a mammogram as either normal or suspicious, while CAD picks out
specific points as cancerous [5]. One of the most challenging problems with pre-
screening is the lack of sensitive algorithms for the detection of asymmetry [6].
This paper presents a simple and effective algorithm for the detection of asym-
metry and extensions to improve upon it. We improve on our earlier results [7]
and incorporate image similarity into a CAD system.

Mammograms are an excellent candidate for image similarity techniques to be
effective because there are images of both the left and right breasts, which should
be similar if there is no cancer present. Image similarity has been often utilized for
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content-based image retrieval (CBIR) from image databases [8, 9, 10, 11]. Both
contextual and spatial comparisons are used [8]. Medical image databases have
also used image similarity, from rule-based systems for chest radiographs [12]
to anatomical structure matching for 3D MR images [13]. However, the focus
is often on the non-cancerous structures, while it is the cancerous structures
that are of principle interest here. In this paper we combine the image similarity
concept of contextual then spatial comparison to the problem of detecting breast
cancer in mammograms.

The majority of work on CAD analysis of mammograms has focused on deter-
mining the contextual similarity to cancer, finding abnormalities in a local area
of a single image [14, 15]. This paper focuses on combining this with a spatial
comparison in order to complete an image similarity measure. The majority of
work has used methods ranging from filters to wavelets to learning techniques,
but a detailed discussion of various imaging techniques is beyond the scope of
this paper. Problems arise in using filter methods [14] because of the range of
sizes and morphologies for breast cancer, as well as the difficulty in differentiat-
ing cancerous from non-cancerous structures. The size range problem has been
addressed by using multi-scale models [15]. Similar issues affect wavelet methods,
although their use has led to reported good results [16] with the size range issue
being improved through the use of a wavelet pyramid [17]. Learning techniques
have included support vector machines [18] and neural networks [16].

Detecting breast cancer is challenging because the cancerous structures have
many features in common with normal breast tissue. This means that a high
number of false positives or false negatives are possible. Asymmetry can be used
to help reduce the number of false positives so that true positives are more ob-
vious. Previous work utilizing asymmetry has used wavelets or structural clues
to detect asymmetry with correct results as often as 77% of the time [4, 19].
Additional work has focused on bilateral or temporal subtraction, which is the
attempt to subtract one breast image from the other [20, 21]. This approach is
good because it does try to utilize the multiple images taken with the same ma-
chine by the same technician and analyzed using the same process in an effort
to reduce the systematic differences that can be introduced. However, bilat-
eral subtraction is hampered by the necessity of exact registration and natural
asymmetry of the breasts. We introduce a measure of asymmetry that is more
approximate in nature and seems more robust to the large amount of noise in
the data, using learning to determine a highly constrained number of model
parameters. Minimizing the number of parameters that are learned makes the
model less subject to overfitting the noise in the data at the possible expense of
accuracy.

Comparing multiple mammograms using learning techniques has been shown
to be effective in CBIR [10, 22]. Our application lends itself well to supervised
learning because the data set has already been screened for cancer and thus
classified by expert radiologists. However, care must be taken since the expert
classification is known not to be perfect [2].
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We believe that developing ways to better utilize asymmetry is consistent
with a philosophy of trying to use methods that can capture measures deemed
important by doctors thereby building upon their knowledge base, instead of
trying to supplant it. However, measuring asymmetry means comparing multiple
images, and thus it is a more complicated process.

In order to more fully understand the effectiveness of incorporating asym-
metry into CAD systems, we utilize Bayes Theorem as a simplified method for
combining a global measurement of asymmetry with the local measure of the
probability of having a cancer. Significant improvement is shown over the sys-
tem without asymmetry.

The rest of this paper is organized as follows. Section 2 presents our method
for measuring asymmetry between the mammogram images and incorporating
the measure into a CAD system. Section 3 discusses the evaluation of the per-
formance of the measure and compares the results with other work. Section 4
describes future work, while Section 5 discusses the conclusions that can be
drawn from this work.

2 Asymmetry Measurement and CAD

Our work utilizes filtering followed by spatial analysis to determine an overall
measure of similarity by combining the contextual similarity of the filtering with
the spatial similarity of the analysis. This can be a useful measure for prescreen-
ing mammograms since only an overall determination is required. It can also be
incorporated into CAD as we demonstrate using Beyesian statistics. A secondary
goal of our work is to determine the importance of similarity or asymmetry in
the computer analysis of mammograms.

Our analysis starts with filtering to find the contextually similar suspicious
points that could be cancers in the mammograms. The filtering step is the same
as we used in [7]. This yields a set of potential detection sites that can be analyzed
for asymmetry. Although it may not be the optimal choice of either filtering
or ranking, the spatial analysis that we used can be applied to any technique
that can rank the suspiciousness of areas. The number of points returned by the
filtering step is one of the variables that can be adjusted to optimize the analysis.
Alternatively, we can also make use of a threshold on the suspiciousness value
instead of taking the top few. However, we chose to take the top few in order to
be insensitive to image processing choices that might bias the analysis.

The analysis for similarity or asymmetry that we used does a comparison of
the values of the sets of suspicious points. Two separators are learned with a
training set of images. A model for a separator in 3D is a plane with the param-
eter set mx, my, b. Parametric learning is used to determine the best parameters
based on the training set. A separator breaks the set of suspicious points in both
images into two groups, and the populations in the groups are compared between
the images. This is based upon the assumption that the presence of cancer will
distort the distribution of suspicious sites, and that the distribution will be very
similar from left to right breasts when there is no cancer. This is similar to
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comparing histograms whose parameters are learned from a test set. We used
learning techniques to determine the optimal structure and parameters for the
separator from the data. For this application, the importance of correct classi-
fication of the cancerous cases is much more important than the non-cancerous
cases. To reflect this, the associated weighting of the cancerous cases was varied,
and we evaluate the performance of various weightings.

The two separators break the areas in 3-space into groups labelled L1, L2,
L3, R1, R2, R3, and each has its associated occupancy of suspicious points. A
measure of asymmetry D is then calculated as D =

∑
j |Lj−Rj|. A more flexible

measure would consider each set of groups as a separate measure with its own
threshold. In order to use this measure to classify each case as either cancerous
or non-cancerous, a threshold needs to be applied. This threshold is another
parameter that is learned.

To incorporate asymmetry into a CAD system, we made use of Bayes The-
orem, P (CancerSite|Asym) = P (Asym|CancerSite)P (CancerSite)

P (Asym) . The sites where
asymmetry is measured are thus given an increased probability of being cancer-
ous, while sites where asymmetry is not measured are given a reduced probablity
of being cancerous. Since the asymmetry measurement is currently done on an
entire case, all of the sites in those cases are affected similarly. The effect can be
seen in Figure 1. Using Bayes Theorem to incorporate asymmetry into CAD is
shown to work well at low numbers of false positives per image, but the overall
performance is still strongly dependent on the effectiveness of the CAD system.
The true positive fraction of the asymmetry measurement is essential in order to
prevent true positives from having their probabilities diminished, and the false
positive fraction is important for improving the effectiveness of the CAD system.
At high levels of false positives per image, the incorporation of asymmetry has
minimal effect, but this is expected since using Bayes Theorem merely reduces
the probability of the false positives and does not eliminate them.

3 Evaluation and Results

The groups of suspicious points in the left and right mediolateral oblique (MLO)
mammogram views were compared to evaluate the asymmetry measure. The
analysis was done with cases that were normal mammograms and mammograms
with malignant spiculated lesions from the Digital Database for Screening Mam-
mography [23]. Spiculated lesions are defined as breast cancers with central areas
that are usually irregular and with ill-defined borders. Their sizes vary from a few
millimeters to several centimeters in diameter and they are very difficult cancers
to detect [17]. The training set had 39 non-cancerous cases and 37 cancerous
cases, while the test set had 38 non-cancerous cases and 40 cancerous cases.
The data is roughly spread across the density of the breasts and the subtlety of
the cancer. The breast density and subtlety were specified by an expert radiolo-
gist. The subtlety of the cancer shows how difficult it is to determine that there
is cancer. The training data set was used to determine optimal parameters for the
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Fig. 1. Comparison of the CAD system before and after the addition of asymmetry.
The improvement in performance is good at a small number of false positives per image.

separators used in the classification. These cases indicated that a difference in
the groups of one or more suspicious points indicated cancer.

Our results are good on all cases of the test set, correctly classifying 84% on
the test set. This showns that spatial distribution of suspicious points is changed
by the presence of a cancer. However, it is much more important to correctly
classify the cancerous cases, and by heavily weighting the importance of the
cancerous cases, we correctly classify 97% of the cancerous cases but only 42%
of the non-cancerous cases. Neither the subtlety nor the density of the cancer
had an effect on the results. The comparison with a commercial system shows
that the results are surprisingly good. Correct classification results of 96% of the
cancerous cases and 33% of non-cancerous cases are possible using the R2 Im-
ageChecker system [6]. Our method showed correct classification results on 97%
of cancerous cases and 42% of the non-cancerous cases. This demonstrates the
importance of asymmetry in pre-screening, since using only asymmetry achieves
a better performance than a complete comercial system. The inclusion of addi-
tional factors other than asymmetry in the method should improve the results.
However, the data sets used are different, as the R2 ImageChecker data con-
tains all cancer types and our method has only the difficult to detect spiculated
lesions. The R2 ImageChecker data set also had a much higher proportion of
non-cancerous mammograms to cancerous cases.

The results on using Bayes Theorem to incorporate asymmetry into CAD
were good, increasing the accuracy by up to 71% at a set level of false positives
per image, as is shown in Figure 1. The improvement is most apparent at low
levels of false positives. At higher levels of false positives, the effectiveness of the
CAD technique dominate because the Bayes technique does not actually remove
any false positives, it merely reduces their probability of being cancerous.
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Our method makes use of a spatial analysis of the suspicious points, counting
the number of suspicious points in the groups created by the separator. Its success
is an encouraging sign for the investigation and utilization of more complicated
non-local analysis techniques in medical imaging and analysis.

4 Future Work

In the future we plan to move away from the concept of separators to clusters.
In some sense, separating planes in the data space create areas that can be
defined as clusters, but these clusters are restricted to be space-filling and non-
overlapping. These restrictions are not required, and performance could improve
with their removal.

This work used only two separators. Increasing the number of separators, or
clusters, should improve the performance. Using multiple separators provides
a way to probe the data space for regions of interest, either because they are
important areas for finding cancer or for determining that there is no cancer.
The initial analysis has discovered a small region of interest for diagnosing a
mammogram as non-cancerous.

This algorithm is not expected to work well on every case because there are
to many types of breast cancer and breast characteristics. Tuning the algorithm
to the characteristics of the breasts should improve the results. Additionally,
letting the algorithm decide when it can do well and when it cannot should also
improve performance.

One of the parameters that are learned is the optimal number of suspicious
points to use in the analysis. Initial results are always at or near the top of the
range that we used, varying from 28 to 31 points depending on the model and
weightings. This was surprising because the cancer was usually in the top six-
teen if not the top eight points. However, the suspicious points do tend to cluster
around a cancer, so including more suspicious points may create a greater dis-
tortion of the underlying distribution than fewer points. The learning algorithm
does not get the number of points directly, only the cluster differences, so the
inclusion of more data should not result in overfitting.

A further improvement might be possible by first transforming the data be-
fore filtering, such as applying wavelet analysis to the images before simply
thresholding or applying the filter. This has been successfully attempted previ-
ously [4] with good results. However, an optimal solution would first combine
all of the various filtering and transform methods which create meaningful sus-
picious points, and then learn an effective analysis from them. This is similar to
the effective combination of weak classifiers into a single strong classifier through
ensemble learning methods like boosting, which has been successfully used before
in tumor classification [24].

5 Conclusion

The overall results of using our techniques are good, our experiments yielded
84% accuracy suggesting that asymmetry is an important measure to incorporate
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into prescreening or CAD software. Incorporating the technique into CAD shows
up to a 71% improvement in the accuracy at a set level of false positives. The
technique can be tuned to be more effective at diagnosing cancerous cases, reach-
ing 97% accuracy. We suggest several ways to improve on the methods that we
used to measure asymmetry. One method is to convert a mammogram into a
connected graph structure of suspicious points and utilize known graph compar-
ison methods for the measure. Another is to use registration of suspicious points
from one breast to the other and reduce the suspiciousness of points that have
a similar counterpart. Alternatively, increasing the number of separators could
improve the method.

Our work has demonstrated the potential of utilizing techniques like image
comparisons and other non-local methods with medical imaging. We have shown
that we can effectively measure doctor-defined quantities like asymmetry. We
believe that in the future, the combination of capturing doctor-defined quantities
like asymmetry and machine learning of parameters could be a powerful method
for improving the quality of research in medical imaging, and this is one of the
avenues of research that we intend to pursue.
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Abstract. The purpose of this study was to investigate the usefulness of 
multiple-view mammograms in the computerized scheme for identifying 
histological classifications. Our database consisted of mediolateral oblique 
(MLO) and craniocaudal (CC) magnification mammograms obtained from 77 
patients, which included 14 invasive carcinomas, 17 noninvasive carcinomas of 
comedo type, 17 noninvasive carcinomas of noncomedo type, 14 mastopathies, 
and 15 fibroadenomas. Five features on clustered microcalcifications were 
determined from each of MLO and CC images by taking into account image 
features that experienced radiologists commonly use to identify histological 
classifications. Modified Bayes discriminant function (MBDF) was employed 
for distinguishing between histological classifications. For the input of MBDF, 
we used five or ten features obtained from MLO and/or CC images. With ten 
features, the classification accuracies for each histological classification ranged 
from 70.6% to 93.3%. This result was higher than that obtained with only five 
features either from MLO or CC images.  

1   Introduction 

It is difficult to make correct clinical decisions for biopsy or follow-up on clustered 
microcalcifications on mammograms. Therefore, many investigators have developed 
various computer-aided diagnosis (CAD) schemes for assisting radiologists in their 
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assessment of clustered microcalcifications. Most of these CAD schemes are based on 
the analysis of single-view standard mammograms. 

Routine mammographic projections are mediolateral oblique (MLO) projection and 
craniocaudal (CC) projection. MLO image is the single most useful mammographic 
projection for the breast.1 CC image is generally used for complementing MLO 
image. Two views can permit an appreciation of three dimensional structures which 
may be helpful in distinguishing overlapping structures when single-view 
mammogram is read. In this study, therefore, we investigated the usefulness of 
multiple-view mammograms in the CAD scheme for identifying histological 
classification of clustered microcalcification.  

2   Materials and Methods 

2.1   Database 

Our database consisted of MLO and CC magnification mammograms obtained from 
77 patients at the Breastopia Namba Hospital, Miyazaki, Japan. It included 48 
malignant clustered microcalcifications (14 invasive carcinomas, 17 noninvasive 
carcinomas of the comedo type, and 17 noninvasive carcinomas of the noncomedo 
type) and 29 benign clustered microcalcifications (14 mastopathies and 15 
fibroadenomas). The histological classifications of all clustered microcalcifications 
were proved by stereotaxic core needle biopsy.  

The magnification mammograms were acquired with a Kodak MinR-2000/MinR-
2000 screen/film system. The magnification factor of magnification mammograms 
was 1.8. The mammographic x-ray system included an x-ray tube with a 0.1 mm focal 
spot and a molybdenum anode, 0.03-mm-thick molybdenum filter, and a 5:1 
reciprocating grid. These mammograms were digitized to a 512x512 matrix size with 
a 0.0275 mm pixel size and a 12-bit gray scale by the use of an EPSON ES-8000 
digitizer. 

2.2   Methods 

The methods for the segmentation of microcalcifications, the determination of cluster 
margin and the extraction of five features are the same as those used in our previous 
study2. Therefore, we briefly describe them here. 

2.2.1  Segmentation of Microcalcifications and Definition of Cluster Margin 
For segmentation of individual microcalcifications within a cluster on mammograms, 
we first enhanced the microcalcifications by the use of a novel filter bank3. A gray-
level thresholding technique4 was then applied to the enhanced image. In order to 
segment all microcalcifications in our database, we used a 600-pixel value as a 
threshold value empirically. By using such a fixed threshold value, however, 12 breast 
tissues were also segmented as the candidates for microcalcifications. In this paper, 
we employed a manual method to remove these candidates which were not identified 
as a microcalcification by an experienced radiologist. 
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In order to obtain the information about the shape of the distribution of clustered 
microcalcifications, the cluster margin was automatically determined by our CAD 
scheme. We first drew circles at the center of gravity of each microcalcification. The 
diameter of these circles was increased from 20 to 60 pixels until all circles within a 
cluster were connected. We then employed a binary morphologic closing operator5 to 
smooth the edge of the region connecting the circles. This smoothed edge was finally 
determined as the cluster margin. 

2.2.2   Extraction of Five Features 
In our previous study2, we selected five features to identify histological classification 
by taking into account the differences in image features between five histological 
classifications. We then showed that these features were statistically significant for 
identifying histological classifications of clustered microcalcifications. In this study, 
therefore, we used the same features. These features were: (1) the variation in size of 
microcalcifications within a cluster; (2) the variation in pixel values of microcalcifications 
within a cluster; (3) the irregularity measure in shape of microcalcifications within a 
cluster; (4) the extent of linear and branching distribution of microcalcifications; and (5) 
the distribution of microcalcifications in direction toward the nipple. These features 
were quantified based on the segmented microcalcifications and the cluster margin. 

2.2.3   Identification of Histological Classification and Evaluation of 
Classification Performance 

In our previous study2, Bayes discriminant function (BDF)6 was employed for 
identifying histological classification of clustered microcalcification. The relationship 
between the covariance matrix Σl  of each class l  based on histological 

classifications, its i-th eigenvalue ( )1+≥ ililil λλλ , and its i-th eigenvector il Φ  

satisfy the following equation: 
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Here, x  and μl  are the input feature vector and the mean vector of class l , 

respectively. In BDF, the estimation error of the eigenvectors becomes large when the 
number of training samples is not large enough compared with the number of 
dimensions of the feature vector.7 Especially, the estimation error of higher-order 
eigenvectors is much larger than that of lower-order eigenvector.7 The trained BDF 
would be influenced by this problem because our database was relatively small. In 
this study, therefore, we employed Modified Bayes discriminant function (MBDF)8 
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which solves this problem to distinguish between the five different types of 
histological classifications. MBDF is given by 
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where ( )nkk <≤1  is an integer. Here, the estimation error of higher-order 

eigenvectors is reduced by using 1+kl λ  as an approximate value of 

( )nkiil ,,2+=λ . In the case of 1−= nk , MBDF is equal to BDF. When k  is 

about one-third of the number of dimensions of the feature vector, it is known to show 
the highest classification performance.9 In this study, therefore, k  was given as a one-
third of the number of dimensions of the feature vector. 

For the input of MBDF, we used five or ten features obtained from MLO and/or 
CC images. The output of MBDF provided five values indicating the likelihood of 
each class based on histological classifications. The class yielding the smallest output 
value was considered to be the result of the distinction among the five types of 
histological classifications. A leave-one-out (round-robin) testing method10 was used 
for training and testing of MBDF. In this method, the training was carried out for all 
cases except one case in the database, and the one case not used for training was 
applied for testing with the trained MBDF. This procedure was repeated until every 
case in our database was used once. 

3   Results and Discussion 

3.1   Features Obtained from Two-Views Magnification Mammograms 

Figure 1 shows the mean values and the standard deviations of each feature for the 
five different types of histological classifications in MLO and CC images. These 
features were normalized in each of MLO and CC image. The differences in five 
features between five histological classifications for MLO image appeared to be 
nearly similar to those for CC image. This trend of the features also corresponded to 
radiological findings1,2 of microcalcifications in each of histological classifications.  

Table 1 shows the results of tests for univariate equality of group means in features 
for each of MLO and CC images. In each of five features, the Wilk’s lambda11 and the 
F value11 for MLO image and those for CC image were almost equal. This result 
indicates that there was no large difference between MLO and CC images in the 
contribution to identify histological classifications of clustered microcalcifications. In 
the variation in size and the irregularity measure in shape, the Wilk’s lambdas were 
smaller than any other features, and the F values were larger than other features. 
Therefore, these features made a larger contribution to identifying five histological 
classifications of clustered microcalcifications. The p values11 for all features reached 
the level of statistical significance. Therefore, ten features obtained from MLO and 
CC images were statistically significant for identifying histological classifications of 
clustered microcalcifications. 
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Fig. 1. Mean values and standard deviations of each feature for the five different types of 
histological classifications in MLO images and CC images 
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Table 1. Tests for univariate equality of group means in features for each of MLO and CC 
images 

Features

< 0.0019.150.67 < 0.0017.310.71 Distribution in direction
toward the nipple

< 0.00110.72 0.63 < 0.0019.320.66 Extent of linear and
branching distribution

< 0.00125.03 0.42 < 0.00123.97 0.43 Irregularity measure
in shape

< 0.00118.820.49 < 0.00114.09 0.56 Variation in
pixel values

< 0.00125.31 0.42 < 0.00128.98 0.38 Variation in size

p valueF valueWilk’s
Lambdap valueF valueWilk’s

Lambda

CC imageMLO image

Features

< 0.0019.150.67 < 0.0017.310.71 Distribution in direction
toward the nipple
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3.2   Performance of Classification 

Table 2 shows the results of the distinction of the five histological classifications by 
the use of MBDF based on a leave-one-out testing method. For the input of MBDF, 
we used five features obtained either from MLO or CC images, and also ten features 
obtained from both MLO and CC images. In all histological classifications, the 
classification accuracies obtained with ten features were equal or higher than those 
obtained with only five features. With ten features, the classification accuracies of our 
computerized scheme for distinguishing between five histological classifications were 
78.6% (11/14) for invasive carcinoma, 70.6% (12/17) for noninvasive carcinoma of 
comedo type, 76.5% (13/17) for noninvasive carcinoma of noncomedo type, 71.4% 
(10/14) for mastopathy, and 93.3% (14/15) for fibroadenoma. The positive predictive 
values12 were 78.6% (11/14) for invasive carcinoma, 70.6% (12/17) for noninvasive 
carcinoma of the comedo type, and 81.3% (13/16) for noninvasive carcinoma of the 
noncomedo type. The negative predictive values12 were 76.9% (10/13) for mastopathy 
and 82.4% (14/17) for fibroadenoma. 

In order to compare the usefulness of MBDF with that of BDF, we also evaluated 
the classification performance of BDF with ten features. With BDF, the classification 
accuracies were 64.3% (9/14) for invasive carcinoma, 70.6% (12/17) for noninvasive 
carcinoma of comedo type, 64.7% (11/17) for noninvasive carcinoma of noncomedo 
type, 64.3% (9/14) for mastopathy, and 80.0% (12/15) for fibroadenoma. The positive 
predictive values were 69.2% (9/13) for invasive carcinoma, 66.7% (12/18) for 
noninvasive carcinoma of the comedo type, and 64.7% (11/17) for noninvasive 
carcinoma of the noncomedo type. The negative predictive values were 69.2% (9/13) 
for mastopathy and 75.0% (12/16) for fibroadenoma. The classification accuracies, 
the positive predictive values and the negative predictive values were improved 
substantially by the use of MBDF. 
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Table 2. Comparisons of the computerized classification results obtained by Modified Bayes 
discriminant functions with five features and ten features 
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4   Conclusion 

We investigated the classification accuracies obtained with computerized analysis of 
single-view mammogram and those of multiple-views mammograms. The results 
indicated that the CAD scheme for multiple-view mammograms was more accurate in 
identifying histological classification of clustered microcalcification. This 
computerized scheme may be useful in assisting radiologists in their assessment of 
clustered microcalcifications. 
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Exploitation of Correspondence Between CC and
MLO Views in Computer Aided Mass Detection
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Abstract. In this paper we investigate the effect of reclassification of
CAD findings using correspondences in MLO and CC views, with the
aim of reducing false positives and inconsistencies. We use a method to
link regions identified as suspicious in both projections and add a two-
view classifier to an existing CAD scheme. The input of this two-view
classifier was a feature vector containing the likelihood of malignancy of
the region, the likelihood of malignancy of the corresponding region in
the other view, and a number of features that describe the resemblance
between the both regions. Using FROC analysis we show that detection
results improve when using two-view information.

1 Introduction

Most methods for computer aided detection of masses in mammograms are lim-
ited to analysis of single views. Radiologists, on the other hand, are trained to
judge different views in combination. They make comparisons between patterns
in the left and right breast, and compare features of suspect abnormalities pro-
jected in different views. In mammography it is common to make a medio lateral
oblique (MLO) and a cranio caudal (CC) view of each breast. By processing these
views independently, CAD systems often mark abnormalities only in one view,
even if they appear rather similar visually. This is due to the fact that differences
in features computed in the two views may cause a relatively large difference in
the levels of suspiciousness assigned to the lesions by the CAD system. By using
a fixed display threshold for the CAD markers the lesion may be rendered in one
view while in the other it is not. Radiologists tend to complain when this occurs
because they find this behavior of the CAD system inconsistent. Moreover, in
recent studies it is reported that it is more likely that radiologists ignore CAD
marks if they only mark a lesion in one view [1] [2].

In this paper we investigate if correspondence can be utilized to reduce false
positives of a mass detection method. We expect that false positives in different
projections will be less correlated than true positives. By reclassification of CAD
findings using two-view information we aim at decreasing the suspiciousness of
false positives while maintaining the strength of the true positives. Moreover, by
combining information from two views the difference between the CAD output
of true positive projections in two views will be reduced, which will improve
consistency of the system.

Susan M. Astley et al. (Eds.): IWDM 2006, LNCS 4046, pp. 237–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Figure 1 presents a schematic overview of the method, which is a cascaded
system of three classifiers. The output of the first classifier L1(x, y) is a measure
of suspiciousness at every location in the breast. The mass likelihood L2(i) is
obtained after region segmentation at selected locations i with a high likelihood
of malignancy. Finally, L3(i) is the output of the two-view detection method,
in which correspondence between projections is used. Details of the single view
stages of the algorithm may be found in [3] [4].

Fig. 1. Schematic overview of our CAD scheme

2 Finding Corresponding Regions

In our method we determine correspondence between potentially suspicious ar-
eas determined by a CAD scheme in MLO and CC views, using the nipple as
a landmark. Many radiologists use distance to the nipple to correlate a lesion
in MLO and CC views. It is generally believed that this distance remains fairly
constant, although other methods are used as well, such as distance to the chest
wall/pectoral, or distance of the nipple to a projection of the lesion on a line
perpendicular to the chest wall/pectoral (cartesian straight line method). In an
attempt to take the effect of compression into account, Kita et al [5] used a model-
based method to find a curve in the MLO view which corresponds to the potential
positions of a point in the CC view. Our choice for distance to the nipple, also re-
ferred to as the arc method, was based on experimental evidence and on the fact
that it is easy to implement. Chang et al [6] provide experimental evidence that
the arc method is at least as good as the cartesian straight line method. Further
evidence is found in previous studies, where it was found that correlation between
distances to the nipple determined in CC and MLO views is high [7], [8].

In the present study we use an automatically determined nipple location to
define an annular search area in the other view. The nipple location was roughly
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estimated using a simple approach, in which we determined the point on the
skin contour with the largest distance to the chest or the pectoral muscle (for
the MLO views). The pectoral line was determined using a Hough transform
based method [9]. The width of the annular search area search area was 48 mm.
It was found that in 79 percent of the cases the distance to the nipple does not
deviate more than 1.5 cm between both views.

To find corresponding regions, for all possible combinations of candidate re-
gions a feature vector is determined. Features represent the difference in distance
of the candidate regions to the nipple, gray scale correlation between both regions
and the mass likelihood L2(i) of the regions. Next, Linear Discriminant Analysis
(LDA) is used to compute a correspondence measure for every possible combina-
tion. For every region in the original view the region in the other view with the
highest correspondence score is selected as the corresponding candidate region.

3 Two-View Classification

Application of the linking algorithm results for every region in a corresponding
region in the other view with accompanying correspondence score. If no corre-
sponding region is found, the correspondence measure is set to zero. Otherwise
a two-view feature vector is computed for the region to be classified. Features
included are the single view likelihood of suspiciousness of the region itself and
of its corresponding projection in the other view, the correspondence score, and
a number of features representing similarity of the two regions. To select the
features for the two-view classifier a forward feature selection algorithm is used,
using a LDA classifier and Receiver Operating Characteristic (ROC) analysis.
To avoid that feature selection biased results we used cross validation. The final
two-view classifier used was a 3-layer neural network with three hidden nodes,
with the selected features as input. The net was trained with back-propagation.

Our two-view detection scheme was evaluated on a data set containing 412
abnormal cases, and 537 normal cases. All cases had four-view mammograms.
The total number of images processed was 3796. The set of normal cases was
roughly matched with respect to acquisition period to the set of abnormal cases.
These normal cases did not include benign abnormalities, and were verified to be
normal by an experienced radiologist. The set of abnormal cases was a random
sample of screen-detected or interval cancers (90%) and of priors of cancer cases
with a visible abnormality (10%).

The two-view classifier was tested using cross validation with 95 percent train-
ing and 5 percent testing. The performance was compared with the single-view
detection results using FROC analysis and we present both an image and a case
based evaluation. In the case based evaluation, a case is by definition regarded as
a true positive (TP) case if in at least one of the two views the lesion is detected
by our CAD scheme.

Both the output of the single-view and the two-view CAD scheme were stan-
dardized using only images from the normal cases. To this end, we computed for
every region the number of normal regions per image with values lower than that
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of the current region. We refer to this as the normality score. In other words,
this is the frequency of occurrence in normal mammograms of regions that are
at least as suspicious as the region at hand.

Our method for finding correspondence between views was not able to link
projections of cancers in two views correctly in all cases. To investigate to what
extent this influenced results we prepared a data set which contained only nor-
mals and cases with correctly linked true positive regions. Also for this data set
the performance of two-view and single-view detection was compared.
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Fig. 2. Image based FROC evaluation of single- and two-view mass detection is shown
in the upper graph. Results in the lower graph were obtained by excluding 18% of the
abnormal cases in which no correct correspondence was obtained.
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4 Results

Using forward feature selection we determined the optimal set of features for
the two-view classifier. The first feature that was selected was the output of
the single-view CAD scheme L2, which is understandable as this represents an
overall measure of suspiciousness based on local region features. The features
that were selected next were all two-view features: the correspondence measure,
a pixel based correlation measure, suspiciousness of the corresponding region,
difference in distance to the nipple, and a histogram correlation measure.

The performance of the two-view classifier and of the single view CAD scheme
is shown in figure 2. On the left the result of the image based evaluation is
presented, and an improvement due to the use of correspondence can be observed.
In the case based evaluation, however, we found no improvement. On the right
in figure 2 we show results for the subset of cases where true positives in the
two projections were correctly linked, and all the normal cases. This was 82%
of the total number of abnormal cases. In 18% no correct link was found, where
it is remarked that in 8% there was no possibility to link a true positive region
because the lesion was visible only in one view.

5 Discussion

We found that by establishing correspondence between regions detected in two
views detection performance can be improved, but that improvements thus far
are only seen in image based evaluation. This is important though, as this means
that results of the CAD system become more consistent: It happens less often
that a lesion is only marked in one view. This may lead to increased confidence
of radiologists in the system.

Only a the few studies have been published thus far on the use of MLO and
CC information to improve detection results. Paquerault et al [8] developed a
two-view matching method resulting in a correspondence score for each possible
mass pair. By combining this score with their single view detection score in a
fusion analysis, based on ranking of the scores in each case, their detection results
improved significantly. Earlier, Good et al. [10] reported a preliminary attempt
of matching computer-detected objects in two views by exhaustive pairing of the
detected objects and feature classification.

The fact that case based results did not improve in our study is not entirely
surprising. In case based results a lesion is counted as detected if it is marked
in one view at least. The main effect of correlation on true positives is that the
weaker findings get boosted if a strong correlation with the other view exists.
This does not affect case sensitivity, as this is determined by the strongest find-
ing. Another effect of two-view classification is that the suspiciousness of false
positives is reduced when no correspondence is found. This effect appears to be
small, and counterbalanced by a small fraction of true positives that become
less suspicious because of the absence of a correct link with the other view. This
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was demonstrated by the fact that if incorrect links are removed also case based
performance increases. From this we may conclude that it will be worthwhile to
further improve the linking scheme.
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Abstract. Standard Mammogram Form (SMF), is a standardized, quantitative 
representation of a breast x-ray that can be easily estimated.  From SMF it is 
possible to compute the volume of non-fat tissue and measures of breast 
density, both of which are of significant interest in determining breast cancer 
risk. Previous theoretical analysis of SMF suggested that a complete and 
substantial set of calibration data (such as mAs and kVp) would be needed to 
generate realistic breast composition measures, which is problematical since 
there have been many interesting trials that have retrospectively collected 
images with no calibration data. In this paper, we show how implementations of 
SMF include self-compensation mechanisms, so that SMF can be applied 
retrospectively to data for which calibration parameters are not (or only 
partially) available. To illustrate our findings, the current implementation of 
SMF (version 2.2 ) was run over 4,028 digitized film-screen mammograms 
taken from 6 sites during the years 1988-2002, both with and without using the 
known calibration data. Results show that the SMF implementation running 
with no calibration data generates results which display a strong relationship 
with those obtained using a complete set of calibration data.  More importantly, 
they bear a close relationship to an expert’s visual assessment of breast 
composition using established techniques.  

1   Background 

The Standard Mammogram Form (SMF) representation of an x-ray mammogram is a 
standardized, quantitative representation of the breast (Highnam & Brady 1999) from 
which the volume and percentage of non-fat tissue can straightforwardly and 
automatically be estimated.  Both the volume and percentage of dense tissue appear to 
be of significance for determining breast cancer risk (Boyd et al 1998, Heine and 
Malhotra 2002, Hufton et al 2004, Pawluczyk et al 2003). Recent work on SMF has 
shown that the estimate of percentage of non-fat tissue (SMF%) correlates strongly 
with an expert’s visual assessment of breast density (Jeffreys et al. 2006), and SMF-
based estimates of both volume (SMF Volume) and density show a small but 
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significant association with age as well as correlation with important known breast 
cancer risk measures such as body mass index (Jeffreys et al. 2003a).  

We have previously reported (Highnam and Brady 1999) that implementations of 
SMF require a characterisation of the imaging system in the form of a set of  
calibration data, including parameters such as mAs, kVp and breast thickness.  
Furthermore, we presented a theoretical (Taylor’s series) analysis that aimed to 
determine the errors in SMF values as a function of errors in the parameters, eg mAs.  
Unfortunately, and particularly when seeking to apply SMF to quantify films 
retrospectively, it is often the case that insufficient calibration data is available. In this 
paper, we present a new analysis of the implementations of SMF which show that 
they are in fact able to overcome both a lack of calibration data, and errors in the 
provided calibration data. The results contained in this paper are from SMF 
implementation 2.2 . 

2   Calibration Parameter Compensation 

The Taylor-series-based theoretical analysis of SMF by Highnam and Brady (1999) 
firmly conclude that both SMF% and SMF Volume are highly susceptible to errors in 
the calibration data.  As a specific example, the analysis implied that a change in 
breast thickness of just 0.1cm changes SMF% by approximately 5%.  However, 
documented evidence about errors in breast thickness readings from most 
mammography machines (Burch and Law 1995) and the lack of recorded breast 
thickness readings for many mammograms, led to an implementation of SMF which 
always estimates breast thickness directly from the image. The upshot is that, though 
apparently subtle, this implementation detail has a profound consequence: errors in 
the calibration data are used in the estimation of breast thickness, so the calibration 
data parameters are not independent, and, as a consequence, the Taylor’s series 
analysis turns out to be massively overly pessimistic. Instead, we realise that the SMF 
process embodies a set of mutual constraints between parameter values, and these 
have the welcome property of automatically correcting for errors in the calibration 
data by the use of “ground truth” from the image.  This constraint propagation process 
we call Calibration Parameter Compensation (CPC). 

Following the approach of Tromans (2006), we illustrate CPC by considering SMF 
as a transfer function from input pixel value to thickness of non-fat tissue (hint). Now 
consider that from the image itself, via the breast thickness estimation method, we 
know that a certain pixel value maps to hint=0. It does not matter what the calibration 
data is, that mapping will remain constant and the breast thickness will be adjusted to 
keep it so. In short, the breast thickness is adjusted to compensate for any and all 
calibration data errors by using image-derived ground truth.   

As an example, refer to Figure 1. The thick black line shows the “true” transfer 
function, that is, using the correct values of 61mAs and H=5.0cm.  It also shows the 
transfer functions for the case where the mAs is deliberately made erroneous by a 
large amount: continuous thin line 40mAs (squares) and 100mAs (triangles) but 
breast thickness estimation (CPC) is not used. Finally, we show as dotted lines the 
resulting transfer functions when CPC is used.  The legend notes the breast 
thicknesses estimated.  Clearly, with CPC the transfer function is evidently far better 
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than without.  Also, despite the entirely wrong mAs, the transfer function is almost 
identical to the true case. We note that the previous theoretical analysis (Highnam & 
Brady 1999) suggested that errors in mAs would translate the hint values up or down, 
likewise with breast thickness H. Given that, it is perhaps no surprise that the transfer 
functions with CPC are almost identical no matter what the mAs is. 
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Fig. 1. SMF with wrong mAs: transfer function with and without CPC and with wrong mAs. 
The “true” values are 29kVp, Mo/Mo filter/target, H=5.0cm and 61mAs, see the  black curve. 
The two continue curves are for wrong mAs (40, 100))  but with using the true H=5.0cm and 
the two dotted curves are for when CPC is used with those wrong mAs. Note the breast 
thicknesses estimated in the legend. 

Consider next the quantitative values for our example pseudo-breast where “Av  
hint” is taken to be the value corresponding to a pixel value of 2500 (note that this 
equates to a film density of 1.5, a reasonable average film density for many automatic 
exposure controls) and should be regarded as being closely related to volume of 
glandular tissue (SMF Volume) and that average divided by H as being closely related 
to breast density (SMF%), see Table 1. 

Table 1 shows that with CPC, the changes in the average hint are much smaller than 
without CPC, and that CPC shows a remarkable ability to compensate for errors 
especially in the pseudo-SMF% values. For example, using an incorrect mAs of 100 
leads to an SMF% of 45%, without CPC, whereas with CPC the result is 23%, just 
2% difference from the “real” value. 

The experiments presented in this section, as well as a host others which assess 
errors in other calibration data, and which are being prepared for publication, strongly 
suggest that CPC is capable of correcting for some of the inevitable errors in the 
calibration data, so long as the ground truth is reliable. However, equally, if the 
calibration data that we estimate is at the extreme end to the actual values then 
although CPC can limit the errors passed through to the breast composition measures, 
they do still exist and can be substantial.  
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Table 1. Wrong mAs and Breast Composition: The mAs used is shown in the left column 
and then we have the breast thickness (H) and breast composition measures, Av hint is closely 
related to SMF Volume and Av hint/H is closely related to  SMF%: 

3   Example Retrospective Study 

The women included in the study are part of the Glasgow Alumni Cohort. The project 
received ethical approval from the Multi-centre Research Ethics Committee 
(Scotland). There were 3556 women in the original Glasgow Alumni Cohort, of 
whom 657 women consented to help in this project and 4028 images were digitized. 
Of the 657 women in the study, some had cancer. The images were taken at six sites 
throughout Scotland over a 15 year period (1988 to 2002). Included women were 
aged between 40 and 76 with the median age of 57.  

Data inspection revealed several mismatches and errors in the data entry. Of the 
4028 images, 3873 had mAs, 3983 had a valid kVp (between 25 and 32), and 3867 
had both mAs and a valid kVp. 3515 of the images had a recorded breast thickness. 
No separate tuning of the SMF algorithm was required or performed for each site. We 
ran the SMF software over all the data using all the calibration data and not using any 
of it and compared the outputs. 

When we ran without any calibration data, the SMF implementation defaults the 
data, in particular it assumes: 

• A Mo/Mo, filter/target combination 
• 28kVp tube voltage 
• A typical film-screen combination 
• An mAs estimated from the projected breast area. 

3.1   Results 

Table 2 shows the consistency of the breast composition measures with and without 
calibration data. The consistency of these results is estimated as the median difference 
between mammograms taken for the same woman on the same day, of the same view 
for left-right comparisons, and the same side for CC/MLO comparisons see Table 3. 
Importantly, overall, there are no significant differences in left/right or CC/MLO 
consistency, depending on whether SMF% or SMF volume are estimated using 
calibration data or without.  

 

Without CPC With CPC  

mAs H Av hint Av 
hint/H 

H Av hint Av 
hint/H 

40 5.0cm 0.2cm 4% 4.2cm 1.13cm 27% 

61 5.0cm 1.25cm 25% 5.0cm 1.25cm 25% 

100 5.0cm 2.25cm 45% 5.95cm 1.35cm 23% 
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Table 2. Consistency with and without calibration data, median values 

 With CD Without CD 
SMF Volume 64.5cm3 57.1cm3 
SMF % 23.9% 26.7% 
Hestimated 4.9cm  3.6cm  

Hrecorded – Hestimated 0.0cm Signed    
0.5cm Abs 

1.1cm Signed     
1.2cm Abs 

Table 3. Median signed differences (inter-quartile range) in SMF results 

 With CD Without CD 
Left-Right Difference   
SMF volume 1 cm3 (-8 to 10) 1 cm3 (-9 to 10) 
SMF% -0.1% (-2.6 to 2.3) -0.1% (-3.4 to 2.7) 
MLO-CC Difference   
SMF volume 5 cm3 (-5 to 17) 4 cm3 (-8 to 15) 
SMF% -0.6% (-3.7 to 2.3) -1.2% (-4.9 to 2.1) 
 
Finally, comparing the results of SMF% without calibration data versus a visual 

assessment using the six category (Boyd et al 1998) and Wolfe (1976) classifications  
revealed a similar correlation to when calibration data is used (Jeffreys et al 2006) , 
see Fig 2 and Fig3. 
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Fig. 2. SCC v SMF% when generated using no calibration data, the median values and inter-
quartile ranges are shown 
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Fig. 3. SCC v SMF% when generated using no calibration data, the median values and inter-
quartile ranges are shown 

4   Discussion 

It is easy to see how the current SMF implementation compensates for the translation 
errors, and is not entirely able to deal with non-linear changes in the transfer function. 
Yet, the results shown in this paper strongly suggest that SMF Volume and SMF% 
(even more so) are robust to errors. We have argued in this paper that previous 
analyses have not matched the implementation, and that, in particular, SMF% is 
robust because for most breasts the Breast Volume (the denominator) is much greater 
than SMF Volume (the numerator, and is not changed by the CPC process) so that 
even quite large changes in the Breast Volume do not change SMF% significantly; 
small dense breasts might not be so robust. 

Despite the encouraging results using GenerateSMF without calibration data, we 
also note that having calibration data generally provides more accurate results.  It is 
important to note that the estimated SMF Volume increases when the calibration data 
is known, whereas SMF% decreases. This cautions against using absolute levels of 
the SMF breast composition measures between databases. For example, if for one 
database we declare SMF% over 37% to be class 4 on the Wolfe scale, we may find 
that the next database has overall increased levels of SMF% due to lack of calibration 
data, and many women have (apparently) class 4 breasts. We will explore this issue, 
which will be critical for application to cross-population epidemiological studies, in 
subsequent papers. 
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On a related point, the database used in this work is from the UK where most 
mammograms were routinely performed (following national screening standards) at 
28kVp with a Mo/Mo filter/target combination. Consequently, the defaults used in 
this work (namely 28kVp, Mo/Mo) are likely to be good estimates. Anecdotal 
evidence suggests that mammograms in the US and elsewhere have a higher degree of 
variability in technique and thus it may be that the current SMF implementation 
would be less good at compensating for errors over a large, US database for which 
almost nothing is known about the imaging of the mammograms.  This is, of course, a 
very pessimistic assumption. Note also that newer systems have a wider variety of 
kVp and target/filter combinations, only some of which are set automatically.  If these 
are not known, then again the defaults might not give satisfactory results.  Of course, 
the defaults can easily be changed.  

5   Conclusions 

Retrospective use of SMF, and use of SMF without calibration data, are possible and 
yield quantitative results which strongly correlate with SCC.  We propose that this is 
because SMF implementations automatically and effectively corrects for errors in the 
calibration data by using image-based ground truth when estimating breast thickness.  
We have proposed an analysis of this automatic Calibration Parameter Compensation 
using transfer functions. 
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Abstract. In order that accurate measurements of volumetric breast density may 
be made, a model of the scattered radiation present within an image is required: 
such a model is presented here.  The model has the advantageous property of 
utilising a model of photon scattering, allowing cross sections to be calculated, 
and thus allowing scatter to be modelled for any object.  An analysis is pre-
sented which uses the model to quantify the effect of varying small angle scat-
tering properties of breast tissues; and the effect of the height within the breast 
at which tissues are present.  Since the details of the anatomical structure of the 
breast under measurement are unknown, their precise effect on scatter cannot be 
calculated, but this model is used here to establish error bounds on the scatter 
estimate, which is a significant contribution to the error in breast density meas-
urement. 

1   Introduction 

The study of the correlation between radiological features of the breast and the likeli-
hood of the breast containing, or subsequently developing, a malignant lesion, is 
termed breast density. In particular, volumetric measurement techniques calculate the 
quantities of fibroglandular and adipose tissue present in the cone between a detector 
pixel, and the x-ray focal spot, using the x-ray attenuation coefficients of these tis-
sues. Highnam and Brady [1] originally pioneered the hint representation which util-
ises this technique to produce a normalised image of anatomical structure. Over recent 
years, a second generation of this model has been developed which harnesses the ex-
tra power made available by modern computers to remove several of the simplifying 
assumptions made in the original model. Features of the enhanced model include: a 
ray tracing architecture, removing the parallel beam approximation; consideration of 
self-filtration within the tube target to model spatial inhomogeneity of the x-ray beam; 
a theoretical scatter model removing the need for interpolation from empirical data; 
and a enhanced detector calibration procedure. 

We present here an overview of the novel scatter model, and an analysis gleaned 
through use of the model of the effect on scatter of two properties of the breast. 

Two scattering phenomena occur within the breast: coherent (Rayleigh) and inco-
herent (Compton).  Coherent scattering is elastic and involves the energy of the x-ray 
photon being completely absorbed and subsequently re-emitted in a random direction 
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by an electron of a single atom.  Incoherent scattering is inelastic, and occurs when a 
x-ray photon collides with one of the outer shell electrons of an atom. The outer shell 
electron is bound to the atom with very little energy, and essentially all of the energy 
lost by the x-ray photon in the collision is transferred as kinetic energy to the electron, 
which as a result is ejected from the atom.  Energy and momentum are conserved in 
the collision, so the resulting energy and direction of the photon depends on the en-
ergy transferred to the electron.  In the mammographic energy range, coherent scatter-
ing is dominant at low photon energies, whilst incoherent phenomena become steadily 
dominant as energy increase.  High energy photons are present in increased numbers 
in the spectra employed in clinical use, and so the majority of scatter is incoherent. 

The variation in electron density across a molecule resulting from the bonding be-
tween constituent atoms provides a significant contribution to the scattering character-
istics of photons undergoing coherent phenomena.  Variations in molecular bonding 
therefore manifest themselves within the scattering characteristics, particularly at 
small angles. Incoherent scatter, resulting from a different physical phenomena, does 
not exhibit such variation, and is largely independent of molecular bonding.  Signifi-
cant differences in small-angle (3° to 10°) coherent scattering patterns measured from 
thin excised breast tissue samples have been found.  A study by Kidane et al [2] cata-
logued scattering signatures for 100 excised tissue samples for which histological 
analysis was available, and found the signature to be useful in differentiating healthy, 
benign and malignant breast tissue.  They reported that shapes of the scatter signa-
tures were “significantly different” between the various tissue types, and hence  
concluded that “if particular values of momentum transfer are monitored, a discrimi-
nating signal could be obtained”.  The effect of varying small angle scattering proper-
ties of the tissues within the breast, on the total scattered radiation present within a 
mammographic image, is therefore considered in this paper. 

The second property under investigation is the effect of the vertical position of tis-
sue structures within the breast in the plane perpendicular to the detector.  The details 
of both properties investigated are unknown for a breast under examination, and so 
the analysis in this paper allows the limitations of the scatter model to be established, 
and thereby the accuracy of subsequent measurements. 

2   Overview of the Scatter Model 

The cross-section describing the coherent scatter incident on a Cartesian area element 
(an image pixel) is given in equation 1.  For reasons of space we consider only coher-
ent scatter, although a similar relation to that in equation 1 exists in the incoherent 
case, and the remaining algorithmic details are equally applicable.   
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The scatter model uses equation 1 to calculate the cross section describing the scat-
ter originating from each infinitesimally small traversal of the primary beam, des-
tined, subject to further interaction, for each of the image receptor pixels in the  
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surrounding area. An attenuation coefficient is calculated for each cross section, and 
hence the scattered spectrum is found. The number of photons undergoing multiple 
scatterings is assumed negligible, and so the scattered spectrum is attenuated by the 
photoelectric absorption along the path between the scatter origination point and im-
age receptor. The scatter component at each image pixel is calculated from the sum of 
incident scattered spectra, arising from the scattering points in the cone of tissue 
above. 

2.1   Small Angle Scattering 

The molecular form factor, mF , encodes not only information about the various ele-
ments present in a material, but also the bonding and the structural arrangement of the 
molecules. Theoretical calculation of the form factor is possible if the electron density 
is known, which is likely in the atomic case, but rare for molecules since the correla-
tion between the electrons of the various atoms must be considered. The molecular 
form factor may be approximated from the form factors of the constituent atoms using 
the independent atom model (IAM). This model assumes a gas for which no bonding 
between atoms exists. The form factors are calculated as a linear combination of the 
constituent element form factors, weighted using abundance by mass. 

Form factors including consideration of bonding are generally gleaned from em-
pirical studies. Unfortunately Kidane et al [2] do not include form factors in their pa-
per.  Poletti et al [3] include measurements for a range of phantom materials, as well 
as healthy adipose and fibroglandular tissue, but for no further histopathological 
cases. Figure 1 shows the variation with scattering angle of the scattering coefficient, 
for form factors approximated using the IAM, and those measured by Poletti et al. 

 

Fig. 1. Angular scatter attenuation coefficients for adipose and fibroglandular tissue 
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Inspection of figure 1 shows significant variation below 30° at the energy of the K  
edge of Molybdenum. These scatter profiles apply at a infinitesimal point, but it is the 
combined effect along the traversal path that is of interest. 

2.2   Variation in Mammographic Scatter 

The difference in angular scatter profile between the IAM and empirical form factors 
in figure 1 is of a similar, if not slightly greater, magnitude to that between the various 
histopathologically discriminated tissue samples presented by Kidane et al [2].  It is 
therefore assumed here, in the absence of other form factor data, that the resulting 
variation within a mammographic image will be similar to that arising from the varia-
tion seen here. 

In order to investigate the effect on a mammographic image, a single primary ray 
was simulated, passing through a 60mm thick, 33% fibroglandular - 67% adipose,  
tissue phantom.  Empirical and IAM approximated form factors, for both adipose and 
fibroglandular tissue were tested; as well as forming the phantom of both a homoge-
nous mix of tissue, and a inhomogenous mix where the entirety of the fibroglandular 
tissue is concentrated at the centre.  Figure 2 shows a graph of the results, where in-
spection reveals a minimal difference between the scatter “kernels”.  The median av-
erage difference in energy imparted to the detector across the spatial area considered, 
between the simulations using the empirical and IAM form factors is 6.6% and 7.1%, 
for the homogeneous and inhomogeneous cases respectively.  Similarly, the average 
difference between the homogeneous and inhomogeneous cases is 5.1% and 1.2%, for 
the empirical and IAM form factors respectively. 
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Fig. 2. The scatter profile arising from the complete traversal of a 60mm phantom 
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2.3   Experimental Validation of the Scatter Model 

Experimental validation is performed through the comparison of simulated images 
calculated using the complete model of image acquisition, with those acquired using a 
GE Senographe 2000D in current clinical use.  The model is configured to match the 
design of the 2000D, and the x-ray tube and image receptor are calibrated to match the 
specific machine according to the procedure described in [4]. Polymethyl methacrylate 
(PMMA) sheets of varying thickness are used as a phantom. 

 

Fig. 3. The experimental setup: the apertures, phantom, and phantom side shielding (left), 
measurement of the primary beam (centre), measurement of scatter characteristics (right) 

Although it is only the scatter component under consideration, the whole model is 
required since it is not possible to “decouple” this single component for measurement.  
A further complication arises from the impracticality of measuring the scatter “ker-
nel” arising from the traversal of a single primary ray since a conventional x-ray tube 
is unable to deliver a sufficiently high exposure, mainly due to heat dissipation con-
straints, so that the resulting scattered energy is of a sufficient magnitude to ade-
quately expose a mammographic image receptor. An indirect measurement technique, 
known as the beam stop method is therefore employed. A series of lead apertures of 
varying diameters are placed on top of the phantom, which itself sits on the breast ta-
ble. The sides of the phantom are shielded using lead to prevent any radiation reach-
ing the image receptor which has not passed through the aperture. The diameter of the 
aperture governs the volume of scattering material contributing to the energy incident 
upon the small group of detector pixels at the centre of the aperture shadow. The scat-
tering characteristics of the material dictate the magnitude of the energy contributed 
by each infinitesimally small scattering point, and thus measuring the pixel intensities 
at the centre of the shadow provides an indirect measure of the characteristics, to-
gether with the attenuation between the scatter origination point and the image recep-
tor. The median pixel intensity for a circle of pixels covering an area of approximately 
1mm is used as the aforementioned measurement in order to provide a degree of ro-
bustness to noise. The primary component is measured through the use of a magnifi-
cation tower which holds the phantom and the smallest diameter aperture as close to 
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the tube window as possible (around 450mm above the breast table on the 2000D).  
The pixel intensity is measured in an identical fashion, through averaging across a 
1mm diameter circular area in the centre of the aperture shadow.  Due to the magnify-
ing effect of the large distance between the scatter originator and the image receptor 
only photons scattered over a very limited range of angles will be present, and so the 
measurement will consist almost solely of the primary component.   

Figure 1 shows a clear difference between the angular scatter characteristics calcu-
lated using the form factors approximated using the IAM, and those empirically 
measured by Poletti et al [3] (a difference that is similar to that seen in the breast tis-
sues that are also included on the chart).  Simulations using both sets of form factors 
are therefore investigated and compared to the experimental measurements. 

Figure 4 illustrates the relationship between the energy imparted to the image re-
ceptor, and the aperture diameter for a range of phantom thicknesses.  The exposure 
values are selected so as to use points on the detector transfer characteristics which 
are as similar as possible in order that the effect of any error arising in the calibration 
of this function is minimised. 

1200

1400

1600

1800

2000

2200

2400

2600

0 5 10 15 20 25 30 35 40

Aperture Diameter (mm)

E
n

er
g

y 
Im

p
ar

te
d

Measured 45mm PMMA 100mAs Sim IAM 45mm PMMA 100mAs Sim Poletti 45mm PMMA 100mAs
Measured 30mm PMMA 32mAs Sim IAM 30mm PMMA 32mAs Sim Poletti 30mm PMMA 32mAs
Measured 60mm PMMA 320mAs Sim IAM 60mm PMMA 320mAs SIM Poletti 60mm PMMA 320mAs

 

Fig. 4. The variation in energy imparted with aperture diameter for a range of phantom thick-
nesses, exposed at 28kVp, Mo-Mo 

Table 1 presents the numerical results gleaned from the 45mm phantom.  The ‘% 
Uncertainty’ column holds the relative magnitude, expressed as a percentage of the 
energy experimentally measured, of twice the standard deviation of the pixel intensi-
ties within the 1mm circular area at the centre of the aperture shadow (that from 
which measurements are taken).  This value thereby quantifies the stochastic noise 
present in the measurement, arising from such phenomena as quantum effects. The ‘% 
Error IAM’ and ‘% Error Poletti’ columns show the error, expressed as a percentage, 
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Table 1. The experimental and simulated results of the scatter model validation using a 45mm 
phantom, exposed at 28kVp, Mo-Mo, 100mAs 

Aperture 
Diameter 

% 
Uncertainty 

% Error IAM % Error 
Poletti 

% Difference 
IAM-Poletti 

Primary 2.18 11.90 14.95 3.46 
2 1.77 9.73 12.76 3.35 
5 1.87 9.49 11.86 2.62 

10 1.74 9.65 10.45 0.89 
15 1.37 9.52 9.92 0.45 
20 1.66 10.22 10.54 0.36 
25 1.51 10.75 10.85 0.12 
30 1.89 11.74 11.74 0.00 
35 1.67 12.51 12.46 -0.05 
40 1.54 13.40 13.26 -0.16 

 
between the experimental measurements on the 2000D, and the simulated results us-
ing the IAM approximated, and empirically measured form factors respectively. The 
‘% Difference IAM-Poletti’ column shows the difference, between the simulated re-
sults using the two sets of form factors, expressed as a percentage of the IAM result. 

Inspection of Figure 4 and Table 1 suggests a good agreement between the simu-
lated and measured imparted energies. The error in the primary beam measurement 
suggests inaccuracies elsewhere in the model, which inevitably have a consequential 
effect on the scatter results.  The variation in error with aperture diameter remains ap-
proximately constant, particularly given the magnitude of the uncertainty due to noise.  
In order that the results may be seen excluding the effect of the error in the primary 
beam, Figure 5 includes a graph of the results for which the energy of the primary 
beam has been subtracted from all measurements. 

Inspection of Figure 5 suggests a good degree of correspondence between the 
measured and simulated results, particularly at small aperture diameters. Small diame-
ters include only the small angle scatter components, which are those that are most 
likely to pass through a anti-scatter device.  It would appear that a slight advantage is 
gleaned for aperture diameters in this region from the use of the empirical form fac-
tors; however the advantage is almost negligible given the level of experimental un-
certainty. The error in the primary component is likely to be due to the modelled tube 
spectra being softer than that in reality, resulting in a imparted energy that is too low 
(the total beam energy is calibrated).  A lower beam quality will also have an effect at 
high aperture diameters where the distance over which scattered radiation is attenu-
ated increases.  In order to verify this hypothesis the primary beam was measured for 
constant exposure conditions, for 30 and 45mm phantoms.  The ratio of the energy 
imparted through 45mm to that at 30mm in the experimental case is 0.319, compared 
to 0.307 in the simulation. Calculating the ratio removes the effect of the transfer 
characteristics of the image receptor, and so the magnitude of the error in attenuation 
is seen in the results. Whilst a number of factors are likely to contribute to this error, 
for example, material impurities, noise, and errors in the photoelectric absorption 
cross sections; an error in beam quality is likely to contribute a major component. 
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Fig. 5. The relationship between aperture diameter and the difference between energy imparted 
and the primary beam energy, using a 45mm phantom, exposed at 28kVp, Mo-Mo, 100mAs 

3   Conclusion 

The variation arising from both the vertical distribution in tissue heights, and the 
small angle scattering arising from molecular structure, has been seen to be so small 
as to have negligible effect. It can be concluded therefore that a breast model ap-
proximating scattering properties using the independent atom model, and assuming a 
homogenous mix of tissues, of proportions that vary spatial across the image, is suffi-
cient for approximating scattered radiation when measuring breast density.  

The minimal effect of small angle scattering presents a demanding challenge for 
those wishing to exploit such properties for use in in-vivo x-ray biopsy techniques.  
Were such techniques available they would be particular beneficial in quantifying 
stromal composition, a factor that has been suggested to be highly influential in de-
termining the biological basis for the radiographic variations observed. 
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Abstract. In the Netherlands a number of (screening) trials with digital mam-
mography equipment have been started since 1999. In this paper results from 
the weekly QC procedure are given. It seems that the homogeneity test as de-
scribed in the addendum to the European protocol is able to detect detector 
problems and flat field calibration problems. However, visual inspection re-
mains necessary. For the CR system in the trials the homogeneity test did not 
find many problems. Either the homogeneity test is not effective and other tests 
might be more appropriate or this CR system does not have relevant image 
quality variations and therefore might not require weekly quality control. 

1   Introduction 

In the Netherlands a number of (screening) trials with digital mammography have 
been started. The first trial began in 1999, in which digital mammography was tested 
in a clinical environment. For this purpose a GE Senographe 2000D was installed in 
the Radboud University Nijmegen Medical Centre. In 2002 the second trial started at 
a static screening site in Utrecht with a Lorad Selenia system. In this trial digital 
mammography was evaluated in a screening environment. In 2004 two more trials 
with mobile digital screening units were started. In these trials a Fuji FCR Profect and 
an Agfa DM 1000 system were installed in the screening units.  

2   Methods and Materials 

In the trials technical quality control is performed on all mammography units accord-
ing to the European Guidelines for screening mammography [1]. Part of this quality 
control is a (weekly) evaluation of the stability of the mammography unit and homo-
geneity of the digital images [2].  

For this weekly evaluation the radiographers image a homogeneous block of 
PMMA, covering the whole detector, under clinical conditions (fully automatic mode, 
compression paddle present). The resulting unprocessed image is sent to the physics 
section of the National Reference Centre in Nijmegen. The image is evaluated using a 
self-made software program, which is made available via internet (www.euref.org).  

In this program an ROI is chosen (for our purpose: 0.5 cm by 0.5 cm) in the upper 
right corner of the image. This ROI is moved in steps of half ROI size over the whole 
image. For each ROI the average pixel value and standard deviation are determined 
and Signal-to-Noise Ratio (SNR) is calculated as pixel value over standard deviation. 
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The pixel value and SNR in each ROI are plotted in surface plots as function of posi-
tion on the detector. Besides this the program checks for pixel values which deviate 
significantly (>30%) from the mean value in each ROI. These pixels are suspected to 
be uncorrected bad pixels. The images are also evaluated visually for artefacts smaller 
than the ROI size using a DICOM viewer with small window width. In this paper this 
whole procedure is referred to as a homogeneity test.  

The homogeneity test is performed weekly. However, for the Lorad and Agfa sys-
tems the radiographers have to perform a flat field calibration weekly. In this calibration 
a number of images of a homogeneous PMMA block are made in order to determine the 
gain and offset for each detector element. For these systems the homogeneity test is 
performed twice a week, just before and right after the flat field calibration.  

3   Results 

3.1   Typical ‘Normal’ Output of the Homogeneity Test 

For DR systems, the surface plot, in which pixel value is plotted as function of posi-
tion on the detector, is expected to be flat due to the flat field calibration, which is 
performed. For CR systems however, pixel values are expected to decrease towards 
nipple and lateral sides due to the heel and geometric effects. For both DR and CR 
systems it is expected that SNR will decrease towards nipple and lateral sides due to 
the same effects. In figure 1 an example of the output of the homogeneity test soft-
ware is given for a DR system.  
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Fig. 1. Output of the homogeneity test on a DR system, a: pixel value plotted as function of 
psition on the detector, b: SNR plotted as function of position on the detector 

3.2   Problems with Homogeneity 

In the digital mammography trials a number of homogeneity problems have been 
observed. These problems can be divided into two subclasses: 

1. Image receptor problems  
2. Calibration procedure problems 
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Some examples of homogeneity problems are discussed in the paragraphs below. 
The homogeneity test did not find many problems with the CR system in the trials. 
Only some minor ghosting problems have been observed. 

3.2.1   Image Receptor Problems 
3.2.1.1   Sensitivity Change of the Image Receptor. In the long-term use of some DR 
systems and imaging plates of a CR system, it is observed that the sensitivity of the 
image receptor changes spatially. On the images this change in sensitivity presents 
itself as a ghost image, which increases over time. This can be explained as difference 
in ageing of the image receptor due to intensity differences of the incident X-rays. At 
chest wall side the sensitivity of the image receptor is higher because this part of the 
image receptor receives less radiation over a great number of exposures. Therefore on 
homogeneity images a faint breast-shaped structure is visible.  

3.2.1.2   Lag. Several papers report the visibility of previously taken images in subse-
quent images [3] [4]. These images might be caused by either some residue of a  
previous image (lag) or by a change of sensitivity of the detector due to previous 
exposures. Both have been observed on homogeneity images. In most cases this effect 
is very small and was not visible on clinical images. However, at one site the manu-
facturer tried to speed up the readout of the detector a number of times because of 
complaints of limited patient throughput. As a result previously taken images were 
clearly visible both on homogeneity and clinical images. Up to four previous images 
could be identified on the homogeneity images, see figure 2. On the clinical images 
one previous image was clearly visible.  

 

Fig. 2. Four previously taken images visible on a homogeneity image after speeding up the 
readout of the detector 

3.2.1.3 Crystallization of the Detector Material. Crystallization of amorphous sele-
nium occurs at relatively low temperatures and depends on the amount of stabilizers 
added to the selenium, temperature and other ambient conditions [5]. In both amor-
phous selenium detectors in the trials crystallization occurred two times (so the crys-
tallization problem has been observed four times in total). Due to the position of  
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readout electronics the detector temperature is expected to be highest at lateral sides, 
therefore crystallization was observed first at the far lateral sides of the detector and is 
seen to expand towards the middle of the detector in all four cases, see figure 3. How-
ever, it is known from other sites that crystallization might also start somewhere in the 
middle of the detector. Due to the spreading of signal in the selenium crystals the 
standard deviation of the signal will decrease leading to an artificial increase in SNR 
in the homogeneity test, see figure 4. Due to the irreversible nature of this problem, 
the detectors were replaced.  

Crystallization can be detected with the homogeneity test when the area of crystal-
lization is very small (under two millimeters length) and it can be seen very clearly 
that the problem increases over time, see figure 3 and 4. Using visual inspection only, 
it is very difficult to identify the crystallization problem at this early stage.  

app . 1 

 

Fig. 3. Crystallization of selenium at lateral side of the detector. The size of the area shown is 
approximately 3 by 4 cm. a: Image from November, b: Image from January. 
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Fig. 4. On homogeneity graphs an increase in SNR can be observed in the area where crystalli-
zation has occurred, a: The area of crystallization is approximately two millimeter wide, b: The 
area of crystallization is over one centimeter wide 
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3.2.1.4   Defective Detector Element Calibration (Bad Pixel Calibration). On some 
DR systems the defective detector element (del) calibration is performed during ser-
vice. Dels that become defective between two calibrations are detected by the homo-
geneity test. In all cases only a few bad pixels were found. 
 
3.2.1.5   Blooming Artefact. According to a service engineer this artefact was caused 
by a detector element, which could not be read out. Due to the build up of charge at 
the position of the dead detector element, charge flowed to neighbouring dels causing 
a circle-like artefact on a homogeneity image. Due to the size of the artefact (a few 
pixels in diameter) this artefact proved very hard to detect with the software. How-
ever, this artefact is clearly seen by visual inspection. This is an example of a problem 
that is not observed with the automated homogeneity test, see figure 5. 

 

Fig. 5. Blooming artifact on a homogeneity image 

3.2.2   Calibration Procedure Problems 
For two systems in the digital mammography trials the flat field procedure has to be 
performed weekly by the radiographers. It has been observed that a number of cali-
bration procedure problems occurred. These problems can be divided in problems in 
the calibration procedure itself and calibration in the presence of a lag image. 

3.2.2.1   Flat Field Calibration Problems. During calibration the radiographers have 
to image a homogeneous block of PMMA covering the whole detector multiple times. 
On three occasions it was noticed that the PMMA block did not always cover the 
detector area fully during calibration. As a consequence on all images after calibration 
an area with lower pixel values at lateral side was visible (see figure 6). 

In one case the calibration procedure was aborted by the radiographers after imag-
ing the block of PMMA only once. It was noticed that the flat field calibration was 
performed imperfectly in all subsequent images. The old calibration file was appar-
ently already deleted and the new calibration file was either incorrect or flat fielding 
was not performed at all.  
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Fig. 6. During (part of the) flat fielding procedure the detector was not covered completely 
causing an area with deviating pixel values  

3.2.2.2   Presence Lag Image During Calibration. Figure 7a shows the presence of 
lag in the detector on a homogeneity image just before calibration. The flat fielding 
masks the lag. Therefore on the homogeneity image made right after calibration the 
image appears homogeneous (Figure 7b). However, because the lag disappears over 
time, an inversion of the lag is visible on homogeneity images, which have been made 
some time after calibration (Figure 7c). 
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Fig. 7. a: A lag was present just before calibration. b: After flat fielding the lag is masked and 
the pixel value is equal over the whole image, c: Some time after the calibration the inversed 
lag from figure a. can be seen on the image. 

In one case the PMMA did not cover the detector fully when the homogeneity im-
age before calibration was made. In this case the resulting lag image was present 
during calibration and after calibration (and disappearance of the lag image) an in-
verted lag image was observed. 

4   Discussion and Conclusions 

The homogeneity test seems useful in determining problems at DR systems. However 
it is noticed that small artefacts are not detected and therefore visual inspection re-
mains necessary.  
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Visual inspection however is time-consuming and knowledge about possibly oc-
curring problems and their appearance on a homogeneity image is required. Therefore 
the homogeneity test needs to be improved in a future version of the European guide-
lines and a public database has to be set up with examples of known problems. 

The homogeneity test did not find many problems with the CR system in the trials. 
Only some minor ghosting problems have been observed. However a weekly test for 
this ageing problem does not seems very useful. The fact that no major problems have 
been observed might have two causes: 

1. The CR system in the trials does not have relevant image quality variations and 
weekly QC might be overtesting.  

2. Readout problems might not be detected by the present homogeneity test 
(small effects might be obscured by the presence of the geometric and heel 
effect in the images) and other tests might be more relevant.  

In our future work we might perform weekly QC with a phantom with diagonal lines 
to test the applicability for QC measurements on CR systems. 
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Abstract. European Guidelines for quality control in digital mammography 
specify minimum and achievable standards of image quality in terms of thresh-
old contrast, based on readings of images of the CDMAM test object by human 
observers. However this is time-consuming and has large inter-observer error. 
To overcome these problems a software program (CDCOM) is available to 
automatically read CDMAM images and can be used to predict the threshold 
contrast for a typical observer. The results of threshold contrast determination 
by a panel of 3 human observers was compared in this study to predicted human 
readings for different types of digital mammography system to determine 
whether this provides a viable method of automated quality control and com-
parison with existing European Guidelines. 

1   Background 

European Guidelines for the quality control of mammography provide quality control 
procedures and minimum standards of performance for digital mammography [1]. The 
image quality standard is based on contrast-detail measurements using the CDMAM 
phantom (version 3.4, UMC St. Radboud, Nijmegen University, Netherlands) [2]. The 
minimum standards were chosen to ensure that digital systems are as good or better 
than current film screen systems [3]. Such contrast detail measurements rely on a large 
number of observer readings and suffer from significant inter-observer error, which 
undermines the reliability and confidence in the measurements. The use of human ob-
servers is also very time consuming. A possible solution to these problems is the use of 
the CDCOM program, which automatically reads CDMAM images [4,5,6,7]. It has 
been noted that the threshold contrasts determined using this program are lower than 
those found by human observers [4,5]. However recently the relationship between 
automatic and human observer scoring has been explored and a means of predicting 
typical human threshold contrast described [8]. This method is used here along with a 
panel of human observers to assess threshold contrasts for a variety of digital mam-
mography systems and to compare these with the standards in European Guidelines. 

2   Method 

The CDMAM phantom was radiographed on each of the digital systems shown in  
Table 1. (One of the systems is identified only as Test CR  as  the manufacturer has 
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suggested that the system may have been faulty and its performance not representa-
tive of normal operation.) The phantom was positioned with a 20 mm thickness of 
PMMA blocks above and below. This combination has a total attenuation approxi-
mately equivalent to 50 mm of PMMA. This has been shown to be equivalent to 
breasts of typical composition with a compressed thickness of 60 mm [9]. Expanded 
polystyrene spacers were added at the edges of the phantom to create a total thickness 
of 60 mm and a standard compression of 100N applied. This arrangement was imaged 
using the factors automatically selected by the X-ray set and shown in Table 1. Where 
possible the effect of dose on threshold contrasts was assessed using further sets of 8 
CDMAM images obtained on each system by manually selecting mAs values that 
were approximate multiples of 2 higher or lower than selected using the AEC control. 
The tube voltage and target/filter combinations were kept the same. (It was not possi-
ble to adjust the dose for the Sectra system across a wide range.) The unprocessed 
CDMAM images were transferred to disk for subsequent analysis at our laboratory. 

Table 1. Digital mammography systems tested 

Imaging system (pixel size) X-ray set kV target filter 

Fischer Senoscan n/a 29kV W Al 

Sectra Microdose n/a 32kV W Al 

Siemens Novation n/a 28kV W Rh 

GE Senographe DS n/a 29kV Rh Rh 

Fuji Profect (50 μm) GE Senographe DMR+ 26kV Mo Rh 

Kodak Directview CR 850 (50μm) GE Senographe DMR+ 29kV Mo Rh 

Test CR GE Senographe DMR+ 27kV Mo Rh 

For each exposure the factors used when imaging the CDMAM phantom with the 
additional PMMA were recorded. The x-ray setting output, half-value layer (in mm of 
aluminium) and the distance from the focus to table top were measured allowing the 
entrance surface air kerma at the top of a 50mm thickness of PMMA to be calculated. 
The method described by Dance et al. was used to calculate the mean glandular dose 
(MGD) to typical breasts with a 60 mm compressed breast thickness and an attenua-
tion equivalent to a 50 mm thickness of PMMA [9]. The average of these MGD val-
ues for each set of similar CDMAM images was then calculated. The maximum  
acceptable MGD in the European Guidelines is 3 mGy at this thickness. 

The CDCOM outputs for the 8 CDMAM images were combined to determine the 
proportion of correctly identified discs for each detail diameter and thickness. A data 
smoothing algorithm was applied and a psychometric curve fitted for each detail di-
ameter as described previously [8]. 

   The threshold gold thickness was determined for each diameter as the point on 
the fitted curve with a probability of detection of 0.625. This probability is used be-
cause it lies midway between random guessing at 0.25 and complete accuracy at 1.0. 
These threshold gold thicknesses were converted to threshold contrast for a nominal 
28 kV Mo/Mo combination as described in European Guidelines. A contrast detail 
curve was then fitted to improve the reproducibility of the measurements. Predicted 
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threshold contrasts for a typical human observer were obtained by multiplying those 
determined automatically by factors of 1.50 and 1.82 for the 0.1 and 0.25 mm detail 
sizes, respectively. These factors were determined from the linear relationship found 
previously between human and automatic threshold contrasts [8]. The results focus on 
these two detail sizes as the threshold contrast requirements for the smallest details 
are the most difficult to meet and necessitate the highest doses. 

The human readings were obtained by displaying the CDMAM images using a di-
agnostic quality 3 Mega Pixel DICOM calibrated display. The contrast and brightness 
of each image was adjusted to optimally display the details in the test object, before 
scoring. The observer could use as much electronic zoom as needed and background 
illumination was kept to a minimum. The manual for the CDMAM phantom explains 
how to apply a nearest neighbour correction to the scores for each reading of a 
CDMAM image. These rules were applied to each of the images read by a human ob-
server. After applying these rules the smallest gold thickness for a correctly indicated 
disc was noted for each diameter. For each set of CDMAM images three observers 
each scored 4 images the average threshold gold thickness determined for each di-
ameter. The average threshold contrast for each detail diameter for each set of images 
was fitted with a curve to improve the reproducibility. 

The MGDs corresponding to the minimum and achievable threshold contrast limits 
for 0.1 and 0.25 mm detail sizes were determined for each system by fitting Eq. 1 to 
the automated and human threshold contrast data as a function of dose. 

C = kD-n (1) 

where C is the threshold contrast, D is the MGD for the equivalent breast and k and n 
are coefficients to be fitted. It is expected that n will have a value of approximately 
0.5 due to quantum noise. The presence of other noise sources such as electronic and 
structure noise may modify this value. Equation 1 was fitted independently to the 
threshold contrast determined by the human and automated method. Where there were 
insufficient data points to determine n this was set to 0.5 and only k was fitted (i.e. 
Fischer and Sectra systems). 

3   Results 

The predicted and measured human threshold contrasts for 0.1 and 0.25 mm details 
are shown for different systems in Figs 1 to 5. (The human threshold contrasts were 
not completed at the time of writing for the GE Senographe DS system, and are there-
fore missing from Fig 5. In each case the threshold contrast declined as expected with 
increasing dose. The measured and predicted threshold contrasts generally agree 
within experimental error although the curves do not match perfectly. The errors in 
the predicted threshold contrasts were smaller at 0.25 mm than 0.1mm [8]. It is 
thought that this is caused by the absence of discs with sufficient gold thickness at the 
smallest detail sizes. It is likely that the reproducibility could be improved by a 
change in the test object design. The doses corresponding to the minimum acceptable 
and achievable threshold contrast in European Guidance are shown for these detail 
sizes in Tables 2 and 3.  
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Fig. 1. Comparison of measured and predicted threshold contrasts at 0.1 and 0.25 mm details 
sizes against the minimum acceptable and achievable limits in the European Guidelines for a 
range of doses with a Siemens Novation. Error bars indicate 1 SE. 
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Fig. 2. Comparison of measured and predicted threshold contrasts at 0.1 and 0.25 mm details 
sizes against the minimum acceptable and achievable limits in the European Guidelines for a 
range of doses with the Test CR system. Error bars indicate 1 SE. 

Table 2. MGD to equivalent 60mm thick breast required to reach the minimum threshold con-
trasts for 0.1mm and 0.25 mm detail sizes in the European Protocol. (Errors are 1 sem) 

 MGD ( mGy) for 0.1 mm MGD ( mGy) for 0.25 mm 
System Human Predicted Human Predicted 
Fischer Seno. 0.55 ± 0.08 0.42 ± 0.06 0.48 ± 0.07 0.53 ± 0.08 
Sectra MDM 0.60 ± 0.09 0.82 ± 0.12 0.67 ± 0.10 0.46 ± 0.07 
Siemens Novation 0.63 ± 0.04 0.61 ± 0.17 0.52 ± 0.04 0.63 ± 0.13 
GE DS  0.82 ± .07  0.83 ± .08 
Fuji Profect CR 1.67 ± 0.12 1.78 ± 0.16 1.45 ± 0.02 1.35 ± 0.07 
Kodak CR 3.46 ± 0.03 2.49 ± 0.13  1.49 ± 0.12 1.33 ± 0.12 
Test CR 4.52 ± 0.35 4.17 ± 0.14 2.33 ± 0.07 2.12 ± 0.05 
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Fig. 3. Comparison of measured and predicted threshold contrasts at 0.1 and 0.25 mm details 
sizes against the minimum acceptable and achievable limits in the European Guidelines for a 
range of doses with the Fuji Profect CR system. Error bars indicate 1 SE. 
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Fig. 4. Comparison of measured and predicted threshold contrasts at 0.1 and 0.25 mm details 
sizes against the minimum acceptable and achievable limits in the European Guidelines for a 
range of doses with the Kodak Directview CR system. Error bars indicate 1 SE. 

Table 3. MGD to equivalent 60mm thick breast required to reach the achievable threshold con-
trasts for 0.1mm and 0.25 mm detail sizes in the European Protocol. (Errors are 1 sem) 

 MGD ( mGy) for 0.1 mm MGD ( mGy) for 0.25 mm 
System Human Predicted Human Predicted 
Fischer Seno. 1.16 ± 0.17 0.90 ± 0.13 0.98 ± 0.15 1.09 ± 0.16 
Sectra MDM 1.27 ± 0.19 1.74 ± 0.26 1.37 ± 0.21 0.95 ± 0.14 
Siemens Novation 1.56 ± .03 1.21 ± .07 1.14 ± .05 1.27 ± .13 
GE DS  1.57 ± .07  1.87 ± .07 
Fuji Profect CR 4.26 ± 0.66 3.29 ± 0.44 3.52 ± 0.03 2.65 ± 0.03 
Kodak CR 7.74 ± 0.71 5.56 ± 0.26 6.28 ± 0.25 5.60 ± 0.17 
Test CR 11.5 ± 2.8 9.9 ± 1.1 5.96 ± .53 5.63 ± 0.26 
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Fig. 5. Predicted threshold contrasts at 0.1 and 0.25 mm details sizes against the minimum ac-
ceptable and achievable limits in the European Guidelines for a range of doses with the GE 
Senographe DS system. Error bars indicate 1 SE. 

4   Discussion 

The use of predicted human threshold contrasts provided results for the digital systems 
across a range of doses that were generally within experimental error of those found us-
ing our panel of human observers. These data also demonstrated the large difference in 
performance between DR systems and CR systems. The two scanning systems, Fischer 
and Sectra, had as would be expected relatively low doses at the minimum and achiev-
able levels. The two flat panel DR systems, Siemens Novation and GE Senographe DS, 
required similar or slightly higher doses. All four DR systems reached the achievable 
standard for image quality for a relatively low doses of about 1.5 mGy or less, well 
within the upper dose limit of 3 mGy set for this thickness in the European Guidelines. 
(It should be noted that, currently the Sectra MDM systems is limited to doses of about 
0.7 to 1.0 mGy which are not sufficient to reach the achievable level.) Only one of the 
CR systems was able to meet the minimum standard within the dose limit, and this sys-
tem did not meet the achievable limit within this dose constraint. Several manufacturers 
are introducing improved CR systems for digital mammography, which have not been 
reported on here, and these may meet the minimum standards. However, from the evi-
dence currently available even the best CR systems seem to need much higher doses for 
the same image quality as the DR systems studied here. 
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Abstract. Optimization of acquisition technique factors (target, filter, and kVp) 
in digital mammography is required for maximization of the image SNR, while 
minimizing patient dose.  The goal of this study is to compare, for each of the 
major commercially available FFDM systems, the effect of various technique 
factors on image SNR and radiation dose for a range of breast thickness and tis-
sue types. This phantom study follows the approach of an earlier investigation 
[1], and includes measurements on recent versions of two of the FFDM systems 
discussed in that paper, as well as on three FFDM systems not available at that 
time.  The five commercial FFDM systems tested are located at five different 
university test sites and include all FFDM systems that are currently FDA  
approved. Performance was assessed using 9 different phantom types (three 
compressed thicknesses, and three tissue composition types) using all available 
x-ray target and filter combinations. The figure of merit (FOM) used to com-
pare technique factors is the ratio of the square of the image SNR to the mean 
glandular dose (MGD). This FOM has been used previously by others in mam-
mographic beam optimization studies [2],[3]. For selected examples, data are 
presented describing the change in SNR, MGD, and FOM with changing kVp, 
as well as with changing target and/or filter type. For all nine breast types the 
target/filter/kVp combination resulting in the highest FOM value is presented. 
Our results suggest that in general, technique combinations resulting in higher 
energy beams resulted in higher FOM values, for nearly all breast types. 

1   Introduction 

The criteria for optimization of tube voltage and external filtration in full field digital 
mammography (FFDM) differ from those used in screen-film mammography. This is 
in part because the separation of the processes of acquisition and display in the former 
permits the contrast of individual structures to be adjusted when the image is viewed. 
Thus, rather than maximization of contrast within the constraint of acceptable film 
darkening and patient dose, beam optimization in digital mammography requires 
maximization of the image SNR, constrained by acceptable patient dose [4]. In recent 
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years, four FFDM systems have gained FDA approval, with others soon to follow. 
Most of those systems are equipped with mechanisms for automatic selection of at 
least some technique factors including mAs and in some cases kVp, filtration, and 
target material. In some units, different acquisition modes are available in which dif-
ferent look-up-tables are utilized to emphasize either subject contrast (with lower kVp 
and higher mAs) or low dose (with higher kVp and lower mAs). It is the goal of this 
study to examine, for three simulated breast compositions, and three simulated breast 
thicknesses, the effect on the image SNR and the mean glandular dose (MGD) of 
varying kVp, and target and filter type. 

2   Methods 

Five different FFDM sys-
tems, the GE Healthcare 
Senographe 2000D, the 
Siemens Mammomat Nova-
tion, the Lorad Selenia, the 
Fischer/Hologic Senoscan, 
and Fuji’s mammographic 
storage phosphor system, 
were used to image a com-
mon set of phantoms made 
of blocks of breast equiva-
lent material (CIRS, Inc., 
Norfolk, VA). Nine different phantoms 
were assembled and imaged, simulat-
ing breasts of three different thick-
nesses (3 cm, 5 cm, and 7 cm), and 
three different attenuation equivalent 
adipose/fibroglandular mass ratios 
(30/70, 50/50, and 70/30). Two 5 mm 
thick blocks were placed on the top 
and bottom of each stack, to simulate 
skin (Fig. 1). The skin blocks were 
100% adipose equivalent material. 

In each phantom stack assembled, the 
centrally located block in the stack (the 
signal block) contained two stepwedges, 
one each of calcification equivalent and 
mass equivalent material. The mass 
equivalent stepwedge has the same x-ray 
attenuation as 100% glandular equiva-
lent material, and the microcalcification 
equivalent step wedge is composed of 
calcium carbonate (Fig. 2). The thick-
ness of all signal blocks is 2 cm.  

Fig. 2. Image of the phantom showing 
calcification (left) and mass equivalent 
step wedges.  

MASS STEPWEDGE
SKINS

Fig. 1. Side view of a 5 cm phantom with a 2 cm signal 
block at the center, two 1 cm blank blocks and two 0.5 
cm skins on the surface
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Images were obtained in manual 
mode with the phantoms positioned 
at the chest wall edge of the receptor, 
centered left to right. Exposure time 
was selected to give approximately 
the same average pixel value in the 
phantom background area for each 
phantom/technique combination. For 
each combination, two images were 
obtained with identical exposure 
times for the purpose of image sub-
traction, taking care not to move the 
phantom between the two exposures. At each site, entrance exposures (mR/mAs) and 
half value layers (HVLs) were measured for each target/filter/kVp combination used. 
Table 1 lists the target and filter combinations and range of kVps used for each FFDM 
system tested in the study. Signal was defined as the difference between the average 
pixel values in a region of interest (ROI) centered on an individual step, and an equal 
sized ROI located immediately adjacent to the step, but containing only background.  

To quantify the image noise, the two images of a given phantom, obtained at a com-
mon technique, were subtracted. Image subtraction was performed to remove fixed 
pattern noise associated with phantom defects, detector nonuniformity, and heel effect. 
Noise in a single image was defined as the standard deviation of the pixel values in an 
ROI within the difference image, divided by the square root of two. 

The MGD for each phantom was calculated using its known thickness, composition 
and the measured HVL and mR/mAs values from each FFDM system. For Mo/Mo and 
Mo/Rh spectra, the parameterized dose tables of Sobol and Wu were utilized to obtain 
the glandular dose per unit exposure [6]. For the W/Al spectra, normalized (to entrance 
exposure) MGD values were obtained from the data of Stanton et al. [7]. Their data 
were extrapolated to 3 cm breast thickness, and interpolation between their published 
HVL curves was used to obtain correction factors for the particular glandular volume 
fractions (0.22, 0.40, and 0.61, corresponding to glandular mass fractions of 0.30, 0.50, 
and 0.70, respectively) used in our study. For the W/Rh spectra, the calculations of 
Boone were utilized, interpolating between his published HVL and adipose/ fibroglan-
dular composition values [5]. All FOM values were obtained by dividing the square of 
the SNR by the MGD expressed in units of 10-5 Gy (1 mRad). 

3   Results 

For a given phantom/target/filter combination, the form of the dependence of the 
signal on kVp was the same for all the steps of each stepwedge; only the magnitudes 
of the signals differed. Therefore, the results presented in this paper will use only the 
0.3 mm thick microcalcification step for calculation of the signal. The plots of Figures 3 
and 4 show examples of the dependence of SNR and dose per exposure, respectively, 
on changing kVp. In these examples, the FFDM systems are the Loard Selenia and 
Senography 2000D, respectively and the phantoms had 0.50 mass fraction. In Figure 
3, the calculated SNR has been normalized by the average pixel value in the back-
ground region of the phantom image since the average pixel values were not exactly 
the same for all kVps tested.  

Table 1. FFDM Units tested 

System Target Filter kV Range 

Siemens Mo, W Mo, 23 – 35 

Selenia Mo Mo, 23 – 39 

Fischer W Al 28 – 37 

GE Mo, Rh Mo, 24 – 32 

Fuji Mo Rh 24 – 34 
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The acquisition parameters chosen by the GE Senographe 2000D using its intrinsic 
Automatic Optimization of Parameters (AOP) system were recorded for every phan-
tom thickness and composition combination. Automatically selected acquisition pa-
rameter values for other units equipped with such systems are currently in the process 
of being obtained. 

Table 2 lists the target, filter and kVp that resulted in the maximum value of FOM 
for each breast type and system. 

Fig. 3. Lorad Selenia : Square of SNR normalized by the average ADU value in the back-
ground, 50/50 composition  

 

Fig. 4. GE : Dose per Exposure vs kVp, 50/50 composition 
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Table 2. Acquisition parameters resulting in maximum FOM. Table entries are in the form 
Target / Filter / kVp. 

 30/70 50/50 70/30 
3cm Mo / Mo / 25 Mo / Mo / 29 Mo / Mo / 29 
5cm Rh / Rh / 27 Rh / Rh / 29 Rh / Rh/ 29 

GE 

7cm Rh / Rh / 29 Rh / Rh / 29 Rh / Rh / 29 
3cm Mo / Mo / 24 Mo / Rh / 28 Mo / Rh / 28 
5cm Mo / Mo / 24 Mo / Mo / 25 Mo / Rh / 28 

Lorad 

7cm Mo / Rh / 28 Mo / Rh / 28 Mo / Rh / 28 
3cm W / Rh / 26 W / Rh / 29 W / Rh / 26 
5cm W / Rh / 26 W / Rh / 26 W / Rh / 29 

Siemens 

7cm W / Rh / 29 W / Rh / 29 W / Rh /29 
3cm Mo / Mo / 24 Mo / Mo / 24 Mo / Rh / 30 
5cm Mo / Mo / 24 Mo / Mo / 24 Mo / Rh / 30 

Fuji 

7cm Mo / Rh / 30 Mo / Rh / 30 Mo / Rh / 31 
3cm W / Al / 27 W / Al / 27 W / Al / 27 
5cm W / Al / 29 W / Al / 30 W / Al / 30 

Fischer 

7cm W / Al / 41 W / Al / 41 W / Al / 42 

4   Discussion and Conclusions 

The shape of the FOM vs. kVp curves for a given target/filter/phantom combination 
was found to be independent of step thickness, and was similar for mass and calcifica-
tion equivalent signals. Figures 5-9 suggest that, for 5 cm breast thickness, for 50/50 
as well as 70/30 compositions, the hardest beams result in higher FOM values in all 
systems tested. Furthermore, for 5 cm breast thickness and molybdenum target 

Fig. 5. GE : FOM vs. kVp, 5cm (AF : Autofilter, C : Contrast mode, S : Standard mode, D : 
Dose mode) 
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Fig. 6. Siemens : FOM vs. kVp, 5 cm 

 

Fig. 7. Lorad Selenia : FOM vs. kVp, 5 cm 

material, higher FOM values were obtained with rhodium filtration relative to molyb-
denum filtration for all breast compositions considered. Also, for 5 cm thick breasts, 
compared to molybdenum, tungsten targets resulted in higher FOM values for all 
compositions in the Novation. Space limitations prevent us from presenting data for 3 
cm and 7 cm compressed breast thickness here. However, for the Senographe 2000D, 
the rhodium target resulted in higher FOM for all 5 cm and 7cm breasts. On the other 
hand, in nearly all cases the FOM is a relatively weak function of changing kVp, with 
few well-defined maxima. 
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Fischer FOM vs kVp
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Fig. 8. Fischer : FOM vs. kVp, 5 cm 

 

Fig. 9. Fuji : FOM vs. kVp, 5 cm (AF : AutoFilter) 

These data suggest that the choice of target material and external filtration is more 
significant in determination of the overall FOM of a DM system than is choice of tube 
voltage. Figures 5 and 9 show the target/filter/kVp combination chosen by the Auto-
matic Optimization of Parameters (AOP) and Autofilter systems of the GE Senogra-
phe 2000D and the mammography units used in testing the Fuji storage phosphor 
system. The selected techniques are indicated by the single, open symbols. As the 
figure shows, the technique factors selected by the AOP system are in most cases 
quite close to those that produced the highest FOM values in our study. A complete 
description of automated parameter selection performance across all manufacturers 
will be presented at the meeting.  
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Abstract. A digital full-filed mammography system using phase-contrast 
technique has been developed. The system consists of a dedicated mammog-
raphy unit, a computed radiography unit with a sampling rate of 43.75 mi-
crons, and a photothermographic printer with a printing rate of 25 microns for 
photothermographic film with the maximum optical density of 4.0. The 
sharpness of the output image is improved with an edge effect due to phase 
contrast and magnification. The image noise is reduced by an air-gap method 
with no bucky. In this paper, the image qualities of the phase-contrast mam-
mography are described for full-filed mammography and spot-compression at 
1.5x magnification.  

1   Introduction 

In 1895, Röntgen discovered an x ray, however, the wave nature has been out of 
attention in x-ray medical imaging till 1991 when Somenkov and co-workers re-
ported that refraction of x rays can increase contrast of x-ray images 1 ; this is 
“phase-contrast imaging”. The principle of phase-contrast imaging is illustrated in 
Fig.1. 

The phase-contrast imaging has been intensively studied employing x rays from 
synchrotron and micro-focus x-ray tubes in 1990’s, and realized recently in mammog-
raphy for clinical use. Utilization of this technique in full-field digital mammography 
is attempted for a goal to improve the image quality so as to be equal to or better than 
that of screen/film (SF) mammography. It has been reported that the phase-contrast 
mammography (PCM) system provides better detectability of micro-calcifications and 
masses in diagnostic images than SF mammography 2 . 

Using the PCM system, we empirically assessed improvement of image-sharpness 
with an edge effect due to phase contrast, and magnification for full-filed mammogra-
phy and spot compression at 1.5x magnification. Additionally, the image noises were 
measured for full-filed digital phase-contrast mammography comparing with conven-
tional contact digital mammography. 
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Fig. 1. Edge effect takes places with superimposition of phase contrast on an absorption con-
trast image. Note that the image plane should be away from the object in phase-contrast  
imaging. 

2   Method 

2.1   PCM System 

The PCM system consists of a mammography unit, a computed radiography (CR) 
unit, and a photothermographic printer as shown in Fig.2. The mammography unit for 
phase-contrast imaging has a nominal 100 m focal spot in a configuration of a 0.65 
m distance from the focal spot to the object holder (R1) and 0.49 m for the distance 
from the object holder to the storage phosphor plate holder (R2) with no anti-scatter x-
ray grid. Because the phase-contrast imaging is set at 1.75x magnification for full-
field mammography, the storage phosphor plate used was 14x17 inches in size. For 
spot compression at 1.5x magnification, R1 is 0.43 m, and R2 is 0.71 m, resulting in a 
magnification ratio of 2.65 in image-acquisition.  Note that the distance of R1 + R2, 
SID, is 1.14 m, equal to that for full-field digital PCM.  

CR unit
Sampling pitch : 43.75 m

1.75x

Photothermographic printer
Printing pixel size:25 m

Plate:14”x17”

Object

0.65m

0.49m

43.75 1.75=25

X-ray tube : a 100- m focal spot

Mammography unit

0.43m

0.71m

2.65x
Full-field Spot-compression

1.75 1.75=1 2.65 1.75=1.5

 

Fig. 2. Schematic diagram of a digital phase contrast mammography system 
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After phase-contrast imaging, the storage phosphor plate is scanned by a laser spot 
with a sampling rate of 43.75 m in the CR unit. The size of the acquired image is 
reduced by 1.75x to the original object size for printing of full-filed mammography 
with a photothermographic printer, which printed the images with a printing rate of 25 

m on 8x10-inch dry films. The image magnified by 2.65x in acquisition is reduced 
also by 1.75x for1.5-magnified print image (2.65/1.75=1.5). 

2.2   Experimental 

The presampling modulation transfer function (MTF) was obtained from the Fourier 
transform of the line spread function (LSF), measured by 10-micron wide slit made of 
2mm-thick tungsten slit mounted on the breast table for evaluation of increase of 
image-sharpness in magnification. The measurements of the LSF were performed at a 
28kVp, Mo/Mo combination for contact mammography, 1.75x and 2.65x magnifica-
tions. LSF data were obtained using the angled-slit technique. The slit was slightly 
tilted to the cross line to the chest wall edge of the table. 

In order to assess an edge effect due to phase contrast, a plastic fiber with an 8.5-mm 
diameter was radiographed for contact mammography, 1.75x magnification and 2.65x 
magnification. And then, x-ray intensity profiles for three images were obtained and ana-
lyzed with Fourier transformation. We obtained frequency responses indicating improve-
ment of image sharpness by the edge effect due to phase contrast and by magnification. 

One-dimensional noise power spectra (NPS) were measured from uniformly ex-
posed images obtained with a 28kVp, Mo/Mo and 42mAs x-ray beam with 4-cm of 
added Lucite filtration mounted on the breast table. Contact mammography was per-
formed with bucky, and PCM was without bucky. 

3   Results 

3.1   Increase of MTF Due to Magnification in the PCM System 

In magnification, MTF value increases due to a rescaling effect 3 , and decreases 
with blur due to geometric unsharpness. The experimental results shown in Fig.3  
 

Tube voltage : 28kVp     Target / Filter : Mo / Mo
Object : 10mm-wide slit (made of 2mm-thick tungsten)  

Fig. 3. PresamplingMTF’sfor digital contact mammography, 1.75x and 2.65x magnification 
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suggest that the magnification by 1.75x and 2.65x improves image sharpness from 
contact imaging. 

3.2   Assessment of Edge Effect Due to Phase Contrast 

The signal intensity profiles of the images for a plastic tube are shown in Fig.4.  The 
edge effect due to phase contrast is clearly observed in the x-ray profiles of both 
1.75x and 2.65x magnified images, although the edge of the object image in contact 
imaging is rounded.  The x-ray intensity profiles were Fourier transformed to fre-
quency responses along spatial frequency. The ratios of frequency responses were 
obtained for 1.75x and 2.65x magnified images with division by frequency response 
of the contact image at each corresponding spatial frequency. The results shown in 
Fig. 5 suggest that the image sharpness increases along with spatial frequency due to 
the edge effect. Note that the increases in Fig.5 include the image sharpness due to re-
scaling effect accompanied with geometric unsharpness in magnification. 

Using the results shown in Fig.5 and the MTF values for contact mammography 
shown in Fig.3, improvement of image sharpness for PCM images of full-field  
 

Contact 
mammography

 

Fig. 4. X-ray intensity profiles of a 8.5-mm plastic fiber for contact mammography, and PCM 
at 1.75x and 2.65x magnification. The edge effect is clearlyobserved. 

 

Fig. 5. Ratios of frequency responses for 1.75xand 2.65xphase contrast images on a conven-
tional contact image for an tube 
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Contact mammography

 

Fig. 6. Improvement of image sharpness by magnification and an edge effect due to phase 
contrast in magnification at 1.75x and 2.65x. The arrows indicate improvement of sharpness 
caused by the edge effect. 

mammography and spot-magnification is illustrated in Fig.6.  The edge effect due to 
phase contrast is conspicuous in the result for PCM 2.65, which exceeds over unity.  

3.3   Image Noise  

NPS’s of contact mammography and PCM for full-field mammography at the same 
dose on breast table are shown in Fig. 7. The NPS for PCM is lower than the conven-
tional contact mammography. Note that specifications of the photostimulable phos-
phor plate used here for contact CR and PCM are different to each other; i.e., design 
of MTF for PCM is lower than that for contact CR, and the NPS for PCM is lower 
than the contact CR.  

Tube voltage : 28kVp    Target / Filter : Mo / Mo
Object : 4cm-Lucite        Dose on table : 750mR

Cont. 1.0

PCM 1.75

Contact mammography

 

Fig. 7. NPS (Noise Power Spectra) for conventional contact mammography and full-field digi-
tal PCM 
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4   Discussion 

4.1   Image Qualities in PCM System 

The image sharpness in image acquisition is determined with three elements, i.e., 
MTF of the acquisition system, an edge effect due to phase contrast, and air-gap ef-
fect in the PCM system. Freedman et al. have reported that the air-gap eliminates 
scattered x ray as much as an anti-scatter x-ray grid 4 . The improvement of image 
sharpness of the edge effect due to phase contrast corresponds with the previous simu-
lated result reported elsewhere by Ohara et al. 5 . 

Demagnification of magnified images in printing avoids increase of image noise, 
although phase-contrast mammography here is magnification in acquisition�6�. 
Radiographic mottle due to quantum mottle is increased by magnification in the ab-
sence of concurrent increase of x-ray dose to an object because of the reduction in 
number for the x-ray photon hitting a unit area of the x-ray detector. It is easily under-
stood that reduction of the magnified image to the original size of the object in print-
ing would gain the increase of the mottle Additionally, the anti-scatter x-ray grid 
eliminates the primary x-ray so that image noise of contact mammography is higher 
than phase-contrast mammography without bucky. 

4.2   Pixel Size in Output Images 

Cowen et al. reported that the minimum detectable size of microcalcification in SF 
mammography is 200 m after their literature review 7 , whereas the spatial resolu-
tion is one of the strengths of conventional SF mammography, because its spatial 
resolution is up to 20 cycles/mm, corresponding to a 25- m pixel size in digital de-
vices 8 . Higashida et al. reported that a pixel size of 100 m in the detection of 
small microcalcifications will be problematic for CR mammography 9 . Improve-
ment in the detection of subtle microcalcifications has been achieved with a 50- m 
pixel size in CR mammography 10 .  In this system, the printing rate in the output 
device has been designed as 25 m, which corresponds nominally with the spatial 
resolution of conventional SF mammography. Yip et al reported that spatial resolution 
of mammogram needs up to be 11 cycles/mm. In order to depict such fine images 
without aliasing noise in the range of 10 cycles/mm in digital images, the pixel size of 
25 m is advantageous for digital mammography 2 . 

4.3   Hard Copy Images 

In order to make use of such a small pixel size as 25 m, printing on dry-film is bene-
ficial in this system. Because the optical density maximum of the film is designed up 
to 4.0, the digital breast image on the film has little difference from conventional SF 
breast images in reading images. 

For thoracic images, monitors such as a CRT (Cathode Ray Tube) and an LCD 
(Liquid Crystal Display) have been applied to diagnostic image-reading for long. As 
seen in Fig.8, breast images should be depicted up to 11 cycles/mm 8 , and then 
for monitor reading of the breast images, new technologies in the monitors are re-
quired in addition to make the pixel-sizes smaller, although a pixel size of 150-200 

m for the monitors would be sufficient for reading of thoracic images. 
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Fig. 8. Comparison of spatial resolution between thoracic imageand mammogram 

4.4   Clinical Experiences 

The PCM systems have been already installed in many medical facilities in Japan, and 
used for screening and examination of breast cancer. In the PCM system, phase-
contrast imaging is magnification, however there is no further extension of exposure 
time than that for conventional SF systems.  For example, the average exposure time 
for 249 exposures (Mo filter: 209, Rh filter: 40) a month in a hospital was 1.29 sec for 
the average compressed width of 37.2 mm. This average exposure time is shorter than 
the 1.38 sec for SF mammography which was reported as an average exposure time in 
a 1992 survey in the United States 11 . In the SF system, low-intensity reciprocal 
failure of silver halide materials causes the exposure time to be longer, especially 
beyond 2 sec for dense breasts 12 , whereas CR obeys the low-intensity reciproc-
ity effect in the exposure time regions of seconds.  

Because a 14”x17” plate is used with a sampling ratio at 43.75 m, the data vol-
ume is 128 MB per exposure,i.e.,70 mega-pixels per image acquisition. The transfer 
of the image data in the full-field digital PCM system requires a period of time de-
pending on the processing speed of the computer used; however, we do not suffer any 
delay in examination. An examination for one patient with four view images in me-
diolateral (MLO) and craniocaudal (CC) views takes 7-15 min with the full-field digital 
PCM system: the four shots for two MLO views and two CC views takes 4 min with the 
interval between patients being 3 min. As a result, to screen 200 patients, the time nec-
essary would be about 2.5 h. This is an equivalent time to SF mammography. 

The mammography unit of the PCM system seems that the bulky attachment for a 
phosphor plate under the object holder should be equipped, and would hinder posi-
tioning of patient’ breasts for mammography in a CC view (Fig. 2). However, in our 
clinical experience, it has been revealed that a plastic protecting plate against the body 
of a patient helps the patient to relax by leaning on it in the CC-view position.  
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5   Conclusion 

5-1. In the PCM system, image sharpness is improved with the edge effect due to 
phase contrast as well as magnification in digital full-field and 1.5x spot compression 
mammography.  The improvement has been assessed experimentally. 

5-2. A demagnified image from an acquired image of magnification recovers the 
image-noise caused by magnification.  Elimination of scattered x rays by an air gap in 
the PCM system does not decrease the primary x rays from an object. 

5-3. A printed image in the PCM system is designed to be depicted with 25- m pixels 
on dry-processed film with 4.0 of the optical density maximum. 
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Abstract. The Multiple Image Radiography (MIR) method is new imaging 
modality that extends the capability of conventional absorption based 
radiography by adding the additional contrast mechanisms of x-ray refraction 
and ultra-small angle scatter. In order to design a clinically based MIR system, 
the MIR specific x-ray properties in breast tissue must be analyzed to determine 
which are diagnostically useful. Developing MIR as an imaging modality also 
requires developing new phantoms that incorporate x-ray refraction and ultra-
small angle scatter in addition to traditional x-ray absorption. Three breast 
cancer specimens were imaged using MIR to demonstrate its MIR specific x-
ray properties. An uncompressed anthropomorphic breast phantom with an 
imbedded low absorption contrast acrylic sphere was imaged to provide a 
physical model of how the unique properties of MIR can be utilized to improve 
upon conventional mammography and illustrate how these can be used to 
design a clinically useful imaging system. 

1   Introduction 

The Multiple Image Radiography (MIR) method is a new imaging modality able to 
generate images based on an object’s x-ray absorption, refraction, and ultra-small 
angle scatter [1, 2]. MIR is an improvement of a previously described method called 
Diffraction Enhanced Imaging (DEI) [3-11]. DEI utilizes the Bragg peak of perfect 
crystal diffraction to convert angular changes into intensity changes, providing a large 
change in intensity for a small change in angle. The use of DEI for breast imaging 
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was first described by Pisano et al [12], and has been shown in multiple subsequent 
studies to generate improved contrast when compared to conventional 
radiography[13-15]. Previous studies investigating DEI specific contrast mechanisms 
in breast tissue have demonstrated considerable gains in contrast, up to 33 fold when 
compared to a conventional radiograph [16, 17]. MIR improves upon DEI by 
providing an ultra-small angle scatter image, produces more accurate absorption and 
refraction images, and has been shown to have good noise performance from photon 
limited data [2]. All DEI and MIR experiments to date have been performed using a 
synchrotron, which provides high flux x-rays over a wide energy range. The 
requirement of a monochromatic, collimated x-ray beam incident on the sample or 
object makes the design of a non-synchrotron based DEI or MIR system an 
engineering challenge. Initial studies using MIR with photon-limited data indicates 
that this method would be useful when using non-synchrotron x-ray sources. 

2   Multiple Image Radiography 

A detailed mathematical description of the MIR method has been presented 
previously by Wernick et al [1, 2]. MIR uses the reflectivity curve of a silicon 
analyzer crystal, presented in Figure 1, to generate parametric images representing the 
x-ray absorption, refraction, and ultra-small angle scatter of an object. For example, if 
the intrinsic rocking curve of a background region is used as a reference, then changes 
that decrease the area under the curve can be interpreted as x-ray absorption since 
photon absorption will decrease the maximum intensity. For a purely refractive event, 
the centroid of the rocking curve will be shifted, but the width and height of the 
rocking curve will remain constant. Interactions that lead to ultra-small angle 
scattering will scatter photons across the angular distribution of the rocking curve, 
causing the rocking curve to widen. Assuming that photons are not scattered outside 
the acceptance window of the rocking curve, scattering events will not affect the area 
under the curve. MIR analyzes these events and calculates the contributions of each 
on a pixel by pixel basis, producing three separate images from the same data set.  

3   Experimental DEI Setup at the National Synchrotron Light 
Source 

Experiments were carried out using the X15A beamline at the National Synchrotron 
Light Source (NSLS), Brookhaven National Laboratory, Upton, New York. A 
complete description of the DEI system at the NSLS has been previously described by 
Zhong et al [18]. In order to understand the parameters being analyzed, a brief 
description of the system is in order. The bending magnet source at the X15A 
beamline produces high flux x-rays from 10 to 60 keV. A double crystal silicon 
monochromator is used to select a particular energy from the incident x-ray beam. 
MIR images are obtained by placing a silicon analyzer crystal behind the object which 
is tuned to select a particular angle. The analyzer can be thought of as an angular 
notch filter with a resolution on the order of tenths of microradians, which facilitates 
the measurement of x-ray refraction and ultra-small angle scatter. Individual images 
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are obtained by scanning the analyzer over a given angular distribution, and those 
images are used to generate parametric images representing the object’s x-ray 
absorption, refraction, and ultra-small angle scatter. The width of the rocking curve 
changes with beam energy, so both the angular range and sampling distribution must 
be adjusted accordingly.  

 

Fig. 1. Graphical depiction of an analyzer crystal rocking curve showing a large change in 
intensity for a given change in angle 

 

Fig. 2. Experimental setup at the X15A beamline, National Synchrotron Light Source (NSLS) 
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4   Methods 

Three breast cancer specimens and one breast phantom were selected for imaging at 
the NSLS X15A beamline after receiving Institutional Review Board approval. A 
Photonic Science VHR-150 x-ray camera (Robersbridge, East Sussex, UK) was used 
for image acquisition, with a FOV of 120mm x 80mm and a 30 micron pixel size. The 
specimens were approximately 2 cm in thickness and were immersed in a water tank 
4.5 cm in thickness to reduce surface refraction effects. Each specimen was also 
imaged using a General Electric Senographe 2000D full field digital mammography 
system (GE Medical Systems) with a 100 micron pixel size. The resolution of this 
system is less than that used at the NSLS, so these images were acquired for reference 
only.  

The monochromator and analyzer crystals were tuned to the Bragg angle for the 
silicon 40 keV, [333] reflection. For each breast specimen (n=3), images (n=21) were 
taken with the analyzer crystal rotated from -4 to 4 microradians in increments of 0.4 
microradians to obtain a full MIR data set. An anthropomorphic breast phantom 
composed of fat equivalent materials was constructed with an imbedded 3.0mm 
acrylic sphere to simulate a low contrast mass. The maximum dimensions of the 
breast phantom were 13cm in length, 11cm wide, and 6cm high. Synchrotron 
radiographs of the phantom were acquired at 18 keV and 40 keV. The phantom was 
also imaged using MIR at 40 keV with the same sampling parameters used for the 
breast specimens. 

5   Results 

A reference digital radiograph acquired using a General Electric Senographe 2000D 
full field digital mammography system is presented in Figure 3. Figure 4 
demonstrates a breast cancer mass and spiculations acquired at 40 keV separated into 
x-ray absorption, refraction, and ultra-small angle scatter with a corresponding 40  
 

 

Fig. 3. Conventional radiograph acquired using a General Electric Senographe 2000D full field 
digital mammography system with a pixel size of 100 microns 



 Application of the Multiple Image Radiography Method to Breast Imaging 293 

keV synchrotron radiograph. Figures 5 and 6 illustrate an anthropomorphic breast 
phantom imaged both at conventional mammography energies of 18 keV and at 40 
keV. The ability to visualize a low absorption contrast 3.0mm acrylic sphere 
simulating a mass is demonstrated in Figure 7. 

 

 

Fig. 4. Multiple Image Radiography analysis of a breast cancer mass and spiculations acquired 
at 40 keV with an angular sampling range of -4 to 4 microradians and theta increment of 0.4 
microradians. A corresponding 40 keV synchrotron radiograph is provided for comparison. 
Contrast was adjusted to maximize visualization of the mass and spiculations in each image. 
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Fig. 5. Synchrotron radiograph of an uncompressed anthropomorphic breast phantom with an 
imbedded 3.0mm acrylic sphere imaged at 18 keV 

 

Fig. 6. Synchrotron radiograph of an uncompressed anthropomorphic breast phantom with an 
imbedded 3.0mm acrylic sphere imaged at 40 keV 
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Fig. 7. Multiple Image Radiography refraction image acquired at 40 keV demonstrating 
visualization of a 3.0mm acrylic sphere 

6   Discussion 

One fundamental limitation of conventional mammography is the difficulty in 
visualizing low contrast objects immersed in highly absorbing background of adipose 
tissue. In conventional radiography, neoplastic lesions increase in size and density 
with time, eventually becoming large and dense enough to attenuate enough photons 
to be visualized against the surrounding adipose tissue. Since breast cancer mortality 
is directly related to the size and progression of a lesion, reducing the time between 
the generation of a malignant lesion and detection is a goal of all new breast imaging 
modalities. 

MIR improves upon conventional radiography by utilizing multiple x-ray contrast 
mechanisms to help differentiate between benign and malignant structures. Adipose 
tissue may have an x-ray attenuation similar to a small malignant lesion, but they do 
not have the same refraction signatures. Adipose tissue has very little refraction and 
ultra-small angle scatter contrast, but the small cylindrical speculations of a breast 
cancer lesion has high refraction and ultra-small angle scatter contrast. Breast cancer 
masses, as demonstrated in Figure 4, also generate considerable x-ray refraction and 
ultra-small angle scatter contrast. At 40 keV, absorption contrast in soft tissue is 
minimal, increasing the overall contrast gradient between the lesion of interest and the 
background tissue.  
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Further gains in refraction contrast for spiculations come from their geometry, 
which is ideal for the refraction of x-rays. For a collimated x-ray beam incident on a 
cylindrical object, refraction contrast will be the greatest at the top and bottom of the 
cylinder, with minimal refraction contrast at the center. As the diameter of a cylinder 
decreases, refraction contrast will remain due to the geometry of the object, even after 
the level of absorption contrast fades into the background. Index of refraction values 
obtained across multiple breast cancer specimens indicates that the material properties 
are similar, and the increase in contrast should be observed in most cancer specimens.  

The same properties are demonstrated using an uncompressed anthropomorphic 
breast phantom with a low contrast 3.0mm acrylic sphere. This low contrast sphere is 
essentially invisible using conventional radiography because of the nominal 
difference in x-ray attenuation of the sphere in relation to the fat equivalent 
background. However, the refractive properties of the sphere are much different than 
the fat equivalent material, which has very low refraction contrast. The relative 
difference between the two allows for excellent contrast of the sphere. This simple 
phantom illustrates the utility of MIR for breast imaging, potentially allowing for 
visualization of malignant structures at earlier stages of development.  

A critical aspect of the breast specimens and breast phantom is the importance of 
the refraction and ultra-small angle scatter image in relation to both the MIR 
absorption image and the synchrotron radiographs. Refraction and scatter do not 
depend on the photoelectric effect, and thus do not suffer from the dramatic energy 
dependence of x-ray absorption. As x-ray energy increases, absorption contrast 
decreases as 1/E3, whereas MIR’s refraction and ultra-small angle scattering contrast 
decreases by 1/E. Primary utilization of x-ray refraction and ultra-small angle scatter 
for image contrast allows for the use of higher energy x-rays, decreasing the 
necessary photon flux and absorbed dose. 

7   Conclusion  

Multiple Image Radiography is a new imaging modality that could lead to significant 
improvements in breast imaging when compared to conventional radiography. The 
MIR experiments presented in this study demonstrate improved visualization in both 
breast cancer specimens and in refraction based imaging phantoms. The good noise 
performance of MIR from photon limited data combined with the ability to use higher 
x-ray energies for refraction and ultra-small angle scatter contrast makes this method 
promising for use in the development of a non-synchrotron based MIR breast imaging 
device. 
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Abstract. Radiographic signs indicating the presence of a malignancy are a result 
of the morphology and composition of the lesion. Assessment of the size, 
distribution, extent and location of disease are crucial in guiding patient 
management. Often mammographic estimates of size and extent are 
underestimated. Radiologic/pathologic correlation between features is often by 
indirect classification methods rather than a direct, whole-volume, one-to-one 
spatial correlation between radiologic and pathologic images. As an initial step 
toward understanding how tumour morphology and composition yields a 
mammographic sign, we have begun work on correlating whole-mount histology 
sections to cone-beam computed tomography (CBCT) images of the same 
specimen. Preliminary results for a lumpectomy sample containing a 3.5 cm 
invasive ductal carcinoma qualitatively show a remarkable correspondence 
between CBCT slices and histology sections. Ultimately, the 3D CBCT data 
could be used to predict mammographic features, which could then be correlated 
precisely to the anatomy of the tumour. 

1   Introduction 

Mammography is used to detect lesions that are suspicious for cancer as well as to 
attempt to characterize those lesions and estimate the extent of disease. Unfortunately, 
limitations of the mammographic image frequently yield sub-optimal results. The 
mammographic assessment often underestimates disease extent and presence[1]. 
Often, the two-dimensional (2D) nature of mammographic images can lead to the 
appearance of areas of irregularity created by the overlap of normal breast 
structures[2]. As well, lesions may be hidden by the overlying or underlying tissue 
structures..  As a result, the radiological features in the 2D image can result in either 
false positives (mimicked lesions) or false negatives (hidden lesions). 

Of important interest is the spatial correlation of the tumour to radiographic 
signs[3]. A better understanding of how different tumour morphologies and 
compositions lead to particular radiographic signs may improve assessment methods 
of the size, distribution, extent and location of disease that are crucial to guiding 
patient management.  
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Extensive work has been done in correlating the radiographic signs (e.g. lesion 
margin, morphology, microcalcifications and architectural distortion) indirectly to the 
histopathologic findings (glandular differentiation, mitotic index, nuclear grade, 
architectural pattern)[4,5]. In general, these correlations are inferred at a classification 
level rather than by a whole-volume spatial correlation between radiologic and 
pathologic images. Direct visual correlation between the radiological and histological 
information is often very difficult. 

Common clinical histopathology methods limit direct correlation between mamm- 
ographic signs and tissue anatomy. Conformation of a lumpectomy is lost following 
excision. In our work we attempt to overcome this limitation by immobilizing the 
sample in a gel, thus approximating its in vivo conformation. 

The second limitation to direct correlation of histology to radiographic appearance 
is the limited size of the tissue samples used to create a histology slide . A widely-
used method developed by Egan [6] involves slicing the specimen, using radiographs 
of each slice to assist in determining tumour location and circumference, and then 
selecting small areas from each slice that include tumour, as well as some areas of 
normal tissue, for paraffin blocks. Only parts of the tumour and margin are excised, 
resulting in sampling of only a tiny fraction of the complete lesion volume. Without 
histological images of the entire lesion, it is not feasible to precisely correlate these 
images to radiographic data. 

By trying to maintain the in vivo conformation and by imaging the intact resection 
with cone beam CT, a more accurate picture of the disease foci, the extent of disease, 
and the adequacy of the margin of resected normal tissue surrounding the disease, is 
obtained. 

The first step toward direct spatial correlation of radiology and pathology is to 
implement a combined protocol that allows (near) complete characterization of the 
three-dimensional (3D) structure of an excised lesion through both radiographic and 
histological techniques. 

To this end, we are currently developing methods in which the whole resected 
specimen is oriented spatially in a conformational gel and imaged with cone-beam 
computed tomography (CBCT) to obtain an x-ray volume dataset. The specimen is 
then cut into large slices, parallel to the CBCT images obtained, and prepared for 
histological staining of the entire lesion and surrounding breast tissue.  Ultimately we 
believe this technique will improve our understanding of lesion architecture and our 
ability to optimize in vivo imaging. 

2   Method 

After obtaining institutional ethics review board approval, a lumpectomy sample with 
a 3.5 cm diameter node-negative invasive ductal carcinoma was obtained from a 47-
year-old female. 

Upon excision of the lumpectomy specimen, the lateral surface was marked with 
tissue-marking dye. To maintain spatial conformation, the specimen was immediately 
embedded in a 3.5% w/v agar gel. 

Cone-beam CT images were acquired on a custom-built tabletop system (Fig. 1) 
consisting of a mammographic x-ray tube (GE DMR v. 2, GE Healthcare, Milwaukee,  
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Flat panel
detector

X-ray tube

Gel containing 
tissue sample

Rotation stage “bread-loaf” slabs at 5 mm
spacing  

Fig. 1. Sketch of the cone-beam CT geometry layout (not to scale). An example of the locations 
of two bread-loaf slabs is shown, indicating that the slabs were cut parallel to the vertical axis 
of the system.  

a)  

b)  
 

Fig. 2. a) Following CT imaging, the tissue sample embedded in agar was cut into 5mm-thick 
slabs (breadloafed). Alternate slabs were sent to clinical pathology for a routine work-up.  b) 
The microscope with motorized stage and image display workstation.   

WI) and a flat-panel imager (GE Senographe 2000D).  An x-ray technique of 40 kV 
Rh target/Rh filter was used to obtain adequate penetration.  Ninety-three (93) 
projection images were acquired at an interval of two degrees (2°). Reconstructed 
image volumes were set to a voxel size of 300×600×300 μm3 for a total volume size 
of 512×288×320 voxels. 
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The agar-based supporting gel was cut (“bread-loafed”) into 5 mm thick slabs  
(Fig. 2a). Every second slab was set aside for routine pathology processing. The 
remaining slabs were fixed and processed using a customized protocol[7]. After 
infiltration and embedding in paraffin, 10 μm thick serial sections were cut from the 
wax blocks.  Sections were mounted on large slides (7.5 cm × 12.5 cm) and manually 
stained with haematoxylin and eosin (H & E). 

A Zeiss Axiomat microscope equipped with a custom-built scanning stage  
(Fig. 2b) was used to acquire colour digital images with a pixel dimension of 1.87 
μm.  Because of the small field of view of the microscope, a composite image of the 
large slide was assembled by tiling a set of raster-scanned sub-images. The image 
acquisition software used was Clemex Lite v 3.5 (Clemex Technologies Inc, 
Montreal, Canada). 

Alignment of the histology sections to the CT dataset was possible because all 
histology sections from a single slab are parallel to one another. Similarly, sections 
cut from different slabs can be assumed to be nearly parallel to one another. 
Additionally, the histology sections were cut parallel to the vertical axis of the CBCT 
system as indicated in Fig. 1. Because no fiducial markers were used, registration was 
performed by user identification of common anatomic features. The registration 
process consisted of 3 steps. The first step is the identification of the "cross-sectional 
axis" - the axis that is normal to all of the histology sections.  Using a single histology 
section containing relatively distinct features, the CBCT dataset was reoriented to 
locate a corresponding slice with the same features. Navigating through the CBCT 
volume dataset was performed with an open-source interactive volume viewer 
(Microview 1.1.15, GE Healthcare). The axes of the CBCT data were rotated until the 
cross-sectional axis was identified.   

The second step was to identify corresponding histology section/CT slice pairs 
through a user-interactive selection algorithm. A simple graphical interface, written in 
Matlab 7.0.1 (The Mathworks, Natick, MA), allowed the user to scroll through the 
CBCT slices and the histology sections, and to choose the best match for each slice 
based on anatomic features of the lesion, the surrounding tissue, and the tissue/gel 
margin.   

Because the mounting of the each histology section is somewhat random, and some 
tearing artefacts distorted the appearance, a third and final 2D registration step was 
required. Registration of each histology section/CT slice pair was performed by 
selecting paired control points followed by a linear conformal transformation 
(translation, rotation and scaling) of the histology sections. 

3   Results 

The distortions in the specimen between the agar-embedding stage and the final slide 
preparation appear to be minimal. A total of 28 sections were cut, 22 of which 
contained the tumour. All of those with the tumour were imaged, as well as 3 of the 
sections without tumour. An example of one slide is shown in Fig. 3. 
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Fig. 3. Cross-section of a 3.5cm invasive ductal carcinoma of nuclear grade III. The irregular 
margins and radiating spicules of proliferating cells are characteristic of IDC. 

 

   

Fig. 4. Reconstruction slices through the lesion using an algebraic reconstruction technique 
(left) and filtered back-projection (right). The grey scale has been inverted to aide in 
comparison to the histology section in Fig. 3. The slices shown were manually aligned to the 
approximate orientation of the histology section in Fig. 3. 

#2
#5

#13

#8
#10
#12 

 

Fig. 5. A transverse slice (parallel to the rotation stage in Fig. 1) through the lesion showing the 
locations of 16 pathology slides (white lines). The numbered lines correspond to the slides in 
Fig. 6. 
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Fig. 6. Selected CBCT slices and their corresponding histology section. The histology 
sections were scaled, rotated and translated to align to the CBCT slices.    
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Tissue architecture and cellular details are well preserved using our method of 
large whole-mount tissue preparation. Adequate contrast between the darker, purple-
coloured nuclei (haematoxylin stain), and the pink-coloured stroma (eosin 
counterstain), assists in comparing the histology images with the CBCT images. The 
irregularity of tumour cell proliferation is demonstrated by the large amounts of 
disorganized dark nuclei. Margin evaluation reveals a close posterior margin (Fig. 3). 
The architectural pattern and nuclear grade is indicative of a Grade III invasive ductal 
carcinoma (IDC). 

The CBCT reconstructions show excellent fat and fibroglandular tissue contrast, 
and the lesion can be clearly delineated. The CBCT dataset was rotated and aligned to 
the histology sample based on the appearance of the tissue along the margins of the 
lesion (compare Fig. 3 and Fig. 4). Following rotation, the resampled CBCT data had 
voxel sizes of 320×570×300 μm3.   

The irregular borders and high-density properties of the tumour mass are easy to 
identify; the spicules of dense tissue radiating from the mass into adjacent mammary 
tissue correlate well with the dark nuclear stained projections of infiltrating carcinoma 
seen in the histology image. Microcalcifications can be identified in several slices 
through the lesion (one is seen in the centre of the lesion in Fig. 4). 

Sixteen histology section/CT slice pairs were aligned. Fig. 5 shows a transverse 
CBCT slice (perpendicular to the histology sections, and parallel to the rotation stage 
in Fig. 1) with lines indicating the location of each histology section. The two large 
gaps correspond to the slabs sent away for routine clinical pathology assessment. Fig. 
6 shows six selected image pairs corresponding to those sections indicated in Fig. 5. 
Qualitatively, the margins of the lesion show strong correspondence between both 
modalities.  The branching structure of normal fibroglandular tissue also appears to 
match well.   

Shrinkage of the tissue sample was estimated by averaging the scale-factor 
calculated for each histological section in the third step (2D slice registration). 
Assuming uniform shrinkage, the linear dimensions of the lesion were reduced to 
77% ± 2% of the original dimensions as captured in the CT dataset.    

4   Discussion 

As our initial results indicate, by successfully obtaining whole slices of the tissue for 
histological visualisation we are better able to correlate pathologic and radiologic 
features. Cellular detail is clearly seen, allowing pathologic classification to be carried 
out using the images. 

It is possible that the fidelity of CT/histological correlation could be improved by 
implementing an additional 3D registration technique following the user-assisted 
registration.  Future investigations will include the development of a robust fiducial 
marker.  Use of a fiducial marker is highly desirable but problematic. Using a 
physical marker such as threads or suture inserted into the agar is currently not 
practical because this marker is dislodged when slabs are cut or processed. The 
marker may potentially damage the sectioning blade. Alternatively, injecting a tissue 
dye/radio-opaque solution, using a needle, in the agar surrounding the embedded 
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tissue sample is promising, but potential problems include excessive dye diffusion 
(reducing localization) as well as tearing artefacts at the needle sites. 

Our initial findings of positive correlation between the CBCT image slices and 
large histology sections are promising. Ongoing work in acquiring correlated CBCT 
and histology data from various tumour types will help build knowledge of the 
correlation between physiological and radiographical information. Furthermore, 
additional studies will involve simulating mammographic images obtained from the 
CBCT data providing further insight into the biology underlying the features observed 
on mammography.  
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Abstract. In recent years a large number of digital mammograms have been 
generated in hospitals and breast screening centers. To assist diagnosis through 
indexing those mammogram databases, we proposed a content-based image re-
trieval framework along with a novel feature extraction technique for describing 
the degree of calcification phenomenon revealed in the mammograms and six 
relevance feedback learning algorithms, which fall in the category of query point 
movement, for improving system performance. The results show that the pro-
posed system can reach a precision rate of 0.716 after five rounds of relevance 
feedback have been performed.  

1   Introduction 

Content-based image retrieval (CBIR) refers to the retrieval of images whose contents 
are similar to a query example, using information derived from the images themselves, 
rather then relying on accompanying text indices or external annotation [1]. One of the 
key challenges in CBIR is bridging the gap between low-level representations and 
high-level semantics. The semantic gap exists because low-level features are formu-
lated in the system design process while high-level queries are used at the starting point 
of the retrieval process [2]. Relevance feedback is developed for bridging the semantic 
gap and improving the effectiveness of image retrieval systems [3]. With relevance 
feedback, CBIR systems can analyze the relevant images using a learning algorithm 
and return refined search results.  

Content-based image retrieval has been proposed by the medical community for 
inclusion into picture archiving and communication systems (PACS) [4]. The idea of 
PACS is to integrate imaging modalities and interfaces with hospital and departmental 
information systems in order to manage the storage and distribution of images to ra-
diologists, physicians, specialists, clinics, and imaging centres [5]. A crucial require-
ment of PACS is to provide an efficient search function for accessing images that are 
relevant to the query example. The contents of medical images provide useful infor-
mation, which can be used to search for other images containing similar content.  

In recent years an enormous number of digital mammograms have been generated in 
hospitals and breast screening centres. As hospitals and breast screening centres are 
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connected together through PACS, content-based approaches can be applied to effi-
ciently retrieve mammograms from distributed databases. However, content-based 
retrieval approaches are usually developed for specific contents of medical images. 
How existing retrieval approaches for other modalities can be effectively adopted for 
retrieving desired images from mammogram databases is not obvious. Given this  
motivation, along with a proposed general CBIR framework for the retrieval of 
mammograms with calcification phenomenon, this work develops a novel calcification 
detection method and six learning algorithms for coding the relevance feedback from 
the user.  

2   Overview of the Proposed CBIR Framework 

The proposed content-based retrieval framework as shown in Figure 1 can be divided 
into off-line feature extraction and on-line image retrieval. In the component of off-line 
feature extraction, the contents of the images in the database are extracted and de-
scribed with a feature vector, also called a descriptor. The feature vectors of the images 
constitute a feature dataset stored in the database. In the component of on-line image 
retrieval, the user can submit a query example to the retrieval system to search for  
desired images. The system represents this example with a feature vector. The simi-
larities between the feature vectors of the query example and those of the media in the 
feature dataset are then computed and ranked. Retrieval is conducted by applying an 
indexing scheme to provide an efficient way of searching the image database. Finally,  
 

 

Fig. 1. The proposed framework for content-based mammogram retrieval 
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the system ranks the search results and returns the results that are most similar to the 
query example. If the user is not satisfied with the search results, the user can provide 
relevance feedback to the retrieval system in order to search further. To supply rele-
vance feedback, the user simply identifies the positive image that is relevant to the 
query. The system subsequently recalculates the feature of the user’s feedback using a 
learning algorithm and then returns refined results. This relevance feedback process 
can be iterated until the user is satisfied with the results or unwilling to offer any more 
feedbacks. 

3   Pre-processing and Feature Extraction 

A mammogram, like most medical images, usually contains a rich variety of informa-
tion, including breast tissues, fat, and other noise. Calcifications are hard calcium  
deposits in breast tissues and are important clues of breast cancer revealed in mam-
mograms [6]. Finding out the particular characteristics of calcifications is a key to 
effective extraction of calcification features in mammograms. 

3.1   Pre-processing 

The contrast between the areas of calcifications and their backgrounds is usually lim-
ited and, depending on the imaging equipments and the image capturing conditions, the 
dynamic range of gray scale of mammograms may vary significantly. To compensate 
these issues, we first perform histogram equalization on all the mammograms in the 
database. This pre-processing not only enhances the contrast but also normalize the 
gray scale of all the mammograms to the same dynamic range 0 to 255, smoothing way 
for feature extraction. 

3.2   Calcification Detection 

It is observed that calcifications usually appear as spots which are the brightest areas 
when compared to the other breast tissues, three spot detectors, D1 - D3 as shown in 
Figure 2, are applied to detect calcified spots of different sizes. Since the calcified spots 
are usually brighter than the backgrounds, to make good use of this a priori information 
so as not to pick up noise and misleading information, before the detector are applied, 
we first threshold the mammograms with the threshold T defined in Equation (1) as 

MT ⋅−+⋅= )1( αμα                                                    (1) 

where μ and M are the mean and maximal gray scales of the mammogram andα  de-
termines where between the mean and maximum the threshold T should lie. In this 
work we set α to 0.5, i.e., we take the average of the mean and maximum as the 
threshold. Since the mammograms have all been histogram equalized, M is always 
equal to 255. The spot detectors will skip those pixels with their gray scale lower than 
the threshold T by setting their corresponding responses to 0. Denoting the (i, j)th pixel 
of a mammogram g as g(i, j), the response r(i, j) of g(i, j) to the kth spot detector Dk can 
be defined as 
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where kX and kY are the numbers of rows and columns of spot detector kD . The 
strength of the response at each pixel is taken as the degree of calcification at that pixel. 
The effect of the thresholding is clearly shown in Figure 3. Figure 3(a) is an original 
mammogram before pre-processing (i.e., histogram equalization). Figure 3(b) shows 
the response map of the pre-processed mammogram to the spot detector 1D without 
thresholding while Figure 3(b) illustrates the response map of the mammogram with 
thresholding. By comparing Figure 3(b) and (c), we can see that most of the non-useful 
information has been filtered out by the thresholding operation.  

 

Fig. 2. (a) Detector D1; (b) Detector D2; (c) Detector D3 

   
                  (a)                                         (b)                                        (c) 

Fig. 3. (a) The original image. (b) Response map resulted from convolving D1 with the histogram 
equalized mammogram without thresholding; (c) Response map resulted from convolving D1 
with the histogram equalized mammogram with thresholding. 

3.3   Feature Extraction 

Since the retrieval process is to be operated by comparing the features at image level 
rather than at pixel level, with the response (degree of calcification) at each pixel cal-
culated, a feature describing the whole image has to be formulated as a function of 
responses of the pixels. Taking into account the facts that the brightest spots in the 
mammogram are most likely to be the position where calcification occurs and response 
to the spot detectors more strongly and that there are still some spurious and lower 
responses picked up (see Figure 3(c)), for each of the three response maps created by 
applying the three spot detectors to the mammogram according to Equation (2), we take 
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the mean of the top 0.05% pixel responses as the calcification degree at image level and 
denote them as 1f , 2f and 3f . The Euclidean distance f of the three calcification degrees 

as formulated in Equation (3) is then taken as the feature to describe the degree of 
calcification for the mammogram. 

=
=
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2

j
jff                                                        (3) 

All the mammograms in the database are subjected to this feature extraction process 
in an off-line manner as shown in the upper part of the proposed framework in Figure 1. 

4   Learning Algorithms in Relevance Feedback 

According to the proposed framework in Figure 1, when a new query example/ 
mammogram is presented to the system, feature as formulated previously is extracted in 
real-time and submitted to the indexing component in framework. According to the 
degree of feature similarity between the query example and the ones in the database, 25 
most similar mammograms are retrieved. To increase the performance, the user is 
placed in a loop to provide the system relevance feedbacks for further search. The idea 
of query point movement as shown in Figure 4 is adopted to move the point of the 
refined query toward the region in the feature space that contains the relevant images 
specified by the user. From Figure 4, we can see that by moving from the feature point 
of the original query example q(1) to the refined/recalculated point q(2) in the feature 
space, the system get closer to the center of the region containing more relevant images 
and less irrelevant ones, wherein the chance of retrieving more relevant images is higher.  

 

Fig. 4. The boundary of the region containing images which are relevant to the query exam-
ple )1(q is delineated by dotted line. As the blue points are identified as relevant images, the 
original query )1(q will move to the ideal point )2(q , the centroid of the blue points. 
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Since relevance is somewhat subjective and, to some extent, user-dependent, the 
ways relevance feedback are incorporated is therefore worth investigating. In this work 
we propose six different algorithms, LA1 to LA6, to learn the relevance feedbacks from 
the user in each round of the search and to determine the new query point for the next 
retrieval. To provide relevance feedbacks after being presented with the retrieved im-
ages of tth round of search, the user is allowed to identify an arbitrary number n(t) of 
images as relevant. Let us denote the feature of the pseudo query to be used in the tth 
round of search by q(t), t >= 1 and the feature of the kth image identified as relevant in 
the tth round of search by f(t, k). So q(1) is the feature of the original query example - a 
physical image. Apart from q(1), all the feature q(t) is just a point, which does not 
correspond to any physical image, in the feature space. This explains why we use the 
phrase 'pseudo query' earlier. The six proposed learning algorithms for calculating the 
refined pseudo query point q(t+1) in the feature space can be described as follows. 
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With LA1, the new query point is calculated as the centroid of the clusters comprising 
the feature of the original query example and the features of those images identified as 
relevant in all the previous rounds. The characteristics of this algorithm are that all 
feedbacks are accumulated and taken into account and the influence of q(1) diminishes 
as the retrieval process proceeds further and the size of the cluster increases.  
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The idea of LA2 is to use the centroid of the cluster comprising the features of those 
images identified as relevant in the tth (the most recent) round only without taking q(1) 
and the previous relevance feedbacks into account. Therefore, this algorithm has a very 
short 'memory' and the movement of the query point in the feature space can be radical.  

1    ,  
)(

),(

2

1
)1(

2

1
)1(

1

1

)(

1 ≥+=+

=

= =
t

in

jif

qtq
t

i

t

i

in

j  

LA3 assumes that the query example q(1) is an important basis in finding other similar 
images. The position of the new query point is computed by giving equal weight to the 
feature of the original query q(1) and the centroid of the clusters comprising the fea-
tures of  those images identified as relevant in all the previous rounds of search.  
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(4) LA1: 

LA2: (5) 

(6) LA3: 

LA4: (7) 
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LA4 also recognizes the same importance of the query example q(1). The position of 
the new query point is computed by giving equal weight to the feature of the original 
query q(1) and the centroid of the features of the relevant images identified in the tth 
round of search. Note that the importance of q(1) in both LA3 and LA4 remains constant 
(50%) throughout the retrieval process.  
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By giving variable weights te  α− and )1(  te α−− to the two terms in Equation (8), LA5 
reduces the influence of q(1) and increases the significance of the centroid of the cluster 
comprising the features of the relevant images identified in all the previous rounds of 
search as the retrieving process proceeds further. Parameterα determines the rate at 
which the influences of the two terms changes. In this work, we set it to 1.  
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By the same token, LA6 reduces the influence of q(1) and increases the significance 
of the centroid of the clusters comprising the features of those relevant images identi-
fied in the tth round of search only. 

5   Performance Evaluation 

We have developed an interface of the proposed CBIR system with an example search 
result. This system allows the user to provide relevance feedbacks by identifying the 
relevant images. For each search the system returns 25 images on one page. There are 
1000 200× 200-pixel images, each containing the Region Of Interest (ROI) of one 
mammogram, in our database. 250 of the images reveal calcification phenomenon  
 

Table 1. Results of performance evaluation in terms of mean precision rate 

Learning Mean Precision Rate 

Algorithm Round 1 Round 2 Round 3 Round 4 Round 5 

LA1 0.2 0.2 0.384 0.432 0.54 

LA2 0.216 0.208 0.368 0.432 0.536 

LA3 0.22 0.352 0.424 0.488 0.616 

LA4 0.168 0.28 0.36 0.488 0.624 

LA5 0.25 0.372 0.542 0.57 0.648 
LA6 0.25 0.36 0.472 0.65 0.716 

LA5: (8) 

LA6: (9) 
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while the other 750 do not. Five images with calcification phenomenon were used as 
query examples to retrieve other similar images. Five rounds of relevance feedback 
were conducted for each query example. This procedure was repeated for the six 
learning algorithms, respectively. 

Table 1 showes the retrieval performance of the system in terms of number of posi-
tive images using the six learning algorithms and the five query images, respectively. It 
is observed that the better performance of LA5 and LA6 suggest that allowing the in-
fluence of the original /physical query to attenuate exponentially seems to be a better 
approach.  

6   Conclusions 

A content-based mammogram retrieval system is proposed in this work. The main 
contributions of this work are the development of a novel feature extraction technique 
for describing the degree of the calcification phenomenon revealed in the mammo-
grams and the proposal and study of six relevance feedback learning algorithms, which 
fall in the category of query point movement. The performance evaluation has shown 
that the six proposed learning algorithms can significantly increase the precision of the 
retrieval system from 0.168 up to 0.716 through five rounds of relevance feedbacks. 
Although we observed through our preliminary experiments that allowing the influence 
of the original/physical query to attenuate exponentially as the retrieval process 
evolves, further investigation is still necessary before more informed conclusions can 
be drawn. 
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Abstract. We evaluated three combinations of filters (Mo/Mo, Mo/ Rh, and 
W /Rh) in direct a-Se FFDM system to optimize radiation dose clinically. We 
measured CNR (Contrast to Noise Ratio) as physical characteristics changing 
radiation dose and phantom thickness in clinical range. In 20, 30, 40, and 50mm 
PMMA phantoms, Mo / Mo showed the best performances. On the other hand, 
in 60 and 70 mm, W/Rh 30kV showed best performance. In addition, in 40 and 
50mm PMMA phantoms, W/Rh 30kV showed the second best performance. In 
direct a-Se FFDM system, W/Rh was valuable in minimizing radiation dose. 

1   Introduction 

Direct a-Se FFDM (Full Field Digital mammography) systems  have been acquired in 
the clinical field1-6 and recently, new image acquisition techniques  such as tomo-
synthesis and breast CT (Computed Tomography) have also been developed. However, 
image quality should be prioritized clinically with a limit of radiation dose. In this 
paper, we evaluated optimization of filters and kV in direct a-Se FFDM system through 
physical characterization analysis and contrast-detail analysis changing radiation dose 
and phantom thickness in clinical range in an effort to minimize radiation dose without 
losing image quality.  

2   Methods 

Three combinations of filters in direct a-Se FFDM system were available and the 
pixel pitch of the system was 70 microns. We measured CNR (Contrast to Noise 
Ratio) as physical characterizations changing radiation dose and phantom thickness in 
clinical range (1.0-3.0mGy as AGD (Averaged Glandular Dose)). Combinations of  
filters were Mo/Mo, Mo/Rh, and W/Rh. kV ranged from 24kV to 34kv. The thick-
ness of PMMA phantom was from 20 to 70mm. CNR was measured in accordance 
                                                           
*

  This study was supported by SIEMENS AG, Germany and SIEMENS-Asahi, Japan 
(K.Otsuka). 
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with EUREF (European Reference Organization for Quality Assured Breast Screen-
ing and Diagnostic Services) guidelines6.  CNR formula was as follows: 

CNR   mean pixel value (signal )-mean pixel value ( background ) 
                            SD (signal)2  + SD (background)2 

                                                2 

We also conducted a contrast- detail analysis utilizing CDMAM phantom  
(type 3.4: University Medical Centre Nijmegen St Radbaud, Netherland) and PMMA 
phantom. The total thickness of PMMA phantom and CDMAM phantom were 30, 40, 
and 60mm and AGD were 1.0, 2.0, and 3.0mGy. Combinations of filters were 
Mo/Mo, Mo/ Rh, and W/Rh.  kV ranged  from 24kV to 34kv.Four observers (three 
radiological technologists and one radiologist) evaluated the images and contrast-
detail curves were analyzed. 

3   Results 

CNR Analysis (Fig. 1, Fig. 2a, Fig. 3a, Fig. 4, Fig. 5a, Fig. 6) 
In 20 and 30mm thickness, Mo/Mo 28kV showed the better performances compared 
to other combinations of filters and kV and secondarily, Mo/Mo 24kV and Mo/Mo 
 

 

Fig. 1. CNR Analysis: 20mm Thick PMMA Phantom 

g y

 

Fig. 2a. CNR Analysis: 30mm Thick PMMA Phantom 
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Fig. 2b. Contrast-Detail Analysis by CDMAM: 30mm Thick 
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Fig. 3a. CNR Analysis: 40mm Thick PMMA Phantom 

26kV showed comparable performances. In 30mm thickness, Mo/ Mo 28kV  showed 
the better performances compared to other combinations of filters and kV and 
secondarily, Mo/ Mo 28kV and Mo/ Mo 26kV showed comparable performances. In 
40 and 50mm thickness, Mo/ Mo 28kV showed best performance and compared to 
other combinations of  filter and kV and secondarily, Mo/Mo 26kV and W/Rh 30kV 
showed comparable performances. In 60 and 70mm thickness, W/Rh 30kV showed 
better performance compared to other combinations of filter and kV and secondarily, 
W/Rh 32 kV showed comparable performances . 

Contrast-Detail Analysis (Fig. 2b, Fig. 3b, Fig. 5b) 
In 30mm total thickness, Mo/Mo 28kV, Mo/Mo 24kV and Mo/Mo 26kV showed 
better performances compared to other combinations of filters and kV and each 
showed comparable performances. In 40mm total thickness, Mo/Mo 28kV, Mo/Mo 
26kV, and W/ Rh30kVshowed better performances compared to other combinations 
of filters and kV and each showed comparable performances. In 60mm total 
thickness, W/Rh 30kV, W/Rh 32kV, Mo/Mo 28kV showed better performances 
compared to other combinations of filters and kV and each showed comparable 
performances. 

4   Discussion 

In a-Se FFDM system, image qualities can differ in accordance with radiation dose 
and phantom thickness owing to characteristics of detectors and combinations of 
filters physiologically in CNR. In cases with relatively thin breasts, Mo/Mo 28kV 
showed the best performance on the other hand, in the case with relatively thick 
breasts, W/Rh 30 kV showed the best performance and W/Rh 32kVwould be the  
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Fig. 3b. Contrast-Detail Analysis by CDMAM: 40mm Thick 
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Fig. 4. CNR Analysis: 50mm Thick PMMA Phantom 

 

Fig. 5a. CNR Analysis: 60mm Thick PMMA Phantom 

second best performance. W/Rh showed better performances compared to Mo/Rh to 
minimize radiation dose. On the other hand, optimization of kV in W/Rh, higher kV 
such as 34kV is not appropriate because of the characteristics of its spectrum 
(Figure.7). On the other hand, regarding human observers’ test, there were not 
significantly differences between combinations of filters and kV that showed higher 
performances in CNR. The discrepancy could originate in characteristics of soft-
copy reading that manipulate contrast with wide dynamic range freely. In con-
clusion, W/Rh will be valuable for in minimizing radiation dose with higher image 
quality clinically. 
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Fig. 5b. Contrast-Detail Analysis by CDMAM: 60mm Thick 
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Fig. 6. CNR Analysis: 70mm Thick PMMA Phantom 

 

Fig. 7. Spectrum of W/Rh  27KV 
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Abstract. Classifier plays an important role in a system detecting abnormal 
shadows from mammograms. In this paper, we propose the novel classification 
system that cascades four weak classifiers and a classifier ensemble to improve 
both computational cost and classification accuracy. The first several weak clas-
sifiers eliminate a large number of false positives in a short time which are easy 
to distinguish from abnormal regions, and the final classifier ensemble focuses 
on the remaining candidate regions difficult to classify, which results in high ac-
curacy. We also show the experimental results using 2,564 mammograms. 

1   Introduction 

Currently, breast cancer is one of the most serious cancers for women in the world 
and the amount of patients will increases year by year. Mammogram screening for 
breast cancer has become popular because it is effective in detecting breast cancer at 
an early stage. However, the burden on radiologists who have to deal with read a large 
number of mammograms in a very short time has increased tremendously. In order to 
decrease the burden, computer-aided diagnosis (CAD) systems have been developed. 
CAD systems for mammograms have the potential to be used as a second reader to 
increase the reliability of mass screening. 

We have been developing the mammogram CAD systems [1]-[3]. For example, 
Kobatake et al. [1] proposed a tumor enhancement filter called “Iris filter” to boost 
the detection accuracy of faint tumors with low gradient of density. Furuya et al. [2] 
focused on the features for classification and selected the sub-optimal feature set from 
large feature database to discriminate abnormal shadows from normal tissues on 
mammograms. We also presented an improvement of the CAD system based on the 
classifier ensemble by AdaBoost combined with feature selection [3]. 
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Recently a method for combining increasingly more complex classifiers in a “cas-
cade” has been used for classification problem in the field of image pattern recogni-
tion. It allows false-positive regions on the image to be removed while spending more 
computation on regions to be detected. Viola et al. [4] applied the detection system 
with the cascade to the domain of face detection. However, there is no research report 
which introduces the cascade into mammographic mass detection system.  

In this paper, we propose the novel classification system that has a cascade of four 
weak classifiers and one classifier ensemble trained by AdaBoost to improve classifi-
cation accuracy. The weak classifiers eliminate a large number of false positive re-
gions in a short time without removing any abnormal regions. And the final classifier 
ensemble analyses the details of remaining small number of the candidates difficult to 
classify, which takes time but achieves high accuracy.  

2   Outline of the Proposed System 

Fig.1 shows the flowchart of the proposed system. The details of each procedure are 
as follows. 

1) Enhancement of tumors: First, the system enhances mass like regions by applying 
an adaptive ring filter [5] to the original mammogram. Here, the adaptive ring filter is 
a filter that evaluates to what degree the density gradient vector is concentrated to the 
point of interest. Consequently a circular convex region such as a mass is enhanced. 
2) Extraction of suspicious regions: Next, it detects at most four local maximum 
points from the enhanced image. After, the boundary of each suspicious region (SR) 
is defined by SNAKES [6] in the neighborhood of each selected local maximum point 
on the enhanced image.  
3) Cascade classification: This process consists of five layers of classifiers. Each of 
the first four layers (H1~H4) consists of a weak classifier and analyses the SRs to 
eliminate a large number of false SRs without removing SRs corresponding to true 
lesions. In the last layer (H5), remaining SRs are analyzed by a ensemble of nine weak 
classifiers trained by AdaBoost with feature selection [3]. Here, all weak classifiers in 
the proposed system are based on the Mahalanobis distance Di from an input feature 
vector x to an average vector of class i, which is defined as follows: 

)()( 1
ii

T
ii mxmxD −−= −  (1) 

where mi and Σi are the average vector and the covariance matrix of the feature vec-
tors of class i, respectively. The classification process calculates following ratio γ of 
two distances: 

abnormal

normal

D

D
=γ  (2) 

If the ratio is greater than threshold T, the SR is classified as an abnormal mass re-
gion. And others are classified as normal shadows. 
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Mammogram

Adaptive Ring Filter

Extraction of Suspicious Regions (SRs)

FP Reduction by H1 based on 10 features

FP = N
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FP Reduction by H2 based on 10 features

FP Reduction by H3 based on 10 features

FP Reduction by H4 based on 10 features

SR Classification by H5 based on 69 features

Abnormal Regions
 

Fig. 1. Outline of the proposed abnormal shadow detection system. Note that the eliminated 
SRs by upper layers will not be analyzed by the subsequent layers. 

Each weak classifier of all layers employs 10 features which are selected based on 
“plus 4–take away 3” algorithm [7] from the large scale feature database including 
over 1,000 features. The database consists of 25 shape based features, 960 density 
features, and other 23 features. So the total number of features is 1,008 [8]. The shape 
based features are composed of circularity, spreadness, area of SR, and other statisti-
cal values which relate to distance from a geometry center of SR to its boundary. The 
density features have 4 categories; the first order statistical values of density (e.g. 
mean, variance, entropy, etc) the second order statistical features measured by using 
co-occurrence matrix, the contrast based features calculated according to the density 
values of inside and outside SRs or the density correlation between SR and artificial 
mass models, and  others. These density features are calculated from original SRs and 
five kinds of SRs processed by Sobel filter and Daubechies wavelet.  

The “plus 4–take away 3” algorithm applies sequential forward selection four 
times followed by three steps of sequential backward selection and repeats the cycle 
of forward and backward selection until the required number of features is obtained. 
In this study, features used in the first four layers are selected so that the specificity is 
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minimized when the true positive rate is 100.0%. And the feature sets used in the last 
layer are selected based on the area under ROC curve (Az). 

3   Experimental Results 

The performance of the proposed cascade classifiers was validated by use of a total of 
10,092 SRs including 683 abnormal and 9,409 normal shadows. These SRs were 
extracted from 2,564 mammogram images whose size is 2,370×1,770 pixels with 
0.1mm/pixel resolution and 10-bit accuracy. These mammograms were taken at the 
seven hospitals in Japan and the imaging system used are FCR-9000, FCR-5000, and 
FCR-AC3 of Fuji Photo Films Co., Ltd. The ground truth for the validation was de-
termined by biopsy proven. Details of image database are shown in Table 1. 

In these experiments, 10-fold cross validation methods was adopted to estimate er-
rors, where dataset was divided in the ratio of 9 (for training) : 1 (for test) while pre-
venting SRs of a patient from dividing into both training and test dataset. A computer 
with a 3.0 GHz Xeon processor and 3.5 GB memory was used in the experiments. 
The operating system was Windows XP Professional. 

Table 2 and Fig. 2 present the comparison between classification accuracy of the 
proposed system and those of two classification systems each of which uses a classi-
fier ensemble in order to vilify the cascade scheme. One of the systems for the com-
parison test has a classifier ensemble configured with nine weak classifiers where the 
number is the same as that of weak classifiers in H5. Another system has a classifier 
ensemble consisting of 13 weak classifiers which is the same number as the total of 
weak classifier in the proposed system.  

Comparing these classification systems, the proposed system in a cascade structure 
showed the best classification accuracy, where Az=0.972 and number of false posi-
tives (FPs) per mammogram=0.490 with 95% sensitivity. The FROC curve of the 
proposed (bold black curve in Fig. 2) is superior to other curves everywhere in the 
graph. After applying statistical test [9], [10], we found significant differences be-
tween the Az of the cascade system and those of two systems (p<0.05). 

Table 1. Details of the mammogram database taken in the seven hospitals 

Hospital Number of patients Number of images Number of abnormal masses
Hospital A 51 112 38
Hospital B 252 1008 229
Hospital C 88 200 79
Hospital D 125 308 115
Hospital E 183 436 154
Hospital F 50 268 52
Hospital G 67 232 56

Total 816 2564 723  
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Table 2. Classification accuracies of the three systems (Az and number of false positives (FPs) 
per image) 

Az sensitivity=0.80 0.90 0.95
cascade scheme 0.972±0.005 0.157±0.049 0.293±0.074 0.490±0.119

9 classifiers ensemble 0.962±0.008 0.205±0.081 0.390±0.109 0.662±0.173
13 classifiers ensemble 0.966±0.007 0.174±0.067 0.342±0.097 0.588±0.131

FPs/image
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Fig. 2. FROC curves of the three classification systems. Each plot in this figure shows an aver-
age of the true positive ratios by 10 fold cross validation computed at each number of false 
positives. 

The most powerful reason why the proposed classification system presents the best 
accuracy is that a large number of FPs were eliminated by the first four layers 
(H1~H4) of the cascade process. In this experiment, the first four layers could remove 
466.3 FPs on average (from 1009.2 to 542.9) without removing SRs corresponding to 
true lesions. The result by each layer is summarized in Table 3 and examples of the 
removed FPs are shown on Fig. 3. Due to the reduction of the FPs, the last layer (H5) 
could focus on the remaining SRs which included true positives and about half of the 
FPs detected by the extraction process. Consequently diversity of the FPs was greatly 
reduced, which resulted in high accuracy of the classification process. For further 
discussion, we computed the correlation coefficients between the output from the 
proposed system and those of the two systems used in the comparison test. The corre-
lations were 0.545 and 0.555 respectively, while the correlation between the two sys-
tems was 0.994. The result told us that the proposed cascade classifier had different 
characteristic from the two classifiers, because of the difference in the training images 
for ensemble learning. 
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Table 3. Simulated computational cost and actual comutation time 

       (a) Proposed system 
layers #(features) #(SRs) simulated cost* actual cost (sec.)

H 1 10 1009.2 10092.0a 236.6
H 2 10 751.6 7516.0a 263.6
H 3 10 674.9 6794.0a 129.9
H 4 9 591.9 5327.1a 86.5
H 5 65 542.9 35288.5a 796.7

Total 104 64972.6a 1513.3 = 5.90sec./image 
 

 (b) Two systems for comparison test 
#(classifiers) #(features) #(SRs) simulated cost* actual cost (sec.)

9 67 1009.2 67616.4a 1844.2 = 7.19sec./image
13 89 1009.2 89818.8a 1850.9 = 7.22sec./image  

*simulated cost = #(feature) × #(SRs) × a(= average computation cost for one feature) 

(a) Samples removed by H1   (b) Samples removed by H2

(a) Samples removed by H3   (b) Samples removed by H4  

Fig. 3. Examples of removed FPs by each layer of the proposed cascade process 

In the proposed cascade system, some SRs were analyzed by all layers and all of 
the 104 features in 13 classifiers were computed for them. We have simulated the 
computational cost of the three systems in the Table 3, where the average computa-
tion cost for calculating a feature was denoted by a. From this table, we found that the 
proposed cascade achieved the lowest computational amount among them, because 
about half of the SRs (456.3) were eliminated by the first four weak classifiers whose 
costs were low. To confirm the findings, we also measured the actual calculation time 
of features used in the systems. The results are also shown in the rightmost column in 
the Table 3 and we could see that proposed system by cascade scheme was the fastest 
system, where total computation time was 1513.3 seconds (5.90 sec/image). The  
difference between the simulated computational cost and actual cost is due to the 
variance of the computational costs of features. 
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4   Conclusion 

In this paper, we proposed the novel abnormal shadow detection system from mam-
mograms which has a cascade of four classifiers and a classifier ensemble to improve 
the classification performance. Experimental results with 10-fold cross validation 
showed that the classification performance by the proposed system was superior to 
that of the system which consists of classifier ensemble. The average Az was 0.972, 
and average number of false positive was 0.490/image when the true positive fraction 
was fixed at 95 %. The Az value of the proposed system was significantly larger than 
those of the two systems which consist of an ensemble used in the comparison test 
(p<0.05). A positive reason for the good result is the effective reduction of false posi-
tives without removing any true lesions. Consequently the last layer focused on the 
classification of the remaining SRs, which resulted in high accuracy. In addition, we 
found the proposed system had the smallest computation cost among the three sys-
tems evaluated in the comparison test. 

In future studies, we plan to modify the weak classifier learning process to improve 
the system performance and we will optimize the number of layers in the cascade, the 
number of weak classifiers in each layer, and the features used in the weak classifiers. 
Moreover analysis of characteristics of the false positives and validation using a large 
database are also remained for future.  
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Abstract. In this paper, co-occurrence matrix based texture features
are used to classify masses as benign or malignant. As (digitized) mam-
mograms have high depth resolution (4096 gray levels in this study)
and the size of a co-occurrence matrix depends on Q, the number of
gray levels used for image intensity (depth) quantization, computation
using co-occurrence matrices derived from mammograms can be expen-
sive. Re-quantization using a lower value of Q is routinely performed
but the effect of such procedure has not been sufficiently investigated.
This paper investigates the effect of re-quantization using different Q.
Four feature pools are formed with features measured on co-occurrence
matrices with Q ∈ {400}, Q ∈ {100}, Q ∈ {50} and Q ∈ {400, 100, 50}.
Classification results are obtained from each pool separately with the use
of a genetic algorithm and the Fisher’s linear discriminant classifier. For
Q ∈ {400, 100, 50}, the best feature subsets selected by the genetic algo-
rithm and of size k = 6, 7, 8 have a leave-one-out area under the receiver
operating characteristic (ROC) curve of 0.92, 0.93 and 0.94, respectively.
Pairwise comparisons of the area index show that the differences in clas-
sification results for Q ∈ {400, 100, 50} and Q ∈ {50} are significant
(p < 0.06) for all k while that for Q ∈ {400, 100, 50} and Q ∈ {400} or
Q ∈ {100} are not significant.

1 Background

In computer-aided breast cancer diagnosis, one of the major signs of abnormality
is the presence of masses. Benign masses tend to have well defined boundaries
and are usually circular or oval in shape while malignant masses tend to have
fuzzy boundaries and are irregular in shape. This results in the presentation
of different textures. The capability in quantifying these textures can be very
useful in discriminating a benign mass from a malignant mass. One of the popular
techniques in texture features extraction is based on co-occurrence matrix [5].

A co-occurrence matrix Pij = Prob(i, j|d, θ) is the joint probability of two
pixels in an image at a distance d in a direction θ take on values i and j sep-
arately. The size of a co-occurrence matrix, however, does not depend on d
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nor θ, but on Q, the number of gray levels used for image depth (intensity)
quantization. This can be a problem for high depth resolution images such as
mammograms as the derived co-occurrence matrices are large and, therefore,
sparse. Statistics measures become meaningless and data storage and computa-
tion can be expensive. In order to reduce the size of a co-occurrence matrix, gray
level re-quantization is routinely performed. However, the effect of gray level re-
quantization on co-occurrence matrix based features has not been sufficiently
investigated. The employment of Q values of 128 [2] and 256 [1] [10] have been
reported in the literature. The decision on a proper Q value is complicated but
is probably dependent on the nature of the images, the attributes of the features
subsequently measured, the task of the measured features and others. This study
aims to investigate the role of Q in a restricted scenario.

In this study, four feature pools are constructed. The first three feature pools
include the same set of features measured on co-occurrence matrices derived
with Q ∈ {400}, Q ∈ {100}, or Q ∈ {50}. The fourth feature pool is the
union set of the first three feature pools, that is, Q ∈ {400, 100, 50}. The Q
values investigated are based on values of Q reported in the literature and the
desire of a low Q value as a high Q value leads to a large co-occurrence matrix.
In addition to the co-occurrence matrix derived features, 12 energy features
and 8 gradient features are also included in each of the four feature pools. A
genetic algorithm [6] is used to select the best feature subsets from a feature pool
for classifying masses as benign or malignant. The classification performances
of the four feature pools are compared and the effect of different Q values is
observed.

2 Method and Materials

2.1 Data

A data set of 71 screening mammograms was employed in this study. Of the
71 mammograms, 43 contain malignant masses and 28 contain benign masses.
The mammograms were randomly selected from the archives. All the malignant
masses were biopsy proven and the benign had a three years elapse time showing
no sign of malignancy. The size of the malignant lesions ranges from less than
1 cm to about 2 to 3 cm. Only one mass from each woman was included in the
database. In addition, a benign mass was included only if no malignant lesions
were found in the same or contralateral mammogram.

The selected mammograms were digitized using a Lumiscan 150 (Lumisys)
laser digitizer with a 4096 gray levels image depth resolution and a 50 μm
spatial resolution. All the selected mammograms were annotated by a radiol-
ogist experienced in mammography. According to the radiologist’s annotation,
regions-of-interest (ROIs) with a centered or near-centered mass were extracted.
The size of the ROIs is, typically, 1024 × 1024 pixels at full spatial and depth
resolutions.
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2.2 Method

Texture features based on co-occurrence matrix and first-order statistics were
derived from the central mass region and the mass border region. Details of the
texture features extraction were reported previously [7]. For the completeness of
this paper, a brief description of the features is included in the following.

2.2.1 Texture Features
For each mass, the mass border was defined using two methods, the threshold
method (Bt) and the polygon method (Bp). For each version of the mass borders,
an 80 pixels wide ribbon around the mass border was extracted. The rubber
band straightening transform proposed by Sahiner et al.[11] was used to obtain
a regular array from the ribbon. A number of half overlapping blocks of size
40 × 40 pixels were then defined on the transformed ribbon. For each block,
co-occurrence matrices with parameters θ = 0, π/2; d = 11, 15, 21, 25, 31 were
constructed and the inverse difference moment (IDM)

IDM =
∑ ∑

|i−j|=h

1
1 + h2 P (i, j),

where h = 0, 1, 2, . . . , Q− 1 was computed. For a fixed distance d, the histogram
of IDM values for θ = 0 and θ = π/2 were generated separately and the first
four moments (M1, M2, M3 and M4) of the two histograms account for eight
features (40 features when all 5 distances d = 11, 15, 21, 25, 31 were considered).
Finally, the 80 features (the above 40 features × 2 mass borders) were measured
once on each group of co-occurrence matrices with a Q value of 400, 100, or 50.

For the comparison of the effect of different Q, four feature pools were
constructed. The above 80 features measured on co-occurrence matrices with
Q = 400, Q = 100 and Q = 50 contributed to the first three feature pools. The
union set of the three feature pools contributed to the fourth feature pool. In
addition to the co-occurrence matrix features, 12 energy based features and 8
gradient based features were measured on each mass. Each of the four feature
pools were augmented by the same 20 additional features. A summary of the 260
features (240 co-occurrence matrix based and 20 additional features) is given in
Table 1.

2.2.2 Feature Selection and Classifier
From each feature pool, a genetic algorithm [6] was employed to select the best
k feature subset for masses classification where k = 2, 3, . . . , 12. The genetic
algorithm was designed to find the (sub)optimal feature subset of a given size
k from a feature pool. The chromosome was defined as a sequence of natural
numbers of length k, that is, the values of the genes were the feature indices.
Initial population was set to be 1000. The fitness function was defined as the
performance of a feature subset as indicated by the area under the receiver
operating characteristic (ROC) curve [9]. In updating a generation, chromosomes
with a fitness below average were replaced by new chromosomes created by two
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Table 1. Summary of the 260 features. Table entries are feature indices. Each co-
occurrence matrix feature is specified by 5 parameters: Q, d, θ, Mx and Bt or Bp

(Section 2.2).

12 energy features 8 gradient features

M1 M2 M3 M4 M1 M2 M3 M4
Mass center (25 × 25) 1 2 3 4 radial 13 14 15 16
border region (7 × 21) 5 6 7 8 tangential 17 18 19 20
border region (21 × 7) 9 10 11 12

240 Co-occurrence matrix based features

Border region by Border region by
threshold method Bt polygon method Bp

Q d θ M1 M2 M3 M4 M1 M2 M3 M4
400 31 0 21 22 23 24 29 30 31 32

π/2 25 26 27 28 33 34 35 36
25 0 37 38 39 40 45 46 47 48

π/2 41 42 43 44 49 50 51 52
21 0 53 54 55 56 61 62 63 64

π/2 57 58 59 60 65 66 67 68
15 0 69 70 71 72 77 78 79 80

π/2 73 74 75 76 81 82 83 84
11 0 85 86 87 88 93 94 95 96

π/2 89 90 91 92 97 98 99 100
100 31 0 101 102 103 104 109 110 111 112

π/2 105 106 107 108 113 114 115 116
25 0 117 118 119 120 125 126 127 128

π/2 121 122 123 124 129 130 131 132
21 0 133 134 135 136 141 142 143 144

π/2 137 138 139 140 145 146 147 148
15 0 149 150 151 152 157 158 159 160

π/2 153 154 155 156 161 162 163 164
11 0 165 166 167 168 173 174 175 176

π/2 169 170 171 172 177 178 179 180
50 31 0 181 182 183 184 189 190 191 192

π/2 185 186 187 188 193 194 195 196
25 0 197 198 199 200 205 206 207 208

π/2 201 202 203 204 209 210 211 212
21 0 213 214 215 216 221 222 223 224

π/2 217 218 219 220 225 226 227 228
15 0 229 230 231 232 237 238 239 240

π/2 233 234 235 236 241 242 243 244
11 0 245 246 247 248 253 254 255 256

π/2 249 250 251 252 257 258 259 260

chromosomes (parents) based on point cross-over. A mutation rate of 0.1 was set.
The population was allowed to evolve for 500 generations and the (sub)optimal
feature subset was given by the chromosome with the highest fitness score. A
Fisher’s linear discriminant function was then used as the classifier and the
classification results were once again evaluated using the ROC methodology.

2.2.3 Statistical Significance Estimation
Note that for a fixed k value, many different combinations of k out of 100 (first
3 feature pools) or 260 (the fourth feature pool) were explored by the genetic
algorithm. Due to this multiple testing scenario, the apparent superiority of the
feature subset selected by the genetic algorithm could have been due to chance
at work. Hence, statistical significance of the classification performances of the
best feature sets was evaluated. For each fixed k value, the statistical significance
was estimated by generating the empirical null distribution using the bootstrap
resampling technique [8]. The empirical distribution consists of 500 data points.
That is, 500 bootstrap samples were generated from the original data set of
71. Each bootstrap samples subsequently employed the genetic algorithm and
the Fisher’s linear discriminant function described in the above in arriving a
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sample classification score which makes up one data point of the bootstrap null
distribution.

2.3 Area Under the ROC Curve: Nomenclature and Computation

The area under the ROC curve was used as a fitness measure in the genetic
algorithm and a measure in evaluating the classification performance. The area
was computed using the trapezoidal rule which is equivalent to the Wilcoxon
statistics [3]. The symbol Az, popular for reporting the area under the ROC
curve calculated using a binormal distribution model, is not suitable in this
study as non-parametric approach was used in computing the area. Throughout
this paper, the symbol Aroc is used to refer to the area under the ROC curve,
regardless of the technique used for the area estimation. Some of the Aroc values
and their statistical analyses were computed using MedCalc for Windows, version
8.1.1.0 (MedCalc Software, Mariakerke, Belgium) and the ROCKIT software
(Kurt Rossmann Lab., University of Chicago).

3 Results

3.1 Feature Subsets of Interest

As the optimal number of features, k, was not known a priori and the genetic
algorithm was designed with a input parameter specifying the desired number
of output features, a range of k was considered. Due to the relatively small
sample size, the range of k to be considered was capped at 12. Visual inspec-
tion of the 1-dimensional feature plots shows that each of the features alone
does not have sufficient discriminative power. Hence, k > 1 was adopted. For a
fixed k, many different combinations of k features were inspected by the genetic
algorithm.

Only the fourth feature pool with Q ∈ {400, 100, 50} was employed in this
section as it contains all available features. Using the entire data set for both
training and testing, the resubstitution Aroc guided the genetic algorithm in
finding the (sub)optimal feature subset. Figure 1 shows both the resubstitution
and the leave-one-out classification results for each of k where k = 2, 3, . . . , 12.
(Note that for a fixed k, the best resubstitution Aroc and the best leave-one-
out Aroc do not necessarily originated from the same feature subset.) Statistical
significance (Section 2.2) of the resubsitution Aroc values were calculated. All the
resubstitution Aroc values were found significant at a 0.05 level and for k >= 4,
the Aroc values were significant at a 0.01 level.

In opting for a best k or best range of k, feature subsets resulting in a high
classification performance are desirable. However, caution must be taken that as
the number of features increases, the classifier performance will increase up to a
certain point. Beyond this point, further increase in the number of features will
lead to a decrease in the classifier’s performance. An examination of Figure 1
reveals that both the resubstitution and the leave-one-out Aroc have high values
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Fig. 1. Aroc values of the best feature subsets for a fixed number of features k. The
feature subsets were selected by the genetic algorithm from the fourth feature pool
(Q ∈ {400, 100, 50}). Error bars indicate one standard deviation.

Table 2. Classification results of the best feature subsets with size k = 6, 7, 8 from
each of the four feature pools. Note that for a fixed k, if the feature subset for the best
resubstitution Aroc is not the same as that of the best leave-one-out Aroc scores, the two
scores are entered in different rows and only the feature subset for the best leave-one-out
Aroc is given.

k Best Aroc Best Aroc Feature subset associated with
(resubstitution) (Leave-one-out) the best Aroc (Leave-one-out)

Q ∈ {400, 100, 50}, hence feature pool ∈ {1, . . . , 260} (see Table 1)
6 0.950

0.918 55, 73, 109, 125, 171, 202
7 0.963

0.928 2,55,73,109,125,171,202
8 0.980 0.943 2,45,55,72,109,153, 169, 201

or 2, 55, 72, 109, 125, 153, 169, 201
Q ∈ {400}, hence feature pool ∈ {1, . . . , 100} (see Table 1)

6 0.926 0.883 12, 32, 55, 58, 75, 90
7 0.942 0.914 12, 32, 41, 42, 54, 60, 89
8 0.954

0.896 2, 3, 12, 30, 55, 58, 74, 90
or 2, 3, 12, 31, 55, 58, 74, 90

Q ∈ {100}, hence feature pool ∈ {1, . . . , 20, 101, . . . , 180} (see Table 1)
6 0.932

0.884 2, 6, 109, 121, 125, 135
7 0.948 0.906 109, 121, 125, 128, 136, 154, 171
8 0.958 0.916 109, 110, 121, 125, 127, 135, 155, 172

Q ∈ {50}, hence feature pool ∈ {1, . . . , 20, 181, . . . , 260} (see Table 1)
6 0.913

0.860 13, 189, 202, 216, 235, 252
7 0.936 0.868 13, 192, 201, 216, 233, 245, 250
8 0.945 0.885 2, 6, 190, 197, 201, 206, 214, 255

(> 0.900) for k >= 6. However, for k > 8, the increase in Aroc is not significant.
Hence, only the best feature subsets of size k = 6, 7, 8 are deemed to be of interest
in this study. The feature subsets are given in Table 2 in the next Section.
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3.2 Results of Different Q

Classification results using the best feature subsets of size k = 6, 7, 8 were ob-
tained from each of the four feature pools. Table 2 shows the corresponding
resubstitution and leave-one-out Aroc values, together with the feature subsets.

3.3 Comparison of Results of Different Q

For the best feature subset of size k = 6, 7, 8, the ROC curves of different Q
are plotted in Figure 2. Statistical significances [4] of the difference in Aroc are
given in Table 3. Figures show that the differences in Aroc for Q ∈ {400, 100, 50}
and Q ∈ {50} are significant (p < 0.06) for all k. The differences in Aroc for
Q ∈ {400, 100, 50} and Q ∈ {400} or Q ∈ {100} are not significant. The slight
discrepancy in the best Aroc shown in Table 2 and 3 is due to the use of different
computation programs.
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Fig. 2. ROC curves of different Q for the best feature subsets with k number of features.
(Left) k = 6, (middle) k = 7 and (right) k = 8.

Table 3. Pairwise comparison of area under the ROC curves for Q = 400, Q = 100,
Q = 50 and Q = all, i.e. Q = 400, 100, 50

k Q Best Aroc ROC curves (pairwise comparison with Q =all)
(leave-one-out) Standard 95 % p-value

Δ area error CI (one-tailed)
6 all 0.916

400 0.886 0.030 0.035 (-0.038, 0.098) 0.195
100 0.885 0.032 0.031 (-0.028, 0.092) 0.152
50 0.859 0.057 0.035 (-0.011, 0.126) 0.050

7 all 0.928
400 0.914 0.014 0.035 (-0.055, 0.084) 0.350
100 0.905 0.022 0.025 (-0.027, 0.071) 0.185
50 0.868 0.060 0.037 (-0.012, 0.132) 0.052

8 all 0.944
400 0.897 0.047 0.034 (-0.021, 0.114) 0.088
100 0.917 0.027 0.023 (-0.019, 0.073) 0.128
50 0.887 0.056 0.037 (-0.017, 0.129) 0.062
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4 Conclusion

The results show that using 260 texture features, Aroc was found to be 0.92,
0.93 and 0.94 for the best feature subsets with 6, 7 and 8 number of features
and Q ∈ {400, 100, 50}. Repeated trials with Q ∈ {400}, Q ∈ {100} and Q ∈
{50} all demonstrate a strictly lower Aroc for a given k. The differences in the
classification results were found significant (p < 0.06) when using a single low Q
value (Q = 50) for all number of features considered. For higher values of Q, the
differences in the classification results were found not significant for all number
of features considered. This result, in general, aligns with the Q values employed
and reported in the literature.
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Abstract. A novel approach to the detection of masses and clustered 
microcalcification is presented. Lesion detection is considered as a two-class 
pattern recognition problem. In order to get an effective and stable 
representation, the detection scheme codifies the image by using a ranklet 
transform. The vectors of ranklet coefficients obtained are classified by means 
of an SVM classifier. Our approach has two main advantages. First it does not 
need any feature selected by the trainer. Second, it is quite stable, with respect 
to the image histogram. That allows us to tune the detection parameters in one 
database and use the trained CAD on other databases without needing any 
adjustment. In this paper, training is accomplished on images coming from 
different databases (both digitized and digital). Test results are calculated on 
images coming from a few FFDM Giotto Image MD clinical units. The 
sensitivity of our CAD system is about 85% with a false-positive rate of 0.5 
marks per image. 

1   Introduction 

Two of the most frequent problems encountered in developing CAD systems for 
mammography are the following. First, the automatic detection of breast lesions can 
be hampered by the wide diversity of their shape, size and subtlety. Detection 
methods often rely on a feature extraction step: here, lesions are isolated by means of 
a set of characteristics. Due to the great variety of lesions, it is extremely difficult to 
get a common set of features effective for every kind of lesion. This is particularly 
true for masses, since they can vary considerably in optical density, shape, position, 
size and characteristics at the edge. A second difficulty arises from that the detection 
algorithms are often unstable, with respect to the dynamic range of the image 
histogram. As a matter of fact, the CAD algorithms have to be repeatedly tuned, when 
images coming from different systems are considered. A suitable Look Up Table 
(LUT) can accomplish a sort of “normalization” to the images before the CAD 
analysis. In this way, the same detection scheme can be applied to images coming 
from different detectors and acquired in different exposure conditions. Unfortunately, 
it is not so easy to gain a proper LUT, which can maximize the performance of the 
CAD for any acquisition condition. 
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In this paper, we present a detection system, which does not rely on any feature 
extraction step and which is stable with respect to the image histogram. The first 
attribute stems from using an SVM classifier, whilst the second derive from  
the ranklet representation. The algorithm automatically learns to detect the lesions by 
the examples presented to it. In this way, there is no a priori knowledge provided  
by the trainer: the only thing the system needs is a set of positive examples and a set 
of negative examples. The detection scheme codifies the image with a ranklet 
representation; the great amount of information handled by the algorithm is classified 
by means of a Support Vector Machine (SVM) classifier. SVMs have already been 
applied to CAD issues in mammography since 2001 [1]. An approach based on SVM 
classifier, without using extracted features, has been investigated both for masses and 
microcalcification detection [2,3,4]. Here, we present a novel use of ranklets, as an 
effective representation for the image crops to be classified. Ranklets are 
nonparametric, multiresolution and orientation selective features modeled on Haar 
wavelets first introduced in 2002 [5]. The first attempt to use ranklets as data 
representation for recognition problems was for face detection problems. Current 
comparative researches between wavelets and ranklets on CAD systems seem to 
demonstrate that ranklets are able to achieve better performances when applied to 
represents tumoral masses. 

In this study, we validate our detection scheme with images coming from a few 
FFDM units: the systems used were “Giotto IMAGE MD” produced by IMS, Italy. 
They are based on amorphous Selenium flat panel digital detector manufactured by 
ANRAD Corporation, Canada. The active area of the imager is 17.4 cm × 23.9 cm 
with a pixel pitch of 85 micrometers; images have 2048 × 2816 pixels with 13 bit 
gray-level resolution. In order to have a large number of training images, we trained 
the CAD system both on digital images coming by the FFDM units and on digitized 
images coming the USF DDSM database available on the net [6]. 

2   Methods 

The ranklet-based CAD is characterized by not requiring extracted features for detecting 
the breast lesions. The algorithm automatically extracts the needed information during 
the training phase. The CAD system has been trained to detect both clustered 
microcalcifications and masses. Figure 1 shows a chart of our detection scheme. 

2.1   The Detection Scheme 

The CAD detection scheme consists of two separate algorithms; one able to detect 
masses and another one for detecting clustered microcalcifications. The first step of 
the mass detection algorithm consists in a pre-selection of the suspect regions within 
the breast. This is achieved by means of adaptive local gray-level thresholding. All 
the selected pixels are then analyzed by an ensemble of three different experts. Each 
expert is able to accomplish a multiscale detection, in order to find out masses with 
size ranging from 3 mm to 35 mm. The searching performed by each expert is based 
on the SVM classification of the ranklet representation of all the crops centered on the 
pixels selected in the first step. Finally, a region is marked as suspect mass by using a 
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voting strategy on the committee of the three experts. An ensemble of experts 
improves the overall performance of individual experts, if the individual experts 
commit mistakes on different objects. Basically, a region is considered suspect only if 
at least two of the three experts detect that region. 

Fig. 1. Chart of the ranklet-based detection scheme 

The first step of the microcalcification detection method consists in a pre-selection 
of the regions containing bright spots. This is achieved by means of a statistical test 
calculated on a linear-filtered image. Pixels passing that test are then provided to a 
detector similar to the experts used for the masses. Here, a ranklet representation of 
the crops centered on the points extracted in the first step is obtained. After that, the 
crops are judged as positive or not, by using an SVM classifier. The main difference 
of the featureless detection between masses and microcalcifications is that in the first 
case a multiscale searching is used, whereas in the second case crops of fixed size are 
considered. The single adjacent pixels classified as suspect are the grouped together 
and clusterized, if more than two signals in a 1 cm2 area are detected. 

Finally, signals discovered by the masses and clustered microcalcifications detectors 
are joined by means of a logical OR operator, and a maximum predetermined number of 
marks are presented as the final result. Signals are ranked by means of their distance 
from the separating hyperplane traced by SVM. 
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2.2   Image Dataset 

The training dataset consists of a number of “positive” and “negative” crops. 
“Positive” crops were extracted from cancer images and are centered on the lesions 
(masses or single microcalcifications). “Negative” crops were extracted randomly 
from normal images (i.e. from images without lesions). We used about 850 positive 
crops for training the CAD system (600 single microcalcifications and 250 opacities). 
A more complete description of the training procedure can be found in [2]. 

The dataset used for testing CAD performance consists of more than 1000 images 
not used for training and coming from various “Giotto Image MD” FFDM systems. 
Images have a pixel size equal to 85 micrometers and a gray-level resolution of 13 
bits; they have been collected both in the course of the clinical evaluation of the 
FFDM system and subsequently during the regular clinical examinations. The 
database includes about 900 normal images (without lesions) and 140 images with at 
least one lesion, such as tumor opacities or clustered microcalcifications. The location 
of the lesions have been marked by expert radiologists and collected together with the 
images. Digital mammograms were always available in four projections per patient. 
Each case is relative to one patient and comprises the four projections (two cranio-
caudal and two medio-lateral views). Performances are estimated by means of FROC 
curves, both on a per-image and a per-case basis. 

False-positives marks were calculated on 154 normal images coming from screening 
examinations and with a follow-up of at least 1 year. These normal images were 
extracted from randomly chosen patients. The true positive performance were evaluated 
on 140 cancer images coming from symptomatic patients and confirmed by biopsy. 30 
cases show masses as only signs of cancer, whereas 37 cases show only clustered 
microcalcifications. Three patients show both masses and microcalcifications.  

2.3   The Ranklet Representation 

Given a set of (x1, x2, ..., xN) pixels, the rank transform substitutes each pixel’s intensity 
value with its relative order (rank) among all the other pixels. This is a nonparametric 
transform since, given an image with N pixels, it replaces the value of each pixel with 
the value of its order among all the other pixels. Ranklets are designed starting from the 
three 2D Haar wavelets and the rank transform. In analogy to the wavelet transform, 
ranklet coefficients can be computed at different orientations by applying vertical, 
horizontal and diagonal Haar wavelet supports to each image under analysis. As a result, 
the orientation selectivity feature of the ranklet representation follows.  

Finally, the close correspondence between the Haar wavelet transform and the 
ranklet transform leads directly to the extension of the latter to its multiresolution 
formulation. This means that, as for the wavelet transform, it is possible to compute 
the ranklet transform of an image at different resolutions by means of a suitable 
stretch and shift of the Haar wavelet supports. At the same time, for each resolution, it 
is possible to characterize the image by means of orientation selective features such as 
the vertical, horizontal and diagonal ranklet coefficients. The multiresolution ranklet 
transform of an image is thus a set of triplets of vertical, horizontal and diagonal 
ranklet coefficients, each one corresponding to a specific stretch and shift of the Haar 
wavelet supports. 
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Fig. 2. The three Haar wavelet supports hV, hH and hD. From left to right, the vertical, horizontal 
and diagonal Haar wavelet supports. 

The ranklet transform is defined by first splitting the N pixels into two subsets T 
and C of size N/2, thus assigning half of the pixels to the subset T and half to the 
subset C. The two subsets T and C are defined being inspired by the Haar wavelet 
supports depicted in Fig. 2. In particular, for the vertical Haar wavelet support,  
the two subsets TV and CV are defined; similarly for the horizontal and diagonal ones. 
The definition of the aforementioned Haar wavelet supports forms the basis for the 
orientation-selective characteristic of the ranklet transform. 

The second step consists in computing and normalizing in the range [-1, +1] the 
number of pixel pairs (pm, pn), with pm ∈ T and pn ∈ C, such that the intensity value of 
pm is higher than the intensity value of pn. This is done for each orientation, namely 
vertical, horizontal and diagonal. 

The geometric interpretation of the so-called ranklet coefficient Rj is quite 
straightforward. Suppose that the image we are dealing with is characterized by a 
vertical edge, with the darker side on the left, where CV is located, and the brighter 
side on the right, where TV is located. RV will be close to +1 as many pixels in TV will 
have higher intensity values than the pixels in CV. Conversely, RV will be close to -1 if 
the dark and bright side are reversed. Horizontal edges or other patterns with no 
global left-right variation of intensity will give a value close to 0. Analogous 
considerations can be drawn for the other ranklet coefficients, RH and RD The use of 
the pixels' ranks, rather than their intensities, forms the basis for the non-parametric 
characteristic of the ranklet transform. 

The close correspondence between the Haar wavelet transform and the ranklet 
transform leads directly to the extension of the latter to its multiresolution 
formulation. Similarly to what is done for the bidimensional Haar wavelet 
transform, the ranklet coefficients can be computed at different resolutions by 
simply stretching and shifting the Haar wavelet supports. The multiresolution 
ranklet transform of an image is thus a set of triplets of vertical, horizontal and 
diagonal ranklet coefficients, each one corresponding to a specific stretch and shift 
of the Haar wavelet supports. The possibility of computing ranklet coefficients at 
different resolutions forms the basis for the multiresolution characteristic of the 
ranklet transform. 
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3   Results 

In order to have a remarkable number of training patterns, we accomplished the 
training of the CAD algorithm by using both digitized and digital images. Digitized 
examples were selected by cropping images from the USF DDSM database available 
on the net. Digital images coming from the Giotto FFDM units were used both for 
training and testing the CAD system. The use of images coming from various 
systems, without performing any normalization step has been practicable, thanks to 
the innate features of the ranklet transform. 

The CAD system presents a sensitivity nearly equal to 85%, with a false-positive 
rate of 0.5 marks per image. The sensitivity has been calculated both on a per-case 
and on a per-image basis. In the first case, the true-positive rate is equal to the number 
of positive patients correctly detected over the total number of positive patients. In the 
latter case, results are equal to the ratio between the number of positive images 
correctly detected and the total number of cancer images. The false-positive rate has 
been computed on the normal images.  

Fig. 3 shows the FROC curves of our CAD system on the test images. The distinct 
performance for the masses and microcalcifications algorithms for a specific point of 
the FROC curve is the following. The masses detector shows a per-case sensitivity 
equal to 76% with a false-positive rate of 0.3 false-positive marks per image, whilst 
microcalcifications detector demonstrates a true-positive per-case rate equal to 93% 
with a false-positive rate of 0.2 false-positives per image. 

 

Fig. 3. FROC results of the ranklet-based CAD system on the test images. True-positive rate 
results are shown on a per-case and per-image basis. 
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Abstract. Breast cancer is one of the main leading causes to women
mortality in the world especially in the western countries. Since the
causes are still unknown, breast cancer cannot be prevented completely
even till now. Microcalcification clusters are primary indicators of ma-
lignant types of breast cancer, the detection is important to prevent and
treat the disease. The microcalcifications appear in the small clusters of
a few pixels with relatively high intensity and closed contours compared
with their neighboring pixels. However, it is a challenge to detect all the
microcalcifications since they appear as spots which are slightly brighter
than their backgrounds. This paper presents an approach for detecting
microcalcifications in digital mammograms employing a dual-threshold
method. These microcalcifications can be located by our new method
which is developed from LoG edge detection method. Two thresholds are
proposed in our method based on two additional criterions. Experimental
results show that the proposed method can locate the microcalcifications
exactly in mammogram as well as restrain the contours produced by the
noises.

1 Introduction

By far, breast cancer is the second leading cause to cancer death in women,
exceeded only by lung cancer. Prevention in advance seems impossible since the
causes to this disease are still unknown, but the early detection can increase
the chance of cure and survival [1]. As the microcalcifications is nearly the only
feature for the initial period of breast cancer except the body-touch checking,
mammogram is the most reliable method for early detection of breast cancer
while all the other methods, e. g. ultrasound and infrared, can not show the
microcalcifications very well. The microcalcifications appear in the small clusters
of a few pixels with relatively high intensity and closed contours compared with
their neighboring pixels. Microcalcification clusters are primary indicators of
malignant types of breast cancer, the detection is important to prevent and treat
the disease. But it is still a hard work to detect all the microcalcifications due
to the fact that mammogram presents poor contrast between microcalcifications
and the tissues around them.
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Still, many approaches have been proposed for detection of microcalcifications
in mammograms, like neural network, wavelets, support vector machines, math-
ematical morphology, bayesian image analysis models, high order statistic, fuzzy
logic, fractal models, etc. Davies and Dance [2] and Davies et al. [3, 4] used a
local thresholding technique to segment clustered microcalcifications. The local
threshold is selected at the valley of the local histogram. If the local histogram
is unimodal, the sub-image will be interpolated from its neighboring sub-images,
but the operation on histogram is usually hard to realized. Peitgen [5] proposed
an approach for automatic detection of microcalcifications utilizing multi-scale
analysis based on the Laplacian-of-Gaussian filter and the mathematical model
describing microcalcifications as bright spots due to their sizes and contrast.
Cheng et al. [6] proposed an approach to detecting microcalcifications based on
fuzzy logic. Zheng et al. [7] used mixed feature-based neural network and [8]
employed a neural network for a pixel-based classification. Some morphological
methods can be found in the literature [1, 9].

Closed contours are often treated as the most important characteristic of the
objects. In the application of object recognition, the closed contours of objects
are the foundation of counting the objects’ sizes, getting the objects’ shapes and
giving some further information. Our algorithm is based on the fact that all
the microcalcifications have closed contours. In this paper we propose a dual-
threshold method based on traditional LoG operator to locate all the microcalci-
fications in mammograms. The proposed algorithm consists of two main steps: 1.
Convolving the original image with LoG filter to get all the zero-crossing points,
then labeling all the closed contours which consist of zero-crossing points by a
quick region filling method. 2. Determining whether the closed contours belong
to the microcalcifications by two introduced thresholds. Most important, all the
parameters in our algorithm need not be changed in the whole course if only the
mammograms are taken from the same machine under the same conditions.

The rest of this paper is organized as follows: in the second section, the pro-
posed approach is described in detail. In the third section, the experimental
results are shown and discussed, Finally, in the fourth section, the conclusions
are presented, some comments about future work are also mentioned.

2 Proposed Approach

In this section we will present how LoG operator works in our algorithm as well
as some related information. Also, two criterions and the corresponding dual-
threshold are introduced. The detailed implementation will be shown in the end
of this section.

2.1 LoG Operator

LoG edge detecting method is a common method used in image processing
[10, 11]. LoG(Laplacian of Gaussian) operator means smoothing the original im-
age with Gaussian filter before a Laplacian operator, and Laplacian operator
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(a) (b)

Fig. 1. (a) An example of two-dimensional LoG kernel and (b) the 1st, 2nd derivative
of a one-dimensional step-edge signal

is a kind of 2nd derivative method to detect the edges. An example of two-
dimensional LoG kernel can be seen in Fig. 1(a). Then Fig. 1(b) shows how to
use the 1st and 2nd derivatives to detect the edges. In Fig. 1(b) the top one is a
step-edge signal that indicates a sudden change in the gray level value, the mid-
dle one is a pulse that indicates a larger value in gradient image (1st derivative
of the top one), and the bottom one (Laplacian operator) shows that the gray
level value of an edge point turns to zero and the values of its two neighboring
points turn to be positive and negative respectively. In fact, the gray level value
of an edge point is not usually zero but close to zero. As a result, we judge an
edge point by its two neighbors. If the values vary across zero from a neighbor to
the other neighbor, there must be an edge point whose value is zero between the
two neighbors. Concerning the two-dimensional image, Marr [12] proposed using
Gaussian function to smooth the image before using the Laplacian operator in
the LoG edge detecting method. The Gaussian function can be written as below:

G(x, y, σ) =
1

2πσ2 exp(−x2 + y2

2σ2 ) (1)

where, G(x, y, σ) is a circular symmetry function, so the smooth effect to the
image is linear.

We can suppose f(x, y) as the original image, and g(x, y) is the result image
after the smoothing. The smoothing degree can be controlled by the parameter
σ, namely larger σ can bring more smooth result.

g(x, y) = f(x, y) ∗ G(x, y, σ) (2)

According to the characteristic of vision, the edge point is located in which
the gray level value changes greatly. This large change will produce a pulse in



350 Y. Wu et al.

the 1st derivative image and a zero-crossing point in the 2nd derivative image.
The 2nd derivative is complicated in computing, what is more, it is non-linear,
so Marr replaced the isotropic Laplacian operator with formula (3) in advance,
which is described as below:

r(x, y) = ∇2g(x, y) = ∇2(f(x, y) ∗ G(x, y, σ)) = f(x, y) ∗ ∇2G(x, y, σ) (3)

where r(x, y) is the result image after the LoG operator, and ∇2 means the
Laplacian operator.

Formula (4) is the LoG operator.

∇2G(x, y, σ) =
1

πσ4 (1 − x2 + y2

2σ2 ) · exp(−x2 + y2

2σ2 ) (4)

The purpose of Gaussian filter is to restrain the noises in the image and ignore
some tiny structures whose sizes are smaller than σ. So if there is no noise, we
can do Laplacian operator to the original image directly like this:

r(x, y) = ∇2f(x, y) (5)

2.2 Maximum Difference Value of Zero-Crossing Point

Suppose (xi, yj) is a zero-crossing point in image r(x, y), we define ”maximum
difference value of zero-crossing point” of (xi, yj) as maxzero(xi, yj).

maxzero(xi, yj) = max(|r(xi, yj) − r(xi, yj−1)|, |r(xi, yj) − r(xi, yj+1)|,
|r(xi, yj) − r(xi−1, yj)|, |r(xi, yj) − r(xi+1, yj)|) (6)

In fact, the value of maxzero(xi, yj) can indicate whether a point is an obvious
edge point. Larger maxzero(xi, yj) indicates that point (xi, yj) is more likely to
be an edge point, vice versa.

2.3 Dual-Threshold

We outline two thresholds T1 and T2 as dual-threshold to obtain the obvious
contours. Concerning to zero-crossing point (xi, yj), if maxzero(xi, yj) is larger
than the threshold T1, we can call this point as an ”obvious edge point”. In fact,
a zero-crossing point is more possible to be an edge point if maxzero(xi, yj) is
larger.

After the LoG operation we can get a result image r(x, y). The values of the
points in image r(x, y) may be positive, negative and zero. Then we must find all
the zero-crossing points in image r(x, y). For convenience we only check the right
and down neighboring points of a point (xi, yj). If the values of the two neighbors
are positive and negative respectively, then the point (xi, yj) is a zero-crossing
point. Surely other rules and definitions of zero-crossing points in two-dimension
images can be developed, however, they may bring different results and effects.
We label all the zero-crossing points in image r(x, y) as ”1” and others as ”0”,
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then we get a new ”0-1” image whose pixel values are composed of ”0” and ”1”.
In our method we keep all the closed contours composed of ”1” in the ”0-1”
image first, then threshold T2 mentioned in the next paragraph will be used to
eliminate the false closed contours in the final result image.

For each closed contour in the ”0-1” image we scan all the points on it to
obtain all the ”obvious edge point”, then calculate the number (supposed as l)
of ”obvious edge point” and the total number (supposed as L) of points in this
closed contour. If l/L > T2, this closed contour will be kept in the final result
image, otherwise we will eliminate it.

2.4 Implementation

The overall steps of our method are summarized as follows:

1. Do LoG operation to the original image, and find all the zero-crossing
points.

2. Scan the result image of step 1 to obtain all the closed contours. In this
step we use quick region filling method to obtain the closed contours from all
kinds of structures.

3. Concerning each points on the closed contours, calculate their maxzero

(xi, yj), then use threshold T1 to decide whether it is an ”obvious edge point”.
4. Concerning each closed contours, calculate their numbers of ”obvious edge

point” and the total number of points on them, then use threshold T2 to decide
whether should we keep these closed contours or not.

In these steps we have three parameters that must be predetermined manually.
The empirical parameters can affect the final result. In fact, σ is usually chosen
as 1 or 2, T1 ranges from 1 to 7 based on the noise level of the image and contrast
between the microcalcifications and backgrounds while T2 is set to 0.4 in most
situations.

3 Experimental Results

A typical mammogram consisted of microcalcifications can be seen in Fig. 2.
The digital mammogram database used in this paper is the mini-MIAS [13]
(Mammographic Image Analysis Society) database which contains 322 digitized
mammogram images. The images in the database are digitized at 50-micron pixel
edge, which are then reduced to 200-micron pixel edge and clipped or padded
so that every image has 1024 × 1024 pixels. The accompanying ’Ground Truth’
contains details regarding the characters of the background tissue, class, severity,
coordinates of the center of the abnormality and approximate radius of the circle
enclosing it.

It should be noticed that all the parameters need not be changed in our
experiments, and we set them as σ = 1, T1 = 6 and T2 = 0.4. Two testing
images mdb148 and mdb186 are selected to show our results which can be seen
in Fig. 3. In each row from left to right, they are the original image, the contours
of microcalcifications and the result of adding contours to the original image. We
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Fig. 2. A mammogram consisting of microcalcifications which have been marked and
amplified

Fig. 3. The results of our algorithms
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also test all the images from mini-MIAS database to verify our method which is
supposed to be valuable in clinical CAD applications as the satisfying results.

The performance of the proposed algorithm was evaluated by a free-response
receiver operating characteristic (FROC) in terms of TP (true-positive) fraction
for a given number of FP (false-positive) clusters per image. Detection perfor-
mance measured by FROC curve has been shown as in Fig. 4.

From the FROC curve we can see that our method has came up with a TP
rate of 91% on the mini-MIAS database while the number of FP clusters per
image is more than 4.

Fig. 4. Detection performance measured by FROC curve

4 Conclusion

This paper has presented a novel method to locate all the microcalcifications
in digital mammograms. Traditional Log edge detecting method can not ab-
stract the contours of objects integrally, especially when there are weak edges,
noises and uneven background. The dual-threshold method we proposed can
handle digital mammograms very well. The most important advantage is, the
two thresholds in our method need not be changed in the whole course of test-
ing all the images in mini-MIAS database. In fact, with certain hardware and
environments we only need to set the two thresholds once at the beginning, then
for all the images we use the constant parameters.

Our future work will focus on adding some new criterions to enhance the
algorithm. Also, some new features should be added into our method to detect
the tumors in the mammograms.
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Abstract. A link between increased breast density, as visualised in 
mammograms, and increased risk of developing breast cancer has been 
established. Recently, a number of objective, quantitative methods for measuring 
breast density have been described. One such method requires a calibration 
object to be imaged alongside the breast. However, it is important that this 
should not interfere with the routine imaging process. In this paper, we 
investigate the amount of space in mammographic images which is not currently 
occupied by the breast or existing patient labels and markers, and which would 
therefore be available for imaging an additional calibration device. We do this 
with a view to estimating the likelihood of failure of the method, and also to 
determining whether, without detriment to the imaging process, a device could 
be permanently fixed to the breast support platform. We also examine the impact 
of markers attached to the compression plate on the visibility of breast tissue. 
The results show that our existing calibration device may be used successfully 
without interfering with the routine imaging process, although permanently 
fixing such a device may present problems in a small minority of cases, and we 
demonstrate that the number of cases which would fail can be reduced  by using 
a smaller stepwedge. 

1   Introduction 

Currently, breast density measurement is not incorporated in risk prediction models 
used in Family History clinics [1], although the association of increased breast density 
with an increased risk of developing cancer is accepted [2, 3]. An improved estimate 
of individual risk would benefit women by enabling better informed decisions about 
strategies for detecting and preventing cancers. However, improvements such as the 
inclusion of breast density in risk prediction models must not only be reliable and 
accurate: they must also be practical, and should not interfere with the routine care the 
women receive.      

To date, much of the work on the relationship of breast density to risk has been based 
on visual assessment of mammograms [4], although more recently a number of 
automated and semi-automated approaches have been developed in an attempt to 
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improve objectivity and accuracy [5, 6, 7, 8]. Some of these approaches rely on imaging 
calibrated density stepwedges on the mammogram [7, 8]. If such methods are to be used 
in the screening programme, it is important to ensure that they do not interfere with the 
routine screening process, and also that they can be successfully applied to the vast 
majority of women. Obesity is an increasing problem, and brings with it a greater 
number of women with larger breasts [9]. In these women particularly, there may not be 
much room to image additional devices during mammography. 

In this paper, we investigate the amount of space in mammographic images which 
is not currently occupied by the breast or existing patient labels and markers, and 
which would therefore be available for imaging an additional calibration device, with 
a view to determining the likelihood of failure due to lack of room in the image, and 
also to investigating whether, without detriment to the imaging process, a device 
could be permanently fixed to the breast support platform. Our method for 
determining the volume of dense breast tissue also images markers attached to the 
compression plate to accurately measure breast thickness across the mammogram [7]. 
Here we examine the impact of these markers on the visibility of breast tissue. 

2   Data 

The dataset consists of mammographic films obtained from 66 women participating in 
a study of the effects of lifestyle on cancer risk [9]. Each woman had both 
craniocaudal (CC) and mediolateral oblique (MLO) views of both breasts, resulting in 
264 films. Of these, 7 of the sets were obtained in 2002 and the remaining 59 in 2003. 
The majority of the films (180) were 18 by 24 cm (standard format), whilst the 
remaining 84 were 24 by 30 cm (large format), depending on the size of the breast. 
All films were digitised using a Kodak LS85 digitiser at a pixel size of 50 m and 
with 12 bits (4096 grey levels) pixel depth. The pixel depth was later reduced to 8 bits 
(256 grey levels) to reduce the file size of the stored images. An example of the 
mammograms is shown in figure 1. Here, the name label has been obscured to protect 
the privacy of the woman, and appears as a grey rectangle at the edge of each image. 

 

Fig. 1. The right and left, CC and MLO mammograms of a woman screened as part of the study 
of the effects of lifestyle on cancer risk . The (obscured) name label, side/view label, stepwedge 
and four pairs of markers are clearly visible in each image. 
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3   Analysis of Available Space 

Each mammogram is identified by a name label containing identification and imaging 
data and a view label indicating the side (left or right) and the view (MLO or CC), 
thus to analyse the amount of free space in each mammogram, the area taken up by 
the two labels and the breast tissue was deducted from the overall size of the film. The 
digitised images were preprocessed to remove isolated noise pixels, then segmented 
using a semiautomatic process into regions corresponding to the breast, background 
and labels. 

The area covered by breast tissue and the distance from the nipple to the edge of 
the image were calculated in all 264 mammograms. However, as there is very little 
variation in the area covered by name and view labels in the images, the area for each 
of these was calculated only in 20 standard format and 20 large format mammograms.  

3.1   Results 

The mean area of the image occupied by the name label is 17.8cm2 in standard format 
films and 17.7cm2 in large format films, whilst the label indicating radiographic 
projection and side occupies 6.0cm2 of the image area in the standard format and 
6.0cm2 in the large format mammograms.  In the standard format the mean areas 
occupied by the breast in the right CC, left CC, right MLO and left MLO views were 
142.3cm2, 142.8cm2, 190.8cm2 and 191.4cm2 respectively, and in the large format, 
294.9cm2, 301.9cm2, 371.4cm2 and 366.3cm2. The mean distances from the nipple to 
the edge of the film were 79mm, 79mm, 72mm, and 70mm, in standard format, and 
82mm, 85mm, 64mm, and 66mm in the large format.  

Table 1. The minimum available area and minimum distance between the nipple and the edge 
of the film 

Standard format films Large format films 

  RCC LCC 
RML
O 

LML
O 

RC
C 

LC
C 

RML
O 

LM
LO 

Minimum available 
area in cm2 

205.1 194.6 152.1 164.9 
233.

4 
302.

0 
202.0 

115
.8 

Min distance from 
nipple to edge (mm) 

38 38 30 31   31 43 4 0 

Table 1 shows the minimum nipple to edge distance, and the minimum free area 
for the four views, in both standard and large format films. 

4   Impact of Compression Markers 

The compression markers are small lead objects attached to an acetate sheet which is 
then placed on the breast compression plate during imaging. The markers are imaged 
on the mammogram, and the distance between pairs of markers on the image enables 
calculation of compressed breast thickness and tilt of the compression plate. Each 
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view contains four pairs of markers: we refer to the markers nearest to the chest wall 
as the first pair of markers. 

Ideally, the four pairs of markers should be imaged onto free space in the 
mammogram, as in figure 2 a. However, the markers may overlap tissue, as in figure 
2 b and c, possibly covering clinical information in the image that may be useful for 
diagnosis.  The markers may also be obscured by the name and view identification 
labels, thus impeding the calculation of breast thickness. Examples of this are shown 
in figure 2 d. We have analysed the frequency with which these cases occur. 

 

Fig. 2. Imaging the compression markers. a) All four pairs of markers are visible b) the lower 
marker of the 1st and 2nd pairs lie on breast tissue, the 1st upper and 3rd lower markers lie on 
the skinline c) the 1st upper marker lies on the pectoral muscle, the 1st lower marker lies on the 
infra-mammary fold d) the 3rd upper marker is covered by the view label, the 4th lower marker 
is covered by the sticker. 

Markers were classified as being: in the background; overlying breast tissue; on the 
skinline; overlying the pectoral muscle (MLO views only); on the infra-mammary 
fold (MLO views only); covered by an identification label during imaging; covered 
by a sticker before digitisation; missing from the image.  

4.1   Results 

There was no observable difference in the classification of markers between the 
standard and large format films, so the results have been pooled for the 66 women. 
In the CC mammograms, the large majority of markers do not interfere with the 
imaging of the breast. Only 4 (out of 66) of the first pairs of markers, 2 of the 
second, 3 of the third and none of the fourth contained a marker overlying breast 
tissue in the right CC mammograms. Similarly, in the left CC mammograms, the 
respective counts are 4 of the first, 2 of the second, 1 of third and none of the fourth 
pairs. In the MLO mammograms, the results are very similar for the third and fourth 
marker pairs. However, the upper marker closest to the chest wall overlies the 
pectoral muscle in all cases it appeared on the film – 65 times in the right MLO 
films and 55 in the left.  The second upper marker is also much more likely to 
coincide with other image features in the MLO views: 34 times on the right, and 27 



 Feasibility and Acceptability of Stepwedge-Based Density Measurement 359 

on the left. It is, however, unlikely that these markers cover important clinical 
information because of their location. 

In order to be used in the calculation of the thickness of the breast, the position 
of the markers must be measured accurately, and therefore they must not be 
obscured by the identification labels in the mammograms. This proves problematic 
in the third and fourth pairs of markers. For example, of the fourth pairs, only 42 of 
the right CC, 45 of the left CC, 47 of the right MLO and 39 of the left MLO have 
both markers fully visible. The category totals for each marker in each view are 
displayed in table 2. 

Table 2. Categorised counts of markers pooled for the the upper (U) and lower (L) marker of 
the 1st to 4th pairs, in the right and left, CC and MLO mammograms 

RCC LCC
1st pair 2nd pair 3rd pair 4th pair 1stpair 2nd pair 3rd pair 4th pair 
U L U L U L U L U L U L U L U L

Background 58 55 66 64 53 64 42 64 59 59 62 65 56 65 64 47
Breast 2 3 0 2 0 2 0 0 1 4 1 1 0 1 0 0
Skinline 5 1 0 0 0 0 0 0 1 3 0 0 0 0 0 0
Name/view label 0 0 0 0 11 0 9 2 0 0 2 0 10 0 1 4
Sticker 0 0 0 0 2 0 15 0 0 0 0 0 0 0 1 15
Missing 1 7 0 0 0 0 0 0 5 0 1 0 0 0 0 0

RMLO LMLO
1st pair 2nd pair 3rd pair 4th pair 1st pair 2nd pair 3rd pair 4th pair 
U L U L U L U L U L U L U L U L

Background 1 49 32 63 56 63 48 65 0 42 31 65 51 64 59 44
Breast 0 5 14 3 0 2 0 0 0 3 6 1 0 1 0 1
Skinline 0 1 20 0 0 0 0 0 0 4 21 0 0 1 0 0
Pectoral muscle 64 - 0 - 0 - 0 - 55 - 0 - 0 - 0 -
Infra-mammary - 8 - 0 - 0 - 0 - 17 - 0 - 0 - 0
Name/view label 0 0 0 0 9 0 2 1 0 0 0 0 9 0 3 6
Sticker 0   0 0 1 0 14 0 0 0 0 0 0 0 1 15
Missing 1 3 0 0 0 1 2 0 11 0 8 0 6 0 3 0  

5   Discussion and Conclusions 

In the images obtained for this study, step wedges of dimensions (length by width) 
125mm by 12mm and 175mm by 15mm were used. After magnification during 
imaging, the step wedge (and the shadow it casts) occupied a rectangle of 
approximately 135mm by 23mm in standard format films, and 188mm by 31mm in 
large format films. Ideally the wedge should be placed with its long axis parallel to 
the chest wall, and must not overlap the identification label. This requires a minimum 
rectangle of free space of approximately 140mm by 28mm in the standard format and 
193mm by 36mm in the large format, running parallel to the long edge of the films.  
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It would be beneficial to permanently fix the stepwedge to the breast platform. The 
stepwedge imaged in this study was attached to the breast platform by a ‘hook and 
eye’ arrangement. However, this method proved unsatisfactory as in many cases the 
stepwedge slipped during imaging, particularly in MLO mammograms, where the 
compression plate is tilted. Permanently (or semi-permanently) fixing the stepwedge 
to the breast platform requires a sufficient rectangle of free background to lie in a 
consistent position in all films. The only suitable area is the top left corner of right 
side films and the bottom right corner of left side films. For the large format films, 
this area is marked by the larger dashed rectangle in each view in figure 3. 

 

Fig. 3. Area occupied by breast tissue and name label in each of the RCC, LCC, RMLO and 
LMLO large format mammograms. The larger dashed rectangle represents the area ideally 
reserved for the stepwedge used to obtain the images in this paper, whilst the smaller rectangle 
depicts the area required for a new, smaller stepwedge [10]. 

Observing the minimum distances from nipple to film edge in table 1, we conclude 
that in the standard format films, the step wedge can be placed optimally in the 
mammograms obtained from all 45 women. However, in the large format, whilst the 
left CC views present no problem, a distance of less than 36mm was measured in 1 of 
the right CC mammograms, 4 of the right MLO mammograms and 4 of the left MLO 
mammograms (4 of the 21 women). The resulting overlap of these breasts into the 
area ideally reserved for the stepwedge is clearly seen in figure 3. 

To overcome this problem, a new, smaller stepwedge has been developed which 
may be used in future trials [10]. This occupies less than a third of the area than the 
stepwedge used in the large format films in this study, with an imaged length of just 
128mm and a width of 13mm. The minimum rectangle of free space required for the 
smaller stepwedge is marked by the smaller dashed rectangle in each view of figure 3. 
We can see that the smaller stepwedge may be placed optimally in all but 4 of the 
mammograms (3 of the 21 women), and in these cases there is still enough room in 
the image to place the step wedge, albeit not aligned optimally. 

It is important to note that the women whose images were analysed were 
participating in a study of the effects of lifestyle on cancer risk [9]. To be selected for 
the study the women had to be 35 to 45 years old, and must have gained at least 10kg 
of weight since the age of 18. Since weight is related to the amount of fat in the 
breasts [9], we would expect these women to have larger breasts; thus they are not 
representative of the general population. This is portrayed by the fact that 32% (21 out 
of 66) of the women in the study required screening on large format films, whereas 
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approximately only 9% of the women screened nationally require large format films 
[11]. In a general screening population, we predict that there would be very infrequent 
occurrences of failure due to women with very large breasts since in only three out of 
66 cases the stepwedge could not be aligned optimally in our cohort. 

We conclude that stepwedges may be used successfully in future trials, although 
permanently fixing such devices to the breast platform may cause problems in a very 
small minority of cases.  

Compression markers do not significantly interfere with the routine imaging 
process. However many of the markers in this study were obscured, which restrict 
their use in calculating breast density. The large majority of the non-visible markers 
were covered either by the view label, or by a sticker attached the mammogram after 
imaging. Unlike the name label, the view label does not have a fixed position in the 
mammogram, so in future trials using compression makers it is recommended that 
care is taken to place the view label and sticker without covering the markers. The 
sticker can also be temporarily removed when digitising images and it is suggested 
this becomes practice in future methods. 
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Abstract. An experimental method of determining the optimal beam qualities 
and doses for digital mammography systems is described, and applied to a CR 
system. The mean glandular dose (MGD) and contrast-to-noise ratio (CNR) 
were measured using phantoms. For each thickness of phantom a range of kV 
and target/filter combinations were tested. Optimal beam quality was defined as 
that giving a target CNR for the lowest MGD. The target CNR was that neces-
sary to achieve at least the minimum standard of image quality defined in Euro-
pean Guidance. An inverse relationship between CNR and threshold contrast 
was confirmed over a range of thicknesses of PMMA and different beam quali-
ties and doses. Optimisation indicated that relatively high energy beam qualities 
(e.g. 31 kV Rh/Rh) should be used with a greater detector dose to compensate 
for the lower contrast when compared to using lower energy X-rays. The results 
also indicate that current AEC designs that aim for a fixed detector dose are not 
optimal.  

1   Background 

European guidelines provide quality control procedures and minimum standards of 
performance for digital mammography [1,2]. The image quality standards are based 
on contrast-detail measurements using the CDMAM phantom (version 3.4, UMC St. 
Radboud, Nijmegen University, Netherlands) [3]. The test on the automatic exposure 
control (AEC) involves the measurement of contrast-to-noise ratio (CNR) using a 0.2 
mm thickness of Aluminium. The relationship between threshold contrasts and CNR 
values was measured here, and used as part of an optimisation process.  

2   Methods 

Measurements were made using a Fuji FCR Profect CS computed radiography (CR) 
system (Fuji Photo Film Co Ltd, Bedford, UK) used with a General Electric DMR+ 
mammography X-ray set (General Electric Medical Systems, Paris, France). The de-
tector for the AEC on the X-ray set was always placed in the position closest to the 
chest wall edge. The same cassette and image plate were used for all measurements. 
The CR system was used with a “fixed” exposure data recogniser (EDR) setting and a 
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reading sensitivity (S value) of 120. Each CR image was saved as an unprocessed 
DICOM file for later analysis. 

It is assumed in the European Guidelines that CNR and threshold contrast are re-
lated as given in Eq. 1, 

Threshold contrast = 
CNR

λ
, 

 

     (1) 

where λ is a constant that is independent of dose, beam quality and the thickness of 
attenuating material. To test this relationship the dose, beam quality and attenuating 
material were systematically varied and CNR and threshold contrast measured. Three 
different thicknesses of attenuating material were used with the CDMAM test object 
[3]; 2cm, 4cm and 6cm of PMMA. In each case a 2cm thickness of PMMA was 
placed below the test phantom with the extra thicknesses on top. Squares of Alumin-
ium (0.2mm thick) were placed on top of the two empty corners at the front of the 
CDMAM phantom. The phantom, with the additional PMMA layers indicated, was 
radiographed 8 times using each of the factors shown in Table 1. The mean glandular 
doses (MGD) for breasts of equivalent thickness were calculated for each set of expo-
sure factors and are shown in Table 1 [1,4]. The CDMAM was assumed to have a 
thickness equivalent to 1 cm of PMMA. For each image the average pixel values for 
ROIs in the centre of each aluminium square, mean(Al), and in the adjacent back-
ground area, mean(bgd), were measured. The standard deviation of the pixel values in 
the background ROI, sd(bgd), and the aluminium ROI, sd(Al), were also determined. 
These data were used to calculate the CNR for each image as defined in the European 
protocol and shown in Eq. 2, 

CNR  = 

[ ]
2

)()(

)()(
22 Alsdbgdsd

Almeanbgdmean

+
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Table 1. Exposure factors and thickness of PMMA used with CDMAM test object 

Added  
thickness of 
PMMA (cm) 

Equivalent 
breast thick-
ness (mm) 

kV 
target-
filter 

mAs MGD
(mGy) 

CNR 
at 

corners 

CNR 
at 

mid-line 
2 32 25 Mo/Mo 51 0.90 9.67 11.4 
2 32 28 Mo/Mo 16 0.44 6.84 8.07 
2 32 28 Mo/Mo 25 0.69 8.56 10.1 
4 60 26 Mo/Rh 71 0.94 5.47 6.45 
4 60 26 Mo/Rh 280 3.72 10.5 12.4 
4 60 34 Rh/Rh 22.5 0.75 5.37 6.34 
4 60 34 Rh/Rh 40 1.33 7.18 8.47 
6 90 30 Mo/Rh 237 3.99 5.81 6.86 
6 90 34 Rh/Rh 63 1.60 4.51 5.32 
6 90 34 Rh/Rh 160 4.06 6.82 8.05 
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Since the CNR was measured in the corner of the images the values were increased by 
18% to reflect the value that would be found at the standard position on the mid-line. This 
corrected for the variation in detector dose (and therefore noise) at the different locations. 

The threshold contrasts for each set of images of the CDMAM were scored by 3 
observers and an automatic program [5]. The automatic program was used to predict 
the threshold contrast for a typical observer. The relationship between the threshold 
contrast and CNR was used to determine a target value for CNR (on the mid-line) 
necessary to meet the threshold contrast standards for the 0.1mm detail size in Euro-
pean guidance. The threshold contrast standards at this detail size were chosen as they 
are the most difficult to achieve. 

2.1   Optimisation 

PMMA blocks with an area of 180 x 240 mm and a total thickness ranging from 20 to 
70 mm were used to simulate breasts of typical composition [4]. An aluminium 
square (10 mm x 10 mm) with a 0.2 mm thickness was placed on top of the 20 mm 
thick block, with one edge on the midline and 6cm from the chest wall edge. Addi-
tional layers of PMMA were added on top. For each thickness five tube voltage set-
tings were used (25, 28, 31, 34 and 37 kV) with each of the target/filter combinations 
available (Mo/Mo, Mo/Rh, and Rh/Rh) and the mAs recorded. The MGDs to typical 
breasts (in the age range 50 to 65) with attenuation equivalent to each thickness of the 
PMMA were calculated as described in the European protocol and Dance et al [1,4]. 
Each exposure was designed to achieve a standard pixel value by using the AEC in 
automatic mAs mode. 

The relationship between noise and pixel values in digital mammography systems 
has been previously shown to be approximated by 

Relative noise = 

[ ]
p

Alsdbgdsd

2
)()( 22 +

= n
t pk −  

(3) 

where kt is a constant, and p is the average background pixel value linearised with ab-
sorbed dose to the detector [6]. The value of n was found by fitting this equation to 
the experimental data. Eq. 4 was then used to calculate the dose required to achieve 
the target CNR, where k is a constant to be fitted 

CNR  =  k D n. (4) 

3   Results 

3.1   CNR and Threshold Contrast 

Eq. 1 was found to fit the experimental data within experimental error for both human 
and machine readings and at all relevant detail sizes. This is shown for human and 
automatic reading for the 0.1 mm and 0.25 mm detail sizes in Figs. 1 and 2. The cor-
relation coefficient (R) is also shown with each graph and was highest for the  
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Fig. 1. CNR and threshold contrast for 0.1mm details. The upper graph shows the average 
threshold contrasts for 3 observers and the lower graph shows the predicted threshold contrast 
using automated reading. The fitted curve is in the form of Eq. 1 along with 95% confidence 
limits shown as dashed curves. Error bars are 1 sem. Also shown are the minimum and achiev-
able standards in the European protocol. 
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Fig. 2. CNR and threshold contrast for 0.25 mm details. The upper graph shows the average 
threshold contrasts for 3 observers and the lower graph shows the predicted threshold contrast 
using automated reading. The fitted curve is in the form of Eq. 1 along with 95% confidence 
limits shown as dashed curves. Error bars are 1 sem. Also shown are the minimum and achiev-
able standards in the European protocol. 
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automatic reading of the 0.25mm detail size. Based on the data in Fig. 1 a target CNR 
of 8.5 was selected for optimisation purposes. 

3.2   Optimisation 

The MGDs required to achieve a CNR of 8.5 for different kV, target/filter combina-
tions were compared at each thickness of PMMA to determine the optimal combina-
tion. Fig. 3 shows the results for a thickness of 60mm. At all thicknesses above 20mm 
the Rh/Rh target/filter combination was optimal and the choice of kV had relatively 
little effect but was in each case 31 kV as shown in Table 2. The doses indicated 
should be regarded as a minimum, and slightly higher may be desirable. Note that the 
linearised pixel value (p) rises with increasing breast thickness. This compensates for 
the loss in contrast due to beam hardening and increased scatter at greater thicknesses. 
The use of 31 kV Rh/Rh rather than 28 kV Mo/Mo achieves a dose saving of over 
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Fig. 3. The mean glandular dose (MGD) corresponding to a CNR of 8.5 for different kV, tar-
get/filter combinations using a 60 mm thickness of PMMA 

Table 2. Optimal factors and doses required to achieve a target CNR of 8.5. Also shown are the 
corresponding doses using 28 kV Mo/Mo. Errors are 1 sem. 

Optimal factors to achieve a CNR of 
8.5 

PMMA 
Thick-
ness 

(mm) 
kV target/filter p 

value
MGD 
(mGy) 

MGD for a 
CNR of 8.5 us-

ing 28 kV 
Mo/Mo (mGy) 

Acceptable 
dose limit in 

European pro-
tocol (mGy) 

20 28 kV Mo/Mo 49 0.28 ± 0.02 0.28 ± 0.02 < 1.0 
40 31 kV Rh/Rh 66 0.89 ± 0.05 1.07 ± 0.06 < 2.0 
50 31 kV Rh/Rh 78 1.55 ± 0.09 2.03 ± 0.12 < 3.0 
60 31 kV Rh/Rh 87 2.60 ± 0.15 4.54 ± 0.27 < 4.5 
70 31 kV Rh/Rh 105 4.65 ± 0.29 8.11 ± 0.49 < 6.5 
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Fig. 4. The variation in CNR for four beam qualities and fixed pixel value of 60 

40% at the larger thickneses even with the increased detector dose required to reach 
the target CNR. This is quite different from traditional AECs which aim for constant 
detector dose (i.e. constant p). The impact of this approach on CNR is illustrated for a 
range of kV target/filter combinations in Fig. 4.  

4   Discussion 

The results confirm that CNR has a simple inverse relationship with threshold con-
trast and is therefore useful for optimisation and quality control purposes. They also 
provide evidence that the assumption of this relationship in European guidance was 
justified. The optimisation study showed that current AEC designs that aim for a fixed 
detector dose are not optimal, and that relatively high energy spectra should be used 
with sufficient detector doses at all breast thicknesses that the target CNR is achieved. 
The optimisation procedure described should be readily applicable to other types of 
digital mammography system. 

It should be noted that the optimisation criteria employed here is different to that 
used previously for film screen systems. The reason for this is that in film/screen im-
aging the appropriate dose to the detector is that required to achieve the correct opti-
cal density on the processed film. As a result the main effect of using a higher X-ray 
energy with a film/screen system is to reduce patient dose at the expense of a loss in 
image contrast [7]. This has limited the use of higher energy X-rays to the small pro-
portion of women with the greatest thickness on compression where a relatively small 
contrast loss may be acceptable for a large dose saving. In a review of radiation doses 
in the NHS Breast Screening Programme it was found that only 1.4% of exposures 
used either a Rh/Rh or a W/Rh target/filter combination with film screen systems [8]. 
However, the optimisation process is different with a digital system as the dose to the 
detector can be widely varied, in addition to the spectrum, without exposures going 
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beyond the useful dynamic range of the system. Hence it is desirable to make greater 
use of higher energy spectra with digital systems provided sufficient detector dose is 
used. 

References 

1. Van Engen R., Young K.C., Bosmans H. and Thijssen M.:  The European protocol for the 
quality control of the physical and technical aspects of mammography screening. Part B: 
Digital mammography. In: European Guidelines for Breast Cancer Screening, 4th Edition.  
Luxembourg: European Commission, 2006 (In press and available in draft on line at 
www.euref.org) 

2. Young, K.C., Johnson, B., Bosmans, H., Van Engen, R.: Development of minimum stan-
dards for image quality and dose in digital mammography. In: Proceedings of the 7th Inter-
national Workshop on Digital Mammography (2005) 149-154 

3. Bijkerk, K.R., Thijssen, M.A.O., Arnoldussen, Th.J.M.: Modification of the CDMAM con-
trast-detail phantom for image quality of Full Field Digital Mammography systems. In: M. 
Yaffe (ed.): Proceedings of IWDM 2000.  Medical Physics Publishing, Madison, WI , To-
ronto, (2000) 633-640 

4. Dance, D.R., Skinner, C.L., Young, K.C., Beckett, J.R., C.J. Kotre.: Additional factors for 
the estimation of mean glandular breast dose using the UK mammography dosimetry proto-
col. Phys. Med. Biol. 45 (2000) 3225-3240  

5. Young, K.C., Cook, J.J.H., Oduko, J.M., H. Bosmans.: Comparison of software and human 
observers in reading images of the CDMAM test object to assess digital mammography sys-
tems. In Proc SPIE Medical Imaging 2006. (In Press) 

6. Young, K.C., Oduko, J.M., Bosmans H., Nijs K., Martinez L.: Optimal beam quality selec-
tion in digital mammography. Br J Radiol (In Press) 

7. Young K.C., Ramsdale M.L., Rust A., Cooke J.: Effect of automatic kV selection on dose 
and contrast in mammography.  Br. J. Radiol. 70 (1997) 1036-1042 

8. Young K.C., Burch A., Oduko J.M.: Radiation doses in the UK Breast Screening Pro-
gramme in 2001 and 2002. Br. J. Radiol. 78 (2005) 207–218 



Susan M. Astley  et al. (Eds.): IWDM 2006, LNCS 4046, pp. 370 – 375, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Automated Detection Method for Architectural 
Distortion with Spiculation Based on Distribution 
Assessment of Mammary Gland on Mammogram 

Takeshi Hara1, Takanari Makita1, Tomoko Matsubara2, Hiroshi Fujita1, 
Yoriko Inenaga3, Tokiko Endo4, and Takuji Iwase5 

1 Division of Regeneration and Advanced, Graduate School of Medicine, Gifu University 
1-1 Yanagido, Gifu-shi, Gifu, 501-1193 Japan 

{hara, makita, fujita}@info.gifu-u.ac.jp 
2 School of Information Culture, Nagoya Bunri University 

365 Maeda, Inazawa-cho, Inazawa-shi, Aichi, 492-8520 Japan 
tomoko@nagoya-bunri.ac.jp 

3 Konica Minolta Medical & Graphic, Inc 
2970 Ishikawa-cho, Hachiouji-shi, Tokyo, 192-8505 Japan 

y.inenaga@konicaminolta.jp 
4 National Hospital Organization Nagoya Medical Center 

4-1-1 Sannomaru, Naka-ku, Nagoya-shi, Aichi, 460-0001 Japan 
endot@nnh.hosp.go.jp 

5 The Cancer Institute Hospital of JFCR 
3-10-6 Ariake, Koto-ku, Tokyo, 135-8550 Japan 

takiwase@nifty.com 

Abstract. The clustered microcalcifications and mass are the important findings 
in interpreting breast cancer, architectural distortion on mammograms as well. 
We have developed the detection algorithm for distorted area based on concen-
tration of mammary gland. The purpose of this study is to suggest the im-
provement of extraction method of mammary gland in order to achieve higher 
sensitivity. The mean curvature, and the combination of shape index and  
curvedness were performed for extracting of mammary gland in our previous 
methods. In our new method, the dynamic-range compression was added as the 
pre-processing before extracting mammary gland by mean curvature. The de-
tection rate at initial pick-up stage was improved by this improvement. It was 
concluded that our detection method would be effective. 

1   Background 

Clustered microcalcifications and mass are the important findings in interpreting 
breast cancer, along with architectural distortion on mammograms. CAD techniques 
for detecting mass and clustered microcalcifications are well-documented and their 
performance continually improves. Whereas it was reported that fewer than one half 
of the cases of architectural distortion were detected by the two commercially avail-
able CAD systems[1]. In addition, a few CAD schemes have been specifically de-
signed for detecting architectural distortion[2,3]. 
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The distorted areas of clinical images are mainly classified into two typical types: 
either retraction or spiculation. The contour of normal mammary glandular tissue on 
the breast border tends to be smooth. On the other hand, the contour of the tissue  
in retraction area is depressed. The distributions of the mammary gland are  
approximated by linear structures. Those directions are toward the nipple within the 
normal breast, whereas the directions are toward the spiculation areas within the ab-
normal one.  

We have been developing the automated detection algorithms by using the top-hat 
processing for retraction[4] and the concentration index for spiculation[5], and mam-
mary glands[6]. The high sensitivities of these algorithms indicate the system’s poten-
tial usefulness. However, it was found that the extraction accuracy of mammary gland 
was not good enough in the visual evaluation in detecting spiculation. The purpose of 
this study is to suggest the improvement of extraction method of mammary gland in 
order to achieve higher sensitivity. 

2   Method 

Our previous method for detecting spiculation consists of five steps: 1) input of digital 
data, 2) extraction of mammary gland structure, 3) extraction of suspect area by con-
centration index, 4) elimination of false positives by discriminant analysis, and 5) 
annotation of architectural distortion (see Fig. 1).  

Input Digital Image Data 

New

Extraction of Structure of Mammary Gland by 
1)    Mean Curvature 

2) Shape Index and Curvedness 
3) Dynamic-range Compression and Mean Curvature 

Extraction of Suspect Area by Concentration Index 

Elimination of False Positives by Discriminant Analysis 

Initial pick-up 

Annotation of Architectural Distortion 
 

Fig. 1. Flowchart of extraction method for architectural distortion with spiculation 

First, digital mammograms are obtained from screen-film mammograms that are 
digitized to a 0.05-mm pixel size with 12-bit resolution by using the Konica laser 
digitizer (LD-5500). All of them are subsampled to an effective pixel size of 0.2 mm 
for detection of architectural distortions. The border of the breast on the mammogram 
is automatically extracted for the segmentation of the breast area. The smallest rec-
tangle containing the breast region is then cut off. Secondly, the structure of  
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mammary gland is extracted in terms of the shape index and curvedness. The digital 
mammograms can be represented in the three-dimensional space where the Z-axis is 
the density (pixel value of the 2-D image). In this space, the density distribution is 
approximated by a curved surface. The density distribution of the linear structures in 
the mammary gland is described by a downward-curved surface. The shape index 
classifies the shape of a curved surface. For example, five well-known shape classes 
have the following shape index values: cup, rut, saddle, ridge, and cap. The curved-
ness characterizes the flatness, or scale, of the shape indicated by the shape index. 
Thirdly, the concentration index is calculated in order to extract the suspect area. This 
index means that the component magnitude of the line element directed to the center 
of the local area is weighted by the inverse of the distance from the center and 
summed over this area.  

The summation is normalized by the sum of the length of the line element weight 
by the inverse of the distance so that the effect of the number of line elements. This 
index is high in the distorted area, because the linear structures of the mammary gland 
are toward the suspect area. Fourthly, the discriminant analysis is performed in order 
to eliminate false positives. Nine features are employed in this analysis. Five and four 
features are calculated in the suspect area and in the power spectrum, respectively. 
The residual candidates are finally determined as “true” architectural distortions and 
then indicate by circles in the concerned digitized mammogram on the computer  
display. 

In this study, we investigate the extraction accuracy of mammary gland by three 
methods: 1) shape index and curvedness which are used in our previous method, 2) 
mean curvature, and 3) dynamic-range compression and mean curvature. The mean 
curvature’s sign shows either a downward or upward curved surface at any given 
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Fig. 2. Dynamic-range Compression. (a) An original image. (c) Processed image of (a). (b) and 
(d) are profiles of line AB of (a) and (c), respectively. 
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point. The dynamic-range compression compresses the pixel value nonlinearity.  It is 
possible to eliminate the background density contributed from the breast thickness 
near breast border without changing contrast by this method. Figure 3 shows dy-
namic-range compression process. 

 

Fig. 3. Final results and FROC curves at initial pick-up of three methods 

3   Results 

First, we assessed the three methods in the synthetic images. We made some original 
synthetic images for this study. These synthetic images consist of many lines radiating 
in all directions. The lines were made based on Gaussian function. The lines are dif-
ferent in lengths, thickness and contrasts. The density changes and noises were added 
to background density. 

When we compared the extraction results using the three methods, the results are 
comparable expect in the synthetic image with density change. It is not possible to 
detect any lines in density change area by only mean curvature. On the other hand, it 
is possible to detect some lines in that area by shape index and curvedness method, 
and dynamic-range compression and mean curvature method. The shape of detected 
line by mean curvature is better than one by the combination of shape index and  
curvedness. 
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Next, the three methods were tested in clinical images. Our image database of ar-
chitectural distortions consists of 99 cases. The spiculation type that is detection target 
in this study is 56 cases within this database. To our knowledge, it is the maximum 
database with architectural distortions on mammography in the world. An experi-
enced radiologist verified the diagnostic sketches and comments in details of all cases 
used in our studies.  

Figure 3 shows final results and FROC curves at initial pick-up of three methods 
for extracting mammary gland. This shows that the best performance is the combina-
tion of dynamic-range compression and mean curvature at the initial pick-up stage. It 
is possible to improve the detection rate at this stage.  

4   Discussion 

We investigated the extraction accuracy of mammary gland by three methods. It 
showed the best performance that the combination of dynamic-range compression and 
mean curvature method. The spiculations that were detected only by this method were 
located around breast border. It became possible to detect them because the mammary 
glands around breast border were sufficiently extracted because the background den-
sity was removed by dynamic-range compression.  

5   Conclusions 

It was concluded that our approach was effective because the detection rate at the 
initial pick-up stage was improved. Nevertheless, many true positives were eliminated 
at the final stage. It was thought that the features of the false positives changed be-
cause of the improvement of detection method. For the future work, it is necessary to 
improve the method of eliminating false positives. 
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Abstract. The Digital Database for Screening Mammography (DDSM)
is an invaluable resource for digital mammography research. However,
there are two particular shortcomings that can pose a significant barrier
to many of those who may want to use the resource: 1) the actual mam-
mographic image data is encoded using a non-standard lossless variant
of the JPEG image format; 2) although detailed metadata is provided, it
is not in a form that permits it to be searched, manipulated or reasoned
over by standard tools. This paper describes web services that will al-
low both humans and computers to query for, and obtain, mammograms
from the DDSM in a standard and well-supported image file format.
Further, this paper describes how these and other services can be used
within grid-based workflows, allowing digital mammography researchers
to make use of distributed computing facilities.

1 Background

The DDSM [6] provides high-resolution digitised mammograms, expert ground-
truth and metadata (including the date of study and digitisation, the Breast
Imaging Reporting and Data System (BI-RADS) [1] breast density and assess-
ment categories, a subtlety rating, the type of pathology and detailed categori-
sation of the nature of the perceived abnormality using the BI-RADS lexicon).
The DDSM is available free of charge by File Transfer Protocol (FTP).

While the DDSM does provide software to decode their mammograms1, the
default distribution of this software does not build under modern compilers
without modification, a step that may prove difficult to those with insufficient
experience of C/C++ software development for UNIX-like operating systems.
Furthermore, even when properly compiled, the DDSM software outputs the
image data as a stream of raw bytes; one then has to normalise these accord-
ing to the model of digitiser used to image the original films and then create
an image file that is readable by one’s image analysis software environment.
An introduction to web services is given in Section 1.1. Section 2.1 describes a
web service that allows digital mammograms from the DDSM to be obtained
1 In particular the DDSM’s jpeg program.
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in a standardised and well-supported lossless file format. Section 2.2 describes a
service that allows groundtruth images to be obtained in the same file format.

While a web-based query tool is provided by the DDSM, it is useful only to
human users or automated tools that have been specifically designed with the
DDSM in mind. If the metadata were in a more useful format, it could easily
be exposed for both human and computer use. Section 2.3 describes a formal
ontology that has been developed to describe the DDSM resource and a web-
based user interface to allow users to query the ontology.

Section 2.4 describes how web services can be used together within workflows
to run full experiments and how a full record of how such experiments were
performed can be recorded by capturing provenance events. Section 2.5 details
a supporting website for the work described in this paper.

1.1 An Introduction to Web Services

The concept of web services may best be explained with a simple example of a
hypothetical scientist named Bob who lives in Manchester, UK. Bob has a CAD
algorithm that other scientists want to use. Traditionally, Bob would package
his CAD algorithm into some form that is easily installed and run by other
scientists. He would then deliver it to those scientists via Internet download or
on physical media (e.g. CD-ROM). However, Bob might not be able to let other
scientists run his software on their computers because:

– Bob may not have planned to share his software and may have made as-
sumptions in its design that limits its portability;

– users might need an expensive license to use a required proprietary library;
– the software may need access to a resource (e.g. a large database) that resides

at Bob’s lab;
– Bob might frequently update his software, so making each update available

to all his users might be troublesome;
– packaging the software for easy installation might be too time-consuming for

a busy research scientist.

Bob might decide that it is easier to allow other scientists to run his software
on his computer, accessing it via the Internet. This can be achieved by expos-
ing his software as a web service. Using an appropriate piece of client software
that implements the Simple Object Access Protocol (SOAP) standard [5], other
scientists can run Bob’s CAD algorithm on their data. In this way, Bob’s CAD
algorithm can be used by remote scientists as if it were installed on their com-
puters, or integrated into software as if it is a library containing the required
functionality.

The “interface” to a web service—the location of the computer that provides
the service and a specification of its inputs and output and their data types—is
described using the Web Service Description Language (WSDL) [2]. The URL
of a service’s WSDL file is all that is needed for a SOAP client to be able to use
the service2.
2 The WSDL files for the services described in this paper can be obtained from the

website described in Section 2.5.
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The web services proposed in this paper open up the possibility of performing
digital mammography research using grid-based workflows. In this context, a
grid is an ad hoc collection of computing services offered by a number of (typi-
cally) different computers via a network (typically the Internet) and a workflow
specifies how the services provided by the grid are orchestrated in order for some
task to be performed. Section 2.4 describes workflows in more detail.

2 Method

2.1 Digital Mammogram Web Service

To create a web service that makes available mammograms from the DDSM, we
developed a command-line program that, given the name of a particular DDSM
mammogram (e.g. D 0160 1.RIGHT MLO), downloads the associated .LJPEG
file from the DDSM’s FTP server, decodes the raw image data, normalises it
according to the digtiser used and finally converts it to a PNG file [4]. This for-
mat is ideal for encoding mammograms as it is standardised, guarantees lossless
compression and is widely supported by common software tools and libraries3.
(In future, other lossless image formats may be more suitable—such as JPEG-LS
and JPEG 2000—but as of this writing these formats are not widely supported.)

Downloading and converting the images takes a few minutes on a desktop
computer with a fast connection to the Internet and so the program caches some
of the converted mammograms locally so that future requests can be efficiently
serviced. Our program is exposed as a service via SOAP [5]. DDSM mammo-
grams can be obtained from this service using any SOAP client.

2.2 Groundtruth Web Service

To enable the evaluation of algorithms run on the DDSM mammograms delivered
by the service described in Section 2.1, there is a need to be able to obtain the
corresponding groundtruth images. We have developed a web service that allows
DDSM groundtruth images to be generated and delivered in a suitable image
format. Our approach to developing this service was the same as that described
in Section 2.1. We first developed a command-line program that, given the name
of a particular DDSM mammogram (e.g. D 0160 1.RIGHT MLO) and an ab-
normality number4, downloads the corresponding .OVERLAY file (which contains
a description of the shape of the radiologist-annotated abnormalities for the im-
age using a chain code). The DDSM groundtruth metadata defines two possible
types of region: a ‘boundary’ and a ‘core’, though ‘core’ regions may be absent
(see [6] for details). Our program then creates a image with the same number
of rows and columns as the corresponding digital mammogram—i.e. there is a
one-one correspondence between every pixel in a digital mammogram and the

3 We encode DDSM mammograms as 16 bits/pixel grey-level images.
4 Mammograms may contain more than one abnormality. The abnormality number is

captured by the ontology that is described in Section 2.3.
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pixel at the same location in its groundtruth image—and this image is populated
with pixel values that indicate the class of each pixel. A value of zero represents
normal tissue or the non-breast region, a value of 128 represents a pixel within
a ‘boundary’ region of the abnormality and a value of 255 represents a pixel
within a ‘core’ region of the abnormality. The resulting groundtruth image is
saved as a PNG image. While downloading the .OVERLAY file and creating a
groundtruth image takes approximately a minute, the resulting PNG files are
very small (approximately 14 kb) due to the high correlation between successive
scan lines in the images, and we therefore keep all generated images to efficiently
service future requests. This program is then exposed as a web service via SOAP.

2.3 DDSM Ontology and Metadata Query Service

Being able to obtain mammograms and groundtruth is not particularly useful
without knowing which mammograms have what characteristics. To this end,
we have developed a formal ontology of the mammograms, groundtruth and
metadata (e.g. abnormalities, patient information). An ontology is a description
of the concepts and relationships that exist in some knowledge domain. The
formal representation of metadata within ontologies (using technologies such as
the Web Ontology Language (OWL) [9]) allows domain knowledge to be used
alongside explicit labelling to infer implicit relationships and hence deliver more
useful results. As a simple example, if an ontology were to state that a stellate
lesion is a type of mass, then a query for masses could return—in addition to
items explicitly labelled as masses—items that were labelled as stellate lesions;
i.e. the domain knowledge captured in the formal ontology allows it to be inferred
that items labelled as stellate lesions must also be returned.

Previous Work. The most relevant work on ontologies for digital mammogra-
phy was done by the Medical Imaging with Advanced Knowledge Technologies
(MIAKT) project, which developed a fairly complete ontology for breast cancer
imaging studies called the Breast Cancer Imaging Ontology. This multi-level on-
tology incorporated classes for both X-ray and MRI breast imaging, for abnormal
findings and medical assessments [3]. The project also used the DDSM images as
exemplar breast X-ray image data [7]. In contrast, the ontology that we have de-
veloped is more narrowly confined to the DDSM database, as justified below.

Our DDSM Ontology. Within the DDSM, information about the mammo-
grams is specified in an .ICS file and, for each image that contains abnormalities,
an .OVERLAY file. The .ICS file contains information common to the case e.g. the
patient’s age, and also information necessary to interpret the four mammograms
e.g. the number of pixels per scan line. The .OVERLAY file contains informa-
tion particular to the abnormality, or abnormalities, that have been interpreted
within a particular mammogram e.g. the left CC mammogram.

The ontology that has been developed for the DDSM allows the description
of the information within the .ICS and the .OVERLAY files. The ontology is
written in OWL [9]. A decision was made that the ontology would only describe
the information specified within the DDSM, in particular it would not attempt
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to be a general model of mammograms, mammogram interpretation or breast
cancer—as the MIAKT project developed—as we are interested only in making
the DDSM database easily available.

For an individual case, an OWL ontology is populated with RDF (Resource
Description Framework [8]) instances. The instance ontology combines the in-
formation within the .ICS and .OVERLAY files into a single semantic structure.
This allows the easy searching of the instance ontology when it is loaded into an
RDF repository.

Within the DDSM ontology, the ‘case’ class specifies information that applies
to a patient’s visit and their four images. It has four relationships to ‘views’
corresponding to the four mammograms. ‘Views’ are subclassed into either
abnormal or normal views. The information about the image is held within the

Fig. 1. The DDSM metadata query form
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‘view’ superclass. If the ‘view’ is an ‘abnormal view’ then it has relationships to
one or more ‘abnormalities’.

An ‘abnormality’ contains information such as the assessment and subtlety.
It also has specific information about the calcification or mass intrepretation of
the abnormality. In addition, the bounding curves of the abnormality and any
cores within it are specified.

We have automatically populated an RDF store with instances of the classes
in our ontology by processing the DDSM metadata files. We are currently de-
veloping a web-based user interface that will allow users to query the RDF store
for images and groundtruth in a user-friendly manner. Figure 1 shows the form
used to create queries.

2.4 Workflow Enactment and Provenance Capture

A workflow describes how a number of services can be combined to perform
some useful task. The Taverna workbench program—a Java application that
originated in the bioinformatics research community—allows users to create and
run workflows within a graphical user interface [10]. Taverna displays workflows
as directed graphs, where nodes represent inputs, services or outputs and arcs
represent the flow of data and control (see Figure 2 for an example). Workflows
can be saved and easily exchanged between colleagues. Taverna allows users
to run, pause, monitor and debug workflows in a manner similar to modern
software development environments. Workflow results can be directly displayed
within Taverna.

Aside from allowing researchers to make use of distributed computing re-
sources, Taverna can capture provenance events—e.g. when a particular work-
flow was started and with which inputs—allowing the workbench to operate
as an automated laboratory log book. This also allows researchers to obtain

Fig. 2. A simple Taverna workflow
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answers to questions like ‘which images were used as inputs to the workflow I
ran on 24 January 2006?’.

2.5 Supporting Website

Those who wish to use the services described in this paper are directed to
http://www.digital-mammography-services.net. This website will provide
the most up-to-date documentation of the available services and provide links
to the WSDL files that specify the web services described in this paper. We in-
vite the community to make useful software and data available via services and
are keen to document these at the above website.

3 Results

Our work is at a relatively early stage, but we already have useful services and
infrastructure. The most significant contributions are the digital mammogram
and groundtruth “getter” services, the DDSM ontology, the web-based query
facility and the supporting website. We hope these will be useful to the digital
mammography research community. While we are using the Taverna workbench
software to integrate our services into simple grid-based workflows, our general
approach—publishing our software as SOAP services—does not require clients
to use Taverna; any SOAP client can be used.

4 Discussion

We have described three web services which allow both humans and computers
to query a formal ontology of the DDSM data and obtain digital mammograms
and groundtruth from the DDSM in a well-supported standard image format. We
have also described how these services could be used within grid-based workflows.
As Section 1 described, obtaining mammograms from the DDSM is currently
non-trivial and it is hoped that the web services described in this paper will
make using this important resource more convenient.

It is difficult to quantitatively evaluate the type of work that is described
in this paper. While we could measure the speed with which requests can be
processed, or the number that can be handled concurrently, such measurements
do little to tell us if we have achieved our aims of developing and deploying
infrastructure that is useful to the community. This will become apparent in
time as the resources described in this paper are used (or otherwise) and if other
researchers contribute their software and data in the form of web services for use
by the community. In this spirit we welcome criticism and suggestions and are
able to offer advice on an informal basis to those interested in developing their
own web services.

Future work will focus on exposing other useful algorithms as web services
(e.g. a CAD task such as microcalcification detection, a receiver operating char-
acteristic (ROC) analysis service) and on maintaining the website described in
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Section 2.5. Given these services, it will be possible to run a simple but typical
digital mammography CAD experiment using web services (i.e. obtain mam-
mograms → process each image using the CAD algorithm → obtain ground-
truth → produce an ROC curve). By publishing the workflow, others in the
community would be able to replicate the experiment exactly or swap one ser-
vice (e.g. the CAD task) for their own to be able to fairly compare algorithms.
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Abstract. In this work the implementation of a database of digitized 
mammograms is described. The digitized images were collected since 1999 by 
a community of physicists in collaboration with radiologists in several Italian 
hospitals, as a first step in order to develop and implement a Computer Aided 
Detection (CAD) system. 3369 mammograms were collected from 967 patients; 
they were classified according to the type and the morphology of the lesions, 
the type of the breast tissue and the type of pathologies. A dedicated Graphical 
User Interface was developed for mammography visualization and processing, 
in order to support the medical diagnosis directly on a high-resolution screen. 
The database has been the starting point for the development of other medical 
imaging applications such as a breast CAD, currently being upgraded and 
optimized for the use in conjunction of the GRID technology in the framework 
of the INFN-funded MAGIC-5 project. 

1   Introduction 

A medical images dataset is considered the starting point for important epide-
miological and statistical studies and also to develop and test algorithms for CAD 
systems, but also for teaching and training of medical students and as an archive of 
rare cases. In 1995 Osuch et al. proposed a mammography database for a national 
mammography inspection and to monitor patients through a centralized system [1]. 
Technological improvements in digitizing scanners make now possible to digitize 
radiographic films with no significant loss of information. At the moment many large 
datasets of digitized mammograms are available on the web [2,3]. Other databases, 
also “GRID compliant”, are described in the literature [4-6]. The development of a 
CAD system is strictly tied to the collection of a large dataset of selected images. 
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In this work a full description of the GPCALMA (Grid Platform for Computer 
Aided Library in Mammography) database is given.  

2   Method 

Images were acquired in various mammographic centers using different mammo-
graphic screen/film systems and settings (all with molybdenum anode) and in the 
framework of different applications, including both clinical routine carried out on 
symptomatic women, and screening programs addressed to asymptomatic women.  
Moreover, many images come from an archive of particularly meaningful clinical 
cases collected in the previous years at the Bari hospital. Unfortunately at the moment 
of the digitization the information about acquisition settings were no more available, 
thus making impossible normalization procedures. A workstation, composed of a PC 
running the Linux operating system and a film scanner, was installed at each site 
involved in the program. Digitized images are stored in a dedicated hard disk, which 
presently stores the whole GPCALMA database of mammographies. All the 
mammograms of the database were digitized using the same digitizer model and 
under the same conditions in order to avoid fake features caused by variations in the 
digitization step. A CCD scanner was used, choosing [7] a pixel size of 85 μm and a 
12 bit depth. The typical scan time is 20s. The acquisition software provided with the 
scanner was modified to scan and save images in a special format (called CALMA 
format) consisting of a long vector of numbers corresponding to the pixel intensities 
and two other numbers representing the image dimension. These numbers are used to 
transform the vector in a matrix: each pixel of the image can be represented by a 
triplet (x, y, I), where x is the row number, y is the column number and I is the 
intensity of the pixel, ranging from 0 (black) to 4095 (white). Such workstations have 
been continuously operative in various collaboration sites for several years without 
problems. In sites where clinical studies were performed, the PC was connected to a 
high resolution and high luminosity B/W LCD monitor.  

3   Description of the Database 

The database is composed of 3369 mammographic images, each including data and 
clinical information. Images were collected from 967 patients. The age distribution is 
reported in figure 1. Each patient has from one to six views, according to the 
distribution shown in figure 2. The repartition of the database in left/right breast images 
is 1835 (51%) and 1734 (49%) respectively, while for the craniocaudal/oblique/lateral 
views is 1601 (48%), 1456 (43%) and 312 (9%) respectively. The image size is 2067 x 
2657 pixels, 85μm of pitch, 12 bit/pixel (4096 grey levels); each image file is about 8 
Mbytes. All the mammographic images with other information related to the patient 
(follow up, age of patients and interesting cases) were collected in the Italian hospitals 
involved in the collaboration from 1997 to 2002. The geographic provenience of the 
images is shown in figure 3.  

Prior to being processed all images were anonymized. All the images of the 
database containing one (or more) lesions were characterized according to the kind of 
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Fig. 1. Distribution of the birth-date of the analyzed patients 

 

Fig. 2. Number of cases with 1-6 views 

lesions (massive or microcalcification), its grade of malignancy, the kind of texture of 
the breast, etc.   

In this study there are the images from 306 (32%) patients who were defined 
normal when there was no evidence of any lesion, in many cases proven by three 
years of radiological follow up. The remaining images proceed from 661 (68%) 
“abnormal” patients: when a suspicious lesion was found by the radiologist in these 
images, it was classified as suspicious; benign or malignant. For many malignant 
lesions there are also available cytological or histological results. In any case, detailed 
radiological annotations of the abnormalities are included in the database as notes. 
The relative distribution of grade of malignancy of the lesions is: 560 (35%) 
suspicious lesions, 468 (29%) benign lesions and 592 (37%) malignant lesions. In the 
table 1 are reported the histotypes related only to some patients.  

We consider abnormal images the ones which contain at least one mass or one 
microcalcification, as diagnosed by an expert radiologist. In the database there 
are1062 images containing at least one Region Of Interest (ROI) with a massive  
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Fig. 3. Geographic provenience of the images within the MAGIC-5 project 

Table 1. Kind of histoypes classified in the database 

Invasive Lobular Carcinoma    17 
Lobular Carcinoma 5 
Ductal Carcinoma 3 
Ductal Invasive Carcinoma 124 
Ductal in Situ Carcinoma 16 
Intraductal Carcinoma 11 
Papilloma Intaductal 1 
Dysplasia 2  

Fibrosis 6 
Fibroadenoma 7 
Cystica fibrose mastopatia  2 
Sclerosing Adenosis  2 
Epitheial Hyperplasia     3 
Adenosis 5 
Tubular Carcinoma 10 
Muciparo Carcinoma 5 

Total 219  

lesion and 304 images containing at least one ROI with microcalcifications. In total 
there are 1296 (38%) abnormal images containing at least one lesion (massive or 
microcalcification or both) and 2073 (62%) normal images with no lesions; each 
image can also contain more than one lesion, so the total number of ROIs is 1620 
(1236 massive and 384 microcalcification).  

Each of these main classes of lesions (microcalcification clusters and massive 
lesions) are further classified according to the morphological characteristics of the 
lesion. For our database, we adopted the scheme of Lattanzio and Guerrieri [8],  
which has been recognized as a satisfactory reference framework by the national 
panel of radiologists, with more than 20 years of experience in mammography, who 
identified and localized each lesion according to such a classification.  

Each abnormal image comes with a description of the lesion as shown in table 2, in 
which is reported the partition of the ROIs for different kind of massive lesions and 
microcalcifications, with the corresponding number of images from which each kind 
of lesions comes.  

The location and size of a mass is defined by a radiologist-drawn circle, 
characterized by center coordinates {Xrad; Yrad}and radius {Rrad}, which fully contains 
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Table 2. Different kinds of lesions (ROIs). Left: different kinds of masses present in the 
database; others  include a combination of the above mentioned kinds. Right: different kinds of 
microcalcifications present in the database. The table includes the corresponding number of 
images from which each kind of lesions comes. 

MASSIVE LESIONS MICROCALCIFICATIONS 
 ROIs IMAGES  ROIs IMAGES 

Irregular Roundish Opacity 406 369 Glandular 163 124 
Spiculated Opacity 294 261 Mixed 99 73 
Regular Roundish Opacity 289 210 Lobular 9 8 
Parenchimal Distorsion 111 109 Scattered 57 45 
Blurred Roundish Opacity 47 41 Ductal 10 10 
Fibroadenoma 29 29 Teacup 37 37 
Others 58 43 Eggshell 6 4 
Total 1236 1062 Tubular 3 3 
   Total 384 304 

the mass. The radius size of the masses ranges from 3.1 mm to 47.2 mm with a mean 
size of 11.7 mm, while the radius size of the clusters of microcalcification ranges 
from 1 mm to 72.8 mm with a mean size of 11.9 mm. 

Another important parameter to characterize the image is the breast tissue type. 
Collaborating radiologists were asked to identify the breast texture for a full images 
characterization. As far as the breast background is concerned in the GPCALMA 
database, we adopt a tissue classification recognized as a standard by many Italian 
radiologists [9][10]:  

i) Fibro-adipose tissue indicates a fat breast with little fibrous connective tissue; 
ii) Glandular tissue: indicates the presence of prominent duct patterns; 
iii) Dense tissue: indicates a dense breast parenchyma. 

The breast background classification is based only on the appearance of the 
parenchyma, without any reference to skin, vascularity, presence/absence of masses, 
calcifications, lymphnodes, nor to parity, history of breast disease, age and family 
history. Figure 4 reports the background composition of the database. Most of the 
images are glandular-like: the detection of pathological structures in this kind of 
images is a quite hard task, since the target is surrounded by a “noisy” environment. 

The database presents some limitations. The first is that images are collected from 
different centers and were acquired with different mammograms under different 
conditions, so the grey level scales are quite uniform only for the images coming from 
the same center. Besides that, images were collected in different clinical and screening 
conditions, so they do not represent a typical distribution of the mammographic masses 
and microcalcifications in terms of ratio of benign to malignant cases from an 
epidemiological point of view. Moreover it was not possible to classify the lesions 
according to their visibility grade because different radiologists view the images, and 
the classification should have been radiologist’s dependent. In any case, this database 
represent the larger Italian one in terms of digitized mammograms and it has been 
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Fig. 4. Breast tissue composition of the database 

successfully utilized not only for the development and the test of the GPCALMA 
Computer Aided Detection System [7] also in conjunction of the GRID technology 
[11]. In fact it has been also the basis of an experimental study about the peculiarities 
of monitor refertation [12], it has been used to test the performance of different CAD 
systems as second readers [13]. Moreover, it has been successfully used [14] for 
developing a CAD system for microcalcification cluster identification in a pan-
European distributed database of mammograms in the preliminary (when the 
abnormal cases in the new database were still too few to be used) training step of the 
neural based classification analysis.   

4   Discussion 

The database collected in the course of this study represents a useful archive of 
digitized mammographic images. According to the rules established within the 
GPCALMA collaboration, it can be a valuable tool to the scientific community for 
different tasks such as training and testing of Neural Network based classification 
tools, for retrieval use and for statistics and epidemiology studies.  

Like in a screening program, data are collected from geographically remote sites. 
The growth of the database and the distributed nature of the collaboration raises a 
problem, since images are generally not replicated between remote sites. The 
approach used to solve the problem of remote access was to use techniques developed 
for GRID computing. The need for acquiring and analyzing data stored in different 
locations requires the use of GRID Services for the management of distributed 
computing resources and data. GRID technologies allow remote image analysis and 
interactive online diagnosis, with a relevant reduction of the delays presently 
associated to the diagnosis in screening programs. A Virtual Organization (VO) has 
been deployed, so that authorized users can share data and resources and implement 
screening, tele-training and tele-diagnosis for mammograms. A small-scale prototype 
of the required GRID functionality was already implemented for the analysis of 
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digitized mammograms as recently demonstrated at the SuperComputing 2004 
Conference (Pittsburgh, nov. 2004). 

From the GRID point of view, it is based on a data model in which input data are 
not moved and their analysis is run in parallel on the nodes where they are stored and, 
if possible, interactively.From this point of view, the collaboration can be seen as a 
Virtual Organization (VO), with common services (Data and Metadata Catalogue, Job 
Scheduler, Information System) running on a central server and a number of 
distributed nodes (Clients) providing computing and storage resources. The medical 
application suggests these constrains: 

1. some of the use cases require interactivity; 
2. the network conditions do not allow the transfer of the full data sample; 
3. because of privacy and data ownership, local nodes (hospitals) rarely agree  
    on the raw data transfer to other nodes. 

Integration of tools for remote disk storage access into the CAD system has 
successfully been tested: a prototype that makes possible to share data between the 
different sites of the research and to run CAD from remote sites has been built [11]. 
The next step would be to transfer the prototype into a clinical environment, invol-
ving radiologists collaborating in the project, to implement tele-diagnosis and  
tele-screening. 
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Abstract. Mass screening of breast cancer utilizing mammography
(MMG) has been widely carried out. However, MMG might not be able
to depict small impalpable masses in dense breast tissue clearly. We have
developed a computer-aided detection (CAD) scheme in whole breast ul-
trasound (US) system for mass screening which has been developed by
ALOKA CO., LTD., Japan. Our CAD scheme and image processing
techniques have the following three benefits.

1. Indication of mass candidates by our CAD scheme.
2. Visualization of breast US images in two views of B-planes (CC View

and ML View) and C-plane.
3. Comparison of left and right breast images as in MMG.

The performance of the CAD scheme in detecting malignant masses on
an initial study has a true positive fraction of 0.91 (10/11) at a 0.69
(633/924) false positive per image. Although mass screening utilizing
US was not appropriate because images acquired by conventional hand
probe were poor in reproduction, the problem could be solved in our
system.

1 Introduction

Among Japanese women, breast cancer has the highest incident rate of all can-
cers. In Japan, breast cancer screening using mammography has been establised
for women over 40 years of age with the recommendation of the government.
When interpreting mammograms, small impalpable masses might be overlooked
when dense breast tissue obscures these small masses, and younger Japanese
women tend to have dense breast tissue. Ultrasonography can depict these masses
even if they have dense breasts. Hence, breast mass screening by ultrasonography
has started in some regions in Japan. However, it is difficult for inexperienced ra-
diologists to interpret ultrasound (US) images because the quality of US images
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is poorer than that of mammograms. In addition, the large volume of screening
US images can be a burden to radiologists. Computer-aided detection (CAD)
systems on US images can reduce oversights of masses and provide valuable
second opinions to radiologists.

Many CAD schemes for detection and classification breast masses have been re-
ported. Giger et al. have reported an automatic lesion detection technique using
a radial gradient index filtering[KD1, MK1]. They have also investigated breast
mass classification using a Bayesianneural network and computer-extracted lesion
features[KD1, KD2]. Chang et al. have proposed a method that finds suspicious
frames among whole breast US images using watershed segmentation[RC1]. We
have developed a CAD scheme based on active contour and balloon models in 2-
D and 3-D spaces[DF1, TH1]. However, these automated mass detection methods
require substantial computation time in analysing. In addition, some systems also
need a radiologist to indicate the mass position on a US image manually. Extract-
ing a mass region from segmented regions is difficult, because US images are noisy
when compared with mammograms. Boundaries between two regions are obscure
due to speckle noise. Moreover, in a mass with a disappearance posterior echo, it
is very difficult to determine the extension of a region accurately.

In this study, we investigated CAD system for the detecting masses based on
the orientation of edges.

2 Materials

The ultrasound images were acquired by a whole breast mechanical scanner ASU-
1004 (ALOKA Co.). This system has 6cm linear transducer with a frequency of
6-10 MHz. The scanner can scan 16 x 16cm of the breast area automatically
by three separate path scans. These path data overlaps 1cm width as shown in
Fig. 1 and it has B-plane images with 0.125-2mm intervals.

In this study, a whole breast image usually consist of 84 slices (image size:694
x 400 pixels, 256 graylevels, slice interval:2mm) . Our database is consist of 11
whole breast files(924 slices) diagnosed by experienced radiologists. The distri-
bution of database is 11 malignant masses (65 slices), 3 fibroadenomas (8 slices)
and 8 cysts (53 slices).

3 Methods

3.1 Image Integration

Whole breast images are prepared by integrating with three path images. The
composite image fi(x, y) is calculated as

fi(x, y)=

⎧⎪⎨⎪⎩
gi(x, y+Δyi) ((x, y)∈ gi, (x, y) /∈ gi−1)
gi−1(x, y) ((x, y)∈ gi−1, (x, y) /∈ gi)
αgi(x, y+Δyi)+(1−α)gi−1(x, y) ((x, y)∈ otherwise)

(i = 2, 3)

(1)
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Fig. 1. Whole breast mechanical scanner, ASU-1004. 6cm linear transducer with a
frequency of 6-10 MHz.

Fig. 2. Composite image constructed from the three path images

i =

⎧⎪⎨⎪⎩
1 1st path image
2 2nd path image
3 3rd path image

where Δyi represents the adjustment value for fit postion. α is transparency. A
composited image using this method is shown in Fig.2.

3.2 Preprocessing

US images are always noisy and brightness of these images varies with the vari-
ation of the gain. Consequently, the result of a CAD system is affected by these
noises and the changes in this brightness. Therefore, noise reduction and image
intensity normalization are important.

The following steps address these issues. (1)Efficient median filter for ellimi-
nation of impulse noises. (2)A hysteresis smoothig algorithm[RE1] was applied
to the image for ellimination of minor fluctuations.
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3.3 Extraction of Free-Echo Masses

Free-echo masses are depicted in the lowest intensity region in the mammary
gland. Hence, candidate regions of free-echo masses were extracted by intensity
thresholding. Free-echo masses are mostly cysts. The shape of a typical cyst
is horizontally long ellipse form because this mass consists of a sac of liquid.
Therefore, we reduced the false positive regions among the candidate regions
using the following features and thresholds: size of region S < 100 ; roundness
R < 0.5 ; depth-width ratio DW ≥ 2.0.

3.4 Extraction of Low-Echo Masses

The breast US image consisting of five main kinds of tissue is shown in Fig.3(a).
Fig.3(b) gives an example of a normal image which consists of mainly horizontal
edges. Fig.3(c) gives an example of an abnormal image. This image includes not
only horizontal edges but also vertical edges around the border of a mass.

Fig. 3. Breast US image. The illustration of a breats US image is shown in (a). The
normal breast US image is shown in (b). The abnormal breast US image with malignant
mass is shown in (c).

Our detection masses method extract the vertical edges by the popular Canny
edge detector[JC1]. The gradient direction θ classfing edges into vertical and
horizonal edges are calculated as

θ = arg(
∂g

∂x
,
∂g

∂y
) +

π

2

where arg(x, y) is the angle from the x axis to the point (x, y). The input image
g was calulated by Canny detector. Fig 4(b) and (c) show the edges of Fig.4(a)
detected by a Canny operator with σ = 5.0.

3.5 Segmentation Region

The ROI was segmented by the watershed algorithm[LV1]. This algorithm is one
of the seed-based region growing techniques that uses gradient magnitude as a
threshold value. This technique is easily affected by noises because of the use of
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(a) (b) (c)

Fig. 4. Example image of detected edges using the Canny edge detector. (a) Original
image. (b) Image with vertical edge lines. (c) Image with horizonatal edge lines.

the gradient magnitude. The preprocessing procedure has a significant effect on
the segmentation results.

4 Results

Table 1 shows results of the performance of our proposed method in our database.
The sensitivity (TP) of carcinoma was found to be 90.9% (10/11) at a 0.69
(633/924 images) false positives(FPs). The sensitivity of benign fibroadenoma
and benign cyst were found to be 33.3% (1/3) and 50.0% (4/8), respectively.

In Fig.5, The original images are shown in the first row while the results
generated by the proposed scheme are shown in the second row. Fig.5(a), (b)

Table 1. Result of detection masses

Malignant mass Benign mass
CA FA Cyst

TP (per mass) 90.9% (10/11) 33.3% (1/3) 50.0% (4/8)
TP (per slice) 66.2% (43/65) 25.0% (2/8) 56.6% (30/53)

FP rate (FP/slice) 0.69 (633/924)

Fig. 5. Results of detection. (a), (b) and (f) have malignant masses (CA), (c) has a
benign mass (FA) , (d) and (e) doesn’t have any masses.
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and (f) have malignant masses (CA), (c) has a benign mass (FA) , (d) and (e) do
not have any masses. The candidate masses in (a)-(c) are true-positive detections
except the one in the lower region of (a). which is not a mass but a posterior
shadow and is a false-positive detection. The detected regions shown in (d) and
(e) are rib and fat, respectively. These are also false-positive detections.

5 Conclusion

We developed a fully automatic computer-aided detection system for breast
masses on US images scanned by whole breast scanner for mass screening.

Our proposed system has two detection processes for free- and low-echo breast
masses. One is based on the intensity thresholding, the other one is based on the
gradient analysis. Our scheme can detect a wide variety of masses effectively. On
an initial study, it indicates that this method will aid radiologists on screening
ultarasonograms.

Our Viewer of the CAD system can display bilateral breasts of B-plane (CC
View and ML View) and C-plane. An example of reconstructed B-Plane and
C-plane images are shown in Fig.6. This visualization technique is effective for
comparison of left and right breast as in MMG.

(a) (b)

Fig. 6. Viewer of the CAD system. It can display bilateral breasts of B-planes (CC
View and ML View) and C-plane.

In the future, it is necessary to employ a larger database in order to estab-
lish the reliability and accuracy of the method. This automatic mass detection
scheme is fundamental to an ultrasonographic CAD system in classifying breast
masses on C-plane images and 3-D images.
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Abstract. Medical ontologies are being developed with some of these specifi-
cally for mammographic computer aided diagnosis (CAD) systems. However, to
provide full functionality for such mammographic CAD systems it is essential
that the ontology information is fully linked to the image information. This link-
ing can be through problem specific image attributes. However, such an approach
tends to be non-generic. Here, we propose a framework that will use generic im-
age structures and the topology that links the image structures. In the process we
describe a comparison approach which takes the classes, attributes and semantics
into account.

1 Introduction

A large number of medical ontologies have been developed in recent years [1, 2, 3, 4, 5, 6].
Recently, mammographic ontologies have been developed, with an emphasis on triple
assessment [7], computer aided diagnosis systems [8] and abnormality detection by ex-
pert radiologists [8]. A typical example of the high level structure of such an ontology is
shown in Fig. 1. At a lower level (details can be found in Fig. 2) the ontology indicates
attributes of the abnormality (e.g. size and shape descriptors), but also include associ-
ated findings of additional abnormalities (e.g. the association between calcifications and
masses or deformity). The final part of a mammographic ontology consists of semantic
aspects, which include a) a description of how the values of the attributes, in combination
with specific abnormality classes, lead to classification of the abnormality [9], b) spatial
relationships and associations between abnormality classes [10], c) synonyms for ab-
normality classes and attributes [11], d) spatial relationships between abnormalities and
image location [12]. The specific values of the attributes and the association between
the various abnormalities in combination with some suitable logic will determine the
classification of the mammographic images. A typical five point score scale would be:
1. normal, 2. benign, 3. indeterminate (probably benign is also used), 4. probably ma-
lignant, and 5. definitely malignant. Such classification will determine the subsequent
process.

In breast screening programmes [13, 14, 9] the emphasis in detecting abnormali-
ties is on image information [15, 16, 11]. However, very little work has been done to

Susan M. Astley et al. (Eds.): IWDM 2006, LNCS 4046, pp. 399–406, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



400 D. Qi, E.R.E. Denton, and R. Zwiggelaar

without Mass
Mass

Well Circumscribed Lesion with
Irregular Outline

Abnormality

Calcification

Normal

Mammographic
Images

Asymmetric
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Fig. 1. High level structure of the mammographic ontology
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− nothing at same site
   on opposite side
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− radial scar
− invasive carcinoma
− expect DCIS if
   associated with

Fig. 2. Attribute details of the mammographic ontology

date to provide a clear link between the mammographic ontologies and generic image
structures present in mammographic images. This is a theoretical investigation into the
topological representation of medical ontologies and how these are linked to the avail-
able image information. More specifically, the investigation provides direct mapping
between a radiologists mammographic ontology and image structures. The compari-
son is provided at all levels of the ontology, covering classes, attributes and semantics.
This is closely related to the work on image topologies [17], ontologies [18, 19] and
mereotopology [20, 10]. It is expected that such semantic enrichment will lead to an
improved image understanding. This work is based on collaboration with expert breast-
screening radiologists and is expected to be incorporated within future CAD, eLearning
and image retrieval systems.

The layout of the remainder of the paper will be as follows. In Sec. 2 an image for-
mation model is developed, which forms the basis for a mammographic image model.
Subsequently, a string comparison approach is described to provide a mapping
between the mammographic ontology and image model. Results, application areas and
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potential future research direction are discussed in Secs 3 and 4. The paper concludes
with conclusions.

2 Methods

2.1 Image Information

Work on image topologies [17], ontologies [18] and mereotopology [10] has indicated
the underlying structure within images which constitutes fundamental generic struc-
tures such as lines and regions and a set of rules to describe the relationship between
these generic structures. An image might be regarded as a high dimensional object
which is made up of a large number of lower dimensional (anatomical) structures and
a set of connectivity rules. The lower dimensional structures are represented by a small
set of generic classes and here the anatomical structures are specific instances of these
classes. The relationships between the anatomical structures can be described by term
such as part-of and location-of, which indicates a bottom-up approach (the inverse rela-
tionship has-part and has-location can also be used). Additional semantic relationships
that are being incorporated include is-a, attribute-of, instance-of, overlap, acronym-of,
synonym-of, and value-of aspects.

2.2 Mammographic Image Information

The image model described above can be made mammography specific by adding an
additional layer, which divides the mammographic image into distinct regions. This
effect is shown in Fig. 3, which has divided the mammographic image in a breast and
other regions (it should be noted that mammographic abnormalities can be present in
pectoral muscle area, but this is seen as outside the remit of this investigation, although
a simple solution would be to treat the pectoral muscle area as independent in which
case the same approach as followed for the breast region can be used).

− strength
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   structures
   with other image
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   structures
   with other image
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Fig. 3. Incorporation of the generic image structures into a mammographic image representation
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2.3 Linking Medical Ontology and Image Information

A bottom-up approach is used to provide a mapping between the ontology and image
information. To link the mammographic ontology and the image topology the attributes
(and semantic relationships) of both can be matched to indicate which image structures
are essential for the detection of specific mammographic abnormalities. The comparison
of a set of attributes and semantic relationships is based on class similarity metrics and
synonyms or equivalent descriptions.

One of the important aspects within the used methodology is the generation of a list
of semantic relationships, synonyms or equivalent descriptions between mammographic
anatomic structures, mammographic abnormalities, generic image structures, and their
attributes. This list is populated from a range of mammographic [16, 11] and image
processing [21, 22] sources. For some of the mammographic classes and attributes there
are in excess of four synonyms or alternative descriptions, which indicates the large
variation in lexicon usage within mammographic radiology and screening.

The comparison of a set of attributes (including the class they belong to and the as-
sociated semantic relationships) is based on string similarity metrics, which takes syn-
onyms fully into account. To be specific, the similarity between two attributes Cu : aCu

m

and Cv : aCv
n (Cu and Cv represent two different classes and m and n the mth and nth

attributes of those two classes, respectively) is given by [23]

sma(aCu
m ,aCv

n ) = max
(

0,
min(|aCu

m |, |aCv
n |) − eds(aCu

m , aCv
n ))

min(|aCu
m |, |aCv

n |)

)
(1)

where |....| determines the length of a string and

eds(aCu
m ,aCv

n ) = min(ed(aCu
m ,aCv

n ), ed(aCu
m , {saCv

n })) (2)

where ed() is a string edit distance, which effectively counts the deletions, insertions
and substitutions to match two strings. {saCv

n } is the set of synonyms for aCv
n . It should

be noted that:

ed(aCu
m ,aCv

n ) = 0 ⇐⇒ aCu
m = aCv

n

ed(aCu
m ,aCv

n ) = ed(aCv
n ,aCu

m )
ed(aCu

m ,aCv
n ) > 0 ⇐⇒ aCu

m �= aCv
n

(3)

and we only regard the non-case-sensitive forms, where capital letters are replaced by
their lower case equivalents.

It should be noted that the transformation based on synonyms or equivalent descrip-
tions can have several layers and is an iterative process. The described approach relies
on an exhaustive search through all possible paths provided by the synonyms and equiv-
alent descriptions. In Eq. 2 this is represented by the set {saCv

n } and all permutations
including all possible synonyms, semantic relationships and equivalent descriptions.

3 Results

The main results here are direct connections between the aspects of the mammographic
ontology and generic image structures. A summary of these results can be found in
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Tab. 1. This shows that for all but one of the mammographic ontology attributes are
matched to image structures and their specific attributes. These results provide a logical
mapping, but a full model would need to include a set of images, so the association with
other images, and specific values for the attributes in both domains is incorporated.

Table 1. Mapping between the mammographic ontology and generic image structures. Here the
class names are indicated by unique acronyms of the classes in Figs 1 and 3.

Mammographic Ontology Image Structures
M: spiculated LS: pattern
M: lobulated R: shape
M: ill defined R: morphology
M: associated distortion R: association
M: density > glandular tissue R: contrast
C: distribution R: distribution
C: shape R: shape
C: density R: contrast
C: size R: size
C: association mass/deformity R: association
MI: density area T: area
MI: pattern distribution T: distribution pattern
DM: radial scar LS: association
DM: invasive carcinoma LS/R: association
DM: DCIS if with C R: association
WC: contour R: morphology
WC: shape R: shape
AD: density = glandular tissue R: contrast
AD: nothing same site other side
AD: ill defined R: morphology

It should be noted that we have not put any cost on the number of synonyms that
are used to obtain a path from the ontology to the image structures. This also means
that a path can vary from a direct connection to several steps. A few typical examples
are shown in Tab. 2. This shows that an almost direct connection is possible, but that
several steps also occur in providing a link between the mammographic ontology and
an image structure.

4 Discussion

The described approach provides a direct path from the image structures and their at-
tributes to the final mammographic classification. It should be clear from Tab. 1 that the
reverse paths are not always unique. However, the inclusion of specific values for the
attributes and the association with other attributes provides a solution to this problem.
As such this approach will provide a semantic enablement of CAD systems. In addition,
it will give a direct basis for comparison between expert radiologists and CAD systems.

The work by Taylor et al. [24] might be seen as a pre-cursor to the presented work,
but the main difference is that they only covered micro-calcifications as mammographic
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Table 2. Mapping between specific parts of the mammographic ontology and generic image
structures, including the path. Here the class names are indicated by unique acronyms of the
classes in Figs 1 and 3.

Mammographic Ontology path Image Structures
C: size C has-attribute size ∧

C is-a region ⇒
Region has-attribute size R: size

M: spiculated M has-attribute spiculated ∧
spiculated has-synonym (Spicules has-attribute
radiating pattern ∧ !has-part mass ) ⇒
Spicules has-attribute radiating pattern ∧
Spicule is-a Linear Structure ∧
radiating pattern instance-of pattern ⇒
Linear Structures has-attribute pattern LS: pattern

AD: density = AD has-attribute density has-value glandular
glandular tissue tissue ∧

AD is-a region ∧
density has-synonym local greylevel value ∧
glandular tissue has-synonym non-local
greylevel value ⇒
Region has-attribute local greylevel value has-
value non-local greylevel value ∧
local greylevel value has-value non-local
greylevel value has-synonym comparison local
and non-local greylevel value ∧
contrast has-synonym comparison local and
non-local greylevel value ⇒
Region has-attribute contrast R: contrast

abnormalities and linked some of the attributes of this type of abnormality to non-
generic image metrics.

From the results it is clear that a mapping between the mammographic ontology and
generic image structures is possible as long as only a single mammographic image is
considered. However, some of the mammographic ontology aspects clearly relate to a
comparison with additional mammographic images. The extension to multiple images
forms one of the future research aspects.

This mapping can also be used to select specific computer vision approaches for
the segmentation of regions [25, 26], the detection of linear structures [27, 28] and tex-
ture classification [29, 30] as there is a clear indication which attributes and semantic
relationships are essential for these image structures and specific abnormalities.

So far, we have only used simple semantic rules, and more specific notions within
spatial relations [10] could be incorporated in future work. In addition, it might be
essential to further develop the association attributes within the image structures and
provide clear links to final generic image structures.

An initial evaluation of the proposed mapping between mammographic and image
information is seen as beyond the scope of the current paper and forms part of our fu-
ture research directions. There are a number of distinct stages to this evaluation, which
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will incorporate: a) detailed annotation, classification and assignment of relevant mam-
mographic ontology attribute values for a mammographic image database by a number
of expert radiologists, b) assignment of relevant image ontology attribute values for the
detailed annotations by computer vision experts, c) the links between the attributes pro-
vided by the mammographic and computer vision experts will be investigated, d) the
same attributes and their variation will be used to investigate the classification potential,
and finally e) the attributes provided by expert radiologists will be used on their own
to investigate the potential these attributes have in manual classification by alternative
expert radiologists. The final evaluation will be based on the full implementation of the
automatic detection of basic image structures and the determination of the values of
associated attributes. This will form the basis for a mammographic CAD system when
the image evidence is used to provide specific mammographic ontology information.

5 Conclusions

We have investigated the link between a mammographic ontology and generic image
structures. Using a string comparison approach, incorporating classes, attributes and
semantic relationships it has been shown that almost all mammographic ontology at-
tributes, and hence the mammographic ontology classes, can be linked to generic im-
age structures. Such mapping means a direct connection between image structures and
mammographic classification, which can potentially provide semantic enablement of
CAD systems. Although a mammographic examplar is used, the developed technique
provides a generic approach to link image structures to medical ontology information.
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Abstract. Mammographic risk assessment provides an indication of the
likelihood of women developing breast cancer. Anumber of mammographic
image based classification methods have been developed, such as Wolfe,
Boyd, BI-RADS and Tabár based assessment. We provide a comparative
study of these four approaches. Results on the full MIAS database are
presented, which indicate strong correlation (Spearman’s > 0.9) between
Wolfe, Boyd and BI-RADSbased classification, whilst the correlation with
Tabár based classification is less straight forward (Spearman’s < 0.5, but
low correlations mainly caused by one of the classes).

1 Introduction

Mammographic risk assessment metrics commonly used are those based on
Wolfe [1], Boyd [2], Tabár [3], or BI-RADS [4] (see Figure 1 for examples). These
four metrics can be grouped into two approaches of assessment. Boyd’s measures
the percentage area of dense breast tissue. By way of contrast, Wolfe, BI-RADS,
and Tabár all include patterns and texture information in estimating the classi-
fication. The main aim of this study is to investigate how these four metrics are
correlated. Brisson et al. [5] studied correlation between Wolfe and Boyd metrics.
Gram et al. [6] reported correlation between Tabár and Wolfe based classifica-
tion on Tromsö screening mammograms. Gram et al. [7] reported a study about
correlation between Wolfe, Boyd and Tabár metrics. To our knowledge, this is
the first study to investigate the correlation between Wolfe, Boyd, Tabár and
BI-RADS classification on a well known publicly available database [8].

1.1 Mammographic Risk Assessment Metrics

Mammographic risk assessment is often related to breast density estimation,
and this is claimed to be a robust risk indicator. Moreover, Byrne et al. claimed
that mammographic density is the strongest risk factor for breast cancer [9]. It
should be noted that density estimation can also be used to evaluate how likely
abnormalities are hidden from the observer [10].

Susan M. Astley et al. (Eds.): IWDM 2006, LNCS 4046, pp. 407–415, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) mdb135lx (b) mdb069ll (c) mdb013ll

(d) mdb145lx (e) mdb123lm (f) mdb171ll

Fig. 1. Example mammograms, where: (a) SCC: 0%, W: N1, T: Pattern II, B: I (b)
SCC: 0 − 10%, W: N1, T: Pattern III, B: I (c) SCC: 11 − 25%, W: P1, T: Pattern III,
B: II (d) SCC: 26 − 50%, W: P2, T: Pattern I, B: III (e) SCC: 51 − 75%, W: P2, T:
Pattern IV, B: III and (f) SCC: > 75%, W: DY, T: Pattern V, B: IV

Wolfe [1] proposed four categories of mammographic risk: N1 is defined as a
mammogram that is composed mainly of fat and a few fibrous tissue strands;
P1 shows a prominent duct pattern and a beaded appearance can be found
either in the subareolar area or the upper axillary quadrant; P2 indicates severe
involvement of a prominent duct pattern which may occupy from one-half up to
all of the volume of the parenchyma and often the connective tissue hyperplasia
produces coalescence of ducts in some areas; DY features a general increase in
density of the parenchyma (which might be homogeneous) and there may or
maynot be a minor component of prominent ducts. These four groups had an
incidence of developing breast cancer of 0.1, 0.4, 1.7 and 2.2, respectively [1].

Boyd et al. [2] introduced a quantitative classification of mammographic den-
sities. It is based on the proportion of dense breast tissue relative to the breast
areas. The classification is known as Six Class Categories (SCC) where the den-
sity proportions are: Class1: 0%, Class2: 〈0 − 10%〉, Class3: [10 − 25%〉, Class4:
[25 − 50%〉, Class5: [50− 75%〉, and Class6: [75 − 100%]. The increase in the
level of breast tissue density has been associated with increase in the risk of
developing breast cancer, specifically the relative risk for SCC 3 to 6 are 1.9, 2.2,
4.6, and 7.1, respectively [2].

Tabár et al. [3] describes breast composition of four building blocks: nodular
density, linear density, homogeneous fibrous tissue, and radiolucent adipose tis-
sues which also define mammographic risk classification. Pattern I: mammograms
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are composed of 25%, 16%, 35%, and 24% of the four building blocks, respec-
tively; Pattern II has approximate compositions as: 2%, 14%, 2%, and 82%;
Pattern III is quite similar in composition to Pattern II, except that the retroare-
olar prominent ducts are often associated with periductal fibrosis; Pattern IV
is dominated by prominent nodular and linear densities, with compositions of
49%, 19%, 15%, and 17%; Pattern V is dominated by extensive fibrosis and is
composed as 2%, 2%, 89%, and 7% of the building blocks. Tabár et al. defined
Patterns I-III corresponding to lower breast cancer risk, whilst Patterns IV-V
relate to higher risk [3].

There are four BI-RADS [4] categories, which are: BI-RADS I: the breast is
almost entirely fatty; BI-RADS II: there is some fibroglandular tissue; BI-RADS
III: the breast is heterogeneously dense; BI-RADS IV: the breast is extremely
dense. Lam et al. reported associations between BI-RAD II-IV and breast carci-
noma (adjusted for weight) in postmenopausal women which were 1.6, 2.3, and
4.5, respectively [11].

2 Material and Methods

To investigate the correlation between the four mammographic risk assessment
metrics, 321 images (case mdb295ll has not been included for historical reasons)
from the MIAS database [8] were classified by three experienced breast screening
radiologists (ED, JP, ES). All the mammograms were digitised (8-bits) with
a scanning microdensitometer (Joyce-Loebl, SCANDIG3) to 50 micron × 50
micron resolution. The grey-scale response of the instrument is linear in the
optical density range 0-3.2OD [8]. It should be noted that the mammograms
were displayed on a standard PC monitor, which cannot be used for diagnostic
purposes but is sufficient for mammographic risk assessment.

All results are shown in the form of confusion matrices. We have also computed
the Spearman’s correlation (rS) between the metrics (using SPSS version 13 for
Windows) and linear-weighted kappa values (κ) [12] (it should be noted that κ
only tends to make sense when an equal number of classes is compared, but κ is
provided for all cases for completeness).

2.1 Correlation Between Metrics

This part of the evaluation is based on assessment by one (ED) of the expert
radiologists. All 321 images were classified according to Wolfe (N1, P1, P2, and
DY), Boyd (Class 1-6), Tabár (Pattern I-V), and BI-RADS (I-IV). The images
were displayed according to MIAS’s numbering. It should be noted that Tabár
and BI-RADS methods are not routinely used by the radiologist and all clas-
sifications for each mammogram were obtained at the same time (both these
aspects might introduce bias).

2.2 Intra and Inter Observer Variation

To address the reproducibility, we compared the radiologist (ED) ratings to the
same radiologist’s previous assessments of Wolfe and Boyd’s SCC. It should
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be noted that for this intra-observer results, the data was assessed twice with
the initial assessments two years before those described in section 2.1. In ad-
dition, the number of cases for Rating 1 n = 319 and for Rating 2 n = 320,
which were due to a technical problem in displaying the cases mdb321lm and/or
mdb322rm.

We also compared the BI-RADS ratings by one radiologist (ED) with assess-
ment by two other experts (JP,EP). It should be noted that there was a slight
difference in protocol for JP and EP in that images were presented in left-right
pairs, instead of individual images as was the case for ED.

3 Results and Discussions

3.1 Correlation Between Metrics

The confusion matrices for all assessment by radiologist (ED) are shown in
Tables 1- 6.

Table 1. Expert radiologist (ED) classification according to Boyd and Wolfe

Wolfe
N1 P1 P2 DY

B
oy

d

SCC1 6 0 0 0
SCC2 55 5 0 0
SCC3 1 44 1 0
SCC4 0 41 34 0
SCC5 0 2 72 16
SCC6 0 0 0 44

Table 1 shows that Boyd’s Class 1 and 6 are all grouped as Wolfe’s N1 and
DY, respectively. The distribution of Class 2-5 are mainly mapped into lower
risk according to Wolfe. The correlation for these two measures was rS = 0.928
(κ = 0.2033). This is in line with a study reported by Brisson et al. [5] which
showed a correlation of rS = 0.81 (P = 0.0001). Moreover, they concluded that
Wolfe’s classification was redundant when percentage density was available in
breast cancer risk assessment, which is supported by the results presented in
Table 1.

Table 2. Expert radiologist (ED) classification according to BI-RADS and Wolfe

Wolfe
N1 P1 P2 DY

B
I-

R
A

D
S I 58 1 0 0

II 4 80 2 0
III 0 11 104 27
IV 0 0 1 33
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Table 2 shows a high agreement between Wolfe and BI-RADS measures, with
a correlation of rS = 0.929 (κ = 0.8645).

Table 3 shows that Tabár’s Pattern V is all grouped as Wolfe’s DY. The
correlation for these two measures was rS = 0.454 (κ = 0.204). By excluding
Pattern I, Tabár and Wolfe show high correlation rS = 0.93 (κ = 0.8378). Gram
et al. reported result on this agreement was κ = 0.23 [6]. They also showed that
Tabár’s Pattern I corresponds to Wolfe’s DY in 45.6% of the mammograms and
Pattern II to V has a unique mapping into Wolfe N1 to DY, respectively [6].
The recently published study by Gram et al. [7] reported moderate agreement
between Wolfe and Tabár metric (κ = 0.51) and here the mappings between
Tabár and Wolfe based classifications were similar to our result. Some examples
of images which have Tabár’s Pattern I and various Wolfe’s classes can be seen
in Figure 2, which clearly shows the variation for Tabár’s Pattern I.

Table 3. Expert radiologist (ED) classification according to Tabár and Wolfe

Wolfe
N1 P1 P2 DY

T
ab

ár

I 0 61 56 2
II 52 1 0 0
III 10 30 0 0
IV 0 0 51 30
V 0 0 0 28

(a) mdb007ll (b) mdb015lm (c) mdb003ll

Fig. 2. Example mammograms which were rated as Tabár’s Pattern I and various
Wolfe’s classes: (a) P1, (b) P2, (c) DY

Table 4 shows the agreement between BI-RADS and Tabár measures, with a
correlation of rS = 0.408 (κ = 0.1347). However, as shown above, when ignoring
the Tabár’s Pattern I results the correlation increases to rS = 0.96 (κ = 0.9145).

Table 5 shows a high agreement between BI-RADS and Boyd measures, with
a correlation of rS = 0.908 (κ = 0.1792).

Table 6 shows agreement between Boyd and Tabár measures, with a correla-
tion of rS = 0.459 (κ = 0.2127). However, as shown above, when excluding the
Tabár’s Pattern I results the correlation increases to rS = 0.93 (κ = 0.5679).
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Table 4. Expert radiologist (ED) classification according to Tabár and BI-RADS

BI-RADS
I II III IV

T
ab

ár

I 0 54 65 0
II 50 3 0 0
III 9 29 2 0
IV 0 0 75 6
V 0 0 0 28

Table 5. Expert radiologist (ED) classification according to Boyd and BI-RADS

BI-RADS
I II III IV

B
oy

d

SCC1 6 0 0 0
SCC2 53 7 0 0
SCC3 0 46 0 0
SCC4 0 33 42 0
SCC5 0 0 84 6
SCC6 0 0 16 28

Table 6. Expert radiologist (ED) classification according to Boyd and Tabár

Tabár
I II III IV V

B
oy

d

SCC1 0 6 0 0 0
SCC2 1 45 14 0 0
SCC3 21 2 23 0 0
SCC4 68 0 3 4 0
SCC5 29 0 0 60 1
SCC6 0 0 0 17 27

Table 7. Spearman’s correlation between four different measures. Within brackets are
the Spearman’s correlation when Tabár Pattern I is excluded.

Boyd Tabár BI-RADS
Wolfe 0.928 0.454 (0.93) 0.929
Boyd 0.459 (0.93) 0.908
Tabár 0.408 (0.96)

Correlations are significant at the level of 0.01 (2-tailed).

A summary of the correlation between the four measures (from Tables 1- 6)
can be found in Table 7. This shows that Wolfe - Boyd and Wolfe - BI-RADS
have similar high correlation values, followed by the Boyd - BI-RADS correlation.
It should be noted that such correlation does not necessarily imply that the
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metrics are based on the same information and this needs further investigation.
In contrast, Tabár’s does not correlate with the other measures. It is pointed
out by Gram et al. that Tabár’s classification captures something more than
just density measurements and its relation to breast cancer risk needs further
investigation [7].

3.2 Intra Observer Variation

We present the intra-reproducibility of our radiologist (ED) on Wolfe’s and
Boyd’s SCC metrics in Table 8 and Table 9, respectively. Intra-radiologist agree-
ment on Wolfe’s classification were rS = 0.81 (κ = 0.5999) and rS = 0.85
(κ = 0.6606) for the two previous assessments compared to the most recent
(Rating 3 ) assessment. For SCC, the intra-radiologist agreement were rS = 0.89
(κ = 0.6989) and rS = 0.90 (κ = 0.7181). These indicate a moderate to good
agreement. It should be noted that for both metrics the most recent assess-
ment shows a clear shift to higher risk classes when compared to previous
assessment.

Part of our future research will concentrate on extending these intra-observer
aspects.

Table 8. Intra-observer (ED) reproducibility for Wolfe based assessment

Rating 3 Rating 3
N1 P1 P2 DY N1 P1 P2 DY

R
at

in
g

1 N1 62 59 8 0

R
at

in
g

2 N1 62 60 5 0
P1 0 8 9 0 P1 0 17 18 0
P2 0 25 88 40 P2 0 15 81 25
DY 0 0 0 20 DY 0 0 2 35

(a) κ = 0.5999 (b) κ = 0.6606

Table 9. Intra-observer (ED) reproducibility for Boyd’s SCC based assessment

Rating 3 Rating 3
SCC1 SCC2 SCC3 SCC4 SCC5 SCC6 SCC1 SCC2 SCC3 SCC4 SCC5 SCC6

R
at

in
g

1

SCC1 3 8 0 0 0 0

R
at

in
g

2

SCC1 1 5 0 0 0 0
SCC2 3 48 13 3 0 0 SCC2 5 52 10 2 0 0
SCC3 0 4 28 25 10 0 SCC3 0 3 33 31 6 0
SCC4 0 0 5 44 35 0 SCC4 0 0 3 39 40 1
SCC5 0 0 0 1 45 27 SCC5 0 0 0 2 42 19
SCC6 0 0 0 0 0 17 SCC6 0 0 0 0 2 24

(a) κ = 0.6989 (b) κ = 0.7181

3.3 Inter Observer Variation

To evaluate the inter-observer variations, we compared BI-RAD bases assess-
ment by three radiologists. The results are presented in Table 10. The agree-
ment between ED and two other radiologists were rS = 0.85 (κ = 0.5699)
and rS = 0.82 (κ = 0.6381), respectively, whilst agreement between JP and
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ES was rS = 0.82 (κ = 0.7139). It should be noted the results of radiolo-
gist 1 (ED) tends toward higher BI-RADS classes when compared to the other
radiologist.

Future research will concentrate on extending these inter-observer variation
evaluation, ensuring we cover the full range of metrics and a similar protocol.

Table 10. Inter-observer reproducibility for BI-RADS based assessment

Radiologist 1 Radiologist 1 Radiologist 2
I II III IV I II III IV I II III IV

R
ad

.
2

I 57 66 6 0
R

ad
.
3

I 57 29 0 0

R
ad

.
3

I 83 3 0 0
II 2 20 57 0 II 2 48 62 0 II 38 57 17 0
III 0 0 62 7 III 0 9 64 7 III 8 19 46 7
IV 0 0 17 27 IV 0 0 16 27 IV 0 0 6 37

(a) κ = 0.5699 (b) κ = 0.6381 (c) κ = 0.7139

4 Conclusion

We have investigated the correlations between four different mammographic risk
assessments on the MIAS database. The results show strong correlations among
Wolfe/BI-RADS/Boyd metrics. However, Tabár based assessment is less corre-
lated to the other three metrics. In addition, intra- and inter-observer variation
results have been presented and discussed.
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Abstract. In digital mammography it is of utmost importance that the quality of 
screen devices is checked on a regularly basis. The EUREF guidelines propose 
to do this daily using the AAPMtg18-QC pattern. In this paper we report our 
initial results with the use of an alternative, recently developed, dynamic pattern 
(“MoniQA”) and a scoring scheme. 
    As soon as the observers are familiar with the procedure, the measurements 
are very stable and we could not observe big variations in the quality of the 
monitor. In order to control the intrinsic quality of the monitor, the number of 
quality control checks could thus be reduced. The global working condition 
(such as the ambient light level) is controlled as well with the proposed 
procedure and this may be of great interest, especially during the start-up of 
digital mammography (screening) units: it is very informative to trace the 
influences of different light sources (such as (occasional) viewing boxes). 

1   Introduction 

For an optimal visualisation of medical images on screen devices it is of utmost 
importance that the quality of these monitors can be guaranteed. This is especially the 
case for digital mammography and even more if they are being used for screening 
purposes. Therefore the European Guidelines for Quality Assurance in Breast 
Screening (EUREF) (1) propose a quality control procedure, both for long-term as well 
as for constancy checking (daily quality control, DQC). Their guidelines are based 
upon the results of the AAPMtg18 (2). Another well-known and often used protocol is 
the DIN protocol (3), which uses the SMPTE-pattern (4) and the DIN-IEC pattern. 
Daily quality control is performed by scoring dedicated patterns (Fig. 1a, b and c) to 
check the different, important parameters of display devices (luminance, resolution, 
geometric distortion and general image quality). These patterns are quite complex, 
making their evaluation difficult. They are also static and by that over time the results  
of the evaluations will be biased due to a learning effect. Recently a new type of 
patterns, dynamic patterns, have been introduced. These patterns are randomly created 
according to certain rules. An example is the “MoniQA pattern” (Fig. 1d and e). A 
previous study showed that this pattern can be used as a valid alternative for the DQC 
procedure as proposed by the European Guidelines (the AAPMtg18 DQC procedure) 
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and the DIN protocol. The study also showed that a protocol based on this MoniQA 
pattern results in a faster evaluation than the other two mentioned protocols (5).  

The MoniQA pattern was used in present study. The pattern includes elements to 
check a medical screen device for luminance (using 4 sets of 5 random low contrast 
characters and a gradient bar with random low contrast characters), resolution (via 
line pair patterns at Nyquist and half-Nyquist frequency), geometric distortions (by 
drawing a standard grid and thin lines in the corners of the pattern to check the use of 
the full display area) and general image quality artefacts (including a high contrast 
element -the hourglass- to check for ghosting and blurring). All these items have to be 
evaluated separately and we have now combined the results into a global score.  

In this study we report on the initial results of the application of this dynamic 
pattern in our digital mammography environment over a longer time period and on a 
series of workstations for general radiology modalities. A larger European trial is  
on-going.  

2   Methods and Materials 

Over a time period of eight months we performed daily quality control (DQC) on six 
dual-head workstations using the MoniQA pattern. With dedicated software, the 
results were sent automatically to a central computer in the medical physics group of 
our hospital for on-line quality control monitoring (6). One of the tested workstations 
was dedicated for mammography (BARCO 5MP CRT monochrome). On this 
workstation, the DQC was done by a random person out of a group of 4 radiographers 
(so each observer did the test about once a week). On the other workstations (4 
workstations with Siemens 1.3MP CRT monochrome monitors and 1 workstation 
with Siemens 1.3MP CRT colour monitors) always the same radiologist performed all 
controls. All observers started after one common teaching session of 15 minutes. 

The results of the evaluations were monitored for each screen device. The total 
score was calculated as follows: an ideal screen that passes all tests gets 100 points; 
for each reported malfunction, points are subtracted according to the seriousness of 
the malfunction. I.e. it is not such a big issue if a least visible character of a random 
character set can not be read. Therefore we subtract less points than if there was a 
problem with a resolution pattern, for which we subtract 5 points. For a random low 
contrast character we subtract the difference of the grey scale value with the 
background. 

The MoniQA Pattern had been applied on various monitors dedicated for digital 
mammography (Barco LCD, Barco CRT, Eizo LCD, Siemens LCD, Siemens CRT). 
We did acceptance checking of these systems and we noticed that quite often the 
MoniQA score for an accepted system was between 90 and 100 points. We have also 
applied this pattern on a large number of monitors for general radiology from 
different vendors (Barco, Eizo, Totoku, NEC) and of different types (CRT and LCD) 
and sizes (2MPand 3MP). The experience we had with all these systems gave us an 
indication to propose an acceptable level of 90 and an achievable level of 95. An ideal 
screen would then be 100 points. 
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Because some data were biased by incorrect evaluations that may lead to low 
overall scores (example human reading errors or typing errors), we applied simple 
correction rules to filter out the effect of some of these incorrect evaluations.  

Example rule 1: if in the luminance test the best or second best visible character is not 
visible while the other characters are visible, then we propose to consider this as a 
mistyping error and therefore we may accept this apparently wrong answer as correct.  
Example rule 2: is related to the use of static elements (i.e. resolution patterns or 
corner lines): some are marked incorrectly on discrete moments only and are 
otherwise marked correctly. This indicates that the observer had unintentionally 
misevaluated this element. 

Another element which is very important to measure is the difference between the 
scores of the different monitors in the multi-monitor setup of a workstation. After 
some initial measurements, we decided to put the acceptable level for this difference, 
on 5 points. This gives a possible deviation margin of 10 points. 

During our test period we also monitored the time needed to perform this test for 
each screen device. As the test is intended for daily application, this is an important 
performance parameter that is, moreover, directly linked with the acceptability of the 
procedure. 

3   Results 

We illustrate the overall findings with the data of 4 workstations: the workstation that 
is used in our mammography unit (A), one workstation used in an orthopaedic 
department (B), one used in a paediatrics department (C) and one colour monitor used 
for urography (D). The other two workstations in our test setup gave similar results as 
workstation B. Fig. 3, 4, 5 and 6 show the scores for these 4 workstations before and 
after application of the correction rules. The number of corrections that had to be 
performed for workstation A was 28 (on 166 evaluations). For workstations B, 
respectively C and D, we had to correct only 6/134, respectively 3/157 and 6/176 
times. Workstations A and B (and the 4 other monitors) turned out to be very stable 
over time. In the results of workstation C we can see an obvious decrease in score, 
that is however, never sudden. The score of workstation D turned out to be bad from 
the beginning. In Fig. 2 we show the average time needed to perform a quality control 
with the MoniQA pattern for the 6 different workstations. 

4   Discussion 

There is a remarkably big difference between the original and the corrected scores of 
the digital mammography workstation (A). We didn’t see this difference in the results 
of the other workstations. We think that this is due to the fact that for the first 
workstation more than one person performed the test and by that, each person did the 
test only about once a week. Due to this low frequency, these observers were not so 
well trained and this may explain the larger amount of mistakes. On the other 
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workstations, almost always the same observer performed the check. In Fig. 2 we can 
also see that these more regular observers needed less time.  

After correction, the results of workstation A and B were at least in the acceptable 
area, except for a very small number of occasions (A=4; B=0). The results are quite 
stable over a long time period. The scores of the evaluations didn’t drop suddenly, but 
only after a certain time period we got a trend towards a worse monitor quality (C). 
Workstation D performed from the beginning very bad and this score was also 
constant over time.  

Different additional features were discovered with the proposed daily quality 
control protocol over this time frame:  

• the monitor of the digital mammography had been replaced and this 
replacement unit had been calibrated wrongly;  

• it is an easy check for awful ambient light conditions;  
• the DQC procedure was very informative (teaching and motivation aid) during 

the start-up of the digital mammography unit as it allowed to optimize the 
positioning of viewing boxes and triggered the awareness of our radiologists 
for the viewing conditions; 

• during the acceptance testing of different systems dedicated for mammo-
graphy, MoniQA proved to be a helpful tool to have a first impression on the 
overall quality of the screen device. 

We noticed in our results that especially the luminance check in the MoniQA 
pattern turned out to be crucial. 

It could be concluded that quality control on a daily basis may result in an 
overflow of irrelevant data. If we would do this test on a weekly basis we may be able 
to trace the same major effects. On the other hand a reduction of the test frequency 
may result in negligence and the familiarity of the observer with the check will go 
down, resulting in incorrect evaluations.  

A compromise between an extensive test as the MoniQA pattern (or as the 
AAPMtg18 protocol or as the DIN6969-57 protocol) or a quicker evaluation on a 
daily basis, may be to run this extensive test only twice a week after an initial learning 
period. During the other days of the week a much simpler test focused towards 
checking the luminance of the system for the darker and the brighter grey scale values 
could then be performed. This would ensure to check the parameters which are more 
influenced by daily fluctuations. If this is done by a dynamic (random) pattern, it can 
be profited from the fact that results will not be biased by a learning effect.  

There are definitely limitations to this study: the daily quality control procedure 
should be implemented on many more workstations and during a longer time period.  
At that moment better statistical methods can be applied to evaluate the stability of 
these medical screen devices. Present daily quality control procedure with the same 
software support is now run in different European centres. In our poster we hope to 
illustrate the results of a large number of workstations of different European partners. 

Major future challenges include the further reduction of the test pattern to an even 
quicker (validated) procedure and to create the interest for quality control of the users. 



420 J. Jacobs et al. 

Acknowledgements 

We would like to acknowledge the input of different European partners who are 
participating in the further validation of this study. This work was sponsored by the 
SENTINEL project, contract number 012909. This project was partially supported by 
the Euratom Research and development Programme and has received funding from 
the Community’s Sixth Framework Programme. 

References 

1. Samei E, Badano A, Chakraborty D, Compton K, Cornelius C, Corrigan K, Flynn MJ, 
Hemminger B, Hangiandreou N, Johnson J, Moxley M, Pavlicek W, Roehrig H, Rutz L, 
Shepard J, Uzenoff R, Wang J, Willis C: Assessment of Display Performance for Medical 
Imaging Systems, Report of the American Association of Physicists in Medicine (AAPM) 
Task Group 18. Medical Physics Publishing, Madison, WI, AAPM On-Line Report No. 03, 
April 2005 

2. European Guidelines for Quality Assurance in Mammography Screening, Addendum 
European Guidelines (3rd ed.), Digital Mammography, Euref, November 2003 

3. DIN 6868-57-2001, Image quality assurance in x-ray diagnostics, Acceptance testing for 
image display devices. The German Standards Institution, Deutsches Institut für Normung 
e.V., February 2001 

4. SMPTE RP 133-1991, Specifications for Medical Diagnostic Imaging Test Pattern for 
Television Monitors and Hard-Copy Recording Cameras 

5. J.Jacobs, T.Deprez, F.Rogge, G.Marchal, H.Bosmans: Validation of a new dynamic pattern 
for daily quality control of medical screen devices. 91st Scientific Assembly and Annual 
Meeting of the RSNA, McCormick Place, Chicago, November 2005 

6. J.Jacobs, T.Deprez, G.Marchal, H.Bosmans: MoniQA: A general approach to Monitor 
Quality Assurance. Proc. SPIE 6145, 2006 

Figures 

 
(a) 

 
(b) 



 Initial Results of the DQC of Medical Screen Devices Using a Dynamic Pattern 421 

 
(c) 

 
(d) 

 
(e) 

 

Fig. 1. (a) the AAPMtg18-QC pattern, (b) the SMPTE pattern, (c) the DIN-IEC pattern and  
(b) and (c) two instances of the MoniQA pattern used for daily quality control of monitors 
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Fig. 2. Overview of the time needed to score the MoniQA pattern of one monitor. Workstation 
1 is the workstation dedicated for mammography and the others are all workstations with 
1.3MP monitors. The last bar indicates the average of the time needed for the workstations with 
1.3MP monitors. 
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Fig. 3. MoniQA score of two monitors in a dual-monitor setup (workstation A – mammo-
graphy) with level markers both acceptable and achievable. (top graph) uncorrected score; 
(bottom graph) corrected score. 
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Fig. 4. MoniQA score of two monitors in a dual-monitor setup (workstation B - orthopaedics) 
with level markers both acceptable and achievable. (top graph) uncorrected score; (bottom 
graph) corrected score. 
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Fig. 5. MoniQA score of two monitors in a dual-monitor setup (workstation C - pediatrics) with 
level markers both acceptable and achievable. (top graph) uncorrected score; (bottom graph) 
corrected score. 
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Fig. 6. MoniQA score of two monitors in a dual-monitor setup (workstation D - urography) 
with level markers both acceptable and achievable. (top graph) uncorrected score; (bottom 
graph) corrected score. 
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Abstract. To establish a practical CAD (Computer-Aided Diagnosis) system to 
facilitate the diagnosis of microcalcifications, we propose a filter-based 
technique to detect microcalcifications. Via examination of an existing optimal 
filter-based technique, it is found that its performance on highlighting the 
energy of mammograms is seriously affected by artefacts and the background of 
breast. As a result, four methods in pre and post-processing are described in this 
paper to improve the optimal filtering, leading to an adaptive selection of 
thresholds for input mammograms. These methods have been tested by using 30 
mammograms (with 25 microcalcifications) from the MIAS database and 23 
mammograms from DDSM database. Comparing with the original optimal 
filter-based technique, our technique reduces the false detections (FD), 
eliminates the influence of the background in mammograms and is able to 
adaptively select the threshold for the detection of microcalcifications.  

1   Introduction 

Breast cancer is one of the major causes of deaths among women in developed 
countries and early detection is the most effective way to reduce mortality. 
Mammography (X-ray examination of the breasts) is currently the most efficient and 
widely adopted method for early detection. Since abnormalities might be a tiny part of 
a whole mammogram and could be camouflaged by various densities of breast tissue 
structures, the interpretation of mammograms is a delicate and time-consuming task, 
and the performance of the observer could be dramatically degraded by large numbers 
of mammograms.  

Clustered microcalcifications are one of the early indicators of potential cancerous 
changes in breast tissue. A microcalcification is a small calcium deposit that has 
accumulated in breast tissue, and it appears as a small bright and blurred spot on the 
mammogram. Typically, individual microcalcification ranges in size from 0.1-1.0 
mm, which could be overlooked by an examining radiologist. 

Some commercial CADs have been developed to help radiologists in diagnosis. 
According to recent researches on some typical commercial systems, they could 
achieve a True Positive (TP) rate of 85%-87% with a False Positive (FP) rate of about 
0.2 detections per image for a single view [1], [2]. However, some researches [3] 
show the sensitivity of the commercial system may need further improvement 



 A Filter-Based Approach Towards Automatic Detection of Microcalcification 425 

according to their experiments. Our experience of using an existing commercial CAD 
system is similar: too many prompts were activated every time a mammogram is 
being read in testing the system. In order to further improve TP rates and reduce FP 
rates, we are developing a microcalcification detection system, which adopts a latest 
optimal filter-based detection technique. In this paper, a technique composed of 
several new pre- and post-processing methods is proposed to address the issues of 
applying the optimal filter-based technique to more practical utilization and facilitate 
to apply data mining techniques for further classification.  

The optimal filter-based technique [4], [5] is a texture feature extraction scheme. It 
extracts local frequencies in the mammogram where one of the textures has low signal 
energy and the other texture has high, and its filter is optimised with respect to the 
Fisher criterion. Reported results show a TP rate of 100%, with a 1.5 FP clusters per 
image [5], [6]. Different from other filters such as LoG (Laplacian-of-a-Gaussian) 
filter [7], [8], the optimal filter-based technique is based on the texture features: 
feature mean and variance.  

This paper is organised as follows. The new pre- and post-processing methods are 
proposed in Sect. 2 and our experiment results are provided in Sect. 3. Discussion on 
the results and our future plan are presented in Sect. 4.  

2   New Pre-processing and Post-processing Methods 

Roughly speaking, a microcalcification detection system usually consists of two main 
procedures: microcalcification enhancement and microcalcification classification. In 
the first procedure, the signals that represent possible microcalcifications are 
enhanced and the signals that represent the normal tissue are suppressed. A threshold 
is applied to processed mammograms to segment the signals of possible 
microcalcifications from those of normal tissue. In the second procedure, the features 
of the possible microcalcifications are extracted, and trained by using different data 
mining technologies such as neural network [9] and SVM [10] to decide the property 
of the suspicious regions: normal, begin or cancer. Our new methods are proposed to 
improve the result of the first procedure and their relationships with the optimal filter-
based technique are shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Relationships between four new methods (3 methods for pre-processing and 1 for post-
processing) and the optimal filter-based technique 
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Our target is to remove as many artefacts as possible without affecting the 
detection of microcalcifications and provide a good basis for microcalcification 
classification.  

2.1   Reducing Artefacts Causing False Detections  

The artefacts include both white spots and dark sports. The white spots can be divided 
into two types: isolated white spots that probably have been formed during producing 
X-ray film, and scratches that are some mechanical damages on the surface of X-ray 
film. Generally, the isolated white spots are apparently 20-30 grey levels (256 
greyscale) brighter than their surroundings and seem “floating” on the surface of the 
mammogram. Besides, the size of isolated white spots is usual quite small (2-5 
pixels).  

A method is proposed to reduce the influence of these spots. It employs a sliding 
window (which size is 9 pixels by 9 pixels) to remove the white spots: 

1. The sliding window scans the mammogram horizontally and vertically at the step 
length of 3 pixels. At each movement, only the pixels in the centre region (3 
pixels by 3 pixels) of the window are considered. 

2. If the intensity of some of these pixels (in the centre region) is more than 20 (256 
greyscale) above the average intensity (say, m) of the pixels closely surrounding 
them, replace the intensities of these pixels in the centre region with m. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Microcalcifications and artefacts a. an isolated white spot; b. microcalcifications; c. a 
scratch; d. two black spots 

The removal of scratches is more difficult than that of isolated white spots. In 
experiments, our algorithm can still reduce the influence of scratches. Fig.2 shows 
some examples of a isolated white spot, microcalcifications, a scratch and two dark 
spots - they are much different in shape & intensity and should be treated separately. 

Small dark spots also could lead to false suspicious regions. In the mammograms 
from the MIAS database [11], some small dark spots can be observed. These spots 
may be dust or some tiny fragments dropped from mammograms. They are obviously 
much darker than its surroundings and have no relationships with them. The Min 
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method [6] in pre-processing is modified so that this kind of spots can be ignored in 
using the optimal filter. 

The Min method was designed to remove the normal breast tissue so that only 
possible microcalcifications would be enhanced by the optimal filter. In the Min 
method, a mammogram was divided into blocks of size M by N and the minimum 
intensities of all blocks form a feature image. Interpolated the feature image and 
expanded its size to that of original mammogram. Finally, the estimation of normal 
tissue – the interpolated feature image - was subtracted from original image to remove 
the influence of normal tissue. We modified the subtraction step and ignored the 
pixels whose intensities are below the estimation of the normal tissue. 

2.2   Removing the Influence of Background  

The optimal filter works well in the regions without the background of breast (the 
area around the breast). If the optimal filter is applied to the cut mammogram with 
both breast and its background (containing pure noise), the whole background of 
breast will be marked as a suspicious region.  The problem is probably due to the 
variation of intensities in background is much larger than that of intensities in the 
breast area of mammograms. We have tried using segmentation to remove the 
background but met two problems in applying segmentation:  

• The threshold for segmentation need to be determined adaptively for different 
mammograms;  

• After segmentation, large numbers of suspicious regions were generated along the 
edge of segmentation since the optimal filter is sensitive to fast changing signals. 

To remove these false suspicious regions, a new method is designed before 
applying the optimal filter:  

imageFeatureYY *12 =  (1) 

Y1 is the resulted image from Sect. 2.1 and Featureimage is the interpolated feature 
image in Sect. 2.1. Y2 is the result of the array multiplication between Y1 and the 
square root of Featureimage. As the result, the variation of intensities in background is 
suppressed due to their intensities are much lower than breast tissue. The cube root of 
the interpolated feature image also has been evaluated but it may bring some false 
suspicious regions. The interpolated feature image can be treated as the smoothed 
result of the original mammogram, and it does not contain the artefacts and other 
impulse signals, which makes it most suitable for suppressing the noise from the 
background.   

Fig.3 shows an example result of this procedure: the left image is a part of a 
mammogram, which contains some background, the middle is the result without 
suppressing the variation of intensities in background and the right is the result of 
applying our algorithm. The drawn circles in the middle and right images mark the 
position of microcalcifications. The influence of background in middle images is 
disappeared in the right image and the TP cluster stands out clearly.  
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Fig. 3. Removing the Influence of Backgrounds. Left image: the original image; Middle image: 
the result of the optimal filter; Right image: the result of our technique. 

2.3   Adaptively Setting Thresholds  

Adaptively setting thresholds is very important for a practical system but is a big 
challenge in microcalcification detection: lower thresholds may bring too many 
suspicious regions and increase the burden of the next step, while larger thresholds 
may miss microcalcifications and lead to FN (False Negative) cases. The selection of 
thresholds usually depends on one’s experience [12], [13] or is based on complex 
statistical models [14]. Since some advance technologies will be utilised in 
microcalcification classification, complex segmentation methods are not selected at 
this stage. Different schemes have been tried to predict the threshold in terms of some 
features of filter-processed images such as the features of their histograms and the 
features of clustering. According to our experience, a new scheme is designed for 
adaptively setting thresholds:      

a. Divide a filter-processed mammogram into blocks, each of which is K pixels by L 
pixels;  

b. A start threshold is set for each image – the intensities of about 0.3% pixels in the 
breast region of each mammogram are above the start threshold since all pixels 
belong to microcalcifications in each image are in these 0.3% pixels according to 
our experiments based on histogram. 

c. The pixels whose intensities above the threshold will form tens of suspicious 
regions. The regions whose area is no more 3 pixels will not be considered. 
Count the number of suspicious regions for each block.  

d. The threshold is gradually increased and the step c is repeated until the sum of 
blocks (containing no more than 1 suspicious region) is larger than X percent of 
total blocks.  

    The scheme is designed in terms of observed regular distribution patterns of 
microcalcifications. In our observations, microcalcifications usually take up a small 
part of the whole mammogram and they tend to exist in several clusters. Therefore, if 
a threshold results in hundreds of suspicious regions all over the whole mammograms, 
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the threshold is too low and need to be increased. The parameter X is a control of the 
distribution of suspicious regions.  

3   Experiments and Results 

The data set for our experiments comes from two existing mammogram databases: 

1. The Mammographic Image Analysis Society (MIAS) [13] has produced a digital 
mammography database, in which mammograms have been digitised to a 
resolution of 50 m and each pixel is represented by 8 bits grey depth. In our 
experiment, all 20 mammograms in the database, which contains radiologist's 
truth information on microcalcifications (i.e., the locality of the abnormality is 
given as the coordinate of its centre and an approximate radius of a circle 
enclosing the abnormality, 25 annotated clusters in total), are utilized and the 
other 10 normal mammograms are randomly picked from the database. These 30 
images do not include the background of breast regions. 

2. The Digital Database for Screening Mammography (DDSM) [15] is a benchmark 
database for CAD tools on screening mammograms. 23 mammograms randomly 
selected for our experiments: 7 of them have a spatial resolution of 50 m and the 
rest have a spatial resolution of 43.5 m. Their 12-bit grey-scale is mapped into 8-
bit grey-scale in the following experiments. These mammograms are also 
supported with radiologist’s truth information on microcalcification. 10 of these 
23 images include some background of breast regions.  

To avoid the influence of other artefacts such marks in mammograms, our 
experiments are based on the images, each of which is 1366 by 1058 pixels in size 
and cut from a selected mammogram. These images contain all microcalcifications in 
the original mammograms. A true cluster is considered detected if at least two 
findings are located in the associated truth circle and a cluster is defined as a group of 
three or more calcifications within 1 cm2 area [12]. 

When the original optimal filter technique (with the Min method) and our 
technique are applied to the images from MIAS, the size of the optimal filter is 8 by 8 
pixels and the size of smoothing filter is reduced to 4 pixels in the optimal filter-based 
technique to increase the sensitivity of detection. The original optimal filter technique 
achieved a TP rate of 100% with a FP rate of 1.9 false detections per image while our 
technique achieved the same TP rate with a FP rate of 1.7 false detections per image.  

For the experiments based on the mammograms from DDSM, the original optimal 
filter technique marks all background as suspicious regions while our technique avoid 
the influence of the background and achieve a TP rate of 100% with a FP rate of 1.6 
false detections per image. 

The threshold for above experiments is determined by using the adaptive 
thresholding technique in Sect. 2.3: K and L are set to 100 pixels and X is set to 96%. 
Both K and L are set to 100 pixels since 100 pixels is equal to 5mm in images (from 
MIAS), which could facilitate the estimation the distance between suspicious regions. 
Initially, X is determined by using 3 images picked out from 53 selected 
mammograms. The signals to representing microcalcifications are quite weak in two 
of the three images.  
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After the above experiments have been finished, the relationship between K&L and 
X are studied. Table1 lists the values of X when our technique achieves 100% 
sensitivity in the detection of microcalcifications in all 53 images. While the values of 
K&L reduce from 100 to 60, the value and FP cluster rates only increase a bit. 

Table 1. Relationship between K&L and X 

K & L (pixels) X FP rate 
100 96% 1.7 

80 97% 1.7 
60 98% 1.8 
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Fig. 4. FROC curve after adding our techniques 

The Free-response Receiver Operating Characteristic (FROC) [16] curve of our 
system is generated by plotting true detection (TD) rates against the average number 
of false detections per image plotted in Fig. 4.  

4   Discussion for Further Improvements 

After the proposed methods are added into pre- and post-processing, the artefacts 
caused by small dark spots and the background of breast, have been removed 
completely. The proposed pre-processing algorithms do not reduce the TP rate and the 
selection of the threshold become adaptive. About 30% artefacts due to white spots 
still can be seen after applying the optimal filter. The reason for the incomplete 
removal is because these artefacts (probably caused by scratching) are a bit large in 
size and needs further consideration.  

Due to the difference of selection of data set for experiments and algorithm 
procedures, it is difficult to compare our algorithms with other existing approaches 
accurately. In our above experiments, the features of clustered suspicious regions are 
not included in remove FP clusters. However, they are very effective in reducing FP 
rate: we have tried using a modified feature for measuring the compactness [13] of a 
cluster in reducing the FP cluster rate (3 images for setting parameters), a TP rate of 
100% is achieved with 0.4 false detections per image for the rest 50 images. Apart 



 A Filter-Based Approach Towards Automatic Detection of Microcalcification 431 

from this feature, other features will be used in designing our algorithms for 
microcalcification classification. This paper only demonstrates the effectiveness of 
our pre- and post processing technique. 

The automatic extraction of the breast region will be added into the system and the 
implementation of the filter-based technique will be converted from Matlab to Java. 
By reducing the consumption of computer memory, the Java system will enable us to 
do the experiments based on full mammograms. In the near future, an algorithm for 
vessel detection will be added into pre-processing and new microcalcification 
classification techniques will be developed. 
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Abstract. The ability of human observers to discriminate between textures is re-
lated to the contrast between key structural elements and their repeating patterns.
Here we have developed an automatic texture classification approach based on
this principle. Local contrast information is modelled and a hybrid metric, based
on probability density distributions and transportation estimation, are used to
classify unseen samples. Quantitative and qualitative evaluation, based on mam-
mographic images and Wolfe classification, is presented and shows segmentation
results in line with the various classes.

1 Introduction

Texture is one of the least understood areas in computer vision. Although no generic
texture model has emerged so far a number of problem specific approaches have been
developed successfully [1,2,3,4]. More recently, approaches have been investigated
which aim to automatically determine a feature vector to be used for segmentation pur-
poses [5,6] or provide a more fundamental approach to texture segmentation [7,8,9].

The work described here can be seen as such a more generic approach towards tex-
ture modelling. The principles behind this modelling are based on the notion that human
observers are able to distinguish between textures if there is significant contrast differ-
ence between the main structural elements and the way those specific (sub-)structures
form a repeating pattern. To achieve this we have investigated the modelling of the dis-
tribution of texture structural elements within specific grey-level bands. Subsequently,
unseen texture regions can be compared with the developed models. The comparison
can be based on various distance metrics.

In this paper we consider the segmentation of texture information within mammo-
graphic images. Here the main aim is to distinguish between a number of textures that
appear in mammographic images (e.g. the various textures associated with Wolfe [10]
or Tabar [11] based risk assessment) and use the extracted information to obtain seg-
mentation of texture images. We have investigated the use of a Hybrid Metric which
can be regarded as the non-integer approximation of the transportation cost approach.
We provide both quantitative and qualitative assessment of the developed approach.

The layout of the paper is as follows. In Sec. 2 the local contrast based texture
segmentation approach is presented, which covers the extraction of the local contrast
information and the use of a novel Hybrid Metric to measure the similarity between
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c© Springer-Verlag Berlin Heidelberg 2006
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distributions. In Sec. 3 quantitative and qualitative results based on real textures are
presented. The paper concludes with discussion and conclusions sections.

2 Methods

The aspects discussed in the section cover: a) the model describing the local contrast
structures, b) the way that these are used to provide texture models, and c) the approach
to evaluate the difference between local contrast structure models and new local areas
within unseen images.

2.1 Local Contrast Structures

One of the motivations behind this research is that texture recognition is driven by the
contrast between key structural elements. Images are decomposed into distinct grey-
level bands. The binary images, B(x, y), representing only distinct grey-level bands are
determined by

B(x, y) =
{

1 if δlow <= I(x, y) < δhigh

0 otherwise
(1)

where I(x, y) is a grey-level image, and δlow and δhigh are low and high threshold
values.

It should be clear that the distinct structures that represent the textures are only
present in very specific grey-level bands and that a specific position within the image
can only become equal to 1 once if the high and low threshold values in Eq. 1 form a
non-overlapping series (as will be the case throughout the presented work).

2.2 Modelling

Modelling the repeating key (sub-)structures that are essential to describe textures can
be achieved by estimating local aspects using a set of binary images determined by
Eq. 1, where the set is based on a sequence of n (δlow, δhigh) values covering the full
range of grey-level values within the images and (δhigh − δlow) is constant (e.g. a pos-
sible (δlow, δhigh) set would be {(0, 64), (64, 128), (128, 192), (192, 256)}, and some
binary images based on such sets can be found in Fig. 1). Once such a set of images has
been obtained a model of local structures needs to be obtained. To achieve this for a spe-
cific binary image in the set a region of interest (with size equal to (2w+1)×(2w+1)) is
extracted at each position in B(x, y) with value equal to one. For each region of interest
the segment containing the central position is extracted using simple four-connectivity.
Using each position in the obtained segments provides a summation over B(x, y) re-
stricted by ±w. After normalisation with respect to total occurrence, this results in a
probability density distribution representing local structures within a specific grey-level
range (as specified by Eq. 1). Such a probability density is denoted as Pm(i, j), where
the subscript indicates the level in the set of binary images for which the probability
density is derived, m ∈ [1, n], n represents the number of grey-level bands, and (i, j)
covers the region of interest, i.e. i, j ∈ [−w, w].

Subsequent to the modelling it becomes possible to determine if a new region of
interest extracted from an image that was not part of the modelling data belongs to the
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Fig. 1. Local contrast structures, with (a) original images and the other images determined by
Eq. 1, where the (δlow, δhigh) values are (b): (64, 192), (c): (64, 128), (d): (128, 192), (e):
(64, 96), (f): (96, 128), (g): (128, 160), and (h): (160, 192)

modelled texture or not. The methodology is very similar to that described to obtain the
local contrast structures model, with the exception that in this case it is only based on
a single region of interest instead of all the relevant regions of interest within a whole
image. The new region of interest is only compared with the relevant model which
covers the grey-level value that occurs at the centre of the region of interest. Such a
single region of interest based texture description is denoted as Rm(i, j), where m
indicates the level in the set of grey-level values within which the grey-level value of
the centre position falls.

2.3 Hybrid Metric

The similarity between a new region of interest and the various local contrast tex-
ture models is determined by a Hybrid Metric, which is based on probability density
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modelling and the transportation metric [12,13,14]. It has been noted that the trans-
portation metric has distinct advantages [13], but at the same time some drawbacks
that ensure it is not generic enough to cover all applications [14]. Giannopoulos and
Veltkamp [14] introduced a proportional transportation distance to solve a number
of problems and provide a more generic distance metric which retained most of the
benefits of the classical transportation metric as described in previous work
[6,12,13,14,15,16,17].

The developed Hybrid Metric is to provide a weighted cost of the non-overlapping
regions of the local contrast structures model, Pm(i, j), and the region of interest,
Rm(i, j). This is given by

phm(x, y) =

⎛⎝∑
(i,j)

∑
(s,t)

(Rm(i, j) − min{Pm(i, j), Rm(i, j)})

(Pm(s, t) − min{Pm(s, t), Rm(s, t)})

k(i, j, s, t)

⎞⎠−1
(2)

where min{., .} gives the minimum value of the two parameters and k(i, j, s, t) =
|i − s| + |j − t| is the cost for transportation between positions (i, j) and (s, t) in the
two images (or in general patterns) to be compared.

It should be noted that the distance underlying Eq. 2 is a semi-metric as it fulfills the
following properties: a) self-identity, b) positivity, and c) symmetry. It is likely to be a
full metric, but as to now we do not have a full proof that the triangle inequality holds.
However, this is only the case if the cost function k is a metric and the total quantity
at the source and destination are the same, which is similar to the restrictions for the
transportation distance being a metric.

An alternative way to regard this Hybrid Metric approach is as a non-integer approx-
imation of the transportation algorithm. Instead of distributing the sources as integer
quantities to the destinations, the Hybrid Metric approach distributes weighted values
from all sources to all destinations.

2.4 Texture Likelihood Estimation

The metric used to compare local contrast structure representations results in a similar-
ity estimation (see Eq. 2). The likelihood that pixels belong to a specific texture t are
determined by an odds-ratio:

pt
hm(x, y) =

phm(x, y)|nc=t∑
nc

phm(x, y)
(3)

where nc indicates the number of texture models that are being considered. In the ex-
periments presented here combinations of four textures (representing the four Wolfe
classes) were considered and hence the value of nc ∈ {1, 2, 3, 4} .
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3 Results

The evaluation involves the segmentation of images representing the various Wolfe
classes [10]. The database consists of sixty images. The images in the database were
all assigned a Wolfe classification by an expert radiologist and the distribution over
the four Wolfe classes are 0.25, 0.10, 0.55 and 0.10 for N1, P1, P2 and DY,
respectively.

An overview of example segmentation results can be found in Fig. 2.

Fig. 2. Example segmentation results, where from top to bottom the four Wolfe classes are
represented, with on the left the original mammograms and on the right the segmentation results

The segmentation results in Fig. 2 show a strong correlation between the various
texture regions in the mammographic images and the segmented areas in the resulting
images. However, there also seem to be some region boundary effects playing a sig-
nificant role, which warrant further investigation. In addition, it should be noted that
for most segmentation results the relative area is mainly occupied by two classes; there
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are a number of possible explanation for this, like the un-balanced distribution over the
four Wolfe classes, and this needs further investigation (it is interesting to note that for
BI-RADS breast density categories it is not uncommon to mainly use two out of the
four available classes [18,19]).

3.1 Mammographic Risk Assessment

The origins of breast density classification are the work of Wolfe [10], who showed the
relation between mammographic parenchymal patterns and the risk of developing breast
cancer, classifying the parenchymal patterns in four categories. Automatic assessment
of breast density/risk can be sub-divided into two groups, those that are just using grey-
level information [20] and those that incorporate texture information [21,22]. The de-
veloped approach falls into the latter category.

The segmentation results (see Fig. 2 for examples) are used to obtain the relative size
of the segmented regions for each class. This feature is used as our classification space
and the distribution over the Wolfe N1, P1, P2 and DY is represented in Fig. 3. This
shows a certain degree of clustering for mammograms belonging to the same Wolfe
class (represented in Fig. 3 by the four different markers), but at the same time there is
clear overlap between the classes and there are distinct outliers for some of the classes.
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Fig. 3. Distribution of relative Wolfe class areas within the mammographic images for the used
dataset, where on the left N1 versus P1 and on the right N1 versus P2 is shown. The four different
markers represent the ground truth Wolfe classifications.

The data as represented in Fig. 3 can be used as a 4D feature space. Based on a k near-
est neighbour classifier and a leave-one-woman-out methodology correct classification
results of up to 72% (with κ = 0.48) are obtained. However, the correct classification
tends to be based on only two of the Wolfe classes (those with a higher proportion in
the used dataset) and as such do not represent satisfactory results and indicate a need
for further investigation involving a larger dataset and a more even distribution of the
Wolfe classes (and alternative metrics like BIRADS) for the training data.

4 Discussion

The developed Hybrid Metric is a generic approach for the comparison of distributions
or patterns and as such will have a wide range of application areas. It would be of
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interest to investigate the use of this metric in applications such as image retrieval,
image registration, pattern matching and general allocation cost estimation problems.

The developed approach to texture modelling might on the surface show similarities
to the local binary pattern (LBP) based texture analysis [9]. However, the main dif-
ferences are: a) grey-level bands are used to generate the binary images and hence the
models, b) modelling is based on the binary images and no histogram information is ex-
tracted to summarise the information, c) models at each grey-level band can be directly
compared, d) only one model per grey-level band exists, and e) the region of interest
tends to be an order of magnitude larger than typically used for LBP.

The developed approach does also show similarities to USAN [23]. The first step in
our process uses local binarised information based on grey-level bands. The grey-level
bands in SUSAN are taken as +/- around the central pixel’s grey-level value, whereas
here we use distinct bands independent of the grey-level value of the central pixel.
Further to this we would like to mention: a) SUSAN is measuring an area in the USAN
whilst here we use statistical modelling of the local area as a fundamental step, b)
the window size used here tends to be an order of magnitude larger than those used for
SUSAN, c) our approach does not only model the central region but all univalue regions
within the local area, and d) to our knowledge USAN or more advanced information like
used here has not been used in this fashion for texture segmentation.

To provide further evaluation on a full range of (w, n) values it might be essential
to develop a less algorithmic complex estimation of the transportation cost. The Hybrid
Metric based approach already shows significant improvements over the classical trans-
portation metric and this will be further investigated. Further might incorporate texture
clique aspects [24,25], where the central segment within the region of interest could be
sub-divided into a number of cliques.

5 Conclusions

We have investigated a novel texture segmentation methodology based on a concept
of local contrast structures. In the process we have developed a hybrid transporta-
tion/probability metric to compare distributions, which is a generic metric with potential
beyond the presented work. The evaluation on mammographic images shows overall
good segmentation results and limitations on the current results have been discussed.
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Abstract. To compare image quality and dose of a photon-counting multi-slit 
scanner (PC) and a system based on amorphous silicon (aSi), images of the 
CDMAM 3.4 were taken in standard mode. For 3cm PMMA, the PC used 
29kV/11.7mAs, aSi used 27kV/ 50mAs. For 5cm PMMA, PC used 35kV 
/14.8mAs, aSi used 31kV/ 50 mAs. Exposure was manually increased for PC 
and lowered for aSi-system. Average glandular dose and an image quality index 
(IQI) were calculated over the diameter ranges 0.06 - 2.0mm and 0.1-1. In stan-
dard mode with 3cm PMMA, IQI for PC was 35% lower than for aSi at 80% 
lower dose. Increased dose of PC resulted in 13% lower IQI at 57% lower dose. 
With 5cm PMMA IQI in standard mode was 18 % lower with PC at a 69% 
lower dose. Increasing the dose of PC resulted a 7% lower IQI at 54% lower 
dose. In conclusion the PC-system might reduce dose by up to 54% at equiva-
lent image quality, although maximal quality of aSi could not be reached. 

1   Background 

The aim of this study was to compare the image quality and dose of two full-field-
digital-mammography (FFDM) systems based on different technologies: a photon-
counting multi-slit scanner (PC) and a system based on amorphous silicon (aSi) with a 
CsI-scintillator. Both systems are available on the market. The aSi-System (Senogra-
phe 2000D, General Electric Medical Systems, Milwaukee, USA) is FDA-approved 
since 2000; the FDA-approval for the PC-system (Microdose, Sectra, Linköping SE) 
is pending. 

2   Methods and Materials 

Images of a contrast detail phantom (CDMAM 3.4, St. Randbout, NL) with 3 and 
5cm PMMA-equivalent thickness were taken using the automatic exposure control of 
each system. For the PC-system imaging parameters at 3cm PMMA were 29kV and 
11.7mAs in Standard mode. To increase dose, maximal values of 29kV, 16.1mAs as 
well as 32kV, 18.4mAs were added manually. For the aSi-system image parameters 
were 27kV, 50mAs (standard-mode); 25kV, 71mAs (contrast-mode); 28kV and 
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36mAs (dose-mode). To achieve a comparable dose, the aSi-System was manually 
lowered to 32kV, 16mAs and 28kV, 16mAs.  

At 5cm PMMA, imaging parameters of the PC-system were 35kV and 14.8mAs, 
and were increased to 35kV, 17.9mAs and 38kV, 16.1mAs. The parameters for the 
aSi-System in standard mode were 31kV and 50 mAs; dose was manually lowered 
with 31kV and 11, 16 and 40mAs as well as 35kV and 18mAs. Other beam quality 
choices might have been made to reduce dose for the aSi system, but have not been 
tested. 

The average glandular dose was calculated for both systems according to Dance 
[1]. For the PC system spatial dose-distribution is inhomogeneous with lower dose in 
peripheral than in central parts of the scanned sector, this was considered when calcu-
lating average glandular dose. At every parameter setting, 8 images were taken and 
evaluated with the CDCOM-program. An image quality index (IQI) was calculated 
over the diameter range 0.06 to 2.0mm (equation 1).  

=
=

N

i iiTDN
IQI

1

11
  (1) 

As all gold disks with large diameters, as well as none of the smallest gold disks 
were detected with both systems, we also calculated a modified IQI (mIQI) over the 
diameter-range 0.1 to 1mm. To our knowledge this mIQI is better suited to detect dif-
ferences between the systems and is less influenced by random errors of the CDCOM-
program. 

3   Results  

3cm PMMA-Phantom 
IQI with the aSi-system in standard mode was 34.3 vs. 22.2 (35% difference) with the 
PC-system, at an average glandular dose of 1.52 mGy and 0.30 mGy (80% difference) 
respectively (see figure 1). When the dose of the PC-system was manually increased 
to the maximum of 0.66 mGy, IQI could be increased to 29.8, resulting in a 13% 
lower IQI at 57% lower dose. The IQI of the aSi-System could not be reached. If the 
dose of the aSi-system was manually lowered, IQI was 21.4 at 0.50mGy (aSi) vs. 22.2 
at 0.30 mGy (PC) a 40% difference in dose at comparable image quality.  

Using the diameter ranges of 0.1-1mm the modified image quality index (mIQI) of 
the aSi-System in standard mode was 42.9 vs. 27.3 with the PC-System or a differ-
ence of 36% at 80% lower dose (see figure 2). If the dose of the PC-system was 
manually increased, mIQI reached up to 36.8 or 90% of the level with aSi, at a 57% 
lower dose. 

5cm PMMA-Phantom 
With 5cm PMMA IQI in standard mode was 21.3 for the aSi-System vs. 17.5 for the 
PC-System at a glandular dose of 1.58 and 0.49 mGy respectively (see figure 3). This 
translates into a 69% lower dose at 18% lower IQI for a standard patient with 6cm 
compressed breast. Increasing the dose of the PC system resulted in IQI of 19.8 at 
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Fig. 1. Image Quality Index (IQI) of both systems at 3 cm PMMA-equivalent 

 

Fig. 2. Modified Image Quality Index (mIQI) over the reduced diameter range for 3cm PMMA  
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0.72 mGy, a 7% lower IQI at 54% lower dose. When the aSi-system was manually set 
to lower doses, IQI was 11.6 at 0.52mGy for aSi vs.17.5 at 0.49mGy with PC or a 
35% better detection at a comparable dose.  

The mIQI was comparable to the IQI for 5cm PMMA. 

 

Fig. 3. IQI for both systems using 5cm PMMA equivalent 

4   Discussion  

While the benefits of mammography for breast cancer screening and detection are 
widely accepted there is still major concern about radiation risk in many countries. 
The introduction of digital mammography allowed for the first time to individually set 
imaging parameters as radiation dose without the constraints of film-screen mammog-
raphy. Even though initial studies showed that FFDM can reduce AGD by about 30% 
at comparable image quality of film-screen [2], in general dose values were set com-
parable to film-screen to overcome restraints against this modern technology. Newer 
studies indicate that dose with FFDM can be reduced by up to 50% without signifi-
cant reduction in image quality [3]. This resulted in two different philosophies of 
FFDM image quality: while one party is trying to increase image quality at a reason-
able but higher dose level, others tried to reduce dose at an acceptable level of image 
quality, reasoning that “structural noise” of the breast tissue is higher than physical 
noise from the detector. Currently no study is published that is able to solve this prob-
lem and the solution will depend on political and legal points as well as on medical 
reasoning for one side. The PC-system that we compared in our study was able to  
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reduce the dose by up to 54% at an equivalent IQI-value. In standard mode AGD with 
the PC-system for thin breasts (3cm PMMA) was 20% of that with the aSi-system at 
60% of the IQI.  

The dose of the PC-system is limited to a very low value; hence the standard IQI of 
the aSi-system could not be reached. A version of the PC system which is able to 
achieve a higher dose is available on the market but was not available for this study. 
As the direct comparison of image quality was done at a level that is optimal for the 
photon-counter but probably below the optimal beam quality level for the aSi-system, 
this is a clear limitation of our study. Also the aSi-System used was an older version, 
subsequently several changes have been applied to AEC, that might influence AGD in 
standard mode. In addition the AEC of the aSi-system is programmed to adjust imag-
ing parameters to breast density, which can not be used in phantom imaging. It is 
therefore possible that in clinical images the differences between the systems might 
be smaller. 

The ideal phantom for contrast detail analysis would be unlimited in all directions, 
a property certainly not available for the CDMAM. This causes difficulties in evalua-
tion: both systems are able to detect all gold discs of the diameters 1 to 2mm, while 
the 0.06 and 0.08mm discs are not reliably detected (see figure 4). This causes the 
program to extrapolate the measurements causing inconclusive results. We tried to 
overcome this limitation by calculating a modified IQI (or mIQI) over the values 0.1 
to 1mm. Evaluating this mIQI the difference in standard mode was smaller than with  

 

 

Fig. 4. Results of the CDCOM evaluation for 3cm PMMA with the aSi-System in standard 
mode. For the large discs of more than 0.63mm diameter as well as for very small discs of 0.06 
mm the threshold level of 0.62 could not be reached. 
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the previous method of detection, as the large discs -that were detected in any case 
and therefore useless in differentiation- could not dilute differences present. 

A critical point against the mIQI is that the detection of very small discs might be 
overlooked, which was not the case in our study: Only for 3cm PMMA in contrast 
mode the aSi-system was able to reach the threshold level of the CDCOM program 
for the 0.08mm disks, in all other parameter-settings the small discs were undetect-
able for both systems. For smaller discs, detection was possible but not reliably 
enough to reach the threshold level. This indicates that the aSi-system is able to detect 
objects below its spatial resolution, while the higher resolution of the PC-system does 
not translate into better detection of small objects. 

5   Conclusion 

The PC-system seems to reduce dose by up to 54% at equivalent image quality index 
(IQI). Standard image quality of aSi could not be reached with this version of the PC 
system. There is currently no scientific evidence how increasing IQI will translate into 
better detection and what is the optimal trade-off between image quality and radiation 
dose.  
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Abstract. Numerous studies have investigated the relation between
mammographic density and breast cancer risk. These studies indicate
that women with high breast density have a four to six fold risk increase.
An investigation of whether or not this relation is causal is important
for, e.g., hormone replacement therapy (HRT), which has been shown to
actually increase the density.

No gold standard for automatic assessment of mammographic density
exists. Manual methods such as Wolfe patterns and BI-RADS are help-
ful for communication of diagnostic sensitivity, but they are both time
consuming and crude. For serial, temporal analysis it is necessary to be
able to detect more subtle changes.

In previous work, a method for measuring the effect of HRT w.r.t.
changes in biological density in the breast is described. The method
provides structural information orthogonal to intensity-based methods.
Hessian-based features and a clustering of these is employed to divide a
mammogram into four structurally different areas. Subsequently, based
on the relative size of the areas, a density score is determined.

We have previously shown that this method can separate patients
receiving HRT from patients receiving placebo. In this work, the focus
is on deeper understanding of the methodology using tests on sets of
artificial images of regular elongated structures.

1 Introduction

Numerous studies have investigated the relation between mammographic density
and breast cancer risk, and women with high breast density appear to have a
four to six fold increase in breast cancer risk, e.g. [9, 2, 1, 7]. Therefore density
is an important feature embedded in a mammogram. Currently, however, the
density is not used to asses risk in the standard clinical screening procedures.

The specific purpose of this work is to investigate the nature of the actual
structural changes in the breast tissue caused by hormone replacement therapy
(HRT) detected by our clustering technique. This Hessian-based method has
been validated in a previous experiment, using two sets of mammograms of
50 patients from a double blind, placebo controlled HRT experiment [8]. The
method was able to significantly separate the HRT patients from placebo patients
(p = 0.0002) [5].

The method is interesting seen both from a practical, image analysis perspec-
tive, but also from a medical point of view, where is might provide insight into
important anatomical changes relating to density alterations. In order to get this
insight, we have to have an in depth understanding of the method used, which is
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the focus of the study presented. To achieve understanding we do tests on sets
of canonical images of regular stripe-like patterns of different frequency.

2 Methods

Detecting HRT Using Hessian-Based Pixel Classification

The breast tissue is manually segmented. Within this region of interest (ROI),
for every pixel, features based on eigenvalues of Hessian at three scales are de-
termined. The Hessian at scale s is defined by

Hs(I) =

⎡⎢⎢⎢⎣
∂2

sI

∂sx2

∂2
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∂sx∂sy
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where ∂s denotes the Gaussian derivative at scale s [4]. The scales used are 1, 2
and 4 mm. The features used are given by the quotient:

qs =
|e1| − |e2|

|e1| + |e2| + ε

where e1 and e2 are eigenvalues of the Hessian at scale s, e1 > e2 and ε is a
number much smaller than 1 used to avoid instabilities associated with near
zero division. This quotient relates to the elongatedness in an image at a certain
location (x, y) at scale s. It is close to zero if image structure is “round” and
closer to 1 or +1 for more elongated structures. It is invariant to rotation of the
image and locally linear scaling of the intensities.

In a training phase, a large collection of randomly chosen pixels from the
different images in the data set are used to generate a representative collection
of features. These features are divided into four clusters using k-means clustering
[6]. The means are stored and used for nearest mean classification [6].

In the testing phase this nearest mean classifier (NMC) is used to score each
mammogram as follows:

– Extract Hessian-based features
– Classify each pixel in one of four classes using the NMC
– Determine relative areas of the classes
– Compute the score from these areas

The score is based on a linear combination of the relative areas of the classes
in the breast tissue. The combination is determined using a linear classifier given
the HRT group and the placebo group. We assume Gaussian distributions with
equal covariance and use the resulting linear Fisher discriminant [6] to separate
the placebo and the HRT groups. In the HRT experiment we found that using
only two of the classes gave good results and adding information about the other
two did not improve the separation significantly.
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Feature and Classifier Evaluation Using Artificial Images

What do changes in these two clusters mean, and how can we get an under-
standing of which changes in tissue structure the HRT/Placebo classifier bases
its decision on? To answer this question we analyse the clustering of some sim-
ple, regular, stripy images. An example of a set of analytical images that can be
considered member of the “canonical” images of stripy/elongated structures are
the sinusoids. A lot of different types could be used, but we found that images of
the type |sinω1x+ sinω2y| served our purpose well. Adjusting ω1 and ω2 within
some reasonable boundaries produces a collection of images of regularly varying
scale and elongatedness.

For each image in this set we do pixel classification and record the percentage
areas of each of the four classes. Doing this for N frequencies produces N × N
sets of relative areas. For each of these sets, the ratio used to separate HRT and
Placebo is computed. Then we have the HRT likelihood as function of frequency
and we can look at the gradient vector field of these N ×N scores to investigate
which changes in frequency the classifier picks up. These frequencies also relate
to the scale of the elongated structures, with lower frequencies giving larger
scales.

3 Results

The best linear combination, using the Fisher discriminant to separate HRT and
placebo, uses class one and class two and is illustrated in Fig. 1 in a scatter plot.
The actual combination corresponds roughly to “2× Area2 − Area1”.

Fig. 1. Best linear separation of the HRT and Placebo groups using class one and two.
+’s are HRT patients and *’s placebo.
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Fig. 2. From left to right: An example canonical image, Hessian-based feature at scale
5 pixels, 10 pixels, 20 pixels and the classification showing the four different classes.
The two classes that was combined to separate HRT and Placebo are the black (class
one) and the darkest grey (class 2).

Fig. 3. The gradient vector field of the ratio of class one and two used in the
HRT/Placebo classification shown as function of increasing wavelength
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The actual construction of the pixel classifier is as follows. A million pixels are
selected at random among the images in the data set as training data, after de-
termining ROIs. Features are extracted from these pixels, the k-means algorithm
is applied and the NMC is constructed from the labelled training data.

The wave lengths used in the analysis of sinusoids are from 2 to 100 pixels
to provide a range suitable for the scales of the features (5, 10 and 20 pixels).
In Fig. 2 an example image is shown together with the feature response and
classification by the pixel classifier (the vertical wave length is 70 pixels and the
horizontal 20). The test-images are constructed such that they have periodic
boundaries and since the scale derivatives are computed in the Fourier domain
we avoid artifacts along the boundaries of the feature images.

Getting the relative areas of the four clusters and computing the structural
density as a combination of the first two areas allows the computation of the
gradient vector field. The vector field for the set of sinusoid images described
above is shown in Fig. 3.

4 Discussion

Unsupervised clustering of mammograms based on the quotient of Hessian eigen-
values at three scales can be used to differentiate between patients receiving HRT
and patients receiving placebo. The Hessian eigen values have not been used in
connection with density, but have been used to characterize vesselness in other
medical applications [3].

We want to make longitudinal studies, but not wait 5-10 years to get the real
digital images. A problem we often face when using digitized film mammograms
is lack of gray-scale calibration. That is why a measure using features of the
image, such as the Hessian eigenvalues, which is invariant under linear (or indeed
just locally linear) grey-scale transformations is highly desirable.

Looking at the vector field in Fig. 3 we can make some comments on the
classifier. From the behavior around the diagonal (not in the bottom left-hand
corner), it appears that becoming more isotropic leads to an increased HRT
likelihood. From the two other “rays” (horizontal and vertical), that go along
the bottom and left borders of the image, it looks like tending towards a wave
length of about 15 pixels (corresponds to 3 mm) from a larger or smaller wave
length also increases the HRT likelihood. In the bottom left-hand corner things
seem less clear. Overall, it looks as if becoming of higher frequency gives an
increase in the measure.

These results provide a little insight into the important changes of elongated-
ness and, for that matter, density. Future work includes getting a more precise
quantitative description of the changes and discussing these results with physi-
cians to get a qualitative understanding of the changes detected in the HRT
group. Future validation studies on more HRT data are also planned to improve
the clinical validation of the measure.
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Abstract. The purpose of this study was to review the dose and image 
characteristics of three different FFDM systems; Sectra MDM, GE SenoDS, 
Lorad Selenia. The dose and image quality characteristics were assessed in 
terms of both physics and clinical performance. A phantom study was carried 
out to look at the mean glandular dose delivered to breasts of varying thickness.  
The dose was also investigated by carrying out a clinical dose survey of a 
random sample of women on each of the three units.  The CDMAM 3.4 was 
imaged on each unit with varying thicknesses of PMMA and the results 
correlated with the dose results at each equivalent thickness.  The CNR of each 
unit at varying breast thicknesses was also calculated.   

1   Background 

The three systems investigated in the study were; 

 Sectra Micro Dose Mammography 
 GE SenoDS 
 Lorad Selenia 

All images were reviewed on a common PACS platform. 
The dose characteristics of the systems were evaluated by measuring mean 

glandular dose and performing a clinical dose survey, which looked at a consecutive 
sample of women on each of the three units. The image quality was quantified using 
the CDMAM 3.4 phantom to generate contrast detail curves.  The CNR of each 
system was also used as a performance indicator. 

2   Method 

Mean glandular dose was measured in accordance with the EUREF protocol (2005).  
To assess the dose delivered by each system, the factors selected by the x-ray set 
when imaging a range of thicknesses of PMMA 20 - 70mm were recorded. In each 
case the dose was measured using a RadCal 9010 and a 6cc ioisation chamber. The 
HVL at all clinical settings was also measured, allowing the entrance surface air 
kerma to be measured. The method described by Dance et al (2000) was used to 
calculate the mean glandular dose to the typical breast. 
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Contrast detail measurements were made using the CDMAM phantom (version 
3.4, Bijkerk, 2002). The CDMAM consists of a matrix of gold discs of thicknesses 
from 2μm to 0.03μm and diameters from 2mm to 0.06 mm on a 2 mm aluminium 
base encased in Perspex. In each square of the matrix are a pair of identical gold 
discs. One is in the centre and the other is in one of the four corners. In order to 
correlate the results of this test with the mean glandular dose results at varying breast 
thickness the CDMAM was setup with different thickness of PMMA equivalent to the 
20-70mm used in the mean glandular dose measurement. Each arrangement was 
imaged using the x-ray unit’s automatically selected factors normally set for clinical 
use for a breast of equivalent attenuation. The digital images had the contrast and 
density adjusted to optimally display the details in the test object, before scoring on 
softcopy display workstations. These results were used in conjunction with an excel 
spreadsheet to generate contrast detail curves. 

CNR was calculated for each unit using the methodology as outlined in the EUREF 
protocol. The CNR measurements are referenced to the limiting value of the 0.1mm 
diameter column for 50mm PMMA thickness. 

A clinical dose survey was carried out on each of the three units.  A consecutive 
sample of women was chosen from each unit and their data was retrospectively 
collected. The views acquired, kV, mAs and target filter combinations chosen for 
each woman was recorded, as well as breast thickness, force applied and dose as 
measured by the unit. The data was analysed using the Breast Dose calculator, version 
2.0 (Young 2004), provided for the NHSBSP dose survey.   

3   Results 

As expected the MGD delivered by the units was consistently lowest on the Sectra 
MDM and highest on the Lorad Selenia over a range of phantom thicknesses.  MGD 
was measured using the factors automatically selected by each unit in clinical 
practice. These factors are displayed in Table 1 below.  MGDs for each unit is shown 
in Figure 1 below. 

Table 1. Automatically selected factors for each unit under varying thickness of PMMA 

Breast 
Thickness (mm) 

Sectra MDM  SenoDS Lorad Selenia 

21 26 W/Al 26 Mo/Mo 24 Mo/Mo 
32 29 W/Al 26 Mo/Mo 26 Mo/Mo 
45 32 W/Al 29 Rh/Rh 28 Mo/Mo 
53 35 W/Al 29 Rh/Rh 29 Mo/Mo 
60 35 W/Al 29 Rh/Rh 30 Mo/Mo 
75 35 W/Al 31 Rh/Rh 32 Mo/Rh 
90 28 W/Al 30 Rh/Rh 32 Mo/Rh 
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Fig. 1. Mean glandular dose delivered by each unit to compressed breast of varying thickness 
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Fig. 2. Contrast Detail Curves for all 3 units using CDMAM equivalent to 45mm Breast 
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Fig. 3. Contrast Detail Curves for all 3 units using CDMAM equivalent to 60mm Breast 
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Fig. 4. Contrast Detail Curves for all 3 units using CDMAM equivalent to 75mm Breast 
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The CD curves were derived for all three units. All three units generated contrast 
detail curves that surpassed the achievable limit for small breast thicknesses. The GE 
outperformed the other two units at these small breast sizes. As the breast size 
increased above 45mm the contrast detail curves for all units moved between the 
minimum and achievable limit. Above 60mm while the units remained within limits 
at the high and low contrast detail size they all dipped below minimum for medium 
sized contrast detail. Displayed below in Figures 1,2 and 3 are the resultant curves for 
breasts of 45mm, 60mm and 75mm respectively. These thicknesses were chosen for 
display as they are representative of common thicknesses encountered in clinical 
practice. 

The CNR for all three units was calculated. The percentage CNR at all thickness 
relative to the limiting value for the 0.1mm diameter column of the CDMAM for a 
60mm breast are displayed in Table 2. 

Table 2. Percentage Contrast on each unit at all breast thicknesses referenced to a limiting 
vlaue of the 0.1mm diameter column for a 60mm breast 

% CNR [EUREF]

Breast
Thickness (mm)

Sectra MDM SenoDS Lorad Selenia Tolerance
(%)

21 145 239 236 >115
32 138 200 202 >110
45 113 138 159 >105
53 110 131 151 >103
60 100 123 130 100
75 74 110 105 >95
90 68 99 87 >90  

    The results of the clincal dose survey gave good insight into the different parameter 
selections for the three units and the number of repeats or extra views required on 
each system. The range of doses on the Sectra unit is much lower than the GE 
SenoDS or Lorad Selenia. The Sectra MDM also displayed a much narrower spread 
of doses in clinial practice. Table 3 below summarises the main findings of the 
clinical dose survey. 

Table 3. Summary of the main findings from the clinical dose survey 

Sectra MDM GE DenoDS Lorad Selenia 
   

Top 3 Auto Selections Top 3 Auto Selections Top 3 Auto Selections 
35 W/Al (266) 29 Rh/Rh (267) 32 Mo/Rh (106) 
28 W/Al (99) 27 Mo/Rh (51) 30 Mo/Mo (69) 
32 W/Al (32) 31 Rh/Rh (20) 21 Mo/Mo (59) 
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Table 3. (continued) 

Sectra MDM GE DenoDS Lorad Selenia 

Average MGD (mGy) Average MGD (mGy) Average MGD (mGy) 
CC 0.97 CC 2.13 CC 2.28 

MLO 0.98 MLO 2.20 MLO 2.35 
Screening Exam 1.97 Screening Exam 3.97 Screening Exam 4.79 

   
Ave. Dose to 5-6cm 

Breast 
Ave. Dose to 5-6cm 

Breast 
Ave. Dose to 5-6cm 

Breast 
0.97mGy 2.17mGy 2.37mGy 

   
Extra Views Extra Views Extra Views 

2 CC 6 CC 4 CC 
9 MLO 7 MLO 7 MLO 
11 Total 13 Total 11 Total 

   

4   Discussion 

The image quality and radiation dose characteristics of three distinct FFDM detector 
systems have been comprehensively evaluated in this study.   

The Lorad Selenia unit consistently delivered the highest mean glandular dose at 
all breast thicknesses. Increased utilization of the Mo/Rh spectrum on this unit is 
likely to reduce the MGD delivered. The Sectra MDM delivered the lowest dose for 
most breast thicknesses with the exception of the mid range thickness where the MGD 
delivered by the MDM was comparable to that of the GE SenoDS.    

The results of the clinical dose survey showed good correlation with the phantom 
MGD study. Again the Lorad Selenia delivered the highest average MGD per exam 
and the Sectra MDM the lowest. The average clinical dose to a 50-60mm breast also 
followed the same pattern. The clinical dose survey showed a slightly elevated 
number of extra views on the GE SenoDS unit. It is believed that this was as a result 
of the small field size, which necessitates extra views on above average sized breasts. 
This number would likely be higher still if women with larger breast thicknesses were 
not deliberately imaged on other units.   

Finally, the clinical dose survey highlighted that the three units made very different 
automatic selections.  The Sectra unit is inherently restricted to five kV target/filter 
combinations due to its setup. These are 26, 29, 32, 35 and 38kV all using a W/Al 
target /filter. 35 W/Al was by far the most commonly selected of these. The GE Seno 
DS offered a wider range of exposure factors. As was evidenced by the phantom 
MGD study, this unit begins to use the Rh/Rh spectrum at relatively low breast 
thickness. This choice of Rh/Rh contributed to a significant dose saving. The GE 
SenoDS most commonly selected 29Rh/Rh. Although the Lorad Selenia most 
commonly chose 32 Mo/Rh, overall this unit selected a Mo/Mo spectrum more often 
than a Mo/Rh. As discussed above the frequent selection of the Mo/Mo spectrum for 
this unit played a significant role in the relatively high doses it delivered.  This unit 
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requires some optimisation to utilize the Mo/Rh spectrum more frequently and as a 
result, reduce the dose. 

As part of the image quality review, threshold contrast curves were generated for 
each unit over a range of thicknesses. A number of observations were made in relation 
to acquiring and reading the CDMAM images. Due to non-uniformity of the Sectra 
images, we initially found it difficult to read the CDMAM images from this unit. 
Because of this, we decided to image the phantom perpendicular to the chest wall in 
order to reduce the effect of poor image quality at the edges of the image field.  
However the general non-uniformity of the images also caused problems, which we 
overcame by taking a second set of images with the phantom positioned at 180 
degrees to its original position. If a correct result was read on either image this was 
taken to be the overall result for that square. In general the Sectra MDM images 
proved more difficult to read due to the presence of noise in the images. 

With regard to the GE SenoDS, it was noted that particular attention was necessary 
when positioning the phantom on the detector as the phantom is a close fit to the field 
of view. Where the phantom is not accurately centred in the field of view there may 
be discs missing from the resultant image. 

As would be expected, all three units surpass or perform close to the achievable 
performance at breast thicknesses below 32mm. At these lower thicknesses, the GE 
SenoDS consistently outperforms the other units. For breast thickness between 45mm 
and 60mm all three units perform between the minimum and achievable limits with 
some crossover in the order of performance. CD curves on all units for breast 
thicknesses above the 60mm follow this trend and while they perform well at the 
extreme ends of the contrast detail spectrum they tend to drop performance in the mid 
range. Where the units are failing to meet the minimum tolerance there is the 
opportunity to increase their performance in this respect by increasing the dose, which 
is currently below the maximum allowed. 

CNR measurements at varying PMMA thicknesses were made on each unit. A 
percentage contrast was calculated for each thickness with reference to the limiting 
threshold contrast for the 0.1mm diameter column for a 60mm breast (CDMAM plus 
40mm PMMA). The GE Seno DS exceeded the recommended tolerance at all breast 
thicknesses. The Lorad Selenia also met the tolerances with the exception of the 
90mm breast. The Sectra unit failed to meet the recommended tolerances for breast 
size above 75mm. It is felt that those thicknesses that failed on the Lorad and Sectra 
units could be brought into tolerance with some optimization of the units and also 
increased experience of reading the CDMAM phantom which influences the 100% 
value.  
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Impact of Textured Background on Scoring 
of Simulated CDMAM Phantom 
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Abstract. CDMAM phantom scoring is widely used to assess the detectability 
performance of mammography systems. We propose to study the impact of 
structured background on this performance assessment, using simulated CDMAM 
phantom images with flat and textured backgrounds. Three dose levels have been 
investigated, ranging from -50% to +50% around the reference dose computed by 
the acquisition system. For textured backgrounds, the simulated projected breast 
corresponds to a 50mm thick, 60% glandular breast, with a texture generated by a 
power-law filtered noise model. Images have been scored by four image quality 
experts. For the smaller insert sizes, Image Quality Factor (IQF) scores obtained 
in textured backgrounds are lower than and well correlated with those obtained in 
flat backgrounds. IQF values increased with dose. For the larger insert sizes, 
detectability performance in textured background is even more degraded and is 
not as dose dependent as it is in flat backgrounds.  

1   Introduction 

The CDMAM phantom is widely used to evaluate the detectability performance of 
mammographic x-ray equipment. This contrast-detail phantom assesses the ability of 
a system to distinguish objects with very small contrast and small diameter. The task 
involved with scoring the CDMAM phantom consists of detecting disc-like inserts of 
various thicknesses and diameters in flat noisy background. However, such a 
detection task does not reflect the detection task done by radiologists in clinical 
conditions. One of the main limitations is the use of flat noisy backgrounds that are 
not representative of backgrounds associated with clinical breast imaging. The 
structure of clinical backgrounds is due to overlapping projection of the normal breast 
anatomical structures in 2D mammograms. In terms of detection performance, it has 
been shown [1, 2] that radiographic abnormalities detection is limited by both imaging 
system noise and anatomical noise. Observer experiments [3] demonstrated that the 
breast structure is often the main limiting factor for lesion detection performance. 
Bochud et al. [4] showed that for a small object, like microcalcifications, the observer 
performance is limited by the system noise and eventually by anatomical fluctuations 
depending on the amplitude of these fluctuations. For large objects, like a nodule, the 
effect of anatomical fluctuations was found more dominant than system noise. 
                                                           
∗  benedicte.grosjean@ge.com; Phone: +33 1 3070 9737; Fax: +33 1 3070 4140; http://  
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Synthesizing images gives the opportunity to simulate CDMAM phantom images 
with spatially varying backgrounds in order to simulate real mammographic back-
grounds for detection experiments. Moreover, in contrast with real phantoms, it 
enables to generate images with textured backgrounds for various texture realiza-
tions. Such a simulation tool would enable the assessment of mammography systems 
with different potential design options through textured CDMAM scoring, approach-
ing a more clinically relevant detection task than with standard CDMAM phantom 
images.  

The purpose of this work was to study the impact of structured background on the 
detectability performance, function of intensity values, assessed by the CDMAM 
phantom scoring.  

2   Method 

The CDMAM 3.4 phantom [5] consists of a matrix of 205 cells. Each cell contains 
two identical gold disks of given thickness and diameter. One is placed in the center 
and the other in a randomly chosen corner. The observer has to indicate the corner 
where the eccentric disk is located. The phantom covers a range of object diameters 
between 60μm and 2mm, and thicknesses between 0.03 and 2μm, including size and 
contrast ranges for microcalcifications. We simulated images of this contrast-detail 
phantom with flat and textured backgrounds (Figure 1) using the same acquisition 
conditions (Mo/Mo, 28kVp and 3 intensity values equal to 50, 100 and 160mAs) for a 
Senographe 2000DTM system. We already validated [6] the simulation of the digital 
mammography system when applied to the simulation of standard CDMAM phantom 
images. In this study, a power-law model [7, 8] of the projected breast structure has 
been added [9] to the simulation tool in order to generate structured backgrounds. This 
power-law model of projected breast structure is based on the average power 
spectrum of real mammograms under an isotropic assumption. No phase information 
about mammographic images is included in this model since it makes the assumption 
of random phase. Nevertheless, detection experiments [11] showed that it can be used 
to investigate perceptual laws in mammography, leading to similar contrast-detail 
diagrams as in mammographic textured backgrounds.  

For flat backgrounds, we simulated the image of the CDMAM phantom inserted 
between 2 PMMA plates of 20mm thickness. For textured backgrounds, we 
considered the projection of a breast with the same thickness than the CDMAM 
phantom assembly and with a power-law exponent equal to 3. This simulated breast 
was chosen 60% glandular in order to give the same grey level value than the 
CDMAM phantom assembly when imaged under the standard technique used to 
image the CDMAM phantom (Mo/Mo, 28kVp, 100mAs). Here the chosen glandula-
rity would correspond to the glandularity derived from the breast thickness and the 
grey level measured in the most attenuating area of the breast by the automatic 
exposure of the mammography system [10]. The grey level ratio between the greatest 
and least attenuating areas of the breast was fixed based on typical grey level 
distribution in real mammograms. 
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(a)(a) (b)(b)

(c)(c)
 

Fig. 1. Simulated images of CDMAM cells with flat (left) and textured (right) backgrounds, at 
Mo/Mo, 28kVp, 100 mAs. Each cell contains two identical inserts with a diameter of (a) 
1.6mm, (b) 1mm, (c) 0.25mm, and a thickness of (a) 0.25μm, (b) 0.36μm, (c) 2μm. 

For each acquisition condition and each type of background, four image realiza-
tions have been generated and rated by four image quality experts using the mammo-
graphy-dedicated GE review workstation. The Image Quality Factor (IQF) was 
calculated on both image sets: 
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These definitions give higher scores for better detection performance. The three 
IQF values have then been normalized in order to have their variations in the same 
range for comparison purpose: 
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3   Results 

The values of the IQFN, IQFN, smaller_inserts and IQFN, larger_inserts are shown for the four 
human readers and the three dose levels in Figure 2. 
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Fig. 2. IQFN, IQFN, smaller_inserts and IQFN, larger_inserts values derived from the scoring of the 4 
readers in flat and textured backgrounds (average over the 4 image realizations), with exposure 
conditions Mo/Mo, 28kVp and 3 intensity values (50, 100 and 160mAs) 

Figure 3 and Figure 4 show contrast-detail curves obtained for the average 
observer in flat and textured backgrounds for the various intensity mAs values. For 
each given insert size, the curves indicate the minimal insert thickness needed to 
reach the detection threshold. 
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Fig. 3. Contrast-detail curves obtained for the average observer in flat and textured back-
grounds, with exposure conditions Mo/Mo, 28kVp, 100mAs 
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CD-MAM images with flat background:
50mAs
100mAs
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Fig. 4. Contrast-detail curves obtained for the average observer in flat (left graph) and textured 
(right graph) backgrounds, with exposure conditions Mo/Mo, 28kVp, and intensity values equal 
to 50, 100 and 160mAs 

Figure 2 shows that the resulting IQFN values are higher in flat compared to 
textured backgrounds whatever the considered insert size and the mAs intensity value. 
The contrast-detail curves obtained in Figure 3 highlight that, for a given mAs 
intensity value, the insert thickness needed to reach the detection threshold becomes 
much higher in textured backgrounds than in flat backgrounds as the insert size 
increases. Furthermore, IQFN values (Figure 2) increase with increasing mAs values 
in both flat and textured backgrounds. This increasing variation trend is of the same 
order of magnitude for flat and textured backgrounds when considering the smaller 
inserts sizes (with a regression slope of IQFN, smaller inserts versus mAs equal to 0.006 
and 0.003 respectively for flat and textured backgrounds). It is much higher for flat 
than for textured background for the larger inserts sizes (slope of IQFN, larger inserts 
versus mAs equal to 0.065 and 0.008 respectively). Regression analysis restricted to 
the smaller inserts indicates good correlation between IQFN,smaller inserts values obtained 
in flat and textured backgrounds (R-squared=1 for the 3 points corresponding to the 3 
intensity values), whereas IQFN,larger inserts are weakly correlated for the inserts larger 
than 0.4mm (R-squared=0.85). 

4   Discussion 

As expected, we can determine that insert detection performance is degraded in 
textured backgrounds compared to flat backgrounds. From Figure 3 we can see that 
the larger the lesion, the higher the degradation. Moreover, detection performance in 
textured backgrounds, function of the mAs intensity, is poorly correlated to the 
detection performance in flat backgrounds for the larger insert sizes (Figure 2). For 
such insert sizes, it is believed that structure noise becomes predominant compared to 
noise sources induced by the image acquisition processes (quantum noise, scintillator 
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point spread function, aliasing noise or detector noise) [4, 9, 11]. This can be 
explained by inspection of power spectra frequency distributions of real mammo-
grams, up to frequencies of about 1cycle/mm [7]. The contribution of the breast 
structure relative to the other noise sources is more important in the low frequency 
range. Therefore, as the insert size increases, the mammographic structures amplitude 
becomes the limiting factor for detection. Taking into account structured backgrounds 
improves the relevance of the CDMAM phantom scoring, especially for the larger 
inserts sizes. However, the CDMAM phantom scoring in flat backgrounds remains 
meaningful for the smaller insert sizes, since we found a good correlation between 
results obtained in flat and in textured backgrounds. Thus, for comparison of system 
performance using the CDMAM phantom, we would recommend to restrict the 
scoring results analysis to the smaller inserts sizes of the phantom.  

Furthermore, contrast-detail curves of Figure 4 show negative detection slopes in 
both flat and textured backgrounds. Burgess showed [11] that in mammographic and 
also power-law filtered noise backgrounds, for lesion sizes larger than about 1mm, the 
detection slope is positive, in opposite as intuitively expected. However, this result 
depends on the shape of the considered signal. Whereas positives slopes were found 
for shapes corresponding to projected spheres, slopes were negatives for flat-top disc 
shapes [12]. Thus, the unrealistic disc-like form of the phantom inserts prevents, for 
the larger insert sizes, from extrapolating the scoring results to clinical performance of 
large size lesion detection. Furthermore, during the scoring process we noticed that 
for inserts larger than about 1mm, human readers rely more on the insert edges than 
on the insert contrast. The simulation of more clinically relevant inserts with smoother 
edges and with a material composition closer to real microcalcifications would be an 
additional interesting improvement. The generation of artificial mammographic 
abnormalities has already been studied in the literature [13, 14]. In future work, it 
would be interesting to use such inserts as the input to generate simulated CDMAM 
phantom-like images with textured backgrounds and realistic inserts, in order to 
provide a contrast-detail test closer to the clinical task. 

Van Metter [15] and Young [16] refined the interpretation method for CDMAM 
phantom scoring results. Indeed, the test suffers from several sources of variability, 
one of the most significant being the inter- and intra-observer variability. In our study, 
inter-observer variability and scoring reproducibility must be regarded carefully. The 
CDMAM phantom scoring procedure [5] applies correction rules, which tend to 
flatten the variations induced by the presence of texture. Even if the variability seems 
to be of the same order of magnitude for flat and textured backgrounds, more false 
positive and false negative detections were found for all the observers in textured 
backgrounds. 

Finally, the opportunity to reduce dose while keeping an acceptable image quality 
has been described by some authors [4, 17, , 18, 19]. For inserts with contrast in the 
clinically relevant range 3-30%, the CDMAM provided overlapped curves for dose 
levels reduced within 40-50% from the reference [18]. These insert contrasts are 
related to the smaller insert sizes of the CDMAM phantom for the dose levels 
considered in the study. It has been shown that [19] decreasing dose significantly 
degrades the detection of microcalcifications, whereas it has minimal effect on the 
detection of masses. For optimization purposes, if the targeted clinical task consists of 
detecting the smallest microcalcifications, better performance would be obtained with 
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higher dose. Moreover, when considering an actual microcalcification, its contrast is 
often linked to its size. Thus, for a given target size of the smallest microcalcification 
to be detected, larger microcalcifications will be more easily detectable since they 
usually lead to a higher contrast in the image. If the optimization task is restricted to 
mass detection, the dose level could be decreased preserving detection performance 
since breast structure impairs detection more than any other noise source.  

5   Conclusion 

CDMAM phantom scoring is very widely used to estimate the detectability 
performance of mammography x-ray equipment. However, the detection task induced 
by this contrast-detail phantom is not representative of the clinical task done by 
radiologists, mainly due to its flat background. We evaluated in this study the impact 
of structured background on the detectability performance assessed by the CDMAM 
phantom scoring. 

We developed a simulation tool generating quantitative images of CDMAM 
phantom, depending on the exposure spectrum, and including a model of the 
projected breast structure based on the average power spectrum of real mammograms. 
We generated simulated CDMAM phantom images with flat and textured 
backgrounds for the standard exposure technique of the CDMAM phantom (Mo/Mo, 
28kVp) and for three mAs intensity levels (50, 100 and 160mAs). Images have then 
been scored by four readers. Scoring results show that detection performance in 
textured backgrounds is degraded compared to flat backgrounds. This degradation 
increases with increasing insert size. We found that the IQF values obtained in 
textured and flat backgrounds, function of the mAs intensity level, are well correlated 
for the smaller insert sizes. This confirms the relevance of the scoring of the CDMAM 
phantom in flat background for the smaller insert sizes. However, the correlation was 
weak for the larger insert sizes, since breast structure becomes the limiting detection 
factor compared to other noise sources for such insert sizes. As a result, for 
comparison of system performance, the CDMAM phantom scoring analysis should be 
restricted to the smaller insert sizes.  

Furthermore, the simulation tool developed in this study offers the potential to 
validate new design options with a more clinically relevant detection task than 
standard CDMAM phantom images.  
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Abstract. A new breast imaging approach is proposed and implemented that 
combines Magnetic Resonance Mammography and Electrical Impedance Scan-
ning. In this paper, we report the results of a pilot study that demonstrated the 
feasibility of this new breast imaging approach. We also discuss our initial ex-
perience with the MR imaging parameters and sequences that are critical in ob-
serving the desired signal. 

1   Introduction 

Magnetic Resonance Mammography (MRM) has been used since late 1980’s in com-
bination with conventional methods to improve breast cancer diagnosis [1].  MRM is 
currently becoming the standard of care for preoperative loco-regional staging of 
breast cancer, screening of high-risk patients, and problem solving [2],[3].  MRM is 
done with either specially designed, dedicated units that provide high spatial resolu-
tion due to specific imaging sequences or whole body scanners equipped with special 
coils that provide high temporal resolution based on dynamic enhancement properties.  
Either approach requires the injection of paramagnetic contrast agents and the use of 
fat suppression techniques and specific sequences for optimum imaging [4],[5].  De-
spite the advantages, MRM’s dissemination in the clinic and particularly the broader 
community has been slow due to cost but also conflicting technical requirements. 

Electrical Impedance Scanning (EIS) of the breast is a clinically established 
method for the characterization of breast pathology. The T-Scan 2000 (TransScan 
Medical, Inc., Ramsey, NJ) was the first system to receive FDA approval in 1999 and 
was recommended for use as an adjunct to mammography in patients who have 
equivocal mammographic finding with ACR BIRADS™ categories 3 or 4 [6].  The 
studies on this system, and older work as well, have clearly demonstrated that com-
plex permittivity is a clinically valuable marker for breast cancer detection and diag-
nosis because cancer tissues have conductivity and dielectric properties remarkably 
different than normal breast tissues [7],[8]. 
    We propose the simultaneous application of magnetic and electric fields that could 
lead to a new breast imaging methodology, the Magnetic Resonance Electrical  
Impedance Mammography (MREIM). The electric field generates an additional  
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magnetic field that is spatially dependent on the local conductivity properties of the 
sample. Hence, the resulting image provides information on both the magnetic reso-
nance and complex permittivity properties of the breast. In theory, MREIM does not 
require and is not affected by fat suppression techniques or by the injection of para-
magnetic contrast agents and can be performed simultaneously with either high spatial 
resolution or high temporal resolution MRM examinations at any clinically useful 
field strength.  MREIM also differs from an earlier attempt to combine MRI and EIS, 
namely the Magnetic Resonance Electrical Impedance Tomography (MREIT), in that 
it is not based on direct electrical injection of current into the breast, it does not re-
quire surface electrodes, or tomographic imaging [9].  It still permits, however, real-
time MR guided localization or core biopsy of suspicious findings [10]. 

2   Materials and Methods 

In our pilot study, we established the theoretical basis of the new approach, performed 
a simulation study, and conducted tests with custom-made phantoms and various imag-
ing parameters to demonstrate the feasibility of the new imaging approach. Our ex-
perimental data supported the simulation and theoretical work and have shown great 
promise for the development of a new technology.  A brief description of the materials 
and methods used to demonstrate the feasibility of the MREIM is given below. 

2.1   Simulation  

A proton density spin echo imaging sequence was simulated to study the relationships 
between the driving frequency of the applied electric field, which will be referred to 
as the phase modulation frequency (PMF), the induced current distribution, and the 
associated effects on the image. The current simulation work to date represents ideali-
zations because noise was not considered. The solutions for the magnetic field caused 
by the induced current were responsible for the image-perturbations. 

A two-dimensional image of a disk was considered for the simulation, first unper-
turbed (no external current), and then perturbed (with current).  The disk was not 
homogenous in its conductivity properties. The central region of the disk had 40-times 
the conductivity of the outer region, a relationship similar to the properties of breast 
cancer and normal breast tissue respectively. 

2.2   Phantom Design 

Conduction phantoms were developed using materials with magnetic resonance and 
conductivity properties equivalent to normal breast tissues and tumors.  Specifically, 
materials simulating healthy breast fatty tissue should have T1 and T2 relaxation 
times around 370 ms and 53 ms respectively and electrical conductivity in the range 
of 0.02-0.07 S/m at a frequency of 1 kHz.  Materials simulating breast tumors or 
glandular tissue should have T1 and T2 relaxation times around 1135 ms and 58 ms 
respectively with breast tumors having electrical conductivity 20-40 times higher than 
that of healthy breast tissue. In addition, phantoms were required to be chemically and 
physically stable over long periods of time. 

Initially, fragrance free Neutrogena soap was selected as the material equivalent to 
healthy breast tissue. Its electrical conductivity was measured to be 0.03 S/m at  
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1 kHz.  Two types of phantoms were constructed with the soap: (a) The first one con-
tained a spherical cavity in the center of 1 cm in diameter filled with a soap/salt solu-
tion the conductivity of which was 1.2 S/m. (b) The spherical cavity in the second one 
was filled with a piece of fat-free hot dog with a conductivity of 2.17 S/m.  A photo-
graph of this phantom is shown in Fig. 1. 

 

Fig. 1. Sliced MREIM phantom constructed of fragrance free Neutrogena soap showing the 
spherical piece of fat-free hotdog, 1 cm in diameter, simulating cancer 

A third phantom was constructed using agar gel as the material equivalent to healthy 
breast tissue and a piece of fat-free hotdog as the cancer surrogate.  Paramagnetic con-
trast agent, ProHance (gadoteridol injection) was added to the gel to adjust the T1 
relaxation time. The T1 and T2 of the phantom were adjusted by varying the concen-
tration of the agar gel and ProHance. The final gel solution consisted of 14g/100mL 
agar gel with 2.5 mM of ProHance. This was place in an electrically conductive carbon 
polyethylene bag that represented a skin surrogate. The conductivity of this phantom 
was measured to be 0.09 S/m. A picture of this phantom is shown in Fig. 2. 

 

Fig. 2.  MREIM phantom made of agar gel and ProHance solution in a polyethelene bag 
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All three phantoms were imaged under the same imaging conditions and parame-
ters using the same setup. A series of three images was recorded in each run: one with 
the current off, one with the current on, and one with the current off again. 

2.3   Experimental Setup and Imaging Parameters 

The experimental setup included the following: 

1. A Siemens Magnetom Symphony Maestro Class 1.5 Tesla system (Siemens 
Medical Solutions USA, Inc., Malvern, PA) was used for all experiments in 
the pilot study. The system was equipped with a breast coil and a breast biopsy 
system both from Invivo Corp. (Orlando, FL). 

2. The stabilization/compression paddles in an MR breast coil (InVivo – Sym-
phony Breast Biopsy Array) was modified to include Faraday-shield elec-
trodes required to produce a current flux in the breast essentially orthogonal 
to the main magnetic H0 field.  The Faraday shield was constructed of a pair 
of copper sheets that were made out of rectangular bars. Two different sizes 
of copper foil sheets were tested: (a) One with dimensions of 5 cm × 7.5 cm 
consisting of bars that were 0.32 cm in width with a .016 cm spacing between 
them.  (b) One with dimensions of 14 cm × 15 cm consisting of bars that were 
0.2 cm in width with a 0.1 cm spacing between them (Electron Machine 
Corp., Umatilla, FL). 

3. A time varying voltage generated with a frequency generator and power sup-
ply, connectors, multimeter, and a battery-operated oscilloscope were used 
for the application of the electric field. The total current density flowing 
through the phantom(s) reached 10 A/m2 at frequencies in the range of 200 – 
1000 Hz. 

4. Gradient rephrased (GR), spin echo (SE), and echo planar (EP) sequences 
were tested in out pilot study for image acquisition. The sequence parameters 
were selected to satisfy the following requirements: (a) The temporal band-
width per pixel (BW/Hz) had to be less than the phase modulation frequency 
to avoid volume averaging. (b) The “read” time had to be greater than the 
maximum digital sampling interval, which is half of the period of the total 
BW, to avoid Nyquist ghosting.  (c) The “read” time had to be much greater 
than the period of the phase modulating frequency to reduce noise power and 
avoid volume averaging by reducing spectral broadening from temporal trun-
cation of the phase modulating field. (d) The echo time (TE) was limited by 
T2 attenuation where “read” time was twice the TE. (e) The repetition time 
(TR) had to be greater than 1500 ms to permit T1 relaxation. (f) The weaker 
gradient should be orthogonal to both the main magnetic field H0 and the cur-
rent flux to maximize shift. (g) The acquisition plane had to be parasagittal to 
include the plane of spin displacement.  The SE sequence with minimum  TE 
set by (d) above approaching spin density contrast was selected as a basic se-
quence for our experiments. 
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Fig. 3. Photograph of the stabilization/compression paddles of the MR breast coil. The left 
paddle of the coil was modified to include a Faraday shield made of a pair of copper sheets 
consisting of rectangular parallel bars. The copper sheets shown here were 14x15 cm. The 
phantoms were positioned between the two plates for imaging. 

3   Results 

Our pilot study focused on validating the theoretical frame of MREIM through simu-
lation and phantom studies. The results from these tests are presented below.  

3.1   Simulation 

For the simulation study, a spin density image that has two concentric disks of differ-
ent spin densities was considered.  An example is shown in Fig. 4. Fig 4(a) shows a 
spin density image acquired with a spin density spin echo (SDSE) imaging sequence  
 

     
 

Fig. 4.  Simulation results for an SDSE imaging process: (a) Image of a disk with no perturba-
tion (current off) at a frequency resolution of 100 Hz/pixel; (b) Image of the disk with perturba-
tion (current on – current density of 1 A/m2); (c) Difference image, i.e., difference between 
images (a) and (b) when driving frequency is 200 Hz; (d) Difference image when driving fre-
quency is 1000 Hz 

(a) (b) (c) (d) 
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with no perturbation, i.e., no current, at frequency resolution (df) of 100 Hz/pixel.  
The difference in spin densities for outer and inner disk is considered to be very 
small; in this case it is one. This is the reason we don’t see the disks well differenti-
ated in the figures where there is no perturbation (current off).  Fig 4(b) shows a simu-
lation image when perturbation is applied, i.e., when the current is on; in this case the 
current density is 1 A/m2.  Fig 4(c) is the difference image between the current 
on/current off images when the driving frequency ( ) is 200 Hz. Fig. 4(d) is the dif-
ference image when  is 1000 Hz.  The drifting effect is greater when  is high with 
respect to the frequency resolution, e.g., Fig. 4(d).  When  is too large the effect is 
lost and there is no signal. 

3.2   Phantom Measurements 

Our phantom tests showed that imaging with the soap with the soap/salt solution was 
unstable. This experiment yielded good results initially that were not reproducible and 
were extremely variable over time. Imaging with the agar phantom proved to be more 
stable and consistent. Representative SDSE images of the agar phantom are shown in 
Fig. 5 below. The desired signal under perturbation is observed in the difference im-
ages of Fig. 5 and it is in agreement with simulation and theory. One of the slices is 
shown here; similar results were obtained for other slices in the series. 

 

Fig. 5.  Phantom image acquired with an SDSE sequence.  Three images were acquired in the 
series: (a) Image of the phantom with current off, (b) Image of the phantom with current on, (c) 
Image of the phantom with current off.  The second row shows the difference images, i.e., 
difference between images (a) and (b), (c) and (b), and (c) and (a).  The first two images, i.e., 
(a)-(b) and (c)-(b) show the effect of the perturbation (current on) around the cancer surrogate.  
The aberration around the cancer surrogate is clearly seen in both images.  This effect is not 
observed when the two “current off” images are subtracted. 
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4   Discussion and Conclusions 

Our pilot study has confirmed the theoretical expectations for MREIM with promising 
and exciting results.  The phantom data support our hypothesis that imaging of both 
the magnetic resonance and complex permittivity properties of the breast in the same 
clinical imaging configuration is possible.  This has the potential of revolutionizing 
current magnetic resonance mammography practice because it does not require ioniz-
ing radiation, gadolinium contrast injection, or fat signal suppression. 

This work has also identified major areas that need to be further explored and un-
derstood. Specifically, the type and quality of the phantom, the imaging sequence, and 
the experimental parameters play a defining role in the imaging process and, hence, 
the appearance or not of the signal of interest.  The optimization of these elements is 
critical in further testing, validation, and clinical implementation of the proposed 
methodology. 
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Abstract. The purpose of this work was to investigate whether extra flat field 
corrections should be applied prior to the calculations of quality control 
quantities and whether there are necessary precautions regarding flat fielding in 
digital mammography. Effects from using one standard flat field correction for 
all imaging situations or absence of correction procedures were examined using 
homogenous PMMA slabs. Differences in field profiles for various exposure 
geometries and breast thicknesses were quantified. For three systems the 
maximal deviation of averaged pixel values (along a profile of ROIs parallel to 
the chest wall) varied from 1.3 % to 6.8 % over the whole image and from 
0.6 % to 2.6 % if the analysis is limited to the central part. Extra flat field 
corrections are not necessary for most applications. If required, the corrections 
should be performed from images acquired with the same manual exposure and 
not after a time gap. 

1   Introduction 

In digital mammography, the degree of inhomogeneity in an image or changes in 
(average) pixel values over time depend on the characteristics of the x-ray tube, beam 
geometry, detector and the built-in correction algorithms [1, 2]. They are usually 
evaluated from images acquired from homogeneous slabs of material, the “flat field 
images”. To reduce inhomogeneity in practice, direct radiography systems are being 
recalibrated with system-specific procedures on a routine basis. 

While the remaining inhomogeneities after the calibration and any other time 
dependent variation may look acceptable in patient images, they may not be 
negligible for particular quality control studies (like calculation of contrast to noise 
ratio) or quantitative measurements that rely on pixel values or signal to noise ratios 
in series of successive images. For accurate measurements of these quantities, it has to 
be questioned whether these images should be made more homogenous or 
reproducible with additional correction procedures (such as, e.g “flat field 
corrections”). As we did not find (in the literature) any clear guidance on the necessity 
and requirements regarding such corrections, we performed a specific analysis for 
three digital mammography systems. 
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The main questions addressed in this study were: How large are variations in mean 
pixel values for images acquired under conditions close to the vendor-specific calibration 
procedure and for other combinations of test object thicknesses and beam qualities? How 
reproducible are the profiles of mean pixel values in repeated series of images? 

2   Materials and Methods 

The study was performed on 3 digital mammography systems: 

1. Siemens Novation DR (Erlangen, Germany). The detector is based on amorphous 
selenium technology and has a pixel size of 70 μm (image size 3328 × 4096 
pixels). The system can be used with a Molybdenum (Mo) anode and a Mo filter 
(thickness 30 μm) or a Rhodium (Rh) filter (thickness 25 μm), or with a tungsten 
(W) anode with a Rh filter (thickness 50 μm). 

2. Agfa DM1000 (Mortsel, Belgium). The detector is similar to the one of the 
Siemens Novation, but an x-ray tube of Lorad is used. The x-ray system has a Mo 
anode which can be used with a Mo filter (thickness 30 μm) or a Rh filter 
(thickness 25 μm). 

3. Agfa CR MM3.0 phosphor plate with Agfa CR 85-X digitizer (Mortsel, Belgium), 
in combination with a Lorad Platinum IV mammographic unit. The detector has a 
pixel size of 50 μm (image size 3328 × 4096 pixels). The x-ray system is similar to 
the system used with the DM1000. 

Flat field images were acquired from sets of homogenous PMMA (polymer- 
thylmethacrylate) slabs with a thickness of 1 cm each. Different exposure settings 
were used as explained in the paragraphs below. Raw images were exported to an off-
line computer for analysis with ImageJ [3]. The same analysis was performed for all 
the images: the mean pixel values were calculated in square ROIs (2 cm × 2 cm), with 
a center to center distance of 100 pixels. We illustrate the quantitative analyses along 
two profiles (a profile parallel to the chest wall and 6 cm from the chest wall and a 
second profile perpendicular to the chest wall and centered in the image). The 
maximum deviations of these mean pixel values were calculated for all ROIs along a 
profile in the whole image and in the central part (50 % of the complete profile). 
Relative pixel values were calculated by dividing the mean pixel values by the mean 
pixel value from the ROI in the middle of the profile. For some comparisons, we 
normalized the measurement distances such that corresponding physical points 
coincide in the graph. 

A preliminary experiment was performed on the Siemens Novation system: flat 
field images obtained under the calibration conditions (4 cm of PMMA is to be 
attached to the tube)  [4] and the clinically used geometry, 4 cm of PMMA on top of 
the detector (with and without compression paddle in the beam), were compared. 

2.1   Differences in Flat Field Images Acquired with Different PMMA 
Thicknesses and Beam Qualities 

The effect of various PMMA thicknesses were examined from images of 2 cm, 4 cm, 
and 7 cm of PMMA using the clinically used anode/filter combinations and a tube 
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voltage of 28 kV. In addition, with the Siemens Novation system the effect of 
radiation quality was tested using very low and high tube voltages (23 kV and 35 kV) 
and all three anode/filter combinations. The automatic exposure controller (AEC) was 
used to obtain clinically relevant tube current time products.  

2.2   Reproducibility of Flat Fields from Repeated Images 

Reproducibility was studied using manual settings. Images were performed with 4 cm 
of PMMA and the clinically used anode/filter combination and tube voltage. A tube 
loading close to typical values obtained in AEC mode was chosen. For the CR 
system, the same CR plate was always used. 

3   Results 

Figure 1 shows pixel value profiles parallel to the chest wall for the condition used during 
the standard calibration procedure and a clinical setting with and without compression 
paddle (CP). The maximal variation in mean pixel value in the flat field images acquired 
similarly as during the calibration is 1 %. It increases up to 3.5 % for the clinical setting 
(when PMMA is used on top of the detector, with compression paddle). 
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Fig. 1. Profiles measured parallel to the chest wall from the flat field images (W/Rh anode/ 
filter, 28 kV, 71 mAs) in calibration and clinical configurations (with and without compression 
paddle (CP)) 

3.1   Differences in Flat Field Images Acquired with Different PMMA 
Thicknesses and Beam Qualities 

In Figure 2, mean pixel value profiles for 2 cm and 7 cm of PMMA thickness are shown 
for the 3 systems. In Table 1, maximal variations between values in the mean pixel 
value profiles are calculated for three different systems and PMMA thicknesses (2 cm, 4 
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cm and 7 cm). Variations are calculated for the complete profile and for the central part 
of it (50 %), both for profiles parallel to the chest wall and perpendicular to it.  

For the Siemens Novation, system deviations in relative pixel values for different 
beam qualities were in average 1 %. 
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Fig. 2. Profiles measured parallel to the chest wall in flat field images for different PMMA 
thicknesses (2 cm and 7 cm) and three different systems. Tube voltage of 28 kV and clinical 
anode/filter materials were used: Siemens Novation: W/Rh, Agfa DM1000: Mo/Mo and Agfa 
CR MM3.0 (with Digitizer 85-X): Mo/Mo. 

3.2   Reproducibility of Flat Fields from Repeated Images 

Figure 3 shows mean pixel value profiles (parallel to the chest wall) from successive 
measurements using manual exposures. The first image of the series was acquired after a 
time of no exposures (at least half an hour after the clinical use of the system) and 
subsequent images were acquired right after this. For the Novation system all 5 
subsequent images were acquired as quickly as possible with the system. For the Agfa 
CR and the DM 1000 systems the first 3 images were acquired with the minimal possible 
time gap and the successive images were taken later during the experiments. In these 
repeated measurements the very first measurement deviates from the next measurements. 

For the Novation system, the average of the maximal deviations for ROIs on 
corresponding positions in 6 different exposures is 2.7 %. Taking into account only 
images 2 – 6, this deviation is only 0.7 %. This effect was seen in a repeated 
experiment on day 2 as well, and the numbers were 3.2 % and 1.0 %, respectively. 
The analysis of similar series of images acquired during all the tests on the same 
system showed occasionally sudden and more deviating profiles (this had been the 
ultimate trigger for this study). 

Variations for values in repeated images for the DM 1000 and CR systems are 
bigger than for the Novation system. The average of maximal deviations for the same 
ROIs in 7 different exposures is 4.7 % for the DM 1000 and 5.8 % for the CR. 
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a) Siemens Novation 

 
b) Agfa DM1000  

 
c) Agfa CR 

Fig. 3. a-c Profiles measured parallel to the chest wall from repeated flat field images of 4 cm 
PMMA. (a) Siemens Novation system: W/Rh anode/filter, 27 kV and 71 mAs (b) Agfa 
DM1000: Mo/Mo anode/filter, 28 kV and 65 mAs, (c) Agfa CR MM3.0 with Digitizer 85-X:  
Mo/Mo anode/filter, 25 kV and 64 mAs. 
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Table 1. Maximal variations in mean pixel value profiles measured parallel to the chest wall 
and perpendicular to it for three different systems. Values are calculated for the complete 
profile and for the central part (50 %) of it. A tube voltage of 28 kV and clinical anode/filter 
materials were used: for the Siemens Novation; W/Rh, for Agfa DM 1000; Mo/Mo and for 
Agfa CR MM3.0 (with Digitizer CR 85-X); Mo/Mo. 

  2 cm 4 cm 7 cm 
Perpendicular to 

the chest wall  
complete 
profile 

(%) 

central 
part 
(%) 

complete 
profile 

(%) 

Central 
part 
(%) 

complete 
profile 

(%) 

central 
part 
(%) 

Siemens Novation 8,0 0,5 8,1 0,6 8,7 0,7 

Agfa DM 1000 2,6 2,0 7,3 3,7 3,9 0,4 

Agfa CR 20,6 10,5 29,5 18,7 14,5 8,1 

  2 cm 4 cm 7 cm 
Parallel to the 

chest wall  
complete 
profile 

(%) 

central 
part 
(%) 

complete 
profile 

(%) 

central 
part 
(%) 

complete 
profile 

(%) 

central 
part 
(%) 

Siemens Novation 5,7 2,6 3,4 1,4 4,0 1,9 

Agfa DM 1000 1,6 0,6 1,3 1,0 2,1 1,2 

Agfa CR 5,0 1,5 6,8 1,7 6,3 1,8 

4   Discussion 

There may be different causes for (subtle) deviations in pixel values in digital 
mammography. The heel effect is certainly a major factor: the trajectory of the x-rays 
in the different places of the PMMA slabs is very different, especially for the lowest 
tube voltage settings. Calibration settings that are based on a single PMMA thickness 
have therefore necessarily shortcomings. For most clinical applications, this is not 
problematic. On the contrary: this effect makes a breast image more homogeneous 
(relatively shorter trajectories are coinciding with the thickest parts of the breast). 

Our results indicated that deviations in flat field images are larger in profiles 
perpendicular to the chest wall than profiles parallel to it, as expected. There are no 
systematic differences between results for different PMMA thickness. The practical 
result from measurements with different PMMA thicknesses and radiation qualities is 
that, for direct radiography systems where some flat field correction is applied, there is 
no need for further flat field corrections if a deviation in pixel value of 7 % is acceptable 
over the image profile (parallel to the chest wall) or of 3 % over the central part (50 %). 
Of course, if a smaller part is under inspection, the variations are even smaller. 

For the Agfa CR MM3.0 system no pixel specific calibration or flat field correction 
is applied. The effects of the heel effect are therefore clearly visible in the flat field 
images and the deviations in mean pixel value profiles were largest for this system. 
Over the complete profiles of the image, deviations in mean pixel value can rise up to 
30 %. Also some artefacts were seen in the images. For the majority of quantitative 
assessments of such a detector, flat field corrections should be performed. 

A surprising result was the deviating line profile for the first measurement of a 
series of flat images as compared to successive images for all detectors (a-Se detectors 
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and CR plates). It remains to be investigated whether this effect is due to the digital 
detectors or the x-ray tube. In practice, a similar effect can be expected if there is just a 
different time window between exposures. This fact has to be considered during 
acceptance tests of the equipment where measurements of different images may have 
to be compared; other applications that combine pixel values from successive images 
(such as contrast enhanced mammography) may be influenced as well.  

Deviations in repeated images means in practice that for contrast-to-noise 
calculations of these detectors, pixel values for different inserts in contrast-to-noise 
measurements should be taken from the same image (and preferably from the central 
area of the image). An extra flat field correction could be performed with an appropriate 
reference image (manual exposures fully incorporated in the measurement series, i.e. 
without any time gaps). In the majority of cases, the improvements will be very limited. 

One limitation of this work is that we have no reproducibility data from many time 
points. It is possible that present observations are not fully representative for the system. 
In addition, we did not study the homogeneity of the standard deviations (noise) in full 
detail. Preliminary results showed that these effects are even smaller than the effects on 
pixel value. Another limitation of this study is that it should be performed on more 
systems of the same vendor and on systems from more other vendors.  

We did not have the attempt to judge the performance of the routine flat field 
calibration for the clinical images. 

5   Conclusions 

For most applications, it is not necessary to perform an extra flat field correction. If 
requirements are very demanding extra correction can be considered. For the a-Se 
detectors, the flat field image should be acquired during the same imaging session, 
using the same beam quality and PMMA thickness. For the CR image, flat filed 
corrections are more indicated. For all systems, the very first image after a long 
period of down time of the system should not be used.   
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Abstract. Two observer experiments were performed to evaluate the perform-
ance of wavelet enhancement and compression methodologies for digitized 
mammography. One experiment was based on the localization response operat-
ing characteristic (LROC) model. The other estimated detection and localization 
accuracy rates. The results of both studies showed that the two algorithms con-
sistently improved radiologists’ performance although not always in a statisti-
cally significant way. An important outcome of this work was that lossy wavelet 
compression was as successful in improving the quality of digitized mammo-
grams as the wavelet enhancement technique. The compression algorithm not 
only did not degrade the readers’ performance but it improved it consistently 
while achieving compression rates in the range of 14 to 2051:1. The proposed 
wavelet algorithms yielded superior results for digitized mammography relative 
to conventional processing methodologies. Wavelets are valuable and diverse 
tools that could make digitized screen/film mammography equivalent to its di-
rect digital counterpart leading to a filmless mammography clinic with full in-
ter- and intra-system integration and real-time telemammography. 

1   Introduction 

Wavelets have found several applications in medical imaging including mammogra-
phy. Applications range from image compression to image enhancement, feature 
extraction and segmentation to image reconstruction.[1] Depending on the selected 
type of wavelet, the outcome even within the same application may be dramatically 
different. In addition, a single wavelet processing may yield multiple effects, e.g., 
enhancement and compression, enhancement and segmentation. 

We have experimented with several wavelet methods for a variety of processes of 
digitized and digital mammograms.[2],[3],[4],[5],[6],[7]. In this paper, we will report the 
results from the wavelet-based enhancement [8] and compression [9] of the same set of 
digitized mammograms that were evaluated by the same radiologists in similar experi-
ments. The results, significant on their own, are analyzed here simultaneously to obtain 
a better understanding of the effect of the wavelet analysis on the images as well as the 
observer. 
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The work presented here is based on high-resolution digitized mammograms as 
opposed to direct digital mammograms.  The reason for this lies in our past efforts 
and deep interest to find ways to integrate screen/film (SFM) with full field digital 
mammography (FFDM), a process that is currently facing serious impediments due to 
the advent of FFDM and the shift of interest, not unjustifiably, to the latter.  However, 
film mammography is the current standard of practice worldwide with a major share 
in the international system market.  Furthermore, mammography can no longer stay 
outside the filmless radiology department.  Hence, methodologies that provide solu-
tions to a filmless SFM are urgently needed. 

2   Materials and Methods 

2.1   Wavelet Enhancement Method 

The purpose of enhancing digitized mammograms was to obtain high quality images 
that could be used for primary diagnosis from computer monitors (softcopy display 
and interpretation).  For this application, we used multiresolution statistical analysis 
[4],[10] based on the orthogonal wavelet expansion of the original images and Fourier 
spectral characterization.[5]  The 12-coefficient wavelet basis was used that is nearly 
symmetric with the mother wavelet having a large, almost symmetric, center lobe that 
resembles to some degree to the profile of the average calcification.  More details of 
the method are given in Ref. [8]. 

2.2   Wavelet Compression Method 

The images in this application were decomposed using a biorthogonal wavelet de-
composition. Specifically, we used the biorthogonal, fifth-order accurate wavelets 
with piecewise constant duals of Cohen, Daubechies, and Feauveau, found on page 
272 of Ref. [11]. The fifth-order wavelet was used for compression because it was 
found to give measurably smaller RMS errors at the same compression rates that the 
lower order wavelets. More details of the method are given in Ref. [9]. 

2.3   Evaluation Experiments 

Two evaluation studies were performed for the two methodologies.  First, a localiza-
tion response operating characteristic (LROC) experiment was conducted.  The 
LROC evaluation involved both signal likelihood and signal location tasks that, theo-
retically, offer a more complete analysis of observer performance.  The LROC test 
was followed by a localization experiment that resembled the multiple alternative 
forced choice (MAFC) setup.[12]  The results of both LROC evaluations are reported 
in detail elsewhere [8],[9] and will be briefly summarized here.  The second evalua-
tion test is the focus of this work. 

The same database and readers were used for all tests.  The set consisted of 500 
single view mammograms, 250 of which were negative, 131 benign, and 119 cancer 
cases. A total of 375 findings were present in the benign and cancer cases, 182 of 
which were masses (98 benign and 84 cancer) and 193 calcification clusters (100 
benign and 93 cancer). Negative cases were selected from negative mammograms 
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with at least two years of negative follow-up.  Negative views matched the abnormal 
ones (benign or malignant) in terms of breast parenchymal density and size. Films 
were digitized at 30 μm and 16 bits per pixel with an ImageClear R3000 scanner 
(DBA Inc., Melbourne, FL). 

All digital images were reviewed on one or two high-resolution DR 110 monitors 
(Data-Ray Corp., Westminster, CO) with Md5/SBX boards (Dome, Waltham, MA) in 
an Ultra Sparc 2 workstation (Sun Microsystems, Santa Clara, CA). Each DR110 
monitor provided a 2048×2560 pixel display with an 8-bit digital to analog (DAC) 
converter. 

In the LROC studies, the 500 single-view mammograms were reviewed one at a 
time in three different formats (original, enhanced, compressed) randomly mixed by 
three expert mammographers.  The observers reported the x,y coordinates of a de-
tected lesion and rated the suspiciousness for each detected lesion and the overall 
view using a custom-made user interface. 

In the localization experiment, the 250 abnormal images were matched with the 
250 negative images in terms of size and breast density and presented in left/right 
pairs in three formats (original, enhanced, compressed) randomly mixed to the ob-
servers, who compared the two views, selected the suspicious one, and localized and 
rated abnormal finding(s) similar to the LROC test.  As mentioned earlier, this setup 
is similar to the MAFC but it is not a true MAFC experiment because it involves 
many targets in different backgrounds.  Nevertheless, our goal for this test was to 
determine the ability of the readers to identify the abnormal view from a pair, com-
pare the result to LROC, and perform another relative comparison of the wavelet 
methodologies. 

Our studies were approved by the institutional review board as a research study us-
ing existing medical records and exempted from individual patient consent require-
ments. The patient identifiers were obliterated from all images. 

2.4   Data Analysis 

First, the x,y coordinates selected by the readers from both tests were compared to a 
ground truth file to determine the number of correct and incorrect localizations. A 
finding was considered as a hit or correct localization, if its x,y coordinates were 
within ±200 pixels of those listed in the truth file. If the difference was greater than 
200 pixels then the finding was considered as an incorrect localization or a miss. 

The LROC program, version of 1998, was applied to the LROC data.[13] ROC and 
LROC fitted curves were generated in this case including estimates of the areas under 
these curves and their standard errors. Two performance indices were primarily con-
sidered and compared: the detection accuracy, which corresponds to the area under 
the ROC curve (AROC), and the localization accuracy (PCL), which corresponds to the 
ordinate of the LROC curves.[8], [9] 

For the localization experiment, performance was determined by analyzing the se-
lections of the observers in terms of both lesions and views. Rates for “lesion hits”, 
“lesion misses”, “view hits”, and “view misses” were estimated based on the correct 
and incorrect view selections and lesion localizations as follows: (a) the “lesion hit” 
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rate, defined as the fraction of correctly identified abnormal views with at least one 
lesion correctly localized, (b) the “lesion miss” rate, defined as the fraction of cor-
rectly identified abnormal views but with none of the lesions correctly localized, (c) 
the “view miss” rate, defined as the fraction of negative images that were incorrectly 
selected as the abnormal ones.  Note that the “view hit” rate, i.e., the fraction of  
abnormal images (benign or malignant) that were correctly selected as abnormal in-
dependent of whether the true lesion(s) was correctly localized can be determined as 
1-“view miss” rate.  In addition to the overall accuracy in lesion localization, the hits 
and misses of the observers were analyzed in terms of pathology (benign/malignant) 
and type of lesion (calcification cluster/mass). 

3   Results 

3.1   LROC Performance Indices 

The results of the two that for these plots and calculations, we combined the benign 
and cancer cases LROC studies have been already analyzed and reported independ-
ently elsewhere.[8], [9]  Figure 1 shows the ROC and LROC curves for all three read-
ings modes, i.e, original, enhanced, and compressed mammograms for one of the 
three readers.  Similar results were obtained from the other readers. 

Tables 1-3 list the performance indices for all observers and for the three reading 
modes. Performance indices include the area under the ROC curve (Az) and its stan-
dard error (SE), the area under the LROC curve, the localization accuracy (P(CL)) 
and its standard error. Note in one group, labeled “abnormal”, and compared them to 
the negatives cases, “normal” group. This is different from what was previously pub-
lished and focuses more on the detection than the diagnostic aspect of the studies.   

 

Fig. 1. Graphs for Reader 3 show fitted (a) ROC and (b) LROC curves obtained from the inter-
pretation of original, enhanced, and compressed mammograms from patients with no findings 
(negative) versus mammograms from patients with benign or malignant findings. The perform-
ance indices of this reader are listed in Table 3. 
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Table 1. Performance indices obtained from the LROC analysis of the original data 

Reader ROC LROC 
 Az SE Area P(CL) SE (P(CL)) 

1 0.8013 0.0137 0.6027 0.7357 0.0224 
2 0.7749 0.0137 0.5497 0.6964 0.0232 
3 0.7718 0.0142 0.5435 0.6914 0.0249 

Table 2. Performance indices obtained from the LROC analysis of the enhanced data. An 
average of 11% improvement was observed in localization accuracy with the enhanced images. 

Reader ROC LROC 
 Az SE Area P(CL) SE (P(CL)) 

1 0.8490 0.0128 0.6980 0.8064 0.0196 
2 0.8081 0.0133 0.6163 0.7589 0.0201 
3 0.8366 0.0131 0.6732 0.8016 0.0190 

Table 3. Performance indices obtained from the LROC analysis of the compressed data. An 
average of 12% improvement was observed in localization accuracy with the compressed re-
constructed images. 

Reader ROC LROC 
 Az SE Area P(CL) SE (P(CL)) 

1 0.8510 0.0128 0.7019 0.8092 0.0195 
2 0.8164 0.0132 0.6328 0.7673 0.0200 
3 0.8370 0.0132 0.6739 0.7971 0.0198 

3.2   Detection and Localization Performances 

Table 4 lists the number of correctly and incorrectly localized lesions and abnormal 
mammograms for all three readers; the corresponding rates are included in parentheses. 
We observe that for all readers the number of missed lesions was decreased with the 
enhanced and compressed images compared to the original data. A similar performance 
was observed for the number of correctly and incorrectly identified abnormal views. 

Table 4. Correctly and incorrectly localized benign or malignant lesions (Lesion Hit and Lesion 
Miss) and mammographic views incorrectly identified as abnormal (View Miss) in the pair 
selection experiment. Corresponding rates are included in parentheses. 

 Lesion Hit Lesion Miss View Miss 
Reader 1 2 3 1 2 3 1 2 3 
Org 169 

(68%) 
155 

(62%) 
158 

(63%) 
32 

(13%) 
35 

(14%) 
34 

(14%) 
49 

(20%) 
60 

(24%) 
58 

(23%) 
Enh 197 

(79%) 
174 

(70%) 
186 

(74%) 
29 

(12%) 
39 

(16%) 
32 

(13%) 
24 

(10%) 
37 

(15%) 
32 

(13%) 
Comp 191 

(76%) 
182 

(73%) 
199 

(80%) 
21 

(8%) 
41 

(16%) 
28 

(11%) 
38 

(15%) 
27 

(11%) 
23 

(9%) 
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Tables 5 and 6 break down the performance of each reader for the various types of 
abnormalities that were present in the mammograms, i.e., calcification clusters and 
masses, and pathology, i.e., benign and cancer. Both results indicate that all readers 
improved their localization performance with the enhanced and compressed recon-
structed images. However, few differences were statistically significant.  

Table 5. Number of correctly localized benign and malignant calcification clusters by each 
reader. Corresponding rates are included in parenheses. Note that the 250 abnormal mammo-
graphic views included a total of 193 calcification clusters (100 benign and 93 cancer). 

 Calcification Clusters 
 Benign Cancer 
Reader 1 2 3 1 2 3 
Org 44 (44%) 43 (43%) 39 (39%) 44 (47%) 44 (47%) 50 (54%) 
Enh 57 (57%) 48 (48%) 50 (50%) 52 (56%) 45 (48%) 52 (56%) 
Comp 55 (55%) 50 (50%) 55 (55%) 48 (52%) 50 (54%) 50 (54%) 

Table 6. Number of correctly localized benign and malignant masses by each reader. Corre-
sponding rates are included in parenheses. Note that the 250 abnormal mammographic views 
included a total of 182 masses (98 benign and 84 cancer). 

 Masses 
 Benign Cancer 
Reader 1 2 3 1 2 3 
Org 45 (46%) 36 (37%) 32 (33%) 36 (43%) 32 (38%) 37 (44%) 
Enh 51 (52%) 44 (45%) 42 (43%) 37 (44%) 37 (44%) 40 (48%) 
Comp 49 (50%) 48 (49%) 49 (50%) 39 (46%) 34 (35%) 45 (54%) 

4   Discussion and Conclusions 

Our current work focuses on issues related to the seamless integration of SFM and 
FFDM. This integration is seriously hindered by the lack of advanced tools and sys-
tems for the former and the significant delay in the development of such tools relative 
to FFDM that receives most of the attention. However, SFM is the current standard of 
clinical practice with millions of examinations performed worldwide. It is expected 
that digital will replace film in the future. Until then, however, film-based mammog-
raphy clinics cannot afford to stay outside a filmless radiology department. Finding a 
solution to their integration should be an immediate priority. 

The results of the two observer studies led to several interesting conclusions: (i) 
Our wavelet enhancement approach could significantly improve the detection of ab-
normalities in digitized softcopy mammography. The technique offers a robust and 
generally applicable approach independent of film digitization conditions or digitizer.  
Results could be further improved by modifying the algorithm to address challenging 
cases such as the mammograms of low breast density where the digital image quality 
is usually low or to better match the display medium characteristics. (ii) Our lossy 
wavelet compression method yielded high compression rates without compromising 
diagnostic performance. The mean compression rate was 59:1 for the negative  
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mammograms, 56:1 for the benign images, and 53:1 for the cancers.[9] Such high 
compression rates without visual losses, and hence, without losses in diagnostic 
power, could offer effective solutions to the problems of display, transfer, and storage 
of digitized, and possibly digital mammograms. (iii) The localization experiments are 
valuable in understanding the observer performance. The results of both tests indicate 
that the true lesions are not always accurately localized by the readers and critical 
signals are often missed or mispositioned.  Most of the benign findings are easily and 
automatically discarded in the review process while detection of either benign or 
malignant lesions is seriously limited when a single view or limited information is 
presented. This has a major impact on the design of validation experiments and the 
selection of validation methodologies. 

In conclusion, the experiments presented here supported our hypothesis that wave-
lets hold significant advantages for digitized mammography and could bridge the gap 
between digitized and direct digital mammography, thus facilitating the integration of 
film and filmless departments. Wavelet enhancement could support softcopy reading 
of digitized mammograms while wavelet compression could yield visually lossless, 
high-rate compression of the digitized films to facilitate storage and transmission.  
Interestingly, the two effects may be achieved through the same algorithm as sug-
gested by our wavelet compression technique that showed improved tumor localiza-
tion similar to the enhancement process. 
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Abstract. Breast tomosynthesis has the potential to improve lesion visibility 
and localization compared to conventional mammography. To be clinically 
useful, tomosynthesis must be able to achieve high image quality at acceptable 
radiation doses. Tomosynthesis data sets of simple low-contrast phantoms were 
acquired at varying dose levels. Image quality in the reconstructed volumes was 
analyzed by evaluating the voxel-to-voxel signal difference to noise ratio 
between a simulated lesion and the surrounding “tissue”. Preliminary results 
indicate that image quality of small lesions is limited by scatter and 
reconstruction artifacts. In uniform backgrounds image quality appears to be 
quantum-noise limited, while in more complex backgrounds the structural noise 
tends to dominate. 

1   Introduction 

Tomosynthesis is a limited-angle cone-beam CT technique that has been proposed for 
breast imaging, as it can potentially improve lesion visibility and localization [1, 2]. 
By providing tomographic images, it has the potential to improve conspicuity of 
lesions by reducing the problem in projection mammography of superposition of 
structures from the volume of the breast onto a two-dimensional image. Superposition 
is also frequently responsible for creating false positive results – the appearance of 
lesions that do not actually exist. This reduces the specificity of mammography. Our 
goal is to optimize breast tomosynthesis to provide improved conspicuity without 
delivering an unacceptably high radiation dose to the breast. 

The purpose of this study is to examine image quality in reconstructed volumes 
under various radiation exposure schemes.  This paper will discuss the development 
and implementation of two imaging phantoms: one with a uniform background and 
one with a complex background.  Image quality measurements are presented as a 
function of radiation dose for a number of different lesion sizes. 

2   Method 

Tomosynthesis image acquisition was performed on a custom-built, cone-beam 
imaging system.  Image quality was measured in terms of voxel-to-voxel signal-
difference to noise ratio (SDNR) for the reconstructed volume datasets. 
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2.1   Phantom Preparation 

Two imaging phantoms were designed to represent low-contrast spherical lesions in a 
uniform fatty background and a non-uniform, structured background. In both phantoms, 
the lesions were modeled using acetate beads of various diameters. The first phantom, 
hereafter referred to as the uniform phantom, had a background composed entirely of 
pure lard encased in a 9 cm diameter thin-walled cylindrical Lexan® polycarbonate 
container.  A total of 7 beads (1.5, 2, 4, 6, 8, 10, and 12 mm) were incorporated into the 
uniform phantom. 

The second phantom, hereafter referred to as the complex phantom, used a large 
sea sponge immersed in corn oil to provide a breast-realistic structured background.  
A total of 6 beads (1.5, 2, 4, 6, 8, and 10 mm) were embedded in the sponge, and the 
entire contents were encased in a 7.5 cm diameter cylindrical container of the same 
material as the uniform phantom.   

2.2   Image Acquisition and Reconstruction 

Projection images for tomosynthesis reconstruction were acquired on a custom-built 
tabletop system consisting of a mammographic x-ray tube (GE DMR v. 2, GE 
Healthcare, Milwaukee, WI) and a flat-panel imager (GE Senographe 2000D).  The 
source-detector distance was set to 66 cm, and the phantoms were mounted such that 
they contacted the face of the detector.  All acquisitions consisted of 11 projection 
images acquired at an interval of 4° using a 28kV spectrum with a rhodium anode and 
filter combination as well as an additional 0.4 mm of aluminum filtration.  Separate 
image sets were acquired under several dose scenarios representing total entrance 
exposures ranging from 0.27 R to 0.86 R for the uniform phantom, and 0.26 R to 2.1 
R for the complex phantom.  

Once acquired, the images were corrected for gain and offset variations and down-
sampled from a pixel resolution of 100 m to 200 m to facilitate reconstruction.  
Reconstructions were performed using a simultaneous algebraic reconstruction 
technique (SART) algorithm [4], implemented using software developed by our 
group.  Reconstructed voxels were set to 200×200×1000 m3. 

Standard mammography images of both phantoms were also acquired on a 
Senographe 2000D (GE Healthcare) digital mammography system using the 
automatic optimization of parameters (AOP) setting, in which the system 
automatically determines the appropriate anode, filter material, kV, and mAs.  For the 
uniform phantom, the AOP chose a Rh/Rh anode and filter, 30 kV and 97 mAs, 
yielding an entrance exposure of 1.2 R. For the complex phantom, the AOP chose a 
Rh/Rh, 29 kV and 72 mAs that produced an entrance exposure of 0.82 R. 

2.3   Image Analysis 

Images were obtained from the reconstructed volumes by selecting a slice parallel to 
the central imaging plane and through the centre of the appropriate acetate bead.   

Three regions of interest (ROIs) were then selected, a principal lesion ROI and two 
background ROIs (a coaxial ROI located along the axis of rotation, and an off-axis 
ROI, located adjacent to the axis of rotation), as shown in Fig. 1. Slice images and 
ROIs are in identical positions for all data sets.  Image quality was determined by 
calculating the SDNR as follows: 
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(1) 

where S and SB are the pixel grey-level intensities of the lesion and background ROIs 
respectively and , B are the standard deviations in these two signals. Often SDNR is 
defined as (S-SB)/ B, however this assumes that noise is uniform in an image.  In 
tomosynthesis slice images, the noise is expected to be non-uniform and, as such, the 
simpler definition of SDNR is not suitable here. 

Estimates of error in SDNR values were obtained by dividing each ROI into 8 
separate regions and performing the mean and standard-deviation calculations for 
each sub-ROI.  The standard error was calculated in these sub-regions and was used 
as an estimate of overall measurement error. 

3   Results 

Sample projection images and examples of reconstructed slices for the uniform 
phantom are provided in Fig. 2. Fig. 2b and 2c show the same reconstructed slice at 
two different total exposure levels (0.27 R and 2.2 R). Qualitative evaluation of the 
images reveals increased lesion visibility in the slice images as compared to their 
corresponding projection image. Additionally, increasing exposure generally appears 
to improve image quality. The measured signal differences (between lesion and 
background ROIs) for lesions in the uniform phantom are shown in Fig. 3 using the 
off-axis background and the coaxial background ROIs. The signal difference 
increases with increasing lesion size, with nearly a 4× increase from the smallest to 
the largest lesion.  

The measured SDNR values for the uniform phantom are presented as a function 
of lesion diameter for each exposure level for both coaxial and off-axis ROIs in  
Fig. 4a and 4b, respectively. The “exposure normalized” SDNR (SDNR divided by 
the square root of relative exposure) is shown in Fig. 4c and 4d. Trends similar to 
those seen in Fig. 4 are also evident for the standard mammography image in Fig. 5.   

The corresponding results for the complex phantom are shown in Fig. 6 through 
Fig. 8. The sponge had a number of deposits of coral and sand that, when seen as a 

 

Fig. 1. Sketch of the regions of interest (ROI) placement overlaying a typical slice image 
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radiograph, appeared to be surprisingly similar to microcalcifications. One such large 
“calcification” is seen in the slice in Fig. 6b between the two lesions, and several 
artifacts due to out-of-plane calcifications can also be seen in the slice (especially 
along the bottom of the image). Due to residual background structure the smallest 
lesions (2 mm and 1.5 mm) could not be located in any of the reconstructed slices (at 
any exposure) nor in the mammographic image.  

 
    a)                                           b)                                         c) 

          
 

Fig. 2. (a) Sample projection of the uniform imaging phantom. (b) High exposure (2.2 R) and 
(c) low exposure (0.27 R) reconstructed slice image of the phantom showing increased lesion 
conspicuity due to improved signal uniformity in the background. 
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Fig. 3. Signal difference as a function of lesion size using the (a) off-axis background ROI and 
the (b) coaxial background ROI. Selected error bars represent the quadrature sum of the 
standard deviation in voxel values for the 0.43 R cases. 
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Fig. 4. SDNR and exposure-normalized SDNR in reconstructed slice images as a function of 
lesion size for all exposure levels using off-axis background ROIs in (a) and (c) and coaxial 
ROIs in (b) and (d). Selected error bars represent the standard error of repeated measurements 
on 8 sub-regions of the ROIs. 
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Fig. 5. SDNR as a function of lesion size for a digital mammogram acquired at 30 kV Rh/Rh 
and 91 mAs (1.2 R total exposure). The analysis was performed on a GE processed image (not 
a raw image). 

 a)   b) 

 c)   d) 
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      a)                                               b)                                              c) 

              

Fig. 6. (a) Sample projection of the complex imaging phantom. (b) High exposure (2.1 R) and 
(c) low exposure (0.26 R) reconstructed slice image of the phantom showing increased lesion 
conspicuity due to improved signal uniformity in the background. 
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Fig. 7. SDNR in reconstructed slice images of the complex phantom as a function of total 
entrance exposure for all lesion sizes using (a) off-axis and (b) coaxial background ROIs.  
Selected error bars represent the standard error of repeated measurements on 8 sub-regions of 
the ROIs.   

4   Discussion 

Following reconstruction, the signal in each voxel represents a quantity that is directly 
related to the attenuation coefficient. Ideally, for a lesion in a uniform phantom, the 
attenuation difference between lesion and background is a constant, regardless of 
lesion size and exposure. In turn, it is expected that, when limited only by quantum 
noise, the exposure-normalized SDNR values should be constant. The departures  
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Fig. 8. SDNR as a function of lesion size for a digital mammogram acquired at 29 kV Rh/Rh 
and 72 mAs (0.82 R total exposure). The analysis was performed on a GE processed image (not 
a raw image). 

 
from this trend, as seen in Fig. 4, are assumed to be due to the effects of scatter and 
incomplete spatial sampling in the reconstruction.  Scatter of x-rays will tend to 
reduce the apparent attenuation (hence signal difference), and this effect will be more 
pronounced for smaller objects, which become masked by the scatter [5].  
Furthermore, the incomplete sampling inherent in tomosynthesis (as compared to a 
full-sampling technique such as CT) will lead to only a partial recovery of true voxel 
attenuation. As a result, small objects tend to reconstruct with lower apparent 
attenuation values than larger objects. Together, these two phenomena are the 
probable cause of the trend seen in the signal difference as a function of lesion size 
(Fig. 3). This effect translates to the SDNR values plotted in Fig. 4.  The fact that 
there is very little change in exposure-normalized SDNR between different exposure 
levels indicates that dark (electronic) noise does not play a significant role. 

For the complex phantom, the local backgrounds around each lesion have 
essentially random levels of complexity. As such, little can be inferred about the 
relationship between SDNR and lesion size.  On the other hand, it is clear from Fig. 7 
that SDNR is leveling off towards higher exposures.  In the low exposure image sets, 
image noise is dominated by quantum fluctuations.  However, at higher exposures, the 
structural noise introduced by the complex background dominates.  Interestingly, this 
suggests that in complex objects with non-uniform backgrounds (i.e. breast tissue), 
increasing the exposure beyond a certain level may have little or no benefit for 
tomosynthesis reconstructions.  It is possible, however, that improved reconstruction 
techniques that suppress more of the background may benefit from higher exposures. 

Preliminary analysis has shown that simple low-contrast phantoms are suitable for 
evaluating the effects of dose on reconstruction quality.  Results, thus far, suggest that 
reductions in dose are feasible without unduly sacrificing image quality.  To provide a 
more complete characterization of the dose/image quality tradeoff, it will be 
necessary to broaden this study to examine various acquisition parameters, including 
choice of x-ray spectra, angular spacing between projections, and the total number of 
projections acquired per data set.  Additionally, optimization of reconstruction 
algorithms – perhaps for various levels of object complexity – remains to be explored.  
Finally, it would be informative to investigate further both scatter and electronic noise 
to gain a more complete understanding of their contribution to image quality. 
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Abstract. Digital breast tomosynthesis is becoming a clinically attractive 
modality based on its potential to combine the high resolution and high contrast 
images, and affordability of digital mammography, with the advantages of 3D 
image acquisition. In order to facilitate comparison of tomosynthesis images 
with previous mammographic exams of the same women, there is a need for a 
method of registering a mammogram with a tomosynthetic image of the same 
breast; this is the focus of this paper. We have chosen to approach this 
multimodality registration problem, starting from the simpler problem of 
registering a mammogram and the central tomosynthesis source image.  Such a 
registration pair represents the most similar breast images obtained from 
different clinical modalities. In this study of 15 pairs of mammograms and 
central tomosynthesis projections of the same breast, on average we were able 
to compensate 94 percent of the per-pixel intensity differences that existed 
between the two images before the registration.  

1   Background 

Early breast cancer detection requires identification of subtle pathological changes 
over time, and is often performed by comparing mammograms from previous years.  
Those changes can be masked by breast positioning, compression, or x-ray acquisition 
parameters. Similarly, multimodality breast images are acquired with different 
positioning, compression levels, and they also measure different material properties.  
An approach to compensate for the acquisition related variations is image registration, 
in which one image is deformed in order to match another image, based on some 
similarity criterion. Registration could improve the accuracy of temporal or 
intermodality comparison, and potentially emphasize genuine tissue alterations.   

Tomosynthesis is a novel x-ray based modality for imaging 3D breast anatomy.  
First, a small number of projections through the compressed breast are acquired, 
while varying the position of the x-ray focus. By combining information from these 
projections one can gain information about the 3D tissue distribution. Several 
algorithms have been proposed, ranging from relatively simple backprojection 
techniques to sophisticated algebraic reconstructions [1,2]. While the limited number 
of projections prevents CT-like reconstruction quality, our clinical experience has 
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confirmed our ability to produce images in which a given anatomical plane is in focus 
while anatomical structures above and below the plane are blurred to such an extent 
as to be essentially removed from the image (see Fig 2). 

Tomosynthesis is becoming a clinically attractive modality based on its potential to 
combine high resolution and high contrast images, and affordability of digital 
mammography, with the advantages of 3D breast image acquisition. In addition, there 
is a potential for functional imaging, in the form of contrast-enhanced tomosynthesis 
[3]. In order to facilitate comparison of new tomosynthesis images with previous 
mammographic exams of the same women, there is a need for a method of registering 
tomosynthetic and mammographic images, which is our focus in this paper. To the 
best of our knowledge, there has been no report in the literature on this specific 
multimodality registration problem. 

In this paper we present the results of registering 15 pairs of mammograms and 
central tomosynthesis projections of the same breast.   

2   Materials and Methods 

There are two aspects to the problem of registering mammograms and tomosynthesis 
images: (i) Registration of a mammogram onto a tomosynthesis reconstructed volume 
of the same breast is a 2D-3D registration problem. (ii) Registration of an individual 
tomosynthesis reconstructed plane onto a mammogram is a 2D-2D problem. Such a 
task, however, cannot be performed by simply extending the existing mammogram 
registration methods, since the size and content of the breast portion within an 
individual reconstructed plane vary depending on the slice position. Although both 
images have the same physical nature, their acquisition procedures (projection vs. 
tomographic reconstruction) are substantially different.  

As a preliminary step, in this paper we describe registration of a tomosynthesis 
central source projection and a medio-lateral mammogram of the same breast. The 
central projection is acquired in a medio-lateral (MLO) breast positioning with 
reduced dose and compression.   

2.1   Clinical Data  

At our institution, tomosynthesis source images are acquired on a Senographe 2000D 
(General Electric Medical Systems, Milwaukee, WI) which has been modified to 
allow independent motion of the x-ray tube head and removal of the anti-scatter grid.  
The x-ray tube can be reproducibly positioned at 9 locations, each separated by 
approximately 6.25°. Each breast is compressed in an MLO position. The source 
images are acquired at a total dose equal to that of two MLO mammograms.  
Tomosynthesis breast images are reconstructed in planes parallel to detector, using a 
modified backprojection algorithm. To date, 51 clinical breast tomosynthesis exams 
have been performed under IRB review as a part of a large multimodality clinical 
study in our department. After informed consent, all the patients in the study were 
offered tomosynthesis, mammography, breast MRI, PET, and ultrasound exams. For 
each tomosynthesis image there is a corresponding mammogram taken on the same 
day by the same x-ray technologist, thus having minimal variations, which is of 
importance for initial testing of the registration methods.   
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In this study we performed registration of 15 pairs of mammograms and central 
tomosynthesis projections, from ten women (mean age 48.4 years; age-range 39-62 
years) imaged between August 2004 and May 2005 at the Hospital of the University 
of Pennsylvania. Four out of these ten women had confirmed malignancies, five had 
findings suspicious for malignancy, and one had a benign finding. The selection 
criteria was that the whole breast was well visible in both the MLO mammogram and 
the central tomosynthesis projection. Such a criteria excluded cases of very large 
breasts, in which several images had to be taken to cover the whole breast in the MLO 
positioning. We also excluded cases with low quality of the tomosynthesis projection 
images, due to excessive patient motion or problems with breast positioning. 

2.2   Non-rigid Registration Method 

For the registration of mammograms and central tomosynthesis source images, we have 
used a recently developed non-rigid registration method [4]. The method focuses on 
matching regions of interest (ROIs) in source and target images of a registration pair, 
and combines intensity- and contour-based constraints. The registration task is 
formulated as an inverse problem of finding a geometric deformation that minimizes an 
energy function with free boundary conditions. The energy function includes three 
constraints designed (i) to provide for regularization and prevent ill-posed problems, (ii) 
to compensate for linear variations in image intensities, and (iii) to correct initial 
mapping of target image ROI onto the source image ROI.   

Before the registration, the ROIs were identified as the breast regions without the 
pectoral muscle. The pectoral muscle area was identified as the region above the line 
defined by two manually selected points on the muscle contour. In this study, we 
registered the two images by deforming the mammogram to match the central 
tomosynthesis projection of the same breast. The non-rigid registration method was 
performed in two steps: First, an initial registration was performed, based on the 
contour matching only. This initial step is followed by the corrections of the 
differences in the pixel intensity distribution between the target and source images.  
Detailed description of the registration method is given in our previous publications 
[5].  In an evaluation using synthetic images generated with a software breast model 
[6], the ability of this registration method to compensate for variation in compressed 
breast thickness has been demonstrated [5].  

In the present study of clinical images, we evaluated the registration results by the 
analysis of pixel intensity differences, using the percent of corrected differences as a 
measure of the registration performance.  The percent of corrected quadratic 
differences, PCQD, is defined as:  

PCQD = [ ij( ij
PRE) - ij( ij

POST)] / ij( ij
PRE) (1) 

where ij
PRE and ij

POST represent the quadratic differences between the intensities of 
the pixels at position (i,j), before and after registration, respectively.  

ij
P=[(M(i,j)P-CT(i,j)]2), where M(i,j)P represent the intensity of the pixel at postition 

(i,j) in the mammogram before (P=PRE) or after (P=POST) registration, and CT(i,j) 
represent the intensity of the pixel at position (i,j) in the central tomosynthesis 
projection. The higher PCQD values indicate the better registration performance.   

In addition, we compared the root-mean-square (RMS) differences between the 
mammograms and central tomosynthesis projections, computed before and after the 
non-rigid registration.   



 Registration of Mammograms and Breast Tomosynthesis Images 501 

   

 

   

Fig. 1. The upper row shows the registration image pair: a mammogram (left) to be registered 
onto a tomosynthesis source image of the same breast (right). The registration result is shown in 
the middle row. The lower row shows the difference between the mammogram and central 
tomosynthesis projection, computed before (left) and after (right) the registration.  
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3   Results 

Fig. 1. shows an example of registration of a mammogram and the central tomo-
synthesis projection of the same breast. Shown are the mammogram (upper left) and 
the corresponding central tomosynthesis projection (upper right). The registration 
result is shown in the middle image as well as the difference images, computed before 
(lower left) and after (lower right) the registration. For all 15 image pairs we 
computed the PCQD measure of the registration performance (defined in Section 2.3) 
after the initial and after the complete registration. The average PCQD values 
(±standard deviations) were equal to 52±20% and 94±3%, after the initial and 
complete registrations, respectively. Fig. 2 shows a plot of the RMS differences 
between the mammograms and central tomosynthesis projections, computed before 
and after the non-rigid registration. 

 

Fig. 2. RMS differences between the mammogram and the central tomosynthesis projection, 
computed before and after the registration.  Shown are the RMS differences after the initial (+) 
and after the complete registration (×). The corresponding linear regressions are plotted by the 
dashed and bold lines, respectively. The solid unity line indicates zero registration performance.  

4   Discussion 

We have chosen to approach the registration of a mammogram and a tomosynthesis 
image of the same breast, starting from the simpler problem of registering a 
mammogram and the central tomosynthesis source image. Such a registration pair 
represents the most similar breast images obtained from different clinical modalities.  

The computed average PCQD values suggest that the initial registration step and 
the remaining registration step contribute approximately equally to the correction of 
image differences.  

Fig. 2 shows that after the initial registration step the difference between the 
registered images is proportional to image difference before the registration. After  
the complete registration, the image difference practically does not depend on the 
differences observed before the registration. In this paper, we evaluated the registration 
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performance based on the pixel intensity differences.  In future work we plan to evaluate 
the registration results based on the average displacements of manually or automatically 
extracted fiducial points.   

Presently, we have considered registration of MLO mammograms with central 
tomosynthesis projections, since the latter are also acquired in the MLO positioning.  
Registration of a CC mammogram with the tomosynthesis images would require to 
computationally “decompress” the breast from the MLO position and “recompress” it 
in the CC position.  Techniques allowing such transformations have been reported in 
the literature [7].  Novel methods could be developed by utilizing the 3D nature of 
tomosynthesis images. 

5   Conclusions 

We performed a non-rigid registration of 15 pairs of mammograms and central 
tomosynthesis projections acquired from ten women.  The mammograms and 
tomosynthesis images were acquired on the same day by the same technologist, thus 
having minimal variations.  We evaluated the registration performance by computing 
the percent corrected quadratic differences between the mammogram and the central 
tomosynthesis projection.  On average we were able to compensate 94 percent of the 
per-pixel intensity differences that existed between the two images before the 
registration. 
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Abstract. The experience of clinical use of breast CAD system at the hospital of 
Gifu University School of Medicine was reported. The CAD system was Image 
Checker M1000-DM available for Senographe 2000D.During February 4, 2005 
to May 16, 125 cases was examined by this device and 22cases of breast cancers 
were found. A case was misdiagnosed by radiologist before CAD, and CAD 
detected the lesion. Another case was correctly detected by radiologist before 
CAD, but CAD could not point out the lesion. 20 remain cases were detected 
correctly by both radiologist and CAD. CAD was supposed to be useful for the 
mammographic diagnosis of breast cancer. 

1   Background 

In 1980 full-scale mammography was started with the introduction of CGR-Seno- 
graphe 500T to the hospital of Gifu University School of Medicine. From the 
beginning, examination was performed with the presence of radiologists. Spot-imaging 
and duct graphy were performed if required based on the clinical breast examination 
and X-ray findings for higher-accuracy examination.  

GE-Senographe DMR was introduced in 1996, and it allowed us to perform 
magnification spot radiography and stereotactic biopsy. Since then, one of the biplane 
projections was changed from ML to MLO.  

Electronic medical chart was implemented with the relocation of the hospital in 
June, 2004, and operation of film-less mammography became an issue. There are two 
kinds of digital mammographic equipment; one is computed radiography using 
imaging plate and the other uses flat panel detector (FPD). Senographe 2000D, which 
was the only equipment approved by FDA at the time of planning stage of relocation, 
was adopted. This equipment allowed us to use Image Checker M1000-DM, computer 
aided diagnosis (CAD), and therefore it was applied in a clinical setting. The 
experience of this CAD system was discussed in this article. 

2   Materials 

125 cases were examined among the patients who had mammography taken at the 
hospital between February 4 and May 16 in 2005. The patients who had history of 
operations or chemotherapy for breast cancer were excluded. The ages were 17-78 
years, with an average age of 51.1 years.  
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3   Method 

Most of the patients who had mammography taken at the hospital were consulted by 
breast surgeon at first, and mammography examination was recommended based on 
their medical history, clinical breast examination, and ultrasound. Mammography 
examination was performed at the department of radiology, and both MLO and CC 
were taken by a radiological technician. In the meantime, medical history and the result 
of ultrasound were checked by a radiologist. When mammography was taken, the 
image was checked on 5M CRT monitor. If appropriate mammography were taken, 
diagnosis was given by a radiologist. After that, CAD result from Image Checker 
M1000-DM was referred. Further clinical breast examination by radiologist was 
performed, and the necessity of additional mammography, such as magnification spot 
radiography and duct graphy, was determined based on all information obtained. When 
additional mammography was required, mammography was taken by both radiologist 
and radiological technician. The examination was completed when appropriate 
additional mammography was obtained. After the examination was completed, report 
was prepared using reporting system by a radiologist. The prepared report was sent to 
an electronic medical chart and explained at the department of breast surgeon. Clinical 
diagnosis before CAD and CAD were compared in order to examine the clinical 
efficacy of CAD.  

4   Results 

4.1   Lesion Found 

22 cases of breast cancers, 12 cases of fibroadenoma, 9 cases of cyst, and 1 case of 
hamartoma were found.  

4.2   Number of Lesion 

When lesion was found in either MLO or CC, it was considered as one lesion. When 
lesion was found in both MLO and CC and identified as the same lesion, it was 
considered as one lesion. (table1)  

Table 1 

number of lesions before CAD referred CAD 

0 44 43 

1 50 47 

2 25 19 

3 4 11 

4 1 3 

5 1 2 
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Clinical diagnosis before CAD and CAD were relatively similar. However, there 
were only 54 cases with the same lesion at the same region diagnosed both before CAD 
and CAD. There were 67 cases where lesion was found only by the diagnosis before 
CAD referred. On the contrary, there were 86 cases where the lesion was detected only 
by CAD. 22 cases were diagnosed with no abnormal finding by both diagnoses before 
CAD and CAD.  

4.3   Detection of Breast Cancer 

There was one case among 22 cases of breast cancer, which the lesion was detected 
only by CAD ( Fig1 ). On the contrary, there was one case, which the lesion was 
pointed out only by the diagnosis before CAD ( Fig2 ). Both of the cases were mass 
shadow without calcification and background was unequally highly-concentrative. 
These cases were an example that tumor mass was not shown clearly because of the 
overlap of mass shadow and mammary gland.  

�

�

 

Fig. 1 

                           

�

�

 

Fig. 2 
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4.4   Examination of the Case of Which Diagnosis Before CAD and CAD Were 
Mismatched 

4.4.1   67cases: The Lesion Was Detected Only by Diagnosis Before CAD 
The breakdown of these cases were; 46 cases of calcification, 19 cases of tumor mass, 
and 2 cases of tumor mass + calcification.  

17cases of tumor mass out of 19 cases, which was diagnosed as BIRADS category 3, 
were not detected by CAD. One of them was the case of breast cancer cited above. The 
other cases showed clear circular tumor mass.  

40 cases among the cases of calcification were diagnosed as BIRADS category 2, 
but the lesion was not detected in 5 cases of BIRADS category 3. These happened due 
to the overlap of relatively amorphous calcification and dense breast. The other one 
case was the calcification of skin. 2 cases of tumor mass + calcification were calcified 
fibroadenoma. 

4.4.2   86cases: The Lesion Was Detected Only by Diagnosis CAD 
The breakdown of these cases was; 66 cases of tumor mass and 20 cases of 
calcification. 

58 cases out of 66 cases of tumor mass were diagnosed as BIRADS category 1. Most 
of them were due to the overlap of breast tissue and the overlap of breast tissue with 
vessels. 6 cases of BIRADS category 2 were considered to be focal asymmetric density: 
FAD. There were 2 cases of BIRADS category 3. One was the case of breast cancer 
cited above, and the other was the case of FAD. 

In the case of calcification, there were 13 cases of BIRADS category 1, which 
calcification was not found after reexamination of the region pointed out by CAD. 
There were 7 cases of BIRADS category 2 based on the micro round calcification, and 
there were no cases of BIRADS category 3, 4, 5 . 

5   Discussion 

The digitalization in the field of medical imaging is widely spreading in these days, and 
many facilities are operating film-less system and electronic medical chart. Senographe 
2000D was set at the same time of relocation and introduction of medical chart system 
to the Gifu University School of Medicine. This equipment allows us to use Image 
Checker M1000-DM and to refer the result of CAD on the monitor easily. This is one of 
the superiority of digital imaging to analog imaging. Algorithm guide notes, “this 
equipment is used to improve the accuracy of mammography reading by pointing out 
the suspicious region to radiologist after mammography was read by radiologist, “[1] 
and it is supposed to be used at health check. The use of CAD in practical clinic was 
discussed in this article, but it is not necessary to distinguish practical clinic from health 
check in terms of improvement of film reading accuracy. CAD led us to detect the 
lesion in one of 22 cases of breast cancer. Even though there is only a few case 
obtained, the availability of CAD is shown. However, further improvement is required 
since it is limited to detect both tumor mass and calcification in dense breast and there 
are quite a few false positive. 
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The main aim of current breast cancer CAD is to play a supplemental role in dete- 
ction of breast cancer 2 . Since CAD is developed based on diagnosis of radio- logist, 
diagnostic performance better than radiologist cannot be pursued. However diagnosis 
by radiologist is not perfect, and there seems little doubt that CAD redeems mistake of 
radiologist and that it is beneficial for radiologist with few experience.  

6   Summary 

The experience of clinical use of breast CAD system at the hospital of Gifu University 
School of Medicine was reported. The CAD system was Image Checker M1000-DM 
available for Senographe 2000D. CAD was supposed to be useful for the 
mammographic diagnosis of breast cancer in clinical cases. 
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Abstract. Most of the CAD Systems for Mammograms are composed
of algorithms analysing the four X-ray images individually. It is a general
experience, that algorithms in search of microcalcification clusters can
obtain high sensitivity only if specificity is low. To overcome efficiency
problem this paper proposes a simple algorithm to combine information
of the two views (MLO/CC) of the breast. The procedure is based upon
the experiences of radiologists: masses and calcifications should emerge
on both views, so if no matching is found, the given object is a false posi-
tive hit. A positioning system is evolved to find corresponding regions on
the two images. Calcification clusters obtained in individual images are
matched in “2.5-D” provided by the positioning system. The credibility
value of the hit is reassessed by the matching. The proposed approach
can significantly reduce the number of false positive hits in calcification.

1 Introduction

There are several algorithms searching for microcalcification clusters on indi-
vidual X-ray images [1], [2]. The main feature of these algorithms is that the
positive cases are found with large probability – sensitivity is about 90-95% –
but the number of false positive hits per picture is too high – 1.5-3 FP/image,
specificity 0-5%.

A method is needed to decrease the number of false positive hits, which will
not or will barely decrease the number of true positive ones. This paper presents
a relatively simple new way of this. The method sets off from the fact that the
images of calcifications and masses have to appear on both views (MLO and CC).
To be more precise they must be on positions of the two views that correspond
to each other. In practice a 3-D reconstruction of the breast would be needed.
But the full 3-D reconstruction is impossible, because only two views of the
breast are available, and because these two views are the 2-D projections of the
differently compressed breast. Therefore instead of a full 3-D reconstruction we
suggest a relatively simple procedure which we call “2.5-D” correspondence.

As the two main pathological abnormalities have different distinguishing fea-
tures from normal tissue, their joint analysis slightly differs. During matching
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of masses the positioning system can restrict the examined picture to a region
corresponding on the other view, and search within it for a mass with similar
texture characteristics. On the other hand calcificated tissue and normal tissues
are rather similar in texture, therefore their matching only uses the positioning
system.

In this paper we focused on describing how the “2.5-D” positioning system can
be built, and how it can be used to refine the assessment of a micocalcification
cluster found previously by a microcalcification searching algorithm.

2 “2.5-D” Positioning System

The breast has three main control points: the pectoral muscle, the nipple and the
boundary of the breast. These landmarks segment the breast to its anatomical
regions.

The Cranio-Caudal and Medio-Lateral-Oblique views are two-dimensional
projections of the three dimensional object. As the breast in CC view is ex-
posed to x-ray from a different angle than in MLO, it can be assumed that a
stripe will correspond on the MLO to a region taken from the CC view (this
assumtion works backward as well, thus an MLO region transfered to the CC
view is a stripe). The reference system is to calculate the position of this stripe.
The algorithm is founded on three simple hypotheses:

1. The pectoral muscle on a CC image is the vertical axis.
2. The position of the nipple can be estimated by laying a tangent on the breast

border parallel with the pectoral muscle.
3. The distance covered from the nipple perpendicular to the pectoral muscle

on MLO approximately corresponds to the distance measured up on the
horizontal axis from the nipple on CC.

The first step of the algorithm is to find the angle enclosed by the pectoral
muscle and the horizontal axis on MLO views.

To find the angle the slightly modified method in [3] was used. First edge
detection – special edge detection method: Edgeflow [4] – is made and the Region
of Interest (ROI) is cut out. This ROI is the upper corner of the MLO and will
contain the pectoral muscle (See Fig. 1(a).).

The second step: the iteration processing the lines in the ROI diverges from
paper [3], as in this case the whole line of the pectoral muscle is not needed,
just an approximation of the angle enclosed by the pectoral muscle and the
horizontal axis. By cutting up the lines, and deleting improbable line segments
the robustness of the algorithm is increased. (See Fig. 1.) The pseudo code is:

1. n = 0, BW0 = ROI, Ln = longest object on BW0
2. Ln is divided to parts with uniform length along the vertical axis
3. L badn = objects which enclose < 40◦ or > 90◦ with the horizontal axis
4. L goodn = Ln − L badn, BWn+1 = BWn − L badn

5. if BWn+1 == BWn iteration stops, the pectoral muscle is the object L goodn,
else Ln+1 = longest object on BWn+1, n = n + 1 and go to Step 2.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. (a) ROI selection (b) BW0, (c) L0, (d) L0 + Picture, (e) L bad0, (f) L good1,
(g) BW1, (h) L1 + Picture

After finding the angle a tangent with the same angle is laid on the breast
border marking the nipple. The distances of the observed region from the tangent
– u and v – are measured. The same distances are measured up on the perpen-
dicular line to the tangent from the nipple of the other view. The two points
and the angle of the pectoral muscle mark out the stripe needed for matching
calcifications. (See Fig. 2.)

Fig. 2. The corresponding stripe on the
CC of a selected region on the MLO

Fig. 3. Histogram of pixel errors, num-
ber of cases 1159

To test if the three basic hypotheses of the positioning system are correct a
statistical analysis was made. 1159 cases with 400μ/pixel resolution (600*400
pixels) from the DDSM database [5] were selected. These cases contained only
one pathological growth on each views according to the radiologists’ assessments.
Thus the two marks on the two views can be assumed to be the 2-D projections
of the same object.

The pixel corresponding to the centroid of the growth on the MLO was de-
termined, and the deviation of the result from the centroid of the growth on
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the CC was measured in pixels (See Fig. 4.). Fig. 3. shows the histogram of
the deviations. There is some variance caused by wrong pectoral muscle finding,
wrong radiologist assessment or the flaw of the hypotheses (because of breast
deformation) for a few cases, but generally the hypotheses look to be standing
(mean is around zero). To compensate the effect of variance the width of the
stripe is increased by 10%.

(a) (b) (c) (d)

Fig. 4. (a) Original MLO (b) centroid of mass (marked by radiologist) is a white
square (c) mass is marked by doctor + line corresponding to mass centroid on MLO
(d) Original CC

To see if there is no inbuilt error from the pectoral muscle and nipple search,
we have constructed a simple sensitivity test using the above mentioned 1159
cases and evaluation method. In the sensitivity test, a constant running from
-50 to +40 was added to the pectoral muscle degree in each of the 1159 cases
(90*1159 measures), the new nipple was calculated and the same deviations
of pairing the centroids of radiologists’ assessments were measured as in the
statistical analysis (See Fig. 4.). Beside of these 90 measurement systems, an ex-
periment on the microcalcification searching algorithm showed that the average
cluster diameter is 52 pixels and the variance of the diameter is 25 pixels. On
Fig. 5. we can see the percentage of the 1159 cases which are below the 27,52,77
pixel deviation plotted according to the constant change of the pectoral muscle
angle. The figure shows two important facts: (a) there is no inbuilt constant
error in the “2.5-D” positioning system, (b) there is quite big tolerance (around
-10 to 10 degree) in finding the pectoral muscle angle.
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Fig. 5. The percentage of the 1159 cases which are below the
constant (27,52 or 77) ploted along the error in the pectoral
muscle angle imbued by the experiment

(a) (b)

Fig. 6. (a) the orig-
inal image part, (b)
the calcification mask
the searching algo-
rithm provided

3 Microcalcification Cluster Matching and Reassessment

The microcalcification searching algorithm marks out suspicious regions, and
provides a mask of microcacification pixels (See Fig. 6.). From the number of
calcifications in the cluster, and the difference between the mean intensity of
calcifications (marked by the mask) and the surrounding tissues a credibility
value is assigned to each cluster: Pcalc (Range: 0-255, 255 - highly suspicious
region).

This credibility is modified by the help of the area ratio of the stripe corre-
sponding to it and of other calcification clusters found on the other view: Aratio.
The new credibility is: P̂calc = Pcalc − cons1 ∗ (1 − Aratio + cons2). Fig. 8. illus-
trates why probability is decreased by subtracting an amount instead of simply
multiplying with Aratio. In this way if the microcalcification searching algorithm
found the true positive cluster only on one view, but with high Pcalc, the de-
creased P̂calc is still thresholded to be a calcification. The constant cons2 is to
ensure, that at high correspondence the suspicion is raised.

4 Performance

The calcification matching was analyzed over 188 cases (376 pairs of mammo-
graphic images). 66 of these cases contained malignant calcifications. 1. table
shows the results of the matching in a case level. Thus the 13.1% increase in
specificity means that the algorithm cleared all the FP hits on the four images
in those cases. The reasons for the loss of positive markers is that no matching
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(a) (b) (c)

Fig. 7. A Normal Case is found because
Pcalc of the 3 FP mark is decreased below
threshold for calcification

(a) (b) (c)

Fig. 8. True positive case is not lost al-
though no matching. Yellow half-circe is
the mark of the radiologist.

pair is found because: (i) matching stripe is wrong, see variance in Fig. 3., (ii) the
lack of detected microcalcification cluster or mass in one of the views, and too
small credibility for the detected one (iii) the lack of microcalcification cluster
in one of the corresponding views (even radiologist could not find it).

Table 1. Table of results

Original microcalcification Calcifications after Percentage
algorithm matching reassessment change

Sensitivity 95.5% 92.4% −3.1%
Specificity 0.8% 13.9% +13.1%
FP/image 3.25 FP/image 1.57 FP/image

5 Credibility Calculation with MLP (Multilayered
Perceptron)

Currently a new method for determining the Pcalc value is researhed. As it can
be seen on Fig. 6. a calcification cluster can be described not only by the number
of calcifications and intensity parameters but by area parameters (like the area of
microcalcifications), by shape parameters (like the average length of the major
axis of the calcifications . . . ), distance parameters (like the average distance
between the calcifications) . . .

We have acquired a 1390 true positive clusters determined by the microcal-
cification algorithm. These clusters are considered to be true positives as they
overlap a mark of radiologists. A false positive sample set was gathered from
the clusters found that did not overlap radiologists’ mark. 35 parameters were
determined to each cluster, out of which 13 were used as an input vector to
the network. 834-834 (TP/FP) clusters were used to teach a simple MLP with
Levenberg-Marquart algorithm (10 neurons in the hidden layer, -1 expected for
parameters gained from a FP cluster and +1 expected for parameters gained
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from a TP cluster). Early stop was implemented with a testing set of 254-254
clusters. The remaining 302(TP)-284(FP) clusters were used for validation of
the network.

A treshold was determined so that clusters which fall below are automatically
dropped as false positive hits. 1 TP and 102 FP clusters were dropped by the
network because of the treshold. The credibility values for the remaining clusters
were determinded according to the distance they resulted from the treshold and
the value 1. Fig. 5. shows the histogram of determined credibility values.

Fig. 9. The percentages of true positive and false positive cluster’s credibility values

6 Conclusions

The paper proposed a relatively simple way of combining the results of microcal-
cification detection algorithms applied for individual X-ray breast images. The
joint analysis follows the procedure of skilled radiologists: if a suspicious area
can be found in one view, usually its corresponding pair should be detected in
the other view of the same breast. The first results – based on a a few hundred
of cases - show that using this approach the number of false positive detections
can be reduced significantly while the decrease of true positive hits is relatively
small.

Moreover a better method to calculate the credibility was examined using
microcalcification shape information, and other features like distance as well to
obtain primal Pcalc value .

The proposed joint analysis system is still under testing. The improvement
of the primal calcification searching algorithm, and the further analysis of the
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pairing (like drawing up a FROC curve) is needed. Also we intend to test the
merging of the new credibility value assignment with the pairing, and see how
the results can further change the TP/FP ratio.
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Abstract. In general, the use of more projections results in fewer tomosynthesis 
reconstruction artifacts. However, under a fixed dose, an excess number of pro-
jections will make the detector noise more pronounced in each of the x-ray 
shots and thus degrade image quality. Even in the absence of detector noise the 
advantages of higher projection numbers eventually have diminishing returns, 
making more projections unnecessary. In this study, we explore the dependence 
of tomosynthesis imaging performance on the number of projections, while 
keeping other factors fixed. We take the contrast-to-noise ratio as the figure of 
merit to search for the range of optimal projection number. The study is carried 
out through both simulations and experiments, with phantoms consisting of mi-
cro-calcification and mass objects, and a cadaver breast. The goal of this paper 
is to describe our methodology in general, and use a prototype tomosynthesis 
system as an example. The knowledge learned will help the design of future 
generation clinical tomosynthesis systems. 

1   Background 

The number of projections in a tomosynthesis scan is a very important design parame-
ter. Because tomosynthesis is a limited angle tomographic system, objects remain visi-
ble in slices distant from their focus plane and generate what are known as shadow 
artifacts. In an ideal system, increasing the number of projections reduces the amplitude 
of the shadow artifacts. However, for a fixed total dose similar to a 2D mammogram, 
each projection shot in a tomosynthesis is indeed a low dose exposure. Further dividing 
the dose into more projection shots will adversely enhance the presence of detector 
noise in each exposure shot and start to reduce the detectability of features. In addition, 
the reduction of the shadow artifacts tend to saturate beyond certain high projection 
number so adding more projections becomes both unnecessary and costly in terms of 
data size and reconstruction time. It is of interest to develop a practical and systematic 
method to optimize the number of projections and derive the optimal number range 
under the specific design and performance parameters of each tomosynthesis system. 

2   Method 

Since detectability of a lesion and magnitude of shadow artifacts all relate to the con-
trast-to-noise ratio (CNR) of the object and its shadows, the CNR line profile along 
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the depth Z direction through the feature and its shadows tells two things -- the peak 
value represents the detectability of the object at the focused slice while the values at 
off-peak locations represent the significance of the shadow artifacts. In this study we 
use the parameter of CNR as the figure of merit to study the dependence of CNR on 
projection number in a scan and the optimization of it. We took a prototype bread-
board system as an example, and carried out both simulation and experiment to show 
our method, which is a two-step approach. First we investigate the dependence of 
peak CNR value on projection number, and then the dependence of the off-peak value 
and shape in the CNR profile. Images are analyzed both in the projection space and 
the reconstruction space. At last, we do visual evaluation of images to check the re-
sults that the CNR method suggests, and discuss advantages and limitations of the 
method. 

2.1   Setup 

The schematic of the prototype system is showed in Figure 1. It was a tabletop system 
with the tube scanning in the horizontal plane. The system consisted of a tungsten 
target x-ray tube with Al filter, and a-Se direct conversion flat panel detector of 70 
μm pixel size. The detector was 24 cm by 29 cm large, and was positioned 66 cm 
from the focal spot. We used a 20-degree tube scan angle, 11, 15, and 21 projections 
per scan, and a readout rate of 1 frame/sec. The phantom of CNR study was a con-
trast-detail (CD) phantom consisting of groups of micro-calcifications of 100 μm to 
300 μm size and masses of 4 mm to 10 mm size, sandwiched by BR12 slabs to make 
certain thickness. The images were reconstructed through both backprojection (BP) 
and filtered backprojection (FBP) methods for comparison.   
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          Fig. 1. Schematic of setup, top view               Fig. 2. ROI view of CD phantom 

2.2   Dependence of the Peak CNR Value 

A simplified computer model was developed to describe this prototyped tomosynthe-
sis system, which consists of x-ray spectra generation, x-ray transmission through 
objects, and x-ray detection by detector. In particular, an analytical scattering model 
was adopted to simulate the scattering effect [1], together with a simplified detector 
noise model [2]. Simulations were carried out to evaluate the value and the dependence 
of CNR of typical mass and micro-calcification (uCa) objects in a breast under various 
conditions, e.g., dose, kVp, detector noise, and projection number. Throughout our 
extensive in-home studies in the past, we have done direct or indirect comparison  
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between simulations and experiment frequently, and have thus validated the model. 
We have also developed optimal x-ray technique charts for phantom studies. 

2.3   Dependence of the Height and Shape of the CNR Profile 

The slice of interest for an object is that slice for which its image in different projec-
tions gets focused during the reconstruction’s backprojection process, and further 
enhancement in this slice is always preferred. For all other slices, the object becomes 
out of focus and appears as multiple replications of itself (shadows), either connecting 
with each other or not. The line profile of CNR through the object and its shadows 
will show the significance of both in an image. We compare shapes of CNR line 
spread functions (LSF) from measured phantom images acquired under different 
projection numbers and x-ray techniques, and with different reconstruction methods.  

3   Results 

In this section, we show results of CNR vs. kVp curves from simulation and meas-
urement, analyzed with projection images, and CNR profiles along slice-to-slice Z 
direction, analyzed with recon images. The difference between the analysis of projec-
tion and recon images is that the former one is simply a summation of all projection 
images together (with or without proper shift), and with no data interpolation in-
volved, while the later one is a reconstruction process with shift and add, and with 
bilinear interpolation. CNR results from the two analysis methods are related but 
cannot be directly compared, since the interpolation is equivalent a kind of low-pass 
filtering that reduces image noise and improve the CNR value.  

3.1   The CNR vs. kVp:  From Projection Images 

Fig. 3 and 4 show simulated CNR vs. kVp curves, all under constant dose of 300 
mrad. The objects are 0.2 mm thick uCa and 5 mm thick mass in a 4.5 cm thick  
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breast. Detector noise is either 1 or 2 in ADC digital counts of our detector. The pro-
jection numbers in a scan are 1, 11, 21 and 31, respectively. Measured CNR curves of 
mass object in 4.5 cm thick breast under 150 mrad dose are showed in Fig. 5, with 
projection numbers as 11, 15, and 21, respectively. Measurements were done with the 
tube being stationary to the phantom and detector. CNR values were calculated from 
the projection image, similar to the way that simulations were carried out to generate 
CNR curves. The curves in Fig.5 are showed with a narrow display window, and thus 
the shapes should not be confused with those in Fig. 3-4, displayed in a full window.  

Fig. 5. Measured CNR curves of mass     Fig. 6. Recon images of uCa in- and out-focus 

3.2   CNR vs. the Slice-to-Slice Separation Z: From Recon Images 

We used reconstructed phantom images to study the CNR line spread function of uCa 
and mass objects. The phantom was scanned at several different kVp, dose, thickness, 
and all with 11, 15 and 21 projections. Images were reconstructed with both BP and 
FBP methods. We calculated the CNR of contrast features in each slice throughout 
the entire recon volume. Example in Fig. 6 shows the ROI mask selections for the 
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contrast feature and its background, of both the uCa and the shadows. It also gives 
visual confirmation that we are indeed calculating the contrast and noise over the 
targeted feature region exactly throughout the entire recon volume. Subsequently 
CNR plots through either mass or uCa object along the Z direction are showed to-
gether to evaluate the impacts of the number of projections in a scan. In Figs. 7-10 we 
show results of a typical uCa and mass in 3 cm thick breast, imaged at 200 mrad, 
reconstructed with both the BP and the FBP methods.  
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4   Discussions and Conclusions 

4.1   Peak CNR and Its Dependence 

Figs. 3-4 show that under given dose, detector noise and projection number, there 
exists optimal x-ray kVp value for a best possible CNR. Around this kVp, the change 
of CNR vs. kVp is very gradual. So within the optimal kVp range of a few kVp, CNR 
is not very sensitive to the exact kVp value. They also show that as the projection 
number increases, the maximum achievable CNR decreases. The larger the projection 
number, the more rapid the CNR degradation is. There is also a shift of the optimal 
kVp range toward higher values as projection number increases. For larger detector 
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noise, the degradation in CNR can become worse while projection number is in-
creased. Fig. 5 shows measured CNR curves at 150-mrad doses. The plots confirm 
that the optimal kVp range suggested by simulation, and the fact that CNR drops 
more rapidly for the projection number increase from 15 to 21 than from 11 to 15. 
The peak values of CNR of each curve are about 3.4, 3.3, and 3.1, for projection 
number of 11, 15, and 21, respectively. A rough estimate shows that the dose penalty 
would be about 6% or 18% at this dose level due to the detector noise, in order to 
achieve similar CNR performance when projection number is changed from the 11 to 
15 or 21 respectively, at the projection image level.  

4.2   The Z Profile of CNR of uCa and Mass: In BP Images 

Fig. 7-8 show CNR line spread function along Z direction (ZLSF) through uCa and 
mass in BP images. For uCa, the ZLSF is characterized by a peak with flat tails, indi-
cating complete shadow separation beyond certain Z-offset. For mass, its shadows do 
not separate completely with each other within the Z range of consideration. In the-
ory, one would expect that the peak CNR values follows the order of 11, 15, and 21 
from large to small, and the value at the tails of the CNR profile should be about 
1/11th, 1/15th and 1/21st of the peak value. However, in Fig. 7-8, the overall shapes of 
ZLSF are very close to each other among 11, 15, and 21 shots per scan, within the 
noise magnitude of the data. For uCa, the peak CNR values seem to follow the correct 
order but the separations among them are very small compared to that of Fig. 5. We 
suspect that the filtering effect due to the interpolation process has effectively modi-
fied noise characteristics in the images. This effect needs to be further studied. As to 
the tail of CNR curves, they are very noisy shape, only at some z locations do the 11 
shots have slightly higher CNR than other 15 and 21 ones, and the difference between 
15 and 21 are even smaller. Since theoretical possible difference is hid by the large 
amplitude of the noise level, there might be no practical difference among the actual 
images of Fig.7-8, to be visually checked later. 

4.3   Impacts of Filter on the Shape of CNR Profiles: From FBP Images 

Since further processing is always applied on top of BP only images in practice, it is 
important to examine the impacts of filters on the shapes of ZLSF. Fig. 9-10 shows 
the ZLSF from FBP images of the same uCa and mass as Fig. 7-8. We find that the 
filter of FBP method has two distinct effects. For small objects (uCa), it can increase 
the peak CNR value as well as decrease the tail ones. The visual impact on image is 
that the object is greatly enhanced at in-focus slice, and the shadow is greatly sup-
pressed at other off-focus slices. For large mass object, though it decreases the peak 
CNR values to some extent and reduces the contrast of the mass in the filtered image, 
it also reduces significantly the CNR value at the tail, making the shadow artifacts 
largely suppressed after filtering. This phenomenon can be explained by the filter’s 
shape in the FBP. For a CT-type filter similar to what we used in this study, it sup-
presses both the high and low frequencies, and boosts the mid-range ones. In general 
high frequency relates mostly to the image noise while low and mid-range ones relate 
to the intensity of contrast.  Since only the peak CNR value of uCa is increased after 
FBP, it suggests that sizes of uCa of this study falls in mid frequency range in Fourier 
domain. This finding may give us insight in designing optimal filter for FBP method.  
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4.4   Impacts of uCa Size on the Shape of CNR Profiles: From BP Images 

In Figs. 11 and 12, we show CNR profiles of uCa of 180 μm and 300 μm sizes, in 
comparison the 240 μm uCa of Fig. 7, all from BP images. For the smaller 180 μm
uCa, both the peak and the tail CNR values are lower than Fig. 7, as expected. The 
tails of CNR curves are indistinguishable among 11, 15, and 21 shots. For the larger 
300 μm uCa, the tails of CNR curves are clearly separated among them, which sug-
gest the 21 shot scan would have the least shadow artifacts. Therefore, we would 
emphasize here that the theoretical implication that the greater the projection number, 
the less the observable artifact intensity should still work under the following condi-
tions: the uCa object has huge contrast over the background, or a very high dose is 
used in a scan. In both cases, the tail region of the CNR profile would separate from 
each other distinctly between 11-, 15, and 21 shots scans as showed by Fig. 12, since 
the noise in the data become relatively small. Only under such conditions, more pro-
jections could help the reduction of structure artifacts. Since the shadow’s CNR is 
very high in this case, other nonlinear methods might be more efficient to reduce the 
shadow artifacts, rather than simply increasing the projection number. 

4.5   Visual Comparison of Shadow Artifacts of uCa 

In Fig.13, we use FBP images of uCa of two different sizes for visual examination of 
the artifact. The left uCa is the 240 um one shown in Fig. 7, while the right is the 300 
um one in Fig. 12. Recon slices of 11, 15, and 21 shots and at z = 0, 10, 20, and 30 
mm are displayed with the same background noise level for fair comparisons. For the 
left uCa, the shadow artifact of 11 shots is slightly worse than the 15 and 21 shots, 
with the later two being indistinguishable. For the right uCa, artifact of 11 shots is the 
worst, while that of 21 shots is the best. These image-based observations agree with 
previous discussions based on CNR ZLSF curves alone.  

Fig. 13. Images of uCa at different z locations for 11, 15, and 21 shots. At the focused slice of 
Z = 0, the left uCa is 240 um one of Fig. 7, and the right is 300 um one of Fig. 12.  
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4.6   Advantage and Limitation of the CNR Based Method 

CNR method is very simple and efficient method to evaluate the presence and the 
significance of artifacts in images, as shown by this paper. However in addition to the 
intensity, the shape and appearance of artifacts can also greatly affect the significance 
of its impact in an image, thus its dependence on projection numbers needs to be 
addressed. This is beyond the scope of the CNR based method discussed here, and 
will be an interesting subject for further study. 

4.7   Conclusions

The study find that, [1] given a practical dose penalty tolerance limit, one can find the 
maximum projection number allowed for a tomosynthesis scan through simulation 
and measurement; [2] for small uCa, more projections makes insignificant difference 
in the CNR value of the shadow artifact, but for large uCa it help to reduce the 
shadow artifact under our test conditions. [3] for mass, more projections seems make 
insignificant difference in shadow artifact while the filtering of FBP will remove most 
of them; [4] the filtering in image reconstruction narrows down the potential benefit 
that more projection number would bring in term of artifact reduction thus advanced 
and optimal filter developed for tomosynthesis should allow scans with relative 
smaller projection numbers to fulfill the same task of artifact reduction.  
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Abstract. First 3D X-ray internal observation of DCIS (ductal carcinoma in-situ) 
is reported. Its rod shaped specimen with 3.6 mm in diameter and 4.7 mm in 
height was punched out to have successfully observed by using a newly made 
algorithm due to refraction for x-ray CT. Its data was acquired by the x-ray optics 
DEI (diffraction-enhanced imaging). Data of 900 projections with interval of 0.2 
degrees was used at Photon Factory, KEK in Tsukuba. A reconstructed CT image 
may include clearly revealed ductus lactiferi, microcalcification and other 
structure. The voxel resolution is approximately 50 μm by the present 
instrumental condition. This modality could open up an x-ray pathological 
diagnosis.  

Keywords: X-ray refraction, X-ray dark-field imaging (XDFI), DEI, breast 
cancer, DCIS, pathological diagnosis, clinical diagnosis, ductus lactiferi. 
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1   Introduction  

Mammography for early check is one of powerful screening modalities together with 
ultrasonography. Since the discovery of x-rays by Roentgen in 1895 all x-ray medical 
imaging at hospital including mammography in the world has been purely based on 
absorption contrast. Nevertheless limitation in their spatial resolution and contrast 
resolution exists in early detection. Since breast cancer is not necessarily visible with 
absorption contrast one may need alternative methodology of being able to visualize 
breast cancer with higher contrast and with higher spatial resolution.  

So far a variety of imaging schemes for a phase object have been proposed [1], [2], 
[3], [4] (diffraction-enhanced imaging (DEI)), [5], [6], [7] and [8] (phase-interference 
(PIC)). Further x-ray dark-field imaging (XDFI) [9] was proposed. In order to see 
breast cancner following a pioneering work on imaging of breast cancer by Burattini’s 
group [10] a trial to visualize breast cancer tissue has been performed by PCI [11], [12], 
DEI (diffraction-enhanced imaging) [13], [14], [15], PIC (phase-interference contrast) 
[16], the super magnification imaging (SMI)) [17], x-ray dark-field imaging (XDFI) 
[18] and XRF (x-ray fluorescence) [19].  

Here we would like to propose a world first X-ray CT image that could be used for 
pathological diagnosis. Trial of 3D reconstruction has begun [20], [21], [22]. 
Maksimenko et al. have recently proposed a novel tomographic imaging protocol based 
on a physico-mathematically defined reconstruction algorithm [23], [24] with a 
paraxial-ray approximation in the domain of a geometrical optics. A satisfactory 
experimental result has been obtained. This has been applied to successfully visualize 
DCIS (ductal carcinoma in situ) with high contrast and high resolution [25]. 

2   Method  

2.1   Mathematics 

The refractive index can be described as n n i= − +1 ~ κ . κ of low atomic-number 
elements in soft tissue of biomedicine comprising hydrogen, carbon, nitrogen, and 
oxygen can not produce sufficient contrast because κ ≈ 0. In case of visualizing such 
object with hard x-rays, for instance in clinical application, it is much more 
advantageous to detect variations of the propagation direction of incident x-rays using 
an analyzer with high angular sensitivity over conventional absorption contrast. 

We start outlining the principle with the ray equation as follows:  

 d/ds n(r)t(r) = n(r)                                                       (1) 

where r is a spatial coordinate, n(r) is a refractive index distribution, t(r) is a unit 
tangential vector of ray propagation, and s is an arc length parameter. Executing the 
differentiation of LHS (light hand side), 

 n
d

ds
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α
v t+ = ∇                                                      (2) 
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where ri = p cosθ – q sinθ p sinθ + q cosθ, and ϕ (ri) is an angle between ∇~n  and the 
x-axis. From equations (4), (5), we obtain the following equation that is a comp- 
lex-valued version of the Radon transform [26]:  
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Fig. 1. Line integral projection of the 2-dimensional Radon transform 

 )exp(),( θθα ipi = 
∞

∞−

| n~ (ri)|exp(iϕ (ri))dq                     (6) 

where ri = p cosθ – q sinθ p sinθ + q cosθ, and ϕ (ri) is the angle between ∇~n  and the 
X-ray propagation direction. Fig. 1 shows the schematic drawing of this system.    

Maksimenko et al. devised a complex-valued algorithm [23] of filtered back 
projection to solve the inverse problem, i.e., image recostruction from complex-valued 
projections that has led to the vector field ∇~n  and finally the refractive index 
distribution. In addition, they first succeeded experimental implementation of the 
algorithm to apply to reconstruct a simple structure [23]

 
that happened to involve a 

small crack [24] otherwise not having been able to be visualized. 
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2.2   Experimental 

The number of sample rotation for data acquisition in the experiment was 900. It took 
200 msec ~ 1 sec for data acquisition of each frame, 2-5 seconds for data transfer to pc 
and 1 sec for sample rotation and additional 1 sec for stabilizing the system free from 
vibration due to motor. Every ten data acquisition the x-ray intensity by CCD was 
measured without specimen for the background subtraction. A CCD camera X-FDI 
1.00:1 with air cooling type that has a view size of 8.7 mm (h) x 6.9 mm (v) was 
supplied by Photonic Science which is compatible with 16-bit and 1392 x 1040 pixels 
with pixel size of 6.3 m x 6.6 m. Data transfer was done by FireWire (IEEE 1394). 
After this series of measurement was done the angular position of the analyzer crystal 
was changed from either angle to continue the other series of measurement. In total the 
data acquisition time was approximately 3 hours.  

CC
s(w) 

 r(w)+a+p(w)

p(w)i(w)

k(w+,-){r(w)+a} 

k, k(w) 

 

Fig. 2. Schematic of the DEI optics to acquire data for 3D reconstruction. A specimen s(w) DCIS 
was rotated every Δ Θ = 0.2o around the axis from 0o to 180o. mc means a monochro-collimator 
that converts the incident beam i(w) into almost plane wave p(w). k is a Bragg case analyzer. The 
diffracting planes of mc and k are 220 in a parallel arrangement. The beam carrying both 
information r(w) due to refraction and a due to absorption of the sample has been analyzed by k 
with function of k(w). Two images both sides (+,-) of the flank of the rocking curve for each Θ  in 
eq (6) are stored in a CCD camera.  

The x-ray optics DEI [4] for 3D CT data acquisition was chosen because it has a 
smooth shape of both sides of the flank of the reflection curve of the angle analyzer. 
Extraction of information on refraction may need angularly well resolvable x-ray optics 
that can detect extremely small deflection angle at the order of a few times of 10-6 ~ 
10-7. Thus the X-ray optics DEI chosen is characterized by a double crystal 
arrangement with an asymmetric Bragg type monochro-collimator [27] that can 
produce highly parallel monochromatic incident X-ray onto specimen and a Bragg type 
angular analyzer k that can deliver the angular information from boundaries involved in 
the sample, as shown in Fig. 2. The angular information may include both the refraction 
information as well as the absorption information so that refraction component can be 
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extracted by a mathematical procedure. each data set for a fixed angle was taken at 
both wings of the rocking curve at w = -0.5 left and at w = +0.5 where w means the 
angular parameter and w =1 covers the full angular range. A sample was remotely 
rotated with interval of Δ Θ = 0.2o. mc was asymmetrically cut Si(220) with  = 9.5

o
 

where  is the angle between the surface and the diffracting planes. k was a symmetric 
Si(220) one. The energy used in the experiment was 11.7 keV. A specimen used in this 
experiment was a rod shaped ductal carcinoma in-situ (DCIS). Data was acquired on 
either flank of the rocking curve with a smooth slope.   

3   Result  

Thus a 3D image of the DCIS specimen was obtained [25]. A typical set of three images 
are shown in Fig. 3. One can easily discern calcification along each ductus lactiferi, 
calcification at each duct wall and some extension of calcification contrast toward 
outside ducts surrounding adipose tissue. The right bottom figure shows outer surface, 
while three others show each cross-section one shown in the right bottom figure. High 
contrast is seen in the center of ductus lactiferi. These areas are considered as  
 

 

Fig. 3. Reconstructed 3D image of a DCIS is shown in the right bottom, x-z cross section in the 
right top, y-z cross section in the top left and the x-y cross section in the left bottom. These show 
three ductus lactiferi with numbers 1, 2 and 3. In almost all of them are seen microcalcification 
and higher contrast at each fringe and finally extension of carcinoma. 
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calcification. Low contrast areas are seen adjacent to calcification area. These are 
considered as necrotic ones. Higher contrast areas are seen surrounding outside of low 
contrast necrotic areas. These are considered as cancer cell layer spreading inside milk 
ducts. High contrast linear area or net like area are seen outside milk duct. These 
structures are considered as cancer cell area in interstitial tissue. Especially #3 ductus 
lactiferi seen in the left bottom image is almost closed. Further one can easily recognize 
that most of ductus lactiferis hold fringes surrounding ducts. These white structure 
means more electron density. Even as their extension carcinoma with irregular shape is 
clearly shown.  

4   Discussion 

Pathological diagnosis is under way so that good correlation between x-ray view and 
pathological view can be highly expected. Mammography is of quite significance in 
order to discover breast cancer at its early stage as possible; the size of the cancer which 
is discovered by the current technique is bigger than 5 mm. By further development of 
the technique described in this note the size of cancer to be able to be found out could 
be much smaller ~ say around 1 mm or even smaller. The current mammography has an 
important role as an indicator of adequacy of breast cancer treatment [28], [29]. Also 
magnified mammography seems far useful to recognize tumor extent than conventional 
mammography [30] because higher spatial resolution better than 50 μm can be 
expected while the conventional absorption one with less contrast can only provide 
with 50 μm or even larger. Then refraction based mammography has high grade 
potential of diagnosis compared to conventional mammography and the system 
proposed here could open an x-ray pathological tool.  
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Abstract. The file size of images generated using digital mammography sys-
tems varies between 8 MB and 50 MB. The amount of data to be stored in digi-
tal screening programs is huge. Image compression may be helpful. In this 
study 8491 digital and digitised mammography images are compressed using 14 
lossless compression schemes. The results show that using lossless image com-
pression, the total amount of data to be stored can be reduced by a factor of 1.3 
to 6.9 without loss of image quality. The actual data reduction depends strongly 
on the selected compression algorithm and the systems used to acquire and 
process the mammograms. The JPEG-LS and JPEG 2000 algorithms, both in-
cluded in the DICOM standard, prove to be promising algorithms for screening 
programs because of the high compression ratios. 

1   Background 

For the design of the digital infrastructure for a population based breast cancer screen-
ing program, accurate data is required. The total amount of image data will have to be 
known in order to determine the feasibility of archiving and communication solutions. 

The amount of image data can be reduced by applying image compression. Multiple 
studies on the compression of digitally stored medical images are known from litera-
ture [1,2,3,4]. From these studies it can be concluded that the achievable compression 
ratio depends strongly on the image type. In these studies however, a very limited 
number of digital mammography images was used. Therefore up to now there was no 
reliable information on the achievable compression ratios for digital mammograms. 

The purpose of this study is to quantify the possibilities for reducing the required 
storage and network capacity by the usage of lossless image compression both for 
digital and for digitised mammograms. This data can then be used in the planning 
phase for the digitisation of screening programs for determining the required network 
capacity and storage space. 

2   Method 

2.1   Data Set 

For digital mammograms the achievable compression ratio will depend on system 
properties like detector size and resolution, noise, homogeneity of the background and  
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Table 1. Number of images for each system and the specifications for the image types used 

System 
Detector size 

(cm)(1) 

Pixel 
size 
( m) 

# 
Raw 

# 
Proc 

File size 
(MB) 

17.9 x 23.3 -(4,5) -(4) 16.3 Agfa 
Embrace DM1000 23.3 x 28.7 

70 
88(5) 196 26.0 

17.7 x 23.7 361(7) 361 32.0 Fuji 
Profect CS 23.6 x 29.6 

50 
40(7) 40 53.5 

GE 
Senograph 2000D 

19.1 x 22.9(2) 100(2) 1324 1363 8.4 

IMS 
Giotto Image MD 

16.3 x 22.8 81 542 543 10.8 

Kodak 
DirectView CR950 

17.6 x 23.4 49 263 263 32.7 

17.9 x 23.3 234(5) 326 16.3 Lorad 
Selenia 23.3 x 28.7 

70 
24(5) 36 26.0 

R2 
ImageChecker 

15.7 x 23.7(3) 100 1212 -(6) 7.1(3) 

Sectra 
Microdose 

23.9 x 26.2 49 362(7) 357 49.7 

17.9 x 23.3 6(5) 5 16.3 Siemens 
Novation DR 23.3 x 28.7 

70 
268(5) 277 26.0 

   4724 3767  

1 The Imager Pixel Spacing as specified in the DICOM header was used to determine the 
detector size.  

2 In the DICOM header of part of the GE-images the Imager Pixel Spacing was specified to 
be 94 micron, in the others it was specified to be 100 micron. The detector size was 
calculated using an Imager Pixel Spacing of 100 micron.  

3 Because the scanned films were taken from an anonimised database, the patient labels had 
been cut from the images. Therefore the average image width was 15.7 cm in stead of the 
usual 18 cm. If the images had not been anonimised the file size would have been about 8 
MB.  

4 On the Agfa system at the BBNN only the full detector size is used. Therefore no images 
with the small detector size were available and the total amount of data stored is larger.  

5 The Agfa, Lorad and Siemens systems use equal detectors. Therefore for the unprocessed 
images only differences in compression ratio’s due to differences in the image sizes of the 
collected images are to be expected. 

6 Although it would be good practise to optimise the digitised images for displaying, no 
processing was performed here. 

7 The unprocessed Fuji and Sectra images are usually not available, but were made 
available by the manufacturers specifically for this project. 
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the image processing performed. Also image specific factors like the size and com-
plexity of the breast will influence compression efficiency. In order to determine the 
system dependency as accurate as possible, the influence of the image specific factors 
on the measured compression ratio must be limited as much as possible. Therefore for 
each manufacturer a large number of images was collected. The data set for this study 
contains 8491 processed and unprocessed images from 9 systems of different manu-
facturers (Table 1). 

The Fuji and Kodak systems are CR systems, the R2 system is used for digitising 
analogue film, the other systems are DR systems. For the Agfa system only a limited 
number of unprocessed images was collected. But  since this system uses the same de-
tector as the Lorad and Siemens systems, it is to be expected that the compression  
results for the unprocessed images will be equal for these systems. A difference be-
tween the images from these systems is however that only for the Lorad system the 
option to use only part of the detector for the imaging of smaller breasts was used on a 
regular basis. This causes the average file size for the (uncompressed) Lorad images 
to be much smaller. 

The digitised images used originate from an anonimised database. Because in the 
anonimisation process the patient information was cut from the images, these images 
are on average about 10% smaller than they would usually be. 

2.2   Compression Algorithms 

Image data can either be compressed lossless or lossy. When using lossless compres-
sion and decompression algorithms, the decompressed image will be identical to the 
original image. When using lossy compression the compressed image does not con-
tain all information required to decompress the image without loss of information. For 
some compression algorithms the maximum deviation in pixel values after decom-
pression can be chosen in advance of the image compression [2]. Although this allows 
for achieving higher compression rates by neglecting details that are barely discern-
able to the human eye or are not clinically relevant, in this study only lossless  
compression was examined. Due to the legal objections against lossy compression, 
extensive research on the influence of lossy image compression on the diagnostic 
quality of digital mammograms will be required before it can be decided if such com-
pression could be allowed. 

In this study all lossless compression algorithms currently included in the DICOM 
(Digital Imaging and Communications in Medicine) standard [5] are examined. Fur-
ther, three commonly used or promising general compression algorithms were exam-
ined. This was done in order to check if by keeping part of the imaging chain outside 
the DICOM standard, substantial further data reduction could be achieved. 

2.2.1   General Purpose Compression Algorithms 
An extensive set of compression algorithms is available today. Some algorithms are 
only suitable for compressing specific types of data such as still images, video data or 
fax data, the others are the general purpose compression algorithms. This study uses: 
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• ZLIB. Commonly used programs like WinZip (Windows) and gzip (Unix) use the 
ZLIB library. This algorithm was selected because it is easily available for all 
common operating systems. Therefore it could be applied right away. For this 
study gzip version 1.3.5 (http://www.gzip.org) was used, with default settings. 

• BZIP. The BZIP algorithm is a block sorting algorithm. It was selected because it 
is freely available and showed promising results in another study on the compres-
sion of medical images from several modalities[5]. For this study bzip2 version 
1.0.2 (http://www.bzip.org) was used, with default settings. 

• 7Z. This algorithm was selected because it is freely available and its predecessor 
(UFA) showed promising results in another study on the compression of medical 
images from several modalities[5]. For this study 7za version 4.14 beta 
(http://www.7-zip.org) was used. 

2.2.2   Algorithms Included in the DICOM Standard 
Five lossless compression methods have been included in the DICOM standard. The 
advantage of using one of these algorithms is that the compressed images still are 
DICOM images. Therefore they are exchangeable (over a network) between DICOM 
systems, without the need to decompress them first. These five algorithms were all in-
cluded in this study: 

• Deflated Little Endian. This algorithm was added to the DICOM standard in May 
2001 and is based on the ZLIB library. The difference with the compression 
method in section 2.2.1 is that in this case the zip-file header is not stored. In stead 
of this it has to be indicated in the DICOM header that the transfer syntax is ‘De-
flated Little Endian’. In this case however the DICOM header itself is not com-
pressed. The difference between these two methods is therefore expected to be 
negligible. For this study the program ‘dcmconv’ included in the Offis DICOM 
Toolkit v3.5.3 (http://dicom.offis.de/dcmtk) was used for encoding and decoding 
of the images. 

• Run Length Encoding. This algorithm was used originally for compressing data 
streams like fax data. An advantage of this algorithm is that it is extremely simple 
and can usually be performed in real time. This algorithm converts consecutive 
equal symbols into a value with a length indicator. It is especially useful for the 
compression of data containing many equal values like fax data (only a limited part 
of the data contains grey values, most of it is white). Since this algorithm does not 
used the 2 dimensional properties of the images, the expected compression ratios 
are not particularly high. The implementations used in this study for encoding and 
decoding are the programs ‘dcmcrle’ and ‘dcmdrle’ included in the Offis DICOM 
Toolkit v3.5.3 (http://dicom.offis.de/dcmtk). 

• JPEG. This commonly used image compression algorithm was added to the 
DICOM standard in 1994 and can be used both for lossless and lossy image com-
pression [6]. For the lossless version, seven settings (selection values)  can be cho-
sen. All of those were examined in this study. The implementations used in this 
study for encoding and decoding are the programs ‘dcmcjpeg’ and ‘dcmdjpeg’ in-
cluded in the Offis DICOM Toolkit v3.5.3 (http://dicom.offis.de/dcmtk). The loss-
less implementation in this version of the toolkit turned out to contain bugs,  
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causing the compression to be lossy. By making several adjustments it was still 
possible to do lossless compression and determine the correct compression ratio 
using this software. 

• JPEG-LS. This algorithm was included in the DICOM standard in September 
2000, and was specifically developed for lossless and near-lossless compression 
[7]. Just the fully lossless compression scheme was examined in this study. Be-
cause implementations of the JPEG-LS algorithm are not widespread yet, a general 
implementation had to be used (without DICOM functionality). Therefore the com-
pressed images had to be encapsulated in a valid DICOM header afterwards. For 
this study a JPEG-LS implementation by David Clunie was used (http://www. 
dclunie.com/jpegls.html). 

• JPEG 2000. This algorithm was included in the DICOM standard early 2002. It is 
a modern compression algorithm based on wavelet technology. The JPEG 2000 
standard [8] facilitates both lossless and lossy compression. It even makes it possi-
ble to make images (or parts of images) available in a resolution or quality that dif-
fers from the original, creating new possibilities for e.g. tele-radiology. In this 
study, just the lossless compression and decompression were examined. Like 
JPEG-LS, also for JPEG 2000 a general implementation without DICOM function-
ality had to be used. For this study the JPEG 2000 functionality in version 0.97 of 
the OpenJPEG library (http://www.openjpeg.org) was used. 

2.2.3   Data Integrity Check 
In order to guarantee that all compression algorithms used are truly lossless, all com-
pressed images in this study have been decompressed and compared to the original 
images on a pixel by pixel basis. 

3   Results 

Table 2 shows the compression results for the seven individual selection values of 
the JPEG algorithm. The values for the JPEG compression in Table 3 are the com-
pression ratios when using the most efficient selection value for each image type. 
From Table 3 it can be seen that for almost all image types the most efficient com-
pression methods are JPEG-LS and JPEG 2000. Just for the processed Fuji images 
BZIP is more efficient. When using the JPEG algorithm (Table 2), for most image 
types selection value 7 is slightly more efficient than the other selection values. 

The compression ratios measured for the unprocessed Agfa, Lorad and Siemens 
images listed in Table 3 are similar. Although these manufacturers all use the same 
detector, this is remarkable. All Agfa images collected and almost all Siemens images 
were acquired using the large detector size, while most of the Lorad images were ac-
quired using the small detector size (Table 1). Apparently the background can not be 
compressed more efficiently than the area containing medical information. 

Comparing the compression ratios for processed and unprocessed images in Table 3, 
it becomes clear that for the DR systems for most compression algorithms the com-
pression efficiency either remains equal or increases due to image processing. For the 
CR systems the compression efficiency decreases due to image processing. 
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Table 2. Compression ratios for the seven selection values of the JPEG algorithm and the aver-
age size after compressing using the most effective compression algorithm 
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Table 3. Compression ratios for all algorithms and the average size after compressing using the 
most effective compression algorithm 
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4   Discussion and Conclusions 

The amount of (compressed) data generated depends strongly on the system, and 
should be taken into account when choosing one or more systems for usage within a 
screening program. By using lossless compression the size of mammography images 
can effectively be reduced. JPEG-LS and JPEG 2000 prove to be the most efficient 
algorithms. The choice for a specific algorithm depends among others on the required 
compression speed. Although not discussed in this paper, the JPEG 2000 implementa-
tion used turned out to be much slower than the JPEG-LS algorithm. This is probably 
caused by the complexity of the JPEG 2000 algorithm, which offers additional func-
tionality for retrieving images or even parts of images at a lower image quality. This 
opens new possibilities for tele-radiologic purposes, but slows down the compression. 
The results of this study show that for some image types the image background can 
not be compressed more efficiently than the breast area. In order to improve the com-
pression efficiency, it would make sense to homogenise the image background. For 
some image types the background is already homogenised by the image processing or 
due to the acquisition process. This may be one of the causes for the differences in 
achievable compression ratio found in this study. It would be interesting to see how 
much the compression efficiency would increase for the other images if the back-
grounds are homogenised for all images in advance of compression. 

References 

1. A. Przelaskowski, "Compression of mammograms for medical practise", 2004 ACM Sym-
posium on Applied Computing, 249-253, 2004. 

2. D. Clunie, “Lossless Compression of Grayscale Medical Images – Effectiveness of Tradi-
tional and State of the Art Approaches” in Proc. SPIE (Medical Imaging), vol. 3980, Feb. 
2000. 

3. S. M. Perlmutter et al., "Image quality in lossy compressed digital mammograms", Signal 
Processing, vol. 59, pp. 189-210, June 1997. 

4. J. Kivijärvi et al., “A comparison of lossless compression methods for medical images”, 
Computerized Medical Imaging and Graphics, vol. 22, 323-339, 1998. 

5. NEMA Standards Publication PS 3.5, Digital Imaging and Communications in Medicine 
(DICOM), Part 5: Data Structures and Encoding, National Electrical Manufacturers Asso-
ciation, 2004. 

6. ISO/IS 10918-1, Digital compression and coding of continuous-tone still images: Require-
ments and guidelines, 1994. 

7. ISO/IS 14495-1, Lossless and near-lossless compression of continuous-tone still images- 
baseline, 2000. 

8. ISO/IS 15444-1, JPEG 2000 image coding system - Core coding system, 2002. 



Susan M. Astley  et al. (Eds.): IWDM 2006, LNCS 4046, pp. 541 – 548, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Capturing Microcalcification Patterns in Dense 
Parenchyma with Wavelet-Based Eigenimages 

Nikolaos Arikidis, Spyros Skiadopoulos, Filippos Sakellaropoulos,  
George Panayiotakis, and Lena Costaridou 

Department of Medical Physics, School of Medicine,  
University of Patras, 265 00 Patras, Greece  

costarid@upatras.gr, panayiot@upatras.gr  

Abstract. A method is proposed based on the combination of wavelet analysis 
and principal component analysis (PCA). Microcalcification (MC) candidate 
regions are initially labeled using area and contrast criteria. Mallat’s redundant 
dyadic wavelet transform is used to analyze the frequency content of image 
patterns at horizontal and vertical directions. PCA is used to efficiently encode 
MC patterns in wavelet-decomposed images. Feature weights are computed 
from the projection of each candidate MC pattern at the wavelet-based principal 
components. To assess the effectiveness of the proposed method, the same 
analysis is carried out in original images. Candidate MC patterns are classified 
by means of Linear Discriminant Analysis (LDA). Free-response Receiver 
Operating Characteristic (FROC) curves are produced for identifying MC 
clusters. The highest performance is obtained when PCA is applied in wavelet 
decomposed images achieving 80% sensitivity at 0.5 false positives per image 
in a dataset with 50 subtle MC clusters in dense parenchyma. 

1   Background 

Mammography is currently the technique with the highest sensitivity available for 
early detection of breast cancer on asymptomatic women [1]. Detection of early signs 
of disease, such as microcalcifications (MCs), with screening mammography, is a 
particularly demanding task for radiologists. This is mainly attributed to the low MC 
contrast resolution, resulting from their small size [2]. These limitations have 
provided the basis for the development of Computer-Aided Detection (CAD) systems 
with high performance characteristics [3], [4], representing one of the most successful 
paradigms in medical image analysis. However, performance of such systems in case 
of dense tissue is challenged by the high correlation between fibroglandular tissue 
patches and MCs, resulting in increased false positive (FP) rate [5], [6].  

One approach in CAD systems for MC detection is the use of the wavelet 
transform framework to analyze MCs based on their high frequency content. 
However, a large component of the power in a mammogram, at high spatial 
frequencies, is also noise, mainly originating from the inhomogeneous background of 
dense tissue structures, resulting in poor MC signal-to-noise ratio (SNR) [7]. Netch et 
al. [8], based on the circularly symmetric Gaussian model achieved 84% sensitivity 
with 1 average FP per image, using a Laplacian kernel to detect MCs as local maxima 
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at different frequency bands. Strickland et al. [9] have shown that the average 2D 
gray level profile of MCs is well described by a circularly symmetric Gaussian 
function. Since the optimum detector of Gaussian functions is the Laplacian of 
Gaussian, a wavelet filter close to the Laplacian of Gaussian was used to detect 
significant peak responses for objects of similar shape and size as the Gaussian filter. 
Soft or hard thresholding was used to set the low amplitude wavelet coefficients to 
zero, obtaining 70% sensitivity with 1 FP per image in a varying subtlety of MC 
clusters. Yoshida et al. [10] used an undecimated wavelet transform for MC detection 
achieving 78% sensitivity with 0.5 average FPs per image in a dataset with subtle 
MCs. Drexl et al. [11] used the continuous wavelet transform and features based on 
the evolution of the wavelet coefficients across scales. At 0.5 FP per image the 
sensitivity achieved was approximately 85%. Qian et al. [12] used a tree structured 
wavelet transform for multiresolution decomposition and a non-linear filter for 
suppressing image noise, achieving 94% sensitivity with 1.6 average FP per image. 
The aforementioned methods have been tested in image datasets of various types of 
breast parenchyma including dense tissue, with the exception of Lado et al. [13], who 
has worked on dense parenchyma, yielding 2.2 FPs per image with 73% sensitivity. 

The aim of this study is to efficiently encode MC patterns analyzed by combining 
Principal Component Analysis (PCA) and wavelet decomposition. The capability of a 
feature vector based on this analysis is demonstrated in a detection task of subtle MC 
clusters embedded in dense parenchyma. To assess the effectiveness of the proposed 
MC cluster encoding method, the same analysis is carried out in original images. 

2   Method 

2.1   Labeling of Candidate MC Regions 

MCs are very small structures visible as bright spots in the mammogram because their 
mass attenuation coefficient is higher than any other structure in the breast. However, 
due to the growth of MCs, there is no absolute lower bound to their contrast. Very 
small MCs may have low contrast relative to their background, which is sometimes 
close to structure noise originating mainly from fibroglandular tissue patches. 

MC candidate regions are initially labeled using contrast and area criteria. In this 
study, pixel contrast is measured on a local basis, exploiting wavelet analysis [14]. 
Specifically, pixel contrast is defined as the difference between the pixel foreground 
and background maps normalized by their sum. The foreground pixel map 
corresponds to gray level values of the original image. The background pixel map 
corresponds to the gray level values of a low-pass filtered image. A contrast threshold 
of 0.5% is selected to preserve subtle MCs in dense parenchyma and an area threshold 
of 1.2 mm2 to eliminate image components, which are likely to be macrocalcifications 
or line structures. Breast border identification is obtained with an edge detection 
technique based on the magnitudes of the derivative of a Gaussian operator. 

2.2   Extraction of Feature Vector 

A common approach of computerized MC detection methods is based on a two-stage 
process utilizing image feature extraction and subsequent classification to reduce FPs. 
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Morphological, textural and spectral characteristics are used to access MC properties 
[3], [15]. The wavelet transform analyzes spectral information while preserving 
spatial information. PCA is applied on wavelet coefficients to provide efficient 
encoding of MC patterns at different frequency bands and orientations. 

In this study, wavelet image decomposition is performed with Mallat’s redundant 
dyadic wavelet transform. When the wavelet filter is selected as the second derivative 
of the signal smoothed at scale j, the local maxima corresponds to high curvatures 
[16]. Gaussian functions, like MCs, are high curvature components at both horizontal 
and vertical directions capable of differentiating them from line-like structures. MCs 
are highly correlated with the wavelet coefficients jW

2
 at dyadic scales j=2,3 [10], 

[17], [18]. Following MC candidate region identification, local maxima of 2nd scale 
wavelet coefficients of these regions are used to estimate the center of MC patterns. 
Each MC pattern is mapped to four representations, which are the horizontal and 
vertical wavelet coefficients at the 2nd and 3rd dyadic scale. When the wavelet 
transform is combined with PCA, the wavelet coefficients at scale j are used instead 
of using the pixel values. 

Let a MC pattern be a two-dimensional array [ , ], considered as an one-
dimensional vector with length N= × . If L is the number of training MC patterns, 
we consider matrix D with L rows and N columns. Let M the vector of mean column 
values of matrix D. A normalized matrix D  is constructed by subtracting the elements 
of M from the corresponding elements of each row of D. The covariance matrix C of 
D  is computed: 

C= D T ·D  (1) 

where D T is the transpose matrix of D  of size × . The principal components 
(eigenimages) Ak (k: number of principal components) of D  are computed from the 
covariance matrix C. When wavelet representations are used, the principal 
components Ak, named wavelet MC eigenimages, are computed for each 
representation. A feature vector Fk is composed of the projections (weights) of the 
unknown wavelet decomposed pattern U at the wavelet-based principal components 
Ak: 

Fk= U · Ak (2) 

Principal components characterize most of the variability of the training dataset D 
of MC patterns, by means of mean square error (MSE) minimization [19]. Unknown 
patterns can be differentiated by comparing their weights to those of known training 
classes, as proposed by Turk et al. [20]. 

The training dataset D used for the generation of the MC principal components 
consists of 41 individual subtle MC patterns, indicated by an expert radiologist. These 
patterns were selected from dense mammograms (density 3 and 4 of ACR BIRADS) 
originating from the Digital Database for Screening Mammography (DDSM). 

2.3   MC Cluster Detection 

Linear Discriminant Analysis (LDA) is used to classify MC patterns in three classes – 
individual MCs, film artifacts and fibroglandular tissue. The training dataset of the  
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Fig. 1. MC cluster detection in wavelet-decomposed images 

classifier consists of 60 MCs, 40 film artifacts and 60 fibroglandular noise patterns, 
as indicated by two expert radiologists. All patterns were extracted from 
mammographic images with subtle MCs in heterogeneously dense and extremely 
dense parenchyma. 

The validation dataset consists of 51 dense mammograms (33 abnormal, 18 
normal) containing 50 subtle MC clusters embedded in dense parenchyma, 
originating from the DDSM database (Howtek scanner with 12 bits pixel depth and 
43.5 m spatial resolution sub-sampled at 87 m). The detection performance is 
evaluated by means of Free-response Receiver Operating Characteristic (FROC) 
curves, produced by varying the threshold of the estimated probability for 
identifying MC clusters. 

A cluster is considered detected if a closed area contains three or more individual 
candidate MCs. Defining a disk of 1 cm in diameter around each MC pattern, a 
group of disks that touch or overlap forms a closed area [21]. The stages of the 
algorithm are provided in Fig. 1. 
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3   Results  

The contribution of combining PCA and wavelet analysis on the efficiency of MC 
cluster detection is investigated (Fig. 2): (i) for different variability encodings of the 
training dataset (90%, 95% and 98%) and (ii) by comparing PCA carried out on 
wavelet-decomposed images and original images (background suppressed). When 
PCA is applied on original images, the resulting feature vector consists of 5, 8 and 13 
principal components, while for wavelet decomposed images of 20, 28 and 36 for 
90%, 95% and 98% amount of MC training variability, respectively.  

TP
 fr
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tio

n 

(a)
Average FPs per image 

90%

95%

98%

TP
 fr

ac
tio

n 

90%95%

98%

Average FPs per image 
(b)  

Fig. 2. FROC curves of the validation dataset for three amounts of variability encoding (90%, 
95% and 98%) of the MC training dataset. PCA applied on: (a) background-suppressed images 
and (b) wavelet-decomposed images. 

(a) (b) (c) (d)  

Fig. 3. Example for MC cluster identification in heterogeneously dense parenchyma (DDSM: 
B_3509_LEFT_CC): (a) Original image, (b) candidate MC region labeling, (c) identification of 
individual MC patterns using wavelet eigenimages and the LDA classifier and (d) identified 
clusters of MC patterns 
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As observed in the FROC curves, when PCA is applied on original images (Fig. 
2a), the detection performance remains the same above 95% of variability encoding, 
requiring 8 principal components to adequately encode MC patterns. In case of 
applying PCA on wavelet-decomposed images (Fig. 2b), detection performance 
improves with increasing amount of variability encoding. At corresponding 
variabilities, PCA wavelet encoding outperforms PCA original encoding, especially at 
low variability (Fig. 2). The highest performance is achieved when PCA is applied on 
the wavelet-decomposed images with 98% amount of variability encoding, yielding 
80% TP fraction with 0.5 average FPs per image. Thus, wavelet analysis is proven to 
contribute significantly in increased detection performance. The low overall TP 
fraction achieved is attributed to the low contrast character of the MC cluster 
validation dataset studied. 

The proposed MC cluster detection method applied on an image of 2370x1305 
pixel size, implemented on a personal computer with INTEL PENTIUM M processor 
at 1.3 GHz and 768 Mbytes memory size, requires approximately 73 s for the pre-
processing step. When the candidate MC patterns are projected at the 36-dimensional 
feature vector, the processing time is approximately 8 s. A representative example of 
the algorithm stages for MC cluster detection is provided in Fig. 3. 

4   Discussion 

In the proposed method, we take advantage of the spatial localization property of the 
wavelet transform to encode MC pattern information and to differentiate them from 
film artifacts and fibrograndular noise patterns, which have the same frequency 
content but different patterns. Compared with other studies, with or without the 
application of the wavelet transform [4], [11], [21], PCA applied on wavelet-
decomposed images provides encouraging results. However, the performance of the 
method is not directly comparable with reported MC cluster detection schemes [8], 
[9], [10], [11], [12], as there are differences in the composition of the datasets used 
regarding the type of breast parenchyma and MC clusters subtlety. Our results are 
only comparable to the results reported by Lado et al. [13], but of superior 
performance. For inter-comparison purposes, performance evaluation of the proposed 
MC cluster detection method should be expanded in a dataset with varying 
parenchyma densities and subtlety of MCs. These promising results are in support of 
further development of the proposed method into a fully automated MC detection 
scheme.  
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Abstract. A method that performs multiresolution enhancement, adaptive to 
breast components, for optimal visualization of the entire breast area is 
presented. The method includes an edge detection step to distinguish breast area 
from mammogram background and employs Gaussian mixture modeling to 
segment breast components (uncompressed fat, fat and dense). The original 
image is decomposed using a redundant discrete wavelet transform and 
magnitude coefficients corresponding to each breast component are linearly 
mapped for contrast enhancement. Coefficient mapping is controlled by a gain 
factor provided by the parameters of the modeled breast components. The 
processed image is derived by reconstruction of the modified wavelet 
coefficients. The algorithm is compared with two enhancement methods 
proposed for soft-copy display, in a dataset of 68 mammograms containing 
lesions. The proposed method demonstrates increased performance in 
accentuating lesions embedded in fatty or dense parenchyma, as well as in 
visualization of anatomical features in the entire breast area. 

1   Background 

Screen film mammography is the primary imaging technique for the detection and 
diagnosis of breast lesions. However, the high diagnostic performance of screen film 
mammography is challenged by occult disease signs (microcalcifications and/or 
masses) due to the masking effect of dense breast parenchyma, and the over-exposure 
of breast periphery. 

Several computer-based algorithms have been proposed to enhance subtle features 
of interest in digital and digitized mammograms [1], [2]. These methods can be 
classified according to the type of processing used (global/locally-adaptive histogram 
equalization, region or neighborhood adaptive enhancement and wavelet enhance-
ment) and to target area (dense tissue and/or breast periphery). 

In the advent of Full Field Digital Mammography (FFDM), it is crucial to exploit 
the potential of image processing algorithms in enhancing the ability of radiologists to 
interpret images [1], [2]. To be eligible, candidate methods should also fulfill 
functionality requirements of robustness and computational speed for soft-copy 
display. 
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In this study, an automated wavelet-based enhancement method is proposed 
adaptive to breast components. For this purpose we adopted the rationale of the 
Mixture Model Intensity Windowing (MMIW) technique [3], in order to derive linear 
mapping functions of wavelet coefficients for breast components. The method is 
demonstrated by means of a preference study including two additional image 
enhancement methods proposed for soft-copy display, in a pilot dataset containing 
lesions (masses and/or microcalcifications-MCs). 

2   Method 

2.1   Breast Border Identification 

The breast border is identified using an edge detection technique which is performed 
in the following four steps:  

i) The mean value of grey levels is calculated in the most homogenous 
rectangular region (164x164pixels) of the mammogram background (over-
exposed area of the film). The most homogenous region is defined by means 
of quantitative criteria including the minimum grey level value and standard 
deviation. 

ii) The gradient magnitude of the image is calculated using a derivative of 
Gaussian operator. 

iii) An initial breast edge point is defined by the location of maximum gradient 
magnitude along a line passing horizontally through the center of a breast. 
Final acceptance of this point to the breast edge is subject to fulfillment of a 
similarity criterion of its rectangular neighborhood mean grey level value 
similar to that of the homogenous region of the mammogram background 
(± 0.2%). 

iv) The rest of breast edge points are progressively defined by identifying 
adjacent points that fulfill the same two criteria. 

2.2   Breast Components Segmentation 

Segmentation of the three breast components (uncompressed fat-UF, fat-F and dense-
D) is performed using Gaussian Mixture Modeling [4], [5]. Specifically, the breast 
area is modeled by a linear combination of k weighted Gaussian distributions (a 
mixture of Gaussians) given by: 

=
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where j are the mixing weights ( j  0, for j=1,2,…k), k=3 components and (x; j) 
the 1-dimensional Gaussian probability density function, corresponding to each breast 
component, parameterized by its mean m and variance 2, is given by: 
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where =(m, 2). 
The parameters of each Gaussian (x, ) are iteratively determined by the 

Expectation Maximization (EM) algorithm [6], which maximizes the log-likelihood 
of the data representing the distribution. Specifically, a training set Xn={x1,x2,…,xn} of 
the independent and identically distributed pixels xi  R1 (image) is assumed to be 
sampled from eq. (1). The task is to estimate the parameters of the mixture that 
maximize the log-likelihood: 
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Fig. 1 is an indicative example of mammographic component modeling using the 
mixture of three Gaussians.  

 

 
    (a)     (b)        (c) 

Fig. 1. (a) Original mammogram. (b) Histogram of the breast area along with the mixture of 
Gaussians. Dashed lines indicate the intercept points of the Gaussian functions. (c) Segmented 
mammographic components. To visualize segmentations, every pixel has been grey level coded 
to reflect the component to which it has been assigned. 

2.3   Component-Adaptive Wavelet Enhancement 

A fast, biorthogonal, Redundant Discrete Wavelet Transform (RDWT) [7] is utilized 
to obtain a multiresolution representation of the original image. The wavelet used in 
RDWT is quadratic spline function with compact support and is the first derivative of 
a Gaussian-like smoothing function [7]. Use of RDWT as a basis for contrast 
enhancement is beneficial due to shift-invariance and lack of aliasing. The algorithm 
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is implemented using a filter bank algorithm, called “algorithme à trous” [8], which 
does not involve subsampling. The image is decomposed into a multiresolution 
hierarchy of subband images, at the first four resolution scales (s =1-4), consisting of 
a coarse approximation image and a set of wavelet detail images. The wavelet 
magnitude coefficients, corresponding to each breast component are linearly mapped 
to accomplish contrast enhancement. Coefficient mapping of each breast component 
is controlled by a gain factor (GF) provided by the parameters of the corresponding 
Gaussian distribution, previously determined by the EM algorithm. Specifically, 
linear mapping of the multiscale gradients (magnitude coefficients) of each breast 
component (k) can be mathematically expressed by: 

)n,m()k(M)k(GF)n,m()k(M ss
e
s = ,        321 ,,k =  (5) 

where )n,m()k(M s and )n,m()k(M e
s are the initial and enhanced gradient magnitude 

values at position (m,n) and GF(k)s >1 is the gain factor given by: 

( ) ( )minmaxminmaxs II/GLGL)k(GF −−=  (6) 

where GLmin and GLmax are the minimum and maximum gray level values of the entire 
breast area, respectively, while Imin and Imax are the intercept points of the 
corresponding Gaussian function of the kth breast component with its neighboring 
Gaussian functions, provided by the EM algorithm. The gain factor is kept constant 
for the four resolution scales used. The processed image is derived by reconstruction 
of the modified wavelet coefficients of all breast components. Fig. 2 is an application 
example of the component adaptive wavelet enhancement. Lower and upper arrows 
indicate a MC cluster and a circumscribed mass containing MC cluster, respectively. 

 

           (a)                       (b) 

Fig. 2. (a) Original mammogram. (b) Processed image. Arrows indicate lesions also presented 
in magnified regions of interest. 

2.4   Quantitative Performance Evaluation Metrics 

An initial quantitative performance evaluation of this method was performed, using 
30 normal mammographic images, originating from the DDSM database [9], with 
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embedded simulated masses [10], [11]. Contrast and noise measurements were carried 
out in the region of the simulated mass. In order to assess the effect of the gain factor 
(GF) on image quality, images were processed with varying percentages of the gain 
factor (60%, 80%, 100%, 120% and 140%). The following quantitative metrics were 
used: 

(a) Contrast improvement index (CII) defined as Cproc/Corig, where contrast C is 
provided by (xM-xB)/ (xM+xB), where x is the mean gray level value of pixels 
located in the simulated mass (M) and in mass background (B) defined by an area 
of 10 pixels radius around the mass. 

(b) Noise amplification index (NAI) measured as proc/ orig, where  is a noise 
estimation within the mass, proposed by Rank et al. [12].  

(c) Contrast-to-noise ratio index (CNRI) defined as CII/NAI. 

2.5   Preference Study  

Performance evaluation was carried out using a dataset of 68 mammographic 
images originating from the DDSM database [9]. Mammograms selected, contain 
lesions (50 MC clusters and 36 masses) and correspond to all density categories 
according to ACR BIRADSTM lexicon (density 1: 12, density 2: 20, density 3: 24, 
density 4: 12).  

The proposed method was compared with two image enhancement algorithms 
proposed for soft-copy display; the Contrast Limited Adaptive Histogram Equali-
zation (CLAHE) method [13] and a Spatially Adaptive Wavelet-based (SAW) 
enhancement method [14], [15]. Methods’ performance was evaluated by means of 
a preference study. Two experienced radiologists ranked the performance of each 
original and the corresponding processed images of the sample (from 1=best to 
4=worst) with respect to contrast and morphological (MC cluster criteria: number, 
shape, size, density; mass criteria: center, contour, shape, size) characteristics of 
lesions as well as overall visualization of anatomical features (periphery: nipple, 
areola, skin, veins and Cooper’s ligaments; dense and fatty tissue). 

2.6   Visualization Tool 

An image visualization tool, developed in our department [16], was used for 
implementation of segmentation, enhancement and performance evaluation proce-
dures. This tool is domain-specific to medical imaging. In addition to conventional 
visualization operations, it provides global and adaptive wavelet functionality [17]. 

3   Results 

Fig. 3 provides average values of CII, NAI and CNRI measured on images, with 
simulated masses, processed by the proposed enhancement method by successively 
altering the gain factor. 
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Fig. 3. Average values of contrast improvement index (CII), noise amplification index (NAI) 
and contrast-to-noise ratio index (CNRI) for different gain factors of enhancement 

As expected, increase of the gain factor results in increase of both CII and NAI. 
However, the increase of NAI is more rapid compared to the increase of CII, resulting 
in decreased CNRI of the processed images. 

The average rank obtained from the two radiologists, for original and the three 
image enhancement methods with respect to (a) contrast and (b) morphology of 
lesions (MC clusters and masses) is provided in Fig. 4. Fig. 5 provides methods’ 
performance with respect to overall visualization of anatomical features. A low rank 
indicates a high preference.  

 

Fig. 4. Average rank for original and the three image enhancement methods with respect to 
(a) contrast and (b) morphology of lesions (MCs and masses) 
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Fig. 5. Average rank for original and the three image enhancement methods with respect to 
visualization of anatomical features (periphery, dense/fatty tissue) 
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4   Discussion 

According to the preference study, the proposed method has shown promising results 
in enhancing visibility of lesions against dense parenchymal background and 
enhancing visibility of low-density (fat) regions of the breast. 

As observed, all methods outperform original images with respect to visualization 
of lesions’ contrast and morphology. The proposed method demonstrates the highest 
performance in both lesion types. The SAW method fails in visualizing masses 
efficiently, since it only enhances masses’ border but losing information from masses’ 
interior. The CLAHE method had the lowest preference in visualizing MC clusters 
due to morphology distortion and suboptimal contrast enhancement in case of MCs 
located in dense breast parenchyma. 

Concerning visualization of anatomical features, the proposed method 
demonstrates the highest preference. Due to the linear mapping of the wavelet coeffi-
cients the method does not cause overenhancement of normal tissue structures and 
provides an image comparable in appearance to the standard screen-film mammo-
grams that radiologists are acquainted with. Furthermore, no artifacts are observed in 
the boundaries of the reconstructed breast components. However, the method, in 
some cases, fails in enhancing breast periphery (uncompressed fat). This is attributed 
to the suboptimal performance of the breast border identification method used. 
Refinement of the proposed method should include improvement of breast border 
identification, and segmentation of pectoral muscle to deal with mediolateral oblique 
mammograms. 

The SAW method fails in depicting fatty and dense tissue, which can not even be 
distinguished. On the contrary, it demonstrates the highest performance in visualizing 
anatomical features located in breast periphery due to its edge enhancement character. 
The CLAHE method does not distinguish dense from fatty tissue as well. Specifically, 
it seems to bias mammographic density category, since fatty tissue regions in original 
images are depicted as dense tissue regions in processed images. 

Noise amplification (NAI) associated with the proposed method, according to the 
quantitative performance evaluation metrics, did not influence radiologists’ assess-
ment who ranked the method as the most preferred. A noise reduction stage [14], [15] 
will be considered in future implementations. Performance evaluation of the method 
should be expanded in lesion detection and characterization tasks, augmentation of 
the dataset and comparison with additional image processing algorithms.  
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Abstract. Automated detection of masses on mammograms is challenged by 
the presence of dense breast parenchyma. The aim of this study is to investigate 
the feasibility of wavelet-based feature analysis in identifying spiculated and 
circumscribed masses in dense breast parenchyma. The method includes an 
edge detection step for breast border identification and employs Gaussian 
mixture modeling for dense parenchyma labeling. Subsequently, wavelet 
decomposition is performed and intensity as well as orientation features are 
extracted from approximation and detail subimages, respectively. Logistic 
regression analysis (LRA) is employed to differentiate spiculated and 
circumscribed masses from normal dense parenchyma. The proposed method is 
tested in 90 dense mammograms containing spiculated masses (30), 
circumscribed masses (30) and normal parenchyma (30). Free-response receiver 
operating characteristic (FROC) analysis is used to evaluate the performance of 
the method, achieving 83.3% sensitivity at 1.5 and 1.8 false positives per image 
for identifying spiculated and circumscribed masses, respectively. 

1   Background 

Computer-Aided Detection (CAD) is one of the promising approaches for improving 
mass detection sensitivity in mammography [1]. Various image features in 
combination with classification methods have been proposed for automated mass 
detection [2]. Kegelmeyer et al. [3] have introduced edge orientation features based 
on local edge orientation histogram analysis as well as Laws’ texture energy measures 
to identify spiculated mass containing areas. Karssemeijer et al. [4], [5] detected 
spiculated masses employing orientation features based on three directional second-
order Gaussian derivatives. Wei et al. [6], [7] proposed multiresolution texture 
analysis extracted from spatial Gray Level Dependence Matrices (GLDM) for 
differentiation of masses from normal tissue. Liu et al. [8] extended mass edge 
orientation analysis with a multiresolution scheme for the detection of spiculated 
masses. Petrick et al [9] and Kobatake et al. [10] have utilized a combination of 
boundary (morphological) and texture features (GLDM analysis) to identify and 
segment the extent of masses, respectively. Zwiggelaar et al. [11] introduced area 
patterns using principal component and factor analyses for differentiating areas 
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containing masses from normal tissue. Chang et al. [12] and Baydush et al. [13] 
applied knowledge-based approaches for discriminating masses from normal tissue. 

The performance of the aforementioned mass detection methods is characterized 
by high sensitivity (84-96%) and is challenged by the high number of false positive 
detections per image (1.0-4.4), especially in case of dense parenchyma (3.7-8.4) [14], 
[15], [16]. 

The aim of this study is to investigate the feasibility of wavelet-based features in 
identifying spiculated and circumscribed masses in dense breast parenchyma. A set of 
intensity and gradient-orientation multiresolution features are investigated, in 
combination with Logistic Regression Analysis (LRA) as classification scheme for 
differentiating masses from dense breast parenchyma. 

2   Method 

The steps of the proposed mass identification method are provided in Fig. 1. For each 
mammogram, the breast border is identified using an edge detection technique based 
on magnitudes calculated from the derivative of a Gaussian operator. Gaussian 
mixture modeling is then employed for segmenting the three breast components 
(uncompressed fat, fat and dense parenchyma) and labeling the dense parenchyma 
[17]. Following, wavelet decomposition is performed and multiresolution features are 
extracted for each pixel of dense parenchyma. These features are used as inputs in a 
trained logistic regression classifier (Fig. 2). Probability images are generated and 
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Fig. 1. Flow chart of the proposed met-
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Fig. 2. Steps for classifier training in different-
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Free-response Receiver Operating Characteristic (FROC) analysis is performed for 
evaluation of the proposed method. 

2.1   Wavelet and Feature Analysis 

In this study, a fast, biorthogonal, Redundant Discrete Wavelet Transform (RDWT) is 
utilized to obtain a multiresolution representation of the original image. It is based on 
a family of wavelet functions )x(k2

ψ with compact support, which are first-order 

derivatives of corresponding Gaussian-like spline functions )x(k2
θ . The algorithm is 

implemented using a filter bank algorithm, called “algorithme à trous”, which does 
not involve subsampling. The discrete wavelet transform is a uniform sampling of the 
wavelet transform series, discretized over the scale parameter s at dyadic scales 2k 
[18], [19]. The RDWT is calculated up to a coarse dyadic scale K. Therefore, the 
original image is decomposed into a multiresolution hierarchy of subband images, 

consisting of a coarse approximation image fS K2
and a set of wavelet images 
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),(),,( , which provide the details that are available in 

fS1 (original) but have disappeared in fS K2
. All subband images have the same 

number of pixels as the original, thus the representation is highly redundant. The 
RDWT computes the multiscale gradient vector. Coefficient subband images are 
proportional to the sampled horizontal and vertical components of the multiscale 
gradient vector, and thus they are related to local contrast [20]. The magnitude-
orientation representation of the gradient vector, in the discrete case, is given by: 
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To extract significant information from masses three resolution scales (k=3,4,5) 
were selected to be analyzed, as masses reside in coarse scales, in contrast to 
microcalcifications which reside in fine scales (2nd and 3rd) [21]. Specifically, for 
capturing intensity variations of masses, four intensity features were calculated from 
the low-frequency band (approximation subimage) of the three resolution levels for 
each pixel: Mean value (MEAN), Standard Deviation (STDE), Skewness (SKEW) and 
Kurtosis (KURT).  

In addition, to capture significant information from mass edges, three gradient-
orientation features were calculated from the high-frequency band (detail subimage):  

•  Standard Deviation of  Folded Gradient-Orientation (SDFO)  [8]: 
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where the folded gradient-orientation (i, j)  for position (i, j) is defined as: 
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are the mean values of positive and negative gradient orientations within a window W, 
respectively. KP and QL are the number of positive and negative gradient orientations 
within W, respectively. 

•  Orientations’ Coherence (measure of degree of anisotropy) (COHE) [22,23]: 
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where ),(
2

jiM k and ),(
2

jiA k denote magnitude and orientation of position (i,j) at 

scale k, respectively.  
•  Orientations’ Entropy (ENTR) [23]: 
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A total of 21 features (= 7 features x 3 scales) were extracted for each dense label. 

2.2   Performance Evaluation 

For training the classifier the aforementioned multiresolution features were extracted 
from regions of interest (ROIs) containing normal dense parenchyma and masses 
embedded in dense parenchyma. ROIs were selected from mammograms 
corresponding to dense parenchyma originating from the Digital Database for 
Screening Mammography (DDSM), with an image visualization tool developed in our 
department [24]. The training dataset consists of 166 ROIs, 60 ROIs containing 
spiculated masses, 40 ROIs containing circumscribed masses and 66 ROIs of normal 
dense tissue. The mean size (longest dimension) was 19 mm (range: 7-49 mm) and 12 
mm (range: 6-31 mm) for spiculated and circumscribed masses, respectively. 
Histogram of mass subtlety (from 1=subtle to 5=obvious), according to DDSM 
database, is provided in Fig. 3.  
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Fig. 3. Histogram of subtlety for spiculated 
and circumscribed masses of the training 
dataset 

Fig. 4. Histogram of subtlety for spiculated 
and circumscribed masses of the validation 
dataset 

Stepwise forward LRA was employed to determine the optimal subset of features 
differentiating masses from normal dense parenchyma. The area under Receiver 
Operating Characteristic (ROC) curve (Az) was used as a feature performance metric. 
To study the effect of mass type (spiculated and circumscribed) in classification 
accuracy, separate logistic regression models were constructed for two differentiation 
tasks: (a) spiculated masses from normal dense tissue (S-N) and (b) circumscribed 
masses from normal dense tissue (C-N). 

The two models were constructed in the form of logit(p) values:  
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where Xs are the independent variables (features), Y is the binary dependent variable, 
which has two possible values, y1 (0: normal) and y2 (1: mass),   is the intercept and 

s are the logistic regression coefficients. From these logit(p) values, the estimated 
probability (p) of the presence of a mass can be obtained from: 
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The half-half training and testing methodology was applied for each task and the 
classification performance was evaluated by means of ROC curves, in terms of Az 
area and standard error (Fig. 2). 

The multiresolution features, selected by the stepwise forward LRA for the two 
models constructed, were used for classifying the labeled dense parenchyma and 
generating the probability image (Fig. 1). The overall performance of the proposed 
mass identification method in the two differentiation tasks (spiculated masses vs. 
normal dense tissue and circumscribed mass vs. normal dense tissue) was tested in a 
validation dataset of 90 dense mammograms originating from the DDSM, other than 
those used in training the classifier. Specifically, mammographic images 
corresponding to heterogeneously dense or extremely dense tissue (density 3 and 4, 
according to BIRADS lexicon) were selected (30 of normal dense parenchyma, 30 
containing subtle spiculated masses and 30 containing subtle circumscribed masses). 
Images have been digitized with Lumisys or Howtek scanner, at 12 bits pixel depth 
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with spatial resolution of 50 m and 43.5 m respectively, subsampled to 200 m and 
174 m respectively. The mean size (longest dimension) was 17 mm (range: 10-38 
mm) and 14 mm (range: 7-23 mm) for spiculated and circumscribed masses, 
respectively. Histogram of mass subtlety, according to DDSM database, is provided 
in Fig. 4. Detection performance was evaluated by means of FROC curves, produced 
by applying different threshold values in the probability images of the dataset. 

3   Results 

Table 1 provides the seven features selected by the stepwise forward LRA for each 
logistic regression model constructed. As observed, different features were selected 
for each differentiation task. The ROC curves produced from models for the two 
differentiation tasks are presented in Fig. 5. The Az values are 0.956±0.033 and 
0.932±0.036 for the S-N and C-N training datasets, respectively. In Fig. 6, FROC 
curves for the two differentiation tasks are provided. Overall performance of the 
proposed method achieves sensitivity of 83.3% at 1.5 and 1.8 false positives per 
image for identifying spiculated and circumscribed masses, respectively. 

Table 1. Features – scales selected by the stepwise forward LRA for the two logistic regression 
models and the corresponding Az values achieved 

 Spiculated vs. Normal model Circumscribed vs. Normal model 
a/a Feature Added Az Feature Added Az 
1 SKEW - 5 0.835 COHE - 3 0.860 
2 ENTR - 4 0.868 STFO - 3 0.864 
3 STDE - 3 0.886 ENTR - 3 0.899 
4 STFO - 5 0.923 KURT - 5 0.909 
5 KURT - 5 0.938 SKEW - 5 0.917 
6 COHE - 4 0.947 SKEW - 4 0.930 
7 SKEW - 4 0.956 COHE - 5 0.932 

 

S-N
C-N

False Positive Fraction 

Tr
ue

Po
si

tiv
e

Fr
ac

tio
n

 

Tr
ue

Po
si

tiv
e

Fr
ac

tio
n

False Positives per Image 

S-N
C-N

 

Fig. 5. ROC curves for differentiating masses 
from normal dense parenchyma 

Fig. 6. FROC curves for identifying spicu-
lated and circumscribed masses   
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4   Discussion 

These preliminary results suggest that intensity and orientation features extracted 
from the coefficients of an overcomplete wavelet transform in combination with LRA 
can provide a successful classification scheme for differentiation of spiculated and 
circumscribed masses from dense breast parenchyma, as proven by ROC and FROC 
analyses. Higher performance is achieved in the detection of spiculated masses, as the 
orientation features are more sensitive in the presence of spiculations. 

The performance of the proposed mass identification method is not directly 
comparable with all other reported mass detection schemes, due to the composition of 
the dataset used regarding the type of breast parenchyma [3], [4], [6], [8]. The results 
of the proposed method is comparable with and of superior performance of those 
reported for dense breast parenchyma [14], [15], [16], although there are differences 
in the datasets used regarding mammograms and mass subtlety. Future efforts will be 
focused on implementation of additional multiresolution features and use of other 
wavelet transform and classification schemes.   
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Abstract. The availability of the large dataset of screen/film and full-field 
digital mammograms acquired through the Digital Mammography Imaging 
Screening Trial (DMIST) presents an extraordinary opportunity for the 
assessment of CAD devices. The National Cancer Institute and the National 
Institute of Biomedical Imaging and Bioengineering at the U.S. National 
Institutes of Health have engaged FDA scientists in the development of a plan 
to leverage this imaging resource to benchmark the performance of current 
CAD systems. In this talk, we will present an initial proposal for utilizing the 
DMIST data to quantitatively assess current CAD systems. It is our goal to 
engage the IWDM community and other interested groups in the development 
of a consensus on acceptable study designs for this purpose.  

1   Background 

A variety of computer-assist devices have been approved by the U.S. Food and Drug 
Administration (FDA) as aids to a mammographer in the detection of breast cancer.  
These devices were originally approved for screen/film mammography on the basis of 
a study design that demonstrated the potential for computer-aided detection (CAD) 
systems to identify missed cancers without the systems producing a substantial 
increase in the number of patients recalled for additional procedures [1].  Some of 
these initial screen/film approvals were later extended for application with select full-
field digital mammography (FFDM) systems.   The FDA approval studies performed 
by most of the CAD manufacturers were modest in their scope because of a limited 
patient population, their focus on screen/film mammography and the retrospective 
nature of the study design. 

1.1   Recent Studies of Breast CAD 

A recent prospective study by Gur, et al. on the benefits of mammographic CAD in an 
academic clinical radiology practice concluded that the introduction of CAD in their 
clinical practice was not associated with statistically significant changes in recall or 
breast cancer detection rates [2].  Similar results were reported for both the entire 
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group of 24 radiologists who participated in the study and the subset of radiologists 
who interpreted the highest volume of mammograms.   While the conclusions of this 
study are limited to patients in the University of Pittsburgh system, screen/film 
mammography and one mammographic CAD device, they strongly suggest that 
additional studies to benchmark and evaluate the adjunctive benefit of CAD would be 
of practical value to the public at large. 

Even fewer studies, and none with a large diverse patient population, have been 
conducted to benchmark and evaluate the adjunctive benefit of mammographic CAD 
with FFDM. The Blue Cross Blue Shield Technical Evaluation Center (TEC) recently 
conducted a MEDLINE literature search addressing the question as to whether the use 
of CAD can improve the sensitivity and specificity of FFDM [3]. A prior assessment 
of CAD in screen/film mammography conducted by the TEC concluded that evidence 
is available to support the conclusion that CAD improves the accuracy of screen/film 
mammography by increasing the true-positive rate without a disproportionate increase 
in the recalls compared with single-reader radiologist interpretation. For CAD as an 
adjunct to FFDM, the search yielded no high-quality articles in peer-reviewed 
journals assessing this combination. Therefore, the TEC concluded that “until results 
from better studies focusing on the use of CAD with FFDM become available, the 
benefits of CAD with FFDM cannot be determined.” This conclusion again supports 
the need for additional studies to benchmark and evaluate the adjunctive benefit of 
CAD when combined with FFDM. 

1.2   Digital Mammography Imaging Screening Trial 

The American College of Radiology Imaging Network (ACRIN), under the direction 
of Etta Pisano, M.D., conducted the Digital Mammography Imaging Screening Trial 
(DMIST) [4, 5].  Funding for the trial was provided by the NIH National Cancer 
Institute and the total cost was on the order of $30 million. The primary goal of this 
large population-based trial was to compare the diagnostic accuracy of digital and 
screen/film mammography in a breast cancer screening population of asymptomatic 
women [5].  The trial was designed to measure small but potentially clinically 
important differences in diagnostic accuracy between digital and screen/film 
mammography in the overall population of asymptomatic women and in particular 
subgroups of denser breasted women where digital mammography might be expected 
to have an improved diagnostic ability [4]. 

The DMIST trial collected both digital and screen/film mammograms, in random 
order, from 49,528 women at 33 sites in the United States and Canada. Five digital 
mammography systems were utilized in the trial. These systems included the  
SenoScan (Fischer Imaging), the Computed Radiography for Mammography (Fuji), 
the Senographe 2000D (General Electric), the Lorad/Trex Digital Mammography 
System (Hologic) and the Selenia Full Field Digital Mammography System (Hologic) 
[5].  The screen/film and digital mammograms were each read independently by 
different radiologists with each reader rating patients using both a seven-point 
malignancy scale and a Breast Imaging Reporting and Data System (BI-RADS) [6] 
classification.  All relevant information was available for 42,760 of these women, 
including 335 women subsequently identified as having breast cancer.  Breast cancer 
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status was based on the results of a breast biopsy within 15 months after the screening 
study or by a follow-up mammogram at one year. 

The results from the trial showed that the diagnostic accuracy of digital and 
screen/film mammography were similar in terms of area under the fitted receiver 
operating characteristic curve (AZ).  However, the accuracy of digital mammography 
was significantly higher than that of screen/film mammography among women under 
the age of 50 years ( AZ=0.15; p=0.002), women with heterogeneously dense or 
extremely dense breasts on mammography ( AZ=0.11; p=0.003), and premenopausal 
or perimenopausal women ( AZ=0.15; p=0.002)  [4]. 

2   Method 

The National Cancer Institute and the National Institute of Biomedical Imaging and 
Bioengineering at the U.S. National Institutes of Health have engaged FDA 
scientists’ participation in the development of a plan to leverage this imaging data 
to address other important public health issues. Breast CAD was identified as an 
area of significant interest because of CAD’s potential for improving breast cancer 
screening, the lack of population-based studies evaluating breast CAD in a general 
setting, and the conflicting performance results for commercial breast CAD that 
have been reported in the literature [1, 2]. In addition, no significant information is 
available to the radiology community either benchmarking current CAD algorithms 
in combination with screen/film or digital mammography systems or studying the 
influence of CAD on overall breast cancer screening in a large and diverse patient 
population. 

As a start to understanding the public health implication of breast CAD, we will 
present an initial proposal for utilizing the DMIST data to quantitatively assess current 
CAD systems. In particular, we will outline a proposal for benckmarking the current 
performance of breast CAD for screen/film and a select set of digital mammography 
systems. This will include details on plans for digitizing screen/film mammograms, 
establishing truth on the location, extent, and type of lesions visible in the 
mammograms, and a plan for statistically evaluating and comparing the different 
algorithms. 

3   Discussion 

It is our goal to engage the participation of the IWDM community in the development 
of a consensus on acceptable study designs for benchmarking CAD performance and 
to start the process of systematically understanding the public health benefits of breast 
CAD. This presentation and discussion is the first in potentially a series of discussions 
toward development of  a consensus among NIH, FDA, ACRIN, DMIST, industry, 
academia, advocacy groups and the public at large on how to leverage this and other 
medical image resources. The DMIST data were acquired at great cost, signifying a 
resource unlikely to ever be duplicated. This is an ideal time to initiate a discussion on 
how best to make use of this tremendous image resource to improve public health 
through the accurate assessment of the performance of CAD devices in the early 
detection of breast cancer. 
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Abstract. We have developed computerized methods for the analysis of 
mammo-graphic lesions in order to aid in the diagnosis of breast cancer. Our 
automatic methods include the extraction of the lesion from the breast paren-
chyma, the characterization of the lesion features in terms of mathematical des-
criptors, and the merging of these lesion features into an estimate of the 
probability of malignancy. Our initial development was performed on digitized 
screen film mammograms. We report our progress here in converting our 
methods for use with images from full-field digital mammography (FFDM). It 
is apparent from our initial comparisons on CAD for SFMD and FFDM that the 
overall concepts and image analysis techniques are similar, however 
reoptimization for a particular lesion segmentation or a particular mammo-
graphic imaging system are warranted. 

1   Introduction 

We have developed computerized methods for the analysis of mammographic lesions 
in order to aid in the diagnosis of breast cancer [1-9].  The automatic methods include 
the extraction of the lesion from the breast parenchyma, the characterization of the 
lesion features in terms of mathematical descriptors, and the merging of these lesion 
features into an estimate of the probability of malignancy.  Our initial development 
was performed on digitized screen film mammograms (SFMD; 0.1 mm pixel size).  
We report our progress here in converting our methods for use with images from full-
field digital mammography (FFDM). 

2   Databases  

Our digitized screen/film mammographic (SFMD) database and our FFDM database 
currently arise from different cases. Thus, comparison of image analysis results 
between SFMD and FFDM is not directly possible. However, conclusions can be 
drawn by the analysis of trends seen in the data. The SFMD database includes 
screen/film mammograms digitized to 0.1 mm pixel size and 10-bit quantization.  The 
FFDM database includes images from a GE Senographe 2000D. 
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3   Lesion Segmentation 

We continue to investigate methods with which to extract the lesion (margin) from the 
parenchymal background in a mammographic image.  These methods have included a 
region growing technique [1,2], a radial gradient index technique (RGI) [3], and an 
active contour snake method [9].  In the region growing method, the lesion image 
undergoes histogram equalization followed by gray level thresholding. By monitoring 
the size and shape of the evolving contour with each incremented gray level threshold 
step, a lesion contour is automatically selected at an abrupt transition from high 
circularity to low circularity, and from small size to larger size.  In the RGI method, a 
Gaussian constraint function is applied to the image data in order to suppress the 
influence of distant pixels.  From a series of potential contours obtained by thres-
holding, the contour whose margin yields the maximum RGI value is chosen as the 
one that best delineates the lesion.  The RGI value corresponds to the average propor-
tion of the gradients in the radially outward direction. The snake method involves a 
two-stage segmentation that uses an active contour algorithm to minimize an energy 
function based on the homogeneities inside and outside of the evolving contour. The 
minimization algorithm solves, by the level set method, the Euler-Lagrange equation 
that describes the contour evolution. Prior to the application of the active contour 
algorithm, the RGI-based segmentation method is applied to yield an initial contour 
closer to the lesion margin location in a computationally efficient manner. This initial 
RGI segmentation also estimates an effective background, for subsequent use in the 
active contour approach, by using the values of the image within a given radius of the 
initial contour. 

Our evaluation of the three methods on SFMD and FFDM included only images on 
which human-delineated lesion margins had been obtained. Performance was deter-
mined based on an overlap measure [3], where the overlap was calculated by the ratio 
of the areas within the intersection of the human-delineated margin contour (Rad. A) 
and the computer-determined margin contour to the union of the two areas.  The 
results are presented in terms of percent of lesion images accurately segmented at a 
given threshold cutoff (e.g. at a threshold cutoff of 0.4 as shown in Table 1). It is 
apparent from Table 1 and Figure 1 that, overall, the two-stage active contour snake 
method is the most promising for both the SFMD and FFDM databases. 

Table 1. Percent of lesion images accurately segmented at an overlap threshold cutoff of 0.4 for 
the SFMD and FFDM databases and the three segmentation methods 

SFMD Database Total Cases Total Images Region growing RGI Snake 

Malignant 55 96 74.0% 66.7% 86.7% 

Benign 29 51 76.5% 90.2% 88.2% 

Total 84 147 74.8% 74.8% 87.1% 

      

FFDM Database Total Cases Total Images Region growing RGI Snake 

Malignant 148 412 66.0% 66.7% 75.7% 

Benign 139 327 72.5% 81.0% 85.6% 

Total 287 739 68.9% 73.1% 80.1% 
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Fig. 1. The percent of SFMD lesion images correctly segmented at different overlap cutoffs 
using Radiologist A manually-delineated margins as “truth” 

For both the SFMD and FFDM segmentation analyses, the same breast radiologist 
(C.S.) manually outlined the lesion margin as the segmentation “truth” – Rad. A.  For 
the SFMD, we also had human-delineated lesion margins from another radiologist and 
the percent of lesion images accurately segmented at an overlap threshold cutoff of 
0.4 by the other radiologist, in comparison with the first, was 96.6%.  This indicates 
that the radiologists highly agreed on the lesion margins.   

4   Computer-Extracted Lesion Features 

In our computerized image analyses for aiding in the discrimination between malig-
nant and benign lesions, we automatically extract various mathematical descriptors 
(features) of the lesions.  In our past studies [8], four general features were selected 
for use in our intelligent workstation: (a) “margin sharpness” as the magnitude of the 
gradient along the margin of the lesion, (b) “texture” as determined from the standard 
deviation of the average gradient within the lesion, (c) “spiculation” as determined 
from the full width at half maximum of the normalized edge-gradient distribution 
relative to the radial direction, and (d) “radial gradient index” that corresponds to the 
average proportion of the gradients in the radially outward direction and thus contains 
shape information. In this initial study, we extracted these same four features from the 
images in the two databases and determined the performance of each in the task of 
distinguishing between malignant and benign lesions using ROC analysis [10,11]. It 
should be noted that eventually we will optimize the feature selection for the different 
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segmentation methods as well as for the particular type of mammographic imaging 
system (e.g., either SFMD or FFDM). 

Here, we only analyzed images in which the computerized segmentation yielded an 
overlap measure of 0.4 or greater.  Erroneous computer-extracted margins are expected 
to yield erroneous lesion descriptors, and thus would mask the actual performance of the 
features, and the comparison between SFMD and FFDM. Tables 2 and 3 give the 
performance (in terms of area under the ROC curve) of the computer-extracted features 
from SFMD and FFDM images, respectively, for the various lesion segmentation 
methods as compared with those from human-outlined lesion margins. Interestingly, the 
features tend to perform better on the computer-determined contours than on the human-
outlined contours for the SFMD images.  However, promising results are found with the 
FFDM images as well.  It is important to note that the initial selection of features was 
performed on SFMD images. 

It is interesting to note, in this initial study, that although the differences in lesion 
margins as delineated by the two radiologists was smaller than that between the 
computer-determined lesion margins and the radiologist-delineated margins, the perfor-
mances of the computer-extracted features in the task of distinguishing between malig-
nant and benign lesions were comparable for the human-delineated lesions and the 
computer-determined lesion margins.  That is, the computer segmentation was adequate 
for the discrimination task.  

Table 2. Performance (in terms of area under the ROC curve) of computer-extracted features from 
SFMD images for the various lesion segmentation methods as compared with those from human-
outlined lesion margins (Rad. A). Also included is a comparison of feature performances obtained 
from segmented lesions by two different radiologists (Rad. A and Rad. B). 

  Rad. A Region Growing p value 

Margin Sharpness 0.54 0.57 0.59 

Texture 0.55 0.59 0.25 

Spiculation 0.71 0.74 0.76 

RGI 0.78 0.75 0.41 

 Rad. A RGI p value 

Margin Sharpness 0.55 0.67 0.02 

Texture 0.55 0.64 0.01 

Spiculation 0.69 0.69 0.92 

RGI 0.75 0.68 0.20 

 Rad. A Snake p value 

Margin Sharpness 0.57 0.67 0.04 

Texture 0.54 0.56 0.33 

Spiculation 0.71 0.67 0.80 

RGI 0.77 0.75 0.56 

 Rad. A Rad. B p value 

Margin Sharpness 0.51 0.62 <0.001 

Texture 0.56 0.56 0.92 

Spiculation 0.73 0.67 0.16 

RGI 0.80 0.73 0.003 
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Table 3. Performance (in terms of area under the ROC curve) of computer-extracted features 
from FFDM images for the various lesion segmentation methods as compared with those from 
human-outlined lesion margins 

 Rad. A Region Growing p value 

Margin Sharpness 0.51 0.61 <0.0001 

Texture 0.61 0.70 <0.0001 

Spiculation 0.71 0.69 0.29 

RGI 0.72 0.66 0.003 

 Rad. A RGI p value 

Margin Sharpness 0.51 0.58 <0.001 

Texture 0.59 0.63 0.003 

Spiculation 0.69 0.65 0.05 

RGI 0.71 0.62 <0.0001 

 Rad. A Snake p value 

Margin Sharpness 0.51 0.57 0.18 

Texture 0.60 0.67 <0.0001 

Spiculation 0.69 0.65 0.13 

RGI 0.71 0.63 <0.0001 

5   Comparison to Physical Imaging Properties 

We are currently relating these performance variations to differences in the physical 
image quality between the SFMD and FFDM systems. (see Table 4) From our 
evaluation of the physical image quality for the two systems, we have found that the 
SFMD exhibits, as compared to FFDM, higher spatial resolution, increased noise, and 
higher contrast, as measured by the modulation transfer functions (MTF), the noise 
Wiener spectra, and the characteristic curves, respectively.  Note that, in this pilot 
study, the gradient-based computer-extracted features such as margin sharpness, 
spiculation, and RGI performed better on SFMD – being the system with the superior 
spatial resolution.  Also, the texture-based features performed better on FFDM – 
being the system with the lower noise and the better contrast. 

Table 4. Performance (in terms of area under the ROC curve) of computer-extracted features 
from SFMD and FFDM images obtained with the snake lesion segmentation method 

  SFMD FFDM 

Margin Sharpness 0.67 0.57 

Texture 0.56 0.67 

Spiculation 0.67 0.65 

RGI 0.75 0.63 



574 H. Li et al. 

6   Summary 

It is apparent from this initial comparison study for CAD for SFMD and FFDM that the 
overall concepts and image analysis techniques are expected to be similar, however re-
optimization for a particular lesion segmentation or a particular mammographic imaging 
system are warranted.  Our analysis was performed on actual clinical cases, and thus our 
results are expected to be translated to the clinical arena.  It is also important to note that 
only individual computer-extracted features were analysed for this paper.  As we have 
shown in the past, we expect that by merging the features, a significant improvement in 
discrimination performance will be achieved [2,5-8]. 

A limitation of our initial study is that the databases for SFMD and FFDM came 
from different cases.  In the future, we hope to obtain a database of both SFMD and 
FFDM from the same set of women.  Cases from the recent DMIST trial of FFDM vs. 
SFM would satisfy this criterion. 
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Abstract. Purpose: To evaluate efficacy and diagnostic accuracy of BARCO 
LCD 5Mpixel displays, compared to BARCO CRT 5Mpixel displays in full-
field-digital-mammography (FFDM) interpretation. 

Material and Methods: FFDM mammograms obtained by 100 patients, were 
analyzed by three independent radiologists experienced in breast imaging, using 
two different CRT and LCD displays. All cases were selected by a fourth 
radiologist in order to cover several possible ages and types of breast. Half of 
cases were negative and half were positive for malignancy, proven by 
percutaneous biopsy. Readers were blinded to history of patients, ultrasound 
examination and biopsy results. To minimize recall bias, an interval of at least 
30 days between interpretations of each case on two different monitors was 
chosen. Each reader evaluated cases classifying them according the ACR 
BIRADS categories. Moreover, they assigned a rate (0-100) corresponding to 
the Probability of Malignancy (POM) of each case classified into BIRADS 
categories 3 to 5. Finally, they assigned a rate (0-100) corresponding to reading 
confidence. 

Analysis included ROC curves of POM for each doctor and for pooled data, 
sensitivity and specificity for the BIRADS≥3 and BIRADS≥4 thresholds for 
each doctor and for pooled data, and finally main results of “Multireader-
Multicase ROC Analysis Of Variance”. For each analysis a comparison was 
made between the two monitors. 

Results: No statistical significance was seen between the two displays 
regarding POM, sensitivity and specificity, nor for single reader either for 
pooled data. 

Conclusions: This study provides a reasonable assurance that the examined 
CRT and LCD display systems are comparable for FFDM interpretation. 

1   Background 

Several trials demonstrated that Full-Field Digital Mammography (FFDM) is at least 
comparable to analogic mammography in the detection rate of cancers (1-3). At the 
same time, it is well known that the analysis of digital mammograms cannot be 
performed on printed images but requires high resolution monitors (5 MegaPixels), 
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dedicated to mammography (3-5). Actually, two different technologies for monitors 
are available: the commonly used Cathode Ray Tube (CRT) monitors and the more 
recently introduced Liquid Crystal Display (LCD) monitors. The two technologies 
have different characteristics and both present advantage and disadvantage. It is not 
still clear which of the two should be used in clinical practice (6, 7). 

The purpose of our study was to evaluate efficacy and diagnostic accuracy of 
BARCO LCD 5Mpixel displays, compared to BARCO CRT 5Mpixel displays in full-
field-digital-mammography (FFDM) interpretation. 

2   Material and Methods 

Three radiologists, experienced in breast imaging, with respectively 9, 8 and 3 years 
of experience, reviewed 100 cases of FFDM, using BARCO CRT monitors 
(MammoMeDis HD, model V9600123) and BARCO LCD monitors (Coronis 5MP 
Mammo, Model V9600800). The characteristics of the two different monitors are 
summarized in Table 1. All digital mammograms were obtained with FFDM unit 
GIOTTO IMAGE MD (IMS – Bologna, Italy). 

Table 1. Characteristics of CRT and LCD Monitors 

Characteristics CRT LCD 
Dimension 304mm x 380 mm 337mm x 422mm 
Contrast >2000 :1 >700 :1 
Matrix 2048 x 2560 2048 x 2560 
Refresh Rate (Frequency) 76 Hz 50 Hz 
Viewing angle ± 135° ± 25° 
Luminance 400 cd/m2 600 cd/m2 
Luminance Uniformity >90% >90% 
Ambient light < 10 LUX < 10 LUX 

3   Patient’s Selection 

The 100 cases were selected by a forth radiologist, experienced in breast imaging, in 
order to cover several possible ages (range 40-83 years, mean 53.5 years) and a great 
variety of breasts, considering particularly different possible densities. 40% of cases 
consisted of biopsy-proved malignancies while 60% of cases were negative or with 
benign findings, with at least one year follow-up. The fourth radiologist anonimized 
all cases and presented them randomly to the three readers, on CRT monitors and 
LCD ones. Only the fourth radiologist was aware of the results of histology.  

4   Imaging Interpretation 

To make the conditions as reproducible as possible, ambient light was always in the 
limit and the angle with which the doctors were positioned in front of the LCD was 
into the limits (position of the eyes approximately in the middle of the LCD at a 
distance of approximately 30/40 cm). 
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Each examination was independently interpreted by the three radiologists. To 
minimize recall bias, an interval of at least 30 days between interpretations of the 
same case on the two different monitors was planned. The images were evaluated 
randomly, observing at the same moment both breasts, in the two views (CC and 
MLO). No prior films, patient histories or any other demographic information 
accompanied the interpretation of either modality. 

ACR BIRADS categories, reported in Table 2, was used to assess findings for each 
modality. 

Table 2. ACR BIRADS categories 

ACR BIRADS Category Findings 
0 Needs further evaluation 
1 Normal 
2 Abnormal – benign 
3 Abnormal – probably benign 
4 Suspicious for cancer 
5 Highly suspicious for cancer 

 
Besides this, each radiologist assigned a rate (on a scale from 0 to 100) 

corresponding to the Probability of Malignancy (POM) of each case classified into 
BI-RADS categories 3, 4 or 5 and was required to give a location for each finding. 
Finally, each radiologist was required to define the rate of confidence for the presence 
of the abnormality. 

5   Statistical Analysis 

Sensitivity and specificity were calculated for each reader and each monitor. 
Moreover,  

ROC curves were created: 

• the trapezoidal ROC curves of the probability of malignancy for each doctor; 
• the trapezoidal ROC curves of the probability of malignancy for the pooled data; 
• the sensitivity and specificity for the BIRADS≥3 and BIRADS≥4 thresholds for 

each doctor; 
• the sensitivity and specificity for the BIRADS≥3 and BIRADS≥4 thresholds for 

the pooled data; 
• the main results of the “Multireader-Multicase ROC Analysis Of Variance Using 

Gaussian Distribution” performed with the LABMRMC application (see  for details). 

6   Results 

6.1   Reader 1 

As regards Reader 1, we obtained the following results. 
The specificity and sensitivity analysis was performed for the BIRADS≥3 and 

BIRADS≥4 thresholds (Table 4) 
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Table 3  

Sensitivity for 
BIRADS 3
(95% C. I.)

Specificity for 
BIRADS 3
(95% C. I.)

Sensitivity for 
BIRADS 4
(95% C. I.)

Specificity for 
BIRADS 4
(95% C. I.)

CRT 0.816
(0.657 to 0.922)

0.847
(0.730 to 0.928)

0.605
(0.434 to 0.759)

0.966
(0.883 to 0.995)

LCD 0.789
(0.627 to 0.904)

0.898
(0.792 to 0.961)

0.421
(0.263 to 0.592)

0.966
(0.883 to 0.995)  

The ROC curves obtained from the Probability Of Malignancy (POM) are shown 
in Figure 1 and the data reported in Table 4. 

Table 4 

Trapezoidal area under 
the ROC curve for POM Standard Error 95% Confidence Interval

CRT 0.861 0.042 0.776 to 0.923
LCD 0.857 0.042 0.772 to 0.920

CRT-LCD 0.004 0.035 -0.065 to 0.073  
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Fig. 1. ROC Curves for Reader1 
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6.2   Reader 2 

As regards Reader 2, we obtained the following results. 
The specificity and sensitivity analysis was performed for the BIRADS≥3 and 

BIRADS≥4 thresholds (Table 5). 

Table 5 

Sensitivity for 
BIRADS 3
(95% C. I.)

Specificity for 
BIRADS 3
(95% C. I.)

Sensitivity for 
BIRADS 4
(95% C. I.)

Specificity for 
BIRADS 4
(95% C. I.)

CRT 0.658
(0.486 to 0.804)

0.898
(0.792 to 0.961)

0.474
(0.310 to 0.642)

0.966
(0.883 to 0.995)

LCD 0.658
(0.486 to 0.804)

0.881
(0.771 to 0.951)

0.526
(0.358 to 0.690)

0.966
(0.883 to 0.995)  

 
The ROC curves obtained from the Probability Of Malignancy (POM) are shown 

in Figure 2 and the data reported in Table 6. 

READER2 ROC Curve
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Fig. 2. ROC Curves for Reader2 
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Table 6 

Trapezoidal area under 
the ROC curve for 

POM
Standard Error 95% Confidence 

Interval

CRT 0.808 0.048 0.716 to 0.881
LCD 0. 794 0.049 0.700 to 0.869

CRT-LCD 0.015 0.037 -0.058 to 0.087  

6.3   Reader 3 

As regards Reader 3, we obtained the following results. 
The specificity and sensitivity analysis was performed for the BIRADS≥3 and 

BIRADS≥4 thresholds (Table 7). 
The ROC curves obtained from the Probability Of Malignancy (POM) are shown 

in Figure 3 and the data reported in Table 8. 

Table 7 

Sensitivity for 
BIRADS 3
(95% C. I.)

Specificity for 
BIRADS 3
(95% C. I.)

Sensitivity for 
BIRADS 4
(95% C. I.)

Specificity for 
BIRADS 4
(95% C. I.)

CRT 0.789
(0.627 to 0.904)

0.831
(0.710 to 0.915)

0.421
(0.263 to 0.592)

0.983
(0.909 to 0.997)

LCD 0.763
(0.598 to 0.885)

0.831
(0.710 to 0.915)

0.579
(0.408 to 0.737)

0.966
(0.883 to 0.995)  

READER3 ROC Curve
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Fig. 3. ROC Curves for Reader3 
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Table 8 

Trapezoidal area under 
the ROC curve for POM Standard Error 95% Confidence Interval

CRT 0.840 0.044 0.751 to 0.906
LCD 0.844 0.044 0.756 to 0.910

CRT-LCD -0.004 0.033 -0.060 to 0.068  

7   Pooled Data 

As regards the pooled data, we obtained the following results. 
The specificity and sensitivity analysis was performed for the BIRADS≥3 and 

BIRADS≥4 thresholds (Table 9). 
The ROC curves obtained from the Probability Of Malignancy (POM) are shown 

in Figure 4 and the data reported in Table 10. 

Table 9 

Sensitivity for 
BIRADS 3
(95% C. I.)

Specificity for 
BIRADS 3
(95% C. I.)

Sensitivity for 
BIRADS 4
(95% C. I.)

Specificity for 
BIRADS 4
(95% C. I.)

CRT 0.754
(0.665 to 0.830)

0.859
(0.799 to 0.906)

0.500
(0.405 to 0.595)

0.972
(0.935 to 0.991)

LCD 0.737
(0.646 to 0.815)

0.870
(0.811 to 0.916)

0.509
(0.413 to 0.604)

0.966
(0.928 to 0.987)  

 
Pooled Data ROC Curve
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Fig. 4. ROC Curves for pooled data 
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Table 10 

Trapezoidal area under 
the ROC curve for POM Standard Error 95% Confidence Interval

CRT 0.838 0.026 0.791 to 0.879
LCD 0.830 0.026 0.782 to 0.871

CRT-LCD 0.008 0.020 -0.031 to 0.048  

8   Multireader-Multicases Analysis 

The multireader-multicase analysis performed with LABMRMC gave the following 
results (Table 11-14). 

Table 11. Standard Errors And 95% Confidence Interval For MRMC Analyses 

Area found by 
LABMRMC Standard Error 95% Confidence Interval

CRT 0.9107 0.0292 N.A.
LCD 0.8974 0.0340 N.A.

CRT-LCD 0.0133 0.0318 -0.0498 to 0.0764  

Table 12. Reader Means 

 Area found by LABMRMC 
READER1 0.9332 
READER2 0.8917 
READER3 0.8871 

Table 13. Monitor Type Means 

 Area found by LABMRMC 
CRT 0.9107 
LCD 0.8974 

Table 14. Reader Means For Each Monitor Type 

 CRT LCD 
READER1 0.9275 0.9389 
READER2 0.9050 0.8785 
READER3 0.8994 0.8747 

9   Conclusions 

The following conclusions can be drawn from the results presented in the previous 
chapter: 

• For each reader the difference of the area under the trapezoidal ROC curves for 
CRT and LCD is not significant because the value 0.0 is included in the 95% 
confidence interval of the difference of the two areas. 
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• For the pooled data, the difference of the area under the trapezoidal ROC curves 
for CRT and LCD is not significant because the value 0.0 is included in the 95% 
confidence interval of the difference of the two areas. 

• For each reader and for each sensitivity and specificity threshold, the 95% 
confidence intervals for CRT and LCD overlap, so there are no significant 
differences in sensitivity and specificity. 

• For the pooled data, for each sensitivity and specificity threshold, the 95% 
confidence intervals for CRT and LCD overlap, so there are no significant 
differences in sensitivity and specificity. 

• As regards the multireader-multicases analysis performed by the LABMRMC 
application, we can see that there are no significant differences between CRT and 
LCD since the value 0.0 is included in the 95% confidence interval of the 
difference of the two areas. 

 
From all these conclusions, we can state that this study showed no significant 

differences between the clinical performances on mammography images of CRT and 
LCD monitors. 
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Abstract. Digital mammography is rapidly becoming a mature imaging 
modality. To maintain high quality in mammography, a routine quality control 
program is necessary to detect drifting or degradation of system performance 
over time. The American College of Radiology is developing a quality control 
program which will apply to all types of full-field digital mammography 
equipment, and provide effective and more efficient validation of performance. 
In the DMIST trial, there were no failures for many of the QC tests during the 
24 months imaging was performed. When systems failed, they generally did so 
suddenly, rather than through gradual deterioration of performance. A 
recommended set of tests is presented, which can be used to ensure that full-
field digital mammography (FFDM) systems are functioning correctly, and 
consistently producing mammograms of excellent image quality. 

Keywords: Digital mammography, quality control, image quality. 

1   Introduction 

Digital mammography is an evolving imaging modality, quickly moving into regular 
clinical use with over 1300 full-field digital mammography (FFDM) units accredited 
in the US in March 2006, and the expectation of rapid acceptance of photostimulable 
phosphor systems.  There are now a number of systems and technologies available on 
the market. Current US (MQSA) regulations [1] require that sites follow the quality 
control (QC) procedures described by the individual manufacturers of the FFDM 
systems, which has resulted in discordance among the various QC protocols.  To 
ensure that image quality is optimal and to support an effective accreditation program; 
routine QC, standard physics evaluation methods and acceptance test practices that 
are independent of the manufacturer are required.  

The American College of Radiology (ACR) has established a subcommittee to 
develop a harmonized QC program for digital mammography. The goals of this 
program are:  

     1) to provide as much as possible, a uniform set of tests that can be used across the  
    range of commercial digital mammography systems that will be used clinically,  

2) to effectively test those aspects of imaging performance that are relevant to  
         diagnostic image quality and safety,   
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3) to streamline the program to make it as efficient as possible, thereby eliminating  
         unnecessary costs and labour, and  

4) as much as possible to keep these tests similar or familiar to those currently  
         performed by technologists and medical physicists who carry out QC in screen-  
         film mammography (SFM) [2]. 

In the DMIST trial [3],[4] the QC program was designed to be as comprehensive as 
possible, with tests which could be applied generically among the different FFDM 
systems. Because little was known regarding the expected modes or frequencies of 
equipment failure, a test schedule was designed with more frequent evaluations than 
that required for SFM systems.  

For a QC program to be practical and able to be followed by all facilities, some 
pragmatic decisions about the usefulness of individual tests and scope and extent of site 
survey testing must be made. In DMIST, the testing process was quite time consuming 
and while it generated information that was relevant to the characterization of digital 
systems, most of the information was of limited use for QC purposes. If one test can act 
as a surrogate for a number of others (offering high sensitivity, but possibly low 
selectivity), that test should be used in the QC program, and only if the system fails that 
test, should more selective diagnostic tests be performed outside of the QC program. 

Historically, for SFM, x-ray generator technology was rather simple and 
fluctuations in the quantity or quality of X rays produced were not uncommon, and x-
ray output was quite likely to drift over time, having an impact on image quality or 
radiation dose received by the breast.  Modern x-ray generators used in digital 
systems, employ high frequency technology and extensive feedback and control 
systems, ensuring that their performance is stable and well regulated. Furthermore, 
modern radiographic equipment performs internal self-tests and has interlocks that 
prevent exposures being initiated when problems are detected. 

The availability of image data in digital form provides opportunities for 
improvement of QC testing and allows for the introduction of objective and 
quantitative tests as well as more sophisticated measurements that are not practical for 
analogue systems. An additional benefit of harmonized tests is that cross-vendor 
validation of system compatibility is possible. 

2   DMIST Recommendations for Testing 

The tests used in DMIST were categorized into the evaluation of three areas:  1) the 
performance of the image acquisition system, 2) the dose and image quality, or 3) the 
image display system.  For the ACR program, the physicist performs an annual 
equipment evaluation, which establishes that the equipment is performing at the 
expected level, and provides baseline target values that must be met by the technologist 
tests. The technologist performs routine tests to detect problems that may interfere with 
interpretation. 

2.1   Tests Eliminated 

DMIST results indicated that several tests currently required for SFM were of limited 
utility and should be eliminated from the program. These include: 
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Evaluation of imaging plate fogging on CR Systems. There was no evidence of 
problems due to fogging, even on the narrowest display window setting.  

kV accuracy and reproducibility. Modern x-ray generators used in digital 
mammography are highly stable and once calibrated, seldom drift. A service engineer 
should verify kV calibration at installation and when the generator is serviced.  A 
precise measurement of HVL can be used as an assessment of beam quality. 

X-ray linearity, output rate and reproducibility. All current mammographic x-
ray sources easily meet the requirement for output rate and the generators are 
extremely stable. Image noise tests will provide a surrogate test for problems related 
to linearity and/or reproducibility. 

Detector linearity and reproducibility. Detector characteristics were found not to 
vary.  Problems with linearity will manifest as a change in signal measurements from 
the technologist’s weekly uniform phantom image (i.e. shift of measured mean pixel 
values or S-numbers).  Unacceptable deviations could automatically trigger a warning 
message, prompting investigation of whether the deviation arose from the x-ray 
generation system or from the detector. 

Focal spot.  The focal spot is not the limiting factor affecting spatial resolution.  A 
test of overall system MTF is more objective and more useful. 

Routine imaging of the Mammography Accreditation Phantom. In DMIST, 
there were almost no phantom image failures and those that occurred were mainly a 
result of problems that could easily be detected through other means.  The current 
screen-film mammography accreditation phantom is not discriminative enough to be 
appropriate for quality control of digital mammography systems.  On the other hand, 
if the phantom test was made more challenging by changing the pass thresholds for 
detection of the internal structures, the failure rate increases rapidly, even for systems 
that are operating according to their design.  

Routine printing of the Mammography Accreditation Phantom image. In 
DMIST, there was no benefit found to printing the phantom image. 

While subjective phantom tests are appealing, they tend to be unreliable indicators 
of system performance, as it is very difficult both to replicate the critical tasks in 
breast imaging and to evaluate phantom images in a consistent manner both within 
and between observers.  

2.2   Test Devices 

The three recommendations regarding test devices are: 

1) A uniform flat phantom with a 1 mm deep flat-bottomed well and reference 
target objects should be used to verify that artifacts are minimal and permit a 
measurement of the signal-difference-to-noise ratio (SDNR). We believe that this will 
be the best practical indicator of image quality and equipment performance.  The 
reference objects are structures that can be viewed to aid in setting display levels for 
evaluating image artifacts. 

2) For measurement of MTF, a 25 mm medium-contrast square with sharp edges 
should be used, to record the edge-spread function, from which the MTF can be 
calculated [5]. The pattern should be positioned at the level of the upper surface of the 
standard breast. The test would be facilitated by the provision of validated software, 
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accessible from the workstation of the system, and having a user-friendly interface for 
both the physicist and the technologist. 

3) The TG18 QC and TG18 LN patterns [6] with appropriate format for the 
individual FFDM acquisition systems should be used for evaluation of soft and hard 
copy displays, with a simplified set of tests performed. 

2.3   X-Ray Production and Physical Safety 

In most QC programs, measurable parameters of the x-ray production system and 
basic dosimetry are emphasized.  The following tests are recommended: 

 
Unit evaluation performed in a thorough manner annually by the physicist and in 

an abbreviated manner monthly by the technologist ensures that all locks, detents, 
angulation indicators, breast thickness indication, maximum compression force, 
mechanical support devices for the X-ray tube and breast support assembly are 
operating properly and that the DICOM header information is correct.  The unit 
evaluation verifies the overall safety of the equipment 

Collimation and alignment including a measure of tissue excluded at the chest 
wall evaluated annually ensures patient and operator safety. 

Tube output measurement by the physicist annually monitors the tube x-ray 
output over a range of clinically relevant settings of kV, x-ray target and beam filter, 
providing an overall performance check and the data necessary for computing 
estimated mean glandular dose. 

HVL measurement annually by the physicist assures that the half-value layer of the 
x-ray beam is adequate to minimize breast dose, while not so high that contrast is lost 
in the resultant image. This ensures that the x-ray beam quality is consistent with the 
target, filter and kV selected; and enables the calculation of mean glandular dose. We 
recommend that HVL specification tables should be provided by the manufacturer for 
each model of digital mammographic unit to facilitate dose calculations and to allow 
verification of correct HVL.  These tables should specify the expected HVL under 
typical target/filter/kV combinations for clinical use.  After initial testing, if the HVL 
is compliant with the manufacturer’s specification, the measured value should be 
adopted as the reference value and changes from that value tracked. 

2.4   Dose and Image Quality 

Since image quality and dose are inversely related, it is important to ensure that the 
system is operating in an optimum manner when initially evaluated, and maintains 
that level of operation throughout the year.  The following set of tests attempts to 
maintain and track performance. 

 
Uniform phantom. A phantom should be imaged weekly by the technologist with 

signal and SDNR measurements made to track consistent behavior of the imaging 
chain. 

Artifacts should be analyzed by the physicist annually.  The technologist should 
test for artifacts weekly. The use of a uniform phantom image for the detection of 
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artifacts is probably the most effective test for the maintenance of high quality 
imaging.  

Noise levels and noise power spectrum. This test should be performed upon 
acceptance testing of the unit, and after servicing of the detector or digitization 
subsystems. 

Effective system modulation transfer function (MTF) should be measured 
annually, and after service to the detector, tube, bucky or CR plate reader.  The MTF 
of the system in the magnification configuration should also be measured.  For 
systems with moving parts (scanning systems or CR), it is recommended that in 
addition, MTF be tested monthly by the technologist. To facilitate use by the 
technologist, software for the calculation of MTF should be available that 
incorporates the pass criteria and communicates the pass/fail result clearly to the user. 

Thickness tracking should be evaluated at least annually by the physicist. A 
thickness tracking test incorporating an SDNR measure is useful, but more experience 
is necessary to establish recommended ranges of SDNR for different thicknesses. 

Geometric distortion should be evaluated annually, and after service to the 
detector assembly for machines with moving parts (e.g., systems with mechanical 
scanning and CR systems, which employ a laser scanner). 

Entrance exposure and mean glandular dose for a “standard” breast 
(approximately 4.2-cm compressed breast thickness—50% adipose, 50% 
fibroglandular composition) should be measured annually, to permit calculation of the  
mean glandular dose (MGD), which should not exceed 3 mGy per view.  If the MGD 
is displayed for an image, or reported in the DICOM header, that value should match 
the value calculated by the physicist to within 15%. 

Image detector ghosting evaluation should be performed on all types of systems 
at acceptance testing and upon replacement of the detector. This test evaluates the 
severity of any residual artifact due to previously exposed images. In this 
measurement, a ghost or residual image is induced in a manner similar to what would 
occur in clinical operation, and the results are quantified. As detector technology 
matures this test may no longer be required. 

2.5   Display 

The interface of the FFDM acquisition system to the diagnostician through the 
physician review station is probably the most important link in the digital 
mammography chain. The digital display devices, both softcopy and hardcopy are 
analogous to the processor and viewboxes used in SFM in that they are a major source 
of variability in imaging performance., Picture archiving and communications 
systems (PACS) are now an integral part of the imaging process, and the ability to 
display images acquired by multiple devices produced by different vendors is 
essential. If there are multiple locations where primary diagnosis is performed, all of 
those devices must meet the same standards. The test images should emulate (i.e. 
have the same format, number of bits and Presentation State) the images produced by 
each model of digital mammography unit in the facility, or which might be interpreted 
at that workstation. The workstation should be evaluated under typical operating 
conditions.  It is essential that cross-vendor compatibility be verified by the physicist 
before images from one vendor can be interpreted on another vendor’s workstation. 
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This includes any specialized software considered to be important for proper viewing 
of such images. 

2.5.1   Monitor Evaluation   
It is recommended that digital test patterns be displayed on every soft copy 
workstation used for diagnosis.  Subjective tests of spatial resolution, contrast, and 
artifacts should be carried out and quantitative measurements of brightness in test 
areas in the pattern should be made. 

The complete TG18 test program for monitors is extensive and provides excellent 
tools for the laboratory environment. Flat panel and LCD monitors will require a 
different testing protocol than that used for CRT monitors, and we expect that TG-18 
will evolve to meet these requirements. For practical clinical field testing, an 
abbreviated version of that program is probably adequate. This should include 
qualitative evaluation of the TG18 QC pattern and a reduced set of spatial resolution 
measurements. 

Overall display quality – The TG18-QC test pattern should be displayed on all 
primary medical display devices used to interpret digital mammograms. The physicist 
should perform a comprehensive evaluation of the test pattern annually. The 
technologist should verify that the image has no artifacts, and that the 0-5% and 95-
100% contrast patterns are visible.  

 The technologist should visually check the luminance response of the soft copy 
display for correct calibration by examining the contrast of the TG-18 QC test pattern 
at least weekly. The luminance response of monitors should be measured by a 
physicist at least annually using the TG18 protocol. The auto-calibration software and 
self-monitoring features that are now often supplied with newer monitors should 
make maintaining correct monitor calibration less onerous; however, it is important to 
verify luminance with an independent photometer in case the one attached to the unit 
becomes inaccurate. Conformance with the DICOM grey scale display function 
(GSDF) [7] should ensure that the luminance response is perceptually linear and that 
images are displayed consistently, however, not all manufacturers workstations are 
calibrated according to the GSDF. 

Laser printer evaluation should be performed annually on all printers used to 
print digital mammograms. Printing of the TG18-QC pattern should be done from the 
review workstation, so that any image transformations performed during the image 
transfer and printing processes are included. Further experience is needed to 
determine a reasonable criterion for determining acceptable conformance to the 
GSDF.  The technologist should visually inspect the printed test pattern quarterly to 
ensure that the printed image quality is acceptable.  In addition, a uniform image 
should be printed monthly to verify that artefacts are minimal. 

Printer sensitometry should be performed by the technologist daily, for printers 
with wet processing, and monthly for printers with dry processing for which the 
stability is greater.  The optical density of the mid-density step and density difference 
should be within 0.15 OD units of their target values. The measured base plus fog 
should be no more than 0.03 OD units above the target value.  
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Softcopy viewing conditions assessment assures that the ambient light levels 
incident on the review work station monitors do not degrade the quality of the clinical 
images. The ambient room illuminance falling on the monitor must be measured by a 
medical physicist at least annually or when lighting changes are made.  Because the 
light incident on the monitor degrades the perceived contrast in displayed images, 
diffuse light incident on the present generation of monitors should be no greater than 
10Lux and this level should be maintained the same as it was when the monitor was 
calibrated to the GDSF. No specular reflections should appear on the monitor screen.  
The ambient light level recommendations and protocols in AAPM TG-18 report 
should be followed. A daily room lighting checklist should be available to the 
technologists which provide them guidance in reviewing the lighting conditions in the 
room. 

Evaluation of the viewbox luminance and illuminance of the reading room Is 
also important where hard copy digital images are interpreted or previous SFM 
examinations are compared to current images. To comply with the DICOM GSDF, 
the calibration of the film printer must be done with knowledge of the luminance of 
the viewboxes on which the resulting films will be interpreted and the ambient 
illuminance, as these affect the perceived luminance levels in the resulting films.  
Therefore, once a printer is correctly calibrated, it becomes important to ensure that 
viewing conditions do not change significantly. For workstations, the minimization of 
extraneous light is also very important. Daily, the technologist should verify that 
lighting conditions in the reading room are acceptable and the physicist should 
measure viewbox luminance and reading room illuminance annually.  

3   Conclusions 

Review of the physics QC data from the DMIST program suggests that certain 
currently-performed tests, primarily tests on the x-ray generator function, appear to be 
of very little value in FFDM.    

For practical purposes, there must always be compromises between the time 
required to perform tests, and the degree of characterization of the system that is 
achieved. Digital imaging systems lend themselves to quantitative, automated testing 
procedures which are self-logging. We recommend that these testing procedures be 
implemented to as great an extent as practical. This will contribute to high compliance 
in QC testing while reducing the impact on both cost and the time of valuable 
personnel.  

Test procedures have been modified based on the DMIST experience.  There is still 
a need to further improve and streamline test procedures for the display monitors.  

We believe that these recommendations will provide a useful framework for 
definition of a QC program for FFDM. Without question, recommended QC 
procedures will evolve along with the systems, and with our increasing understanding 
of FFDM. It will be necessary to modify the tests, their frequency and pass/fail 
criteria as more experience is gained in the field, and as the technology matures. We 
are optimistic that a more generalized and less labour-intensive harmonized QC 
program can be developed based on this knowledge. 
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Abstract. We compared three conspicuity tests applied to four full field digital 
mammography (FFDM) systems.  The tests included: 1) the calculation of noise 
equivalent quanta (NEQ); 2) contrast-detail analysis with the CDMAM 3.4 
phantom and 3) evaluation of the detectability of (simulated) microcal-
cifications with specific well-known dimensions in mastectomy images. For 
each contrast-resolution test method, the exposure, processing and viewing 
conditions were identical. As a result, the only variable for a given test was  
the physical performance of the detector. The three test methods each rank  
the detectors in the same order. The flat-panel detector ranked the best overall, 
the dual-sided read-out storage phosphor detector ranked second and the single-
sided-read-out storage phosphor detectors with 50 m and 100 m pixel sizes 
ranked similarly and were inferior to the other 2 detectors. 

1   Purpose   

Digital mammographic detectors need both high spatial resolution and excellent 
contrast. These characteristics can be measured in several, very different, ways and 
ultimately determine the contrast threshold visibility for various object sizes. In the 
present study, we have applied three test methods that assess efficacy in different 
ways: 1) the calculation of noise equivalent quanta (NEQ) [1]; 2) a contrast threshold 
detectability study using a contrast-detail phantom [2]; and 3) a detectability study of 
(simulated) microcalcifications on a mammographic background [3,4]. The first and 
second methods are generally accepted tests used by medical physicists. 

2   Material and Methods 

The four detectors encompassed an amorphous-selenium based detector (the Embrace 
DM1000 of Agfa, (acronym: DM1000)) and three storage phosphor detectors (the 
FCR 5000MA of Fuji (acronym: FCR), the Embrace CR of Agfa with pixel size 
100μm (acronym: Emb100) and a non-commercially available CR detector of Agfa 
with pixel size 50μm (acronym: Emb50)). The FCR has the unique feature of a 
double-sided readout of the plates with a pixel size of 50μm. The Emb100 and the 
Emb50 make use of the same storage phosphor plates by Agfa. They were read-out 
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with the same single-sided reader but with a pixel size of 100μm (Emb100) and 50μm 
(Emb50).  The FCR, Emb50 and Emb100 images were acquired with a M-IV 
Platinum mammography unit (Lorad, Danburry, CT). The DM1000 detector is 
integrated in a mammography x-ray system of identical make and model using a 
similar x-ray generator, anode and filter combinations. The only difference of this 
system is the linear moving grid, whereas the M-IV Platinum mammography unit 
(used for the CR plates) has a cellular grid. 

2.1   NEQ 

The horizontal and vertical NEQs [1] were derived from the measured pre-sampled 
modulation transfer functions (MTF) [5] and normalized noise power spectra (NNPS) 
[6] as follows: 

( )
)(NNPS

MTF
)(NEQ

2

ω
ωω =  

where  is the spatial frequency.  The MTFs were calculated from images of a 5cm 
by 5cm, 30μm thick Pb-edge laminated between two 20mm thick PMMA slabs.  The 
NNPS were computed from images of a 40mm thick homogeneous PMMA slab.  The 
exposures were made at 28 kVp (nominal) and Mo/Mo.  We used 64mAs for the 
FCR, Emb50 and Emb100 and 55mAs for the DM1000. The computations were 
performed in the raw data; i.e. linear with exposure. Errors on the NEQs were 
computed from the propagation of the absolute errors calculated for the MTF and 
NNPS. 

2.2   Contrast-Resolution from CDMAM 3.4 

The CDMAM 3.4 [2] sandwiched between two 20mm thick PMMA slabs was 
exposed at 26 kVp, Mo/Mo and 160mAs for the FCR, Emb50 and Emb100 and 
129mAs for the DM1000.  Repeated exposures were acquired with each detector.  
The raw image data were square-root compressed.  The window width and level were 
optimized and set identical for all images. The images were printed with a high 
resolution (508 ppi – 8 bits) Mammoray 4500 Drystar printer (Agfa, Mortsel, 
Belgium).  All images were viewed by 7 experienced medical physicists in a darkened 
room on the same view box.  The use of a magnifying glass was encouraged and a 
minimum viewing time of 15’ was imposed.  Contrast-detail curves averaged over all 
7 observers and 2 images per detector were plotted for the four detectors. The 
fractional standard deviation SEt on the average threshold contrast was calculated 
using the equation given by Swets and Pickett [7]: 
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In this equation 2
cS is the fractional case sample variance, 2

bS  is the fractional 

between-observer variance and 2
wS  is the fractional within-observer variance. The 

number of replica images for each detector is n, the number of observers is l and the 
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number of times an image is read is m.  2
wS  was calculated from the rereading (3x) by 

three observers of the first case-sample of each detector. SEt was calculated with  
n=2, l=7 and m=1. 

2.3   Contrast-Resolution from Simulated Microcalcifications in Real 
Mammographic Backgrounds 

Five mastectomies with compressed thickness between 38mm and 49mm were 
exposed at 25kVp, Mo/Mo and clinical exposures.  The unprocessed image data were 
transferred to a workstation where they were made linearly proportional to dose.  

Each image had a random set of microcalcifications embedded using a previously 
described method [3, 4]: Each image was multiplied by a software phantom which 
consisted of multiple simulated microcalcifications. 

• The template for each simulated microcalcifications was derived from the x-
ray images of real microcalcifications. These images were acquired with an 
Agfa prototype CR plate with 100μm pixels and a magnification of 2. The 
images were spatially filtered to simulate an ideally sharp detector (MTF=1 to 
the Nyquist frequency) and then filtered again for the MTF of the system 
under consideration.   Finally, the templates of the microcalcifications were 
adjusted for the difference in pixel size of the four detectors. 

• Five equivalent diameter groups (>300-400μm, >400-500μm,>500-600μm, 
>600-700μm, >700-800μm) and four aluminium equivalent thickness groups 
(>0-200μm, >200-400μm,>400-600μm, >600-800μm), calculated for the 
ideally sharp detector, were used. This made 20 aluminium equivalent 
thickness/diameter groups. We simulated 30 microcalcifications for each 
group. All microcalcification templates were used more than once. In total we 
inserted 600 simulated microcalcifications into the mastectomy images of each 
detector. 

Each software phantom had 0 to 14 microcalcifications randomly distributed in 
2cmx2cm frames.  They were embedded in regions with constant breast thickness (i.e. 
constant system noise) [8].  Various background types were used.  We had to add 
separately the simulated microcalcifications�to the mastectomy images for each of the 
four detectors. In order to have microcalcifications with exactly the same anatomic 
background structure we used a translation, rotation and scaling algorithm to align the 
objects to the backgrounds. 

The raw image data were square-root compressed and the clinical processing 
protocol of Agfa, namely MUSICA (24), was applied. This processing algorithm was 
developed for general radiology. The window/level, Look Up Table (LUT) and 
MUSICA parameters were selected as appropriate for an average image by an 
experienced mammographic technologist. 

The experiments were performed on softcopy. The softcopy display system 
included a MGD 521M monitor ( Barco, Kortrijk, Belgium) with a Barco 5MP2 
AURA display card, run on a Dell Precision 530 computer. 

The images were fully randomly presented to three experienced radiologists (R1, 
R2 and R3).  They were asked to indicate the locations of the microcalcifications by 
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mouse clicks on the locations they thought contained the microcalcifications.  They 
rated their confidence using four response categories.  There was no limit on reading 
time and reading distance.  Zoom functions were available and the window/level was 
adjustable. 

For comparison of the observer performance, FROC analysis [9] was performed on 
the scores collected for each reader and each detector. The average TP ratings versus 
the average numbers of false positives (FP) per image were calculated for each score 
and each observer. For each data point, we estimated the errors in the means using a 
bootstrap procedure with replacement [10]. 

3   Results 

Figure 1 illustrates the horizontal and vertical NEQs for the DM1000, FCR, Emb50 
and Emb100.  The horizontal and vertical NEQ of the DM1000 are for all frequencies 
significantly higher than the horizontal and vertical NEQs of the FCR, Emb50 and 
Emb100. Up to 5lp/mm, the horizontal and vertical NEQ of the FCR are significantly 
higher than the horizontal and vertical NEQs of the Emb50 and Emb100.  The 
horizontal and vertical NEQs of the Emb50 and Emb100 are very similar. 
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Fig. 1. Horizontal (a) and vertical (b) NEQs of the DM1000, FCR, Emb50 and Emb100 at a 
similar radiation quality. Error bars represent the standard deviations in the mean from five 
exposures. 

 
Figure 2 a, b and c show the contrast-detail curves, averaged over the 7 observers 

and the 2 samples per system for the small diameter, medium diameter and large 
diameter groups. The fractional standard error SEt in average threshold contrast 
among the 7 observers, 2 samples for each system and one reading per image is equal 
to 0.123. For the smallest disk diameters (except 0.06 mm), the DM1000 outperforms 
the FCR, the Emb50 and the Emb100 (Figure 2 a). The FCR ranks second but is not 
significantly lower than the DM1000 for the smallest disks. The Emb50 and Emb100 
rank third and fourth; performance is not significantly different. The DM1000 is 
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Fig. 2. Contrast-detail curves of the DM1000, FCR, Emb50 and Emb100 for 3 diameter classes 
of the gold disks.  The curves are averaged over 7 observers, 2 replicate images sampled for 
each system and one reading of a given film.  Standard errors are shown. 
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Fig. 3. FROC characteristics from the detection of microcalcifications embedded in maste-
ctomy images acquired with the DM1000, FCR, Emb50 and Emb100 at a similar radiation 
quality. The FROC characteristics are shownfor the three readers, R1 (a), R2 (b) and R3 (c). 
The error bars represent the errors in the means calculated by a bootstrap procedure. 
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significantly superior to the Emb50 and Emb100 for the smallest diameters. The 
DM1000 performs significantly better than the FCR, Emb50 and Emb100 for the 
medium diameter disks (except 0.50 mm). The FCR, Emb50 and Emb100 perform 
very similarly for medium diameters (Figure 2 b). Overall, the threshold contrasts for 
the DM1000 appear lower for the largest gold disks, but no significant differences 
between the four imaging systems exist (Figure 2 c). 

Figure 3 shows the FROC curves of the three radiologists R1, R2, and R3 for the 
DM1000, FCR, Emb50 and Emb100. The three radiologists perform very similarly 
for the DM1000, FCR and Emb100; the standard errors in the means overlap. For the 
Emb50, R1 is inferior to R2 and R3. Figure 3 demonstrates that the DM1000 is 
significantly superior for all readers. The average FROC curves of the FCR rank 
second. However the performance of the FCR is not significantly different from the 
Emb50 and Emb100. The average FROC curves for the Emb50 and Emb100 are 
ranked similarly by R2 and R3. The average FROC curve of the Emb100 is higher 
than the Emb50 for R1. 

4   Conclusion and Discussion 

We have illustrated that the three different methods for assessment of different 
contrast resolution (NEQ, contrast visibility from CDMAM and detectability of 
simulated microcalcifications) result in the same ranking of the four detectors. We 
believe that this work supports the use of NEQ in comparing clinical system 
performance. This study also suggests that we can quantitatively determine how 
various physical parameters impact on the detectability of simulated microcal-
cifications. This has the potential to allow more rapid assessment of observer perfor-
mance to new image processing methods of new image systems.�
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Abstract. A method of extracting salient image features in mammograms at 
multiple scales using the monogenic signal is presented.  The derived local 
phase provides structure information (such as edge, ridge etc.) while the local 
amplitude encodes the local brightness and contrast information. Together with 
the simultaneously computed orientation, these three pieces of information can 
be used for mammogram segmentation including locating the inner breast edge 
which is important for quantitative breast density assessment. Due to the 
contrast invariant property of the local phase, the algorithm proves to be very 
reliable on an extensive datasets of images obtained from various sources and 
digitized by different scanners.   

1   Background 

Medical image processing often involves identifying structures of several different 
types (edge – of a mass, or of the breast, ridge – e.g. ducts, etc.) as a basis for 
segmentation in complex images such as mammograms, and a great deal of effort has 
been expended on making those algorithms scale, intensity and contrast invariant.   

When dealing with digitized mammograms, due to variations in X-ray acquisition 
protocols, breast density and digitizing scanners, there can be large differences in both 
the image intensity range and contrast. This poses a considerable challenge to 
developing fully automated algorithms without prior knowledge about the scanner 
and imaging protocol.  In this paper, we describe a novel segmentation algorithm 
which can effectively handle mammogram images from various sources and which 
are digitized using different scanners.  

It is well known that a 1D signal can be split into local amplitude and local phase 
using the analytic signal, in which the local phase provides the structural information 
and the local amplitude encodes the brightness and contrast information [1-3]. The 
split into these two independent and complementary kinds of information makes the 
local phase brightness and contrast invariant. The monogenic signal, introduced by 
Felsberg et al [4], is an extension of the analytic signal to 2D/3D/4D, where, in the 
case of 2D images, three pieces of information are extracted: the local amplitude, 
local phase, and local (image) orientation.   

We have developed a multi-scale strategy to apply the monogenic signal to images, 
and extract distinct structure, orientation and contrast information. This information is 
of interest for a range of applications (e.g. mass detection, breast density quantification, 
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detection of curvilinear structures or the pectoral muscle boundary), and particularly for 
differentiation of structures in an image.  In this paper we demonstrate its utility in 
segmenting a range of structures in the same mammogram such as the film area, the 
breast and the inner breast edge.   

Many methods have been developed for mammogram segmentation and these have 
been based on the intensity histogram [5], the intensity gradient [6-8], polynomial 
modeling [9, 10], or active contours [11, 12].  Many of these methods require 
manually adjustment of parameters, inevitably limiting the range of images that the 
algorithm can be applied to automatically, that is, without supervision or intervention.   

Our method aims to solve the problem automatically and deals with the following 
difficulties: varying brightness and contrast; the skin-air breast boundary, which has 
low contrast to background, and sometimes has been cut off due to limited sensitivity 
of the digitizer; the background intensity and noise, which vary considerably; the 
images obtained from various scanners (CCD and laser based): CCD based scanners 
(e.g. Canon) are usually noisier and less sensitive than laser based scanners (e.g. 
Lumisys, Array, DBA). 

2   Method 

The method essentially relies on the exploitation of properties of the monogenic 
signal extracted from the image. In this section, we recall some of these properties 
and explain how they were exploited to create an application specific algorithm for 
mammogram segmentation. 

2.1   Definition of Local Amplitude, Local Phase and Local Orientation  

Hilbert transform, 1D analytic signal  
To extract the structure and local amplitude information of a 1D signal f(x), the  is 

convolved with its  Hilbert transform )()()( xfxhxfH ⊗= , where the transfer 

function of Hilbert transform is defined as [1]: 

( ) sign( )   ( >0) , 0 ( 0),  ( 0)H i i iω ω ω ω ω== = = − <      (1) 

And h(x) is the spatial representation of the frequency representation H( ). The 
analytic signal is formed as  ( ) ( ) ( )A Hf x f x if x= − .  The local amplitude A(x) and the 

local phase (x) are derived from fA(x) as: 

2 2( ) ( ) ( ) ( )A HA x f x f x f x= = +   (2) 

( ) ( ( )) arctan 2( ( ), ( )),  ( ) [ , )A Hx arg f x f x f x xϕ ϕ π π= = ∈ −  (1) 

2D Monogenic signal 
In the 2D case, Felsberg and Sommer used the Riesz transform to extend the Hilbert 
transform to 2D or arbitrarily higher dimensions. The Riesz transform in 2D is 
defined as: 
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2 2
1 1 2 1 1 2( , ) /H iω ω ω ω ω= +

, 
2 2

2 1 2 2 1 2( , ) /H iω ω ω ω ω= +
 

   (4) 

Let h1(x1,x2) and h2(x1,x2) be the spatial representation of the Riesz transforms. The 
monogenic signal is a 3D vector formed by the signal with its Riesz transform.  The 
local features are derived from fM: 

1 2 1 2 1 1 2 2 1 2( , ) ( ( , ), ( )( , ), ( )( , ))Mf x x f x x h f x x h f x x= ⊗ ⊗    (5) 

The local amplitude: 2 2 2
1 2 1 2( , ) ( ) ( )fA x x f h f h f= + ⊗ + ⊗  

  (6) 

The local phase: 1 2 1 2 f 1 2( , ) acos(f ( , )/A ( , ))x x x x x xϕ = , [0, )ϕ π∈    (7) 

The local orientation: 1 2 2 1( , ) atan2(h , h )x x f fθ = ⊗ ⊗ ,  [ , )θ π π∈ −     (8) 

2.2   Structure and Scale 

Idealized signal structures can be detected by the local phase [2]: =0 (ridge), /2 (up 
step),  (valley), - /2 (down step).  An example of a simple, noise-free 1D signal is 
shown in Fig. 1, the structure points are marked with *, and have unique phase values, 
regardless of the signal intensity and contrast.  
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Fig. 1. Signal and its phase, showing the relationship of the structure and phase. Sudden changes 
of phase at abscissas ~85 and ~195 are wrap from  to – . 

Scale Space Analysis Using Quadrature Filters  
The local amplitude and local phase can be derived at multiple scales by filtering the 
signal with bandpass filters in a selected frequency range.  The bandpass filters need 
to be analytical, which is equivalent to having quadrature pairs of filters. One such 
that has been used frequently, and is used in our examples, is the log-Gabor filter [1-
3].  The log Gabor function is defined in the frequency domain by:  

2 2
0 0(log( / )) /(2(log( / )) )( )G e ω ω κ ωω −= , if >0, and zero otherwise    (9) 
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where 0 is the filter’s centre frequency.  The term κ / 0 is held constant.  A κ / 0 
value of 0.74, 0.55, 0.41 results in a filter bandwidth of approximately one, two or 
three octaves, respectively.  With the band pass filtering, the monogenic signal is 
defined as following in 2D: 

1 2 1 2 1 2( , ) (( ), ( ), ( ))( , )Mf x x g f h g f h g f x x= ⊗ ⊗ ⊗ ⊗ ⊗ .  (10) 

2.3   Phase, Orientation, and Amplitude 

Fig. 2 a, b, c, d show the original image, the phase, orientation and amplitude 
obtained from the filter response of a monogenic filter at a global scale.  With a fixed 
threshold /2, two principal structures can be separated: the phase < /2 area includes 
most of the breast and label regions (Fig. 2e); whereas the phase  /2 area includes 
the dark background region (Fig. 2f).  The separation edge (phase = /2) near the 
breast boundary corresponds to where the intensity changes rapidly, which is 
approximately where the breast begins to leave the compression plates.  We call this 
the inner breast edge, and it turns out to be a crucial structure in estimating breast 
density [13]. The actual breast boundary is always in the background region (Fig. 2f).   

Next we need to refine the segmentation to separate the off-film, label and breast areas 
from the area defined by [phase < /2], and we need to find the breast boundary from the 
area [phase  /2]. To do this, we use the phase computed at a local scale, and we define 
the neighbourhood of the breast boundary using the local orientation information. Within 
this neighbourhood area, we compute a phase threshold corresponding to the breast 
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Fig. 2. (a) Original image. (b) Phase. (c) Orientation vector on the original image. (d) Amplitude. 
(e) Phase < /2 region, with original image superimposed on it. (f) Phase > /2 region.  
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boundary, based on the local amplitude. By using the structure information encoded 
in the phase image at different scales, we overcome the image variation problem 
introduced by different digitizers. 

Off-Film Area 
The off-film area is an almost constant white (occasionally black) region around the 
film generated at the digitizing stage.  We can detect this region using a local phase 
(phase2) at a finer scale (a log-Gabor filter of bandwidth 3 octaves and a centre 
frequency equal to 1/45) (Fig. 3a).  Using a fixed threshold (phase2 > /2) the off-film 
area is identified as the outer dark region (Fig. 3b). The off-film region often overlaps 
with bright labels or patient information regions. To distinguish such regions, we 
assume that the off-film area consists of vertical and horizontal strips at the boundary 
of the film, detected by vertical and horizontal line fitting, and that what is left are 
regions that correspond to labels.  If required, refinements can be made to 
accommodate slightly angled films.  Fig. 3c shows the detected bright off-film area.    

  

Fig. 3. (a) phase2 at fine scale.  (b)  phase2 > /2 .(c)  Detected bright off-film region. 

Neighbourhood of Breast Boundary  
Fig. 4a illustrates that the local orientation around the breast boundary and the inner 
breast edge is very similar.  Based on this observation, we define a neighbourhood 
area outside the inner breast edge, in which lies the breast boundary (Fig. 4b).  This 
neighbourhood not only defines the area where we compute the local amplitude curve 
versus phase, to generate the threshold for the breast boundary, but also limits the area 
in which we apply the threshold, thus improving both reliability and accuracy.   
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Fig. 4. (a) Local orientation in 4 orientation bands.  (b) Selected regions contain the inner breast 
edge and breast boundary.  (c) Breast boundary neighbourhood. 

(a) (b) (c) 
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We group the orientation image into four kinds of regions, where the orientation in 
each region is one of the following groups: -pi  -pi/2, -pi/2  0, 0  pi/2, pi/2  
pi. All regions that contain the breast inner edge are selected.  Holes in selected 
regions are filled. The neighbourhood is then defined within the selected region over 
the pixels whose phase is greater than /2.  

Threshold for the Breast Boundary  
Observe in Fig. 5a that the phase value is very similar at the breast boundary.  We 
determine a phase threshold for the breast boundary by using the mean of local 
amplitude against phase in the neighborhood area (Fig. 5b).  The local amplitude is 
expected to attain a maximum value at the breast boundary.  For this reason, we look 
for the phase in the range of (pi/2  pi) with the maximum mean local amplitude to 
be the threshold.  The segmented breast boundary is plotted in Fig. 5c.  
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Fig. 5. (a) Phase in the breast boundary neighbourhood. (b) Mean of local amplitude against 
phase (c) Resulting estimated breast boundary. 

3   Results 

Fig. 6 shows a typical segmentation result.  Images are: the original image, the 
segmented breast region, the label region, and off-film region.   

 

Fig. 6. Mammogram segmentation result. From left to right, the original image, the breast, the 
label, the off-film area. 
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Stability and Accuracy  
This segmentation algorithm has been tested on 3880 mammogram images digitized 
using a Canon scanner, and 840 mammograms digitized using a Lumisys scanner with 
no failures as assessed visually by an expert in mammographic image processing (148 
extreme cases of large, partially captured breast image are detected and removed from 
the first study) [14].  The algorithm performed similarly well (as judged by the same 
expert) on several hundred samples of mammogram images digitized by Array 
scanners and a small sample of images from Howtek.  

The accuracy of the segmentation was tested using 100 images which were 
manually segmented by an expert researcher.  The manual segmentation was made by 
connecting line segments between points selected by the expert.  The average distance 
between the selection points is around 1-2cm (depending on the area), which means 
that the accuracy of the manual segmentation be within a couple of pixels (<1mm). 
Fig. 7 shows the regions segmented manually and automatically.  Two measures were 
used for evaluation: i) the averaged distance between the automatic and manually 
generated breast boundary.  The mean absolute value is 1.88 mm, and ii) the 
percentage of the difference of breast area against the manually segmented breast area 
is 3.23%.   

 (a)  (b) 

Fig. 7. Segmentation accuracy test. (a) Manually segmented regions. (b) Automatically 
segmentation regions. Differences can be noticed in the inferior part of the thorax. 

4   Discussion 

Using the feature sets generated by the monogenic signal has proved to be very 
successful for segmentation of mammograms.  The stable inner breast edge identified 
in this way has improved considerably the performance of a breast density 
quantification algorithm. We believe that the fundamental reason for this is that the 
local phase and orientations at multiple scales captures the structure of the object, 
encodes neighbourhood information and that they are salient measures.  Segmentation 
based on these scale selected features is contrast and brightness invariant and so they 
should be more robust, flexible and stable than algorithms that rely entirely upon 
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brightness or upon gradient measures.  This method applies to 2D/3D data, and can be 
extended to multiple dimensions, for example to 4D spatiotemporal data. 
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Abstract. This paper describes an algorithm to segment mammo-
graphic images into regions corresponding to different densities. The
breast parenchymal segmentation uses information extracted for statis-
tical texture based classification which is in turn incorporated in multi-
vector Markov Random Fields. Such segmentation is key to developing
quantitative mammographic analysis. The algorithm’s performance is
evaluated quantitatively and qualitatively and the results show the fea-
sibility of segmenting different mammographic densities.

1 Introduction

Breast parenchymal density refers to the prevalence of fibroglandular tissue in the
breast as it appears on a mammogram. Many studies have stressed the impor-
tance of breast density and it has been shown that breast density is an impor-
tant factor in the development and risk of breast cancer [1]. The findings are intu-
itively appealing, since breast cancer mostly arises from the epithelial lining of the
ductal/lobular glands. Segmentation of the mammogram into different mammo-
graphic densities is useful for risk assessment, quantitative evaluation of density
changes, mammogram matching, region enhancement etc. However segmentation
of the breast to even a simple fatty and non-fatty set of regions is much more diffi-
cult than it appears due to the large differences in parenchymal type appearances
and the variability of image acquisition and acquisition parameters.

A small number of articles have suggested ways to segment the mammographic
breast parenchyma. Miller and Astley [2] were the first to attempt to automati-
cally identify regions in the breast corresponding to adipose and fibroglandular
tissue, and they showed that texture analysis forms a good basis for automat-
ically classifying breast tissue. For their classification, they investigated granu-
lometry techniques (grey-level opening operations) and Laws’ texture energies
(filtering with a small set of masks depicting certain features such as lines and
spots). However, their process failed on dense tissue that was relatively uniform.
This may have been due to the low resolution of the images in the database that
was used, and/or the size of the neighbourhoods used for processing. Zwiggelaar
et al. [3] investigated the use of an Expectation-Maximisation algorithm on grey-
level values and texture feature vectors (comprised of the difference in grey-level
from the four closest neighbours) for mammogram segmentation. The results are
shown on an undefined number of classes that can be as low as 3, - including the
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pectoral muscle. Comparison of the proportion of dense tissue with an estimate
provided by a radiologist looking at the image showed agreement of 67%.

All mammograms, normal or abnormal, from either young or an older woman,
are textured: the texture of a region being a visual expression of its anatomi-
cal make up. Texture often remains largely invariant even to relatively large
anatomical changes. This leads directly to the idea of segmenting each mammo-
gram into texture regions for which the texture is deemed homogeneous for use
in mammogram analysis. The success of the statistical based texture classifica-
tion framework for breast pattern classification [4] motivated the investigation of
textons and texture for a more local segmentation ro classification of the breast
area. This paper presents a method for segmenting a mammogram into different
densities using texture based statistical modelling.

2 Method

The segmentation algorithm presented in this paper uses textons in a Hidden
Markov Random Field (HMRF) framework to achieve breast tissue/density seg-
mentation. Textons (texture primitives) [4], are defined as the centres of the
clustered filter responses achieved via convolution with a filter bank followed
by nearest neighbour matching. First, we construct a texton dictionary by pro-
cessing a large number of segmented mammograms and then aggregating and
clustering the filter responses using K-means analysis. Given the texton dictio-
nary, each image pixel in the breast region is assigned a label by the texton
which lies closest to it in the filter space. It is considered that pixels from similar
tissue have similar texture properties as texture often remains largely invariant
even to relatively large anatomical changes such as involution and use of HRT.

MRF theory provides a convenient and consistent way of modelling. Context-
dependent entities such as image pixels, corresponding vectors and correlated
features by characterising mutual influences among such entities using condi-
tional MRF distributions. A MRF is a collection of random variables which are
defined on a finite lattice, either regular or irregular and where each variable
interacts with some subgroup of that lattice termed its neighbourhood [5]. The
MRF framework used is an extension of MRFs from scalar intensity images
(2-D) to vector images [6]. The algorithm includes Pseudo Likelihood for pa-
rameter estimation. We developed the extension in order to enable MRFs to be
used for feature vector image segmentation, and to incorporate estimation of
all the parameters. The multi-vector Gaussian Hidden Markov Random Fields
(GHMRFs) based on the texton feature vectors incorporate both contextual and
spatial neighbourhood information. The multi-vector image representation which
is achieved using the filter bank [7] results in a segmentation which is superior
to the segmentation of corresponding scalar images [8]. The tissue segmentation
is achieved as the result of applying the Iterated Conditional Modes (ICM) al-
gorithm proposed by Besag [9] followed by Expectation - Maximisation (EM)
and Pseudo Likelihood evaluation for estimating the unknown needed model
parameters until the resulting segmented images converge. An initialisation of
probabilistic moments is incorporated into a Gaussian probability model for each
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density class. The class labels are assumed to follow a Gibbs distribution [10]
and the energy function is a sum of potentials taken from a multilevel logistic
model for MRFs. The segmentation is obtained via maximisation of the poste-
rior probability distribution function. The number of textons used, as well as the
size of the neighbourhood, was based on observations in the literature [11], [3].

A number of pre and post processing steps are needed for the HMRF vector
image segmentation algorithm to better approximate the radiologist’s segmen-
tation. Initially, the entire breast region is segmented [12] and processed so that
each pixel is represented by its corresponding texton. Every new mammogram is
represented by its texture feature vector representation. The tissue segmentation
algorithm is initialised by assigning to each multi-vector pixel of the vector image
the label of the texton that lies closest to it using a Euclidean distance measure.
To implement the HMRF based vector image segmentation, the mean vector
and the covariance matrix associated with each texton present in the initial seg-
mentation are calculated. These statistical moments enable the textons present,
to adjust accordingly with every mammogram and to provide the information
needed for starting the HMRF based segmentation.

The result of the segmentation is a mammogram segmented into regions of
different density/texture. However, due to the use of a large number of texture
classes some density classes are represented by more than one label. To reduce
the number of density classes, some labels are combined to give the same cat-
egory classification. This classification is done in a supervised training manner,
according to an expert radiologist’s ground truth. This final categorisation takes
place after the HMRF algorithm has converged.

Fig. 1. Application of the texture based HMRF vector image segmentation algorithm.
(a) The original mammogram. (b) The mammogram after the HMRF segmentation.
(c) The automatic segmentation boundaries over the original mammogram.

(a) (b) (c)
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3 Results

The goal of the segmentation algorithm is to see if texture could separate dif-
ferent densities (as described by Wolfe [13] for the different breast patterns) in
the breast (adipose, glandular, etc.) according to what the radiologist perceived
as different density region while viewing a mammogram. The segmentation re-
sults demonstrate anatomically plausible breast density segmentation. Accord-
ing to the radiologist evaluation, the segmentation results into regions with the
following appearances of density and texture: fat tissue corresponding to the
breast edge, purely adipose tissue, adipose tissue with some apparent structures
(curvilinear structures, or strands of fibrous tissue), relatively dense tissue with
some apparent structure that may also include more lucent areas (fibrotic stro-
mal tissue, glandular tissue), dense tissue with an apparent texture structure
(not homogeneous), and highly dense tissue (homogeneous) [14]. An example is
shown in Figure 1. The results show a strong correspondence between the dif-
ferent textures and the radiologists perception of the different density areas in
the breast.

Results are also shown in Figure 2. In the segmentation images resulting
from the presented algorithm the darker the colour, the lower the corresponding
density of the identified texture. The figure includes the automatic segmenta-
tion classification along with the segmentation provided by the radiologist. The
images are evaluated qualitatively and quantitatively (where the radiologist’s
segmentation/classification is available).

Table 1. Automatic region segmentation accuracy(%) results for a 3 category segmen-
tation

Segmentation Dense Fatty Breast Edge

Accuracy(%) 96.7%, σ = 3.4% 93.8%, σ = 2.9% 92.8%, σ = 4.2%

The algorithm was evaluated on 32 normal mammograms collected and digi-
tised for the “Screen” project [15]. For the qualitative evaluation of the segmen-
tation, a highly experienced breast screening radiologist was asked to rate the
segmentation in one of four categories: very satisfactory, satisfactory, good or
poor. 28 out of the 32 mammograms’ segmentations were rated as very satis-
factory while 3 were rated as satisfactory and 1 as good. For the quantitative
evaluation of the algorithm the manual segmentation results were combined to
provide a three class segmentation: dense tissue, fatty tissue and breast edge
tissue, in keeping with the other works in the literature [16]. The corresponding
automatic segmentation/classification results were also combined in the same
three classes to facilitate comparison. The results are presented in Table 1.
The segmentation accuracy (%) is modified to the percentage of the area of
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intersection of the automatically segmented region with the manually segmented
region, over the area of their union. This definition provides a conservative es-
timate of the accuracy in order to account for cases where the automatically
segmented region overestimates or underestimates the actual region.

a.

Fig. 2. Application of the texture based HMRF vector image segmentation algorithm
on a mammogram belonging to Wolfe class P1 and comparison with the radiologist’s
ground truth segmentation. (a) The original mammogram. (b) The mammogram after
one iteration of the HMRF algorithm. (c) The mammogram after the HMRF segmen-
tation. (d) The mammograms with the segmentation from the radiologist. (e) The radi-
ologist’s segmentation overlapped on the results of the automatic HMRF segmentation
algorithm. (f) The automatic segmentation boundaries over the original mammogram.

(a) (b)

(d)

(c)

(e) (f)
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4 Discussion – Conclusions

We have presented a method for segmenting the breast to areas of different den-
sity which investigates the use of texture statistical modelling and MRFs. The
results of the segmentation algorithm are due to the texture feature representa-
tion and the HMRF based vector image segmentation as they combine textural
and structural information.

The segmentation algorithm allows for segmentation of the different texture
regions in the breast for a more localised analysis. The algorithm combines tex-
ture feature vectors with HMRFs, providing a representation that overcomes
issues relating to the large differences in appearance between mammograms,
due to the projective nature of mammograms and the variability of image acqui-
sition. Texture based vectors provide the basis on which a probabilistic model
is built both upon the statistical and spatial characteristics of the vector im-
ages. The results of the algorithm demonstrate close agreement to radiologist’s
segmentation and texture/density interpretation. The method is objective and
reproducible.

The number of textons used, as well as the size of the neighbourhood, was
based on observations in the literature ([11], [2], [3]). Issues relating the chosen
filtering to get the texton dictionary, the influence of the number of textons and
the neighbourhood size form a basis for future work. A texton dictionary based
on a set of segmentations provided by the radiologist, will probably result in
a more concise segmentation. Yet, despite the somewhat unsupervised training,
the choices for the texton dictionary as well as the neighbourhood, the algo-
rithm achieves a strong correspondence between the different textures and the
radiologists perception of the different density areas in the breast.

The presented method overcomes difficulties due to the image acquisition and
breast variability achieving a good representation of texture and density in the
breast, thus providing an excellent base for density risk assessment, asymmetry
detection and matching.
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Abstract. Several studies have showed that increased mammographic density is 
an important risk factor for breast cancer.  Dense tissue often appears as textured 
regions in mammograms, so density and texture estimation are inextricably 
linked. It has been demonstrated that texture classes can be learned, and that 
subsequently textures can be classified using the joint distribution of intensity 
values over extremely compact neighbourhoods. Motivated by the success of 
texture classification, we propose an fully automated scheme for mammogram 
texture classification and segmentation. The classification method first has a 
training step to model the joint distribution for each breast density class. 
Subsequently, a statistical comparison is used to determine the class label for 
new images. Inspired by the classification, we combine the so-called image patch 
method with a HMRF(Hidden Markov Random Field) to achieve mammogram 
segmentation. 

1   Introduction 

Many studies have stressed the importance of breast density, which has been shown to 
be an important factor in breast cancer risk [Byng et al., 1996], [Saftlas and Szklo, 
1987], [Oza and Boyd, 1993]. Wolfe was the first to study the relationship between 
breast patterns and risk. He proposed four breast density classes: N1, P1, P2 and NY, 
which represent respectively: normal breast tissue, fatty tissue, dense tissue and very 
dense tissue. N1 and P1 are considered low risk whereas P2 and NY are high risk 
classes. Later, the American College of Radiologists suggested a modification, known 
as the BI-RADS classification [American College of Radiology,1998]. BI-RADS 
generally follows Wolfe, and so in this paper, we use Wolfe Patterns, though it should 
be understood that our approach can be adapted straightforwardly to other 
classifications (BI-RADS, SCC). The goal of this paper is to use the image patch 
method to classify mammograms and to segment the breast into different regions, each 
representing a different tissue type – both based on the Wolfe classification. The idea of 
a texture is intuitively familiar. For the past 40 years, researchers have analysed 
textures in terms of  what have been called “textons”,  which may be thought of as  the 
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Fig. 1. Example mammograms of Wolfe Pattern 

basic building blocks of a texture, i.e., a texture can be conceptualised as a suitable 
geometric and statistical repetition of its textons. Numerous definitions have been 
proposed to make precise the concept of texture and texton, and for deriving textons 
automatically from images. In one recent proposal, a texton was defined by Leung and 
Malik as a cluster centre in a suitable filter response space [Leung and Malik, 2001].  
This motivated us to explore how textons could be adapted to the mammogram density 
evaluation. 

2   Method 

2.1   A Statistical Model for Breast Classification 

The aim in this section is to assign a single Wolfe class to each mammogram.  A set of 
200 mammograms were chosen randomly from the Oxford Database, collected and 
digitised for the “Screen” project [Evertsz et al., 2000b], [Evertsz et al., 2000a]. The 
background, pectoral muscle and labels are removed using Petroudi’s method [Petroudi 
and Brady 2001], and the mammogram pixel values are normalized to be in the range 0 
to 1. 20 mammograms were then chosen randomly from each Wolfe Pattern class as the 
training set. 

The classifier is divided into two stages: a training stage in which statistical 
distribution models of texture classes are learnt from training examples; and a 
subsequent classification stage where test images (none of the training images are 
subsequently used for testing) are classified by comparing their distributions to the 
learnt models. In the training stage, for each pixel of the training image, the raw pixel 
intensities of a *N N square neighbourhood around that point are taken and row 
reordered to form a vector in an 2N  dimensional feature space. These “image patch” 
vectors are then aggregated over images from the same texture class and clustered 
together, and exemplars (textons) chosen via K-means clustering [Duda et al., 2001]. 
Finally, all the textons learnt from the (four, in this case) different classes are brought 
together to form a single texton dictionary. The choice of clustering each density class 
separately was made so that important texture primitives can be learnt from each class. 
In the case of mammograms, five textons are chosen from each class – greedy  
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Fig. 2. Generating the corresponding model for selected training images. The image patch vector 
at each pixel is a 8-vector (3*3 patch excluding the central pixel), and clustering those vectors 
gives centres, which is what we called textons. 

algorithm experiments demonstrated that five textons per class suffices to extract all the 
important features from mammograms. 

To characterize each class, the model is learnt for a particular training image by 
labeling each pixel with its closest texton in the feature space. The model is the 
normalized frequency histogram of pixel texton labellings, i.e. an n-vector of texton 
probabilities for the image, where n is the number of textons. Each texture class is 
represented by a number of models corresponding to training images of that class. 
(Figure 2) Once the models for each class are generated as showed above, a nearest 
neighbour classifier is applied and the 2χ statistic[Press et al., 1992] defined by: 

( ) ( )2

2 , i

i

N o v e l M o d e l
M o d e l N o v e l

N o v e l M o d e li

P P
P P

P P
χ

−
=

−
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2.2   Image Patch Method for Mammogram Segmentation 

The success of assigning a single Wolfe classification to each mammogram motivated 
our investigation of using textons for breast segmentation. The texture of a region in a 
mammogram is a visual expression of its anatomical distribution. The algorithm we 
have developed  is based on texton features, as above, and a particular segmentation 
algorithm, namely a HMRF(hidden Markov random field)[ Marroquin, 2003], which 
propagates information acquired at each pixel to its surroundings, since textures occupy 
extended regions. Recall that a mammogram is represented as a textured vector (image 
patch vector) image. Evidently, the segmentation algorithm should be based both on the 
spatial and statistical information in the image. The spatial coherence of texture can be 
modelled in a number of ways. Markov random field (MRF) theory provides a 
convenient and consistent way to model context-dependent entities such as image 
pixels and correlated features. The statistical property is modelled using vector textons 
in our approach. A MRF is a collection of random variables which are defined on a 
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finite lattice, either regular or irregular, and where each variable interacts with some 
subgroup of that lattice termed its neighbourhood [Brault and Mohammad-Djafari, 
2004]. The MRF presented here is an extension of the conventional MRF, since it is 
based on feature vectors at each pixel. 

Initialization. Using a similar process to that described in the previous section, several 
textons can be extracted. It turns out that in practice, some of the textons are rather 
similar, and so a greedy algorithm is used to eliminate such similarity. The 
mammogram to be segmented is then converted into a vector image, and, for each 
pixel, we assign the closest texton as its label. This yields an initial segmentation. As 
we can see from the figure below, the dense region of the mammogram is highlighted in 
both segmentation initialization images. Note that at this point each pixel is treated 
independently.  We now use the HMRF to generate the final segmentation. 

 

Fig. 3. Initialization of the mammogram using 6 and 12 classes 

HMRF(hidden markov random field). Marroquin proposed a novel HMRF framework 

which differs from the traditional MRF.  Instead of altering the currently favoured class 

label for each pixel at each iteration, Marroquin’s method maintains for each pixel an 

additional hidden field p , which encodes at each iteration the probability that the pixel 

belongs to the various classes, and which is a Markov random vector field generated 

with distribution 
1

( ) exp[ ( )]CC
P p W p

K
= − , where K is a normalizing 

constant, C are the cliques of a given neighbourhood system, CW  are given potential 

functions, and where each vector p(r) takes values on the M-vector simplex MS : 

1

{ : 1, 0, 1,..., }
M

M
M k k

k

S u u u k M
=

= ∈ℜ = ≥ = . 
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The key idea in Marroquin’s method is that at each iteration, at each pixel, the values of 

the probabilities of membership of each class are updated.  Finally, the maximum a 

posteriori class is chosen for each pixel. Hence the prior for f is: 

( ) ( | ) ( )
N
M

f S
P f P f p dP p= , and a potential function with 2-point neighbourhood 

system is used:  

2
2

1

( ( ), ( )) | ( ) ( ) | ( ( ) ( ))
M

rs k k
k

W p r p s p r p s p r p sλ λ
=

= − = −  

where λ  is a positive parameter, and < r, s > are neighbouring sites in L with a certain 

clique C. The posterior distribution ( , | )P p Iθ  is obtained from Bayes rule as: 

1
( , | ) ( | , ) ( )P p I P I p P

Z θθ θ θ= . The conditional distribution ( ( ) | , )P I r p θ  may be 

obtained: 

[ ]1
( , | ) exp ( , )P p I U p
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with ( , ) log( ( ) ( )) ( ) log ( )C
r L C

U p v r p r W p Pθθ θ
∈

= − ⋅ + − , where we 

consider cliques of size 4 and potentials as described above. 

Now the segmentation problem is simplified to the following two steps: 

1. Find the MAP estimators p*, *θ  for p, θ : 

,
*, * arg max ( , | )

M
Np S

p P p I
θ

θ θ
∈

=  

2. Find f* as the maximizer of ( | *, *, )P f p p Iθ= . 

The first step is equivalent to the minimization of ( , )U p θ  subject to the 

constraints: ( ) Mp r S∈ , for all r L∈ , and the second step simply consists of 

finding the mode for each discrete measure *( )p r  in a decoupled way: 

* arg max ( )k
k

f p r∗= . 
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Fig. 4. Segmentation results after 50 iterations from mammogram in figure 3, with different noise 
parameter settings 

3   Implementation Details and Results 

As in the previous section, a set of 200 mammograms were chosen randomly from the 
Oxford Database, collected and digitised for the “Screen” project [Evertsz et al., 
2000b], [Evertsz et al., 2000a]. The background, pectoral muscle and labels were 
removed using Petroudi’s method[Petroudi and Brady 2001], and the mammogram 
pixel values were normalized to lie in the range 0 to 1. Twenty mammograms were then 
chosen randomly from each Wolfe Pattern class as the training set. To construct the 
texton library for classification and for segmentation, the 20 images for each Wolfe 
class were pooled and clustered via the K-means algorithm. K = 7 textons are learnt 
from each of the 4 Wolfe classes using 20 models per class. To evaluate the algorithm, 
43 randomly chosen mammograms from the Screen project were used. The table below 
shows the classification result under this setup. 

Table 1. Breast classification result with patch size 3*3 

 N1 P1 P2 DY 

Accuracy 91.4% 80.9 85.7% 90.3% 

Low & High 95.7% 95.6% 

By altering the size of the patch, we get a different result (see table 2). Increasing the 
number of patch size can result in slower computation in training step. 5*5 patch size 
with the central pixel left out is slightly better than 3*3 patch. 
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Table 2. Classification result with patch size 5*5 with central pixel left out 

 N1 P1 P2 DY 

Accuracy 92.3% 80.9 83.2% 95% 

Low & High 96% 97% 

To evaluate the segmentation algorithm, 15 images from the same database were 
compared with an experienced breast-specialist radiologist’s hand-drawn segmentation. 
The breast can be segmented into different density classes: very dense tissue, dense with 
structures (fibrotic stromal tissue and glandular tissue), fatty tissue which represents the 
fatty background of the mammogram (Wolfe’s normal breast pattern), and fatty breast 
edge [Linguraru et al., 2002]. Typical segmentation results are shown in figure 5 and 6. 

 

Fig. 5. Segmentation using texture image patch method and HMRF 

 

Fig. 6. Image segmentation compared with the radiologists’ ground truth, the image is from 
Wolfe class P2 
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We next evaluate, for each class, our segmentation result with that of the 
radiologist,. This is computed for each density class k as the percentage of the 
intersection area of the manually selected area and the automatically generated area 
over their union: 

kk

kk
k RT

RT
t

∪
∩=  

Where kT  is the region of class k using the automatic segmentation, and kR is the 
region of class k in the radiologist’s hand-drawn segmentation. The Table below shows 
the resulting accuracy. 

Table 3. The accuracy over 16 test images, 4 from each Wolf class, σ  is the variance 

Dense Dense with 
structures 

Fatty Fatty edge Segmenta-
tion 

Accuracy 
(%) 97%,

%7.2=σ  
95.7%,

%2=σ  
91.9%,

%2=σ  
97.2%,

%6.3=σ  

Changing the texton size and neighbourhood constants will slightly affect the seg- 
mentation result. However, the represented texture based mammogram segmentation 
algorithm can effectively segment the breast into different tissue classes. The presented 
breast density segmentation algorithm has been evaluated using 30 different mammo- 
grams spanning the 4 Wolfe classes. The method works robustly and the computa- 
tion time (including training) is very fast – 100 iteration for each image is good enough 
to reach a steady segmentation -- although the result depends on the parameters  
chosen. Different texton numbers and neighbourhood cliques may alter the seg- 
mentation slightly, but from our experiments, 3 textons per Wolfe class leads the best 
segmentation. 

We note that the classification accuracy is particularly high on Wolfe class N1 and 
DY, but slightly lower on P1 and P2. By looking at the distribution of (the five) 
different texton classes from the segmentation result, we can analyse the model for each 
class in terms of the percentage contribution it makes. 

We can see from the above figure that class N1 and DY are clearly distinguished 
from the others. However, class P1 and P2 are, as expected, quite similar to each 
other. Further, P2 differs from P1 mostly in terms of the percentage of the texton class 
4, which represents the dense part of the breast. Most of the P2 models have 
a relatively higher percentage of the texton class 4 than P1. We believe that by 
looking at more training images, we can generate a more precise boundary of P1 and 
P2 class. 



624 Y.C. Gong, M. Brady, and S. Petroudi 

   

   

Fig. 7. Wolfe models. These models are extracted with texton size 3*3 and 5 texton classes. Four 
probability plot per class represented above are collected from class models, which corresponds 
to different model types of each class. Texton class 2 and 4 correspond to dense and dense with 
structures. 
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Abstract. Mammographic risk assessment is concerned with the prob-
ability of a woman developing breast cancer. Recently, it has been sug-
gested that the density of linear structures is related to risk. For 321
images from the MIAS database, a measure of line strength was obtained
for each pixel using the Line Operator method. The proportion of pixels
with line strength above a threshold level was calculated for each image
and the results categorised by Tabar pattern, Boyd SCC class and BI-
RADS class. The results indicated a significant difference between Boyd
classes 1–3 (low risk) and classes 4–6 (high risk), and between most Tabar
patterns and BIRADS classes.

1 Background

Mammographic risk assessment is concerned with estimating the probability of
women developing breast cancer. Risk assessment is a rapidly developing area of
research and aims to improve the likelihood of the early detection of breast can-
cer. Breast density is an important indicator of mammographic risk [1] and the
best predictor of mammographic sensitivity [2]. However, more recently, it has
been suggested that the distribution of linear structures is also correlated with
mammographic risk [3, 4, 5]. So far it is not entirely clear if it is just the density
of linear structures (either by percentage area or volume) or if the distribution
of the linear structures plays a role as well.

Tabar et al. have proposed a mammographic risk assessment model based on
four structural components, where the relative proportions of each component is
linked to the risk of developing breast cancer [3, 4, 5]. One of the four structural
components is linear density. The main purpose of this work is to investigate if
automatic methods can be used to correlate the density of linear structures to
mammographic risk classification metrics.

Three classification models are used: Tabar patterns [5], Boyd SCC classes [6]
and Breast Imaging Reporting and Data System (BIRADS) classes [7]. Tabar’s
classification consists of five patterns, where patterns I–III represent a low risk
of developing breast cancer, and patterns IV–V indicate a higher risk. Screening
tests have shown that cancer prevalence in women with patterns IV-V is ap-
proximately twice that in women with patterns I-III [5]. The Boyd SCC model

Susan M. Astley et al. (Eds.): IWDM 2006, LNCS 4046, pp. 626–633, 2006.
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consists of a scale of six classes where class 1 indicates the lowest risk and class 6
indicates the highest risk. Finally, the BIRADS classification uses a scale of four
classes, where class 1 represents a low risk and class 4 represents a high risk.

2 Method

Three hundred and twenty-one mammographic images from the Mammographic
Image Analysis Society (MIAS) database were classified according to Tabar pat-
terns [5], Boyd SCC [6] and BIRADS classes [7] by an expert radiologist. Example
images of low, moderate and high risk mammograms are shown in Fig. 1 (a).

(a) (b) (c) (d)

Fig. 1. The top row shows a mammogram of Boyd SCC class 1/Tabar pattern
II/BIRADS class 1 (low risk), the middle row shows a mammogram of Boyd SCC
class 3/Tabar pattern III/BIRADS class 2 (moderate risk) and the bottom row shows
a mammogram of Boyd SCC class 6/Tabar pattern IV/BIRADS class 3 (high risk).
The images in column (a) show the original mammograms, column (b) shows the re-
sults after processing with the line operator, and columns (c) and (d) show the results
after thresholding at 4/204 and 6/204 respectively. The lines in (b), (c) and (d) have
been enhanced for viewing.



628 E.M. Hadley, E.R.E. Denton, and R. Zwiggelaar

The images were processed using Dixon and Taylor’s line operator method
[8, 9] (see Sect. 2.1), producing a measurement of line strength at each pixel. The
multi-scale line operator has been shown to be more effective at detecting linear
structures in mammographic images than other methods [9].

Figure 1 (b) shows examples of low, moderate and high risk mammograms
following processing with the line operator.

The relative proportion of pixels with line strength values above a range of thre-
sholdswas calculated for each image. Figure 1(c,d) shows examples of the resultant
images after thresholding. Subsequently, the results were analysed for differences
between images of each Tabar pattern, Boyd SCC class and BIRADS class.

2.1 Line Operator

A study of various methods for detecting linear structures in mammograms [9]
showed that Dixon and Taylor’s line operator [8] is more accurate than other
methods. As such, the line operator was used in our experiments. The method
produces a measure of line strength and orientation for each pixel in an image.

The line orientation is determined by calculating the mean pixel brightness of
a line of pixels running through the target pixel at a range of orientations. The
orientation with the largest mean brightness is taken to be the line orientation.
The line strength, S, is then given by

S = (L − N), (1)

where L is the mean brightness of the line of pixels, and N is the mean brightness
of a similarly orientated square of pixels.

Our experiment used a line length of five pixels and twelve orientations as
suggested by earlier work [9].

A multi-scale approach was used in order to detect lines of a range of thick-
nesses and the resultant images were combined to produce line strength values for
pixels at the original scale. Scaling of the images was achieved firstly by blurring
the image using a 3x3 Gaussian kernel and subsequently by subsampling to pro-
vide a resultant image of half the width and height of the original. Our approach
comprised processing with the line operator at three scales, since this appeared
to produce the most reasonable output for the images under examination.

Finally, the pixel line strengths were thresholded to remove background tex-
ture. Using a line length of 5, the measures of line strength fall in the theoretical
range of 0 − 204, however the results showed that most (if not all) pixels had
line strength values in the range 0− 30. A range of threshold values were chosen
experimentally, and two values (4/204 and 6/204) were used for our analysis
as they removed most background noise whilst maintaining most of the linear
structure information (see Fig. 1 (c, d)).

3 Results

The relative linear structure density for the various Tabar patterns, Boyd SCC
classes and BIRADS classes are shown in Figs. 2, 3 and 4 respectively. These
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Fig. 2. Graph showing the mean proportion of pixels with line strengths above each
threshold T and 95% confidence intervals for images of each Tabar pattern

Table 1. The p-values obtained by Mann-Whitney tests on each combination of Tabar
patterns for each threshold T . Results not significant at α = 0.05 are shaded.

Tabar II III IV V

I 0.0000 0.0000 0.7938 0.0000
II 0.0003 0.0000 0.0002
III 0.0000 0.3597
IV 0.0000

Tabar II III IV V

I 0.0000 0.0000 0.9069 0.0059
II 0.0001 0.0000 0.0000
III 0.0000 0.0336
IV 0.0050

T = 4/204 T = 6/204

graphs provide an overview of the difference between the patterns and classes,
and for more detailed analysis, Mann-Whitney tests were performed on each
pair of Tabar patterns, Boyd SCC and BIRADS classes. These are shown in
Tables 1, 2 and 3 respectively. Parametric tests, such as analysis of variance
(ANOVA) tests were not used because the test data did not fulfill the neces-
sary assumptions, however the relatively small number of classes made pairwise
Mann-Whitney tests possible.

The Mann-Whitney test results provide an indication as to whether there was
a statistically significant difference between two classes of images in our data
set. A significant difference would mean that it is possible to reliably distinguish
between different classes of images.

As mentioned, two threshold values were used in our analysis (4/204 and
6/204). This is to demonstrate the effects of varying the threshold level and thus
including more or less of the linear structure information.

The results of the analysis by Tabar pattern (see Fig. 2, Table 1) demon-
strate the ability to reliably distinguish between patterns II–III (low risk) and
patterns IV–V (high risk) at a threshold of 6/204, with low risk pattern I being
indistinguishable from high risk pattern IV. The results at a threshold of 4/204
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Fig. 3. Graph showing the mean proportion of pixels with line strengths above each
threshold T and 95% confidence intervals for images of each Boyd SCC class

Table 2. The p-values obtained by Mann-Whitney tests on each combination of Boyd
SCC classes at each threshold T . Results not significant at α = 0.05 are shaded.

Boyd 2 3 4 5 6

1 0.0332 0.0023 0.0001 0.0001 0.0008
2 0.0002 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0362
4 0.6693 0.0287
5 0.0833

T = 4/204

Boyd 2 3 4 5 6

1 0.0155 0.0009 0.0001 0.0000 0.0004
2 0.0001 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0031
4 0.7621 0.4828
5 0.6612

T = 6/204

are less promising, since the low risk pattern III becomes indistinguishable from
high risk pattern V.

The results of the analysis by Boyd SCC class (see Fig. 3, Table 2) differ some-
what, and it is clear that the proposed method is able to distinguish between
classes 1–3 and classes 4–6 and both thresholds, with a general trend through
classes 1–4/5 indicating that a greater linear density is indicative of a greater
risk. The three lower risk classes are each distinguishable from all other classes,
whilst the three higher risk classes are distinguishable from the three lower risk
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Fig. 4. Graph showing the mean proportion of pixels with line strengths above each
threshold T and 95% confidence intervals for images of each BIRADS class

Table 3. The p-values obtained by Mann-Whitney tests on each combination of BI-
RADS classes at each threshold T . Results not significant at α = 0.05 are shaded.

BIRADS 2 3 4

1 0.0000 0.0000 0.000
2 0.0000 0.0771
3 0.0000

BIRADS 2 3 4

1 0.0000 0.0000 0.000
2 0.0000 0.8636
3 0.0002

T = 4/204 T = 6/204

classes, but are indistinguishable from one another at T = 6/204. At T = 4/204
classes 4 and 6 become distinguishable from one another.

Results from the analysis by BIRADS class (see Fig. 4, Table 3) demonstrate
the ability to distinguish the low risk class 1 from all other classes, and the higher
risk class 3 from all other classes. However, it is not possible to distinguish the
lower risk class 2 from the higher risk class 4. The trend shown here differs from
the analysis by Boyd class; here the highest risk class 4 indicates a markedly
lower average linear density than the moderately high risk class 3 and a similar
density to the lower risk class 2. Whilst Boyd class 6 does show a slightly lower
linear density than class 5, it is much less marked. This is reflected in the Mann-
Whitney tests.

4 Discussion and Conclusions

Whilst the proposed approach is simplistic, the results are promising and the
analysis by Boyd SCC class demonstrates a clear ability to automatically distin-
guish between lower risk mammograms (classes 1–3) and higher risk mammo-
grams (classes 4–6).
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The analysis by Tabar pattern is interesting. The results for pattern V were
unexpected. Tabar suggests that the linear density in pattern V mammograms
should be very low [5], whereas our results indicate a relatively high linear density
for this pattern. However, a possible explanation might be that the line operator
enhances linear structures even in dense tissue (see Fig. 1) and as such might
result in a high proportion of linear structures, whereas under the Tabar clas-
sification this area might be assigned to one of the alternative mammographic
building blocks, such as fibrous tissue. It is intended in future work to segment
and mask the fibrous tissue prior to application of the line detector.

In addition, the results for Tabar pattern I mammograms, which demonstrate
a high linear density, do not correlate with the results of low risk Boyd or BI-
RADS classes, which show low linear densities. Other studies have found that
Tabar’s patterns do not correlate well with other risk assessment models [10].
The principal anomaly is the low risk Tabar pattern I. The mammograms in our
test set belonging to this pattern do not easily correlate with a particular Boyd
classification, instead being spread amongst Boyd classes 2-5, with the majority
seeming to belong to the high risk classes 4-5[10].

The analysis by BIRADS class are also less promising than the analysis by
Boyd class, since it is not currently possible to distinguish between the low
risk class 2 and the high risk class 4. We see in the analysis by Boyd class
that the highest class (6) shows a slightly lower linear density than the classes
immediately below it. At a threshold of 6/204 this decline is only slight and
there is no significant difference between the linear densities of classes 4–6 (see
Table 2). The density of class 6 is also significantly higher than all three of the
low risk classes. The decline is accentuated when a threshold of 4/204 is taken,
where we see a significant difference between classes 4 and 6. This indicates a
dependence on the threshold value and part of our future work will include an
investigation in to a more principled approach to determine the threshold.

Similarly, the highest risk BIRADS class (4) is indistinguishable at either
threshold from the low risk class 2 based on this method, but is significantly lower
than class 3. The trend seen in the results by Boyd class is also present in the
BIRADS results. Owing to a lack of distinction between BIRADS classes 2 and
4, we are unable to make a reliable estimate on the BIRADS scale, and further
information will be necessary to achieve this. It is possible that a distinction
may be achievable by applying the proposed method at a wider variety of scales,
or alternatively additional data may be necessary, such as information relating
to the distribution of the linear structures.

In summary, the proposed approach is promising but simplistic in that it
considers only the density of linear structures and does not take in to account
information relating to their distribution. Since several risk assessment models
are based on the parenchymal patterns in the breast [1, 3, 5], it is intended for fur-
ther work to investigate whether the distribution of linear structures in addition
to their density is related to mammographic risk, and whether this information
can be used to improve risk assessment classification.
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Abstract. Topological properties of the breast ductal network have shown the 
potential for classifying clinical breast images with and without radiological 
findings. In this paper, we review three methods for the description and 
classification of breast ductal topology. The methods are based on ramification 
matrices and symbolic representation via string encoding signatures. The 
performance of these methods has been compared using clinical x-ray and MR 
images of breast ductal networks. We observed the accuracy of the 
classification between the ductal trees segmented from the x-ray galactograms 
with radiological findings and normal cases in the range of 0.86-0.91%. The 
accuracy of the classification of the ductal trees segmented from the MR 
autogalactograms was observed in the range of 0.5-0.89%. 

1   Background 

The vast majority of breast cancers originate from the epithelial tissue of breast ducts.  
Due to low radiographic contrast, ducts are barely visible in mammograms.  However, 
the breast ducts contribute to the complexity of the parenchymal pattern, which has been 
used in computer algorithms for early cancer detection and cancer risk estimation [1]. 

Breast ductal branching patterns have been previously analyzed by manually tracing 
ductal trees from galactograms, 2D x-ray images of contrast-enhanced ducts. That 
preliminary analysis, performed using ramification matrices (R matrices), was applied 
to classify galactograms with radiological findings and normal cases (i.e., no 
radiographic findings) [2]. More recently, the analysis has been extended to include 
other descriptors of ductal topology [3,4]. This paper compares three methods for 
describing and classifying breast ductal topology. The performance of these methods is 
compared using breast ductal networks as visualized in clinical x-ray and MR images.   

2   Methods 

In this section, we describe methods to acquire clinical images of the ductal network 
and to extract ductal topology descriptors from clinical images. 
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2.1   Data Acquisition 

We have traced ductal topology in clinical x-ray galactograms and magnetic 
resonance (MR) autogalactograms (see Fig. 1).  Galactograms are x-ray images of the 
breast, in which a small amount of contrast material has been injected into a nipple 
opening leading to a ductal lobe (subtree). The 
ductal subtrees have been segmented manually.  

Autogalactograms refer to breast MR images of 
women in which portions of their ductal network 
enhanced due to the presence of protein or blood in 
the ducts [5]. The enhanced portions of the ductal tree 
were segmented in MR slices acquired with a 3D 
GRASS pulse-sequence [5]. A semi-automated reg-
ion growing algorithm was used for segmentation. 
The 3D ductal topology was manually reconstructed 
from the segmented portions in each slice.   

In this project we analyzed 22 clinical x-ray 
galactograms obtained retrospectively from 14 
women (mean age 49.2 years, range 29–75 years), 
examined at the Thomas Jefferson University Breast Imaging Center, Philadelphia, 
PA, during the period of June 1994 through January 2001.  Of these, seven women 
(13 images) had radiological findings corresponding to benign abnormalities, and 
eight women (12 images) had no findings; no malignant cases were available.   

We also analyzed nine clinical autogalactograms obtained retrospectively from 
eight women (mean age 53.1 years; range 40-72 years), who had their breast MR 
studies at the Hospital of the University of Pennsylvania between June 2000 and April 
2005.  The five of eight women had radiological findings (four benign and one 
malignant; the latter with two identifiable ductal subtrees) and three cases were 
normal. 

2.2   Description of Ductal Topology 

R matrices. Elements of R matrices represent probabilities of branching at different 
levels of a ductal tree, computed following the Strahler labeling of individual ducts 
(see Fig. 2) [6]. Each R-matrix element rk,j can be expressed as [2]:  

kjkjk abr /,, = ,    (1) 

where ak is the total number of branches at the same level of the tree (those branches 
are identified by label k) and bk,j is the number of branches with label k, where the 
child branches are labeled k and j. The lateral branching is identified by labels j k, 
while j=k identifies bifurcation into child branches of the same order. The method for 
R matrix estimation from ductal trees has been described previously [7]. The 
R matrices estimated from clinical images have been used to realistically generate 
synthetic ductal network [8]. In addition, such estimated branching probabilities have 
been used for classification of galactograms with radiological findings and normal 
cases [2].  In this paper, we have extended that classification approach to include MR 
autogalactograms. 

Fig. 1. Breast ductal network 
visualized in a galactogram 
(top) or an autogalactogram 
(bottom) 
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String encoding based descriptors.  Another approach to represent the branching 
topology of the ductal network is to apply string encoding techniques.  These tech-
niques transform the initial ductal tree to a corresponding string signature.  Further 
analysis is applied to these characterization signatures to investigate the properties of 
the branching topology.  To avoid the problem of tree isomorphism, the ductal trees 
must be normalized to a canonical form [9].  The next step is to label the nodes (or 
branches) of the tree.  

Prüfer encoding and tf-idf weighting.  Prüfer encoding is a tree encoding scheme that 
reflects branching frequencies of the tree nodes [3]. This encoding constructs a unique 
string representation for each tree-like structure. The algorithm visits each node of the 
tree following an in-order traversal and depth-first search.  During this process the 
encoding string is constructed; for each non-root node, the label of its parent is used 
to represent it. Fig. 2 shows the Prüfer encoding string for a sample labeled tree.  

 

Fig. 2. An example of a labeled rooted tree. The corresponding: Prüfer encoding representation 
{1 2 2 6 6 6 1 1 4 4 4}, DFSE representation {1 2 5 6 10 11 12 3 4 7 8 9}.  

The tf-idf weighting text mining technique can be further applied to the Prüfer 
encoding signatures to assign a significance weight to each string term (i.e., node 
label) and construct corresponding vectors of significance weights for each ductal 
tree. The cosine similarity metric can be applied to the tf-idf vectors in order to 
perform classification of the initial ductal trees [3]. 

Depth-first encoding and fractal dimension. Depth-first string encoding (DFSE) is a 
straightforward encoding scheme that constructs a string representation for a tree by 
visiting each node following an in-order depth-first traversal. During this process each 
node is represented in the string by its label. Fig. 2 shows the DFSE for a sample 
labeled tree.   

These DFSE signatures can be used for investigating the fractal properties of the 
ductal branching topology [4]. The regularization dimension [10] of the signatures is 
computed, which detects self-similar properties of the signature by looking into the 
scaling behavior of the lengths of less and less regularized versions of the string 
encoding representation. Classification is performed by thresholding the fractal 
dimension values.  The performance can be assessed by ROC analysis [4]. 

Fig. 3 illustrates computation of the classification features for the three methods of 
ductal topology description, applied to the clinical galactogram from Fig. 1. 
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R=

(b) 

Prüfer encoding = [1 2 3 3 2 4 7 7 10 10 14 14 4 8 11 11 8 12 
19 21 21 19 22 22 28 28 34 34 12 20 23 23 30 30 20 24 31 31 
24 32 32 40 40] 

Depth-first string encoding= [1 2 3 5 6 4 7 9 10 13 14 17 18 8 
11 15 16 12 19 21 25 26 22 27 28 33 34 41 42 20 23 29 30 35 
36 24 31 37 38 32 39 40 43 44] 

(d)

(c) (a) 

(e) 
25.0075.00

67.033.00
57.043.0

 

Fig. 3. An example of (a) manually traced ductal tree, (b) the corresponding R matrix, (c) the 
canonical form the tree labeled in a breadth-first manner, and the corresponding (d) Prüfer- and 
(e) Depth-first string encoded signatures. We computed tf-idf weighted vector and 
regularization dimension based on the signatures in (d) and (e), respectively. 

3   Results 

R matrices. Fig. 4 shows the range of values of the R matrix element used as the 
classification feature. The feature values were averaged separately over the auto-
galactograms with (MR_F+) and without (MR_F-) findings, and over the 
 

 

Fig. 4. Box-whisker plots of R-matrix based feature values used for classification of ductal 
trees. The whiskers indicate maximum and minimum feature values and the box indicates 25-, 
50-, and 75-percentile values.   
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Fig. 5. The ROC curves corresponding to the class-ification of x-ray galacto-grams and MR 
auto galacto-grams, based on the values of R-matrix elements   

galactograms with (X-ray_F+) and without (X-ray_F-) findings. The corresponding 
ROC curves are shown in Fig. 5.   

Prüfer encoding and tf-idf weighting. Table 1 lists the accuracies of classifying x-ray 
galactograms and MR autogalactograms, based on the string representations 
computed using the Prüfer encoding and the tf-idf weighting. Leave-one-out k-nearest 
neighbor classification was performed based on the cosine similarity metric. The 
maximum accuracy was observed for x-ray galactograms at k=4.  As there were only 
three MR autogalactograms with radiological findings, we were restricted to k 2.  

Table 1. Comparative x-ray galactogram and MR autogalactogram classification accuracies for 
Prüfer string encoding, assuming leave-one out k-nearest neighbor classifier based on cosine 
similarity  

Galactogram Classification Accuracy 
k NF RF Total 
1 80 % 41.67 % 59.09 % 
2 80 % 66.67 % 72.73 % 
3 80 % 50 % 63.64 % 
4 100 % 83.3 % 90.91 % 

Autogalactogram Classification Accuracy 
k NF RF Total 
1 66.67 % 66.67 % 66.67 % 
2 66.67 % 100 % 88.89 %

-- -- --

 
 

Depth-first encoding and fractal dimension. Fig. 6 shows the range of the 
regularization dimension values computed for the DFSE signatures, used as the 
classification feature.  The feature values were averaged separately over the auto-
galactograms with (MR_F+) and without (MR_F-) findings, and over the 
galactograms with (X-ray_F+) and without (X-ray_F-) findings. The corresponding 
ROC curves are shown in Fig. 7. Fig. 7 shows also the ROC curve obtained after 
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Fig. 6. Box-whisker plots of fractal based regularization dimension values used for 
classification of ductal trees. The whiskers indicate maximum and minimum feature values and 
the box indicates 25-, 50-, and 75-percentile values.   

 

Fig. 7. The ROC curves corresponding to the class-ification of x-ray galacto-grams and MR 
auto galacto-grams, based on the regular-ization dimension values 

removing two x-ray galactograms, whose regularization dimension values were 
identified as statistical outliers [4].  The two images were removed from the set of 
galactograms with radiological findings.  

4   Discussion 

The three methods for describing breast ductal topology compared are inherently 
different. The R-matrix method is based on the probabilistic nature of R matrices.  
Elements of an R matrix represent probabilities of branching at various levels of the 
ductal tree. Thus, a single matrix could be used to describe a family of the trees, with 
characteristic topological properties. We used this feature to generate synthetic ductal 
networks with realistic topological properties [8].   
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The string encoding methods analyzed in this paper have the ability to generate 
unique signature for each ductal tree, which is not possible using R matrices.  Such a 
unique representation is useful for indexing, similarity retrieval, and similarity 
searches in large databases of tree structures. The string encoding signatures are 
usually vectors of variable length, where the length depends on the number of nodes 
in the analyzed tree. Direct use of such signatures in classification is a problem due to 
the high-dimensionality (i.e., number of features). In this work we considered two 
solutions: (1) the k-nearest neighbor classification of high-dimensional tf-idf weighted 
Prüfer strings and (2) DFSE signature vector dimension reduction by fractal analysis.  
Table 1 shows that relatively high classification accuracy (90.91% for x-ray 
galactograms and 88.89% for MR autogalactograms) was achieved using tf-idf 
weighted Prüfer strings signatures and k-nearest neighborhood classifier.  This 
classification performance however, depends on the available sample size.   

We evaluated the classification performance of the method based on R matrices 
and the fractal analysis of DFSE signatures using an ROC approach. Figs. 5 and 7 
show that it can be seen that the two methods perform similarly for the x-ray 
galactograms; A=0.88 for the R-matrix based method, and A=0.77 and A=0.86 for the 
fractal based method, with and without the outliers, respectively. For the MR 
autogalactograms, the R-matrix method performed better than the fractal method 
(A=0.67 vs A=0.5, respectively). One reason for this difference in performance may 
be attributable to the small sample size (three autogalactograms with radiological 
findings and five normal cases).   

We believe that R-matrix based classification may have a basis in the ductal 
biology.  The ductal branching morphology is known to be influenced by variations in 
hormonal stimuli and interactions with the extracellular matrix. These factors alter the 
probability of lateral branching [11-13]. The elements of a R-matrix are able to 
quantify and distinguish the probability of lateral branching. We observed a 
significant difference between the matrix elements, consistent with our hypothesis 
about their biological correlation. Similar hypotheses about the string encoding based 
methods will be tested in our future experiments.  

5   Conclusions 

Classification results have been obtained using the three methods of description of the 
breast ductal branching topology. The methods were applied on two sets of ductal 
trees, extracted from clinical x-ray galactograms and MR autogalactograms. The R-
matrices offer a higher-level representation of the tree branching topology. We 
hypothesize that such a representation may be related to the biological nature of breast 
pathology. On the other hand, string encoding based descriptors introduce a 
transformation of the tree topology from the 2D or 3D image space to the 1D signal 
(signature) space. A number of 1D signal processing methods could be then applied.  
Such methods could be advantageous for indexing and similarity retrieval in large 
databases of tree-like structures. 
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Abstract. Two graph theoretic methods are used in conjunction with
active contours to segment the pectoral muscle in 82 screening mammo-
grams. To validate the method, the boundaries are also marked by four
radiologists with different levels of experience in mammography. The si-
multaneous truth and performance level estimation (STAPLE) method
is used to estimate the true boundary and to estimate the sensitivity and
specificity of the segmentation schemes. The performance of one of the
two algorithms is found not differ significantly from radiologists.

1 Introduction

In order to develop or compare algorithms for segmentation, it is necessary to
estimate the level of accuracy by some criterion. Often, the best available method
is to ask a radiologist or other expert to segment the image manually and use
the resulting boundaries as the true boundaries. The difficulty is that boundaries
drawn by different experts usually do not agree. Such validation problems are
ubiquitous in medical image analysis.

Recently, a method was devised for estimating the true boundary given a set of
boundaries drawn by experts. The method, called simultaneous truth and perfor-
mance level estimation (STAPLE) [1] is based on the expectation-maximization
(EM) algorithm. The method also provides estimates of the performance of seg-
mentation algorithms in terms of sensitivity and specificity.

Here we report on the use of STAPLE to estimate the performance of two
segmentation algorithms based on graph theory, the adaptive pyramid (AP)
algorithm [2] and the minimum spanning tree algorithm (MST) [3]. These algo-
rithms were used to find the pectoral muscle in screening mammograms.

The pectoral muscle is only of marginal clinical interest. However, for auto-
matic detection of breast cancer using computers, the pectoral muscle represents
a region where the intensity statistics are likely be quite different from the rest
of the image. Hence it is convenient to identify this region in order to apply
different processing steps or to ignore it entirely. The pectoral muscle is also a
significant landmark for use in automated image registration. Finally, in devel-
oping new methods for segmenting mammograms, or medical images in general,
identifying the pectoral muscle is a convenient initial test.

Thus neither the objective of the study (the detection of the pectoral muscle)
nor the method (STAPLE) directly improve clinical detection of breast cancer.

Susan M. Astley et al. (Eds.): IWDM 2006, LNCS 4046, pp. 642–649, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Both the task and the method are aimed at improving studies on computer-aided
detection of breast cancer.

2 Graph Theoretic Segmentation and Active Contours

A graph, G = (V, E) consists of a set of vertices, V, and a set of edges, E. An
edge, e ∈ E, consists of pair of vertices, e = (vi, vj), where vi, vj ∈ V . In the case
of image segmentation, V is the set of pixels and E determines which pixels are
viewed as being associated. In this setting, image segmentation is equivalent to
finding (disjoint) subgraphs of G.

2.1 AP Algorithm

The AP algorithm builds sequences of ever smaller graphs. This sequence of
graphs is often pictured as a pyramid with the original full graph forming the
base of the pyramid and successive graphs forming smaller and smaller layers
above. At the base level, the graph consists of V0, the set of all pixels in the
image, and E is such that every pixel is joined to its immediate eight neighbors.
A vertex survives to the next level if it is more representative of its immediate
neighborhood than are its neighbors. If two pixels are connected by an edge,
then both are not allowed to survive to the next level. Also, for every pixel, at
least one of the pixels to which it is connected survives to the next level. Two
surviving pixels are connected in the next level if the regions they represent in the
previous level have similar mean intensity but not otherwise. If a surviving pixel
does not represent a region in the previous level similar to other surviving pixels,
this surviving pixel is called a root. Passing back down the layers of graphs, root
pixels identify a subset of V that is accepted as a region of the image [2],[4].

2.2 MST Algorithm

The MST algorithm starts with the graph such that V is the set of all pixels and
E is the empty set. However, there is a set of candidate edges Ec consisting of all
edges that join pixels to other pixels in small neighborhood. All the edges in Ec

are assigned an edge weight that measures how well the two pixels comprising
the edge match according to a pre-defined criterion. These candidate edges are
ordered by increasing edge weight.

Starting with the edge with smallest weight, each edge is considered for in-
clusion in the final graph. An edge is accepted if the two vertices are in disjoint
components of the current graph and the edge weight is small compared to the
internal variation within the two components. Once all the candidate edges in Ec

have been considered, V together with all the accepted edges is the final graph.
The disjoint subgraphs of the final graph form the segmentation [3],[5].

2.3 Active Contour

The AP and MST algorithms were generally found to identify the pectoral muscle
in terms of general location and shape. However, the edges of the components



644 F. Ma et al.

identified as the pectoral muscle were found to be locally irregular and ragged.
In order to take advantage of the known smooth and slowly varying nature of
pectoral muscle boundaries, the AP and MST results were used to initialize a
simple active contour scheme.

The coordinates forming the pectoral muscle boundary in a screening mam-
mogram can be described as a single value function of the vertical axis. Thus the
coordinates are of the form (g(y), y). Accordingly, points on the contour may be
modeled as moving only in the horizontal direction. The active contour model
consists of an internal energy given by

Ein,i = a1V
′(vi) + a2V

′′(vi) (1)

and the external energy given by

Eex,i = −|Ix(vi)|/ max
I

(Ix), (2)

where V = v1, v2, . . . , vc denotes the sequence of vertices comprising the current
contour, V ′(vi) and V ′′(vi) denote the first and second derivatives of V along the
contour, a1 and a2 are constants, I is the image, and Ix is the spatial derivative
of I in the horizontal direction [4], [5].

3 The STAPLE Algorithm

Suppose R raters have performed a segmentation of an image I. The raters may
be experts, non-experts, or computer algorithms. Let N denote the number of
pixels in the image and let D denote a matrix of size N ×R such that D(i, r) = 1
if rater r assigned pixel i to the region in question (the pectoral muscle in
our case) and D(i, r) = 0 otherwise. Let T denote the unknown binary vector
of length N that indicates the true segmentation. Let pr and qr denote the
sensitivity and specificity resulting from a segmentation and let p and q denote
the column vectors p = (p1, p2, . . . , pR)t and q = (q1, q2, . . . , qR)t. The objective
is to determine p̂ and q̂ defined by

(p̂, q̂) = arg max
p,q

ln f(D, T |p, q), (3)

where f(D, T |p, q) is the probability mass function.
Solving (3) is difficult because T is not known. Hence the expectation max-

imization (EM) algorithm is used. First, initial guesses for p̂ and q̂ are used to
estimate the true segmentation, T . This is the E step. Second, updated estimates
p̂ and q̂ are found by solving the maximization problem in Equation 3. This is
the M step. These steps are iterated to convergence [1]. The algorithm produces
estimates of p̂ and q̂ and the most likely “true” boundary based on T .

4 Methods

Initially, 84 images from the Mammographic Image Analysis Society data base
(Mini-MIAS) were selected for this study. These particular images were chosen
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because one expert drawn boundary of the pectoral muscle was available for each
of these images from previous work by Ferrari et al. [6]. In addition, a radiologist
from our group with expertise in mammogrpahy (JPS) and two radiologists with
minimalexperience inmammographywereaskedtodrawboundariesof thepectoral
muscle independently for these images, resulting in a total of four human drawn
boundaries per image. The positioning of the breast in two of the images (mdb098
and mdb109) was such that the pectoral muscle did not appear in the image and
so the study was conducted using the remaining 82 images.

To implement the STAPLE algorithm, it is necessary to specify the prior
probability of the true segmentation and to set initial values for p̂ and q̂. Let f(Ti)
denote the prior probability that pixel i is part of the region being segmented.
This function is unknown and must be assigned. In the case of the pectoral
muscle in a screening mammogram, this function may be assigned based on
prior understanding of image. Assuming a left breast (with the obvious changes
for a right breast) the pectoral muscle appears in the top left corner of the image.
If c(r) is the column index marking the true boundary in row r, then Ti = 1 for
i < r and Ti = 0 for i > r. The true column index c(r) is not known but can be
estimated by

ĉ(r) =
1
R

R∑
j=1

cj(r),

where cj(r) is the column index for the boundary drawn by rater j in row r.
Since ĉ(r) is an estimate, the prior probabilities were not assigned strictly as 1
on the left and 0 on the right. Instead the probabilities were assigned in row r
as

fr(c) =
1

1 + eα(c−ĉ(r)) ,

for a constant α determined by experimentation.
The boundaries drawn by the two radiologists with expertise in mammogra-

phy were assigned as expert raters. The boundaries drawn by the two radiologist
without expertise in mammography and the boundaries found by the algorithms
were assigned as non-expert raters. Expert raters were assigned the initial sen-
sitivity and specificity as p̂ = q̂ = 1 − ε and non-expert raters were assigned
p̂ = q̂ = ε for a small number ε.

Initial experiments were conducted to determine sensible values for α and ε.
Segmentation results were largely insensitive to ε over a large range and insen-
sitive to α for α > .1. For very small values of α, p̂ and q̂ converged to zero for
some images. The values α = 1 and ε = .001 provided plausible values for p̂ and
q̂ as well as plausible “true” boundaries (Fig. 1) and were adopted for the main
study.

In all images, convergence was achieved in about ten iterations of the EM
algorithm.
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a b

c d

Fig. 1. (a) Image mdb115. (b) Boundaries of the pectoral muscle drawn by four radi-
ologists. (c) Estimate of the true boundary produced by STAPLE. (d) The pectoral
muscle region. The white band shows the range of human drawn boundaries in (b), -
STAPLE true boundary as in (c), - - AP algorithm, · · · MST algorithm.

5 Results

The STAPLE algorithm provided a sensitivity score pi and a specificity score qi

for rater i, i = 1, 2, . . . , 6 (four radiologist and the two algorithms) for each of
the 82 images. The performance of each rater for each image was taken to be
the value si = pi + qi. Note that s = 2 for a perfect rater. The distributions of
s scores for each rater over the 82 images was computed (Fig. 2).

The following null hypotheses were tested: si = sj for i �= j. Since all the
raters considered the same set of images, analysis of paired data was used. Thus
for each pair of raters i and j, i �= j, the value dij = si − sj was computed and
the probability that dij �= 0 by chance alone was estimated (Table 1).

The difference in performance between the MST algorithm and any one of the
radiologists cannot be attributed to chance alone. However, the hypotheses that
the AP algorithm performs the same as radiologists cannot be rejected.
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Fig. 2. Histograms of s for four radiologists and the two algorithms AP and MST

Table 1. Probability that the observed difference of performance scores, dij , is due to
chance alone for all combinations of raters. R1 and R2 are radiologists with experience
in mammography, R3 and R4 are radiologist with little experience in mammography,
AP and MST are the algorithms discussed in the paper.

R1 R2 R3 R4 AP MST
R1 - 0.8521 0.8568 0.3745 0.1206 0.0001
R2 0.8521 - 0.4236 0.2397 0.1142 0.0001
R3 0.8568 0.4236 - 0.3814 0.1366 0.0001
R4 0.3745 0.2397 0.3814 - 0.2843 0.0003
AP 0.1206 0.1142 0.1366 0.2843 - 0.0000
MST 0.0001 0.0001 0.0001 0.0003 0.0000 -

6 Discussion and Conclusion

The table shows that the performance of the AP algorithm is not statistically
different from radiologists. Previous work [4] showed that the AP algorithm
performed about as well as an algorithm based on Gabor filters [6]. Accordingly,
it seems that the current best algorithms for detecting the pectoral muscle are
approaching the natural limit for this task. Further improvements will be difficult
to distinguish from variation among radiologists.

The comments in the previous paragraph apply to performance over a large
numbers of images. The statistics do not reflect the fact that there are still
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a b

c d

Fig. 3. (a) Image mdb039 showing a skin fold. (b) Boundaries of the pectoral muscle
drawn by four radiologists. (c) Estimate of the true boundary produced by STAPLE.
(d) The pectoral muscle region. The white band shows the range of human drawn
boundaries in (b), - STAPLE true boundary as in (c), - - AP algorithm, · · · MST
algorithm. In this example, the algorithms were completely fooled by the skin fold.

systematic differences between algorithms and radiologists on small subsets of
images. In the case of the AP algorithm, there are two images for which the
s value is conspicuously lower than any radiologist (Fig. 2) . The two images
corresponding to these low s values are both examples of skin folds in the mam-
mogram. A skin fold can superficially mimic pectoral muscle boundaries (Fig. 3).

An experienced radiologist can easily distinguish between skin folds and the
true pectoral muscle but, as is the case with many tasks of cognition, this is
not easy to duplicate automatically. In some cases, the AP and MST algorithms
found the correct pectoral muscle boundary even if there was a skin fold, but
failed in other cases. This issue should not be important. In many screening
programs, images with skin folds are routinely rejected as being of insufficient
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technical quality. Thus the only obvious differences between the AP algorithm
and radiologists appears on images that probably should not be considered by
humans or computers.
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