
A Programming Language
for Finite State Transducers

Helmut Schmid

Institute for Natural Language Processing (IMS)
University of Stuttgart, Germany
schmid@ims.uni-stuttgart.de

SFST-PL is a programming language for finite-state transducers which is based
on extended regular expressions with variables. SFST-PL is used by the Stuttgart
Finite-State-Transducer (SFST) tools which are available under the GNU public
license. SFST-PL was designed as a general programming language for the de-
velopment of tokenizers, pattern recognizers, computational morphologies and
other FST applications. The first SFST application was the SMOR morphol-
ogy [1], a large-scale German morphology which covers composition, derivation
and inflection. An SFST program consists of a list of variable and alphabet
assignments followed by a single regular expression which defines the resulting
transducer. The following basic transducer expressions are available:

a:b defines a transducer which maps the symbol a to b
a abbreviation of a:a
a:. maps the symbol a to any symbol that it occurs with in the

alphabet (see below).
. abbreviation of .:., the union of all symbol-pairs in the alpha-

bet.
[abc]:[de] identical to a:d | b:e | c:e (“|” is the union operator.)
[a-c]:[A-C] same as [abc]:[ABC].
{abc}:{de} identical to a:d b:e c:<> This expression maps the string abc

to de.
var the transducer stored in variable var.
”lex” a transducer consisting of the union of the lines in the file lex

(Apart from “:” and previously seen multi-character symbols,
all symbols in the argument file are interpreted literally.)

”<file>” is a pre-compiled transducer which is read from file

SFST-PL supports multi-character symbols (which are enclosed in angle
brackets like <Sg>) and a wide range of operators including concatenation, union
’|’, intersection ’&’, composition ’||’, complement ’ !’, optionality ’?’, Kleene star
’*’ and Kleene plus ’+’, range ’^’, domain ’_’, inversion ’^_’, and two-level rules
(<=, =>, <=>). The special symbol <> represents the empty string.

Variables are surrounded by dollar signs. They are defined with a command
var = expression (where expression is some transducer expression). The
alphabet is defined with the command ALPHABET = expression. The definition

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 308–309, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Programming Language for Finite State Transducers 309

of an alphabet is required for the interpretation of the wild-card symbol ’.’ and
for the complement and replacement operators.

Comments start with a percent sign and extend up to the end of the line.
Whitespace is ignored unless it is quoted by a backslash. Programs can be
partitioned into several files which are combined with include commands (like
#include "file") which insert the contents of the argument file at the current
position. It is also possible to pre-compile component transducers in order to
speed up the compilation.

A compiler translates SFST programs into minimized finite-state transducers.
The compiler was implemented using a high-level C++ library and the YACC
compiler generator, which makes it easy to change or extend the syntax of the
programming language. The compiler generates three different transducer for-
mats which are optimized for flexibility, speed or memory and startup efficiency,
respectively. The SFST tools also include programs for analysis, printing, and
comparison of transducers. The following simple SFST-PL program will correctly
inflect adjectives like “easy” (easier, easiest) and late (later, latest).

% the set of valid character pairs
ALPHABET = [A-Za-z]:[A-Za-z] y:i [#e]:<>

% Read a list of adjectives from a lexicon file
$WORDS$ = "adj"

% rule replacing y with i if followed by # and e
$Rule1$ = y <=> i (#:<> e)

% rule eliminating e if followed by # and e
$Rule2$ = e <=> <> (#:<> e)

$Rules$ = $Rule1$ & $Rule2$

% add inflection to the words
S = $WORDS$ <ADJ>:# ({<pos>}:{} | {<comp>}:{er} | {<sup>}:{est})

% apply the phonological rules to obtain the resulting transducer
S || $Rules$

A more comprehensive morphology including mechanisms for dealing with
derivation, compounding and inflection is available with the SFST tools. It is
adaptable to other languages by changing the lexicon, the inflectional classes,
and the phonological rules.

References

1. H. Schmid, A. Fitschen, and U. Heid. SMOR: A German computational morphol-
ogy covering derivation, composition and inflection. In Proceedings of the 4th In-
ternational Conference on Language Resources and Evaluation, volume 4, pages
1263–1266, Lisbon, Portugal, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

