

Lecture Notes in Artificial Intelligence 4002
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Anssi Yli-Jyrä Lauri Karttunen
Juhani Karhumäki (Eds.)

Finite-State Methods
and Natural Language
Processing

5th International Workshop, FSMNLP 2005
Helsinki, Finland, September 1-2, 2005
Revised Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Anssi Yli-Jyrä
Scientific Computing Ltd.
P.O. Box 405, 02101 Espoo, Finland
E-mail: ylijyra@csc.fi

Lauri Karttunen
Palo Alto Research Center
3333 Coyote Hill Rd, Palo Alto, CA 94304, USA
E-mail: karttunen@parc.com

Juhani Karhumäki
University of Turku
Department of Mathematics
20014 Turku, Finland
E-mail: karhumak@utu.fi

Library of Congress Control Number: 2006937535

CR Subject Classification (1998): I.2.6-7, I.2, F.1.1, F.4.2-3, F.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-35467-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35467-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11780885 06/3142 5 4 3 2 1 0

Preface

These proceedings contain the revised versions of the papers presented at the 5th
International Workshop of Finite-State Methods and Natural Language Process-
ing, FSMNLP 2005. The book includes also the extended abstracts of a number
of poster papers and software demos accepted to this conference-like workshop.

FSMNLP 2005 was held in Helsinki, Finland, on September 1–2, 2005. The
event was the fifth instance in the series of FSMNLP workshops, and the first that
was arranged as a stand-alone event, with two satellite events of its own: the Two-
Level Morphology Day (TWOLDAY) and a national workshop on Automata,
Words and Logic (AWL). The earlier FSMNLP workshops have been mainly
arranged in conjunction with a bigger event such as an ECAI, ESSLLI or EACL
workshop, and this practice may still be favored in the future.

The collocation of the three events promoted a multidisciplinary atmosphere.
For this reason, the focus of FSMNLP 2005 covered a variety of topics related
but not restricted to finite-state methods in natural language processing.

The 24 regular papers and 7 poster papers were selected from 50 submissions
to the workshop. Each submitted regular paper was evaluated by at least three
Program Committee members, with the help of external referees. In addition
to the submitted papers and two invited lectures, six software demos were pre-
sented. The authors of the papers and extended abstracts come from Canada,
Denmark, Finland, France, Germany, India, Ireland, Israel, Japan, The Nether-
lands, Norway, Spain, South Africa, Sweden, Turkey, and the USA.

It is a pleasure to thank the members of the Program Committee and the
external referees for reviewing the papers and maintaining the high standard
of the FSMNLP workshops. Naturally, we owe many thanks to every single
conference participant for his or her contributions to the conference and for
making FSMNLP 2005 a successful scientific event.

FSMNLP 2005 was co-organized by the Department of General Linguistics
at the University of Helsinki (host) and CSC, the Finnish IT center for science
(co-ordination). We thank the members of the Steering Committees for their
kind support in the early stage of the project and Antti Arppe, Sari Hyvärinen
and Hanna Westerlund for helping with the local arrangements. Last but not
least, we thank the conference sponsors for their financial support.

August 2005 A. Yli-Jyrä
L. Karttunen
J. Karhumäki

Organization

FSMNLP 2005 was organized by the Department of General Linguistics, Uni-
versity of Helsinki in cooperation with CSC, the Finnish IT center for science.

Invited Speakers

Tero Harju University of Turku, Finland
Lauri Karttunen Palo Alto Research Center,

Stanford University, USA

Program Committee

Steven Bird University of Melbourne, Australia
Francisco Casacuberta Universitat Politècnica de València, Spain
Jean-Marc Champarnaud Université de Rouen, France
Jan Daciuk Gdansk University of Technology, Poland
Jason Eisner Johns Hopkins University, USA
Tero Harju University of Turku, Finland
Arvi Hurskainen IAAS, University of Helsinki, Finland
Juhani Karhumäki, Co-chair University of Turku, Finland
Lauri Karttunen, Co-chair PARC and Stanford University, USA
André Kempe Xerox Research Centre Europe, France
George Anton Kiraz Beth Mardutho: The Syriac Institute, USA
András Kornai Budapest Institute of Technology, Hungary
D. Terence Langendoen University of Arizona, USA
Eric Laporte Université de Marne-la-Vallée, France
Mike Maxwell Linguistic Data Consortium, USA
Mark-Jan Nederhof University of Groningen, The Netherlands
Gertjan van Noord University of Groningen, The Netherlands
Kemal Oflazer Sabanci University, Turkey
Jean-Eric Pin CNRS/University Paris 7, France
James Rogers Earlham College, USA
Giorgio Satta University of Padua, Italy
Jacques Sakarovitch CNRS/ENST, France
Richard Sproat University of Illinois at Urbana-Champaign,

USA
Nathan Vaillette University of Tübingen, Germany
Atro Voutilainen Connexor Oy, Finland
Bruce W. Watson University of Pretoria, South Africa
Shuly Wintner University of Haifa, Israel

VIII Organization

Sheng Yu University of Western Ontario, Canada
Lynette van Zijl Stellenbosch University, South Africa

Organizing Committee

Anssi Yli-Jyrä, Chair University of Helsinki and CSC, Finland
Hanna-Maria Westerlund University of Helsinki, Finland
Sari Hyvärinen University of Helsinki, Finland
Antti Arppe University of Helsinki, Finland

Steering Committee I (FSMNLP Traditions)

Lauri Karttunen PARC and Stanford University, USA
Kimmo Koskenniemi University of Helsinki, Finland
Gertjan van Noord University of Groningen, The Netherlands
Kemal Oflazer Sabanci University, Turkey

Steering Committee II (Local Advisory Group)

Lauri Carlson University of Helsinki, Finland
Tero Harju University of Turku, Finland
Lauri Hella University of Tampere, Finland
Arvi Hurskainen University of Helsinki, Finland
Fred Karlsson University of Helsinki, Finland
Krista Lagus Helsinki University of Technology,

Finland
Kerkko Luosto University of Helsinki, Finland
Matti Nykänen University of Helsinki, Finland

Additional Referees

Rafael C. Carrasco Universitat d’Alacant, Spain
Loek Cleophas Technische Universiteit Eindhoven,

The Netherlands
Yvon Francois GET/ENST and LTCI, France
Ernest Ketcha Ngassam University of South Africa and

University of Pretoria, South Africa
Ines Klimann Universite Paris 7, France
Sylvain Lombardy Universite Paris 7, France
David Picó-Vila Universidad Politécnica de Valencia, Spain
Enrique Vidal Universidad Politécnica de Valencia, Spain
Juan Miguel Vilar Universitat Jaume I, Spain
M. Inés Torres Universidad Páıs Vasco, Spain
Anssi Yli-Jyrä University of Helsinki and CSC, Finland

Organization IX

Sponsoring Institutions

CSC - Scientific Computing Ltd., Finland
University of Helsinki, Finland
The KIT Network, Finland
Academy of Finland
Connexor Ltd., Finland
Lingsoft Ltd., Finland

Table of Contents

Invited Lectures

Characterizations of Regularity
Tero Harju . 1

Finnish Optimality-Theoretic Prosody
Lauri Karttunen . 9

Contributed Papers

Partitioning Multitape Transducers
François Barthélemy . 11

Squeezing the Infinite into the Finite: Handling the OT Candidate Set
with Finite State Technology

Tamás Bı́ró . 21

A Novel Approach to Computer-Assisted Translation Based
on Finite-State Transducers

Jorge Civera, Juan M. Vilar, Elsa Cubel, Antonio L. Lagarda,
Sergio Barrachina, Francisco Casacuberta, Enrique Vidal 32

Finite-State Registered Automata and Their Uses in Natural Languages
Yael Cohen-Sygal, Shuly Wintner . 43

TAGH: A Complete Morphology for German Based on Weighted Finite
State Automata

Alexander Geyken, Thomas Hanneforth . 55

Klex: A Finite-State Transducer Lexicon of Korean
Na-Rae Han . 67

Longest-Match Pattern Matching with Weighted Finite State Automata
Thomas Hanneforth . 78

Finite-State Syllabification
Mans Hulden . 86

Algorithms for Minimum Risk Chunking
Martin Jansche . 97

XII Table of Contents

Collapsing ε-Loops in Weighted Finite-State Machines
J. Howard Johnson . 110

WFSM Auto-intersection and Join Algorithms
André Kempe, Jean-Marc Champarnaud, F. Guingne,
Florent Nicart . 120

Further Results on Syntactic Ambiguity of Internal Contextual
Grammars

Lakshmanan Kuppusamy . 132

Error-Driven Learning with Bracketing Constraints
Takashi Miyata, Kôiti Hasida . 144

Parsing with Lexicalized Probabilistic Recursive Transition Networks
Alexis Nasr, Owen Rambow . 156

Integrating a POS Tagger and a Chunker Implemented as Weighted
Finite State Machines

Alexis Nasr, Alexandra Volanschi . 167

Modelling the Semantics of Calendar Expressions as Extended Regular
Expressions

Jyrki Niemi, Lauri Carlson . 179

Using Finite State Technology in a Tool for Linguistic Exploration
Kemal Oflazer, Mehmet Dinçer Erbaş, Müge Erdoǧmuş 191

Applying a Finite Automata Acquisition Algorithm to Named Entity
Recognition

Muntsa Padró, Llúıs Padró . 203

Principles, Implementation Strategies, and Evaluation of a Corpus
Query System

Ulrik Petersen . 215

On Compact Storage Models for Gazetteers
Jakub Piskorski . 227

German Compound Analysis with wfsc
Anne Schiller . 239

Scaling an Irish FST Morphology Engine for Use on Unrestricted Text
Elaine Úı́ Dhonnchadha, Josef Van Genabith . 247

Table of Contents XIII

Improving Inter-level Communication in Cascaded Finite-State Partial
Parsers

Sebastian van Delden, Fernando Gomez . 259

Pivotal Synchronization Languages: A Framework for Alignments
Anssi Yli-Jyrä, Jyrki Niemi . 271

Abstracts of Interactive Presentations

A Complete FS Model for Amharic Morphographemics
Saba Amsalu, Dafydd Gibbon . 283

Tagging with Delayed Disambiguation
José M. Castaño, James Pustejovsky . 285

A New Algorithm for Unsupervised Induction of Concatenative
Morphology

Harald Hammarström . 288

Morphological Parsing of Tone: An Experiment with Two-Level
Morphology on the Ha Language

Lotta Harjula . 290

Describing Verbs in Disjoining Writing Systems
Arvi Hurskainen, Louis Louwrens, George Poulos 292

An FST Grammar for Verb Chain Transfer in a Spanish-Basque MT
System

Iñaki Alegria, Arantza Dı́az de Ilarraza, Gorka Labaka,
Mikel Lersundi, Aingeru Mayor, Kepa Sarasola . 295

Finite State Transducers Based on k-TSS Grammars for Speech
Translation

Alićıcial Pérez, F. Casacuberta, Inés Torre, V. Guijarrubia 297

Abstracts of Software Demos

Unsupervised Morphology Induction Using Morfessor
Mathias Creutz, Krista Lagus, Sami Virpioja . 300

SProUT – A General-Purpose NLP Framework Integrating Finite-State
and Unification-Based Grammar Formalisms

Witold Drożdżyński, Hans-Ulrich Krieger, Jakub Piskorski,
Ulrich Schäfer . 302

XIV Table of Contents

Tool Demonstration: Functional Morphology
Markus Forsberg, Aarne Ranta . 304

From Xerox to Aspell: A First Prototype of a North Sámi Speller Based
on TWOL Technology

Børre Gaup, Sjur Moshagen, Thomas Omma, Maaren Palismaa,
Tomi Pieski, Trond Trosterud . 306

A Programming Language for Finite State Transducers
Helmut Schmid . 308

FIRE Station
Bruce Watson . 310

Author Index . 311

Characterizations of Regularity

Tero Harju

Department of Mathematics, University of Turku, Finland

Abstract. Regular languages have many different characterizations in
terms of automata, congruences, semigroups etc. We have a look at
some more recent results, obtained mostly during the last two decades,
namely characterizations using morphic compositions, equality sets and
well orderings.

1 Introduction

We do not intend to give a full survey on regular languages but rather a short
overview of some of the topics that have surfaced during the last two decades.

Customarily regular languages are defined either as languages accepted by
finite automata, represented by regular expressions, or generated by right linear
grammars. The most common approach is by acceptance using deterministic
finite automata, or a DFA for short. A DFA can be described as a ‘concrete
machine’ with a read-only input tape from which the head of the automaton
reads one square at a time from the left end to the right end. A DFA A can be
conveniently presented as a 5-tuple

A = (Q, A, δ, q0, F),

where Q is the set of initial states, A is the alphabet of the inputs, and the
transition function δ : Q×A → Q describes the action of A such that δ(q, a) = p
means that while reading the symbol a in state q, the automaton changes to
state p and starts consuming the next input symbol. The state q0 is the initial
state of A, and F ⊆ Q is the set of its final states. The action of the automaton
A is often written in the form qa = p instead of δ(q, a) = p. The transition
function δ extends to words by setting δ(q, wa) = δ(δ(q, w), a). Thus for each
word w, δ(q, w) is the state where the automaton enters when started in the
state q and after exhausting w. If w = ε, the empty word, then δ(q, ε) = q for
all states q.

More pictorially a finite automaton can be described as a directed graph,
where nodes represent the states of the automaton and each labelled edge q

a−→ p
corresponds to the transition δ(q, a) = p. Then δ(q, w) is the state that is reached
from q by traversing the edges labelled by the letters of w.

A language L ⊆ A is regular if it is accepted by a DFA, L = L(A), where

L(A) = {w ∈ A∗ | δ(q0, w) ∈ F}.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 1–8, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 T. Harju

The family of regular languages is a neat family in the sense that it is closed
under many natural operations of languages: if L and K are regular languages,
then so are

– L ∪ K, L ∩ K, L \ K, catenation L · K, Kleene closures L∗ and L+, shuffle
KsL, quotients L−1K and LK−1, complement A∗ \ L, morphic (and the in-
verse morphic) images h(L) (and h−1(L)), as well as the reversal LR (mirror
image).

This list could be continued much further.
Instead of deterministic finite automata one can also employ other finite mod-

els of automata for regular languages. For instance, a language L is regular if
it is accepted by a nondeterministic FA where the transitions are given by a
relation instead of a function.

We can extend the transition function (or relation) in several ways, say by
attaching conditions to the transitions that change the design of the states. As
an example, each state can have a sign, + or −, and the transitions can depend
on the signs and change them.

Also, one can expand the way how finite automata accept words. An alter-
nating finite automaton is a nondeterministic FA where the states are divided
into existential and universal states, and acceptance depends on the global tree
of behaviour.

By allowing finite automata to read the input word both to the left and right
does not influence the family of accepted languages, i.e., a 2-way FA accepts
only regular languages.

Decision problems for regular languages are, as a rule, decidable. However,
many algorithmic problems are hard for them. For instance, one can prove that
the problem of finding a nondeterministic finite automaton with the smallest
number of states accepting a regular language L is truly hard. The problem is
PSPACE-complete.

The syntactic characterizations of regular languages are originally due to
Myhill [1] and Nerode [2] as well as to Rabin and Scott [3] at the end of the 1950s.
These characterizations follow from analyzing the behaviour and structures of
finite automata.

For a language L ⊆ A∗ define the relation ∼L by

u ∼L v ⇐⇒ u−1L = v−1L,

where u−1L = {w | uw ∈ L}. This relation is an equivalence relation on A∗, and
thus A∗ is divided into equivalence classes w.r.t. ∼L.

Theorem 1. A language L is regular if and only if ∼L is of finite index, i.e.,
there are only finitely many equivalence classes w.r.t. ∼L.

The idea behind Theorem 1 is that the set u−1L corresponds to the state δ(q0, u)
of the DFA accepting L. As an example, consider the language L = {anbn | n ≥
0} which is well known to be nonregular. We notice that the sets u−1

i L are all

Characterizations of Regularity 3

different for the words ui = ai, i ≥ 1. Since there are infinitely many sets u−1L,
we deduce that, indeed, the language L is not regular.

Let
u ∼=L v : xuy ∈ L ⇐⇒ xvy ∈ L

be the syntactic congruence of L ⊆ A∗.

Theorem 2. A language L is regular if and only if the syntactic congruence of
L has finite index.

Using syntactic congruences one can study the fine structure of regular languages
more deeply. This approach leads to algebraic theory of regular languages. For
instance, Schützenberger [4] showed that a language L is star-free if and only if
its syntactic monoid is aperiodic, i.e., contains only trivial subgroups. Here we
say that L is star-free if it can be represented by a generalized regular expression
allowing complementation Lc but disallowing stars ∗. For instance, A∗ = ∅c, and

(ab)∗ = 1 + a∅c ∩ ∅cb ∩ (∅caa∅c)c ∩ (∅cbb∅c)c.

We also state an algebraic characterization of regular languages that is related
to syntactic congruences.

Theorem 3. A language L is regular if and only if it is recognized by a finite
monoid M , i.e., there is a finite monoid M such that F ⊆ M and

L = ϕ−1(F)

for a monoid morphism ϕ : A∗ → M onto M .

We can restate this theorem as follows:

Theorem 4. A language L is regular if and only if there exists a finite monoid
M such that

L = ϕ−1ϕ(L)

for a monoid morphism ϕ : A∗ → M .

Regular languages can also be described by matrices. The following theorem is
due to Schützenberger.

Theorem 5. For each regular language L, there are 0, 1-vectors u and v, and a
matrix M (of finite sets) such that

L = uT M∗v.

Regular languages have had connections to logic since the studied made by
Büchi [6], Elgot [7], and McNaughton and Papert [5].

Theorem 6. A language L is regular if and only if L definable in the monadic
second order logic (which allows comparisons of positions of letters in words and
quantifiers over sets of positions).

4 T. Harju

2 Morphic Characterizations

The topic of morphic characterizations of regular languages was was initiated
by Culik, Fich, and Salomaa [8] in 1982, and it was continued by several people
during the following years.

Recall that a mapping h : A∗ → B∗ is a morphism if

h(uv) = h(u)h(v)

for all words u, v. The inverse morphism is the many-valued mapping

h−1(v) = {u | h(u) = v} .

In the theorems that follow the morphisms hi, for i = 1, 2, . . . , are between
suitable alphabets. Culik, Fich, and Salomaa [8] proved that

Theorem 7. A language L is regular if and only if there are morphisms hi such
that

L = h4h
−1
3 h2h

−1
1 (a∗b).

This result was improved by Latteux and Leguy[9] in 1983:

Theorem 8. A language L is regular if and only if there are morphisms hi such
that

L = h3h
−1
2 h1(a∗b).

We shall sketch the idea behind the proof of this theorem.
In the other direction the claim follows from the fact that regular languages

are closed under taking morphic images and inverse morphic images, and the
starting language a∗b in Theorem 8 is certainly regular.

Let then L be a regular language and let A be a DFA accepting L. Assume
that the states of A are

Q = {q0, q1, . . . , qm},

where q0 is the initial state. Let

Γ = {[qi, x, qj] | δ(qi, x) = qj}

be an alphabet that encodes the transitions of A, and let a, b and d be three
special symbols. Define our first morphism h1 : {a, b} → {a, b, d}∗ by

h1(a) = adm and h1(b) = bdm ,

Hence h1(anb) = (adm)n · bdm for each power n.
Let then h2 : Γ ∗ → {a, b, d}∗ be defined by

h2([qi, x, qj]) =

{
diadm−j if j = m ,

dibdm if j = m .

Characterizations of Regularity 5

Hence

u ∈ h−1
2 h1(anb) ⇐⇒ u codes the accepting computation of A of a1a2 . . . an.

Finally, let h3 : Γ ∗ → A∗ be defined by

h3([q, x, p]) = x.

Then L(A) = h3h
−1
2 h1(a∗b).

Even a simpler variant was shown to hold by Latteux and Leguy [9]:

Theorem 9. A language L is regular if and only if there are morphisms hi such
that

L = h−1
3 h2h

−1
1 (b).

The special case of regular star languages has especially appealing
characterization.

Theorem 10. For any language L, the language L∗ is regular if and only if
there exists a (uniform) morphism h and a finite set F of words such that

L∗ = h−1(F ∗).

The morphic characterizations of regular languages extend partly to transduc-
tions, i.e., to many-valued mappings τ : A∗ → B∗ computed by finite transducers.
The following is due to Turakainen [10], Karhumäki and Linna [11].

Theorem 11. Let R be a given regular language. Then for all languages L,

L ∩ R = h3h
−1
2 h1μ(L),

where μ : A∗ → A∗d is a marking defined by μ(w) = wd for a special symbol d.

Latteux, Leguy, and Turakainen [9, 12] showed

Theorem 12. Each rational transductions has the forms

h4h
−1
3 h2h

−1
1 μ and h−1

4 h3h
−1
2 h1μ,

where μ is a marking.

The following theorem of Harju and Kleijn [13] shows that there is no algorithm
to decide whether the marking μ is needed.

Theorem 13. Iy is undecidable whether or not a transduction has a represen-
tation without endmarker μ.

6 T. Harju

3 Equality Sets

In the Post Correspondence Problem, PCP for short, the problem instances are
pairs (g, h) of morphisms g, h : A∗ → B∗, and the problem asks to determine
whether there exists a nonempty word w such that g(w) = h(w). It was shown
by Post in 1947 that the PCP is undecidable in general, that is, there does not
exist an algorithm for its solution.

The set of all solutions of an instance g, h : A∗ → B∗ is called the equality set
of g and h. It is the set

E(g, h) = {w ∈ A∗ | g(w) = h(w)}.

Choffrut and Karhumäki [14] have shown that the equality set E(g, h) is reg-
ular for a special class of morphisms, called bounded delay morphisms. However,
for these morphisms the problem whether or not E(h, g) contains a nonempty
word remains undecidable! This means that there is no effective construction of
a finite automaton A accepting the regular language E(g, h) when the instance
g, h consisting of bounded delay morphisms is given.

A morphism h : A∗ → B∗ is called a prefix morphism, if for all different letters
a, b ∈ A, the image h(a) is not a prefix of the image h(b).

If A and B are alphabets such that A ⊆ B, then the morphism πA : B∗ → A∗,
defined by

πA(a) =

{
a if a ∈ A,

ε if a ∈ B \ A,

is the projection of B∗ onto A∗.
The next result is due to Halava, Harju, and Latteux [15, 16].

Theorem 14. A star language L = L∗ ⊆ A∗ is regular if and only if

L = πA(E(g, h))

for prefix morphisms g, h and the projection πA onto A∗.

A morphism f : A∗ → B∗ is a coding, if it maps letters to letters.

Theorem 15. A star language L = L∗ ⊆ A∗ is regular if and only if

L = f(E(g, h))

for prefix morphisms g, h and a coding f .

4 Well Quasi-orders

A quasi-order ρ ⊆ X × X on a set X is a reflexive and transitive order relation:

xρx and xρy
yρz

}
=⇒ xρz.

Moreover, ρ is a well quasi-order, wqo for short, if every nonempty subset Y ⊆ X
has at least one minimal element but only finite number of (non-equivalent)
minimal elements. In the below instead of ρ we use ≤ for an order relation.

Characterizations of Regularity 7

Lemma 1. The following are equivalent for a relation ≤ to be a wqo:

(1) Every infinite sequence of elements of S has an infinite ascending subse-
quence.

(2) If x1, x2, . . . is an infinite sequence of elements, then xi ≤ xj for some i < j.
(3) There are no infinite strictly descending sequences, nor infinite sets of pair-

wise incomparable elements.

The following result is a special case of Higman’s [17] theorem:

Theorem 16. The set of words A∗ is well quasi-ordered by the subsequence
order defined by

x = x1x2 . . . xn

y = y1x1y2x2 . . . ynxnyn+1

}
=⇒ x ≤ y.

The idea behind the proof of this theorem is gratifying: Let w1, w2, . . . be an
infinite sequence of words such that wi � wj for all i < j, and that the sequence
is ‘length minimal’ in the sense that the length of wk is as short as possible so
that w1, w2, . . . , wk satisfies wi � wj for all i < j ≤ k. There is a letter a that
starts infinitely many wi, say

wi1 = av1, wi2 = av2, . . .

Now, w1, w2, . . . , wi1−1, v1, v2, . . . is a ‘smaller’ sequence satisfying the require-
ments; a contradiction.

For the theorem of Ehrenfeucht, Haussler, Rozenberg [18] we say that a quasi-
order ≤ is monotone if

x1 ≤ y1
x2 ≤ y2

}
=⇒ x1x2 ≤ y1y2.

A language L is upwards closed closed w.r.t. the ordering ≤, if for all w ∈ L,
w ≤ v implies that also v ∈ L.

Theorem 17. A language L is regular if and only if it is upwards closed w.r.t.
some monotone wqo on A∗.

The proof in the direction (=⇒) uses the Myhill–Nerode characterization of
regularity: a language L is regular if and only if L is a union of equivalence
classes of some congruence of finite index. Note that a monotone equivalence
relation is a congruence.

References

1. Myhill, J.: Finite automata and the representation of events. Technical Report
WADD TR-57-624, Wright Patterson Air Force Base, Ohio (1957)

2. Nerode, A.: Linear automaton transformations. Proc. Amer. Math. Soc. 9 (1958)
541–544

8 T. Harju

3. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
3 (1959) 115–125

4. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8 (1965) 190–194

5. McNaughton, R., Papert, S.: Counter-free automata. The M.I.T. Press, Cambridge,
Mass.-London (1971) With an appendix by William Henneman, M.I.T. Research
Monograph, No. 65.

6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6 (1960) 66–92

7. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98 (1961) 21–51

8. Culik II, K., Fich, F., Salomaa, A.: A homomorphic characterization of regular
languages. Discrete Appl. Math. 4 (1982) 149–152

9. Latteux, M., Leguy, J.: On the composition of morphisms and inverse morphisms.
In: Lecture Notes in Comput. Sci. Volume 154. (1983) 420–432

10. Turakainen, P.: A machine-oriented approach to composition of morphisms and
inverse morphisms. Bulletin of the EATCS 20 (1983) 162–166

11. Karhumäki, J., Linna, M.: A note on morphic characterization of languages. Dis-
crete Appl. Math. 5 (1983) 243–246

12. Latteux, M., Turakainen, P.: A new normal form for the compositions of morphisms
and inverse morphisms. Math. Systems Theory 20 (1987) 261–271

13. Harju, T., Kleijn, H.C.M.: Decidability problems for unary output sequential trans-
ducers. Discrete Appl. Math. 32 (1991) 131–140

14. Choffrut, C., Karhumäki, J.: Test sets for morphisms with bounded delay. Discrete
Appl. Math. 12 (1985) 93–101

15. Halava, V., Harju, T., Latteux, M.: Representation of regular languages by equality
sets. Bulletin of the EATCS 86 (2005) 224–228

16. Halava, V., Harju, T., Latteux, M.: Equality sets of prefix morphisms and regular
star languages. Inf. Process. Lett. 94 (2005) 151–154

17. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 3 (1952)

18. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theoret. Comput. Sci. 27 (1983) 311–332

Finnish Optimality-Theoretic Prosody

Lauri Karttunen

Palo Alto Research Center, Stanford University, USA

A well-known phenomenon in Finnish prosody is the alternation of binary and
ternary feet. In native Finnish words, the primary stress falls on the first syllable.
Secondary stress generally falls on every second syllable: (vói.mis).(tè.li).(jòi.ta)
’gymnasts’ creating a sequence of trochaic binary feet. However, secondary stress
skips a light syllable that is followed by a heavy syllable. In (vói.mis.te).(lèm.me)
’we are doing gymnastics’, the first foot is ternary, a dactyl.

Within the context of Optimality Theory (OT, [5]), it has been argued that
prosodic phenomena are best explained in terms of universal metric constraints.
OT constraints can be violated; no word can satisfy all of them. A language-
specific ranking of the constraints makes some violations less important than
others. In her 1999 dissertation [2], A unified account of binary and ternary
stress, Nine Elenbaas gives an analysis of Finnish in which the alternation be-
tween binary and ternary feet follows as a side effect of the ordering of two par-
ticular constraints, *Lapse and *(L’. H) The *Lapse constraint stipulates that
an unstressed syllable must be adjacent to a stressed syllable or to word edge.
The *(L’. H) constraint prohibits feet such as (tè.lem) where a light stressed syl-
lable is followed by a heavy unstressed syllable. The latter constraint of course
is outranked by the constraint that requires initial stress on the first syllable in
Finnish regardless of the its weight. In his 2003 article on Finnish Noun Inflec-
tion [4], Paul Kiparsky gives essentially the same account of the binary/ternary
alternation except that he replaces the *(L’.H) rule by a more general
StressToWeight constraint.

Although OT constraints themselves can be expressed in finite-state terms,
Optimality Theory as a whole is not a finite-state model if it involves un-
bounded counting of constraint violations [3]. With that limitation OT anal-
yses can be modelled with finite-state tools. In this paper we will give a full
computational implementation of the Elenbaas and Kiparsky analyses using the
extended regular expression calculus from the 2003 Beesley & Karttunen book
on Finite State Morphology [1]. Surprisingly, it turns out that Elenbaas and
Kiparsky both make some incorrect predictions. For example, according to their
accounts a word such as kalasteleminen ’fishing’ should begin with a ternary foot:
(ká.las.te).(lè.mi).nen. The correct footing is (ká.las).(tè.le).(mı̀.nen). There may
of course be some ranking of OT constraints under which the binary/ternary al-
ternation in Finnish comes “for free”. It does not emerge from the Elenbaas and
Kiparsky analyses.

This case study illustrates a more general point: Optimality Theory is com-
putationally difficult and OT theorists are much in the need of computational
help.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 9–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

10 L. Karttunen

References

1. K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Studies in Com-
putational Linguistics. CSLI Publications, Stanford, CA, 2003.

2. N. Elenbaas. A unified account of binary and ternary stress: considerations from
Sentani and Finnish. PhD thesis, Utrecht University, the Netherlands, 1999.

3. R. Frank and G. Satta. Optimality theory and the generative complexity of con-
straint violability. Computational Linguistics, 24:307–315, 1998.

4. P. Kiparsky. Finnish noun inflection. In D. Nelson and S. Manninen, editors, Gen-
erative Approaches to Finnic Linguistics. CSLI Publications, Stanford, CA, 2003.

5. A. Prince and P. Smolensky. Optimality theory: Constraint interaction in generative
grammar. Technical Report RuCCS TR-2, Rutgers University Center for Cognitive
Science, New Brunswick, NJ, 1993.

Partitioning Multitape Transducers

François Barthélemy

CNAM-Cédric, 292 rue Saint-Martin, F-75003 Paris, France
and INRIA, domaine de Voluceau, F-78153 Rocquencourt cedex, France

barthe@cnam.fr

Abstract. In this paper, we define a class of transducers closed under
intersection and complementation, which are the operations used for
contextual rule compilation. This class of transducers is not theoreti-
cally more powerful than the Epsilon-Free Letter Transducers most com-
monly used. But they are more convenient for morphological description
whenever the correspondence between lexical and surface forms is not a
symbol-to-symbol matching.

A complete set of operations on transducers is defined, including some
operations (projection and join) which change the number of tapes of the
transducers.

1 Introduction

Finite State morphology use contextual rules (rewrite rules or two-level rules)
which are compiled into finite-state transducers. The key idea of compilation, due
to Kaplan and Kay [3] is subtractive: first, compute a superset of the specified
language, namely the concatenation closure of the rule centers; then retract what
is not allowed by the contexts specified in the rules. At the operational level, the
fundamental operations are complementation and subtraction.

Finite State Transducers are not closed under complementation and subtrac-
tion in general. The subclass of transducers where the transitions are labeled by
exactly one symbol on each tape is closed under complementation, subtraction
and intersection. It is called Epsilon-Free Letter Transducer [5]. This subclass is
used for Finite State morphology. A special symbol 0 is artificially introduced to
represent the empty string using an ordinary symbol. Introduction and removal
of 0s are done as pre and post-processing when executing a transducer.

In this paper, we present another subclass of transducers that are closed under
complementation, intersection and subtraction, called the Partitioning Multi-
tape Transducers (PMTs). The relations defined are not necessarily same-length
relations. The transitions are labeled by an independent regular expression for
each tape. The same-length constraint does not apply on symbols but on parti-
tion components, which are possibly empty symbol sequences (i.e. strings). Each
transition defines a partition.

PMTs have the same expressive power as Epsilon-Free Letter Transducer
and regular languages. We give a compilation algorithm which compiles a PMT
into a Finite State Automaton. We also define a computation framework with
operations which change the number of tapes of the transducers.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

12 F. Barthélemy

PMTs are convenient for defining correspondences between strings which sym-
bols are not related. For example a feature structure associated to a morpheme
although there is no symbol-to-symbol relation between them. Another example:
words and their graphical representation in an ideographic writing system.

We first define the Partition Multitape Transducers and then, we propose a
compilation algorithm for one of the most sophisticated two-level formalisms:
the Partition-Based Two-Level Grammars by Grimley-Evans and al. [2].

2 Partitioning Multitape Transducers

2.1 Introducing the Concept

Epsilon-Free Letter Transducers generated by two-level compilers are two tape
transducers whose transitions are labeled by exactly one symbol on each tape.
We would like to extend the formalism in two ways:

– allowing the use of more than two tapes, with operations on transducers that
increase or decrease the number of tapes.

– labeling transitions with a string, or even a regular set of strings on each
tape.

We know that such transducers are not closed under intersection with respect
to the usual semantics of n-relations, where such a n-tape transducer defines a
set of string n-tuples.

Instead, we propose a new semantics based on the notion of partition. Any
success path in the transducer is labeled by a sequence of transition labels, i.e.
a sequence of regular expressions tuples. N-relations semantics assumes that the
concatenation operation is distributive with respect to the tuple construction.
The partition-based semantics does not.

For instance, the two paths (aaa, ε)(a, bb) and (aa, b)(aa, b) are two ways of
denoting the relation (aaaa, bb) with the usual relation semantics. They are dif-
ferent elements for the partition based semantics. The transducer intersection
has different meanings in the two semantics. Transducers are closed under inter-
section using the second kind of semantics.

2.2 Formal Definition

Definition 1. Partitioning Multitape Transducer (PMT)
A Partitioning n-Tape Transducer is a 5-tuple A = (Σ, Q, i, F, T) where:

– Σ is a finite set of symbols called the alphabet.
– Q is a finite set of states
– i ∈ Q is the initial state
– F ⊆ Q is the set of final states
– T ⊆ {(q1, e1, . . . , en, q2)|q1 ∈ Q, q2 ∈ Q, e1, . . . enare regular sets over Σ∗}.

We call n the arity of the transducer.

Partitioning Multitape Transducers 13

This is a standard definition of transducers, very similar to the one in [5],
except that it does not distinguish a separate alphabet for each tape, with no
loss of generality. The specificity of Partitioning Multitape Transducers lies in
their semantics.

Definition 2. N-tuple sequences defined by a n-tape transducer
Let s = (w1

1 , . . . , w
n
1) . . . (w1

k, . . . , wn
k) a possibly empty sequence of string n-tuples

where wj
i ∈ Σ∗, and A = (Σ, Q, i, F, T) a n-tape transducer. The sequence s

belongs to A if there exists in A a success path i
t1→ q1

t2→ · · · tk→ qk with qk ∈ F
such that ∀i, 1 ≤ i ≤ k, ti = (qi−1, e

1
i , . . . e

n
i , qi) and

w1
i ∈ e1

i , . . . w
n
i ∈ en

i .

We call partitioned n-relation a set of string n-tuples. A regular partitioned
n-relation is a partitioned n-relation defined by a Partitioning Multitape Trans-
ducer. An example of transducer with some of the n-tuple sequences it defines
is given in figure 1.

x :a: αα*

yy:ε:β

0 1 2

z:cc: ε
(ε, a, αα)(yy, ε, β)
(x, a, αα)(yy, ε, β)
(xx, a, αα)(yy, ε, β)

(ε, a, αα)(yy, ε, β)(z, cc, ε)(yy, ε, β)

Fig. 1. An example of PMT and some of its n-tuple sequences

Definition 3. String recognized by an n-tape transducer
Let w be a string of Σ∗ and A = (Σ, Q, i, F, T) a n-tape transducer. The string
w is recognized by A on tape j if there exists an n-tuple sequence
s = (w1

1 , . . . , wn
1) . . . (w1

k, . . . , w1
k) of A such that w = wj

1.w
j
k.

We now briefly present a few operations on Partitioning Multitape Transducers.
The formal definitions are straightforward, so we do not detail them.

– tape reordering: changes the order of the tapes in the transitions. The op-
eration is defined given a transducer and a permutation upon tapes ranks.
Notation: reorder2,1,3(A).

– projection: keeps the specified tapes and removes the others. Notations:
project{1,3}(A) which keeps tapes 1 and 3, and project{2}(A) which removes
tape 2 and keeps all the other tapes.

– union, concatenation, with the usual notations.

14 F. Barthélemy

Definition 4. Join
The join on k tapes of two regular partitioned relations r1 and r2 having respec-
tively arity n and m is noted r1 ��k r2 and defined as follows:
r1 ��k r2 = { (s1

1, . . . s
n+m−k
1) . . . (s1

p, . . . s
n+m−k
p)|

(s1
1, . . . s

n
1) . . . (s1

p, . . . , s
n
p) ⊆ r1,

(sn−k+1
1 , . . . , sn+m−k

1) . . . (sn−k+1
p , . . . , sn+m−k

p) ⊆ r2}

This operation is very general. It combines two transducers having possibly dif-
ferent arities. We restrict here to joins where the last k tapes of the first operand
are identified with the k first tapes of the second operand. This restriction is
made only to simplify the definition. Thanks to the reorder operation, however
there is no loss of generality.

The intersection is a join of two n-tapes PMT on all the tapes (r1 ∩ r2 =
r1 ��n r2). This is a direct consequence of the join definition.

Relation composition may be described as the sequence of a join and a pro-
jection which forgets the tapes on which the join operates.

This join operation was described in [4] for n-relations. Here we adapt the
definition to partitioned n-relations. The name was chosen by analogy with the
join operation of relational databases.

Definition 5. Transducers join
Let A1 = (Σ, Q1, i1, F1, T1) and
A2 = (Σ, Q2, i2, F2, T2) be two transducers defining the partitioned relations r1
and r2. The following transducer A defines r1 ��k r2.
A = (Σ, Q1 × Q2, (i1, i2), F1 × F2, T) where
T = { ((qi1, qi2), e1, . . . en, en+1 . . . en+m−k, (qf1, qf2))|

∃(qi1, e
1
1, . . . e

1
n, qf1) ∈ T1, ∃(qi2, e

2
1, . . . e

2
m, qf2) ∈ T2 and

e1 = e1
1, . . . en−k = e1

n−k, en−k+1 = e1
n−k+1 ∩ e2

1, . . . , en = e1
n ∩ e2

k,
en+1 = e2

k+1, . . . , en+m−k = e2
m}

x :a: αα*

yy:ε:β

z:cc:ε

yy:ε:β:2*x :a: αα*

0,3 1,4
:11

2,4

:2*

3 4
a :* α*:11

b :β+*

10 2

Fig. 2. An example of transducer join

Partitioning Multitape Transducers 15

2 Regular expression: xxxy z* *y*

yy:ε:β

3
xxx:a:αα

4
yy:ε:β

5
z:cc:ε

6
yy:ε:β

7

z:cc:ε
0

x :a: αα*
1

Fig. 3. An example of partitioning composition

Definition 6. Partitioning Composition
Let partition(α) be the partitioned relation {(a1, . . . , ak) such that
a1 . . . ak ∈ α}. The partitioning composition on tape i of a regular expression α
and a PMT t is defined by:
α ◦i t = reorder2,...i−1,1,i...n(partition(α) ��1 reorderi,1,...i−1,i+1,...n(t))

The partitioning composition is the operation of recognition of a regular expres-
sion on a tape. An example of partitioning composition is given in figure 3.

3 Compiling Partitioning Multitape Transducers

Partitioning Multitape transducers are not convenient operational devices be-
cause the application of their transition is rather complex. It involves regular
expression matching, which may be achieved by finite state automata execution.

We propose a translation into a finite state automaton.
Conceptually, all the tapes are read in parallel with no synchronization within

a given partition. For instance, in the string 2-tuple sequence (xx, a)(y, bc)(ε, cc),

– there is a total order within each tape (we write as a subscript the occurrence
of symbols): x1 < x2 < y and a < b < c1 < c2 < c3

– there is a partial order between symbols of different tapes: x2 < b, a < y,
y2 < c2

– there is no order between symbols in the same partition: for instance, a is
not before or after x1 or x2

Any letter n-tape transducer will encode a stronger partial order relation,
since at most one symbol of each tape is read at once. For instance, if a and x1
are read by the same transition, then a is read before x2. There are several ways
of encoding the significant partial order using an epsilon-free letter transducer.
For instance, the first partition of the sequence namely (xx, a) may be recognized
by any of the following transition sequences:

x:ε→ x:ε→ ε:a→ x:ε→ ε:a→ x:ε→ ε:a→ x:ε→ x:ε→ x:a→ x:ε→ x:ε→ x:a→

We propose to choose an arbitrary canonical representation. The basic idea of
the compilation is to read on the tapes sequentially, one after the other, following

16 F. Barthélemy

the rank order. Each transition reads one symbol on one tape and nothing on
the other tapes.

Now, one can flatten all the tapes in just one tape, the limits of tape being
marked by two special symbols < and > not in Σ1. Similarly, the partitions
limits are marked by two special symbols � and �, not in Σ.

Definition 7. Compilation algorithm
Let A = (Σ, Q, i, F, T) be a partitioning n-tape transducer. For each transition
t = (q0, w1, . . . , wn, q1) in T , compile the regular expression �< w1 > · · · <
wn >� into a finite state automaton and insert it between states q0 and q1.

Note that it is always possible to compile the given regular expression in a finite
state automaton having exactly one final state, thanks to the final transition
on �.

Property 1. Property of the compiled automaton
We note nboccs(p) the number of occurrences of the symbol s in the path p.

1. For all path p starting in the initial state, (nbocc�(p)− 1) ∗ n ≤ nbocc�(p) ∗
n ≤ nbocc>(p) ≤ nbocc<(p) ≤ nbocc�(p) ∗ n

2. All the strings recognized by the automaton begin with � and end by an
occurrence of �.

The property is obtained by construction, because each transition inserts one
occurrence of � and � and n occurrences of < and >.

Corollary. On each loop l in the automaton, nbocc<(l) = nbocc>(l) = n ∗
nbocc�(l) = n ∗ nbocc�(l).

Lemma 1. Every finite state automaton fulfilling the property 1 encodes a Par-
titioning Multitape Transducer.

To retrieve the PMT from an automaton, one has to replace each path from a
� to a � by a single transition labeled by a regular expression n-tuple. The
only difficulty is that there must be a finite number of such paths to ensure the
termination of the process and the finiteness of the transducer.

The most import property of the automata fulfilling the property 1 is that
either a loop has no < or > symbol, or it traverses one or several partitions. In
the first case, the loop concerns only one tape, it is translated with a star in the
regular expression recognized on this tape. In the second case, the star comes at
the partition level. It never happens that a loop contains a < or a > within a
given partition. Therefore, the number of transitions of the transducer is finite.

In the following, we call Partitioning Automaton and we write comp(t) a Finite
State Automaton encoding a Partitioning Multitape Transducer t.

We have now to implement transducer operations on the compiled form. For
this purpose, we use a few operations on finite state machines defined in [3]
and [2].
1 A single symbol marking the separation between tapes would be sufficient, but some

definitions are made simpler with two surrounding symbols.

Partitioning Multitape Transducers 17

– The identity id is a 2-tape transducer which maps any symbol to itself.
– insert freely inserts a regular expression e into a given automaton. It is a 2-tape

transducer where the empty string maps the inserted regular expression e.
– replace is an operation which replaces all the occurrences of a given regular

expression by another one in a regular expression.
– project is the projection on the first (project1) or the second (project2) tape

of the transducer.

The union (resp. the intersection, the concatenation) of two partitioning
n-tape transducers is performed using the union (resp. intersection, concate-
nation) of the two corresponding compiled automata.

The proof is straightforward using property 1.
The complementation is slightly more difficult: the property 1 does not hold

for the standard finite state automaton complement of a Partitioning Automa-
ton. In order to except all the strings in the complement which are not string n-
tuple sequences, the complement has to be intersected with the set of all the valid
string n-tuple sequences, which is the compiled counterpart of (Σ∗, . . . , Σ∗)∗,
namely (�< Σ∗ > · · · < Σ∗ >�)∗:

comp(t) = comp(t) ∩ (�< Σ∗ > · · · < Σ∗ >�)∗

The join operation of two PMT t1 (arity n) and t2 (arity m) on k tapes is
performed as follows:

a1 = project{1}(replace>�,>(<Σ∗>)m−k�(comp(t1)))
a2 = project{2}(replace�<,�(<Σ∗>)n−k<(comp(t2)))
comp(t1 ��k t2) = a1 ∩ a2

The replace operations are used to insert new tapes at the end of the first au-
tomaton and at the beginning of the second one in order to obtain two automata
having n+m-k tapes. The inserted tapes recognize the free language Σ∗.

The partitioning composition on tape k of a PMT t and a regular expression
e is obtained by the following:

pbnd = (< Σ∗ >)n−k+1 �� (< Σ∗ >)k−1

prefix =� (< Σ∗ >)k−1

suffix = (< Σ∗ >)n−k+1 �
comp(e ◦k t) = comp(t) ∩ (prefix insertpbnd(e) suffix)

The left-hand part of the intersection is the union of all the PMTs which
recognize e on tape k and Σ∗ on the other tapes. It is obtained by inserting
freely partition boundaries surrounded by the irrelevant tapes, i.e. all but the
tape k. The expressions prefix and suffix take care respectively of the first and
last partition boundaries, the only ones which are not surrounded on both sides
by tape boundaries > and <.

In the special case where the multitape transducer is a letter transducer, that
is, in any partition, at most one symbol is read on each tape, a more efficient
compilation algorithm may be used. The tape boundaries < and > are no more
needed. A new symbol 0, not in Σ, is inserted to represent the empty string

18 F. Barthélemy

on tapes which read no symbols. Then, one knows that the ith symbol after a
partition limit � is on tape i. This kind of compilation for letter transducers is
proposed by Ganchev and al. [1].

4 Using Partitioning Multitape Transducers for
Two-Level Morphology

In this section, we show how a partition-based two-level formalism may be com-
piled into Partitioning Multitape Transducers. This formalism was defined by
Grimley-Evans, Kiraz and Pulman [2]. We first recall the definition and then
describe the compilation.

4.1 Partition-Based Two-Level Formalism

Let Σ be a finite alphabet of symbols.

Definition 8. A Context Restriction Rule is a triple (l, c, r) where l, c and r are
three n-tuples of regular expressions over Σ. Furthermore, the regular expressions
of c are finite.

The three n-tuples are called respectively the left context, the center and the
right context of the rule.

Definition 9. A Surface Coercion rule is a 4-tuple (l, cl, cs, r) where l and r
are n-tuples of regular expressions over Σ, cl and cs are respectively a k-tuple
and an m-tuple of regular expressions such that k + m = n.

Here again, l and r are called the contexts, cl and cs are the lexical and sur-
face centers. A Two-Level Grammar is a set of Context Restriction and Surface
Coercion rules.

Definition 10. A Two-Level Grammar accepts a string tuple P partitioned as
P1, . . . , Pq if and only if:

1. ∀i, ∃(l, c, r) a CR rule such that P1 . . . Pi−1 ∈ l, Pi ∈ c, Pi+1 . . . Pq ∈ r.
2. ∀i, j, i ≤ j, there is no SC rule (l, cl, cs, r) such that P1 . . . Pi−1 ∈ l,

Pj . . . Pq ∈ r, project{1...k}(Pi . . . Pj−1) ∈ cl and
project{k+1...n}(Pi . . . Pj−1) /∈ ls.

Note that in this definition, the center of a SC rule applies on a possibly empty
sequence of consecutive partitions whereas centers of CR rules match exactly one
partition. This strange definition is designed to handle adequately epenthetic SC
rules, where the lexical center is a cross product of empty string εk.

4.2 Compilation into Partitioning Multitape Transducer

Partitioning Multitape Transducers are a natural operational device to compile
a partition-based formalism since they have the same notion of partition.

Partitioning Multitape Transducers 19

Compiling the center of a CR rule is straightforward: the center is the descrip-
tion of exactly one partition. A two-state transducer with a transition labeled by
the center implements it. Compiling contexts is slightly more difficult because
the contexts may match a number of partitions. A different regular expression is
given for each tape, but all the tapes must be divided in the same number of par-
titions. Inserting freely partition boundaries everywhere would not ensure that
the result fulfills the property 1. The solution consists in cascading application
of the partitioning composition of Σ∗, . . . , Σ∗ (n occurrences) on each regular
expression in the context.

The same idea works also for Surface Coercion rule lexical and surface centers
which also match a sequence of partitions. Furthermore, the lexical and surface
centers must match the same number of partitions: they have to be partitioning
composed to the same free partition sequence.

comp((c1, . . . , cn)) = ((((Σ∗, . . . , Σ∗︸ ︷︷ ︸
n occurrences

)∗ ◦1 c1) . . .) ◦n cn)

Each part of a rule being compiled, we adapt the algorithm of [3] to the
semantics of the partition-based formalism. This algorithm is subtractive: we
first compute the closure under concatenation π∗ of the set of CR rules centers
π. Then we remove from this language the partitioned strings which violate at
least one of the rules of the grammar G.

π =
⋃

(l,c,r)∈G

c

violate(l,c,r) = (comp(l) c π∗) ∪ (π∗ c comp(r))
violate(l,cl,cs,r) = comp(l)comp(cl × cs)comp(r)
system = π∗ −

⋃
(l,c,r)∈G

violate(l,c,r) −
⋃

(l,cl,cs,r)∈G

violate(l,cl,cs,r)

4.3 Improving the Formalism

There is a restriction in the Two-Level Grammar definition which is related to
the compilation algorithm given by Grimley-Evans and al.: the centers of Context
Restriction Rules are compiled into letter n-tape transducers, by padding ends
of strings with 0s. Combined with the condition of independence of the tapes
within a given partition, it is a restriction to finite languages. In general, for a
given relation R, there is no same-length regular relation such that the elements
are the ones of R possibly lengthened with 0s at the end of strings.

Using the compilation into Partitioning Multitape Transducers, one can relax
the restriction. The center of a CR rule may be any regular expression n-tuple.

The contexts of two-level rules are specified separately on each tape. No syn-
chronization between tapes is expressible using the formalism. It is possible to
change this and allow for synchronization at partition boundaries.

For instance, (Σ∗, Σ∗)(C, C) is a valid context since it may be rewritten
(Σ∗ C, Σ∗ C), but (Σ∗, Σ∗)(C, C)∗ is not a valid context because no pair of
independent regular expressions denotes the same language. There is a strong

20 F. Barthélemy

synchronization between the two tapes: there are the same number of Cs on
both tapes. The definition by Grimley-Evans and al. does not allow such a syn-
chronization. Compilation into PMT is possible if and only if the loops begin
and end on a partition frontier. Contexts would be similar to the ones of Koske-
niemi’s original formalism: they would be regular expression over feasible pairs,
the pairs being now pairs of regular expressions.

5 Conclusion

Partitioning Multitape Transducers are the right operational device to imple-
ment a partition-based two-level formalism. There is still work to make such
formalism really attractive. First, the use of the notion of partition for morphol-
ogy and phonology is not completely clear. We believe that some phenomena are
well described in terms of partition whereas others are better described using
single symbols. So the two degrees of granularity have to coexist. Secondly, the
conflicts between two-level rules is a major difficulty in practice.

We are not aware of any attempt to define a partition-based formalism with
rewrite rules and we are not sure if the idea is pertinent at all, since the one-to-
one correspondence between pre and post rule application does not seem essential
to this approach.

By construction, the regular expressions characterizing the different tapes
within a partition are not related. It is a strong restriction, especially when the
lexical and surface representation are closely related, when they are basically
identical with only small local changes. It would be interesting to define a less
restrictive definition of partition, while preserving the uniqueness of canonical
representation which is essential for intersection.

Another interesting topic deals with composition of transducers having differ-
ent partitionings, without loss of information. At the moment, only partitioning
composition would work, and one of the two partitioning would be lost in the
operation. There are applications where forms are partitioned in a different way
using respectively a morphological or a graphemic point of view.

References

1. H. Ganchev, S. Mihov, and K. U. Schulz. One-letter automata: How to reduce k
tapes to one. Technical Report IS-Bericht-03-133, Centrum für Informations- und
Sprachverarbeitung, Universität München, Munich (Germany), 2003.

2. E. Grimley-Evans, G. Kiraz, and S. Pulman. Compiling a partition-based two-level
formalism. In COLING, pages 454-459, Copenhagen, Denmark, 1996.

3. R. M. Kaplan and M. Kay. Regular models of phonological rule systems. Computa-
tional Linguistics, 20:3:331-378, 1994.

4. A. Kempe, F. Guingne, and F. Nicart. Algorithms for weighted multi-tape automata.
Technical Report 2004/031, XRCE, Grenoble, France, 2004.

5. E. Roche and Y. Schabes, editors. Finite-State Language Processing. Bradford Book.
MIT Press, Cambridge, Massachusetts, USA, 1997.

Squeezing the Infinite into the Finite:

Handling the OT Candidate Set with Finite State
Technology

Tamás B́ıró

Humanities Computing, University of Groningen
t.s.biro@rug.nl

Abstract. Finite State approaches to Optimality Theory have had two
goals. The earlier and less ambitious one was to compute the optimal
output by compiling a finite state automaton for each underlying repre-
sentation. Newer approaches aimed at realizing the OT-systems as FS
transducers mapping any underlying representation to the corresponding
surface form. After reviewing why the second one fails for most linguis-
tically interesting cases, we use its ideas to accomplish the first goal.
Finally, we present how this approach could be used in the future as
a—hopefully cognitively adequate—model of the mental lexicon.

1 Introduction

Although very popular in linguistics, Optimality Theory by Prince and Smolen-
sky (OT, [17], [18]) poses a serious problem for being computationally very
complex. This fact could question the relevance of much contemporary linguistic
work both for cognitive research, and language technology. Is our brain doing
such a hard computation? Could language technology make us of OT models?
Fortunately, things are not so bad.

Figure 1 presents the architecture of an Optimality Theoretical grammar,
which consists of two modules, Gen and Eval. The input—the underlying repre-
sentation (UR)—is mapped by the universal Gen onto a set of candidates. The
candidate set, or a subset of it, reflects language typology: for each language,
the language-specific Eval chooses the element (or elements) that appears as the
surface form SR. Eval is a function assigning a harmony value to each candidate,
and the most harmonic one will surface. Alternatively, Eval can also be seen as
a pipeline in which the constraints filter out the sub-harmonic candidates. This
second approach is most often used in practice, and the finite state realizations
presented in this paper are also based on this vision of an OT system.

In many models advanced by theoretical linguists, the set of candidates is infi-
nite, leading to serious questions. How could our brain process an infinite set? How
could language technology make use of a model involving an infinite set?

Different approaches have been, then, proposed in order to handle an infinite
candidate set. Chart parsing (dynamic programming) is probably the best known
among them (chapter 8 in [19] for syllabification; [16] for implementing it to OT

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 21–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 T. B́ıró

Tamás B́ıró

UR GEN

set
of

candi-
dates

Eval

Con1 Con2 Con3 SR

Fig. 1. The architecture of an OT grammar, which maps the underlying representation
onto the surface representation. Gen is followed by the Eval module: the latter is a series
of constraints, acting as filters.

LFG). It presupposes on the one hand that applying a recursive rule (usually
insertion) incurs some constraint violation; and on the other, that “all constraints
are structural descriptions denoting bounded structures”. The interplay of these
two assumptions guarantees that the algorithm may stop applying the recursive
rule after a finite number of steps, for no hope is left to find better candidates
by more insertions.

Alternatives include using heuristic optimization techniques. Genetic algo-
rithms were proposed by Turkel [20], whereas simulated annealing by B́ıró [5].
Such approaches involve only relatively low computational cost; nonetheless,
they do not guarantee finding the optimal candidate. Simulated annealing, for
instance, returns a “near-optimal” form within constant time, but you cannot
know if the algorithm has found the good solution. Even though B́ıró [4] argues
that this algorithm models language production, one may still wish to have a
perfectly working algorithm for language technology.

The present paper proposes an alternative: determining the optimal candidate
by using finite state technologies. We first present the previous approaches to
Finites State Optimality Theory (FS OT) in section 2, with an emphasis on
the matching approach. This is followed by a new proposal in section 3, further
developed into a model of the lexicon in section 4.

2 Finite State Optimality Theory

The idea of computing the optimal candidate of an OT system by building a
finite state (FS) automaton goes back to Ellison [10].1 He requires the set of
candidates for a given input be a regular expression, and realizes the constraints
as transducers (weighted automata) assigning violation marks. The number of
violation marks assigned by a constraint to a candidate is reflected by the sum of
the weights along the path representing the given candidate. Ellison subsequently
proposes a series of algorithms resulting in an automaton in which “the only
paths from the initial state to the final state will be optimal and define optimal
candidates.” This approach builds a new automaton for each input.
1 Eisner [9] summarizes existing work on FS OT, and proposes a framework very

similar to the one to be presented here.

Squeezing the Infinite into the Finite 23

Later work in FS OT aims at realizing the OT-system as a regular relation
mapping any correct UR to the corresponding surface form. By compiling such
a transducer, one would enjoy all advantages of finite state techniques, such
as robustness, speed and relatively low memory requirements in both directions
(production and parsing). This approach includes Frank and Satta [11] and Kart-
tunen [15], on the one hand (the counting approach), as well as Gerdemann and
van Noord [12], generalized by Jäger [13], on the other (the matching approach).
The hope for a regular mapping from the UR to the SR goes back to Douglas
Johnson [14].

In short, finite state approaches to OT require Gen, as well as each of the con-
straints be realizable—in some sense—as a regular expression or transduction.
In many linguistic theories, Gen produces a regular set, as exemplified by syllabi-
fication [12] or metrical stress assignment [3]. However, many further examples,
such as reduplicative morphology or numerous phenomena in syntax, are not
finite state-friendly.2 Concerning Eval, Eisner [7] [8] and B́ıró [3] discuss what
constraints can be realized as finite transducers. Eisner’s Primitive Optimality
Theory (OTP) [7] launches a challenging research program the goal of which is
to model as many phonological phenomena as possible by restricting ourselves
to finite state-friendly constraints.

Nonetheless, the more ambitious program of FS OT to create a transducer
mapping any underlying representation to any surface representation cannot be
fully carried out. Even with a FS representation of Gen and of the constraints at
hand, filtering is not always possible. Frank and Satta [11] (following Smolensky
and Hiller) show a simple counter-example:

Example 1: Let Gen map string anbm to the candidate set {anbm, bnam}, and
let the only constraint penalize each occurrence of a. The resulting language is
{anbm|n ≤ m} ∪ {bnam|n ≥ m}, which is clearly not regular. And yet, Gen is
regular, similarly to the proposed constraint.3

Although Example 1 might look very artificial, its constraint, actually, is a pro-
totype form many constraints used in linguistics. In Syllable Structure Theory
[17], each segment may be parsed or underparsed, and constraint Parse punishes
underparsing. Metrical stress may be assigned to each syllable, and constraint
WSP (“Weight-to-Stress Principle”) requires each heavy syllable to be stressed
(cf. e.g. [19]). In fact, most constraints in phonology penalize each occurrence
of some local substructure a (underparsed, unstressed,...), and prefer its alter-
native, substructure b (parsed, stressed,...). The above example shows that all
these constraints could realize a non-regular language with some specific input
(output of Gen and the previous constraints) [8].

2 Albro [1] shows how to combine a non-finite state Gen with finite state constraints.
3 Authors differ in what is meant by a “regular constraint”. For Frank and Satta [11],

the set of strings incurring exactly k violation marks should form a regular set,
for all k. Gerdemann and van Noord [12] use transducers inserting violation mark
characters into the candidate strings. The given counter-example satisfies both of
these definitions, unlike that of Jäger [13].

24 T. B́ıró

The counting approach proposed by [11] and [15] requires an upper bound on
the number of violations a given candidate can incur. The matching approach is
closer to the model proposed by linguists: it can, in theory, distinguish between
any number of level of violations. Yet, in many cases, only an approximation
is possible, as we shall soon see. By supposing that the length of candidates is
bounded due to restrictions in the working memory, both approaches can be used
in applications. Nevertheless, not only do we lose here the linguistic “point”, but
the size of the automata also increases quickly.

2.1 The Matching Approach

Both the counting approach and the matching approach share the agenda com-
posed of the following three steps:

– first, formulate a finite state transducer Gen;
– then, formulate an optimality operator oo, which makes use of
– the finite state realizations Con-i of the constraints Con-i.

Once we have all these at hand, the grammar is realized by the finite state
transducer obtained after having compiled the following expression:((

Gen oo Con-1
)
oo Con-2

)
...... oo Con-N (1)

From now on, we suppose that a FS transducer Gen is given. The task is to formu-
late the optimality operator oo; the latter will then determine what realization
Con-i of each constraint Con-i is required.

The key idea of the matching approach is to build a set Worse(Input,Con)
that includes all sub-harmonic candidates of the input Input with respect to
the constraint Con, as well as possibly other strings; but excludes all harmonic
candidates. This set will then serve as a filtering set in the definition of the
optimality operator oo:

Input oo Con := Input o Id
Worse(Input,Con) (2)

Here, the identity transduction filters out the elements of Worse(Input,Con),
only the elements of its complement may become outputs. This approach is a
straightforward implementation of the idea behind OT—supposing that the set
Worse(Input,Con) can be constructed.

Without referring to violation marks, Jäger [13] proposes to realize a con-
straint Con with a transducer ConJ that directly will create the filtering set,
a superset of the sub-harmonic candidates. The candidate w is mapped onto a
set containing: (1) all candidates of Gen(Gen−1(w)) that are less harmonic than
w; and (2) possibly strings not belonging to Gen(Gen−1(w)). Now, the range
of Input o ConJ contains all sub-harmonic elements of Input but no harmonic
ones. Hence, it can serve as the filter in (2):

Input oo Con := Input o Id Ran(Input o ConJ) (3)

The draw-back of Jäger’s approach is the difficulty of defining the required
transducers corresponding to constraints in linguistics. Even worse, it is not

Squeezing the Infinite into the Finite 25

possible very often—otherwise a finite automaton could accept a non-regular
language in Example 1. A constraint that is finite-state in Jäger’s sense would
lead automatically to a finite-state realization of OT.

It is more fruitful to realize constraints with transducers assigning violation
marks to the strings, as done by Ellison [10], Gerdemann & v. Noord [12] and
Eisner [9]. One can simply construct a finite state transducer that inserts a spe-
cial violation mark symbol after each disfavored substructure—supposing that
the latter are simple enough to be recognized with an FSA, which is usually the
case. In this sense, most constraints are finite-state.4 Can we make any use of
these transducers?

Suppose that for constraint Con, a transducer Con exists that introduces
the required number of violation marks into any candidate string. Importantly,
we only know that the output of Con includes the correct number of violation
mark symbols, but we do not know how these symbols are dispersed in the
string. Furthermore, let remove viol denote the transducer removing all viola-
tion mark symbols from its input. The only task now is to define the transducer
make worse, and then we can rewrite definition (2) as follows:

Input oo Con := Input o Con o

o Id Ran(Input o Con o make worse)o remove viol (4)

Now, we have to define make worse. Imagine that the set of candidates Input enter-
ing the constraint filterCon includes only candidates that are assignedN violation
marks, or more. Let us add at least one violation mark to each of them: we thus ob-
tain a set of strings with not less than N + 1 violation marks. If we ignored the
characters other than the violation marks, this latter set could simply be used for
filtering, because only the candidates of the input set with the least (namely, N)
violation marks are not element of the filtering set thus constructed. Consequently,
the finite state transducer make worsewill have to add any positive number of ex-
tra violation marks to the input, using a finite state transducer add viol.

Nevertheless, we cannot ignore the characters in the candidate strings. The
filtering set will not yet include all the sub-harmonic candidates, because the
candidate strings vary not only in the number of violation marks. The different
elements of the candidate set have to diverge from each other, for instance, in
the position of parsing brackets. Most probably, the violation marks should also
be permuted around the segments of the strings.

Therefore, we redefine make worse: besides adding extra violation marks
(add viol), it will delete all characters that are not violation marks using the
simple transducer delete char, and then insert any new characters (transducer
insert char) (cf. (4) and (5) to the formalism in Eisner [9]):

make worse := delete char o add viol o insert char (5)

The range of Input o Con o make worse is now the set of all strings with more
violation marks than the minimal in the range of Input o Con: all candidates
4 Quadratic alignment constraints assigning a number of violation marks growing

faster than the length of the string, are not regular even in that sense [7] [8] [3].

26 T. B́ıró

to be filtered out, further uninteresting strings, but no candidates to be left in.
This fact guarantees that the harmonic candidates, and only they will survive
the filtering in definition (4). Or almost.

Yes, we still face a problem. Suppose that underlying representation W1 is
mapped by Inp o Con to candidates involving at least N1 violation marks, and
w1 is an optimal one. Further, suppose that UR W2 is mapped to candidates
containing N2 violation marks or more, with an optimal w2. Suppose also that
N1 < N2. Because W1 is in the domain of Inp o Con o make worse, the latter’s
range will include all strings with more than N1 violation marks, w2 among them.
Consequently, all candidates corresponding to W2 will be filtered out, and W2 is
predicted to be ineffable, without any corresponding output.

Gerdemann and van Noord [12], therefore, define make worse such a way
that it will keep the underlying material unchanged. Suppose that what Gen
does is nothing but to add some extra material, like parsing brackets. In such a
case, deleting and reintroducing only the brackets introduced originally by Gen
ensures that different underlying representations cannot interfere:

make worse = add viol o del brackets o ins brackets (6)

Nonetheless, a new problem arises! Let the underlying representation abab yield
two candidates, namely a[b]ab and [a]b[a]b. Let the constraint insert a vi-
olation mark @ after each closing bracket, so the set entering make worse is
{a[b]@ab, [a]@b[a]@b}. By applying the operation make worse as defined in (6),
we get among others the strings [a]b@a[b]@ or [a]@b@[a]b; but not [a]@b[a]@b,
the candidate to be filtered out. An extra operation is, therefore, required that will
permute the violation marks: in our case, we need to remove the @ between the
first b and the second a, and simultaneously insert a @ following one of the a’s; the
second violation mark will be inserted by add viol after the other a.

The real problem arises when one has to compare two candidates, such that
the first one may have an unbounded number of violation marks in its first
part, while the second one any number of violation marks in its last part. This
happens in Example 1, and in the many analogous linguistic applications. Then,
the transducer should have to keep track of the unbounded number of violation
marks deleted at the beginning of the string, before it reaches the end of the
string and re-inserts them. That is clearly a non-finite state task.

If the transducer permuting the marks perm is able to move one violation
at the same time, then the following definition of make worse yields an exact
OT-system only for the case where not more than n violation marks should be
moved at once:5

5 The same transducer can move a second violation mark after having accomplished its
task with the first one. Note that such a finite-state friendly case can theoretically
result from the interplay of Gen and the previously ranked constraints; and not
only from restricting the number of violation marks assigned, due, for instance, to
a bound in the length of the candidates. Further research should reveal whether the
linguistically relevant cases are indeed finite-state, or languages do produce extreme
candidate sets, such as the one in Example 1. See the research line launched by
Eisner’s OTP [8].

Squeezing the Infinite into the Finite 27

make worse := add viol o del brackets

o ins brackets o perm1 o perm2 o...o permn (7)

Thus, we have run into the “permute marker problem”: only an approximation is
offered by Gerdemann and van Noord for the general case. Besides, introducing
perm n times makes the automaton enormous.

3 Planting the Input into the FST

The matching approach, as proposed by Gerdemann and van Noord [12], has
two main advantages over its competitors. First, it does not require the number
of levels of violations to be finite, as opposed to the counting approach. Sec-
ond, it makes use of transducers assigning violation marks to the strings, which
is much easier to realize than the transducers in Jäger’s generalized matching
approach.

Example 1 has shown that there is no hope for solving the “permute marker
problem” in general. Can we still bring out the most of the the counting ap-
proach? Maybe by stepping back to the lesser goal of Ellison: compiling an
automaton to each word, instead of creating a general transducer mapping any
underlying representation to the corresponding surface form? This is bad news
for people believing in FS OT (despite Example 1), and yet, it opens the way to
a new model of the mental lexicon.

We have seen that the radical definition of make worse in (5) creates a prob-
lem: the candidates corresponding to some underlying representation may dis-
card all candidates of another underlying representation. The solution by [12],
that is, to modify make worse as (6) and (7), led to the “permute marker prob-
lem”. Another solution is to keep the more radical make worse transducer, as
defined in (5), for the definition (4) of the optimality operator; but, simulta-
neously, to introduce a filter at the beginning of the pipeline (or, into Gen,
as Ellison did). By restricting the domain of the transduction, this filter—an
identity transduction on a singleton—ensures that no other input disturbs the
computation. So, for hierarchy Con-1 � Con-2 � . . . � Con-N, and for each
underlying representation W we have to compile the following regular expression:(((

Id{W} o Gen
)
oo Con-1

)
oo Con-2

)
... oo Con-N (8)

Let us prove the correctness of this approach:

Theorem: Let all constraints Con-i be represented by a transducer Con-i in-
serting violation marks, and let

make worse := delete char o add viol o insert char

Input oo Con := Input o Con o

o Id Ran(Input o Con o make worse) o remove viol

28 T. B́ıró

If for hierarchy H = 〈 Con-1 � Con-2 � . . . � Con-N 〉 and underlying
representation W ,

OT0 := Id{W} o Gen OTi := OTi−1 oo Con-i

then the range of OTN is the set of outputs with respect to underlying repre-
sentation W and ranking H .

Proof: By induction on the number of constraints N . For N = 0: by definition,
the range of OT0 is the candidate set corresponding to W .

For N = k > 0: We suppose that the range of OTk−1 is the set of candi-
dates returned by the part of the pipe-line before constraint Con-k. We have
to show that OTk is the optimal subset of OTk−1 with respect to constraint
Con-k.

Let m denote the number of violation marks assigned by constraint Con-
k to the most harmonic candidates in the range of OTk−1. By the definition
of make worse, the range of OTk−1o Con-k o make worse includes all strings
(words and non-words) with more than m violation marks, and only them. Thus,
the identity transduction in the definition of the optimality operator oo trans-
duces all strings with no more than m marks, and only them. Consequently, the
range of OTk will include exactly those elements of the range of OTk−1 that
violate Con-k m times. �

We have stepped back to the less ambitious proposal of Ellison [10]: we com-
pile a regular expression for each input. One first formulates a finite transducer
realizing Gen, as well as transducer adding each candidate string the same num-
ber of violation marks as the constraints of the linguistic model do. Then, the
range of the regular expression (8) has to be compiled and read. Compilation—
even if it is a computationally complex task, primarily due to the set comple-
ment operation—can be done automatically, with any package handling regular
expressions.

Is stepping back to a ten-year old result something worth writing a paper on?
The good news, however, is that the approach proposed opens new perspectives
about a finite-state model of the lexicon.

4 Modeling a Complex Lexicon

Many linguistic phenomena can be described by using “co-phonologies”, by re-
ferring to exceptions or to “minor rules”. The discussion about the interaction
between morphology and phonology (here we just refer to the well-known “past
tense debate”) has also affected OT [6]. On-going and further research shall
analyze whether a finite-state Optimality Theoretical approach has something
interesting to say about the issue. In the remaining space of the present paper,
we shall present the possible first steps of such a research line.

Equation (8) allows for generalization. If SL is a subset of the lexicon, the
following expression will define the surface representation of elements of SL:

Squeezing the Infinite into the Finite 29(((
IdSL o Gen

)
oo Con-1

)
oo Con-2

)
... oo Con-N (9)

Note that elements of SL may “extinguish” each other: if a candidate w1 corre-
sponding to some element W1 ∈ SL incurs less violation marks than the optimal
candidate corresponding to another W2, then no output is returned for W2.
Therefore, SL should be the set of “analogous” words in the language.

The phonology of the language is then modeled thus:

⋃
i

(((
IdSLi

o Gen
)
oo Coni1

)
oo Coni2

)
... oo ConiN (10)

The lexicon is composed of subsets of words. Each subset SLi is associated
with a hierarchy Coni1 � Coni2 � ... � ConiN . Different subsets may be
associated with the same hierarchy, but cannot be unified, unless some words
are erased from the language, as explained. Yet, once we have this structure,
nothing prohibits us to associate different subsets with different hierarchies.6

Until now, if the sub-lexicons are finite, the complex expression in (10) is com-
piled into a simple finite set of UR-SR pairs. Yet, we claim that expression (10)
together with linguistically motivated constraints have a cognitive explanatory
value by restricting the possible lexicons: what UR-SR mappings are thinkable?

Additionally, our on-going research tries to introduce some sort of generaliza-
tion into the sub-lexicons. Let the hash a# of an element a of the alphabet be
the following concatenation:

a# := pc* | {a, pc} | pc*, (11)

where pc is a punished change: whatever character followed by a special punish-
ment symbol. Thus, the hash of a character is its generalization: you can replace
it, you can add anything before and after it, but whatever change introduced
is marked by a punishment symbol. In the next step, the generalization W#
of a memorized word W is the concatenation of the hash of its characters in
the corresponding order. Last, we propose that if a learned (memorized) word
W ∈ SLi, then also W# ∈ SLi.

With this generalization, the input of the grammar model (10) can also be
an unseen word—yet, not any unseen word. The punishment symbols mea-
sure the “distance” of the input from previously memorized, “similar” words,
in terms of letter changes. An input may match the hash of several learnt lexical
items, possibly in different sublexicons, in which case more outputs are generated

6 One can speculate about how co-phonologies have emerged in languages. Decom-
posing the lexicon into sub-lexicons is necessary, otherwise some words would be
ineffable, i.e., unpronounceable. Thus, an acquisition model should be able to open
new sub-lexicons. Then, as the constraint pipe-line is connected to each sub-lexicon
independently, nothing prohibits constraint re-ranking for certain sub-lexicons. A
prediction is that language varieties differ in the constraint ranking corresponding
exactly to these sub-lexicons, which reminds us the similar proposal of [2].

30 T. B́ıró

simultaneously in various pipe-lines.7 These symbols are preserved during the
transduction, and the output with the minimal number of punishment symbols
is the predicted form. We can use a FS OT-style filter on the punishment sym-
bols, and we obtain a sort of memory-based learning. The consequences of this
proposal, learnability issues and its possible cognitive relevance are subject to
future research.

5 Conclusion

In the introduction, we have raised the problem of how one can handle the in-
finite set of OT candidates appearing in contemporary linguistic work within
the framework of a plausible psycholinguistic model or a working language tech-
nology application. In this paper, we have proposed a new way of using finite
state technology in order to solve that problem. We have reviewed why it is
not possible to create a FS transducer realizing an OT-system in general, even
if Gen is a regular relation, and constraints are also regular (at least in some
sense). Subsequently, we have proposed to make the matching approach exact
by planting a filter before Gen.

This way we have obtained an alternative to Ellison’s algorithm [10]. By com-
piling (8) for each input separately, we can calculate the optimal element of
the possibly infinite candidate set. Finally, we have shown how this result can
be generalized into a model of the lexicon, yet further research has to prove
the cognitive adequateness of such a model. For instance, does it account for ob-
served morpho-phonological minor rules? Preliminary results show that different
hierarchies are compiled in significantly different time. If so, do less frequently
attested language typologies correspond to rankings more difficult to compile?

The present paper hope to have paved the way for such future research.

Acknowledgments

I wish to acknowledge the support of the University of Groningen’s Program
for High-Performance Computing. I also would like to thank Gosse Bouma and
Gertjan van Noord for valuable discussions.

References

1. D. M. Albro. Taking primitive Optimality Theory beyond the finite state. In
Eisner, J. L. Karttunen and A. Thériault (eds.): Finite-State Phonology: Proc. of
the 5th Workshop of SIGPHON, pages 57–67, Luxembourg, 2000.

7 The input may turn out to be ineffable in some—or all—of the pipe-lines. Importantly,
constraintsandthedefinitionofthehashoperationshouldbesuchthatW#maynotren-
der W ineffable in its own subset. Many, yet not all constraints assign an equal or higher
number of violationmarks to the best candidate of a longer input.This is also the reason
why a punished change does not include an empty string, allowing for shortening—at
any rate, it is quite rare that longer forms influence shorter forms by analogy.

Squeezing the Infinite into the Finite 31

2. A. Anttila and Y. Cho. Variation and change in optimality theory. Lingua, 104(1-
2):31–56, 1998.

3. T. B́ıró. Quadratic alignment constraints and finite state Optimality Theory. In
Proc. of the Workshop on FSMNLP, at EACL-03, Budapest, pages 119–126, also:
ROA-600,8 2003.

4. T. B́ıró. When the hothead speaks: Simulated Annealing Optimality Theory for
Dutch fast speech. presented at CLIN 2004, Leiden, 2004.

5. T. B́ıró. How to define simulated annealing for optimality theory? In Proc. of
the 10th Conference on Formal Grammar and the 9th Meeting on Mathematics of
Language, Edinburgh, August 2005.

6. L. Burzio. Missing players: Phonology and the past-tense debate. Lingua,
112:157–199, 2002.

7. J. Eisner. Efficient generation in primitive Optimality Theory. In Proc. of ACL
1997 and EACL-8, Madrid, pages 313–320, 1997.

8. J. Eisner. Directional constraint evaluation in Optimality Theory. In Proc. of
COLING 2000, Saarbrücken, 2000.

9. J. Eisner. Comprehension and compilation in Optimality Theory. In Proc. of ACL
2002, Philadelphia, 2002.

10. T. M. Ellison. Phonological derivation in Optimality Theory. In COLING-94,
Kyoto, pages 1007–1013, also: ROA-75, 1994.

11. R. Frank and G. Satta. Optimality Theory and the generative complexity of con-
straint violability. Computational Ling., 24(2):307–315, 1998.

12. D. Gerdemann and G. van Noord. Approximation and exactness in finite state
Optimality Theory. In J. Eisner, L. Karttunen, A. Thriault (eds): SIGPHON
2000, Finite State Phonology, 2000.

13. G. Jäger. Gradient constraints in finite state OT: The unidirectional and the
bidirectional case. ROA-479, 2002.

14. D. C. Johnson. Formal Aspects of Phonological Description. Mouton, The Hague
[etc.], 1972.

15. L. Karttunen. The proper treatment of Optimality Theory in computational
phonology. In Finite-state Methods in NLP, pages 1–12, Ankara, 1998.

16. J. Kuhn. Processing optimality-theoretic syntax by interleaved chart parsing and
generation. In Proc. of ACL-2000, Hongkong, pages 360–367, 2000.

17. A. Prince and P. Smolensky. Optimality Theory, constraint interaction in genera-
tive grammar. RuCCS-TR-2, ROA Version: 8/2002, 1993.

18. A. Prince and P. Smolensky. Optimality Theory: Constraint Interaction in Gener-
ative Grammar. Blackwell, Malden, MA, etc., 2004.

19. B. Tesar and P. Smolensky. Learnability in Optimality Theory. The MIT Press,
Cambridge, MA - London, England, 2000.

20. B. Turkel. The acquisition of optimality theoretic systems. m.s., ROA-11, 1994.

8 ROA stands for Rutgers Optimality Archive at http://roa.rutgers.edu/.

A Novel Approach to Computer-Assisted

Translation Based on Finite-State Transducers�

Jorge Civera1, Juan M. Vilar2, Elsa Cubel1, Antonio L. Lagarda1,
Sergio Barrachina2, Francisco Casacuberta1, and Enrique Vidal1

1 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Instituto Tecnológico de Informática, E-46071 València, Spain
tt2iti@iti.upv.es

2 Departamento de Lenguajes y Sistemas Informáticos
Universitat Jaume I, E-12071 Castellón de la Plana, Spain

Abstract. Computer-Assisted Translation (CAT) is an alternative ap-
proach to Machine Translation, that integrates human expertise into the
automatic translation process. In this framework, a human translator in-
teracts with a translation system that dynamically offers a list of trans-
lations that best completes the part of the sentence already translated.
Stochastic finite-state transducer technology is proposed to support this
CAT system. The system was assessed on two real tasks of different
complexity in several languages.

1 Introduction

State-of-the-art Machine Translation (MT) techniques are still far from produc-
ing high quality translations. This drawback leads us to introduce an alternative
approach to the translation problem that brings human expertise into the MT
scenario. This idea was proposed in [13] and can be illustrated as follows. Initially,
the human translator is provided with a possible translation for the sentence to
be translated. Unfortunately, in most cases, this translation is far from being
perfect, so the translator amends it and asks for a translation of the part of the
sentence still to be translated (completion). This latter interaction is repeated
as many times as needed until the final translation is achieved.

The scenario described in the previous paragraph can be seen as an iterative
refinement of the translations offered by the translation system, that while not
having the desired quality, can help the translator to increase his/her produc-
tivity. Nowadays, this lack of translation excellence is a common characteristic
in all Machine Translation systems. Therefore, the human-machine synergy rep-
resented by the Computer-Assisted Translation (CAT) paradigm seems to be
more promising than fully-automatic translation in the near future.

The CAT approach has two important aspects: the models need to provide ad-
equate completions and they have to do so efficiently under usability constrains.
� This work has been supported by the European Union under the IST Programme

(IST-2001-32091) and the Spanish project TIC2003-08681-C02.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 32–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Novel Approach to Computer-Assisted Translation 33

To fulfill these two requirements, Stochastic Finite-State Transducers (SFST)
have been selected since they have proved to be able to provide adequate trans-
lations [12, 1, 3]. In addition, efficient parsing algorithms can be easily adapted
in order to provide completions.

The rest of the paper is structured as follows. Next section introduces the
general setting for MT and finite-state models. In Section 3, the search procedure
for interactive translation is explained. Experimental results are presented in
Section 4. Finally, some conclusions and future work are exposed in Section 5.

2 Machine Translation with Finite-State Transducers

In a probabilistic framework, given a source sentence s, the goal of MT is to find
a target sentence t̂ that:

t̂ = argmax
t

Pr(t | s) = argmax
t

Pr(t, s). (1)

It should be noted that the maximisation problem stated above is NP-hard [10].
The joint distribution Pr(t, s) can be modelled by a SFST T [15]:

t̂=argmax
t

Pr(t, s) ≈ argmax
t

PrT (t, s). (2)

A SFST T is defined as a tuple 〈Σ, Δ, Q, q0, F, δ, p, f〉 where Σ and Δ are finite
sets of source and target symbols respectively, Q is a finite set of states, q0 is the
initial state, F ⊆ Q is the set of final states, δ ⊆ Q × Σ × Δ� × Q is the set of
transitions, p : Q × Σ × Δ� × Q → [0, 1] is a transition probability function and
f : Q → [0, 1] is the state probability function. The functions p and f satisfy:

f(q) +
∑

q′∈Q, a∈Σ, ω∈Δ�

p(q, a, ω, q′) = 1 ∀ q ∈ Q . (3)

SFSTs have been successfully applied into many translation tasks [1, 5]. Fur-
thermore, there exist efficient search algorithms like Viterbi [16] for the best path
and the Recursive Enumeration Algorithm (REA) [11] for the n-best paths.

A possible way of inferring SFSTs is the Grammatical Inference and Align-
ments for Transducer Inference (GIATI) technique [7]. Given a finite sample of
string pairs, it works in three steps:

1. Building training strings. Each training pair is transformed into a single
string from an extended alphabet to obtain a new sample of strings. The
“extended alphabet” contains words or substrings from source and target
sentences coming from training pairs.

2. Inferring a (stochastic) regular grammar. Typically, a smoothed n-gram is
inferred from the sample of strings obtained in the previous step.

3. Transforming the inferred regular grammar into a transducer. The sym-
bols associated to the grammar rules are adequately transformed into
source/target symbols, thereby transforming the grammar inferred in the
previous step into a transducer.

34 J. Civera et al.

The transformation of a parallel corpus into a corpus of single sentences is
performed with the help of statistical alignments: each word is joined with its
translation in the output sentence, creating an “extended word”. This joining is
done taking care not to invert the order of the output words. The third step is
trivial with this arrangement. In our experiments, the alignments are obtained
using the GIZA++ software [14], which implements IBM statistical models [4].

3 Interactive Search

The concept of interactive search is closely related to the CAT paradigm. This
paradigm introduces a new factor tp into the general MT equation (Eq. 1). tp

represents a prefix of the target sentence obtained as a result of the interaction
between the human translator and the MT system.

An example of this interaction is shown in Fig. 1. In each iteration, a prefix
(tp) of the target sentence has somehow been fixed by the human translator
in the previous iteration and the CAT system computes its best (or n-best)
translation suffix hypothesis (t̂s) to complete this prefix.

ITER-0 (tp) ()

ITER-1

(t̂s) (Haga clic para cerrar el diálogo de impresión)
(a) (Haga clic)
(k) (en)
(tp) (Haga clic en)

ITER-2

(t̂s) (ACEPTAR para cerrar el diálogo de impresión)
(a) (ACEPTAR para cerrar el)
(k) (cuadro)
(tp) (Haga clic en ACEPTAR para cerrar el cuadro)

FINAL

(t̂s) (de diálogo de impresión)
(a) (de diálogo de impresión)
(k) (#)

(tp ≡ t) (Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión)

Fig. 1. Example of a CAT system interaction to translate into Spanish the English
sentence “Click OK to close the print dialog” extracted from a printer manual. Each step
starts with a previously fixed target language prefix tp, from which the system suggests
a suffix t̂s. Then the user accepts part of this suffix (a) and types some keystrokes (k),
in order to amend the remaining part of ts. This produces a new prefix, composed
by the prefix from the previous iteration and the accepted and typed text, (a) (k),
to be used as tp in the next step. The process ends when the user enters the special
keystroke ”#”. In the final translation, t, all the text that has been typed by the user
is underlined.

Given tpt̂s, the CAT cycle proceeds by letting the user establish a new,
longer acceptable prefix. To this end, he or she has to accept a part (a) of tpt̂s

(or, more typically, just a prefix of t̂s). After this point, the user may type some
keystrokes (k) in order to amend some remaining incorrect parts. Therefore,
the new prefix (typically) encompasses tp followed by the accepted part of the

A Novel Approach to Computer-Assisted Translation 35

system suggestion, a, plus the text, k, entered by the user. Now this prefix,
tp ak, becomes a new tp, thereby starting a new CAT prediction cycle.

Ergonomics and user preferences dictate exactly when the system can start
its new cycle, but typically, it is started after each user-entered word or even
after each new user keystroke.

Perhaps the simplest formalization of the process of hypothesis suggestion of
a CAT system is as follows. Given a source text s and a user validated prefix of
the target sentence tp, search for a suffix of the target sentence that maximises
the a posteriori probability over all possible suffixes:

t̂s = argmax
ts

Pr(ts | s, tp) . (4)

Taking into account that Pr(tp | s) does not depend on ts, we can write:

t̂s = argmax
ts

Pr(tpts | s) , (5)

where tpts is the concatenation of the given prefix tp and a suffix ts. Eq. 5 is
similar to Eq. 1, but here the maximisation is carried out over a set of suffixes,
rather than full sentences as in Eq. 1. This joint distribution can be adequately
modeled by means of SFSTs [9].

The solution to this maximisation problem has been devised in two phases.
The first one copes with the extraction of a word graph W from a SFST T given
a source sentence s. In a second phase, the search of the best translation suffix
(or suffixes) according to the Viterbi approach [16] is performed over the word
graph W given a prefix tp of the target sentence.

3.1 Word Graph Derivation

A word graph is a compact representation of all the possible translations that
a SFST T can produce from a given source sentence s [9, 8]. In fact, the word
graph could be seen as a kind of weighted finite-state automaton in which the
probabilities are not normalized.

Formally, given a SFST T = 〈Σ, Δ, Q, q0, F, δ, p, f〉 and a source sentence
s = s1, · · · , si, · · · s|s |, the constructed word graph is defined as a tuple W =
〈Δ, Q′, q′0, F

′, δ′, p, f〉:

Q′ = Q × i : 0 ≤ i ≤ |s|
δ′ = {((q, i − 1), t, (q′, i)) | (q, si, t, q

′) ∈ δ}
q′0 = (q0, 0)
F ′ =

{
(q′, |s|) | ((q, s|s|, t, q′) ∈ δ) ∧ (q′ ∈ F)

}
There are a couple of minor issues to deal with in this construction. On the

one hand, the output symbol for a given transition could contain more than
one word. In this case, auxiliary states were created to assign only one word
for each transition and simplify the posterior search procedure. On the other

36 J. Civera et al.

hand, it is possible to have words in the input sentence that do not belong to
the input vocabulary in the SFST. This problem is solved with the introduction
of a special generic “unknown word” in the input vocabulary of the SFST.

Intuitively, the word graph generated retains those transitions in the SFST
that were compatible with the source sentence along with their transition prob-
ability and output symbol(s). Those states that are reached at the end of the
parsing process of the source sentence, over the SFST, are considered final states
(as well as those states reachable with λ-transitions from them).

Once the word graph is constructed, it can be used to find the best completions
for the part of the translation typed by the human translator. Note that the word
graph depends only on the input sentence, so it is used repeatedly for finding
the completions of all the different prefixes provided by the user.

3.2 Search for N-best Translations Given a Prefix of the Target
Sentence

Ideally, the search problem consists in finding the target suffix ts that maximises
the a posteriori probability given a prefix tp of the target sentence and the input
sentence s, as described in Eq. 5. To simplify this search, it will be divided into
two steps or phases. The first one would deal with the parsing of tp over the
word graph W . This parsing procedure would end reaching a set of states Q′

p

that define paths from the initial state whose associated translations include
tp. To clarify this point, it is important to note that each state q in the word
graph defines a set of translation prefixes Pq. This set of translation prefixes is
obtained from the concatenation of the output symbols of the different paths
that reach this state q from the initial state. Therefore, the set Pq of each state
in Q′

p includes tp. The second phase would be the search of the most probable
translation suffix from any of the states in Q′

p. Finally, the complete search
procedure extracts a translation from the word graph whose prefix is tp and its
remaining suffix is the resulting translation suffix ts.

Error-Correcting Parsing. In practice, however, it may happen that tp is
not present in the word graph W . The solution is not to use tp but a prefix t′p
that is the most similar to tp in some string distance metric. The metric that
will be employed is the well-known minimum edit distance based on three basic
edit operations: insertion, substitution and deletion. Therefore, the first phase
introduced in the previous paragraph needs to be redefined in terms of the search
of those states in W whose set Pq contains t′p, that is, the set of states Q′

p. It
should be remarked that t′p is not unique, but there exist a set of prefixes in W
whose minimum edit distance to tp is the same and the lowest possible.

Given a translation prefix tp, the computation of Q′
p is efficiently carried out

by applying an adapted version of the error-correcting algorithm for regular
grammars over the word graph W . This algorithm returns the minimum edit
cost c(q) with respect to tp for each state q in W . To be more precise, this
minimum edit cost is the lowest minimum edit cost between tp and the set of
prefixes Pq of each state q. Finally, Q′

p is defined as:

A Novel Approach to Computer-Assisted Translation 37

Q′
p = argmin

q∈Q′
c(q) (6)

The asymptotic cost of this algorithm is O(|tp| · |Q′| · B), where B is the
(average) branching factor of the word graph W .

The implementation of the error-correcting parsing is further improved by
visiting the states in W in topological order, and incorporating beam-search
techniques to discard those states whose minimum edit cost is worse than the
best minimum edit cost at the current stage of the parsing by a given constant.
Moreover, given the incremental nature of tp, the error-correcting algorithm
takes advantage of this peculiarity to parse only the new suffix of tp provided
by the user in the last interaction, that is, the concatenation of a and k.

As mentioned before, once the set Q′
p has been computed, the search of the

most probable translation suffix could be calculated from any of the states in
Q′

p. In practice, only one state qp from Q′
p is selected to find the suffix ts.

This selected state qp maximises the a posteriori probability of the word-graph
prefix t′p defined during the error-correcting parsing process. This maximisation
is performed according to the Viterbi approximation [16].

N-best Search. The actual implementation of this CAT system is able to
provide a set of different translation suffixes, instead of a single suggestion. To
this purpose, an algorithm that searches for the n-best translation suffixes in a
word graph is required. Among the n-best algorithms available, the Recursive
Enumeration Algorithm (REA) described in [11] was selected. The main two
reasons that support this decision are its simplicity to calculate best paths on
demand and its smooth integration with the error-correcting parsing algorithm.
Basically, the interaction between these two algorithms, error-correcting and
n-best, consists in the supplement of the state qp by the former, so that the
n-best translation suffixes can be calculated from this state by the latter.

The version of REA included in the CAT system, which is being described,
stores for each state q in W , the sorted list of current best paths (in the form of
next state in the best path) from q to any final state. The length of this sorted
list depends on the number of transitions leaving q. During the initialisation
of REA, the initial sorted list of best paths for each state is calculated start-
ing from the final states and visiting the rest of states in backward topological
order. This last condition imposes a total order in Q′ that favours the efficient
calculation of the sorted list of best paths. This is so because each state is visited
only once, and once the best paths of the preceding states have already been
computed.

Then, given a state qp from which the n-best translation suffixes need to be
calculated, REA first extracts the 1-best path from the state qp, since it was
precomputed during REA initialisation. If n > 1, then the next best path from
qp will be obtained. The next best path at state qp can be found among the
candidate paths still left in the sorted list of this state and the second best
path through the transition traversed in the 1-best path just extracted. This
fact requires the recursive calculation of the second best path (whenever exists)
through the states visited in the 1-best path. This same rationale is applied to

38 J. Civera et al.

the calculation of subsequent best paths until n-best different translation suffixes
have been obtained or no more best paths can be found.

4 Experimental Framework and Results

The SFST models introduced in the previous sections were assessed through
some series of experiments with two different corpora that were acquired and
preprocessed in the framework of the TransType2 (TT2) project [2]. In this
section, these corpora, the assessment metrics and the results are presented.

4.1 XRCE and EU Corpora

Two bilingual corpora extracted from different semantic domains were used in
the evaluation of the CAT system described. The language pairs involved in the
assessment were English/Spanish, English/French and English/German.

The first corpus, namely XRCE corpus, was obtained from a miscellaneous
set of printer user manuals. Some statistics of this corpus are shown in Table 1.

Table 1. The “XRCE” and “EU” corpora English(En) to/from Spanish(Sp), Ger-
man(Ge) and French(Fr). Trigrams models were used to compute the test perplexity.
(K denotes ×1.000, and M denotes ×1.000.000).

XRCE EU
En/Sp En/Ge En/Fr En/Sp En/Ge En/Fr

T
ra

in Sent. pairs (K) 56 49 53 214 223 215
Run. words (M) 0.6/0.7 0.6/0.5 0.6/0.7 5.9/6.6 6.5/6.1 6.0/6.6
Vocabulary (K) 26/30 25/27 25/37 84/97 87/153 85/91

T
es

t Sentences (K) 1.1 1.0 1.0 0.8 0.8 0.8
Run. words (K) 8/9 9/10 11/10 20/23 20/19 20/23
Perplexity 107/60 93/169 193/135 96/72 95/153 97/71

It is important to remark that the English manuals are different in each pair
of languages. The size of the vocabulary in the training set is about 25.000 words
in most of the language pairs that can be considered to be a broad lexicon. In
the test set, even though all test sets have similar size, the perplexity varies
abruptly over the different language pairs.

The second dataset was compiled from the Bulletin of the European Union,
which exists in the 11 official languages of the European Union. This dataset is
known as the EU corpus and is publicly available on the Internet. A summary
of its features is presented in Table 1.

The size of the vocabulary of this corpus is at least three times larger than
that of the XRCE corpus. These figures together with the amount of running
words and sentences reflect the challenging nature of this task. However, the
perplexity of the EU test set is similar to that of the XRCE. This phenomenon
can be intuitively explained through the more uniform grammatical structure of
the sentences in the EU corpus.

A Novel Approach to Computer-Assisted Translation 39

4.2 Translation Quality Evaluation

The assessment of the CAT system has been carried out based on two measures:

1. Translation Word Error Rate (TWER). It is defined as the minimum number
of word substitution, deletion and insertion operations required to convert
the target sentence provided by the translation system into the reference
translation, divided by the number of words of the reference translation. It
can also be seen as the ratio of the minimum edit distance between the system
and the reference translation, and the number of words of the reference
translation [1, 6].

This metric is employed to evaluate the quality of the complete transla-
tions offered by the system when no prefix is taken into consideration, that
is, no interaction with the user is assumed.

2. Key-Stroke Ratio (KSR). Number of interactions, as the sum of mouse ac-
tions (to select a) and keystrokes (to type k), that are necessary to achieve
the reference translation plus the final translation-acceptance keystroke di-
vided by the number of characters of the reference translation [9, 8].

KSR reflects the ratio between the number of interactions of a fictitious
user when translating a given text using a CAT system compared to the
number of interactions, which this user would need, to translate the same
text without using a CAT system. Thus, this measure gives a clear idea of
the amount of work that a translator would be saving when translating using
a CAT system.

4.3 Experimental Results

These experimental results were obtained with GIATI transducers based on
smoothed trigram language models for the XRCE corpus and smoothed 5-gram
language models for the EU corpus (see Table 2).

The translation metrics presented in the previous section were calculated on
the test set for all the pairs of languages and both directions, translating from
English to a non-English language and from a non-English language to English,
as shown on the left-most column of Table 2. Moreover, the results were obtained
assuming two possible cases, the CAT system only offers the best translation or
the 5-best translations. In the latter case, the calculation of a given assessment
metric was conducted considering that translation out of the five suggested trans-
lations that most minimises the corresponding error measure. As expected, there
is a notable improvement when comparing 1 to 5-best translation error measures.

Analysing the results accomplished in the XRCE corpus, it is observed that
the TWER and KSR rates for English/Spanish language pairs are substantially
lower than those obtained in the rest of language pairs. A possible reason be-
hind the error rate discrepancies between English/Spanish pairs with respect to
English/German and English/French pairs could be found in the perplexity dif-
ferences shown in Table 1. The Spanish test perplexity is significantly lower than
that of the rest of languages and this fact is transformed into better translation
results. Another reason for the outperforming results of the English/Spanish

40 J. Civera et al.

Table 2. Results comparing 1-best to 5-best translations based on 3-gram language
models for the XRCE corpus and on 5-gram language models for the EU corpus

1-best 5-best
XRCE KSR TWER KSR TWER

En-Sp 24.4 30.8 21.7 25.2
Sp-En 30.1 33.5 26.4 25.1

En-Ge 52.1 70.7 48.1 63.4
Ge-En 50.7 64.0 46.4 57.0

En-Fr 48.7 63.2 45.0 54.8
Fr-En 52.2 57.8 48.5 51.4

1-best 5-best
EU KSR TWER KSR TWER

En-Sp 38.9 54.5 35.5 49.8
Sp-En 37.2 51.0 33.6 46.8

En-Ge 45.6 64.2 42.4 59.2
Ge-En 49.1 65.7 45.6 59.2

En-Fr 35.7 51.8 32.3 47.6
Fr-En 34.1 47.5 30.7 43.2

pairs comes from the hand of the random partition in training and test datasets,
that could have been resulted in a simpler test set for the English/Spanish pairs.

This rationale is compatible with the results obtained for the EU corpus. In
these results, English/Spanish pairs exhibit similar error rates to those of the
English/French pairs, but significantly better than those of the English/German
pairs. This same tendency is followed by perplexity values appearing in Table 1.
As observed, the German language seems to be more complex than the other
languages and this is reflected in the translation results.

As the reader would notice, TWER results in both corpora are not suffi-
ciently good to support a pure MT system based on SFSTs inferred by the
GIATI technique. However, if the system is evaluated as a CAT system (KSR),
a productivity gain is clearly manifested. For example in the XRCE corpus,
using five suggestions and translating from English to Spanish, the user would
only need to perform 21.7% of the interactions that would be required without
this CAT system. On the other hand, the KSR results are about 50% for the
English/French and English/German pairs. Even in these cases, the number of
interactions is halved with respect to the effort that would entail translating the
same test set without a CAT system.

In the EU corpus, the best KSR results were obtained for the English/French
language pairs, followed by the results in the English/Spanish language pairs,
and finally the worst results were achieved in English/German language pairs.
Despite the important difference in size between XRCE and EU, the results
are similar and for some language pairs even lower in the EU corpus. The per-
plexity numbers on both corpora partially explain these results being somewhat
correlated with the TWER and KSR results. For instance, the English/French
language pair presents lower perplexity and better results in the EU corpus than
in the XRCE corpus.

5 Conclusions and Future Work

In the present work, SFSTs have been revisited and applied to CAT. In this
case, SFSTs that are easily learnt from parallel corpora were inferred by the GI-
ATI technique, which was briefly reviewed. Moreover, the concept of interactive

A Novel Approach to Computer-Assisted Translation 41

search has been introduced in this paper along with some well-known techniques,
i.e. error-correcting parsing and n-best paths, that allow the calculation of the
suffix translation that better completes the prefix written by the user. It is fun-
damental to remember that usability and response-time are vital features for
CAT systems. CAT systems need to provide translation suffixes after each user
interaction and this imposes the necessity of efficient algorithms to solve the
search problem.

As preempted in the introduction, current MT systems are not able to provide
high quality translations and SFST techniques are not an exception. Neverthe-
less, the capability of SFSTs to suggest translation suffixes that aid a human
translator to increase his or her productivity in a CAT framework should not
be neglected. The results presented on two different corpora support the idea of
the benefits of the incorporation of MT techniques into the translation process
to reduce human translator effort without sacrificing high quality translations.

Finally, the introduction of morpho-syntactic information, bilingual categories
or more powerful smoothing techniques on the source and target languages, in
SFSTs, are topics still to be explored in future research.

References

1. J. C. Amengual et al. The EuTrans-I speech translation system. Machine Trans-
lation, 15:75–103, 2000.

2. Atos Origin, Instituto Tecnológico de Informática, RWTH Aachen, RALI Labo-
ratory, Celer Soluciones and Société Gamma and Xerox Research Centre Europe.
TransType2 - Computer Assisted Translation. Project Technical Annex., 2001.

3. S. Bangalore and G. Ricardi. A finite-state approach to machine translation. In
Proc. of NAACL’01, 2001.

4. P. F. Brown et al. The mathematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–312, 1993.

5. F. Casacuberta et al. Some approaches to statistical and finite-state speech-to-
speech translation. Computer Speech and Language, 18:25–47, 2004.

6. F. Casacuberta et al. Some approaches to statistical and finite-state speech-to-
speech translation. Computer Speech and Language, 18:25–47, 2004.

7. F. Casacuberta and E. Vidal. Machine translation with inferred stochastic finite-
state transducers. Computational Linguistics, 30(2):205–225, 2004.

8. J. Civera et al. From machine translation to computer assisted translation using
finite-state models. In Proc. of EMNLP04, Barcelona, 2004.

9. J. Civera et al. A syntactic pattern recognition approach to computer assisted
translation. In A. Fred, T. Caelli, A. Campilho, R. P. Duin, and D. de Ridder,
editors, Advances in Statistical, Structural and Syntactical Pattern Recognition,
Lecture Notes in Computer Science, pages 207–215. Springer-Verlag, 2004.

10. F.Casacuberta and C. de la Higuera. Computational complexity of problems
on probabilistic grammars and transducers. In A. Oliveira, editor, Grammatical
Inference: Algorithms and Applications, volume 1891 of Lecture Notes in Computer
Science, pages 15–24. Springer-Verlag, 2000.

42 J. Civera et al.

11. V. M. Jiménez and A. Marzal. Computing the k shortest paths: a new algorithm
and an experimental comparison. In J. S. Vitter and C. D. Zaroliagis, editors,
Algorithm Engineering, volume 1668 of Lecture Notes in Computer Science, pages
15–29. Springer-Verlag, July 1999.

12. K. Knight and Y. Al-Onaizan. Translation with finite-state devices. In E. H.
D. Farwell, L. Gerber, editor, Proc. of AMTA’98, volume 1529, pages 421–437,
October 1998.

13. P. Langlais, G. Foster, and G. Lapalme. Unit completion for a computer-aided
translation typing system. Machine Translation, 15(4):267–294, 2000.

14. F. J. Och and H. Ney. Improved statistical alignment models. In Proc. of ACL’00,
pages 440–447, Hong Kong, China, October 2000.

15. D. Picó and F. Casacuberta. Some statistical-estimation methods for stochastic
finite-state transducers. Machine Learning, 44:121–142, July-August 2001.

16. A. Viterbi. Error bounds for convolutional codes and a asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967.

Finite-State Registered Automata and Their

Uses in Natural Languages

Yael Cohen-Sygal and Shuly Wintner

Department of Computer Science
University of Haifa

{yaelc, shuly}@cs.haifa.ac.il

Abstract. We extend finite-state registered automata (FSRA) to ac-
count for medium-distance dependencies in natural languages. We pro-
vide an extended regular expression language whose expressions denote
arbitrary FSRAs and use it to describe some morphological and phono-
logical phenomena. We also define several dedicated operators which
support an easy and efficient implementation of some non-trivial morpho-
logical phenomena. In addition, we extend FSRA to finite-state registered
transducers and demonstrate their space efficiency.

1 Introduction

Finite-state (FS) technology is considered adequate for describing the morpho-
logical processes of natural languages since the pioneering works of [1] and [2].
Several toolboxes provide extended regular expression description languages and
compilers of the expressions to finite-state automata (FSAs) and transducers
(FSTs) [3,4,5]. While FS approaches for natural languages processing have gen-
erally been very successful, it is widely recognized that they are less suitable for
non-concatenative phenomena. In particular, FS techniques are assumed not to
be able to efficiently account for medium-distance dependencies, whereby some
elements that are related to each other in some deep-level representation are
separated on the surface. These phenomena do not lie outside the descriptive
power of FS systems, but their implementation can result in huge networks that
are inefficient to process.

To constrain dependencies between separated morphemes in words, [6] pro-
pose flag diacritics, which add features to symbols in regular expressions to
enforce dependencies between separated parts of a string. The dependencies are
forced by different kinds of unification actions. In this way, a small amount of
finite memory is added, keeping the total size of the network relatively small.
The main disadvantage of this method is that it is not formally defined, and
its mathematical and computational properties are not proved. Furthermore,
flag diacritics are manipulated at the level of the extended regular expressions,
although it is clear that they are compiled into additional memory and opera-
tors in the networks themselves. The presentation of [6] and [7] does not expli-
cate the implementation of such operators and does not provide an analysis of

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 43–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

44 Y. Cohen-Sygal and S. Wintner

their complexity. Moreover, they do not present any dedicated regular expression
operations for non-concatenative processes.

A related formalism is vectorized finite-state automata (VFSA) [8], where both
the states and the transitions are represented by vectors of elements of a par-
tially ordered set. Two kinds of operations over vectors are defined: unification
and overwriting. The vectors need not be fully determined, as some of the el-
ements can be unknown (free). In this way information can be moved through
the transitions by the overwriting operation and traversing these transitions can
be sanctioned through the unification operation. The free symbols are also the
source of the efficiency of this model, where a vector with k free symbols actually
represents tk vectors, t being the number of different values that can be stored
in the free places. As one of the examples of the advantages of the model, [8]
shows that it can efficiently solve the problem of 32-bit binary incrementor. The
goal of this example is to construct a transducer over Σ = {0, 1} whose input
is a number in 32 bit binary representation and whose output is the result of
adding 1 to the input. The näıve solution is a transducer with only 5 states and
12 arcs, but this transducer is neither sequential nor sequentiable. A sequential
transducer for an n-bit binary incrementor would require 2n states and a similar
number of transitions. Using vectorized finite-state automata, a 32-bit incremen-
tor is constructed where first, using overwriting, the input is scanned and stored
by the vectors, and then, using unification, the result is calculated where the
carry can be computed from right to left. This allows a significant reduction
in the network size. The main disadvantage of VFSA lies in the fact that it
significantly deviates from the standard methodology of developing finite-state
devices, and integration of vectorized automata with standard ones remains a
challenge. Moreover, it is unclear how, for a given problem, the corresponding
network should be constructed: programming with vectorized automata seems
to be unnatural, and no regular expression language is provided for them.

Finite state registered automata (FSRA) ([9]) augment finite-state automata
with finite memory (registers) in a restricted way that saves space but does not
add expressivity. The number of registers is finite, usually small, and eliminates
the need to duplicate paths as it enables the automaton to ‘remember’ a finite
number of symbols. Each FSRA defines an alphabet, Γ , whose members can
be stored in registers. In this model, each arc is associated not only with an
alphabet symbol, but also with a series of actions on the registers. There are two
kinds of possible actions, read and write. The read action, denoted R, allows
traversing an arc only if a designated register contains a specific symbol. The
write action, denoted W, allows traversing an arc while writing a specific symbol
into a designated register. Then, the FSRA model is extended to allow up to k
register operations on each transition, where k is determined for each automaton
separately. The register operations are defined as a sequence (rather than a set),
in order to allow more than one operation on the same register over one transi-
tion. [9] prove that FSRAs are equivalent to FSAs, and use them to efficiently
describe some non-concatenative phenomena of natural languages, including in-
terdigitation (root-and-pattern morphology) and limited reduplication.

Finite-State Registered Automata and Their Uses in Natural Languages 45

In this work we extend the model of FSRA to account for medium-distance
dependencies in natural languages. We provide an extended regular expression
language whose expressions denote FSRAs in section 2. Section 3 defines several
dedicated operators which support an easy and efficient implementation of some
non-trivial morphological phenomena. We then extend FSRA to finite-state reg-
istered transducers in section 4 . Furthermore, the model is evaluated through an
actual implementation in section 5. We conclude with a comparison with similar
approaches and suggestions for future research.

2 A Regular Expression Language for FSRAs

The first limitation of [9] is that no regular expression language is provided for
constructing FSRAs. We begin by proposing such a language, the denotations of
whose expressions are FSRAs. In the following discussion we assume the regular
expression syntax of XFST ([7]) for basic expressions1.

Definition 1. Let ActionsΓ
n = {R, W}× {0, 1, 2, . . . , n − 1}× Γ , where n is the

number of registers and Γ is the register alphabet. If R is a regular expression
and a ∈

(
ActionsΓ

n

)+ is a series of register operations, then the following are
also regular expressions: a � R, a � �R, a � R and a � �R.

We now define the denotation of each of the above expressions. Let R be a
regular expression whose denotation is the FSRA A, and let a ∈

(
ActionsΓ

n

)+.
The denotation of a � R is an FSRA A′ obtained from A by adding a new node,
q, which becomes the initial node of A′, and an arc from q to the initial node
of A; this arc is labeled by ε and associated with a. Notice that in the regular
expression a � R, R and a can contain operations on joint registers. In some
cases, one would like to distinguish between the registers used in a and in R.
Usually, it is up to the user to correctly manipulate the usage of registers, but
in some cases automatic distinction seems desirable. For example, if R includes
a circumfix operator (see below), its corresponding FSRA will contain register
operations created automatically by the operator. Instead of remembering that
circumfixation always uses register 1, one can simply distinguish between the
registers of a and R via the a� �R operator. This operator has the same general
effect as the previous one, but the transition relation in its FSRA uses fresh
registers which are added to the machine.

In a similar way, the operators a � R and a � �R are translated into networks.
The difference between these operators and the previous ones is that here, the
register operations in a are executed after traversing all the arcs in the FSRA
denoted by R. It is easy to show that every FSRA has a corresponding regular
expression denoting it.

Example 1. Consider the case of vowel harmony in Warlpiri [10], where the
vowel of suffixes agrees in certain aspects with the vowel of the stem to which it
is attached. A simplified account of the phenomenon is that suffixes come in two
1 In particular, concatenation is denoted by space and ε is denoted by 0.

46 Y. Cohen-Sygal and S. Wintner

varieties, one with ‘i’ vowels and one with ‘u’ vowels. Stems whose last vowel is
‘i’ take suffixes of the first variety, whereas stems whose last vowel is ‘u’ or ‘a’
take the other variety. The following examples are from [10] (citing [11]):

1. maliki+kil.i+l.i+lki+ji+li
(dog+PROP+ERG+then+me+they)

2. kud. u+kul.u+l.u+lku+ju+lu
(child+PROP+ERG+then+me+they)

3. minija+kul.u+l.u+lku+ju+lu
(cat+PROP+ERG+then+me+they)

An FSRA that accepts the above three words is denoted by the following complex
regular expression:

define LexI [m a l i k i]; % words ending in ‘i’
define LexU [k u d u]; % words ending in ‘u’
define LexA [m i n i j a]; % words ending in ‘a’
! Join all the lexicons and write to register 1
! ‘u’ or ’i’ according to the stem‘s last vowel.
define Stem [<(W,1,i)> � LexI] |

[<(W,1,u)> � [LexU | LexA]];
! Traverse the arc only if the scanned symbol is
! the content of register 1.
define V [<(R,1,i)> � i] | [<(R,1,u)> � u];
define PROP [+ k V l V]; % PROP suffix
define ERG [+ l V]; % ERG suffix
define Then [+ l k V]; % suffix indicating ‘then’
define Me [+ j V]; % suffix indicating ‘me’
define They [+ l V]; % suffix indicating ‘they’
! define the whole network
define WarlpiriExample Stem PROP ERG Then Me They;

Register 1 stores the last vowel of the stem, eliminating the need to duplicate
paths for each of the different cases. The lexicon is divided into three separate
lexicons (LexI, LexU, LexA), one for each word ending (‘i’, ‘u’ or ‘a’ respec-
tively). The separate lexicons are joined into one (the variable Stem) and when
reading the last letter of the base word, its type is written into register 1. Then,
when suffixing the lexicon base words, the variable V uses the the content of reg-
ister 1 to determine which of the symbols ‘i’, ‘u’ should be scanned and allows
traversing the arc only if the correct symbol is scanned. Note that this solution is
applicable independently of the size of the lexicon, and can handle other suffixes
in the same way.

Example 2. Consider the following Arabic nouns: qamar (moon), kitaab
(book), $ams (sun) and daftar (notebook). The definite article in Arabic is the prefix
‘’al’, which is realized as ‘’al’ when preceding most consonants; however, the ‘l’ of
the prefix assimilates to the first consonant of the noun when the latter is ‘d’, ‘$’,

Finite-State Registered Automata and Their Uses in Natural Languages 47

etc. Furthermore, Arabic distinguishes between definite and indefinite case mark-
ers. For example, nominative case is realized as the suffix ‘u’ on definite nouns, ‘un’
on indefinite nouns. Examples of the different forms of Arabic nouns are:

word nominative definite nominative indefinite
qamar ’alqamaru qamarun
kitaab ’alkitaabu kitaabun
$ams ’a$$amsu $amsun
daftar ’addaftaru daftarun

The FSRA of Figure 1 accepts all the nominative definite and indefinite forms
of these nouns. In order to account for the assimilation, register 2 stores infor-
mation about the actual form of the definite article. Furthermore, to ensure that
definite nouns occur with the correct case ending, register 1 stores information
of whether or not a definite article was seen. This FSRA can be denoted by the
following regular expression:

! Read the definite article (if present).
! Store in register 1 whether the noun is definite
! or indefinite.
! Store in register 2 the actual form of the
! definite article.
define Prefix [<(W,1,indef)> � 0] |

[<(W,1,def),(W,2,l)> � ’al] |
[<(W,1,def),(W,2,$)> � ’a$] |
[<(W,1,def),(W,2,d)> � ’ad];

! Normal base - definite and indefinite
define Base [[<(R,2,l)> � 0]|[<(R,1,indef)> � 0]]

[[k i t a a b]|[q a m a r]];
! Bases beginning with $ - definite and indefinite
define $Base [[<(R,2,$)> � 0]|[<(R,1,indef)> � 0]]

[$ a m s];
! Bases beginning with d - definite and indefinite
define dBase [[<(R,2,d)> � 0]|[<(R,1,indef)> � 0]]

[d a f t a r];
! Read definite and indefinite suffixes.
define Suffix [<(R,1,def)> � u]|[<(R,1,indef)> � un];
! The complete network.
define ArabicExample Prefix [Base | $Base | dBase]

Suffix;

The variable Prefix denotes the arcs connecting the first two states of the FSRA,
in which the definite article (if present) is scanned and information indicating
whether the word is definite or not is saved into register 1. In addition, if the
word is definite then register 2 stores the actual form of the definite article. The
lexicon is divided into several parts: the Base variable denotes nouns that do not
trigger assimilation. Other variables ($Base, dBase) denote nouns that trigger

48 Y. Cohen-Sygal and S. Wintner

assimilation, where for each assimilitaion case, a different lexicon is constructed.
Each part of the lexicon deals with both its definite and indefinite nouns by al-
lowing traversing the arcs only if the register content is appropriate. The variable
Suffix denotes the correct suffix, depending on whether the noun is definite or
indefinite. This is possible using the information that was stored in register 1 by
the variable Prefix.

′al, 〈(W, 1, def), (W, 2, l)〉
q,〈(R,2,l)〉

q,〈(R,1,indef)〉 a mr a

u, 〈(R, 1, def)〉

i t a a

a m s

a f t a

k,〈(R,2,l)〉
k,〈(R,1,indef)〉

$,〈(R,2,$)〉
$,〈(R,1,indef)〉

d,〈(R,2,d)〉
d,〈(R,1,indef)〉

un, 〈(R, 1, indef)〉

ε, 〈(W, 1, indef)〉

′a$, 〈(W, 1, def), (W, 2, $)〉

′ad, 〈(W, 1, def), (W, 2, d)〉

b

r

r

Fig. 1. FSRA-2 for Arabic nominative definite and indefinite nouns

3 Dedicated Regular Expressions for Linguistic
Applications

3.1 Circumfixes

The usefulness of FSRAs for non-concatenative morphology is demonstrated by
[9], who show a specific FSRA accounting for circumfixation in Hebrew. We
introduce a dedicated regular expression operator for circumfixation and show
how expressions using this operator are compiled into the appropriate FSRA.
The operator accepts a regular expression, denoting a set of bases, and a set of
circumfixes, each of which containing a prefix and a suffix regular expressions.
It yields as a result an FSRA obtained by prefixing and suffixing the base with
each of the circumfixes. The main purpose of this operator is to deal with cases
in which the circumfixes are pairs of strings, but it is defined such that the
circumfixes can be arbitrary regular expressions.

Definition 2. Let Σ be a finite set such that �, {, }, 〈, 〉, ⊗ /∈ Σ. We define the
⊗ operation to be of the form

R ⊗ {〈β1�γ1〉〈β2�γ2〉 . . . 〈βm�γm〉}

where: m ∈ N is the number of circumfixes; R is a regular expression over Σ
denoting the set of bases and βi, γi for 1 ≤ i ≤ m are regular expressions over
Σ denoting the prefix and suffix of the i-th circumfix, respectively.

Finite-State Registered Automata and Their Uses in Natural Languages 49

Notice that R, βi, γi may denote infinite sets. To define the denotation of this
operator, let βi, γi be regular expressions denoting the FSRAs Aβ

i , Aγ
i , respec-

tively. The operator yields an FSRA constructed by concatenating three FSRAs.
The first is the FSRA constructed from the union of the FSRAs A′β

1 , . . . , A′β
m,

where each A′β
i is an FSRA obtained from Aβ

i by adding a new node, q, which
becomes the initial node of A′β

i , and an arc from q to the initial node of Aβ
i ; this

arc is labeled by ε and associated with 〈(W, 1, βi�γi)〉. In addition, the register
operations of the FSRA Aβ

i are shifted by one register in order not to cause
undesired effects by the use of register 1. The second FSRA is the FSRA de-
noted by the regular expression R (again, with one register shift) and the third
is constructed in the same way as the first one, with the difference that the
FSRAs are those denoted by γ1, . . . , γm and the associated register operation is
〈(R, 1, βi�γi)〉. Notice that the concatenation operation, defined by [9], adjusts
the register operations in the FSRAs to be concatenated, to avoid undesired
effects caused by using joint registers. We use this operation to concatenate the
three FSRAs, leaving register 1 unaffected (to handle the circumfix).

Example 3. Consider the participle-forming combinations in German, e.g., the
circumfix ge-t. A simplified account of the phenomenon is that German verbs in
their present form take an ‘n’ suffix but in participle form they take the circumfix
ge-t. The following examples are from [10]:

säuseln ‘rustle’ gesäuselt ‘rustled’
brüsten ‘brag’ gebrüstet ‘bragged’

The FSRA of Figure2, which accepts the four forms, is yielded by the regular
expression

[s ä u s e l | b r ü s t e] ⊗ {〈ε�n〉〈g e�t〉}

This regular expression can be easily extended to accept more German verbs in
other forms. More circumfixation phenomena in other languages such as Indone-
sian, Arabic etc. can be modeled in the same way using this operator.

g〈(W, 1, ge�t)〉

ε〈(W, 1, []�n)〉

e s

b

ä u s e

r ü s t

l

e

t〈(R, 1, ge�t)〉

n〈(R, 1, []�n)〉

Fig. 2. Participle-forming combinations in German

3.2 Interdigitation

For interdigitation, [9] introduce a dedicated regular expression operator, splice,
which accepts a set of strings of length n over Σ∗, representing a set of roots, and

50 Y. Cohen-Sygal and S. Wintner

a list of patterns, each containing exactly n ‘slots’, and yields a set containing
all the strings created by splicing the roots into the slots in the patterns. For-
mally, if Σ is such that �, {, }, 〈, 〉, ⊕ /∈ Σ, then the splice operation is of the form

{〈α1 1, α1 2, ..., α1 n〉, ..., 〈αm 1, αm 2, ..., αm n〉}
⊕

{〈β1 1�β1 2�...β1 n�β1 n+1〉, ..., 〈βk 1�βk 2�...βk n�βk n+1〉}
where n ∈ N is the number of slots (represented by ‘�’); m ∈ N is the num-
ber of roots; k ∈ N is the number of patterns and αij , βij ∈ Σ∗. This operator
suffers from lack of generality as the set of roots and patterns must be strings;
we generalize the operator in a way that supports any regular expression denot-
ing a language for both the roots and the patterns. This extension is done by
simply allowing αij , βij to be arbitrary regular expressions (including regular
expressions denoting FSRAs). The construction of the FSRA denoted by this
generalized operation is done in the same way as in the case of circumfixes with
two main adjustments. The first is that in this case the final FSRA is constructed
by concatenating 2n + 1 intermediate FSRAs (n FSRAs for the n parts of the
roots and n + 1 FSRAs for the n + 1 parts of the patterns). The second is that
here, 2 registers are used to remember both the root and the pattern. We sup-
press the detailed description of the construction. The circumfixation operator
may seem redundant, being a special case of interdigitation. However, it results
in a more compact network without any unnecessary register operations.

4 Finite-State Registered Transducers

We extend the FSRA model to finite-state registered transducers (FSRT), denot-
ing relations over two finite alphabets. The extension is done by adding to each
transition an output symbol. This facilitates an elegant solution to the problem
of binary incrementors which was introduced in section 1.

Example 4. Consider again the 32-bit incrementor example mentioned in sec-
tion 1. Recall that a sequential transducer for an n-bit binary incrementor would
require 2n states and a similar number of transitions. Using the FSRT model,
a more efficient n-bit transducer can be constructed. A 4-bit FSRT incrementor
is shown in Figure 3. The first four transitions copy the input string into the
registers, then the input is scanned (using the registers) from right to left (as
the carry moves), calculating the result, and the last four transitions output the
result (in case the input is 1n, an extra 1 is added in the beginning). Notice that
this transducer guarantees linear recognition time, since from each state only one
arc can be traversed in each step, even when there are ε-arcs. In the same way,
an n-bit transducer can be constructed for all n ∈ N. Such a transducer will have
n registers, 3n + 1 states and 6n arcs. The FSRT model solves the incrementor
problem in much the same way it is solved by vectorized finite-state automata,
but the FSRT solution is more intuitive and is based on existing finite-state
techniques.

Finite-State Registered Automata and Their Uses in Natural Languages 51

0 : ε, (〈W, 1, 0〉)

1 : ε, (〈W, 1, 1〉)

0 : ε, (〈W, 2, 0〉)

1 : ε, (〈W, 2, 1〉)

0 : ε, (〈W, 3, 0〉)

1 : ε, (〈W, 3, 1〉)

0 : ε, (〈W, 4, 0〉)

1 : ε, (〈W, 4, 1〉)

ε : 1, (〈R, 1, 1〉)

ε : 0, (〈R, 1, 0〉)

ε : 1, (〈R, 2, 1〉)

ε : 0, (〈R, 2, 0〉)

ε : 1, (〈R, 3, 1〉)

ε : 0, (〈R, 3, 0〉)

ε : 1, (〈R, 4, 1〉)

ε : 0, (〈R, 4, 0〉)

ε : ε, (〈R, 4, 1〉, 〈W, 4, 0〉)

ε : ε, (〈R, 4, 0〉, 〈W, 4, 1〉)

ε : ε, (〈R, 3, 1〉, 〈W, 3, 0〉)

ε : ε, (〈R, 3, 0〉, 〈W, 3, 1〉)

ε : ε, (〈R, 2, 1〉, 〈W, 2, 0〉)

ε : ε, (〈R, 2, 0〉, 〈W, 2, 1〉)

ε : 1, (〈R, 1, 1〉, 〈W, 1, 0〉)

ε : ε, (〈R, 1, 0〉, 〈W, 1, 1〉)

Fig. 3. 4-bit incrementor using FSRT

It is easy to show that FSRTs, just like FSRAs, are equivalent to their non-
registered counterparts. It immediately implies that FSRTs maintain the clo-
sure properties of regular relations. Thus, performing the regular operations on
FSRTs can be easily done by converting them first into finite-state transducers.
However, such a conversion may result in an exponential increase in the size
of the network, invalidating the advantages of FSRTs. Therefore, as in FSRAs,
implementing the closure properties directly on FSRTs is essential for benefiting
from their space efficiency. Implementing the common operators such as union,
concatenation etc. is done in the same ways as in FSRAs ([9]). Direct imple-
mentation on FSRTs of composition is a näıve extension of ordinary transducers
composition, based on the intersection construction of FSRAs ([9]). We explicitly
define these operations in [12].

5 Implementation and Evaluation

In order to practically compare the space and time performance of FSRAs and
FSAs, we have implemented the special operators introduced in section sec:
regular expression for nl for circumfixation and interdigitation, as well as direct

52 Y. Cohen-Sygal and S. Wintner

Table 1. Space comparison between FSAs and FSRAs

Operation Network type States Arcs Registers File size

Circumfixation FSA 811 3824 – 47kb
(4 circumfixes, 1043 roots) FSRA 356 360 1 16kb

Interdigitation FSA 12,527 31,077 – 451kb
(20 patterns, 1043 roots) FSRA 58 3259 2 67kb

10-bit incrementor Sequential FST 268 322 – 7kb
FSRT 31 60 10 2kb

50-bit incrementor Sequential FST 23,328 24,602 – 600kb
FSRT 151 300 50 8kb

100-bit incrementor Sequential FST 176,653 181,702 – 4.73Mb
FSRT 301 600 100 17kb

Table 2. Time comparison between FSAs and FSRAs

200 words 1000 words 5000 words

Circumfixation FSA 0.01s 0.02s 0.08s
(4 circumfixes, 1043 roots) FSRA 0.01s 0.02s 0.09s

Interdigitation FSA 0.01s 0.02s 1s
(20 patterns, 1043 roots) FSRA 0.35s 1.42s 10.11s

10-bit incrementor Sequential FST 0.01s 0.05s 0.17s
FSRT 0.01s 0.06s 0.23s

50-bit incrementor Sequential FST 0.13s 0.2s 0.59s
FSRT 0.08s 0.4s 1.6s

construction of FSRAs. We have compared FSRAs with ordinary FSAs by build-
ing corresponding networks for circumfixation, interdigitation and n-bit incre-
mentation. For circumfixation, we constructed networks for the circumfixation
of 1043 Hebrew roots and 4 circumfixes. For interdigitation we constructed a
network accepting the splicing of 1043 roots into 20 patterns. For n-bit incre-
mentation we constructed networks for 10-bit, 50-bit and 100-bit incrementors.
Table 1 displays the size of each of the networks in terms of states, arcs and
actual file size.

Clearly, FSRAs provide a significant reduction in the network size. In partic-
ular, we could not construct an n-bit incrementor FSA for any n greater than
100 as a result of memory problems, whereas using FSRAs we had no problem
constructing networks even for n = 50, 000.

In addition, we compared the recognition times of the two models. For that
purpose, we used the circumfixation, interdigitation, 10-bit incrementation and
50-bit incrementation networks to analyze 200, 1000 and 5,000 words. As can
be seen in Table 2, time performance is comparable for the two models, except
for interdigitation, where FSAs outperform FSRAs by a constant factor. The
reason is that in this network the usage of registers is massive and thereby, there
is a higher cost to the reduction of the network size, in terms of analysis time.
This is an instance of the common tradeoff of time versus space: FSRAs improve

Finite-State Registered Automata and Their Uses in Natural Languages 53

the network size at the cost of slower analysis time in some cases. When using
finite-state devices for natural language processing, often the generated networks
become too large to be practical. In such cases, using FSRAs can make network
size manageable. Using the closure constructions one can build desired networks
of reasonable size, and at the end decide whether to convert them to ordinary
FSAs, if time performance is an issue.

6 Conclusions

We have shown how FSRAs can be used to model non-trivial morphological
processes in natural languages, including vowel-harmony, circumfixation and in-
terdigitation. We also provided a regular expression language to denote arbitrary
FSRAs. In addition, we extended FSRAs to transducers and demonstrated their
efficiency. Moreover, we evaluated FSRAs through an actual implementation.

While our approach is similar in spirit to Flag Diacritics ([6]), we provide a
complete and accurate description of the FSRAs constructed from our extended
regular expressions. The transparency of the construction details allows further
insight into the computational efficiency of the model and provides an evidence
to its regularity. Moreover, the presentation of dedicated regular expression op-
erations for non-concatenative processes allows easier construction of complex
registered networks, especially for more complicated processes such as interdig-
itation and circumfixes.

In section 5 we discuss an implementation of FSRAs. Although we have used
this system to construct networks for several phenomena, we are interested in
constructing a network for describing the complete morphology of a natural
language containing many non-concatenative phenomena, e.g., Hebrew. A mor-
phological analyzer for Hebrew, based on finite-state calculi, already exists [13],
but is very space-inefficient and, therefore, hard to maintain. It would be ben-
eficial to compact such a network using FSRTs, and to inspect the time versus
space tradeoff on such a comprehensive network.

Acknowledgments

This research was supported by The Israel Science Foundation (grant num-
ber 136/01). We are grateful to Dale Gerdemann for his help.

References

1. Koskenniemi, K.: Two-Level Morphology: a General Computational Model for
Word-Form Recognition and Production. The Department of General Linguistics,
University of Helsinki (1983)

2. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-
tional Linguistics 20 (1994) 331–378

3. Karttunen, L., Chanod, J.P., Grefenstette, G., Schiller, A.: Regular expressions for
language engineering. Natural Language Engineering 2 (1996) 305–328

54 Y. Cohen-Sygal and S. Wintner

4. Mohri, M.: On some applications of finite-state automata theory to natural lan-
guage processing. Natural Language Engineering 2 (1996) 61–80

5. van Noord, G., Gerdemann, D.: An extendible regular expression compiler for
finite-state approaches in natural language processing. In Boldt, O., Jürgensen,
H., eds.: Automata Implementation. Number 2214 in Lecture Notes in Computer
Science. Springer (2001)

6. Beesley, K.R.: Constraining separated morphotactic dependencies in finite-state
grammars. In: FSMNLP-98., Bilkent, Turkey (1998) 118–127

7. Beesley, K.R., Karttunen, L.: Finite-State Morphology: Xerox Tools and Tech-
niques. Cambridge University Press (Forthcoming)

8. Kornai, A.: Vectorized finite state automata. In: Proceedings of the workshop
on extended finite state models of languages in the 12th European Conference on
Artificial Intelligence, Budapest (1996) 36–41

9. Cohen-Sygal, Y., Gerdemann, D., Wintner, S.: Computational implementation of
non-concatenative morphology. In: Proceedings of the Workshop on Finite-State
Methods in Natural Language Processing, an EACL’03 Workshop. (2003) 59–66

10. Sproat, R.W.: Morphology and Computation. MIT Press, Cambridge, MA (1992)
11. Nash, D.: Topics in Warlpiri Grammar. PhD thesis, Massachusetts Institue of

Technlogy (1980)
12. Cohen-Sygal, Y.: Computational implementation of non-concatenative morphol-

ogy. Master’s thesis, University of Haifa (2004)
13. Yona, S., Wintner, S.: A finite-state morphological grammar of hebrew. In: Pro-

ceedings of the ACL-2005 Workshop on Computational Approaches to Semitic
Languages. (2005)

TAGH: A Complete Morphology

for German Based on Weighted
Finite State Automata

Alexander Geyken1 and Thomas Hanneforth2

1 Berlin-Brandenburg Academy of Sciences
2 University of Potsdam

Abstract. TAGH is a system for automatic recognition of German word
forms. It is based on a stem lexicon with allomorphs and a concatenative
mechanism for inflection and word formation. Weighted FSA and a cost
function are used in order to determine the correct segmentation of com-
plex forms: the correct segmentation for a given compound is supposed
to be the one with the least cost. TAGH is based on a large stem lexicon
of almost 80.000 stems that was compiled within 5 years on the basis of
large newspaper corpora and literary texts. The number of analyzable
word forms is increased considerably by more than 1000 different rules for
derivational and compositional word formation. The recognition rate of
TAGH is more than 99% for modern newspaper text and approximately
98.5% for literary texts.

1 Introduction

Compounding in German is productive, therefore full-form lexicons cannot cover
German morphology completely. Hence morphology programs such as Gertwol
(Haapalainen and Majorin[6]) or canoo [http://www.canoo.net] generally use
stem lexicons together with decomposition and derivation rules. The present
approach differs from the aforementioned morphology systems in that it is not
based on a two-level-morphology but on a concatenative mechanism. The formal
prerequisites for that are presented in section 2, ’Morphology and Weighted Fi-
nite State Automata’. In section 3 we will describe the linguistic aspects of the
TAGH-morphology, the lexicon and the word formation rules. In addition, the
semantic types of LexikoNet, a shallow semantic hierarchy for German nouns
will be described. All noun entries of the stem-lexicon are annotated with these
semantic types. Thus, it is possible to use semantic types both for expressing
word formation rules as well as for the semantic typing of semantically trans-
parent compounds. In section 4, the problem of disambiguation of ambiguous
morphological analysis is addressed. Section 5 and 6 summarize the current
state of development of the presented system and sketch out some ideas for
future work.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 55–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 A. Geyken and T. Hanneforth

2 Morphology and Weighted Finite State Automata

2.1 The Morphology Problem

Basically the morphology problem can be stated as follows: given an input alpha-
bet ΣI , an output alphabet Σ0 and a morphological alphabet1 ΣM , a morphol-
ogy realizes a partial function Σ∗

I → ℘(Σ∗
0 .Σ∗

M). The morphological alphabet
consists of letters, morpheme boundary symbols (#,∼), categories (like NN,
NSTEM, NSUFF), and features like 3, sg, nom.

Since a string in Σ∗
I can be mapped to several output strings we need the power

set operator ℘. Usually this function is considered a rational one, that is, both
Σ∗

I and Σ∗
0 .Σ∗

M are supposed to be regular languages. This decision rules out
constructing word-syntactic trees and also the treatment of unrestricted redupli-
cation phenomena in certain languages. How do we construct such morphology
functions? There are at least two ways based on closure properties: one is based
on the fact that regular languages are closed under substitution, the other ex-
ploits the closure of regular languages/relations under intersection/composition
(e.g. Hopcroft [7]). In the next section we will sketch the algebraic specifica-
tion of a weighted finite state transducer representing a morphology function for
German.

2.2 Algebraic Specification of a Morphology for German

The first building blocks of the system are two lexicons, one for stems and one
for affixes. Fig. 1 shows a very small fraction of the stem lexicon containing
two verbs and a noun.2 We have decided to handle irregular, nonpredictable
allomorphy like Umlaut and Ablaut in the lexicon, that is, the stem lexicon is
represented by a finite state transducer (Fig. 3 in appendix), which maps lemmas
to allomorphic stems (cf. also Karttunen [9]).

For example, the irregular verb werfen (to throw) is mapped to its five allomor-
phic stems. A number of mostly boolean features like StPret encodes important
morphological properties like co-occurrence restrictions, in particular the fact,
that a certain stem can be used only in an inflected form of a certain type.
StPret = yes for example means that a stem marked in that way must be used
in preterite verb forms. In effect the seven boolean stem features define the stem
equivalence classes for every irregular German verb. The affix lexicon which sim-
ilarly contains categorized prefixes, derivational and inflectional suffixes, infixes
etc. is compiled into a finite state acceptor. The next step consists in taking the
union of the lexicons and afterwards the closure of this union:

1 We assume the morphology alphabet to be disjoint from the input and output al-
phabet.

2 We use the AT&T LexTools notation, cf. Sproat [14]. Symbols in [] denote possibly
underspecified categories. Features are defined with respect to an inheritance hier-
archy and are represented as transition labels. Underspecification is realized as the
disjunction of all maximal subtypes of a super type.

TAGH: A Complete Morphology for German Based on Weighted FSA 57

(rett:rett) [VREG VType=main PrefVerb=no Latinate=no PartIIIrreg=no]
(werf:warf) [VIRREG VType=main PrefVerb=no\

Latinate=no StDef=no St23SgInd=no StPret=yes StSubjI=no\
StSubjII=no StPartII=no StImpSg=no St23SgIndVowelChange=yes]\

(werf:werf) [VIRREG VType=main PrefVerb=no
Latinate=no StDef=yes St23SgInd=no StPret=no StSubjI=yes \
StSubjII=no StPartII=no StImpSg=no St23SgIndVowelChange=yes]\

(werf:wirf) [VIRREG VType=main PrefVerb=no Latinate=no StDef=no\
St23SgInd=yes StPret=no StSubjI=no StSubjII=no StPartII=no\
StImpSg=yes St23SgIndVowelChange=yes]\

(werf:worf) [VIRREG VType=main PrefVerb=no Latinate=no StDef=no\
St23SgInd=no StPret=no StSubjI=no StSubjII=no StPartII=yes\
StImpSg=no St23SgIndVowelChange=yes]\

(werf:w\"urf)[VIRREG VType=main PrefVerb=no Latinate=no StDef=no \
St23SgInd=no StPret=no StSubjI=no StSubjII=yes StPartII=no\
StImpSg=no St23SgIndVowelChange=yes]\

(Haus:Haus) [NSTEM Gender=neut NICSg=ic_sg1 NICPl=ic_pl3\
StemType=deko Bound=no DecoActive=yes]\

(Haus:H\"aus)[NSTEM Gender=neut NICSg=ic_sg1 NICPl=ic_pl3\
StemType=deko Bound=no DecoActive=yes]

Fig. 1. Extract of the stem lexicon

Morph∗ =def (Stems ∪ ID(Affixes) ∪ ID(MorphBoundaries))∗ 3

The regular relation Morph∗ denotes the infinite language of all sequences of
stems and affixes and their features without taking into account word-
grammatical restrictions or phenomena of regular allomorphic variation when
certain morphemes are concatenated. To solve the first problem, Morph∗ is
composed with a word grammar:

MorphWG =def Morph∗ ◦ ID(WordGrammar).

This filters out all sequences which are ill-formed according to the word grammar.
WordGrammar must be defined as a regular set. Fig. 2 shows some example
rules given as regular expressions which are disjunctively combined (of course,
the actual grammar is defined in a much more modular fashion):

(([Letter]*) [NSTEM] #)* ([Letter]*) [VREG] ~ ung [NSUFF Gen=fem][NINFL Num=sg Case=*]
(([Letter]*) [NSTEM] #)* ([Letter]*) [VREG] ~ ung [NSUFF Gen=fem] en [NINFL Num=pl Case=*]
(([Letter]*) [ASTEM] #)* ([Letter]*) [VREG] ~ bar [ASUFF]
(([Letter]*) [NSTEM] #)* ([Letter]*) [VREG] ~ bar [ASUFF] ~ keit [NSUFF Gen=fem]\

[NINFL Num=sg Case=*]

Fig. 2. Sample regular word grammar

Rules 1 and 2 for example describe the nominalization of regular verbs by means
of the suffix -ung: retten (to rescue) → rett ∼ ung. Rule 3 defines the suffixa-
tion of verb stems with the suffix -bar: retten � rettbar (rescuable), while rule
4 allows a further suffixation of -bar-suffixed verbs with the suffix -keit, result-
ing in forms like rett∼bar∼keit (rescuability). All four rules permit an unlimited

3 ID(A) represents the identity relation of a regular set A; MorphBoundaries is the
set of morpheme boundary symbols: ∼ for suffixation, # for compounding etc.

58 A. Geyken and T. Hanneforth

number of noun stems which precede the derived verb stems, resulting in (rather
senseless) compounds like Haus#rett∼bar∼keit (house-rescuability). Fig. 4 (ap-
pendix) shows the FSA associated with the word grammar.

The next step consists of applying morphographematic rules, so-called spelling
rules, to the outcome of Morph∗ ◦WordGrammar to handle regular allomorphy
like schwa-insertion etc. These types of rules are defined by context-sensitive
replacement rules, which can be modelled as finite-state transducers with the
restriction that they are not applied to its own output, (see Kaplan [8]). The
following rule describes the insertion of schwa after verb stems ending with tt
before a set of the verbal inflectional elements:

ε → e / tt[V REG] (n(d?) |t|st|t(e|est|en|et)) [VINFL]

This accounts for word forms like rettest (2. sg pres) or rettetest (2. sg pret). All
k spelling rules SRi are composed into a single spelling transducer (of course
the ordering of these rules is of importance):

Spelling =def SR1 ◦ SR2◦ · · · ◦ SRk

After composing MorphWG with Spelling we obtain a transducer represent-
ing a relation between lexical forms and surface strings, both interleaved with
categorical information. To define the input tape of the morphological analyzer
we have to delete the symbols of the morphology alphabet and to invert the
resulting transducer:

MorphAnalyser′ =def Invert(Morph∗ ◦ ID(WordGrammar) ◦ Spelling ◦
Cap ◦ InputBand).

InputBand is the composition of a sequence of rules like the following:

([NSTEM]|[V REG]|[V IRREG]|[NSUFF]| ∼) → ε.

Cap ensures the correct capitalization of the surface word: sequences which
define nouns start with an uppercase letter, noun stems inside of words start
with a lowercase letter etc. The remaining task is to format the output band of
the analyzer accordingly:

OutputBand =def RHHR ◦ MorphFeatToSynFeat.

RHHR represents the right-hand-head-rule which says that in German the
stem or suffix morpheme standing at the right periphery determines the mor-
phosyntactic properties of the whole word. RHHR is represented by a sequence
of contextual replacement rules like the following:

[NSTEM] → ε / (#| ∼).

This rule deletes noun stem markers preceding morpheme boundaries. Finally
MorphFeatToSynFeat rewrites sequences of morphological features/categories
to morphosyntactic categories (like NN), followed by morphosyntactic features
(case, gender, number, etc.) If, for example, the word Rettungen is analyzed,
both categories NSUFF and NINFL contribute to the features of the complete

TAGH: A Complete Morphology for German Based on Weighted FSA 59

word: NSUFF defines its gender and NINFL its number and case. The final
morphological transducer is defined by:

MorphAnalyser =def MorphAnalyser′ ◦ OutputBand.

As usual, applying the morphology to a word consists in composing the input
word given as an identity transducer with MorphAnalyzer and taking the out-
put band:

Proj2(ID(input) ◦ MorphAnalyzer).

2.3 Morphological Complexity and Weighted Automata
Morphology

Analyzers like the one sketched in the last section segment longer word forms
in a sometimes absurd manner into sets of senseless alternatives amongst which
to choose is not an easy task.4 Therefore, it would be useful to have a notion of
morphological complexity which can be integrated into the analyzer and which
prefers for example compounds with fewer segments to compounds with more
segments or favors lexicalized but morphologically complex compounds over non-
lexicalized readings. A simple way to achieve this is to reconstruct the grammar
as a weighted regular language where the weights reflecting the morphological
complexity of the different word formation rules can be either chosen by hand or
acquired through machine learning techniques. To put it a bit more generally:
we define a weighted language L where each element in L is a pair consisting of
a string x ∈ Σ∗ and a weight c chosen from a weight set W. A suitable algebraic
structure for this task in the context of finite-state automata is a semiring. A
structure < W, ⊕, ⊗, 0, 1 > is a semiring (e.g. Golan [5]), if it fulfils the following
conditions:

1. < W, ⊕, 0 > is a commutative monoid with 0 as the identity element for ⊕.
2. < W, ⊗, 1 > is a monoid with 1 as the identity element for ⊗.
3. ⊗ distributes over ⊕.
4. 0 is an annihilator for ⊗: ∀w ∈ W, w ⊗ 0 = 0 ⊗ w = 0.

A weighted finite-state transducer A = < Σ, Δ, Q, q0, F, E, λ, ρ > over a semir-
ing W is an 8-tuple with Σ being the finite input alphabet, Δ the output al-
phabet, Q the finite set of states, q0 ∈ Q the start state, F ⊆ Q the set of
final states, E ⊆ Q × (Σ ∪ ε) × (Δ ∪ ε) × W × Q the set of edges, λ ∈ W the
initial weight and ρ : F �→ W the final weight function mapping final states to
elements in W. In section 4 we give some examples for an instantiation of the
semiring template with < �, min, +, ∞, 0 >, a so-called tropical semiring (e.g.
Mohri [11]). This means that weights along an accepting path of an automaton
are additively combined and among different paths accepting the same input
string the path with the minimal weight is chosen.

4 We give some examples in section 4.

60 A. Geyken and T. Hanneforth

3 Lexicon and Word Formation Rules

3.1 TAGH-Lexicon

Lexicons for NLP purposes can be represented as full-form lexicons (e.g. Courtois
[3]) or as stem-lexicons (e.g. two-level morphology lexicons such as the above
mentioned Gertwol or canoo). In the first case each lexicon entry corresponds
to an inflected form together with its morphological features. Full-form lexicons
are convenient for languages such as English or French where compounding is
not productive. The lexicon look-up is then reduced to a pattern matching of
a token with a lexicon entry. In the second case, a comparatively small lexicon
is related to word formation rules in order to analyze word-forms which are not
in the stem-lexicon. It is convenient to encode German as a stem-based lexicon
because of its productive derivation and compounding.

Stem-based lexicons can be used in a concatenative or a non-concatenative
way. In the latter case one attempts to describe non-concatenative processes such
as the formation of irregular stems by an enrichment of the lexical entries with
special symbols on which special rules apply (e.g. two-level-morphology). The
TAGH-morphology relies on a concatenative stem-based lexicon as described in
section 2. Hence, irregular lemmas generally correspond to several allomorphic
stems. In the above-mentioned example in Fig. 1, the irregular verb werfen (to
throw) has five different allomorphic stems: warf, wirf, werf, worf, würf. Likewise
an irregular noun such as Haus (house) has two different allomorphic stems: Haus
and Häus.

In the TAGH-lexicon a difference between simple stems and complex stems is
made. A word form in the TAGH-lexicon is a simple stem if

(A) it cannot be analyzed by a morphophonetic-, derivation- or a composition-
rule or a combination of them into two or more non empty segments in a
way that at least one segment can be used autonomously;

(B) each true decomposition consists of at least one opaque segment. Here,
transparency is understood synchronically; e.g. Augst [1];

(C) it is unmarked with respect to inflection.

According to that definition the lexicon of simple stems consists of word-
forms that cannot be further decomposed (in the above-mentioned sense) in a
transparent way into smaller lexemes. Of course, this definition depends on a
large extent on the word formation rules as well as on the set of stems. Some
examples shall illustrate this definition.

(1) Wand (wall), steh (to stand), grün (green)
(2) vorhersehbar (predictable), Drehtür (revolving door)
(3) Waldmeister (woodruff)
(4) unflätig (bawdy), drollig (funny),
(5) lexikalisch, (lexicalized), marokkanisch (moroccan)

The examples in (1) are all simple forms, those in (2) are transparent com-
pounds since they can be analyzed by word formation rules vorhersehbar �→

TAGH: A Complete Morphology for German Based on Weighted FSA 61

vorherseh + bar, Drehtür �→ Dreh + Tür. Semantically intransparent compounds
such as Waldmeister in (3) are stored in the lexicon of complex stems. Even
though Waldmeister is morphologically analyzable by a simple N+N compound
rule, the complex stem is the preferred lemma (cf. section 2.3 how the preference
is computed, and section 4 for some examples).

The examples in (4) are encoded as simple stems since they are consistent with
condition B of the definition above: here un- and -ig are active prefixes resp.
suffixes, but the remaining word forms Flat (Old High German sauber, clean)
and Droll (lower German Knirps (manikin) have no synchronous interpretation.

The examples in (5) are also considered simple stems since the current TAGH-
morphology does not consider the following morphophonemic word formation
rules: -al- in lexik-al-isch or -an- in marokk-an-isch.

A word form is a complex stem if

(A) it consists of at least two simple stems plus additional affixes or linking
elements;

(B) if the meaning of the word form is either morphologically or semantically
opaque, meaning that fully transparent compounds are not stored in the
stem-lexicon;

(C) it is unmarked with respect to inflection.

Organization of the TAGH-Lexicon. The TAGH-lexicon itself is divided up
into several sub-lexicons according to their lexical categories. There are lexicons
for nouns, verbs, adjectives, adverbs, closed classes (prepositions, determiners,
conjunctions), confixes, abbreviations and acronyms, each stored in a relational
database (cf. table 1). Additionally, large lists of proper nouns (first names and
family names as well as geographical names) were compiled.

3.2 Shallow Semantic Typing

All noun entries are categorized on the basis of a shallow semantic typing which
has been derived from LexikoNet, a lexical ontology of German nouns (Geyken

Table 1. Number of stems in the TAGH-lexicon

stem type number

nouns 41,000
verbs 21,000

adjectives 11,000
adverbs 2,300

closed forms 1,500
abbrev, acronyms 15,000

confixes 105
family names 150,000

first names 20,000
geogr. names 60,000

62 A. Geyken and T. Hanneforth

and Schrader [4]). LexikoNet is based on a concept hierarchy of more than 1,200
concept nodes that is ordered in a top-down hierarchy beginning with the con-
cepts of concrete nouns and abstract nouns.

For its use in the TAGH-morphology the LexikoNet is simplified in order to
be tractable for fast analysis. The 1,200 categories are mapped to a shallow
hierarchy of types selected for their prevalence in context patterns: the Bran-
deis Shallow Ontology, (BSO), Pustejovsky ([12]). BSO consists of the follow-
ing (provisional) types: Event, Action, SpeechAct, Activity, Process,
State, Entity, PhysicalObject, Artifact, Machine, Vehicle, Hard-
ware, Medium, Garment, Drug, Substance, Vapor, Animate, Bird,
Horse, Person, Human Group, Plant, PlantPart, Body, BodyPart,
Institution, Location, Dwelling, Accommodation, Energy, Abstract,
Attitude, Emotion, Responsibility, Privilege, Rule, Information,
Document, Film, Program, Software, Word, Language, Concept,
Property, VisibleFeature, Color, Shape, TimePeriod, Holiday,
Course Of Study, Cost, Asset, Route.

Shallow semantic typing is used for two purposes: for specifying word for-
mation rules (see section 4) as well as for determining the semantic type of a
transparent compound. For example, the compound noun Sprachexperte (lan-
guage expert) is not part of the stem-lexicon but can be morphologically and
semantically analyzed on the basis of its components (note also, that the allo-
morphic stem Sprach (language) is correctly lemmatized to Sprache):

Sprache/N#Experte[NN SemClass=Human Gender=masc Number=sgCase=nom]

3.3 Word Formation Rules

Approximately 1000 word formation rules are used in the TAGH-morphology
in order to recognize new words on the basis of the stem-lexicon. Within the
framework of the formalism it is possible to express derivation, conversion and
composition rules. These rules generally operate on lexical categories, but it is
also possible to restrict the applicability of a rule to subsets of lexical categories
that are determined by additional features such as accented suffixes, latinate,
compounding activity or semantic type. Additionally, for nouns and adjectives
more than 120 non autonomous prefixes and suffixes were collected, each of them
being active in word formation. It is beyond the scope of this paper to present
all rules. The following examples illustrate how the encoding in the lexicon and
the word formation rules interact.

(1) VSTEM + -bar �→ ASTEM
(2) confix + NSTEM �→ NSTEM
(3) ASTEM [latinate=true] + -ist �→ NSTEM [semClass =Human] if ASTEM

ends with -–tär, -iv, -ell, -al.
(4) -chen-derivation (only suffix) for nouns of the semantic classes artifact,

physical object or substance.

(1) describes the simple derivation rule: a verb stem combines with the suffix
-bar to an adjective. Rule (2) describes a rule that combines confixes and nouns.

TAGH: A Complete Morphology for German Based on Weighted FSA 63

Confixes are morphemes such as Ergo-, Poly-, Giga-. They are listed in the noun
resp. adjective lexicon as stems with two distinctive properties: they are non-
autonomous and do not belong to a lexical category. (3) is a non concatenative
rule that is used to derive abstract nouns ending with -ist from their corre-
sponding adjective, for example monetär (monetary) �→ Monetarist with the fol-
lowing morphological analysis: Monetarist �→ monetär/A ∼ ist[NNSemClass =
Human].

Rule (4) demonstrates the use of semantic typing for word formation rules.
Here, the diminutive rule induced by the suffix -chen only applies to nouns with
the semantic type artifact. This rule does not raise the recognition rate but
has an impact on the precision of word formation. An example for this rule is
the diminutive noun Kärtchen (engl. small card) which is derived from Karte/N
∼ chen[NN SemClass=artifact].

4 Compound Segmentation

Since morphology programs display all possible segmentations for compounds,
disambiguation rules are required for compounds with ambiguous segmentations.
The lexicon of complex stems is used to avoid blunders such as the segmentation
of Gendarm (gendarme) into Gen and Darm or of Ration (ration) into rat∼en
and Ion by listing them as lexicalized compounds. However, it is not possible
to disambiguate all compounds in that way because of the above mentioned
productivity of German. Hence other methods are required to choose the correct
lemma in the case of ambiguous compounds. Following the approach of Volk
([15]) we set weights for each segmentation boundary: segmentation costs for a
linking element (/) in compounds are 2, for a derivation boundary (∼) 2.5, for
weak composition boundaries such as confix boundaries 5, for strong composition
boundaries (#) 10. Furthermore, a change of lexical categories corresponds to 5
for a change from adjective to verb, 10 for a change from verb to noun, and 20 for
a change proper noun to noun, since we consider compounds with proper nouns
much less likely. The weights are additively combined along an accepting path
of an automaton (cf. section 2.3) thus defining a cost function. The preferred
analysis is the analysis with the least costs.

The following examples using some well known ambiguous German com-
pounds illustrate the efficiency of this simple cost function. In example 1, the
correct lemma Abteilung (department) is the one with the least value of the cost
function since Abteilung is part of the lexicon of complex stems. On the other
hand, the other two possibilities require decomposition and therefore get higher
weights. In the second example, the compound Arbeitstag (work day) is correctly
decomposed. Note here, that, similarly to other approaches, the wrong segmen-
tation Arbeit/N\#stag is blocked by the TAGH-morphology since the rare noun
Stag (stay) is encoded in the lexicon as not being active in compounding. In ex-
ample 3 the compound Schadstoffanreicherung (accumulation of toxic substance)
the correct analysis is preferred because of unlikely category changes (from verb
to noun resp. from proper noun to noun) in the other two segmentations.

64 A. Geyken and T. Hanneforth

Example (1)
Abteilung[NN SemClass=Human_Group Gender=fem Number=pl Case=*] <0>
ab|teil/V~ung[NN SemClass=Abstract Gender=fem Number=pl Case=*]<5>
Abtei/N#Lunge[NN SemClass=PhysObject Gender=fem Number=pl Case=*]<10>

Example (2)
Arbeit/N\s#Tag[NN SemClass=abstr Gender=masc Number=sg Case=nom_acc_dat] <12>

Example (3)
Schadstoff/N#an|reicher/V~ung[NN Sem=Abstract Gen=fem Num=sg Case=*]<15>
schad/V#Stoff/N#an|reicher/V~ung[NN SemClass=Abstract Gender=fem Number=sg Case=*] <25>
Schad/NE#Stoff/N#an|reicher/V~ung[NN SemClass=Abstract Gender=fem Number=sg Case=*] <45>

5 Technicalities

The morphology described here has been developed for 5 years. The development
is based on the Potsdam FST library which is modelled after the seminal AT&T
FST library (Mohri [11]) and implemented in C++. The library implements all
operations of the algebra of weighted finite state transducers based on abstract
semirings. The library also contains compilers for lexicons, regular expressions,
replacement rules etc. The morphology transducer currently has 3.96 million
states and 6.75 million transitions. It analyzes, depending on the text genre, up to
50,000 words per second. TAGH-morphology is currently used as an annotation
tool for the search engine of the newspaper Die ZEIT (http://www.zeit.de) as
well as for the morphological analysis of the DWDS-Kerncorpus of the project
DWDS at the Berlin-Brandenburg Academy of Sciences (http://www.dwds.de).
The DWDS-Kerncorpus is a 100 million word corpus of the 20th century, bal-
anced with respect to text genre. The recognition rate for the archive of Die
ZEIT (40 m tokens) is 99.1%, the recognition rate for the DWDS-Kerncorpus
is 98.2%. An evaluation of the correctness has not been carried out yet due
to a lack of training corpora containing manually corrected word segmentation
information.

6 Conclusion and Further Work

In this work we have presented TAGH-Morphology, a system, which unlike the
two-level approach does not assume to be closed under intersection, i.e. it does
not require the input and output tape to be of the same length. We have shown
that the system scales up to a full coverage morphology of German and that
the implemented mechanism, which is based on weighted transducers, rules out
most of the undesired segmentations with a best match strategy. We have also
presented a way to integrate a shallow semantic types to the morphological
analysis thus allowing to compute a semantic type for compounds that are not
in the stem-lexicon.

Future work will concentrate evaluation of the correctness of the system, which
amounts to the creation of a manually disambiguated training corpora, as well
as to use machine learning methods in order to learn the weights of the cost
function.

TAGH: A Complete Morphology for German Based on Weighted FSA 65

References

1. Augst, Gerhard: Lexikon zur Wortbildung. Morpheminventar Bd. 1-3. Tübingen,
1975.

2. Cormen, T.H., Leiserson, C.L., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, 2001.

3. Courtois, B. ”Dictionnaires électroniques DELAF anglais et français”, in: Leclère
C., Laporte E., Piot M., Silberztein M. (eds.). Syntax, Lexis and Lexicon-Grammar.
Papers in honour of Maurice Gross, Lingvisticae Investigationes Supplementa 24,
Amsterdam-Philadelphia : Benjamins, 2004, p. 113 – 125.

4. Geyken, A. and N. Schrader: LexikoNet - a lexical database based on type and role
hierarchies. Technical Report BBAW/DWDS, Berlin, 2005.

5. Golan, Jonathan S.: Semirings and Their Applications. Kluwer, Dordrecht, 1999.
6. Haapalainen, M. and A. Majorin: Gertwol: Ein System zur automatischen Wort-

formerkennung deutscher Wörter. Lingsoft, Inc., 1994.
7. Hopcroft, J.E. & Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Mass., 1979.
8. Kaplan, R.M., Kay, M.: ”Regular Models of Phonological Rule Systems”. Compu-

tational Linguistics, 20(3), 1994, p. 331–378.
9. Karttunen, L.: ”Constructing Lexical Transducers”. In: Proceedings of the Fif-

teenth International Conference on Computational Linguistics. Coling I-94, Kyoto,
Japan, 1994, p. 406–411.

10. Klappenbach, Ruth and Wolfgang Steinitz (ed.) (1977). Wörterbuch der deutschen
Gegenwartssprache (WDG). Akademie Verlag.

11. Mohri, M.: ”Semiring Frameworks and Algorithms for Shortest-Distance Prob-
lems”. Journal of Automata, Language, and Combinatorics 7 (2002) 3, p. 321–350.

12. Pustejovsky, J., P. Hanks, and A. Rumshisky. ”Automated Induction of Sense
in Context”. 5th International Workshop on Linguistically Interpreted Corpora
(LINC-04), Coling, 2004.

13. Riley, M.: ”The Design Principles of a Weighted Finite-State Transducer Library”.
Theoretical Computer Science, 231 (2000), p. 17–32.

14. Sproat, R.: Finite-State Methods in Morphology, Text Analysis and the Analysis
of Writing Systems. ROCLING X, 1997.

15. Volk, M.: ”Choosing the right lemma when analysing German nouns”. In: Mul-
tilinguale Corpora: Codierung, Strukturierung, Analyse. Jahrestagung der GLDV
11, Frankfurt, 1999, p. 304–310.

66 A. Geyken and T. Hanneforth

0

1
H

:H

2
r:

r

3

w
:w

4

a:
a

a:
ä

5
e:

e 7

e:
a

6

e:
e

8
e:

i

9
e:

o

10

e:
ü

11
u:

u

12
t:t 14

r:
r

13
r:

r

15
r:

r

16
r:

r

17
r:

r

18
s:

s

19
t:t 20

f:
f

21
f:

f

22
f:

f

23
f:

f

24
f:

f

25
N

ST
E

M
:N

ST
E

M

26
V

R
E

G
:V

R
E

G

27
V

IR
R

E
G

:V
IR

R
E

G

28
V

IR
R

E
G

:V
IR

R
E

G

29
V

IR
R

E
G

:V
IR

R
E

G

30
V

IR
R

E
G

:V
IR

R
E

G

31
V

IR
R

E
G

:V
IR

R
E

G

32
ne

ut
:n

eu
t

33
m

ai
n:

m
ai

n

34
m

ai
n:

m
ai

n

35
m

ai
n:

m
ai

n

36
m

ai
n:

m
ai

n

37
m

ai
n:

m
ai

n

38
m

ai
n:

m
ai

n

39
ic

_s
g1

:ic
_s

g1

40
no

:n
o

41
no

:n
o

42
no

:n
o

43
no

:n
o

44
no

:n
o

45
no

:n
o

46
ic

_p
l3

:ic
_p

l3

47
no

:n
o

48
no

:n
o

49
no

:n
o

50
no

:n
o

51
no

:n
o

52
no

:n
o

53
de

ko
:d

ek
o

54

no
:n

o

55
ye

s:
ye

s

56
no

:n
o

57
no

:n
o

58
no

:n
o

59
no

:n
o

60

ye
s:

ye
s

no
:n

o

61
no

:n
o

62
no

:n
o

63
ye

s:
ye

s

64
no

:n
o

65
no

:n
o

ye
s:

ye
s

66
no

:n
o

67
ye

s:
ye

s

68
no

:n
o

69
no

:n
o

70
no

:n
o

71
ye

s:
ye

s

no
:n

o

72
no

:n
o

73
no

:n
o

74
no

:n
o

75
no

:n
o

76
no

:n
o

77
no

:n
o

ye
s:

ye
s

78
no

:n
o

79
no

:n
o

ye
s:

ye
s

80
no

:n
o

ye
s:

ye
s

ye
s:

ye
s

F
ig

.3
.
S
te

m
le

x
ic

o
n

a
s

a
tr

a
n
sd

u
ce

r

0

{A
−Z

}
{a

−z
}

{Ä
,O

,Ü
,ä

,ö
,ß

}

1

V
R

E
G

2

N
ST

E
M

3
m

ai
n

au
x

m
od

al

4
fe

m

ne
ut

no
ne

m
as

c

5
ye

s

no

6
ic

_s
g_

no
ne

ic
_s

g1

ic
_s

g2

ic
_s

g3

ic
_s

g4

ic
_s

g5

ic
_s

g6

ic
_s

g7

ic
_s

g8

7
ye

s

no

8

ic
_p

l_
no

ne

ic
_p

l1

ic
_p

l2

ic
_p

l3

ic
_p

l4

ic
_p

l5

ic
_p

l7

ic
_p

l8

9
ye

s

no

10

de
fa

ul
t

de
ko

fl
ex

11
~

12

ye
s

no

13
b

14

u

15

ye
s

no

16
a

17
n

ye
s

no

18
r

19
g

20
A

SU
FF

21
N

SU
FF

22
~

23
fe

m

24
k

25

e

26
N

IN
FL

27
e

28
n

29

sg

30
i

31
N

IN
FL

32
*

33
t

pl

34
N

SU
FF

35
fe

m
N

IN
FL

F
ig

.4
.
F
S
A

fo
r

th
e

g
ra

m
m

a
r

fr
a
g
m

en
t

o
f
F
ig

.
2

Klex: A Finite-State Transducer Lexicon

of Korean

Na-Rae Han

Department of Linguistics, University of Pennsylvania, Philadelphia, PA 19104, USA
nrh@ling.upenn.edu

http://www.cis.upenn.edu/∼nrh/klex.html

Abstract. This paper describes the implementation and system details
of Klex, a finite-state transducer lexicon for the Korean language, devel-
oped using XRCE’s Xerox Finite State Tool (XFST). Klex is essentially a
transducer network representing the lexicon of the Korean language with
the lexical string on the upper side and the inflected surface string on the
lower side. Two major applications for Klex are morphological analysis
and generation: given a well-formed inflected lower string, a language-
independent algorithm derives the upper lexical string from the network
and vice versa. Klex was written to conform to the part-of-speech tagging
standards of the Korean Treebank Project, and is currently operating as
the morphological analysis engine for the project.

1 Introduction

Korean is a highly agglutinative language, with productive use of post-position
markers following nouns, verbal ending suffixes for verbs and adjectives, as well
as frequent use of derivational morphology. Breaking up Korean words into
smaller morphological components is the necessary first step in any natural lan-
guage processing system of Korean, as well as an essential task for computerized
language-learning tools. Klex is a fully operational Korean lexicon system whose
underlying mathematical representation is a form of data structure known as the
finite-state transducer or FST .1 The transducer’s upper level consists of strings
representing a sequence of lexical forms of morphemes, each followed by their
part-of-speech tag; the lower level consists of the fully inflected surface forms
produced by concatenation of the morphemes, with relevant phonological and
morphotactic processes applied:

1 The name Klex is used somewhat ambiguously: it refers to the binary FST network
that constitutes the lexicon; it also loosely refers to the entire morphological analysis
and generation system of Korean lexicon built around the binary FST, with a few
auxiliary networks, XML database and other helper scripts and utilities.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 67–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A transducer network as a whole consists of all such possible morpheme-sequence/
word pairs in the language. Given the lower inflected form, a language-independent
algorithm can produce the analyzed morpheme sequence (the process of “looking-
up”). Conversely, the transducer can be used in producing the fully inflected sur-
face form of grammatical sequence of morphemes (the opposite of “looking-up”,
hence Xerox’s terminology of “looking-down”). These two operations, namely
morphological analysis and generation, are the most typical applications of

ical transducers.
In the remainder of the paper, we will present implementation details of

the system, and then discuss the main characteristics of Korean morphology
and some of the design aspects of Klex which are aimed at providing optimal
solutions for Korean.

2 Implementation

The system is implemented using XRCE(Xerox Research Centre Europe)’s XFST
software platform. It consists of the main binary FST network, some auxiliary
networks, and scripts which perform the morphological analysis and generation
operations. The source codes for the networks are built from an XML dictionary
and some helper scripts .2

2.1 Overall Design

The main FST binary of Klex is built with three modules which are FSTs them-
selves: the lexicon FST, the rule FST, and the encoding-converter FST. These
transducers are combined together in an operation known as composition to form
the single lexical transducer which erases intermediate levels of representation to
directly encode the relation between analysis strings and surface orthographical
strings (Figure 1).

The lexicon FST is the backbone of the architecture: it is a network of le-
gitimate Korean words, which maps lexical forms with POS in the upper level
to their abstract representation at the bottom. The rule FST is composed at
the bottom of the lexicon FST to apply morpho-phonological and orthograph-
ical processes to abstract symbols to produce the romanized surface strings.

2 The main binary FST network of Klex, along with its source code, was released
by Linguistic Data Consortium (LDC) catalog number LDC2004L01 and ISBN 1-
58563-283-x.

(1) Mapping for ���+���+�� /top+ess+ta/ ‘help+Past+Declarative’:

���/VV+���/EPF+��/EFN

top ess ta
�

�	�
���

towassta

lex

68 N.-R. Han

Fig. 1. Klex and component FSTs

Composing the lexicon FST and the rule FST results in a FST lexicon of
Korean with roman transliteration of Korean strings on both levels; compos-
ing an encoding-converter FST on top and bottom produces the final product
which handles Korean-encoded input and output. Currently Klex is configured
for KSC-5601 (EUC-KR) encoding; however, it can be recompiled to use other
encoding schemes such as UTF-8.

While hangul, the Korean script, is an alphabetic system with symbols for
consonants and vowels in the language, modern computerized encoding schemes
of Korean take the syllabic unit as the encoding block, thereby rendering the
internal structure of syllables, e.g. individual alphabetic characters, opaque. This
makes the task of writing rules, which must address vowels and consonants in
the phonological inventory of the language, impossible with Korean encodings.
For this reason, roman transliteration was used for the core part of the system.
The romanization scheme adopted in Klex is a variant of the “Yale romanization
system”, a popular choice among linguists. A few modifications were made: (1)
end-of-syllable is marked with “.” to ensure a one-to-one mapping between the
romanized and Korean alphabets; (2) the Korean consonant alphabet character
“�” is always mapped to “ng” even in the onset position where it actually lacks
phonological value, a measure taken in order to facilitate the process of writing
rules.

2.2 The Dictionary

Klex relies on a dictionary in XML format, which serves as a database of lexical
entries and their lexical properties, including morphotactic information and their
underlying forms. Figure (2) shows examples of typical entries.

Klex: A Finite-State Transducer Lexicon of Korean 69

<entry>

<rom>ngu.lo.</rom>

<POS>PAD</POS>

<form>u.lo.</form>

<lemma> ���	</lemma>

<morpho>MiddleCosa:MiddleCosa;</morpho>

</entry>

<entry>

<rom>top.ta.</rom>

<POS>VVt</POS>

<form>toP.</form>

<irr>�</irr>

<lemma> �����</lemma>

<morpho>vv</morpho>

</entry>

Fig. 2. Dictionary entries for ���� /ulo/ ‘with’ and ��� /top/ ‘to help’

Each entry contains the following fields: the romanized form, the part-of-
speech, the underlying form and the verbal conjugation class where relevant,
the lemma form, and the morpho-syntactic information. There is a set of scripts
written in perl which scan this dictionary and then create a source code for the
lexicon FST based on the information in the fields.

The vocabulary included in the lexicon was obtained from many sources,
including Minjung Eutteum Korean Dictionary for Elementary School Students

(������ �	������
� ��	�
 ��������: Minjungseorim, 1998), the Korean English Tree-
bank Annotation (Palmer et al., 2002) and other various texts. The lexicon was
expanded and fine-tuned by testing against these various corpora, the process
of which included fixing undesirable outputs and adding missing lexical entries.
The XML dictionary contains about 148,000 entries: the vast majority of them
are nouns (about 133,000), and a small fraction of them belongs to the affix
category (total of 622).

2.3 Morphotactics

The morphotactic grammar is formulated as a set of continuation classes in
LEXC grammar which are then compiled into the lexicon FST. Much attention
was paid to the morphotactics of postposition markers, verbal ending suffixes,
derivational morphology and finally, noun compounding.

Some non-local dependencies are observed in the morphotactic grammar of
Korean, most of which involve semantic constraints between suffixes encoding as-
pectual senses and verbal and adjectival stems. For example, final verbal ending
����� /nunta/ is incompatible with adjective stems, since it encodes the “habit-
ual” aspect, therefore: ��	����� /meknunta/ “eats (habitual)” vs.*�������� /*cak-
nunta/ “*is small (habitual)”. Other suffixes such as the honorific marker ����

70 N.-R. Han

/usi/ can intervene, which makes the dependency a non-local one. Verb and ad-
jective stems in Korean share the same morphotactics for the most part, which
makes the option of writing separate continuation classes for the two categories
redundant and impractical. The standard method of Flag Diacritics, available in
the XFST platform, provides an economical solution: a bit of Flag Diacritic indi-
cating its POS is set for adjective roots, which is then checked against a matching
bit of Flag Diacritic associated with the habitual suffix ending at runtime, ruling
out any path that traverses the two incompatible morphemes.

2.4 Rewrite Rules for Morpho-Phonological Alternations

Korean is known to display a wide variety of morpho-phonological processes,
which the rule FST was designed to handle. The rule FST itself is a single
transducer which maps the abstract morphophonemic strings to the surface or-
thographical strings, built by applying a composition operation on an ordered
sequence of 100 individual replace rules.

The initial input to the set of rules, e.g. the lower strings of the lexicon FST,
contains rich abstract information which allows the rules to set their targets pre-
cisely. Morpheme boundaries, where all alternations occur, are marked with “+”.
Morphemes that go through morpho-phonological processes are given abstract
representations which deviate from the romanization scheme, such as inclusion
of upper-case letters and missing onset consonant. The rules are formulated to
target these symbols and environments.

The replace rules, comparable to the rewrite rules used traditionally in phono-
logical derivations (Chomsky and Halle, 1968), handle three major groups of

ternations: transformations at the right edge of irregular verbal roots; phonologi-
cal processes occurring on morpheme boundaries, mostly involving verbal ending
suffixes; and allomorphy in post-position markers. The first group of alternations
involve six classes of irregular verbs of Korean, whose roots are subject to dif-
ferent sets of phonological processes when followed by transformation-triggering
suffixes. The second group of phonological processes mostly involves verbal end-
ing suffixes, such as vowel harmony, epenthesis, glide formation and u deletion3.

Figure 3 illustrates derivations of three irregular verbal roots ��� /tut/ “to
hear”, ���� /calu/ “to cut”, and
�� /ces/ “to stir”4 and a regular verbal root
�� /ka/ “to go”, followed by any verbal ending with an initial abstract vowel
E. The key morpho-phonological processes invloved here are: “T” irregular stem
operation, “L” irregular stem operation, “S” irregular stem operation, vowel
harmony, vowel merge and u (which is the epenthetic vowel in Korean) deletion.
The rule [..] -> ng || . + VOW; addresses an orthographic issue: Korean
orthography inserts a phonologically empty consonant “�” into an empty onset
position. At the very end, the cleanup rule removes remaining traces of the
morpheme boundary.

3 /u/ functions as the epenthetic vowel in Korean phonology.
4 Called “�”, “��”, and “�” irregular verbs respectively in the school grammar of

Korean.

al

Klex: A Finite-State Transducer Lexicon of Korean 71

���+� ����+�
��+� ��+�
⇒ ���� ⇒ ����� ⇒ ��� ⇒ �� rewrite rule
“to hear” “to cut” “to stir” “to go”

tuT.+E. ca.Lu.+E. ceS.+E. ka.+E.

vowel harmony
E -> a ||

[o|a] (CON|. CON u) . + ;

E -> e;

tuT.+e. ca.Lu.+a. ceS.+e. ka.+a.

u deletion
u . + -> [..] || CON [e|a];

n/a ca.La. n/a n/a

vowel merge
a . + -> [..],

e . + -> [..] || \w VOW

n/a n/a n/a ka.

“T” irregular
T -> l || . + E;

tul.+e. n/a n/a n/a

“L” irregular
. L -> l . l || VOW;

n/a cal.la. n/a n/a

“S” irregular
S -> [..] || . + VOW;

n/a n/a ce.+e. n/a

insert empty onset consonant
[..] -> ng || . + VOW;

tul.+nge. n/a ce.+nge. n/a

remove morpheme boundary
+ -> [..];

tul.nge. n/a ce.nge. n/a

Fig. 3. Cascade of rules applied to verb forms (CON: consonant; VOW: vowel)

The top strings are the abstract representations that are given as the input
to the rule FST; the sequence of rules are applied and the bottom strings are
resulting surface strings. Note that the precise ordering among the rules is cru-
cial: the vowel merge rule must apply before the “S” irregular rule, otherwise
an illegitimate surface string *ce. would be derived instead of the correct string
ce.nge.. This dissected view of the rule module easily gives the illusion of a pro-
cedural model of rule application; ultimately, the cascade of rules are compiled
into a single rule FST which maps the abstract strings on the top directly to the
surface strings at the bottom. This “composition of sequential rules” architecture
achieves the elegance of the mathematically equivalent model of KIMMO-style

72 N.-R. Han

two-level morphology (Koskenniemi, 1983, 1984; Karttunen, 1983) while grant-
ing the linguist a higher level of flexibility and ease in formulating rules.

3 Language-Specific Issues

3.1 Lexical Representation of Affixes

The analyzed upper strings of Klex take the following form:

morph1/POS1+morph2/POS2+...+morphn/POSn,
where morphemes are separated by “+” and each morpheme is followed by “/”
and its part-of-speech tag. Korean affixes, therefore, are represented as a lexical
item, rather than combinations of grammatical features such as +plural,
+honorific and +past-tense, the popular approach taken mostly by finite-
state lexicons of European languages. This is a rather inevitable design
decision given the sheer number of Korean affixes; currently there are 622 of
them listed in the system. Translating each one of them into a combination of
binary features is not only an infeasible task but also an undesirable one; many
affixes in Korean convey their own semantic and pragmatic senses that are not
easily decomposed into matrices of binary features.

The feature representation of affixes can be more useful depending on the na-
ture of applications, especially those that involve generation. The current setup
requires the user to supply all component morphemes in their correct repre-
sentative forms along with their correct part-of-speeches in order to obtain the
inflected surface forms, which mandates a sophisticated level of knowledge on
user’s part. For a system that generates Korean words, however, a single verbal
root marked with some grammatical features such as +polite, +past-tense,
+interrogative might be considered a more reasonable input, which suits the
feature representation scheme well. Although the system is not presently set
up to handle such an alternative representation, its flexibility allows it to be
modified as such with relative ease. First a subset of affixes would have to be
selected excluding those that are inessential from the generation perspective.
Their entries in the XML dictionary must then be augmented with appropri-
ate feature representations. Finally a set of modified scripts can then produce a
LEXC source script with the feature representations of suffixes instead of their
lexical form and the POS in the upper level.

The set of part-of-Speech tags used is fully compliant with the specification
of the Korean Treebank Project Phase 2. The set, which includes a total of 33
tags, is based on the one employed by the Korean Treebank Project Phase 1
(Han & Han, 2001) with some newly introduced modifications .5

5 The POS tagging guideline for the Korean Treebank Phase 1 can be found at:
ftp://ftp.cis.upenn.edu/pub/ircs/tr/01-09/.

Klex: A Finite-State Transducer Lexicon of Korean 73

3.2 Allomorphy in Klex

A large number of inflectional suffixes and post-position markers in Korean have
allomorphs, whose ditributions are conditioned by the phonological environment
in which they appear. For example, the “topic” proposition marker takes three
different forms ��� /un/, ��� /nun/, and � /n/; the past-tense pre-verbal-ending
suffix ��� /ess/, 	�
 /ass/, and � /ss/.

The predominant position taken by past and present systems of Korean
morphological analysis has been not to posit a single lexical representation for
such sets of allomorphs, opting instead to output appropriate allomorphic forms
within context.

Klex diverges from other systems by treating allomorphs as having a single
representative form. All allomorphs of a given lexical item therefore show up as
a single form in the upper (analyzed) string. For example, the topic markers in
���
�-��� /hakkyo-nun/ ‘school-Top’, �����-��� /haksayng-un/ ‘student-Top’ and
��-� /ne-n/ ‘you-Top’ are equally assigned ��/PAU in the analyzed strings:

(2) ��� /un/ as the representative form for the Korean topic postposition:

�����/NNC+��/PAU ������/NNC+ ��/PAU ��/NPN+��/PAU

hakkyo un haksayng un ne un
� � �

������� �������� ���

hakkyonun haksayngun nen

The criteria used in determining the representative form among allomorphs
are as follows:

(3) Criteria for determining the representative form
a. The representative form should be fully syllabic, i.e.��� /un/ is chosen

over � /n/.
b. The form for the post-consonantal environment is chosen, i.e. �� /i/

instead of �� /ka/.
c. Epenthetic vowels are included, i.e. ���� /ulo/ and not �� /lo/ .6

d. For vowel harmony, � /e/ is chosen over �� /a/, i.e. ��� /ese/ and
not ���� /ase/.

6 This clause is in fact redundant, as epenthetic vowels are used in post-consonantal
environments only which is covered by criterion (b).

Note that these representative forms are to be distinguished from the “ab-
stract underlying representation”: the representative forms are those that func-
tion as the dictionary entry; the abstract underlying representations are their
romanized counterparts with abstract symbols that are used system-internally,
and which eventually undergo morpho-phonological transformations through ap-
plications of rewrite rules. For example, ��� /ess/ is the representative form for
the the past-tense verbal ending suffix with its underlying abstract representa-
tion Ess..

74 N.-R. Han

3.3 The Guesser Modules

A successful morphological analysis requires that the root of the encountered
word be listed in the lexicon database. Even with Klex’s extensive dictionary, it
certainly cannot provide full coverage for the continuously evolving vocabulary
of the language. To handle cases of novel words, two “guesser” modules are
implemented: one dealing with novel roots belonging to open classes of part-of-
speech and the other dealing with Korean person names.

Some part-of-speech categories, such as affixes, verbs and adjectives of Ko-
rean are considered a closed class: they consist of a closed set of vocabulary
items, and addition of new vocabulary items is rare. On the other hand, com-
mon nouns (NNC), proper nouns (NPR), adverbs (ADV) and interjections (IJ)
are open classes which allow novel vocabulary items, including newly formed
words or borrowed words, to be added more freely. Phonologically possible
roots are defined for each of the four part-of-speeches, and a guesser lexicon
is compiled with the guessed roots in place of real roots. The guessed roots are
subject to the same morphotactic grammar and morpho-phonological alterna-
tions as real roots. Figure 4 shows how���������� /haynsemhata/ “is handsome”
is handled by the module. ������^Guess/NNC+ ��/XSJ+��/EFN (haynsem^Guess/
NNC+ha/XSJ+ta/EFN) is the correct guess, with the borrowed word������ (/haynsem/)
is a guessed common noun root (^Guess/NNC) followed by an adjectivization suf-
fix ha/XSV .7

xfst[1]: apply up ����������

��������^Guess/NPR+��/CO+��/EFN

��������^Guess/NNC+��/CO+��/EFN

������^Guess/NNC+��/XSV+ ��/EFN

������^Guess/NNC+��/XSJ+��/EFN ⇐ correct guess!
����������^Guess/ADV

����������^Guess/NPR

����������^Guess/IJ

����������^Guess/NNC

Fig. 4. Guesser module analyzes novel ���������� /haynsemhata/ “is handsome”

7 Foreign vocabularies lose their original part-of-speech and are uniformly treated like
nouns in Korean.

Korean person names pose another challenge. Klex implements an auxiliary
FST module tailored to recognize them. Korean person names in most common
cases consist of three-syllables, one for the surname and the the other two for
given names8. The list of 137 known Korean surnames is obtained from census

8 Only 9 Korean surnames with two syllables are documented. Monosyllabic Korean
given names are not rare; given names longer than 2 syllables are a rarity.

chinese characters – while the Korean syllabic structure permits 11,172 possible
data. Given names are usually built by combining two syllables from a pool of

Klex: A Finite-State Transducer Lexicon of Korean 75

monly used in names is relatively small: we hand-picked 262 of them. A model of
Korean person names is then described as a regular expression: a syllable from
the surname set, followed by two from the pool of syllables for given names.
With the regular expression in place for a proper-noun root, the FST for Korean
names can recognize legitimate Korean person names followed in some cases by
titles or postposition markers. This is by no means a robust model of Korean
names, but provides a good enough measure for the task of guessing.

4 Conclusions

Klex is a full-scale FST-based lexicon model for morphological analysis and gen-
eration of Korean words. The finite-state technology, which XRCE’s XFST suite
implements, provides an elegant yet powerful mathematical framework for de-
signing such a system for morphologically complex languages such as Korean.
The XFST suite by XRCE provides particularly powerful and flexible tools for
a linguist seeking to develop such a system, since their composition-based mod-
ular architecture lets the developer model distinct aspects of morphology such
as morphotactics and morpho-phonemic alternations into separate modules of
transducers, which are then combined into a single transducer network that is
both structurally simple and efficient. Klex was developed to fit the specification
of the Korean Treebank Project, and is currently employed as the morphological
analyzer for the project. It is also available by licensing through the Linguistic
Data Consortium (LDC).

Acknowledgements

This research has been partially supported by various sources, including the
Korean Treebank Project at the University of Pennsylvania, ARO grant DAAD
19-03-2-0028, a 5-year grant (BCS-998009, KDI, SBE) from the National Science
Foundation via TalkBank, and the Linguistic Data Consortium. We would like
to thank Xerox (XRCE) for making their tools available to the public. Also
special thanks go to: Ken Beesley and Lauri Karttunen who provided valuable
insights and guidance through the initial stages of the project; Mike Maxwell for
his help in putting together the final product; and finally Martha Palmer for her
continuous support throughout the course of the project.

syllabic combinations of which 2,350 are in wide use, the range of syllables com-

References

1. Back, D.H., Lee, H., Rim, H.C.: A structure of korean electronic dictionary using
the finite state transducer. In: Proceedings of the 7th Symposium for Information
Processing of Hangul and Korean (�	����
�� �	����
���� !"� ������#$�). (1995) in
Korean.

2. Beesley, K.R., Karttunen, L.: Finite-State Morphology: Xerox Tools and Tech-
niques. CSLI Publications, Stanford, California (2003).

76 N.-R. Han

3. Han, C.H., Han, N.R.: Part of speech tagging guidelines for penn korean treebank.
Technical report, IRCS, University of Pennsylvania (2001)

4. Han, N.R.: Klex: Finite-state lexical transducer for korean. Linguistic Data Con-
sortium (LDC) catalog number LDC2004L01 and ISBN 1-58563-283-x (2004)

5. Han, N.R.: Morphologically annotated korean text. Linguistic Data Consortium
(LDC) catalog number LDC2004T03 and ISBN 1-58563-284-8 (2004)

6. Kim, S.: Korean Morphology (%&"�������'(���). Tap Publishing, Seoul, Korea (1992)
in Korean.

7. Ko, Y.: A Study of Korean Morphology (������'(������)*). Seoul National Univer-
sity Press, Seoul, Korea (1989) in Korean.

8. Koskenniemi, K.: Two-level morphology: A general computational model for word
form recognition and production. Publication No: 11, Department of General
Linguistics, University of Helsinki (1983)

9. Minjungseorim, ed.: Minjung Eutteum Korean Dictionary for Elementary School
Students (������ �	������
� ��	�
 ��������). Minjungseorim, Seoul, Korea (1998) in
Korean.

10. Palmer, M., Han, C.H., Han, N.R., Ko, E.S., Yi, H.J., Lee, A., Walker, C., Duda,
J., Xue, N.: Korean english treebank annotations. Linguistic Data Consortium
(LDC) catalog number LDC2002T26 and ISBN 1-58563-236-8 (2002)

.

.

.

.

.

Klex: A Finite-State Transducer Lexicon of Korean 77

Longest-Match Pattern Matching with Weighted

Finite State Automata

Thomas Hanneforth

Universität Potsdam, Institut für Linguistik, PF 601553, 14415 Potsdam, Germany
tom@ling.uni-potsdam.de

Abstract. I present a new method of longest match pattern matching
based on weighted finite state automata. Contrary to the approach of
Karttunen [9] we do not need expensive complementation operations to
construct the pattern matching transducer.

1 Introduction

Longest-match pattern matching has a long tradition as a disambiguation tech-
nique in regular expression searching and natural language processing. The prob-
lem is addressed by a range of methods which are mostly based on finite-state
automata (FSA), sometimes with a little more machinery to find the longest
match (cf. the techniques described in Aho/Sethi/Ullman [3, 130ff] or in Abney
[1]. In the next subsection I describe an approach by Karttunen [9], called Di-
rected Replacement, which stays completely in the realm of finite state automata.
In section 2 I present an improved method with better complexity properties.
Section 3 evaluates the new method against Karttunen’s approach.

1.1 The Method of Karttunen (1996)

The basic problem of longest-match pattern matching based on FSAs is that
we have to compare different accepting paths in a finite state automaton with
respect to each other. This is not a standard task for finite state automata and
on first sight it’s not entirely clear how a FSA can accomplish this. Karttunen’s
idea is to introduce auxiliary brackets around the found patterns and to then
filter out illegal paths in the intermediate FSA representing matches which are
shorter than others starting at the same position. I can’t go into all the details
of Karttunen’s method (but some of them are described in section 2.3) but his
longest match criterion is defined by a regular set which looks like this1:

(1) ¬(Σ∗ · ({[} · (α′′ ∩ (Σ∗ · {]} · Σ∗))) · Σ∗)

The regular language α is the (perhaps infinite) set of our search patterns; α′′

is a variant of α where the auxiliary bracket symbols enclosing a pattern in α are
1 I’ve translated Karttunen’s regular expression into the format I will use in this paper.

See the appendix for notational details.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 78–85, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Longest-Match Pattern Matching with WFSA 79

ignored in non-final pattern positions2. The symbols [and] serve as bracketing
symbols around the different possible matches of the patterns in α with respect
to a given input text. For longest match processing to become effective it is
assumed that α contains patterns x and y where x is a prefix of y.

The subexpression ({[}·(α′′∩(Σ∗ ·{]}·Σ∗))) denotes a regular language where
the pattern instances of α following an opening bracket must contain occurrences
of the closing bracket (this is achieved through the intersection of α′′ with a
regular set of all strings which contain a closing bracket]). A construction of the
form ¬(Σ∗ · A · Σ∗) defines the does-not-contain operator for regular set A. The
whole expression in (1) therefore disallows all closing brackets except the “last”
one thereby filtering out all shorter matches and leaving the longest one. I will
show in the next section that the does-not-contain operator is an expensive tool
that can limit the practicability of an approach using it.

2 Longest-Match Pattern Matching with Weighted Finite
State Automata

2.1 Weighted Automata

The basic idea of the approach presented here consists in the simplest case in
counting the symbols inside the brackets enclosing the found pattern occurrences
and afterwards taking the one with the maximum of symbols.

To put it a bit more generally: we define a weighted language L where each
element in L is a pair consisting of a string x ∈ Σ∗ and a weight c chosen from
a weight set W . A suitable algebraic structure for this task in the context of
finite-state automata is a semiring. A structure < W, ⊕, ⊗, 0, 1 > is a semiring
([2], [11]) if it fulfils the following conditions:

1. < W, ⊕, 0 > is a commutative monoid with 0 as the identity element for ⊕.
2. < W, ⊗, 1 > is a monoid with 1 as the identity element for ⊗.
3. ⊗ distributes over ⊕.
4. 0 is an annilator for ⊗: ∀w ∈ W, w ⊗ 0 = 0 ⊗ w = 0.

A weighted finite-state transducer (cf. [11]) A =< Σ, Δ, Q, q0, F, E, λ, ρ >
over a semiring W is a 8-tuple with Σ being the finite input alphabet, Δ the
output alphabet, Q the finite set of states, q0 ∈ Q the start state, F ⊆ Q the
set of final states, E ⊆ Q × (Σ ∪ ε) × (Δ ∪ ε) × W × Q the set of edges, λ ∈ W
the initial weight and ρ : F 	→ W the final weight function mapping final states
to elements in W3. In section 2.2 I give some examples for an instantiation of
the semiring template with < IR, min, +, ∞, 0 >, a so-called tropical semiring.
This means that weights along an accepting path of an automaton are additively
combined and among different paths accepting the same input string the path
with the minimal weight is chosen.

2 α′′ ≡ Ignore(α, {[,]}) − Σ∗ · {[,]}).
3 These are the so-called letter transducers.

80 T. Hanneforth

2.2 The New Method

Let α be a search pattern and β a replacement pattern. Let Σ be the pattern
matching alphabet. We add three auxiliary symbols @, [, and] to Σ. Following
Karttunen [9] α′ is a variant of α such that the auxiliary symbol @ may occur
freely in all non-final positions of α:

α′ ≡ Ignore(α, {@}) − Σ∗ · @

The new finite state cascade consists of four steps4:

1. Initial-match

ε → @ / α

2. Left-to-Right ◦

(ID(Σ − {@})∗ · (@ × [) · α · (ε ×]))∗ · ID(Σ − {@})∗

◦
@ → ε

3. Longest-match ◦

ID(Arith(×, −1, (Σ − ([|]))∗ · [·(Σ − ([|]))∗ < 1 > ·])∗ · (Σ − ([|]))∗))

4. Replacement ◦

[· (Σ − {]}∗) ·] → β

Steps 1,2, and 4 correspond to the same-named steps in Karttunen (1996).
Step 1, Initial-match, prefixes all occurrences of the search pattern α with a
newly introduced auxiliary symbol @. Step 2, Left-to-Right, represents a finite
state transducer which repeatedly looks for the first occurrence of the start
marker @, replaces it by an opening bracket and inserts a closing bracket after
each occurrence of a pattern x ∈ α, while ignoring additional @ markers. After
that all remaining occurrences of @ are deleted. The transducer constructed
after step 2 inserts curly brackets around all occurrences of pattern instances of
α found in a given input automaton. The new step is step 3. For each alphabet
symbol inside a pair of brackets [and] we add the arbitrarily chosen weight
1. After the definition of a FSM with a tropical semiring as the underlying
algebraic weight structure the weights along a path are abstractly multiplied
and therefore actually added. For example, a string x[abc]y receives the weight
3. After weighting all strings inside the brackets all weights are multiplied with
-1. Step 4 follows Karttunen again. All strings inside and including the curly
brackets are replaced by the patterns in β. If the replacement step consists simply
in bracketing the found occurrences of α with open bracket lb and closing bracket
rb (lb and rb can denote arbitrary regular sets) step 4 can be replaced by 4’:
4’. Replacement ([→ lb) ◦ (] → rb)

4 For reasons of readability I sometimes omit set parentheses around single symbols.
That is, @ means {@} etc.

Longest-Match Pattern Matching with WFSA 81

Let LMPM be the composition of the four finite state transducers. Basically
the application of LMPM to an input text given as a finite state acceptor input
consists of composing input with LMPM and taking the best path, that is,
the path with the minimal weight:

Arith(×, 0, BestPath(Proj2(ID(input) ◦ LMPM))

After that all weights are multiplied by zero effectively removing them.

2.3 Hierarchical Evaluation

Although this simple method of counting symbols inside of brackets works for
many cases there are patterns where we need a more sophisticated evaluation
technique. Consider for example the search pattern a|aa applied to the search
text aa. We get two bracketings [aa] and [a][a] with the same weight of -2. To
achieve a disambiguated result we have to impose a further constraint:

a. In case of several bracketings having the same weight prefer the one with
the least number of brackets.

But even then there are cases where we do not get a unique result, as can be
seen by applying the above pattern to the string aaa where we get two minimal
bracketings again with the same weight: [a][aa] and [aa][a]. So we have to add
another constraint:

b. In case of several bracketings having the same weight and the same number
of brackets prefer the one where the sum of the index positions of the closing
bracket is maximal.

Formally this is achieved by the Cartesian product of three semirings (cf. [5]
and [7] how to implement criterium b. as a semiring). The ranking is guaranteed
by imposing a total order on the resulting semiring based on the hierarchical
ordering of the constraints.

2.4 An Example

I will exemplify the method with the help of the example in [9]. The search
pattern is d? · a∗ · n+ and the ”search text” is given as dannvaan; let lb be [np

and rb np].

Step Patterns Description

Start dannvaan Input pattern

Initial-Match @d@a@n@nv@a@a@n Every start of a pattern
was marked with @

Left-to-Right [dan][n]v[aan] Patterns starting further
[dann]v[aan] to the right were removed;

simultaneously [and]
were introduced.

82 T. Hanneforth

Longest-Match [dan][n]v[aan]<-7> Both analysises receive
[dann]v[aan]<-7> the same weight.

Replacement [npdannp][npnnp]v[npaannp]<-7> The auxiliary brackets
[npdannnp]v[npaannp]<-7> were replaced by the

final ones.

BestPath [npdannnp]v[npaannp]<-7> Filter out non-minimal
analysises according to the
criteria given in sec. 2.3

2.5 Complexity

The most expensive FSM operation is the complementation of a finite state ac-
ceptor A because A must be deterministic and determinisation in the worst case
can show exponential behaviour due to the implicit power set construction. Step
1 prefixes all patterns in alpha with a marker symbol with the help of a condi-
tional replacement rule. Following the method of Kaplan & Kay ([8]) the right
context α is processed by the prefix-iff-suffix(P,S) operator which needs four
complementations and one intersection. However we (and also Karttunen) can
do better if we make use of the method of Mohri & Sproat (1996) ([12]) which is
based on the determinisation of Σ∗ · reverse(α) and an additional reversal of the
result. Step 2, Left-to-Right, consists only of the inexpensive operations concate-
nation and closure which are linear in the size of the operands. Constructing an
acceptor α′ which ignores certain symbols is also linear in the size of α. Step 3,
Longest-Match, also uses only the operations concatenation and closure. The
complexity of Arith is linear to the size of the operand FSM. The replacement
transducer in step 4 does not depend on the search pattern α and is also very
easy to compute. To summarize we don’t use any complementation during the
construction of LMPM ; only a single determinisation of Σ∗ ·reverse(α) and the
composition of four FSTs are necessary. The application of the pattern matching
FST to an acceptor input5 representing the input text involves a composition, a
linear arithmetic operation, a linear projection and the determination of the best
path. Since input is a linear, acyclic acceptor the size of the FST after composing
input with LMPM is proportional to the size of input . Since input is acyclic
and so is input ◦ LMPM we can use Lawler’s algorithm ([10]) of relaxation in
topological order to find the best path6 which is in O(|Q| + |δ|) ([6]). Putting it
all together the application of LMPM to an input text of length n is in O(n).

3 Evaluation

Our method has been implemented in a longest-match pattern matching com-
piler based on the Potsdam FST library. Karttunen’s pattern matcher was
5 In practice, input would never be constructed and instead an incremental composi-

tion algorithm would be used.
6 The algorithm of relaxation in topological order has no problems with negative

weights.

Longest-Match Pattern Matching with WFSA 83

implemented in the same framework. For both approaches we used two regu-
lar grammars from a named entity recognition task, a small one and a slightly
bigger one. Both grammars were compiled to minimal finite state acceptors. The
grammars are complicated by the fact that it must be possible to reconstruct the
positions of recognised named entities in the original text. Therefore the gram-
mars allows for triples of the form < line, column, length > which are added
to the input automaton during the preprocessing and morphological analysis of
the input text. The automaton alphabet we need is quite big because the pre-
processing steps add very detailed morphosyntactic and semantic information
encoded in distinct symbols for each word to the input FSA. Basically the input
automaton can be described by a regular expression

(position information lemma syntactic features semantic features)+

To achieve a fair comparison, the resulting transducers in both methods were
optimised as much as possible (by so-called encoded minimisation7). The same
is true for all intermediate transducers emerging from the construction steps.

Table 1. Properties of the FSAs describing the search patterns

Size of FSA for grammar 1 (|Σ| = 970) 112 states, 4612 transitions
Size of FSA for grammar 2 (|Σ| = 970) 177 states, 7449 transitions

Table 2. FSA Sizes and Compilation Times

Karttunen’s method The method
described here

Grammar 1 Size of LMPM 2,228 states 271 states
1,604,617 transitions 88,036 transitions

Compilation time 66.7s 2.5s
Memory peak 485 MB 10 MB
during compilation

Grammar 2 Size of LMPM 4,115 states 441 states
2,992,666 transitions 108,888 transitions

Compilation time 241.8s 3.7s
Memory peak 600 MB 12 MB
during compilation

As can be seen from table 28 Karttunen’s method is very sensitive to small
changes in the size of the FSM representing the search patterns and results in

7 This means encoding the transition labels (and if present the weights) into a single
symbol, after which the resulting acceptor is determinised and minimised and then
decoded back to a transducer.

8 All measurements were made on a 3 GHz Pentium 4 PC with 1 GB memory running
Windows XP.

84 T. Hanneforth

very large automata which quickly become impracticable for realistic grammar
sizes. The method described here does not lead to such a blow-up of automata
size; compilation times and FSM sizes seem to grow linearly. This was also
verified by the complete grammar for the named entity recognizer which has
1060 states and nearly 34,000 transitions and was compiled into a corresponding
longest match automaton with 1600 states and approximately 550,000 transi-
tions in 20 s. Of course the problem of Karttunen’s approach is the fact that it
depends on the does-not-contain operator which leads to almost complete au-
tomata where every state has |Σ| outgoing transitions. To solve this problem one
can introduce a special “otherwise”-symbol, in which most of the outgoing transi-
tions of a state (those which do not contribute to the recognition of a pattern) are
collapsed into a single transition. This technique was for example implemented
in the Xerox Finite State Tools, the framework in which Karttunen’s method
originally emerged ([4]). But the approach of using “otherwise” symbols leads to
special processing mechanisms (nearly all algebraic operations of the underlying
FSA library must be adapted) which can be a complicated task especially in the
context of automata based on abstract semirings. The approach described here
on the other hand shows that standard algorithms will do. The price one has to
pay for having quite compact longest match automata is a linear best path oper-
ation at run time which can nevertheless be implemented in a very efficient way.

4 Conclusion and Further Work

Since the approach described in section 2 does not depend on complementa-
tion even the input language describing the patterns can be a weighted language
represented by a weighted FSA (weighted languages are not closed under comple-
mentation). This leads to interesting possibilities of assigning weights to patterns
either by hand or by machine learning techniques. The last approach is currently
under investigation. In addition, the longest-match-constraint employed in sec-
tion 2.3 might not simply count the symbols inside the brackets but instead
realise an arbitrary weight function. For example after preprocessing and mor-
phological annotation of the input text, the longest-match-constraint can refer to
all morphological categories and features added during the preprocessing phase
and weight them appropriately.

Acknowledgements. I would like to thank Jörg Didakowski for helping imple-
menting the compiler based on the described method and Sigrid Beck for cor-
recting my English. Many thanks also to Alexander Geyken for help with respect
to the morphology.

References

1. S. Abney. Partial parsing via finite-state cascades. In Proceedings of ESSLLI 96,
Robust Parsing Workshop, 1996.

2. A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA, 1974.

Longest-Match Pattern Matching with WFSA 85

3. A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

4. K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Studies in Com-
putational Linguistics. CSLI Publications, Stanford, CA, 2003.

5. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962
of Lecture Notes in Computer Science. Springer, Berlin, 2004.

6. T. H. Cormen, C. L. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Electrical Engineering and Computer Science Series. The MIT
Press, second edition, 2001.

7. J. Didakowski. Robustes parsing und disambiguierung mit gewichteten transduk-
toren. Diploma thesis, University of Potsdam, 2005.

8. R. Kaplan and M. Kay. Regular models of phonological rule systems. Computa-
tional Linguistics, 20(3):331–378, 1994.

9. L. Karttunen. Directed replacement. In Proceedings of the 34rd Annual Meeting
of the ACL, Santa Cruz, CA, 1996.

10. E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
& Winston, New York, NY, 1976.

11. M. Mohri. Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Language, and Combinatorics, 7(3):321–350, 2002.

12. M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules. In
Proceedings of the 34rd Annual Meeting of the ACL, Santa Cruz, CA, 1996.

Appendix: Notation

α∗ Kleene-Star
α | β Union
α · β Concatenation
α ◦ β Composition
α − β Difference
¬α Complementation
α × β Product (sometimes also multiplication)
α → β Denotes an FST which replaces α by β without regarding

the context
α → β/γ δ Denotes an FST which replaces α by β if γ precedes and

δ follows α
BestPath(M) Returns an FSM which represents the path in M with

the minimal weight.
ID(M) Identity relation consisting of all pairs < x, x >

where x ∈ M
Arith(op, k, M) Application of an arithmetic operation op with factor k

to all transition weights in M
Proji(M) ith projection of transducer M (i = 1 means projecting

the input band, i = 2 the output band)
Reverse(α) The mirror image of α
Σ Alphabet
ε Epsilon
< w > Weights

Finite-State Syllabification

Mans Hulden

The University of Arizona
Department of Linguistics

PO BOX 210028
Tucson AZ, 85721-0028

USA
mhulden@email.arizona.edu

Abstract. We explore general strategies for finite-state syllabification
and describe a specific implementation of a wide-coverage syllabifier for
English, as well as outline methods to implement differing ideas en-
countered in the phonological literature about the English syllable. The
syllable is a central phonological unit to which many allophonic vari-
ations are sensitive. How a word is syllabified is a non-trivial problem
and reliable methods are useful in computational systems that deal with
non-orthographic representations of language, for instance phonologi-
cal research, text-to-speech systems, and speech recognition. The con-
struction strategies for producing syllabifying transducers outlined here
are not theory-specific and should be applicable to generalizations made
within most phonological frameworks.

1 The Syllable1

Phonological alternations are often expressed efficiently by reference to syllables.
Most phonological descriptions presume a regular grouping of C or V elements
into syllables which other phonological rules can subsequently refer to.

An example of syllables being used as a domain of phonological alternations
is given by Kahn [1], who noted that an underlying [t] phoneme in English
may behave in various different ways, conditioned mainly by its position in the
syllable. A [t] can surface:

– as aspirated [th], as in creativity
– as glottalized [t], as in create
– as [t], as in stem
– as a flap [], as in creating
– as [h], as in train
– as [], as in strong

Many other phenomena are sensitive to syllable boundaries. A further example
would be, for instance, syncope (schwa-deletion) where words like licorice may
surface either as [] or as syncopated [], as noted by Hooper [2].
1 Thanks to Mike Hammond, Lauri Karttunen, and two anonymous reviewers for

guidance, comment, and discussion. Any errors are my own.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 86–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Finite-State Syllabification 87

More abstract levels of representation in phonological theory—such as metri-
cal systems in which the structure involves the laying down of feet—also assume
the existence of syllables at some lower level.

To make accurate predictions about syllabification, both in phonological be-
havior and in empirically attested preferences, requires—as in the case of [t]
mentioned above—subtle differentiation of syllabification patterns with respect
to consonant cluster affiliation. We present an approach based on a fairly tra-
ditional view of the syllable that largely follows the sonority hierarchy and
the maximum onset principle. Knowledge of word stress is not assumed in the
syllabifier—cases where word stress appears to affect syllabification have been
modelled by sensitivity to the quality of syllabic nuclei and of the surrounding
consonant clusters.

Table 1. Regular expression operators

A* Kleene star
A+ Kleene plus
A | B Union
(A) Optionality, equivalent to A|0
˜A The complement of A
A B Concatenation
A.l Extraction of the lower language in relation A (the range of A)
A.u Extraction of the upper language in relation A (the domain of A)
A .o. B Composition
A .P. B Upper-side priority union, equal to A | [˜[A.u] .o. B]
A -> B ‖ L R Directed replacement with context restriction
A @-> B ‖ L R Left-to-right longest replace with context restriction
A @> B ‖ L R Left-to-right shortest replace with context restriction
A -> B . . . C Left-to-right marking operator with context restriction

2 Finite-State Syllabification Methods

The finite-state formalism owes much of its conceptual background to phonolog-
ical rewrite systems originating in the Sound Pattern of English [3]. Kaplan and
Kay [4] subsequently provided a strong connection between classical generative
phonology and finite-state systems. The syllable, however, had no official recogni-
tion in much of the early generative work, and when it later entered into the scope
of research, a rich internal structure of the syllable was assumed to the extent that
syllabification processes were no longer commonly described with rewrite rules—
although verbal descriptions of syllabification “algorithms” were often given.

The finite-state calculus rewrite operators (see table 1) provide most of the
functionality required for a convenient description of most details in syllab-
ification processes.2 Depending on the complexity of a language’s syllables,
syllabifiers may need to have refined knowledge of the types or quality of
2 The description here assumes the Xerox xfst formalism [5].

88 M. Hulden

phonemes—consonants in particular. Finnish, as an example of a language with
a relatively simple syllabification process, can be treated with little regard to
consonant clusters:3

C* V+ C* @-> ... "." ‖ C V

However, languages such as English that feature a variety of syllable types will
need to be treated with detailed attention to the quality and order of segments.

For designing the syllabifier described here, the syllabifications of 1,920 words
that all contained consonant clusters were extracted from Merriam-Webster’s
Collegiate Dictionary and used as a set of empirical data to compare against.4

Barring internal inconsistencies, the final predictions made by the syllabifier
agreed with the source.5

3 Sonority

Languages that contain complex clusters of consonants are usually guided in their
syllable structure by the concept of a sonority hierarchy. The principle states that
more “sonorous” elements appear closer to the syllable nucleus, which in turn
is the most sonorous element. The onset of a syllable thus mirrors the coda in
sonority.6

Table 2. The sonority hierarchy

Increasing −→ sonority

Voiceless Obstruents Voiced Obstruents Nasals Liquids Glides Vowels

y,w,... a,e,o,u...

3 It is assumed that the legal vowels and consonants are defined in the sublanguages
C, V. This treatment requires some further elaboration about legal dipthongs. The
syllabification here is the traditional treatment [6]. It may be argued that the Finnish
syllable is subject to additional sonority constraints—the rewrite rule here would
yield /abstrakti/ → /abst .rak.ti/, whereas most native speakers prefer /abs.trak.ti/
or /ab.strak.ti/. Insofar as the syllable is permitted independent status as an entity
outside language-internal phonological processes, accurate modelling of even Finnish,
which has a relatively poor syllable inventory, is probably best treated in the manner
outlined in this paper.

4 http://www.britannica.com/dictionary
5 In some cases the dictionary showed conflicting syllabifications for highly simi-

lar words. For instance, the words poster, toaster, and coaster were syllabified
, , and , respectively. The majority account was followed

whenever the data were inconsistent. In this case, it was concluded that
would be the preferred syllabification.

6 This observation is often attributed to O. Jespersen, Phonetische Grundfragen
(1904).

Finite-State Syllabification 89

In English, the word comptroller, for example, has a four-consonant medial
cluster. This will be divided by the sonority sequence requirement into mp.tr.

English, by and large, adheres to the sonority requirements, with the exception
of [s] which (in this treatment) must occur syllable-initially or syllable-finally
(in word-medial position) and [h], which only occurs syllable-initially, never
syllable-finally.

From a finite-state point of view, the sonority hierarchy is a statement dic-
tating a particular order in which elements must occur in a legal syllable. The
requirements of sonority are, however, not sufficient to syllabify correctly—an
approach that only followed sonority requirements will massively overgenerate
(see table 3):

define Onset [(VLObs) (VObs) (Nas) (Liq) (Gli)];
define Coda [(Gli) (Liq) (Nas) (VObs) (VLObs)];
define Syllable [Onset Vow Coda];
define Syllabify [Syllable -> ... "." || _ Syllable];

Here, we define the syllable to consist of onsets and codas, which are mirror
images of each other according to the sonority hierarchy. We then introduce
syllable boundaries between all legal syllables.

Table 3. Syllabifying by only sonority

3.1 Sonority Distance

Phonological theory also makes use of the concept of sonority distance, which
states that consecutive sounds within a syllable must be sufficiently distant from

90 M. Hulden

each other in terms of sonority [7]. The exact requirements vary from language
to language: in English, [p] (a stop) may not be followed by an [n] (a nasal),
although this is possible in e.g. French.

4 Maximum Onset

Another generalization about syllabification processes is that, given a choice
between affiliating a consonant to a coda or to an onset, affiliating with the
onset is preferable, cf. [1, 8].

Application of this principle can be used to eliminate overgeneration, and im-
mediately narrows down the eligible syllabifications to a single one, i.e.

→ .
The combination of sonority requirements and onset maximization can be

economically expressed through the shortest replace operator [5], assuming we
have a definition of allowed onsets and coda clusters.

define Syllable Onset Vow Coda;
define MainRule Syllable @> ... "." || _ Syllable;

Table 4. Legal two consonant onsets in English. The obstruents are not quite sym-
metrical with respect to the consonants that are allowed to follow them. The phonemes
{y,r} behave more alike than for instance the natural grouping of glides, {w,y}. This
is also true for three-consonant onsets. Circles mark clusters that are legal only word-
initially, and thus not included in the grammar.

Gli Liq Nas Sto

w y r l m n p t k

p • • •
t • • •
k • • • •
b • • •
d • • •
g • • • •
f • • •

• • •
◦

s • • • • ◦ • • •

Table 5. Three consonant onsets in English

w y r l m n

sp • • •
st • •
sk • • • ◦

Finite-State Syllabification 91

The shortest replace operator @> works like the standard replace operator,
but will construct a transducer that follows a strategy such that the application
site of the left hand side of the rule will be kept to a mimimum if there are alter-
native ways of applying the rule (i.e. if there are several legal ways to distribute
the syllable boundary at the coda-onset juncture). Technically, this minimizes
the coda instead of maximizing the onset, but the end result is equivalent. See
tables 4 and 5 for the particulars of allowed onsets and codas in the English
implementation here.

5 Stress

Many treatments of the English syllable found in the literature also depend on
knowledge of stress. The generalization is that at least some consonants, [s] and
the nasals in particular, tend to affiliate with a stressed syllable, going against the
Onset Maximization principle. In the M-W data used for this implementation,
some pairs where this is seen include [] vs. [] and [] vs.
[].

In this treatment, the goal has been to give an account of English syllabifi-
cation without knowledge about the particular stress of a word, but based on
the quality of vowels and surrounding consonant clusters. Still, most speakers of
English do have a strong intuition about consonants affiliating to a coda in some
syllables based on what appear to be stress factors. So, for instance, there is a
tendency to syllabify astir as [], but the proper name Astor, as [].

To solve this without relying on knowledge of word stress, we have modeled
consonant affiliation by adding two rules where nasals and [s] affiliate to the left
when preceded by an open syllable where the nucleus is not { ,i} to give the
desired predictions.7 These rules apply before the main syllabification rule:

define sRule[s -> ..."." ‖ ([[Cons]|[(Stop) r]]) [Vow - - i] Cons+ Vow]];

define NasRule [Nas -> ..."." ‖ [Vow - - i] y];

6 Medial vs. Marginal Clusters

Often the types of onset that are found word-initially can be used as clues to
deduce further restrictions on top of the sonority considerations [9]. As English
allows, for instance, initial [spr] in many words (spring, spray, etc.), the con-
clusion can be drawn that [spr] should be legal in word-medial onsets as well.
However, in modeling the syllabifications of a particular source (M-W), it has
become clear that there is a tendency to avoid generalizing from some attested
7 The syllabifier described was designed to be used as part of research concerning

generalizations about English stress where an underlying representation was assumed
that was close to the phonetic form of the word. Part of this research involved the
separation of syllabification and stress rules, where syllabification would apply first,
and stress later, and where the two would function as independent processes.

92 M. Hulden

word-initial onsets to legal medial onsets. Although [sn] is a cluster very com-
monly encountered word-initially, as in e.g. snow, allowing the same cluster in
word-medial position will not yield correct syllabifications in words such as pil-
sner, which, if [sn] were permitted, would be incorrectly syllabified as [].8

Thus, certain initial clusters can probably not be used as a basis for legitimiz-
ing medial clusters of the same type. The initial-cluster [skl], for instance (which
only occurs in a handful of words: sclerosis, sclaff, etc.), is one that has not been
permitted syllable-initially in the syllabifier. Similarly with final clusters, e.g.
[] is a unique and highly marked four-consonant cluster and does not seem
to warrant the inference that [] would be a legal coda. For such coda clus-
ters, this is in most cases not significant because of the tendency to maximize
onsets—long codas will rarely be allowed except word-finally. In fact, the set of
permitted codas have been modelled simply as any maximally two-consonant
combination.9 This makes exactly the same predictions as a model where codas
are constrained to actually attested ones.

Onsets, on the other hand, must be attended to in more detail than the
guiding sonority principles. In this implementation we have only marked syllable
boundaries. In such a process, the main syllabification rule (above) applied to
a word with an initial [skl]-cluster will never match [skl] since it is not a legal
onset. But as the input language to the transducer is the universal language
?*, [s] will be transduced to [s], and [kl] will be matched as a legal onset as the
syllabification proceeds. In effect, the initial [s] will be treated as “extrametrical.”

Incidentally, the exclusion of onset clusters such as [skl] yields different syllab-
ifications for word pairs such as exclaim and explain ([], []).10

This strategy will not affect the final syllabification as long as we are content
with marking syllable boundaries, not beginnings and endings. Such an approach
should be sufficient for most applications since any phonological rule that later
needs to refer to a syllable boundary in its conditioning environment will not
need to know whether the boundary marks the beginning or the end of syllable.

If we wanted to “wrap” every syllable with both a beginning and end marker,
[σ and]σ, this issue would have to be addressed. However, we know of no simple
phonological process in English that would require a differentiation between
[σ and]σ.

It should be noted that this implementation assumes an underlying form
that is very close to the phonetic form. Applications that make use of more
abstract underlying forms can derive further predictions through wrapping

8 The discrepancy between acceptable word-medial and word-marginal syllable types
has been the subject of much recent research. For a stochastic perspective, see Cole-
man and Pierrehumbert [10], and for an OT-related analysis, see Hammond [9].

9 That this approach works has an interesting parallel in the OT literature, where a
constraint with a similar function, such as Align-3μ, is sometimes seen [11]. This
constraint prohibits syllables heavier than 3 moras, except word-finally. For English,
the prediction is quite similar to disallowing more than two coda consonants.

10 M-W has this syllabification. This example pair 1) [] and 2) [] would
indirectly make the subtle prediction that the [k] is aspirated [kh] in 1), whereas the
[p] would remain unaspirated in 2).

Finite-State Syllabification 93

syllables with beginning and end markers instead of simply marking bound-
aries. For instance, the phonological phenomenon of Stray Erasure [12], where
coda segments that cannot be legally parsed into syllables remain unpronounced,
could be described by wrapping syllables. Supposing the underlying form of a
word such as damn were [], instead of [], as here, and supposing sylla-
bles would be grouped instead of boundary-marked, the output of the transducer
would be . However, in , the first [n] would be parsed into
a new onset, allowing it to be pronounced.

7 Polymorphemic Words

Some polymorphemic words will not be treated properly given the descrip-
tion above. For instance, transplant will receive the unorthodox syllabification
[]. Assuming the system knows of morpheme boundaries, a preference
for syllabifications where syllable breaks coincide with morpheme boundaries can
be stated. This is accomplished by the upper-side priority union operator [13].

define Syllabify [
[sRule .o. NasRule .o. MainRule .o. SyllableWellFormedness]

.P.
[IgnoreMorphBoundaries .o. sRule .o. NasRule .o. MainRule]
];

We also define a SyllableWellFormedness filter that disallows parses where a
syllable violates the the well-formedness of onsets or codas in English:

define SyllableWellFormedness [[SSP "."]* SSP];
define IgnoreMorphBoundaries "|" -> 0;

The motivation for the .P. construction is to allow words that would syllabify
correctly when morpheme boundaries are treated as syllable boundaries. The
syllabification [] contains no illegal onsets or codas, and is accepted.
But there are words where morpheme boundaries cannot be respected without
incurring an illegal onset, e.g. deca|μ(a)thlon should not yield [] since
the sequence [] is not a well-formed onset in English. The first part of the rule
in this case will have no output (it is blocked by SyllableWellFormedness) since
[] is not among the legal onsets, and is prevented by well-formedness filter. The
priority union operator ensures that only the lower rule cascade applies if the
output language of the upper rule is 0, giving in this case the correct final output
[]. The lower rule simply removes the morpheme boundary markers,
and syllabification proceeds normally.

8 Implementing Alternative Approaches

The phonological literature is rife with differing proposals for the syllabification
of English, and agreement seems to be rare. This is why we chose a standard

94 M. Hulden

source whose syllabifications seemed natural (M-W), and the principles of the
syllabifier were then developed according to this specific set of empirical data.

This results in a fairly conservative and traditional view of English syllabi-
fication—one that does not allow more complex phonological representations
such as ambisyllabicity (where a single consonant is seen to belong to two adja-
cent syllables, as in Kahn’s treatment [1]), or gemination (where a single conso-
nant is represented as two segments, following e.g. Hammond [9]).

Most approaches to English syllabification are implementable with the basic
methods outlined here. Four other approaches were encoded as FSTs to com-
pare their respective predictions. These were the generative views of Kahn [1]
and Selkirk [14], as well as the more recent Optimality Theory based views in
Hammond [9], and Hall [11]. This simplicity of implementation crucially hinges
on the existence of a shortest-replace operator (@>) and the upper-side priority
union operator. Defining these through more primitive operators would severely
complicate the task of constructing correct transducers.

When implemented as FST rewrite rules, the generative approaches were
shown to be quite similar, differing only in the minutiae of the rewrite rules,
despite the fact that the original descriptions often follow an involved formal-
ism. However, these small differences often lead to wide variety of predictions,
as seen in table 6.

Table 6. A sampling of the differing views on the English syllable. The second column
represents the predictions made by the implementation described here. It should be
noted that many of the examples here are not provided by the original authors—
rather, a finite-state syllabifier has been reconstructed based on information given by
the original sources. In the phonological literature, many details are often abstracted
away from, and some essentials are presumed to be known, such as the set of allowed
onsets. Often such details must be inferred from the specific examples given by the
authors.

Kahn (1976) Hammond (1999) Hall (2004)
feisty

cascade
pity

vanity
texture

9 Concluding Notes

We have presented general strategies to handle syllabification by finite-state
means, as well as the details of an English syllabifier (see table 7 for examples
of the output). The particular implementation is compact and the end result
is a transducer with 52 states if the special handling that respects morpheme
boundaries is ignored, and 188 states with this addition. This compares favor-
ably with optimality theoretical implementations we have also evaluated as a

Finite-State Syllabification 95

comparison—the smallest of which (following Hall [11]), using the construction
method given by Gerdemann and Van Noord [15] is minimally represented by
1768 states.

Table 7. Example outputs of the syllabifier. No morpheme boundaries were present
in the input.

acquiesce aspen
atrocious atrophy

comptroller computer
deluge esquire

establishment exclaim
explain exquisite
extra formula

gestation inkling
manipulate manual
mattress metro

Mississippi mistrust
tenuous transcribe
venue Venusian

References

1. Kahn, D.: Syllable-based Generalizations in English Phonology. PhD thesis, MIT
(1976)

2. Hooper, J.: Constraints on schwa-deletion in American English. In Fisiak, K., ed.:
Recent Developments in Historical Phonology. Mouton, The Hague (1978) 183–207

3. Chomsky, N., Halle, M.: The Sound Pattern of English. Harper and Row (1968)
4. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-

tional Linguistics 20 (1994) 331–378
5. Beesley, K., Karttunen, L.: Finite-State Morphology. CSLI, Stanford (2003)
6. Laaksonen, K., Lieko, A.: Suomen kielen äänne- ja muoto-oppi [Finnish Phonology

and Morphology]. Finn Lectura (1998)
7. Kenstowicz, M.: Phonology in Generative Grammar. Blackwell (1994)
8. Clements, G.N., Keyser, S.J.: CV Phonology: A Generative Theory of the Syllable.

MIT Press (1983)
9. Hammond, M.: The Phonology of English. Oxford (1999)

10. Coleman, J., Pierrehumbert, J.: Stochastic phonological grammars and acceptabil-
ity. Proceedings of the 3rd Meeting of the ACL Special Interest Group in Compu-
tational Phonology (1997) 49–56

11. Hall, T.A.: English syllabification as the interaction of markedness constraints.
ZAS Papers in Linguistics 37 (2004) 1–36

12. Blevins, J.: The syllable in phonological theory. In Goldsmith, J.A., ed.: The Hand-
book of Phonological Theory. Blackwell (1995)

13. Karttunen, L.: The proper treatment of optimality theory in computational phonol-
ogy. In: Finite-state Methods in Natural Language Processing, Ankara (1998) 1–12

96 M. Hulden

14. Selkirk, E.O.: The syllable. In: Phonological Theory: The Essential Readings.
Blackwell (1999)

15. Gerdemann, D., van Noord, G.: Approximation and exactness in finite state op-
timality theory. In Jason Eisner, Lauri Karttunen, A.T., ed.: Proceedings of the
Fifth Workshop of the ACL Special Interest Group in Computational Phonology.
(2000)

Algorithms for Minimum Risk Chunking

Martin Jansche

Center for Computational Learning Systems
Columbia University, New York

Abstract. Stochastic finite automata are useful for identifying sub-
strings (chunks) within larger units of text. Relevant applications include
tokenization, base-NP chunking, named entity recognition, and other in-
formation extraction tasks. For a given input string, a stochastic automa-
ton represents a probability distribution over strings of labels encoding
the location of chunks. For chunking and extraction tasks, the quality of
predictions is evaluated in terms of precision and recall of the chunked/
extracted phrases when compared against some gold standard. However,
traditional methods for estimating the parameters of a stochastic finite
automaton and for decoding the best hypothesis do not pay attention to
the evaluation criterion, which we take to be the well-known F -measure.
We are interested in methods that remedy this situation, both in training
and decoding. Our main result is a novel algorithm for efficiently eval-
uating expected F -measure. We present the algorithm and discuss its
applications for utility/risk-based parameter estimation and decoding.

1 Introduction

Finding regions of interest in texts is a fundamental task in Natural Language
Processing. Typical regions of interest include noun phrases [1, 2, 3, 4],
subject-verb phrases [5], named entities [6, 7], and word tokens [8], among others.
We consider this task abstractly and speak of chunks or phrases (substrings) to
be located inside larger strings. Phrase chunking – the process of finding chunks/
phrases – is evaluated like an information retrieval task, in terms of precision
and recall: we compare the set of chunks found by a system against a given
gold standard dataset annotated with chunk information. Precision refers to the
number of true positive chunks divided by the number of hypothesized chunks
(fraction correct). Recall refers to the number of true positive chunks divided
by the number of true chunks according to the gold standard (fraction found).
Precision and recall values are combined into a single quantity, which can be
either the risk-like E-measure [9], or the utility-like F -measure.

Our larger goal is to formulate a stochastic approach to phrase chunking that
is informed by these evaluation criteria: we want to minimize E-measure (risk)
or maximize F -measure (utility) during training [10] and decoding. In this paper
we focus on the foundational aspects of this approach and on algorithmic issues
surrounding minimum-risk/maximum-utility estimation in particular. The main
result is a novel algorithm for evaluating the expected utility of a hypothesis. The

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 97–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 M. Jansche

key insight is that the number of true positives (matched chunks) of a hypothesis
string compared to a gold standard label string can be computed by a weighted
infinite transducer. This infinity poses no problems, since transducers can be
implemented in a lazy fashion [11] and only finite prefixes have to be considered.
The algorithm also makes use of weighted transducer composition and algebraic
path computations (not discussed here).

Building automatic chunkers is simplified by the use of supervised machine
learning. In this scenario, a learner is presented with examples of strings together
with a set of chunks1 occurring in those strings and asked to infer regularities
that will allow similar chunks to be found inside previously unseen strings. Since
this is not a standard learning task, it is transformed into a more conventional
sequence learning task. Learning with sequential data is ubiquitous in Natural
Language Processing and well understood [12, 13, 14].

Several reductions from the real learning task to sequence learning tasks are
possible. The most common schemes annotate each string of words with an
equally long string of labels, which indicate, directly or indirectly, whether a
symbol is part of a chunk, and whether it occurs at the start, in the middle,
or at the end of a chunk. Tjong Kim Sang et al. [4] compare several labeling
schemes. The examples and techniques in this paper are based on what they refer
to as the iob2 scheme. This choice is convenient, but not essential; our techniques
could be adapted to work with other schemes as well. The iob2 scheme goes back
to Ratnaparkhi ([15], pp. 57ff.), who used the labels ‘Start’, ‘Join’, and ‘Other’,
which are known here as as b, i, and o, respectively. Their function is perhaps
best illustrated by an example.

Example 1. The following sentence appears in the Dutch language training data
provided for the Shared Task of the 2002 Workshop on Computational Natural
Language Learning [16], in which named entity chunks are indicated by square
brackets (we do not care about entity sorts here):

De liberale minister van [Justitie] [Marc Verwilghen] is geen kandidaat
op de lokale [VLD-lijst] bij de komende gemeenteraadsverkiezingen in
[Dendermonde].2

The same sentence is represented in the iob2 scheme as follows:

〈De,o〉 〈liberale,o〉 〈minister,o〉 〈van,o〉 〈Justitie,b〉 〈Marc,b〉
〈Verwilghen, i〉 〈is,o〉 〈geen,o〉 〈kandidaat,o〉 〈op,o〉 〈de,o〉 〈lokale,o〉
〈VLD-lijst,b〉 〈bij,o〉 〈de,o〉 〈komende,o〉
〈gemeenteraadsverkiezingen,o〉 〈in,o〉 〈Dendermonde,b〉 〈.,o〉

1 In the simplest case, a chunk is a substring of the string of words. This is the definition
we will assume throughout this paper. More complex scenarios where chunks come
in different varieties (e.g. different types of named entities) are easily accommodated.

2 [Marc Verwilghen], the liberal minister of [Justice], is not on the local [VLD (the
Flemish liberal democrats) list] as a candidate in the upcoming city council elections
in [Dendermonde].

Algorithms for Minimum Risk Chunking 99

In the iob2 scheme, the label b signals the beginning of a chunk, i marks the
inside (continuation) of a chunk, and o denotes that a word is outside of any
chunk. Note that an i label cannot occur immediately after an o label. A total of
three types of labels is needed in order to encode adjacent chunks, as in ‘minister
van [Justitie] [Marc Verwilghen]’.

Formally, an unsupervised instance is a nonempty string w ∈ Σ+ over some
finite alphabet Σ (Dutch words, in the above example). Let Γ = {i,o,b} be the
set of iob2 labels. A supervised instance is then a pair 〈w, x〉 consisting of a
word string w ∈ Σ+ of length |w| = � > 0 together with a label sequence x of
the same length |x| = �. The language of valid label sequences, of which x is a
member, is the local language Llbl = {o,b}Γ∗ − Γ∗{oi}Γ∗ . Excluded from Llbl
are label strings that either start with the label i or contain oi as a substring. A
pair 〈w, x〉 of same-length strings is isomorphic to a string of pairs, which was
the representation used in the example.

2 Two Related Processing Tasks

2.1 Minimum Risk Decoding

Thanks to the iob2 encoding of chunks, we are now dealing with a familiar
sequence labeling problem: instead of finding chunks in an instance w, we have
to find a label string x corresponding to w in the transformed problem. However,
we also need to recover a solution to the original information extraction problem
from a solution to the sequence labeling problem. This is known as decoding.

Say a sequence labeling module is presented with a word string w ∈ Σn and
produces a probability distribution over label string hypotheses y ∈ Γn ∩ Llbl.
A naive decoding approach might consider only the most likely label string and
read chunks off that string. This does not use information from runners-up,
which might contradict the most likely string and collectively outweigh it.

The Bayes Decision Rule [17] tells us that the best hypothesis x̂w is one with
minimum average cost under the distribution of label strings (this is also known
as minimum risk decoding):

x̂(w) = argmin
x

R(x | w) = argmin
x

∑
y

λ(x | y) Pr(y | w), (1)

where x, y ∈ Γ|w| ∩ Llbl range over valid label strings such that |w| = |x| = |y|.
The loss function λ is a task-dependent function into the nonnegative rational
numbers; λ(x | y) is the loss incurred for choosing hypothesis x when the true
state of affairs is y. Finally, R(x | w) is the conditional risk, or expected loss, of
hypothesis x under a probability distribution conditional on w.

Instead of minimizing the expectation of a loss function, we can also maxi-
mize the expectation of the negative loss function, which we call the expected
utility.3 In general, the choice of loss or utility function depends on the applica-
tion. In Natural Language Processing, various loss/utility functions have been
3 Maximizing expected utility and minimizing expected loss amount to the same if

optimization is exact. In the rest of this paper we will treat them as equivalent.

100 M. Jansche

proposed for decoding and evaluation of chunking [5, 18, 19, 20] and other tasks
(for example [21, 22] among many others). For the phrase chunking applications
we are concerned with, the evaluation criteria are based on the concepts of pre-
cision and recall from Information Retrieval. Both of these criteria compare a
hypothesis h against a gold standard g. Precision is defined as the number of
correctly identified chunks (true positives, or tp(g, h)) divided by the number of
hypothesized chunks (positive margin, or m(h)). We write this as

P (h | g) =

⎧⎨⎩
tp(g, h)
m(h)

if m(h) > 0

1 if m(h) = 0
(2)

Recall is conversely defined as the number of correctly identified chunks
tp(g, h) divided by the true number of chunks m(g) (true margin): R(h | g) =
P (g | h). Note that a special case arises when the denominator is zero, in which
case the numerator tp(g, h) is also necessarily zero.

Precision and recall are combined into a single loss function, namely van
Rijsbergen’s ([9], p. 372) effectiveness measure E with parameter α ∈ (0; 1):

Eα(h | g) = 1 −
[
α

1
P (h | g)

+ (1 − α)
1

R(h | g)

]−1

An analogous, and much more familiar, utility function can be defined in
terms of 1 − Eα(h | g). This is the α-weighted harmonic mean of precision and
recall, also known as the F -measure and often mistakenly attributed to [23].
Letting α = 1/(β + 1) with β > 0, the Fβ-measure is defined as follows:

Fβ(h | g) = 1 − Eα(h | g) =
(β + 1) P (h | g) R(h | g)

β P (h | g) + R(h | g)

It is more convenient to express the Fβ-measure in terms of the number of
matched chunks tp(g, h), hypothesized chunks m(h), and actual chunks m(g):

Fβ(h | g) =

⎧⎨⎩
(β + 1) tp(g, h)
m(h) + β m(g)

if m(h) + m(g) > 0

1 otherwise
(3)

This equation gives us the parametric family of utility functions Fβ that will
be used throughout the rest of this paper for the phrase chunking task. The
optimization tasks underlying decoding and parameter estimation involve max-
imizing the expectation of the utility Fβ(h | g), or, equivalently, minimizing the
expectation of the loss 1−Fβ(h |g). The following symmetry will be useful later:
Because α = 1/(1 + β), therefore 1 − α = 1/(1 + 1/β) and so

Fβ(h | g) = F1/β(g | h). (4)

With these definitions in place, we are in a position to formally state the decoding
problem for the phrase chunking task. The hypothesis with minimum expected
loss (minimum risk) or maximum expected utility (meu) is now

Algorithms for Minimum Risk Chunking 101

x̂meu(w) = argmax
x

∑
y

Fβ(x | y) Pr(y | w) = argmax
x

Uβ(x | w). (5)

The conditional expectation of Fβ will also be written as Uβ(x | w). In order
to carry out the discrete optimization of the decoding task (5), we need an
efficient algorithm for evaluating the expected utility U . We will show that U
can be represented as a weighted transducer whenever the probability model is
provided by a stochastic finite automaton.

2.2 Parameter Estimation by Empirical Risk Minimization

A second task in which the expected utility U plays a role is the estimation of
parameters of the underlying probability model of a chunker given a sequence
of supervised instances 〈w1, x1〉, . . . , 〈wn, xn〉. We assume that the probability
model is parameterized by a vector θ. In Empirical Risk Minimization, our es-
timate of θ is one which minimizes the average risk on the training data. We
reformulate this again as maximizing the average utility (using Fβ as the utility
function) instead of minimizing expected loss:

θ̂ = argmax
θ

1
n

n∑
i=1

Fβ(x̂(wi; θ) | xi).

For simplicity, we use as the decoded hypothesis x̂ the maximum a posteriori
(map) hypothesis (6) instead of the meu hypothesis (5).

x̂(w; θ) = argmax
x

Pr(x | w; θ). (6)

The factor 1/n does not depend on θ and can be ignored in the maximization.
The parameter estimation task is then the following optimization problem:

θ̂ = argmax
θ

n∑
i=1

Fβ(argmax
z

Pr(z | wi; θ) | xi). (7)

Because of the nested discrete maximization step involving z, the outer
maximization problem involving θ is not well-behaved: the outer optimization
objective is a piecewise constant function of θ whose gradient is zero almost
everywhere. We reformulate this problem and approximate the inner maximiza-
tion in a way that will regularize the outer optimization problem. Let δ be the
Kronecker delta, whose value is one if its two arguments are equal, and zero
otherwise. Then:

θ̂ = argmax
θ

n∑
i=1

∑
y

Fβ(y | xi) δ(y, argmax
z

Pr(z | wi; θ))

≈ argmax
θ

n∑
i=1

∑
y

Fβ(y | xi)
Pr(y | wi; θ)

maxz Pr(z | wi; θ)

= argmax
θ

n∑
i=1

1
maxz Pr(z | wi; θ)

U1/β(xi | wi; θ)

102 M. Jansche

The approximate equality between the first and second line holds because

δ(y, argmax
z

Pr(z)) = lim
γ→∞

(
Pr(y)

maxz Pr(z)

)γ

We chose a fixed sharpening parameter γ = 1 to approximate this limit in the
above derivation; larger values of γ can be used with minor changes. We again
encounter the expected utility U , whose parameter 1/β is due to the symmetry
(4) observed earlier. The net result is that the outer optimization objective
depends continuously on θ so that an iterative numerical optimization can be
carried out4 provided that U can be evaluated efficiently.

2.3 A Common Subexpression: Expected Utility

The conditional expected utility U occurs both in the Maximum Expected Util-
ity (or Minimum Risk) decoding task and in the Empirical Risk Minimization
parameter estimation task. It can be expressed as follows:

Uβ(x | w; θ) =

⎧⎪⎨⎪⎩
(β + 1)

∑
y

tp(x, y)
m(x) + β m(y)

Pr(y | w; θ) if m(x) > 0

Pr(x | w; θ) if m(x) = 0
(8)

The special case is due to the fact that m(x) + m(y) = 0 iff both x and y are
comprised exclusively of o labels, in which case x = y.

Expected utility cannot be evaluated efficiently by direct summation, since
there are exponentially many label strings y one has to sum over. Let the number
of label strings of length � (recall that � = |w| = |x| = |y|) be known as N(�) =
|Γ� ∩Llbl|. It is easy to show that the asymptotic growth of N is exponential in �:
observe that {o,b}� � (Γ� ∩ Llbl) � Γ� for � ≥ 2, and therefore N(�) ∈ ω(2�)
and N(�) ∈ o(3�). The tight bound is Θ((1 + φ)�) where φ = (1 +

√
5)/2; hence

1 + φ ≈ 2.618. The hidden constant of proportionality in the tight bound is
1/2 +

√
1/20, and so for a moderately long sentence with 21 words (including

punctuation) like in Example 1, one would have to sum over 433 494 437 distinct
label strings. The longest “sentence” in the dataset which Example 1 was taken
from [16] comprises 859 tokens – it is a linearized table – and corresponds to
about 79 centumoctodecillion (79 × 10357) potential label strings.

3 Algorithms

3.1 Computing Expected Precision

Consider the problem of evaluating the expectation of precision (2) for fixed w,
x and θ:

∑
y

P (x | y) Pr(y | w; θ) =

⎧⎪⎨⎪⎩
1

m(x)

∑
y

tp(x, y) Pr(y | w; θ) if m(x) > 0

1 if m(x) = 0

4 This involves ignoring the term maxz Pr(z |wi; θ) or holding it fixed in each iteration.

Algorithms for Minimum Risk Chunking 103

b:b o:o, o:b,
b:o, b:b

i:iΓ × Γ Γ × Γ

Fig. 1. Nondeterministic finite transducer that counts true positive chunks

Computing expected precision boils down to evaluating the expected number of
true positives, ∑

y

tp(x, y) Pr(y | w; θ). (9)

The significance of (9) is that it also occurs in the derivation of the expected
utility (8). The technique developed in this section for evaluating expected true
positives will be generalized in Sec. 3.2 to apply to expected utility.

In general, sums of products of the form
∑

y f(x, y) g(y, z) can be calculated
efficiently for certain forms of f and g even when naive summation would be
inefficient. This holds in particular when f and g can be computed by finite
state transducers (fsts), in which case the summation corresponds to weighted
transducer composition [24].

The expected number of true positives as expressed in (9) is of the requisite
form. In order for transducer composition to be applicable, we need to show that
we can compute tp by a finite state transducer.5 Since we require the evaluation
algorithm to be efficient, we also need to demonstrate that the size of all finite
state machines involved in the computation is small enough to enable the eval-
uation to be carried out in polynomial time. We begin by formulating a finite
state machine for computing tp.

A transducer that computes tp is a two-tape automaton that maps a pair of
strings x, y ∈ Γn to a count of the number of chunks that x and y agree on
(true positives). An individual true positive chunk is described by the regular
expression b:b (i:i)∗ ($:$ | o:o | o:b | b:o | b:b). This expression describes all
pairs of string that both start with b followed by an equal amount of i’s, and
then both signal the end of the chunk. A chunk ends on either tape if the end
of the string is reached ($), or if i is followed by a label other than i.

From this regular expression one can then construct a nondeterministic trans-
ducer that counts the number of occurrences of true positive chunks, using the
generalized counting technique of Allauzen et al. [25]. The resulting weighted
transducer over the real semiring, call it Tnd, is shown in Fig. 1 (all edge weights
and final weights are unity). The crucial observation is that tp(x, y) = t if and
only if there are precisely t paths through Tnd labeled with 〈x, y〉. For further
background on weighted transducers see [25] and references cited therein.

5 We also need to formulate a suitable probability model Pr(y | w; θ) that can likewise
be expressed as a weighted finite state transducer. It is clear that HMMs, CMMs,
MEMMs and related models have this property.

104 M. Jansche

i:o, i:b,
o:i, b:i

i:i
i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

1 1

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

2 2

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

3 3

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

0

Fig. 2. Initial portion of Tua

Assume that there is a transducer Mθ over alphabets Γ and Σ with behavior
[Mθ](y, w) = Pr(y |w; θ). The composition of Tnd with Mθ then has the following
behavior, as desired: [Tnd ◦ Mθ](x, w) =

∑
y tp(x, y) Pr(y | w; θ).

The next issue is to show how this calculation can be done for fixed 〈x, w〉.
We write Str(x) to denote a transducer6 that maps the string pair 〈x, x〉 to 1
and all other pairs to 0. In order to evaluate (9) for fixed 〈x, w〉, construct the
transducer

Str(x) ◦ Tnd ◦ Mθ ◦ Str(w), (10)

which has the property that all paths leaving its start state are labeled with
〈x, w〉. Its behavior can be computed efficiently by a single-source algebraic path
algorithm on the acyclic transition graph of the transducer (10) (see [26], §25.4).

We can simplify the construction of (10). When we build Str(x) ◦ Tnd, we
do not actually care about the first tape of the composed transducer and can
eliminate it by projection/marginalization. Notice that the second projection
π2(Str(x)◦Tnd) does not generally result in a deterministic automaton; however,
we can directly construct an equivalent deterministic automaton. The reason for
doing so is to obtain a simple upper bound on the state and arc complexity of a
transducer that carries out the same computation as Str(x) ◦ Tnd.

6 The construction of Str(x) is a special case of the prefix tree (a. k. a. “trie”) repre-
sentation of a finite dictionary.

Algorithms for Minimum Risk Chunking 105

Tdet(x):

1: 〈x0, . . . , x�−1〉 ← x
2: S ← { } // set of states
3: F ← { } // set of final states
4: E ← { } // set of transitions
5: Q ← new Queue() // an empty queue
6: Q.enqueue(〈0, 	, 0, 0〉) // push start state
7: while ¬ Q.isEmpty() do
8: q ← Q.dequeue()
9: if q ∈ S then

10: continue // already visited q
11: S ← S ∪ {q}
12: k ← q[0] // index
13: if k = � then
14: F ← F ∪ {q}
15: continue // final state
16: outside ← q[1] // outside a match?
17: tp ← q[2] // matching chunks so far
18: if xk = b ∨ xk = o ∨ (outside ∧ xk = i)

then
19: addEdge(E, Q, q, o, 	, 0)
20: if xk = b then
21: addEdge(E, Q, q, b, ⊥, +1)
22: else
23: addEdge(E, Q, q, b, 	, 0)
24: if outside = 	 then
25: addEdge(E, Q, q, i , 	, 0)
26: else if xk = i then
27: assert tp > 0
28: addEdge(E, Q, q, i , ⊥, 0)
29: addEdge(E, Q, q, o, 	, −1)
30: addEdge(E, Q, q, b, 	, −1)
31: else
32: assert tp > 0
33: addEdge(E, Q, q, i , 	, −1)
34: return 〈S, 〈0, 	, 0, 0〉, F, E〉
(a) Construction of Tdet.

addEdge(E, Q, q, osym, outside , Δtp):

1: k ← q[0] + 1
2: tp ← q[2] + Δtp
3: r ← 〈k, outside , tp, 0〉 // target
4: E ← E ∪ {〈q, osym , r〉}
5: Q ← Q ∪ {r}

(b) Computing exp. true positives.

addEdge(E, Q, q, osym, outside , Δtp):

1: k ← q[0] + 1
2: tp ← q[2] + Δtp
3: if osym = b then
4: pm ← q[3] + 1
5: else
6: pm ← q[3]
7: r ← 〈k, outside , tp, pm〉 // target
8: E ← E ∪ {〈q, osym , r〉}
9: Q ← Q ∪ {r}

(c) Computing expected utility.

U(x,w, θ, β):

1: mx ← num. occurrences of b in x
2: if mx = 0 then
3: return Pr(x | w; θ)
4: T ← Tdet(x)
5: 〈D, F 〉 ← algPathCompose(T, θ)
6: u ← 0
7: for each q ∈ F do
8: tp ← q[2]
9: my ← q[3]

10: u ← u + D[q] tp/(mx + β my)
11: return (β + 1) u

(d) Overall computation.

Fig. 3. Algorithm for constructing Tdet

We construct a complete and unambiguous transducer Tua that is equivalent
to Tnd, meaning for each pair of same-length strings 〈x, y〉 there is precisely
one accepting path through Tua. Furthermore, the composition Str(x) ◦ Tua is
an output-deterministic transducer: its second projection is a deterministic au-
tomaton. Note that it is possible to have an unambiguous transducer for count-
ing matching chunks in string pairs of a known length, but disambiguation of
Tnd is impossible because Tnd can be used to count matching chunks in strings
of unbounded length. In fact, the path multiplicity of Tnd is at the core of its

106 M. Jansche

design as a counter. However, an unambiguous version of Tnd can be constructed
if we allow the set of states to be countably infinite. The initial portion of Tua
is shown in Fig. 2 (all edge weights are one; final weights are as indicated).
In order to understand the correctness of Tua (Fig. 2), observe its similarity
to Tnd (Fig. 1). In both cases there are b:b transitions from the start state to
a state with an i:i loop, as well as o:o, o:b and b:o transitions out of that
state. However, whereas the b:b transition out of the second state of Fig. 1
signals the end of a chunk, it simultaneously signals the beginning of a new
chunk (this is precisely the rationale for the b label – to encode adjacent junks),
hence the vertical b:b transitions in Fig. 2. The final weight of each state cor-
responds to the number of matching chunks encountered. The states there are
organized in two columns, with those on the left indicating that the inside of
a matching chunk is being processed. The only way to get to the left column
is to take a diagonal b:b transition that signals the beginning of a potential
matching chunk. There are two ways to proceed from the left column to the
right column: take an upward diagonal transition, which indicates a failed po-
tential match; or take a horizontal transition, which successfully completes a
true positive match.

In an implementation of finite state machines based on lazy data structures
(e.g. [11]), infinite transducers like Tua can be represented directly. For simplicity
we will present a more traditional algorithm, shown in Fig. 3 (a+b), which con-
structs a deterministic finite automaton Tdet(x) = π2(Str(x) ◦ Tua). The states
of Tdet(x) can be thought of as triples 〈k, o, t〉 where k is an index into x; o is a
boolean variable that indicates if the state is part of a matching chunk; and t is
the number of matching chunks encountered so far (equal to the final weights).
Conceptually, k is a state of Str(x) and 〈o, t〉 is a state of Tua, where o selects
the left (o = ⊥) or right (o = �) column of states in Fig. 2. There are at
most (|x| + 1) × (2 |x| + 1) states and a constant number of outgoing edges per
state.

This is sufficient to guarantee that (10) can be evaluated efficiently. Mθ◦Str(w)
has Θ(3j|w|) states when Mθ is a jth-order Markov model. Since j is fixed
and x and w are of the same length and thus do not require separate indices,
the composed automaton (10) has O(|x|2) states. Because the algebraic path
computation runs in linear time, the overall computation of the expected number
of true positives (9) runs in quadratic time. Moreover the hidden constant of
proportionality is small when j is small and when there are few b labels in a
label sequence, as is typically the case.

3.2 Computing Expected Utility

Evaluating expected Fβ also involves computing the expected number of hy-
pothesized chunks

∑
y m(y) Pr(y | w; θ). This is straightforward: whenever one

encounters the label b, one increments a counter. An fst which counts (up
to a fixed threshold of n) the chunks it sees on its second tape is shown in
Fig. 4.

Algorithms for Minimum Risk Chunking 107

Γ:b

Γ:i, Γ:oΓ:i, Γ:o

Γ:b

Γ:i, Γ:o

Γ:b

Γ:i, Γ:o

0 1 n

Fig. 4. Output-deterministic transducer that counts hypothesized chunks

An fst that computes 〈tp(x, y), m(y)〉 in parallel can be obtained7 by a
composition-like combination of the transducers in Fig. 2 and Fig. 4. This is quite
simple: the algorithm in Fig. 3 (a+b) can be extended by making states quadru-
ples instead of triples, changing only the function “addEdge”, so that the num-
ber of hypothesized chunks can be tracked directly. The extended algorithm in
Fig. 3 (a+c) constructs a transducer with at most (|x|+1)2 × (2 m(x)+1) states,
whose behavior can therefore be computed in cubic time. The corresponding al-
gorithm is shown in Fig. 3 (a+c+d) and requires a subroutine (not shown for
reasons of space) that computes (i) the composition of Tdet with the automaton
Mθ ◦Str(y) representing the probability model and (ii) the algebraic path weights
for the final states of the composed transducer. The key insight here is that these
final states partition the probability mass of the probability model in such a way
that all label strings with the same number of true positive matches and the same
number of predicted chunks contribute to just one final state. While there are ex-
ponentially many label sequences, there are only quadratically many final states.
This allows us to evalute the expected utility U in polynomial time.

4 Conclusion

An efficient algorithm for computing the expected utility of chunking hypotheses
was presented within the framework ofweighted automata. This has direct applica-
tions for the loss-sensitive training and minimum risk decoding of stochastic chun-
kers. The key insight is that the number of matching chunks in two label sequences
can be counted efficiently using an unambiguous infinite transducer. This does not
transcend the boundaries of finite state computations – only finite prefixes and
finitely many hypotheses are considered – and it enabled us to state simple bounds
on the size of derived machines. The chunk counting transducer was extended triv-
ially to also keep track of predicted chunks, thus computing both matching and
predicted chunks in parallel, as required for the computation of expected utility.

Acknowledgments

This research was supported by the Office of the Dean, Fu Foundation School
of Engineering and Applied Science, Columbia University. I would like to thank
7 More precisely, since this computation involves pairs of real numbers, the weights of

the component transducers must be thought of as having been mapped into a direct
product of the real semiring with itself. Composition takes place in that product
semiring. The final weights are tuples 〈tp, pm〉.

108 M. Jansche

Julia Hirschberg, Phil Long, Owen Rambow, and the Columbia NLP group for
helpful feedback. The usual disclaimers apply.

References

1. Church, K.W.: A stochastic parts program and noun phrase parser for unrestricted
text. In: ANLP. (1988) 136–143

2. Voutilainen, A.: NPtool, a detector of English noun phrases. In: WVLC. (1993)
48–57

3. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning.
In: WVLC. (1995) 82–94

4. Tjong Kim Sang, E.F., Veenstra, J.: Representing text chunks. In: EACL. (1999)
173–179

5. Punyakanok, V., Roth, D.: The use of classifiers in sequential inference. In: NIPS.
(2000) 995–1001

6. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: A high-performance
learning name-finder. In: ANLP. (1997) 194–201

7. Freitag, D.: Toward general-purpose learning for information extraction. In:
COLING-ACL. (1998) 404–408

8. Zhou, G.: Chunking-based Chinese word tokenization. In: SIGHAN. (2003)

9. van Rijsbergen, C.J.: Foundation of evaluation. Journal of Documentation 30
(1974) 365–373

10. Jansche, M.: Maximum expected F-measure training of logistic regression models.
In: HLT-EMNLP. (2005) 692–699

11. Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state
transducer library. Theoretical Computer Science 231 (2000) 17–32

12. Bengio, Y.: Markovian models for sequential data. Neural Computing Surveys 2
(1999) 129–162

13. Dietterich, T.G.: Machine learning for sequential data: A review. Lecture Notes
in Computer Science 2396 (2002)

14. Collins, M.: Machine learning methods in natural language processing. Tutorial
presented at COLT (2003)

15. Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity
Resolution. PhD thesis, University of Pennsylvania (1998)

16. Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task. In: CoNLL.
(2002) 155–158

17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. 2nd edn. Wiley (2000)

18. Zhang, T., Damerau, F., Johnson, D.: Text chunking using regularized winnow.
In: ACL. (2001) 539–546

19. Zhang, T., Damerau, F., Johnson, D.: Text chunking based on a generalization of
winnow. Journal of Machine Learning Research 2 (2002) 615–637

20. Zhang, T., Johnson, D.: A robust risk minimization based named entity recognition
system. In: CoNLL. (2003) 204–207

21. Stolcke, A., König, Y., Weintraub, M.: Explicit word error minimization in n-best
list rescoring. In: EuroSpeech. (1997)

22. Kumar, S., Byrne, W.: Minimum Bayes-risk decoding for machine translation. In:
HLT-NAACL. (2004) 169–176

23. van Rijsbergen, C.J.: Information Retrieval. 1st edn. Butterworths (1975)

Algorithms for Minimum Risk Chunking 109

24. Mohri, M., Pereira, F., Riley, M.: Weighted automata in text and speech processing.
In: ECAI’96 Workshop on Extended Finite State Models of Language. (1996) 46–50

25. Allauzen, C., Mohri, M., Roark, B.: Generalized algorithms for constructing lan-
guage models. In: ACL. (2003) 40–47

26. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. 1st edn.
MIT Press (1990)

Collapsing ε-Loops in Weighted

Finite-State Machines

J. Howard Johnson

Institute for Information Technology,
National Research Council Canada,

Ottawa Canada
Howard.Johnson@nrc-cnrc.gc.ca

Abstract. Weighted finite-state automata pose a number of challenges
for software developers. One particular difficulty is that ε-transitions
must be treated more carefully than is necessary for unweighted au-
tomata. The usual weighted ε-closure algorithm always produces O(n2)
transitions for a ε-loop with n states. An approach that removes ε-loops
without performing a full ε-closure is proposed and it is shown how this
can be efficiently implemented using sparse matrix operations.

1 Introduction

Weighted finite state automata and transducers have become quite popular as an
underlying model for natural language processing. After much success in simpli-
fying and generalizing the foundations of Automatic Speech Recognition [8, 12],
they are now being successfully used as a framework for Statistical Machine
Translation [7].

Non-weighted finite state automata and transducers have also achieved a lot
of success in modelling various aspects of morphology and syntax of natural
language [2] but suffer from a lack in trainability that the weighted form of
machine can handle naturally. Thus there is interest in extending toolkits that
handle non-weighted models so that they handle weights in a meaningful way [6].

INR [5] was developed as a demonstration that large automata could be con-
structed efficiently in the early 1980s but never was extended to handle semirings
other than the Boolean semiring. This extension (with working name wINR) is
currently being undertaken at NRC to support a number of research projects.

There are many issues that adding weights brings up for an implementation
of finite automata and transducers but one of the first ones that is encountered
is the handling of ε-transitions [9, 11, 10]. One problem that has been observed
is that automata with large ε-loops experience the addition of O(n2) transitions
when the standard ε-closure algorithm is used. This has led to the development
of approximate methods to handle the large transducers that occur in some
applications [9].

INR [5] had an ε-closure algorithm that reduced the network of ε transitions
using a local rewrite rule mechanism. Then ε-loops can be collapsed to a single

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 110–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Collapsing ε-Loops in Weighted Finite-State Machines 111

state by means of merging through state renaming. A more general ε-closure
algorithm is still needed (and implemented) but it can assume that there are no
ε-loops remaining.

This approach had the advantage of keeping the number of states and transi-
tions small as long as possible to optimize space and time of implementation. In
the weighted case, this becomes even more important because the more compact
representations of a machine will often have ε-transitions [15, 16].

The idea of collapsing strongly connected components in the ε-network does
not generalize easily for other semirings. A more general approach is needed. For-
tunately this can be handled using an approach based on Gaussian elimination
and that is the topic of this paper.

Note that this approach to handling ε-transitions differs from most others in
that the only goal is the removal of loops. The remaining ε-transitions can be
kept or removed as suits the convenience of downstream operations using simpler
algorithms that do not have to handle loops.

Section 2 discusses one simple special case, that of a one tape finite automaton
with weights taken from the real numbers (�). To help clarify ideas, section 3
provides an example of the approach. Section 4 shows how the technology devel-
oped for the efficient processing of sparse matrices can be applied, reducing the
problem of storage cost to that of the amount of fill-in for a LU decomposition.
Section 5 shows that the restrictions imposed for section 2 can be removed so
that any ∗-semiring can be used for weights and any number of tapes can be
handled. Section 6 provides some concluding remarks.

2 The Technique (for a One-Tape Automaton over �)

In order to simplify the presentation, we will fix on the weights being drawn from
the real numbers � with addition and multiplication being the usual operations
on numeric quantities. A second simplification will be to assume that there is
only one input stream so that we consider only a weighted finite state recognizer.
This is an important case of interest and will provide important insight into the
more general cases discussed in section 5.

This section will present the idea in terms of matrix operations since it is
easier to see in this guise. Gaussian elimination is used and this is the standard
technique introduced in numerical analysis courses and more easily discussed
in terms of matrices. A discussion in terms of weighted directed graphs is also
possible but is less direct.

Suppose, then, that we have a weighted finite state automaton M :

M = 〈Q, Σ, S, F, E, {Tx|x ∈ Σ}〉

Here S is a row vector of |Q| elements from �, F is a column vector of |Q|
elements from �, and E and {Tx|x ∈ Σ} are all square matrices of order |Q|
with elements from �. This presentation, though slightly different from the usual,
is easily interconvertable with other definitions. The only wrinkle is that only

112 J.H. Johnson

one transition with given label or ε is possible between any pair of states but
this does not result in any loss in expressiveness.

By considering Q as the set of row (and column) indices {1, 2, 3, . . . , |Q|}, Tx

transitions with a label of x together in a matrix Tx. For the transition from
state i to j with label x and weight ω, we will set [Tx]ij = ω.

Next, we will collect together all of the ε-transitions into a matrix E by setting
Eij to the weight of the ε-transition from state i to j (if it exists).

Any unassigned cells in E or Tx will be set to 0.
We will begin with a row vector S with the appropriate weight for each state

indicated. If only one state is possible, then that element will have weight 1 and
the others will have weight 0. We will terminate with a column vector F having
the appropriate weights for each state.

Now if the automaton is ε-free, E = 0, and the total weight f(w) associated
with an input w = x1x2 · · · xl:

f(w) = S · Tx1 · Tx2 · · · · · Txl
· F

where the · indicates the normal matrix multiplication.
If, on the other hand E �= 0, we will note that E represents all ε-paths of

exactly length 1, E2 = E · E all ε-paths of exactly length 2, and, in general, Ei

(the product of i copies of E), represents all ε-paths of exactly length i.
Then we can define E∗ as the reflexive and transitive closure of E:

E∗ = I + E + E2 + E3 + ... = lim
n→∞

n∑
i=0

Ei

If this limit is defined, E∗ is a matrix that brings together in one package the
total effect of all of the possible finite paths using only ε-transitions. E∗ will
be defined if all of the weights are probabilities and the largest eigenvalue has
magnitude less than 1, as is usually the case. If E∗ is not defined then the
problem will probably need to be reformulated to explicitly handle the infinities
or to avoid them. This might mean removing states that are not co-accessible
(i.e., from which a final state can be reached) with non-zero probability and
renormalizing the weights so that the total probability is 1.

Then we interpose the matrix E∗ between every matrix multiplication in the
formula for f(w) to get:

f(w) = SE∗Tx1E
∗Tx2E

∗ · · ·E∗Txl
E∗F

Here we have reverted to the more common convention of not explicitly marking
the matrix multiplication operations.

Since we are assuming that E is over field �, and that E∗ is defined, E∗ =
(I − E)−1 is also defined. This is easily seen by verifying that (I − E) · E∗ = I.

If I − E is invertable, we can use Gaussian elimination to factor it into a
product of a lower triangular matrix L, a diagonal matrix D, and an upper
triangular matrix U :

I − E = LDU = (I − L′)D(I − U ′)

Collapsing ε-Loops in Weighted Finite-State Machines 113

Here L is a lower triangular matrix that has 1s on the diagonal, and U is an
upper triangular matrix also with 1s on the diagonal. Then L′ is a strictly lower
triangular matrix and U ′ is a strictly upper triangular matrix.

Up to this point, we are following the usual approach for inverting I −E. The
next step would be to use back solving with U and L to calculate the individual
elements of the inverse. Instead, we will go in another direction and recode U ′

and L′ back into regular ε-transitions.
Now

(I − E)−1 = (I − U ′)−1D−1(I − L′)−1

using standard properties of the matrix inverse. It is easy to see that all three
inverses are defined.

But

U ′∗ =
n−1∑
i=0

U ′i

since every path involving arcs of U ′ are strictly monotonically increasing. Sim-
ilarly

L′∗ =
n−1∑
i=0

L′i

since every path involving arcs of U ′ are strictly monotonically decreasing. Thus
L′∗ = (I − L′)−1 and U ′∗ = (I − U ′)−1 are both defined and

(I − E)−1 = U ′∗D−1L′∗

Thus the value for w = x1x2 · · ·xl is

f(w) = SU ′∗D−1L′∗Tx1U
′∗D−1L′∗Tx2U

′∗D−1L′∗

· · · U ′∗D−1L′∗Txl
U ′∗D−1L′∗F

This is not in a form that can be easily converted back to an automaton but
with a small trick, this can be achieved. Let

M = 〈Q × {0, 1}, Σ, S, F , E, {Tx|x ∈ Σ}〉

where

S =
[
S 0

]
F =

[
0
F

]
E =

[
U ′ D−1

0 L′

]
Tx =

[
0 0
Tx 0

]
It is then easy to demonstrate that:

E
∗

=
[

U ′∗ U ′∗D−1L′∗

0 L′∗

]
Definition: B(M) = {(w, p)|f(w) = p}.

Theorem 1. B(M) = B(M)

Proof: Easily shown by induction on the length of w ∈ Σ∗.

114 J.H. Johnson

3 An Example

Let

M =

〈
Q = {1, 2, 3, 4}, Σ = {a, b}, S =

[
1 0 0 0

]
, F =

⎡⎢⎢⎣
0
0
1
2
0

⎤⎥⎥⎦ ,

E =

⎡⎢⎢⎣
1
7 0 0 0
0 0 1

5 0
0 0 0 1

2
0 1

3 0 0

⎤⎥⎥⎦ , Ta =

⎡⎢⎢⎣
0 6

7 0 0
0 0 3

5 0
0 0 0 0
0 0 2

3 0

⎤⎥⎥⎦ , Tb =

⎡⎢⎢⎣
0 0 0 0
0 0 0 1

5
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
〉

be a weighted automaton over �. Figure 1 shows M in the more familiar directed
graph form.

1 2

34

|1

| 1
2

a | 6
7

ε | 1
5 a | 3

5

ε | 1
2

a | 2
3

ε | 1
3

b | 1
5ε | 1

7

Fig. 1. An example

Then the LDU factorization of I − E is:

I−E =

⎡⎢⎢⎣
6
7 0 0 0
0 1 − 1

5 0
0 0 1 − 1

2
0 − 1

3 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

3 − 1
15 1

⎤⎥⎥⎦·

⎡⎢⎢⎣
6
7 0 0 0
0 1 0 0
0 0 1 0
0 0 0 29

30

⎤⎥⎥⎦·

⎡⎢⎢⎣
1 0 0 0
0 1 − 1

5 0
0 0 1 − 1

2
0 0 0 1

⎤⎥⎥⎦
and E is:

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 7
6 0 0 0

0 0 1
5 0 0 1 0 0

0 0 0 1
2 0 0 1 0

0 0 0 0 0 0 0 30
29

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1

3
1
15 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Collapsing ε-Loops in Weighted Finite-State Machines 115

Then
M = 〈{1, 2, 3, 4, 5, 6, 7, 8}, Σ, S, F , E, {Ta, Tb}〉

where S, F , Ta, and Tb are defined in terms of S, F , Ta, and Tb as above. The
resulting automaton is displayed in Figure 2.

The result M has no ε-loops but yields the same weight for any word w
without the need for any infinite summations of ε-loops. This automaton is not
Markovian since the exit probabilities from each state do not sum to 1 but it
can be converted to one if needed.

Although this automaton has twice the number of states and 4 more transi-
tions, it is easily converted to an equivalent 4-state, 10-transition machine by
observing that states 1 and 4 can only be exited by a single ε-transition and so
they can be removed by merging them into the single following state with an
appropriate push-back of the weights.

Furthermore, state 7 is a mandatory-exit state and can only be entered with
ε-transitions. A similar merging and push-back can be done by making the pre-
ceding states optionally-exit states.

Finally, state 2 can be merged into state 5 by a dual process of pushing forward
the label a and weight 6

7 . The result of all of this is shown in Figure 3.

1

2

3

4

5

6

7

8

|1

| 1
2

ε | 7
6

ε |1

ε |1

a | 6
7

ε | 1
5

ε | 1
2

ε | 30
29

ε | 1
15

ε | 1
3

a | 3
5 b | 1

5

a | 2
3

Fig. 2. Example converted: M

116 J.H. Johnson

5 6

83

| 7
6

| 1
30

| 1
2

a | 6
7

b | 6
29

ε | 1
3

ε | 15
29

a | 2
3

a | 3
5

a | 6
35

Fig. 3. Example M after state rewriting

4 The Sparse Matrix Connection

If the result of the preceding work had been just to introduce an algorithm that
spent O(n2) space to store zeros and O(n2) time to perform all of the necessary
arithmetic operations with them, we would not have improved the situation
at all.

Fortunately, there is a well-studied branch of numerical analysis concerned
with the handling of matrices with a lot of 0-elements called sparse matrix com-
putations. This study is concerned with the identification of algorithms that
retain the sparsity, that is, keep as many cells provably zero and therefore not
represented in the data structure except implicitly [4].

What this means in the present case is that partial pivotting will be used dur-
ing the Gaussian elimination to minimize the fill-in or introduction of non-zero
elements that need to be explicitly represented. This problem has been shown
to be NP-complete [13] but there have been a number of heuristic approaches
that do reasonably well in practice.

To sum up, since the fill-in corresponds exactly to the number of introduced
transitions in the process of Section 2 and minimizing fill-in is NP-complete, we
have reduced this problem to the problem of minimizing the number of added
ε-transitions, we have shown that the latter problem is also NP-complete.

Furthermore, because of the direct correspondence, we have a number of prac-
tical and tested heuristic approaches that usually do well.

An encouraging example occurs when there is a loop of n states:

Ei,i+1 = pi, 0 ≤ i < n, En,1 = pn

In this case, we end up by removing the transition En,1, adding n states n +
1, n+2, . . . , 2n, adding n−1 transitions Ei,i+n = 1, adding a transition En,2n =

1
1−p1p2···pn

, and adding n − 1 transitions E2n,i+n = p1p2 · · · pi−1 · pn.
This is an O(n) growth in states and transitions for this simple case.

Collapsing ε-Loops in Weighted Finite-State Machines 117

5 Generalizing to More Tapes and Other Semirings

5.1 Weights from a Field Other than �
By looking carefully at the presentation of Section 2, it should be clear that,
in fact, the only properties of � that were used were those that are available
for any field. In fact, the example of Section 3 used weights that were explicitly
represented as rational numbers.

The generalization is obvious and achieved simply by changing any reference
to � and elements of � by appropriate elements of the desired field. In particular
0 and 1 will be replaced by the additive and multiplicative identities.

5.2 Weights from a ∗-Semiring That Is not a Field

This generalization is a little more difficult but has also been studied extensively.
Tarjan [14] describes a notion of path sequence that can be expressed in ma-

trices as described in Section 2.
To show a simple example, suppose our example of Section 3 was modified to

M2 by replacing the weights from an unspecified ∗-semiring that is not neces-
sarily commutative. Let

M2 =

〈
Q = {1, 2, 3, 4}, Σ = {a, b}, S =

[
1 0 0 0

]
, F =

⎡⎢⎢⎣
0
0
r2
0

⎤⎥⎥⎦ ,

E =

⎡⎢⎢⎣
p7 0 0 0
0 0 p5 0
0 0 0 p2
0 p3 0 0

⎤⎥⎥⎦ , Ta =

⎡⎢⎢⎣
0 q7 0 0
0 0 q5 0
0 0 0 0
0 0 q3 0

⎤⎥⎥⎦ , Tb =

⎡⎢⎢⎣
0 0 0 0
0 0 0 r5
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
〉

be a weighted automaton over a ∗-semiring.
Figure 4 shows the result of the transformation and state rewriting that was

done in Section 3 now applied to this more general ∗-semiring.
Many details are being glossed over here, specifically the details of Gaussian

elimination involving matrices over ∗-semirings but this is well-known in the
literature [1].

5.3 More Tapes

This generalization is even more direct and has been described elsewhere [3].
Suppose there are k tapes and that the alphabet for the jth tape is Σj . We then
form the disjoint union of the {Σj |1 ≤ j ≤ k} (This mathematical construction
is like a discriminated union in Ada or a tagged union in Pascal and retains a tag
that identifies the origin of any symbol). We then perform the construction on
the 1-tape automaton where the tape number and the symbol have been encoded
in the element of the disjoint union.

If the labels are unpacked after applying the algorithm, the required trans-
ducer is produced.

118 J.H. Johnson

5 6

83

|p∗
7

|p3p5r2

|r2

a |q7

b |r5(p3p5p2)
∗

ε |p3

ε |p2(p3p5p2)
∗

a |q3

a |q5

a |q7p5

Fig. 4. Example M2 for a general ∗-semiring

6 Conclusion

The main observation that follows from the above discussion is that it is possible
to collapse the ε-loops in a weighted transducer by introducing some new states
and transitions. In general, this will result in O(n2) new transitions being added
but in many practical situations, an off-the-shelf sparse matrix technology can
be used to produce results that are closer to linear growth.

This algorithm hase been implemented in a simple form in wINR and some
experimentation has been done. There is a need to further study the particular
heuristics that work best with typical automata encountered in applications.

References

1. R. C. Backhouse and B. A. Carré. Regular Algebra applied to path-finding prob-
lems. Journal of the Institute of Mathematics and its Applications, 15:161–186,
1975.

2. K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Studies in
Computational Linguistics. CSLI Publications, Stanford, CA, 2003. http://www.
fsmbook.com.

3. J. Berstel. Transductions and context-free languages. BG Teubner, Stuttgart, 1979.
4. A. George and J. W. Liu. Computer solution of large sparse positive definite sys-

tems. Prentice-Hall, Englewood Cliff, NJ, 1981.
5. J. H. Johnson. INR - a program for computing finite state automata. Unpublished

manuscript, 1986.
6. A. Kempe, C. Baeijs, T. Gaál, F. Guingne, and F. Nicart. WFSC - a new weighted

finite state compiler. In Proceedings of CIAA 2003, pages 108–120, Santa Barbara,
CA, 2003.

7. S. Kumar and W. Byrne. A weighted finite state transducer implementation of
the alignment template model for statistical machine translation. In Proceedings
of HLT-NAACL 2003, pages 142–149, Edmonton, Canada, 2003.

8. M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23(2):269–312, 1997.

9. M. Mohri. Generic ε-removal algorithm for weighted automata. In Proceedings of
CIAA 2000, pages 230–242, London, Canada, 2000.

Collapsing ε-Loops in Weighted Finite-State Machines 119

10. M. Mohri. Generic ε-removal and input ε-normalization algorithms for weighted
transducers. 2002.

11. M. Mohri, F. Pereira, and M. Riley. The design principles of a weighted finite-state
transducer library. Theoretical Computer Science, 231(1):17–32, 2000.

12. F. Pereira and M. Riley. Speech recognition by composition of weighted finite
automata. In E. Roche and Y. Schabes, editors, Finite-state Language Processing,
pages 431–453, Cambridge, MA, 1997. The MIT Press.

13. D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination. In Pro-
ceedings of the 7th ACM Symposium on the Theory of Computing (STOC 1975),
pages 245–254, 1975.

14. R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM,
28(3):594–614, 1981.

15. G. van Noord. Treatment of epsilon moves in subset construction. Computational
Linguistics, 26(1):61–76, 2000.

16. G. van Noord and D. Gerdemann. An extendible regular expression compiler for
finite-state approaches in natural language processing. In Proceedings of WIA ’99,
Potsdam, Germany, 2001.

WFSM Auto-intersection and Join Algorithms

A. Kempe1, J.-M. Champarnaud2, F. Guingne1,3, and F. Nicart1,3

1 Xerox Research Centre Europe – Grenoble Laboratory
6 chemin de Maupertuis – 38240 Meylan – France

Andre.Kempe@xrce.xerox.com
http://www.xrce.xerox.com

2 PSI Laboratory (Université de Rouen, CNRS)
76821 Mont-Saint-Aignan – France

Jean-Marc.Champarnaud@univ-rouen.fr
http://www.univ-rouen.fr/psi/

3 LIFAR Laboratory (Université de Rouen)
76821 Mont-Saint-Aignan – France

{Franck.Guingne, Florent.Nicart}@univ-rouen.fr
http://www.univ-rouen.fr/LIFAR/

Abstract. The join of two n-ary string relations is a main operation
regarding to applications. n-Ary rational string relations are realized by
weighted finite-state machines with n tapes. We provide an algorithm
that computes the join of two machines via a more simple operation,
the auto-intersection. The two operations generally do not preserve ra-
tionality. A delay-based algorithm is described for the case of a single
tape pair, as well as the class of auto-intersections that it handles. It is
generalized to multiple tape pairs and some enhancements are discussed.

1 Introduction

Multi-tape finite-state machines (FSMs) [1,2,3,4,5] are a natural generalization
of the familiar finite-state acceptors (one tape) and transducers (two tapes). The
n-ary relation defined by a (weighted) FSM is a (weighted) rational relation. Fi-
nite relations are of particular interest since they can be viewed as relational
databases.1 Multi-tape machines have been used in the morphological analysis
of Semitic languages, to synchronize the vowels, consonants, and templatic pat-
tern into a surface form [3,7]. The operation of join on multiple pairs of tapes,
that is similar to natural join of databases, is a crucial operation in many practi-
cal applications. In this paper, we focus on its computation through more basic
operations such as the auto-intersection. The rationality of a join relation is gen-
erally undecidable, and so is the rationality of an auto-intersection relation [6].
In the case of a single pair of tapes, a class Θ of triples 〈A, i, j〉 can be defined
so that the auto-intersection of the machine A w.r.t. tapes i and j can be com-
puted by a delay-based algorithm. This algorithm is generalized to the case of
1 The connection to databases and associated notation was pointed out by J. Eisner

in the joint work [6]. We thank him for allowing us to re-use this material.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 120–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

WFSM Auto-intersection and Join Algorithms 121

multiple pairs of tapes, leading to a basic algorithm for computing the join of
two machines and to an improved version based on the notion of filtering and
on the operation of equi-join on a single pair of tapes.

Weighted n-ary relations and their machines are introduced in Section 2. Join
and auto-intersection operations are presented in Section 3. A basic algorithm
for computing the join of two machines and the embedded auto-intersection
algorithm are described in Section 4. We conclude by some enhancements.

2 Definitions

We recall some definitions about n-ary weighted relations and their machines,
following the usual definitions for multi-tape automata [2,8], with semiring
weights added just as for acceptors and transducers [9,10]. For more details
see [6].

Weighted n-Ary Relations: A weighted n-ary relation is a function from
(Σ∗)n to K, for a given finite alphabet Σ and a given weight semiring K =
〈K, ⊕, ⊗, 0̄, 1̄〉. Such a relation assigns a weight to any n-tuple of strings. A weight
of 0̄ means that the tuple is not in the relation.2 We are especially interested in
rational (or regular) n-ary relations, i.e. relations that can be encoded by n-tape
weighted finite-state machines, that we now define. By convention, the names of
objects containing n-tuples of strings include a superscript (n).

Multi-tape Weighted Finite-State Machines: An n-tape weighted finite-
state machine (WFSM or n-WFSM) A(n) is defined by a six-tuple A(n) =
〈Σ, Q,K, E(n), λ, �〉, with Σ being a finite alphabet, Q a finite set of states,
K= 〈K, ⊕, ⊗, 0̄, 1̄〉 the semiring of weights, E(n) ⊆ (Q × (Σ∗)n × K × Q) a finite
set of weighted n-tape transitions, λ : Q → K a function that assigns initial
weights to states, and � : Q → K a function that assigns final weights to states.
Any transition e(n) ∈E(n) has the form e(n) =〈p, 	(n), w, n〉. We refer to these four
components as the transition’s source state p(e(n))∈Q, its label 	(e(n))∈(Σ∗)n,
its weight w(e(n))∈K, and its target state n(e(n))∈Q. We refer by E(q) to the
set of out-going transitions of a state q∈Q (with E(q)⊆E(n)).

A path γ(n) of length k ≥ 0 is a sequence of transitions e
(n)
1 e

(n)
2 · · · e(n)

k such
that n(e(n)

i)=p(e(n)
i+1) for all i∈ [[1, k−1]]. The label of a path is the element-wise

concatenation of the labels of its transitions. The weight of a path γ(n) from
q to q′ is the product of the initial weight of q, the weights of the successive
transitions and the final weight of q′. The path is said to be successful, and
to accept its label, if w(γ(n)) �= 0̄. We denote by ΓA(n) the set of all success-
ful paths of A(n), and by ΓA(n)(s(n)) the set of successful paths that accept
the n-tuple of strings s(n). The machine A(n) defines a weighted n-ary relation

2 It is convenient to define the support of an arbitrary weighted relation R(n), as being
the set of tuples to which the relation gives non-0̄ weight.

122 A. Kempe et al.

R(A(n)) : (Σ∗)n → K that assigns to each n-tuple s(n) the total weight of all
paths accepting it.

3 Operations

We now describe some central operations on n-ary weighted relations and their
n-WFSMs [11]. The auto-intersection operation is introduced, with the aim of
simplifying the computation of the join operation. Our notation is inspired by
relational databases. Mathematical details can be found in [6].

Simple Operations: Any n-ary weighted rational relation can be constructed
by combining the basic rational operations of union, concatenation and closure.
Rational operations can be implemented by simple constructions on the cor-
responding nondeterministic n-tape WFSMs [12]. These n-tape constructions
and their semiring-weighted versions are exactly the same as for acceptors and
transducers, since they are indifferent to the n-tuple transition labels.

The projection operator π〈j1,...jm〉, with j1, . . . jm ∈ [[1, n]], maps an n-ary re-
lation to an m-ary one by retaining in each tuple components specified by the
indices j1, . . . jm and placing them in the specified order. Indices may occur in
any order, possibly with repeats. Thus the tapes can be permuted or duplicated:
π〈2,1〉 inverts a 2-ary relation. The complementary projection operator π{j1,...jm}
removes the tapes j1, . . . jm and preserves the order of other tapes.

Join Operation: Our join operator differs from database join in that database
columns are named, whereas our tapes are numbered. Tapes being explicitly
selected by number, join is neither associative nor commutative.

For any distinct i1, . . . ir ∈ [[1, n]] and any distinct j1, . . . jr ∈ [[1, m]], the join
operator ��{i1=j1,...ir=jr} combines an n-ary and an m-ary relation into an (n +
m − r)-ary relation defined as follows:3(

R(n)
1 ��{i1=j1,...ir=jr} R(m)

2

)
(〈u1, . . . un, s1, . . . sm−r〉) =def R(n)

1 (u(n)) ⊗ R(m)
2 (v(m)) (1)

v(m) being the unique tuple s. t. π{j1,...jr}(v
(m)) = s(m−r) and (∀k ∈ [[1, r]]) vjk

= uik
.

The intersection of two n-ary relations is the n-ary relation defined by the
join operator ��{1=1,2=2,...n=n}. A join on a single pair (resp. multiple pairs) of
tapes is said to be a single-pair (resp. multi-pair) one. Examples of single-pair
join are the join ��{1=1} (the intersection of two acceptors) and the join ��{2=1}
that can be used to express transducer composition.

A lot of practical applications could not be performed without the multi-
tape join operation, for example: multi-tape transduction (mapping n-tuples to
m-tuples of strings), probabilistic normalization of n-WFSMs conditioned on
multiple tapes,4 or searching for cognates [14].
3 For example the tuples 〈abc, def, ε〉 and 〈def, ghi, ε, jkl〉 combine in the join

��{2=1,3=3} and yield the tuple 〈abc, def, ε, ghi, jkl〉, with a weight equal to the prod-
uct of their weights.

4 This can be obtained by a straightforward generalization of J. Eisner’s algorithm for
probabilistic normalization of transducers conditioned on one tape [13].

WFSM Auto-intersection and Join Algorithms 123

Unfortunately, rational relations are not closed under arbitrary joins [6]. For
example, transducers are not closed under intersection [1]. The join operation
is, however, so useful that it is helpful to have a partial algorithm: hence our
motivation for studying auto-intersection.

Auto-intersection: For any distinct i1, j1, . . . ir, jr ∈ [[1, n]], we define an auto-
intersection operator σ{i1=j1,i2=j2,...ir=jr}. It maps a relation R(n) to a subset
of that relation, preserving tuples s(n) whose elements are equal in pairs as
specified, but removing other tuples from the support of the relation:5

(
σ{i1=j1,...ir=jr}(R(n))

)
(〈s1, . . . sn〉) =def

{
R(n)(〈s1, . . . sn〉) if (∀k∈ [[1, r]])sik =sjk

0̄ otherwise
(2)

Auto-intersecting a relation is different from joining it with its own projec-
tions. For example, σ{1=2}(R(2)) is supported by tuples of the form 〈w, w〉 ∈
R(2). By contrast, R(2) ��{1=1}

(
π〈2〉(R(2))

)
is supported by tuples 〈w, x〉 ∈ R(2)

such that w can also appear on tape 2 of R(2) (but not necessarily paired with
a copy of w on tape 1).6

Actually, join and auto-intersection are related by the following equalities:

R(n)
1 ��{i1=j1,...ir=jr} R(m)

2 = π{n+j1,...n+jr}
(

σ{i1=n+j1,...ir=n+jr}(R(n)
1 ×R(m)

2)
)

(3)

σ{i1=j1,...ir=jr}(R(n)) = R(n) ��{i1=1,j1=2,...ir=2r−1,jr=2r} (π〈1,1〉(Σ
∗))r (4)

Thus, for any class of difficult join instances whose results are non-rational
or have undecidable properties [6], there is a corresponding class of difficult
auto-intersection instances, and vice-versa. Conversely, a partial solution to one
problem would yield a partial solution to the other.

An auto-intersection on a single pair (resp. multiple pairs) of tapes is said to be
a single-pair (resp. multi-pair) one. It may be wise to compute σ{i1=j1,...ir=jr} all
at once rather than one tape pair at a time, since a sequence of single-pair auto-
intersections such as σ{ir=jr}(· · · (σ{i1=j1}) · · ·) could fail due to non-rational
intermediate results, even if the final result is rational.7

4 Join Via Auto-intersection: A First Construction

Following (3), a multi-pair join can be computed via a multi-pair
auto-intersection. A first version of such a join algorithm is presented in this

5 The requirement that the 2r indices be distinct mirrors the similar requirement on
join and is needed in (4). But it can be evaded by duplicating tapes.

6 Applying σ{1=2} to {〈a, b〉, 〈b, a〉} yields the empty relation, whereas joining it with
its own projection (either ��{1=1} π〈2〉 or ��{2=1} π〈1〉) does not change the relation.

7 Applying σ{2=3,4=5} to {〈aibj , ci, cj , x, y〉 | i, j ∈ N} yields the empty relation, while
applying σ{2=3} yields the non-rational relation {〈aibi, ci, ci, x, y〉 | i ∈ N}.

124 A. Kempe et al.

section. The embedded multi-pair auto-intersection algorithm is a generaliza-
tion of the single-pair one, that has been proved to work for a specific class
of auto-intersections [15].

4.1 Multi-pair Join: A Basic Algorithm

The Algorithm Join1 attempts to construct the join of two WFSMs, A
(n)
1 and

A
(m)
2 , on multiple pairs of tapes specified by a set of constraints T = {t1 =(i1 =

j1), . . . tr =(ir =jr)}. We write ��T instead of ��{i1=j1,...ir=jr}.

Join1(A(n)
1 , A

(m)
2 , T) → A(n+m−r) : [T = {t=(i=j)} ; |T | = r ; A(n+m−r) = A

(n)
1 ��T A

(m)
2]

1 A(n+m) ← A
(n)
1 × A

(m)
2

2 if |T | �= 0
3 then

4 A(n+m) ← AutoIntersection(A(n+m), T)

5 if A(n+m) = ⊥ [error code]
6 then return ⊥

7 A(n+m−r) ← π{n+jh | th=(ih=jh)∈T}(A
(n+m))

8 return A(n+m−r)

We compile first the cross-product A(n+m) of A
(n)
1 and A

(m)
2 . If T is empty,

we simply return the crossproduct A(n+m) (Line 2). Otherwise we compile the
auto-intersection of A(n+m) for all specified pairs of tapes (Line 4). The auto-
intersection may fail and return an error code, in which case the join algorithm
must return an error code as well (Lines 5, 6).

4.2 A Class of Rational Single-Pair Auto-intersections

We now introduce a single-pair auto-intersection algorithm and the class of
bounded delay auto-intersections that this algorithm can handle. For a detailed
exposure see [15].

Although due to Post’s Correspondence Problem there exists no fully general
algorithm of auto-intersection [6], A(n) =σ{i=j}(A

(n)
1) can be compiled for a class

of triples 〈A(n)
1 , i, j〉 whose definition is based on the notion of delay [16,17], i.e.,

the difference of length of two strings of an n-tuple: δ〈i,j〉(s(n)) = |si|− |sj|
(with i, j∈ [[1, n]]). The delay of a path γ = γ1γ2 · · · γr, or of any of its factors γh,
results from its respective labels on tapes i and j: δ〈i,j〉(γ) = |	i(γ)|−|	j(γ)|. We
call the delay bounded if its absolute value does not exceed some limit. A path
has bounded delay if all its prefixes have bounded delay,8 and an n-WFSM has
bounded delay if all its successful paths have bounded delay.
8 Any finite path has bounded delay (since its label is of finite length). An infinite

path (traversing cycles) may have bounded or unbounded delay. For example, the
delay of a path labeled with (〈ab, ε〉〈ε, xz〉)h is bounded by 2 for any h, whereas that
of a path labeled with 〈ab, ε〉h〈ε, xz〉h is unbounded for h −→ ∞.

WFSM Auto-intersection and Join Algorithms 125

We construct A(n) without creating invalid paths with 	i(γ) �=	j(γ), which is
equivalent to creating them with w(γ)= 0̄. Thus, all paths of A(n) have a delay
equal to 0 : Let Γ 0 be the set of accepting paths of A

(n)
1 with a 0-delay. Then it

holds: ΓA(n) ⊆Γ 0 ⊆Γ
A

(n)
1

. The sum of the delays of the factors of a path is equal
to its delay, and it holds: ∀γ =γ1γ2 · · · γr ∈Γ 0, δ〈i,j〉(γ) =

∑r
h=1δ〈i,j〉(γh) = 0.

Let us traverse A
(n)
1 in-depth,9 both left-to-right and right-to-left, and mem-

orize the global maxima δ̂LR
〈i,j〉(A

(n)
1) and δ̂RL

〈i,j〉(A
(n)
1), and global minima

δ̌LR
〈i,j〉(A

(n)
1) and δ̌RL

〈i,j〉(A
(n)
1) of the delay on any path. Let us then observe the

delay along a path γ ∈ Γ 0 : It would begin and end with δ〈i,j〉 = 0, and have a
global maximum δ̂〈i,j〉(γ) and a global minimum δ̌〈i,j〉(γ).

Proposition 1. Let Θ be the class of all the triples 〈A(n)
1 , i, j〉 such that A

(n)
1

does not contain a path traversing both a cycle with positive delay and a cycle
with negative delay (w.r.t. tapes i and j). Then for all paths γ ∈ΓA(n) of A(n) =
σ{i=j}(A

(n)
1), the delay is bounded by

δmax
〈i,j〉 = max(|δ̂LR

〈i,j〉(A
(n)
1)| , |δ̂RL

〈i,j〉(A
(n)
1)| , |δ̌LR

〈i,j〉(A
(n)
1)| , |δ̌RL

〈i,j〉(A
(n)
1)|) (5)

Proof. If a path γ ∈ Γ 0 has only cycles with positive delay, traversing a cy-
cle raises the delays in γ’s suffix. These cycles have, however, no impact on
the delays in the in-depth traversals, where cycles are not traversed. Therefore
(δ̌LR

〈i,j〉(A
(n)
1)≤ δ̌〈i,j〉(γ)≤0) and (δ̂RL

〈i,j〉(A
(n)
1)≥ δ̂〈i,j〉(γ)≥0) which means

∀γ ∈Γ 0, max(|δ̂〈i,j〉(γ)|, |δ̌〈i,j〉(γ)|) ≤ max(|δ̌LR
〈i,j〉(A

(n)
1)|, |δ̂RL

〈i,j〉(A
(n)
1)|) (6)

This still holds if we also admit cycles with 0-delay on γ, since traversing them
has no impact on the delays of γ’s suffix. If all cycles of γ had negative or 0-delay
instead, we would obtain

∀γ ∈Γ 0, max(|δ̂〈i,j〉(γ)|, |δ̌〈i,j〉(γ)|) ≤ max(|δ̌RL
〈i,j〉(A

(n)
1)|, |δ̂LR

〈i,j〉(A
(n)
1)|) (7)

Since ΓA(n) ⊆Γ 0, (6) (7) and Proposition 1 hold for all paths γ ∈ΓA(n) .

Joining A
(n)
1 beforehand with its own (neutrally weighted) projections yields

a superset of A(n): support((A(n)
1 ��{i=1} π〈j〉(A

(n)
1)) ��{j=1} π〈i〉(A

(n)
1)) ⊇

support(A(n)). The triple 〈A(n)
1 , i, j〉 is placed into Θ, as soon as this opera-

tion removes from A
(n)
1 all cycles in conflict with Θ. This method is referred

as filtering and performed prior to any auto-intersection (it is the function Fil-
terTapePairs of the Algorithm AutoIntersection in Section 4.4). Based on
Proposition 1, an algorithm can be designed to compute σ{i=j}(A

(n)
1) as far as

〈A(n)
1 , i, j〉 ∈ Θ. This algorithm is now described in a more general case.

9 We optionally trim the automaton to restrict it to accepting paths. Then, to find
(for example) δ̂LR

〈i,j〉, we exhaustively explore all acyclic paths from the start state,
and record the maximum delay on any path prefix. This takes exponential time in
general, which is unavoidable since the longest-acyclic-path problem is NP-complete.

126 A. Kempe et al.

4.3 Multi-pair Auto-intersection: A Basic Construction

Our construction bears resemblance to known transducer synchronization pro-
cedures [16,17]. However the algorithm of Frougny and Sakarovitch [16] is based
on a K-covering of the transducer and it works only for non-empty input labels
whereas our single-pair auto-intersection algorithm supports unrestricted label-
ing. Our algorithm is based on a general reachability-driven construction, as it is
the case for the synchronization algorithm of Mohri [17]. But the labeling of the
transitions is quite different since our algorithm performs a copy of the original
labeling, and we also construct only such paths whose delay does not exceed
some limit that we are able to determine.

We now address the case of a multi-pair auto-intersection σ{i1=j1,...ir=jr} such
that for all h∈ [[1, r]], 〈A(n)

1 , ih, jh〉 ∈ Θ. As an example, we consider the WFSM
A

(4)
1 in Figure 1a and the auto-intersection σ{1=2,3=4}(A

(4)
1), with 〈A(4)

1 , 1, 2〉 ∈ Θ

and 〈A(4)
1 , 3, 4〉 ∈ Θ; the associated delay limits are δmax

〈1,2〉 = 1 and δmax
〈3,4〉 = 2.

The support (a:a:dc:cd ∪ a:ε:c:ε)∗ (ba:ab:c:ε)∗ ε:a:ε:cc of A
(4)
1 is equal to the set

{ 〈ai+j(ba)h, ai(ab)ha, ([dc]i cj)ch, (cd)ic2〉 | i, j, h ∈ N }.10

2

ba:ab:c:ε /w3

a:ε ε:c: /w1

1

0

/ρ1

/w2ε:ε:ε:ε

ε:a:ε:cc /w4

/w0a:a:dc:cd

(a) (b)
ξ= (ε,ε)

ν=2

ab(,ε)
(ba,c)ξ=

ξ= (ε,ε)
(a,c)

ν=1

ξ= (ε,ε)
(a,c)

ν=0

ξ=

c

ε:a:ε:cc /w4

/w2ε:ε:ε:ε

/w0a:a:dc:cd

ξ= (ε,ε)
(ε,ε)

ν=0

(ε,)

(aa,cc)

(a,cc)

ν=2

(ε,)dc
cd(ε,)ξ=

(ε,ε)

(ε,ε)

ξ=
ν=1
(a,cc)
(ε,ε)

ξ= (a,ccc)
(ε,ε)

ξ= (ε,ε)
(ε,ε)

ν=2

ξ= (ε,ε)
(ε,ε)

ν=1

ξ=
1

4

ba:ab:c:ε /w3

1

/w2ε:ε:ε:ε

a:ε ε:c: /w1

/w

4

0

9

2

10

/w0a:a:dc:cd

ε:a:ε:cc

5
/w3

6 7 8

ba:ab:c:ε /w3

11 /ρ

ε

3

a:ε ε:c: /w1

ε:a:ε:cc /w4

ba:ab:c:

Fig. 1. (a) A WFSM A
(4)
1 and (b) its auto-intersection A(4) =σ{1=2,3=4}(A

(4)
1) (dashed

parts are not constructed)

We construct simultaneously the two auto-intersections σ{1=2} and σ{3=4}. We
copy states and transitions one by one from A

(4)
1 (Figure 1a) to A(4) (Figure 1b),

starting with the initial state q1 = 0. We assign to each state q of A(4) two
variables: ν[q] = q1 is the corresponding state q1 of A

(4)
1 , and ξ[q] = (s(r), u(r))

expresses the leftover string tuple s(r) (resp. u(r)) from the tapes 〈i1, . . . ir〉
(resp. 〈j1, . . . jr〉), yet unmatched on the tapes 〈j1, . . . jr〉 (resp. 〈i1, . . . ir〉). In
particular, we have: ν[0]=0 and ξ[0]=(〈ε, ε〉, 〈ε, ε〉).

10 A square-bracketted string cannot be split by shuffle: in ([ab]i [cd]j), any number
of cd can occur between two occurrences of ab, but not inside one ab.

WFSM Auto-intersection and Join Algorithms 127

AutoIntersectMultiPair(A(n)
1 , i(r), j(r), (δmax

〈i,j〉)
(r)) → A(n) :

1 A(n) ← 〈Σ← Σ1, Q← � ©, K← K1, E(n)← � ©, λ, ρ〉
2 Stack ← � ©
3 for ∀q1 ∈ Q1 : λ(q1) 	= 0̄ do

4 getPushState(q1, (ε
(r), ε(r)))

5 while Stack 	= � © do

6 q ← pop(Stack)
7 q1 ← ν[q]

8 (s(r), u(r)) ← ξ[q]
9 for ∀e1 ∈ E(q1) do

10 (s′(r)
, u′(r)

) ← getLeftoverStrings(s(r) ·πi(r) (�(e1)), u(r) ·πj(r) (�(e1)))

11 if ∀h∈ [[1, r]] :
(
s′

h =ε ∨ u′
h =ε

) ∧ (∣∣|s′
h| − |u′

h|∣∣ ≤ (δmax
〈ih,jh〉)h

)
12 then q′ ← getPushState(n(e1), (s

′(r)
, u′(r)

))
13 E ← E ∪ { 〈q, �(e1), w(e1), q

′〉 }
14 return A(n)

getLeftoverStrings(ṡ(r), u̇(r)) → (s′(r)
, u′(r)

) :
15 x(r) ← longestCommonPrefix(ṡ(r), u̇(r))

16 return ((x(r))−1 · ṡ(r), (x(r))−1 · u̇(r))

getPushState(q1, (s
′(r)

, u′(r)
)) → q′ :

17 if ∃q ∈ Q : ν[q] = q1 ∧ ξ[q] = (s′(r)
, u′(r)

)
18 then q′ ← q
19 else q′ ← createNewState()
20 ν[q′] ← q1

21 ξ[q′] ← (s′(r)
, u′(r)

)

22 if s′(r)
= ε(r) ∧ u′(r)

= ε(r)

23 then λ(q′) ← λ(q1)
24 ρ(q′) ← ρ(q1)
25 else λ(q′) ← 0̄
26 ρ(q′) ← 0̄
27 Q ← Q ∪ {q′}
28 push(Stack, q′)
29 return q′

Then, we attempt to copy the three outgoing transitions of q1 =0 with their
original labels and weights, as well as their respective target states. The ξ[n(e)]
of the target state of a transition e results from the ξ[p(e)] of its source state,
concatenated with the relevant components of its label 	(e). The longest com-
mon prefix11 of the two string tuples in ξ[n(e)] is removed. A target q that has
the same ν[q] and ξ[q] as an existing state q′, it is not created and q′ is used
instead. For example, for the cyclic transition e on q=2 (Figure 1b), the leftover
tuples of the source, ξ[p(e)] = (〈a, c〉, 〈ε, ε〉), are concatenated with the relevant

11 The longest common prefix of two string tuples is compiled element-wise.

128 A. Kempe et al.

projections of the label, π〈1,3〉((e)) = 〈a, dc〉 and π〈2,4〉((e)) = 〈a, cd〉, yielding
ξ′ = (〈aa, cdc〉, 〈a, cd〉); since lcp(ξ′) = 〈a, cd〉, the leftover tuples of the target
are finally ξ[n(e)]=(〈a, c〉, 〈ε, ε〉), which implies that p(e)=n(e).

State q = 3 (resp. q = 1) and its incoming transition are not created be-
cause δmax

〈1,2〉 is exceeded (resp. dc and cd are incompatible leftover strings). State
q = 9 is non-final, although ν[9] = 2 is final, because its leftover tuples are not
(〈ε, ε〉, 〈ε, ε〉). As expected, the support a:ε:c:ε (a:a:dc:cd)∗ ba:ab:c:ε ε:a:ε:cc of
the auto-intersection is equal to the set {〈ai+1ba, ai+1ba, (cd)ic2, (cd)ic2〉 | i∈N}.

Algorithm: The Algorithm AutoIntersectMultiPair computes the auto-
intersection σ{i1=j1,...ir=jr} in the case where ∀h ∈ [[1, r]], 〈A(n)

1 , ih, jh〉 ∈ Θ. The
tape indices are specified in two tuples, i(r) = 〈i1, . . . ir〉 and j(r) = 〈j1, . . . jr〉,
that are also used for projection, πi(r) =π〈i1,...ir〉. The delay limits, related to the
two index tuples, are specified in one tuple, (δmax

〈i,j〉)
(r) =〈(δmax

〈i1,j1〉)1, . . . (δ
max
〈ir ,jr〉)r〉.

The function GetPushState checks whether a target state already exists or
not; a new state is created if necessary and pushed onto the stack.

The construction of A(n) = σ{i1=j1,...ir=jr}(A
(n)
1) is guaranteed to terminate

because each auto-intersection σ{ih=jh} terminates. Only such states are created
for σ{i1=j1,...ir=jr}, that would also have been created for each σ{ih=jh} sepa-
rately. Therefore, the number |Q| of states in A(n) cannot exceed that of each

separate auto-intersection. Finally we get |Q| < 2 |Q1| |Σ1|
min

h
(δmax

〈ih,jh〉)
−1

|Σ1|−1 .

4.4 Multi-pair Auto-intersection: Iterative Construction

We now address the case of a multi-pair auto-intersection σ{i1=j1,...ir=jr} such
that there may exist h ∈ [[1, r]] with 〈A(n)

1 , ih, jh〉 �∈ Θ. As an example we con-
sider the WFSM A

(4)
1 of Figure 2a and the auto-intersection σ{1=2,3=4}(A

(4)
1).

The support (a:a:dc:cd ∪ a:ε:c:ε)∗ (ba:ab:ε:c)∗ ε:a:ε:c of A
(4)
1 is equal to the

set { 〈ai+j(ba)h, ai(ab)ha, ([dc]i cj), (cd)ichc〉 | i, j, h ∈ N }. Since 〈A(4)
1 , 1, 2〉 ∈

Θ with δmax
〈1,2〉 = 1 and 〈A(4)

1 , 3, 4〉 �∈ Θ, σ{1=2}(A
(4)
1) is first compiled (Fig-

ure 2b); its support (a:a:dc:cd)∗a:ε:c:ε (a:a:dc:cd)∗(ba:ab:ε:c)∗ε:a:ε:c is the set
{ 〈ai+j+1(ba)h, ai+j+1(ba)h, (dc)i(cd)jc, (cd)i(cd)jch+1〉 | i, j, h ∈ N }. Since
〈σ{1=2}(A

(4)
1), 3, 4〉 ∈ Θ with δmax

〈3,4〉 = 2, we now can compile the second auto-
intersection (Figure 2c), whose support a:ε:c:ε (a:a:dc:cd)∗ ε:a:ε:c is equal to the
set { 〈ai+1, ai+1, (cd)ic, (cd)ic〉 | i ∈ N }.

Algorithm: The Algorithm AutoIntersection attempts to construct iter-
atively the auto-intersection σT (A(n)

1) on tape pairs specified by the set T . The
function FilterTapePairs implements the filtering of σT (A(n)

1) and the func-
tion SelectTapePairs selects tapes satisfying 〈A(n)

1 , i, j〉 ∈ Θ. The function
CompileDelayLimit computes the limit δmax

〈i,j〉.

WFSM Auto-intersection and Join Algorithms 129

(a)

/w1

ε:a:ε:c /w4

ba:ab:ε:c /w3

:c:

1

/ρ12

0

/w0a:a:dc:cd

/w2ε:ε:ε:ε

a:ε ε

(b)

a:ε ε:c: /w1

ε:a:ε:c /w4

/w2ε:ε:ε:ε

a:a:dc:cd

1

0

3

2

/ρ1

ba:ab:ε:c /w3

/w0a:a:dc:cd

/w0

(c)

:c /w4

/w2ε:ε:ε:ε

a:ε ε:c: /w1

ε

1

0

3

2

/ρ1

/w0a:a:dc:cd

ε:a:

Fig. 2. Iterative compilation of auto-intersection: (a) a WFSM A
(4)
1 , (b) its auto-

intersection σ{1=2}(A
(4)
1), and (c) a second auto-intersection σ{3=4}(σ{1=2}(A

(4)
1))

AutoIntersection(A(n)
1 , T) → A(n) : [T = {t=(i=j)} ; A(n) = σT (A

(n)
1)]

1 A(n) ← A
(n)
1

2 while T 	= � © do

3 A(n) ← filterTapePairs(A(n), T)

4 T ′ ← selectTapePairs(A(n), T)
5 if T ′ = � ©
6 then return ⊥ [error code]

7 else i(r=0) ← j(r=0) ← (δmax
〈i,j〉)

(r=0) ← 〈 〉
8 for ∀t=(i=j) ∈ T ′

do

9 δmax
〈i,j〉 ← compileDelayLimit(A(n), i, j)

10 i(r+1) ← append(i(r), i)

11 j(r+1) ← append(j(r), j)

12 (δmax
〈i,j〉)

(r+1) ← append((δmax
〈i,j〉)

(r), δmax
〈i,j〉)

13 A(n) ← AutoIntersectMultiPair(A(n), i(r), j(r), (δmax
〈i,j〉)

(r))

14 T ← T \ T ′

15 return A(n)

As long as T is not empty (Line 2), the algorithm filters all tape pairs (see
Section 4.2) then selects all constraints t = (i = j) on which the auto-intersection
is constructible (Line 4), and compiles a limit of the delay δmax

〈i,j〉 for each of
those pairs (Line 8–9). Finally, it constructs an auto-intersection simultaneously
on all selected pairs (Line 10–13). In the next iteration, it tries the same for
the set of remaining pairs (Line 14, 2). The test of constructibility may now
succeed on a pair of tapes on which it previously failed, because the cycles that
made it fail may have disappeared in between. The algorithm terminates either
successfully if all tape pairs can been processed (T = � ©) or not if some pairs
remain (T �= � © ∧ T ′= � ©). In the latter case, an error code is returned (Line 5–6).

130 A. Kempe et al.

5 Conclusion

We conclude by briefly describing an improved version of the Algorithm Join1. It
is based on the operation of single-pair equi-join.12 A single-pair join A

(n)
1 ��{i=j}

A
(m)
2 can be compiled in one step, rather than first building the cross-product,

A
(n)
1 × A

(m)
2 , and then deleting most of its paths by the auto-intersection

σ{i=n+j}. Our single-pair join algorithm is very similar to the classical trans-
ducer composition; it simulates the behaviour of an ε-filter (cf [10]) for aligning
ε-transitions in the two transducers.

The improved join algorithm selects arbitrarily one pair of tapes and performs
on it a single-pair equi-join (that always yields a rational result, at least for
weights over a commutative semiring) followed by an auto-intersection for the
remaining pairs (that may fail). So far we found no evidence that would allow
us to decide whether the choice of the first pair of tapes, that is used in the
equi-join, matters for the success of the whole algorithm.

Acknowledgments

We wish to thank Jason Eisner for allowing us to use a bulk of relevant nota-
tion that he elaborated (cf. Footnote 1), Mark-Jan Nederhof for pointing out
the relationship between auto-intersection and Post’s Correspondence Problem
(personal communication), and the anonymous reviewers of our paper for their
valuable advice.

References

1. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3 (1959) 114–125

2. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
Journal of Research and Development 9 (1965) 47–68

3. Kay, M.: Nonconcatenative finite-state morphology. In: Proc. 3rd Int. Conf. EACL,
Copenhagen, Denmark (1987) 2–10

4. Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata.
Theoretical Computer Science 78 (1991) 347–355

5. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-
tional Linguistics 20 (1994) 331–378

6. Kempe, A., Champarnaud, J.M., Eisner, J.: A note on join and auto-intersection
of n-ary rational relations. In Watson, B., Cleophas, L., eds.: Proc. Eindhoven
FASTAR Days. Number 04–40 in TU/e CS TR, Eindhoven, Netherlands (2004)
64–78

7. Kiraz, G.A.: Multitiered nonlinear morphology using multitape finite automata: a
case study on Syriac and Arabic. Computational Lingistics 26 (2000) 77–105

8. Eilenberg, S.: Automata, Languages, and Machines. Volume A. Academic Press,
San Diego (1974)

12 According to database notation an equi-join does not discard any tape.

WFSM Auto-intersection and Join Algorithms 131

9. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Number 5 in EATCS
Monographs on Theoretical Computer Science. Springer Verlag, Berlin, Germany
(1986)

10. Mohri, M., Pereira, F.C.N., Riley, M.: A rational design for a weighted finite-state
transducer library. Lecture Notes in Computer Science 1436 (1998) 144–158

11. Kempe, A., Guingne, F., Nicart, F.: Algorithms for weighted multi-tape automata.
Research report 2004/031, Xerox Research Centre Europe, Meylan, France (2004)

12. Rosenberg, A.L.: On n-tape finite state acceptors. In: IEEE Symposium on Foun-
dations of Computer Science (FOCS). (1964) 76–81

13. Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proc.
of the 40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia (2002)

14. Kempe, A.: NLP applications based on weighted multi-tape automata. In: Proc.
11th Conf. TALN, Fes, Morocco (2004) 253–258

15. Kempe, A., Champarnaud, J.M., Eisner, J., Guingne, F., Nicart, F.: A class of
rational n-WFSM auto-intersections. In Ibarra, O.H., Dang, Z., eds.: Proc. 10th
Int. Conf. CIAA, Sophia Antipolis, France (2005) (to appear).

16. Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite
words. Theoretical Computer Science 108 (1993) 45–82

17. Mohri, M.: Edit-distance of weighted automata. In: Proc. 7th Int. Conf. CIAA
(2002). Volume 2608 of Lecture Notes in Computer Science., Tours, France,
Springer Verlag, Berlin, Germany (2003) 1–23

Further Results on Syntactic Ambiguity

of Internal Contextual Grammars

Lakshmanan Kuppusamy

School of Technology and Computer Science
Tata Institute of Fundamental Research

Homi Bhabha Road, Colaba
Mumbai - 400 005, India

laksh@tifr.res.in

Abstract. Ambiguity plays an important role in checking the relevances
of formalism for natural language processing. As contextual grammars
were shown to be an appropriate description for natural languages, an-
alyzing syntactic ambiguity of contextual grammars deserves a special
attention. The levels of ambiguity of internal contextual grammars are
defined depending on the information used for describing a derivation.
In this paper, we continue the study on ambiguity of internal contextual
grammars which was investigated in [3] and [13]. We achieve solutions
to the following open problems addressed in the above papers. For each
(i, j) ∈ {(2, 1), (1, 0), (0, 1)}, are there languages which are inherently
i-ambiguous with respect to grammars with arbitrary selector, but j-
ambiguous with respect to grammars with finite selector?

1 Introduction

The syntactic and semantic analysis of natural language processing has a wide
range of application to many areas including artificial intelligence, where the
knowledge representation is very crucial for simulating the human understand-
ing. In syntactic analysis of natural languages, if one wants to check the relevance
of formal description (i.e. parsing), then ambiguity is the most important ques-
tion since ambiguity of any programming or natural language is the most difficult
barrier to the development of robust, efficient and powerful language technology.
We consider contextual grammars, an appropriate model for syntax of natural
languages [11], to investigate the syntactic ambiguity of the grammar.

Contextual grammars were introduced by Marcus in 1969 [9] as ‘intrinsic
grammars’, without auxiliary symbols, based on the fundamental linguistic op-
eration of inserting words in given phrases, according to certain contextual de-
pendencies [8]. More precisely, contextual grammars produce languages starting
from a finite set of axioms and adjoining contexts, iteratively, according to the
selector present in the current sentential form. As introduced in [9], adjoining the
contexts are done at the ends of the strings. Internal contextual grammars were
introduced by Păun and Nguyen in 1980 [17], where the contexts are adjoined
to the selector strings appeared as substrings of the derived string. Later on,

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 132–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Further Results on Syntactic Ambiguity of Internal Contextual Grammars 133

many variants of contextual grammars were introduced consequently by impos-
ing restriction to the selectors, viz., maximal use of selector [10], depth-first [12].
For more technical details and comprehensive study on contextual grammars,
we refer to [15] and the monograph on contextual grammars by Gh. Păun [16].

We now recall some results from previous papers on contextual grammars
where the aim was given to analyze the relevances with natural languages. In
[11], it was shown that contextual grammars can be considered as a good model
for natural languages and when some restriction is imposed on the selector of
the grammar, the grammars were able to straightforwardly describe all the usual
restrictions appearing in natural and artificial languages, which lead to the non-
context-freeness of these languages, which are reduplication, crossed dependen-
cies, and multiple agreements. Some other classes of contextual grammars were
also shown to generate the non-context-free constructions, refer [4], [6], [7]. In
fact, these classes of languages were shown to satisfy the properties of mildly
context sensitive (MCS) languages [5], which are (i) they contain non-context-
free constructions, (ii) they are parsable in polynomial time, (iii) they contain
semilinear languages only. Showing such a result is very significant in natural
languages since the formalism of MCS resembles natural languages to a greater
extent. Besides, in [2] some variants of contextual grammars were translated into
equivalent range concatenation grammars [1] and thus the classes of contextual
grammars can be parsed in polynomial time. With the information provided
above we can conclude that contextual grammars provide an appropriate model
for the description of natural languages. So, analyzing ambiguity of contextual
grammars would substantially contribute to natural languages also.

For any class of grammars, the natural and important question that can be
raised is (syntactic) ambiguity of the grammar. Generally, the ambiguity for
a grammar is defined as given a grammar, are there words in the generated
language have two distinct derivations? For Chomsky grammars, the notion of
ambiguity is clear, but defining ambiguity for contextual grammars is not so
obvious since the derivation of contextual grammars consists many components
such as axioms, contexts, selectors. Based on the information used for describ-
ing a derivation, five levels of ambiguity for internal contextual grammars were
defined in [13]. The information are based on the components of contextual gram-
mars and they are: (1) the axiom and the contexts used in the derivation but not
their order; (2) the axiom, the contexts and the selectors used in the derivation
(but not their order); (3) considering order in (1); (4) considering order in (3);
and (5) the axiom, the contexts and also the places where they are used in the
derivation. Consequently, a new type of ambiguity called 0-ambiguity was intro-
duced in [3] by taking into the account of axioms only. There are many open
problems addressed in [3], [13] on different aspects of ambiguity including the
one on ‘inherent ambiguity’ of internal contextual grammars. We also refer to
section 7.5 of [16] for an extensive study of the ambiguity of internal contextual
grammars.

In this paper, we make an attempt to solve the open problems which are
based on ‘inherently 1-ambiguous’ and ‘inherently 2-ambiguous’. For internal

134 K. Lakshmanan

contextual grammar, we cannot find any inherently 2-ambiguous language which
is 1-unambiguous, but for depth-first contextual grammars (a variant of internal
contextual grammars), we are able to show that there are inherently 2-ambiguous
languages which are 1-unambiguous. The result on ‘inherently 1-ambiguous’ is
also interesting because, earlier the result on inherently 1-ambiguous was proved
for internal contextual grammars without choice only and here we (im)prove it
for grammars with choice. We prove the similar existence result of ‘inherently
1-ambiguous’ for deterministic contextual grammars.

This paper is organized as follows: Section 2 encompasses the preliminaries
in formal language theory, contextual grammars and the types of ambiguity in
internal contextual grammars; Section 3 reminiscences the related results on
ambiguity of internal contextual grammars and their open problems; Section 4
presents the main results of this paper which are solutions to the open problems
addressed in [3], [13] and Section 5 concludes the paper with the final remarks.

2 Preliminaries

In this section, we start with introducing some formal language theory notions
which are used in this paper. A finite non-empty set V is called an alphabet. We
denote by V ∗ the free monoid generated by V , by λ its identity or the empty
string, and by V + the set V ∗ − {λ}. The elements of V ∗ are called words or
strings. For more details on formal language theory, we refer to [18].

Now we shall see some basic definitions of contextual grammars. An internal
contextual grammar with choice is a construct G = (V, A, (S1, C1), ...(Sn, Cn)),
n ≥ 1, where

– V is a finite set of alphabets,
– A ⊆ V ∗ is a finite set called the set of axioms,
– Si ⊆ V ∗, 1 ≤ i ≤ n, are the sets of selectors or choice,
– Ci ⊆ V ∗ × V ∗, Ci finite, 1 ≤ i ≤ n, are the sets of contexts.

The usual derivation in the internal mode is defined as

x =⇒in y iff x=x1x2x3, y=x1ux2vx3, for x1, x2, x3 ∈V ∗, x2 ∈Si, (u, v)∈Ci,

for some 1 ≤ i ≤ n. The language generated by the above grammar G is given
as

Lin(G) = {x ∈ V ∗ | w =⇒∗
in x, w ∈ A},

where =⇒∗
in is the reflexive transitive closure of the relation =⇒in .

When all the selectors Si’s are empty, G is said to be internal contextual
grammar without choice. In such a case, we can apply any context (u, v) ∈
Ci, 1 ≤ i ≤ n, to any substrings of the derivation as there is no specified
selector.

A contextual grammar G is said to be deterministic if and only if for every
selector in G there exists at most only one corresponding context (u, v) in G.
That is, Card(Ci) ≤ 1 for 1 ≤ i ≤ n.

Further Results on Syntactic Ambiguity of Internal Contextual Grammars 135

Depth-first contextual grammars were introduced by Martin-Vide et. al. in
[12]. In depth-first contextual grammars, at each derivation step (except the
first derivation), at least one of the contexts u or v which was introduced in
the previous derivation must be a subword of the currently used selector. More
formally, given a contextual grammar G = (V, A, (S1, C1), . . . , (Sn, Cn)), n ≥ 1,
the depth-first derivation in G as a derivation w1 =⇒df w2 =⇒df . . . =⇒df

wm, m ≥ 1, where

(i) w1 ∈ A, w1 =⇒ w2 in the usual sense,
(ii) for each i = 2, 3, . . . , m, if wi−1 = x1x2x3, wi = x1ux2vx3 ((u, v) is the

context adjoined to wi−1 in order to get wi), then wi = y1y2y3, wi+1 =
y1u

′y2v
′y3, such that y2 ∈ Sj , (u′, v′) ∈ Cj , for some j, 1 ≤ j ≤ n, and

y2 contains one of the contexts u or v (which were adjoined in the previous
derivation) as a substring.

The set of all words generated by a grammar G in this way is denoted by Ldf (G).
Now, we formally define the ambiguity for internal contextual grammars and

the types of ambiguity of them. Given a contextual grammar G = (V, A, (S1, C1),
. . . , (Sn, Cn) and a derivation δ of a word z is given by

δ = w1 =⇒in w2 =⇒in . . . =⇒in wm = z, m ≥ 1, such that w1 ∈ A and
wj = x1,jx2,jx3,j , x1,j , x2,j , x3,j ∈ V ∗,

wj+1 = x1,jujx2,jvjx3,j , for x2,j ∈ Sj , (Sj , (uj, vj)) ∈ P, 1 ≤ j ≤ m − 1.

The sequence of used axiom and the used context can be given as

w1, (u1, v1), (u2, v2), . . . , (um−1, vm−1)

and is called the control sequence associated to the derivation δ. The control
sequence does not identify the derivation, because the contexts might be adjoined
in different positions. Thus, we define the description of δ as follows:

w1, x1,1(u1)x2,1(v1)x3,1, . . . , x1,m−1(um−1)x2,m−1(vm−1)x3,m−1,

the parentheses identify exactly the contexts used and the places at which they
are adjoined.

An intermediate case is to specify only the used contexts and their corre-
sponding selectors. Such a sequence will be of form

w1, ((u1, v1), x2,1), ((u2, v2), x2,2), . . . , ((um−1, vm−1), x2,m−1).

We call this as complete control sequence of δ. If we take into consideration the
contexts (and selectors) used and not the order in which they are applied, then
we obtain the unordered control sequence (and the unordered complete control
sequence).

A contextual grammar G is said to be 1-ambiguous if there are two deriva-
tions in G having different unordered control sequences and which generate the

136 K. Lakshmanan

same string. Replacing the above definition with the words, “unordered con-
trol sequences” by “unordered complete control sequences”, “control sequences”,
“complete control sequences”, and “descriptions”, respectively, we say that the
grammar is 2-, 3-, 4-, 5- ambiguous, respectively. A contextual grammar G is said
to be 0-ambiguous if there exists at least two different axioms w1, w2 ∈ A, w1 �=
w2 such that they both derive the same word z. i.e., w1 =⇒+ z, w2 =⇒+ z.
More formally, the types of ambiguity are given as follows:

0 − ambiguity = two axioms,
1 − ambiguity = two unordered control sequences,
2 − ambiguity = two unordered complete control sequences,
3 − ambiguity = two (ordered) control sequences,
4 − ambiguity = two (ordered) complete control sequences,
5 − ambiguity = two descriptions.

A grammar which is not i-ambiguous, for some i = 0, 1, 2, 3, 4, 5, is said
to be i-unambiguous. A language L is inherently i-ambiguous if every gram-
mar G with F selection generating L is i-ambiguous. A language for which
a i-unambiguous grammar exists is called i-unambiguous. From definition, it
is clear that if a grammar is i-ambiguous, it is j-ambiguous too, for (i, j) ∈
{(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)}.

Here, we give some of the conventional notions which are prevalently used in
this paper. We call selector as choice some times. When the selectors Si’s are of a
particular family of languages, the grammar G is said to be contextual grammars
with F selector (or F choice or F selection) where F is the family of languages.
Arbitrary selectors does not mean that the selectors have no restriction (which
are called grammars without choice), rather it means the selectors can be of
any type like finite, regular, etc.. As we are not discussing external contextual
grammars or any other grammars, we simply refer internal contextual grammars
as grammars in many occurrences.

3 Related Results and Open Problems

In this section we recall some of the results obtained so far in ambiguity of inter-
nal contextual grammars. These results are presented in order to facilitate insight
into inherent ambiguity of internal contextual grammars. We also mention some
open problems which were formulated in [3], [13].

In [14], the notion of ambiguity was considered first time in this field, where the
ambiguity was defined for external contextual grammars. The rigorous study on
ambiguity of internal contextual grammars were analyzed by L. Ilie in [3] and by
Martin-Vide et al. in [13]. Ilie investigated the ambiguity in connection with con-
textual grammars without choice, deterministic grammars and grammars over
one-letter alphabet whereas Martin-Vide et. al. analyzed the inherent ambiguity
of internal contextual grammars with arbitrary selection. Here, we list some of
the results and open problems which are relevant to this paper.

Further Results on Syntactic Ambiguity of Internal Contextual Grammars 137

We first consider some results and open problems on ambiguity of contextual
grammars without choice. The proof of these results can be found in [3]. When
we consider contextual grammars without choice, from the definition of types of
ambiguity, it is not hard to conclude that there is no need to consider the cases
of 2-, 3-, 4-, 5- ambiguity as the selectors are empty. Therefore, only 0-ambiguity
and 1-ambiguity are worth to be considered.

Result 1. There are inherently 0-ambiguous languages with respect to internal
contextual grammars without choice which are 0-unambiguous with respect to
internal contextual grammars with finite choice.

Result 2. There are inherently 1-ambiguous languages with respect to internal
contextual grammars without choice which are 0-unambiguous with respect to
internal contextual grammars with finite choice as well as without choice.

Open problem 1. Are there inherently 0-ambiguous languages with respect to
internal contextual grammars without choice which are 1-unambiguous (or j-
unambiguous, j = 2, 3, 4, 5) with respect to internal contextual grammars with
finite choice?

We now consider some results and open problems on ambiguity of contextual
grammars with arbitrary selector. More detailed results can be seen in [13].

Result 3. There are inherently 5-ambiguous languages with respect to internal
contextual grammars with arbitrary selection which are 4-unambiguous with re-
spect to internal contextual grammars with finite choice.

Result 4. There are inherently 4-ambiguous languages with respect to internal
contextual grammars with arbitrary selection which are 2- and 3- unambiguous
with respect to internal contextual grammars with finite choice.

Result 5. There are inherently 3-ambiguous languages with respect to internal
contextual grammars with arbitrary selection which are 1- and 2- unambiguous
with respect to internal contextual grammars with finite choice.

The remaining cases of existence of inherently ambiguity were unsolved in that
paper and left as open. They are:

Open problem 2. Whether or not there are inherently 2-ambiguous languages
with respect to internal contextual grammars with arbitrary choice and 1- or 3-
unambiguous with respect to internal contextual grammars with finite choice?

Open problem 3. Whether or not there are languages which are inherently 1-
ambiguous with arbitrary choice which are 0-unambiguous with respect to internal
contextual grammars with finite selection?

Unlike, contextual grammars without choice, the notion of six types of ambi-
guity are meaningful to deterministic grammars. The above results 3,4,5 hold
well for deterministic case too, because the grammars considered in the proof
are deterministic (each selector in the grammar has only one context at most).
Regarding the open problems for deterministic grammars, the above two open
problems 2 and 3 can also be raised to deterministic case too.

138 K. Lakshmanan

4 Main Results

In this section, we present our results which are solutions to the open problems
1,2,3 discussed in the previous section.

Theorem 1. There are inherently 0-ambiguous languages with respect to inter-
nal contextual grammars without choice (selector) which are 1-unambiguous with
respect to internal contextual grammars with finite selector.

Proof. In [3] it is proved that the language L = {a, b}+ is inherently 0-ambiguous
with respect to internal contextual grammars without selector. Nevertheless, we
restate the proof here for the sake of completeness.

Consider the above language L and an arbitrary contextual grammar G =
({a, b}, A, {(S1, C1), . . . , (Sn, Cn)}) where each Si = λ, 1 ≤ i ≤ n (without
choice) which generates L. As the string a+ is in L, there must be a context of the
form (ar1 , ar2), r1, r2 ≥ 0, r1 + r2 ≥ 1 in Ci, 1 ≤ i ≤ n. Similarly, as the string
b+ is in L, there must be a context of the form (bs1 , bs2), s1, s2 ≥ 0, s1 + s2 ≥ 1
in Ci, 1 ≤ i ≤ n. Because the strings ar1ar2 and bs1bs2 are in L, there are two
axioms w1, w2 in A derives them. That is, w1 =⇒∗ ar1ar2 , w2 =⇒∗ bs1bs2 . As L
does not contain any empty string, w1 �= w2. As G is without choice, we can have
the derivation ar1ar2 =⇒ bs1ar1bs2ar2 , and bs1bs2 =⇒ bs1ar1bs2ar2 . Therefore, L
is inherently 0-ambiguous.

On the other hand, consider the following grammar G′ with finite selector

G′ = ({a, b}{a, b}, {({a, b}, {(λ, a), (λ, b)})}).

It is obvious that L(G′) = L. As a and b are present only on the right side
of the context, all words can be generated from left to right in an unique way.
Therefore, the grammar G′ is 1-unambiguous. ��

Theorem 2. There are inherently 1-ambiguous languages with respect to inter-
nal contextual grammars with arbitrary selector which are 0-unambiguous with
respect to internal contextual grammars with finite choice.

Proof. Consider the following language

L = {anbam |n ≥ m ≥ 0}∪{ardas |s ≥ r ≥ 0}∪{aidajbak |j ≥ i+k, i, j, k ≥ 0}.

Let us begin with considering first part of the language L. The number of
occurrences of a appeared to the left of b must be at least as much as the number
of occurrences of a appeared to the right of b. Therefore, P will have the selector-
context of the form (S1, C1) = (a∗ba∗, (am1 , am1)), m1 ≥ 1. To increment more
a’s to the left of b and since a+b is in L, P will have the selector-context of
the form (S2, C2) = (a∗ba∗, (an1 , λ)), n1 ≥ 1. Applying the similar argument to
the second part, we can see that P will have the selector-context of the form
(S3, C3) = (a∗da∗, (ar1 , ar1)), r1 ≥ 1, and (S4, C4) = (a∗da∗, (λ, as1), s1 ≥ 1.
To generate the third part, the selector-contexts which were discussed above are
sufficient.

Further Results on Syntactic Ambiguity of Internal Contextual Grammars 139

Now we claim that the grammar G is inherently 1-ambiguous. Consider the
third part, set i = m1, j = m1 +r1 +s1n1, k = r1. Then, the word will be of the
form am1dam1+s1n1+r1bar1 . This can be generated by applying (S1, C1), (S2, C2),
(S3, C3) or (S1, C1), (S4, C4), (S3, C3). Therefore, there exists two different un-
ordered control sequences which derive the same word present in the language L.

In order to prove that the language is 0-unambiguous with respect to internal
contextual grammar with finite selector, consider the following grammar

G′ = ({a, b, d}, {b, d, db}, {(b, {(a, a), (a, λ)}), (d, {(a, a), (λ, a)})}).

It is easy to see that L(G′) = L and G′ is 0-ambiguous since there exists only
one axiom for each part of the language. ��

The above grammar is not deterministic since the selector b and d has more
than one context. Therefore, the immediate question can be raised is whether
the statement holds for deterministic case too? We prove it in the affirmative
way in the following theorem.

Theorem 3. There are inherently 1-ambiguous languages with respect to de-
terministic internal contextual grammars with arbitrary choice which are 0-
unambiguous with respect to internal contextual grammars with finite selection.

Proof. Consider the language

{ancan | n ≥ 0} ∪ {baicajd | i, j ≥ 0}.

We start with considering the first part. Obviously, the selector a∗ca∗ must
have the context (ar, ar), r ≥ 1. Considering the second part, the selectors of the
form a∗ca∗ and a+ will have no context of the form (as1 , as2), s1 �= s2, s1, s2 ≥
0, s1 + s2 ≥ 1. Otherwise, unequal number of a’s can be derived in the first part
of L. Therefore, the selector ba∗ (or the selector ba∗ca∗) must have the context
of the form (λ, as3), s3 ≥ 1 and the selector a∗d (or the selector a∗ca∗d) must
have the context of the form (as4 , λ), s4 ≥ 1.

Now, we claim that this grammar G is inherently 1-ambiguous. Whenever, we
set i = j in the second part, the word can be derived by two ways: either using
the context (ar, ar) or by using the contexts (λ, as3) and (as4 , λ). Therefore,
there exists two different unordered control sequences such that one will have
the context (ar, ar) and the other will have the contexts (λ, as3), (as4 , λ), both
control sequences derive the same word in L. We can see that all the selectors
are having only one context and therefore G is deterministic.

To prove the second part of the statement, consider the following grammar

G′ = ({a, b, c, d}, {c, bcd}, {(c, (a, a)), (b, (λ, a)), (d, (a, λ))}).

Its is easy to see that L(G′) = L and G′ is 0-unambiguous since to produce each
part of the language G′ has only one axiom. ��

From the results 3,4,5 and theorem 2, we can see that there exists languages
which are inherently ambiguous for every level of ambiguity in contextual gram-
mars, otherthan the level 2. Regarding 2-ambiguity, we can neither come up with

140 K. Lakshmanan

a language which is inherently 2-ambiguous with respect to internal contextual
grammar with arbitrary choice nor we can claim that there exists no language
which is inherenly 2-ambiguous with respect to internal contextual grammar
with arbitary choice. So, the open problem 2 mentioned in the previous section
remains unsolved. But, surprizing, we can solve this open problem for the variant
depth-first contextual grammars in the following theorem.

Theorem 4. There are inherently 2-ambiguous languages with respect to depth-
first internal contextual grammars with arbitrary selector which are 1-unambigu-
ous with respect to internal contextual grammars (with arbitrary selector).

Proof. Consider the following language

L = {anbam | n ≥ m ≥ 1} ∪ {bakd | k ≥ 1}.

Let G be an arbitrary contextual grammar which generates the language L
under the depth-first derivation mode. Consider the first part of L. Obviously,
the contexts are of the form (ap, ap), p ≥ 1, and (aq, λ), q ≥ 1 present in the
grammar G (as arb, r ≥ 1 is in L).

For the case of selectors (with respect to first part only), all the selectors must
have a subword b. Otherwise, if a’s were the only selector, then, more a’s can be
incremented on the right of b than the number of a’s on the left of b which is not in
the language. At the same time, b alone can not be a selector, because whenever
(ap, ap) is introduced, the derivation of the next step should contain either the
left ap or the right ap which was introduced in the previous step. So, the possible
selectors are of the form a+b, ba+ and a+ba+. But ba+ can not be a selector.
Because, if (ba+, {(ap, ap), (aq3 , λ)}) is in P , then this can be applied to the axiom
of the second part of L which generates the word of the form arbakd, r, k ≥ 1,
not in L. Note that when we start from the axiom, we need not check whether
the selector contains any context since no contexts are introduced yet to the
axiom. Therefore, the possible selector-context for the first part will be of the
form (a+b, a+ba+, {(ap, ap), (aq1 , aq2), (aq3 , λ))}), p, q1, q3 ≥ 1, q2 ≥ 0, q1 ≥ q2.

Now, consider the second part. ba∗ can not have the context (λ, as1), s1 ≥ 1.
Otherwise, applying this to the axiom of first part generates more a’s on the
right of b than the a’s on the left of b, which is not allowed in the first part.
Therefore, a∗d could be the only possible selector and the context should have
λ on the right. Therefore, the possible selector-context for the second part is
(a∗d, (as, λ)), s ≥ 1.

Now we claim that this grammar G with arbitrary selector is inherently 2-
ambiguous with respect to depth-first mode. Let P be having the first selector
a+b, then whenever we apply the context (ap, ap), the left context a’s which are
adjoined in the previous step of the derivation can be covered by the selector
a+b. Whenever, we apply the context (aq1 , λ) in a derivation, we will have two
choices to cover the last introduced context: either the left a’s of the context
can be included in the selector a+b or without including the left context, we can
include the right context λ to the selector a+b as λ was inserted on the right of b
in the last step of the derivation. So, whenever we apply the context (aq1 , λ), we

Further Results on Syntactic Ambiguity of Internal Contextual Grammars 141

can have two different selectors: the first selector covers the inserted left context
a’s and the second selector covers the inserted right context λ. Obviously, both
the selectors derive the same word. The similar argument can be raised to the
other selector a+ba+. In fact, whenever we apply the context (ap, ap) itself, we
can have two different selectors: the first one consists the left of last inserted a’s
and the second one consists the right of last inserted a’s. Therefore, the complete
control sequences will have two different selectors (but the contexts are same)
which derive the same word in L. It follows that G is inherently 2- ambiguous
with respect to depth-first internal contextual grammars.

To prove L is 1-unambiguous, consider the following grammar G′ with finite
selector

G′ = ({a, b, d}, {aba, aaba, bad}, {({aab, aba}, {(a, a), (a, λ)}), (d, (a, λ))})

It is easy to see that Ldf (G′) = L. First we shall make sure that G′ is 2-ambiguous
with respect to depth-first derivation. Assume that the word ajaabaaaj , j ≥
0 ∈ L is derived from axiom under depth-first mode and the last selector used
was aba (the underlined letters are the contexts which were introduced in the
previous step). Now consider the next derivation step and we want to apply
the context (a, λ). The only possible selector which contain one of the previous
introduced context is aab. Once the context (a, λ) is applied using the selector
aab, we will have the word ajaaabλaaaj . Now the next selector should contain
one of the context a or λ. Then we can have two choices: either we can choose
aabλ or abλa. Hence G′ is 2-ambiguous. As G′ has no other alternative contexts
for (a, a) and (a, λ), G′ is 1- unambiguous. ��

When the ordered control sequence of the derivation is considered, G′ is 3-
ambiguous since the order of applying (a, a) and (a, λ) can be interchanged. It is
worth to note that L can not be inherently 2-ambiguous with respect to internal
contextual grammars with arbitrary selector because b and d itself are sufficient
selectors for the above contexts. That is, (b, {(a, a), (a, λ)}) and (d, (a, λ) would
be sufficient to generate L in internal contextual grammar. Obviously, we can
not choose some other substitutes for the selectors b and d, the grammar is 2-
unambiguous and thus L is not inherently 2-ambiguous with respect to internal
contextual grammars. Also, note the above grammar G′ is not deterministic.
So, proving a similar result with deterministic grammar is left open. That is,
whether there are inherently 2-ambiguous languages with respect to a variant of
deterministic internal contextual grammar with arbitrary choice are 1-ambiguous
is open.

5 Final Remarks

In this paper, we have given solutions to the following open problems on am-
biguity of internal contextual grammars which were addressed in [3], [13]. For
each (i, j) ∈ {(2, 1), (2, 3), (1, 0), (0, 1)}, are there languages which are inher-
ently i-ambiguous with respect to grammars with arbitrary choice which are

142 K. Lakshmanan

j-ambiguous with respect to grammars with finite choice (except for (0, 1) case
- where contextual grammars without choice was considered)? Though, we did
not prove any result for (2, 3) of the above problem, we presume that when there
exists a language (like in the case of depth-first grammars) which is inherently
2-ambiguous, there is no need to analyze whether it is 3-unambiguous or not.
The reason to our argument is 2-ambiguity does not mean that 3-ambiguity and
so there is no direct relation exists between 2- and 3- ambiguity. But, we can
not discard the similar question to 1-ambiguity. Because, whenever a grammar
is 1-ambiguous it is 2-ambiguous too. So, whenever we claim a language is of
inherently 2-ambiguous (with respect to internal or depth-first contextual gram-
mars), we need to verify that it does not follow from 1-ambiguous and so proving
1-unambiguity for that language is valid and unavoidable.

The results shown in this paper are important since now a more clear picture
of the existence of inherently ambiguous languages (of all types) for internal con-
textual grammars is obtained. Regarding the further work on this topic, it would
be interesting to find a language which is inherently 2-ambiguous with respect
to internal contextual grammar with arbitrary choice, but 1-unambiguous with
respect to finite selector. The result will be of more interesting if the grammar
is deterministic.

References

1. P. Boullier. Range Concatenation Grammars. In proceedings of the sixth In-
ternational Workshop on Parsing Technologies (IWPT’00), Trento, Italy, 2000,
pp. 53–64.

2. P. Boullier. From Contextual Grammars to Range Concatenation Grammars. Elec-
tronic Notes in Theoretical Computer Science, 53, 2001.

3. L. Ilie. On Ambiguity in Internal Contextual Languages. II Intern. Conf. Math.
Linguistics ’96, Tarragona, (C. Martin-Vide ed.), John Benjamins, 1997, 29–45.

4. L. Ilie. On Computational Complexity of Contextual Languages. Theoretical Com-
puter Science, 183(1), 1997, 33–44.

5. A.K. Joshi, How much Context-Sensitivity is Required to Provide Structural De-
scriptions: Tree Adjoining Grammars, In David Dowty, Lauri Kartunen and Arnold
Zwicky (eds.), Natural Language Processing: Psycholinguistic, Computational, and
Theoretical Perspectives, Cambridge University Press, 1986, 206–250.

6. M. Kudlek, C. Martin-Vide and A. Mateescu. An Infinite Hierarchy of Mildly
Context-Sensitive Families of Languages. TUCS Technical Report No. 163, 1998.

7. K. Lakshmanan, S.N. Krishna, R. Rama and C. Martin-Vide, Internal Contex-
tual Grammars for Mildly Context Sensitive Languages, to appear in Research on
Language and Computation, 2006.

8. S. Marcus, Algebraic Linguistics, Analytical Models, Academic Press, New York,
1967.

9. S. Marcus. Contextual Grammars. Rev. Roum. Pures. Appl., 14, 1969, 1525–1534.
10. S. Marcus, C. Martin-Vide and Gh. Păun, On Internal contextual grammars with

maximal use of selectors, Proc.8th Conf. Automata and Formal Languages, Salgo-
tarjan, 1996.

11. S. Marcus, C. Martin-Vide and Gh. Păun. Contextual Grammars as Generative
Models of Natural Languages. Computational Linguistics, 1998, 245–274.

Further Results on Syntactic Ambiguity of Internal Contextual Grammars 143

12. C. Martin-Vide, J. Miquel-Verges and Gh. Păun. Contextual Grammars with
Depth-first Derivation. Tenth Twente Workshop on Language Technology; Alge-
braic Methods in Language Processing, Twente, 1995, 225–233.

13. C. Martin-Vide, J. Miguel-Verges, Gh. Păun and A. Salomaa. Attempting to De-
fine the Ambiguity in Internal Contextual Languages. II Intern. Conf. Math. Lin-
guistics ’96, Tarragona, (C. Martin-Vide ed.), John Benjamins, Amsterdam, 1997,
59–81.

14. Gh. Păun, Contextual Grammars, The Publ. House of the Romanian Academy of
Sciences, Bucuresti, 1982.

15. Gh. Păun, Marcus Contextual Grammars: After 25 years, Bulletin of EATCS, 52,
1995, 183–194.

16. Gh. Păun. Marcus Contextual Grammars. Kluwer Academic Publishers, 1997.
17. Gh. Păun and X.M. Nguyen. On the Inner Contextual Grammars. Rev. Roum.

Pures. Appl., 25, 1980, 641–651.
18. A. Salomaa. Formal Languages. Academic Press, 1973.

Error-Driven Learning with Bracketing

Constraints

Takashi Miyata1 and Kôiti Hasida2,1

1 Core Research for Evolutional Science and Technology,
Japan Science and Technology Agency

2 Information Technology Research Institute,
National Institute of Advanced Industrial Science and Technology

Abstract. A chunking algorithm with a Markov model is extended to
accept bracketing constraints. The extended algorithm is implemented
by modifying a state-of-the-art Japanese dependency parser. Then the
effect of bracketing constraints in preventing parsing errors is evalu-
ated. A method for improving the parser’s accuracy is proposed. That
method adds brackets according to a set of optimal brackets obtained
from a training corpus. Although the method’s coverage is limited, the
F-measure for the sentences to which the method adds brackets is im-
proved by about 7%.

1 Introduction

One important topic in recent studies of statistical parsers is how to weaken the
independence assumptions of probabilistic context-free grammar (PCFG). Two
issues are included in the problem: lexicalization and structural context [1].

Charniak [2] reduced the probability of the parse to the product of the prob-
abilities of the pre-terminal of each constituent, the lexical head of the con-
stituent, and expansion of the constituent. These three kinds of probabilities
are conditioned by information outside the constituent. Consequently, the parser
described in that study can address both lexicalization and structural
context.

CaboCha [3], which is a state-of-the-art Japanese parser that adopts cascaded
chunking; its language model is n-gram. Cascaded chunking [4] is a parsing
method that iteratively produces chunks of words or constituents in a sentence.
Chunks that are built in the (n − 1)-th stage are regarded as words in the n-th
stage. The chunking process is repeated until the entire sentence becomes one
chunk. A word in the n-th stage inherits some information about the chunk in
the (n−1)-th stage, such as the head word and the subcategorization. Therefore,
cascaded chunking shares similar properties with lexicalized PCFG.

This study specifically examines cascaded chunking and is intended to im-
proves its accuracy through error-driven learning. We first detect the parser’s
deficiency by correcting errors through the use of bracketing. Then, we generalize
the obtained bracketing patterns and apply them to raw sentences.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 144–155, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Error-Driven Learning with Bracketing Constraints 145

2 Chunking Under Bracketing Constraints

2.1 Chunking with IOB Model

Chunking can be reduced to labeling B or I on each word [5, 6], where label B
means the beginning of a chunk and label I denotes the middle or the end of a
chunk1. The formal specification of the language model is as follows:

– Two states, B and I, exist at respective positions of words in a sentence.
Each state produces a word according to a fixed distribution Pr(wi | L),
where wi is the i-th word in a sentence and L is B or I2.

– The probability of the transition through a sequence of states Li−h, Li−h+1,
. . . , and Li−1 to state Li is specified by conditional probabilities Pr(Li |
Li−1, . . . , Li−h), in which Li is the i-th state and h is a fixed size of history3.

Given a sentence (w1, w2, . . . , wn) as a sequence of words, we can calculate the
most likely transition of states, or labels, using the Viterbi algorithm4. Note that
every combination of two types of states (B→B, B→I, I→B, and I→I) can be a
valid transition in this language model.

The following examples show encoding of some possible parses for the phrase
“bank books and account” in this model5:

1. (Bankn booksn andcnj accountn)NP

B I I I
2. [(Bankv) (booksn)NP]VP (andcnj) (accountv)VP

B B B B
3. (Bankv) (booksn andcnj accountn)NP

B B I I

Each suffix of a word indicates the part-of-speech (POS), and each suffix of a
bracket indicates the phrasal category. The pair of square brackets in the second
parse ([]VP) is not encoded by the labels, but we annotate it for clarity.
1 The original algorithm uses another label O to indicate the outsides of chunks. We

omit label O by ignoring the bar levels of single-branching phrases. Labels may have
subsorts such as BNP, which indicates the beginning of a noun phrase.

2 This explanation neglects other information like POSs and phrasal categories for
clarity.

3 These conditional probabilities are inferred as already obtained by some means such
as a forward-backward algorithm [7]. The parser described in the remainder of this
paper uses support vector machines [5]. We first prepare a classifier for labels B and
I. Subsequently, the probabilities are calculated as Pr(Li | Li−1, Li−2, . . . , Li−h) =
{1 + tanh(d(h))}/2, where d(h) is the distance between the point corresponding to
the features h representing the history (Li−1, Li−2, . . . , Li−h) and the separating
hyperplane.

4 In the remaining explanation, we consider only the calculation of the most likely
parse for clarity, but that algorithm would be readily extensible to output multiple
candidates.

5 We assume that “bank” has two meanings as a noun and a transitive verb and
“account” as a noun and an intransitive verb.

146 T. Miyata and K. Hasida

The following pair of brackets which partially specifies syntactic structure,
restricts the possibility of chunking:

4. (Bank books) and account

Note that this pair of brackets only excludes the third parse and chunks are pro-
ducible both inside and outside specified brackets. That is, we use bracketing for
specification of both intra-chunk and inter-chunk structures. It is also notewor-
thy that parsing the bracketed part separately fails to draw the best performance
out of a language model because of the lexicalization and structural context.

2.2 Extension of the Chunking Algorithm

To process the bracketing constraints described above, we introduce another type
of state that does not correspond to a word but rather to a sequence of bracketed
words. Figure 1 shows the states for the bracketed word sequence “w1 ((w2 w3
w4) w5 (w6) w7) w8,” where unreachable states are omitted for clarity. In Fig. 1,

w1 ((w2 w3 w4) w5 (w6) w7) w8

B0 B2 B2 B2 B1 B2 B1 B0 $

I2 I2 I1 I1 I0

B1 B1

I1

B0

I0

Fig. 1. Lattice Structure for Chunking with Bracketing Constraints

a sharp sign (#) and a dollar sign ($) respectively denote the beginning and the
end of the paths. The suffix of each state symbol is depth of the brackets. For
example, the depth of state B that spans bracketed words w2, w3, and w4 is 1,
which means that the state is surrounded by another pair of brackets (spanning
from w2 to w7). This state is depicted as the middle-sized rectangle labeled by
B1 in the figure. We call states that spans several words surrounded by a pair of
brackets bracket states and ordinary states corresponding to words word states,
respectively. There are 5 bracket states and 13 word states shown in Fig. 1.

To reflect bracketing constraints to paths, transitions are restricted as follows:

– The immediate after the beginning of paths must be a state labeled by B.
– If a left bracket is shown between state Li and its next state Li+1, the

following transitions are allowed:

(Li+1 = I Li+1 = B
Li = I OK OK
Li = B same depth OK

The transition from Li labeled by B to Li+1 labeled by I is allowed only if
Li and Li+1 have the same depth.

Error-Driven Learning with Bracketing Constraints 147

– If a right bracket is shown between state Li and its next state Li+1, the
following transitions are allowed:

) Li+1 = I Li+1 = B
Li = I same depth OK
Li = B same depth Li is word state

The transition from Li (with any label) to Li+1 labeled by I allowed only if
Li and Li+1 have the same depth. The transition from Li labeled by B to
Li+1 labeled by B is allowed only if Li is a word state (i.e. the deepest state
among the states whose end points are the same as Li)6.

Bracket states are considered to generate a sequence of words in their brackets
according to the product of each generation probability and transition prob-
ability. Bracket state S spanning from wi to wi+j generates word sequence
(wi, wi+1, . . . , wi+j) according to (1):

j∏
k=0

⎧⎨⎩Pr(wi+k | Li+k)
∑
path

Pr(Li+k | Li+k−1, . . . , Li+k−h)

⎫⎬⎭ . (1)

Note that each bracket state is read as a sequence of word states in the above
calculation. That is, bracket state B is read as a sequence of word states (B I
. . . I) and bracket state I as (I I . . . I). As a result, word states Li, . . . , Li+j are
fixed to Li = B (I) and Li+1 = · · · = Li+j = I if bracket state S is labeled as B
(I), whereas Li−1, . . . , Li−h runs over the possible paths within the summation.

Note that the above extended algorithm makes the best use of the original
language model’s performance. For example, the score of the label for w3 in
Fig. 1 is estimated correctly according to the preceding path (# B0 B2). If the
bracketed part (w2, w3, w4) were parsed separately, the score of the label for w3
would be estimated incorrectly.

We use the Viterbi algorithm for label estimation. Let d be the maximum
depth of the brackets. As displayed in Fig. 1, each pair of brackets adds, at most,
two extra states within it. For that reason, the number of states at each position
is 2(d + 1) at most. In each transition from Li to Li+1, histories at Li should be
also distinguished. The number of possible histories that each state must hold is
2h−1 at most. The computational complexity is therefore O({2(d+1)}22h−1n) =
O(n(d + 1)22h+1), where n is the sentence length and h is the size of history7.

2.3 Examples of Extended Chunking

Figure 2 depicts examples of our extended algorithm. The left column is the
output to sentence “ (He asks someone(s) for investigation se-
quentially / He asks someone for sequential investigation),” which is the same as

6 The last restriction is to remove redundant paths. The correctness of this algorithm
is proved by induction on the depth of brackets.

7 Since brackets that span the same range need not be distinguished, d is less than n.

148 T. Miyata and K. Hasida

* 0
(sequentially)

* 1
(investigation)
(OBJ)

* 2
(ask)
(do)

* 0
<x>

(sequential)
(investigation)

</x>
(OBJ)

* 1
(ask)
(do)

Fig. 2. Parses for Non-bracketed (Left) and Bracketed (Right) Sentences

the output of original chunker (YamCha). The right column is the output to the
bracketed sentence “<x> </x> (He asks someone for sequential
investigation).” In both columns, each morpheme is represented as a row. The
beginning of a chunk is indicated by a row marked by *; the chunk’s ID number.

Ambiguities of the non-bracketed sentence result from the morpheme “ ”
which has two meanings: sequentially and sequential. Our chunker disambiguates
the morpheme in the non-bracketed sentence as ‘sequentially’ and chunks it as
an adverbial phrase. On the other hand, the morpheme in the bracketed sentence
is differently disambiguated and the sentence is parsed as two chunks. Note that
the added brackets themselves do not prohibit the possibility of parsing “ ” as
a single chunk. Chunking this morpheme as one chunk, however, causes particle
“ ” to be located at the beginning of a chunk as “<x>()()</x> (. . . ”
because of the added brackets. The score of such a parse is low because particles
rarely appear at the beginning of a chunk in Japanese. Consequently, the right
column in the figure is output as the most probable parse.

2.4 Notes on Morphological and Dependency Analyses

As shown above, the algorithm parses both inside and outside pairs of brackets.
Nevertheless, a case exists in which a user seeks to parse a certain part of a
sentence as one morpheme in morphological analysis. This is easily achievable
merely by restricting looking-up morphemes so as to select those that span the
same range of the part. We have extended the morphological analyzer ChaSen by
introducing a special sort of bracket that similarly surrounds just one morpheme.

We have also extended the dependency analyzer CaboCha, which can be
seen as a variant of the cascaded chunker. CaboCha verifies each pair of ad-
jacent chunks to determine whether they are dependent or not. If they do,
they are combined to form a larger chunk. This process is repeated until all
chunks are combined to one. Introducing bracketing constraints in this parser
merely restricts the case in which a pair of adjacent chunks depends; it must not
depend when brackets exist between them. Aside from combining chunks, a pair
of brackets surrounding just one chunk is removed in each step.

We have pipelined these three parsers: the extended ChaSen; the chunker
described in the above sections, which is implemented based on YamCha [5];

Error-Driven Learning with Bracketing Constraints 149

and the extended CaboCha. This integrated parser can handle arbitrary levels
of bracketing constraints and output dependency structures from raw sentences.

3 Upper Bound of Bracketing Effect

This section evaluates the upper bound of the effect of bracketing to correct
the parser’s errors. We modify YamCha and CaboCha to accept bracketing con-
straints, as described above, and use the smaller sets of parameters distributed
with the parsers. These sets of parameters are estimated from part of the Kyoto
University Corpus [8] (7,615 sentences), in which the POSs are converted by
ChaSen8. The rest of the corpus (30,768 sentences) is used for evaluation.

Evaluation measurements are bracket precision, bracket recall, and F-meas-
ure. The bracket precision is the ratio of the number of correct brackets against
the number of brackets the parser outputs. Bracket recall is the ratio of the num-
ber of correct brackets against the number of brackets the sentence in the corpus
has. The F-measure is calculated as (2 × precision × recall)/(precision + recall).
The bracket precisions, recalls, and F-measures of original chunker (YamCha),
dependency analyzer (CaboCha), and their combination are as follows:

chunk dependency chunk+dependency
precision 0.9749 0.8723 0.9268
recall 0.9743 0.8720 0.9263
F-measure 0.9746 0.8721 0.9265

3.1 Evaluation Procedure

We evaluate how many errors are corrected in the best case if we give a few pairs
of brackets to a sentence before parsing it. The procedure is as follows:

1. Exclude sentences (a) which are already parsed correctly, and (b) whose
parses have more brackets than all brackets in their correct parses. We call
the latter kind of sentence over-split ones.

2. For each remaining sentence, add brackets to it and obtain the parse as
follows:
i. Select a pair of brackets in the correct parse in the corpus that did

not appear in the parser output. Add the pair of brackets to the raw
sentence. This procedure produces m sentences if the output parse lacks
for m pairs of brackets in the correct one.

ii. Parse these m bracketed sentences and choose the most correctly parsed
result as the parse for that sentence. We call the pair of brackets in the
most correctly parsed sentence optimal brackets for the sentence.

8 Kyoto University Corpus collects Japanese articles printed in the Mainichi Newspa-
per from 1/1 to 1/17 and monthly columns of January–December in 1995. They are
annotated in morphemes, chunks (bunsetsu), and dependency among chunks.

150 T. Miyata and K. Hasida

3. Calculate the bracket precision, recall, and F-measure for the sentences.

The above procedure is repeated by adding 2, 3, 4, and 5 pairs of brackets while
excluding correctly parsed and over-split sentences in the previous stage. In the
second step in each stage,

(
m
2

)
,
(
m
3

)
,
(
m
4

)
, and

(
m
5

)
sentences are produced from

one sentence if the parse output by the parser lacks for m pairs of brackets in
the correct one9.

3.2 Result

Figure 3 portrays the bracket precision and recall against the number of pairs of
brackets added to the sentence. The figure shows that only two pairs of optimal

0.970

0.975

0.980

0.985

0.990

 0 1 2 3 4 5

Pr
ec

is
io

n
/ R

ec
al

l

pairs of brackets

chunk (recall)
chunk (precision)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

 0 1 2 3 4 5

Pr
ec

is
io

n
/ R

ec
al

l

pairs of brackets

dependency (recall)
dependency (precision)

Fig. 3. Precisions and Recalls of Chunk and Dependency against # Pairs of Brackets

brackets drastically improve the accuracy of the outputs. For example, the recall
of chunks increases from 0.9743 to 0.9894 and the precision of dependency from
0.8723 to 0.9655. The F-measure for the combination increases from 0.9143 to
0.9746. The figure also indicates that the upper bound of the effects of bracketing
constraints saturates with two or three pairs of brackets. The precision and recall
of chunks decrease slightly when more than two optimal brackets are added.

The following table lists the numbers of sentences that were (a) parsed, (b)
correctly parsed, and (c) over-split at each stage, where the stage corresponds
to the number of pairs of optimal brackets added in a sentence:

stage 0 1 2 3 4 5
parsed 30768 16845 7429 3465 1836 1057
corrected 13894 8598 3377 1163 382 107
over-split 29 818 587 466 397 276

The table indicates that the number of over-split sentences becomes larger than
the number of correctly parsed ones when four pairs of optimal brackets are
added. This coincides with the saturation of the improvement shown in Fig. 3.

Figure 4 illustrates distributions of the widths and positions of the center of
the brackets that correct all errors in a sentence at each stage. The width and
the position are normalized by the sentence length and quantized by 5%. For
9 The sentences s.t. m < b are also regarded as over-split ones and are thus excluded

in each stage, where b is the number of pairs of brackets to be added in the stage.

Error-Driven Learning with Bracketing Constraints 151

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

pa

ir
s

of
 b

ra
ck

et
s

width of brackets (% against sentence length)

stage 1
stage 2
stage 3
stage 4
stage 5

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

pa

ir
s

of
 b

ra
ck

et
s

center of brackets (% against sentence length)

stage 1
stage 2
stage 3
stage 4
stage 5

Fig. 4. Distribution of Brackets’ Widths and Positions

example, Fig. 4 shows that the brackets with width of 25–30% of the sentence
appear the most frequently (763 times) in stage 1. The figure indicates that most
optimal brackets are narrow in each stage; relatively wider brackets appear in
stages 1 and 2.

Figure 4 also displays that the optimal brackets are apt to be located around
the center of the sentences in each stage. The average of the positions, however,
is 47%, which is slightly left of the sentence center. The reason why the centers
of distributions in early stages sink is currently under investigation. We suspect
that the head-final property of Japanese is related to this phenomenon.

4 Improved Accuracy with Bracketing Constraints

The procedure described in the previous section provides optimal brackets for
each sentence in a corpus, which can be seen as a compensation for the parser’s
deficiency. If we can generalize these optimal brackets in a certain manner, they
will improve the parser’s accuracy for unseen sentences.

4.1 Algorithm and Evaluation Procedure

As mentioned previously, we use the smaller part of the corpus (7,615 sentences)
for parameter estimation and training. The remainder of the corpus (30,768
sentences) is used for evaluation. The procedure is as follows:

1. Apply the procedure described in the previous section to the training corpus.
2. Obtain the optimal brackets with four morphemes before and after the brack-

ets that form the bracketing context. For example, the optimal brackets
surrounding morphemes (wi, wi+1, . . . , wj) produce a morpheme sequence:
wi−2, wi−1, (wi, . . . , wj), wj+1, wj+2. A sharp sign (#) and a dollar sign
($) are used as wk if k < 1 and n < k (n is the length of the sentence),
respectively. We call these sequences base patterns.

3. Count the frequency of each POS in the obtained base patterns and deter-
mine the level of generalization for each POS10 manually considering their
frequencies.

10 ChaSen adopts a hierarchical POS system.

152 T. Miyata and K. Hasida

4. Generalize each base pattern by abstracting their POSs according to the
levels determined in the above step. We call these generalized base patterns
bracketing rules.

5. Apply these bracketing rules to raw sentences in the test corpus. If bracketing
rules that are mutually inconsistent are applicable, the narrowest one is
preferred. If their widths are the equal, the leftmost one is preferred.

As indicated in the previous section, adding many brackets does not effectively
improve the parser’s accuracy. For that reason, we only use the base patterns
obtained in stages 1 and 2: 837 base patterns in all and 825 different ones. The
number of POSs in the base patterns was 61. We chose 21 POSs that appear most
frequently and determined their levels of generalization. The remaining POSs
were generalized to the coarsest level. Thereafter, we obtained 805 bracketing
rules following POS abstraction.

The bracketing rules were applied 309 times to 302 sentences in the test corpus.
This is only a small part of the test corpus (1%) and hardly affects the overall
parser accuracy, but the parses for the sentences to which the bracketing rules
were applied were greatly improved as follows:

chunk dependency chunk+dependency
precision 0.9295 0.7277 0.8389

without brackets recall 0.8833 0.6839 0.7932
F-measure 0.9057 0.7050 0.8153

precision 0.9468 0.7855 0.8737
with brackets recall 0.9612 0.7999 0.8882

F-measure 0.9539 0.7926 0.8809

4.2 Examples of Optimal Brackets, Base Patterns, and Bracketing
Rules

Figure 5 displays two examples of incorrectly parsed sentences and the obtained
optimal brackets in the training corpus. Each morpheme is separated by slash
sign (/) while each chunk and dependency is enclosed by round brackets. The
first line in each block is an incorrect parser output, whereas the second line
is the correct parse in the training corpus. Optimal brackets are represented as
square brackets ([]).

1. ∗((((/) (/)) (/)) ((/ /) (/)))
((((/) (/)) (/)) ((() [/]) (/)))

buzzer / NOM strike / past moment that / field / at fall / past
(At the moment the buzzer struck, he fell down there.)

2. ∗(((((/ /) (/)) (/)) (/)) ())
((((/ /) [(/) (/)]) (/)) ())

30 / nations / OBJ subject / to do / and perform / past analysis
(An analysis that is carried out subject to 30 nations)

Fig. 5. Incorrect Parses and Optimal Brackets in the Training Corpus

Error-Driven Learning with Bracketing Constraints 153

1. base pattern bracketing rule

base form POS abstracted POS

, symbol–punctuation symbol–punctuation
(that) adnominal adnominal

<x>
(field) noun–general noun–general
(at) particle–case marker–general particle–case marker

</x>
(fall) verb–content verb–content
(past) auxiliary auxiliary

2. base pattern bracketing rule

base form POS abstracted POS

(nations) noun–suffix–ordinal noun–suffix
(OBJ) particle–case marker–general particle–case marker–general

<x>
(subject) noun–general noun–general
(to) particle–case marker–general particle–case marker–general
(do) verb–content verb–content
(and) particle–conjunctive particle–conjunctive

</x>
(go) verb–functional11 verb
(past) auxiliary auxiliary

Fig. 6. Base Patterns and Bracketing Rules Obtained from Examples in Fig. 5

Figure 6 shows the base patterns and the bracketing rules that are obtained
from the examples in Fig. 5. Each table consists of three columns: morphemes
in base form, POSs, and abstracted POSs. The left two columns form a base
pattern while the rightmost column is a bracketing rule. The POSs hierarchy is
demarcated by dashes (–).

The first examples in Fig. 5 and Fig. 6 are optimal brackets and a bracketing
rule which corrects a chunking error around morphemes “ (that)” and “
(field).” This type of bracketing rule is applicable to simple cases where the
errors mainly arise from insufficient training data and are corrected locally. In
fact, this bracketing rule was the most frequently applied (34 sentences).

The second examples in Fig. 5 and Fig. 6 are optimal brackets and a bracketing
rule that correct a dependency error. The five chunks that comprise this sentence
are identified correctly without bracketing constraints, but dependencies among
them are not parsed correctly. In the correct parse, the chunk that represents
quantity “ (30 nations, OBJ)” depends on the light verb “ (do, and)”,
not the adjacent chunk “ (subject to).” Such an idiosyncrasy is difficult
to manage, but the optimal brackets and the derived bracketing rule partially
capture its property. This bracketing rule was applied to 18 sentences.

11 This is an error in the corpus, which should be “ (perform) verb–content.”

154 T. Miyata and K. Hasida

5 Discussion

As described in Sect. 3, even the effect of optimal brackets saturates in relatively
early stages because of the increase of over-split sentences. Moreover, Fig. 4 shows
that most optimal brackets are narrow. Consequently, the effect of bracketing
constraints that compensates the locality of Markov model is limited. If we were
able to devise some bias that reduces over-splitting within a pair of brackets,
bracketing constraints could be used more effectively. Brackets that surround just
one constituent explained in Sect. 2.4 would be one solution for this problem.

In Sect. 4, we hand-crafted an abstraction scheme for POSs because very few
base patterns were obtained. A more systematic method, however, should be
adopted when a larger training corpus is available. Moreover, we applied each
bracketing rule independently, which was not problematic because the coverage
of the bracketing rules was quite low and most bracketing rules were applicable
at most once in a sentence. However, we have obtained optimal combinations of
brackets by the procedure described in Sect. 4. Use of a larger training corpus
could yield more sophisticated bracketing rules by a pattern mining method such
as that proposed by Asai and others [9].

Note that brackets that are not optimal are also useful. Notwithstanding, we
have addressed only optimal bracketing in this study. Adding brackets that are
already output by the parser does not affect the parser’s output.

6 Related Work

To manage numerous ambiguities efficiently, several studies have examined struc-
ture sharing, mainly in the context of syntactic parsing [10, 11]. A lattice struc-
ture with a Markov model incorporated into a Cost Minimization Method in
morphological analysis [12] and Cascaded Chunking [4] are special cases of those
studies. The difference between those methods and ours is that our method has
no fixed dictionary or grammar. A pair of brackets introduces a new ‘constituent,’
but it also allows the ‘constituent’ to be parsed in more detail.

Brill and Resnik [13] approach prepositional phrase attachment disambigua-
tion by error-driven learning. They first parse a raw sentence in a training corpus
and obtain transformation rules that correct errors in the parser’s output. Note
that their transformation rules are applied repeatedly and that the order of the
application is important. For example, one effect of a rule is sometimes canceled
by another rule that is applied later. For that reason, it is difficult to interpret
transformation rules even if each of them were quite simple. On the other hand,
our bracketing constraints can be interpreted independently.

7 Conclusion

This paper has presented an algorithm that introduces bracketing constraints
into chunking based on a Markov model. This paper has also reported the effect
of adding optimal brackets into a raw sentence before parsing it and has shown

Error-Driven Learning with Bracketing Constraints 155

that the use of only two pairs of brackets can increase the F-measure from 0.9143
to 0.9746 at best.

A method for improving the parser’s accuracy with bracketing constraints
has also been proposed. Optimal brackets obtained from a training corpus are
generalized by abstracting hierarchical POSs around them; bracketing rules are
derived. Coverage of bracketing rules is quite limited, but they improve the F-
measure from 0.8153 to 0.8809 for sentences to which the rules are applicable.

Our algorithm has numerous potential applications; information from various
analysis modules such as named entity identification can be integrated easily
into our parser through bracketing constraints.

References

1. Manning, C.D., Schütze, H.: Chap. 12 Probabilistic Parsing. In: Foundations of
Statistical Natural Language Processing. MIT Press (1999) 407–460.

2. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the 6th
Applied Natural Language Processing Conference (ANLP) and the 1st Meeting
of the North American Chapter of the Association for Computational Linguistics
(NAACL), USA (2000) NAACL 132–139.

3. Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking.
In: CoNLL 2002: Proceedings of the 6th Conference on Natural Language Learning
2002 (COLING 2002 Post-Conference Workshops). (2002) 63–69.

4. Brants, T.: Cascaded Markov models. In: Proceedings of the 6th Conference of
the European Chapter of the ACL, Bergen, Norway (1999) 118–125.

5. Kudo, T., Matsumoto, Y.: Chunking with support vector machines. In: Proceed-
ings of the 2nd Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL), Pittsburgh, PA, USA (2001) 192–199.

6. Sang, E.F.T.K., Veenstra, J.: Representing text chunks. In: Proceedings of the 6th
Conference of the European Chapter of the ACL, Bergen, Norway (1999) 173–179.

7. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE
ASSP Magazine (1986) 4–16.

8. Kurohashi, S., Nagao, M.: Kyoto University text corpus project. In: Proceedings
of the Third Annual Meeting of the Association for Natural Language Processing,
The Association for Natural Language Processing (1997) 115–118 (in Japanese).

9. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: Proceedings of the 2nd
Annual SIAM Symposium on Data Mining. (2002) 158–174.

10. Boyer, R.S., Moore, J.S.: The sharing of structure in theorem-proving programs.
Machine Intelligence 7 (1972) 101–116.

11. Miyao, Y.: Packing of feature structures for efficient unification of disjunctive
feature structure. In: Proceedings of the 37th Annual Meeting of the Association
for Computational Linguistics (ACL), Maryland, USA (1999) 579–584.

12. Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Matsuda, H., Takaoka,
K., Asahara, M.: Japanese Morphological Analysis System ChaSen version 2.2.1.
Computational Linguistics Laboratory, Graduate School of Information Science,
Nara Institute of Science and Technology. (2000).

13. Brill, E., Resnik, P.: A rule-based approach to prepositional phrase attachment
disambiguation. In: Proceedings of the 15th International Conference on Compu-
tational Linguistics (COLING ’94), Kyoto, Japan (1994) 1198–1204.

Parsing with Lexicalized Probabilistic Recursive

Transition Networks

Alexis Nasr1 and Owen Rambow2

1 Lattice-CNRS (UMR 8094),
Université Paris 7, Paris, France

alexis.nasr@linguist.jussieu.fr
2 Center for Computational Learning Systems,

Columbia University, New York, NY, USA
rambow@cs.columbia.edu

Abstract. We present a formalization of lexicalized Recursive Transi-
tion Networks which we call Automaton-Based Generative Dependency
Grammar (gdg). We show how to extract a gdg from a syntactically
annotated corpus, present a chart parser for gdg, and discuss different
probabilistic models which are directly implemented in the finite au-
tomata and do not affect the parser.

1 Introduction

While finite-state methods are becoming ever more popular in natural language
processing (NLP), parsing (as opposed to chunking) has resisted the use of finite-
state methods, presumably because of the difficulty of properly modeling struc-
ture using only finite state methods (but see [1]). An early proposal to extend
finite state methods for syntax were the Recursive Transition Networks (rtns) of
Woods [2], which add a stack mechanism to a collection of finite-state automata
(fsms). rtns have been used to implement context-free grammars.

In the field of syntax, there has been much interest since the 1990’s in lexi-
calized formalisms, in which each elementary structure of a grammar formalism
represents the syntactic behavior of a single lexical item. The question arises
what happens if we add lexicalization to rtns. In this paper, we present proba-
bilistic lexicalized rtn, which we call Probabilistic Automaton-Based Generative
Dependency Grammar or pgdg. A pgdg is a collection of weighted fsms, such
that in each of these fsms, every path includes at least one lexical transition. As
with all lexicalized generative formalisms, the derivation tree is a dependency
tree. gdg as a formalization allows us to relate rtns to Tree Adjoining Gram-
mars (tag), and thus to profit from work on extracting tags from treebanks.
We show how to convert a tag extracted from a treebank into a gdg. We also
show we can vary the conversion algorithm to obtain different automata which
represent different ways of probabilistically modeling multiple attachments of
the same type (such as adjectives attaching to a noun). Thus, in our approach,
the automata represent both the algebraic part of the grammar and the prob-
abilistic model. As a result the same algorithms (for parsing and searching for
the best parses) are used for different probabilistic models.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 156–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parsing with Lexicalized Probabilistic Recursive Transition Networks 157

The outline of the paper is as follows. We start out by presenting related
work in section 2, and then present our definitions in section 3. We very briefly
present a simple parsing algorithm for gdg in section 4. We then turn to the
key contributions of this paper: we present probabilistic models of adjunction in
section 5, and then show how to extract a pgdg from a treebank (section 6).

2 Related Work

This work is based on previous work in string rewriting systems for dependency
grammars, as well as on the notion of Recursive Transition Networks [2]. In
this section, we quickly review the literature on such string-rewriting systems.
The formalism presented here can be seen as having some similarities with the
work of Hays and Gaifman [3, 4], who proposed generative formalisms for string
rewriting. These formalisms were basically context-free grammars in which there
is, on the right-hand side of rules, at least one terminal symbol. To overcome the
inadequacy of such formalisms, Abney [5] suggests extending the notation of [4]
with regular expressions in the right-hand side, similar to the approach used in
extended context-free grammars (for example, [6]). This approach was worked
out in some detail by Lombardo [7], and in a similar manner in previous work
by us [8], in which we present a string-rewriting version of gdg.

There has been some work on modeling syntactic dependency between words
using automata. Alshawi at al. [9] use cascaded head automata to derive de-
pendency trees, but leave the nature of the cascading under-formalized. Eisner
[10] provides a formalization of a system that uses two different automata to
generate left and right children of a head. His formalism bears some similarity
to the one we present.

3 Generative Dependency Grammars

3.1 Informal Definition

A gdg is a set of finite-state automata (fsms) of a particular type, namely
lexicalized automata. In a lexicalized automaton, every path from a start state to
a final state includes at least one lexical transition. A lexicalized automaton with
the anchor (word) m describes all possible dependents of m. Each automaton
has a name, which defines not only the part-of-speech of m, but also the active
valency of m (i.e., all word classes that can depend on it), as well as their linear
order. Thus this name can be thought of as a supertag in the sense of Bangalore
and Joshi [11], and we will adopt the name “supertag” here to avoid confusion
with simple part-of-speech tags. A sample lexicalized automaton is shown in
Figure 11. For expository purposes, in these examples, the supertags are simply
standard part-of-speech tags. The transitions of the automaton are labeled with

1 The initial state of an automaton is labeled 0 while its accepting states are indicated
in boldface. The empty transitions are represented in dotted lines.

158 A. Nasr and O. Rambow

pairs 〈f, c〉, where f is a grammatical function (subject, object, different types
of adjuncts, etc.), and c is a supertag, or by pairs 〈LEX, m〉, where m is an anchor
of the automaton. This automaton indicates that the verb eat has a dependent
which is its subject, obligatory and non-repeatable, and whose category is noun
or pronoun; a dependent which is its object that is optional and non-repeatable;
and an adjunct prepositional phrase which is repeatable.

3210

〈SUBJ, N〉

〈SUBJ, PRO〉

〈CIRC, P 〉

SUBJ DOBJ

N N

CIRC

NN P

〈CIRC, P 〉
〈LEX, eat〉

eateat

PN

eat

CIRCSUBJ

P

SUBJ

〈DOBJ, N〉
V

CIRC DOBJ

Fig. 1. A lexicalized automaton and three elementary trees that can be derived from it

Each word (in the formal language theory sense), i.e., each sentence (in the
linguistic sense) accepted by an automaton is a sequence of pairs 〈f, c〉. Each
such sequence corresponds to a dependency tree of depth one, which we will call
an elementary tree of the grammar. Three sample elementary trees can be seen
in the lower part of figure 1. The word corresponding to the leftmost tree is:
〈SUBJ, N〉 〈LEX, mange〉 〈CIRC, P 〉.

A gdg derivation is defined like a derivation in an rtn [2]. It uses a stack,
which contains pairs 〈c, e〉 where c is the name of an automaton from the gram-
mar, and e is a state of c. When 〈c, e〉 is on the top of the stack, and a transition
of type 〈f, c′〉 goes from state e to state e′ in automaton c, 〈c, e〉 is popped and
〈c, e′〉 is pushed as well as the machine c′ in its initial state (〈c′, q〉). When we
reach an accepting state q′ in c′, the pair 〈c′, q′〉 is popped, uncovering 〈c, e′〉,
and the traversal of automaton c resumes. We need to use a stack because, as
we saw, during a derivation, several automata can be traversed in parallel, with
one invoking the next recursively.

Since our automata are lexicalized, each traversal of a non-lexical arc (i.e.,
an arc of the form 〈f, c′〉 of automaton c) corresponds to the establishment of a
dependency between the lexical anchor of c (as governor), and the lexical anchor
of automaton c′ (as dependent). Thus, the result of a derivation can be seen
as a sequence of transitions, which can be bijectively mapped to a dependency
tree.

A probabilisticgdg (pgdg), is agdg in which the automata of the grammar are
weighted finite state automata. For each state in an automaton of the grammar,

Parsing with Lexicalized Probabilistic Recursive Transition Networks 159

the weights of the outgoing arcs represent a probability distribution over possible
transitions out of that state.

3.2 The Sites of an Automaton

The transitions of a lexicalized automaton do not all play the same role. We
have already seen the lexical transitions which provide the words that anchor
the automaton. In addition, we will distinguish the argument transitions which
attach an argument as a dependent to the lexical anchor. All argument transi-
tions which share the same grammatical function label constitute an argument
site of the automaton. An example can be seen in Figure 2, where site 1 is the
subject site, while site 4 is the object site. Note that since we consider in this
example the grammatical object of eat to be optional, site 4 can be skipped using
an ε -transition.

〈CIRC, P 〉

10

〈SUBJ,PRO〉

〈CIRC, P 〉

2 3 4 5 6 7
〈LEX, eat〉

〈SUBJ, N〉

site 2 site 3 site 4 site 5site 1

〈DOBJ, N〉

Fig. 2. Sites of the automaton in figure 1

The transitions associated with adjuncts are called adjunct transitions. They
are grouped into adjunct sites, such as sites 3 and 5 in figure 2. Some adjunct
sites are repeatable, while others (such as determiners in some languages) are
not. When several dependencies are generated by the same repeatable adjunct
site, we distinguish them by their position, which we mark with integers. The
argument and adjunct sites are distinguished from the lexical transitions, which
are called lexical sites.

4 Parsing with fsms

The parsing algorithm is a simple extension of the chart parsing algorithm for
context-free grammar (CFG). The difference is in the use of finite state machines
in the items in the chart. In the following, we will call an fsm a t-fsm if its
supertag is t. If T is the parse table for input sentence W = w1 · · ·wn and gdg
G, then Ti,j contains (M, q) where M is a t-fsm and q is one of the accepting
states of M , iff we have a complete derivation of substring wi · · · wj such that
the root of the corresponding dependency tree is the lexical anchor of M with
supertag t. If Ti,j contains (M, q1), if there is a transition in M from q1 to
q2 labeled t, and if Tj+1,k contains (M ′, q′) where M ′ is a t-fsm and q′ is an
accepting state, then we add (M, q2) to Ti,k. Note that because our grammars

160 A. Nasr and O. Rambow

are lexicalized, each such step corresponds to one attachment of a lexical head
to another as a dependent.

Before starting the parse, we create a tailored grammar by selecting those
automata associated with the words in the input sentence. An important ques-
tion is how to associate automata with words in a sentence; we do not discuss
this issue in this paper, and refer to the literature on supertagging (for example,
[11]). The parsing algorithm is extended to lattice input in the usual manner.
The lattice represents several supertag sequences that can be associated to the
sentence to parse. At the end of the parsing process, a packed parse forest has
been built. The nonterminal nodes are labeled with pairs (M, q) where M is an
fsm and q a state of this fsm. Obtaining the dependency trees from the packed
parse forest is performed in two stages. In a first stage, a forest of binary phrase-
structure trees is obtained from the packed forest and in a second stage, each
phrase-structure tree is transformed into a dependency tree.

In order to deal with pgdg, we extend our parser by augmenting entries in the
parse table with probabilities. The algorithm for extracting parses is augmented
to choose the best parse (or n-best parses) in the usual manner.

5 Probabilistic Models

The parser introduced in Section 4 associates to a supertag sequence S =S1 . . . Sn

one or several analyses. Each analysis A can be seen as a set of n−1 attachment
operations (either adjunction or substitution) and the selection of one supertag
token as the root of the analysis (the single supertag that is not attached in
another supertag). For the sake of uniformity, we will consider the selection of
the root as a special kind of attachment, A is therefore of cardinality n.

From a probabilistic point of view, each attachment operation is considered
as an event and an analysis A as the joint event A1, . . . , An. A large range of dif-
ferent models can be used to compute such a joint probability, from the simplest
which considers that all events are independent to the model that considers that
they are all dependent. The two models that we describe in this section vary
in the way they model multiple adjuncts attaching at the same adjunct site.
Put differently, the internal structure of repeatable adjunct sites is the only dif-
ference between the models. The reason to focus on this phenomenon comes
from the fact that it is precisely at this level that much of the structural am-
biguity occurs. The two models described below consider that attachments at
argument sites are independent of all the other attachments that make up an
analysis.

What is important is that the models we present in this section change the
automata, but the changes are fully within sites; if we abstract to the level of
sites, the automata are identical. Note that this hypothesis is not entailed by
the pgdg formalism, one can produce a pgdg which changes the topology of
the automata.

The two models for adjunction will be illustrated on a simple example where
two automata c1 and c2 are candidates for attachment at a given repeatable

Parsing with Lexicalized Probabilistic Recursive Transition Networks 161

adjunct site (which we will simply refer to as a “site”). Both sites can generate
(c1|c2)∗ but associate different probabilities to the generated strings. Recall that
when several adjunctions occur at the same site, the first one is said to be
of order 1, the second of order 2 and so on. The two models described below
differ mainly in the fact the the first one (the positional model) focuses on the
nature of the attachment at order i (how probable is it to have an attachment at
order i) as well as on the number of attachments (how probable is it to have n
attachments on this site). The second model (the bigram model) focuses on the
dependency between an attachement and the preceding one (how probable is it
to have a prepositional attachment following another prepositional attachment
or an adjectival one). Both models have been used extensively in probabilistic
models for parsing, but our use is slightly different as we only use these models
for ordering within the same adjunct site. In the context of standard probabilistic
context-free grammars, these models are ususally used to model the entire right-
hand side of context-free rules.

1

P (o1 = c1)

P (o1 = c2)

P (o2 = c1)

P (o2 = c2)

P (no = 1|no > 0)

P (no = 0)

P (no > 1|no > 0)P (no > 0)
2 3 4 5

P (no > 2|no > 1)

P (no = 2|no > 1)

P (on = c2)

P (on = c1)

6 7

Fig. 3. Repeatable site with two distinguished positions

5.1 Model 1: Positional Model

The automaton for a repeatable site with two positions is shown in Figure 3. It
consists of a series of transitions between consecutive pairs of states. The first
“bundle” of transitions models the first attachment at the site, the second bun-
dle, the second attachment, and so on, until the maximum number of explicitly
modeled attachments is reached. The number of explicitly modeled attachments
is a parameter of the model. This limit on the number of attachments concerns
only the probabilistic part of the automaton, more attachments can occur on
this node, but their probabilities will not be distinguished. These additional at-
tachments correspond to the loops on state 6 of the automaton. ε-transitions
allow the attachments to stop at any moment by transitioning to state 7. Un-
der Model 1, the probability of the sequences c1c2 and c1c2c1c2 being adjoined
are:

P (c1c2) = P (o1 = c1) × P (o2 = c2) × P (no = 2)

P (c1c2c1c2) = P (o1 = c1) × P (o2 = c2) × P (on = c1) × P (on = c2) × P (no > 2)

162 A. Nasr and O. Rambow

Where variables o1 and o2 represent the first and second order adjunctions. Vari-
able on represents adjunctions of order higher than 2. Variable no represents the
total number of adjunctions performed.

5.2 Model 2: N-Gram Model

The previous model takes into account the nature of an attachment at a given
order as well as the total number of attachements but disregards the nature
of the attachments that happened before (or after) a given attachment. The
model described here is, in a sense, complementary to the previous one since
it takes into account, in the probability of an attachment, the nature of the
n − 1 attachments that occurred before and ignores the order of the current
attachment. The probability of a series of attachments on the same side of the
same node will be computed by an order-n Markov chain. The order of the
Markov chain is a parameter of the model. The first order Markov chain for our
sample repeatable site is represented as a finite state automaton in Figure 4. The
transitions with probabilities P (x|START) (P (END|x), respectively) correspond to
the occurrence of automaton x as the first (the last, respectively) attachment
at this node and the transition with probability P (END|START) corresponds to
the null adjunction (the probability that no adjunction occurs at a node). The
probability of the sequence c1c2c1c2 being adjoined is now:

P (c1c2c1c2) = P (c1|START) × P (c2|c1) × P (c1|c2) × P (c2|c1) × P (END|c2)

3

41

2
P (c1|START)

P (c1|c1)

P (c2|c2)

P (END|START)

P (c1|c2)

P (END|c1)

P (END|c2)

P (c2|c1)

P (c2|START)

Fig. 4. Repeatable site with bigram modeling

6 Extracting a pgdg From a Corpus

We first describe the algebraic part of the extraction process, then briefly de-
scribe the estimation of the parameters of the probabilistic models.

6.1 Basic Approach

To extract a gdg (i.e., a lexicalized rtn) from the Penn Treebank (PTB), we
first extract a tag, and then convert it to a gdg. We make the detour via tag

Parsing with Lexicalized Probabilistic Recursive Transition Networks 163

for the following reason: we must extract an intermediate representation first in
any case, as the automata in the gdg may refer in their transitions to any other
automaton in the grammar. Thus, we cannot construct the automata until we
have done a first pass through the treebank. We use tag as the result of the first
pass because this work has already been done, and we can reuse previous work,
specifically the approach of Chen [12] (which is similar to that of Xia et al. [13]
and that of Chiang [14]). Note that the different models discussed in Section 5
only affect the manner in which the tag grammar extracted from the corpus is
converted to an fsm; the parsing algorithm (and code) is always the same.

We first briefly describe the work on tag extraction, but refer the reader to
the just cited literature for details. For our purposes, we optimize the head perco-
lation in the grammar extraction module to create meaningful dependency struc-
tures, rather than (for example) maximally simple elementary tree structures.
For example, we include long-distance dependencies (wh-movement, relativiza-
tion) in elementary trees, we distinguish passive transitives without by-phrase
from active intransitives, and we include strongly governed prepositions (as de-
termined in the PTB annotation, including passive by-phrases) in elementary
verbal trees as secondary lexical heads. Generally, function words such as auxil-
iaries or determiners are dependents of the lexical head,2 conjunctions (including
punctuation functioning as conjunction) are dependent on the first conjunct and
take the second conjunct as their argument, and conjunction chains are repre-
sented as right-branching rather than flat.

In the second step, we directly compile this tag into a set of fsms which
constitute the gdg and which are used in the parser. An fsm is built for each
elementary tree of the tag, during its depth-first traversal. In most cases, the
tree traversal proceeds from the root to the root in a depth-first manner (but
excluding the root and foot nodes of adjunct auxiliary trees). Non-leaf nodes
are visited twice: first during the downward traversal, and then again during
upward traversal. Special attention must be paid to predicative auxiliary trees,
i.e., trees which are headed by a predicate that has a clausal argument. For
predicative auxiliary trees which are left auxiliary trees (in the sense of [15],
i.e., all nonempty frontier nodes are to the left of the footnode), the traversal
ends at the footnode. For right auxilary predicative trees (which do not occur
for English), the traversal would start at the footnode.

Each time a node is visited in the depth-first traversal, a site is built in the
corresponding automaton. Each transition in the site corresponds to an attach-
ment that can be performed at the node, or to a lexical transition. If the node
visited is a substitution node of category X , a substitution site will be created
in the fsm. The transitions in the substitution site are labeled with all the ini-
tial trees of the tag whose root has category X . If the leaf node is the lexical
root of the elementary tree, a lexical site is created with one transition, labelled
with the lexical anchor, if the elementary tree is lexicalized, or with the special

2 This is a linguistic choice and not forced by the formalism or the PTB. We prefer
this representation as the resulting dependency tree is closer to predicate-argument
structure.

164 A. Nasr and O. Rambow

t4 t28 t30t2

S

NP↓ VP

V♦ NP↓

HEAD

HEAD

N ♦

NP VP

VP∗ AdvP

Adv♦

HEAD

VP

VP∗ PP

P♦ NP↓

HEAD

Fig. 5. Sample small grammar: trees for a transitive verb, a nominal argument, and
two VP adjuncts from the right

symbol HEAD in the case of a tree schema. Finally, internal nodes of the elemen-
tary tree give rise to adjunction sites in the automaton. In the basic model in
which adjunctions are modeled as independent events, we proceed as follows. To
each non-leaf state, we add one self loop transition for each tree in the gram-
mar that can adjoin at that state from the specified direction (e.g., for a state
representing a node on the downward traversal, the auxiliary tree must adjoin
from the left), labeled with the tree name. In Section 5, we discussed two other
models that treat non-leaf nodes in a more complex manner. We omit a dull
discussion of their construction, which is straightforward.

The result of this phase of the conversion is a set of FSMs, one per elementary
tree of the grammar, whose transitions refer to other FSMs. We give a sample
grammar in 5 and the result of converting one of its trees to an fsm in Figure 63.

6.2 Parameter Estimation

During the extraction of the tagfrom the corpus, three kinds of counts are
collected for each elementary tree schema T of the grammar: the number of times
T has been selected as a root of a derivation tree, the number of substitutions of
another elementary tree schema at the different substitution nodes of T , and the
number of adjunctions of other elementary tree schemas at the internal nodes
of T . Along with the last type of counts, the direction of the adjunction (left
or right) is specified, as well as the order of the adjunction and the n preceding
adjunctions of the same direction at this node.

These counts are used to estimate the root selection probabilities of the au-
tomata (the probability that an elementary tree schema constitues the root of
a derivation tree) as well as the probabilities of their transitions. The initial
probabilities, as well as the substitution and the adjunction probabilities in
the positional models are estimated using simple add-one smoothing (actually,
add-X smoothing with X tuned to 0.00001 on a development corpus), with the

3 Due to space scarseness, we do not label the arcs of the automata of figure 6 with
both probabilities and (function, supertag) pairs.

Parsing with Lexicalized Probabilistic Recursive Transition Networks 165

0 1 2
〈PREP, t4〉〈LEX, HEAD〉

0 1
〈LEX, HEAD〉

4
〈LEX, HEAD〉〈SUBJ, t4〉

1 2 3
〈DOBJ, t4〉

P (no = 0)

P (o1 = t30) P (o2 = t30)

tM2
2

t30t4 = t28

tM1
2

P (no = 1|no > 0)

P (no = 2|no > 1)

P (o1 = t28)
×P (no > 0)

×P (no > 0)

P (on = t28)

P (on = t30)
×P (no > 1)

P (o2 = t28)
×P (no > 1)

5 6 70

P (t30|START)

P (t30|t30)

P (t28|t28)

P (END|START)

P (t30|t28)

P (END|t30)

P (END|t28)

〈LEX, HEAD〉〈SUBJ, t4〉
1 2 3

4

5

P (t28|t30) 6
〈DOBJ, t4〉

0

1

P (t28|START)

P (no > 2|no > 1)

Fig. 6. fsms derived from the grammar in figure 5. Two versions of tree t2 has been
built, corresponding to models 1 and 2.

quantities added to the counts optimized on a developpment corpus. The adjunc-
tion probabilities in the N -gram models are smoothed using linear interpolation
with lower order N -grams.

7 Conclusion

We have presented a probabilistic generative formalism for dependency gram-
mars which can be seen as a probabilistic lexicalized version of Recursive Tran-
sition Networks. The topology of the automata that constitue the grammars
can be modified in order to account for different probabilistic models. Two such
models have been discussed. We showed how pgdg can be extracted from a tree-
bank. Empirical results using gdg on the Penn Treebank have been presented
in [8] and results on a French treebank can be found in [16].

Further work on this topic will focus on the coupling of a supertagger with
the parser and the developpment of other probabilistic models.

References

1. Rambow, O., Bangalore, S., Butt, T., Nasr, A., Sproat, R.: Creating a finite-
state parser with application semantics. In: Proceedings of the 19th International
Conference on Computational Linguistics (COLING 2002), Taipei, Republic of
China (2002)

166 A. Nasr and O. Rambow

2. Woods, W.A.: Transition network grammars for natural language analysis. Com-
mun. ACM 3 (1970) 591–606

3. Hays, D.G.: Dependency theory: A formalism and some observations. Language
40 (1964) 511–525

4. Gaifman, H.: Dependency systems and phrase-structure systems. Information and
Control 8 (1965) 304–337

5. Abney, S.: A grammar of projections. Unpublished manuscript, Universität
Tübingen (1996)

6. Madsen, O., Kristensen, B.: LR-parsing of extended context-free grammars. Acta
Informatica 7 (1976) 61–73

7. Lombardo, V.: An Earley-style parser for dependency grammars. In: Proceedings
of the 16th International Conference on Computational Linguistics (COLING’96),
Copenhagen (1996)

8. Nasr, A., Rambow, O.: Supertagging and full parsing. In: Proceedings of the Work-
shop on Tree Adjoining Grammar and Related Formalisms (TAG+7), Vancouver,
BC, Canada (2004)

9. Alshawi, H., Bangalore, S., Douglas, S.: Learning dependency translation models
as collections of finite-state head transducers. cl 26 (2000) 45–60

10. Eisner, J.M.: Three new probabilistic models for dependency parsing: An explo-
ration. In: Proceedings of the 16th International Conference on Computational
Linguistics (COLING’96), Copenhagen (1996)

11. Bangalore, S., Joshi, A.: Supertagging: An approach to almost parsing. Compu-
tational Linguistics 25 (1999) 237–266

12. Chen, J.: Towards Efficient Statistical Parsing Using Lexicalized Grammatical
Information. PhD thesis, University of Delaware (2001)

13. Xia, F., Palmer, M., Joshi, A.: A uniform method of grammar extraction and its
applications. In: Proc. of the EMNLP 2000, Hong Kong (2000)

14. Chiang, D.: Statistical parsing with an automatically-extracted tree adjoining
grammar. In: 38th Meeting of the Association for Computational Linguistics
(ACL’00), Hong Kong, China (2000) 456–463

15. Schabes, Y., Waters, R.C.: Tree Insertion Grammar: A cubic-time, parsable formal-
ism that lexicalizes Context-Free Grammar without changing the trees produced.
Computational Linguistics 21 (1995) 479–514

16. Nasr, A.: Analyse syntaxique probabiliste pour grammaires de dTpendances ex-
traites automatiquement. Habilitation a diriger des recherches, UniversitT Paris 7
(2004)

Integrating a POS Tagger and a Chunker

Implemented as Weighted Finite State Machines

Alexis Nasr and Alexandra Volanschi�

Lattice-CNRS (UMR 8094)
Université Paris 7

{alexis.nasr, alexandra.volanschi}@linguist.jussieu.fr

Abstract. This paper presents a method of integrating a probabilistic
part-of-speech tagger and a chunker. This integration lead to the correc-
tion of a number of errors made by the tagger when used alone. Both
tagger and chunker are implemented as weighted finite state machines.
Experiments on a French corpus showed a decrease of the word error rate
of about 12%.

Keywords: Part-of-speech tagging, chunking, weighted finite state
machines

1 Introduction

POS Tagging is often a prerequisite for more elaborate linguistic processing such
as full or partial parsing. Probabilistic taggers implementing Hidden Markov
Models (HMMs) are based on the hypothesis that the tag associated to a word
depends on a local context, usually limited to the category(ies) of the preced-
ing word(s). This hypothesis is generally verified and taggers implementing this
model are known to be efficient and accurate (about 95% precision). The approx-
imation is nevertheless responsible for the majority of tagging errors, which in
turn lead to errors in subsequent processing stages. This situation is particularly
frustrating since, at subsequent syntactic processing stages, the knowledge which
could prevent the errors might be available. The present work is an attempt to
deal with this problem by coupling the tagging and partial parsing stages. In this
configuration, the choice of the tag is dictated by knowledge associated both to
the tagger and the chunker. The model constitutes an alternative to the classical
sequential model, in which the chunker input is the most probable solution of
the tagger. In this configuration, choices made by the tagger can no longer be
altered.

The type of error the present work tries to deal with is illustrated by the
French sentence: La démission n’est pas indispensable (the resignation is not
indispensable). Tagging the adjective indispensable might prove difficult as it
may be masculine or feminine and the noun it agrees with (démission) is too

� This work was partly funded by the Technolangue Project of the French Ministry of
Culture .

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 167–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 A. Nasr and A. Volanschi

remote from it (at least for an HMM tagger). In exchange, a chunker would
group the sequences la démission, n’est pas, and indispensable into larger units
called chunks. This would bring the two units agreeing in number and gender,
namely (la démission and indispensable) closer to each other, thus making it
possible for an HMM to capture agreement.

This article also aims to point out the advantages of using weighted finite
state machines and operations defined on them for the whole processing. In this
framework, all data (sentences to be analyzed, lexicons, grammars, n-grams)
are represented as finite state automata and (almost) all treatments were im-
plemented as standard operations on automata. This homogeneity has several
advantages, the most significant of which being the possibility to easily combine
different modules using automata combining operations, combinations which
would be more difficult to achieve between modules based on different formal
models. Another advantage of this homogeneity is the simplicity of the imple-
mentation: one no longer has to define specific formats for different types of
data, to implement, adapt or optimize existing algorithms. Software libraries for
automata manipulation are essential for such treatments; in the present work we
have used the utilities fsm and grm developed by att [1].

The paper is organized as follows: section 2 is a brief reminder of definitions
concerning weighted finite state automata, introducing a number of notations
used in the remainder of the article. Sections 3 and 4 describe respectively the
principles of a probabilistic POS tagger and of a chunker as well as their imple-
mentation using weighted finite state machines. The method of integrating the
two modules is presented in the section 4.3.

2 Definitions and Notations

In this article two types of finite state machines are manipulated: on the one
hand automata, which recognize words u built on an alphabet Σ (u ∈ Σ∗),
and on the other transducers, which recognize word pairs built on two alpha-
bets Σ1 and Σ2 ((u, v) ∈ Σ∗

1 × Σ∗
2). In addition to standard regular operations

(union, concatenation and iteration) defined on both types of machines, certain
operations are specific for transducers, in particular composition, which plays
an essential role in the present work. Given two transducers, A and B which
recognize respectively the word pairs (u, v) and (v, w), the composition of A and
B (A ◦ B) is a transducer which recognizes the couple (u, w).

In addition, we use the notion of semiring, which is defined as a 5-tuple
(K, ⊕, ⊗, 0̄, 1̄) such that K is a set equipped with two operations defined on
it, generally called addition (denoted by ⊕) and multiplication (⊗), each having
its neutral element denoted respectively by 0̄ and 1̄. By associating to every tran-
sition in an automaton a weight from the set K, we obtain a weighted automaton
built over the semiring K. A weighted automaton together with a semiring K
generates a partial function which associates values from K to every word rec-
ognized. Given an automaton R and a word u, the value associated to u by R,
denoted by [[R]](u), is the multiplication (⊗) of weights on transitions along the

Integrating a POS Tagger and a Chunker 169

path in R corresponding to u. If several paths in R recognize u, then [[R]](u)
equals the addition (⊕) of weights of the different paths corresponding to u.

In the experiments described in the present work we systematically use the
tropical semiring on IR+: the weights used on transitions are opposites of the
logarithms of probabilities1. With the tropical semiring the operation ⊗ corre-
sponds to arithmetic addition (to compute the weight of a path in the automa-
ton, weights on individual transitions constituting a path are added), while the
⊕ operation is the minimum (the weight associated by an automaton to a word
recognized is the minimum weight of all paths corresponding to the word, i.e. the
most probable path). Given a weighted automaton R over the tropical semiring,
one can define the n-best paths operator, denoted by bp(R, n), which yields the
automaton made of the union of the n most likely paths in R.

3 Standard POS Tagging

In the present work, part of speech tagging follows the principles of Hidden
Markov Models, introduced by [3]. The states in the HMM correspond to parts of
speech and the observable symbols to words in the lexicon. The latter constitute
the alphabet ΣL and categories in the tagset constitute the alphabet ΣC . POS
tagging in such a framework consists in finding the most probable sequence of
states through which the HMM passes, given a sequence of observable symbols
produced by the model (the sentence).

The parameters of a HMM may be divided into emission probabilities and
transition probabilities. An emission probability is the probability of a word
given a category (P (m|c)) while the transition probability is the probability
that a given category x immediately follow a category y (P (x|y)). The joint
probability of a sequence of categories c1,n (a sequence of states the model goes
through) and of a sequence of words m1,n (a sequence of observable symbols) is
computed on the basis of the emission and transition probabilities:

P (c1,n, m1,n) = P (c1)P (m1|c1)
∏n

i=2 P (mi|ci)P (ci|ci−1)

Such a model, called a bigram model, relies on the Markov hypothesis, according
to which a category only depends on the preceding category. This restraining
hypothesis may be rendered more supple without changing the theoretical frame-
work by making the hypothesis that a category depends on the two preceding
categories; this type of model (trigram) is the one most commonly used for the
POS assignment task. In a trigram model, a state no longer corresponds to a
category, but to a pair of categories.

Such a HMM may be represented by two weighted transducers. The first
one, E, represented on the left-hand side of figure 1 (in this example ΣL =
{a, b} and ΣC = {A, B}), encodes the emission probabilities. Its input alphabet

1 Logarithms of probabilities are preferred to probabilities for reasons of numerical sta-
bility (as probabilities may be very small real numbers, by multiplying probabilities
one may be not able to represent these values on computer).

170 A. Nasr and A. Volanschi

a : B/ − log P (a|B)

b : A/ − log P (b|A)

b : B/ − log P (b|B)

a : A/ − log P (a|A)

A B

B/ − log P (B|A)

A/ − log P (A|A)
A/ − log P (A|B)

B/ − log P (B|B)

A/ − log P (A) B/ − log P (B)

Fig. 1. The transducers E and T

is ΣL and its output alphabet ΣC . The transducer has a single state and as
many transitions (from this state to itself) as there are pairs (m, c) where m
is a word from the lexicon and c a category (c ∈ ΣC) such that the emission
probability P (m|c) is non-null. The opposite of the logarithm of this probability
(− log P (m|c)) constitutes the weight of the transition tagged (m, c). In figure 1
such a transition is labeled m : c/ − log P (m|c).

The second transducer, T , which has ΣC as input and output alphabets,
encodes transition probabilities. Its structure is isomorphic to that of the HMM:
as many states as there are state pairs (x, y) (oriented from x to y) such that
P (y|x) is non null. Weights on transitions equal − log P (y|x)2. With a trigram
model the structure of the automaton T is more complex: a state corresponds to
a sequence of two categories and the transition weights are trigram probabilities.

The composition of E and T (E ◦ T) allows to combine the emission and
transition probabilities; the input alphabet of the transducer obtained is ΣL

and the output alphabet is ΣC . Such a transducer associates to every couple
(m1,n, c1,n) the weight [[E ◦ T]](c1,n, m1,n) = −

∑n
i=1 log P (mi|ci) − log P (c1) −∑n

i=2 log P (ci|ci−1) which is in fact the opposite of the logarithm of the proba-
bility P (c1,n, m1,n), such as defined above.

Tagging a given sequence of words M is achieved by representing M as a
linear automaton also called M (with one transition for every word in M) and
subsequently composing M with E◦T . The most probable sequence of categories
given M is identified by looking for the best path of the transducer M ◦ E ◦ T .
The POS tagger could then be formally defined as: bp(M ◦ E ◦ T, 1).

The trigram probabilities encoded in the automaton T are not, as a rule,
estimated by maximum likelihood on a training corpus, as trigrams appearing

2 Strictly speaking, the machine described is an automaton, but it can be viewed as
a transducer whose transitions output the same symbol as the one they read in the
input. Such a transducer represents the identity relation restricted to the language
recognized by the automaton.

Integrating a POS Tagger and a Chunker 171

in the texts to be tagged may never have occurred in the training corpus. It
is therefore essential to use a probability smoothing technique, such as back-
off [4]; the method consists in backing-off on the probability of bigram b c when
trigram a b c is not observed in the training corpus, and on to the probability
of the unigram c when bigram b c is never encountered. A back-off model may
be directly represented by using failure transitions as described in [5]. Given a
symbol α, a failure transition coming out of a state q is taken when there is
no transition labeled by α. In the case of a back-off model, a failure or default
transition is taken when a trigram or bigram was never observed. For more
details, the reader is referred to the article cited above.

Several approaches in the literature [6, 7, 8] use finite state machines in order to
simulate the functioning of HMMs. In all approaches, n-grams are represented by
finite-state automata in a manner similar to ours. They are nevertheless different
from our work in that they don’t directly manipulate emission probabilities
(P (m|c)) estimated on a training corpus, but resort to ambiguity classes, which
are sets of categories associated to a word.

Preliminary Results. All the experiments described in the present work are
conducted on the tagged and hand-validated corpus produced at the University
of Paris 7[9]. The corpus consists of 900K words tagged with 222 tags indicating
the category and morphological features. 760K words were used for training
(Train). Tests are done on a 66K words fragment (Test). All experiments are
achieved using the libraries FSM and GRM made available by AT&T. The error
rate of the trigram model (denoted by M1) such as described above on Test is
of 2, 18%3. This figure is our reference.

4 Language Models Derived from Probabilistic Chunking

The models of finite-state-based POS Tagging mentioned in section 3, agree
on the necessity of integrating syntactic constraints. Kempe [7] anticipates the
possibility of composing the tagger output with transducers encoding correction
rules for the most frequent errors, Tzoukerman [6] uses negative constraints in
order to drastically diminish the weight of paths containing unlikely sequences of
tags (such as a determiner immediately followed by a verb). Basically, our work
is different from the others in that it integrates two distinct, complete modules
(a tagger and a chunker) within a single module which accomplishes both tasks
at the same time. The approach does not consist in integrating a number of
local grammars to the tagger, but in combining statistical information with
the linguistic knowledge encoded by the chunker with a view to improving the

3 The result is better than the one reported by [6] (4% error rate) on the same corpus,
using the same tagset. The difference comes mainly from the fact that we excluded
unknown words: all words in Test appear in the dictionary. We have made this choice
because the purpose of the present work is to study the interaction of the chunker and
HMM tagger, and we assume that the influence of unknown words would basically
be the same on the different models we have tested.

172 A. Nasr and A. Volanschi

quality of the tagger and, additionally producing a likely sequence of chunks.
Before going into the details of the various integration models we conceived, let
us briefly remind the principles of chunking, present a way of implementing a
chunker as a finite state machine and explain the necessity of converting it into
a probabilistic chunker which is also represented as a finite state machine.

4.1 Chunking as Finite State Machine Manipulations

Chunking designates a series of techniques whose purpose is to uncover the
syntactic structure of a sentence, or more precisely the structure associated to
the fragments which may only have one analysis. For instance, even if for a
traditional grammar a sequence like maison des sciences de l’homme (house of
the science of the man (center for human sciences)) constitutes a noun phrase,
having a complex structure with several intermediate levels, a chunker would
split it into 3 units called chunks : [maison]NC [des sciences]PC [de l’homme]PC

as the prepositional attachment is potentially ambiguous. The technique, also
known as chunking, was introduced by [10] in answer to the difficulties that
robust analysis of raw text encountered.

Several approaches among which [11] have implemented chunking by finite
state machines, or more precisely as cascaded finite state transducers. A cas-
cade of finite state transducers is a sequence of transducers, each recognizing
a type of chunk. The input of every transducer is constituted by the output of
the previous one. Our solution consists in the simultaneous, rather than sequen-
tial, application of all the chunk automata which are integrated into a single
transducer.

A chunk is the non-recursive core of a phrase, irrespective of its category. As
opposed to [12], chunking embedding is not allowed in the present approach; in
exchange, the longest string matching the definition of a chunk is selected: we
prefer an analysis like [le nouveau batiment]NC (the new building) rather than
[le [nouveau]ACbatimentNC].

Given their non-recursive character, chunks may be represented by finite state
automata built on the alphabet ΣC . 28 chunk grammars corresponding to nom-
inal, adjectival, adverbial and prepositional chunks are constructed manually.
These grammars belong to a class of context-free grammars which represent reg-
ular languages and which may, consequently, be compiled as finite-state machines
([13]) and integrated to the chunker. For every type of chunk K, an automaton
also called K is built to recognize well-formed chunks of type K. Moreover, two
symbols marking the chunk beginning (<K>), and the end (</K>) are associ-
ated to every chunk of type K. The whole set of chunk beginning and chunk end
marks constitute a new alphabet called ΣK . Chunk automata are grouped within
a single transducer called A, i.e. the chunker, whose structure is represented in
figure 2.

A’s input alphabet is ΣC and its output alphabet is ΣC ∪ ΣK . It accepts
sequences of categories and outputs sequences of categories and chunk beginning
or end marks. Given a sequence of categories C, A outputs the same sequence
in which every occurrence of a K chunk is delimited by the two symbols <K>

Integrating a POS Tagger and a Chunker 173

c2

cm

c1
ε ε

ε

ε

ε

ε

ε/ < K1 >

ε/< Kn > ε/< /Kn >Kl

K1

K2

ε/< /K1 >

ε

I F

Fig. 2. Chunker structure

and </K>. As represented in figure 2, A is composed of two parts: the upper
side is the union of the different chunk automata, Ki, while the lower side is
made of as many transitions as there are POS categories in the input alphabet.
Transitions linking A’s initial state to the initial states of the chunk automata Ki

introduce the chunk beginning marks, while transitions linking chunk automata
Ki acceptance state to the state F of automaton A insert chunk ending symbols.
Finally, an ε transition linking F to I builds a loop, thus making it possible to
recognize several chunk occurrences in the same sequence of categories.

The automaton A recognizes any word C built on ΣC . The analysis of C
is achieved by representing it as a linear automaton, C, and then making the
composition C ◦ A. The product of this composition is most likely ambiguous,
since for every sub-string s of C corresponding to a chunk Ki, two results are
produced: one recognizes s as a chunk (passage through the automaton Ki), the
other doesn’t (passage through the lower part of A). Of these results the only one
which is of interest to us is the one in which all chunk occurrences are marked
by beginning and end tags. It is easy to limit the composition product to this
result alone by associating a weight of 0 to intra-chunk transitions and a weight
of 1 to extra-chunk transitions and selecting from the resulting transducer the
minimal weight path. An additional penalty score is associated to transitions
introducing chunk boundaries marks to ensure that the longest match would be
chosen (i.e. the preferred analysis of a sentence would be one containing chunks,
but as few boundaries marks as possible). This ensures that an analysis like [le
livre rouge]NC (the red book) would be preferred to [le livre]NC [rouge]AC . The
analysis may thus be expressed by: bp(C ◦ A, 1).

The tagger and chunker integration could now be accomplished by a simple
composition of the two models previously described, which may be expressed by:
bp(bp(M ◦ E ◦ T, 1) ◦ A, 1). However, this model is an instance of the sequential
architecture which was introduced and criticized in section 1: the selection of a
particular POS tag is done independently of the chunking stage (in the present
work, this stage being a mere chunk segmentation), and may not be altered

174 A. Nasr and A. Volanschi

to take into account the information available to the chunker. It is possible to
provide the chunker not only with the best tagging solution but with the set of
all tagging solutions represented by the automaton: bp(M ◦ E ◦ T ◦ A, 1). This
goes to prove the flexibility of finite state processing. Nevertheless, such a model
is not very interesting either since the chunker has no discriminating power: it
cannot favor any of the tagger solutions. Indeed, unlike a CFG parser, which
only associates structure to sequences belonging to the grammar language, our
chunker accepts any sequence of categories in the tagger output, its role being
limited to identifying certain sub-strings as chunks.

This is the reason which led us to build a probabilistic version of the chunker,
that not only recognizes chunks, but associates them a probability according
to a Markov model, the parameters of which are estimated on a corpus. Before
going into the details of the ways in which such a probabilistic chunking model
could be integrated with a part-of-speech tagger (section 4.3), we describe the
construction of the chunker.

4.2 The Construction of a Probabilistic Chunker

The purpose of this model is not to favor a particular segmentation of a sequence
of categories into chunks, but to provide a way to rank the different possible
sequences of categories corresponding to the same sentence. To this effect, the
chunker associates every sequence of categories a probability which increases
function of the following factors:

(1) the sequence of categories corresponds to a sequence of well formed chunks
(2) these chunks appear in a linear order that has frequently been observed in a
training corpus. In this respect, the chunker is (functionally) very similar to an
n-gram of categories.

This approach has a lot in common with [14] which also employs weighted
finite state transducers in order to build a probabilistic chunker. Nevertheless,
in their work there are several ways of segmenting a sentence into chunks and
their chunker is meant to find the most probable one among them. Moreover, the
input of their chunker is a linear sequence of part-of-speech tags. Whereas our
chunker takes as input a set of possible part-of-speech tags sequences represented
as an automaton.

The probability of a sequence of categories segmented into chunks is computed
function of two types of probabilities: intra- and extra-chunk probabilities. An
intra-chunk probability is the probability of a sequence of categories c1,k mak-
ing up a chunk of type Ki, probability denoted by PI(c1,k|Ki). An inter-chunk
probability is the conditional probability of the occurrence of a particular type
of chunk given the n − 1 preceding chunks or categories (as this is a partial
parse, certain categories in the sequence being analyzed are not integrated into
chunks). The probability associated by the chunker to a sequence of categories
is the product of internal probabilities of the chunks composing it and of the
external probabilities of the sequence of chunks recognized.

Integrating a POS Tagger and a Chunker 175

Given the sequence of categories <s> D N V D N P D A N </s>4, the segmen-
tation proposed by the chunker is:

C = <s> <NC> D N </NC> V <NC> D N </NC> <PC> P D A N </PC> </s>

The probability associated to this sequence is the product of the external prob-
abilities of the chunks recognized (PE(·)), and of internal probabilities of all
chunks in the sequence:

P (C) = PE(<s> <NC> V <NC> <PC> </s>) × PI(D N|<NC>)2 × PI(P D A N| <PC>)

Internal probabilities are estimated by maximum likelihood on a training corpus,
as will be shown in section 4.2. The probability of a sequence of chunks and
categories is computed using an n-gram model, called external model, which
encodes the probability of a chunk given the n− 1 preceding chunks. In the case
of a bigram model the external, inter-chunk probability of C is computed as
follows:

PE(C) = PE(<NC>|<s>)×PE(V|<NC>)×PE(<NC>|V)×PE(<PC>|<NC>)×PE(</s>|<PC>)

Model Construction and Parameter Estimation. The parameters of the
external model and of the internal chunk models are estimated in two stages on a
tagged corpus as illustrated in figure 3. First the corpus is analyzed using the non-
probabilistic version of the chunker, A. The result of this analysis is a new corpus
in which chunk beginning and end symbols are inserted. Two objects are derived
from this corpus: on the one hand, all sequences of categories corresponding to
a type of chunk Ki (which we call patterns) and on the other hand a hybrid
corpus in which every chunk occurrence is replaced by a symbol representing
the category of the chunk. This corpus is made of sequences of categories and
chunk symbols replacing sequences of categories grouped into chunks. The first
object is used to compute intra-chunk probabilities (by converting the chunk
grammars written for the non-probabilistic version of the chunker described in
section 4.1 into probabilistic context-free grammars) while the second one is used
for estimating inter-chunks probabilities.

The estimation of inter-chunk probabilities starting from the hybrid corpus
is identical to the estimation of n-gram probabilities described in section 3.
These probabilities are represented by a transducer (the external model) whose
structure is similar to that of T in figure 1 and whose transitions are labeled
with categories or chunk symbols. Intra-chunk probabilities are estimated by
maximum-likelihood. Given a chunk Ck and n different sequences of categories
(s1, s2, . . . sn) representing all possible patterns for this type of chunk, observed
in a training corpus, ni denotes the number of occurrences of the sequence
ci. The probability of the sequence si is estimated by its relative frequency:
P (si) = ni

n
k=1 nk

. This probability is that of the path corresponding to si in the
automaton Ki.

4 Where D, N, V, P and A are the tags corresponding to the categories determiner, noun,
verb, preposition and adjective respectively.

176 A. Nasr and A. Volanschi

intra chunk probability estimation

replace operation

tagged corpus

partial parse

parsed corpus

chunk extraction

chunk patterns

final model (PP)

chunk replacement

hybrid corpus

n-gram training

inter chunk modelintra chunk models

Fig. 3. The model construction stages

Intra-chunk models and the external model are combined within a single trans-
ducer using the replacement operation described in [1]. This operation substitutes
the automaton Ki for each transition <Ki> in the external model. The result-
ing transducer is called PC (for probabilistic chunker) and has about 10 times
more states and transitions than T , the transducer encoding trigram probabili-
ties, however, we assumed that it encodes longer-distance dependencies for the
estimation of which our training data would have been sparse. Therefore we con-
ducted a series of experiments in which we replaced the transducer T with PC,
using the tagging model bp(M ◦ E ◦ PC, 1).

Probabilistic Chunker Performance. Intra- and inter-chunk probabilities
are estimated on Train and the new tagging model bp(M ◦ E ◦ PC, 1) (M2)
was applied to Test. Disappointingly, we found that (M2) performs only slightly
better than M1(an error rate decrease of 6% relative). Nevertheless, the model
is interesting in that it functions as a tagger and a chunker at the same time.

More interestingly, the two models don’t make the same mistakes. M2 corrects
30% of the errors made by M1 but makes almost as many of its own. The new
type of errors have various causes, most of which are related to the hypothesis
we made that the form of a chunk (the sequence of categories which constitute
a chunk) is independent of the context in which the given chunk occurs. This
hypothesis is an approximation just like the Markov hypothesis. The sentence ’la
discussion a été ouverte par l’article ...’ (the discussion was initiated by the paper
...) is a good case in point. In this case, ouverte is rightly tagged past participle
by model M1, while M2 tags it adjective. The reason is that M2 grouped a été
ouverte as a verb chunk, but chose the category of ouverte without taking into
account the context where the chunk occurred. On the other hand the model M1
probably takes advantage of the fact that ouverte is followed by the preposition
par and attributes the right category.

Integrating a POS Tagger and a Chunker 177

4.3 Integration of the POS Tagger and the Probabilistic Chunker

In order to deal with the limitations of models M1and M2we have combined the
two within a single complex model: bp((M ◦ E ◦ PC) ∩ (M ◦ E ◦ T), 1), denoted
by M3. This automaton is the union of solutions common to M1 et M2 to
which it associates the sum of weights attributed by M1 and M2 ([[M3]](x) =
[[M1]](x) + [[M2]](x)5). This combination is a way of partially attenuating the
effect of the independence hypothesis mentioned above. The dependency between
the form of a chunk and the context where it occurs is partially modelled by
M1. The error rate obtained by the model M3 on Test is of 1, 92%, which
is 11, 9% less than our reference model M1. Error analysis showed that M3
corrects 15, 5% of the errors M1 makes but makes 7, 9% new errors. The errors
specific to M3 may be explained by a number of causes: some are still due to
the independence hypothesis mentioned above, others (about 10%) are due to
the method of estimating intra-chunk probabilities (the probability that a given
sequence of categories constitutes a chunk). These probabilities are estimated by
maximum likelihood and therefore attribute a null probability to chunk patterns
which, although encoded in the chunk grammar, have never been seen in Train.
A technique for smoothing these probabilities is necessary for the method to be
more robust. Other errors are due to the theoretical limitations of the model
and would probably only be corrected by using full syntactic analysis.

5 Conclusion

The work presented in this paper has shown that taking into account the syntac-
tic knowledge encoded in a chunker may improve the result of a part-of-speech
tagger. It has also shown how to represent these two modules as weighted finite-
state machines and how to combine them using standard operations defined on
automata. Two limits of the chunker probabilistic model have been brought to
light : the estimation of the intra-chunk probabilities as well as the independence
assumption between the form of a chunk and its context. This assumption can
be partially relieved by combining a standard n-gram model and the chunker.

References

1. Mohri, M.: Weighted Grammars Tools: the GRM Library. In: Robustness in
Language and Speech Technology. Jean-Claude Junqua and Gertjan Van Noord
(eds) Kluwer Academic Publishers (2000) 19–40

2. Mohri, M.: Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23 (1997)

3. Bahl, L.R., Mercer, R.L.: Part of speech assignment by a statistical decision al-
gorithm. In: Proceedings IEEE International Symposium on Information Theory.
(1976) 88–89

5 Unlike the models M1 and M2, the weight associated to a sequence of categories
by M3 does no longer represent probabilities.

178 A. Nasr and A. Volanschi

4. Katz, S.M.: Estimation of probabilities from sparse data for the language model
component of a speech recogniser. IEEE Transactions on Acoustics, Speech, and
Signal Processing 35 (1987) 400–401

5. Allauzen, C., Mohri, M., Roark, B.: Generalized algorithms for constructing sta-
tistical language models. In: 41st Meeting of the Association for Computational
Linguistics, Sapporo, Japon (2003) 40–47

6. Tzoukermann, E., Radev, D.R.: Use of weighted finite state trasducers in part of
speech tagging. Natural Language Engineering (1997)

7. Kempe, A.: Finite state transducers approximating hidden markov models. In:
35th Meeting of the Association for Computational Linguistics (ACL’97), Madrid,
Spain (1997) 460–467

8. Jurish, B.: A hybrid approach to part-of-speech tagging. Technical report, Berlin-
Brandenburgishe Akademie der Wissenschaften (2003)

9. Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for french. In Abeillé,
A., ed.: Treebanks. Kluwer, Dordrecht (2003)

10. Abney, S.P.: Parsing by chunks. In Berwick, R.C., Abney, S.P., Tenny, C., eds.:
Principle-Based Parsing: Computation and Psycholinguistics. Kluwer, Dordrecht
(1991) 257–278

11. Abney, S.: Partial parsing via finite-state cascades. In Workshop on Robust Pars-
ing, 8th European Summer School in Logic, Language and Information, Prague,
Czech Republic, pages 8–15. (1996)

12. Abney, S.: Chunk stylebook. http://www.vinartus.com/spa/publications.html
(1996)

13. Mohri, M., Pereira, F.C.N.: Dynamic compilation of weighted context-free gram-
mars. In: 36th Meeting of the Association for Computational Linguistics (ACL’98).
(1998)

14. Chen, K.H., Chen, H.H.: Extracting noun phrases from large-scale texts: A hy-
brid approach and its automatic evaluation. In: Meeting of the Association for
Computational Linguistics. (1994) 234–241

Modelling the Semantics of Calendar

Expressions as Extended Regular Expressions

Jyrki Niemi and Lauri Carlson

University of Helsinki, Department of General Linguistics,
P.O. Box 9, FI–00014 University of Helsinki, Finland

{jyrki.niemi, lauri.carlson}@helsinki.fi

Abstract. This paper proposes modelling the semantics of natural-
language calendar expressions as extended regular expressions (XREs).
The approach covers expressions ranging from plain dates and times of
the day to more complex ones, such as the second Tuesday following
Easter. Expressions denoting disconnected periods of time are also cov-
ered. The paper presents an underlying string-based temporal model,
sample calendar expressions with their XRE representations, and possi-
ble applications in temporal reasoning and natural-language generation.

1 Introduction

Temporal information and calendar expressions are essential in various applica-
tions, for example, in event calendars, appointment scheduling and timetables.
Calendar expressions can be simple dates, times of the day, days of the week or
combinations of them, or they can be more complex, such as the second Tuesday
following Easter. The information should often be both processed by software
and presented in a human-readable form.

Following Carlson [1], we propose in this paper an approach that models
the semantics of natural-language calendar expressions as extended regular ex-
pressions (XREs), called calendar XREs. The well-known semantics of regular
languages and regular expressions can be used in reasoning with temporal infor-
mation represented as calendar XREs. We also believe that calendar XREs are
structurally so close to the corresponding natural-language expressions that the
latter can be generated from the former fairly straightforwardly.

A calendar expression is a temporal expression denoting a period or moment of
time that does not depend on the time of use of the expression, such as 1 Septem-
ber 2005. However, the denotation may be underspecified or ambiguous without
context, as in the expression September. In addition to connected periods (convex
intervals) of time, the present approach can model disconnected (non-convex)
ones, such as two Sundays. It can also be extended to cover a number of deictic
and anaphoric temporal expressions, such as today and the following week. We
are mainly interested in the language-independent semantics of calendar expres-
sions, abstracted from different syntactic variants and disambiguated.

To provide a denotation to calendar XREs, we model time as a long string of
consecutive basic periods of time, such as minutes or seconds, each represented

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 179–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 J. Niemi and L. Carlson

by a unique symbol. Basic calendar periods, for example days and months, are
then represented as sets of substrings of this timeline string. The basic calendar
periods are further combined with XRE operations to represent more complex
calendar expressions, such as 1–2 September 2005 and every second Wednesday
of the year. This requires operations that not only combine or select existing
strings from operand languages but also extract parts of the strings.

The rest of the paper is organized as follows. Section 2 presents the notations
and extended regular expression operations used. Section 3 outlines a string-
based model of time. Section 4 presents a number of natural-language calendar
expression constructs together with their corresponding XREs. Section 5 briefly
describes application experiments: temporal reasoning using calendar XREs and
natural-language generation from them. Section 6 presents some related work in
temporal expression research. Section 7 concludes the paper with discussion and
some directions for further research.

2 Regular Expression Operations and Notations

In addition to the basic regular expression operations of concatenation, union
and Kleene star, we use a number of other operations. The usual XRE opera-
tions are intersection, complement and difference. We also use several operations
defined using regular relations (finite transducers), for example substring, quo-
tient and affix operations. Concatenation power and its generalized form are
notational shorthands that help in making calendar XREs structurally closer to
the corresponding natural-language calendar expressions.

Table 1 lists the operations referred to in this paper, our notation for them,
and their definitions by means of sets. The notation L(R) denotes the regular
language specified by the XRE R; we abbreviate L(Σ∗) as Σ∗. In the table,
capital-letter variables denote XREs, the variable a denotes a single symbol of
the alphabet Σ, and the variables x , y and z with possible subscripts denote
strings over Σ. We use the same operation symbols for XREs and for the lan-
guages they denote. We include 0 in the set N of natural numbers. The exponent
of a generalized concatenation power may consist of enumerated set expressions,
intervals and unions of them. Intervals may either be closed or have ∞ as the
upper limit.

The precedence of operations follows [2] (p. 119): unary prefix operations have
the highest precedence, followed by unary postfix operations, then concatenation,
with binary operations lowest. Otherwise evaluation proceeds from left to right.
Parentheses are used to override precedence rules.

We also use parametrized macros to simplify XREs containing repeating
subexpressions and to make calendar XREs structurally closer to natural lan-
guage. For example, we could define a macro symmdiff(x ,y) for symmetric dif-
ference as (x − y) ∪ (y − x); the expression symmdiff(a,b) would then denote
the symmetric difference of a and b. The arguments to a macro may be either
XREs or concatenation power exponents, depending on their use in the macro.
The macros have no recursion or other means of control.

Modelling the Semantics of Calendar Expressions 181

Table 1. XRE operations and notations

Notation Name Denoted language

Σ any symbol L(Σ) = {a | a ∈ Σ}
ε empty string L(ε) = {ε}
A . B concatenation L(A . B) = {xy | x ∈ L(A), y ∈ L(B)}
A ∪ B union L(A ∪ B) = L(A) ∪ L(B)
A ∩ B intersection L(A ∩ B) = L(A) ∩ L(B)
A − B difference L(A − B) = L(A) − L(B)
An concatenation power n ∈ N, L(A0) = {ε}, L(An) = L(A . An−1)
AN generalized concat. power N ⊆ N, L(AN) = n∈N L(An)

A∗ Kleene star L(A∗) = L(AN)
¬A complement L(¬A) = L(Σ∗ − A)
in+A non-empty substring L(in+A) = {y | xyz ∈ L(A), x, y, z ∈ Σ∗} − {ε}
in∗

+A non-empty subword L(in∗
+A) = {y1. . .yn|x1y1x2. . .xnynxn+1 ∈ L(A),

x1, . . ., xn+1, y1, . . ., yn ∈ Σ∗, n ≥ 1} − {ε}
P // A prefix L(P // A) = {x | xy ∈ L(A), x ∈ L(P), y ∈ Σ∗}
A \\ S suffix L(A \\ S) = {y | xy ∈ L(A), x ∈ Σ∗, y ∈ L(S)}
pref+A non-empty untyped prefix L(pref+A) = L((Σ∗ // A) − ε)
B \ A left quotient L(B \ A) = {y | xy ∈ L(A), x ∈ L(B), y ∈ Σ∗}
A / B right quotient L(A / B) = {x | xy ∈ L(A), x ∈ Σ∗, y ∈ L(B)}
�A left closure L(�A) = L(¬ (Σ∗.A.Σ∗) . A)
A� right closure L(A�) = L(A . ¬ (Σ∗.A.Σ∗))

3 A String-Based Model of Time

In order to be able to represent calendar expressions as XREs, we model periods
of time as strings of symbols. The model presented here is not the only pos-
sible one. It may also be feasible to regard and process calendar XREs purely
syntactically, without being committed to a specific semantic model.

Let the time domain T∞ be an infinite set with a total order. Let us partition
T∞ to half-open intervals tk = [τk, τk+1[, k ∈ Z, where each τk ∈ T∞ represents
a point of time. The intervals represent basic periods, the base granularity of
calendar XREs. The sequence T∞ = (tk) represents an infinite timeline.

Since regular expressions can specify only strings over a finite alphabet,1 we
choose an application-specific finite timeline Tm,n = (tm+1, . . . , tm+n) (where
m ∈ Z and n ≥ 1) that is a connected subsequence of T∞. For each basic period
tm+i, let ai denote the corresponding symbol. These symbols form the alphabet
ΣT = {ai | 1 ≤ i ≤ n}. The string a1. . .an corresponds to the timeline Tm,n; we
denote this timeline string as T .

A single calendar XRE R specifies a regular language consisting of non-
empty subwords (that is, possibly disconnected substrings) of the timeline
1 Büchi automata could be used to represent infinite strings. However, representing

infinite strings in the model presented here would require an infinite alphabet, which
cannot be represented by Büchi automata. We also believe that, in general, finite
periods of time should suffice for calendar applications.

182 J. Niemi and L. Carlson

string T : L(R) ⊆ L(in∗
+T). A calendar XRE R represents a period of time

T = (tm+i1 , . . ., tm+ik
) if and only if L(R) contains the string ai1 . . .aik

, where
1 ≤ ij ≤ n for 1 ≤ j ≤ k, and ij < ij+1 for 1 ≤ j < k. (The period T is a
subsequence of the timeline Tm,n.) For example, if the timeline begins from a
Monday and the basic period is an hour, all Mondays are specified by the set
{ai . . . ai+23 | i = 1 + 168k, 0 ≤ k ≤ n

168} = {a1 . . . a24, a169 . . . a192, . . .}.
A calendar XRE representing an inconsistent temporal expression, such as 30

February, denotes the empty set.
The language of an XRE may contain strings that are not subwords of the

timeline string T . They typically result from the use of concatenation or com-
plement. Such a string contains a symbol ai followed by an aj with i ≥ j. It
is not meaningful as a representation of time, as a period of time may not be
followed by the same or a preceding period. We limit the languages of calendar
XREs to representing meaningful periods by intersecting them with L(in∗

+T).
The model of time described above cannot represent points of time, as each

basic period of time ti corresponds to an interval between points of time. In
practice, even a moment regarded as a point of time usually covers a short
period of time [1] (pp. 194–195).

4 Calendar Expressions and Their Regular Expressions

4.1 General Features

In this section we demonstrate key features of calendar XREs by presenting a
number of constructs appearing in natural-language calendar expressions, and
their representations as calendar XREs. Table 2 lists the constructs that we have
treated, including those omitted here. They were originally found in a corpus of
Web pages. A more detailed description of all the constructs can be found in [3].

The meaning of a natural-language calendar expression can be vague or un-
derspecified, such as Monday or in the morning, or ambiguous, such as a week,
which may denote either a calendar period or a duration. We do not model the
natural-language expressions as such but instead their disambiguated meanings,
while trying to retain underspecification wherever possible.

In the examples we leave implicit the intersection with the set L(in∗
+T). We

generally present the expressions in a simple form, disregarding special cases that
may require more complicated XREs. We also assume connected periods of time
unless otherwise mentioned. We mention a macro defined for a calendar XRE
construct only if it is referred to later or if it better illustrates an expression.

We have tried to make calendar XRE constructs compositional as far as pos-
sible: they should combine with each other analogously to the corresponding
constructs of natural-language calendar expressions. However, a number of con-
structs are compositional only to a limited extent or not at all.

4.2 Basic Calendar Expressions

The basic expressions of calendar XREs denote sets of calendar periods. An
unqualified natural-language calendar expression, such as Monday or January,

Modelling the Semantics of Calendar Expressions 183

Table 2. Types and examples of natural-language calendar expressions

Expression type Examples

calendar period 12.00 ; September ; year ; Easter
duration an hour ; 4 to 10 hours; at least 8 days; 3 weeks short of 2 years
list Mondays and Wednesdays; Mon and Wed or Tue and Thu
subperiod on Friday ; in September
refinement Christmas Eve falling on a Friday ; 22 May ; in 2005 by April
containment weekend containing Christmas Day
interval Monday to Friday ; from September on; before 15 May ;

from 10 am on Sunday to 6 pm on Friday
exception 8 am, except Mondays 9 am; every day except Monday
anchored the second Tuesday following Easter ;

the second and fourth Tuesday following Easter ;
four weeks before Christmas;
the weekend preceding a mid-week Christmas Day

consecutive two consecutive Sundays; six consecutive months from May 2002
ordinal the third and fourth Wednesday of the month;

every second Wednesday of the year
parity even Tuesdays of the month
relative frequency four weeks a year ; two Saturdays a month during the school year
deictic today ; next week
anaphoric the following week
time zone 9.00–16.00 Central European time

typically refers to the nearest past or future period relevant in the context. In
this work, however, we interpret such expressions as underspecified, for exam-
ple, referring to any Monday. The calendar XRE corresponding to Monday is
Mon, which denotes the set of all Mondays. We regard the basic expressions as
predefined constants that specify sets of substrings of the timeline string T .

The basic expressions corresponding to the basic periods of the Gregorian
calendar include both generic periods, such as day, month and year (min to year),
and specific ones, such as each hour (h00 to h23), day of week (Mon to Sun),
day of month (1st to 31st), month (Jan to Dec) and year (ynnnn). Hours and
shorter units of time are also treated as periods; for example, hour 10 is the hour
beginning at 10 am. We also assume appropriately predefined sets for seasons
and holidays, for example, Easter and Christmas Day . Many of them could also
be defined compositionally; for instance, Christmas Day is 25 December every
year. Some of them are culture-specific; for example, Easter is often celebrated
at different times in Eastern Orthodox churches and in Western churches.

The generic calendar periods are unions of the corresponding specific calendar
periods. For example, a week is any connected seven-day period from a Monday
to the following Sunday.2 However, a week may also be a duration or a measure-
ment unit consisting of any seven days or 168 hours. A week as a duration is not

2 We could equally well define a week beginning from a Sunday.

184 J. Niemi and L. Carlson

necessarily aligned to calendar days or even hours, and it can be disconnected,
spreading over a longer period of time. Such calendar-based measurement units
are represented by the constant sets mindur to yeardur , each of which contains all
possible connected and disconnected periods of time of the duration in question.
A variable-length duration, such as a month, is represented as the union of the
durations of the possible lengths.

4.3 Duration Expressions

Basic durations can be combined to form more complex ones. Multiples of dura-
tions are formed using concatenation power; for example, the duration expres-
sion five days is represented as the calendar XRE daydur

5. With the generalized
concatenation power we can also express in a natural manner duration inter-
vals, possibly with one endpoint omitted: 4 to 10 hours can be represented as
hourdur

[4,10] and at least 8 days as daydur
[8,∞[.

However, the denotation of the XRE hourdur
[4,10] only includes multiples of

an hour and not for example the duration 4.5 hours. To cover all durations
within the interval, we intersect the XRE for the minimum, with any number of
basic periods added, and the XRE for the maximum, with any number of basic
periods removed: (hourdur

4 . Σ∗) ∩ (hourdur
10 / Σ∗). This corresponds directly to

the expression at least 4 hours and at most 10 hours.
A duration consisting of more than one basic duration is formed with con-

catenation; for example, two years and three months is represented as the XRE
yeardur

2 . monthdur
3. A duration with a subtraction, such as three weeks short of

two years, is expressed by removing the shorter duration from the longer one
using a quotient operation: yeardur

2 / weekdur
3.

4.4 Basic Combining Constructs

Four basic constructs combining calendar XREs are lists, concatenation, refine-
ment and containment.

Lists of calendar expressions are in general represented using union. For exam-
ple, the expression Mondays and Wednesdays can be interpreted as “any single
Monday or Wednesday”, and thus we represent the expression as the calendar
XRE Mon∪Wed . However, sometimes an expression contains both ands and ors:
for example, Mon and Wed or Tue and Thu. In such a case, we use concatenation
for and and union for or : (Mon . Wed) ∪ (Tue . Thu).

More generally, concatenation juxtaposes periods of time. Concatenating non-
adjacent periods results in a disconnected period. For example, the above cal-
endar XRE represents periods of time that contain a Monday followed by a
Wednesday, or a Tuesday followed by a Thursday. The XRE does not guarantee
that the second day of a period is the closest following suitable day; that would
require a somewhat more complex XRE.

Refinement uses intersection to combine multiple subexpressions, each of
which refines or restricts the period of time denoted by the whole expression.
For example, the expression Christmas Eve falling on a Friday is represented

Modelling the Semantics of Calendar Expressions 185

as Christmas Eve ∩ Fri . Refinement often combines expressions denoting peri-
ods of different lengths, in which case we need to apply a substring (subperiod)
operation to at least the longer period; for example, 22 May is represented as
22nd ∩ in+May . Here in+May denotes the set of substrings of the strings repre-
senting all Mays. Intersecting it with the set corresponding to all the 22nd days
of all months results in a set denoting the 22nd days of Mays.

A calendar expression may denote a period of time that contains another
period, for example, the week containing Christmas Eve. This is expressed simply
as week ∩ (Σ∗.Christmas Eve.Σ∗).

4.5 Intervals

An interval Monday to Friday begins from a Monday and almost always ends
in the closest following Friday. This interval can be expressed as the calendar
XRE Mon . ¬ (Σ∗.Mon.Σ∗) . Fri , meaning “a Monday followed by anything not
containing a Monday, followed by a Friday”.3 To simplify such XREs, we have
defined a macro with which the above XRE can be written as interval(Mon,Fri).
The same denotation can also be obtained with a closure operation: Mon� . Fri .4

If either of the endpoints of an interval expression is omitted, we assume that
the interval does not contain the previous or next period of the same kind as the
endpoint that is present. For example, the expression from September on would
denote a period extending from a September to the following August. This is
the broadest denotation with which the expression is unambiguous.

Hour intervals require mapping the point-like hour expressions of natural lan-
guage to the periods used in calendar XREs. We achieve this by removing the
last hour of the interval with a quotient operation: from 8 to 11 (am) is repre-
sented as interval(h08 ,h11) / hour . If the end of the interval is expressed to the
minute, as in from 8.00 to 11.00, only the last minute is removed.

4.6 More Complex Calendar Expressions

In this subsection we present examples of exception expressions, anchored ex-
pressions, ordinal expressions and relative frequency expressions.

The expression 8 am, except Mondays 9 am is an exception expression. Such
an expression consists of two or three parts: a default time, an exception scope
and an optional exception time (cf. [1], pp. 194–195). In the above expression,
8 am is the default time, Mondays the exception scope and 9 am the exception
time. In calendar XREs this can be expressed with union, difference and inter-
section: (h08 − in+Mon)∪ (h09 ∩ in+Mon). If the exception time is omitted, the
difference alone suffices.

3 To obtain connected periods of time with the correct denotation, the XRE must be
further intersected with in+T instead of in∗

+T .
4 The closure operations bear resemblance to the shortest-match directed replace-

ment operator of Karttunen [4], and to the non-greedy variants of regular expression
matching operators in the Perl programming language (http://www.perl.org/).

186 J. Niemi and L. Carlson

An anchored expression denotes a time relative to an anchor time. For exam-
ple, the expression the second Tuesday following Easter refers to a time relative
to Easter. To find a calendar XRE for the expression, we note that it denotes
the last day in a string of days beginning from Easter, containing exactly two
Tuesdays and ending in a Tuesday. Using a closure and a suffix operation, this
can be expressed as the XRE Easter . (�Tue)2 \\ Tue. Using a macro defined
for this construct, the XRE would be nth following(2,Tue,Easter). Similar pre-
ceding-expressions can be represented analogously by changing the order of the
subexpressions and the direction of the closure and affix operations. By using
the generalized concatenation power, we can represent such expressions as the
second and fourth Tuesday following Easter and two Tuesdays following Easter.

The ordinal expression the third and fourth Wednesday of the month is sim-
ilar to an anchored one, but counting takes place within a longer period. The
expression denotes the last day in a string of days that begins from the beginning
of a month, that contains three or four Wednesdays, and that ends in a Wednes-
day. We can represent the expression as ((�Wed){3,4} ∩pref+month) \\Wed . By
changing the order of the subexpressions and the directions of the operations,
we can represent expressions counting from the end of a period, such as the last
Monday of the month.

The expression every second Wednesday of the year is an example of another
ordinal expression type. We interpret it to denote the first, third, fifth and so on
Wednesday of the year, represented as (((�Wed)2)

∗
. �Wed ∩ pref+year) \\ Wed .

Since this calendar XRE construct contains a concatenation power inside a
Kleene star, it counts multiples of a natural number larger than one, and thus
it is not star-free [5] (pp. 5–6). The only other non-star-free type of calendar ex-
pressions that we have encountered are parity expressions, such as even Tuesdays
of the month. Parity expressions can be represented in a manner very similar to
the above XRE.

A relative frequency expression, such as two Saturdays a month, denotes a
certain number of shorter periods of time, not necessarily consecutive, within
a longer one (cf. [1], p. 190). The above expression can be represented as the
calendar XRE Sat2 ∩ in∗

+month, which specifies disconnected periods of time.

4.7 Extensions

In addition to calendar expressions, many deictic and anaphoric temporal expres-
sions can also be represented as calendar XREs. Following [1] (p. 173), we repre-
sent the current time as now and the reference time of an anaphoric expression as
then. Using these variables, we can express today as day ∩(Σ∗.now .Σ∗) (“the day
containing the current time”) and the following week as following(week,then).5

While we have treated calendar expressions independent of time zones, it is
possible to represent periods of time in another time zone as calendar XREs by
shifting the denoted strings by the appropriate amount relative to the timeline
string.

5 Macro following is defined as following(x ,y) = nth following(1,x ,y).

Modelling the Semantics of Calendar Expressions 187

5 Application Experiments

We have briefly experimented with temporal reasoning using calendar XREs,
and with generating corresponding natural-language expressions from them.

5.1 Temporal Reasoning with Calendar XREs

We have mainly considered a form of temporal reasoning that finds the common
periods of time denoted by two calendar XREs. Such reasoning could be used in
querying temporal data; for example, a query to an event database could be used
to find out at what time certain museums are open on Mondays in December,
or which museums are open on Mondays in December. For the former query,
we should find for each target XRE in the database the set of periods of time
denoted by both the query and the target XRE, and for the latter, whether
the query and target XREs denote some common periods or not. Both basically
require computing the intersection of the query and target XREs.

In principle, such reasoning could be implemented straightforwardly as model
checking, by constructing finite-state automata from the XREs and intersecting
them, and by either enumerating the strings of each intersection or checking
if the intersection is empty. In practice, however, constructing the automata
would often require too much space or time or both to be tractable. Moreover,
the enumerated language as such is seldom desirable as the result, as it may be
very large and incomprehensible to a human.

We have used the Xerox Finite-State Tool (XFST) [6] to experiment with cal-
endar XREs and with reasoning based on model-checking. Despite its efficiency,
XFST was not able to complete in two gigabytes of virtual memory the con-
struction of an automaton representing all the substrings of a timeline string of
2880 symbols, corresponding to the minutes in 48 hours. Constructing a subword
automaton is even more demanding, as a string of n symbols has 2n subwords.
The set of substrings or subwords is needed to restrict the language of a calendar
XRE to denoting only meaningful periods of time.

5.2 Natural-Language Generation from Calendar XREs

Calendar XREs could be used as a language-independent representation of cal-
endar expressions in a possibly multilingual natural-language generation system.
Our hypothesis was that calendar XREs should be structurally very close to the
corresponding natural-language expressions, which should allow fairly straight-
forward generation following the structure of a calendar XRE.

In our experiments we encountered more complexities than we had expected,
but they were at the surface-syntactic and morphological level, not in higher-level
structures. The use of XRE macros was essential; without them, the natural-
language expressions generated from complex XREs would have been cumber-
some and their intended meaning probably impossible to understand.

We simplified the generation component proper by assuming it to be preceded
by a separate transformation phase that could be used to make changes to the

188 J. Niemi and L. Carlson

structure of a calendar XRE while preserving its meaning. This phase could,
for example, normalize the order of subexpressions of an XRE or regroup them,
doing the equivalent of transforming, for instance, on Mondays in December to
in December on Mondays, or 1 May to 25 May to 1–25 May.

6 Related Work

Temporal expressions in general have been much studied, including modelling
the semantics of calendar expressions and reasoning with them. Our main inspi-
ration has been Carlson’s [1] event calculus, which includes modelling calendar
expressions as XREs.

The Verbmobil project [7] had a formalism of its own to represent and reason
with temporal expressions occurring in appointment negotiation dialogues [8].
Its coverage of calendar expressions was similar to that of calendar XREs, but
it did not cover disconnected periods of time.

The calendar logic of Ohlbach and Gabbay [9, 10] and in particular its time
term specification language can represent calendar expressions of various kinds.
However, calendar logic expressions are not structurally as close to natural-
language expressions as calendar XREs. Han and Lavie [11] use their own for-
malism in conjunction with reasoning using temporal constraint propagation.
They explicitly cover more types of expressions than we do, including under-
specified expressions and quantified ones, such as every week in May.

Regular expressions are used in conjunction with temporal expressions by
Karttunen et al. [12], who express the syntax of dates as regular expressions
to check their validity. They limit themselves to rather simple dates, however.
Fernando [13, 14] uses regular expressions to represent events with optional tem-
poral information. Focusing on events, his examples feature only simple temporal
expressions, such as (for) an hour.

7 Discussion and Further Work

In our view, extended regular expressions would in general seem to be fairly well
suited to modelling the semantics of calendar expressions. Calendar XREs are
structurally relatively close to natural-language calendar expressions, and the
semantics of regular expressions is well known. The former property can be of
use in natural-language generation, the latter in reasoning. However, to be useful
in practice, the formalism should have a tractable reasoning method.

While calendar XREs cover many different types of calendar expressions, they
cannot naturally represent fuzzy or inexact expressions, such as about 8 o’clock,
or internally anaphoric expressions, such as 9.00 to 17.00, an hour later in winter.
Furthermore, fractional expressions, such as the second quarter of the year, seem
to be impossible to represent compositionally as XREs, since regular expressions
have no notion of fractions.

There are a number of limitations in the compositionality of the calendar
XRE constructs that we have devised, and the XREs of some types of calendar

Modelling the Semantics of Calendar Expressions 189

expressions are rather complex. In particular, adding support for disconnected
periods of time often significantly complicates a calendar XRE. Although some
of the complexity can be hidden with macros, complex constructs make compu-
tation slower and may also weaken compositionality.

We have applied XREs only to calendar expressions of the Gregorian calendar
system, but we expect the representation to work with any calendar system based
on similar principles of hierarchical calendar periods, provided that appropriate
basic expressions are defined for the periods.

Our main future research goal is to find a tractable and practical reasoning
method for calendar XREs. One option would be to process XREs syntactically
using term rewriting, with which we have already made some elementary experi-
ments. Term rewriting would probably also allow representing a query result in a
more user-friendly manner as another XRE. A major drawback of term rewriting
is that each XRE operator and possibly each macro should be separately taken
into account in the rewriting rules. Keeping the rewriting system terminating
and confluent would also pose a challenge. Reasoning could also be made more
efficient by representing basic calendar periods as regular relations (finite-state
transducers) instead of sets of substrings of the timeline string (Nathan Vaillette,
personal communication). Depending on the application, it might be possible to
operate on the relations alone and dispose of the timeline string. In general, we
could combine several different approaches, using each one where it is best.

Another major goal would be to extend the formalism to cover more expression
types, in particular fuzzy expressions, and preferably also internally anaphoric
and fractional expressions. The representation of fuzzy temporal expressions has
been researched, for example, by Ohlbach [15]. Extending the coverage may re-
quire introducing some non-finite-state elements to the formalism, which would
make it much less clean than at present. Another approach might be to have
a higher-level representation with these features, translated to finite-state con-
structs. We would also like to try to improve the compositionality of current
calendar XRE constructs and possibly to find simpler constructs for some ex-
pression types.

Since regular languages correspond to monadic second-order logic (MSOL),
we could also represent calendar expressions using MSOL instead of XREs (or
as a complement to them), in the spirit of the MONA system [16]. Some types
of calendar expressions would probably be easier to express in MSOL, others
perhaps as XREs.

Lastly, it might be worthwhile to explore options of representing events com-
bined with calendar expressions, or at least to examine calendar expressions in
their context. Such approaches might sometimes help to resolve the meaning of
a single fuzzy or underspecified calendar expression.

Acknowledgements

We are grateful to the anonymous reviewers and Nathan Vaillette for their valu-
able comments and suggestions.

190 J. Niemi and L. Carlson

References

1. Carlson, L.: Tense, mood, aspect, diathesis: Their logic and typology. Unpublished
manuscript (2003)

2. Karttunen, L.: The replace operator. In Roche, E., Schabes, Y., eds.: Finite-
State Language Processing. Language, Speech, and Communication. MIT Press,
Cambridge, Massachusetts (1997) 117–147

3. Niemi, J.: Kalenteriajanilmausten semantiikka ja generointi: semantiikan mallinta-
minen laajennettuina säännöllisinä lausekkeina ja lausekkeiden luonnolliskielisten
vastineiden XSLT-pohjainen generointi [The semantics and generation of calendar
expressions: Modelling the semantics as extended regular expressions and generat-
ing the corresponding natural-language expressions using XSLT]. Master’s thesis,
University of Helsinki, Department of General Linguistics, Helsinki (2004)

4. Karttunen, L.: Directed replacement. In: 34th Meeting of the Association for
Computational Linguistics (ACL ’96), Proceedings of the Conference, Santa Cruz,
California. (1996) 108–115

5. McNaughton, R., Papert, S.: Counter-Free Automata. Number 65 in Research
Monographs. M.I.T. Press, Cambridge, Massachusetts (1971)

6. Karttunen, L., Gaál, T., Kempe, A.: Xerox finite-state tool. Technical report, Xerox
Research Centre Europe, Grenoble, France (1997) http://www.xrce.xerox.com/
competencies/content-analysis/fssoft/docs/fst-97/xfst97.html.

7. Wahlster, W., ed.: Verbmobil: Foundations of Speech-to-Speech Translation.
Artificial Intelligence. Springer, Berlin (2000)

8. Endriss, U.: Semantik zeitlicher Ausdrücke in Terminvereinbarungsdialogen. Verb-
mobil Report 227, Technische Universität Berlin, Fachbereich Informatik, Berlin
(1998)

9. Ohlbach, H.J., Gabbay, D.: Calendar logic. Journal of Applied Non-classical Logics
8 (1998) 291–324

10. Ohlbach, H.J.: Calendar logic. In Gabbay, D.M., Finger, M., Reynolds, M.,
eds.: Temporal Logic: Mathematical Foundations and Computational Aspects. Vol-
ume 2. Oxford University Press, Oxford (2000) 477–573

11. Han, B., Lavie, A.: A framework for resolution of time in natural language. ACM
Transactions on Asian Language Information Processing (TALIP) 3 (2004) 11–32

12. Karttunen, L., Chanod, J.P., Grefenstette, G., Schiller, A.: Regular expressions for
language engineering. Natural Language Engineering 2 (1996) 305–328

13. Fernando, T.: A finite-state approach to event semantics. In: Proceedings of the 9th
International Symposium on Temporal Representation and Reasoning (TIME-02),
Manchester, IEEE Computer Society Press (2002) 124–131

14. Fernando, T.: A finite-state approach to events in natural language semantics.
Journal of Logic and Computation 14 (2004) 79–92

15. Ohlbach, H.J.: Relations between fuzzy time intervals. In: Proc. 11th International
Symposium on Temporal Representation and Reasoning (TIME 2004). (2004) 44–50

16. Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe,
T., Sandholm, A.: MONA: Monadic second-order logic in practice. In Brinksma,
E., Cleaveland, R., Larsen, K.G., Margaria, T., Steffen, B., eds.: Tools and Algo-
rithms for the Construction and Analysis of Systems, First International Work-
shop, TACAS ’95, Aarhus, Denmark, May 19–20, 1995, Proceedings. Number 1019
in Lecture Notes in Computer Science, Springer (1995) 89–110

Using Finite State Technology in a Tool

for Linguistic Exploration

Kemal Oflazer, Mehmet Dinçer Erbaş, and Müge Erdoǧmuş

Faculty of Engineering and Natural Sciences
Sabancı University

Tuzla, Istanbul, Turkey 34956
oflazer@sabanciuniv.edu,

{derbas, mugeerdogmus}@su.sabanciuniv.edu

Abstract. Intelligent, interactive and pervasively accessible tools for
providing information about elements of a language are crucial in learn-
ing a language, especially in an advanced secondary language learning
setting and learning for linguistic exploration. The paper describes a
prototype implementation of a tool that provides intelligent, active and
interactive tools for helping linguistics students inquire and learn about
lexical and syntactic properties of words and phrases in Turkish text. The
tool called LingBrowser uses extensive finite state language processing
technology to provide instantaneous information about morphological,
segmental, pronunciation properties about the words in any real text.
Additional resources also provide access to semantic properties of (root)
words.

1 Introduction

Linguistics students wishing to embark upon understanding linguistics properties
of a language and conduct research on that language, need to have access to
various resources. The need for such resources is much more acute for languages
such as Turkish whose complex morphology makes linguistic exploration for
non-native speakers all the more difficult. One can however employ language
processing tools and resources to alleviate some of these difficulties.

This paper describes LingBrowser, an intelligent text browser that employs
finite state language processing technology to provide an active and interactive
environment for accessing all kinds of linguistic information about the elements of
a text. LingBrowser provides information about morphological segmentation
and features of a word, alignments of surface and lexical morphemes including
explanations about any morphophonological phenomena, segmental structure,
pronunciation and any relevant explanations about pronunciation phenomena
such as the position of stress. Such information is pervasively available for all
words in a text, and in any of the windows that display results of queries. Words
are also linked to aligned concept ontology databases such as WordNet [1, 2], so
that meanings can be accessed and semantic properties and neighbors of a word

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 191–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

192 K. Oflazer, M.D. Erbaş, and M. Erdoǧmuş

can be investigated. LingBrowser also provides lexical and morphological con-
cordances, and will in the future provide morphological analysis, and synthesis
drills. LingBrowser has been implemented on a PC environment.

Although there has been much prior work in the use of computers in language
learning, dubbed Computer Assisted Language Learning (CALL), many CALL
systems have made very little use of advanced language technology. Borin, in
a recent paper reviewing the relationship between natural language processing
and CALL [3] essentially concludes that, “... in the eye of the casual beholder
– the two disciplines seem to live incompletely different worlds.” Borin states
from the vantage point of NLP, CALL does not seem to have a place in natural
language processing, despite some fledging applications, though there have been
applications of AI in the broader field of intelligent tutoring systems. Similarly,
practitioners of CALL do not make use substantial and broad use of NLP (for
a survey of NLP in CALL, see Nerbonne [4]). There have been a number recent
of projects that have made use of language engineering technology to varying
extents in language learning. The GLOSSER Project [5] has developed a system
that aids readers of foreign language text, by providing access to a dictionary,
after performing a morphological analysis and part-of-speech disambiguation of
a word selected by the reader. In the context of Turkish, we can cite earlier work
by Güvenir [6], and Güvenir and Oflazer [7]. None of these however use any sub-
stantial language processing technology or address the concerns of sophisticated
learners of a language such as students of linguistics.

2 Turkish

Turkish has agglutinative word structures with productive inflectional and de-
rivational processes. Turkish word forms consist of morphemes concatenated
to a root morpheme or to other morphemes, much like “beads on a string”.
Except for a very few exceptional cases, the surface realizations of the morphemes
are conditioned by various regular morphophonemic processes such as vowel
harmony, consonant assimilation and elisions. The morphotactics of word forms
can be quite complex when multiple derivations are involved. For instance, the
derived modifier saǧlamlaştırdıǧımızdaki1 would be down as

saǧlamlaş+tır+dıǧ+ımız+da+ki

Starting from an adjectival root saǧlam, this word form first derives a verbal stem
saǧlamlaş, meaning “to become strong”. A second suffix, the causative surface
morpheme +tır which we treat as a verbal derivation, forms yet another verbal
stem meaning “to cause to become strong” or “to make strong (fortify)”. The
immediately following participle suffix +dıǧ, produces a nominal, which inflects
in the normal pattern for nouns (here for 1st person plural possessor which marks
agreement with the subject of the verb (+ımız), and locative case(+da). The

1 Literally, “(the thing existing) at the time we caused (something) to become strong”.
Obviously this is not a word that one would use everyday.

Using Finite State Technology in a Tool for Linguistic Exploration 193

final suffix, +ki, is a relativizer, producing a word which functions as a modifier
in a sentence, modifying a noun somewhere to the right. For the word above,
this segmented lexical morphographemic representation would be

saǧlam+lAş+DHr+DHk+HmHz+DA+ki

In this representation, lexical morphemes except the lexical root utilize meta-
symbols that stand for a set of graphemes which are selected on the surface by
a series of morphographemic processes, rooted in morphophonological processes
some of which are discussed below. For instance, A stands for back and unrounded
vowels a and e, in orthography, H stands for high vowels ı, i, u and ü, and D
stands for d and t, representing alveolar consonants. Thus a lexical morpheme
represented as +DHr actually represents 8 possible allomorphs, which appear as
one of +dır, +dir, +dur, +dür, +tır, +tir, +tur, +tür, on the surface, depending
on the local morphophonemic context.

Once the lexical structure of a word is obtained, one can then map the
morphemes to the relevant morphosyntactic features and/or obtain further in-
formation about the word such as the location of the primary stress in its pro-
nunciation.

3 LingBrowser Functionality

The current version of the LingBrowser prototype is designed to interac-
tively provide linguistically relevant information about words in Turkish text.
In this section, we review some of the functionality provided by the prototype
implementation.

The main window of LingBrowser is shown in Figure 1, where one can load
either a HTML or a text file. All functionality is available with a right-click
menu in the main window and in all the information windows that pop up, as a
result of user queries. The right-click menu provides the following functionality
described in the following sections.

– Morphological Analysis: When the Morphological Analysis functional-
ity is selected, a morphological analysis is performed and all morphological
analyses of the selected word are displayed.2 The morphological analysis
(accessed from a database populated with output from a finite state mor-
phological analyzer, [9]) includes the root word, the root part-of-speech and
all relevant inflectional and derivational features encoded by any suffixes. In
Figure 2, we see the analyses of the word evinde. The first analysis corre-
sponds to the interpretation ’in your house’, while the second one corre-
sponds to the interpretation ’in his house’. Further, when mouse hovers on
feature names such as +Loc, etc, a tool tip appears indicating what that
feature means – locative case in this instance.

2 In the very near future, we will highlight the contextually correct analysis using
statistical morphological disambiguation techniques [8].

194 K. Oflazer, M.D. Erbaş, and M. Erdoǧmuş

Fig. 1. LingBrowser main window with both HTML and text content

Fig. 2. Morphological analyses of a selected word

Fig. 3. Looking up the lexical morpheme structure

Using Finite State Technology in a Tool for Linguistic Exploration 195

Fig. 4. Looking up the surface morpheme structure

– Lexical Morpheme Structure: The lexical morpheme structure of a word
is the representation of the morphemes of a word where any allomorphy
due to any morphographemic phenomena are abstracted away. For instance,
although the words masanda and evinde in Turkish look quite different,
the lexical morphemes except for the root are the same: masanda has the
lexical structure masa+Hn+DA, while evinde has two possible lexical struc-
tures ev+Hn+DA and ev+sH+nDA corresponding to the interpretations ’in your
house’ and ’in his house’ above.3 Figure 3 shows the response of the system
when Lexical Structure functionality is selected.

– Surface Morpheme Structure: LingBrowser provides access to the
surface morpheme structure of the word in a text. The surface morpheme
structure is like the lexical morpheme structure but the meta-symbols are
resolved to their surface versions (along with possible deletions and inser-
tions of symbols) by appropriate morphological rules. Thus, if the surface
morpheme structure of the evinde is queried, one would get the result in
Figure 4, where we see the meta-symbols resolved to their surface counter-
parts, H to i, A to e and D to d, and the symbol s in the second lexical
morpheme in the second analysis is elided on the surface since the previous
morpheme ends in a consonant.

– Lexical Surface Alignment: Understanding the morphological processes
of a language involves an understanding the relationships between the lexical
and surface structures, and the rules mediating those relationships, [10, 11],
Thus, for instance one would like to select a word like evinde in Ling-
Browser and observe the following correspondence:4

ev+Hn+DA ev+sH+nDA
ev0in0de ev00i0nde

Looking at these aligned sequences of pairs of symbols, one can see that
certain morphographemic rules are in effect. For instance, A is paired with

3 For Turkish lexical morpheme representations we employ meta-symbols that rep-
resent classes of phonemes: here H represents a high-vowel (one of ı, i, u and ü) A
represents a non-round low vowel (one of a and e), and D represents dental conso-
nants d and t.

4 The symbol 0 denotes the epsilon symbol of zero length, as used in two-level
morphology.

196 K. Oflazer, M.D. Erbaş, and M. Erdoǧmuş

Fig. 5. Displaying the aligned feasible-pairs for a word

an e, since the vowel harmony rules in Turkish require that pairing if the
closest surface vowel on the left side of the pairing is one of i, e, ö or ü.
A sample output of LingBrowser for this functionality is depicted in
Figure 5. On this output, one can point to one of the feasible-pairs and
have a verbal explanation of the rule giving rise to that feasible-pair based
on the original two-level grammar [9], as a tooltip.

– Pronunciation: The problem of grapheme-to-morpheme mapping for Turk-
ish is considerably simpler than for languages such as English or French.
Orthography more or less maps one-to-one to pronunciation. While all ho-
mophones are homographs, homographs can be morphologically interpreted
in different ways may give rise to different pronunciations. Such cases usually
stem from the fact that a loan word (usually from Arabic, Persian or French)
is a homograph of another Turkish word but has a different pronunciation -
either there is change in consonant quality or vowel length, none of which are
(usually) reflected to orthography. The other major source of pronunciation
ambiguity is the position of primary stress in the word. Turkish lexical stress
is determined by an interplay of any exceptional stress in root words and the
stress marking properties of morphemes [12].

LingBrowser provides access to possible pronunciations of a selected
word along with the morphological interpretation that gives rise to the asso-
ciated pronunciation. In Figure 6, we see two examples:5 In the first example,
we see the two possible pronunciations of the word ajanda (meaning either
’agenda’ or ’on the agent’). The two pronunciations differ in the location of
the primary stress: in the first interpretation, the root word has exceptional
stress on the second syllable, while in the second interpretation where the
word is morphological segmented differently, the root word does not have
any exceptional stress properties and the primary stress surfaces on the final
syllable. The second example shows a case where in the first two interpre-
tations, the senses of the root word hal are ’state’ and ’wholesale fruit-
market’ respectively. But in certain inflected forms with the first sense of
the word, the root vowel will lengthen. In Figure 7, we see the pronunciation
of the word getiremiyorduk (’we were not able to bring (it)’) where now the
surface morphemes are interleaved with the features, and one can see the

5 - indicates syllable boundary, " denotes the position of the primary stress, and :
indicates a long vowel.

Using Finite State Technology in a Tool for Linguistic Exploration 197

Fig. 6. Aligned pronunciation and morphological analysis lookup

Fig. 7. Interleaved pronunciation representation

pronunciations of the surface morphemes and the morphological features
they give rise to. Note that syllable and morpheme boundaries do not neces-
sarily coincide and syllables may span multiple morphemes and a morpheme
may be split over to multiple syllables.

In a future version of LingBrowser, we plan to add further functionality
that will have an “explanation” feature that explains the reason why the
stress is on a certain syllable or why a certain vowel is long, etc., based on
the analyses described in Oflazer and Inkelas [12].

– Lexicon Access: Whenever there is an analysis of a word displayed after
a query (except of surface morpheme lookup), the user can look up the the
root word in various lexical databases such as the Turkish WordNet [2] or
link to the English WordNet [1] that is aligned with the Turkish WordNet
using interlingual-index number and then access the English meanings by
accessing the glosses in the English WordNet.

– Word and Morphological Concordances: A concordance is a “word-in-
context” view of a text in which all occurrences of a selected word is dis-
played along with some amount of context on the left and on the right. Such

198 K. Oflazer, M.D. Erbaş, and M. Erdoǧmuş

concordance views are helpful for people to see how words are used and per-
haps in what kinds collocations they are involved in. In addition to standard
word form based-concordances, LingBrowser, also provides a morpholog-
ical concordances for all morphological variants of a selected root word.

– Search: LingBrowser can currently also search the text based on vari-
ous criteria such as root words, root part-of-speech, inflectional and deriva-
tional features of words. For example one may want to search for verbs with
causative voice and then see their surface and lexical morphemes. This is
done by maintaining a separate in-core database of all unique word forms
annotated and indexed with all relevant search criteria so that rapid search
can be performed.

4 Implementation

The prototype version of the LingBrowser described here has been imple-
mented in Microsoft’s .NET environment. All lexical lookup functionality has
been implemented via a number of database interfaces to representations of mor-
phological structure and pronunciation data. Although LingBrowser makes
extensive use of finite state technology, it does so in an indirect way. We do not
have access to a runtime library that would let us use the transducers directly at
run time. Instead, we have created databases of word structure and features for
a large set of words that we have extracted from a very large corpus, using the
finite state transducers that we have developed. Even though Turkish has a very
large word form vocabulary – infinite for all practical purposes, we use a limited
vocabulary of a few hundred thousand word forms whose coverage is over 97%
for the corpus we collected them from. This approach is quite feasible for a proof
of concept demonstration system and full-fledged finite state technology can be
incorporated trivially when the appropriate run-time libraries are available.

All our finite state transducers used for populating the lexical databases are
derived from a core morphological analyzer [9] developed using Xerox finite state
technology [13, 14, 15, 11]. The basic morphological analyzer has been amended
with various additional finite state transducers to extract all the relevant rep-
resentations such as the surface morpheme segmentations, the representations
of the pronunciations, etc. The details of how these are described in detail by
Oflazer and Inkelas [12].

We have however developed one of the transducers – the transducer for gener-
ating the aligned surface-lexical representations – separately, as it is not directly
derivable from the basic morphological analysis transducer as the others used. To
generate aligned pairs of symbols, we need a finite state transducer that maps
from surface strings to (aligned) pairs of feasible pairs of lexical-surface sym-
bols, taking into account not just the morphographemic constraints but also the
lexicon constraints, since two-level rule transducer is wildly overgenerating with-
out being composed with a lexicon transducer and it can not be directly used.
Instead, we have created a modified version of the two-level rule transducer
with a different set of feasible pairs as depicted in Figure 8. First, for every

Using Finite State Technology in a Tool for Linguistic Exploration 199

Fig. 8. The structure of the aligned feasible-pair transducer

feasible-pair a:b in the original two-level grammar6 (for the transducer of the
left), we have a feasible pair of the sort "a-b":b in the new two-level grammar
(for the transducer on the right), where the lexical symbol "a-b" on the upper
side also encodes the surface symbol. Then for a two-level rule like

a:b => LC _ RC

in the original rule grammar, where LC and RC are regular expressions over the
set of feasible-pairs, denoting the left and right contexts, we have a rule in the
new grammar

"a-b":b => LC’ _ RC’

in which the lexical side of the feasible pair encodes the surface symbol and
the context regular expressions are rewritten in terms of the new set of feasible
pairs.7

To combine this transducer (that we denote as AlignedTwoLevelRuleTrans-
ducer) with the lexicon, we proceed as follows:

1. Create a transducer MapToPairs that maps every lexical symbol of the orig-
inal lexicon representation, to the lexical side of the new feasible pairs that
lexical symbol is involved in. For example, let’s assume that our original

6 Where a is a lexical symbol, b is a surface symbol.
7 This transformation technically goes away with surface coercion rules (<= +) rules,

since each (new) lexical symbol now has only one surface symbol corresponding to it.
We have not explored the full ramifications of this, at least in the case of converting
our two-level grammar, we have not encountered any problems.

200 K. Oflazer, M.D. Erbaş, and M. Erdoǧmuş

two-level grammar has the feasible pairs A:a, A:e and A:0.8 The regular ex-
pression for MapToPairs then is a set of parallel upward replace operators,
and for these 3 pairs, it will have the replace rules9

..., "A-a" <- A, "A-e" <- A, "A-0" <- A, ...

2. Assuming that the original lexicon transducer LexiconTransducer maps
from lexical symbol sequences to feature symbol sequences for morpholog-
ical analysis, the lower side of lexicon transducer, LexiconTransducer.l,
contains all possible valid lexical symbol sequences encoding the morphotac-
tical restrictions of the original grammar.

3. When MapToPairs is composed with LexiconTransducer.l, and the upper
side of that composition is extracted, [MapToPairs .o. Lexicon.l].u, one
gets a recognizer of all possible sequences of the upper sides of the new set
of feasible pairs, constrained by morphotactics.

4. A final composition,

[[MapToPairs .o. LexiconTransducer.l].u]
.o.

AlignedTwoLevelRuleTransducer

produces the transducer that we want, mapping from surface symbols to
representations of the original feasible pairs.

5 Future Functionality

Subsequent development on LingBrowser will go beyond the lexical realm
and will incorporate querying on multi-word and phrasal structures. The
following is a short list of the functionality we intend to provide in the very
near future:

– Disambiguation of the various kinds of morphological information that is
provided using a recently developed morphological disambiguator [8].

– On-demand explanation of pronunciation phenomena observed (e.g. how
morphemes interact to determine the primary stress location),

– Integration of multi-word constructs processors to identify lexicalized, semi-
lexicalized and non-lexicalized collocations [16].

– Recognition of various simple noun phrases.
– English paraphrasing of Turkish word forms e.g., evimdekiler paraphrased

as those (things) in my home.
– Morphological analysis and generation drills using feature and lexical mor-

pheme representations.

8 These are used to implement a certain kind of vowel harmony in Turkish.
9 Using XRCE Regular Expression Syntax.

Using Finite State Technology in a Tool for Linguistic Exploration 201

6 Conclusions

We have presented the functionality of the prototype implementation of Ling-
Browser, a tool for helping students Turkish linguistics explore linguistic prop-
erties of Turkish words and phrases. LingBrowser makes extensive use of finite
state language processing technology to pervasively provide all kinds of informa-
tion about the Turkish words in a Turkish text.

Acknowledgements

The work on LingBrowser is being supported by a joint grant from TÜBİTAK
(Turkish National Science Foundation) and US NSF to Sabancı University and
University of California, Berkeley, Department of Linguistics.

References

1. Fellbaum, C., ed.: WordNet, An Electronic Lexical Database. MIT Press (1998)
2. Bilgin, O., Çetinoǧlu, O., Oflazer, K.: Building a Wordnet for Turkish. Romanian

Journal of Information Science and Technology 7 (2004) 163–172
3. Borin, L.: What have you done for me lately? The fickle alignment of NLP and

CALL. In: Proceedings of EuroCALL 2002 pre-conference workshop on NLP in
CALL (2002), Jyvaskyla, Finland (2002)

4. Nerbonne, J.: Computer-assisted language learning and natural language process-
ing. In Mitkov, R., ed.: Handbook of Computational Linguistics. Oxford University
Press (2002)

5. Nerbonne, J., Karttunen, L., Paskaleva, E., Proszeky, G., Roosmaa, T.: Reading
more into foreign languages. In: Proceedings of the Fifth Conference on Applied
natural language processing, Washington, DC (1997) 135–138

6. Güvenir, H.A.: Drill and practice for Turkish grammar. In Swartz, M.L., Yazdani,
M., eds.: Intelligent Tutoring Systems for Foreign Language Learning. Volume F80
of NATO ASI Series. Springer Verlag (1992) 275–291

7. Güvenir, H.A., Oflazer, K.: Using a corpus to teach Turkish morphology. In:
Proceedings of the Seventh Twente Workshop on Language Technology, Enschede,
The Netherlands (1994)

8. Külekçi, O.: Morphological disambiguation with distinguishing tags and its applica-
tion to disambiguation of pronunciation. Ph.D Thesis Proposal, Sabancı University,
Istanbul, Turkey (2004)

9. Oflazer, K.: Two-level description of Turkish morphology. Literary and Linguistic
Computing 9 (1994) 137–148

10. Koskenniemi, K.: Two-level morphology: A general computational model for word
form recognition and production. Publication No: 11, Department of General Lin-
guistics, University of Helsinki (1983)

11. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications, Stan-
ford University (2003)

12. Oflazer, K., Inkelas, S.: The architecture and the implementation of a finite state
pronunciation lexicon for Turkish. Computer Speech and Language 20 (2006)

13. Karttunen, L., Beesley, K.R.: Two-level rule compiler. Technical Report, XEROX
Palo Alto Research Center (1992)

202 K. Oflazer, M.D. Erbaş, and M. Erdoǧmuş

14. Karttunen, L.: Finite-state lexicon compiler. XEROX, Palo Alto Research Center–
Technical Report (1993)

15. Karttunen, L., Chanod, J.P., Grefenstette, G., Schiller, A.: Regular expressions for
language engineering. Natural Language Engineering 2 (1996) 305–328

16. Oflazer, K., Çetinoǧlu, O., Say, B.: Integrating morphology with multi-word ex-
pression processing in Turkish. In: Proceedings of the ACL 2004 Workshop on
Multiword Expressions:Integrating Processing, Barcelona, Spain (2004)

Applying a Finite Automata Acquisition

Algorithm to Named Entity Recognition

Muntsa Padró and Llúıs Padró

TALP Research Center
Universitat Politècnica de Catalunya

{mpadro, padro}@lsi.upc.edu

Abstract. In this work, Causal-State Splitting Reconstruction
algorithm, originally conceived to model stationary processes by learning
finite state automata from data sequences, is for the first time applied
to NLP tasks, namely Named Entity Recognition. The obtained results
are slightly below the best systems presented in CoNLL 2002 shared
task, though given the simplicity of the used features, they are really
promising.

Once the viability of using this algorithm for NLP tasks is stated, we
plan to improve the results obtained at NER task, as well as to apply it
to other NLP sequence recognition tasks such as PoS tagging, chunking,
subcategorization patterns acquisition, etc.

1 Introduction

Some Natural Language Processing (NLP) tasks may be naturally approached
using finite state automata and machine learning algorithms. These automata
can be hand built with linguistic knowledge or can be statistical models, such
as Hidden Markov Models (HMM). In the case of statistical automata, usually
their structure must be previously defined. For HMM, for example, it is necessary
to define what the states represent, and the statistics are only applied to learn
the transition and emission probabilities. Nevertheless there are algorithms that
learn automata given some data [1, 2, 3, 4, 5, 6]. One of these kind of algorithms
is CSSR (Causal State Splitting Reconstruction) which is based on inferring the
causal states of a process given sequential data.

In this work a first approach to applying this algorithm to NLP tasks is
presented. The task chosen to start applying this algorithm was Named Entity
Recognition (NER). The results presented in this paper are preliminary, since
the performed experiments take into account few features. Nevertheless, the
obtained results are quite promising since they are not far from those of the
state of the art systems and there is still a large margin for improvement to
the presented preliminary experiments. At the sight of current results, it can be
said that this algorithm can be reliably applied to NER and we expect to obtain
good results in the future applying it to other NLP tasks.

The Named Entity Recognition (NER) task consists of detecting names re-
ferring to entities such as persons, locations, organizations, etc. in a text. This

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 203–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 M. Padró and L. Padró

is used in many NLP applications such as Question Answering, Information
Retrieval, Sumarization, etc. Furthermore, some Named Entity Classification
(NEC) systems need to have the Named Entities (NE) previously detected. Other
systems perform both tasks (detection and classification) at the same time. We
only applied CSSR to the detection step, not to classification.

The rest of the paper is organized as follows: section 2 presents the CSSR
algorithm and its theoretical basis. Section 3 defines our approach to apply the
algorithm to NER task. In section 4 the performed experiments with the obtained
results are discussed. Section 5 states some conclusions and future work.

2 CSSR Algorithm

The CSSR algorithm [7] performs the blind construction of asymptotically opti-
mal nonlinear predictors of discrete sequences. It inferres the causal states from
data, searching for optimal predictors for discrete random processes, in the form
of Markov Models.

2.1 Causal States

Given a discrete alphabet Σ, consider a sequence x− drawn from Σ (history)
and a random variable for future sequences Z+. Z+ can be observed after x−

with a probability P (Z+|x−). Two histories, x− and y−, are equivalent when
P (Z+|x−) = P (Z+|y−), i.e. when they have the same probability distribution
for the future.

The different future distributions build the equivalence classes which are
named causal states of the process. Each causal state is a set of history suffixes,
up to a preestablished maximum length, with the same probability distribution
for the future. The causal states of a process form a deterministic machine and
are recursively calculable.

2.2 The Algorithm

Causal-State Splitting Reconstruction (CSSR) estimates an HMM inferring the
causal states from sequence data. The main parameter of this algorithm is the
maximum length (lmax) the suffixes can reach. That is, the maximum length
of the considered histories. In terms of HMMs, lmax would be the potential
maximum order of the model (the HMM would have lmax order if all the suffixes
belonged to different states).

The algorithm starts by assuming the process is an identically-distributed and
independent sequence with a single causal state, and then iteratively adds new
states when it is shown by statistical tests that the current states set is not
sufficient. The causal state machine is built in three phases (see [7] for details):

1. Initialize
Create a state set with only one state containing only the null suffix. Set
l = 0 (length of the longest suffix so far).

Applying a Finite Automata Acquisition Algorithm 205

2. Sufficiency
Iteratively build new states depending on the future probability distribution
of each possible suffix extension (suffix sons). Before doing so it is necessary
to estimate the probability distribution P̂ (Xt|S = s) (where Xt is the ran-
dom variable for the next alphabet symbol in the sequence) for each state s.
This is necessary because this probability can change at each iteration when
the new suffixes are added to a given state. This probability distribution is
estimated (via maximum likelihood, for instance) using the data.

At this phase, the suffix sons (ax) for each longest suffix (x) are created
adding each alphabet symbol (a) at the beginning of each suffix. The future
distribution P (Xt|Xt−1

t−l) (probability of each alphabet symbol given the last
l symbols) for each son is computed and a hypothesis test with the following
null hypothesis is performed,

P (Xt|Xt−1
t−l =ax)=P (Xt|S =s); ∀a∈Σ

This hypothesis is true if the new distribution is equal (with a certain con-
fidence degree) to the distribution of an existing state (s). In this case, the
suffix son is added to this state. If the hypothesis is rejected for all states, a
new state for the suffix son is created. To check the null hypothesis we can
use a statistical test such as χ2 or Kolmogorov-Smirnov.

As the suffix length grows, l is increased by one at each iteration. This
phase goes on until l reaches some fixed maximum value lmax, the maximum
length to be considered for a suffix, which represents the longest histories
taken into account. The results of the system will be significantly different
depending on the chosen lmax value, since the larger this value is, the more
training data will be necessary to learn a correct automaton with statistical
reliability. Also, the time needed to learn the automaton grows linearly with
lmax. So it is necessary to tune the best maximum length for the amount of
available data (or viceversa, the amount of necessary data for the required
suffix length).

3. Recursion
Since CSSR models stationary processes, first of all the transient states
are removed. Then the states are splitted until a deterministic machine is
reached. To do so, the transitions for each suffix in each state are computed
and if two suffixes in one state have different transitions for the same symbol,
they are splitted into two different states.

At the end of this recursion phase, a deterministic automaton is obtained.

In figure 4 the pseudo code for this algorithm is presented. See [7] for extended
details and algorithm analysis.

3 Applying CSSR to Named Entity Recognition

In this work an approach to apply CSSR algorithm to Named Entity Recognition
is presented. We only worked on recognizing Named Entities, not in classifying
them.

206 M. Padró and L. Padró

Following CoNLL 2002 and 2003 shared task, we worked with the “B-I-O”
approach [8]. Each word has a B, I or O tag, being B the tag for a word where a
NE begins, I the tag if the word is part of a NE but not the beginning, and O the
tag for the words not belonging to any NE. There are other possible approaches
to tagging NEs [9] but this is one of the most widely used.

The general idea of our approach is to use CSSR to learn an automaton for
NE structure. Once the automaton is learnt, it can be applied to detect NEs in
untagged text.

3.1 Learning the Automaton

To learn the automaton that must reproduce NE structure, different informa-
tion about the words is used. This information can be orthographic, morpho-
syntactic, about the position in the sentence, etc. Using this features, the words
in a sentence are translated to a closed set of symbols, that will be the alphabet
of the automaton. The sentence translated in such a way will be the sequence
that we use to learn the automaton via CSSR.

A problem of using that algorithm for this task is that it is conceived to model
stationary processes, but NE patterns are not in this category. So, what we did
was to regard a text sequence as a stationary process in which NEs occur once a
while. Doing so implies the automaton is modelling the pattern of the sequence
(the text), not the pattern of a NE.

To allow CSSR to learn the pattern of the NEs, we introduce in the alphabet
the information of the NE-tag (B, I or O) available in the supervised training
corpus. So the correct NE-tag is taken into account for each kind of word when
building the automaton.

To allow CSSR to learn the pattern of the NEs, we introduce in the alphabet
the information of the NE-tag (B, I or O) available in the supervised training
corpus. Thus, the hidden information (the tags) is taken into account when
building the automaton.

In this way, although we obtain an automaton modelling the entire text se-
quence as an stationary process, we have information encoded in the transitions
about B-I-O tags for NEs in the text. Thus, we can later use this information to
compute the best path for a sequence and use it to tag NEs in a new text.

3.2 An Example

For instance, let’s suppose an approach where the only feature taken into account
is whether a word is capitalized or not. Let’s say that a capitalized word will
have the feature “A” and a non-capitalized word the feature “a”. In this case,
the alphabet will consist of six symbols, which are the possible combinations of
a capitalization value and a B-I-O tag (AB , AI , AO, aB, aI , aO). Each word
will be translated into sequences of these symbols depending on whether it is
capitalized and on its NE-tag.

Figure 1 shows an example of a possible training sentence and its translation
to this alphabet. The first two columns would be the sentences as they are in the

Applying a Finite Automata Acquisition Algorithm 207

training corpus: a word and its right B-I-O tag. The last column is their trans-
lation into the alphabet, which will be used as input for the CSSR algorithm. In
this example it becomes clear that this alphabet would be too poor to capture
appropiate NE patterns. It would be necessary, for example, to introduce infor-
mation about the beginning of sentences (where all words appear capitalized and
may not be a NE), or to introduce special words that may appear uncapitalized
inside a NE (prepositions, articles...).

Word Correct Tag Alphabet Symbol
Yesterday O AO

the O aO

President B AB

of I aI

France I AI

spoke O aO

with O aO

George B AB

Bush I AI

about O aO

the O aO

situation O aO

in O aO

Iraq B AB

. O aO

Bush B AB

said O aO

...

Fig. 1. Example of a training sentence and its translation to a simple alphabet

Fig. 2. Example of an automaton that models simple NEs

Once the data are properly translated into the alphabet, the automaton is
built using CSSR. Figure 2 shows a possible (not real) automaton learned with
CSSR with the alphabet { AB, AI , AO, aB, aI , aO }.

3.3 Using the Learned Automaton to Tag NEs

When a sentence has to be tagged, the information about the correct NE tag is
not available, so there are several possible alphabet symbols for that word. It is
only possible to know the part of the translation that depends on the word or

208 M. Padró and L. Padró

sentence features. In our example, it would be possible to translate each word
to an “A” or to an “a”, but not to know the part of the symbol that depends
on the NE-tag, which is, in fact, what we want to know.

To find this most likely tag for each word in a sentence –that is, to find the
most likely symbol of the alphabet (e.g. GB, GI , GO for a G word), a Viterbi
algorithm is applied. That is, for each word in a sentence, the possible states
the automaton could reach if the current word had the tag B, I, or O, and the
probabilities of these paths are computed. Then, only the highest probability
for each tag is recorded. That means that for each word, the best path for this
word having each tag is stored. At the end of the sentence, the best probability
is chosen and the optimal path is backwards recovered. In this way, the most
likely sequence of B-I-O tags for each word in the sentence is obtained. There
are some forbidden paths, which are those that lead to the OI tag-combination.
The paths including this combination are pruned out.

3.4 Managing Unseen Transitions

When performing the tagging of NEs given a text, it is possible to find symbol
sequences that haven’t been seen in the training corpus. This will cause the
automaton to fall in a sink state, which receives all the unseen transitions. This
state can be seen as the state that contains all the unseen suffixes. All unseen
transitions probabilities are smoothed to have a small probability of arriving to
the sink state. Actually, the only sequences that have zero probability are those
that have a forbidden combination of tags or of states being the beginning or
the end of a NE.

When the automaton falls in the sink state, it can not follow the input se-
quence using transition information because, as the transitions weren’t seen,
they are not defined. To allow the system to continue tagging the text, when the
automaton falls into sink state, the suffix of length lmax is built using the last
lmax − 1 symbols and the next symbol from the input. A state containing this
new suffix is searched over the automaton and, if found, the automaton goes to
this state and continues its normal functioning. If not, the process is repeated,
getting more symbols from the input sequence, until a state containing the new
suffix is found.

This may cause skipping some part of the input, and is caused by the fact
that the text sequence is considered as an stationary process, and so, when the
CSSR-acquired automaton fails, we have to resynchronize it with the input data.

4 Experiments and Results

In this work, the data for the CoNLL-2002 shared task [10] for Spanish were
used. These data contain three corpora: one for the train and two for the test:
one for the development of the system and the other one for the final test. The
amount of data in each corpus is shown in table 1.

With these data, two different kind of experiments were performed: one to
validate the method, and the other one to evaluate it over real data.

Applying a Finite Automata Acquisition Algorithm 209

Table 1. Number of words and NEs in each corpus

Corpus Number of words Number of NEs
Train 264,715 18,797
Test a 52,923 4,351
Test b 51,533 3,558

4.1 Validating the Method

The experiments to validate the method consist of tagging the training and test
corpora using a simple hand-built automaton, and checking whether CSSR is
able to learn and reproduce its behaviour. FreeLing analyzer [11] has a NER
system that uses a simple hand-built automaton of four states, and was used
to re-annotate all CoNLL datasets, obtaining training and test corpora tagged
with a simple and systematic annotation criteria. These corpora were used to
train and test CSSR at the NER task.

The used alphabet was the same –and encoded the same features– than the
one used by FreeLing NE detection module, in which the following feature-sets
are mapped to the alphabet symbols:

– G: Beginning of the sentence, capitalized, not containing numbers, not in
the dictionary1.

– S: Beginning of the sentence, capitalized, not containing numbers, one of its
possible analysis being a common noun.

– M: Not at the beginning of the sentence, capitalized.
– a: Not at the beginning of the sentence, non-capitalized, functional word2.
– w: Other.

In this way, the alphabet for CSSR will be the combination of these four
features with the three possible NE tags (GB , GI , GO, SB, SI , SO, MB, MI ,
etc.).

Using the training corpus tagged with FreeLing an automaton was learned
using CSSR algorithm. Then, this automaton was evaluated over the test cor-
pora (also tagged with FreeLing). The system obtained F1 = 100% when using
lmax =2 for both test sets, and using lmax = 3, F1 = 99, 83% for the development
corpus (test a) and F1 = 99, 98% for the test corpus (test b) were obtained. For
lmax = 3, the lost in F1 is due to some missed NEs. In fact the system obtained a
100% precision in both cases, but the recall fell a little bit. This lose in the recall,
could be due to the fact that if lmax rises, more training data are necessary to
generate a correct automaton.

These results prove that CSSR is able to perfectly acquire the behaviour of
the FreeLing annotation schema underlying the data. Although this is an easy
task, since that schema is simple and systematic, it validates the viability of our
adaptation of CSSR from stationary-process acquisition to pattern recognition.
1 The used dictionary is the one provided by FreeLing [11].
2 Functional words are articles or preposition that are often found inside a NE.

210 M. Padró and L. Padró

4.2 Applying CSSR over the Real Corpora

Next step was testing the method on a real NE task, over the corpora used
in CoNLL-2002. In this case, the annotation was hand made, and thus, it will
include cases much more complex than the naive FreeLing annotation, and also
present noise and inconsistencies due to different annotator criteria or simply to
human mistakes.

CSSR algorithm has three important parameters. One is the chosen maximum
length (lmax), which is the most significant parameter. The other two are the
test used to check the null hypothesis and the parameter α, controlling the
test significance degree. We made several experiments (using the same alphabet
presented in 4.1) for different lmax values and with two different statistical test:
χ2 and Kolmogorov-Smirnov. For each test, the experiments were performed
with several α values. Figure 3 shows the obtained results with the different
automata built using Kolmogorov-Smirnov test. The results obtained with χ2

test have a similar behaviour but are slightly worse.
In this figure it can be seen that the significance degree value is not as influent

as the lmax value. In fact, there is a range of α values for which the reached results
are similar.

About the influence of lmax, the results show that best performance is obtained
with small lmax, likely caused by the limited size of the training corpus, which
seems not to allow statistically reliable acquisition of automata with too long
histories. In fact, since our alphabet has 16 symbols, the number of suffixes of
length 5 is 165 (over one million), which is approximately the size of the training
corpus, so most of the possible suffixes wouldn’t have been seen in the corpus.

The best performance is obtained with lmax = 3 and α = 1e − 5. With
these values, the system reaches a precision of 89.81%, a recall of 88.22% and
F1 = 89.01% for the development corpus (test a) and a 90.03% precision, 88.81%
recall and F1 = 89.42% for the test corpus (test b).

These results can be compared with the winner system of CoNLL-2002 shared
task [12]. This system was developed with the same training and testing data
and performs the NE recognition and classification separately , so it is possible
to compare our system with the part that performs the NE recognition.

That system obtained a F1 of 91.66% for the Spanish development corpus and
a 92.91% for the test corpus. These results are higher than the results presented
in this work, which was expected since the feature set used by that system is
much richer (bag of words, disambiguated PoS tag, many orthographic features,
etc.) than the used in our experiments.

Furthermore, it is possible to apply the NEC system used by [12] to the output
of our NE detector. Doing so over our best results yields to a F1 = 76.30%, which
would situate our system in the fifth position in CoNLL-2002 ranking table for
complete NER systems in Spanish.

Another factor that is interesting to study is the number of generated states
for each configuration. As it is expected, lmax and α values not only affect the
performance of the system, but also change the number of states of the generated
automata. The larger lmax and α are, the greater the number of states will be.

Applying a Finite Automata Acquisition Algorithm 211

 86

 86.5

 87

 87.5

 88

 88.5

 89

 89.5

 90

 1e-10 1e-08 1e-06 0.0001 0.01 1

F
1

(%
)

alpha

Development Corpus

l_max=3
l_max=4
l_max=5
l_max=6

 86

 86.5

 87

 87.5

 88

 88.5

 89

 89.5

 90

 1e-10 1e-08 1e-06 0.0001 0.01 1

F
1

(%
)

alpha

Test Corpus

l_max=3
l_max=4
l_max=5
l_max=6

Fig. 3. Obtained results with different lmax and α values for both test corpora

As in the case of the system performance, the most influent parameter in the
automata size is lmax, while the influence of α is important only for values over
0.01. Using values under this threshold, the number of generated states varies
from 100 states for lmax = 3 to 2000 states for lmax = 6. For α bigger than 0.01
the number of states rises until these values are duplicated.

212 M. Padró and L. Padró

Algorithm CSSR (Σ, x̄, lmax, α)

// Initialization: init. the machine with a state with
l ← 0 // only the null suffix.
q0 ← {λ}; Q ← q0

// Sufficiency: build causal states.
while l < lmax

for each s ∈ Q

estimate P̂ (Xt|S = s) // Estimate the prob. distr. for next symbol given the
for each x ∈ s // curr. st. since it may have changed in the last iter.

for each a ∈ Σ

estimate p ← P̂ (Xt|Xt−1
t−l = ax) // Estimate the probability distribution for this

Reorganize States(Q, p, ax, s, α) // suffix son and perform the hypothesis test.
l ← l + 1

// Recursion: rem. transient states, makes the mach.
Remove transient states from Q // determ. and fills transition table (T [state, symbol])
repeat

recursive ← True
for each s ∈ Q

for each b ∈ Σ
x0 ← first x ∈ s
T [s, b] ← Class(x0b, Q) // Look for the trans. for this suffix with this symbol.
for each x ∈ s, x �= x0

if Class(xb, Q) �= T [s, b] // If the trans. for another suffix goes to a different
create new state s′ ∈ Q // state, creates a new state with this suffix and move
T [s′, b] ← Class(xb, Q) // to this state all the suffix with the same transition.
for each y ∈ s | Class(yb, Q) = Class(xb, Q)
Move Suffix(y, s, s′)

recursive ← False
until recursive

function Reorganize States(Q, p, y, s, α)// Reorganize States: test the null hypothesis and
// decide to which state a suffix must be added
// or create a new state.

if null hypothesis passes a test // If the probability distribution for y is equal to
of size α for s // the s distribution add y to this state.

s ← y ∪ s
else

if null hyp. passes a test of size α // If the prob. distr. for y is equal to the s∗ �= s
for s∗ ∈ Q, s∗ �= s // distribution, add y to this state s∗.
s′ = s∗

else // If the prob. distr. for y is different from that
Q ← s′ // of all states, create a new state and add y to it.

Add Suffix(y, s′)

function Add Suffix(y, s) // Add Suffix: add a suffix to a state.
s ← s ∪ y

re-estimate P̂ (Xt|Ŝ = s)

function Class(y, Q) // Class:return the causal state (equivalence class)
return (s ∈ Q|y ∈ s) // a suffix belongs to.

function Move Suffix(y, s1, s2) // Move Suffix: move a suffix from one st. to another.
s1 ← s1 \ y

re-estimate P̂ (Xt|Ŝ = s1)
s2 ← s2 ∪ y

re-estimate P̂ (Xt|Ŝ = s2)

Fig. 4. Pseudo code for the CSSR algorithm

5 Conclusions and Further Work

In this work a finite automata acquisition algorithm has been applied to Named
Entity Recognition. The algorithm learns automata for stationary processes, so,

Applying a Finite Automata Acquisition Algorithm 213

some arrangements have had to be done in the tagging step to fit a non-stationary
pattern recognition NLP task such as NE recognition.

Firstly, the method has been validated by applying it to learn sentence pat-
terns from a corpus annotated with a simple hand-made automaton, and check-
ing that CSSR is able to exactly reproduce its behaviour.

Secondly, it has been shown that this algorithm can build automata that give
pretty good results when applied to recognize the NEs of a text. In fact, the
system results are not too far from those obtained by the winner system on
CoNLL 2002 shared task and they may be expected to improve by introducing
more information in the system, since we use a much simpler knowledge than all
CoNLL 2002 participants.

The main conclusion of this work, is that CSSR algorithm can be satisfactorily
applied to NER tasks, which opens a door to applying it to other basic NLP
tasks which need to learn sequential pattern information from data (PoS tagging,
chunking, etc.).

The future work to be developed is focused on improving this NER system
and on applying CSSR algorithm to other NLP tasks. To improve NER, more or-
thographic and morpho-syntactic information will be introduced in the alphabet
in order to build more accurate automata. Similarly, external information such
as trigger word lists or gazetteers could be also used. Other NLP tasks where
this algorithm can be applied are chunking, PoS tagging or subcategorization
pattern acquisition.

Acknowledgements

This research is being funded by the Catalan Government Research Depart-
ment (DURSI), by the Spanish Ministry of Science and Technology (ALIADO
TIC2002-04447-C02) and by the European Commission projects: Meaning (IST-
2001-34460) and CHIL (IST-2004-506909). Our research group, TALP Research
Center, is recognized as a Quality Research Group (2001 SGR 00254) by DURSI.

References

1. Segarra, E., Sanchis, E., Garćıa, F., Hurtado, L.F., Galiano, I.: Achieving full
coverage of automatically learnt finite-state language models. In: Workshop on
Finite-State Methods in Natural Language Processing. 10th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (EACL2003),
Budapest, Hungary (2003) 135–142

2. Pla, F.: Etiquetado Léxico y Análisis Sintáctico Superficial basado en Modelos
Estad́ısticos. PhD thesis, Departament de Sistemes Informàtics i Computació,
Universitat Politècnica de València (2000)

3. Lang, K.J.: Random dfa’s can be approximately learned from sparse uniform ex-
amples. In: COLT ’92: Proceedings of the fifth annual workshop on Computational
learning theory, ACM Press (1992) 45–52

4. Oncina, J.M.: Aprendizaje de lenguajes regulares y funciones subsecuenciales.
PhD thesis, Departamento de Sistemas Informáticos y Computación, Universidad
Politécnica de Valencia (1991)

214 M. Padró and L. Padró

5. Rulot, H., Vidal, E.: Modelling (sub)string-length based constraints through a
grammatical inference method. In: Pattern recognition theory and applications.
Springer-Verlag (1987) 451–459

6. Trakhtenbrot, B., Barzdin, Y.: Finite Automata: Behaviour and Synthesis. North
Holland Publishing Company (1973)

7. Shalizi, C., Shalizi, K.: Blind construction of optimal nonlinear recursive predictors
for discrete sequences. In: Uncertainty in Artificial Intelligence: Proceedings of the
Twentieth Conference. (2004)

8. Ramshaw, L., Marcus, M.P.: Text chunking using transformation-based learning.
In: Proceedings of the Third ACL Workshop on Very Large Corpora. (1995)

9. Tjong Kim Sang, E.F., Veenstra, J.: Representing text chunks. In: Proceedings of
EACL’99, Bergen, Norway (1999) 173–179

10. Tjong Kim Sang, E.F.: Introduction to the conll-2002 shared task: Language-
independent named entity recognition. In: Proceedings of CoNLL-2002, Taipei,
Taiwan (2002) 155–158

11. Carreras, X., Chao, I., Padró, L., Padró, M.: Freeling: An open-source suite of lan-
guage analyzers. In: Proceedings of the 4th International Conference on Language
Resources and Evaluation (LREC’04), Lisbon, Portugal (2004)

12. Carreras, X., Màrquez, L., Padró, L.: Named entity extraction using adaboost. In:
Proceedings of CoNLL Shared Task, Taipei, Taiwan (2002) 167–170

Principles, Implementation Strategies,

and Evaluation of a Corpus Query System

Ulrik Petersen

University of Aalborg
Department of Communication and Psychology

Kroghstræde 3, DK — 9220 Aalborg East, Denmark
ulrikp@hum.aau.dk
http://emdros.org/

Abstract. The last decade has seen an increase in the number of avail-
able corpus query systems. These systems generally implement a query
language as well as a database model. We report on one such corpus
query system, and evaluate its query language against a range of queries
and criteria quoted from the literature. We show some important prin-
ciples of the design of the query language, and argue for the strategy of
separating what is retrieved by a linguistic query from the data retrieved
in order to display or otherwise process the results, stating the needs for
generality, simplicity, and modularity as reasons to prefer this strategy.

1 Introduction

The last decade has seen a growth in the number of available corpus query
systems. Newcomers since the mid-1990ies include MATE Q4M [1], the Emu
query language [2], the Annotation Graph query language [3], TIGERSearch [4],
NXT Search [5], TGrep2 [6], and LPath [7].

Our own corpus query system, Emdros [8, 9], has been in development since
1999. It is based on ideas from the PhD thesis by Crist-Jan Doedens [10]. It
implements a database model and a query language which are very general in
their applicability: Our system can be applied to almost any linguistic theory,
almost any linguistic domain (e.g., syntax, phonology, discourse) and almost any
method of linguistic tagging. Thus our system can be used as a basis for imple-
menting a variety of linguistic applications. We have implemented a number of
linguistic applications such as a generic query tool, a HAL1 space, and a number
of import tools for existing corpus formats. As the system is Open Source, others
are free to implement applications for their linguistic problem domains using our
system, just as we plan to continue to extend the range of available applications.

The rest of the paper is laid out as follows: First, we briefly describe the
EMdF database model underlying Emdros, and give an example of a database
expressed in EMdF. Second, we describe the MQL query language of Emdros
and its principles. Third, we argue for the strategy of separating the process of
1 HAL here stands for “Hyperspace Analogue to Language,” and is a statistical method

based on lexical co-occurrence invented by Dr. Curt Burgess and his colleagues [11].

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 215–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 U. Petersen

retrieving linguistic query results from the process of retrieving linguistic objects
based on such results for application-specific purposes. Fourth, we evaluate MQL
against a set of standard queries and criteria for corpus query languages culled
from the literature. Finally, we conclude the paper.

2 The EMdF Database Model

To illustrate how data can be stored in Emdros, consider Fig. 1. It shows an
example of a discontiguous clause, taken from [12, p. 95], represented both as a
tree and as a database expressed in the EMdF database model.

V/2

talked of course

Unknown/9

about politics

PP/8

S/12

John

S/11

NP/7 V’/10

1 2 3 4 5 6

Word

id: 1
surf.: John
pos: NProp
parent: 7

id: 2
surf.: talked
pos: V
parent: 10

id: 3
surf.: of
pos: P
parent: 9

id: 4
surf.: course
pos: N
parent: 9

id: 5
surf.: about
pos: P
parent: 8

id: 6
surf.: politics
pos: N
parent: 8

Phrase
id: 7
type: NP
parent: 11

id: 9
type: Unknown
parent: 12

id: 8
type: PP
parent: 10

Phrase
id: 10
type: V’
parent: 11

id: 10
type: V’
parent: 11

Clause
id: 11
type=S
parent: 12

id: 11
type=S
parent: 12

Clause
id: 12
type=S

a. A tree with a discontiguous b. A EMdF representation of the tree
clause, adapted from [12, p. 95]

Fig. 1. Two representation of a tree with a discontiguous clause

At the top of Fig. 1.b. are the monads. A monad is simply an integer, and
the sequence of the monads defines the logical reading order. An object is a
(possibly discontiguous) set of monads belonging to an object type (such as
“Word”, “Phrase”, “Clause”), and having a set of associated attribute-values.
The object type of an object determines what attributes it has. For example,
the “Word” object type in Fig. 1.b has attributes “id”, “surface”, “pos” (part of
speech), and “parent”. The id is a database-widely unique number that identifies
that object. In the above database, this has been used by the “parent” attribute
to point to the immediately dominating node in the tree.

In the EMdF database model, object attributes are strongly typed. The model
supports strings, integers, ids, and enumerations as types for attributes, as well
as lists of integers, ids, and enumeration labels. Enumerations are simply sets
of labels, and have been used for the Word.pos, Phrase.type, and Clause.type
attributes in the figure.2 Real-number values are under implementation, and will
be useful for, e.g., acoustic-signal timelines.
2 The “dot-notation” used here is well known to programmers, and is basically a

possessive: “Word.pos” means “the pos attribute of the Word object-type”.

Principles, Implementation Strategies, and Evaluation of a CQS 217

3 The MQL Query Language

The MQL query language of Emdros is a descendant of the QL query language
described in [10]. Like QL, it is centered around the concept of “blocks”, of which
there are three kinds: “Object blocks”, “gap blocks”, and “power blocks”.

An “Object block” finds objects in the database (such as phonemes, words,
phrases, clauses, paragraphs, etc.) and is enclosed in [square brackets]. For ex-
ample, the query [Word surface="saw"] will find Word objects whose surface
attribute is “saw”, whereas the query [Phrase type = NP and function =
Subj] will find phrases whose phrase type is NP and whose function is Subject.
Of course, this presupposes an appropriately tagged database. The attribute-
restrictions on the object are arbitrary boolean expressions providing the
primitives “AND”, “OR”, “NOT”, and “grouping (parentheses)”. A range of
comparison-operators are also provided, including equality, inequality, greater-
than (or equal to), less than (or equal to), regular expressions (optionally
negated), and IN a disjoined list of values. For lists, the HAS operator looks
for a specific value in the list.

A “gap block” finds “gaps” in a certain context, and can be used to look
for (or ignore) things like embedded relative clauses, postpositive conjunctions,
and other material which is not part of the surrounding element. A gap block is
specified as [gap ...] when obligatory, and as [gap? ...] when optional.

A “power block” is denoted by two dots (“..”), and signifies that there can
be arbitrary space between the two surrounding blocks. However, this is always
confined to be within the limits of any context block.

The power block can optionally have a restriction such as “.. <= 5” or “..
BETWEEN 3 AND 6” meaning respectively that the “space” can be between zero
and five “least units” long, or that it must be between 3 and 6 “least units” long.
Precisely what the “least unit” is, is database-dependent, but is usually “Word”
or “Phoneme”.3

The MQL query language implements the important principle of topographic-
ity described in [10], meaning that there is an isomorphism between the structure
of the query and the structure of the objects found. The principle of topographic-
ity works with respect to two important textual principles, namely embedding
and sequence.

As an example of topographicity with respect to embedding, consider the
query Q1 in Fig. 3 on page 221. This query finds sentences within which there is
at least one word whose surface is “saw”. The “[Word surface="saw"]” object
block is embedded in the “[Sentence ...]” object block. Because of the prin-
ciple of topographicity, any Word objects found must also be embedded in the
Sentence objects found.

Similarly, in Query Q5 in Fig. 3, the two inner [Syntax level=Phrase ...]
object blocks find Syntax objects that immediately follow each other in sequen-
tial order, because the object blocks are adjacent. “Being adjacent” here means

3 This is an example of the generality of the EMdF database model, in that it supports
many different linguistic paradigms and methods of analysis.

218 U. Petersen

“not being separated by other blocks” (including a power block). There is a
caveat, however. The default behavior is to treat objects in the database as “be-
ing adjacent” even if they are separated by a gap in the surrounding context.
For examle, in Query Q5, if the surrounding Sentence object has a gap between
the NP and the VP4, then that query will find such a sentence due to the default
behavior. If this is not the desired behavior (i.e., gaps are not allowed), one can
put the “!” (bang) operator in between the object blocks, as in Query Q4 in
Fig. 3. This will require the objects found by the object blocks surrounding the
bang to be strictly sequential.

An object block can be given the restriction that it must be first, last, or
first and last in its surrounding context. An example using the last keyword
can be seen in Query Q3 in Fig. 3.

The object retrieved by an object block can be given a name with the AS
keyword. Subsequent object blocks can then refer back to the named object. An
example can be seen in Query Q5 in Fig. 3, where the dominating Syntax object
is named AS S1. The dominated phrase-level Syntax object blocks then refer
back to the dominating object by means of the “possessive dot notation” men-
tioned previously. Obviously, this facility can be used to specify both agreement,
(immediate) dominance, and other inter-object relationships.

The NOTEXIST operator operates on an object block to specify that it must
not exist in a given context. An example can be seen in Query Q2 in Fig. 3,
where the existence of a word with the surface “saw” is negated. That is, the
query finds sentences in which the word “saw” does not occur.

Notice that this is different from finding sentences with words whose surface
is not “saw”, as the query [Sentence [Word surface<>"saw"]] would find.
Relating this to First Order Logic, the NOTEXIST operator is a negated exis-
tential quantifier ¬∃ at object level, whereas the <> operator is a negated equality
operator �= at object attribute level. If the NOTEXIST operator is applied to an
object block, the object block must be the only block in its context.

The Kleene Star operator also operates on an object block, and has the usual
meaning of repeating the object block zero or more times, always restricted to
being within the boundaries of any surrounding context block. For example, the
query

[Sentence
[Word pos=preposition]
[Word pos IN (article,noun,adjective,conjunction)]*

]

would find the words of many prepositional phrases, and could be used in a
stage of initial syntactic markup of a corpus. The Kleene Star also supports
restricting the number of repetitions with an arbitrary set of integers. For ex-
ample: [Phrase]*{0,1} means that the Phrase object may be repeated 0 or 1

4 As argued by [12], the sentence “John, of course, talked about politics” is an example
of an element with a gap, since “of course” is not part of the surrounding clause.

Principles, Implementation Strategies, and Evaluation of a CQS 219

times;5 [Clause]*{2-4} means that the Clause object may be repeated 2, 3, or
4 times; and any set of integers can be used, even discontiguous ones, such as
[Phrase]*{0-3,7-9,20-}. The notation “20-” signifies “from 20 to infinity”.

An OR operator operating on strings of blocks is available. It means that one
or both strings may occur in a given context. An example is given in Query Q7
in Fig. 3.

MQL has some shortcomings, some of which will be detailed later. Here we
will just mention four shortcomings which we are working to fix, but which time
has not allowed us to fix yet. We have worked out an operational semantics for
the following four constructs: AND between strings of blocks (meaning that both
strings must occur, and that they must overlap);6 Grouping of strings of blocks;
and general Kleene Star on strings of blocks (the current Kleene Star is only
applicable to one object block). A fourth operator can easily be derived from
the existing OR construct on strings of blocks, namely permutations of objects.

4 Retrieval of Results

When querying linguistic data, there are often three distinct kinds of results
involved:

1. The “meat”, or the particular linguistic construction of interest.
2. The context, which is not exactly what the user is interested in, but helps

delimit, restrict, or facilitate the search in some way. For example, the user
may be interested in subject inversion or agentless passives, but both require
the context of a sentence. Similarly, the user may be interested in objects
expressed by relative pronouns combined with a repeated pronoun in the
next clause, which might require the presence of intervening, specified, but
otherwise non-interesting material such as a complementizer.7 In both cases,
the user is interested in a specific construction, but a certain context (either
surrounding or intervening) needs to be present. The context is thus neces-
sary for the query to return the desired results, but is otherwise not a part
of the desired results.

3. The postprocessing results which are necessary for purposes which are
outside the scope of the search.

To illustrate, consider the query Q2 in Fig. 3. For display purposes, what
should be retrieved for this query? The answer depends, among other things,
on the linguistic domain under consideration (syntax, phonology, etc.), the lin-
guistic categories stored in the database, the purposes for which the display is
made, and the sophistication of the user. For the domain of syntax, trees might

5 Notice that this supports optionality in the language; that the phrase object appears
0 or 1 times is equivalent to saying that it is optional.

6 This is precisely what is needed for querying overlapping structures such as those
found in speech data with more than one speaker, where the speaker turns overlap.

7 E.g., “He gave me a ring, which, I really don’t like that it is emerald.”

220 U. Petersen

be appropriate, which would require retrieval of all nodes dominated by the sen-
tence. For the domain of phonology, intonational phrases, tones, pauses, etc. as
well as the phonemes dominated by the sentence would probably have to be
retrieved. As to purpose, if the user only needed a concordance, then only the
words dominated by the sentence need be retrieved, whereas for purposes requir-
ing a full-fledged tree, more elements would have to be retrieved. The level of
sophistication of the user also has a role to play, since an untrained user might
balk at trees, whereas keywords in context may be more understandable.

Similarly, for statistical purposes, it is often important to retrieve frequency
counts over the entire corpus to compare against the current result set. These
frequency counts have nothing to do with the answer to the original query, but
instead are only needed after the results have been retrieved. They are, in a
very real sense, outside the scope of the query itself: The user is looking for a
particular linguistic construction, and the corpus query system should find those
constructions. That the post-query purpose of running the query is statistical
calculations is outside the scope of the query, and is very application-specific.

Thus what is asked for in a linguistic query is often very different from what
needs to be retrieved eventually, given differences in linguistic domain, categories
in the database, purpose of display, and sophistication of the user. Therefore, in
our view, it is advantageous to split the two operations into separate query lan-
guage constructs. The subset of the query language supporting linguistic query-
ing would thus be concerned with returning results based on what is asked for in a
linguistic query, whereas other subsets of the query language would be concerned
with retrieving objects based on those results for display- or other purposes.

This separation, because it is general, supports a multiplicity of linguistic ap-
plications, since the concern of linguistic querying (which is common to all lin-
guistic query applications) is separated from the concern of querying for display-,
statistical, or other purposes (which are specific to a given application). More-
over, it shifts the burden of what to retrieve based on a given query (other
than what is being asked for) off the user’s mind, and onto the application, thus
making the query language simpler both for the user and for the corpus query
system implementor. Finally, this strategy lends itself well to modularization
of the query language. That modularization is good, even necessary for correct
software implementation has long been a credo of software engineering.8

5 Evaluation

Lai and Bird [13] formulate some requirements for query languages for treebanks.
They do so on the backdrop of a survey of a number of query languages, including
TGrep2, TIGERSearch, the Emu query language, CorpusSearch, NXT Search,
and LPath. Lai and Bird set up a number of test queries (see Fig. 2) which are
then expressed (or attempted expressed) in each of the surveyed query languages.

8 Emdros adheres to this modular principle of separation of concerns between corpus
query system and a particular linguistic application on top of it.

Principles, Implementation Strategies, and Evaluation of a CQS 221

Q1. Find sentences that include the word ‘saw’.
Q2. Find sentences that do not include the word ‘saw’.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately followed by a noun phrase that

is immediately followed by a prepositional phrase.
Q5. Find the first common ancestor of sequences of a noun phrase followed by a verb

phrase.
Q6. Find a noun phrase which dominates a word dark that is dominated by an inter-

mediate phrase that bears an L-tone.
Q7. Find a noun phrase dominated by a verb phrase. Return the subtree dominated

by that noun phrase.

Fig. 2. The test queries from [13], Fig. 1

Q1. [Sentence
[Word surface="saw"]

]
Q2. [Sentence

NOTEXIST [Word
surface="saw"]

]
Q3. [Phrase type=NP

[Word last pos=noun]
]

Q4. [Phrase type=VP
[Word pos=verb]!
[Phrase type=NP]!
[Phrase type=PP]

]

Q5.? [Syntax AS S1
[Syntax level=Phrase AND type=NP

AND parent=S1.id]
[Syntax level=Phrase AND type=VP

AND parent=S1.id]
]

Q6.? [Intermediate tone="L-"
[Phrase type=NP

[Word surface="dark"]
]

]
Q7. [Phrase type=VP

[Phrase type=NP AS np1
[Phrase parents HAS np1.id

[Word]
] OR
[Word parent=np1.id]

]
]

Fig. 3. MQL queries for Q1-Q7

For all query languages surveyed, it is the case that at least one query cannot
be correctly expressed.

The queries are attempted expressed in MQL as in Fig. 3. Query Q1 is trivial,
and performs as expected. Query Q2 has already been explained above, and
deserves no further comment. The constraint of query Q3 that the noun must be
the rightmost child is elegantly expressed by the “last” operator on the noun.

In query Q4, the verb, the NP, and the PP are not separated by power blocks
(“..”) and so must immediately follow each other. As mentioned above, gaps
are ignored unless the “bang” operator (“!”) is applied in between the object
blocks. Since the query specification explicitly mentions “immediately followed
by”, we have chosen to insert this operator. Of course, if the default behavior is
desired, the bang operator can simply be left out.

222 U. Petersen

Query Q5 fails to yield the correct results in some cases because it presup-
poses that the “first common ancestor” is the immediate parent, which it need
not be. Had the “parent=S1.id” terms been left out of the conjunctions, the
query would have found all ancestors, not just the immediate ancestor. It is a
shortcoming of the current MQL that it is not easy to express other relationships
than “general ancestry” and “immediate ancestry”.

Query Q5 also presupposes a different database structure than the other
queries: In the database behind Q5, all syntax-level objects have been lumped
together into one “Syntax” type. This “Syntax” type has a “level” attribute
specifying the linguistic level at which the element occurs (Phrase, Clause, etc.),
as well as other attributes.

This reorganization of the database is necessary for Q5 because it does not
specify what level the dominating node should be at (Phrase, Clause, or Sen-
tence). It is a limitation in Emdros that it can only handle one, explicit type for
each object block.

For some lingusitic databases, query Q6 would fail to retrieve all possible
instances because it assumes that the NP is wholly contained in the Intermediate
Phrase. But as [14, p. 176] reports, this is not always true.9

Query Q7 not only needs to specify context, but also to retrieve the subtree,
presumably for display- or other purposes, since it is not part of what is be-
ing asked for (i.e., the “meat”). As mentioned in Sect. 4, Emdros adheres to a
different philosophy of implementation. While it is possible in MQL to retrieve
exactly whatever the user wants, the algorithm for doing so would in most cases
be split between retrieving linguistic results and using other parts of the query
language for retrieving objects for display-purposes.

The Q7 query nevertheless fulfills its purpose by retrieving all phrases domi-
nated by the NP together with the words they contain, OR all words immediately
dominated by the NP. Thus, Emdros is able to fulfill the purpose of the query
even though Emdros was not designed for such use.

Lai and Bird go on from their survey to listing a number of requirements on
linguistic query languages. The first requirement listed is “accurate specification
of the query tree”. Lai and Bird give eight subtree-matching queries, all of which
can be expressed in MQL (see Fig. 4). Query number 5 would require the em-
ployment of the technique used for query Q5 in Fig. 3 of using a single object
type for all syntax objects, using an attribute for the syntactic level, then leaving
out the level from the query.

Another requirement specified by Lai and Bird is that of reverse navigation,
i.e., the need to specify context in any direction. MQL handles this gracefully,
in our opinion, by the principle of topographicity with respect to embedding
and sequence. Using this principle, any context can be specified in both vertical
directions, as well as along the horizontal axis.

9 The example given there is an intermediate phrase boundary between adjectives and
nouns in Japanese — presumably the adjective and the noun belong in the same NP,
yet the intermediate phrase-boundary occurs in the middle of the NP.

Principles, Implementation Strategies, and Evaluation of a CQS 223

1. Immediate dominance: A dominates B, A may
dominate other nodes.

[A AS a1 [B parent=A1.id]]

2. Positional constraint: A dominates B, and B is the
first (last) child of A.

[A [B first]] or:
[A [B last]]

3. Positional constraint with respect to a label: A
dominates B, and B is the last B child of A.

[A [B last]]

4. Multiple Dominance: A dominates both B and C,
but the order of B and C is unspecified.

[A [B]..[C] OR [C]..[B]]

5. Sibling precedence: A dominates both B and C, B
precedes C; A dominates both B and C, B immedi-
ately precedes C, and C is unspecified.

precedes: [A [B]..[C]]
immediately precedes:
[A [B][C]] or [A [B]![C]].

6. Complete description: A dominates B and C, in
that order, and nothing else.

[A as a1
[B first parent=a1.id]!
[B last parent=a1.id]

]

7. Multiple copies: A dominates B and B, and the
two Bs are different instances.

[A [B]..[B]]

8. Negation: A does not dominate node with label B. [A NOTEXIST [B]]

Fig. 4. Subtree queries in the MQL query language, after Lai and Bird’s Fig. 9

Lai and Bird then mention non-tree navigation as a requirement. They give
the example of an NP being specified either as “[NP Adj Adj N]” or as “[NP
Adj [NP Adj N]]”, the latter with a Chomsky-adjoined NP inside the larger NP.
MQL handles querying both structures with ease, as seen in Fig. 5. Note that the
query in Fig. 5.a. would also find the tree in Fig. 5.b. Thus non-tree navigation
is well supported.

Furthermore, Lai and Bird mention specification of precedence and immedi-
ate precedence as a requirement. MQL handles both with ease because of the
principle of topographicity of sequence. General precedence is signified by the
power block (“..”), whereas immediate precedence is signified by the absence
of the power block, optionally with the bang operator (“!”).

Lai and Bird then discuss closures of various kinds. MQL is closed both under
dominance (by means of topographicity of embedding) and under precedence

Adj

NP

Adj N

[Phrase type=NP
[Word first

pos=adjective]
[Word pos=adjective]
[Word last pos=noun]

]

a. Flat structure

Adj

Adj

NP

NP

N

[Phrase type=NP
[Word first pos=adjective]
[Phrase last type=NP
[Word first pos=adjective]
[Word last pos=noun]

]
]

b. Chomsky-adjoined structure

Fig. 5. Queries on NP structure

224 U. Petersen

and sibling precedence (by means of topographicity of sequence, as well as the
power block and the AS keyword, which separately or in combination can be used
to specify closures under both relationships). MQL is also closed under atomic
queries involving one object (by means of the Kleene Star).10

Lai and Bird discuss the need for querying above sentence-level. Since the
EMdF database model is abstract and general, the option exists of using ordered
forests as mentioned by Lai and Bird. The MQL query language was designed
to complement the EMdF model in its generality, and thus querying over or-
dered forests is well supported using the principle of topographicity of sequence
combined with the AS construct. Thus the MQL language is not restricted to
querying sentence-trees alone, but supports querying above sentence-level.

Another requirement mentioned by Lai and Bird is that of integration of
several types of lingusitic data, in particular using intersecting hierarchies and
lookup of data from other sources. The EMdF model supports intersecting hi-
erarchies well. MQL, however, because of the principle of topographicity of em-
bedding and the lack of an AND construct between strings of blocks, does not
currently support querying of intersecting hierarchies very well, as illustrated by
the failure of Query Q6 in Fig. 3 to be correct. Thus Emdros currently falls short
on this account, though an AND construct is planned.

There is also currently a lack of support for querying data from other sources.
However, this can be implemented by the application using Emdros, provided
the data from other sources can be known before query-time and can thus be
written into the query. This would, of course, presuppose that the application
does some kind of rewriting of the query made by the user.

The final requirement mentioned by [13] is the need to query non-tree struc-
ture. For example, the TIGER Corpus [15] includes secondary, crossing edges,
and the Penn Treebank includes edges for WH-movement and topicalization
[16]. MQL handles querying these constructions by means of the AS keyword
and referencing the ID of the thus named object, as in Query Q5 in Fig. 3.

6 Conclusion and Further Work

We have presented the EMdF database model and the MQL query language of
our corpus query system, Emdros. We have shown how the data to be retrieved
for display-, statistical, or other purposes can often be different from what is
asked for in a linguistic query, differentiating between “meat”, “context”, and
“postprocessing results”. On the basis of this distinction, we have argued for
the strategy of separating the process of lingusitic querying from the process of
retrieval of data for display- or other purposes. This implementation strategy
of separation of concerns gives rise to the benefits of generality of the language
(and thus its applicability to a wide variety of linguistic applications), simplicity
of the language (and thus ease of use for the user), and modularity (and thus ease

10 Once we have implemented the general Kleene Star on strings of blocks, MQL will
be closed under atomic queries involving more than one block.

Principles, Implementation Strategies, and Evaluation of a CQS 225

of implementation, maintainability, and attainment of the goal of correctness for
the system implementor). Finally, we have evaluated MQL against the queries
and requirements of [13], and have shown MQL to be able to express most of
the queries, and to meet most of the requirements that [13] puts forth.

However, Emdros falls short on a number of grounds. First, although its
database model is able to handle intersecting hierarchies, its query language does
not currently handle querying these intersecting hierarchies very well. This can
be fixed by the inclusion of an AND operator between strings of object blocks.
Second, a general Kleene Star is lacking that can operate on groups of (option-
ally embedded) objects. Third, the query language currently only supports one,
explicit object type for any given object block. This can be fixed, e.g., by in-
troducing true object orientation with inheritance between object types. Fourth,
the system currently does not support real numbers as values of attributes of ob-
jects, which would be very useful for phonological databases. Fifth, it is currently
not easy to express other, more specific dominance relationships than immediate
dominance and general dominance. As has been described above, the removal of
most of these shortcomings is planned.

Thus Emdros is able to meet most of the requirements being placed on today’s
linguistic query systems. We have not here fully explored its applicability to
phonological or discourse-level databases, since [13] concentrated on treebanks,
but that is a topic for a future paper.

References

1. Mengel, A.: MATE deliverable D3.1 – specification of coding workbench: 3.8
improved query language (Q4M). Technical report, Institut für Maschinelle
Sprachverarbeitung, Stuttgart, 18. November (1999)

2. Cassidy, S., Bird, S.: Querying databases of annotated speech. In Orlowska, M., ed.:
Database Technologies: Proceedings of the Eleventh Australasian Database Con-
ference, volume 22 of Australian Computer Science Communications, Canberra,
Australia. IEEE Computer Society (2000) 12–20

3. Bird, S., Buneman, P., Tan, W.C.: Towards a query language for annotation graphs.
In: Proceedings of the Second International Conference on Language Resources and
Evaluation. European Language Resources Association, Paris (2000) 807–814

4. Lezius, W.: TIGERSearch – ein Suchwerkzeug für Baumbanken. In Busemann,
S., ed.: Proceedings der 6. Konferenz zur Verarbeitung natürlicher Sprache (KON-
VENS 2002), Saarbrücken. (2002) 107–114

5. Heid, U., Voormann, H., Milde, J.T., Gut, U., Erk, K., Pado, S.: Querying both
time-aligned and hierarchical corpora with NXT Search. In: Fourth Language
Resources and Evaluation Conference, Lisbon, Portugal, May 2004. (2004)

6. Rohde, D.L.T.: TGrep2 user manual, version 1.12. Available for download online
http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf. Access Online April 2005 (2004)

7. Bird, S., Chen, Y., Davidson, S., Lee, H., Zheng, Y.: Extending XPath to support
linguistic queries. In: Proceedings of Programming Language Technologies for XML
(PLANX) Long Beach, California. January 2005. (2005) 35–46

226 U. Petersen

8. Petersen, U.: Emdros — A text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004, 20th International Conference on Computa-
tional Linguistics, August 23rd to 27th, 2004, Geneva, International Commitee on
Computational Linguistics (2004) 1190–1193 http://emdros.org/petersen-emdros-
COLING-2004.pdf.

9. Petersen, U.: Evaluating corpus query systems on functionality and speed:
Tigersearch and emdros. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov,
N., Nikolov, N., eds.: International Conference Recent Advances in Natural Lan-
guage Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005,
Shoumen, Bulgaria, INCOMA Ltd. (2005) 387–391 ISBN 954-91743-3-6.

10. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi, Amsterdam
and Atlanta, GA. (1994)

11. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments and Computers 28 (1996)
203–208

12. McCawley, J.D.: Parentheticals and discontinuous constituent structure. Linguistic
Inquiry 13 (1982) 91–106

13. Lai, C., Bird, S.: Querying and updating treebanks: A critical survey and re-
quirements analysis. In: Proceedings of the Australasian Language Technology
Workshop, December 2004. (2004) 139–146

14. Beckman, M.E., Pierrehumbert, J.B.: Japanese prosodic phrasing and intonation
synthesis. In: Proceedings of the 24th Annual Meeting of the Association for
Computational Linguistics. ACL (1986) 173–180

15. Brants, S., Hansen, S.: Developments in the TIGER annotation scheme and their
realization in the corpus I. In: Proceedings of the Third International Conference
on Language Resources and Evaluation (LREC 2002), Las Palmas, Spain, May
2002. (2002) 1643–1649

16. Taylor, A., Marcus, M., Santorini, B.: The Penn treebank: An overview. In
Abeillé, A., ed.: Treebanks — Building and Using Parsed Corpora. Volume 20 of
Text, Speech and Language Technology. Kluwer Academic Publishers, Dordrecht,
Boston, London (2003) 5–22

On Compact Storage Models for Gazetteers

Jakub Piskorski

DFKI GmbH
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
Jakub.Piskorski@dfki.de

Abstract. This paper describes compact storage models for gazetteers
using state-of-the-art finite-state technology. In particular, we compare
the standard method based on numbered indexing automata associated
with an auxiliary storage device, against a pure finite-state represen-
tation, the latter being superior in terms of space and time complexity,
when applied to real-world test data. Further, we pinpoint some pros and
cons for both approaches and provide results of empirical experiments,
which form handy guidelines for selecting a suitable data structure for
implementing a gazetteer.

1 Introduction

Traditionally, the term gazetteer refers to a dictionary that includes geograph-
ically related information on given places, e.g., data concerning the makeup
of a country, region or location including social statistics, GDP, language, in-
formation on name variants, known abbreviations, full name, etc. In the NLP
community, a gazetteer refers to a list of not only geographical references, but
also names of people, organizations, months of the year, days, currency units,
company designators and other similar keywords. Gazetteer look-up is usually
seen as an independent process of linguistic analysis, in which the input stream
of characters or tokens is matched against a gazetteer list, and an adequate anno-
tation is produced. Typically, a gazetteer component is deployed in the process
of named-entity recognition and plays a key role in solving other information
extraction tasks.

There are several well-established techniques and data structures that can be
used to implement a gazetteer, e.g., hashing, tries and finite-state automata.
Some studies on real-world data reveal that finite-state automata seem to be
a good choice, since they require less memory than alternative techniques and
guarantee efficient access to the data [1, 2, 3, 4].

In this paper, we describe and discuss several state-of-the-art finite-state ap-
proaches to implementing a gazetteer look-up component. In particular, we in-
vestigate the standard technique involving numbered automata with multiple
initial states combined with an external table [3]. Secondly, we examine another
method, focused on converting the input data in such a way as to model the
gazetteer solely as a single finite-state automaton without any auxiliary storage

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 227–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 J. Piskorski

device tailored to it. Further, we explore how transition jamming — an equiva-
lence transformation on finite-state devices [5] — impacts the size of the resulting
automata. The main motivation for carrying out the aforementioned explorations
was driven by the shortcomings of our first ad hoc implementation of a gazetteer
look-up component, which turned to be inefficient in terms of space complexity
with rapidly growing size and structure of the gazetteer resources employed in
our NLP applications [6]. Interestingly, most of the gazetteer implementation
descriptions report on deploying standard database systems for this purpose,
which might appear suboptimal in the era of forthcoming content services for
portable thin clients.

The rest of this paper is organized as follows. Firstly, in section 2, we in-
troduce the basic definitions used throughout the paper. Section 3 presents the
strategies for modeling and optimizing the data structure for a gazetteer look-up
component. Subsequently, in section 4 we report on some empirical experiments,
which were carried out on various real-world test data. We finish off with some
conclusions in section 5.

2 Preliminaries

In this section we present the basic concepts, notions and techniques referred
to in this paper, i.e., finite-state automata etc. A deterministic finite-state au-
tomaton (DFSA) is a quintuple M = (Q, Σ, δ, q0, F), where Q is a finite set of
states, Σ is the alphabet of M , δ : Q×Σ → Q is the transition function, q0 is the
initial state and F ⊆ Q is the set of final states. |Q| and |δ| denote the number
of states and transitions in M respectively. The transition function can be ex-
tended to δ∗ : Q × Σ∗ → Q by defining δ(q, ε) = q, and δ(q, wa) = δ(δ∗(q, w), a)
for a ∈ Σ and w ∈ Σ∗. The language accepted by an automaton M is defined as
L(M) = {w ∈ Σ∗|δ∗(q0, w) ∈ F}. Analogously, the right language of a state q is
defined as L(q) = {w ∈ Σ∗|δ∗(q, w) ∈ F}. A path in a DFSA M is a sequence
of triples 〈(p0, a0, p1), . . . , (pk−1, ak−1, pk)〉, where (pi−1, ai−1, pi) ∈ Q × Σ × Q
and δ(pi, ai) = pi+1 for 1 ≤ i < k. The string a0a1 . . . ak is the label of the
path. We denote the first and last state in a path π as f(π) and l(π) respec-
tively. We call a path π a cycle if f(π) = l(π). Further, we call a path π se-
quential if all intermediate states q on π, i.e., all states except f(π) and l(π),
are not final and fulfill the property |{a : a ∈ Σ ∧ δ(q, a) is defined}| = 1 and
|{p : δ(p, a) = q for some a ∈ Σ}| = 1. In other words, intermediate states on a
sequential path have exactly one incoming and one outgoing transition. Among
all DFSAs recognizing the same language, there is always one which has the
minimal number of states. We call such an automaton minimal.

Minimal acyclic DFSA is the most compact data structure for storing and ef-
ficiently recognizing a finite set of words. It can be constructed in several ways.
In particular, a space-efficient incremental algorithm for constructing a minimal
acyclic DFSA from a list of strings in nearly linear time, presented recently by

On Compact Storage Models for Gazetteers 229

several authors [1, 7], can be used for this purpose. Another finite-state device
we refer to in this paper is the so called numbered minimal acyclic deterministic
finite-state automaton. Each state of such automata is associated with an integer
representing the cardinality of the right language of this state. Figure 1 presents
an example of such an automaton which accepts the words {start, art, card,
stunt, calk}. Once a minimal acyclic DFSA has been constructed, state number-
ing can be computed in linear time by means of simple recursive traversal of the
automaton. Numbered automata can be used for assigning each word they ac-
cept a unique numeric key, i.e., they implement perfect hashing. An index (hash
key) I(w) of a given word w can be computed in the following manner. We start
with an index I(w) equal to 0 and scan the input w with the automaton. While
traversing the accepting path, in each state we increase the index by the sum
of all integers associated with the target states of transitions lexicographically
preceding the transition used. Additionally, for each final state in the accepting
path we increase I(w) by one. Once the input w has been consumed and a final
state has been reached, I(w) contains the unique index of the word. Alterna-
tively, for a given index i the corresponding word w such that I(w) = i can be
computed in a somewhat similar way by deducing the transitions, i.e., the path
which would lead to the index i. Instead of associating states with integers, each
transition can be accompanied by the number of different routes to any final
state outgoing from the same state as the current transition, whose label are
lexicographically lower than the current one. In this case, computing the index
of a given word consists solely of summing over the integers associated with
traversed transitions, whereas memory requirements rise to about 30% (when
dealing with natural language data). See [8, 9, 3] for details.

Fig. 1. Numbered minimal acyclic DFSA accepting {start, art, card, stunt, calk}

3 Modeling of a Gazetteer Look-Up Component

Before we start the discussion on modelling the gazetteer architecture please
note that raw gazetteer resources are usually represented simply by a text
file, where each line represents a single gazetteer entry in the following format:
keyword (attribute:value)+. For each reading of an ambiguous keyword, a
separate line is introduced. For the word Washington the gazetteer potentially
includes the following entries:

230 J. Piskorski

Washington | type:city | variant:WASHINGTON | location:USA
| full-name:Washington D.C. | subtype:cap_city

Washington | type:person | gender:m_f | surname:Washington
| language:english

Washington | type:organization | subtype:commercial
| full-name:Washington Ltd. | location:Canada

Washington | type:region | variant:WASHINGTON | location:USA
| abbreviation: {W.A.,WA.} | subtype:state

We differentiate between open-class and closed-class attributes depending on
their range of values, e.g., full-name is an open-class attribute, whereas gender
is a closed-class attribute. As can be seen in the last reading for the word Wash-
ington, an attribute may be assigned a list of values (abbreviation).

3.1 Standard Approach

The standard approach to implementing dictionaries and thesauri presented in
[9, 3] can be straightforwardly adapted to model the architecture of a gazetteer
look-up component. The main idea is to encode the keywords and all attribute
values in a single numbered minimal acyclic DFSA. In order to distinguish be-
tween keywords and different attribute values we extend the indexing automa-
ton so that it has n + 1 initial states, where n is the number of attributes. The
strings accepted by the automaton starting from the first initial state correspond
directly to the set of the keywords, whereas the right language of the i-th ini-
tial state (for i ≥ 1) corresponds to the range of values appropriate for i-th
attribute. Further, the subautomaton starting in each initial state implements
different perfect hashing function. Hence, the aforementioned automaton con-
stitutes a word-to-index and index-to-word engine for keywords and attribute
values. Once we know the index of a given keyword, we can access the indices of
all associated attribute values in a row of an auxiliary table. Consequently, these
indices can be used to extract the proper values from the indexing automaton.
In the case of multiple readings an intermediate array for mapping the keyword
indices to the absolute position of the block of rows containing all readings of a
given keyword is indispensable. The overall architecture is sketched in figure 2.
Note, that via introduction of multiple initial states log2(card(i)) bits are suffi-
cient for representing the indices for values of attribute i, where card(i) is the
size of the corresponding value set.

It is not necessarily convenient to index all attribute values and store the
proper values in the numbered automaton, e.g., numerical data such as longitude
or latitude could be stored directly in the attribute-value matrix since obviously
automata are not a panacea in such situation. Alternatively, some attribute val-
ues could also be stored elsewhere (as depicted in figure 2). This procedure is
reasonable if the range of the values is bounded and integer representation is more
compact than anything else (e.g. long alphanumeric identifiers). Fortunately, the
vast majority (but definitely not all) of attribute values in a gazetteer deployed
in NLP happens to be natural language words or multi-word expressions. There-
fore, one can intuitively expect the major part of the entries and attribute values

On Compact Storage Models for Gazetteers 231

to share suffixes, which leads to a better compression of the indexing automa-
ton. The prevalent bottleneck of the presented approach is a potentially high
redundancy of the information stored in the attribute-value matrix. However,
this problem can be partially alleviated via automatic detection of column de-
pendency, which might expose sources of information redundancy to gain better
compression of the data [10]. Reccurring patterns consisting of raw fragments of
the attribute-value index matrix could be indexed and represented only once.

Fig. 2. Compact storage model for a gazetteer look-up component

3.2 Pure Finite-State Representation

One of the common techniques for squeezing finite-state devices in the con-
text of implementing dictionaries is an appropriate coding of the input data.
Converting a list of strings (word forms) into a minimal acyclic DFSA usually
results in a good compression rate, since many words share prefixes and suffixes,
which leads to transition sharing. If strings are associated with additional an-
notations representing certain categories, e.g., part-of-speech, inflection or stem
information in a morphological lexicon, then an adequate encoding of such in-
formation is necessary in order to keep the corresponding automaton small. A
simple solution is to reorder categories from the most specific to the most gen-
eral ones, so that stem information would precede inflection and part-of-speech
tag. Another technique is to precompute all possible annotation sequences for
all entries and to replace them with an index. Nevertheless, the major part of
a string that encodes the keyword and its tags might be unique and could po-
tentially blow up the corresponding automaton enormously. Consider again the
entry for the morphological lexicon consisting of an inflected word form and its
tags, e.g. striking:strike:v:a:p (v - verb, a - present, p - participle). Ob-
viously, the sequence striking:strike is unique. Through the exploitation of
the word-specific information the inflected form and its base form share, one
can introduce patterns describing how the lexeme can be reconstructed from the
inflected word form, e.g., 3+e - delete three terminal characters and append an

232 J. Piskorski

e (striking → strik + e). Application of such patterns results in better suf-
fix sharing, i.e., the suffix 3+e:v:a:p is certainly more frequently shared than
strike:v:a:p. The encoding techniques like the one mentioned here are well
studied and addressed elsewhere [2, 4].

The main idea behind transforming a gazetteer into a single automaton is
to split each gazetteer entry into a disjunction of subentries, each representing
some partial information. For each open-class attribute-value pair present in the
entry a single subentry is created, whereas closed-class attribute-value pairs (or
a subset of them) are merged into a single subentry and rearranged in order to
fulfill the first most specific, last most general criterion. In our example, the entry
for the word Washington (city) yields the following partition into subentries:

Washington #1 NAME(subtype) VAL(cap_city) NAME(type) VAL(city)
Washington #1 NAME(variant) WASHINGTON
Washington #1 NAME(location) USA
Washington #1 NAME(full-name) Washington D.C.

where NAME maps attribute names to single univocal characters not
appearing elsewhere in the original gazetteer and VAL denotes a mapping
which converts the values of the closed-class attributes into single characters
representing them. The string #1, where # is again a unique symbol, denotes
the reading index of the entry (first reading for the word Washington). Please
note that, in the case of list-valued open-class attributes, we can simply add
an appropriate subentry for each element in the list. Gazetteer resources con-
verted in this manner are subsequently compiled into a minimal acyclic DFSA
via application of any of the algorithms presented in [1, 7]. In order to gain
better compression rate we utilized formation patterns for a subset of
attribute values appearing in the gazetteer entries. These patterns resemble
the ones for encoding morphological information, but they partially rely on
other information. For instance, frequently, attribute values are just the cap-
italized form or the lowercase version of the corresponding keywords, as can
be seen in our example. Such a pattern can be represented by a single char-
acter. Further, keywords and attribute values often share prefixes or suffixes,
e.g., Washington vs. Washington D.C. Next, there are clearly several patterns
for forming acronyms or abbreviations from the full form, e.g., ACL can be
derived from Association of Computational Linguistics, by simply concatenat-
ing all capitals in the full name. We benefit from such formation rules and
deploy other related patterns in a similar manner. Nevertheless, some part
of the attribute values can not be replaced by patterns. Applying formation
patterns to our sample entry would result in:

Washington #1 NAME(subtype) VAL(cap_city) NAME(type) VAL(city)
Washington #1 NAME(variant) PATTERN(AllCapital)
Washington #1 NAME(location) USA
Washington #1 NAME(full-name) PATTERN(Identity) D.C.

where PATTERN maps pattern names to unique characters not appearing else-
where in the gazetteer. Some improvement in terms of space complexity may
be obtained by reversing the attribute values not covered by any pattern, since
prefix compression might be superior to suffix compression.

On Compact Storage Models for Gazetteers 233

The outlined method of representing a gazetteer is an elegant solution and
exhibits three major assets. First of all, we do not need any external table for
storing/accessing attribute values. Secondly, the automaton involved is not a
numbered DFSA, which means less space requirement and reduced searching
time in comparison to automaton described in 3.11 Finally, as a consequence of
the encoding strategy, there is only one single final state in the automaton. The
states having outgoing transitions labeled with the unique symbols in the range
of NAME are implicit final states. The right languages of these states represent
attribute-value pairs attached to the gazetteer entries. On the other hand, the
information stored in the gazetteers and the fashion in which the automaton
is built, intuitively, does not allow for obtaining the same compression rates
as in the case of the indexing automaton described in the previous subsection.
For instance, many gazetteer entries are multiword expressions, which increase
the size of the automaton by an introduction of numerous sequential paths.
Therefore, we have investigated the usefulness of applying the so called transition
jamming to remedy this problem.

3.3 Transition Jamming

Transition jamming is an equivalence operation on automata, in which tran-
sitions on each sequential path are transformed into a single transition labeled
with the label of the whole path [5]. Intermediate states on the path are removed.
Obviously, such a transformation does not have an impact on the functionality
of an automaton, i.e., the jammed automaton still accepts the same language.
Since sequential paths can be computed in linear time, automata jamming can
be performed efficiently as well.

We have applied transition jamming in a somewhat different way. Let π be
a sequential path in the automaton and a = a0a1 . . . ak be the label of π. We
remove all transitions of π and introduce a new transition from f(π) to l(π)
labeled with a0 , i.e., δ(f(π), a0) = l(π) and store the remaining character se-
quence a1 . . . ak in a list of sequential path labels. Once all such sequences are
collected, we introduce a new initial state in the automaton and consecutively,
starting from this state, we add all sequential path labels to the minimized au-
tomaton, while maintaining its property of being minimal [7]. The subautomaton
starting from the new initial state implements a perfect hashing function. Fi-
nally, the new ‘jammed’ transitions in the automaton are associated with the
corresponding indices in order to reconstruct the full label on demand. Since
the word-index automaton in the standard approach contains far more than one
final state in opposition to the pure FSA approach with a single final state,
a better result of automata jamming is expected in the latter case. There are
several ways of selecting sequential paths for jamming. Maximum-length sequen-
tial paths constitute the first choice and point of departure for further experi-
ments. Jamming paths of bounded length might yield better or at least different

1 Please note that we can deploy the formation patterns in the indexing automaton
presented in 3.1 as well.

234 J. Piskorski

results. For instance, a sequential path whose label is a long fragment of a mul-
tiword expression could be decomposed into subpaths that either do not include
whitespaces or consist solely of whitespaces. In turn, we could jam only the
subpaths of the first type.

Storing sequential path labels in a new branch of the automaton obviously
leads to the introduction of new sequential paths. Consider again in this con-
text the numerous multi-word expressions in gazetteers, which potentially con-
sist of more than four words. Therefore, we have investigated the impact of
repetitive transition jamming on the size of the automaton. In each phase of
repetitive transition jamming, we introduce a new initial state to the automa-
ton from which the labels of the jammed paths identified in this phase are
stored.

4 Experiments

4.1 Data

For the evaluation purposes of the presented strategies we have selected the
following gazetteer data: (a) UK–Postal — a list of city names in the UK asso-
ciated with county and postal code information, (b) LT–World2 — a gazetteer
of key players and events in the language technology community including per-
sons, organizations, facilities, conferences, etc., (c) PL–NE — a gazetteer of
Polish named-entities, including person names, geographical places, organiza-
tions, frequently used acronyms and all kinds of designators, (d) Mixed — a
combination of the LT–World and PL–NE, (e) GeoNames3 — an excerpt of the
huge gazetteer of geographic names information covering countries and geopo-
litical areas, including complex information on name variants, acronyms, lan-
guage, administrative divisions, different codes, etc. We have excluded some 10
digit-valued attributes from the gazetteer (e). Table 1 gives an overview of our
test data, where the size is given in kilobytes. The last column gives the ra-
tio of open-class attribute values for which formation patterns described in 3.2
could be applied to the total number of open-class attribute values in a given
gazetteer.

Table 1. Parameters of test gazetteers

Gazetteer size #entries #attributes #open-class average pattern
name attributes entry length applicability
UK–Postal 1,209 27 217 2 2 43 -
LT–World 4,154 96 837 19 14 40 99,1%
PL–NE 2,809 51 631 8 3 52 96,3%
Mixed 6,957 148 468 27 17 44 97,8%
GeoNames I 13,590 80 001 17 6 166 89,2%
GeonNames II 33,500 20 001 17 6 164 92,0%

2 Extracted from http://www.lt-world.org.
3 Taken from http://earth-info.nga.mil/gns/html/

On Compact Storage Models for Gazetteers 235

4.2 Evaluation

We have conducted several experiments with different set-ups. Firstly, we com-
pared the standard and pure-FSA approach as described in section 3.1 and
3.2. Secondly, we repeated the experiments enhanced by integration of single
transition jamming. The size of the resulting automata are given in table 2.
The numbers in the columns concerning the experiments with jamming cor-
respond to transition jamming of maximum-length sequential paths and jam-
ming of paths whose labels do not include any whitespaces (given in brackets)
respectively.

Table 2. Size of the four types of automata

Gazetteer Standard Pure-FSA Standard Pure-FSA
& Jamming & Jamming

|Q| |δ| |Q| |δ| |Q| |δ| |Q| |δ|
UK–Postal 28 596 53 041 101 145 132 008 15 008 40 828 32 072 67 831

(15 251) (40 903) (32 146) (67 248)
LT–World 191 767 266 465 259 666 341 015 86 613 172 583 110 409 207 950

(67 891) (152 571) (81 479) (178 396)
PL–NE 37 935 70 773 60 119 97 035 21 106 55 839 27 919 67 435

(19 979) (54 639) (26 274) (65 722)
Mixed 206 802 295 416 299 540 399 286 94 440 194 815 125 362 242 512

(75 755) (174 817) (96 038) (212 265)
GeoNames I 280 550 410 609 803 390 1 110 668 104 857 258 680 231 887 603 320

(107 631) (254 130) (226 335) (595 122)
GeoNames II 491 744 784 001 1 655 790 2 396 984 198 630 514 595 474 572 1 322 058

(204 188) (517 081) (469 678) (1 311 564)

The increase in physical storage in the case of numbered automata has been
reported to be in range of 30-40% (states are numbered) and 60-70% (transition
numbering) [1]. Note at this point that automata are usually stored as a sequence
of transitions, where states are represented only implicitly [1, 11]. Considering
additionally the space requirement for the auxiliary attribute-value table in the
standard approach for storing the indices for open-class attribute values, it turns
out that this number oscillates around m · n · log256n bytes, in the case of our
test data, where m denotes the number of open-class attributes and n is the
number of entries in the gazetteer. Summing up these observations and taking
a quick look at the table 2, we conclude without naming the absolute size of the
physical storage required, that the pure-FSA approach turns out to be superior
when applied to our test gazetteers. However, some results, in particular for the
GeoNames, where |δ| is about three time as big as in the indexing automaton in
the standard approach, indicate some pitfalls. The main reason for this was the
fact that some open-class attributes in the GeoNames are alphanumeric strings
of different lengths (even up to 12) which do not compress well with the other
data. Further, some investigation reveals the necessity of additional formation
patterns, which could work better with this particular gazetteer. Finally, the
GeoNames gazetteer exhibits highly multilingual character and the size of the
alphabet is significantly larger than elsewhere. Nevertheless, even in the case of
these somewhat more problematic gazetteers, a better results were obtained via

236 J. Piskorski

Fig. 3. Comparison of physical storage of the compiled GeoNames I and GeoNames II
gazetteers given in KBs, where (a) gives the size of the automata, and (b) gives the
total size of the gazetteers (automaton + space for the auxilliary table)

application of the pure-FSA approach. Figure 3 gives information on the physical
storage of these gazetteers and the underlying automata.4

As expected, transition jamming works better with the Pure-FSA approach,
i.e., it reduces the size of |δ| by a factor of 1.35 to 1.9, whereas in the other
case the gain is less significant. Furthermore, transition jamming constrained to
maximal whitespace-free paths turns out to allow for better compression rates,
in particular when the gazetteer data does not include numerical or alphanumer-
ical data (see table 2). Obviously, transition jamming is penalized through the
introduction of state numbering in some part of the automaton and associating
certain edges with indices, but the overall size of the automaton is still smaller
than the original one. In the case of the LT–World gazetteer, there were circa
20000 sequential paths in the automaton. Consequently, we removed circa 134
000 transitions. Next, we studied the profitability of repetitive transition jam-
ming. Figure 4 presents two diagrams which depict how this operation impacts
the size of the automaton for the LT–World gazetteer. As can be observed, a more
than 2-stage repetitive jamming does not significantly improve the compression
rate. Interestingly, we can notice in the left diagram that for both approaches
the repetitive jamming of maximum-length sequential paths leads (after stage 3)
to a greater reduction of the size of |Q| than jamming of whitespace-free paths.
The corresponding numbers for other gazetteers in our test pool with respect to
repetitive jamming were of similar nature.

Finally, we have tried out how reversing labels of sequential paths and re-
versing open-class attribute values not covered by any formation pattern influ-
ences the compression rate. Only an insignificant difference of 1-2% could be
observed.

4 In our automata implementation, we deploy the transition-list representation, where
each transition is represented solely as quintuple consisting of a transition label,
three bits marking: (a) whether the transition is final, (b) whether it is the last
transition of the current state and (c) whether the first transition of the target state
is the next one in the transition list, and a (possibly) empty pointer to the first
outgoing transition of the target state. See [11] for details.

On Compact Storage Models for Gazetteers 237

Fig. 4. Impact of repetitive transition jamming on the size of states and transitions
of the automata implementing the LT–World gazetteer (Standard–B and Pure–FSA-B
stands for repetitive jamming on paths whose labels do not include whitespaces)

5 Conclusions and Future Work

In this paper, we have studied various ways of modeling a gazetteer look-up com-
ponent. In particular, we focused on finite-state methods in order to construct
a time and space efficient data structure for storing gazetteer lists including
attribute-value pairs of different kinds. Empirical experiments on gazetteers used
reveal that a pure-FSA approach, in which all data is converted into a single min-
imal acyclic DFSA, turns out to outperform the standard approach based on an
indexing numbered automaton accompanied by an auxiliary attribute-value ma-
trix. At least in the case of data we are dealing with in the NLP context benefits
are observable, since most, but not all, of the attribute values are contempo-
rary word forms. A further investigation revealed the usefulness of transition
jamming which reduces the size of the automata significantly. However, we pin-
pointed some risks when applying a single DFSA which is not a magic bullet for
tackling all problems. Intuitively, for storing gazetteers containing a significant
number of numerical and alphanumerical data the standard approach might be
a better choice. Therefore, the numbers presented in section 4 are only meant to
constitute a guideline, which might come in handy when selecting a compact data
structure for storing a gazetteer. Ideally, a gazetteer look-up component should
analyze the nature of attribute values in the input data and automatically select
a suitable data structure based on some ranking heuristics.

There are a number of interesting questions and issues that can be researched
in the future. We only considered jamming maximal-length sequential paths and
whitespace-free paths, whereas jamming paths of bounded length might yield
different and possibly better results. Furthermore, through finding more complex
repeating substructures in the underlying automata, one could possibly obtain
some additional space savings. The proximate activities could also address the
deployment of finite-state transducers for handling the same task, especially due
to the recent advances in this field, e.g., recently a generalized version of the
algorithm for incremental construction of minimal acyclic DFSAs from unsorted

238 J. Piskorski

data has been adapted to the case of transducers [12, 13]. Finally, for gazetteers
containing mainly numerical data, the storage models presented in [8] could be
considered for utilization.

Acknowledgements

I am indebted to Jan Daciuk for sharing ideas and to Wojciech Skut for some
additional comments. The presented work was supported by the German BMBF-
funded project COLLATE II under grant no. 01 IN C02.

References

1. Ciura, M.G., Deorowicz, S.: How to Squeeze a Lexicon. Software - Practice and
Experience 31(11) (2001) 1077–1090

2. Daciuk, J.: Incremental Construction of Finite-State Automata and Transducers.
PhD Thesis. Technical University Gdańsk. (1998)

3. Kowaltowski, T., Lucchesi, C.L.: Applications of Finite Automata Representing
Large Vocabularies. TR DCC-01/92, University of Campinas, Brazil (1992)

4. Kowaltowski, T., Lucchesi, C.L., Stolfi, J.: Finite Automata and Efficient Lexicon
Implementation. TR IC-98-02, University of Campinas, Brazil (1998)

5. Beijer, N.D., Watson, B.W., Kourie, D.G.: Stretching and Jamming of Automata.
In: Proceedings of SAICSIT 2003, Rep. South Africa (2003) 198–207

6. Drożdżyński, W., Krieger, H.U., Piskorski, J., Schäfer, U., Xu, F.: Shallow Pro-
cessing with Unification and Typed Feature Structures — Foundations and Appli-
cations. Künstliche Intelligenz 2004(1) (2004) 17–23

7. Daciuk, J., Mihov, S., Watson, B., Watson, R.: Incremental Construction of Min-
imal Acyclic Finite State Automata. Comp.Rep Linguistics 26(1) (2000) 3–16

8. Daciuk, J., van Noord, G.: Finite Automata for Compact Representation of Lan-
guage Models in NLP. Theoretical Computer Science 313(1) (2004)

9. Graña, J., Barcala, F.M., Alonso, M.A.: Compilation Methods of Minimal Acyclic
Automata for Large Dictionaries. Lecture Notes in Computer Scuence - Implemen-
tation and Application of Automata 2494 (2002) 135–148

10. Vo, B., Vo, K.P.: Using Column Dependency to Compress Tables. In: Proceedings
of the 2004 IEEE Data Compression Conference, Los Alamitos, California, IEEE
Computer Society Press (2004) 92–101

11. Daciuk, J.: Experiments with Automata Compression. In Yu, S., Paun, A., eds.:
Proceedings of CIAA 2000 - Implementation and Application of Automata, Lon-
don, Ontario, Canada, LNCS 2088, Springer (2000) 113–119

12. Mihov, S., Maurel, D.: Direct Construction of Minimal Acyclic Subsequential
Transducers. In Yu, S., ed.: Implementation and Application of Automata. Volume
2088 of Lecture Notes in Computer Science. Springer (2001) 217–229

13. Skut, W.: Incremental Construction of Minimal Acyclic Sequential Transducers
from Unsorted Lexical Data. In: Proceedings of COLING 2004, Geneva, Switzer-
land (2004)

German Compound Analysis with wfsc

Anne Schiller

Xerox Research Centre Europe,
6 chemin de Maupertuis,

38250 Meylan,
France

Anne.Schiller@xrce.xerox.com

Abstract. Compounding is a very productive process in German to
form complex nouns and adjectives which represent about 7% of the
words of a newspaper text. Unlike English, German compounds do not
contain spaces or other word boundaries, and the automatic analysis is
often ambiguous. A (non-weighted) finite-state morphological analyzer
provides all potential segmentations for a compound without any filtering
or prioritization of the results.

The paper presents an experiment in analyzing German compounds
with the Xerox Weighted Finite-State Compiler (wfsc). The model is
based on weights for compound segments and gives priority (a) to com-
pounds with the minimal number of segments and (b) to compound
segments with the highest frequency in a training list. The results with
this rather simple model will show the advantage of using weighted finite-
state transducers over simple FSTs.

1 Compound Construction

A very productive word formation process in German is compounding, which
combines words to build more complex words, mainly nouns or adjectives. In a
large newspaper corpus the Xerox German Morphological Analyzer [10] identified
5.5% of 9,3 million tokens and 43% of overall 420,000 types1 as compounds. In
other texts, such as technical manuals, the percentage of compound tokens may
even increase (e.g. 12% in a short printer manual). This is comparable to the
observations of Boroni et al. [1] who found in a 28 million newswire corpus that
7% of the tokens and 46% of the types were compounds.

Regarding the construction of compounds, any adjective or noun (including
proper names) may, in principle, appear as head word2, and any adjective, noun
or verb may occur as the left-hand (“modifier”) part of a compound.

– Buchseite (book page)

– Großstadt (big town)

1 Tokens represent all words of the text, types count only different word forms.
2 Verbal compounds (such as spazierengehen) exist, but are much less productive than

nouns or adjectives. They are not taken into account in this experiment.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 239–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

240 A. Schiller

– grasgrün (grass green)

– Goethestück (Goethe piece)

The Xerox finite-state tool [2] for German morphological analysis [10] imple-
ments this general principle without any semantic restrictions and with only
a few morphosyntactic constraints concerning the so-called “linking” elements.
The advantage of this very general approach is high and robust coverage. The
inconvenience is potentially very ambiguous output due to “over-segmentation”
of (long) words. A potential source of over-segmentation is the homonymy of
compound parts with derivational affixes.

– derivational suffix -ei (ing) vs. noun Ei (egg), e.g.
Spielerei (playing) – Vogel#ei (bird egg)

– prefix ein- (in-) vs. cardinal ein (one), e.g.
Einwohner#zahl (inhabitant number) – Ein#zimmer#wohnung (one room

apartment)

But other “accidental” homonymy may also lead to over-segmentation:

– Verbraucher (consumer) vs. Verb#Raucher (verb smoker)

– Abteilungen (departments) vs. Abtei#Lungen (abbey lungs)

While morphologically correct, most of these “over-segmentations” are semanti-
cally impossible—or at least very unlikely, i.e. they require a very special context
to make sense. But there also exist some real ambiguities:

– Hochzeit (wedding) vs. Hoch#Zeit (high time)

– Gründung (foundation) vs. grün#Dung (green manure)

Another source for multiple analyses is the ambiguity of segments themselves,
i.e. one surface form may be analyzed in different ways.

– noun Alt (alto) vs. adjective alt (old)

– prefix auto- (self) vs. noun Auto (car)

– masculine noun Leiter (leader) vs. feminine noun Leiter (ladder)

2 Finite-State Compound Analysis

A simple approach to modeling compound formation by a finite-state transducer
can be described by a regular expression like TRUNC+ HEAD where TRUNC is a
compound modifier (i.e. a left-hand side part), including a potential linking
element (“(e)s” or “en”), and HEAD is the compound head word (i.e. its right-
most part).

Example 1. Compound Part Lexicon3:

3 For the examples of regular expressions in this article we use the syntax of wfsc
(Xerox Weighted Finite-State Compiler) [5].

German Compound Analysis with wfsc 241

((
V e r b r a u c h e r "+NmSg":0 # (consumer)
| V e r b r a u c h "+NmSg":0 # (consumption)
| V:v e r b r a u c h e:0 n:0 "+V":0 # (to consume)
| E:e r z "+NnSg":0 # (ore)
| V e r b "+NnSg":0 # (verb)
| r a u c h e:0 n:0 "+V":0 # (to smoke)
| R:r a u c h "+NmSg":0 # (smoke)
| R:r a u c h e r "+NmSg":0 # (smoker)
)
"#":0)*
(
A:a h l e 0:n "+NfPl":0 # (awl)
| z a h l e n "+NnSg":0 # (paying)
| Z:z a h l 0:e 0:n "+NfPl":0 # (numbers)
);

Assuming the sample definitions above and a set of rules to cope with up-
per/lower case restrictions for resulting nouns and adjectives, our compound an-
alyzer would provide the following results for the input word Verbraucherzahlen
(consumer numbers).

Example 2. Finite-State Compound Analysis

Verbraucher+NmSg#Zahl+NfPl (consumer numbers)
Verbraucher+NmSg#zahlen+NnSg (consumer paying)
Verbrauch+NmSg#Erz+NnSg#Ahle+NfPl (consumption ore awls)
Verb+NnSg#Raucher+NmSg#Zahl+NfPl (verb smoker numbers)
Verb+NnSg#Raucher+NmSg#zahlen+NnSg ...
Verb+NnSg#Rauch+NmSg#Erz+NnSg#Ahle+NfPl
Verb+NnSg#rauchen+V#Erz+NnSg#Ahle+NfPl

A human reader would probably only think of the first solution, while all others
segmentations require a very special and artificial context to make sense.

The problem of over-segmentation may not affect applications such as part-
of-speech tagging where only the category of the complex word is taken into
account (which would be noun for all of the above decompositions. But a cor-
rect segmentation is crucial for applications like machine translation ([9], [6]) or
information retrieval ([8]).

3 Weighted Finite-State Transducers

Weighted finite-state transducers (wFSTs) are like ordinary FSTs with input and
output symbols on arcs, but they contain, in addition, a weight on every arc and
every final state. These weights are combined during traversal of the automaton
to compute a weight for each path [5]. To ensure that various operations on
wFSTs are well defined, the weight set must correspond to the algebraic structure
of a semiring:

242 A. Schiller

semiring S = (K, ⊕, ⊗, 0̄, 1̄)
with

K = a set of weights
⊕ = Collection operation
⊗ = Extension operation
0̄ = Identity element for collection
1̄ = Identity element for extension

One example of a semiring is (�+, +, ∗, 0, 1), the real semiring (positive real
weights with addition as the collection operator and multiplication as the exten-
sion operator. e.g. for modeling probability calculation, which will also be used
for our experiment described in the sections below.

4 Adding Weights to the Lexicon

When looking at the results of the (unweighted) morphological analyzer we real-
ized that the preferred reading for a human reader very often corresponds to the
decomposition with the least number of segments. Section 4.1 describes how we
can model this observation in a weighted finite-state analyzer that will output
higher scores for analyses with lesser segments.

Furthermore we assume that we can use frequency information from a train-
ing corpus to obtain weights for segments with different lexical analyses in order
to resolve ambiguities which remain after having chosen the “shortest” decom-
position. This will be described in section 4.2.

4.1 Compound Segments with Equal Weights

The objective is to prioritize compounds with a minimal number of segments.
Using the real semiring as shown above weights are multiplied along the path. If
all segments have a weight less than 1, then a bigger number of segments leads
to a lower overall weight.

With a segment weight of 0.5 our sample gives overall weights as follows:

Example 3. Finite-State Compound Analysis with Weights

Verbraucher+NmSg#zahlen+NnSg <0.25>
Verbraucher+NmSg#Zahl+NfPl <0.25>
Verbrauch+NmSg#Erz+NnSg#Ahle+NfPl <0.125>
Verb+NnSg#Raucher+NmSg#zahlen+NnSg <0.125>
Verb+NnSg#Raucher+NmSg#Zahl+NfPl <0.125>
Verb+NnSg#Rauch+NmSg#Erz+NnSg#Ahle+NfPl <0.0625>
Verb+NnSg#rauchen+V#Erz+NnSg#Ahle+NfPl <0.0625>

4.2 Compound Segments with Weights from Training Corpus

When using weights for segments which are derived from compound analyses
in a training list, we must provide a default weight for segments which do not

German Compound Analysis with wfsc 243

occur in the training list. The overall goal is still to give preference to a minimal
number of segments. Therefore the multiplication of 2 maximal weights should
be less than the minimal (default) weight of a single segment.

With a default weight of 0.5 for unseen segments, the maximal weight for
training segments should then be 0.7 in order to stay below 0.5 when multiplying
the weights of 2 segments (as 0.7∗0.7 = 0.49). Therefore we choose the following
formula for the weight of a segment which consists of a lexical form lex and a
surface realization srf :

weight(lex : srf) = 0.5 + freq(lex : srf)/(freq(: srf) + 1)/5

where freq(: srf) is the frequency of all segments with surface realization srf .
In regular expressions, weights are enclosed in angle brackets as shown in

Example 4.

Example 4. Compound Part Lexicon with Weights

semiring < realpos sum times > (
(V e r b r a u c h e r "+NmSg":0 <0.7>
| V e r b r a u c h "+NmSg":0 <0.65>
| V:v e r b r a u c h e:0 n:0 "+V":0 <0.55>
| E:e r z "+NnSg":0 <0.7>
| V e r b "+NnSg":0 <0.7>
| r a u c h e:0 n:0 "+V":0 <0.55>
| R:r a u c h "+NmSg":0 <0.65>
| R:r a u c h e r "+NmSg":0 <0.7>
)
"#":0)*
(
A:a h l e 0:n "+NfPl":0 <0.7>
| z a h l e n "+NnSg":0 <0.55>
| Z:z a h l 0:e 0:n "+NfPl":0 <0.65>
);

Example 5. Finite-State Compound Analysis with Weights

Verbraucher+NmSg#Zahl+NfPl <0.455>
Verbraucher+NmSg#zahlen+NnSg <0.385>
Verbrauch+NmSg#Erz+NnSg#Ahle+NfPl <0.3185>
Verb+NnSg#Raucher+NmSg#Zahl+NfPl <0.3185>
Verb+NnSg#Raucher+NmSg#zahlen+NnSg <0.2695>
Verb+NnSg#Rauch+NmSg#Erz+NnSg#Ahle+NfPl <0.22295>
Verb+NnSg#rauchen+V#Erz+NnSg#Ahle+NfPl <0.18865>

5 Training and Test Data

The experiment focuses on disambiguation of compound analysis. For training
and testing we created manually disambiguated compound lists. We analyzed
word lists built from large corpora and selected all words that were recognized

244 A. Schiller

as compounds, not taking into account hyphenated compounds (such as US-
Präsident or Olympia-Sieger) which bypass the problem of segmentation.

– Corpus used for training:
• LNG: 37,362 compounds (types) from various sources law, newspapers,

manuals, ...)
• SPG: 151,22 compounds from the weekly “Der Spiegel” (years 1994 and

1995)
– Corpus used for evaluation::

• NZZ: 30,891 compounds from the daily “Neue Zürcher Zeitung” (year
1994)

• MED: 26,196 compounds from medical texts (from European project
“Muchmore”)

The different texts are independent, but the extracted lists are not fully dis-
junctive, i.e. the test corpora share around 17% of the compounds with the
training list SPG.

Corpus compounds nb. of chars nb. of segments ambiguity
min. max. avg. min. max. avg. 1∗ max. avg.

LNG 37,362 6 46 22.9 2 6 2.5 39.0% 113 3.0
SPG 151,220 10 40 14.6 2 7 2.1 48.5% 55 2.1
NZZ 30,891 19 40 22.9 2 5 2.4 42.1% 120 2.8
MED 26,196 6 45 16.3 2 5 2.2 49.8% 80 2.0
(*) percentage of compounds with single analysis.

The longest compounds found in each compound list are

– LNG: Verkehrsinfrastrukturfinanzierungsgesellschaft
– SPG: Betäubungsmittelverschreibungsverordnung
– NZZ: Betäubungsmittelbeschaffungskriminalität
– MED: Normalgewebekomplikationswahrscheinlichkeiten

6 Tests and Results

The following process was applied for the evaluation:

– Take only “best scored” analysis results (i.e. all results for unweighted FSTs)
– Compare the FST result to the manually disambiguated lists:

• true positives are the analyses which match the manual choice
• false positives are all other results
• Count a false negative if the manual choice is not among the results.

– The overall precision P is computed as
P = #(true positives) / #(true positives + false positives)

– The overall recall R for this experiment is
R = #(true positives) / #(true positives + false negatives)

– The F-score combines the two previous measures
F = (2*precision*recall)/(precision+recall)

German Compound Analysis with wfsc 245

NZZ MED
Test P (%) R (%) F (%) P (%) R (%) F (%)
baseline FST4 35.94 100.00 52.87 49.09 100.00 65.85
wFST with equal weights 66.24 99.91 79.67 63.28 99.90 77.48
wFST with weights from LNG 97.05 99.63 98.32 88.69 98.68 93.42
wFST with weights from SPG 97.73 99.06 98.39 95.90 98.32 97.09

7 Conclusion

Using weighted finite-state transducers for compound analysis with the suggested
model provides different scores for different segmentations, and thus selecting
results with best scores only filters out very unlikely readings. Most of the small
number of remaining “real” ambiguities, however, may only be resolved with
the full (semantic and syntactic) context of the compound, but a great majority
of compounds were found to be unambiguous for a human reader even without
context, and can also be disambiguated with a rather simple model of weights
associated with compound parts.

We intend to conduct some additional experiments which include probabilities
for segment pairs. This should improve the results for cases of high segment am-
biguity (e.g. Auto (car) vs. auto (self)), but given the quite high precision with the
simple model, we cannot expect a substantial increase of the overall precision.

Future work will show if similar results can be obtained for other compounding
languages, such as Dutch, Swedish, Finnish, Hungarian, Greek, etc.

References

1. M. Baroni, J. Matiasek, and H. Trost. Predicting the Components of German
Nominal Compounds. In Proceedings of ECAI-2002, pages 470–474, Amsterdam,
2002. IOS Press.

2. K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Studies in Com-
putational Linguistics. CSLI Publications, 2003.

3. L. Karttunen. Applications of Finite-State Transducers in Natural Language Pro-
cessing. In Proceedings of CIAA-2000. Springer Verlag, 2000.

4. A. Kempe. NLP Applications based on weighted multi tape automata. In Proceed-
ings of 11th Conference TALN, Fes, Morocco, April 19–22 2004.

5. A. Kempe, C. Baeijs, T. Gaál, F. Guingne, and F. Nicart. WFSC - A new weighted
finite state compiler. In Proceedings of CIAA-03, volume 2759 of Lecture Notes in
Computer Science, pages 108–119, Santa Barbara, CA, USA, July 16–18 2003.
Springer Verlag.

6. P. Koehn and K. Knight. Empirical Methods for Compound Splitting. In Proceed-
ings of ECAI-2003, Budapest, Hungary, 2003.

4 The 100% recall with the baseline FST results from the construction of the test and
training data obtained by applying this FST on a word list and then disambiguated
by hand.

246 A. Schiller

7. M. Mohri, F. Pereira, and M. Riley. Weighted Automata in Text and Speech
Processing. In Proceedings ECAI-96, Workshop on Extended finite state models of
language, Budapest, Hungary, 1996.

8. C. Monz and M. de Rijk. Shallow Morphological Analysis in Monolingual Infor-
mation Retrieval for Dutch, German and Italian. In C. Peters, editor, Proceedings
of CLEF 2001, LNCS. Springer, 2002.

9. U. Rackow, I. Dagan, and U. Schwall. Automatic Translation of Noun Compounds.
In Proceedings of COLING-92, Nantes, 1992.

10. A. Schiller. Xerox Finite-State Morphological Analyzer for German. on-line demo:
http://www.xrce.xerox.com/competencies/content-analysis/demos/german, 2004.

Scaling an Irish FST Morphology Engine for Use

on Unrestricted Text

Elaine Uı́ Dhonnchadha1,2 and Josef Van Genabith1

1National Centre for Language Technology, School of Computing
Dublin City University, Dublin 9, Ireland

josef@computing.dcu.ie
2Centre for Language and Communication Studies

Trinity College Dublin, Ireland
uidhonne@tcd.ie

Abstract. This paper details the steps involved in scaling-up a lexi-
calised finite-state morphology transducer for use on unrestricted text.
Our starting point was a base-line inflectional morphology engine [1],
with 81% token coverage measured against a 15 million word corpus of
Irish texts [2]. Manually scaling the FST lexicon component of a morphol-
ogy transducer is time-consuming, expensive and rarely, if ever, complete.
In order to scale up the engine we used a combination of strategies includ-
ing semi-automatic population of the finite-state lexicon from machine-
readable dictionary resources and from printed resources using optical
character recognition, the addition of derivational morphology and the
development of morphological guessers. This paper details the coverage
increase contributed by each step. The full system achieves token cover-
age of 93% which is extended to 100% through the use of morphological
guessers.

1 Introduction

The work in morphological analysis of Irish described here builds on an existing
finite-state transducer implementation [1], using Xerox Finite-State Tools [3, 4].
This lexical transducer implemented all of the inflectional rules for Irish and
contained a test lexicon of approximately 1,500 lemmas, including the lemmas
associated with the 1,000 most frequently occurring word-forms in a corpus of
approximately 15 million words [2]. Its token recognition rate was on average
81% on unrestricted text.

In order to improve recognition rates and obtain an analysis for all tokens
in unrestricted text, semi-automatic population of the lexicon was carried out,
derivational morphology rules were added and morphological guessers were im-
plemented. The first two steps result in recognition rates of over 93% and when
morphological guessers are included, an analysis is returned for 100% of tokens
in unrestricted text [2].

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 247–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

248 E. Uı́ Dhonnchadha and J. Van Genabith

2 Semi-automatic Population of FST Lexicons

The finite-state transducer (FST) lexicon was increased by semi-automatically
converting a machine-readable dictionary (MRD) [5] to Xerox lexc format. Lists
of names and places in printed resources were scanned and incorporated into the
lexicon, as newspaper and web texts in particular contain a high proportion of
proper nouns. Some lists of personal names were found on the Internet [6]. After
inclusion of these items, one or more analyses were returned for 93% of tokens
in unrestricted text (up 12% from 81%).

2.1 Organisation of FST Lexicons

The lexicons in the Irish inflectional finite-state morphology engine [1], [7] are
organised in a hierarchical manner whereby a stem is associated with a cate-
gorical class (called continuation classes in [3]) which in turn points to further
continuation classes in order to produce the inflected surface forms and analy-
ses associated with its particular inflectional paradigm. In order to add a new
lexical item to the Irish FSM it is necessary to identify only its top-level contin-
uation class. In the case of verbs and adjectives this is not particularly difficult,
but nouns are far more challenging. Traditional Irish grammars [8] describe 5
paradigms (declensions) for nouns. However, within these paradigms there is con-
siderable variation in the manner in which plurals can be formed (over 20 types
of plural are encoded). Each of these 5 paradigms have been sub-divided ten
times on average resulting in approximately 50 noun paradigms to choose from.
Verbs and adjectives have 10 and 13 top-level continuation classes, respectively.

2.2 Automatic Population of FST Morphological Lexica from
Machine Readable Dictionary Resources

Adding new words manually to the finite-state morphology (FSM) of an inflected
language is a slow and labour intensive process. For example, in order to locate
the correct lexical category (continuation class) for an Irish noun, it is necessary
to know its gender, as well as details of case and number formation. It is therefore
well worth making an effort to locate machine-readable and printed word-lists
for the language. Preferably these lists should contain some grammatical infor-
mation, which can be used to automate the process of FSM lexicon building. We
were fortunate in obtaining permission to use a machine-readable version of a
pocket Irish-English dictionary [5], with 15,000 Irish head-words. The following
is an example of plain-text data from the dictionary:

cabhair1 kaur’ f, gs -bhrach help, assistance
cabhair2 kaur’ vt, pres -bhraı́onn vn -bhradh emboss, chase
cabhán kaua:n m1, ~ abhann yellow water-lily
cabhlach kaul x m1 fleet; navy
cabhrach kaur x a1 helpful
cabhraigh kauri: vi help, ~ liom help me

Scaling an Irish FST Morphology Engine for Use on Unrestricted Text 249

Table 1 shows that each entry provides up to four distinct types of information
which can be used to automatically assign the headword to the appropriate FSM
inflectional class.

Table 1. Sample of MRD Data

Headword Phonetics POS Definition
cabhair1 kaur’ f gs -bhrach help, assistance
cabhair2 kaur’ vt pres -bhráıonn vn -bhradh emboss, chase
cabhán kaua:n m1 ~ abhann yellow water-lily
cabhlach kaul x m1 fleet; navy
cabhrach kaur x a1 helpful
cabhraigh kauri: vi help, ~ liom help me

The table contains headwords which are either nouns, verbs or adjectives.
The POS (part-of-speech) column provides the basic lexical classification for
the headwords as well as gender in the case of nouns (f = feminine noun, m
= masculine noun) and transitivity in the case of verbs (vt = transitive verb,
vi = intransitive verb, vti = transitive and intransitive verb). Some nouns and
adjectives contain a number indicating a declensional class (e.g. m1, a1).

Further valuable information can be found in the definition column. For in-
stance, gs -bhrach indicates that the genitive singular of the noun cabhair ‘help’,
is formed by syncopation, i.e. dropping of vowels in the final unstressed sylla-
ble, and addition of the suffix -ach. In the case of the verb cabhair ‘help’, pres
-bhráıonn vn –bhradh states that the present tense is formed by syncopation of
final syllable and addition of the suffix -áıonn, furthermore, the verbal noun (vn)
derived from cabhair is formed by syncopation of the final syllable and addition
of the -adh suffix.

This information, together with the structure of the headword in terms of
number of constituent syllables and type of final syllable, can be used in the
majority of cases to automatically determine which sub-category (continuation
class) of verbs, nouns or adjectives a particular headword should be assigned to
in the FSM lexicon. The phonetic description could also be used as a valuable
aid to automatic assignment, although it was not necessary in this instance.

We implemented a Perl program to convert the machine-readable dictionary
text to lexc format (Fig. 1). Each record is processed by first examining the
POS field. In the case of verbs and adjectives, processing relies heavily on the
structure of the headword, whereas processing for nouns, which have a far more
complex (i.e. unpredictable) morphology, relies on the additional morphological
information found in the definition field. For example, in Fig. 1, the headword
cabhair ‘help’, points to continuation class Nf5-2 which in turn points to other
continuation classes that assign the appropriate morphological tags and inflec-
tional triggers for this type of noun.

Despite the information available over a third of the 10,700 nouns could not
be assigned a class with certainty due, in general, to a lack of information about
plural formation in this MRD. In these cases the headword was assigned the

250 E. Uı́ Dhonnchadha and J. Van Genabith

LEXICON Nouns
cabhair Nf5-2; ! Noun, feminine, class 5, sub-class 2
!!!!cabhán Nm1-1; ! Noun, masculine, class 1, sub-class 1
!!!!cabhlach Nm1-1; ! Noun, masculine, class 1, sub-class 1
LEXICON Verbs
cabhair V2-BR-sync; ! Verb, conj. 2, broad stem, syncopate
cabhraigh V2-BR; ! Verb, conjugation 2, broad stem
LEXICON Adjectives
cabhrach Adj1-3; ! Adjective, class 1, sub-class 3

Fig. 1. Sample of lexc compatible input derived from MRD

most likely subclass given the structure of the headword, and the output was
prefixed with ‘!!!!’ which served to highlight the fact that the item required
manual checking. At the same time it also comments out the line causing the FST
compiler lexc not to include it in the FSM. Overall, of the 15,000+ headwords
in the MRD over 11,000 were automatically assigned to a FSM lexical class. On
inspection of the remaining 4,000 headwords (mainly nouns), further patterns
were detected and the conversion program was amended and re-run. Approxi-
mately 3,000 lemmas had to be assigned manually using a larger dictionary [9]
(which we did not have in machine readable form).

2.3 Scanning and Optical Character Recognition (OCR)

When suitable data is not available in electronic format, scanning of printed
material and the use of OCR software can be a viable alternative. This strategy
was adopted in order to increase the number of proper nouns in the Irish FSM
lexicons. Lists of towns and countries were scanned, as well as a book of Irish
surnames [10], [11].

All scanned material was proof read and scanning accuracy proved to be high
despite the fact that the OCR software was intended for Portuguese rather than
Irish. Approximately 5% of names contained an OCR error. Due to the nature
of the material it was possible to automatically correct almost all errors since
the most common errors involved a number in place of a letter, (and no numbers
were expected in the input), e.g. 0 (zero) instead of O, 1 (one) instead of I, 6
(six) instead of ó etc. Other common errors included m in place of rn and oh in
place of ch but by searching for unusual letter combinations these were easily
located, and automatically corrected.

In the sample of name data in Fig. 2 English surnames are followed by their
Irish counterparts.

Abbott, Abóid
Acton, Ó Gnı́mh
Adair, Ó Dáire

Fig. 2. Sample of Scanned Data

Scaling an Irish FST Morphology Engine for Use on Unrestricted Text 251

As Irish texts, especially newspapers, are as likely to contain English names as
Irish names, we created two lexicons, one containing Irish data and one English
data

2.4 Internet

In a brief search, some personal names were located on the Internet and in-
cluded [6]. The Internet is a resource which could be exploited (with rela-
tively little effort) to increase the FSM lexicon, and this method merits further
investigation.

2.5 Summary

Table 2 shows the total number of lexical items in the major part-of-speech
categories after semi-automatic population had taken place. It also shows the
number of surface (inflected) forms and morphological descriptions generated by
inflectional rules from these headwords (lemma). Surface forms in general have
more than one morphological analysis. The category ‘Other’ in Table 2 is the
exception. This is made up of function words, most of which have one analysis
per surface form, and in some cases, there are variant surface forms associated
with the same morphological analysis.

As a result of the addition of these items, the token recognition rate on un-
restricted text [2] rose from approximately 81% to 93% (see Table 3 for further
details).

Table 2. FSM Lexicons including MRD, OCR

Stems Surface Morphological
Forms Descriptions

Verbs 1,630 105,000 305,100

Nouns: 22,100 166,100 350,600
common (10,700)
proper (4,200)
proper (en) (7,200)

Adjectives 3,035 14,100 43,900

De-verbal Nouns/Adjs. 3,220 5,305 6,436

Other 555 640 630

Total 30,540 291,145 706,666

3 Derivational Morphology

Our base-line system [1] implements Irish inflectional morphology. Examination
of the word-forms not recognized by the FSM showed that many contained a root
that was already in the lexicons and that the addition of derivational morphology
would improve recognition rates. Irish derivational morphology mainly involves
prefixing of stems but there are also some derivational suffixes [8].

252 E. Uı́ Dhonnchadha and J. Van Genabith

3.1 Derivational Suffixing

All nouns can accept a diminutive suffix -́ın. If the final syllable of the noun is
broad (i.e. ends in broad vowel a, o, u, á, ó, or ú) it must be slenderized by
inserting a slender vowel i.e. i before attaching the slender suffix -́ın. This is
achieved by including a slenderisation trigger [1] in the surface form which when
composed with the relevant replace-rule FST will result in slenderisation taking
place.

Example 1.
a. buachaill ‘boy’, buachailĺın ‘little boy’
b. rud ‘thing’, ruid́ın ‘little thing’

Similarly, all nouns and pronouns as well as verbs and prepositions which incor-
porate personal pronouns can accept an emphatic suffix. In this case, broad and
slender forms of the suffix exist, therefore rather than changing the stem the
appropriate suffix is chosen, e.g. in the case of the sa/se broad/slender pair, the
s is added in the lexicon and either a or e is inserted by replace rule depending
on the broad or slender nature of the previous syllable.

Example 2.
a. mo theach ‘my house’, mo theachsa ‘my house’
b. mé ‘I’, mise ‘I’
c. déanaim é ‘I do it’, déanaimse é ‘I do it’
d. orm ‘on me’, ormsa ‘on me’

all verb stems and agentive nouns can accept one of a number of suffixes (and/or
morphological processes) to create a (de)verbal noun. Likewise, a (de)verbal
adjective is derived from each verb stem. For the 1,600+ verb stems (see Table 2)
in the FSM, 20 new continuation classes were included to account for the various
ways in which (de)verbal nouns are derived. For the same set of verb stems, 14
new continuation classes were included to accommodate the various ways in
which (de)verbal adjectives are derived. The fact that verb stems were already
assigned to verbal continuation classes based on number and type of syllables
speeded up the task of assigning the appropriate continuation class for (de)verbal
nouns and (de)verbal adjectives, since in all cases the stem structure is relevant.

3.2 Derivational Prefixing

Nouns, verbs and adjectives can all accept standard prefixes, which in general
do not change the lexical class.

Example 3.
a. déan ‘do/make’, athdhéan ‘redo/remake’
b. maith ‘good’, sármhaith ‘excellent’
c. féasta ‘feast’, an-fhéasta ‘great feast’

Scaling an Irish FST Morphology Engine for Use on Unrestricted Text 253

A regular relation containing over 250 common prefixes is defined. This is
compiled and saved as a Prefix FST, which can be concatenated to the front
of the noun FST. The boundary between the prefix and stem is marked by a
boundary trigger in the pre-surface form which when composed with the relevant
replace-rule FST will result in appropriate morphophonological processes taking
place. In example 3 lenition takes place, i.e. when a prefix is joined to a stem,
‘h’ is inserted after the initial consonant of the stem, (i.e. déan -> dhéan, maith
-> mhaith, féasta -> fhéasta). The verb and adjective FSTs are also prefixed in
the same manner.

3.3 Compounding

New lexical items can also be created through compounding. In such cases, the
new word inherits the lexical features of the right-most element. We re-use the
finite-state lexicons to identify possible compounds for nouns, adjectives and
verbs.

Example 4.
a. domhain ‘deep’ = adjective or domhain ‘depth’ = noun feminine
b. comhrá ‘conversation’ = noun masculine
c. domhainchomhrá ‘deep conversation’ = noun masculine

For example, in the case of nouns, we take all surface forms (without morpho-
syntactic tags) recognised by the morphological analyser and concatenate this
network to the front of the noun lexicon, marking the boundary with a compound
boundary marker ^CB. This new FST of possible compounds is composed with
the noun inflectional rules to produce all possible inflected forms, together with
the morpho-syntactic tags associated with the noun.

As iterative compounding is unusual in Irish this method is sufficient for most
cases, and any tokens with more than two elements will be handled by a more
general noun guesser (see below).

3.4 Summary

The addition of derivational morphology increases recognition rates by less than
1.2%. De-verbal noun and adjective lexicons, which are important in terms of
POS tagging and syntactical analysis, do not have much effect on recognition
rates since these word-forms have in most cases the same form as an inflected
verb or noun. In effect they provide an additional analysis to an already recog-
nised word-form rather than providing a morphological analysis of a previously
unrecognised word-form.

4 Morphological Guessers

A lexicon of approx 30K lemmas (Table 2) is still not very large, and since
in addition a living language is constantly changing and acquiring new words,

254 E. Uı́ Dhonnchadha and J. Van Genabith

a method is needed for dealing with unrecognized words. We define a series
of morphological guessers following [3] which make use of distinctive suffixes,
syllable structure, initial capitals and foreign characters, to identify possible
verbs, adjectives, nouns, proper nouns and foreign words. In addition to guessing
the part-of-speech, we must also guess features such as gender, number and case
(for nouns and adjectives), or tense, number and person (for verbs).

4.1 Verb Guesser

In Irish, verb inflectional suffixes are distinctive. Therefore if a token is not
recognized by the main lexical transducer or one of the derivational transducers
and it ends in one of these suffixes, we can confidently guess that it is a verb and
has the features associated with that suffix. In (Fig. 3) a verb is defined in terms
of a generic stem to which one of the defined suffixes is attached. ‘VPresentSuf’
shows some of the inflectional suffixes for present tense verbs (indicative mood)
and their associated person and number feature tags.

define Stem [Syl1 (Syl2) (Syl2)];
define VPresentSuf [[%+Guess %+Verb %+PresInd .x. (e) a n n] |
[%+Guess %+Verb %+PresInd %+1P %+Sg .x. (a) i m] |
[%+Guess %+Verb %+PresInd %+1P %+Pl .x. (a) i m i d] |
[%+Guess %+Verb %+PresInd %+Auto .x. t (e) a r]];
etc. etc. define Verb [Stem [VPresentSuf | VPastSuf | VFutSuf |
VCondSuf | VImperSuf etc.];

Fig. 3. Extract from Verb Guesser regular expression script

4.2 Noun Guessers

Nouns show far greater variability in their morphology than verbs. Two types
of noun guessers have been implemented. The first one uses stem endings and
suffixes that are usually (though not always) associated with a particular gender,
number and case. The second type of guesser (Fig. 4) is a more general one. It
guesses gender and number based on vowels in the last syllable in the word, and
simply assigns nominative case.

In Fig. 4 we define a broad syllable ‘BrSyl’ and a slender syllable ‘SlSyl’
and use these to assign either feminine or masculine gender. We assume that
singular nouns can have up to 3 syllables (e.g. maireachtáil, ‘livlihood’) and end
in a consonant. We assume that plural nouns end in either a or ı́ and we allow
up to 5 syllables (e.g. iompórtálacha ‘importations’).

4.3 Lookup Strategy

The FSTs developed in this implementation are designed for use with the Xerox
lookup tool [3]. This tool supports the specification of a lookup strategy whereby
a sequence of finite-state transducers is tried until a morphological analysis is
found. The lexical transducers are tried first followed by the guessers. The order

Scaling an Irish FST Morphology Engine for Use on Unrestricted Text 255

define BV [a|o|u|á|ó|ú] ; # Broad Vowels
define SV [e|i|é|ı́] ; # Slender Vowels
define BrSyl [(C)(C)(C) (V)(V) BV (C) (C) (C)];
define SlSyl [(C)(C)(C) (V)(V) SV (C) (C) (C)];
define NounsSg [(Syl) (Syl) SlSyl C] "+Guess+Noun+Fem+Com+Sg:0"
| [(Syl) (Syl) BrSyl C] "+Guess+Noun+Masc+Com+Sg:0" ;
define FRoot [(Syl) (Syl) (Syl) SlSyl];
define MRoot [(Syl) (Syl) (Syl) BrSyl];
define NounsPl [FRoot [%+Guess %+Noun %+Fem %+Com %+Pl .x. [a|ı́]]]
| [MRoot [%+Guess %+Noun %+Masc %+Com %+Pl .x. [a|ı́]]] ;

Fig. 4. Extract from noun guesser regular expression script

in which the guesser transducers are applied is very important since the script
terminates as soon as a match is found. In Irish, verbal endings are the most
distinctive feature, followed by suffixed and prefixed word forms, verbal nouns
and verbal adjectives. If none of these transducers is successful then the word
is probably a noun. If the fairly unconstrained noun guesser were tried first, it
would in almost all cases succeed even if the unknown word contained a distinc-
tive verb ending. Therefore, the most specific transducer should be tried first
(i.e. verb guesser) followed by the next most specific and so on ending with the
most general transducer (i.e. foreign noun).

The lookup utility also enables ‘virtual composition’ whereby a transducer can
be composed with another transducer on the fly where necessary. In the Irish
FSM, all lexical items are defined in lowercase in the lexicons, except for proper
nouns that are unlikely to be used without an initial uppercase character, e.g.
Dublin, London, Paris. If the lexical transducer does not recognize a word, it may
be because the word occurs at the start of a sentence and has been capitalized.
A transducer, following [12], is defined which maps the initial letter of word
forms (5a), or the second letter (5b) or third letter (5c), to a capital letter, or
all letters to capitals (5d). These capitalizing transducers can be composed with
the lexical transducer on the fly, and the resulting transducers are tried in the
lookup script before going on to try the guesser transducers. The guessers can
be composed with the capitalizers to gain maximum benefit.

Example 5.
a. Uachtarán ‘President’ – initial capital
b. na hÉireann ‘of Ireland’ – capital with initial mutation
c. cúrsáı i bhFiontar – ‘courses in Fiontar’ - capital with initial mutation
d. TÁ ‘IS’ - all capitals

5 Evaluation

A more fine-grained analysis of the effect of the additional FSTs on recognition
rates is shown in Table 3. These results were obtained using a test corpus con-
sisting of 3,000 sentences (76,000 tokens) randomly selected from a corpus of 30
million words of Irish text [13], including the original 15 million word corpus [2].

256 E. Uı́ Dhonnchadha and J. Van Genabith

Table 3. Summary of Recognition Rates

% of tokens % increase
recognised

FST LEXICONS

Initial lexicons 80.52
MRD Lexicons 90.74 10.22

OCR Lexicons 92.53 1.79

De-verbal Noun/Adj. Lexicons 93.10 0.57

Derivational Prefixes 93.69 0.59

Derivational Suffixes 93.72 0.03

FST GUESSERS

Verb Guesser 93.99 0.27

De-verbal Noun/Adj Guesser 94.30 0.31

Noun Guesser 1 94.73 0.43

Noun Compound Guesser 95.55 0.82

Proper Noun Guesser 98.61 3.36

Noun Guesser 2, incl. abbreviations 98.88 0.27

Foreign Word Guesser 99.01 0.13

Other Guesser 100.0 0.99

Token analysis rates on the test corpus (i.e. 80.52% baseline and 93.10% us-
ing additional lexicons) are comparable to those obtained with [2], therefore we
expect this test corpus to be representative to the overall corpus.

The first four entries in the table are composed as one lexical transducer, which
provides morphological analyses for 93% of tokens encountered in unrestricted
Irish texts. The remaining transducers are each tried in sequence. Table 3 shows
that the single biggest increase in token recognition is due to the use of the
machine-readable dictionary, followed by the proper noun guesser and the OCR
scanned proper nouns.

Although the proper noun guesser makes a bigger impact on recognition rates,
the analysis provided from the lexicons is more reliable in terms of morphologi-

Table 4. Analysis of Guessed Items (excl. compounds)

Guessed token Overall % Count No. Correct % Correct
Missing lexeme 55.0 1682 1485 88%

Misspelling 14.8 451 364 81%

Dialectal variant 11.7 356 202 57%

Foreign word 9.3 284 111 39%

Abbreviation 4.3 131 108 82%

Hyphenation error 2.8 85 33 39%

Neologism 2.1 64 57 89%

TOTAL 100% 3053 2360 77%

Scaling an Irish FST Morphology Engine for Use on Unrestricted Text 257

cal features (i.e. gender, number and case etc.). Therefore, further work should
concentrate on improving the 93% recognition rate from the lexicons through
further use of MRDs where possible and OCR where necessary.

We also evaluated the performance of the guessers by examining all of the
lexical items in the test corpus which received a guessed analysis (i.e. lemma,
part-of-speech and features). Compounds were excluded from this test as POS
category and features of the head of a compound are inherited from a item
found in the lexicon. The lexical items were classified according to the reasons
why they were guessed and the results obtained are shown in Table 4. The results
are encouraging in that 88% of guesses due to gaps in the lexicon (i.e. missing
lexemes) received a correct analysis. Overall, taking into account other factors
such as misspellings, foreign words, abbreviations etc. the average accuracy level
was 77%.

6 Conclusion

In order to scale-up a finite-state morphology transducer for general use it is
necessary to a) create as big a lexicon of stems as possible b) derive maximum
use from these stems through the use of derivational morphology rules and c)
to augment the lexicon with reliable guessers. We described two methods of
semi-automatic population of the lexicon, namely population of FSM lexicons
from machine-readable dictionaries and scanning of suitable printed material.
Derivational morphology strategies for Irish were implemented, as well as a se-
ries of guessers and used with the Xerox lookup tool. As our evaluation results
show, these are practical and effective ways of scaling up a FSM transducer for
use on unrestricted text, with the use of MRDs being the single most effective
method. Our approach maximises re-use of existing resources, an issue particu-
larly pressing for minority languages where limited funding and lack of human
resources are pressing issues. The methods reported in this paper resulted in an
increased rate of morphological analysis from 81% to over 93% with the remain-
ing tokens receiving a guesser-based analysis.

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable comments
and suggestions which have improved the paper considerably.

References

1. Uı́ Dhonnchadha, E.: An analyser and generator for Irish inflectional morphology
using finite state transducers. Master’s thesis, School of Computing, Dublin City
University, Dublin, Ireland (2002)

2. ITÉ: http://www.ite.ie/corpus/ (accessed Nov. 2005)
3. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Studies in Compu-

tational Linguistics. CSLI Publications (2003)

258 E. Uı́ Dhonnchadha and J. Van Genabith

4. Karttunen, L., Beesley, K.R.: Two-level rule compiler. Technical report, Xerox
PARC (1992)

5. An Roinn Oideachais, .: Foclóir Póca English-Irish/Irish-English Dictionary. An
Gúm, Baile Átha Cliath (1986)

6. http://www.symbols.net/names/: Symbols (accessed Nov. 2005)
7. Uı́ Dhonnchadha, E., Nic Pháid́ın, C., Van Genabith, J.: Design, implementa-

tion and evaluation of an inflectional morphology finite-state transducer for Irish.
MT - Machine Translation: Special Issue on Finite State Language Resources and
Language Processing (in press)

8. Bráithre Cŕıostáı, .: Graiméar Gaeilge na mBráithre Cŕıostáı. An Gúm, Baile Átha
Cliath (1999)

9. Ó Dónaill, N.: Foclóir Gaeilge Béarla. Oifig an tSoláthair, Baile Átha Cliath (1977)
10. Ó Droighneáin, M.: An Sloinnteoir Gaeilge agus an tAinmneoir. Coiscéim, Baile

Átha Cliath (1991)
11. Ó Siochfhrada, N.: Foclóir Gaeilge/Béarla - Béarla/Gaeilge. An Comhlacht

Oideachais, Baile Átha Cliath (1998)
12. Grefenstette, G., Schiller, A., Ait-Mokhtar, S.: Recognizing lexical patterns in text.

In van Eynde, F., Gibbon, D., eds.: Lexicon Development for Speech and Language
Processing. Kluwer Academic Publishers, Dordrecht (2000)

13. Kilgarriff, A., Rundell, M., Uı́ Dhonnchadha, E.: Efficient corpus creation for
lexicography. Language Resources and Evaluation Journal (forthcoming)

Improving Inter-level Communication

in Cascaded Finite-State Partial Parsers

Sebastian van Delden1 and Fernando Gomez2

1 Division of Mathematics and Computer Science
University of South Carolina Upstate

800 University Way, Spartanburg SC 29303, USA
svandelden@uscupstate.edu

2 Department of Computer Science
University of Central Florida

Orlando FL 32816, USA
gomez@cs.ucf.edu

Abstract. An improved inter-level communication strategy that en-
hances the capabilities of cascaded finite-state partial parsing systems
is presented. Cascaded automata are allowed to make forward calls to
other automata in the cascade as well as backward references to previ-
ously identified groupings. The approach is more powerful than a design
in which the output of the current level is simply passed to the next level
in the cascade. The approach is evaluated on randomly extracted sen-
tences from the Encarta encyclopedia. A discussion of related research
is also presented.

1 Introduction

Cascaded finite-state partial parsing is the process of incrementally identifying
syntactic relations in a natural language sentence with layers of regular expres-
sions or their finite-state representations1. The output of layeri is the input to
layeri+1. An automaton on an arbitrary leveln can use the information provided
by automata on the preceding levels1..n−1. We refer to this type of inter-level
communication that is common to most cascaded partial parsing systems as
backward referencing. As an initial step, part-of-speech tags are usually assigned
to each token in the sentence by a part-of-speech tagger [3]. In this case, the
automata also rely on the part-of-speech information provided by the tagger to
group syntactic relations when creating the partial tree structure.

An easy-first approach [1] to cascaded finite-state partial parsing is one in
which the first layers of automata identify smaller syntactic relations, like noun
and verb phrases. These smaller relations are combined by automata later in the
cascade to form larger syntactic relations, like prepositional phrases and relative
and subordinate clauses. A larger-first approach [9] is opposite to the easy-first

1 This work has been partially funded by the University of South Carolina Research
and Productivity Scholarship fund.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 259–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 S. van Delden and F. Gomez

approach, identifying larger syntactic relations first and then the smaller rela-
tions within them. Both approaches are robust, producing a partial output even
if the cascade fails to recognize every syntactic relation in the input sentence.

An easy-first approach is faster than a larger-first one because the smaller
syntactic relations are simply grouped together to form larger ones. So the speed
is dependant on the size of the input sentence and the number of layers of au-
tomata. In a larger-first approach, the larger relations that are identified earlier
in the cascade must be re-examined to recognize the syntactic relations within
them. Its speed is, therefore, dependant of the size of the input sentence, the
number of layers of automata, and the number of groupings that are created
during processing. A larger-first approach, however, is more powerful than an
easy-first approach because it considers the larger context first and so is capable
of: fully disambiguating clausal coordinate conjunctions and partially disam-
biguating phrasal coordinate conjunctions; disambiguating certain types of ap-
positions from lists of noun phrases; and disambiguating prepositional phrases
from subordinate clauses. An easy-first approach is not suited for accomplishing
these tasks.

However, a common disadvantage to both approaches is their inability to
recognize both instances of syntactic relations that can dominate each other.
For example, a relative clause can dominate a list of noun phrases, but a list
of noun phrases can also dominate a relative clause. For example: [LIST Bill
Turner, Ted Sanderson [REL who is our newest employee], and Susan Reilly]
will all be at the meeting this afternoon. versus The new employee [REL who
[LIST Bill, Ted, and Susan] hired] will be at the meeting this afternoon. In one
case, the relative clause is syntactically larger and in the other case the list of
noun phrases is syntactically larger. Cascaded partial parsers cannot correctly
identify both instances due to the one-way communication between the layers of
automata. For example, if the automaton that recognizes a list of noun phrases
is on a layer that precedes the automaton that recognizes a relative clause, then
the cascade can recognize a relative clause that dominates a list of noun phrases,
but not vice versa. Besides relative clauses and lists of noun phrases, such cross-
dominating clauses are common in written texts containing commas:

• Comma Enclosed Prepositional Phrases versus Relative Clauses: [PP After
the meeting [REL which lasted three hours],] Bush finally made a decision.
Bush finally made a decision [REL which [PP, despite strong criticism,]
seemed the best choice at the time].

• Comma Enclosed Appositions and Relative Clauses: Mount Scenery on Saba
[APOS , an island in the Caribbean [REL that is known for its scuba diving,]]
is the tallest peak in the Dutch Kingdom. Saba is an island in the Caribbean
[REL that Christopher Columbus [APOS , one of the greatest mariners in
history,] spotted on his second voyage in 1493].

• Infinitive Clauses and Comma Enclosed Appositions: Jeffrey quickly agreed
[INF to give Celeste [APOS , his beloved daughter,] more spending money].
Celeste bought ”Harry Potter and the Prisoner of Azkaban” [APOS , a won-
derful book [INF to read]].

Improving Inter-level Communication in Cascaded Partial Parsers 261

• Subordinate Clauses and Comma-Enclosed Relative Clauses: The Prada
purse [REL , which Elizabeth just bought [SUB because she received a large
bonus,]] is now sold-out in every store. Elizabeth went shopping [SUB
because Macys [REL , which only sells high quality clothing,] was having
an incredible sale].

• Comma Enclosed Subordinate Clauses and Relative Clauses: The library
refused to order the book [REL that the professor [SUB, because he was out
of town for the last two weeks,] forgot to request in time]. The library refused
to order the book [SUB , because the professor [REL who happened to be out
of town for the last two weeks] didn’t notify them soon enough].

• Complement Clauses and Comma Enclosed Prepositional Phrases: [PP De-
spite the excellent news [COMP that tomorrow’s weather would be beautiful,]]
we are still not going to hike. The news [COMP that tomorrow weather [PP,
by late afternoon,] would be beautiful] convinced us that we should go hiking.

This paper shows how a cascaded finite-state partial parser can be improved
to overcome such problems by adding a new inter-level communication capability
- a forward call. The next section describes the new inter-level communication
in detail. Section 3 explains the partial parsing algorithm with this new com-
munication mechanism. Section 4 presents some results of the approach when
tested on randomly chosen sentences from the Encarta encyclopedia. Section 5
concludes the paper with a discussion of related research.

2 The Enhanced Inter-level Communication

At first thought one might suggest that the current cascaded framework does
have this capability by simply adding separate automata on different levels which
recognize the two versions of the cross-dominating clauses. For example, an au-
tomaton on a preceding level that recognizes relative clauses which do not con-
tain a list of noun phrases (for example, called automaton REL-1), followed by a
list of noun phrases automaton (LST-NPs), followed finally by another relative
clause automaton (REL-2) which does consume an internal list of noun phrases.
It may appear that this cascade would correctly identify both cases of the cross-
dominating clauses. For example, ideally the clauses in the following sentence
would be identified as follows:

We bought office supplies which include pencils, three-ring binders that can hold
500 sheets, and dry-erase markers.
We bought office supplies which include pencils, three-ring binders [REL-1 that
can hold 500 sheets], and dry-erase markers.
We bought office supplies which include [LST-NPs pencils, three-ring binders
[REL-1 that can hold 500 sheets], and dry-erase markers].
We need office supplies [REL-2 which include [LST-NPs pencils, three-ring
binders [REL-1 that can hold 500 sheets], and dry-erase markers]].

262 S. van Delden and F. Gomez

H owever, this grouping will not occur with this setup because the REL-1 au-
tomaton will prevent the LST-NPs automaton from identifying the list of noun
phrases, and subsequently REL-2 will also not be able to accept:

We bought office supplies which include pencils, three-ring binders that can hold
500 sheets, and dry-erase markers.
We bought office supplies [REL-1 which include pencils], three-ring binders
[REL-1 that can hold 500 sheets], and dry-erase markers.

S ince pencils would be grouped with REL-1, the syntactic pattern NP, NP,
conjunction NP can no longer be recognized as a list of noun phrases. An intuitive
solution is to position the LST-NPs automaton before the REL-1 automaton
and add a capability that allows the LST-NPs automaton to make a call to
the REL-1 automaton to consume any internal relative clauses that may be
present in the list. We refer to this new capability as a forward call. So for the
preceding example, the LST-NPs automaton will make a forward call to the
REL-1 automaton, making a correct grouping of the list of noun phrases:

We bought office supplies which include pencils, three-ring binders that can hold
500 sheets, and dry-erase markers.
We bought office supplies which include [LST-NPs pencils, three-ring binders
[REL-1 that can hold 500 sheets], and dry-erase markers].

F urthermore, if we allow the REL-1 automaton to refer to the previous grouping
(a backward reference) made by the LST-NPs automaton, then there is no need
for a second REL-2 automaton, because REL-1 will group the list of noun phrases
when it is processed later in the cascade: We bought office supplies [REL-1 which
include [LST-NPs pencils, three-ring binders [REL-1 that can hold 500 sheets],
and dry-erase markers]].

A forward call to another automaton is similar to how a Recursive Transition
Network, or RTN ([12, 11]), has the ability to call another RTN. For example,
a sentence RTN can call a noun phrase RTN to recognize a noun phrase in the
sentence. However, there are several differences between RTNs and this work.
The first being robustness. There is no single breaking point in this approach
since it is a cascade of several automata. For example, if the relative clause
automaton fails to recognize a relative clause, elements inside and surrounding
that syntactic relation will still be identified and the output will still contain
a partial tree structure. A second difference is that there is no need for either
direct/indirect recursion in the automata of the cascade. Recursion is built into
the RTNs so that each possible parse tree can be recovered. For example, a
prepositional phrase RTN can call a noun phrase RTN which in turn can call
the same prepositional phrase RTN. This (indirect) recursion is avoided since
forward calls and backwards references will allow one level of recursion to be
indirectly captured (see example below). A third difference is that only one
possible (partial) parse is always created and attachment decisions are avoided
wherever possible.

Improving Inter-level Communication in Cascaded Partial Parsers 263

One level of recursion is indirectly captured by this approach. Consider the
sentence: Peter wants to go to the beach, the mall by Mary’s house, and the
restaurant later tonight. Notice the prepositional phrase by Mary’s house is in-
side a list of noun phrases which is inside another prepositional phrase. In order
to recognize these groupings, it would appear that a prepositional phrase au-
tomaton would call a list of noun phrases automaton which in turn would have
to call the prepositional phrase automaton again - requiring a recursive machine.
However, in this approach, the prepositional phrase automaton cannot make a
forward call to the list of noun phrases automaton because it occurs earlier in
the cascade. Forward calls can only be made to automata later in the cascade.
This prevents indirect recursion. But since the prepositional phrase automaton
can make a backward reference to the list of noun phrases automaton (which
may have already made a forward call to the prepositional phrase automaton
earlier), one level of recursion can be captured.

If larger syntactic relations are identified first in a cascade of automata with
forward calls, the list of noun phrases will have already been identified before
the prepositional phrase automaton is processed on the sentence level. The list
of noun phrases automaton will have made a forward call to the prepositional
phrase automaton (as well as the noun phrase automaton) so that the following
grouping will be made at that point: Peter wants to go to [LST-NP [NP the
beach] , [NP the mall] [PP by [NP Mary’s house]], and [NP the club]] later
tonight. Later, when the prepositional phrase automaton is reached in the cas-
cade, a backward reference would be made to the LST-NP grouping (made by
the list of noun phrases automaton) so that the prepositional phrase can be rec-
ognized: Peter wants to go [PP to [LST-NP [NP the beach] , [NP the mall] [PP
by [NP Mary’s house]], and [NP the club]]] later tonight. The prepositional
phrase (which contains a prepositional phrase within a list of noun phrases) has
been recognized without the need for a recursive device.

To summarize: This approach to partial parsing is a larger-first cascade of
finite-state automaton with improved inter-level communication capabilities that
allow forward calls to automata later in the cascade.

3 The Algorithm

The partial parsing algorithm for a larger-first cascade of automata with forward
call capabilities is shown below.

When an automaton is tried in the sentence at position m (line 3), the automa-
ton attempts to consume tokens starting from its start state at position m in the
sentence. The automaton simply consumes tokens that have been part-of-speech
tagged or groupings that have already been made by previous automata (back-
ward references). These tokens/groupings are simply grouped if the automaton
eventually enters an accept state - similar to an ordinary easy- or larger-first cas-
cade. However, allowing the automaton to consume tokens by making a forward
call complicates the algorithm slightly. If a forward call is made to a new au-
tomaton on line 6, the algorithm would be recursively repeated with this new

264 S. van Delden and F. Gomez

automaton at line 3. The extra conditions on lines 9 and 15 must be added to
check if the algorithm is currently processing an automaton that has been for-
ward called. To better illustrate how forward calls are made by this algorithm
consider the partial cascade of simplified automata that were extracted from our
system and are shown in Fig. 1. The complexity of these automata have been
reduced considerably to illustrate how the algorithm works.

1 for each automaton i in cascade 1..n
2 for each position m in the sentence
3 try automaton i at position m
4 if automaton i makes a forward call to automaton j
5 in cascade i+1..n at position m+k
6 then recursively repeat this algorithm starting at line 3
7 with automaton j and starting position m+k.
8 if automaton i accepts at m + z
9 then if automaton i is a forward call
10 then group (LABEL i tokens m+k..m+z)
11 return to calling automaton at position m+z
12 otherwise group (LABEL i tokens m..m+z)
13 continue to position m+z+1
14 if automaton i halts
15 then if automaton i is a forward call
16 then return to calling automaton at position m+k
17 otherwise remove any groupings made by
18 forward calls and continue to position m+1

The automata would be applied in the order they are listed - LST-NP first,
REL second, PP third and NP last. Square brackets [] around an arc label
indicate a forward call to an automaton located further down in the cascade.
For example, arc DD in LST-NP makes forward calls to the NP, PP, and REL
automata. If there are several forward calls on a single arc, then these forward
calls should also be made in a larger-first order. For example, the [REL] automa-
ton would be called before the [PP] and [NP] automata. Greater than and less
than symbols <...> around an arc label indicate a grouping that has already
been made by a previous automaton. An arc label starting with T: refers to a
part-of-speech tag that was initially assigned. The Default label means that the
associated arc is always taken if no other arc is possible. No tokens are consumed
during a Default transition.

Now consider the following sentence that has been tokenized and part-of-
speech tagged:

J ohn/NNP bought/VBD a/DT television/NN that/WDT includes/VBZ a/DT
remote/NN controller/NN ,/, a/DT DvD/NNP connection/NN which/WDT
is/VBP incompatible/JJ with/IN Susan/NNP ’s/POS DvD/NNP player/NN ,/,
and/CC HDTV/NNP capabilities/NNS ./.

Improving Inter-level Communication in Cascaded Partial Parsers 265

Fig. 1. A cascade of four simplified automata that were extracted from a handcrafted
system of fifty three cascaded automata

T he LST-NP automaton is first tried at positions one through six (John bought a
television that includes), each attempt resulting in a halting state. So processing
continues and LST-NP is tried at position seven. LST-NP first makes a forward
call to the noun phrases automaton (NP) on arc ABLST−NP which consumes
a remote controller with the path ABNP BCNP CCNP CDNP and returns an
NP grouping to the LST-NP automaton. Note that if LST-NP accepts, a remote
controller will be grouped as an NP which will then also be grouped as part
of the LST-NP. LST-NP then consumes the comma with arc BCLST−NP and
calls NP once again which consumes a DvD connection with the same path
as before. LST-NP now makes a call to the relative clause automaton (REL).
REL consumes which with arc ABREL and accepts after making forward calls
to the verb phrase (VP - not shown here) and noun phrase (NP) automata
on arcs BCREL and CDREL, respectively. Note that the NP automaton has
been generalized to recognize simple adjective phrases with the path ABNP

BDNP . When REL accepts in state DREL, it returns to state DLST−NP . If
LST-NP accepts, the following grouping would also be made inside of it: (REL
which (VP is) (NP incompatible)). In an attempt to avoid explicit attachment
decisions, no post verbal prepositional phrases are included in the relative clause.
LST-NP now calls the prepositional phrase automaton (PP) which consumes
with on arc ABPP and makes a forward call to NP which consumes Susan’s

266 S. van Delden and F. Gomez

DvD player with path ACNP CBNP BCNP CCNP CDNP . Finally, LST-NP
consumes the comma-conjunction bigram, and then calls NP which consumes
the final noun phase HDTV capabilities. LST-NP now accepts in state FLST−NP

and groups everything it has consumed as a LST-NP. The sentence after LST-NP
accepts becomes:

J ohn/NNP bought/VBD a/DT television/NN that/WDT includes/VBZ (LST-
NP (NP a/DT remote/NN controller/NN) ,/, (NP a/DT DvD/NNP connec-
tion/NN) (REL which/WDT (VP is/VBP) (NP incompatible/JJ)) (PP with/IN
(NP Susan/NNP ’s/POS DvD/NNP player/NN)) ,/, and/CC (NP HDTV/
NNP capabilities/NNS)) ./.

R EL is the next automaton in the cascade to be processed. REL comes into
a halting state when it is tried at the first four positions in the sentence (John
bought a television). When REL reaches the fifth position, it consumes that
and calls the VP automaton which groups includes. Then a backward reference
is made to LST-NP and the LST-NP grouping that was previously made is
consumed. REL therefore adds the following grouping:

J ohn/NNP bought/VBD a/DT television/NN (REL that/WDT (VP in-
cludes/VBZ) (LST-NP (NP a/DT remote/NN controller/NN) ,/, (NP a/DT
DvD/NNP connection/NN) (REL which/WDT (VP is/VBP) (NP incompati-
ble/JJ)) (PP with/IN (NP Susan/NNP ’s/POS DvD/NNP player/NN)) ,/,
and/CC (NP HDTV/NNP capabilities/NNS)))./.

F inally, the remaining noun and verb phrases are identified by NP and VP in
the final stages of the cascade, resulting in the final partial parse:

(NP John/NNP) (VP bought/VBD) (NP a/DT television/NN) (REL that/
WDT (VP includes/VBZ) (LST-NP (NP a/DT remote/NN controller/NN) ,/,
(NP a/DT DvD/NNP connection/NN) (REL which/WDT (VP is/VBP) (NP
incompatible/JJ)) (PP with/IN (NP Susan/NNP ’s/POS DvD/NNP player/NN
))) ,/, and/CC (NP HDTV/NNP capabilities/NNS))./.

4 Results

The automata in our system were handcrafted while analyzing several sources
such as the Penn Treebank III [6], the WorldBook and Britannica encyclopedias,
and articles from the New York Times. A total of fifty three automata were
created. One hundred new sentences were randomly taken from the 2001 Encarta
encyclopedia for testing. This encyclopedia was chosen as a test bed because it
is a well-written text containing fairly complex sentences. The sentences were
first tagged with Brill’s tagger [3]. However, if a sentence contained incorrect
part-of-speech tags, they were corrected during the evaluation and the sentence
was re-evaluated, to see how well the system performs on correct part-of-speech

Improving Inter-level Communication in Cascaded Partial Parsers 267

tags. On average, each sentence contained 22 words. Results were evaluated using
precision and recall, and are shown in Table 1. There were ten other syntactic
relations that the system identifies that did not appear in the test sentences and
so are omitted here.

Table 1. Results of the Evaluation of the Encyclopedia Encarta

Syntactic Relation Occur Pre Recall

Noun Phrase (NP) 358 98% 98%

Prep. Phrase 264 99% 99%

Verb Phrase 159 100% 100%

Coordinated NP (CNP) 38 100% 100%

Adverb Phrase 25 92% 88%

Relative Clause (RC) 22 100% 100%

Comma Enclosed RC 17 100% 100%

Apposition 15 92% 80%

Infinitive Clause (INF) 15 100% 100%

Lists of NPs INFs or Verb
Clauses

12 85% 92%

Adjective Phrase 12 83% 83%

Coord Verb Clause 11 100% 100%

Two Coor. Verb Clauses 10 100% 100%

Comma Enclosed PP 8 89% 100%

Subordinate Clause 7 100% 86%

Phrasal Preposition 6 100% 100%

ING Clause 5 100% 100%

Comma Enclosed SC 4 100% 100%

Independent Clause 4 100% 100%

Comma Enclosed CNP 3 100% 100%

Comma Enclosed VC 3 100% 100%

Comma Enclosed Reduced SC 3 100% 67%

Time NP 2 100% 100%

Phrasal Subordinate Conjunct. 1 100% 100%

Transitional Phrase 1 100% 100%

Indirect Speech 1 0% 0%

Coordinated PP 1 100% 100%

Even though only one hundred sentences were randomly chosen, the power of
this larger-first cascade with forward-call capabilities was observed several times.
Consider the following three sentences taken from the test set:

(NP Other/JJ successful/JJ writers/NNS) (PP in/IN (NP this/DT school/
NN)) ,/, (CO-REL1 including/VBG (LST-NP1 (NP Catherine/NNP
Aird/NNP) ,/, (NP Reginald/NNP Hill/NNP) ,/, (NP Patri-
cia/NNP Moyes/NNP) ,/, and/CC (NP June/NNP Thomson/NNP
))) ,/, (VP have/VBP) (PP at/IN (NP the/DT center/NN)) (PP of/IN
(NP their/PRP$ works/NNS)) (NP an/DT imperfect/JJ) (PP though/IN

268 S. van Delden and F. Gomez

(NP sensitive/JJ sleuth/NN)) (REL2 whose/WP$ (NP life/NN)
(CC-NP and/CC (NP attitudes/NNS)) (VP are/VBP)) (PP
of/IN (ADV almost/RB) (NP equal/JJ importance/NN)) (PP to/TO (NP
the/DT mystery/NN)) ./.

(NP Other/JJ useful/JJ medical/JJ substances/NNS) (REL1 now/RB
manufactured/VBN) (PP with/IN (NP the/DT aid/NN)) (PP of/IN
(NP recombinant/JJ plasmids/NNS)) (VP include/VBP) (LST-NP1 (NP
human/JJ growth/NN hormone/NN) ,/, (NP an/DT immune/JJ
system/NN protein/NN) (REL1 known/VBN) (PP as/IN (NP
interferon/NN)) ,/, (NP blood-clotting/JJ proteins/NNS) ,/,
and/CC (NP proteins/NNS)) (REL2 that/WDT (VP are/VBP
used/VBN)) (ING in/IN making/VBG (NP vaccines/NNS)) ./.

(CO-PP (PP In/IN (NP large/JJ paintings/NNS)) (REL1 of-
ten/RB encrusted/VBN) (PP with/IN (LST-NP1 (NP straw/NN
,/, (NP dirt/NN) ,/, or/CC (NP scraps/NNS))) (PP of/IN
(NP lead/NN))) ,/, (NP Kiefer/NNP) (VP depicted/VBD) (ING
devastated/VBN (NP landscapes/NNS)) (CC-NP and/CC (NP colossal/JJ
,/, bombed-out/JJ interiors/NNS)) ./.

5 Related Research

More recently the focus in the research community has shifted to learning a
partial parser from a corpus. The paragraphs below explain some of the meth-
ods that have been introduced. Automatically acquiring the rules of a partial
parser have the benefit that minimal linguistic knowledge would be needed to
construct the partial parser. However, unlike part-of-speech tagging paradigms,
our research suggests that rules (or automata) that have been acquired from one
or several sources (learned or hand-crafted) will not incur a dramatic decline
in performance when applied to a new, unseen corpus. The primary benefit of
training a part-of-speech tagger on a particular corpus is so that the likelihood of
the part-of-speech tags for the words in the corpus can be compiled. If the tagger
is applied to a different corpus without re-training, there is usually a noticeable
different in performance primarily because the likelihood of the part-of-speech
categories of words in the new corpus differ. Therefore, training the tagger on
the new corpus will result in better performance on that new corpus. However,
our handcrafted partial parsing automata did not experience a noticeable decline
in performance when tested on new, unseen corpora, suggesting that re-training
or re-learning a partial parser on a new corpus will not see the benefits that
part-of-speech tagging learning approaches have had.

A study by [5] shows that learning a shallow parser has several advantages
over learning a full parser, in particular: each layer of a shallow parser can be
learned separately. The base phrases from a learned full parser were extracted
and compared to that of a learned shallow parser. The results indicated that the
learned partial parser had a higher accuracy in identifying the extracted phrases.

Improving Inter-level Communication in Cascaded Partial Parsers 269

[7] presents a SNoW based learning approach to shallow parsing. The SNoW
(Sparse Network of Winnows) learning architecture is a sparse network of linear
functions over a pre-defined or incrementally learned feature space. Using In-
side/Outside predictors are compared against using Open/Close predictors for
determining noun phrases and subject-verb combinations. Inside/Outside pre-
dictors refer to using O to indicate the current word is outside the pattern; I to
indicate the current word is inside the pattern; and B to indicate the current
word marks the beginning of a pattern which directly follows another pattern.
Open/Closed predictors refer to placing brackets [...] around the pattern. [7]
found that both methods perform about the same for identifying noun phrases,
but Open/Closed outperforms Inside/Outside for subject-verb patterns.

Several learning approaches to memory-based shallow parsing have also re-
cently been developed [10, 8, 2, 4]. [2] use a novel learning method for recognizing
local sequential patterns. Positive and negative evidence from a training corpus
is used to recognize a sequence. For example, is the following sequence of part-
of-speech tags a noun phrase: DT ADJ ADJ NN NNP? This long pattern may
not be in the corpus, however, smaller noun phrases that cover sub-sections of
this pattern may be present, like the prefix DT ADJ ADJ NN and suffix ADJ
NN NNP. When combined, these sub-sections offer positive evidence that the
sequence is a noun phrase. Negative evidence is generated from subparts in the
raw data that do not have the right tag sequence.

[10] explore memory-based shallow parsing on the basis of words alone. Part-
of-speech tags are used to overcome data sparseness, since a sequence of words
is represented as a more general sequence of tags. However, with the abundance
of training material currently available, [10] suggests that this material be used
directly, avoiding an explicit part-of-tagging step. Their results show that at-
tenuated words (descriptive tags that are given to low-frequency or unknown
words to prevent data sparseness) along with gold-standard part-of-speech tags
achieves better results than words, or part-of-speech tags alone.

References

1. S. Abney. Partial parsing via finite-state cascades. In Proceedings of the ESSLLI’96
Robust Parsing Workshop, 1996.

2. S. Argamon-Engelson, I. Dagan, and Y. Krymolowski. A memory-based approach
to learning shallow natural language patterns. Experimental and Theoretical AI,
11:369–390, 1999.

3. E. Brill. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part of speech tagging. Computational Linguistics, 21(4):
543–565, 1995.

4. W. Daelemans, S. Buchholz, and J. Veenstra. Memory-based shallow parsing. In
Proceedings of the 3rd Conference on Natural Language Learning, 1999.

5. X. Li and D. Roth. Exploring evidence for shallow parsing. In Proceedings of the
5th Conference on Natural Language Learning, pages 38–44, 2001.

6. M. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large annotated corpus
of english: the Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

270 S. van Delden and F. Gomez

7. M. Munoz, V. Punyakanok, D. Roth, and D. Zimak. A learning approach to shallow
parsing. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora, pages 168–178, 1999.

8. E. T. K. Sang. Memory-based shallow parsing. Machine Learning Research, 2:
559–594, 2002.

9. S. van Delden and F. Gomez. A larger-first approach to partial parsing. In Proceed-
ings of the 2003 International Conference on Recent Advances in Natural Language
Processing, pages 124–131, 2003.

10. A. van den Bosch and S. Buchholz. Shallow parsing on the basis of words alone:
A case study. In Proceedings of the 40th Annual Meeting of the Association of
Computation Linguistics, pages 433–440, 2002.

11. T. Winograd. Language as a cognitive process: Volume 1, Syntax. Addison-Wesley
Publishing Company, 1983.

12. W. Woods. Transition network grammars for natural language analysis. Commu-
nications of the ACM, 13:591–602, 1970.

Pivotal Synchronization Languages:

A Framework for Alignments

Anssi Yli-Jyrä1 and Jyrki Niemi2

1 CSC - Scientific Computing Ltd.,
Finland

2 Department of General Linguistics,
University of Helsinki, Finland

{aylijyra, janiemi}@ling.helsinki.fi

Abstract. We propose pivotal synchronization languages (PSLs) that
represent alignments of parallel processes. PSLs are closely related to syn-
chronization languages [10], but the strings in PSLs are partitioned into
sequences of pivots. In the partitioned representation, each pivot gathers
and aligns simultaneous process boundaries (starts and terminations).
The paper demonstrates that PSLs (and new join operators) provide
a unified framework for implementing some independent formalisms. In
particular, we show that at least two existing formalisms, generalized syn-
chronization expressions [10] and interleave-disjunction-lock expressions
[8] have PSL-based counterparts. Furthermore, we sketch tentatively a
new formalism that adapts the ideas of the operator of generalized re-
striction [11] to PSLs. All this suggests that the union of these formalisms
might be implementable.

1 Introduction

In its simplest form, a parallel execution consists of two tiers whose elements
are in one-to-one correspondence to each other. Such one-to-one correspondence
pairs constitute the basis for phonological two-level rules used in finite-state
morphology, where executions consist of lexical-surface string pairs such as

k a N p a n
k a m m a n.

Parallel executions are, however, seldom restricted to same-length and fully
aligned relations: One tier may contain orphan elements that do not correspond
to any element in some other tier. Alternatively, an element in one tier can
correspond to a sequence of elements in another tier. In the original two-level
morphology [7], copies of an auxiliary symbol ’0’ are inserted to the strings
to make their lengths superficially equal. Parallel executions that contain com-
plex correspondences require, however, a better representation, because the trick
based on auxiliary zeros does not differentiate all cases.

Generalized synchronization expressions (GSEs) [10] define generalized syn-
chronization languages (GSLs), which implement an expressive representation

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 271–282, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

272 A. Yli-Jyrä and J. Niemi

a aa

b
b

b

a

Fig. 1. A parallel execution

for parallel executions. The basic idea of GSLs is that their tiers contain start
and termination symbols (respectively as and at) of different symbols a ∈ Σ in
the process symbol alphabet Σ. Because each process symbol has a start and
a termination symbol, the correspondences between the tiers can be indicated
more precisely. For example, the string asbs btat asbs at asat as bt bs btat

might encode the parallel execution that is shown in Figure 1. The figure indi-
cates, for example, that the second instance of process b starts after an instance
of process a, spans over two instances of a, and terminates properly inside the
last instance of a.

The strings in GSLs satisfy the start-termination condition (st-condition for
short) according to which the starts and terminations of each process are bal-
anced, and no instance of a process is embedded inside another instance of the
same process. Moreover, we know [10] that GSLs are regular and that the set of
GSLs is closed under concatenation (sequencing), Kleene’s closure (repetition),
and union (selection).

Synchronization languages (SLs) have, however, major problems. First, find-
ing a complete characterization for the SLs [10] has turned out to be more
difficult than one would have expected. Secondly, SLs are designed to express
sequencing, iteration and selection of parallel processes, but it seems that they
cannot express that processes must overlap. This is related to the fact that ev-
ery GSL is closed under a semi-commutativity relation [10] that reduces par-
allelism in the strings. For applications in natural language processing, e.g.
in auto-segmental phonology, it is necessary to express overlap and associa-
tion between simultaneous processes. Thirdly, SLs do not seem to have any
way to express obligatory alignment of simultaneous starts or terminations of
processes.

To be able to express obligatory overlaps and alignments, we have to add
more structure to the representation of parallel processes. This article solves
the problem by introducing pivotal synchronization languages (PSLs), in which
special pivot processes implement alignment points inside strings. The set of
PSLs lends itself to the definition of special formalisms that specify families of
PSLs. Three such formalisms are defined in this paper.

The paper is structured as follows. Section 2.1 contains some formal prereq-
uisites and definitions. In Section 2.2, we discuss some prior work on GSLs.
Section 3 presents the problem with GSLs. Section 4 defines the set of PSLs.
Section 5 develops new join operators. The new operators are used in Section 6 to
define PSL-based versions of three special-purpose formalisms. Section 7 closes
the paper with some general remarks.

Pivotal Synchronization Languages: A Framework for Alignments 273

2 Preliminaries

2.1 Basic Definitions

Let Γ be a finite alphabet. Each symbol a ∈ Γ denotes both the symbol a and
the set {a}. The empty string and the empty language are denoted respectively
as ε and ∅.

Regular Operations. For languages L1 ⊆ Γ ∗ and L2 ⊆ Γ ∗, we have the fol-
lowing standard regular operations: concatenation L1L2, union L1∪L2, Kleene’s
closure L∗

1, positive closure L+
1 = L1L

∗
1. relative complement L1\L2 and intersec-

tion L1 ∩L2. The shuffle of two strings u, v ∈ Γ ∗ is u v = {u1v1u2v2 . . . unvn |
ui ∈ Γ ∗, vi ∈ Γ ∗, u = u1u2 . . . un, v = v1 . . . vn}. The shuffle of languages L1 and
L2 is {u v | u ∈ L1, v ∈ L2}. Inverse of a relation R ⊆ Γ ∗ × Δ∗ is denoted by
R−1.

For any alphabet Γ and subset Δ ⊆ Γ , define homomorphism dΔ : Γ ∗ →
(Γ\Δ)∗ in such a way that dΔ(uv) = dΔ(u)dΔ(v) for all u, v ∈ Γ ∗ and that
dΔ(a) = ε for all a ∈ Δ, and dΔ(a) = a for all a ∈ Γ\Δ.

Starts and Terminations. For any process alphabet Γ , denote Γs = {as|a ∈
Γ}, Γt = {at|a ∈ Γ} and Γst = Γs ∪ Γt. Symbols as and at denote the start
and the termination of process a, for any a ∈ Γ . For any language L ⊆ Γ ∗

st let
alpha(L) denote the smallest Ω ⊆ Γ such that L ⊆ Ω∗

st.

The Total Process Alphabet. Let the total process alphabet be A. Symbols
φ, σ ∈ A have special interpretations that will be presented later in the paper.
The external process alphabet is Σ = A\{φ, σ}. Let CΩ ={c, [c, 1], [c, 2] | c∈Ω}.

St-Condition. The st-condition for languages L ⊆ Σ∗
st was defined in [10].

Intuitively, it means that, in strings, (i) every start as of process a ∈ Σ is
followed by a symbol at in such a way that there are no intervening instances of
as, and that (ii) every termination at of process a ∈ Σ is preceded by a symbol
as in such a way that there are no intervening instances of at.

Let B = CA. The st-condition can be defined also for subsets of B∗
st. We

say that string w ∈ B∗
st satisfies the st-condition over Ω ⊆ B, if and only if

w /∈ NSTΩ where

NSTΩ =
⋃

a∈Ω

⋃
c∈C{a}

B∗
st cs (Bst\{ct})∗ (((C{a})st\{ct}) B∗

st)
∗ ∪

(B∗
st ((C{a})st\{ct}))∗ (Bst\{cs})∗ ct B∗

st

A language L ⊂ A∗
st is said to satisfy the st-condition for subset Ω ⊆ A, if, for

every w ∈ L, w /∈ NSTΩ. For every alphabet Ω ⊆ A, define WΩ = Ω∗
st \ NSTΩ.

2.2 Prior Work

Two types of synchronization languages have been defined [10] earlier: (1) re-
stricted synchronization languages (RSLs) and (2) generalized synchronization

274 A. Yli-Jyrä and J. Niemi

languages (GSLs). The RSLs are a proper subfamily of GSLs. All these synchro-
nization languages over Σ are regular subsets of WΣ .

Synchronization languages were defined originally with synchronization ex-
pressions – restricted synchronization expressions (RSEs) and generalized syn-
chronization expressions (GSEs). Both kinds of expressions are built from process
symbols Σ under the operations of sequencing →, join ‖, selection |, intersection
& and repetition ∗. The difference between RSEs and GSEs is that the join oper-
ator of RSEs requires disjoint alphabets for its operands. GSLs are obtained by
generalizing the definition of join to allow shared alphabets while retaining the
st-condition over Σ in the result. The semantics for both kinds of expressions
reduces to regular operations.

Rewriting systems have helped to understand the properties of synchroniza-
tion languages, and they provide a way to rewrite a string representing a parallel
execution into a string with a lower or equal degree of parallelism.

Let Σst be the alphabet of strings. The rewriting system R3 [10] consists of
the rules

asbs ↔ bsas where a �= b and a, b ∈ Σ, (1)
atbt ↔ btat where a �= b and a, b ∈ Σ (2)
bsat → atbs where a �= b and a, b ∈ Σ. (3)

The rules of R3 define a semi-commutation relation on Σ.
The rewriting system R4 contains, in addition to the rules of R3, other rules

like atasbtbs ↔ btbsatas where a �= b and a, b ∈ Σst. Every RSL is closed under
R3 as well as under R4, and every GSL is closed under R3 [10].

It is difficult to characterize RSLs and GSLs with rewriting systems. For
example, Ryl et. al [9] present the following result:

Proposition 1 ([9]). There does not exist any rewriting system R such that
each RSL is closed under R and that each regular st-language closed under R is
a RSL.

Nevertheless, it has been argued that R3 and the set of GSLs are more natu-
ral than R4 and the set of RSL. First, R3 preserves regularity of st-languages
while R4 does not preserve regularity of st-languages in general ([10], p. 74).
Second, Salomaa and Yu ([10], p. 79) show that there is a regular st-language
(bs(asat)∗csbt(asat)∗ct) whose closure under R4 is not an st-language. Third,
every finite st-language closed under R3 is a synchronization language [10].

3 The Problem

From the perspective of natural language processing applications, there is an im-
portant argument against both prior types of SLs: the semi-commutation relation
defined by R3 reduces parallelism, neutralizing certain important structural dis-
tinctions. For example, R3 can rewrite the string asbsatbt as bsasatbt (by rule 1),

Pivotal Synchronization Languages: A Framework for Alignments 275

asbsbtat (by rule 2), bsasbtat (by rules 1 and 2), asatbsbt (by rule 3) or bsbtasat

(by rules 1, 2 and 3), which means that the intended representation of partially
overlapping processes a and b is neutralized.

One could try to insert into the string asbsatbt a third process c that would
coincide with the overlap of a and b. As far as the authors can judge, this does
not seem to work out in practice: the rewriting rules of R3 would move also the
symbols cs and ct. Consequently, bs can undesirably flip over at:

asbscsctatbt → ascsbsatctbt → ascsatbsctbt

In natural language processing, there would be several possible uses for a class
of regular languages that could encode alignments and mandatory parallelism.
For example, if we want to model the phonological sub-theory called Feature
Geometry, associations between overlapping phonological features and tiers must
be expressible. If we want to model phrase structures, segmentation or phonolog-
ical processes with multi-segment changes, we may want to use process symbols
that align to their internal structure. These needs motivate adding more explicit
expressibility of overlaps and alignments to SLs.

4 Pivotal Synchronization Languages

Our approach to the presented problem is to introduce a special process, called
pivot, φ, whose starts and terminations are barriers for local reordering captured
by rewriting systems R3 or R4.

Based on the idea of pivots, we propose a family of synchronization-like
languages: pivotal synchronization languages (PSLs). In contrast to proper syn-
chronization languages, PSLs are not primarily defined using a class of synchro-
nization expressions, but by a set of properties.

Definition 1. The set of pivotal synchronization languages (PSLs) over an
external process alphabet Σ consists of

1. subsets of (φsΣ
∗
t Σ∗

sφt)∗ that
2. satisfy the st-condition over Σ ∪ {φ},
3. are regular, and
4. are closed under the rewriting system R2 comprising rules (1) and (2).

For example, a string of a GSL would now correspond to a string in a PSL as
follows

asbs btat asbs at as at as bt bs btat

φsasbsφtφsbtatφtφsasbsφtφsatφtφsasφtφsatφtφsasφtφsbtφtφsbsφtφsbtatφt

Theorem 1. Pivotal synchronization languages are closed under concatenation,
union, intersection and Kleene’s closure. �

276 A. Yli-Jyrä and J. Niemi

Observation 1. The constant factor φtφs is repeated in strings. A more effi-
cient representation would use a single symbol, but the current representation
is motivated by clarity and the st-property of process symbol φ.

Observation 2. Simultaneous starts or simultaneous terminations can be per-
muted in the pivots. A canonical order for them could optimize the
implementation.

Observation 3. An anonymous reviewer inquired whether PSLs could be useful
in finding a better characterization for synchronization languages in general. In
this paper, we do not explore this interesting question.

5 Defining Join Operators for PSLs

5.1 The Join for Synchronization Languages

In generalized synchronization expressions [10], the extended join L1 ‖ L2 was
defined as (L1 L2) ∩ WΣ = (L1 L2)\NSTalpha(L1)∩alpha(L2).

5.2 Sharing of Pivots

Given two strings u, v ∈ A∗
st whose extended join is nonempty, the length of the

resulting strings are the sum of the lengths of u and v. Because the processes
cannot be embedded, this means that the pivots of the strings are interleaved.
For example, joining two copies of φsasφt φsatφt gives the string φsasφt φsatφt

φsasφt φsatφt. The result would nullify the motivation to use pivots. Pivots were
needed for the alignment of parallel processes and now they do not do it.

The correct definition of the join operator for PSLs requires

1. that the pivots of the strings u and v may be shared (for example, the join
of sets {φsasφt φsatφt} and {φsbsφt φsbtφt} should include string φsasbsφt

φsatbtφt).
2. that the result allows also for interleaving of the pivots (for example, the

join of sets {φsasφt φsatφt} and {φsbsφt φsbtφt} should include also strings
φsasφt φsbsφt φsatbtφt, φsasφt φsatφt φsbsφt φsbtφt and φsasφt φsbsφt

φsatφt φsbtφt).

The shuffle operator seems incapable of handling the resulting complex op-
eration. The sharing can be implemented with an intersection-like operation
and the interleaving can be implemented with latent pivots. Language (φsφt)∗

could be added freely in places where unknown pivots could be interleaved
later. With latent pivots, the input string φsasφtφsatφt expands to the language
(φsφt)∗φsasφt(φsφt)∗φsatφt(φsφt)∗. The expanded strings allow for interleaving
of pivots, by reducing the interleaving to sharing.

5.3 Merging the Contents of Pivots

While the pivot structure φ is shared under join, the contents of the corre-
sponding pivots should be always merged. For example, the join of languages

Pivotal Synchronization Languages: A Framework for Alignments 277

{φsasφtφsatφt} and {φsbsφt φsbtφt} should contain the R2 closure of φsasbsφt

φsatbtφt. Moreover, the join of languages {φsφt φsφt} and {φsasφt φsatφt}
should include string φsasφt φsatφt. Merging is more than intersection, but it
can be implemented easily by combining intersection, substitutions and inverse
substitutions. This approach will be used in Formula (4) where some further
ideas, called ’reservations’ and ’aligned processes’ are also implemented.

Reservations. We want to have control over the merging. In the so-called
IDL-expressions, we will need to implement an operator that locks the string
so that further merges and interleaves inside the string are no more possible.
To implement this, we will add, by default, reservations σs and σt for possible
merges in the strings. For example, the sets of pivots φsσ

∗
sasσ

∗
sφt and φsσ

∗
sbsσ

∗
sφt

are merged by replacing σs once with bs in the strings of the first set and with
as in the strings of the second set, resulting into the set of pivots φsσ

∗
s (asσ

∗
sbs ∪

bsσ
∗
sas)σ∗

sφt.
For any subset Ω ⊆ A\{φ}, let PΩ = (φsΩ

∗
t Ω∗

sφt)∗. By Definition 1, PSLs are
subsets of PΣ . PSLs with reservations are subsets of PΣ∪{σ}. The reservations
need to be removed in the completion of the construction of PSLs. We will do
this by discarding the strings that contain symbols σs and σt.

Aligned Processes. In section 6.3, we will define a formalism with a so-called
alignment operator that resembles the join when the alphabets of the operand
languages are disjoint, but intersection if the alphabets of the operand languages
are equivalent. The operator uses information on the shared symbols between
the alphabet. In the result, the instances of the shared processes must coincide
(they will be called aligned processes), while the rest correspond to reservations
in one language and existing symbols in the other.

5.4 The New Join Operators

The Intersecting Join Operator. There is, indeed, a general operator that
can be used both for defining the join with aligned processes as well as the
normal join. This new operator, called intersecting join, is defined as

L1‖ΩL2 = m−1
3 (m1,Ω(L1) ∩ m2,Ω(L2) \ NSTCΣ) (4)

where the parameter Ω ⊆ Σ is used to specify processes whose instances are
interleaved, Σ1 = alpha(L1), Σ2 = alpha(L2), and the substitutions m1,Ω, m2,Ω,
m3 : A∗

st → 2B∗
st are defined according to Table 1.

The Subtracting Join Operator. One more variant of the intersecting join
operator is needed in section 6.3. This variant is called subtracting join, and is
defined as

L1\\ΩL2 = m−1
3 (m1,Ω(L1) \ m2,Ω(L2) \ NSTCΣ)

where Ω, m1,Ω, m2,Ω, m3, Σ1 and Σ2 are as in the definition of intersecting
join. If Ω = ∅, the operation reduces to subtraction. Otherwise, the result will
contain any string u ∈ L1, if, for all strings v ∈ L2, {u}‖Ω{v} = ∅.

278 A. Yli-Jyrä and J. Niemi

Table 1. The table contains definitions for the set-valued mappings m1,Ω, m2,Ω, m3 :
Ast → 2B∗

st used in the definition of the join operators. These are extended to substi-
tutions A∗

st → 2B∗
st in the usual way.

w m1,Ω(w) m2,Ω(w) m3(w)

ax ∈ {φs, φt} {ax} {ax} {ax}
ax ∈ Σst {[a, 1]x} {[a, 2]x} {[a, 1]x, [a, 2]x}
σx {σx}∪{[a, 2]x |a ∈ Ω} {σx}∪{[a, 1]x |a ∈ Ω} {σx}

5.5 Putting It All Together

With the reservations for further merges inside pivots, sequences of latent pivots
belong to the language φsΛ

∗φt, where

Λ = σ∗
sφtφsσ

∗
t .

Every process letter a ∈ Σ corresponds to the language

φsσ
∗
sasΛ

+atσ
∗
t φt.

A language with reservations can be locked by intersecting it with
φsLockFilterφt, where

LockFilter = (Σ+
s φtφsΣ

+
t)∗.

In the following definitions for PSL-based formalisms, we have chosen to add
the start φs of the initial pivot and the termination φt of the final pivot in the
last step of the induction that returns the language denoted by an expression.

6 Applications: PSL-Based Formalisms

6.1 Synchronization Expressions

We can define synchronization expressions for pivotal synchronization languages.
However, these expressions can specify only a subset of all possible PSLs.

Definition 2. The set of basic synchronization expressions for PSLs over al-
phabet Σ, SE(Σ), is the smallest subset of (Σ ∪ {∅, →, &, |, ‖, ∗, (,)})∗ defined
inductively by the following set of rules. The PSL denoted by α ∈ SE(Σ) is
φs(L(α) ∩ LockFilter)φt.

1. {∅} ∪ Σ ⊆ SE(Σ) and L(∅) = ∅.
2. if a ∈ Σ, then a ∈ SE and L(a) = σ∗

sasΛ
+atσ

∗
t .

3. If α1, α2 ∈ SE(Σ), then {(α1→α2), (α1&α2), (α1|α2), (α1‖α2)} ⊆ SE(Σ) and
(a) L(α1→α2) = L(α1)Λ∗L(α2)
(b) L(α1&α2) = L(α1) ∩ L(α2)
(c) L(α1|α2) = L(α1) ∪ L(α2)
(d) L(α1‖α2) = Λ∗L(α1)Λ∗ ‖Σ Λ∗L(α2)Λ∗.

4. If α ∈ SE(Σ), then (α∗
1) ∈ SE(Σ) and L(α∗) = (Λ∗L(α)Λ∗)∗.

Pivotal Synchronization Languages: A Framework for Alignments 279

6.2 Interleave-Disjunction-Lock Expressions

Interleave-disjunction-lock (IDL) expressions [8] have been used to obtain com-
pact representations for finite languages in natural language generation systems.
IDL-expressions represent choices of phrases and their relative ordering by means
of a concatenation operator ·, and three additional operators: interleave ‖, dis-
junction ∨ and lock ×.

The interleave operator differs from shuffle by interacting with the lock oper-
ator. The lock operator is used to make a sequence of phrases look like a single
unit when the two strings are interleaved. For example, the expression

(×(this bus · stops) · there)) ‖ at 5 p.m. (5)

where Σ = {this bus, stops, there, at 5 p.m.} defines a set that contains the
strings at 5 p.m. this bus stops there, this bus stops at 5 p.m. there, and this bus
stops there at 5 p.m., but not this bus at 5 p.m. stops there. Figure 2 illustrates
how the phrases correspond to processes.

PSLs can be used to implement expressions similar to IDL-expressions. The
original compilation method for IDL-expressions was based on an algorithm that
directly synthesized an automaton. When the string it stops there now is en-
coded as a string of a PSL, it will look like φsitsφt φsittstopssφt φsstopsttheresφt

φstheretnowsφt φsnowtφt. In the following, we will implement IDL-expressions
on the basis of this correspondence.

Definition 3. The set of PSL-based IDL-expressions over alphabet Σ, IDL(Σ),
is the smallest subset of (Σ ∪ {[,], ·, ∨, ‖, ×, (,)})∗ defined inductively by the fol-
lowing set of rules. The PSL denoted by α ∈ IDL(Σ) is φsL(×α)φt.

1. if a ∈ Σ, then [a] ∈ IDL(Σ) and L([a]) = (σ∗
sasΛ

+atσ
∗
t) ∩ LockFilter.

2. If α ∈ IDL(Σ), then (×α) ∈ IDL(Σ) and L(×α) = L(α) ∩ LockFilter.
3. If α1, α2 ∈ IDL(Σ), then {(α1 · α2), (α1 ∨ α2), (α1‖α2)} ⊆ IDL(Σ), and

(a) L(α1 · α2) = L(α1)Λ∗L(α2)
(b) L(α1 ∨ α2) = L(α1) ∪ L(α2)
(c) L(α1‖α2) = Λ∗L(α1)Λ∗ ‖Σ Λ∗L(α2)Λ∗.

Observation 4. The iteration operator that is missing from the original IDL-
expressions could be introduced to our PSL-based definition.

there

at_5_p.m.

this_bus
stops

Fig. 2. Interpreting the interleave operator in terms of possible executions

280 A. Yli-Jyrä and J. Niemi

6.3 Restriction Expressions

The Definition. Let Π be an alphabet such that ♦ /∈ Π . For each g ∈ N,
the operator of generalized restriction [11] involves (in addition to the universal
language Π∗) two languages:

– set L1 ⊆ Π∗(♦Π∗)g, called a generalized precondition
– set L2 ⊆ Π∗(♦Π∗)g, called a generalized postcondition.

The operator maps these arguments to the subsets of Π∗, as follows

generalized-restriction(Π, ♦, L1, L2) = Π∗− d{♦}(L1 − L2). (6)

The operator has two equivalent syntactic forms, L1
g♦⇒ L2 and L2

g♦⇐ L1.

An Example Application. Generalized restrictions can be used to compile
classical two-level rules [7] that have been a very successful formalism in com-
putational morphology. Two-level rules — context restrictions (=> rules) and
surface coercions (<= rules) — specify properties of strings over a pair-symbol
alphabet Π = Σ1 × Σ2 = {a : b | a ∈ Σ1, b ∈ Σ2}. Without loss of generality,
we can assume Σ1 ∩ Σ2 = ∅. For example, the two-level rule

N:m <=> p:p (7)

specifies, by the convention [7], that symbol N pairs with m if and only if it is im-
mediately followed by the pair p:p. Rule (7) reduces to the following generalized
restrictions

Π∗ ♦ N:m ♦ Π∗ 2♦⇒ Π∗ ♦ {N:x | x ∈ Σ2} ♦ p:p Π∗ (8)

Π∗ ♦ N:m ♦ Π∗ 2♦⇐ Π∗ ♦ {N:x | x ∈ Σ2} ♦ p:p Π∗. (9)

The PSL-Based Reformulation

Definition 4. The set of PSL-based restriction expressions over alphabet Σ,
RX(Σ), is the smallest subset of (Σ ∪ {..., ~, ∗, |, ::, :!, �, ∇, ⇒, (,)})∗ defined
inductively by the following set of rules. The corresponding PSL denoted by
α ∈ RX(Σ) is φs(L(α) ∩ LockFilter)φt.

1. ... ∈ RX(Σ) and L(...) = Λ∗.
2. Σ ⊆ RX(Σ) and L(a) = σ∗

sasΛ
+atσ

∗
t .

3. If α ∈ RX(Σ), then {(α∗), (~α)} ⊆ RX(Σ) and
(a) L(α∗) = L(α)∗

(b) L(~α) = (σ∗
sΣ∗

sΛΣ∗
t σ∗

t)∗\\(Σ\alpha(L(α)))L(α).
4. If α1, α2 ∈RX(Σ), then {(α1α2), (α1|α2), (α1::α2), (α1:!α2)}⊆RX(Σ) and

(a) L(α1α2) = L(α1)L(α2)
(b) L(α1|α2) = L(α1) ∪ L(α2)

Pivotal Synchronization Languages: A Framework for Alignments 281

(c) L(α1 ::α2) = L(α1)‖Σ\(alpha(L(α1))∩alpha(L(α2)))L(α2)
(d) L(α1 :! α2) = L(α1)\\Σ\(alpha(L(α1))∩alpha(L(α2)))L(α2).

5. If c ∈ Σ and α ∈ RX(Σ) then {(∇cα), (�cα)} ⊆ RX(Σ) and
(a) L(∇cα) = d{cs,ct}(L(α)).
(b) L(�cα) = m−1

3 (m1,alpha(L(α))\{c}(L(α)) \ NSTCΣ).
6. If α1, α2 ∈ RX(Σ) and c ∈ Σ, then (α1

c⇒α2) ∈ RX(Σ) and
L(α1

c⇒ α2) = L (~ (∇c (α1 :! α2))).

The operator ~ presents one way to define the complement of a PSL. The current
definition uses reservations to represent the symbols not in α.

The usual intersection operator is replaced here with alignment :: that is
related to the : operator that creates correspondence pairs in [7]. When the
alphabets of the arguments of :: are disjoint, the operator is similar to join of
synchronization expressions, but if all the symbols in the alphabets are shared,
the operator reduces to intersection. The misalignment operator :! is similar to
:: but it returns the strings of the first operand if they cannot be aligned to any
string in the second operand.

The �-operator is used to expand the reservations in partial descriptions
of a set of parallel executions. Without it, the reservations would not match
to the process symbols already in use in the language α. The start and the
termination of an instance of c have the same function as the pair of ♦-symbols
used in generalized conditions of (6). The process c is removed from the strings
by operator ∇, which corresponds to homomorphism d{♦} in (6). By combining
the :!, ∇ and ~ operators, we formulate the generalized restriction operator c⇒
for PSLs.

Example 1. The structure in Figure 1 can now be described very compactly with
the following PSL-based restriction expression:

(a :: b)∇c(((a :: c)(a :: c)(a :: (cc))) :: ((b :: (ccc))(b :: c))).

Example 2. The expression in (8) corresponds to the following restriction ex-
pression:

(�c(...(c :: N :: m)...)) c⇒ �c(...(c :: N)(p :: p)...).

7 Concluding Words

In this paper, we introduced pivotal synchronization languages (PSLs) and pro-
vided PSL-based definitions for new types of join operators: intersecting join and
subtracting join.

Several potential applications for PSLs suggest themselves, e.g. in natural
language processing. We demonstrated that PSLs lend themselves for the refor-
mulation of three special-purpose formalisms: (i) generalized synchronization
expressions, (ii) IDL-expressions, and (iii) restriction expressions. The three
PSL-based formalisms introduced here have already a lot in common and could
be easily unified.

282 A. Yli-Jyrä and J. Niemi

In fact, exploring different PSL-based formalisms may lead to a unified de-
scriptional device for various alignment phenomena. PSLs may have applications
in computational phonology [3] and multi-tiered morphology [6] as well as in
speech annotation [4]. Some variant of the join operator could correspond to
the operator used in describing non-concatenative processes in finite-state mor-
phology [2]. Furthermore, PSLs may have relevance to related frameworks in
computer science [1, 5].

The construction of IDL-expressions and extended two-level expressions has
been initially tested with Xerox finite-state compiler (XFST). Comprehensive
testing would, however, require using an extensible finite-state tool (such as FSA
Utilities). Possible applications of PSLs would presumably have relatively large
process alphabets. Therefore, without optimizations, the currently presented ex-
pressions might not be easy to evaluate.

We did not define expressions that would characterize PSLs. Discovering a
complete set of expressions would help to understand the nature of PSLs better.
Then, pivotal synchronization languages might contribute something to the gen-
eral discussion on synchronization languages and expressions.

References

1. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching.
Information and Computation, 181:57–74, 2003.

2. K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Studies in Com-
putational Linguistics. CSLI Publications, Stanford, CA, USA, 2003.

3. S. Bird and T. M. Ellison. One-level phonology: Autosegmental representations
and rules as finite automata. Computational Linguistics, 20(1):55–90, 1994.

4. S. Bird and M. Liberman. A formal framework for linguistic annotation. Speech
Communication, 33:23–60, 2001.

5. J. M. Hélary, A. Mostefaoui, and M. Raynal. Interval consistency of asynchronous
distributed computations. Journal of Computer and System Sciences, 64:329–349,
2002.

6. G. A. Kiraz. Multitiered nonlinear morphology using multitape finite automata: A
case study on Syriac and Arabic. Computational Linguistics, 26(1):77–105, 2000.

7. K. Koskenniemi. Two-level morphology: a general computational model for word-
form recognition and production. Number 11 in Publications of the Department of
General Linguistics, University of Helsinki. Yliopistopaino, Helsinki, 1983.

8. M.-J. Nederhof. IDL-expressions: A formalism for representing and parsing fi-
nite languages in natural language processing. Journal of Artificial Intelligence
Research, 21:287–317, 2004.

9. I. Ryl, Y. Roos, and M. Clerbot. About synchronization languages. In L. Brim
et al., editors, MCFS’98, number 1450 in LNCS, pages 533–542. Springer-Verlag,
Berlin Heidelberg, 1998.

10. K. Salomaa and S. Yu. Synchronization expressions with extended join operation.
Theoretical Computer Science, 207:73–88, 1998.

11. A. M. Yli-Jyrä and K. Koskenniemi. Compiling contextual restrictions on strings
into finite-state automata. In L. Cleophas and B. W. Watson, editors, The Eind-
hoven FASTAR Days, Proceedings, Computer Science Reports 04/40, Eindhoven,
The Netherlands, September 3–4 2004. Technische Universiteit Eindhoven.

A Complete FS Model for Amharic

Morphographemics

Saba Amsalu and Dafydd Gibbon

Universität Bielefeld, Germany

Our aim was to develop a complete morphographemic model for Amharic, the
official language of Ethiopia, which urgently needs computational linguistic tools
for information retrieval and natural language processing. Amharic is a Semitic
language, with SOV word order and a complex morphology with consonantal
roots and vowel intercalation, extensive agglutination, and both consonantal and
vocalic stem modification. Previous computational models of Amharic lexemes
are fragmentary, being restricted to affix stripping and radical extraction [2],
[4], [3], [1]. The verb analysis by Fissaha and Haller [8] is the only previous FS
based approach. FS and related approaches to other Semitic languages have also
tended to concentrate on selected features of theoretical interest, such as the
well–known analyses of Arabic intercalation [9], [5], [10].

In contrast, we have developed the first complete FS generator/analyser of
Amharic morphology for all parts of speech (POS), including loan and native noun
morphology, biradical, triradical and quadradical verb root generation, with vowel
intercalation, conditioned internal vowel changes, agglutinative affixation of 13 af-
fix classes, and full and partial reduplication. Phonological gemination is not rep-
resented in the Ethiopian Fidel orthography, and thus is not implemented.

Our development approach is linguistic rather than statistical, and includes
novel features for modelling intercalation and reduplication. The analysis results
are evaluated for precision and recall. The software used is XFST, with SERA
(System for Ethiopian Representation in ASCII) romanisation. A port to Fidel
Unicode is in progress.

Part of the system architecture is outlined in the activity diagram in Figure 1,
which shows the FST verb cascade in generation direction, but is interpretable
in both directions. Biradicals are generated from triradicals and quadradicals are
independently generated; cf. [11], [6], [7], then vowels are intercalated, affixes are
concatenated and phonological alternations processed.

Amharic has noun stem reduplication (with epenthetic vowel) (cf. Figure 2).
A shell wrapper outside the FS system feeds XFST with a stream of words; the
actual reduplication is then performed in the FS context using a novel bracketing
‘diacritic’ convention (not ‘flag diacritic’ [5]). Formally, this is a heuristic which
treats the surface lexicon as the union of singleton sets of surface forms and
applies the reduplication FST to the singleton sets individually.

For evaluation purposes we generate/analyse all POS separately. The FSTs
for each POS are not unioned, because the individual FSTs are to be inte-
grated into an FST chunk parser/tagger. Each POS is evaluated individually
on a test corpus for standard recall and precision scores (ambiguity scores are
currently implicit in the precision values). Recall/precision values for small finite

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 283–284, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

284 S. Amsalu and D. Gibbon

Fig. 1. FST cascade architecture Fig. 2. Reduplication cascade

POS sets are, trivially, 1/1; verbs attain 0.94/0.54, nouns attain 0.85/0.94, and
adjectives 0.88/0.81. The lower precision value for verbs is due to affix ambigu-
ities (morphological syncretism).

References

1. N. Alemayehu and P. Willett. Stemming of Amharic words for information re-
trieval. Literary and Linguistic computing, 17(1):1–17, 2002.

2. L. A. Atalech Alemu and G. Eriksson. Building an Amharic lexicon from parallel
texts. In Proceedings of: First Steps for Language Documentation of Minority
Languages: Computational Linguistic Tools for Morphology, Lexicon and Corpus
Compilation, a workshop at LREC, Lisbon, 2004.

3. A. Bayou. Developing automatic word parser for Amharic verbs and their deriva-
tion. Master’s thesis, Addis Ababa University, Addis Ababa, 2000.

4. T. Bayu. Automatic morphological analyzer for Amharic: An experiment involving
unsupervised learning and autosegmental analysis approaches. Master’s thesis,
Addis Ababa University, Addis Ababa, 2002.

5. K. Beesley and L. Karttunen. Finite State Morphology. CSLI, Stanford, 2003.
6. M. L. Bender, H. Fulas, and C. H. Dawkins. Amharic Verb Morphology. Michigan

State University, African Studies Center, East Lansing, 1978.
7. C. H. Dawkins. The Fundamentals of Amharic. Sudan Interior Mission, Addis

Ababa, Ethiopia, 1960.
8. S. Fissaha and J. Haller. Amharic verb lexicon in the context of machine transla-

tion. TALN, 2003.
9. M. Kay. Nonconcatenative finite–state morphology. In EACL Proceedings, pages

2–10, 1987.
10. S. Reinhard and D. Gibbon. Prosodic inheritance and morphological generalisa-

tions. In Proceedings of EACL, 1991.
11. B. Yimam. Root reductions and extensions in Amharic. Ethiopian Journal of

Languages and Literature, 9:56–88, 1999.

Tagging with Delayed Disambiguation

José M. Castaño and James Pustejovsky

Department of Computer Science
Brandeis University, Waltham, MA, 02453
{jcastano, jamesp}@cs.brandeis.edu

Abstract. We discuss problems inherent in domain specific tagging
(biomedical domain) and their relevance to tagging issues in general.
We present a novel approach to this problem which we call tagging
with delayed disambiguation (TDD). This approach uses a modified,
statistically-driven lexicon together with a small set of morphological,
heuristic, and chunking rules which are implemented using finite state
machinery. They make use of both delayed disambiguation and the con-
cept of tag underspecification as an ordered sequence of tags.

Current tagging techniques are very well established and there seems to be little
room to improve the standard accuracy of 96%-97%. The availability of off-the-
shelf taggers trained on significantly large corpora and their ability to be re-
trained on any tagset and corpus are the determining factors for their extensive
use and popularity. However when tagging a new domain, the performance drops
significantly, e.g., TnT trained on the WSJ, has an accuracy of 85.19% on the
GENIA Corpus.

Our approach to tagging and chunking within the bio-medical domain was
motivated by practical concerns, namely targeted information extraction, in our
MEDSTRACT project. This domain has been recognized as being particularly
impervious to robust entity extraction [2], and our initial impression was that
none of the off-the-shelf taggers we tried was performing well on this corpus. We
present a novel approach called Tagging with Delayed Disambiguation (TDD),
which uses a quantitatively derived lexicon and hand-crafted chunking rules,
using finite state machinery. It has been a popular approach to address chunk-
ing as a tagging problem (e.g., CoNLL-2000 Shared Task on Chunking). The
approach we have taken for tagging disambiguation is just the opposite, where
disambiguation is delayed and done while chunking (if it is done at all). The key
concepts in this approach are: (a) treating regular ambiguity in the language as
underspecification; (b) delaying the disambiguation process, and resolving the
ambiguities as chunking is performed.

Chunking rules (finite state patterns) refer to prefixes in an ordered sequence
of tags (e.g., “VBN VBD”; past tense vs. past participle) which are interpreted
as underspecified tags. They are implemented using 195 left handle rules. We
also use a small set of 28 heuristic disambiguation rules à la Brill and a simple
morphological module (33 suffixes and 44 prefixes). The system reflects common
linguistic knowledge of English.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 285–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

286 J.M. Castaño and J. Pustejovsky

The availability of GENIA [1] and the corpus of the UPenn Biomedical Infor-
mation Extraction Project (BioPenn) [4] made it possible to train taggers in the
Biological domain and allowed us to evaluate the performance of our approach
against reference corpora.The first set of tests evaluated the TDD approach us-
ing the modified Brill lexicon (DD1) and the TnT tagger trained in the WSJ
(as it comes with the distribution, TnT1). A second set of tests evaluated our
approach compared with TnT trained on the WSJ and a set of approximately
1,000 abstracts from the GENIA corpus (TnT-2). The evaluation was performed
on the whole set of the GENIA corpus, so there were 1,000 abstracts that were
not used for training or deriving the lexicon of TnT. In TDD-2, we replaced
Brill’s Lexicon by the lexicon obtained from the training of TnT-2.

Table 1. Accuracy Results

Corpus TDD-1 TnT-1 TDD-2 TnT-2

GENIA 95.18 85.19 97.92 97.62
WSJ 95.35 97.11 95.78 97.33
BioP 94.60 87.52 95.76 94.55

TDD-2 obtains state of the art accuracy (97.92%) on the GENIA corpus. The
performance is lower on the WSJ, but it is remarkably good (95.78%) considering
that, during the development we did not take into account any properties of this
corpus. Our approach is similar to the one presented by [3], in the sense that it
uses hand-crafted rules and keeps multiple tags. It is different however, because
we use a statistically derived lexicon, and employ several disambiguation rules,
and the evaluation is made against publicly available corpora (GENIA and WSJ),
with the tagsets used in those corpora.

The rule-based, manually encoded tagger adapts itself and is easier to modify
for specific purposes and domains. The annotated corpus can be seen as the
desired output. It appears that a TDD approach provides a more stable result,
with no need of retraining, while being less sensitive to the sparse data effect,
guideline criteria and the lexicon employed .

Acknowledgements

This research has been funded by NLM grant 5R01 LM0006649-5.

References

1. N. Collier, H. Mima, S. Lee, T. Ohta, Y. Tateisi, A. Yakushiji, and J. Tsujii. The
GENIA project: Knowledge acquisition from biology texts. Genome Informatics,
11:448–449, 2000.

2. L. Hirschman, J. C. Park, L. W. J. Tsujii, and C. H. Wu. Accomplishments and
challenges in literature data mining for biology. Bioinformatics Review, 18(12),
2002.

Tagging with Delayed Disambiguation 287

3. C. Samuelsson and A. Voutilainen. Comparing a linguistic and a stochastic tagger.
In P. R. Cohen and W. Wahlster, editors, Proceedings of the ACL’97, pages 246–253,
Somerset, New Jersey, 1997. Association for Computational Linguistics.

4. S.Kulick, A.Bies, M.Liberman, M.Mandel, R.McDonald, M.Palmer, A.Schein, and
L.Ungar. Integrated annotation for biomedical information extraction. In
NAACL/HLT Workshop on Linking Biological Literature, Ontologies and Data-
bases: Tools for Users, pages 61–68, 2004.

A New Algorithm for Unsupervised Induction

of Concatenative Morphology

Harald Hammarström

Chalmers University of Technology
412 96 Gothenburg

Sweden
harald2@cs.chalmers.se

1 Introduction

This paper sketches a new algorithm for unsupervised induction of concatenative
morphology. The algorithm differs markedly from previous approaches in both
segmentation and paradigm induction. It is illustrated here with the respect to
suffixes, using the following notation:

– W : the set (not bag) of words in the corpus
– s � w: s is a suffix of the word w i.e there exists a (possibly empty) string x

such that w = xs
– Stems(s) = {x|xs ∈ W}: the set of all strings (“stems”) that make a word

in the corpus if appended with s
– f(s) = |{w ∈ W |s�w}|: the number of words with suffix s (equals |Stems(s)|)
– si(w): the suffix of w that begins at position 0 ≤ i ≤ |w|
– Q(w) = {si(w)|i < |w|}: the set of (non-empty) suffixes of s
– S =

⋃
w∈W Q(w): all suffixes in the corpus

2 Segmentation

The segmentation takes a corpus as input and output a ranked list of (all)
suffixes. The ranking is meant to say how salient a suffix is for the language of
the corpus, and is computed in three steps:

1. Relative Frequency Increases: Define Z : S × W → Q+ ∪ {0}:

Z(s, w) =

⎧⎨⎩
0 if not s � w
1 if s = s0(w)

f(si)
f(si−1) if s = si(w) for some 0 < i < |w|

(1)

Note that f , and hence Z, depends on W .
2. Accumulation: Calculate ZW : S → Q+:

ZW (s) =
∑

w∈W

Z(s, w) (2)

3. Re-scale: Scale on suffix-length by a parametre p = 2: ZW (s) = |s|p ·ZW (s)

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 288–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A New Algorithm for Unsupervised Induction of Concatenative Morphology 289

3 Paradigm Induction

The paradigm induction phase outputs a ranked list of paradigms given a ranked
list of segmented suffixes. By paradigm we simply mean a non-empty set of
suffixes, and the ranking is meant to convey how salient a declension pattern
is for the language in question. At first glance, the task of finding paradigms
looks exceedingly difficult since the number of theoretically possible paradigms
is exponential in the number of suffixes, and paradigms in real languages are
often not mutually disjoint. Moreover, in a corpus of a real language we cannot
expect to rely on there existing words that occur in all its forms.
1. Testing Paradigm Heuristic: Suppose we have a hypothesis of a paradigm

P . We give a test metric using the idea that suffixes of P ought to show up
on the “same stems”. First, for each suffix x ∈ S, define its quotient function
Hx(y) : S → [0, 1] as:

Hx(y) =
|{z|∃z(z ∈ Stems(x) ∧ zy ∈ W)}|

|Stems(x)| (3)

Construct a rank by summing the quotient functions of the members of P :

VP (y) =
∑

x �=y∈P

Hx(y) (4)

The RankP (x) : S → N is then simply |{y|VP (y) > VP (x)}|.
Now, the test V I(P) is a measure of how “high up” the sum of ranks of the
members of P are, compared to the optimal sum (which depends on |P | and
is 0 + . . . + |P | − 1):

V I(P) =
|P |(|P | − 1)

2
∑

x∈P rankP (x)
(5)

2. Gradient Search: It is intractable to list all hypotheses of paradigms
P , thus we suggest a way to “grow” paradigms. Start with a one mem-
ber paradigm and greedily improve the V I-score, by successively adding
or taking away one suffix at a time (until the score doesn’t improve by a
one-member change):

G(P) = argmaxp∈{P}∪{P xor s|s∈S}V I(p) (6)

G∗(P) =
{

P if G(P) = P
G∗(G(P)) if G(P) �= P

(7)

Where P xor s means P \ {s} if s ∈ P and P ∪ {s} if s /∈ P .

Naturally, the induced paradigms A = {G({s})|s ∈ S} are all those that can
be grown from (at least one) suffix in the corpus, and finally we rank them by
their V I-score and average “suffixness” of its members:

R(P) : A → Q+ ∪ 0

R(P) =
V I(P)

|P |
∑
s∈P

ZW (s) (8)

Morphological Parsing of Tone: An Experiment

with Two-Level Morphology on the Ha Language

Lotta Harjula

Institute for Asian and African Studies, University of Helsinki, Finland

Morphological parsers are typically developed for languages without contrastive
tonal systems. Ha, a Bantu language of Western Tanzania, proposes a challenge
to these parses with both lexical and grammatical pitch-accent [1] that would,
in order to describe the tonal phenomena, seem to require an approach with a
separate level for the tones. However, since the Two-Level Morphology [3] has
proven successful with another Bantu language, Swahili [2], it is worth testing
its possibilities with the tonally more challenging Bantu languages.

Lexical accents are naturally marked in the lexicon. The lexical accents of
nouns and other word classes (except verbs) are lexically associated with certain
vowels. Nominal lexical accents are only moved in restricted contexts which are
easily defined in rules.

On the other hand, lexical accents of verbs are not underlyingly associated
with any certain vowel but the association is determined by the complete verbal
form. In addition to the lexical accents, verbal forms may have grammatical
accents, realised either on the prefixes, or on the first or the second mora of
the stem. The lexical accent or the absence of the accent, together with the
grammatical accents, defines the grammatical forms of the verbs. Both lexical
and grammatical accents are realised as high tones on certain tone-bearing units.

There are also some other grammatical tonal elements, called index forms
that have floating accents, i.e. accents that are not underlyingly associated with
any certain vowel. The accents of these forms are realised as a high tone either
on the initial vowel or on the first vowel of the stem of the following word. When
the possible lexical accent of the noun stem falls on the syllable following the
accent of the index, the vowel of the augment is lengthened.

Thus, the morphological parser for Ha should be able to handle several differ-
ent tonal phenomena: 1) the lexical accents, which are deleted or moved in some
grammatical forms; 2) the grammatical accents and all their possible places of
realisation; and 3) the floating accents of the index forms.

This experiment shows that it is indeed possible to morphologically parse a
language with both lexical and grammatical accents with Two-Level Morphology
rules. The basic idea is to mark the possible vowels on which the grammatical
or moved lexical accents may fall in the lexicon, and write rules that allow the
positions to be realised as surface accents when the appropriate tense marker or
other segmental element is present. When there is no segmental but only tonal
marking of a tense, the macrostem is lexically prefixed with a symbol that can
be used as a context in the rules. Also, some of the grammatical accents may

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 290–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Morphological Parsing of Tone 291

also be marked in the lexicon. For example, accents falling on verbal prefixes are
lexically marked in a sublexicon which is only used with certain verbal forms.

However, the parsing formalism presented here does not always describe the
tonal phenomena that are found in the Ha language. With some type of accents
the lexical accents can be mapped directly to the surface realisations, but with
others the interaction of the accents causes changes on the segmental level, or
the morphophonemic changes of the segmental level affect the realisations of the
accents. Thus, for proper description of the language, a formalism which would
allow the tones or accents to be mapped with the segmental level only after
certain rules have applied in the two levels separately, is required.

References

1. L. Harjula. The Ha Language of Tanzania: Grammar, Texts, and Vocabulary. Ruedi-
ger Koeppe Verlag, Cologne, 2004.

2. A. Hurskainen. Swahili Language Manager: A storehouse for developing multiple
computational applications. Nordic Journal of African Studies, 13(3):363–397, 2004.
Also in: www.njas.helsinki.fi.

3. K. Koskenniemi. Two-level morphology: A general computational model for word
form recognition and production. Number 11 in Publications of the Department of
General Linguistics. University of Helsinki, 1983.

Describing Verbs in Disjoining Writing Systems

Arvi Hurskainen, Louis Louwrens, and George Poulos

Institute for Asian and African Studies, University of Helsinki, Finland
University of South Africa, Pretoria, South Africa

Many Bantu languages, especially in Southern Africa, have a writing system,
where most verb morphemes preceding the verb stem and some suffixes are
written as separate words. These languages have also other writing conventions,
which differ from the way they are written in other related languages. These
two systems are conventionally called disjoining and conjoining writing systems.
Disjoining writing can be considered simply as an under-specified way of writing,
but for computational description it is a challenge, especially if the system allows
only continuous sequences of characters to be recognised as units of analysis. In
order to reduce unnecessary ambiguity, verb morphemes should be isolated from
such strings of characters that are real words.

There are at least three approaches for handling disjoining writing. (a) Each
continuous string of characters is considered a ’word’ and ambiguity is resolved
after morphological description. (b) Disjoining writing is first converted to con-
joining writing, in other words, it is ’normalised’, and morphological description
is carried out on the basis of this new writing form [2]. (c) The verbs, together
with disjoint prefixes and suffixes, are described directly as verb structures.

Here we are concerned with the third method.
The most efficient method of handling verbs in a disjoining writing system

is to describe them directly without pre-processing. Below we shall discuss this
method by using Northern Sotho language [3] as a test case. The aim is to
construct a full scale implementation that includes all verb structures and all
verb stems of the language.

In addition to disjoining writing, the description of the verb involves also such
non-concatenative features as reduplication of the verb stem and the constrain-
ing of co-occurrence of such verb morphemes that are on different sides of the
verb stem. All these phenomena are handled in the following implementation,
which makes use of the finite state methods developed by Xerox [1]. A very brief
skeleton lexicon of the verb bona (to see) is described below.

Multichar_Symbols
^[^]
@P.PAST.ilE@ @R.PAST.ilE@
@P.SBJN.a@ @R.SBJN.a@
@P.SBJN.E@ @R.SBJN.E@
@P.HABIT.e@ @R.HABIT.e@
@P.NORM.a@ @R.NORM.a@

LEXICON Root

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 292–294, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Describing Verbs in Disjoining Writing Systems 293

SubjPref;
LEXICON SubjPref
ke=Sbjn+@P.NORM.a@:@P.NORM.a@ke% FutPref;
ke=Sbjn+@P.SBJN.E@:@P.SBJN.E@ke% VStart;
ke=Habit+@P.HABIT.e@:@P.HABIT.e@ke% VStart;
ke=Perf+@P.PAST.ilE@:@P.PAST.ilE@ke% VStart;

LEXICON FutPref
tla=Fut+:tla% VStart;

LEXICON VStart
0:^[{ VStem;

LEXICON VStem
bon VFinV;

LEXICON VFinV
+a@R.NORM.a@:@R.NORM.a@A VEnd;
+a=Redup@R.NORM.a@:@R.NORM.a@A VEndRedup;
+E@R.SBJN.E@:@R.SBJN.E@E VEnd;
+E=Redup@R.SBJN.E@:@R.SBJN.E@E VEndRedup;
+e@R.HABIT.e@:@R.HABIT.e@e VEnd;
+e=Redup@R.HABIT.e@:@R.HABIT.e@e VEndRedup;
+ilE@R.PAST.ilE@:@R.PAST.ilE@ilE VEnd;
+ilE=Redup@R.PAST.ilE@:@R.PAST.ilE@ilE VEndRedup;

LEXICON VEnd
0:}^1^] #;

LEXICON VEndRedup
0:}^2^] #;

The full description of the verb in Northern Sotho contains a number of struc-
tures, where the verb-final vowel, or a suffix, constrains the co-occurrence of cer-
tain verb prefixes. In the above example we have four cases, where the marker
of the correct word form is the verb final vowel or suffix. Because the marker
is after the verb stem, it is not practical to construct the finite state lexicon
separately for each case.

The Xerox tools offer a method for handling such cases. A set of flag dia-
critics can be used in the lexicon for controlling the co-occurrence of certain
morphemes. In this implementation, we have used a pair of the P-type and
R-type flag diacritics for controlling the morpheme sequences ([1], pp. 353-355).

Particularly important in the lower-side meta-language is the section of the
string that is subject to reduplication. This section is delimited with special
multi-character symbols ^[and ^]. We also see that the actual string to be
defined as a regular expression is enclosed with curly brackets { and }. The
multi-character symbol ^2 in the lower string triggers the reduplication of the
preceding regular expression. The Xerox tool package contains a compile-replace
algorithm, which makes it possible to include finite state operations other than
concatenation into the morphotactic description ([1], pp. 379-380).

The full description of the Northern Sotho verb is much more complicated than
what is described above. The morpheme slots, which mark agreement for each

294 A. Hurskainen, L. Louwrens, and G. Poulos

noun class, have a total of twenty alternative prefixes, including first and second
person singular and plural. Morpheme slots of this type include the subject
prefix, which can be repeated after tense-aspect marking in some forms, and the
object prefix. Verb extensions also increase the number of possible forms.

Some amount of complexity is added also by the object prefix of the first
person singular, which is a nasal. It causes several types of sound changes in the
first phoneme of the verb stem, and such forms are written conjointly.

The normal compilation of the lexicon of this size and complexity into a
transducer is no problem, although the verb structure produces more than 4
billion paths. The memory problem will be encountered when ’compile-replace
lower’ is applied to this initial network.1

It is possible to reduce the number of paths by merging identical morphemes
in a morpheme slot into a single entry and return them to separate readings in
the post-processing phase. By this method the maximum number of morphemes
in a morpheme slot is reduced from twenty to eleven and the number of paths
is reduced accordingly. Another, and more efficient, method for handling the
memory problem is to cut the lexicon into parts, so that only the section requiring
a regular expression notation, i.e. the verb stems, will be compiled with compile-
replace lower, and then these partial lexicons are composed together as a single
net. Because the verb reduplication concerns the verb stem only, the section of
prefixes can be treated as a partial lexicon of its own. Using this method, it was
possible to compile the full Northern Sotho verb lexicon with more than 4 billion
paths. The total compilation time with Compac NX 7000 in Linux environment
was less than two minutes.

References

1. K. Beesley and L. Karttunen. Finite State Morphology. CSLI Studies in Compu-
tational Linguistics. Center for the Study of Language and Information, Stanford,
CA, 2003.

2. A. Hurskainen and R. Halme. Mapping between disjoining and conjoining systems in
Bantu languages: implementation on Kwanyama. Nordic Journal of African Studies,
10(3):399–414, 2001.

3. G. Poulos and L. J. Louwrens. A linguistic analysis of Northern Sotho. Via Afrika
Ltd., Pretoria, 1994.

1 For discussion on memory problems see [1], pp. 418-420.

An FST Grammar for Verb Chain Transfer

in a Spanish-Basque MT System

Iñaki Alegria, Arantza Dı́az de Ilarraza, Gorka Labaka, Mikel Lersundi,
Aingeru Mayor, and Kepa Sarasola

IXA Group, University of the Basque Country

We are developing an Spanish-Basque MT system using the traditional transfer
model and based on shallow and dependency parsing. The project is based on
the previous work of our group but integrated in OpenTrad initiative [2]. This
abstract sumarizes the current status of development of an FST grammar for
the structural transfer of verb chains. This task is quite complex due to the high
distance between both languages. In the actual implementation we are using
XRCE Finite States Tools [1].

We will focus on the translation of Spanish non-finite forms (21%), indicative
forms (65%) and periphrases (6%) covering 92% of all possible cases.

Spanish finite verbs are composed by several morphemes giving information
about voice, mood, aspect, tense, person and number. Verb conjugations have
simple or compound tenses. The periphrases are composed by a finite auxiliary
verb, an optional particle, and the main verb (non-finite form, infinitive or gerund,
giving the meaning).

Basque finite verbs can be synthetic, consisting of a single word, or analytical,
consisting of a participial form and an auxiliary. Participles carry information
about meaning, aspect and tense, whereas auxiliaries convey information about
argument structure, tense and mood.

Depending on the Spanish form of the verb, its translation into Basque should
be obtained in a different way. For the non-finite forms we translate with a verbal
noun or a participle. Simple and complex tense verbs can be translated as syn-
thetic or as analytical depending on the verb and its tense and, in some cases,
we need a dummy auxiliary and its aspect. For the periphrases the schemma
for Basque is very different: the main verb, the translation of the periphrastic
form (or a modal particle or an adverb) and in some cases a dummy verb (each
one with a different aspect). In the last position another auxiliary verb which
depends on the transitive feature of the main verb or of the auxiliary verb.

The FST grammar for verb chains we present takes as input the morpho-
logical information of the nodes of the Spanish verb chain, the Basque form
corresponding to the Spanish main verb of the chain, agreement information
about the objects (absolutive and dative) and the type of subordination of the
sentence. Its output is the list of the nodes of the corresponding Basque verb
chain, each one with the information necessary to decide the order of the words,
and to realize the morphological generation. The grammar contains three kinds
of rules:

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 295–296, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

296 I. Alegria et al.

Identification and markup rules identify the type of the Spanish verb chain,
and add a different schema for the Basque verb chain depending on the type:
non-finite forms, non-periphrastic verbs and four periphrasis type verbs.

[esVerbChainType @-> ... "=>" euVerbChainSchema]

Attributes replacement rules replace attributes in the Basque schema with their
corresponding values, depending on the values of some attributes in the Spanish
verb chain and/or in the Basque schema.

["euAttr" @-> "euVal" || ?* esVals ?* "=>" ?* euVals ?*]

Cleaning rules remove the unnecessary information.

This example illustrates the process: “porque no habré tenido que comer
patatas” (because I won’t have to eat potatoes). The input for the sequence of
transducers that will transfer the verb chain is the following:

haber[vaif1s]+tener[vmpp]+que[cs]+comer[vmn]/[tr][3p][caus]/jan

The first rule identifies the input of a Spanish verb chain that has a periphrastic
of type 1, and adds the schema for the Basque verb for this type:

haber[vaif1s]+tener[vmpp]+que[cs]+comer[vmn]/[tr][3p][caus]/jan

=> P1> (main)Aspm/Per Aspp/Dum Aspd/Aux TenseM SubObjDat +RelM

The next rules replace one by one the attributes of the Basque verb schema.
These are some of the replacements and contexts that constraint them:

Attribute Value Context

Per behar(per) ?* ‘tener’ ?* ‘que’ ?* "=>" ‘P1’ ?*

Aspp [partPerf] ?* VAIF ?* "=>" ‘P1’ ?*

Aux edun(aux) ?* ‘tener’ ?* ‘que’ ?*

SubObjDat [s1s][o3p] ?*‘tr’?*‘pl’?* ‘=>’ ?*‘edun(aux)’?*‘1s’

The output after all these replacements is:
haber[vaif1s]+tener[vmpp]+que[cs]+comer[vmn]/[tr][3p][caus]/jan

=> P1> (main)[partPerf]/behar(per)[partPerf]/izan(dum)[partFut]

/edun(aux)[indPres][subj1s][obj3p]+lako[causal morpheme]

The last transducer eliminates the information of the input, and returns the
desired output to the MT system. The information between parenthesis will be
used to decide the order of the words in the syntactic generation phase and
the information between brackets will be used in order to do the morphologi-
cal generation. The translation obtained in the output of the system after the
generation phase is the next sentence: “ez ditudalako patatak jan behar izango”

References

1. K. Beesley and L. Karttunen. Finite-State Morphology. CSLI Publications, Stanford,
California, 2003.

2. A. M. Corb́ı-Bellot, M. L. Forcada, S. Ortiz-Rojas, J. A. Pérez-Ortiz, G. Ramı́rez-
Sánchez, F. Sánchez-Martinez, I. Alegria, A. Mayor, and K. Sarasola. An open-
source shallow-transfer MT engine for the Romance languages of Spain. In EAMT
10th Annual Conference (EAMT 2005), 30-31 May 2005, Budapest, Hungary, 2005.

Finite State Transducers Based on k-TSS

Grammars for Speech Translation�

A. Pérez1, F. Casacuberta2, I. Torres1, and V. Guijarrubia1

1 Universidad del Páıs Vasco
webperaa@lg.ehu.es, {manes, vgga}@we.lc.ehu.es

2 Universidad Politécnica de Valencia
fcn@iti.upv.es

Abstract. Finite state transducers can be automatically learnt from
bilingual corpus, and they can be easily integrated in an automatic speech
recognition system for speech translation applications. In this work we
explore the possibility of using k-testable language models to generate
translations models. We report speech translation results for one easy and
well known task, EuTrans (Spanish-English), and for other similar task,
Euskal Turista (Spanish-Basque). Euskal Turista has proved to be a quite
difficult task because of the distance between the languages involved.

1 Introduction

Finite state transducers (FST) can be automatically learnt from bilingual cor-
pus using the GIATI [1] methodology. This technique combines both statistical
alignments models [2] and classical n-gram models. Alternatively, in this work
we propose the use of a syntactic approach to n-gram models: the k-testable in
the strict sense language models (k-TSS) [3]. Another motivation behind this
work, is to study the speech translation from Spanish into Basque.

Basque is a pre-Indoeuropean language of unknown origin. It is a minority,
but official language (together with Spanish), in the Basque Autonomous Region.
Both nominal and verbal morphology are strongly agglutinating. Regarding to
the word ordering, contrary to Spanish, Basque has left recursion. These features
are the basis of both the high vocabulary in the Basque application and the hard
alignments between Basque and Spanish.

2 Two Architectures for Speech Translation

The goal of the statistical speech translation (summarized in eq. (1)) is to find
the target language string (t) with the highest probability, given the acoustic
representation (x) of any source language string (s).

t̂ = arg max
t

P (t|x) = argmax
t

∑
s

P (t, s|x) (1)

� This work has been partially supported by the Universidad del Páıs Vasco, un-
der grant 9/UPV 00224.310-15900/2004 and by the Spanish CICYT under project
TIN2005-08660-C04-03.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 297–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

298 A. Pérez et al.

Two architectures [1] can be used in order to build the speech translation system
(Fig. 1): the serial and the integrated one.

s

P(x|s) P(t, s)P(s)

Integrated net

argmax P(t, s)
ts t

 argmax P(x|s)P(s)
x

(a) Serial architec

P(x|s)

Integrated net

P(t,s)

s
Σ

t
argmax P(x|s)P(t,s)

 tx

(b) Integrated architec

Fig. 1. 1(a) A text translator after a speech decoder. 1(b) Integrated speech translator
built on the basis of a text to text translator, expanding the source word on one edge
by its phonetic transcription.

2.1 Serial Architecture

The speech is decoded in a conventional speech recognition system. In practice,
ŝ (the input sentence to the translator) is likely to be corrupted, since the speech
recognition system is not an ideal device. Then, we can not expect the output
translation to be as close to the reference as it could be in case of a perfect input.
Moreover, the weakest device is the translator, therefore we should preserve it
from errors as much as possible.

2.2 Integrated Architecture

In this approach, the acoustic knowledge is introduced in the whole FST. The
main feature of this approach is it’s ability to carry out both the recognition and
the translation at the same time. In the integrated architecture, the speech rec-
ognizer and the translation system have been coupled into a unique automaton.

3 Experimental Results

Two series of experiments have been carried out on two synthetic bilingual cor-
pora: EuTrans for Spanish to English translation [4], and Euskal Turista (ET)
for Spanish to Basque translation. Spanish is the source language in both tasks.
There are around 10.000 sentence pairs in the training set. The vocabulary size
is around 650 word-forms in Spanish, 500 in English and 850 in Basque. In the
text-test there are 3.000 pairs for Spanish to English translation, and 1.000 for
Spanish into Basque. The speech corpora was recorded at 16 KHz in labora-
tory environment. It is composed of a training corpus of 1264 utterances by 16
speakers, and a test corpus of 336 utterances by 4 speakers [4].

The Spanish text-set perplexity is similar in both tasks (5.0), however, the
speech perplexity is 6.9 for EuTrans and 13.5 for ET. Translation results are
shown in table 1.

Finite State Transducers Based on k-TSS Grammars for Speech Translation 299

Table 1. Experimental results in means of recognition word error rate (WER) and
translation word error rate (TWER)

Task speech-WER text-TWER serial-TWER integrated-TWER

EuTrans 4.4 8.1 8.9 9.1
ET 8.6 39.7 58.3 54.7

4 Concluding Remarks

A speech translation system supported on the grammatical structure provided
by the k-TSS models is presented. It is a finite state transducer, learned on the
basis of the so called GIATI algorithm.The finite state methods allow for an easy
integration of both acoustic and translation models. Experimental results over
two different corpora representing the same application task (EuTrans and ET)
have been reported. In spite of the reduced vocabulary, ET has proved to be a
quite difficult task (compared to EuTrans) because of great inflection and word
reordering of the Basque language. Further work is needed in order to improve
Basque translation models, both changing alignment methodology and including
linguistic information.

References

1. Casacuberta, F., Vidal, E.: Machine translation with inferred stochastic finite-state
transducers. Computational Linguistics 30 (2004) 205–225

2. Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., Mercer, R.L.: The mathematics
of statistical machine translation: Parameter estimation. Computational Linguistics
19 (1993) 263–311

3. Torres, I., Varona, A.: k-tss language models in a speech recognition systems. Com-
puter Speech and Language 15 (2001) 127–149

4. Amengual, J., Bened́ı, J., Casacuberta, F., Castaño, M., Castellanos, A., Jiménez,
V., Llorens, D., Marzal, A., Pastor, M., Prat, F., Vidal, E., Vilar, J.: The EuTrans-I
speech translation system. Machine Translation 1 (2000)

Unsupervised Morphology Induction Using

Morfessor

Mathias Creutz, Krista Lagus, and Sami Virpioja

Neural Networks Research Centre,
Helsinki University of Technology

P.O. Box 5400, FIN-02015 HUT, Finland
{mathias.creutz, krista.lagus, sami.virpioja}@hut.fi

Abstract. We present Morfessor, an unsupervised
algorithm and software that induces a simple mor-
phology of a natural language from a large corpus.
Morfessor simultaneously builds a morph lexicon
and represents the corpus with the induced lexicon
using a probabilistic maximum a posteriori model.

The induced lexicon stores parameters related to both the “meaning”
and “form” of the morphs it contains. The form of a morph consists
of the string of letters, whereas the meaning corresponds to the typical
context the morph appears in. The likelihood that a morph is assigned a
particular grammatical category (prefix, stem, or suffix) is derived from
the meaning of the morph. Depending on their categories, morphs are
likely to occur in different positions with respect to each other; see [1]
for details.

Morfessor has been designed to cope with languages having predomi-
nantly a concatenative morphology and where the number of morphemes
per word can vary much. This distinguishes Morfessor from resembling
unsupervised models, which assume a much more restricted word struc-
ture; e.g., [2].

Morph segmentations produced by Morfessor have been applied in
language modeling for unlimited-vocabulary Finnish [3] and Turkish [4]
speech recognition. In the experiments on Finnish, the word error rate
was nearly halved compared to the traditional word-based approach. Fur-
thermore, the use of Morfessor produced fewer recognition errors than
the use of the manually designed Finnish two-level morphological an-
alyzer, due to the better coverage of the word forms occurring in the
data. Besides automatic speech recognition, further possible applications
of Morfessor include information retrieval and machine translation.

Figure 1 shows some sample segmentations of Finnish, English, and
Swedish word forms. An on-line demonstration and a software pack-
age implementing an earlier version of the method [5, 6] can be found
at http://www.cis.hut.fi/projects/morpho/ . Additionally, links to a
number of related publications can be found on the web site.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 300–301, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Unsupervised Morphology Induction Using Morfessor 301

aarre+kammio+ i + ssa, aarre +kammio+nsa, bahama+ saar+ et,
bahama+ saari+ lla, bahama+ saar+ ten, edes+autta + isi + vat,
edes+ autta+ ma+ ssa, nais + auto+ ili + ja + a, pää + aihe+ e + sta,

pää + aihe+ i + sta, pää +hän, taka+penkki+ lä+ in+ en, voi+ mme + ko
abandon+ ed, abandon+ ing, abandon +ment, beauti+ ful,

beauty + ’s, calculat+ ed, calculat+ ion + s, express+ ion + ist,
micro+organ + ism + s, long + fellow+ ’s, master+piece+ s,

near+ ly, photograph + er + s, phrase+d, un+ expect+ ed + ly
ansvar+ ade, ansvar+ ig, ansvar+ iga, ansvar+ s +för + säkring + ar,

blixt+ned+ slag, dröm+ de, dröm+ des, drömma+ nde, in + lopp+ et + s,
in + lägg + n+ ing + ar, m̊alar+ e, m̊alar+yrke+ t + s, o+ ut+nyttja+ t,

poli+ s + förening + ar +na+ s, trafik+ säker+het, över + fyll+ d + a

Fig. 1. Examples of segmentations learned from data sets of Finnish, English, and
Swedish text. Suggested prefixes are underlined, stems are rendered in boldface, and
suffixes are slanted.

References

1. Creutz, M., Lagus, K.: Inducing the morphological lexicon of a natural language
from unannotated text. In: Proceedings of the International and Interdisciplinary
Conference on Adaptive Knowledge Representation and Reasoning (AKRR’05), Es-
poo, Finland (2005) 106–113

2. Goldsmith, J.: Unsupervised learning of the morphology of a natural language.
Computational Linguistics 27 (2001) 153–198

3. Hirsimäki, T., Creutz, M., Siivola, V., Kurimo, M., Virpioja, S., Pylkkönen, J.:
Unlimited vocabulary speech recognition with morph language models applied to
finnish. Computer Speech and Language (2006) in press.

4. Hacioglu, K., Pellom, B., Ciloglu, T., Ozturk, O., Kurimo, M., Creutz, M.: On
lexicon creation for Turkish LVCSR. In: Proc. Eurospeech’03, Geneva, Switzerland
(2003) 1165–1168

5. Creutz, M., Lagus, K.: Unsupervised discovery of morphemes. In: Proc. Workshop
on Morphological and Phonological Learning of ACL’02, Philadelphia, Pennsylvania,
USA (2002) 21–30

6. Creutz, M., Lagus, K.: Unsupervised morpheme segmentation and morphology
induction from text corpora using Morfessor 1.0. Technical Report A81, Publications
in Computer and Information Science, Helsinki University of Technology (2005)

SProUT – A General-Purpose NLP Framework

Integrating Finite-State and Unification-Based
Grammar Formalisms

Witold Drożdżyński, Hans-Ulrich Krieger, Jakub Piskorski, and Ulrich Schäfer

German Research Center for Artificial Intelligence (DFKI), Language Technology Lab
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

http://sprout.dfki.de

In these days, we are witnessing a growing trend of exploiting lightweight linguis-
tic analysis for converting of the vast amount of raw textual data into structured
knowledge. Although a considerable number of monolingual and task-oriented
NLP systems have been presented, relatively few general-purpose architectures
exist, e.g., GATE [1] or ELLOGON [2].

This presentation introduces SProUT – a novel general-purpose multilingual
NLP platform [3]1. The main motivation for its development comes from (i) the
need of having one modular system for multilingual and domain-adaptive text
processing, which is portable across different platforms and (ii) to find a balance
between efficiency and expressiveness of the grammar formalism.

SProUT is equipped with a set of reusable online processing components for
basic linguistic operations, ranging from tokenization, morphology, gazetteer etc.
to text coreference resolution. They can be combined into a pipeline that pro-
duces several streams of linguistically annotated structures, which can serve as
input for the grammar interpreter, applied at the next stage.

The grammar formalism in SProUT is a blend of efficient finite-state techniques
and unification-based formalisms, guaranteeing expressiveness and transparency.
To be more precise, a grammar in SProUT consists of pattern-action rules, where
the LHS of a rule is a regular expression over typed feature structures (TFS) with
functional operators and coreferences, representing the recognition pattern, and
the RHS of a rule is a TFS specification of the output structure. Coreferences ex-
press structural identity, create dynamic value assignments, and serve as a means
of information transport. Functional operators provide a gateway to the outside
world and are utilized for introducing complex constraints in rules, for forming the
output of a rule, and for integrating external processing components.

Grammars, consisting of such rules, are compiled into extended finite-state
networks with rich label descriptions (TFSs). For their efficient processing, a
handful of methods going beyond standard finite-state techniques have been
introduced. Grammar rules can even be recursively embedded, which provides
grammarians with a context-free formalism. The following rule for recognizing
prepositional phrases gives an idea of the syntax of the grammar formalism.

1 This publication is supported by a research grant COLLATE II 01 IN C02 from the
German Federal Ministry of Education and Research.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 302–303, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SProUT – A General-Purpose NLP Framework 303

pp :> morph & [POS Prep, SURFACE #prep, INFL infl & [CASE #c]]
(morph & [POS Adjective, INFL infl & [CASE #c, NUMBER #n, GENDER #g]]) *
(morph & [POS Noun, SURFACE #noun1, INFL infl & [CASE #c, NUMBER #n,

GENDER #g]])
(morph & [POS Noun, SURFACE #noun2, INFL infl & [CASE #c, NUMBER #n,

GENDER #g]]) ?
-> phrase & [CAT pp, PREP #prep, CORE_NP #core_np,

AGR agr & [CASE #c, NUMBER #n, GENDER #g]],
where #core_np = Append(#noun1, " ", #noun2).

The first TFS matches a preposition. It is followed by zero or more adjectives.
Finally, one or two noun items are consumed. The variables #c, #n, #g estab-
lish coreferences, expressing the agreement in case, number, and gender for all
matched items (except for the initial preposition item which solely agrees in case
with the other items). The RHS of the rule triggers the creation of a TFS of type
phrase, where the surface form of the matched preposition is transported into the
corresponding slot via the variable #prep. The value for the attribute core_np
is created through a concatenation of the matched nouns (variables #noun1 and
#noun2). This is realized via a call to the functional operator Append.

SProUT comes with an integrated graphical development and testing environ-
ment. The grammars can be either created in text or XML editing mode, and can
be visualized in a graphical mode. The grammar GUI resembles state-of-the-art
development environments for programming languages, e.g., errors and warn-
ings listed in the error message window are linked to the corresponding piece of
grammar in the editor. Several user interfaces for inspecting the output of the
linguistic processing components and for testing the grammars are provided.

SProUT grammars can be cascaded in order to structure and combine different
recognition strata. A declarative description of an architecture instance can be
compiled to and encapsulated in a Java class and for example plugged into the
Heart of Gold NLP middleware [4].

Currently SProUT has been adapted to processing 11 languages, including ma-
jor Germanic, Romance, Slavonic, and Asian languages. It has been deployed as
the core IE component in several industrial and research projects [3]. In our pre-
sentation we showcase the development of the SProUT named entity grammars.

References

1. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to Meet
New Challenges in Language Engineering. In Natural Language Engineering, 12
No.(3/4), (2004) 349–373.

2. Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopoulos, I. Spyropoulos, C.:
Ellogon: A New Text Engineering Platform. In Proceedings of LREC 2002, Canary
Island, (2002) 72–78.

3. Drożdżyński, W., Krieger, H.-U.,Piskorski J., Schäfer, U.: Shallow Processing with
Unification and Typed Feature Structures – Foundations and Applications. In
Künstliche Intelligenz, 1/04, (2004) 17–23.

4. Schäfer, U.: Heart of Gold – An XML-based Middleware for the Integration of Deep
and Shallow Natural Language Processing Components. User and Developer Docu-
mentation, DFKI Language Technology Lab, (2005) http://heartofgold.dfki.de.

Tool Demonstration: Functional Morphology

Markus Forsberg and Aarne Ranta

Department of Computing Science
Chalmers University of Technology and the University of Gothenburg

SE-412 96 Gothenburg, Sweden
{markus, aarne}@cs.chalmers.se

1 System Description

We will present Functional Morphology1 [5], abbreviated FM, which is a tool that
implements a methodology for constructing natural language morphologies in the
functional language Haskell [8]. FM has its own runtime system that supports
morphological analysis and synthesis. Moreover, a morphology implemented in
FM can be compiled to many other source formats.

FM adopts a word-and-paradigm view of morphology: it represents a morphol-
ogy as a set of inflection tables, paradigms, and the lexicon as a set of dictionary
words each tagged with a pointer to an inflection table.

The basic idea behind FM is simple, instead of working with untyped reg-
ular expressions, which is the state of the art of morphology in computational
linguistics, we use finite functions over hereditarily finite algebraic data types.
These data types and functions constitute the language-dependent part of the
morphology. The language-independent part consists of an untyped dictionary
format which is used for synthesis of word forms, translations to other formats,
and a decorated trie, which is used for analysis.

Functional Morphology builds on ideas introduced by Huet [6] in his computa-
tional linguistics toolkit Zen, which he has used to implement the morphology of
Sanskrit. In particular, Huet’s ideas about sandhi in Sanskrit have been adopted
to a language independent description of compound analysis in FM.

The goal of FM has been to make it easy for linguists, who are not trained
as functional programmers, to implement the morphology of a new language. In
addition to the ease of programming, FM attempts to exploit the high level of
abstraction provided by functional programming to make it possible to capture
linguistic generalizations.

A morphology written in FM has a type system, which defines the inflec-
tional and inherent parameters of the language described. By using algebraic
data types, the type system can guarantee that no spurious parameter combina-
tions appear in the morphology description, at the same time as all meaningful
combinations are defined.

The use of the functional language Haskell provides, besides typing, many other
language features that simplify the development of a morphology: higher-order
1 FM homepage: http://www.cs.chalmers.se/∼markus/FM/

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 304–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tool Demonstration: Functional Morphology 305

functions, functions as first class objects, give the possibility of defining a
paradigm in terms of another paradigm; the class system is used for sharing code
between morphologies of different languages.

The lifetime of a digital linguistic resource such as morphology depends on
which system it has been developed in [3]. If the resource has been developed
in a proprietary system with a binary-only format, and the system is no longer
supported after some years, it may be impossible to access the resource. FM offers
a solution to this problem by supporting translation to a multiple of different
formats, such as XFST source code [2], GF [10] source code, SQL source code, full
form lexicon, full form tables etc. This feature will hopefully prolong the lifetime
of a morphology developed in FM. Furthermore, the system is completely open
source, which should improve the situation even more.

2 Results

The following morphologies have been implemented in Functional Morphology: a
Swedish inflection machinery and a lexicon of 20,000 words; a Spanish inflection
machinery + lexicon of 10,000 words [1]; major parts of the inflection machin-
ery + lexicon for Russian [4], Italian, Estonian [7], and Latin. Comprehensive
inflection engines for Finnish, French, German, and Norwegian have been writ-
ten following the same method but using GF as source language [9]. Since FM
can generate GF source code, there exists a seamless connection between GF
grammars and morphologies defined in FM.

References

1. I. Andersson and T. Söderberg. Spanish morphology – implemented in a functional
programming language. Master’s thesis in computational linguistics, Gothenburg
University, May 2003. http://www.cling.gu.se/theses/finished.html .

2. K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications,
Stanford, CA, 2003.

3. S. Bird and G. Simons. Seven dimensions of portability for language documentation
and description. Language, 79:557–582, 2003.

4. L. Bogavac. Functional morphology for Russian. Master’s thesis in computing
science, Chalmers University of Technology, 2004.

5. M. Forsberg and A. Ranta. Functional morphology. In Proceedings of the
Ninth ACM SIGPLAN International Conference of Functional Programming, pages
213–223, 2004.

6. G. Huet. The zen computational linguistics toolkit, 2002.
http://pauillac.inria.fr/∼huet/.

7. M. Pellauer. A functional morphology for estonian. Term Paper, 2005.
8. S. Peyton Jones and J. Hughes. Report on the programming language Haskell 98,

a non-strict, purely functional language. Available from http://www.haskell.org,
February 1999.

9. A. Ranta. Grammatical framework homepage.
http://www.cs.chalmers.se/∼aarne/GF/, 2000–2004.

10. A. Ranta. Grammatical framework: A type-theoretical grammar formalism. The
Journal of Functional Programming, 14(2):145–189, 2004.

From Xerox to Aspell: A First Prototype

of a North Sámi Speller Based on TWOL
Technology

Børre Gaup1, Sjur Moshagen1, Thomas Omma1, Maaren Palismaa1,
Tomi Pieski1, and Trond Trosterud2

1 The Saami Parliament, Norway
www.divvun.no

2 Faculty of the Humanities, University of Tromsø
giellatekno.uit.no

Keywords: Sámi, transducers, language technology, spelling, proofing,
minority languages.

1 Introduction

Our demo presents work from a joint project with a twofold goal: To build
a parser and disambiguator for North and Lule Sámi, and to make a practical
spell-checker for the same languages. The core analyser is written with the Xerox
tools twolc, lexc and fst ([1]), and the disambiguator uses constraint grammar
(vislcg). Cf. [2] for a presentation.

The spell-checker is intended to work on 3 platforms, for a wide range of
programs. One of the speller engines we will have to cover is thus the spell
family of spell-checkers (here represented by Aspell). This implies making a
finite state automaton, rather than a transducer.

2 Aspell

Aspell (http://aspell.net/) is a simple list-based speller with its roots in the
iSpell tradition (http://fmg-www.cs.ucla.edu/fmg-members/geoff/
ispell.html), but with an improved spelling error detection and replacement
algorithm. Its improved correction capability comes from merging Lawrence
Philips Metaphone algorithm http://aspell.net/metaphone/ with Ispell’s
near miss strategy of changing the input word within an editing distance of
one. Aspell is nowadays recognised as a better speller than iSpell, but has sev-
eral linguistic and technical limitations. It also has a reputation for being tuned
for English, but our initial tests show good results for North Sámi as well. Aspell
is interface compatible with iSpell, and is intended as a direct replacement.

Building on the iSpell code means that the linguistic expressive power is
equally limited, and our challenge have been to find an automated way of trans-
ferring our FST to a simpler, one-level model.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 306–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From Xerox to Aspell 307

3 The Sámi Speller

Our present (alpha) version of the speller uses the Xerox tools to generate a
fullform list of the whole lexicon (we exclude all circular entries), which initially
created a whopping 580 Mb text file, corresponding to 150 million word forms.
Aspell took that whole wordlist and could use it as it was, but it was hardly
practical (it worked, though!). After some modifications our present transducer
creates ”only” 290 Mb of data. This list is then reduced to a set of inflection
stems with the Aspell munch-list option. It works by passing the munch-list
option a file of available inflection lexicons, and Aspell will then munch through
the fullform wordlist and reduce all wordforms that fits an inflectional lexicon to
one stem plus the identified inflection lexicon. Finally we compress the lexicon
into an Aspell specific binary format. Its size is at the moment about 48 Mb.

This way of creating a finite state automaton is quite different from how the
transducer itself works. Just like Finnish, Sámi has consonant gradation, but
unlike in Finnish, the Sámi consonant gradation affects almost all consonant
groups of the stressed syllable, in most stem classes (some stem classes are never
altered). Moreover, in several word forms, the diphthong of the stressed syllable
is altered as well. This gives us as much as 4 surface stems for one and the
same lexeme. For the two-level transducer, this is not a problem, since these
morphophonological processes are handled by our two-level rules, but it becomes
a complicating factor when reverting to the single-level model of Aspell.

The Aspell munch-list way of creating stems and inflectional suffixes isn’t very
satisfying, for at least two reasons: we already have an excellent morphological
description of North Sámi, and duplicating it in the form of the Aspell inflectional
lexicon isn’t very elegant and requires redoing the same work; and by having two
parallel morphological descriptions the whole system requires more maintenance
work and is more error-prone. But for the reasons cited above regarding Sámi
morphophonology, we have at present not found an easy way to generate the
correct inflectional stems directly from the Xerox tools.

Aspell is not the optimal speller architecture from a linguistic point of view,
but it provides nice testing facilities (a command line interface with several
options) and is one of the target spellers of the project. For some users the
limited, word-list approach is even the preferred model over a linguistically more
powerful one. It is also an interesting project in itself to make a decent Aspell,
both academically and practically. Even though our alpha version shows the
limitations of the simple automaton, it shows that it is powerful enough to
represent even a morphophonologically complex language like Sámi.

For these reasons we targeted Aspell as our first application of our Sámi finite
state transducer.

References

1. K. R. Beesley and L. Karttunen. Finite State Morphology. Studies in Computational
Linguistics. CSLI Publications, Stanford, California, 2003.

2. T. Trosterud. Samisk spr̊akteknologi. Nordisk sprogteknologi - Årbog for Nordisk
Sprogteknologisk Forskningsprogram 2000-2004, 3:51–58, 2003.

A Programming Language

for Finite State Transducers

Helmut Schmid

Institute for Natural Language Processing (IMS)
University of Stuttgart, Germany
schmid@ims.uni-stuttgart.de

SFST-PL is a programming language for finite-state transducers which is based
on extended regular expressions with variables. SFST-PL is used by the Stuttgart
Finite-State-Transducer (SFST) tools which are available under the GNU public
license. SFST-PL was designed as a general programming language for the de-
velopment of tokenizers, pattern recognizers, computational morphologies and
other FST applications. The first SFST application was the SMOR morphol-
ogy [1], a large-scale German morphology which covers composition, derivation
and inflection. An SFST program consists of a list of variable and alphabet
assignments followed by a single regular expression which defines the resulting
transducer. The following basic transducer expressions are available:

a:b defines a transducer which maps the symbol a to b
a abbreviation of a:a
a:. maps the symbol a to any symbol that it occurs with in the

alphabet (see below).
. abbreviation of .:., the union of all symbol-pairs in the alpha-

bet.
[abc]:[de] identical to a:d | b:e | c:e (“|” is the union operator.)
[a-c]:[A-C] same as [abc]:[ABC].
{abc}:{de} identical to a:d b:e c:<> This expression maps the string abc

to de.
var the transducer stored in variable var.
”lex” a transducer consisting of the union of the lines in the file lex

(Apart from “:” and previously seen multi-character symbols,
all symbols in the argument file are interpreted literally.)

”<file>” is a pre-compiled transducer which is read from file

SFST-PL supports multi-character symbols (which are enclosed in angle
brackets like <Sg>) and a wide range of operators including concatenation, union
’|’, intersection ’&’, composition ’||’, complement ’ !’, optionality ’?’, Kleene star
’*’ and Kleene plus ’+’, range ’^’, domain ’_’, inversion ’^_’, and two-level rules
(<=, =>, <=>). The special symbol <> represents the empty string.

Variables are surrounded by dollar signs. They are defined with a command
var = expression (where expression is some transducer expression). The
alphabet is defined with the command ALPHABET = expression. The definition

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 308–309, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Programming Language for Finite State Transducers 309

of an alphabet is required for the interpretation of the wild-card symbol ’.’ and
for the complement and replacement operators.

Comments start with a percent sign and extend up to the end of the line.
Whitespace is ignored unless it is quoted by a backslash. Programs can be
partitioned into several files which are combined with include commands (like
#include "file") which insert the contents of the argument file at the current
position. It is also possible to pre-compile component transducers in order to
speed up the compilation.

A compiler translates SFST programs into minimized finite-state transducers.
The compiler was implemented using a high-level C++ library and the YACC
compiler generator, which makes it easy to change or extend the syntax of the
programming language. The compiler generates three different transducer for-
mats which are optimized for flexibility, speed or memory and startup efficiency,
respectively. The SFST tools also include programs for analysis, printing, and
comparison of transducers. The following simple SFST-PL program will correctly
inflect adjectives like “easy” (easier, easiest) and late (later, latest).

% the set of valid character pairs
ALPHABET = [A-Za-z]:[A-Za-z] y:i [#e]:<>

% Read a list of adjectives from a lexicon file
$WORDS$ = "adj"

% rule replacing y with i if followed by # and e
$Rule1$ = y <=> i (#:<> e)

% rule eliminating e if followed by # and e
$Rule2$ = e <=> <> (#:<> e)

$Rules$ = $Rule1$ & $Rule2$

% add inflection to the words
S = $WORDS$ <ADJ>:# ({<pos>}:{} | {<comp>}:{er} | {<sup>}:{est})

% apply the phonological rules to obtain the resulting transducer
S || $Rules$

A more comprehensive morphology including mechanisms for dealing with
derivation, compounding and inflection is available with the SFST tools. It is
adaptable to other languages by changing the lexicon, the inflectional classes,
and the phonological rules.

References

1. H. Schmid, A. Fitschen, and U. Heid. SMOR: A German computational morphol-
ogy covering derivation, composition and inflection. In Proceedings of the 4th In-
ternational Conference on Language Resources and Evaluation, volume 4, pages
1263–1266, Lisbon, Portugal, 2004.

FIRE Station

Bruce Watson

Technische Universiteit Eindhoven,
Department of Mathematics and Computer Science,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
bruce@bruce-watson.com

This demonstration will provide a quick introduction to the FIRE Station [1].
FIRE Station is a “workstation” environment for manipulating FInite automata/
transducers and Regular Expressions. It is built on top of the FIRE Works,
a computational toolkit (with a programming interface only) for constructing,
optimizing, manipulating, and using all sorts of regular language and regular
relation objects. Both software systems are in a rather early stage, but the key
insights are already apparent.

A key advantage over many other similar toolkits and environments is the
close connection between the representation of an automaton (as a transition
graph) and the representation of each state’s accepted language (as a regular ex-
pression); indeed, these two concepts are simultaneously represented in a single
abstract data-structure. This allows a unified view of regular languages, easing
the way in which users interact with them. Perhaps more importantly, it can
(in future versions) be used to allow for reversibility: from automaton back to
regular expression/relation, and vice-versa. There are also significant perfor-
mance advantages (in terms of memory and running time), and advantages in
debugging/simulating automata. Finally, both systems are freely available, and
we invite other implementors to work with us in creating new “skins” for various
domains, such as computational linguistics, security systems, etc.

Reference

1. M. Frishert, L. Cleophas, and B. W. Watson. FIRE Station: an environment for
manipulating finite automata and regular expression views. In M. Domaratzki,
A. Okhotin, K. Salomaa, and S. Yu, editors, CIAA 2004, volume 3317 of LNCS,
pages 125–133, Berlin and Heidelberg, 2005. Springer-Verlag.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, p. 310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Author Index

Alegria, Iñaki 295
Amsalu, Saba 283

Barrachina, Sergio 32
Barthélemy, François 11
B́ıró, Tamás 21

Carlson, Lauri 179
Casacuberta, Francisco 32, 297
Castaño, José M. 285
Champarnaud, Jean-Marc 120
Civera, Jorge 32
Cohen-Sygal, Yael 43
Creutz, Mathias 300
Cubel, Elsa 32

de Ilarraza, Arantza Dı́az 295
Drożdżyński, Witold 302

Erbaş, Mehmet Dinçer 191
Erdoǧmuş, Müge 191

Forsberg, Markus 304

Gaup, Børre 306
Geyken, Alexander 55
Gibbon, Dafydd 283
Gomez, Fernando 259
Guijarrubia, V. 297
Guingne, F. 120

Hammarström, Harald 288
Han, Na-Rae 67
Hanneforth, Thomas 55, 78
Harju, Tero 1
Harjula, Lotta 290
Hasida, Kôiti 144
Hulden, Mans 86
Hurskainen, Arvi 292

Jansche, Martin 97
Johnson, J. Howard 110

Karttunen, Lauri 9
Kempe, André 120
Krieger, Hans-Ulrich 302

Labaka, Gorka 295
Lagarda, Antonio L. 32
Lagus, Krista 300
Lakshmanau Kuppusamy 132
Lersundi, Mikel 295
Louwrens, Louis 292

Mayor, Aingeru 295
Miyata, Takashi 144
Moshagen, Sjur 306

Nasr, Alexis 156, 167
Nicart, Florent 120
Niemi, Jyrki 179, 271

Oflazer, Kemal 191
Omma, Thomas 306

Padró, Llúıs 203
Padró, Muntsa 203
Palismaa, Maaren 306
Pérez, Alićıcial 297
Petersen, Ulrik 215
Pieski, Tomi 306
Piskorski, Jakub 227, 302
Poulos, George 292
Pustejovsky, James 285

Rambow, Owen 156
Ranta, Aarne 304

Sarasola, Kepa 295
Schäfer, Ulrich 302

312 Author Index

Schiller, Anne 239
Schmid, Helmut 308

Torre, Inés 297
Trosterud, Trond 306

Úı́ Dhonnchadha, Elaine 247

van Delden, Sebastian 259
Van Genabith, Josef 247

Vidal, Enrique 32

Vilar, Juan M. 32
Virpioja, Sami 300

Volanschi, Alexandra 167

Watson Bruce 310

Wintner, Shuly 43

Yli-Jyrä, Anssi 271

	Frontmatter
	Invited Lectures
	Characterizations of Regularity
	Finnish Optimality-Theoretic Prosody

	Contributed Papers
	Partitioning Multitape Transducers
	Squeezing the Infinite into the Finite
	A Novel Approach to Computer-Assisted Translation Based on Finite-State Transducers
	Finite-State Registered Automata and Their Uses in Natural Languages
	TAGH: A Complete Morphology for German Based on Weighted Finite State Automata
	Klex: A Finite-State Transducer Lexicon of Korean
	Longest-Match Pattern Matching with Weighted Finite State Automata
	Finite-State Syllabification
	Algorithms for Minimum Risk Chunking
	Collapsing ϵ-Loops in Weighted Finite-State Machines
	WFSM Auto-intersection and Join Algorithms
	Further Results on Syntactic Ambiguity of Internal Contextual Grammars
	Error-Driven Learning with Bracketing Constraints
	Parsing with Lexicalized Probabilistic Recursive Transition Networks
	Integrating a POS Tagger and a Chunker Implemented as Weighted Finite State Machines
	Modelling the Semantics of Calendar Expressions as Extended Regular Expressions
	Using Finite State Technology in a Tool for Linguistic Exploration
	Applying a Finite Automata Acquisition Algorithm to Named Entity Recognition
	Principles, Implementation Strategies, and Evaluation of a Corpus Query System
	On Compact Storage Models for Gazetteers
	German Compound Analysis with {\itshape wfsc}
	Scaling an Irish FST Morphology Engine for Use on Unrestricted Text
	Improving Inter-level Communication in Cascaded Finite-State Partial Parsers
	Pivotal Synchronization Languages: A~Framework for Alignments

	Abstracts of Interactive Presentations
	A Complete FS Model for Amharic Morphographemics
	Tagging with Delayed Disambiguation
	A New Algorithm for Unsupervised Induction of Concatenative Morphology
	Morphological Parsing of Tone: An Experiment with Two-Level Morphology on the Ha Language
	Describing Verbs in Disjoining Writing Systems
	An FST Grammar for Verb Chain Transfer in a Spanish-Basque MT System
	Finite State Transducers Based on k-TSS Grammars for Speech Translation

	Abstracts of Software Demos
	Unsupervised Morphology Induction Using Morfessor
	SProUT -- A General-Purpose NLP Framework Integrating Finite-State and Unification-Based Grammar Formalisms
	Tool Demonstration: Functional Morphology
	From Xerox to Aspell: A First Prototype of a North S\'{a}mi Speller Based on TWOL Technology
	A Programming Language for Finite State Transducers
	FIRE Station

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

