
Distributed Chasing of Network Intruders

Lélia Blin1, Pierre Fraigniaud2, Nicolas Nisse2, and Sandrine Vial1

1 IBISC, University of Evry, 91000 Evry, France
2 LRI, CNRS and Université Paris-Sud, 91405 Orsay, France

Abstract. This paper addresses the graph searching problem in a
distributed setting. We describe a distributed protocol that enables sear-
chers with logarithmic size memory to clear any network, in a fully de-
centralized manner. The search strategy for the network in which the
searchers are launched is computed online by the searchers themselves
without knowing the topology of the network in advance. It performs in
an asynchronous environment, i.e., it implements the necessary synchro-
nization mechanism in a decentralized manner. In every network, our
protocol performs a connected strategy using at most k + 1 searchers,
where k is the minimum number of searchers required to clear the net-
work in a monotone connected way, computed in the centralized and
synchronous setting.

1 Introduction

Graph searching [18] is one of the most popular tool for analyzing the chase for
a powerful and hostile agent, by a set of software agents in a network. Roughly
speaking, graph searching involves an intruder and a set of searchers, all moving
from node to node along the links of a network. The intruder is powerful in the
sense that it is supposed to move arbitrarily fast, and to be permanently aware
of the positions of the searchers. However, the intruder cannot cross a node or
an edge occupied by a searcher without being caught. Conversely, the searchers
are unaware of the position of the intruder. They are aiming at surrounding the
intruder in the network. The intruder is caught by the searchers when a searcher
enters the node it occupies. For instance, one searcher can catch an intruder
in a path (by moving from one extremity of the path to the other extremity),
while two searchers are required to catch an intruder in a cycle (starting from
the same node, the two searchers move in opposite directions). In addition to
network security, graph searching has several other practical motivations, such as
rescuing speleologists in caves [6] or decontaminating a set of polluted pipes [19].
It has also several applications to the Graph Minor theory as it provides a
dynamic approach to the analysis of static graph parameters such as treewidth
and pathwidth [4].

1.1 The Problem

The main question addressed by graph searching is: given a graph G, what is the
search number of G? That is, what is the minimum number of searchers, s(G),

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 70–84, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Chasing of Network Intruders 71

required to clear the graph G, i.e., to capture the intruder? This question is
motivated by, e.g., the need for consuming the minimum amount of computing
resources of the network at any time, while clearing it. The decision problem
corresponding to computing the search number s(G) of a graph G is NP-hard
[18], and NP-completeness follows from [5, 16]. Computing the search number
is however polynomial for trees [17, 18], and the corresponding search strategy
can be computed in linear time [20]. In fact, the search number of a graph is
known to be roughly equal to the pathwidth, pw, of the graph, and therefore the
search number of an n-node graph can be approximated in polynomial time, up
to multiplicative factor O(log n

√
log tw) where tw denotes the treewidth of the

graph (see [7], and use the fact that pw/tw ≤ O(log n)).
The graph searching problem has given rise to a vast literature, and several

variants of the problem have been considered (see, e.g., [14, 15]). Nevertheless,
from a distributed systems point of view, the existing solutions for the graph
searching problem (cf., e.g., [17, 18, 20]) suffer from a serious drawback: they are
mostly centralized. In particular, (1) the search strategy for every network is
computed based on the knowledge of the entire topology of the network, and
(2) the moves of the searchers are controlled by a centralized mechanism that
decides at every step which searcher has to move, and what movement it has to
perform. These two facts limit the applicability of the solutions. Indeed, as far
as networking or speleology is concerned, the topology of the network is often
unknown, or its map unprecise. The topology can even evolve with time (either
slowly as for, e.g., Internet, or rapidly as for, e.g., P2P networks). Moreover,
the mobile entities involved in the search strategy can hardly be controlled by a
central mechanism dictating their actions. All these constraints make centralized
algorithms inappropriate for many instances of the graph searching problem.

This paper addresses the graph searching problem in a distributed setting,
that is the searchers must compute their own search strategy for the network in
which they are currently running. This distributed computation must not require
knowing the topology of the network in advance, and the searchers must act in
absence of any global synchronization mechanism, hence they must be able to
perform in a fully asynchronous environment. Distributed strategies have been
proposed for specific topologies only, such as trees [2], hypercubes [9], and rings
and tori [8]. In this paper, we address the problem in arbitrary topologies.

1.2 The Model

The searchers are modeled by autonomous mobile computing entities with dis-
tinct IDs. More precisely, they are labeled from 1 to the current number k of
searchers in the network (if a new searcher has to join the team, it will take
number k +1). Otherwise searchers are all identical, and run the same program.
The network and the searchers are asynchronous in the sense that every action of
a searcher takes a finite but unpredictable amount of time. Moreover, motivated
by the fact that the intruder models a potentially hostile agent that can, e.g., cor-
rupt the node memories, the search strategy must perform independently from
any local information stored at nodes a priori, and even independently from the

72 L. Blin et al.

node IDs. We thus consider anonymous networks, i.e., networks in which nodes
do not have labels, or these labels are not accessible to the searchers. The deg(u)
edges incident to any node u are labeled from 1 to deg(u), so that the searchers
can distinguish the different edges incident to a node. These labels are called port
numbers. Every node of the network has a whiteboard in which searchers can
read, erase, and write symbols. (A whiteboard is modeling a specific zone of the
local node memory that is reserved for the purpose of exchanging information
between software agents). At every node, the local whiteboard is assumed to
be accessible by the searchers in fair mutual exclusion. Since the content of the
whiteboard at every node accessible by the intruder is corruptible, it is the role
of the searchers to protect information stored at nodes’ whiteboards.

The decisions taken by a searcher at a node (moving via port number p,
writing the word w on the whiteboard, etc.) is local and depends only on (1) the
current state of the searcher, and (2) the content of the node’s whiteboard (plus
possibly (3) the incoming port number, if the searcher just entered the node).

The powerful intruder is assumed to be aware of the edge-labeled network
topology, and thus it does not need the whiteboards to navigate. In fact, as
mentioned before, when the intruder enters a node that is not occupied by a
searcher, then it can modify or even remove the content of the local whiteboard.

All searchers start from the same node u0, called the entrance of the network,
or the homebase of the searchers. This node u0 is also a source of searchers, in the
sense that if the current team of searchers realize that they are not numerous
enough for clearing the network, then they can ask for a new searcher, that
will appear at the source. Initially, one searcher spontaneously appears at the
source. The size of the team will increase until it becomes large enough to clear
the network. Basically, the searchers are aiming at expanding a cleared zone
around their homebase u0, that is at expanding a connected sub-network of the
network G, containing u0, until the whole network is clear. In particular, as the
entrance u0 of the network is a critical node, it has to be permanently protected
from the intruder in the sense that the intruder must never be able to access it.

Among all search strategies, monotone ones play an important role. A mono-
tone strategy insures that, once an edge has been cleared, it will always remain
clear. Monotone strategies guaranty a polynomial number of moves: exactly one
move for clearing every edge, plus few moves required by the searchers to set
up their positions before clearing the next edge. In the connected setting, the
corresponding graph searching parameter is called monotone connected search
number starting at u0 (cf., [2, 3, 13]), and is denoted by mcs(G, u0).

1.3 Our Results

We describe a distributed protocol, called dist_search, that enables the searchers
to clear any asynchronous network in a fully decentralized manner, i.e., the search
strategy is computed online by the searchers themselves, after being launched
in the network without any information about its topology. To the best of our
knowledge, this is the first distributed protocol that addresses the graph searching
problem in its whole generality, i.e., for arbitrary network topologies.

Distributed Chasing of Network Intruders 73

The distributed search strategy self-computed by the searchers in an asynchro-
nous environment uses a number of searchers very close to the optimal. Indeed,
we prove that the number of searchers involved in the strategy computed by our
protocol in a network G is equal to 1 plus the minimum number of searchers
required to clear G by a monotone connected search strategy starting at u0, i.e.,
is equal to mcs(G, u0)+1. It is known [13] that mcs(G, u0) ≤ s(G)�log n�. Hence
our protocol is optimal up to a logarithmic factor.

Our protocol is space-efficient from many respects. In particular, it requires
only O(log k) bits of memory for each of the k searchers involved in the search.
This amount of memory is independent from the size n of the network. Moreover,
the amount of information stored at every whiteboard never exceeds O(m log n)
bits, where m is the number of edges of the network.

To obtain our results, we had to address several problems. First, since the
network is a priori unknown to the searchers, they have to explore it. However,
this exploration cannot be achieved easily because of the potential corruption
of the whiteboards by the intruder. Our protocol insures that exploration and
searching are performed somehow simultaneously, and that the whiteboards of
cleared nodes remain permanently protected unless there is no need to protect
the stored information anymore. Second, as the searchers asynchronously spread
out in the network, they become rapidly unaware of their relative positions. Our
protocol synchronizes the searchers in a non trivial manner so that an action
by a searcher is not ruined by the action of another searcher. Finally, to obtain
space-efficient solutions, our protocol takes advantage from the accesses to the
whiteboards, to store and read information useful to the searchers: it maintains
a stack at every whiteboard, and every searcher at a node has access only to the
top of a stack stored locally on the current node’s whiteboard, and to few other
variables also stored on the whiteboard.

2 Main Result and Sketch of the Protocol

The following theorem summarizes the main characteristics of dist_search.

Theorem 1. For any connected, asynchronous, and anonymous network G,
and any u0 ∈ V (G), dist_search enables capturing an intruder in G us-
ing searchers starting from the homebase u0, and initially unaware of G. The
main characteristics of dist_search are the following: (1) dist_search uses
at most k = mcs(G, u0) + 1 searchers if mcs(G, u0) > 1, and k = 1 searcher if
mcs(G, u0) = 1; (2) Every searcher involved in the search strategy computed
by dist_search uses O(log k) bits of memory; (3) During the execution of
dist_search, at most O(m log n) bits of information are stored at every white-
board.

Note that the theorem above implies that for networks searchable by a monotone
connected search strategy using a constant number of searchers, the protocol
dist_search can be implemented using finite state automata.

74 L. Blin et al.

Let us briefly sketch Protocol dist_search and its proof. Given a connected
network G, and X ⊆ E(G), we denote by δ(X) the nodes in V (G) that are
incident to an edge in X and an edge in E(G) \ X . Given k ≥ 1, we call k-
configuration any set X ⊆ E(G) such that |δ(X)| ≤ k. The k-configuration di-
graph Ck of G is defined as follows. V (Ck) is the set of all possible k-configurations.
There is an arc from X to X ′ in Ck if the configuration X ′ can be reached from X
by one step of a monotone connected search strategy using at most k searchers (a
step of a monotone connected search strategy starting at node u0 is the action
consisting in moving a searcher along an edge, all searchers being initially at
u0). The objective of Protocol dist_search is essentially to try, for successive
k = 1, 2, . . ., whether the configuration graph Ck can be traversed from ∅ to E(G)
under the constraint that the searchers starts at u0. If yes, then dist_search
completes after having captured the intruder using ≤ k searchers. Otherwise,
dist_search tries with k + 1 searchers. Note that this approach is similar to
the (centralized) parametrized algorithms of the literature (cf., e.g., [1, 10, 11]).
However, the difficulty of our approach is to discover whether the configuration
digraph Ck can be traversed from ∅ to E(G) in a decentralized manner.

For a fixed k, the objective of dist_search is to organize the movements of
the searchers so that they perform a DFS of Ck (again, ignoring the topology of
G, and in an asynchronous environment). This objective is achieved according to
an order specified by a virtual stack in which are stored information related to
the moves of the searchers. Roughly, Protocol dist_search constructs all possi-
ble states for the virtual stack, according to a lexicographic order on the states
of the stack. The difficulty of the protocol is to distribute the virtual stack on
the whiteboards so that when a searcher visits a node, it finds on the whiteboard
enough information for computing the next step of the search strategy that it
should perform. Since the intruder can corrupt the whiteboards, withdrawals
from previously visited nodes must be scheduled so that to make sure that no
information will be lost. Note here that, albeit the search strategy eventually
computed by the searchers is monotone (in the sense that the contents of all the
whiteboards describe a monotone search strategy when the protocol completes),
failing search strategies investigated before (according to the lexicographic order
on the states of the virtual stack) lead to withdrawals, and therefore to recontam-
ination. If all strategies with k searchers have failed, then the searchers terminate
at the homebase, call a new searcher, and restart searching the network with k+1
searchers.

The additional searcher used by dist_search, compared to mcs(G, u0), is
required for avoiding deadlocks. It is also used to schedule the moves of the other
searchers and to transmit few information between the searchers. It could be
replaced by simple communication facilities. For instance, if the searchers would
have the ability to send to and read from a mailbox available at the homebase,
this additional searcher could be avoided. In particular, in the Internet, each
searcher would just have to keep in its memory the IP address of the homebase.

The proof of correctness of Protocol dist_search is twofold. First, we prove
the correctness of an algorithm, denoted by A, that uses a centralized stack for

Distributed Chasing of Network Intruders 75

traversing the configuration digraph Ck. The second part of the proof consists in
proving a one-to-one correspondence between every execution of dist_search
using a virtual (i.e., decentralized) stack, and every execution of A using a cen-
tralized stack.

3 Search Strategy Using a Centralized Stack

In this section, we describe the algorithm A enabling a team of searchers launched
in an unknown network to capture an intruder hidden in this network. Algorithm
A is not fully distributed because it uses a centralized stack whose top is acces-
sible from every node by every searchers.

3.1 Description of Algorithm A

Algorithm A uses the notion of extended moves, that are triples (ai, aj , p) where
ai and aj denote searchers, and p is a port number.

Definition 1. An extended move (ai, aj , p) corresponds to the following: (1)
searcher ai joins searcher aj, and (2) the searcher with the smallest ID among
ai and aj leaves the node now occupied by the two searchers via port p. (Note
that i = j is allowed, in which case ai leaves the node it occupies by port p).

The central stack stores extended moves and thus describes a sequence of oper-
ations performed by the searchers. More precisely, reading the stack bottom-up
defines a sequence of operations that describes a partial execution of a search
strategy.

Definition 2. For a fix parameter k ≥ 1, a state of the virtual stack is valid
if there exists a monotone connected search strategy using at most k searchers
whose partial execution is described by this state.

By some abuse of terminology, we sometime say that a stack Q is valid, meaning
that the current state S of the stack Q is valid. Given a valid state S of a stack
Q, we denote by XS the configuration induced by S, that is XS is the set of
clear edges after the execution of the extended moves in S.

The principle of Algorithm A is to try, for each k = 1, 2, . . ., every possible
monotone connected search strategy using k searchers, until one reaches a sit-
uation in which either the whole network is clear, or all search strategies have
been exhausted. In the latter case, Algorithm A proceeds with k+1 searchers by
calling for a new searcher at the homebase u0. From now on, we assume that k is
fixed. The k searchers are denoted by a1, . . . , ak, where the ID of ai is simply its
index i. Algorithm A is described in Figure 1. It returns a boolean possible. If
possible is true then clearing the network with k searchers is possible, in which
case the stack Q returned by Algorithm A is valid, and contains a monotone
connected search strategy clearing G with k searchers.

In Algorithm A, the stack Q is initially empty, and only a1 is placed at u0. the
other searchers a2, . . . , ak are available. In addition to the centralized stack Q,

76 L. Blin et al.

Algorithm A uses a global variable state that takes two possible values clear or
backtrack whose meaning will appear clear later on. Finally, Algorithm A uses
a boolean variable decided that is false until either a monotone connected search
strategy using k searchers clearing the network is discovered, or all possible
monotone connected search strategies using k searchers have been considered.
Hence the main while-loop of Algorithm A is based on the value of decided (cf.
Figure 1). This main while-loop mainly contains two blocks of instructions. These
blocks are executed depending on the value of state (clear or backtrack).

Case clear corresponds to a situation in which Algorithm A has just cleared
an edge, i.e., the last execution of the main while-loop has resulted in pushing
some extended move in Q. Case backtrack corresponds to a situation when
the last execution of main while-loop has resulted in popping the stack Q, i.e.,
has resulted in the recontamination of an edge.

Let us first focus on the case state = clear. Algorithm A focuses on specific
extended moves, only those that do not imply recontamination (this is because
A eventually computes a monotone strategy). More formally, let us consider a
valid state S of the stack Q, i.e., S is a sequence of extended moves denoted by
M1| . . . |Mr. Pushing an extended move M in Q results in a new state, denoted
by S|M . We say that a extended move M is valid according to Q if S′ = S|M
is a valid state. Note that A does not maintain the set X of clear edges and
the set of available searchers. Indeed, given a valid state S of the stack Q, one
can easily construct XS by executing the partial search strategy described by
S. A searcher is then available if either it stands at a node not in δ(XS) or it
stands at a node also occupied by a searcher of lower index. There is therefore
a simple characterization of a valid extended move M according to a valid state
S of Q: If S = ∅, then M is valid if and only if either u0 is a 1-degree node and
M = (a1, a1, 1), or k > 1 and M = (a2, a1, 1). If S
= ∅, M = (ai, aj , p) is valid
according to Q if and only if either i = j, ai stands at a node u ∈ δ(XS), and p
is the only contaminated port of node u, or i
= j, ai is available, aj stands at a
node u ∈ δ(XS), and p is a contaminated port of node u.

The first instruction of the case state = clear consists in checking whether
there exists a valid extended move according to Q. The key issue is to choose
which extended move to apply, among all possible valid extended moves. For this
choice, the extended moves are ordered in lexicographic order.

Definition 3. Let M = (ai, aj , p) and M ′ = (ai′ , aj′ , p′) be two extended moves.
We define M ≺ M ′ if and only if either (i < i′), or (i = i′, and j < j′), or
(i = i′, j = j′, and p < p′).

If there is an extended move that is valid according to Q then Algorithm A
chooses the one that has minimum lexicographic order among all extended moves
that are valid according to Q. If there is no extended moves that are valid
according to Q, then A switches to the state backtrack. For this purpose, the
last move in Q is popped out, and stored in the global variable Mlast. If fact, if
Q = ∅, then backtracking is not possible, and A decides that k searchers are not
sufficient to clear the network.

Distributed Chasing of Network Intruders 77

Input: k ≥ 1 searchers a1, a2, · · · , ak and a node u0 of a graph G.
Output: a boolean possible, and a stack Q of extended moves.
begin

Q← ∅;
state← clear;
decided← false;
while not decided do

if all searchers are available then
decided← true;
possible ← true;

else
/* case state = clear */
if state = clear then

if there exists a valid extended move according to Q then
(ai, aj , p)← minimum valid extended move according to Q;
push(ai, aj , p);

else
if Q �= ∅ then

Mlast ← pop();
state← backtrack;

else
decided← true;
possible ← false;

/* case state = backtrack */
else

Let Mlast = (ai, aj , p);
if there exists a valid extended move according to Q larger than (ai, aj , p) then

(a′
i, a′

j , p′)← min valid extended move according to Q larger than (ai, aj , p);
push(a′

i, a′
j , p′);

state← clear;
else

if Q �= ∅ then Mlast ← pop();
else

decided← true;
possible ← false;

endif
endif

endwhile
return(possible, Q);

end.

Fig. 1. The Algorithm A

Let us now focus on the case state = backtrack. A considers the move
Mlast. If there is an extend move M � Mlast that is valid according to the stack,
then A performs the smallest such move by pushing M in the stack, and going
back to state clear. Otherwise A carries on backtracking by popping out the
last extended move from the stack.

3.2 Property of Algorithm A

Lemma 1. Algorithm A completes for k = mcs(G, u0), and then the stack Q
describes a monotone connected search strategy for G starting at u0 and using k
searchers.

Sketch of proof. First we prove that, after any execution of the while-loop, the
state of the stack is valid. The main tools for the proof in then an ordering
of the states of the stack. We order them the same way we ordered extended
moves. Precisely, given S = M1| · · · |Mr and S′ = M ′

1| · · · |M ′
r′ , two states of

78 L. Blin et al.

the stack Q, S ≺ S′ if and only if there exists i ≤ min{r, r′} such that Mi ≺
M ′

i and, for any j < i, Mj = M ′
j. Also, let us say that a valid sequence of

extended moves is complete if the corresponding search strategy clears the whole
network. Consider S = M1| . . . |Mr a sequence of extended moves corresponding
to a partial execution of a search strategy using at most k searchers. We prove
that either there exists a complete sequence S′ of extended moves with S′ ≺
S, or Algorithm A eventually computes state S of the stack. Based on these
preliminary results, we prove that if mcs(G, u0) > k then Algorithm A returns
(false, ∅) for k. Conversally, we prove that if mcs(G, u0) = k, and if S is the
smallest complete sequence of valid extended moves corresponding to a monotone
connected search strategy in G starting from u0, then Algorithm A returns
(true, Q) for k, where Q is in state S. As a direct consequence of these results, we
get that Algorithm A computes a minimal monotone connected search strategy
starting from u0 in G. �

4 Fully Distributed Search Strategy

In this section, we describe the main features of protocol dist_search. In this
description, we assume that searchers are able to communicate by exchanging
messages of size O(log k) bits where k is the number of searchers currently in-
volved in the search. With this facility, we will show that dist_search captures
the intruder with mcs(G, u0) searchers. Using an additional searcher for imple-
menting communications between the mcs(G, u0) other searchers, dist_search
captures the intruder with mcs(G, u0) + 1 searchers in total. Assuming that the
searchers can communicate by exchanging messages is only for the purpose of
simplifying the presentation. Moreover, for the sake of simplicity, we assume
that two searchers on the same node can ”see” each other. Obviously, this can
be implemented with the whiteboards, but would unnecessarily complicate the
presentation. First, we describe the data structure used by dist_search.

4.1 Data Structure of dist_search

Every searcher has a state variable that can take k+2 different values where k is
the current number of searchers. These k+2 states are: clear, backtrack, and
(help, j), for j = 1, . . . , k. Initially, all searchers are in state clear. During the
execution of the protocol, (1) a searcher is in state clear if it has just cleared
an edge; (2) a searcher is in state backtrack if it has just backtracked through
an edge that it has previously cleared; and (3) a searcher is in state (help, j) if
it is aiming at joining the searcher j to help him clearing the network (i.e., one of
them will guard a node, while the other will clear an edge incident to this node).

The messages that searchers can exchange are of four types: start, move,
help and sorry. (1) start is an initialization message that is only used to start
Protocol dist_search (only agent a1 receives this message, at the very beginning
of the protocol execution). (2) If a searcher i receives a message (move, j) from
some searcher aj , then it is the turn of searcher ai to proceed. (As it should
appear clear later, the searchers schedule themselves so that exactly one searcher

Distributed Chasing of Network Intruders 79

performs an action at a time). (3) If a searcher ai receives a message (help, j)
from some searcher aj, then aj is currently just arriving at the same node as
ai to help ai. (Note that ai and aj could use the whiteboard to communicate,
and this type of messages is just used for a purpose of unification with the other
message types). (4) If a searcher ai had received a message (move, j) or (help, j)
from some searcher aj and, after having possibly performed several actions, it
turns out that these actions are useless, then ai sends a message (sorry, i) back
to searcher aj .

The whiteboard of every node contains a local stack, and two vectors direc−
tion[] and cleared_port[]. The protocol insures that, after the node has been
visited by a searcher, direction[0] indicates the port number to take for reaching
the homebase, and, for i > 0, direction[i] is the port number of the edge that
searcher ai has used to leave the current node the last time it was at this node.
At node v, for any 1 ≤ p ≤ deg(v), cleared_port[p] = 1 if and only if the edge
corresponding to the port number p is clear.

When a searcher at a node v decides to perform any action, it saves a trace of
this action in the local stack. A trace is a triple (X, a, x) where X is a symbol, a
is a searcher’s ID, and x is either a port number, or a searcher’s ID, depending on
symbol X . More precisely: (1) (CC, i, p) means that p is the only contaminated
(C) port, and searcher ai decided to clear (C) the edge that corresponds to p;
(2) (CJ, i, p) means that some searcher joined (J) ai at this node, and ai decided
to clear (C) the edge that corresponds to p; (3) (JJ, i, j) means that searcher ai

decided to join (J) the searcher aj ; (4) (RT, i, j) means that searcher ai received
(R) a message from searcher aj ; (5) (ST, i, j) means that searcher ai decided to
send (S) a message to searcher aj ; (6) (AC, i, p) means that searcher ai arrived
(A) at v by port p after clearing (C) the corresponding edge; (7) (AH, i, p) means
that searcher ai arrived (A) at v by port p in order to join another (H) searcher.

4.2 The Protocol Dist_Search

The protocol dist_search organizes the movements of the searchers, and the
messages exchanged between the searchers, in a specific order. Based on a lex-
icographic order of the searchers’ actions, dist_search orders them in order
to always execute the smallest action that can be performed. The principle of
dist_search is to try every possible monotone connected search strategy us-
ing k searchers, until either the whole graph is clear, or no searcher can move
without implying recontamination. In the latter case, the searcher that made the
last move backtracks, and dist_search tries the next action according to the
lexicographic order on the actions.

The termination of dist_search is insured as follows. The graph is cleared
at time t if and only if all searchers are occupying clear nodes at this time, i.e.,
nodes whose all incident edges are clear. This configuration is identified by the
searchers because searcher a1 tries to help all the other searchers, from a2 to ak,
but none of them needed help. Conversely, the searchers identify that k searchers
are not sufficient to clear the graph when they are all occupying the homebase,
and try to pop the local stack that is empty. In this case, a1 calls for a new

80 L. Blin et al.

Program of searcher i at node v.

begin
/* Searcher i receives a message */
Case:

message = start
decide();

message = (move, j)
push(RT, i, j);
decide();

message = (help, j)
push(RT, i, j);
p← smallest contaminated port;
clear edge(CJ, i, p)

message = (sorry, j)
back();

/* Searcher i arrives at node v by port p */
Case:

state = clear

if no other searcher is at v then
erase whiteboard;

direction[0]← p;
cleared_port[p]← 1;
push(AC, i, p);
if i �= 1 then

push(ST, i, 1);
send message (move, i) to 1;

else decide();
state = (help, j)

push(AH, i, p);
join(j);

state = backtrack

back();
end

Fig. 2. Skeleton of Protocol dist_search

searcher, and the k + 1 searchers are ready to try again capturing the intruder
from the homebase.

A skeleton of the protocol dist_search is given in Figures 2-3. More precisely,
Figure 2 describe the global behavior of a searchers, using subroutines described
in Figure 3. A searcher reacts to either the reception of a message (cf. left part
of Figure 2), or to its arrival at a node (cf. right part of Figure 2). The message
type start is uniquely for the purpose of the initialization: initially, searcher a1
receives a message start (and hence calls procedure decide()).

If searcher ai receives a message (move, j), then, by definition of such a mes-
sage, it simply means that it is the turn of ai to proceed. Therefore, ai writes
on the whiteboard of the node where it is currently standing that received a
message from searcher aj giving it turn to proceed. For this purpose, ai pushes
(RT, i, j) in the local stack. The nature of the next actions of ai depends on
the result of procedure decide(). Let us list all other cases depending on the
message received by ai. If ai receives a message (help, j) then it means that aj

has just arrived at the same node as ai to help him. Thus, ai pushes (RT, i, j)
in the local stack, and clears the edge with the smallest port number p among
all contaminated edges incident to the node where ai is standing. This action is
performed by calling procedure clear edge(CJ, i, p). Finally, if ai receives a mes-
sage (sorry, j), then it means that ai had sent a message (move, i) or a message
(help, i) to aj but aj could not do anything, or all actions aj attempted lead to
backtracking. Therefore, ai calls procedure back() to figure out which searcher
it can help next.

The action of searcher ai arriving at some node v by port p depends on
its local state. In state (help, j), ai aims at joining aj to help him clearing
the network. Hence ai pushes (AH, i, p) in the local stack to indicate that it
arrived here by port p in order to join another searcher, and then calls procedure
join() to figure out what to do next in order to join aj . Procedure join() uses
indications on whiteboards. Recall that if aj was at a node, the whiteboard
contains in direction[j] the port number through which aj left that node.

Distributed Chasing of Network Intruders 81

clear_edge(action X, ID i, port p)
/* X ∈ {CC;CJ} */
begin

push(X, i, p);
cleared_port[p]← 1;
state← clear;
move(p);

end

move(port_number p)
begin

direction[i]← p;
leave current vertex by port number p;

end

next_searcher(searcher_ID i)
begin

j ← i + 1;
if i is not smallest searcher at v then

while (j is at node v) and (j ≤ k) do
j ← j + 1;

if j ≤ k then
push(ST, i, j);
send (move, i) to j;

else
back()

end

Fig. 3. Procedures clear_edge, next_searcher and move

Agent ai returns to the homebase using direction[0] until it passes through a
node where direction[j] is set, in which case ai starts following this direction
to eventually find aj. In state backtrack, ai simply calls procedure back() to
carry on its backtracking. The case where ai arrive at a node v in state clear

is more evolved. If there is no other searcher at v then ai erases the whiteboard
since it was accessible to the intruder, and thus its content is meaningless (when
a searchers arases a whiteboard, it reset all local variables to 0, and the stack
to ∅). Then ai sets direction[0] to p to indicate that it arrived here via port
p, and sets cleared_port[p] to 1 to indicate that the edge of port p is clear. ai

then pushes (AC, i, p) in the local stack at v to indicate that indeed ai arrived at
v by port p after clearing the corresponding edge. At this point, the behavior of
ai depends on whether i = 1 or not. While a1 simply calls decide() to figure out
what to do next, ai for i > 1 proposes to a1 to proceed next. For this purpose, ai

sends a message (move, i) to a1. Of course, to keep trace of this action, ai pushes
(ST, i, 1) in the local stack.
Remark. Note that the actions are ordered. For instance, if several incident edges
can be cleared then the cleared one is with the smallest port number. Similarly,
after clearing an edge, ai proposes to the smallest searcher a1 to proceed next.
Protocol dist_search always tries to perform the smallest action. This is in
particular the role of procedure next searcher(i) described on the right side of
Figure 3. This procedure aims at determining which searcher aj proceeds next.
In the case where ai is the searcher with smallest index occupying the node,
j = i + 1. Otherwise, i.e., ai is not the searcher with smallest index occupying
the node, j is the smallest index > i such that aj is not occupying the same
node as ai. Once j is found, ai offers to aj to proceed next, by sending it a
message (move, i). As always, a trace of this action is kept at the current node
by pushing (ST, i, j) in the local stack. If there is no aj with j > i occupying a
node different from the one occupied by ai, then ai calls back() for the purpose
of backtracking.

The procedures clear edge() and move() described in the left side of Figure 3
execute clearing an edge, and traversing an edge, respectively. (Of course, clear-
ing an edge requires traversing it). Procedures decide(), back(), and join() are
avoided due to lack of space.

82 L. Blin et al.

5 Sketch of Proof of Dist_Search

First, one can check that at any step of dist_search there is only one operation
performed, on only one of the stacks distributed over all nodes of the network.
Indeed, only the searcher who has just received a message can perform an action,
and in particular modify a stack. Thus we can define a virtual stack, Qvirtual,
where we push or pop all the moves performed by the searchers, instead of
pushing or popping them in and out of the distributed stacks.

Precisely, a move is a pair (ai → aj , p) to be interpreted as follows. If i
= j,
then (ai → aj , p) means that ai leaves its current node by port p with the
objective of joining aj . The move (ai → ai, p) means that ai leaves its current
node by port p, for clearing the corresponding edge. Clearly, an extended move
corresponds to a sequence of moves. From the interpretation above, the extended
move (ai, ai, p) is identical to the move (ai → ai, p), and if i
= j then the
extended move (ai, aj, p) is identical to the sequence of moves

(ai → aj , p1), (ai → aj , p2), . . . , (ai → aj , p�), (min{ai, aj} → min{ai, aj}, p)

where p1, . . . , p� is a sequence of port numbers corresponding to a clear path
from the node occupied by ai to the node occupied by aj when the extended
move (ai, aj , p) is considered.

Qvirtual is updated in the following way. At every execution of the Procedure
move(), we push or pop a move in Qvirtual as follows. If ai applies move(p) dur-
ing the execution of Procedure clear edge(X, i, p), then the move (ai → ai, p)
is pushed in Qvirtual. If ai applies move(p) during the execution of Procedure
join(j), then the move (ai → aj, p) is pushed in Qvirtual. Finally, if a searcher ap-
plies move(p) during the execution of Procedure back(), then Qvirtual is popped.

With this definition of Qvirtual, we show that the stack Q of the centralized
algorithm A, and the virtual stack Qvirtual are equivalent in the following way.
Let Q = M1| · · · |Mr be a sequence of extended moves (possibly empty). Qvirtual

is strongly equivalent to Q if, for any 1 ≤ j ≤ r, there exists a sequence of moves Sj

equivalent to Mj such that Qvirtual = S1| · · · |Sr. Qvirtual is weakly equivalent to Q
if for any 1 ≤ j ≤ r, there exists a sequence of moves Sj equivalent to Mj such that
Qvirtual = S1| · · · |Sr|Sr+1 where Sr+1 = (ai → ai′ , p1), (ai → ai′ , p2), . . . , (ai →
ai′ , p�) where p1, · · · , p� is a sequence of port numbers corresponding to a path
from a searcher ai to a searcher ai′ , in the cleared part of the graph corresponding
to the configuration associated to Q in state M1| · · · |Mr.

Two strongly equivalent stacks correspond to exactly the same strategy (i.e.,
at the end of both strategies, the set of cleared edges, and the positions of
the searchers are the same). If Q and Qvirtual are weakly equivalent, then the
strategy associated to Qvirtual consists in performing the strategy associated to
Q and then to move some searcher to the node occupied by some other searcher
(via a path in the cleared part of the graph, and without recontamination).

The proof of dist_search proceeds by considering the algorithm step by step,
where a step is a moment of the execution where an edge is either cleared or
recontaminated. That is, a step of dist_search denotes a step of its execution
when a move of type (ai → ai, p) is pushed in or popped out Qvirtual.

Distributed Chasing of Network Intruders 83

Formally, we prove that, for any t ≥ 0, the virtual stack Qvirtual after step t
of dist_search is equivalent to the stack Q constructed by A. In other words,
we prove that, at any step t ≥ 0, both algorithms construct the same partial
strategy, that is the cleared subgraph and the positions of the searchers that
guard the border of this cleared subgraph are the same for both strategies.
Simultaneously, we prove that for any step, when an extended move is popped
out in A, all the traces of the equivalent sequence of moves in dist_search are
removed from the distributed whiteboards.

Our proof is by induction on number of steps. Let us assume that the cen-
tralized stack Q and the virtual stack Qvirtual are equivalent up to step t. We
consider the next step. The difficulty of the proof is in the number of different
cases to consider. There are actually exactly fourteen cases to consider, grouped
in two groups:

– Group A: Q and Qvirtual just cleared an edge e. The first case is if the graph
is entirely clear. Otherwise there are 3 cases: (1) a searcher can clear a new
edge alone, or (2) a searcher can join another searcher and one of them can
clear a new edge, or (3) no other edge can be cleared and the clearing of e has
to be canceled. These cases have to be combined with 3 other cases depending
on the way e has been cleared. Thus Group A yields 7 cases in total.

– Group B: Q and Qvirtual just cancelled the clearing of an edge. Then, either
another edge e can be cleared, or no other edge can be cleared (and the
last cleared edge, say e′, has to be canceled). In the former case, there are 3
subcases depending on the type of move that has been popped out the stack
(canceling corresponding to popping out the stack). In the latter case, there
are 4 subcases depending on the way e′ had been cleared. Thus Group B
yields 7 additional cases.

The proof of correctness consists in a careful analysis of each of these 14 cases.
Finally, every agent uses at most O(log k) bits of memory to store the label of
another agent in state (help, j). The whiteboard size is O(m log n) by a careful
analysis of the protocol.

Acknowledgments. The first and fourth authors received additional supports
from the project “ALGOL”of the ACI Masses de Données, and from the project
“ROM-EO” of the RNRT program. The second and third authors received ad-
ditional supports from the project “PairAPair” of the ACI Masses de Données,
from the project“Fragile”of the ACI Sécurité Informatique, and from the project
“Grand Large” of INRIA.

References

1. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth. 8(2):277-284, 1987.

2. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder
by mobile agents. In 14th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 200-209, 2002.

84 L. Blin et al.

3. L. Barrière, P. Fraigniaud, N. Santoro, and D. M. Thilikos. Searching is not jump-
ing. In 29th Workshop on Graph Theoretic Concepts in Computer Science (WG),
Springer-Verlag, LNCS 2880, pages 34–45, 2003.

4. D. Bienstock, Graph searching, path-width, tree-width and related problems (a
survey), DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science,
5 (1991), pp. 33–49.

5. D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algo-
rithms 12:239–245, 1991.

6. R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers
VI(5):72–78, 1967.

7. U. Feige, M. Hajiaghayi, and J. Lee. Improved approximation algorithms for
minimum-weight vertex separators. In 37th ACM Symposium on Theory of Com-
puting (STOC), 2005.

8. P. Flocchini, F.L. Luccio, and L. Song. Decontamination of chordal rings and tori.
Proc. of 8th Workshop on Advances in Parallel and Distributed Computational
Models (APDCM), 2006.

9. P. Flocchini, M. J. Huang, F.L. Luccio. Contiguous search in the hypercube for
capturing an intruder. Proc. of 18th IEEE Int. Parallel and Distributed Processing
Symposium (IPDPS), 2005.

10. F. Fomin, P. Fraigniaud and N. Nisse. Nondeterministic Graph Searching: From
Pathwidth to Treewidth. In 30th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), LNCS 3618, pages 364-375, Springer, 2005.

11. F. V. Fomin, D. Kratsch, and I. Todinca. Exact algorithms for treewidth and min-
imum fill-in. In 31st Int. Colloquium on Automata, Languages and Programming
(ICALP 2004), LNCS vol. 3142, Springer, pp. 568–580, 2004.

12. P. Fraigniaud and D. Ilcinkas. Directed Graphs Exploration with Little Mem-
ory. Proc. 21st Symposium on Theoretical Aspects of Computer Science (STACS),
LNCS 2296, pages 246-257, 2004.

13. P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching.
In 7th Latin American Theoretical Informatics, LNCS 3887, pages 470-490, 2005.

14. L. Kirousis, C. Papadimitriou. Interval graphs and searching. Discrete Math. 55,
pages 181-184, 1985.

15. L. Kirousis, C. Papadimitriou. Searching and Pebbling. Theoretical Computer
Science 47, pages 205-218, 1986.

16. A. Lapaugh. Recontamination does not help to search a graph. Journal of the
ACM 40(2):224–245, 1993.

17. F. S. Makedon and I. H. Sudborough, On minimizing width in linear layouts,
Discrete Appl. Math., 23:243–265, 1989.

18. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The com-
plexity of searching a graph. Journal of the ACM 35(1):18–44, 1988.

19. T. Parsons. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, Springer-Verlag, pages 426–441, 1976.

20. K. Skodinis Computing optimal linear layout of trees in linear time. In 8th Eu-
ropean Symp. on Algorithms (ESA), Springer, LNCS 1879, pages 403-414, 2000.
(Also, to appear in SIAM Journal on Computing).

21. B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number. In
15th Annual International Symposium on Algorithms and Computation (ISAAC),
pages 908-920, 2004.

	Introduction
	The Problem
	The Model
	Our Results

	Main Result and Sketch of the Protocol
	Search Strategy Using a Centralized Stack
	Description of Algorithm A
	Property of Algorithm A

	Fully Distributed Search Strategy
	Data Structure of dist_search
	The Protocol Dist_Search

	Sketch of Proof of Dist_Search

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

