
Setting Port Numbers
for Fast Graph Exploration

David Ilcinkas�

LRI, Université Paris-Sud, France
ilcinkas@lri.fr

Abstract. We consider the problem of periodic graph exploration by
a finite automaton in which an automaton with a constant number of
states has to explore all unknown anonymous graphs of arbitrary size and
arbitrary maximum degree. In anonymous graphs, nodes are not labeled
but edges are labeled in a local manner (called local orientation) so that
the automaton is able to distinguish them. Precisely, the edges incident
to a node v are given port numbers from 1 to dv, where dv is the degree
of v.

Periodic graph exploration means visiting every node infinitely often.
We are interested in the length of the period, i.e., the maximum num-
ber of edge traversals between two consecutive visits of any node by the
automaton in the same state and entering the node by the same port.
This problem is unsolvable if local orientations are set arbitrarily. Given
this impossibility result, we address the following problem: what is the
mimimum function π(n) such that there exist an algorithm for setting
the local orientation, and a finite automaton using it, such that the au-
tomaton explores all graphs of size n within the period π(n)?

The best result so far is the upper bound π(n) ≤ 10n, by Dobrev
et al. [SIROCCO 2005], using an automaton with no memory (i.e. only
one state). In this paper we prove a better upper bound π(n) ≤ 4n. Our
automaton uses three states but performs periodic exploration indepen-
dently of its starting position and initial state.

1 Introduction

The task of visiting all nodes is fundamental when searching for data in a net-
work. The specific case of periodic exploration is particularly useful for network
maintenance, where every node has to be regularly checked. In this paper we
consider the task of periodic exploration, in which a mobile entity, or robot, has
to periodically visit every node of an unknown graph.

We assume that the graph is anonymous, i.e., the nodes are unlabeled. Note
that node labels would not help much the robot anyway because, as we will see
later, it is modeled as a finite automaton, and thus is unable to store even a
� Supported by the project “PairAPair” of the ACI Masses de Données, the project

“Fragile” of the ACI Sécurité et Informatique, and the project “Grand Large” of
INRIA.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 59–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

60 D. Ilcinkas

single node label. To enable the robot to distinguish the different edges incident
to a node, edges at a node v are assigned port numbers in {1, . . . , dv} in a one-
to-one manner, where dv is the degree of node v. Such port-numbering is called
a local orientation.

The robot is modeled by a deterministic finite automaton. More precisely, we
consider Mealy automata. A Mealy automaton has a transition function f and a
finite number of states. If the automaton enters a node of degree d through port i,
in state s, then it switches to state s′ and exits the node through port i′, with
f(s, i, d) = (s′, i′). Since the transition function takes as input a port number,
we say that the automaton is on an edge e towards the extremity v of e or, in
short, is on (e, v). Such a pair is called a position.

We consider the problem of periodic graph exploration where the finite au-
tomaton has to explore any unknown anonymous connected graph of arbitrary
size and arbitrary maximum degree. Periodically exploring a graph means vis-
iting every node infinitely often. We are interested in the length of the period,
i.e., the maximum number of edge traversals between two consecutive visits of
any node by the automaton in the same configuration (i.e., same position and
same state). Budach [4] proved that no finite automaton can explore all graphs
if the local orientation is given by an adversary. Given this impossibility result,
we adress the following problem:

Problem. What is the mimimum function π(n) such that there exist an algorithm
for setting the local orientation, and a finite automaton using it, such that the
automaton explores all graphs of size n within the period at most π(n)?

A trivial upper bound on the period is 2m, where m is the number of edges
of the explored graph. One can indeed set the local orientation such that a
right-hand-on-the-wall walk defined by f(s, i, d) = (s, (i mod d) + 1) induces an
eulerian cycle of the graph, where all edges are traversed twice, once in each
direction. Dobrev et al. [10] presented a port-numbering algorithm, and an au-
tomaton using it, achieving a period of at most 10n for graphs of size n. Hence
π(n) ≤ 10n. The main advantage of their approach is that their automaton is
ultimately simple: it is oblivious (i.e. it uses only one state). Using an oblivious
automaton naturally solves the problem of setting the initial state. However, the
good performance of the automaton in [10] relies on the fact that the agent must
start the exploration by the edge with port number 1.

In this paper we prove that π(n) ≤ 4n − 2. Our automaton is not oblivious
but has only three states. Moreover, it performs periodic exploration indepen-
dently from its starting position and initial state. Our port-numbering algorithm
is based on a spanning tree of the graph and can be easily implemented in a dis-
tributed environment, and extended to dynamic networks.

1.1 Related Work

Exploration of unknown environments have been extensively studied in the lit-
erature (cf. [19, 21]). The environment can be modeled using geometry as a plan
with obstacles or as a graph. In the latter case, moves are restricted to the

Setting Port Numbers for Fast Graph Exploration 61

edges of the graph. The graph setting can be further specified in two differ-
ent ways. In [3, 8, 13, 17] the robot explores strongly connected directed graphs
and it can move only in the head-to-tail direction of an edge, not vice-versa. In
[4, 9, 11, 12, 15, 20, 23] the explored graph is undirected and the robot can tra-
verse edges in both directions. Again two different assumptions are used in the
literature: it is either assumed that nodes of the graph have unique labels which
the robot can recognize (as in, e.g., [8, 12, 20]), or it is assumed that nodes are
anonymous (as in, e.g., [3, 4, 11, 23]). We are concerned with the latter context.

It is often assumed that the robot has an unlimited amount of memory to per-
form his task. In this paper, we are interested in robots using very little memory.
More precisely we want the robots to have only a constant number of memory
bits. A very natural model in this case is the finite automaton. Budach [4] proved
that no finite automaton can explore all graphs. Rollik [23] proved that even a
finite team of finite automata cannot explore all planar cubic graphs. This re-
sult is improved in [6], in which the authors introduced an even more powerful
machine, called the JAG, for Jumping Automaton for Graphs. A JAG is a fi-
nite team of finite automata that can permanently cooperate and that can use
“teleportation” to move from their current location to the location of any other
automaton. Cook and Rackoff [6] proved that no JAG can explore all graphs. It
was proved later in [18] that an automaton requires at least n states to explore
all graphs of size n. Reingold [22] proved a very challenging result stating that
SL = L by providing a log-space algorithm solving the USTCON problem. A
consequence of his work is the existence of a robot with O(log n) bits performing
exploration in n-node graphs, matching the lower bound of Ω(log n) bits in [18].

Several papers investigated graph exploration in which nodes of the graph are
provided with a whiteboard (as in, e.g., [1, 7, 17]). A whiteboard is a memory
where the automaton can read, write and erase information. Initially, all white-
boards are empty. In this setting, exploration requires at least m edge traversals,
where m is the number of edges in the graph, because any unexplored edge may
lead to an unexplored node. It is proved in [5] that there is an algorithm coloring
the nodes using only three colors, and a finite automaton using this coloring
which can explore all graphs. The traversal is of length approximately 20m.
Other assumptions are used in the literature to improve the performances of
algorithms (see, e.g., [14, 16]).

In this paper we restrict attention to fully anonymous graphs: nodes are not
labeled and not colored, no whiteboard is provided, and the automaton is not
allowed to use any marker on nodes or edges. Having in mind the impossibility
result of Budach [4], the only freedom is the setting of the local orientation. This
method is used by Dobrev et al. [10]. As stated before, the authors presented
a port-numbering algorithm, and an oblivious automaton using it, achieving a
period of at most 10n for graphs of size n.

1.2 Our Results

Our main result is the design of a very simple algorithm for setting the lo-
cal orientation of any graph and the design of a 3-state automaton performing

62 D. Ilcinkas

periodic exploration using the local orientation computed by the algorithm. The
periodic traversal of the agent is of length at most 4n − 2, where n is the num-
ber of vertices of G. Hence π(n) ≤ 4n − 2. Moreover, the good performances of
the exploration do not depend on the initial state and starting position of the
automaton.

Our port-numbering algorithm is based on computing a spanning tree of the
graph and constructing the local orientation from this spanning tree. We prove
that our labeling scheme can be easily transformed in a distributed algorithm or
used in a dynamic environment, answering open problems stated in [10].

2 The Port-Numbering and the Corresponding
Automaton

We first describe our algorithm computing the local orientation of the edges. This
algorithm is mainly based on coding a spanning tree of the graph by choosing
the small port numbers for the edges of the spanning tree.

Next, we will present a 3-state Mealy automaton that explores the constructed
spanning tree (plus some additionnal edges) in a DFS manner.

We will conclude this section by proving the correctness of our algorithm and
of the corresponding automaton.

2.1 Local Orientation Algorithm

Let G = (V, E) be a graph. Let us consider an arbitrary spanning tree T of G.
Let F ⊆ E be the set of edges of T . For any node v ∈ V , let Fv be the set of
edges in F that are incident to v.

Definition 1. A local orientation of the edges of the graph G is compatible with
a spanning tree T = (V, F) if and only if:

– for any edge e ∈ E, at least one of its two port numbers is 1 if and only if
e ∈ F ;

– for any node v ∈ V , the edges in Fv have their port numbers from 1 to |Fv|.

We say that a local orientation of G is tree-oriented if there exists a spanning
tree T of G such that the local orientation is compatible with T .

Our algorithm, called Small-Ports, constructs local orientations that are tree-
oriented. To fix attention, the algorithm uses the following local orientation.

Algorithm Small-Ports

1. Pick a rooted spanning tree T of G. Let r be its root.
2. For any node v �= r, assign port number 1 to the edge of T leading toward

the root. At r, assign 1 to an arbitrary edge in Fr.
3. For any node v of G, assign arbitrarily port numbers from 2 to |Fv| to the

remaining edges of Fv, if any.

Setting Port Numbers for Fast Graph Exploration 63

4. Finally, assign arbitrarily port numbers from |Fv| + 1 to dv (the degree of v)
to the edges that have not yet assigned port numbers, if any.

Clearly this local orientation is compatible with T .

Remark 1. Small-Ports is very simple since it only requires the computation
of a spanning tree to set the local orientation. Moreover, many applications use
a spanning tree as underlying structure and in this case, Small-Ports gets the
spanning tree for free. The performance and simplicity of Small-Ports has to
be compared with the ones of the algorithm presented in [10]. Small-Ports

performs in time O(m) whereas the algorithm in [10] performs in time O(n3).

Remark 2. Consider a graph G and a tree-oriented local orientation of G. There
is a unique spanning tree T such that this local orientation is compatible with T .
Namely, T is the tree composed of the n − 1 edges of G that have at least one of
their port numbers equal to 1. Moreover there exist exactly two possible roots
for T such that the local orientation can be obtained by running Algorithm
Small-Ports with this rooted spanning tree. These two roots are the two ex-
tremities of the unique edge with both port numbers equal to 1.

2.2 Description of the Exploring Automaton

Our exploring automaton, called A, has three states: N (for Normal), T (for
Test), and B (for Backtrack). The transition function f of the automaton is
defined as follows. Here d denotes the degree of the current node, and i the
incoming port number. (Recall that the second parameter outputed by the tran-
sition function is the output port number.)

f(N, i, d) =
{

(N, 1) if i = d
(T, i + 1) if i �= d

f(T, i, d) =

⎧⎨
⎩

(N, 1) if i = 1 and d = 1
(T, i + 1) if i = 1 and d �= 1
(B, i) if i �= 1

f(B, i, d) = (N, 1)

Intuitively, the automaton traverses an edge in state N when it knows that
the edge is in the spanning tree, in state T when it does not know yet, and in
state B when it knows that the edge does not belong to the spanning tree.

2.3 Correctness

Theorem 1. Let G be a graph of size n, with a tree-oriented local orientation.
Start the automaton A in an arbitrary state at any arbitrary position in the graph.
After at most two steps, the automaton enters a closed walk P and explores it
forever. Moreover, P is of length at most 4n−2 and contains all the nodes of G.

Proof. Let G be an arbitrary graph and let n be its number of nodes. Assume
that the local orientation is compatible with some spanning tree T . We first study
the periodic behavior of the automaton, and then the initial transient regime.

64 D. Ilcinkas

Let v be an arbitrary node of G, and let e be its incident edge with port
number 1. The removal of e in T results in two connected components (subtree).
Let T ′ be the component containing v. Finally, let n′ be the number of nodes
of T ′.

Claim. If the automaton A enters v through port 1 in a state different from B,
then it eventually leaves v through port 1 in state N . Moreover, between these
two events, it explores all nodes of T ′ in at most 4n′ − 2 edge traversals, and
does not leave any node not in T ′ through port 1 during those traversals.

We prove this by induction on the height h of T ′ rooted in v, i.e., the ec-
centricity of v in T ′. The case h = 0 corresponds to v leaf of T . If v is also a
leaf in G, then the automaton immediately leaves v through port 1 in state N
and the claim is proved. Therefore we assume that deg(v) > 1. By hypothesis
of the claim, the automaton enters v in state T or N . In both cases, it switches
to state T , and traverses the edge e′ of port number 2. v is a leaf of T and
since e is in T , e′ is not. Thus the port number of e′ at the other extremity is not
equal to 1. Hence the automaton comes back to v in state B, and finally leaves
v through port 1 after 4 · 1 − 2 = 2 edge traversals, which proves the basis of the
induction.

Let us now consider the case h > 0. Let d be the degree of v. We have d �= 1
because v is incident to e and depth(T ′) > 0. For i ≥ 2, let vi be the node at
the other extremity of the edge ei with port number i at v. If ei is in T , then
let Ti be the connected component of T ′ \ {ei} containing vi. Finally, let p be
the largest port number of an edge in T incident to v. We have p ≥ 2 because v
is not a leaf in T . By hypothesis of the claim, the automaton enters v in state
T or N . In both cases, it switches to state T , and traverses the edge e2 of port
number 2. Assume that the automaton leaves v through port i in state T , with
2 ≤ i ≤ p. It reaches node vi. By induction hypothesis on h, the automaton
eventually comes back from vi to v through port i, in state N , after at most
4ni − 2 edge traversals. (Note that during these traversals, the automaton may
have visited nodes outside Ti but it never left these nodes through port 1.) If
i �= d, then the automaton leaves v through port i + 1 in state T . Hence, the
automaton successively explores the subtrees Ti.

If p = d, then the automaton eventually leaves v through port 1 in state
N after finishing the exploration of Tp. If p < d, then the automaton takes
the edge ep+1 in state T . Since ep+1 is not in the tree T , the port number of
ep+1 at the other extremity is not equal to 1. Thus the automaton comes back
to v in state B and finally leaves v through port 1 in state N . In both cases,
it remains to bound the number of edge traversals. The automaton traversed∑p

i=2(4ni−2) = 4(n′−1)−2(p−1) edges during the exploration of the subtrees Ti.
It also traversed twice each edge ei, 2 ≤ i ≤ p. Finally there are possibly two
additional edge traversals, in the case p �= d. To summarize, the number of edge
traversals is at most 4(n′ − 1)− 2(p − 1)+ 2(p − 1)+2 = 4n′ − 2. This concludes
the proof of the claim.

We now use the previous claim to exhibit the closed path traversed periodically
by the automaton. There is a unique edge e = {v, v′} with both its port numbers

Setting Port Numbers for Fast Graph Exploration 65

equal to 1. Assume that the automaton is at position (e, v) in state N . Applying
the claim, the automaton explores the subtree of T \ {e} rooted in v, comes
back to v and goes at position (e, v′) in state N . Applying again the claim, the
automaton explores the subtree of T \ {e} rooted in v′, comes back to v′ and
goes at position (e, v) in state N . Therefore the automaton traverses a closed
walk P of length at most 4n − 2 visiting all nodes of T , and thus of G.

It remains to prove that the automaton enters P after at most two edge
traversals. The automaton starts in an arbitrary state at an arbitrary position.
By definition of the transition function of the automaton, there are three cases:

– Case 1: the automaton leaves the node through port 1 in state N . This
implies that the automaton immediately enters the closed walk P .

– Case 2: the automaton leaves the node in state B. The next edge traversal
is then along the edge with port number 1, in state N . This implies that the
automaton enters P during the second traversal.

– Case 3: the automaton leaves the node v by edge e of port number i, with
i ≥ 2, in state T . Assume that either e is in T or e is the edge with the
smallest port number that is not in T . In this case the edge traversal is in
the closed walk. If it is not the case, then the port number j at the other
extremity u of e is not equal to 1 because e is not in T . Hence the automaton
switches to state B at u, and comes back to v by e. Then, it leaves v through
port 1 in state N . This latter edge traversal is in P .

Finally, in all cases, the automaton enters the closed walk after at most two edge
traversals. ��

3 Additional Properties

In the previous section, we presented a simple algorithm, using a spanning tree
of the graph, to set the local orientation of the edges, and a 3-state automaton
that performs periodic exploration in time at most 4n using this orientation,
where n is the number of nodes of the explored graph. We prove that thanks to
the robustness and simplicity of our approach, it is possible to use our algorithm
in a distributed environment, and in dynamic networks.

3.1 The Distributed Variant

The distributed construction of a tree spanning an anonymous graph may be
impossible if the graph has symmetry. However this task is possible if a single
node initiates it. In our setting, we use the automaton to break the symmetry
between nodes. The starting position of the automaton is used as the distin-
guished node, that becomes the root of the spanning tree. This node will wake
up all the other nodes of the network by flooding. A node distinct from the root
chooses his parent as the node from which it received the wakeup message (ties
are broken arbitrarily). Finally, the technique described in Section 2.1 is used to
set up the local orientation, based on the constructed spanning tree.

66 D. Ilcinkas

More precisely, the distributed variant of our algorithm, called Distributed-

Small-Ports, proceeds as follows. At the beginning, only the node hosting the
automaton is awake. This node is the root r of the future spanning tree. It starts
the process by sending a “Hello” message to all its neighbors. A node v, except
the root, is said to be awake when it has received at least one message. An awake
node v chooses as parent the sender of the first message it has received. Ties are
broken arbitrarily. Finally v sends a “Parent” message to the neighbor choosen
as its parent and a “Hello” message to all its other neighbors.

When a node u has received a message from all its neighbors, it chooses the
local orientation as follows. Let p be the number of “Parent” messages node u
has received.

– If u is the root, then it assigns arbitrarily port numbers from 1 to p to the p
edges leading to the senders of “Parent” messages. It assigns the remaining
port numbers, if any, to the remaining edges arbitrarily.

– If u is not the root, then it assigns port number 1 to the neighbor that was
choosen as its parent. Then it assigns arbitrarily port numbers from 2 to
p + 1 to the p edges leading to the senders of a “Parent” message, if any.
Finally it assigns the remaining port numbers, if any, to the remaining edges
arbitrarily.

Theorem 2. Algorithm Distributed-Small-Ports constructs a spanning
tree of the graph and sets a local orientation compatible with it, using 2m
messages.

3.2 Exploration of Dynamic Networks

As proved in Theorem 1, the automaton periodically explores any graph in at
most 4n steps, whatever the starting position and the initial state are, provided
that the local orientation is compatible with some spanning tree of the graph.
Therefore the automaton can be used in dynamic networks under the unique
constraint that the local orientation of the network remains tree-oriented after
every change.

We consider changes of the graph that keep it connected. A change of a graph
can be decomposed in a sequence of the following basic changes.

– Addition of a new edge between two existing nodes;
– Addition of a new node, connected by a new edge to an existing node;
– Removal of an edge, without disconnecting the graph;
– Removal of a degree-1 node and of its unique incident edge.

Theorem 3. In the case of a removal of an edge belonging to the spanning tree
of a n-node graph G, Θ(n) modifications in the local orientation are necessary
and sufficient to maintain it tree-oriented. Our algorithm updating the local ori-
entation performs in time O(m) in this case, where m is the number of edges. In
all other cases, the update of the local orientation can be done in constant time,
and thus with a constant number of modifications.

Setting Port Numbers for Fast Graph Exploration 67

Proof. Local orientations are updated as follows:

– Addition of an edge. This edge is not placed in the spanning tree. Let u
and v be the two extremities of the new edge e and let du and dv be their
new respective degree. We set du, respectively dv, as the port number of
edge e at u, respectively v.

– Addition of a leaf. The new edge e connecting the new node u to node v of
the existing graph is necessarily in the spanning tree. Let d be the degree
of v and let p be the largest port number at v corresponding to an edge in
the spanning tree, before modification. If p = d, then the port number of
edge e at v is d + 1. Otherwise (p �= d), the edge with port number p + 1
has now the port number d + 1 and edge e has the port number p + 1 at v.
Edge e is assigned port number 1 at u.

– Removal of an edge. If the removed edge e does not belong to the spanning
tree T , then let u and v be its two extremities. We describe the modifications
of the local orientation in node u. The modifications in v are done similarly.
Let i be the port number of e at u. Let d be the degree of u before the
removal of e. Finally, let e′ be the edge incident to u with port number d. If
e = e′ (i.e., i = d), then no port number is modified at u. If e �= e′, then we
set i as the new port number of e′ at u.
If edge e belongs to the spanning tree T , then T without edge e is not
connected. Since we assume that the graph remains connected, there exists
an edge e′ in the new graph connecting the two parts of T . This edge e′

is added to the tree. Some port numbers have to be changed so that the
local orientation become compatible with the resulting spanning tree. We
claim that only a constant number of port numbers have to be modified at
each node. At the extremities of e and e′, the set of tree-edges incident to
it changes. However, at most two edges are concerned. Apart from this, the
only modifications to do concern the choice of the incident edge with port
number 1. A switch between two port numbers is sufficient. Therefore, at
most a constant number of port numbers are modified at each node.

– Removal of a leaf. Let v be the node connected to the removed leaf u. Let i
be the port number at v of the edge leading to u. Let p be the largest port
number at v of an edge in T . Let d be the degree of v before the removal
of e. Finally, let e′, resp. e′′, be the edge incident to v with port number p,
resp. d. Since edge e is in the tree T , we have i ≤ p ≤ d. We modify the port
number of e′, resp. e′′, if and only if i �= p, resp. p �= d. If i �= p, then we
set i as the new port number of e′. If p �= d, then we set p as the new port
number of e′′.

In all cases, the other port numbers in the graph remain inchanged.
It may not be possible to avoid a linear number of modifications in the case of

the removal of a tree-edge. For example, consider a cycle C of odd length 2n+1.
To simplify the description, let us give names from 1 to 2n + 1 to the nodes. For
any node i ≤ n, resp. i > n, 1 is the port number of the edge leading to node
i+ 1, resp. i− 1. Thus the local orientation is compatible with the path starting
at node 1 and ending at node 2n + 1. Now assume that the edge {n, n + 1} is

68 D. Ilcinkas

removed. The port numbers at node n and n + 1 are set to 1 since they are now
leaves. All edges are necessarily in the spanning tree but the edge {2n+1, 0} has
both its port numbers equal to 2. The local orientation is not tree-oriented. In
fact, in a tree-oriented orientation, exactly one edge e must have both its port
numbers equal to 1. Moreover, for any node v, excluding the extremities of e,
the edge with port number 1 must point toward e, i.e., the edge must be in the
path from v to the closer extremity of e. Hence, the local orientation has to be
modified in at least n nodes to obtain a tree-oriented local orientation. ��

4 Further Investigations

In this paper, we proved the upper bound 4n − 2 on the minimal period π(n)
for periodic graph exploration by a finite automaton. Our algorithm uses an
arbitrary spanning tree to set the local orientations. The automaton explores
this spanning tree plus at least one additional edge per node. It seems difficult
to avoid these additional edge traversals. Hence 4n − O(1) may be optimal for
tree-based approach. We conjecture that this bound cannot be improved even
with other techniques.

Conjecture. π(n) = 4n − O(1).

Since graphs are anonymous, using an extensive amount of memory does not
help much. Therefore finding the minimal period for machine with unbounded
memory may be very challenging.

Open problem. What is the mimimum period ψ(n) such that there exists an
algorithm setting the local orientations and a robot with unlimited memory
such that the automaton explores any graph of size n within the period ψ(n)?

Finally, it remains open if the period 10n proved in [10] can be improved if
the robot is restricted to be oblivious.

References

1. Y. Afek and E. Gafni. Distributed Algorithms for Unidirectional Networks. SIAM
J. Computing 23(6):1152-1178, 1994.

2. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J. Com-
puting 29:1164-1188, 2000.

3. M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation 176(1):1-
21, 2002.

4. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.
5. R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman and D. Peleg. Label-Guided

Graph Exploration by a Finite Automaton. In 32nd Int. Colloq. on Automata,
Languages & Prog. (ICALP), LNCS 3580, pages 335-346, 2005.

6. S. Cook and C. Rackoff. Space lower bounds for maze threadability on restricted
machines. SIAM J. on Computing 9(3):636–652, 1980.

Setting Port Numbers for Fast Graph Exploration 69

7. S. Das, P. Flocchini, A. Nayak, and N. Santoro. Distributed Exploration of an Un-
known Graph. In 12th Colloquium on Structural Information and Communication
Complexity (SIROCCO), LNCS 3499, pages 99-114, 2005.

8. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory
32(3):265-297, 1999.

9. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little
Memory. J. Algorithms 51(1):38-63, 2004.

10. S. Dobrev, J. Jansson, K. Sadakane, and W.-K. Sung. Finding Short Right-Hand-
on-the-Wall Walks in Graphs. In 12th Colloquium on Structural Information and
Communication Complexity (SIROCCO), LNCS 3499, pages 127-139, 2005.

11. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic Exploration as Graph
Construction. IEEE Transaction on Robotics and Automation 7(6):859-865, 1991.

12. C. Duncan, S. Kobourov, and V. Kumar. Optimal constrained graph exploration.
In 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 807-814,
2001.

13. R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In 13th
Annual International Symposium on Algorithms (ESA), LNCS 3669, pages 11-22,
2005.

14. P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing.
Theoretical Computer Science 291(1):29-53, 2003.

15. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective Tree Exploration.
In 6th Latin American Theoretical Informatics (LATIN), LNCS 2976, pages 141-
151, 2004.

16. P. Fraigniaud, C. Gavoille, and B. Mans. Interval routing schemes allow broadcast-
ing with linear message-complexity. Distributed Computing 14(4):217-229, 2001.

17. P. Fraigniaud, and D. Ilcinkas. Digraphs Exploration with Little Memory. In 21st
Symposium on Theoretical Aspects of Computer Science (STACS), LNCS 1996,
pages 246-257, 2004.

18. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph Exploration by a
Finite Automaton. In 29th International Symposium on Mathematical Foundations
of Computer Science (MFCS), LNCS 3153, pages 451-462, 2004.

19. A. Hemmerling. Labyrinth Problems: Labyrinth-Searching Abilities of Automata.
Volume 114 of Teubner-Texte zur Mathematik. B. G. Teubner Verlagsgesellschaft,
Leipzig, 1989.

20. P. Panaite and A. Pelc. Exploring unknown undirected graphs. J. Algorithms
33(2):281-295, 1999.

21. N. Rao, S. Kareti, W. Shi, and S. Iyengar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Tech. Report ORNL/TM-12410,
Oak Ridge National Lab., 1993.

22. O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Symp. on
Theory of Computing (STOC), pages 376-385, 2005.

23. H. Rollik. Automaten in planaren Graphen. Acta Informatica 13:287-298, 1980
(also in LNCS 67, pages 266-275, 1979).

	Introduction
	Related Work
	Our Results

	The Port-Numbering and the Corresponding Automaton
	Local Orientation Algorithm
	Description of the Exploring Automaton
	Correctness

	Additional Properties
	The Distributed Variant
	Exploration of Dynamic Networks

	Further Investigations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

