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Abstract. Many graph problems seem to require knowledge that
extends beyond the immediate neighbors of a node. The usual self-
stabilizing model only allows for nodes to make decisions based on the
states of their immediate neighbors. We provide a general polynomial
transformation for constructing self-stabilizing algorithms which utilize
distance-k knowledge, with a slowdown of nO(log k). Our main application
is a polynomial-time self-stabilizing algorithm for finding maximal irre-
dundant sets, a problem which seems to require distance-4 information.
We also show how to find maximal k-packings in polynomial-time. Our
techniques extend results in a recent paper by Gairing et al. for achieving
distance-two information.

1 Introduction

Self-stabilization, introduced by Dijkstra [1], is the most inclusive approach to
fault tolerance in distributed systems. In a self-stabilizing algorithm, each node
maintains its local variables, and can make decisions based on the correct knowl-
edge of its neighbors’ states. In a self-stabilizing algorithm, a node may change
its local state by making a move (an action which causes a change of local state).
Algorithms are given as a set of rules of the form “if p(i) then M”, where p(i)
is a predicate and M is a move. A node i becomes privileged if p(i) is true.
When a node becomes privileged, it may execute the corresponding move. We
assume a serial model in which no two nodes move simultaneously. A central
daemon selects, among all privileged nodes, the next node to move. If two or
more nodes are privileged, we cannot predict which node will move next. In this
paper we say that an algorithm stabilizes if no node is privileged. An execution
will be represented as a sequence of moves M1, M2, . . ., in which Ms denotes
the s-th move. One can transform the algorithm to work under other daemons,
using established techniques. We refer the reader to [2] for a general treatment
of self-stabilizing algorithms.
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A distributed system can be modeled with an undirected graph G = (V, E),
where V is a set of n nodes and E is a set of m edges. If i ∈ V , then N(i),
its open neighborhood, denotes the set of nodes to which i is adjacent, and N [i]
= N(i) ∪ {i} denotes its closed neighborhood. Every node j ∈ N(i) is called a
neighbor of node i. Throughout this paper we assume G is connected and n > 1.

In the usual self-stabilizing model, each node i can read only the variables of
its neighbors, that is, those nodes which are a distance of one from i. In this
paper, we show how to obtain self-stabilizing algorithms in which a node i can
effectively read the contents of variables which are within distance k of i, for
any fixed k ≥ 1, extending results in [3] for achieving distance-two information.
This will result in a slowdown of nO(log k). In Section 3, we obtain a polynomial
time self-stabilizing algorithm for finding a maximal irredundant set, a problem
which requires distance-4 information.

We assume throughout this paper that all nodes have a unique integer ID.
Sometimes we do not distinguish between a node i and its ID. For each k ≥ 1,
we let Nk[i] denote the set of nodes whose distance from i is at most k, and we
let Nk(i) = Nk[i] − {i}. When k = 1, these sets correspond, respectively, to the
closed and open neighborhoods of i.

A k-packing in a graph G = (V, E) is a set S ⊆ V of nodes such that for every
pair of distinct nodes, u, v ∈ S, their minimum distance d(u, v) > k. A 1-packing
is, therefore, a set S having the property that no two nodes in S are adjacent
( d(u, v) > 1 ). This is normally called an independent set.

Algorithm 1.1 is a well-known and simple self-stabilizing algorithm for finding
the characteristic function of a maximal independent set. It is easy to show that
this algorithm stabilizes in at most 2n moves [6] in the distance-1 model.

Algorithm 1.1. Maximal independent set

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N(i))(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N(i))(f(j) = 1)
then f(i) = 0

2 Distance-k problems

In [3], it was observed that certain algorithmic problems can be solved more easily
on an extended model in which each node can instantly see all state information
of nodes that are within distance two. Having done this, the extended model can
be simulated using a conventional self-stabilizing algorithm, provided all nodes
have unique IDs. In this paper we show how arbitrary distances greater than
two can be achieved. Our idea is to use the technique in [3] recursively.

We now define a class of self-stabilizing algorithm models. For each k ≥ 1, in the
distance-k self-stabilizing model, each node i can instantly see all state information
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of all nodes in Nk[i]. We assume that node i can read the ID of j and its state
information f(j) for each j ∈ Nk[i]. For brevity, we refer to this as the distance-k
model. The distance-1 model is the usual self-stabilizing algorithmic model. It will
be convenient to assume for now that k is a power of two.

Now let k = 4, and consider Algorithm 2.1, which assumes the distance-4
model. If Algorithm 2.1 stabilizes, the set S = {i | f(i) = 1} is a maximal
4-packing. For if no node is privileged to LEAVE, then S must be a 4-packing,
and if no node can ENTER, the 4-packing is maximal. Moreover, the algorithm
must always stabilize. Indeed, once a node makes an ENTER move, no node in
N4(i) can ENTER, and so no node in N4[i] can move again. If a node makes a
LEAVE move, its next move must be an ENTER, after which it cannot move.
It follows that

Lemma 1. The distance-4 Algorithm 2.1 finds a maximal 4-packing in at most
2n moves.

Algorithm 2.1. Maximal 4-packing in distance 4

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N4(i))(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N4(i))(f(j) = 1)
then f(i) = 0

Assume now that we have some distance-2k algorithm S2k, such as Algorithm 2.1,
in which every node has a local variable f . We now will describe a way to simulate
S2k using a distance-k algorithm Sk. We will see that the running times of Sk

and S2k are related to within a factor in O(n3). In Algorithm Sk, each node i
has three local variables:

– The variable f stores the state of node i with respect to S2k, that is, the
value of S2k’s local variable.

– The variable σ stores a local copy of f(j) for each j ∈ Nk(i). We may assume
that σ(i) is a list of pairs of the form (j, fj), where j is an ID of a node in
Nk(i). We say that σ(i) is correct if for all j ∈ Nk(i), f(j) = fj.

– A pointer stores the ID of a member of Nk[i], or has the value NULL. We
write i → j, i → i, and i → NULL to mean, respectively, that i points to j,
i points to itself, and i’s pointer is NULL.

At each step in the execution of Sk, the values f(i) represent a state with
respect to S2k. A node i in the distance-k model can read directly only state
information of nodes in Nk(i). However if j′ ∈ N2k(i), then j′ ∈ Nk(j) for some
j ∈ Nk[i]. It follows that in the distance-k model, by reading σ(j), node i has a
view of f(j′). However, it is possible for this view to be incorrect.

During the execution of Sk, we say that node i is S2k-alive if it is privileged
for S2k, under the assumption that its view of {(j, f(j)) | j ∈ N2k(i)} is correct.
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We define

minNk[i] = min{j | j ∈ Nk[i] ∧ j → j}, where min{∅} = NULL .

That is, minNk[i] is the smallest ID, within distance k of i, which is pointing to
itself; minNk[i] is defined to be NULL if no member of Nk[i] points to itself.

Algorithm Sk is displayed as Algorithm 2.2. When k = 1, it is exactly the
algorithm described in [3].

Algorithm 2.2. Sk

comment: Simulates distance-2k algorithm S2k

local variables:f, σ, →
UPDATE-σ: if σ(i) is incorrect
then update σ(i)

ASK: if i is S2k-alive ∧ (∀j ∈ Nk[i] : j → NULL) ∧ σ(i) is correct
then i → i

RESET: if i �→ minNk[i] ∧ σ(i) is correct
then i → minNk[i]

CHANGE: if ∀j ∈ Nk[i] : j → i ∧ σ(i) is correct

then
{

if i is S2k-alive, then update f(i)
i → NULL

Lemma 2. If Algorithm Sk stabilizes, then all pointers are null, σ(i) is correct
for all i, and no node is S2k-privileged.

Proof. Assume the algorithm has stabilized. Then no node points to itself, for
otherwise the node i pointing to itself having the smallest ID would have all
members of Nk[i] pointing to it, and i would be privileged for a CHANGE move.
Since no node points to itself, minNk[i] is NULL, and therefore all pointers are
NULL. All σ(i) are correct since no node is privileged for an UPDATE-σ. No
node is S2k-privileged, for otherwise it would be privileged to execute ASK.

Lemma 3. While i is pointing to itself, no node in Nk(i) can execute an ASK
or CHANGE.

Proof. For j ∈ Nk(i) to execute ASK, i must be NULL. For j to execute
CHANGE, i must be pointing to j.

Lemma 4. If i makes an ASK move, its next move must be a CHANGE move.

Proof. When i makes an ASK move, all members of Nk[i] are NULL. Suppose
its next move is a RESET. Then this means that some j ∈ Nk(i) is pointing
to itself. But this is impossible because i → i. Nor can its next move be an
UPDATE-σ, because at the time of the ASK move, σ(i) was correct. But this
can’t change by Lemma 3, nor can its next move be another ASK move because
i → i.
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Let us say that a move by i is correct if σ(j) is correct for all j ∈ Nk(i), and
incorrect otherwise.

Lemma 5. If node i makes an ASK move, then its next CHANGE move is
correct.

Proof. Let j be some member of Nk[i]. During the interval between the ASK
and CHANGE moves, j must have changed its pointer from NULL to i, at which
time σ(j) was correct, and there must have been a last time during this interval
when this occurred. But σ(j) must have remained correct, because no member
of Nk[j] could have performed a CHANGE while j was pointing to i.

Lemma 6. If a node i makes a CHANGE move, then its next ASK move is
correct.

Proof. During this interval, all j ∈ Nk[i] changed their pointers from i to NULL.
There is a last time at which j became NULL, prior to the ASK move. At this
time, σ(j) is correct, and it must remain so up until the ASK move, since no
member of Nk[j] could have performed a CHANGE move as long as j’s pointer
is NULL.

Lemma 7. Between any two RESET moves made by i, some some j ∈ Nk[i]
must execute an ASK or a CHANGE.

Proof. This is clear.

For convenience, we define a REAL-CHANGE move as a CHANGE move in
which the variable f is assigned. We let dk

i =|Nk(i) |.

Lemma 8. Consider an interval without a REAL-CHANGE move. Then each
node i can make:

1. at most one UPDATE-σ move;
2. at most one ASK move;
3. at most one CHANGE move; and
4. O(dk

i ) RESET moves.

Proof. 8.1 is obvious. To see 8.2, suppose i makes an ASK move. By Lemma 4,
its next move must be a CHANGE move. Then by Lemma 5, the CHANGE move
is correct. Since this is not a REAL-CHANGE, i is not S2k-privileged. Since no
other REAL-CHANGE moves occur, i cannot become S2k-alive again to execute
another ASK move. To see 8.3, suppose i makes a CHANGE move, and then
makes an ASK move. By Lemma 6, the ASK move is correct. Since no REAL-
CHANGE can take place, the σ’s remain the same, and if i were to execute
another CHANGE move, it would have to be a REAL-CHANGE. Finally, 8.4
follows from Lemma 7.

Lemma 9. There are at most O(n2) moves during an interval without REAL-
CHANGE moves.
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Proof. This follows immediately from Lemma 8.

Lemma 10. Each node can make at most one incorrect REAL-CHANGE move.

Proof. An incorrect REAL-CHANGE move can only occur as a node’s first
CHANGE move, because subsequent CHANGE moves will be preceded by an
ASK move, which by Lemma 5, must be correct.

Lemma 11. Let (Mi) be a sequence of moves made by Algorithm 2.2 dur-
ing which no incorrect REAL-CHANGE occurs. Then the subsequence (M ′

i) of
REAL-CHANGE moves is a valid computation of S2k.

Proof. This is clear.

Lemma 12. Suppose Algorithm S2k can execute at most A moves. Then in any
interval without an incorrect REAL-CHANGE move, Algorithm Sk can execute
at most O(An2) moves.

Proof. By Lemma 11, there can be at most A REAL-CHANGE moves, and by
Lemma 9, between any two REAL-CHANGE moves, there are at most O(n2)
moves.

Theorem 1. In a network with n nodes, a distance-2k algorithm S2k that sta-
bilizes within A moves can be implemented with a distance-k algorithm Sk that
stabilizes in O(An3) moves.

Proof. By Lemma 10 there can be at most n incorrect REAL-CHANGE moves.
By Lemma 12, during the intervals without incorrect moves, there can be at
most O(An2) moves. Finally by Lemma 2, the algorithm is correct.

By repeating Theorem 1, we obtain

Theorem 2. In a network with n nodes, a distance-k algorithm Sk which sta-
bilizes in A moves can be implemented in the distance-1 model by an algorithm
that stabilizes in O(An3�log2(k)�) moves.

Corollary 1. There is a self-stabilizing algorithm to find a maximal 4-packing
that stabilizes in O(n7)moves.

Proof. This follows by Lemma 1 and Theorem 2.

When we translate, say, a distance-4 algorithm S4 to a distance-2 algorithm S2,
each node will contain the original variable f used in S4 in addition to a pointer
and a σ. Note that when S2 is then translated to a distance-1 algorithm S1,
each node will contain these three variables in addition to another pointer and
another σ.

A maximal 4-packing can be found by using a single boolean variable in the
distance-4 model. However, to find a maximal 3-packing in the distance-4 model,
nodes must know the distances of their neighbors. If we assume that in addition
to its usual variables, each node displays a list of the IDs of its neighbors, then in
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the distance-1 model, each node can compute the subgraph induced by its closed
neighborhood. In the distance-k model, each node i can compute the subgraph
induced by Nk[i], and can compute, for example, the distance d(i, j) for j ∈
Nk[i]. This is illustrated in Algorithm 2.3. This generalizes to a polynomial time
self-stabilizing algorithm for maximal k-packing, for any fixed k, and improves
upon the maximal k-packing algorithm in [4] that was given without analysis.

Algorithm 2.3. Distance-4 algorithm for maximal 3-packing

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N4(i), d(i, j) ≤ 3)(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N4(i), d(i, j) ≤ 3)(f(j) = 1)
then f(i) = 0

3 Maximal Irredundant Sets

Given a set S of nodes, we say a node s ∈ S has a private neighbor with respect
to S if there exists some x ∈ N [s] − N [S − {s}]. A set S is irredundant [5] if
every s ∈ S has a private neighbor with respect to S. Self-stabilizing algorithms
have been found for many kinds of related sets, such as maximal independent
sets and minimal dominating sets [6], but finding maximal irredundant sets has
proven difficult because the problem seems to require distance-4 knowledge.

Let S be a set of nodes, not necessarily irredundant, and let s ∈ S. If s has a
private neighbor with respect to S, but s has no private neighbor with respect
to S ∪ {x}, we say x destroys s. Finally, we say x ∈ V − S is safe if x has a
private neighbor with respect to S ∪ {x}, and no s ∈ S is destroyed by x.

Consider Algorithm 3.1. It is easy to see that if this algorithm stabilizes, then
S = {i | f(i) = 1} is maximal irredundant. For if it is not irredundant, some i is
privileged to execute a LEAVE move. And if it is not maximal irredundant, some
i can execute an ENTER move. Note also that once a node executes an ENTER,
it will never execute a LEAVE. Thus, given a sufficiently powerful model, each
node moves at most twice.

Algorithm 3.1. Maximal irredundant set

local variable: f
ENTER: if f(i) = 0 ∧ i is safe
then f(i) = 1

LEAVE: if f(i) = 1 ∧ i has no private neighbor
then f(i) = 0
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Lemma 13. Node i can decide if it has a private neighbor from the information
in N2[i].

Proof. A node x is a private neighbor of i if and only if x ∈ N [i], but for all
j ∈ N2(i), j ∈ S implies x �∈ N [j].

Lemma 14. Node i can decide if it is safe from the information in N4[i].

Proof. If node i is not safe, then it must destroy some node j ∈ N2[i]. However,
to know whether such a node j has a private neighbor requires examining {f(j′) |
j′ ∈ N2[j]}.

Theorem 3. There is a self-stabilizing algorithm for finding a maximal irredun-
dant set that stabilizes in O(n7) moves.

Proof. By Lemma 13 and Lemma 14 it follows that Algorithm 3.1 can be im-
plemented in the distance-4 model. By our earlier comments, Algorithm 3.1
stabilizes in a linear number of moves. The analysis follows by Theorem 2.

We observe that while Algorithm 3.1 makes a linear number of moves in the
distance-4 model, each simulated move may not take constant time, although it
will be polynomial.
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