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Abstract. We present a space and (asymptotically) time optimal
self-stabilizing algorithm for simultaneously activating non-adjacent
processes in a rooted tree (Algorithm SSDST ). We then give two appli-
cations of the proposed algorithm: a time and space optimal solution to
the local mutual exclusion problem (Algorithm LMET ) and a space and
(asymptotically) time optimal distributed algorithm to place the values
in min-heap order (Algorithm HEAP). All algorithms are self-stabilizing
and uniform, and they work under any unfair distributed daemon. In
proving the time complexity of the heap construction, we use the no-
tion of pseudo-time. Pseudo-time is similar to logical time introduced by
Lamport [12].
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1 Introduction

Fault-tolerance is the ability of a system to withstand transient faults. A fault-
tolerant system is guaranteed to continue to perform its function when a number
of transient errors has occurred. In 1973 [8], Dijkstra defined a distributed system
to be self-stabilizing when,“regardless of its initial state, it is guaranteed to arrive
at a legitimate state in a finite number of steps.”

Self-stabilizing algorithms aim to achieve performance comparable to that
of non-stabilizing distributed algorithms when transient faults or arbitrary ini-
tialization cause the system to enter a state where a non-stabilizing algorithm
cannot continue to perform its task properly. In this paper, we propose a gen-
eral synchronization scheme for a rooted tree, and use this scheme to solve two
fundamental problems: heap construction and local mutual exclusion.

Related Work. The self-stabilizing heap problem has been studied in
[1, 4, 5, 10, 13]. The first self-stabilizing binary-search tree construction algorithm
was proposed in [4]. In [1], the self-stabilizing algorithm for a min-heap construc-
tion improves the algorithm of [5] in three ways: no global reset is required, the
time complexity is reduced from O(nh) to O(h) (h is the height of the tree
with n nodes), and the space complexity per node is reduced from O(degL) to
O(deg + L) (deg is the degree of the process and L is the maximal size of the
initial values in the tree). Synchronization among the nodes is achieved by us-
ing the global rooted synchronizer defined in [2], plus two additional bits. In
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[13], the self-stabilizing max-heap protocol that uses a neighborhood synchro-
nizer protocol [11] reduces the memory requirement further to 2L + 3 bits; its
time complexity is O(h). A heap construction that supports insert and delete
operations in arbitrary states of a variant of the standard binary heap [7] with
capacity K is proposed in [10]. It takes O(m log K) heap operations to stabilize
(m is the initial number of items in the heap). The space complexity per node i
is O(hi), where hi is the height of the subtree Ti rooted at i.

Bein et al. [4] proposed the first snap-stabilizing binary search tree (BST)
and the first snap-stabilizing heap construction algorithm. (A snap-stabilizing
algorithm is a self-stabilizing algorithm with stabilization time of 0 rounds).
The algorithms use a PIF scheme [6] to synchronize the nodes in the tree. The
space complexity of the snap-stabilizing heap construction algorithm is 3L + 3.

Contributions. We propose a space and (asymptotically) time optimal self-
stabilizing algorithm for simultaneously activating non-adjacent processes in a
rooted tree (Algorithm SSDST ). It uses 1+�log(deg)� bits in each node (deg is
the node degree); during the first 2h + 2t − 1 rounds, every node is enabled at
least t times, i.e., on the average, once every second round. For a synchronous
system, after at most 2h steps, every node is enabled every second step. If the
synchronous network starts in a normal starting configuration, then a node is
active every other step from the beginning.

We then give two applications on rooted trees of the proposed algorithm: a
time and space optimal solution to the local mutual exclusion problem (Algo-
rithm LMET ), and a space and (asymptotic) time optimal solution to the heap
problem (Algorithm HEAP). Algorithm LMET uses only 2+�log(deg)� bits per
node and stabilizes in 0 rounds (it is snap-stabilizing). During the first 2h+2t−1
rounds, a node enters its CS at least t times. Algorithm HEAP arranges n values,
not necessarily distinct, in non-decreasing order from top to bottom (min-heap),
in at most 4(7h/2 − 4) rounds (h = height). Each process holds only one value
at any moment, and uses a total of 1+�log(deg)� bits per node, not counting
the bits needed to store the value being sorted (deg = node degree) which is
optimal, thus an improvement over [13, 4].

In proving the time complexity of heap-building, we use the notion of pseudo-
time. Each node in the network has a “local clock” which has the property that
when any action must be executed between the node and its children, the local
clocks of all the nodes involved in the action have the same value.

Outline of the Paper. In Section 2, we briefly introduce self-stabilization and
the topological models used by the proposed algorithms. Section 3 contains a
description of Algorithm SSDST , followed by a sketch of its proof of correctness.
Algorithm LMET is presented in Section 4. In Section 5 we first present a min-
heap algorithm for an abstract model of communication (Algorithm A HEAP),
and then show how the min-heap will be built using the usual shared-memory
model of communication (Algorithm HEAP). A sketch of correctness proof of
Algorithm A HEAP is given in 5.3. The reduction of Algorithm A HEAP to
Algorithm HEAP is given in 5.4. We finish with concluding remarks in Section 6.



336 D. Bein, A.K. Datta, and L.L. Larmore

2 Computational Models

We consider an asynchronous, rooted tree of n processors, with height h. The root
node is denoted by R. We assume that an underlying self-stabilizing spanning
tree construction protocol maintains the parent pointer pv and the set of children
Dv of a node v. For the root node R, pR = ⊥. For a leaf node v, Dv = ⊥.

If the topology of the network that is given as the input to the spanning tree
construction algorithm changes, the spanning tree may change. This will change
the input to our protocols (local mutual exclusion and heap). In that sense, the
proposed protocols can deal with dynamic trees. The model of communication
among the neighboring nodes is shared memory — a process can read and write
its own memory, but can only read the memory of its neighbors.

The program of every processor consists of a finite set of guarded actions of
the form: < label >::< guard >→< action >, where each guard is a function of
the variables of the processor and its direct neighbors. The state of a process
is defined by the values of its variables. The system state (configuration) is the
Cartesian product of all the nodes’ states. If an action has its guard, a Boolean
expression, evaluated to true, then it is called enabled. A node with at least one
enabled guard is called enabled. A daemon will non-deterministically select a
non-empty subset of enabled nodes to execute one of its enabled actions. Guard
evaluation and execution of the its action are done in one atomic step.

We assume an asynchronous system. In order to compute the time complexity,
we use the definition of round [9]. A round is a minimal sequence of computation
steps during which each processor that was enabled in the first configuration of
the sequence executes at least once during this sequence.

We consider the strongest distributed daemon, the unfair daemon. The unfair
daemon does not have a fairness mechanism: a continuously enabled process will
not necessarily be selected for execution unless it is the only enabled process.

Let C, the set of all possible states, and a predicate P over C. We denote by
LP ⊆ C the set of all legitimate states with respect to P . Let C1, C2 ⊆ C. C2 is a
closed attractor for C1 if (i) every execution starting in C1 eventually reaches a
configuration in C2, and (ii) every execution starting in C2 remains in C2.

Definition 1 (Self-stabilization). If P is a predicate, a protocol S is called
self-stabilizing to P if LP is a closed attractor for C.

3 Self-stabilizing Distributed Simultaneous Execution of
Non-adjacent Nodes in a Rooted Tree SSDST

Each node v holds a variable S ∈ {A, B} and a pointer i ∈ 0..|Dv| − 1 to some
child of v. Thus, the total memory requirement of node v is 1 + �log (deg)� bits
(deg is the node degree). (For a binary tree, Algorithm HEAP uses at most three
bits per node.)

For simplicity we write S = S.v. The predicate check(v, s) means that the
node v exists and has the value s for its variable S. Let execute(v) denote a
generic action.
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Algorithm 3.1. Algorithm SSDST
Predicate check(v, s) ≡ (v = ⊥ ∨ S.v = s)

Actions for any node v
ABB S =B ∧ check(pv, A) ∧ ∀i, 0≤ i< |Dv| : check(Dv[i], B) −→ execute(v) ; S=A
BAA S =A ∧ check(pv, B) ∧ ∀i, 0≤ i< |Dv| : check(Dv[i], A) −→ execute(v) ; S =B

Actions ABB and BAA are enabled at node v when the following two condi-
tions are true: (i) either it has no parent, or its parent’s S-value is different from
its S-value, and (ii) all its children’s S-values are the same as its S-value.

For example, given a network of eight nodes starting in a so-called normal
starting configuration (Figure 1(a)), the only enabled nodes are of even depth
(the root and the children of the root’s children). If we assume a synchronous
system, the next execution step brings the system into the configuration in Figure
1(b), in which the only enabled nodes are of odd depth. The next configuration
is shown in Figure 1(c), followed by the one in Figure 1(d). Then the system
returns to the configuration illustrated in Figure 1(a). The cycle repeats forever.
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(a) A configuration (b) After one step (c) After two steps (d) After three steps

Fig. 1. Four steps in a synchronous system

3.1 Proof of Correctness for SSDST

In this section, we show that Algorithm SSDST stabilizes in at most 2h+2k−1
rounds, to the global predicate

k-Exec: ≡ {∀ node v, v has executed macro execute at least k times }
and works under the unfair distributed daemon.

We extend the notions of configuration-string and difference-string to the tree
network. We show that in every configuration, during execution of SSDST :

- No node is enabled if any of its neighbors is enabled (local mutual exclusion)
(Property 1)
- At least one node is enabled (no deadlock); after it executes, a node becomes
disabled until all its neighbors execute (Property 2)
- During the first 2h + 2k − 1 rounds every node executes at least k times (no
starvation) (Lemma 1).
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We then show that SSDST works under the unfair distributed daemon (Prop-
erty 3, Section 3.2).

Henceforth, n > 1, as the case n = 1 is trivial. Let the configuration tree be
the tree in which every node is represented by its S-value only.

A normal starting configuration is a configuration in which each branch of the
configuration tree is a prefix of (AABB)n (the string of length 4n obtained by
concatenating AABB n times). Starting from a normal starting configuration,
the enabled nodes are alternately of even and odd depth (Figure 1). The binary
edge labeling is the labeling where an edge between nodes with the same S value
is labeled 0 and other edges are labeled 1.

Definition 2. Given a configuration tree C, we let DTC , the difference tree, be
the tree in which every node v is represented by a two-bit string DTC(v) = b0b1
such that:

b0 =
�

1, if pv = ⊥ or the link (pv, v) is labeled 1
0 otherwise

b1 =
�

1, if ∃w ∈ Dv s.t. the link (v, w) is labeled 1
0 otherwise

If C is understood, write DT instead of DTC . Given a binary edge labeling and
the S-value of some node, the corresponding configuration tree C is uniquely
defined. Given a difference tree DT and the S-value of some node, the corre-
sponding configuration tree C is uniquely defined.

For example, for the configuration in Figure 1(a), the binary edge labeling is
given in Figure 2(a) and the difference tree is given in Figure 2(b).
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1 1 1

B
B
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B

B B

0 0

0

10

00
01

10
10 10

00 00

(a) Binary edge labeling (b) Difference tree

Fig. 2. Some configuration

Given any configuration tree C, a node v is enabled if and only if DTC(v) = 10.

Property 1. For any configuration tree C and for any node v, if node v is enabled
to execute, then no neighbor of v is enabled.

Property 2. (i) In any configuration tree C there exists at least one enabled node.
(ii) For any node v, if node v is enabled and is selected to execute, then after

the execution is completed, its actions are disabled.

Given a node v and its parent pv where S.pv = a and S.v = b, the notation
“a ← b” denotes that state b does not block state a from being enabled (for pv
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to be enabled in state a, S.v must be b). The notation a → b indicates that state
a does not block state b from being enabled (for v to be enabled in state b, S.pv

needs to be a).
We use the above notation to define layers as follows. We start defining the

layers of nodes from node R and going down the tree until we reach the leaf
nodes. Node R is placed on some layer. If node v is an internal node on a certain
layer, then for any child node w ∈ Dv:

– if S.v → S.w then w is one layer higher
– if S.v ← S.w then w is one layer lower.

We can represent a configuration tree using this notation in a level ordering,
where the peak nodes are the enabled nodes. The binary edge labeling is consis-
tent with the orientation of the arrows between a node and its parent, and a node
and its children (1 for ↗, 0 for ↖). For example, the sawtooth-like arrangement
of the configuration tree in Figure 3(a) is given in Figure 3(b).
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(a) A configuration tree (b) Layered arrangement (c) Delay values

Fig. 3. Calculating the delay values

Definition 3 (Node Delay). For each node v we define delay[v] to be a non-
negative integer characterized as follows: (i) there exists at least one node whose
delay is 0, and (ii) if delay[u] = d and node v is a neighbor of node u such that
S.v → S.u then delay[v] = delay[u] + 1, and (iii) if S.v ← S.u then delay[v] =
delay[u] − 1.

The delay of some node is in fact the layer on which the node is arranged in the
layered arrangement.

The delay values of the nodes in Figure 3(a) are given in Figure 3(c). An
enabled node has all the adjacent arrows pointing towards it. For a tree of height
h, for any node v, delay[v] is a value between 0 and 2h. The number of rounds
that a node waits before it becomes enabled cannot exceed its delay value.

Let d0 be the array of the delay values in the starting configuration and D0
be the maximal value of d0 over all nodes: 1 ≤ D0 ≤ 2h.

Lemma 1. For any node v and any value t > 0 node v executes t times within
the first d0[v] + 2t − 1 rounds.
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Proof. We define the predicate P(q) as follows: For any node v, for any t ≥ 1,
node v executes t times within the first q rounds if q ≥ d0[v] + 2t − 1.
For any q ≥ 1, Predicate P(q) holds (induction on q).

Corollary 1. For any node v and any value t > 0 node v executes t times within
the first 2h + 2t − 1 rounds.

Proof. Follows from Lemma 1: for any node v, 2h ≥ d0[v].

3.2 The Unfair Distributed Daemon

In this section we show that Algorithm SSDST works under the unfair dis-
tributed daemon. A sufficient condition to prove that a certain algorithm works
under the unfair daemon is to show that a continuously enabled node which is
never selected eventually becomes the only enabled node. If a node v is enabled
to execute but not selected by the distributed daemon, it remains enabled. Since
the unfair daemon must select a non-empty subset of the enabled nodes in every
computation step, it will be forced to select v (Property 3).

Property 3. If a node v is enabled to execute but is not selected by the daemon,
it remains enabled until it gets selected. Every continuously enabled node will
be eventually selected by the unfair distributed daemon.

4 Self-stabilizing Local Mutual Exclusion Algorithm
on Rooted Trees LMET

Each node holds three variables: variable S that takes values in the set {A, B},
a pointer i ∈ 0..|Dv| − 1 to some child of v, and a Boolean variable request that
is true whenever the process requests access to its critical section CS. Thus, the
total memory requirement of node v is 2 + �log (deg)� bits per node (deg is the
node degree).

For some node v, let S = S.v and request = request.v. The predicate
check(v, s) is defined in Section 3.

A protocol solves the local mutual exclusion problem if any configuration of the
system running the protocol has two properties ([3]): (i) safety - no two neighbor-
ing nodes can be simultaneously enabled to execute their critical sections (CS),
and (ii) liveness - a node requesting to execute its CS will eventually do so.

Algorithm 4.1. Algorithm LMET
Actions for any node v
ABB S = B ∧ check(pv, A) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], B) −→

if request then CS; request = false
S = A

BAA S = A ∧ check(pv, B) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], A) −→
if request then CS; request = false
S = B



Self-stabilizing Space Optimal Synchronization Algorithms on Trees 341

Property 1 shows that LMET has the safety property. Lemma 1 shows that
LMET has the liveness property.

5 Self-stabilizing Min-heap Algorithms for a Rooted Tree

In this section we present two algorithms for min-heap problem in a rooted
tree: A HEAP (Section 5.1), and HEAP (Section 5.2). Algorithm A HEAP
is implemented in an abstract model. Algorithm HEAP is implemented in the
shared-memory model.

Let x and y be two values to be swapped. Swapping can be done in three
steps without using an extra variable, as follows:

1. x = x + y 2. y = x − y 3. x = x − y

Alternatively, we could use “⊕, bit-wise exclusive or, instead of addition and
subtraction.

5.1 Heap Construction in a Rooted Tree

Algorithm A HEAP (Figure 5.1) is a particular case of Algorithm SSDST , in
which the macro execute(v) is replaced by the macro heap(v) that sets IV.v to
the minimal value among itself and its children’s IV -values.

Consider an abstract model, different from the shared-memory model, in
which a node v, in order to have the heap property locally, can modify the vari-
able IV.J of some child J . Intuitively, since by executing Algorithm SSDST ,
local mutual exclusion is satisfied in any configuration (see Property 1), a node
can synchronize the swap of values with some child. We assume for now that the
swap is done in an atomic step (macro heap), and we show in Section 5.2 how
this is done in the shared-memory model.

Each node, besides the variable IV to be sorted, holds a variable S ∈ {A, B},
a pointer i ∈ 0 . . . |Dv| − 1, and a variable j ∈ {−1, 0, . . . , |Dv| − 1} that either
points to some child of node v that holds a value smaller than node v, or has
the value −1 if either node v is a leaf or all its children have larger values. Thus,
the total memory requirement of node v is 1 + 2�log (deg)� bits per node (deg is
the node degree).

For some node v, let S = S.v and IV = IV.v. Predicate check(v, s) is defined
in Section 3. If all children of v hold values greater than or equal to IV , then
min(v) returns the default value −1. Otherwise, min(v) returns the index in the
array Dv of a child of node v which holds the minimum value.

The guards C1-C3 “correct” the variable S of the node to some value in the
set {A, B} (a result of a fault or arbitrary initialization).

5.2 Heap Construction in the Shared-Memory Model

In Algorithm HEAP (Figure 5.2), each node v holds, besides the variable IV
to be sorted, a variable S ∈ {A, B, X, Y }, a pointer i, a variable j, a variable J
which is a pointer to some child, and a variable tmpS ∈ {A, B}. Variable tmpS
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Algorithm 5.1. S-S. Min-Heap in a Rooted Tree in the Abstract Model
A HEAP
Macro heap(v) ::
j = min(v)
if (j ≥ 0) then J = Dv[j]; IV.v=IV.v+IV.J ; IV.J=IV.v- IV.J ; IV.v=IV.v-IV.J

Function min(v) ::
if Dv = ⊥ then return -1
else

j = 0
forall l ∈ {0, |Dv| − 1} do if (IV.Dv[j] > IV.Dv[l]) then j = l
if (IV.Dv[j] < IV.v) then return j else return −1

Heap actions for any node v

ABB S = B ∧ check(pv, A) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], B) −→ heap(v); S = A
BAA S = A ∧ check(pv, B) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], A) −→ heap(v); S = B

stores the value of S temporarily while the swap is performed between node v
and its child J . Thus, the total memory requirement of node v is 3+2�log (deg)�
bits per node (deg is the node degree).

For any node v, let S = S.v, IV = IV.v, J = J.v, tmpS = tmpS.v, Sp =
S.pv, Jp = J.pv, IVp = IV.pv, SJ = S.(J.v), and IVj = IV.(J.v). The macro
heap′(v, value) executes the first step of swapping between node v and the child
J = Dv[j], and the value value to be given to variable S.v after the swap is
performed is stored in variable tmpS.v.

Predicate check(v, s) has been defined in Section3. Function min(v) is defined
in Section 5.1.

In order to perform the swap, nodes v and Jv must change their S-value (from
either A or B to either X or Y ). Since node v will change its S-value after the
swap, the value to-be for S.v and the value of SJ are stored in variables tmpS.v,
respectively tmpS.J , by each node. Node v changes its S-value to X (macro
heap′) and node J changes its S-value to Y (Guard S1). The swap started by
node v already in macro heap′ is continued by node J in Guard S1, and finished
by node v in Guard S2 (where also node v restores its S). Once the swap is
done, the S-values are restored back to A or B, node v in Guard S2, node J in
Guard S3.

In Figure 4, nodes v and J swap their IV -values (a state of is a triple
S; IV ; tmpS).

heap’(v,B)

S1(w)

v

w

A;5;_

A;1;_

X;6;B

Y;5;A

S2(v) B;1;_

S3(w) A;5;_

Fig. 4. Nodes v and J swap their IV values
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Algorithm 5.2. Self-stabilizing Heap in a Rooted Tree in the Shared-Memory
Model HEAP
Macro heap′(v, tS) ::
j = min(v)
if (j ≥ 0) then J = Dv[j]; tmpS.v = tS; IV.v = IV.v + IV.J ; S.v = X

Heap actions for any node v

ABB S = B ∧ check(pv, A) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], B) −→ heap′(v, A)
BAA S = A ∧ check(pv, B) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], A) −→ heap′(v, B)

Synchronizing actions for any node v

S1 S ∈ {A, B} ∧ pv �= ⊥ ∧ Sp = X ∧ Jp = v −→ IV =IVp-IV ; tmpS = S ; S = Y
S2 S = X ∧ J �= ⊥ ∧ SJ = Y −→ IV = IV − IVJ ; S = tmpS
S3 S = Y ∧ pv �= ⊥ ∧ Sp �= X −→ S = tmpS
C1 S = Y ∧ pv = ⊥ −→ S = tmpS
C2 S = X ∧ Dv = ⊥ −→ S = tmpS
C3 S = X ∧ Dv �= ⊥ ∧ ∃w ∈ Dv : S.w = X −→ S = tmpS

5.3 Proof of Correctness of A HEAP

The root node R has level 1. Besides local mutual exclusion, heap-building re-
quires synchronization between neighboring nodes. Each node has a local clock
measuring pseudo-time such that the comparison between the node and its child
with the minimal IV value (and eventual swapping) is done when the two nodes
have the same pseudo-time values.

For each configuration, the pseudo-time function Ψ is defined from the node
to non-negative integers. Ψ is initially computed from the delay values, and is
updated at each step.

Ψ0, the pseudo-time at the initial configuration, is defined as follows:

(i) given node v and its parent pv, Ψ0(v) = d0[v]+d0[pv]−1
2 , and

(ii) Ψ0(R) = max{Ψ0(v), v ∈ childR}, where R is the root.

For example, given the configuration in Figure 3(c), the Ψ0 values are given
in Figure 5(a).

We observe that if a node v is enabled, then Ψ0(v) = Ψ0(w) for all w ∈ Dv.

Definition 4. Let Ψj and Ψj+1 be the pseudo-time functions for two consecutive
configurations in some execution Cj �→ Cj+1. Then Ψj+1 is computed as follows:

- if node v has executed during this step then Ψj(v) and Ψj(w) for all children
w ∈ Dv increase by 1: Ψj+1(v) = Ψj(v) + 1 and Ψj+1(w) = Ψj(w) + 1.
- if any child of the root R executes, Ψ(R) is updated if necessary, i.e., Ψj+1(R) =
maxw∈childR

{Ψj+1(w)}
- all other nodes u keep their current pseudo-time values, i.e., Ψj+1(u) = Ψj(u).
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Fig. 5. Pseudo-time values

For example, given Ψ0 from Figure 5(a), if the marked node executes, then the
next pseudo-time values are the ones in Figure 5(b).

The following relations hold:

(i) Ψ0(R) ≤ h
(ii) Ψ0(v) ≤ i + h − 1 for v �= R, where i = level(v).

Thus Ψ0(v) ≤ 2h − 1, for any node v.

Let E(v, t) be the predicate: “Node v is enabled if Ψ(v) = t.”

Observation 1. (i) If E(v, t) is true then E(v, t+2k+1) is false and E(v, t+2k)
is true, for all k ≥ 0.

(ii) If E(v, t) is false and t ≥ Ψ0(v) then E(v, t+2k+1) is true and E(v, t+2k)
is false, for all k ≥ 0.

Property 4. Given a starting configuration C0, and Cj some configuration after
Algorithm SSDST has executed j steps, then the number of rounds elapsed is
q ≤ min{∀ nodes v, Ψj(v)}.

Proof. A round has elapsed if all nodes enabled in the first configuration of the
round have increased their Ψ values by at least one unit; thus the minimum value
among all nodes has increased at least by one.

We assume that the values to be placed in min-heap order are distinct. (If nec-
essary, we can add infinitesimal tie-breakers to the values.) Thus they can be
arranged in a strict sorted order: r1 < r2 < . . . < rn, and we say that the value
ri has rank i.

Definition 5. For any given configuration C of Algorithm A HEAP, let li be
the level of the node that holds the value ri; we call the function W (C) =

∑n
i=1 lii

the weighted path length of the configuration C.

The function W is strictly positive. It increases when a swap is executed between
some node v that holds the value ri and some child w ∈ Dv that holds the value
rj , where ri < rj . The value by which W increases is j − i.
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By Lemma 1, if the heap property does not hold at some node v, node v
will execute a swap in finitely many rounds. Since W (C) is an increasing integer
function bounded by hn, it must converge in finitely many steps. Thus:

Observation 2. Function W converges in finitely many of rounds. Let C∗ be
the configuration after convergence. Then C∗ has the heap property.

Let Li be the level of the node that holds the value ri in configuration C∗. Array
pos is defined as follows.

Definition 6. Given j, 1 ≤ j ≤ n, and some t ≥ 0, the value pos[j, t] represents
the level of node v that holds the value rj when Ψ(v) = t.

If initially, the element of ri is held by the node v situated at level li and Ψ(v) =
t0, then we assume that for any t, 0 ≤ t ≤ t0, pos[j, t] = pos[j, t0].

First, we show that once the Ψ value of some node is t, the level pos[j, t] of
the element rj is within a certain range (Property 5). In order to show that
Algorithm A HEAP arranges the values as a heap, we show that after 7h/2− 4
rounds, pos[j, t] = Lj for all j (Lemma 2).

Property 5. For any t ≥ 0 and for any j, 1 ≤ j ≤ n,

min{Lj, Q[j, t]} ≤ pos[j, t] ≤ max{Lj, P [j, t]}

where P [j, t] = −t + 2Lj +3h − 5 and Q[j, t] = t + 2Lj + 3− 4h, for any j and t.

Proof. Consider the predicates:

P(t) : for any j ∈ 1 . . . n, pos[j, t] ≤ max{Lj, P [j, t]}
Q(t) : for any j ∈ 1 . . . n, pos[j, t] ≥ min{Lj, Q[j, t]}

It can be shown by induction on t that P(t) holds. The proof that Q(t) holds is
similar.

Lemma 2. Algorithms A HEAP arranges the values into min-heap order in
7h/2-4 rounds; thus the stabilization time is O(h) rounds.

Proof. Follows from Property 5.

5.4 Reduction of Algorithm HEAP to A HEAP

In this section we first show that Algorithm HEAP reduces to Algorithm
A HEAP . We can then conclude that, starting from an arbitrary configura-
tion, in at most 4(7h/2 − 4) rounds, Algorithm HEAP arranges the values into
min-heap order (Lemma 5).

Definition 7 (Reduction). Given two different models of communication M
and M′, an algorithm A in the model M can be reduced to another algorithm
A′ in the model M′ if there exists a one-to-many relation R from the set of
system configurations in the model M to the set of the system configurations in
the model M′ such that the following conditions are true:
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i) For each configuration of Algorithm A in the model M there exists at least
one configuration of Algorithm A′ in the model M′.

ii) ( Lifting property ) Given C1 and C2 two configurations of Algorithm A in
the model M such that C1 −→ C2 is an execution step of Algorithm A, for
any configuration C′

1 ∈ R(C1), if Algorithm A′ in the model M′ starts in C′
1

there exists at least one execution path that starts in C′
1 and ends in some

configuration C′
2 ∈ R(C2).

If A accomplishes a task in the model M and A reduces to A′, then by
Definition 7, A′ accomplishes the same task in the model M′.

We now show that Algorithm HEAP reduces to Algorithm A HEAP . Let
Sv = (sv, xv, Jv) be the set of all variables of node v in order (S, IV, J) used by
Algorithm A HEAP in the abstract model. Let Stv

v = (sv, xv, tv, Jv) be the set
of all variables of node v in order (S, IV, tmpS, J) used by Algorithm HEAP in
the shared-memory model.

Then R is defined as follows:

R(S1, . . . Sn) = {(St1
1 , . . . Stn

n ), ti ∈ {A, B}, ∀i, 1 ≤ i ≤ n}

For each state Si of some configuration C1 of Algorithm A HEAP in the abstract
model, 1 ≤ i ≤ n, there exists two possible states SA

i and SB
i in the shared-

memory model. Thus for each configuration C1 there exists 2n configurations in
R(C1) of Algorithm HEAP in the shared-memory model, thus Condition (i) of
Definition 7 is satisfied. We are left to show that Condition (ii) of Definition 7
is satisfied (Lemma 3).

Lemma 3. Given C1 and C2, two configurations of Algorithm A HEAP in the
abstract model, such that C1 −→ C2 is an execution step of Algorithm A HEAP;
for any configuration C′

1 ∈ R(C1), if Algorithm HEAP in the shared-memory
model starts in C′

1 there exists at least one execution path that starts in C′
1 and

ends in some configuration C′
2 ∈ R(C2).

Proof. We give a sketch of the proof. A node state contains all the variables
stored at that node. The system configuration contains the states of all the
nodes. An execution step is a transition from one configuration to another. We
break the system configuration into a number of chunks. A chunk is a set of a
node and its descendants in the tree such that the first node in each chunk is
enabled, and all the descendants of the first node reachable by a path of disabled
nodes are added to the chunk. We build the set of chunks starting from the root
in depth-first-search (DFS) order. If the root node is currently disabled, then
the root and all nodes reachable from the root reachable by a path of disabled
nodes are not part of any chunk. We call the set of those nodes the null chunk.

Given a configuration, there is a unique way to break it into chunks. An
execution step of Algorithm A HEAP in the abstract model in one chunk affects
only the nodes’ states in that chunk.

From Property 1 we know that if a non-leaf node is enabled, its children are
disabled. So, except for the leaf nodes, every chunk contains at least two nodes.
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If the chunk contains at least two nodes, then the last node in the chunk is
disabled, so it cannot affect the state of the first node of other chunks.

Instead of considering an execution step between global configurations, we
consider an execution step between the chunks of a global configuration.

If the starting state of the node is either A or B, then the value to be sorted is
its initial value. If some node starting state is either X or Y , then it is possible
for some of the three steps of the swap to be applied (see Section 5) and the
initial value of that node to be modified accordingly, and that modified value
to be sorted. This drawback is caused by arbitrary initialization, and would be
encountered even if we had used an extra variable for swapping.

We recall that node J.v is the child of node v that holds the minimal IV value
among all node v’s children. The variable J.v is ⊥ if and only if node v is a leaf
node (child.v = ⊥).

For any node v such that Sv = X , either Sv remains X and then the node J.v
will have its S equal to Y in at most three rounds (by executing Action S1), or
v changes its S to A or B in at most one round.

For any node v such that S.v = X ∧ S.(J.v) = Y then IV.v gets the value
IV.(J.v) and then node v changes its Sv to A or B in at most one round. Node
J.v had already stored in IV.(J.v) the old value of IV.v (by executing Action
S1) and will restore its SJ.v from Y to either A or B (depending on the value of
tmpS) in at most one round. We can then conclude that if S.v is either X or Y ,
then in at most four rounds S.v is either A or B (Lemma 4).

Lemma 4. For any node v, if S.v ∈ {X, Y }, in at most four rounds S.v becomes
either A or B.

Lemma 5. Starting from an arbitrary configuration, in at most 4(7h/2 − 4)
rounds, Algorithm HEAP arranges the n values in min-heap order.

Proof. From Lemma 4, each swap takes at most 4 rounds. From Lemma 2, if a
swap takes at most 1 round, then heapification takes at most 7h/2 − 4 rounds.
Since the swap takes at most 4 rounds, we obtain a total of at most 14h − 16
rounds.

6 Conclusion

In this paper, we present the first self-stabilizing algorithm for simultaneously
activating non-adjacent processes in a rooted tree, called SSDST . The algorithm
is optimal in the space complexity, and asymptotically optimal in the time com-
plexity. We then give two applications of the proposed algorithm for rooted trees,
a time and space optimal solution to the local mutual exclusion problem (Algo-
rithm LMET ) and a space and (asymptotically) time optimal solution to the
min-heap problem (Algorithm HEAP).

All algorithms are self-stabilizing and uniform, and they work under the unfair
distributed daemon.
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In proving the time complexity of heap-building, we use the notion of pseudo-
time. Pseudo-time is similar to logical time introduced by Lamport [12].

We expect that Algorithm SSDST can be used to obtain optimal space solu-
tions for other problems in a rooted tree. For example, for broadcasting m mes-
sages, a solution based on Algorithm SSDST stabilizes in at most 2h + 2m − 5
rounds (the root node executes m times).
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