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Abstract. We consider a distributed system where each node has a lo-
cal count for each item (similar to elections where nodes are ballot boxes
and items are candidates). A top-k query in such a system asks which
are the k items whose sum of counts, across all nodes in the system, is
the largest. In this paper we present a Monte-Carlo algorithm that out-
puts, with high probability, a set of k candidates which approximates the
top-k items. The algorithm is motivated by sensor networks in that it fo-
cuses on reducing the individual communication complexity. In contrast
to previous algorithms, the communication complexity depends only on
the global scores and not on the partition of scores among nodes. If the
number of nodes is large, our algorithm dramatically reduces the com-
munication complexity when compared with deterministic algorithms.
We show that the complexity of our algorithm is close to a lower bound
on the cell-probe complexity of any non-interactive top-k approximation
algorithm. We show that for some natural global distributions (such as
the Geometric or Zipf distributions), our algorithm needs only polyloga-
rithmic number of communication bits per node.

1 Introduction

Possibly one of the clearest examples of the difference between “global” and “lo-
cal” can be seen in elections: each ballot box has a local score for each candidate,
but the result we care about is the global scores, i.e., how many votes does each
candidate have overall. A top-k query in this case is “Which are the k globally
most popular candidates?”. Other examples for the top-k task abound: in peer-
to-peer file-sharing networks (such as Gnutella), users may wish to find which
are today’s most popular downloads; in sensor networks, a sensor may count the
number of occurrences of different species of birds, and a user might be inter-
ested in the most frequent species observed over the whole instrumented area; in
a server farm with several gateways, denial-of-service (DoS) attacks are a major
concern. The first question to be answered in this case is which are the most
frequent sources of requests; and many others.
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In general, a top-k query returns the k items having largest global score in a
distributed system, where each item has a set of local scores. The global score of
an item is just the sum of its local scores, over all locations. The main difficulty
is that the scores may be divided arbitrarily among the different locations. In
elections, for example, it may be the case that the most popular global candidate
has the lowest (positive) count in each ballot box.

When computing top-k queries in a distributed system, a key question is how
to minimize the communication complexity required to provide an answer. This
issue is particularly important in sensor networks, where the communication sub-
system is by far the largest energy consumer at the nodes. An algorithm which
allows us to trade communication for local computation may have a decisive
effect on the longevity of node batteries and hence on the usability of the sys-
tem (see, e.g. [14]). This observation has established the measure of individual
communication complexity as a key performance criterion in sensor networks
[14, 16, 24, 7, 20]. In this work, we adopt this measure to evaluate the complex-
ity of top-k computation. Observe that deterministic algorithms are sensitive to
the way scores are partitioned among the different nodes and for some partitions
they may communicate all scores to a single node.

Our Results. In this paper we propose a simple and effective way to overcome the
problem of adversarial partition of the scores among the nodes. Our algorithm is
Monte Carlo (it may err with some arbitrarily small probability), and its results
are only approximate: using very little communication, the algorithm can tell,
roughly, which items are in the top-k set. We focus on the worst-case individual
communication complexity, i.e., our goal is to minimize the maximal number of
bits communicated (sent or received) by any single node.

Our basic tool is random sampling. Done in the right way, sampling strips
away the difficulties due to geographical distribution of scores which are the
main difficulties for deterministic and Las Vegas algorithms. The basic idea is
compounded with techniques adapting it to the specific input at hand. The
performance of the algorithm depends on how popular are the top-k items, and
on how “flat” is the distribution of scores. Specifically, suppose that the global
scores adhere to the Zipf distribution with parameter a > 1 (namely the relative
popularity of the ith popular item is proportional to i−a). Then our Algorithm R
guarantees that the communication complexity is bounded by O( k

ε2 ) times a
polylogarithmic factor, where ε is the required approximation accuracy. This case
is quite important, as it is widely believed that the statistics of many phenomena
are well approximated by the Zipf distribution (see, e.g., [3, 12]).

We note that the communication complexity of our algorithms scales very well
compared with previous algorithms [11, 6]. Our simulations demonstrate that
the performance of our algorithm is significantly superior to the best previously
known algorithms.

We give some evidence showing that our algorithm is close to optimal. In
particular, we demonstrate the optimality of its cell-probe complexity [23, 13]
among a limited class of single-round Monte Carlo algorithms.
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Previous Work. In [11], Fagin, Lotem and Naor introduced the Threshold Al-
gorithm (TA) in the context of databases. They define a notion of ‘instance-
optimality,’ and prove that TA incurs at most n accesses times the optimum,
where n is the number of nodes in the system (they also show that an Ω(n) factor
blowup is unavoidable for any deterministic or Las-Vegas algorithm). In [6], Cao
and Wang propose the TPUT algorithm to reduce latency and save communica-
tion for the case where the local inputs are generated by Zipf-like distributions.
As expected from deterministic algorithms, the performance of TPUT and TA
depend crucially on the partition of scores to nodes. Other related work include
variations of TA and TPUT optimized for certain network models [17, 25, 5].

From the sensor networks perspective, top-k queries are viewed as a special
case of aggregate queries (see, e.g., [16, 24]). Typically, it is assumed that data
is routed on a spanning tree, and each node does some aggregation en-route.
Simple aggregates (such as counting the number of items, summing numbers
etc.) can be done with O(log n) bits per node. Considine et al. [7], and Gibbons
et al. [18], present methodologies for robust approximation of aggregates in sensor
networks. In [18] they also present a sketch of a top-k-approximation algorithm
that appears promising, but the algorithm is not fully specified, and no formal
statement or analysis is given.

Techniques for efficient monitoring of aggregates in sensor networks are stud-
ied by [21, 4, 8, 2]. The main question in these works is how to efficiently update
the results under some assumptions on the way the input changes.

Paper Organization. The remainder of the paper is organized as follows. Sec-
tion 2 describes our model, problem definition and a few known results about
efficient counting. Section 3 presents our algorithms with formal analysis results.
Simulation results are presented in Sect. 4. In Sect. 5, we present our lower
bound, and we conclude in Sect. 6. Due to lack of space, proofs are omitted from
this extended abstract.

2 Model and Preliminaries

System Model. The system is modeled as a communication graph G(V, E) with
n � |V |, where each node models a classical RAM machine with access to its
local input and to an infinite tape of random bits. A distinguished node v∗ ∈ V
is the root node and is assumed to have a special write-once output register.

The system executes distributed algorithms according to the standard asyn-
chronous message passing model (see, e.g., [1, 15]). Very briefly, in this model an
event (such as arrival of a message to node u) triggers a state-transition (e.g., u
computes a response message and inserts it to the link buffer). An execution in
our model is considered terminated when the root-node has written the result
to the output register.

Let M denote some finite string of bits. We assume that the system contains a
message passing infrastructure supporting the following facilities:
– Each node u ∈ V may send a message M to any other node v ∈ V . This causes

each node along a path from u to v to send and receive Θ (|M |) bits.
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– Each node u ∈ V can broadcast a message M to all other nodes. This causes
every node in V to send and receive Θ (|M |) bits.

While the particular way in which these actions are implemented is immaterial for
our purposes, we note that these assumptions can be justified by the existence of a
spanning-tree of constant degree for message passing (see, e.g., [14, 16, 24, 7, 20]).

Input Model and Problem Statement. Let I denote the set of possible items. We
assume I is finite. An instance of the problem, denoted by X , is a vector of
multisets of I: one multiset, denoted Xv, for each node v ∈ V . We sometimes
slightly abuse notation and use X to also denote the multiset

⋃
v∈V Xv.

It is convenient to imagine each multiset as a set of cells, where each cell
contains a single item, so that an item with multiplicity w has w replicas, one in
a cell. The weight of item i in node v, denoted wv(i), is the multiplicity of i in
Xv. The weight of a node v is the total number of cells in v, formally Wv � |Xv|.
The weight of an item i ∈ I, is the sum of its multiplicities over all nodes, i.e.,
w(i) �

∑
v∈V wv(i). The input size is defined to be the total number of cells,

W (X) �
∑

v∈V |Xv|. The empirical probability, or frequency, of an item i ∈ I in
X , is defined by p

X
(i) � w(i)

W . When the context is clear we omit the subscript.
Using this notation, we define the top-k set of X as follows.

Definition 1. Let k be a natural number, and suppose that |I| ≥ k. The top-k
set of X, denoted top(k, X), is a subset of I of size k containing the items with
the maximal weights.

Following [11], we extend Definition 1 to the concept of approximate top-k sets.

Definition 2. Let ε ≥ 0. An ε-approximation of the top-k set of X is a set
topε of k items, such that for all items i ∈ topε and j /∈ topε, we have p

X
(j) ≤

(1 + ε)p
X
(i).

We will mainly be interested in small values of ε so without loss of generality,
we assume henceforth that ε ≤ 1.

It turns out that the following quantity has a central role in the complexity of
computing top-k (and approximate top-k) queries. For a given input, the critical
frequency of the instance, denoted p∗(X, k), is the empirical probability of the
least popular item in top(k, X), i.e., given input X and a natural number k, we
define p∗(X, k) � min {p

X
(i) | i ∈ top(k, X)}.

Throughout the paper, we assume instances having n nodes, total weight W ,
and critical frequency p∗. We denote the set of all such instances by X (W, n, p∗).

Complexity Measures. We evaluate the performance of certain algorithms using
a worst-case measure per node. Specifically, the communication complexity of
an algorithm is the maximum, over all inputs and over all nodes, of the total
number of bits transmitted and received by a node throughout the execution of
the algorithm. Formally, cA(X, v) denotes the total number of bits transmitted
and received by node v, throughout the execution of algorithm A, for the input
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X ; cA(X) denotes the maximal node-communication of algorithm A on input X ,
i.e., cA(X) � max {cA(X, v) | v ∈ V }. Finally, given a collection X of possible
inputs, CA(X ) denotes the worst-case communication complexity of algorithm
A over all inputs in X , i.e., CA(X ) � max {cA(X) | X ∈ X}.

Note that our communication complexity measure is individual in the sense
that we measure the maximal number of bits communicated by any single node.
The motivation for such a measure is that in sensor networks, each node has
an individual energy source, and the longevity of the system often depends on
the longevity of the weakest sensors (see, e.g., [14]). Furthermore, assuming a
spanning tree of bounded degree, we can disregard many aspects of wireless
communication and focus on the net communication used by the algorithm.

Loglog Counting. Let us present a known result which we use. First we define
the following concept.

Definition 3. Let Z be a positive number we wish to estimate, let ε ≥ 0 and
σ ≥ 0 be real numbers. A random variable Ẑ is a (ε, σ2)-estimate of Z if
1
Z |E[Ẑ] − Z| ≤ ε, and 1

Z2 Var[Ẑ] ≤ σ2 .

Durand and Flajolet [10] prove a result which, specialized to our system model,
can be stated as follows.

Fact 4 ([10]). There exists an algorithm Aloglog which outputs an (ε, σ2)-estimate
of W with ε = 10−6 and σ = 1, using O (log log W ) bits of communication.

To get bounds that hold with high probability, we iterate Algorithm Aloglog and
use Bernstein’s Inequality (see, e.g., [9]).

Algorithm BoundCount ( Input: ε, δ, i )

1. M ← (6/ε2) ln 1/δ.
2. Broadcast a filtering message indicating that only input cells holding item i should

be considered in Step 3.
3. for � = 1 to M , run Aloglog obtaining an independent estimate ŵ� of w(i).
4. Output ŵ � 1

M

�M
�=1 ŵ�.

Corollary 5 (high-probability estimates). For 10−5 ≤ ε ≤ 1 and δ > 0,
the output ŵ of Algorithm BoundCount satisfies Pr

{
1

w(i) |ŵ − w(i)| < ε
}

≥
1 − δ. The individual communication complexity of the algorithm is of order
O

(
log |I| + 1

ε2 log 1
δ log log w(i)

)
. Also, if the algorithm ran M iterations in Step

3, then for any ζ > 10−5, Pr
{

1
w(i) |ŵ − w(i)| < ζ

}
≥ 1 − exp

(
−Ω

(
Mζ2

))
.

3 Algorithms

In this section we present our main result, namely a randomized algorithm for
computing top-k. In our algorithm, the basic idea is to view each cell (represent-
ing a unit of weight, or score) as a “vote,”and to sample each vote independently.
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Thus, the expected number of sampled votes for candidate i is proportional to
the total number of votes candidate i has in the input regardless of their parti-
tion into nodes. The sampling results provide a good indication which items are
globally popular, so that counting can be applied only to these items.

Next, we need to determine the sample size. Let p∗ denote the frequency of
the least popular of the top-k items. Clearly, if we sample once, the sample size
should be proportional to O(1/p∗) (or else the sample will fail to find all top
k items). A more refined analysis shows what should be the sample size as a
function of p∗, the approximation parameter ε, and the confidence parameter
δ. To deal with unknown p∗, we augment the basic sampling algorithm with a
technique to find the right sample size. Intuitively, we have a simple test which
can prove whether the sample size is sufficiently large; if it isn’t, we double the
sample size.

Finally, we address the issue of very small p∗ values: while Ω(1/p∗) sample size
cannot be avoided for worst-case inputs, a much better bound can be obtained
if the popularity of items decreases relatively rapidly. Consider, for example,
the case where the global scores are close to the geometric distribution, e.g.,
when the frequency of the �th popular element is about 2−�. Then we have
p∗ = 2−k, and therefore the sample size should be Ω(2k). This cost can be
reduced exponentially by utilizing the following simple idea: Whenever a sample
is taken, the top item in the sample is by far the most popular (it is expected to
have half of the weight in the sample). Therefore it is safe to add the top item to
the output list, remove it from further consideration, and take another sample
of the same size. In the geometric case, this approach has communication cost
linear in k. This intuition leads us to our final algorithm, called Algorithm R. In
essence, the idea is to iteratively discover the very top items, “shave them off,”
and to continue recursively with the remainder of the population. The algorithm
combines this idea with an additional way to verify that the top-k items have
been discovered. Algorithm R is far better than naive sampling for some common
input distributions, such as Zipf distribution.

We start, in Sect. 3.1, by describing the basic algorithm we later use as a
building block. Section 3.2 presents Algorithm S which uses adaptive sample
size. Section 3.3 presents Algorithm R, which is our main result.

3.1 Algorithm B: Basic Sampling

Consider basic sampling: if the top-k items occupy a constant fraction of the
total weight, then a log-size sample is sufficient to detect them for any input size
(the logarithm is of the inverse of the error probability).

It is convenient to first analyze the following sampling routine.

Algorithm A ( Input: PSAMPLE )

1. The root sends PSAMPLE to all other nodes.
2. Each node sends each cell to the root with probability PSAMPLE .
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Lemma 6. There exists a function S∗(p∗, ε, δ) = Θ
(

1
p∗ ε2 · ln 1

p∗ δ

)
, such that

for any input X ∈ X (W, n, p∗), the top-k elements of a random sample of size at
least S∗(p∗, ε, δ) is a top-k ε-approximation of X with probability at least 1 − δ.

The proof (like all others) is omitted from this extended abstract. Intuitively,
the argument is as follows. Define a ‘swap’ to be a pair of items i, j such that i
is more popular than j in the input but less popular than j in the sample. We
identify which item-pairs may not be swapped in an ε-approximation, and bound
the probability that such a swap occurs using the Chernoff-like bound for self-
weakening random variables presented in [19]. The probability bound is used
to deduce the required sample size. The exact definition of S∗ used by our algo-
rithms is S∗(p∗, ε, δ) � g(ε)

p∗ ·
(
ln 1+ε

p∗δ + 4
)
, where g(ε) � (1+ε) ln(1+ε)

ε ln( ε
ln(1+ε) )+ln(1+ε)−ε

.

Algorithm B, presented below, first determines the sampling probability PSAMPLE
using the function S∗ from Lemma 6. Each cell (i.e., unit of weight) is then sent
to the root with probability PSAMPLE, and the root outputs the top k items in the
sample as an approximation of the top k items in the complete input.

Algorithm B ( Input: W,p∗, k, ε, δ )

1. The root computes PSAMPLE ← 2 · S∗(p∗, ε, δ
2 )/W .

2. Execute Algorithm A with parameter PSAMPLE to get a sample S .
3. Output top(k, S).

When running Algorithm B as described above, each sampled vote is sent to
the root separately incurring communication log |I|. An obvious optimization is
to aggregate votes for the same candidate along the way, for example by sending
the count of votes for each candidate. While such optimization is very worthwhile
to implement, it would not help much when the partition of votes to nodes is
adversarial. We therefore ignore such optimizations in our upper bounds.

Theorem 7. Let X ∈ X (W, n, p∗) be an instance. Provided that p∗, ε, δ and
W are known, Algorithm B outputs a top-k ε-approximation with probability at
least 1 − δ and communication O

(
1

p∗ ε2 · ln 1
p∗δ · log |I|

)
.

The proof is rather standard; we omit it due to lack of space. Note the 1/p∗

factor: It is unavoidable because if the sample is to contain the top k elements,
it should contain the least popular of them, and hence the sample size must be
Ω(1/p∗). A stronger bound is proved in Sect. 5.

3.2 Algorithm S: Adaptive Sample Size

Algorithm B requires knowing the values of W and p∗. While estimating W is
straightforward and cheap (by deterministic or randomized counting, at the cost
of O(log W ) or O(log log W ) communication, respectively), obtaining a lower
bound on p∗ seems less trivial. We solve this problem as follows.
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First, we note that by counting the weight of any k items, we obtain a lower
bound on p∗: the least popular among any k items is certainly no more popu-
lar than the least popular among the top-k items. Second, we note that exact
counting is not necessary: we can use high-probability estimates as described in
Corollary 5 to get a lower bound on p∗ that holds with high probability. However,
if we simply use an arbitrary set of k items to bound p∗, that value can be smaller
than the true value of p∗ by an arbitrary factor, resulting in communication cost
that is higher than the bound in Theorem 7 by an arbitrary factor.

Our solution, in Algorithm S below, combines the ideas described above with
an iterative approach that avoids unbounded ‘overshoots.’ The algorithm uses a
variable p̂ as an estimate of p∗. The algorithm repeatedly halves p̂ while improv-
ing its lower bound on p∗, stopping when p̂ is smaller than the lower bound.

Algorithm S ( Input: k, ε, δ )

1. Ŵ ← BoundCount(ε = 1, δ/5, ‘ALL’)
2. p̂ ← 1 (p̂ is the current estimate of p∗)
3. Repeat

(a) p̂ ← p̂
2

(b) Execute Algorithm B with parameters (Ŵ/2, p̂, ε, δ/5), to get a candidate
top-k-set T .

(c) For each item i ∈ T ,
ŵ(i) ← BoundCount(ε = 1, δ/5, i)

Until p̂ < 1
8 min

�
ŵ(i)/Ŵ | i ∈ T

�
.

4. Output the set T computed at Step 3b of the last iteration.

Theorem 8. For any input X ∈ X (W, n, p∗), with probability at least 1 − δ,
Algorithm S outputs a top-k ε-approximation with communication complexity
CS = O

(
1

p∗ ε2 · log 1
p∗ δ · log |I| + k log 1

p∗ log 1
δ log log W

)
.

Note that when |I| ≥ log W and k < O (1/(−p∗ log p∗)), the communication
complexity of Algorithm S is within a constant factor of the complexity of Al-
gorithm B.

The general idea in the proof is that the high-probability estimates ensure that
we run approximately log 1

p∗ iterations. As a result, the last iteration is similar to
an execution of Algorithm B with the correct parameters and its communication
complexity is as specified in Theorem 7.

3.3 Algorithm R: Sample and Remove

As already mentioned above, it appears that the 1/p∗ factor is unavoidable when
we want all the top-k items to be included in the sample (because p∗ is the em-
pirical probability of the kth popular item). However, when the popularity of the
popular items is far from uniform, one can do much better, as mentioned for the
geometric distribution example in the beginning of this section: the 1/p∗ factor
in the communication complexity can be replaced by a factor of k. Algorithm R
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Algorithm R ( Input: k, ε, δ )

1. Q ← ∅ (Q holds all items whose weights were already estimates)
2. p̂ ← 1, � ← 0. (p̂ is the current estimate of p∗, � is the iteration index)
3. Repeat

(a) Ŵ ← BoundCount(ε = 1, δ/7, ‘ALL’).
(b) � ← � + 1 ; Ŵ [�] ← Ŵ .
(c) p̂ ← p̂ · 1

2 · Ŵ [� − 1]/Ŵ [�].
(d) PSAMPLE ← 2S∗(p̂, ε/4, δ/7) / Ŵ .
(e) Execute Algorithm A with parameter PSAMPLE to get sample S .
(f) η ← (δ/7) · (1/ − log plo(top(k, Q), Ŵ ));

T S ← top(|S| log |I| /(log |I| + log log Ŵ ), S).
(g) For each i ∈ T S , ŵ(i) ← BoundCount(ε = 1, η, i).
(h) Q ← Q ∪ T S ; remove elements of T S from the input.
Until safe(Ŵ , Q, S , p̂, ε, δ).

4. If |T S | < k, then for each i ∈ top(k, S), do ŵ(i) ← BoundCount(ε = 1, η, i) and
add i to Q.

5. Q ←
�

i ∈ Q | ŵ(i)/Ŵ > plo(top(k, Q), Ŵ )
�

6. For each i ∈ Q, ŵ(i) ← BoundCount(ε/4, δ
5|Q| , i).

7. Output the top k items in Q according to the new estimates.

Function plo ( Input: Q, W )

1. Return 1
4W

min {ŵ(i) | i ∈ Q}.

Predicate safe ( Input: W,Q, S , p̂, ε, δ )

1. If p̂ · (W [�]/W [1]) < plo(top(k, Q), W ) return true.
2. rhi ← plo(S ∩ Q, W )
3. q ← (1 + ε/2) · plo(top(k, Q),W ); α ← q/rhi.
4. If α > 1 and exp

�
−|S|q

�
α−1

α

�2�
< qδ

5 then return true else return false.

Fig. 1. Algorithm R

achieves this improvement for both geometric and Zipf distributions. In a nut-
shell, the idea is still to cut the estimate of p∗ by half in each iteration; however,
while Algorithm S achieves this by doubling the sample size, Algorithm R tries
also to reduce the size of the relevant population.

In more detail, the algorithm works as follows (see Fig. 1). In each iteration,
the algorithm samples with probability PSAMPLE, obtained from the current es-
timate p̂ of p∗. Then, in Step 3f, the algorithm counts (approximately) some
of the top items in the sample: the number of items is such that the cost of
counting equals the cost of sampling. The counted items (recorded in Q) are not
considered part of the input anymore. In Step 3c, p̂ is adjusted so that its value
in the full input is halved (but since the input is smaller now, p̂ is multiplied
by a factor larger than 1/2). The loop is executed until one of the stopping
rules specified in Predicate safe is met. These rules use a lower bound on p∗

computed by function plo: it is a high-probability lower bound on the kth smallest
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value among all values counted so far. Using plo, the stopping rules are defined
as follows.

First (Step 1 of Predicate safe), we can stop if the value of p̂ w.r.t. the full
input is smaller than the lower bound on p∗. This test is done in Step 1. Second,
we bound the probability that an “important” item did not arrive at the top of
the current sample and therefore was not counted. More specifically, we bound
the probability that an item with frequency q, where q is sufficiently larger than
p∗, was not counted, while an item whose frequency is rhi was counted. If the
probability of this event is low, we know that the top items counted by the
algorithm contain an ε-approximation to the top-k set (Step 4). This test is
useless in some cases (say, the uniform distribution), but it is effective in some
distributions (such as Zipf).

Theorem 9 shows some general bounds on its complexity. As expected, it
shows that for some inputs, Algorithm R has very little advantage over Algo-
rithm S. Theorem 10, however, presents an alternative analysis which, when
applied to some natural input distributions, attains much better bounds than
those of Theorem 9.

Theorem 9. For any input X ∈ X (W, n, p∗), with probability at least 1− δ, Al-
gorithm R outputs a top-k ε-approximation while the communication complexity
satisfies CR = O

(
1

p∗ ε2 log 1
δp∗ (log |I| + log log W )

)
.

Again, when |I| < log W , the communication complexity of Algorithm R is
within a constant factor of the complexity of Algorithm B.

Next we refine the analysis to depend more closely on the global distribution
(rather than only on p∗). Let π� denote the probability that a random item has
global frequency at most 2−�, namely π� is the fraction of the votes for candidates
whose popularity is at most 2−�.

Theorem 10 (Main result). Let X ∈ X (W, n, p∗). Then with probability at
least 1 − δ, Algorithm R outputs a top-k ε-approximation of X while using

O

(
1
ε2 log 1

p∗ δ (log |I| + log log W ) ·
∑log 1

p∗
�=1 2�π�

)

communication bits per node.

Using Theorem 10, we can prove the following corollaries for specific distribu-
tions. The proof of Corollary 11 is straightforward; the proof of Corollary 12 is
based on approximating the Zipf distribution by the Pareto distribution.

Corollary 11. Let X be an instance where item frequencies are geometrically
distributed, i.e., p

X
(i) = (1 − λ)λi−1 for some constant 0 < λ < 1. Then Al-

gorithm R, when run on input X with parameters δ, ε > 0 has communication
complexity cR(X) = O

(
k
ε2 log 1

p∗ δ (log |I| + log log W )
)
.

For the important case of Zipf distribution, we have the following corollary.

Corollary 12. Let X be an instance where item frequencies have Zipf distribution

with parameter a > 1, i.e., p
X
(i) � i−a

h
, where a > 1 and h is the normalization
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factor. Then Algorithm R, when run on input X with parameters δ, ε > 0 has com-
munication complexity cR(X) = O

(
a+1
a−1 · k

ε2 · log 1
p∗ δ · (log |I| + log log W )

)
.

The results in this section analyze the behavior of R for asymptotically large in-
puts. As described in the next section, we have tested our algorithms on realistic-
size inputs to study the effect of the hidden constants. We have also compared
R with other known algorithms from the literature. We remark that Algorithm
R turns out to have significantly superior performance.

4 Simulations Results

To evaluate the performance of our algorithm in more realistic scenarios, we
ran simulations examining the actual number of bits communicated throughout
the execution. We compared our algorithm R with the best known algorithms,
namely TA [11] and TPUT [6]. We compared the performance of the algorithms
when the input is partitioned randomly and when it is partitioned adversarially.
Finally, we evaluated the performance of R for various values of p∗ (popularity
of the kth most popular item) and various values of ε (the approximation pa-
rameter). Informally, we find that Algorithm R offers a dramatic improvement
over TA and TPUT unless the system is very small and the distribution is par-
ticularly favorable to TA and TPUT. Moreover, for typical inputs, R behaves
better than predicted by our analytical bounds.

Simulated Instances. We used randomly generated inputs of various sizes, and
our main focus was on inputs generated by Zipf distribution with exponent
between 0.8 and 3; all shown charts used Zipf distribution with exponent 1.5
(different exponent values showed qualitatively similar behavior). Typical other
parameters were k = 5, ε = 0.5 and δ = 0.05. The total number of votes (W )
was either 106 or 107 and the varying parameter is the number of nodes (n).
The number of candidate-items was equal to the number of nodes (|I| = n). All
simulations measured the worst-case individual communication (in bits).

Comparison with Existing Algorithms. In Fig. 2 we compare algorithms R, TA
and TPUT. We used the approximation version of the TA algorithm. We note
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Fig. 2. Communication costs of algorithm R compared to TA and TPUT for random
partition of scores in various system scales
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Fig. 3. Communication costs of optimized algorithms for various system scales. Left:
with an adversarial partition of scores among nodes. Right: with a random partition of
scores among nodes.

that TPUT has no approximation version, but in all simulations we ran, TPUT
appeared less efficient than TA, even for high accuracy such as ε = 0.01.

Results for adversarial and random partition of scores were similar. As shown
in Fig. 2, the performance of TA and TPUT for a random partition is rather
poor for large systems and Algorithm R is superior even for a system of 100
nodes. R is overwhelmingly superior (by more than two orders of magnitude) for
n > 10000.

Next, we modified the deterministic algorithms by using loglog counting and
allowing them to err. We also assumed the existence of a bounded degree span-
ning tree, and used unlimited memory at each node (which allows simple
aggregation while traversing the tree). These modifications resulted in drastic
improvement in TA performance: see Fig. 3. The optimized version of TPUT
is not shown because it performed far worse than the optimized version of TA.
Note that when the input is adversarially partitioned, R beats TA for n > 2000.
But even when the input is partitioned randomly (which is close to the best
case of TA), R performs better for n large enough, where large enough means
n > 200000 in this case.

The Effect of Accuracy and Critical Frequency on Performance. We examined
the performance of Algorithms R and algorithm S while varying ε and p∗
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Fig. 4. Communication costs of algorithms S and R. Left: as a function of p∗. Right:
as a function of ε. The communication cost of reading the entire input is W log |I|, (W
is the input size and |I| is the number of items).
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(for n fixed). The results are given in Fig. 4. Obviously, Algorithm R was always
superior to Algorithm S. The results for p∗ (Fig. 4, left) show that Algorithm R
is less sensitive to p∗ when the input is generated by Zipf distribution. We note
that the flat left segment in the graph of S is due to the fact that for small values
of p∗, the sample of Algorithm S consists of the entire input.

The effect of the approximation factor ε (Fig. 4, right) on the communication
of both algorithms is proportional to

( 1+ε
ε

)2, as suggested by our upper bounds.
Algorithm R is more efficient due to its improved termination criterion.

5 A Lower Bound on the Total Cell-Probe Complexity

In this section we give a lower bound on the total cell probe complexity [23, 13]
of randomized algorithms for the top-k problem. For a restricted settings, we
can deduce a lower bound on the individual communication complexity of such
randomized algorithms.

We define the total cell probe complexity of an algorithm as the total number
of input cells accessed by a all nodes for the worst-case input. Formally, cpA(X, v)
denotes the number of input cells accessed by node v, throughout the execution of
A for input X ; cpT

A(X) denotes the total number of cell-probes for an instance X ,
i.e., cpT

A(X) �
∑

v∈V cpA(X, v). The total cell-probe complexity of A is defined
by CPT

A(X ) � max
{
cpT

A(X) | X ∈ X
}
. Note that the set of all probed cells can

be viewed as a sample whose size is the total number of cell-probes.

Theorem 13. For some natural k, let ε > 0, 0 < p∗ ≤ 1
2k , 0 < δ < 0.014, and

W = Ω
(

1
δ(p∗)2 · (1+ε)2

ε4

)
and let A be any Monte Carlo algorithm. If A outputs a

top-k ε-approximation with probability at least 1−δ for any input in X (W, n, p∗),
then its total cell-probe complexity satisfies E

[
CPT

A

]
= Ω

(
1

p∗ ε2 · log 1
δ

)
.

The proof (omitted from this extended abstract) applies Yao’s Minimax Principle
to obtain a lower bound on Monte Carlo algorithms. To this end, we prove a
lower bound on the expected sample size used by any deterministic algorithm
when the input is drawn from a certain distribution we construct, so that there is
a single correct output to the top-k ε-approximation query. Furthermore, under
our distribution, the local view of each node is just a random subset of the items.
We show that any algorithm which does not output the top-k set of its sample
is doomed to err with probability at least 1/2. Finally, we bound the required
sample size for other algorithms.

Star Topology and “Smart Dust” Systems. Theorem 13 demonstrates the opti-
mality of Algorithm B with respect to the total cell-probe complexity but not
the individual cell-probe complexity. Consider a setting where the system has
star topology, i.e., all nodes are connected to a root node, and suppose that each
node holds a single cell. This model is a reasonable abstraction of the setting in
sensor networks using passive communication. In these systems, the only commu-
nication is between a powered base-station and a sensor, forming a star topology
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(as opposed to the common spanning tree). Passive communication is suitable for
very small devices, such as “smart dust” systems (see e.g., [22]). Now, for these
systems, Theorem 13 says that any algorithm that satisfies the conditions of
the theorem has individual communication complexity at least Ω

(
1

p∗ ε2 · log 1
δ

)
.

We stress that while our model assumes certain routing capabilities, our algo-
rithms only use a broadcast-convergecast scheme rooted by the root node. Such
communication is suitable for star topology.

6 Conclusions and Future Work

In this paper we have proposed algorithms solving the top-k problem by adaptive
sampling. The communication complexity of our algorithms does not depend on
the way the input is partitioned in the network: only the global statistics affect
the complexity. Our final algorithm performs particularly well when the global
statistics are far from flat. We have tested our algorithm by simulation and
found empirical support for our analytical claims. Although our study is mainly
theoretical, simulation results indicate that our algorithm is rather practical and
can be very useful in real-life scenarios. Future work may extend our algorithm to
specific models, where spatial and temporal dependence among different sensors
holds (e.g., nearby nodes have similar readings).

From the theoretical viewpoint, we think that it is very interesting to extend
our lower bound to the case of interactive algorithms. We conjecture that our
Algorithm R is nearly optimal in this more general model.
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