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Abstract. Radio networks model wireless synchronous communication
with only one wave frequency used for transmissions. In the problem of
many-to-all (M2A) communication, some nodes hold input rumors, and
the goal is to have all nodes learn all the rumors. We study the average
time complexity of distributed many-to-all communication by determin-
istic protocols in directed networks under two scenarios: of combined
messages, in which all input rumors can be sent in one packet, and of
separate messages, in which every rumor requires a separate packet to
be transmitted. Let n denote the size of a network and k be the number
of nodes activated with rumors; the case when k = n is called gossiping.
We give a gossiping protocol for combined messages that works in the
average time O(n/ log n), which is shown to be optimal. For the gen-
eral M2A communication problem, we show that it can be performed in
the average time O(min{k log(n/k), n/ log n}) with combined messages,
and that Ω(k/ log n + log n) is a lower bound. We give a gossiping pro-
tocol for separate messages that works in the average time O(n log n),
which is shown to be optimal. For the general M2A communication prob-
lem, we develop a protocol for separate messages with the average time
O(k log(n/k) log n), and show that Ω(k log n) is a lower bound.

1 Introduction

Packet radio networks are a class of wireless networks in which only one wave fre-
quency is used for communication. The restricted bandwidth results in a conflict
when different messages arrive simultaneously at a node. The main challenge,
in developing communication protocols for such networks, is in resolving local
conflicts for access to the limited bandwidth.

The networks we consider are directed, which captures a scenario in which a
possibility of a direct transmission from node x to node y does not necessarily
make it possible for node y to transmit directly to node x. Networks are ad-hoc, in
that protocols do not rely on the knowledge of the topology; the only information
about the network that may be a part of code of a protocol is the size n, which
is the number of nodes. We consider deterministic distributed communication
protocols. Initially, some k among the nodes are simultaneously activated with
input data; these data are called rumors. The communication task is to make
� The work of this author is supported by the NSF Grant 0310503.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 253–267, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



254 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

all the nodes in the network learn all the input rumors. This communication
task can be called many-to-all communication (M2A). The special case in which
k = n is called gossiping. The underlying network is assumed to be strongly
connected, so that gossiping is always possible to achieve.

Nodes exchange packets carrying rumors. A node sends at most one packet
per round. In the model of combined messages, a packet can carry all the rumors.
In such a setting, it is natural to have a node send all the rumors learned so far
in any transmitted packet. In the model of separate messages, a packet can carry
only one rumor. With such a restriction, a protocol needs to rely on a mechanism
to prioritize rumors so that a node sends a rumor of the highest current priority
at a round.

The time of an execution of a protocol is defined to be the first round when the
communication goal has been achieved. Such a completion of the communication
task is not required to be known by the nodes. The complexity measure we
investigate is the average time as a function of the size n of the network. To
find the average time for size n, first compute conceptually the durations of
executions of the protocol on all strongly connected networks of size n, and next
take the average of the times accrued for these networks.

Our results. We give upper and lower bounds on the average-case complex-
ity of gossiping and many-to-all communication. Protocols are distributed and
designed for both the models of combined and separate messages. Let n denote
the size of a network and k the number of nodes activated with rumors. The
summary of the contributions is as follows.

I. Gossiping with combined messages can be performed in the average time
O(n/ log n), which is shown to be optimal.

II. We show that M2A communication can be performed in the average time
O(min{k log(n/k), n/ logn}) with combined messages and that Ω(k/ log n+
log n) is a lower bound.

III. Gossiping with separate messages can be performed in the average time
O(n log n), which is shown to be optimal.

IV. M2A communication can be achieved in the average time O(k log(n/k) log n)
with separate messages. We show a lower bound Ω(k log n).

Previous work. Broadcasting in radio networks with topology modeled by
random graphs was considered by Elsässer and G ↪asieniec [12], who showed that
O(log n) expected time was optimum for distributed protocols. This result can be
interpreted as giving the optimum average-time complexity of broadcasting. The
authors of this paper do not know of any other results related to the average-time
complexity of communication in radio networks.

A many-to-many communication problem in radio networks, similar to what
we consider, was studied by G ↪asieniec, Kranakis, Pelc and Xin [13]. The problem
is defined as follows: There is a set S of k nodes initialized with rumors and
every one among these nodes needs to get to know all the rumors. Networks are
undirected, each node knows the topology of the network but does not know the
set S, the maximum distance d among any pair of nodes in S is an additional
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parameter. A protocol solving this problem of time complexity O(d log2 n +
k log3 n) was given in [13].

Related work. The model of multi-hop radio networks was introduced by
Chlamtac and Kutten [4] who considered sequential algorithms to find an efficient
broadcast protocol for a given input network. The first distributed randomized
broadcast protocols of sub-quadratic expected-time performance were given by
Bar-Yehuda, Goldreich and Itai [2]. The first distributed deterministic explicit
broadcast protocol with sub-quadratic time performance was given by Chlebus,
G ↪asieniec, Gibbons, Pelc and Rytter [5]. Alon, Bar-Noy, Linial and Peleg [1]
showed that there exists a bipartite graph of n nodes for which any broadcasting
protocol requires time Ω(log2 n) . The fastest known deterministic distributed
broadcasting protocol was given by Czumaj and Rytter [10], who showed that
it works in time O(n log2 D), where D is the diameter of the network.

Gossiping was initially studied for the model of combined messages. The first
distributed protocol of sub-quadratic time complexity was given by Chrobak,
G ↪asieniec and Rytter [8]. The fastest known distributed deterministic protocol
works in time O(n4/3 log4 n); it was given by G ↪asieniec, Radzik and Xin [14].
The best randomized protocol operates in the expected time O(n log2 n), it was
given by Czumaj and Rytter [10].

Oblivious gossiping was first studied by Chlebus, G ↪asieniec, Lingas, and
Pagourtzis [6]. The paper gave a deterministic gossiping protocol that works in
time O(n3/2) on undirected networks; this was shown to be optimal by Kowalski
and Pelc [15]. Randomized oblivious gossiping protocols working in the expected
time O(n log2 n) on undirected networks and O(min {m, DΔ} log2 n) on directed
networks, where Δ is the maximum node in-degree, were presented in [6].

The model of separate messages was first considered by Bar-Yehuda, Israeli
and Itai [3] and Clementi, Monti and Silvestri [9]. Christersson, G ↪asieniec, and
Lingas [7] considered gossiping in undirected networks; they gave an adaptive
deterministic gossiping protocol with time complexity O(n3/2 log n) and a ran-
domized protocol of the expected time complexity O(n log2 n).

2 Technical Preliminaries

A radio network is modeled as a graph G = (V, E), in which the set of vertices V
represents the physical nodes of the network, and the set of edges E represents
the possibilities of direct transmissions among the nodes. If node x of a radio
network can send a message directly to y, then node y is reachable from x. For
any ordered pair 〈u, v〉 of nodes in the network, edge u → v is in the graph G if
and only if node v is reachable from node u. The size of the network is defined
to be the number of nodes |V |, which we usually denote by n.

We assume full synchrony in that all nodes are equipped with local clocks that
are clicking at the same rate and indicate the same round numbers. Protocols
we consider are for a scenario when all the nodes activated with inputs start
simultaneously at round zero. When some two nodes v and v′ transmit simulta-
neously at a given round, and are both in-neighbors of node x in the reachability
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graph of the network, then a conflict occurs at x. A conflict at x results in all
the messages arriving at x interfering with one another so that each is received
as garbled. A message is said to be heard when it is received as fully readable in
its correct form. Radio networks have the following properties:

(a) If a node performs a transmission, then it transmits a single message.
(b) The message transmitted by a node is delivered in that round to all the

reachable nodes.
(c) A node can hear a message delivered at a round, if exactly one among its

in-neighbors transmitted in this round.

Communication problems. Initially some nodes hold their input data called
rumors. When node i is initialized with a rumor, then this rumor is denoted
by ri. The goal of communication protocols is to disseminate such input rumors.

In the problem of gossiping, each node v is a source for its private input
rumor rv, and the goal is to have all the nodes learn all the rumors. Gossiping
may be called all-to-all communication problem.

A generalization of gossiping called many-to-all problem, or simply M2A, is
about a scenario in which only some of the nodes have input rumors. Such nodes
are called activated. The goal is to have all the nodes in the network get to know
all the rumors of the activated nodes. All nodes in the network participate in
forwarding messages in the course of an execution of an M2A protocol.

To have a communication problem in radio networks meaningful, we need to
assume that the topology of the underlying graph makes the communication
task at hand possible to perform. In the case of gossiping and M2A, the graph
is assumed to be strongly connected.

Communication protocols. Correctness of an M2A or gossiping protocol
means that the communication goal is eventually achieved on any strongly con-
nected network. Nodes running a protocol are not required to reach eventually a
state representing the completion of a task. This is assumed in order to decouple
termination from complexity considerations. The time complexity of a protocol
at hand, for a given strongly connected network, is defined to be the first round
when the communication goal has been achieved.

Nodes of a network of size n are identified by their unique names. We assume
that names give a one-to-one correspondence between the nodes and integers in
the range [0, n − 1]. While designing communication protocols, we assume that
the size of the network is known.

A simple protocol called Round-Robin operates as follows. In round i, the
unique node with name k such that i ≡ k (mod n) is scheduled to perform a
transmission. There are variants of this protocol depending on the size of packets.
In the model of combined messages, a node scheduled to transmit at the current
round transmits a message with all the rumors it has learned so far. In the model
of combined messages, the protocol is augmented by a selection rule to choose a
rumor to transmit from among those that have been learned by the given round.
Usually the selection is made by resorting to a queuing mechanism.
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for k := 0 to �n do
if v is in Gk then transmit

call Round-Robin

Fig. 1. Protocol Gossip-Combined-Messages; the code for node v

Average complexity. We consider the average time complexity of gossiping
and M2A communication on strongly-connected networks. This is the same as
the expected time complexity when the probabilistic space has all strongly con-
nected networks on n nodes as elementary events, each occurring with the same
probability. A random directed network is strongly connected with the probabil-
ity exponentially close to 1. This fact allows to obtain expected time estimates
while working with arbitrary random directed networks. These estimates are the
same when conditioned on the networks being strongly connected, provided the
time estimates are polynomial. An explicit termination in polynomial time could
be obtained for all protocols we develop, since there are polynomial-time worst-
case time estimates for these protocols, valid for strongly connected networks.

We do not want M2A protocols to have their performance biased towards
specific sets of activated nodes. Therefore we work with the average complexity
of M2A protocols defined in an adversarial manner as follows. Suppose there is an
adversary who is given a protocol P for n nodes together with a number k ≤ n.
The adversary chooses a set K of k specific names of nodes to be activated;
the goal of the adversary is to show a scenario maximizing the complexity of
the protocol. The average complexity of the protocol P , for n-node networks, is
defined to be the average complexity of protocol P measured when exactly the
nodes in K are activated with rumors.

3 Gossiping with Combined Messages

We show that gossiping can be performed with the average time cn/ lgn, for any
fixed c > 1, and that the average time always has to be at least cn/ lg n, for any
fixed c < 1/2. (The logarithm of x to the base 2 is denoted by lg x.)

Gossiping protocol for combined messages. Let �n = �n/b lgn�, where
b = 1

2 (1 + 1
c ). Observe that the inequalities 1 > b > 1/c hold. Define group

Gk, for 0 ≤ k ≤ �n, to consist of nodes i, for 0 ≤ i < n, with the property
that the congruence i ≡ k (mod �n) holds. The size of a group is about b lg n.
The sizes of two groups differ by at most 1. We consider an oblivious protocol
Gossip-Combined-Messages, which is given in Figure 1. A transmission by a
node contains all the rumors that the node has already learnt in the execution.

Theorem 1. For any c > 1, the average number of rounds to complete gossiping
by protocol Gossip-Combined-Messages on a network of n nodes is smaller
than cn/ lgn, for a sufficiently large n.
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Proof. Take a node y and group Gk. Let x be in Gk. The node y can hear x at
the kth round of the first phase when the following two events hold:

(i) x is an in-neighbor of y; and
(ii) no other node in Gk is an in-neighbor of y.

It follows that the probability of the event that y hears x ∈ Gk during the kth
round of the first phase of the protocol is 2−|Gk| = 2−b lg n = n−b. Let x and v be
two nodes. Node y is called a relay for the pair 〈x, v〉 when the following holds:

(i) y is an in-neighbor of v; and
(ii) y heard x in the first phase.

Observe that
Pr [y is a relay for 〈x, v〉] =

1
2nb

,

because the events “y heard x in the first phase” and “y is an in-neighbor of v”
are independent.

Consider the first t nodes, that is, the nodes i with 0 ≤ i < t. These nodes
are scheduled to perform a transmission among the first t rounds of the protocol
Round-Robin in the second phase. Node i may make node v learn the rumor
rx of x if i is a relay for the pair 〈x, v〉. For all such nodes i making the first t
transmission during Round-Robin and different from x and v, the events “i is
a relay for the pair (x, v)” are independent.

If v has not learnt rx in the first t rounds of the second phase, then no i such
that 0 ≤ i < t is a relay for the pair 〈x, v〉. The latter event holds with the
probability (1 − 1

2nb )t by independence of the events of being a relay node. It
follows that v does not learn rx in the first t rounds of Round-Robin with the
probability of at most (1 − 1

2nb )t.
We use the inequality

(
1 − 1

s

)s

< exp
(
−1 +

1
2s

)
, (1)

which holds for real s > 1. It yields the following estimate:
(
1 − 1

2nb

)t

< exp
((

−1 +
1

4nb

) t

2nb

)
= exp

(
− t

2nb

)
exp

( t

8n2b

)
. (2)

Let d = min{2b, 1}. Take t = na where b < a < d. Now the right-hand side of
(2) becomes

exp(−na−b/2) exp(na−d/8) = exp(−na−b/2)(1 + o(1)). (3)

Consider the event that for any pair of nodes 〈x, v〉 there is a relay node during
the first t rounds of the second phase. The event does not hold with the prob-
ability of at most n2 exp(−na−b/2)(1 + o(1)) by the estimate (3). If this event
holds, then gossiping is completed by round n

b lg n + na, which is smaller than
cn
lg n for a sufficiently large n. Otherwise the time of gossiping can be estimated
by n

b lg n + n2. These two estimates contribute to the expected value of the time
of protocol A to complete gossiping, which together is smaller than cn

lg n , for all
sufficiently large n.
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Lower bound for gossiping with combined messages. We show that any
gossiping protocol for the model of combined messages has the average time com-
plexity Ω(n/ log n). This implies that protocol Gossip-Combined-Messages is
asymptotically optimal.

Theorem 2. For any c < 1/2 and gossiping protocol A for the model of com-
bined messages, the average number of rounds to complete gossiping by A on a
network of n nodes is larger than cn/ lg n, for a sufficiently large n.

Proof. Let X be the random variable defined on the domain of all directed graphs
of n nodes. For such a graph G, run A on G and let s be the first round when
the gossiping has been completed. Define X(G) = s. Let an execution of A be
given as a sequence 〈T0, T1, T2, . . .〉 of transmissions.

We estimate the probability of the event X > s, for integer s > 0. Take event
H(v, s), for node v and round s, which holds when no node has heard from node v
by round s. Observe that

Pr [X > s] ≥ Pr [H(v, s)]. (4)

We want to estimate the probability that H(v, s) holds.
We start with choosing v. If some node v does not belong to any of the first s

transmissions, then such v yields the best possible estimate Pr [H(v, s)] = 1,
which also implies that EX > s.

Assume that every node belongs to at least one among the first s transmissions
of protocol A. Next we restrict our attention only to these transmissions. We
claim that there is a node, say, v with the property that every transmission
Ti that v belongs to, for i ≤ s, is of a size at least |Ti| ≥ n/s. This is because
otherwise, even if every node belonged to only one transmission, the total number
of nodes in the initial segment of s transmissions of A were smaller than n, which
would contradict the assumption that these transmissions include all the nodes.

A node x hears from v at round i ≤ s, provided v ∈ Ti, when the following
two events hold:

(i) v is an in-neighbor of x in Ti, and
(ii) no other node y �= x in Ti is an in-neighbor of x.

This implies that the estimate

Pr [x hears from v at round i | v ∈ Ti] ≤ 2−n/s

holds. Node v could belong to a number of transmissions Ti for i ≤ s, so we use
the estimate

Pr [x hears from v in the first s rounds] ≤ s2−n/s.

Node x was arbitrary, and we need to be concerned with all the nodes. We use
the estimate

Pr [some node hears from v in the first s rounds ] ≤ ns2−n/s.
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The event H(v, s), that no node hears v during the first s transmissions, holds
with a probability of at most

Pr [H(v, s)] ≥ 1 − ns2−n/s. (5)

To estimate the expected value EX of X , we use the formula

EX =
∞∑

k=0

Pr [X > k],

which holds true for any random variable X with non-negative integer values.
Combining this with the estimates (4) and (5), we obtain the inequality

EX ≥
t∑

k=1

(
1 − nk · 2−n/k

)
, (6)

for any integer t > 0.
Let k0 be the largest value of k for which the expression 1 − nk · 2−n/k is

positive. We take the upper bound t on the range of summation in (6) to be
close to k0.

Next we estimate the magnitude of k0 as a function of n. Observe that k0 is
the largest k for which the inequality

nk ≤ 2n/k (7)

holds. Take the binary logarithm lg of both sides of (7) to obtain the equivalent
inequality lg n + lg k ≤ n

k , which implies k0 = n
2 lg n (1 + o(1)). We use the value

t = n/(2 lgn) in the estimate (6) to obtain

EX ≥
n/(2 lg n)∑

k=1

(
1 − nk · 2−n/k

)
=

n

2 lg n
− n

n/(2 lg n)∑
k=1

k · 2−n/k. (8)

The function f(k)= k2−n/k is increasing as k → ∞. The value f(t)=f(n/(2 lgn))
is the largest term in the sum on the right-hand side of (8). Observe that

f(t) =
n

2 lgn
· 2−2 lg n =

n

2 lg n
· n−2 =

1
2n lg n

and hence the estimate
n/(2 lg n)∑

k=1

k · 2−n/k ≤ n

2 lg n
· 1
2n lgn

=
1

4 lg2 n

holds. Therefore (8) can be bounded from below as follows:

EX ≥ n

2 lg n
− n

4 lg2 n
=

n

2 lg n

(
1 − 1

2 lg n

)
,

which completes the proof of Theorem 2.
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for i := lg k downto 0 do
call Selector-Subroutine(2i

)

continue Round-Robin for 10 lg n rounds

Fig. 2. Procedure M2A-Combined(k)

4 M2A Communication with Combined Messages

Suppose k nodes among n in the network are activated with rumors. We give a
protocol with average time complexity O(min{k log(n/k), n/ logn}). We assume
that k is a power of 2.

Two schedules of transmissions P1 and P2 are said to be interleaved, when the
consecutive actions as specified by P1 are performed in even-numbered rounds,
while P2 determines the actions for the odd-numbered rounds. Infinite schedules
of transmissions are called protocols, while finite schedules are called procedures
in this paper. When a procedure P1 is interleaved with a protocol P2, then
eventually P1 ends. At this point we make the protocol P2 take over completely,
such that its actions are performed in all the following rounds; this is explicitly
marked in the pseudocode of our protocols by the instruction continue P2.
Another mode of using a protocol P specifies that the schedule of P is repeatedly
executed for an interval of x rounds, then it is frozen. This is indicated in the
pseudocode by the instruction continue P for x rounds.

We use families of sets called (n, j)-selectors in [8]. They are defined as follows.
A set Y selects element v from a set X when X ∩Y = {v}. A family F of subsets
of [n] = [0, n − 1] is an (n, j)-selector when, for any set X ⊆ [n] of size �, at
least |X |/2 elements in X can be selected by sets in F . The size of F is called
its length. We refer to any used selector F as a sequence F = 〈F1, F2, . . .〉 in an
arbitrary fixed order.

Selectors are used to determine schedules of transmissions. Given positive
integer number � and a (n, �)-selector F , we define Selector-Subroutine(�)
as follows. Node v transmits in round i if v ∈ Fi; rounds are counted from the
call of this subroutine. We use (n, 2i)-selectors of length Θ(2i log(n/2i)), which
were proved to exist in [11].

A M2A procedure, representing the case when k may be a part of code, is
given in Figure 2. Protocol M2A-Combined-Messages is given in Figure 3.
Next we analyze the average complexity of the protocol.

A node v is said to be a unique transmitter at a round, when v is the only node
transmitting at that round. We say that broadcast of rv was successful/completed,
or that node v broadcast successfully, when every node has received rv.

Lemma 1. Suppose that node v transmits its rumor rv as the unique trans-
mitter, and after this Round-Robin is executed. Then the broadcast of rv is
completed in at most 10 lg n following rounds of Round-Robin with the proba-
bility of at least 1 − 1/n3.
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for j := 0 to lg n do
call M2A-Combined(2j

) interleaved with Gossip-Combined-Messages

continue Gossip-Combined-Messages

Fig. 3. Protocol M2A-Combined-Messages

Theorem 3. Protocol M2A-Combined-Messages, on networks of n nodes
with any k activated nodes, works in average time O(min{k log(n/k), n/ logn}).

Proof. First we show that the protocol completes M2A by the end of the loop
for j = �lg k� with the probability of at least 1−4k/n3. The protocol runs M2A-

Combined(2j
) which involves Selector-Subroutine(2j

). Since there are k ≤
2j activated nodes, during Selector-Subroutine(2j

) at most 2j−1 activated
nodes did not transmit as unique transmitters. Being a unique transmitter results
in a successful broadcast during the next Round-Robin part, with probability
at least 1 − 1/n3 by Lemma 1.

During Selector-Subroutine(2j−1
), at most 2j−2 activated nodes did not

transmit as unique transmitters, since there are at most 2j−1 participating nodes
with probability at least 1 − 2j/n3. Those which transmitted as unique trans-
mitters have a successful broadcast during the next Round-Robin rounds with
probability at least 1 − 2j/n3 − 2j−1/n3.

In general, in an execution of Selector-Subroutine(2i
) within M2A-

Combined(2j
), there are at most 2i activated nodes for which broadcast was not

successful during previous iterations with probability at least 1−
∑j

a=i+1 2a/n3.
Conditioned on this event, during Selector-Subroutine(2i

) at most 2i−1 of
activated nodes did not transmit as unique transmitters. It follows that after the
ith iteration of the loop, at most 2i−1 rumors have not been broadcast success-
fully with probability at least 1 −

∑j
a=i 2a/n3.

Considering only M2A-Combined(2j
), it completes M2A for k activated

nodes in time
∑j

i=0 O(2i log(n/2i) + log n) ≤ O(k log(n/k)) with probability at
least 1 −

∑j
a=0 2a/n3 ≥ 1 − 4k/n3. Including also previous executions of M2A-

Combined(2j′
) for j′ < j produces time estimate

∑
j′≤j O(2j′

log(n/2j′
)) =

O(k log(n/k)).
Since O(n2) is the worst-case time bound, the average time of M2A-

Combined-Messages is O(k log(n/k)) + O(n2) · 4k/n3 = O(k log(n/k)).

Theorem 4. The average cost of any M2A protocol, for the model of combined
messages, executed on network of n nodes with some k of them activated is
Ω(k/ log n + log n).

Proof. Let A be a M2A protocol. Fix a set K of activated nodes, where |K| = k.
Let 〈T0, T1, . . .〉 be the sequence in which Ti denotes the set of nodes transmitting
at round i in the execution of A. There are two kinds of rounds i:

Case 1: Rounds i in which Ti includes at most 4 lg n nodes in K that transmit
for the first time.
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Even k/(4 lgn) such rounds are not sufficient to exhaust all the elements in K.

Case 2: Rounds i in which there are more than 4 lg n nodes from K transmitting
for the first time.

We show that with a large probability in any round, up to round s = k/(4 lg n),
there is no successful transmission between any pair of nodes. Take node v. Let
a = |Ti| > 4 lg n. The probability that v receives a rumor for a node in Ti at round
i is (a/2)(1/2)a−1 > 1/n3, for sufficiently large n. It follows that the probability
of existence of a node that receives a rumor at round i is smaller than 1/n2. The
probability that some node receives a rumor by round s is smaller than s/n2.
The expected value of the number of rounds by completion of the communication
task is at least s · (1 − s/n2) > s/2 for n > 2.

The complexity of our protocol is close to the lower bound by a factor of
O(log n log(n/k)).

5 Gossiping with Separate Messages

We consider now gossiping in the case when input rumors are so large that it
takes a separate packet to carry one rumor. We show that gossiping can be
performed with the average time O(n log n), and that the average time has to
be Ω(n log n).

Gossiping protocol for separate messages. Every node v maintains a prior-
ity queue Queuev in the private memory. The queue is used to store rumors that
v still needs to transmit. There is a set Receivedv to store all the rumors learned
so far. A newly received message with a rumor that is not stored in Receivedv is
added to both Receivedv and Queuev. The protocol working according to these
rules is called Gossip-Separate-Messages; it is given in Figure 4.

Let the nodes be ordered cyclically by their names in [n] = [0, n−1], so that i is
followed by number (i + 1) mod n. This ordering governs which nodes transmit
in any Round-Robin type of protocol, like Gossip-Separate-Messages in
particular.

The priority queue Queuev has its own queuing discipline. Rumors are ordered
cyclically, starting from the own input rumor rv. This rumor is followed by
rumors with larger indices according to their order, that is, rv+1, rv+2, until
rn−1, which is then followed by r0, r1, through the final rv−1.

Theorem 5. The average number of rounds to complete gossiping by protocol
Gossip-Separate-Messages on a network of n nodes is O(n log n).

Proof. Every node transmits every rumor exactly once. The worst-case time
complexity of this gossiping protocol is n2. The full cycle of n rounds makes an
epoch. During the first epoch, every node v transmits its input rumor rv.

Take some rumor r and consider an event Ea(r) which holds when r has been
transmitted by a lg n different nodes. The probability of the event that some
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initialize Receivedv := Queuev := {rv};
for round i := 0 to ∞ do

if v ≡ i (mod n) then
if Queuev nonempty then

transmit the first rumor r in Queuev

and remove r from Queuev

else
attempt to receive a message;
if rumor r received then

if r is not in Receivedv then
insert r into Queuev and add to Receivedv

Fig. 4. Protocol Gossip-Separate-Messages; the code for node v

node y has not heard r, conditioned on Ea(r), is n−a. The probability that
some node has not heard r, conditioned on Ea(r), is at most n · n−a = n1−a.
The probability that some node has not heard some rumor, conditioned on the
events Ea(r) for all rumors r, is at most n2−a. In the following application we
will use a = 4 to obtain the probability n2−4 = n−2.

Consider the following event B: every rumor was transmitted at least 3 lg n
times during the first b lg n epochs, for some fixed integer b to be determined
later. Take a node v and the b lg n nodes preceding v in the cyclic ordering. If
any of these nodes receives rumor rv in the first epoch from v, then it transmits
rv in the first b lg n epochs. When v transmits in the first epoch, then every
other node receives rv with probability 1/2 independently over all the nodes.
The expected value of the number of these nodes that receive rv in the first
epoch is μ = b

2 lg n. Take δ determined by the equality (1−δ) b
2 lg n = 3 lg n, that

is, δ = 1 − 6
b . Then by the Chernoff bound, the probability that less than 3 lg n

nodes receives rumor rv in the first epoch is at most

exp
{
−

(
1 − 6

b

)2 b

4
lg n

}
≤ n−(1− 6

b )2 b
4 lg e .

Take integer b > 6 for which the inequality (1 − 6
b )2 b

4 lg e ≥ 3 holds. This b is
sufficient to guarantee that event B does not to hold with the probability of at
most n−2.

Conditional on B, the expected time of gossiping is at most bn lg n+n−2 ·n3 =
n(1+b lg n), because the worst-case time complexity is n3. Since event B does not
hold with probability at most n−2, the unconditional expected time complexity
is at most n(1 + b lg n) + n−2 · n3 = n(2 + b lg n), for a similar reason.

The average number of rounds to complete gossiping on a network of n nodes is
Ω(n log n); this is a corollary of a more general lower bound for M2A communi-
cation shown in Section 6.



Average-Time Complexity of Gossiping in Radio Networks 265

for i := lg k downto 0 do
for j := 1 to m(n, 2i) do

(a) if v ∈ Fj(n, 2i) then transmit rumor rv

else attempt to hear a message
( this is jth round of Selector-Subroutine(2i

) )
(r) continue Round-Robin-Stack in next 10 lg n rounds

Fig. 5. Procedure M2A-Separate(k); the code for node v

6 M2A Communication with Separate Messages

We give a protocol with average time O(k log(n/k) logn). Let k be a power of 2.
Selector-Subroutine(2i

) is similar to the one described for the protocol
with combined messages, in that it uses (n, 2i)-selector. There are two main
differences in how they are used. The first difference is that after each round of
Selector-Subroutine(2i

) we continue with Round-Robin-Stack for 10 lgn
rounds, while in the case of combined messages we put 10 lg n of Round-Robin

rounds after every used (n, 2i)-selector. The second difference is that specific
rumor needs to be selected for each transmission by a node.

An M2A procedure, representing the case when k may be a part of code, is given
in Figure 5. An auxiliary protocolRound-Robin-Stack used in procedureM2A-

Separate(k) is defined as follows. A node maintains a stack of rumors different
from its original one. A rumor heard by the node is pushed on its stack. A rumor
to transmit is obtained by popping the stack; when the stack is empty, then the
node pauses. The stack is initialized to be empty, and is made empty just before
Round-Robin-Stack is to be continued for 10 lg n rounds, see Figure 5.

Protocol M2A-Separate-Messages is given in Figure 6. Next we analyze
the average complexity and optimality of the protocol.

Theorem 6. Protocol M2A-Separate-Messages, on a network of n nodes
with k nodes initially activated, has the average time O(k log(n/k) logn).

Proof. First, M2A task is completed by the end of M2A-Separate(2j
), where

j = �lg k�, with probability at least 1 − 4k/n3. Consider M2A-Separate(2j
). It

follows that during Selector-Subroutine(2j
) of M2A-Separate(2j

) at most
2j−1 activated nodes do not transmit as unique transmitters in rounds (a). Those
who transmit as unique transmitters in some rounds (a) have also successful
broadcasts in the following 10 lg n rounds of Round-Robin-Stack in code
line (r), with probability at least 1 − 1/n3 each, by Lemma 1.

Consider Selector-Subroutine(2j−1
), which is the second subroutine of

M2A-Separate(2j
). During this part at most 2j−2 activated nodes did not trans-

mit as unique transmitters in rounds (a). Conditioned on this event, certain ru-
mors are completed during 10 lgn following rounds of Round-Robin-Stack in
part (r) of the loop, with probability at least 1 − 1/n3 each, again by Lemma 1.
We continue analyzing subroutines of M2A-Separate(2j

) which are based on
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for j = 0 to lg n do
call M2A-Separate(2j

)

call Gossip-Separate-Messages

Fig. 6. Protocol M2A-Separate-Messages

(n, 2i)-selectors for i = lg(k/4), lg(k/8), . . . , 1, 0. Quantitatively, by the beginning
of Selector-Subroutine(2i

) at most 2i selected nodes have not broadcasted
successfully, with the probability of at least 1−

∑j
a=i+1 2a/n3. Conditioned on this

event, during Selector-Subroutine(2i
) at most 2i−1 activated nodes did not

transmit as unique transmitters in rounds (a), while those which have transmitted
as unique transmitters in rounds (a) complete broadcast during next 10 lgn rounds
in line (r) of the code, with the probability of at least 1 − 2i/n3. Consequently, by
the beginning of Selector-Subroutine(2i−1

) at most 2i−1 of activated nodes
have not complete broadcast, with probability at least 1 −

∑j
a=i 2a/n3.

M2A-Separate(2j
) takes

∑lg k
i=0 O(2i log(n/2i) lg n) = O(k log(n/k) log n)

rounds, and during this procedure M2A task is completed with probability at
least 1 −

∑j
a=0 2a/n3 ≥ 1 − 4k/n3.

The number of rounds in M2A-Separate-Messages by the end of execution
of M2A-Separate(2j

) is
∑j

j′=0 O(2j′
log(n/2j′

) log n) = O(k log(n/k) log n).
The worst-case O(n3) can occur with probability at most 4k/n3. This justifies
the estimate O(k log(n/k) log n) + O(n3) · 4k/n3 = O(k log(n/k) log n) to be an
upper bound on the average time.

We also show a lower bound for M2A communication with separate messages.

Theorem 7. For any M2A protocol for the model of separate messages, the
average number of rounds to complete gossiping on a network of n nodes with k
nodes initially activated is Ω(k log n).

Corollary 1. For any gossiping protocol for the model of separate messages,
the average number of rounds to complete gossiping on a network of n nodes is
Ω(n log n).

Our M2A protocol is within a factor of at most O(log(n/k)) close to optimality.
In the case of k = Ω(n), which includes gossiping, the protocol is asymptotically
optimal.
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