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Abstract. The Minimum Energy Broadcast Routing problem was ex-
tensively studied during the last years. Given a sample space where wire-
less devices are distributed, the aim is to perform the broadcast pattern
of communication from a given source while minimizing the total energy
consumption. While many papers deal with the 2-dimensional case where
the sample space is given by a flat area, few results are known about the
more interesting and practical 3-dimensional case. In this paper we study
such a case and we present a tighter analysis of the minimum spanning
tree heuristic in order to considerably decrease its approximation fac-
tor from the known 26 to roughly 18.8. This decreases the gap with the
known lower bound of 12 given by the so called kissing number.

1 Introduction

The study of a basic pattern of communication such as the Broadcast is of
main interest in the context of Wireless Ad Hoc Networks. The broadcast can
be in fact used to setup the network or to rapidly spread useful information.
The wireless environment allows to all the devices in the range of a transmitter
to receive the message. The range of a transmission basically depends by the
environment in which the devices are distributed. According to the mostly used
power attenuation model [1], for some constants α, β ∈ IR+, when a station s
transmits with power Ps, a station r can receive its message if and only if

Ps

‖s, r‖α
> β,

where ‖s, r‖ is the Euclidean distance between s and r. Clearly in environments
with obstacles the needed power α increases. Due to the nonlinear power atten-
uation, multi-hop transmission of messages through intermediate devices may
result in energy saving. Thus, a naturally arising issue is that of supporting
the broadcast with a minimum total energy consumption. The problem is called
Minimum Energy Broadcast Routing (MEBR) and it is NP -hard, while if α = 1
or d = 1 it is solvable in polynomial time [2, 3]. One of the most extensively stud-
ied cases concerns the 2-dimensional Euclidean space with α = 2. Several papers
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progressively reduced the estimate of the approximation ratio of the fundamental
Minimum Spanning Tree (MST) heuristic from 40 to 6 [4, 5, 6, 7, 8, 9, 10]. In [6]
it was proven that for any considered dimension d > 1, the critical case to study
is when α = d while for α > d any result can be easily extended to any power
between d and α. Note that for α < d the ratios cannot be bounded by any func-
tion of α and d [4]. The MST and other heuristics have been presented in [1, 11]
also for the multicasting variation of the problem. As already noted, the perfor-
mance of the MST heuristic has been investigated by several authors and in the
2-dimensional Euclidean space, for α = 2, the performed approximation ratio
is 6 [5], and it is optimal [10]. Such a value coincides with the so called kissing
number that was proven to be a lower bound for the approximation ratio of the
MST heuristic for any dimension d > 2 and power α ≥ d [4]. More precisely,
the kissing number is the maximum number of d-spheres (or hyperspheres) of
a given radius r that can simultaneously touch a d-sphere of radius r in the
d-dimensional Euclidean space [12]. In the 3-dimensional Euclidean space the
kissing number is 12 (see Figure 1) but the best known approximation ratio so
far is 26 [6].

Fig. 1. The kissing number in the 2- and in the 3-dimensional case. It is given by 6
circles and 12 spheres respectively, simultaneously touching a central one.

In this paper we are interested in investigating more carefully this 3-
dimensional case. We reduce the gap between upper and lower bound by de-
creasing the upper bound to roughly 18.8 (the exact obtained ratio is 18.802).
Note that the 3-dimensional space better models practical environments since,
in real life scenarios, radio stations are distributed over a 3-dimensional Euclid-
ean space. Again the presence of obstacles can be overcome by the increasing
of the power of transmission α. The main analysis is based on the study pre-
sented in [9] where a 6.33-approximation ratio of the MST heuristic for the
2-dimensional case was proven.

The paper is organised as follows. In the next section, we introduce the MEBR
problem with notations and the necessary definitions. In Section 3, we describe
the technique that was used in [6] to prove the mentioned upper bound of 26
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and we explain how to modify it in order to obtain a tighter bound for the
3-dimensional case. In Section 4, we present our main contribution that leads
to the 18.8-approximation ratio. Finally, in Section 5, we give some conclusive
remarks and discuss some open questions.

2 Minimum Energy Broadcast Routing

Let us first provide a formal definition of the Minimum Energy Broadcast Rout-
ing problem. Given a set of points S in a d-dimensional Euclidean space that
represents the set of radio stations, an integer α ≥ 1 and a constant β ∈ IR+, let
Gα(S) be the complete weighted graph obtained as follows. The nodes of Gα(S)
represent the points of S and the weight of each edge {x, y} is the power consump-
tion needed for a correct communication between x and y, that is β · ‖(x, y)‖α.
For any subset of stations Q ⊆ S, let Gα(Q) be the subgraph of Gα(S) induced
by Q.

A range assignment for S is a function r : S → IR+ such that the range r(x)
of a station x denotes the maximal distance from x at which signals can be
correctly received. The total cost of a range assignment is then

cost(r) =
∑

x∈S

β · r(x)α.

A range assignment r for S yields a directed communication graph Gr = (S, A)
such that, for each (x, y) ∈ S2, the directed edge (x, y) belongs to A if and only
if y is at distance at most r(x) from x. In other words, (x, y) belongs to A if
and only if the emission power of x is at least equal to the weight of {x, y} in
Gα(S). In order to perform the required MEBR from a given source s ∈ S, Gr

must contain a directed spanning tree rooted at s and must have a minimum
cost, from now on denoted as m∗

α(S, s).
One fundamental algorithm, called the MST heuristic [1], is based on the

idea of tuning ranges so as to include a spanning tree of minimum cost. Roughly
speaking, the heuristic computes the directed minimum spanning tree from
the given source to the leaves. Such a computation is made over the complete
weighted graph obtained from the set of nodes in which weights are the power of
α of the distances of the endpoints of the edges. For each node, then, the heuris-
tic assigns a power of transmission equal to the weight of the longest outgoing
edge.

More precisely, let Tα(S) be a minimum spanning tree of Gα(S) and
MST (Gα(S)) its cost. Considering Tα(S) rooted at the source station s, the
heuristic directs the edges of Tα(S) toward the leaves and sets the range r(x)
of every internal station x of Tα(S) with k children x1, . . . , xk in such a way
that r(x) = β · maxi=1,...,k‖x, xi‖α. In other words, r is the range assignment of
minimum cost inducing the directed tree derived from Tα(S) and is such that
cost(r) ≤ MST (Gα(S)). Therefore, in order to bound the approximation ratio
of the heuristic, it is sufficient to bound the ratio between the cost MST (Gα(S))
of a minimum spanning tree of Gα(S) and the optimal cost m∗

α(S, s).
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Starting from the definition of minimum spanning tree given in [13], in [6]
an interesting way to evaluate the cost of the heuristic is provided. For any
subset of stations Q ⊆ S, let Gα(Q, r) be the graph obtained by considering
only the edges of Gα(Q) of length at most r (that clearly have cost at most
βrα) and let CC(Q, r) be the set of the connected components of Gα(Q, r). Let
n(Q, r) = |CC(Q, r)| be the number of connected components in Gα(Q, r) and
rmax(Q) be the minimum r such that Gα(Q, r) is connected (i.e. n(Q, rmax) = 1).

Corollary 1. [6] For any subset of stations Q ⊆ S,

MST (Gα(Q)) = αβ

∫ rmax(Q)

0
(n(Q, r) − 1)rα−1∂r.

For any set of stations Q let e(Q) = minx∈Q maxy∈Q ‖x, y‖ be the eccentricity
of Q. Hence, there exists a station x ∈ Q such that ‖x, y‖ ≤ e(Q) for every
other y ∈ Q. Once chosen such a station x, let c(Q) be the sphere of radius e(Q)
centered at x. The following general lemma is useful in the estimation of the
approximation ratio of the MST heuristic.

Lemma 1. [6] If MST (Gα(Q)) ≤ ρβe(Q)α for any subset of stations Q ⊆ S,
then the MST heuristic is a ρ-approximation algorithm for the MEBR problem.

In the following we will concentrate on the MEBR problem with α = 3 in the
3-dimensional case. Thus, the cost of each edge of the weighted complete graph
G3(S) representing the input network is proportional to the cube of the distance
between its endpoints. For ease of notation, for any set of stations Q we will
denote G3(Q) simply as G(Q). Moreover, for the sake of simplicity, without loss
of generality we assume β = 1 and e(Q) = 1, as all the results provided under
this assumption can be directly extended to the general case [6].

3 Description of the Approach

In this section we firstly describe the general technique presented in [6]. Such
a technique leads to the (3d − 1)-approximation ratio of the MST heuristic for
the MEBR problem for any d > 1 and any α ≥ d. In our specific case, that is
d = 3, α = 3, the obtained approximation is 26. Secondly, by following the ideas
in [9], we describe how to modify the previous technique hence leading to a new
and tighter estimation of the upper bound, that is, of roughly 18.8.

For the general case the technique was based on a growing process (from now
on called basic) in which d-spheres of equal radii centered in the stations of
the subset Q are synchronously grown (see for instance Figure 2). The process
starts by setting the radius r = 0 and ends when r = rmax(Q)

2 ≤ 1
2 , that is,

when G(Q, 2r) becomes connected. This is accomplished by increasing at any
infinitesimal step the current radii, all equal to a given r, by ∂r.

Starting from the equality established in Corollary 1 on the cost MST (G(Q))
of any minimum spanning tree of G(Q), the idea was to provide suitable lower



244 A. Navarra

|CC(rmax)| = 1,

e(Q) + rmax

2

e(Q)

x

xx

x

r = r2
2|CC(r2)| = 5,

r = rmax

2

r = r1
2|CC(r1)| = 6,r = 0|CC(0)| = 7,

Fig. 2. The growing process of circles around the radio stations of the set Q in the
2-dimensional case

and upper bounds on the overall volume covered by the union of all the d-spheres
at the end of the described process. In [6] the bound MST (G(Q)) ≤ 3d − 1 was
proven, that by Lemma 1 implies the 26-approximability of the MST heuristic
in the 3-dimensional case. Note that the lower bound is instead 12 and it is given
by the kissing number [4, 12].

We now show how to improve the 26-approximation ratio by means of a new
technique. The new analysis is based on the method presented in [9] where the
2-dimensional case was considered. The idea is to slightly change the shapes
that are grown around stations at each infinitesimal step of the previously de-
scribed basic growing process. More precisely, being in the 3-dimensional case we
consider c(Q) as the spherical place inside which the radio stations are thrown
uniformly at random. While before each station was wrapped by a sphere, now
things remain the same inside c(Q), but the volume is thinned when growing out-
side c(Q). Informally speaking, this allows to maintain the lower bound on the
covered volume at the end of the growing process. On the other hand, the upper
bound decreases since all the volume can be now included in a smaller sphere
with respect to [6], thus improving the bound on the cost of the returned solution.

For the sake of clarity from now on we often drop Q from the notation, thus
for instance writing G, G(r), CC(r), n(r) and rmax instead of G(Q), G(Q, r),
CC(Q, r), n(Q, r) and rmax(Q), respectively.

In order to better explain the new reshaping technique we describe it in two
phases. For any given radius r, the shape of radius r associated to a given
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Fig. 3. Section of the new associated growing shape to each radio station

station y inside c(Q) having distance d from the central station x is such that
its intersection with c(Q) coincides with the circular intersection of c(Q) with a
sphere of radius r centered at y. In other words, the intersection with c(Q) of
the new shape coincides with the basic shape given by the sphere of [6]. Outside
c(Q), the remaining portion of the sphere of radius r, if any, is reshaped as a kind
of cylinder of suitable height h(r, d) wrapping the outside spherical surface of
c(Q). In Figure 3 it is showed a cut section of the sphere c(Q) centered at x and
of the new shape. The height h(r, d) is evaluated in such a way that its volume
coincides with the volume of the corresponding portion of the basic shape outside
c(Q). This implies that the total volume remains 4

3πr3. With θ(r, d) we identify
a conic angle obtained by connecting the center x with the circular intersection
of the shape with c(Q) (see Figure 3).

At each infinitesimal step in which the radius r grows by ∂r, given any function
g depending on r, we denote by ∂g(r) = g(r+∂r)−g(r) the infinitesimal variation
of g(r).

At each infinitesimal step, while the growth of the spherical part inside c(Q)
is the same as in the basic case, the angle θ(r, d) of the outside part augments
by a given quantity ∂θ(r, d). This is done according to the intersection of the
increased sphere of radius r+∂r with c(Q). About the height h(r, d), it augments
by ∂h(r, d) in such a way that the total volume added to the shape is 4πr2∂r as
in the basic case.

Clearly, two shapes corresponding to a given radius r overlap if and only if the
corresponding centers are at distance at most 2r, as in the basic case. Starting
from the observation that the shapes never meet at the circular intersections
with the spherical surface of c(Q),1 it is possible to slightly enlarge the outside
part of each shape.

This introduces the second phase of our shape modification by which enlarging
the shape outside c(Q) decreases its height. This must be done by increasing
the angles θ(r, d) without violating the constraint that two shapes never meet
outside c(Q) before they meet inside. This allows to decrease the maximum

1 The only exception is given when such intersections are subtended by the biggest
section of the current sphere that they represent. To better explain this concept,
in the 2-dimensional Euclidean space, this happen when the intersections are the
endpoints of the diameter of the corresponding growing circle.
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c(z,r) with z inside c(Q)
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Fig. 4. Section of the new shape given by the increase of the angle θ by the black
portions, yielding the new angle θ′ and the decrease of the height from the dotted lines
to the bold ones

height of the outside part of the shapes, thus yielding a further improvement on
the approximation ratio. In other words the new shape will be larger but lower
and it is defined as follows. Consider any point z inside c(Q). Let c(z, r) be the
sphere of radius r centered at z and let I(z, r) be the circular intersection of
c(z, r) with the spherical surface of c(Q). Consider the sphere c(z′, r′) centered
on the border of c(Q) and having the same intersection with the spherical surface
of c(Q), i.e., I(z, r) ≡ I(z′, r′). The conic angle associated to z is now defined
by the vertex x and the cone tangent to c(z′, r′) (see the cut section of the
conic angle in the right of Figure 4). Note that, in the case in which z lies on
the spherical surface of c(Q), c(z, r) and c(z′, r′) coincide (see the cut section of
the new conic angle on the left of Figure 4). Indeed their angle does not, since,
as already described, it is given by the tangent cone to the internal spherical
shape and not, as before, by the cone wrapping the intersection with the surface
of c(Q).

When two new shapes are centered along the spherical surface of c(Q) at
distance 2r, by construction, they meet outside at the same moment they meet
inside, that is, when the radius grows till r. If we move one or both the corre-
sponding centers more inside c(Q) and leaving their distance at 2r, the corre-
sponding reshaped outside volumes remain disjoint.

4 18.8-Approximation Analysis of the MST Heuristic

In this section we formalise what was previously described. We provide a set
of lemmata that describe a corresponding set of properties of the defined new
shape that are useful in order to prove the 18.8-approximation claimed in the
concluding theorem. The new shape must guarantee some properties that were
true by means of the standard sphere. One of those properties is that two shapes
growing according to a given radius r, touch each other only when the corre-
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sponding centers are at distance at most 2r. Note that this is the fundamental
property without which Corollary 1 cannot be applied for the estimation of the
cost of the MST heuristic.

Lemma 2. Given any subset of stations Q ⊆ S, for any r < rmax

2 , two shapes
overlap if and only if the corresponding points are at distance at most 2r.

Proof. If two shapes meet inside c(Q), the property easily holds since the shape
has the same behavior of spheres. In order to prove the claim we have to show that
two shape never meet outside if they do not meet inside also. By construction,
the external part of a shape is more extended (in terms of occupancy of the outer
spherical surface) when the center resides along the spherical surface of c(Q). In
such a case, if two shapes touch each other, they do exactly at their intersection
with the spherical surface of c(Q) (see Figure 4). If one them has the center more
inside, its growing outside part is less extended hence it cannot touch any other
outer part of another shape. �

The following two lemmata consider more carefully the structure of the new shape
by considering the conic angle and the outside growing height, respectively. About
the angle, it is proven that the more a station, whose associated shape grows also
outside, is closer to x, the more its angle grows at each infinitesimal step.

Lemma 3. Given any subset of stations Q ⊆ S, for any r < rmax

2 and any
d1 ≤ 1 and d2 ≤ 1 such that 1 − r ≤ d1 ≤ d2, ∂θ(r, d1) ≥ ∂θ(r, d2).

The following lemma, instead, proves that the further a station is from x, the
more its height outside c(Q) grows. Moreover it gives also a very useful lower
bound to the infinitesimal growth of the height and its maximum extension. The
new shape, in fact, grows in height, outside c(Q) as at least 3

5 the growth of the
basic shape at any infinitesimal step. This guarantees that the growth of such
a shape is quite uniform during the whole process hence it is still suitable for
bounding the MST heuristic cost. Moreover the maximal height outside c(Q)
is bounded by .3527 hence decreasing the maximal extension of the basic shape
that was of .5.

Lemma 4. Given any subset of stations Q ⊆ S, for any r < rmax

2 and any
d1 ≤ 1 and d2 ≤ 1 such that 1 − r ≤ d1 ≤ d2, h(r, d1) ≤ h(r, d2). Moreover for
any d ≤ 1, h(r, d) ≤ .3527... and ∂h(r, d) ≥ 3

5∂r.

Note that Lemma 3 and Lemma 4 follow directly from the corresponding lem-
mata of the 2-dimensional case [9]. In order to better understand this, it is
sufficient to consider the new shape as the 2-dimensional one rotated along the
line passing through its center and the center of c(Q) (see Figure 5). In this way
it is clear that what was true about the angle of the 2-dimensional case is now
straightforward for the new conic angle θ (Lemma 3). And the same happens for
the height h that remains unchanged (Lemma 4).

With the last lemma we ensure that the new shape guarantees an infinitesimal
growth, for each connected component equal to at least the same growth of one
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Fig. 5. The new shape obtained by means of a rotation of the 2-dimensional one along
the line passing through its center and the center of c(Q)

sphere for each component. This was straightforward in the general case of d-
spheres while it is quite complicated both in the 2- and the 3-dimensional case
for the modified shapes.

Lemma 5. The infinitesimal growth of the volume v(P, r) of the region P (r)
covered by the shapes of a connected component P ∈ CC(2r) of G(2r) is
∂v(P, r) ≥ 4πr2∂r.

Proof. (Sketch) If P contains just one station, then, by construction, the claim
clearly holds. In fact, if the growth of the shape associated to such a station
does not concern outside c(Q) then it coincides with a growing sphere. Since the
spherical surface is given by 4πr2, the infinitesimal growth is ∂v(P, r) = 4πr2∂r.
In the case the growth of the shape associated to the considered station goes
outside c(Q), then, by construction, the new shape is made in such a way that
inside c(Q) things do not change. Outside, the volume is maintained equal to
the spherical case at every infinitesimal step, hence its growing too. When P
contains more than one station, intuitively things can just go better, i.e., the
growth of the union of the associated shapes is at least the growth of one sphere.
This is given by the fact that both inside and outside c(Q) when two shapes
join in one connected component, their physical extension contains the shape
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corresponding to just one station. This suggest that at any infinitesimal step, its
growth is bigger than the sphere. �

From all the above lemmata we can finally obtain the following theorem.

Theorem 1. In the 3-dimensional Euclidean space the MST heuristic is a 18.8-
approximation algorithm for the MEBR problem.

Proof. It is enough to prove that for any subset of stations Q ⊆ S,
MST (G(Q)) < 18.8. The claim then follows by Lemma 1. Exploiting Lemma 5,
we can easily provide a lower bound for the total region of the space covered by
the union of all the shapes related to Q of radius rmax

2 , that is v(Q, rmax

2 ), the
covered volume at the end of the described growing process. In fact, recalling
that by Corollary 1 MST (G(Q)) = 3

∫ rmax(Q)
0 (n(Q, r) − 1)r2∂r,

v
(
Q,

rmax

2

)
=

∫ rmax
2

0

∑

P∈CC(2r)

∂v(P, r)∂r ≥
∫ rmax

2

0
n(2r)4πr2∂r =

=
1
8
4π

∫ rmax

0
n(r)r2∂r =

1
2
π

∫ rmax

0
(n(r) − 1)r2∂r +

1
2
π

∫ rmax

0
r2∂r =

=
π

6
MST (G) +

π

6
r3
max.

Moreover, by Lemma 4, v(Q, rmax

2 ) is included in a sphere of radius 1 +
h( rmax

2 , 1) centered at the station x. Therefore, v(Q, rmax

2 ) ≤ 4
3π(1+h( rmax

2 , 1))3,
so that

π

6
MST (G) +

π

6
r3
max ≤ v

(
Q,

rmax

2

)
≤ 4

3
π

(
1 + h

(rmax

2
, 1

))3
,

hence,

MST (G) ≤ 8
(
1 + h

(rmax

2
, 1

))3
− r3

max.

Standard maximization argument obtained for rmax ranging from 0 to 1 shows
that the quantity 8(1+h( rmax

2 , 1))3 − r3
max is maximised for rmax = 1, and since

by Lemma 4, h(r, d) ≤ .3527..., it finally results

MST (G) ≤ 8
(

1 + h

(
1
2
, 1

))3

− 1 < 18.802. �

5 Conclusion

In this paper we have investigated the Minimum Energy Broadcast Routing
problem in the 3-dimensional Euclidean space. We have improved the previous
known upper bound on the approximation ratio of the MST heuristic from 26 to
18.8, considerably decreasing the gap with the lower bound of 12 [4]. It is worth
noting that, according to the considered method, such a new bound is not tight in
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terms of the associated volume outside c(Q) as it was in the 2-dimensional case.
Let us consider, in fact, the instance of the lower bound obtained by thirteen
stations distributed like the centers of the spheres of the kissing number, i.e.,
everyone at distance at least rmax = 1 from each other inside c(Q). The resulting
associated volume of the new shapes does not fulfil neither c(Q) as it was for the
2-dimensional case, nor the external volume in between the two spheres of radii
1 and 1+hmax ≈ 1.3527 respectively, see Figure 6. Assuming the lower bound of
12 as the real bound of the MST heuristic in the 3-dimensional Euclidean space,
the loss of 6.8 with respect to it must be found then in those “holes” inside and
outside c(Q), that is, the shaded volumes of Figure 6.

1 + hmax

1

Fig. 6. On the right, a cut section of the lower bound case with the associated shapes.
Shaded areas represent the mentioned holes inside the sphere c(Q) of radius 1. On the
left, a squeesed representation of what happens outside c(Q). Again the shaded surfaces
represent the mentioned holes outside c(Q).

An interesting issue for a future work is of trying to apply the arguments
of [5] in this 3-dimensional case and check whether they lead to anything better
than the obtained 18.8 bound. The 3-D Delaunay triangulation is something
known [14, 15] but it is not clear if the 2-dimensional arguments of [5] can be
directly extended to the 3-dimensional case.

Another interesting case in the 3-dimensional environment is given for 2 ≤
α < d. Since it can happen in practical application that the presence of obstacles
can be both in contrast and in favor of communications, it depends on the desired
directions. In the former case the given solution for the free 3-dimensional case
is still valid since it is enough to suitably increase the value of α. In the latter,
things become harder. In this case, in fact, it is not clear what the best solution
may be. Moreover, the 18.8-approximation ratio does not hold for values of α
smaller than d.

As last remark, from the experimental point of view, no results are known
concerning the 3-dimensional case. All the experimental papers and the proposed
heuristics start to investigate the 2-dimensional case (see for instance [16, 17, 18]).
Is there any property not already captured that may lead to a better heuristic
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in the 3-dimensional case? In [7, 19], for instance, nice approaches to better
understand the behavior of the MST heuristic in the 2-dimensional case are
provided. The experiments have shown how good is the heuristic when applied
on practical instances, like the high-density ones. It may be of deep interest to
investigate in this direction for the 3-dimensional case as well.
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