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Abstract. The paper deals with the well known Maximum Edge Dis-
joint Paths Problem (MaxEDP), restricted to complete graphs. We
propose an off-line 3.75-approximation algorithm and an on-line 6.47-
approximation algorithm, improving earlier 9-approximation algorithms
due to Carmi, Erlebach and Okamoto (Proceedings WG’03, 143–155).
Next, it is shown that no on-line algorithm for the considered problem
is ever better than a 1.50-approximation. Finally, the proposed approx-
imation techniques are adapted for other routing problems in complete
graphs, leading to an off-line 3-approximation (on-line 4-approximation)
for routing with minimum edge load, and an off-line 4.5-approximation
(on-line 6-approximation) for routing with a minimum number of WDM
wavelengths.

1 Introduction

The fundamental networking problem of establishing point-to-point connections
between pairs of nodes in order to handle communication requests has given rise
to numerous path routing problems in graph theory. The topology of the net-
work is modeled in the form of a graph whose vertices correspond to nodes, while
edges represent direct physical connections between nodes. This paper deals with
the well established problem of handling the maximum possible number of com-
munication requests without using a single physical link more than once, known
as the Maximum Edge Disjoint Paths Problem (MaxEDP). We focus on the
construction of approximation algorithms for the NP-hard MaxEDP problem
in complete graphs, which are used to model networks with direct connections
between all pairs of nodes. Two basic algorithmic approaches are considered —
off-line algorithms, which compute a routing for a known set of requests provided
at input, and on-line algorithms, which have to handle requests individually, in
the order in which they appear.

Problem definition. The physical architecture of the network is given in the
form of an undirected graph G = (V, E), where V denotes the set of nodes, while
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E represents the set of connections between them. A sequence of edges P =
(e1, e2, . . . , el) ∈ El, such that ei = {vi, vi+1} for some two vertices vi, vi+1 ∈ V ,
is called a path of length l = |P | in G, with endpoints v1 and vl+1. The symbol
P{u,v} is used to denote any path in G with endpoints u, v ∈ V . A pair of paths
P1 and P2 is called conflicting if there exists an edge e ∈ E such that e ∈ P1 and
e ∈ P2. For a given set of paths R in graph G, the conflict graph Q(R) is a simple
graph with vertex set R and edges connecting all pairs of vertices corresponding
to paths from set R which conflict in G.

An instance I in network G is defined as any multiset of pairs {u, v}, u, v ∈ V ,
u �= v, such that each element of I represents a single communication request
between a pair of nodes. An equivalent representation of instance I may be given
in the form of the instance multigraph H(I) = (V, I), where communication
requests are treated as edges of H(I). A routing R of instance I in network G is
a multiset of paths in G, such that there is a one-to-one correspondence between
paths P{u,v} ∈ R and elements {u, v} ∈ I. The set of all routings of instance
I is denoted as R(I). For use in further considerations, we define the following
parameters for any routing R:

– dilation d(R), defined as the length of the longest path in routing R: d(R)=
maxP∈R |P |,

– edge load π(R), given by the formula: π(R) = maxe∈E |{P ∈ R : e ∈ P}|.

A routing R is said to consist of edge disjoint paths if π(R) = 1, or equivalently, if
conflict graph Q(R) has no edges. A formal definition of the MaxEDP problem,
expressed in these terms, is given below.

Maximum Edge Disjoint Paths Problem [MaxEDP]

Input: Instance I in graph G.
Solution: A set of pairwise edge-disjoint paths Ropt, such that Ropt ∈ R(Iopt)

for some instance Iopt ⊆ I.
Goal: Maximise the cardinality of Ropt.

Notation. Throughout the paper, the complete graph with vertex set V is
denoted KV . Unless otherwise stated, we will assume that the MaxEDP problem
is considered for the instance I in complete graph G = KV = (V, E). The optimal
solution to the MaxEDP problem is some routing Ropt ∈ R(Iopt) (Iopt ⊆ I),
while approximation algorithms yield a solution denoted as RS ∈ R(IS) (IS ⊆ I),
of not greater cardinality than Ropt. Approximation ratios are understood in
terms of upper bounds on the ratio |Iopt|

|IS | .The number of elements of a set or
multiset, and also the length of a path, is written as |P |. The symbols ΔH and
χ′

H are used to denote the maximum vertex degree and the chromatic index of
multigraph H , respectively.

State-of-the-art results. In the case of general networks G, the MaxEDP

problem is closely related to a family of unsplittable flow problems. In conse-
quence MaxEDP is NP-hard, difficult to approximate in polynomial time within
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Table 1. New complexity results for the MaxEDP problem in complete graphs

Instance restriction Off-line complexity On-line complexity

ΔH(I) ≤ |V |
12 O(|V |3) Prop. 3 O(|V |) per request Cor. 3

|I | < |V | O(|V |) Prop. 2 O(|V |) per request Cor. 3
|I | < k|V |, const k > 0 O(|V |3) Thm. 2 not approx. within

1.50 for |I | ≥ 3|V | Thm. 8
|I | < |V |s, const s ∈ (1, 2) NPH , PTAS Thm. 3, 4
general case 3.75-approximation Thm. 1 6.47-approximation Thm. 7

a constant factor, and difficult to approximate within a factor of O(log
1
3−ε |E|),

for any ε > 0 (unless NP ⊆ ZPTIME(npoly log n), [1]). The variant of MaxEDP

defined for directed graphs is even difficult to approximate within O(|E| 1
2−ε),

for any ε > 0 [12]. Both the directed and undirected version are approximable
within a factor of O(|E| 1

2 ) [15].
When graph G is the complete graph KV , the MaxEDP problem, though

remaining NP-hard, becomes approximable within a constant factor. The best
known approximation ratio was equal to 9 both in the off-line and on-line model
of computation, due to Carmi, Erlebach and Okamoto [4]. A comparison of
known approximation algorithms is provided in Table 2 at the end of the paper.

Our contribution and outline of the paper. In Section 2 we deal with the
off-line MaxEDP problem in complete graphs, providing a 3.75-approximation
algorithm based on the simple combinatorial concept of edge-coloring. More-
over, we show that for instances with significantly fewer than |V |2 requests, the
problem is either polynomially solvable, or admits a polynomial time approxi-
mation scheme. For the on-line version of the problem, in Section 3 we provide a
6.47-approximation algorithm, and show that no algorithm is better than 1.50-
approximate, even for restricted instances. A summary of the most important
new results concerning the MaxEDP problem is given in Table 1. Finally, in
Section 4 we discuss the application of similar approximation techniques to other
routing problems in complete graphs, and remark on their implementation in a
distributed setting.

2 The Off-Line MaxEDP Problem in Complete Graphs

In the off-line routing model, it is assumed that all pairs of vertices forming the
routed instance are initially known and all paths are determined by the routing
algorithm at the same time.

2.1 Preliminaries: Bounds on Solution Cardinality

Factors in a multigraph. Let Fv be a set of nonnegative integers defined for
each vertex v ∈ V . An F -factor in multigraph H = (V, I) is a set of edges of
H such that the number of edges from this set which are incident to vertex v
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belongs to Fv. An [a, b]-factor is defined as an F -factor such that each set Fv

consists of all integers from the range [a, b]. An [a, b]-factor with the maximum
number of edges may be found efficiently by reduction to a minimum weighted
perfect matching problem.

Proposition 1 ([16],[11]). The problem of finding an [a, b]-factor with the
maximum possible number of edges in multigraph H = (V, I) can be solved in
O(|I|3) time.

Let I be an instance in graph KV . Consider an instance Iopt yielding an optimal
solution to the MaxEDP problem for instance I. It is immediately evident that
any vertex v ∈ V can belong to at most degKV

v = |V | − 1 requests of Iopt,
hence Iopt is a [0, |V | − 1]-factor in H(I) and we have the following bound.

Corollary 1. The cardinality of the optimal solution to the MaxEDP problem
for I is bounded from above by the size of the maximum [0, |V |−1]-factor in H(I).

Instances admitting an edge-disjoint routing. It is interesting to note that
relatively wide classes of instances can be entirely routed using edge disjoint
paths and in polynomial time. A short characterisation of two classes useful in
further considerations is given below.

Proposition 2. If |I| < |V |, then the entire instance I can be routed in KV by
edge disjoint paths, and a solution Ropt ∈ R(I) to the MaxEDP problem, such
that d(Ropt) ≤ 2, can be determined in O(|V |) time.

Proof. The proof is constructive and proceeds by induction with respect to |V |.
For |V | = 2, we have |I| ≤ 1 and the proposition is obviously true. Next, let
|V | > 2 be fixed and let u ∈ V be a vertex belonging to the smallest number
of requests in I, i.e. such that u is of minimal degree in H(I). Since |I| < |V |,
it is evident that degH(I) u = 0 or degH(I) u = 1. In the former case, we select
an arbitrary request {v1, v2} ∈ I, and return the solution to the MaxEDP

problem for I in KV in the form of path ({v1, u}, {u, v2}) added to the solution
to MaxEDP for instance I\{{v1, v2}} in complete graph KV \{u}. Thus |Ropt| =
1 + (|I| − 1) = |I| by the inductive assumption. In the latter case, let {u, v} ∈ I
be the only request involving vertex u. The sought routing then consists of
the single-edge path ({u, v}) added to the solution to MaxEDP for instance
I \ {{u, v}} in KV \{u}. The described approach may easily be implemented in
the form of an algorithm with O(|V |) time complexity. �

Observe that the thesis of Proposition 2 does not hold if |I| = |V | (it suffices to
consider an instance composed of |V | requests between a fixed pair of vertices).
Nevertheless, if |I| ∈ O(|V |) the problem can be solved in polynomial time (see
Theorem 2).

Proposition 3. If ΔH(I) ≤ |V |
12 , then the entire instance I can be routed in KV

by edge disjoint paths, and a solution Ropt ∈ R(I) to the MaxEDP problem,
such that d(Ropt) ≤ 2, can be determined in O(|V ||I|) time.
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Proof. First, let us observe that the size of any instance I fulfilling the assump-
tions of the theorem is bounded by |I| ≤ |V |

2 · |V |
12 . The sought routing Ropt ∈ R(I)

consisting of edge disjoint paths can be formed by sequentially assigning paths
to requests from I (in arbitrary order), in such a way as to preserve the following
conditions:

1. The length of any path added to Ropt is at most 2.
2. Each vertex of graph KV is the center of at most |V |

12 paths.

It suffices to show that the described construction of routing Ropt is always
possible. Suppose that at some stage of the algorithm Ropt fulfills conditions 1
and 2, and the next considered request is {v1, v2}. Vertex v1 is the endpoint of
at most |V |

12 − 1 paths and the center of at most |V |
12 paths already belonging to

Ropt, thus at least 3|V |
4 edges of KV incident to v1 do not belong to any path of

Ropt. The same is true for vertex v2. Thus we immediately have that the set U
of vertices connected to both v1 and v2 by edges unused in Ropt is of cardinality
|U | ≥ 3|V |

4 + 3|V |
4 −|V | = |V |

2 . Since routing Ropt currently consists of fewer than
|I| ≤ |V |

2 · |V |
12 paths, by the pigeonhole principle there must exist a vertex u ∈ U

such that u is the center of fewer than |V |
12 paths from Ropt. Therefore the request

{v1, v2} may be fulfilled by adding path ({v1, u}, {u, v2}) 1 to routing Ropt, thus
preserving the assumptions of the construction, which completes the proof. �

2.2 An Off-Line 3.75-Approximation Algorithm

Theorem 1. There exists a 3.75-approximation algorithm for the MaxEDP

problem in complete graphs with O(|I|3) runtime. The dilation of the returned
solution is not greater than 2.

Proof. Let I be an arbitrary instance in complete graph KV , and let Iopt ⊆ I
be a subset of the considered instance whose routing is an optimal solution to
the MaxEDP problem. We denote by H∗ = (V, I∗) a multigraph H∗ ⊆ H(I)
with the maximum possible number of edges, such that ΔH∗ < |V |. Since the
edge set of multigraph H∗ is in fact a maximum [0, |V | − 1]-factor in H(I), by
Proposition 1 multigraph H∗ can be determined in O(|I|3) time. Moreover, by
Corollary 1 we have |Iopt| ≤ |I∗|.

We will now show that there exists an algorithm with O(|I|3) runtime which
finds a routing RS ∈ R(IS) composed of edge disjoint paths, such that IS ⊆ I∗ ⊆
I and the obtained solution is a 3.75-approximation of the optimal MaxEDP

solution, |IS | ≥ |I∗|
3.75 ≥ |Iopt|

3.75 . Instance IS is constructed as a subset of the edge set
of multigraph H∗. Since ΔH∗ < |V |, by a well known result due to Shannon [10],
the chromatic index χ′

H∗ is bounded by χ′
H∗ ≤ 3ΔH∗

2 < 3|V |
2 , and an edge

coloring of multigraph H∗ using not more than 3|V |
2 colors can be obtained in

O(|I|3) time. Without loss of generality we may assume that colors are labelled
1 Throughout the paper, we assume that edges of the form {v, v} which appear in

notation when enumerating edges of paths should be treated as nonexistent.
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with integers from the range {1, . . . , 3|V |
2 }, in such a way that a color with a

smaller label is never assigned to fewer edges than a color with a larger label.
Let IC denote the subset of edges from I∗ colored with colors from the range
{1, . . . , |V |}. Due to the adopted ordering of the color labels, we immediately
have |IC | ≥ 2

3 |I∗|. For each edge {v1, v2} ∈ IC , let c{v1,v2} denote the color
assigned to this edge, which is an integer from the range {1, . . . , |V |}, and as
such may be treated as an identifier of some vertex in graph KV (see Fig. 1 for
an exemplary illustration).

Let us now consider routing RC of instance IC in graph KV , defined as follows:
RC = {({v1, c{v1,v2}}, {c{v1,v2}, v2}) : {v1, v2} ∈ IC}. No vertex of H∗ may ever
be incident to two edges from IC of the same color, therefore each edge {v1, v2} of
graph KV belongs to at most two paths of routing RC — one path, in which v1 is
an end vertex and v2 is a central vertex (an edge color in IC), and another path in
which the functions of vertices v1 and v2 are reversed. Routing RC thus fulfills the
following conditions: d(RC) ≤ 2 and π(RC) ≤ 2. Consequently, each path of RC

may only conflict with at most two other paths, and the conflict graph Q(RC) is
of degree bounded by ΔQ(RC) ≤ 2. Graph Q(RC) is thus a set of isolated vertices,
paths and cycles. Notice that the three vertex cycle C3 is a connected component
of Q(RC) only if some three paths form a triangle, i.e. P1, P2, P3 ∈ RC and P1 =
({v1, v3}, {v3, v2}), P2 = ({v2, v1}, {v1, v3}), P3 = ({v3, v2}, {v2, v1}), for some
three vertices v1, v2, v3 ∈ V . Such a structure may however be easily eliminated
by removing paths P1, P2, P3 from RC and replacing them by the following three
paths: P ′

1 = ({v1, v2}), P ′
2 = ({v2, v3}), P ′

3 = ({v3, v1}), which satisfy the same
set of requests and whose conflict graph consists of three isolated vertices.

The sought suboptimal solution RS to the MaxEDP problem is now obtained
by indicating a maximum independent set RS in conflict graph Q(RC). Graph
Q(RC) has |RC | vertices, and once all cycles C3 have been eliminated the inde-
pendent set RS consists of at least 2

5 |RC | vertices (or equivalently, |IS | ≥ 2
5 |IC |).

Therefore, we finally obtain the following bound:

|Iopt|
|IS | ≤ |I∗|

|IS | =
|I∗|
|IC |

|IC |
|IS | ≤ 3

2
· 5
2

= 3.75

which completes the proof of the approximation ratio of the designed algorithm.
�

It is interesting to note that although the off-line MaxEDP problem in complete
graphs is NP-hard even for relatively small instances (Theorem 3), the conjecture
that it is APX -hard still remains open [4], and the only inapproximability result
concerns the on-line problem (Theorem 8). In fact, in the following subsection
we show that for all instances of sufficiently bounded size, the off-line MaxEDP

problem is not APX -hard.

2.3 Problem Complexity for Bounded Instances

We now deal with the MaxEDP problem restricted to instances I such that
|I| < |V |s for some s < 2, and study the increasing difficulty of the problem
with the increase of the bound on |I|.
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Fig. 1. Construction of an approximate solution to the MaxEDP problem for instance
I = {{1, 2}, {1, 2}, {1, 3}, {2, 3}, {3, 4}} in complete graph K4: a) an edge coloring of
multigraph H∗ (in the considered case IC = I∗ = I), b) a routing RC of instance IC

in graph K4 and its conflict graph Q(RC) (the independent set of paths forming the
sought routing RS is marked in bold)

Theorem 2. An optimal solution to the MaxEDP problem in complete graphs
can be determined in O(|V |3) time if the size of the input instance is bounded by
|I| ≤ k|V |, for any constant value of parameter k > 0.

Proof. Let T ⊆ V be defined as the set of all vertices belonging to more than
|V |
24 requests, T = {v ∈ V : degH(I) v > |V |

24 }. Suppose that |V | ≥ 1248k (the
problem for all smaller graphs may be solved by exhaustive search).
Property. The size of the solution Ropt ∈ R(Iopt) to the MaxEDP problem for
instance I remains unchanged even if paths need not be disjoint with respect to
edges from the edge set E∗ of subgraph KV \T ⊆ KV . Indeed, let R∗ be a routing of
a maximal possible instance I∗ ⊆ I such that no edge from E\E∗ belongs to more
than one path of R∗. We create an instance I∗∗ in graph KV \T by successively
considering all paths P ∈ R∗, and adding to I∗∗ a request consisting of the first
and the last vertex from V \T which appears in P . We now proceed to establish
that it is possible to reroute instance I∗∗ in KV \T using edge disjoint paths,
leading to the conclusion that Iopt = I∗ is a valid solution to MaxEDP in KV .
Let v ∈ V \T be arbitrarily chosen. By definition of set T , we have degH(I∗) v ≤
degH(I) v ≤ |V |

24 . Since each vertex v ∈ V \ T is obviously connected to at most
|T | vertices from T , we immediately have degH(I∗∗\I∗) v ≤ |T |. Combining the

last two inequalities we obtain degH(I∗∗) v ≤ |V |
24 + |T |. Since 2k|V | ≥ 2|I| =

∑
v∈V degH(I) v ≥

∑
v∈T degH(I) v ≥ |V |

24 |T |, we have |T | ≤ 48k. Taking into

account the assumption |V | ≥ 1248k, we finally obtain degH(I∗∗) v ≤ |V |
24 + |T | ≤

|V |
24 +48k = 1

12 ( |V |+1248k
2 −48k) ≤ 1

12 |V \T |, which means that by Proposition 3
instance I∗∗ can be routed in KV \T by means of edge disjoint paths, closing the
proof of the property.

Let I ′ ⊆ I denote the set of requests from I with at least one vertex in T , and
let I ′

opt
⊆ I ′ be a maximal subset of I ′ which can be routed by edge disjoint paths

in KV . The instance I ′
opt

∪ (I \ I ′) ⊆ I is therefore a maximal subset of I which
can be routed by paths conflicting only within the edge set of graph KV \T , and
by the proven Property such a routing can be converted to a correct solution to
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the MaxEDP problem for I. The problem of finding Iopt ⊆ I is thus reduced to
finding I ′

opt
⊆ I ′. Furthermore, when considering instance I ′ all vertices from set

V \ T may be regarded as indistinguishable (after once more relaxing the edge
disjointness condition within KV \T ). Thus graph KV may be reduced to the
multigraph G′ formed by connecting each of the vertices of KT to one additional
vertex u using exactly |V \T | edges. In order to solve the MaxEDP problem for
instance I ′ in G′, we consider all possible arrangements of paths in the edge set
of KT , taken over all routings of all subsets of instance I ′. Note that the number
of such arrangements is bounded, since |T | ∈ O(1). For a fixed arrangement of
paths in the edge set of KT , the MaxEDP problem for instance I ′ in G′ can be
easily reduced to the MaxEDP problem for a related instance in the multistar
G′ \ KT . The latter problem can in turn be solved in O(|I|3) = O(|V |3) time,
using a generalisation of a technique from [7] (the solution proceeds by reduction
to the problem of finding a maximal [0, |V \ T |]-factor in a multigraph). This
procedure determines the complexity of the entire algorithm; the final rerouting
step within KV \T only requires O(|V ||I|) = O(|V |2) time by Proposition 3. �

Theorem 3. The MaxEDP problem in complete graphs is NP-hard even for
instances of size bounded by |I| ≤ |V |s, for any value of parameter s > 1.

Proof (sketch). The proof proceeds by reduction from the MaxEDP problem in
complete graphs with cardinality restriction |I| ≤ |V |2, which was shown to be
NP-hard in [8]. Let s = 1 + ε, ε > 0. Consider an arbitrary subset of vertices
V ′ ⊆ V of cardinality equal to at most |V |ε. Let I ′ be any instance in KV ′ .
We define instance I in KV as follows: I = I ′ ∪ {{u, v} : u ∈ V ′, v ∈ V \ V ′};
for sufficiently large |V | we have |I| ≤ |V |s. The proof is complete when we
observe that an optimal solution Ropt to the MaxEDP problem for instance I
in graph KV is always equal to the union of two sets of paths: the set of all one-
edge paths connecting vertices from KV ′ with vertices from KV \V ′ , and some
optimal solution R′

opt
to the MaxEDP problem for instance I ′ in graph KV ′ .

In particular, we have: |Ropt| = |R′
opt

| + |V ′|(|V | − |V ′|). �

Theorem 4. The MaxEDP problem in complete graphs admits a polynomial
time approximation scheme for instances of size bounded by |I| ≤ |V |s, for any
value of parameter s < 2.

Proof (sketch). Let |I| = |V |s, where s = 2 − ε, ε > 0. The proof is in essence
similar to that of Theorem 2. We adopt the same definition of set T , obtaining
|T | ≤ 48|V |1−ε. In all considerations we assume |V | ≥ 1248

1
ε , so that the Prop-

erty stated in the proof of Theorem 2 also holds in this case. By this property,
any subset of instance I such that each vertex from T is the endpoint of at most
|V \T | paths can be routed in KV using edge disjoint paths. This implies that any
maximal [0, |V \T |]-factor in H(I) is a suboptimal solution IS to the considered
MaxEDP problem. On the other hand, the cardinality of the optimal solution
|Iopt| is bounded from above by the size of the maximal [0, |V |−1]-factor in H(I)
by Corollary 1. The sizes of the considered factors in H(I) are closely related,
which leads to the following bound: |Iopt|

|IS | ≤ |V |
|V |−2|T | ≤ 1

1−96|V |− ε . Thus, for any
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δ > 0 the considered approach achieves an approximation ratio of 1+δ provided
|V | > (96(1 + max{12, δ−1}))

1
ε , whereas the problem may be optimally solved

by exhaustive search for all smaller values of |V |. �

A summary of the main results of the section is given in Table 1.

3 The On-Line MaxEDP Problem in Complete Graphs

On-line algorithms for the MaxEDP problem, which are considered in this pa-
per, are treated as a special case of greedy algorithms. We assume that successive
requests from instance I appear sequentially at input, becoming known to the
algorithm only once the previous request has been processed. The decision taken
at every step as to whether some path fulfilling the current request should be
added to the constructed edge disjoint routing RS is inadvertent and impossible
to change at a later stage of the algorithm. Approximation ratios are calculated
with respect to the best possible solution Ropt in the off-line model.

3.1 An On-Line 6.47-Approximation Algorithm

A slight modification of the approximation algorithm provided for the off-line
case (Theorem 1) allows for its on-line operation. In the considered approach,
the algorithm sequentially processes requests from instance I, treating them as
edges of multigraph H(I), and at every step attempts to color the edge using a
color from the range {1, . . . , |V |}. A generalization of this problem was recently
considered by Favrholdt and Nielsen [9], under the name of the maximum k-edge-
colorable subgraph problem for a multigraph. They stated that any fair on-line
algorithm (i.e. an algorithm which always colors an edge, if only a color from the
range {1, . . . , k} is available) leads to a 1

2
√

3−3
-approximation of the solution. In

fact, the obtained result was significantly stronger; we shall reformulate it here
for easier use in further considerations.

Theorem 5 ([9]). For any multigraph H = (V, I), any fair on-line algorithm
for the k-edge-colorable subgraph problem labels a subset of edges IC ⊆ I with
colors {1, . . . , k}, such that |IC | ≥ (2

√
3 − 3)|I∗∗|, where I∗∗ denotes a maximal

[0, k]-factor in H.

In particular, the above theorem holds for k = |V |, thus using the notation from
Theorem 1 we may write |IC | ≥ (2

√
3 − 3)|I∗|. As the coloring proceeds, the

sought routing RS may be incrementally constructed using an on-line indepen-
dent set algorithm applied to graph Q(RC). Since graph Q(RC) only consists
of cycles, paths and isolated vertices, we obtain |IS | ≥ 1

3 |IC |. Combining the
obtained relations leads to the bound:

|Iopt|
|IS | ≤ |I∗|

|IS | =
|I∗|
|IC |

|IC |
|IS | ≤ 1

2
√

3 − 3
· 3 < 6.47

which may be expressed by means of the following statement.
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Corollary 2. There exists a 6.47-approximation algorithm for the on-line Max-

EDP problem in complete graphs, requiring O(|V |) time to process a single re-
quest. The dilation of the returned solution is not greater than 2.

In fact, the algorithm resulting from the above considerations can be written in
much simpler form, as described in the next subsection.

3.2 Performance Analysis of the BGA Algorithm

The bounded length greedy algorithm (BGA) is an on-line strategy for the Max-

EDP problem, introduced in [13]. The basic principle of its operation is that
at every step an attempt is made to route the current request by the shortest
possible path P which does not contain any of the edges already belonging to RS ,
and to add P to the solution RS provided |P | ≤ L, where L is a fixed parameter of
the algorithm. The computed routing RS therefore fulfills the bound d(RS) ≤ L.
The BGA strategy was last studied by Carmi, Erlebach and Okamoto [4], who
bounded its approximation ratio for L = 4 using an unsplittable flow technique.

Theorem 6 ([4]). The BGA strategy with L = 4 is a 9-approximation on-line
algorithm for the MaxEDP problem in complete graphs.

However, it is interesting to note that further bounding of the parameter L may
lead to algorithms for which a better approximation ratio can be proven.

Theorem 7. The BGA strategy with L = 2 is a 6.47-approximation on-line
algorithm for the MaxEDP problem in complete graphs.

Proof (sketch). The proof is based on the observation that each step of BGA

with L = 2 combines the properties of an on-line algorithm for the edge-colorable
subgraph problem with those of an on-line independent set algorithm, thus im-
plementing an approach very similar to that described in Subsection 3.1. A
request {u, v} can only be routed using BGA by a path P = ({u, w}, {w, v}) of
length at most 2 via some vertex w ∈ V if edge {u, v} of multigraph H(I) can
be labeled with color w ∈ {1, . . . , |V |}, and if path P does not conflict with any
paths previously added to RS . The only difference is that the |V |-edge-colorable
subgraph of H(I) implicitly found by the BGA algorithm need not correspond
to that obtained by means of any fair algorithm, since in a step of BGA an edge
of H(I) is not colored whenever any color assignment is possible, but only when
assigning a color contributes to the size of the resultant solution RS . Careful
analysis shows that this does not affect the overall approximation ratio which
remains equal to 6.47 (Corollary 2). �

A further interesting property of the BGA strategy with parameter L = 2 is that
it finds an edge disjoint routing of the whole instance I in the cases considered
in Propositions 2 and 3.

Corollary 3. If ΔH(I) ≤ |V |
12 , or |I| ≤ |V |−1, then the entire instance I can be

routed in GV by edge disjoint paths, and an optimal solution such that d(Ropt) ≤
2 is always determined by the BGA strategy with L = 2.
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3.3 Inapproximability Results

Whereas the complexity of finding a solution to the off-line MaxEDP problem
in complete graphs still remains open, we now show that the on-line version is
not approximable within a constant factor for sufficiently large instances.

Theorem 8. There does not exist any on-line approximation algorithm for the
MaxEDP problem in complete graphs with an approximation ratio smaller than
1.50, even when considering instances of size |I| < k|V |, for any k ≥ 3.

Proof. By contradiction, suppose that some on-line MaxEDP algorithm A has
an approximation ratio not worse than 1.50. Given any graph KV , let instance
I begin with |V | − 1 requests of the form {u, v}, for some two distinguished
vertices u, v ∈ V . At this point the routing RS obtained by algorithm A consists
of p paths, where p ≥ 2

3 (|V | − 1) (otherwise the instance is ended, and we have
|Ropt| = |V | − 1 > 1.50|RS|). Instance I is now completed by presenting a
further 2(|V | − 2) requests of the form {u, w} and {v, w}, taken over all vertices
w ∈ V \{u, v}. Since the number of paths which end in any vertex (in particular,
u or v) cannot exceed |V | − 1, the total number of paths eventually belonging
to RS is bounded by |RS | ≤ p + 2((|V | − 1) − p) ≤ 4

3 (|V | − 1), whereas |Ropt| =
2(|V | − 2) + 1 = 2(|V | − 1) − 1, hence the ratio |Ropt|

|RS | cannot be smaller than
1.50 for arbitrarily large values of |V |. �

Even in the on-line model, the gap remaining between the 1.50 inapproximability
result of Theorem 8 and the 6.47-approximation algorithm from Theorem 7 is
quite substantial. A partial attempt to bridge it may be performed by considering
the inapproximability of specific classes of on-line algorithms. For example, the
BGA algorithm and similar strategies are never better than 3-approximate for
certain classes of instances [4].

4 Final Conclusions

The technique adopted in the proof of Theorem 1 — which may basically be
thought of as routing by edge coloring — provides efficient approximation

Table 2. A comparison of presented approximation algorithms for the MaxEDP prob-
lem in complete graphs with previous results (updated from [4])

Principle of operation Model Approximation ratio Dilation Reference

Shortest-path-first variant of BGA off-line 54 [8], 2001
Set tripartition off-line 27 [8], 2001
BGA with L = 4 on-line 17 ≤ 4 [13], 2002
BGA with L = 4 on-line 9 ≤ 4 [4], 2003

BGA with L = 2 on-line 6.47 ≤ 2 Thm. 7
Routing by edge coloring off-line 3.75 ≤ 2 Thm. 1
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algorithms for a number of routing problems in complete graphs and similar
extremely dense topologies. When applying this approach, the approximation
ratio may vary depending on the considered problem, and is usually given in the
form of the product of two parameters M1 · M2, where M1 denotes the relative
loss in the first phase of the algorithm (determining an edge coloring), and M2
is the relative loss in the second phase (post-processing the edge coloring).

For the MaxEDP problem, the applied techniques constitute a substantial
improvement on earlier results (Table 2). We now give two more examples of
routing problems for which fixed-ratio approximation algorithms can be similarly
obtained.

The edge load routing problem. For a given instance I in graph KV , we
consider the problem of finding a routing Ropt ∈ R(I), such that edge load
π(Ropt) is the minimum possible [2, 3]. In order to construct an approximation
approach with respect to π(RS) within KV , observe that multigraph H(I) can
always be efficiently edge-colored with at most 1.5(|V |− 1)π(Ropt) colors in the
off-line model, or 2(|V | − 1)π(Ropt) colors in the on-line model. By applying a
similar approach as that in the proof of Theorem 2, it is easy to see that the
instance corresponding to any (|V | − 1)-edge-colorable subgraph of H(I) can
always be routed with load at most 2, both in the off-line and the on-line model.
Thus we have M2 = 2 and M1 = 1.5 (off-line) or M1 = 2 (on-line), finally
obtaining an off-line 3-approximation algorithm and an on-line 4-approximation
algorithm for edge load routing in complete graphs.

The WDM wavelength count routing problem. This modification of the
edge load routing problem is of special importance from the point of view of
application in so called all-optical wavelength division multiplexing (WDM) net-
works [2, 5, 6]. For a given instance I in graph KV , the sought routing Ropt ∈
R(I) should minimize the value of a parameter called WDM wavelength count
w(Ropt), defined as the chromatic number of conflict graph Q(Ropt). The pro-
posed construction of an approximation algorithm with respect to w(RS) is nearly
the same as for bounded edge load, the only difference being that in the second
stage of the algorithm (|V |− 1)-edge-colorable subgraphs of H(I) can always be
routed using 3 wavelengths. Therefore in this case we have M2 = 3 and M1 = 1.5
(off-line) or M1 = 2 (on-line), yielding an off-line 4.5-approximation algorithm
and an on-line 6-approximation algorithm for the considered problem.

Finally, let us remark on a general property of the approximate solutions ob-
tained using the proposed approach: in all cases the dilation is bounded by a
value of 2. Using paths with at most 1 intermediary node between the commu-
nicating pair of endpoints is advantageous from the point of view of resource
usage, and additionally simplifies the routing process. Indeed, if the on-line ver-
sion of the routing algorithm is considered in a distributed setting, each node
can independently decide whether it may participate in the routing of a given
communication request. Thus each request can be processed in O(1) synchronous
rounds, achieving a time-optimal routing process.
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