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Abstract. In this paper, we study distributed algorithms to compute
a weighted matching that have constant (or at least sub-logarithmic)
running time and that achieve approximation ratio 2 + ε or better. In
fact we present two such synchronous algorithms, that work on arbitrary
weighted trees.

The first algorithm is a randomised distributed algorithm that com-
putes a weighted matching of an arbitrary weighted tree, that approxi-
mates the maximum weighted matching by a factor 2 + ε. The running
time is O(1). The second algorithm is deterministic, and approximates
the maximum weighted matching by a factor 2 + ε, but has running
time O(log∗ |V |). Our algorithms can also be used to compute maximum
unweighted matchings on regular and almost regular graphs within a
constant approximation.

1 Introduction

A matching M(G) of a graph G = (V, E) is any subgraph of G where no two edges
are incident to the same vertex. A matching is maximal if no other edge from G
can be added to the matching without violating this requirement. Let w(e) be
the weight of an edge e ∈ E of G, where w(e) > 0. Define the weight w(G) of a
graph G to be the sum of the weights of all its edges. Then a maximum weighted
matching M∗(G) of G is a matching whose weight is the maximum among all
matchings of G. We say that an algorithm achieves approximation ratio α if for
all graphs G, the matching it returns has weight at least 1

αw(M∗(G)), i.e., 1
α of

the weight of the maximum weighted matching of that graph.
For sequential algorithms, the problem is well studied. For unweighted graphs,

Micali and Vazirani [MV80] present an O(
√

|V ||E|) time algorithm that com-
putes a maximum matching. For weighted graphs Gabow [Gab90] gives an O(|V ||E|+
� Id: random-matchings.tex,v 1.18 2006/04/20 08:28:26 jhh Exp .

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 115–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



116 J.-H. Hoepman, S. Kutten, and Z. Lotker

|V |2 log |V |) time algorithm, computing the maximum weighted
matching. Both return an exact solution, and not approximations.

Surprisingly, few distributed algorithms to compute (an approximation of)
the maximum weighted matching of the communication graph are known. For
unweighted graphs, there are deterministic distributed algorithms computing a
maximal matching in trees [KS00], and bipartite and general graphs [CHS02]. A
randomised algorithm for the general case also exists: Israeli and Itai [II86] com-
pute a maximal matching (i.e., no approximation) in running time O(log |V |).

For weighted graphs, Uehara et al. [UC00] present a constant time distributed
algorithm with approximation ratio O(Δ) (where Δ is the maximum degree of
the graph). Recently, Wattenhofer et al. [WW04] presented a randomised dis-
tributed algorithm to compute a weighted matching M(G) with approximation
ratio 5 and running time O(log2 |V |) for general graphs, and approximation ratio
4 and O(1) running time for trees.

Hoepman [Hoe04] presents an O(|E|) time1 deterministic distributed algo-
rithm that computes a weighted matching for general graphs with approximation
ratio 2. This algorithm is based on sequential algorithms by Preis [Pre99] and
Avis [Avi83], and does not require collecting all information in one node (which
increases the message complexity).

In this paper, we study distributed algorithms to compute a weighted match-
ing that have constant (or at least sub-logarithmic) running time and that
achieve approximation ratio 2 + ε or better. In fact, we present two such al-
gorithms for arbitrary weighted trees, thus improving the previous algorithm of
Wattenhofer et al. [WW04].

The first algorithm — presented in Sect. 3 — is randomised, and achieves
approximation ratio 2 + ε in running time O(1). An interesting feature of this
algorithm is that the quality of the approximation depends on the number of
rounds the algorithm is allowed to run. The second algorithm — presented in
Sect. 4 — is deterministic, and achieves approximation ratio 2+ε in running time
O(log∗ |V |). We start by introducing our computation model and some notation
in Sect. 2, show how our algorithms can also be applied to achieve constant
approximations to the maximum (unweighted) matchings for regular and almost
regular graphs in Sect. 5, and finish with some pointers to further research in
Sect. 6.

2 Model and Notation

Consider a distributed system with n nodes, whose communication graph is
G = (V, E). In this paper, G is a tree (denoted T ) or a regular graph. Nodes can
exchange point-to-point messages with their neighbours over the edges E in the
graph. Each edge e has a weight w(e), known to both endpoints of that edge. The
system is synchronous and operates in rounds of message exchanges. We measure
time complexity of our algorithms as the number of rounds needed to perform
1 Careful analysis shows that the time complexity is actually at most O(diam G), the

diameter of the graph.



Efficient Distributed Weighted Matchings on Trees 117

the computation. We note that our algorithms also work in the asynchronous
setting, after some minor modifications.

We write G for general graphs, T for trees, P for paths and S for segments
(that are pieces of a path). The number of edges in G is |G|, and w(G) is the
weight of G, i.e., the sum of the weights of all edges of G. M(G) is a weighted
matching of graph G, and M∗(G) is the maximum weighted matching of graph G.

Let X be a random variable. We write E
[
X

∣∣ Q(X)
]

for the conditional ex-
pectation over X given that Q(X) holds. By definition

E
[
X

∣
∣ Q(X)

]
=

∑

x:Q(x)

xPr
[
X = x

∣
∣ Q(X)

]
(1)

and for disjoint Qi that together span the whole range of X we have

E [X ] =
∑

i

E
[
X

∣
∣ Qi(X)

]
Pr [Qi(X)] . (2)

Our protocols are described in plain English, and not in any formal protocol
notation, because they are quite straightforward.

3 Randomised Case: Constant Running Time

The protocol runs in four phases, and is parameterised by a real-valued constant
p between 0 and 1 and an integer constant k greater than 1.

First, given input tree T , a set of paths P (T ) is generated by letting nodes
select their heaviest incident edge as a potential member of a path. In the second
phase, each path is cut into short segments by randomly removing edges from
the path, each with probability p. Subsequently, each segment is tested to see
whether its length is shorter than k. In the fourth phase, for these short segments
an optimal matching is computed in time O(k), while for the remaining longer
segments a constant-time randomised algorithm computes a 2 approximation of
the optimal matching for this segment. Combining all matchings, and compen-
sating for the loss of dropped edges when cutting paths into segments, this gives
an O(k) algorithm to compute a matching, for which we prove an approximation
ratio of 2 + ε for arbitrary ε > 0. Because k is a constant, the running time is
O(1).

3.1 Computing the Paths

We use the same procedure to construct a set of paths P (T ) from a given tree T as
presented by Wattenhofer et al. [WW04]. That is, a node u requests the addition
of its heaviest incident edge (u, v) to this set of paths from its neighbour v. Such a
requested edge is only added to the set of paths if either u also receives a request
from v (for the same edge), or if v sent a grant to u for its request. Nodes request
exactly one edge each. Nodes only grant at most one request, being the heaviest
request coming in over an edge it didn’t request itself (assuming unique weights,
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Fig. 1. Counterexample for non-tree graphs

or breaking ties). All remaining edges (either not granted or not requested) are
dropped and will not be members of any path. Because at most 2 edges per
node remain, a node is a part of at most one path, and the procedure yields a
set of disjoint paths. Because nodes select the heaviest incident edge, these paths
cannot be cycles (we assume unique edge weights).

The following lemma shows that we do not loose too much weight constructing
paths this way, provided that the graph we start with is a tree.

Lemma 3.1 ([WW04]). For trees T and P (T ) computed as described above,

w(P (T )) ≥ w(M∗(T )) .

In contrast, the following counterexample shows that for non-trees the difference
in weight between the paths constructed for that graph and its maximum weight
matching can be unbounded. Consider the graph in Fig. 1. One node connects
to the central node over an edge with weight 3. This node requests this edge as a
path member, and the central node grants that request. Furthermore, 2n nodes
are connected to the central node through an edge with weight 2, while these
nodes are connected pairwise through edges with weight 1. These 2n nodes each
request the edge with weight 2 as a potential path member, but all these requests
are rejected by the central node. Hence, the path consists of just one edge,
and has total weight w(P (G)) = 3. However, the maximum weighted matching
consists of the edge with weight 3, as well as all n edges with weight 1. Hence
w(M∗(G)) = 3 + n.

3.2 Cutting the Paths into Segments

In the next phase, each path P is cut into segments S(P ) as follows. Every
vertex sends, for each of its edges on the path, a cut request over this edge with
probability

√
p. An edge is cut if both endpoints sent a cut request to each other.

The other edges remain. Each connected component forms a segment S in S(P ).
We see that the probability for each edge to be cut is exactly p. The expected
number of removed edges is p|P |, and the expected weight of all edges removed
together is p · w(P ).
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Lemma 3.2. Let S(P ) be a random variable corresponding to the segments com-
puted for a path P by the random process described above. Then

E

⎡

⎣
∑

S∈S(P )

w(S)

⎤

⎦ = (1 − p)w(P ) .

Proof. Only edges in some S ∈ S(P ) contribute to the weight. Let P consist of
edges ei, and define random variables Xei such that Xei = 1 iff ei is a member
of some segment (i.e., not cut), and 0 otherwise. Then Pr [Xei = 1] = (1 − p)
and

E

⎡

⎣
∑

S∈S(P )

w(S)

⎤

⎦ =E

[
∑

ei∈P

w(ei)Xei

]

=
∑

ei∈P

E [w(ei)Xei ]

=
∑

ei∈P

w(ei)Pr [Xei = 1] = (1 − p)
∑

ei∈P

w(ei) .

This proves the lemma. ��

3.3 Estimating the Size of the Segment

After cutting the path into segments, each vertex determines the size of the
segment it is a member of. Or, to be more precise, it determines whether the
segment is smaller or larger than k edges. It does so in the following manner.
Vertices at the edge of a segment start the computation, by sending a distance
message with value 1 along the only incident edge that belongs to a segment
(and recording 0 as the distance from the other end). Nodes that receive a
distance message record the distance coming in over that edge, and add one
before forwarding it over the other segment edge. Forwarding stops if a segment
endpoint is reached, or when the distance in the message equals k. If nodes do
not record a distance for both edges, the total length of the segment is larger
than k. Otherwise, the sum of both distances equals the length of the segment.
In either case, all nodes know whether the length of the segment is ≤ k or > k.
The running time is at most k.

3.4 Computing Matchings on the Segments

Segments compute their matching depending on their sizes, as determined in the
previous phase. If a node finds it is not a member of a segment (or rather, it is
a member of a segment of size 0) it does nothing. Otherwise, it cooperates with
all other nodes in the same segment as described below.

Consider a segment S ∈ S(P ). If |S| ≤ k, we compute a good matching M(S)
for S in time k by computing two matchings M and M ′ by adding edges in S
alternately to M or M ′, and selecting the matching with maximum weight. Such
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a computation could be initiated by both endpoints of the segment. We note the
running time is O(k).

In the following lemma we bound the weight of the resulting matching from
below2.

Lemma 3.3. For a matching M(S) of S (with |S| ≤ k) computed as described
above,

E [w(M(S))] ≥ 1
2
w(S) .

Proof. By construction we find two matchings M and M ′ with S = M + M ′,
and therefore w(S) = w(M) + w(M ′). As we select the heaviest matching, the
lemma follows. ��

If |S| > k, we compute a matching M(S) for S in one round by letting vertices
vote for the incident edge that should be added to the matching with equal
probability (segment endpoints vote for their only edge with p = 1). An edge is
only added if both its endpoints vote for it.

Lemma 3.4. For a matching M(S) of S (with |S| > k) computed as described
above,

E [w(M(S))] ≥ 1
4
w(S) .

Proof. As each edge has at most 2 incident edges on the segment, the probability
that an edge is added is at least 1

4 . Define random variables Xei such that Xei = 1
if the i-th edge ei of S is in the matching. Then, similar to the proof of lemma 3.2,

E [w(M(S))] =
∑

ei∈S

w(ei)Pr [Xei = 1] .

As Pr [Xei = 1] ≥ 1
4 , the lemma follows. ��

3.5 Merging the Results

The final matching M(T ) for tree T is obtained by merging all matchings com-
puted for all segments in S(P ) for each path P in P (T ). We conclude our analysis
by estimating the weight of the resulting matching.

First we look at a single, but arbitrary, path P . In what follows, let S(P ) be a
random variable corresponding to the segments computed for P by the random
process described in section 3.2. Let S be a random variable ranging over all
members of S(P ).

For such a path P , define C(P ) to be the cycle obtained by merging the two
endpoints of P into a single node. Given a segmentation of P , define sb and se to
be the first and last segment of P , respectively, where sb starts at the endpoint
and se ends at the endpoint (and where either segment may be empty if the

2 Even though the process is deterministic, we state the bound in terms of an expec-
tation, because that is more useful further on.
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first and/or last edge of P happened to be cut). A segmentation of P induces
a segmentation on the cycle C(P ), by taking all segments, and merging sb and
se into a single segment s̄c. Let S(C(P )) be a random variable corresponding to
the segments computed for C(P ). Let S̄ be a random variable ranging over all
members of S(C(P )).

For segments computed on this cycle, we have the following proposition.

Proposition 3.5. For all i ≤ |P |,

Pr
[
|S̄| = i

]
≤ (1 − p)i .

Proof. Clearly, to have a segment of length i, we need i uncut edges. This hap-
pens with probability (1 − p)i. If i = |P |, then this is the exact probability (the
segment happens to be the whole cycle), otherwise we need at least 1 (i = |P |−1)
or 2 cut edges, that each lower the probability with a factor p. ��

We also need the following uniformity property on the distribution of the weights
over the segments computed for the cycle.

Proposition 3.6. For any k ≥ 0,

E
[
w(S̄)

∣
∣ |S̄| = k

]
= k

E
[
w(S̄)

]

E
[
|S̄|

]

Proof. Let σ be a random variable, ranging over the single edges in a segment
S̄. Let σ1, σ2, . . . be the edges in S̄. Then

E
[
w(S̄)

∣
∣ |S̄| = k

]
={Using the fact that S̄ consists of k edges σi.}

E

[
k∑

i=1

w(σi)
∣
∣ |S̄| = k

]

={Independent of length of S̄ now.}

E

[
k∑

i=1

w(σi)

]

={By symmetry of C(p)
all edges appear the same number of times. }
kE [w(σ)]

By Eq. 2 we have

E
[
w(S̄)

]
=

∑

i

E
[
w(S̄)

∣
∣ |S̄| = i

]
Pr

[
|S̄| = i

]

={By the above.}
∑

i

iE [w(σ)] Pr
[
|S̄| = i

]

=E [w(σ)] E
[
|S̄|

]

Combining both equations proves the proposition. ��
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Next, we bound the expected weight of a matching of an arbitrary segment S̄
from S(C(P )) in terms of the expected weight of S̄ itself.

Lemma 3.7. For a matching M(S̄) of S̄ computed as described above,

E
[
w(M(S̄))

]
≥ 1

2

(
1 − (1 + kp)(1 − p)k+1

2p2

)
E

[
w(S̄)

]
.

Proof. First observe that E
[
w(M(S̄))

]
depends on two random processes: the

selection of a segment s̄ from S(C(P )), and the random variable C denoting
the coin sequence thrown by the randomised algorithm that computes M(s̄).
Let M(c, s̄) denote the (deterministic) result of M(s̄) when the coins thrown are
fixed to sequence c. Then

E
[
w(M(S̄))

]
={S̄ and C are independent}

∑

s̄

(
∑

c

M(c, s̄)Pr [C = c])Pr
[
S̄ = s̄

]

≥{Split according to |s̄| and using Lemma 3.3 and 3.4}

=
∑

s̄:|s̄|≤k

1
2
w(s̄)Pr

[
S̄ = s̄

]
+

∑

s̄:|s̄|>k

1
4
w(s̄)Pr

[
S̄ = s̄

]

={Rearranging sums and definition of E
[
w(S̄)

]
. }

1
2
E

[
w(S̄)

]
−

∑

s̄:|s̄|>k

1
4
w(s̄)Pr

[
S̄ = s̄

]

={Using Eq. 1 and Pr
[
S̄ = s̄

∣
∣ |S̄|>k

]
Pr

[
|S̄|>k

]
=Pr

[
S̄ = s̄

]
}

1
2
E

[
w(S̄)

]
− 1

4
E

[
w(S̄)

∣
∣ |S̄| > k

]
Pr

[
|S̄| > k

]

={Using Prop. 3.6}
1
2
E

[
w(S̄)

]
− 1

4
E

[
w(S̄)

] ∑

i>k

i
Pr

[
|S̄| = i

]

E
[
|S̄|

]

≥{Using Prop. 3.5 and E
[
|S̄|

]
≥ 1}

(
1
2

− 1
4

∑

i>k

i(1 − p)i

)

E
[
w(S̄)

]

={Rearranging sums and computing geometric series.}

=
(

1
2

− 1
4

(
1 − p

p2 − k(1 − p)k+2 − (k + 1)(1 − p)k+1 + (1 − p)
(−p)2

))

E
[
w(S̄)

]

=
(

1
2

− 1
4
(1 + kp)

(1 − p)k+1

p2

)
E

[
w(S̄)

]

This proves the lemma. ��
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We also need the following two propositions.

Proposition 3.8.

E
[
w(S̄

]
≥ E [w(S)] .

Proof. Any random segmentation for S(P ) induces a segmentation of S(C(P )),
with se and sb merged into s̄c where w(s̄c = w(sb) + w(se). ��

Proposition 3.9.

E

⎡

⎣
∑

S∈S(P )

w(M(S))

⎤

⎦ ≥ E

⎡

⎣
∑

S̄∈S(C(P ))

w(M(S̄))

⎤

⎦

Proof. In what follows, let S(P ) be a random variable corresponding to the
segments computed for a path P by the random process described in section 3.2.
Let S(C(P )) be the corresponding set of segments for the cycle C(P ).

For all S ∈ S(P ) unequal to the end segments sb and se, the corresponding seg-
ment S̄ in S(C(P )) is the same, and hence w(M(S)) = w(M(S̄)). It remains to
show that E [w(M(sb)) + w(M(se))] ≥ E [w(M(s̄c))]. Split the matching M(s̄c)
into two parts, mb (for s̄b) and me (for s̄e), that cover sb and se respectively.
Let i ∈ {e, b}. We show E [w(M(si))] ≥ E [w(mi)]. There are two cases.

|si| ≤ k : In this case (see proof Lemma 3.3), the matching computed for si

is optimal. As matching mi on s̄i is also a matching for si, the statement
follows.

|si| > k : Then |s̄| > k as well, and the matching M(s̄c) is computed using
the probabilistic method for long segments (cf. Lemma 3.4). Consider the
random process that selects edges for inclusion in M(s̄c) and hence mi. The
‘end-edge’ of s̄i (the splitting edge at which the cycle is cut into the path P)
has probability 1/2 to be included in M(si) but only probability 1/4 to be
included in mi = M(s̄i). Hence the expected weight of the matching mi is
lower than M(si).

This completes the proof. ��

We now bound the weight of the matching computed for P as a whole.

Theorem 3.10. For any path P , and matching M(P ) computed as above,

E [w(M(P ))] ≥ 1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

)
(1 − p)w(P ) .

Proof. In what follows, let S(P ) be a random variable corresponding to the
segments computed for a path P by the random process described in section 3.2.
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We have

E [w(M(P ))] =E

⎡

⎣w

⎛

⎝
⋃

S∈S(P )

M(S)

⎞

⎠

⎤

⎦ = E

⎡

⎣
∑

S∈S(P )

w(M(S))

⎤

⎦

≥{By Prop. 3.9}

E

⎡

⎣
∑

S̄∈S(C(P ))

w(M(S̄))

⎤

⎦ =
∑

S̄∈S(C(P ))

E
[
w(M(S̄))

]

By Lemma 3.7 this is greater than or equal to

1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

) ∑

S̄∈S(C(P ))

E
[
w(S̄)

]

which is bounded from below through Prop 3.8

1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

) ∑

S∈S(P )

E [w(S)]

which is further bounded from below using Lemma 3.2 by

1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

)
(1 − p)w(P ) .

This completes the proof. ��

We finish by combining all matchings for all paths.

Corollary 3.11. For any tree T , and matching M(T ) computed as above, we
have

2E [w(M(T ))] ≥
(

1 − (1 + kp)(1 − p)k+1

2p2

)
(1 − p)M∗(T ) .

Hence, the approximation ratio of the algorithm is 2 + ε for arbitrary ε > 0.

Proof. Follows from Theorem 3.10 and Lemma 3.1 and the fact that M(T ) =
∪P∈P (T )M(P ).

To see that the approximation ratio is equivalent to 2 + ε, set ε = p
1−p and

observe that 1 − (1+kp)(1−p)k+1

2p2 tends to 1 for k going to infinity. ��

4 Deterministic Case: O(log∗ n) Running Time

Now consider a model where every node v has a unique identity ID(v). Again,
fix a constant k. In [KP98] a deterministic distributed algorithm is presented to
partition a tree (or a forest) into clusters of diameter O(k), each containing at
least k +1 nodes. This constructions is done in O(k log∗ n) time. More precisely:
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Lemma 4.1. [KP98] The collection Pout output by Algorithm DOM-Partition(k)
is a partition (of the input tree T ). Furthermore, if T is of size n ≥ k + 1, then
every cluster C in Pout has the following properties:

– (a) |C| ≥ k + 1.
– (b) Radius(C) ≤ 5k + 2.

Moreover, Algorithm DOM-Partition(k) requires time O(k log∗ n).

This algorithm uses, as a subroutine, the algorithm of [GPS87].
Using this algorithm, it is easy to modify the randomised algorithm of the

previous sections to become a deterministic algorithm (with a slightly higher time
complexity of O(log∗ n)) as follows. Replace the second phase of the probabilistic
algorithm (the randomised cutting of the paths into segments) by Algorithm
DOM-Partition(k).

This change would have been enough, had the weights of the edges been equal.
We need to take some care here, because DOM-Partition(k) may have deleted
heavy edges. The nodes of each segment si cooperate to perform the following
operation. Consider ei

l, ei
r, the edges whose deletion separated segment si from

the rest of the path. Let also ei
m be the minimum weight edge in this segment.

If the weight of either ei
l or ei

r is larger than that of ei
m then ei

m is removed from
the segment, and the largest of ei

l or ei
r is reinserted as a part of the segment.

If two adjacent segments wish to swap the same separator (ei
l equals ei+1

r ) for a
lighter one, then the segment with the smallest minimum weight edge ei

m wins
and performs the swap. Clearly the above can be performed distributively in
constant time (since k is a constant).

The above correction may create segments that contain less than k nodes,
or segments that are at most three times as long as the original segments. (A
segment that itself is not split may join both the segment at its left and its right,
however then these two segments are cut in exchange for the separating edges.)

The rest of the algorithm needs no changes, except that we will have no seg-
ments that are longer than 15k+6 for some constant k, so the special treatment
of long segments is not necessary. The time complexity of the resulting procedure
is O(log∗ n) since in the current paper we assume that k is a constant.

Theorem 4.2. For any tree T , and matching M(T ) computed as above, we have

2w(M(T )) ≥
(

1 − 1
k + 1

)
M∗(T ) .

Hence, the approximation ratio of the algorithm is 2/(1 − 1
k+1 ) = 2k+1

k , which
equals 2 + ε if we set ε = 2

k .

Proof. First we compute
∑

S∈S(P ) w(S) for an arbitrary path P . As Algorithm
DOM-Partition(k) returns segments of length at least k + 1 (if the path has
length at least k + 1, otherwise no edges are cut), the number of cut edges from
P is at most |P |/(k+1). Swapping the originally cut edges by lower weight ones
does not change the number of cut edges. Since in every original segment we
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Fig. 2. Examples of simple graphs

swapped the minimum weight edge for a removed edge, the expected weight of
the cut edges (after the swap) is at most w(P )/(k + 1). Hence

∑

S∈S(P )

w(S) = (1 − 1
k + 1

)w(P ) .

Next we consider the weight of the matching returned for P . Similar to the proof
of Th. 3.10, and using only Lemma 3.3 to bound w(M(S)) by 1

2w(S) (the proof
of that lemma not only works in the expected case but also in the deterministic
case, because all segments have length less than 15k + 6) we have

w(M(P )) ≥
∑

S∈S(P )

1
2
w(S) .

This equals
1
2

∑

S∈S(P )

w(S) ,

and using the above result we see that

w(M(P )) ≥ 1
2
(1 − 1

k + 1
)w(P ) .

Combining the matching for all paths constructed for the tree, and by Lemma 3.1,
the theorem follows. ��

5 Regular and Almost Regular Graphs

We now show how the algorithms from the previous sections can be used to
compute a constant approximation for the maximum matching of unweighted,
arbitrary regular graph and almost regular graphs.

In order to describe the algorithm we need the following notations. We denote
by ”directed simple”a directed graph were each node has only one outgoing edge,
in other words the out degree of the node is 1. Note that the number of directed
edges in a directed-simple graph is n and therefore there is at least one directed
cycle. See Fig. 2.
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The algorithm works in three phases. In the first phase we generate a directed-
simple spanning subgraph, and in the second phase we transform the directed-
simple spanning subgraph into a collection of disjoint paths. Finally, in the third
phase, we can use one of the algorithms of the previous sections to compute the
maximum matching for the graph (by assigning weight 1 to all edges). We make
sure that the number of remaining edges after the second phase is a constant
fraction of the number of nodes n. Because the maximum matching of an un-
weighted graph is never larger than n

2 , the resulting maximum matching is a
constant approximation.

A natural way to construct a directed-simple spanning subgraph is for each
node to select a random neighbour from the d neighbours uniformly. After this
step, we have n directed edges. Denote the union of all these directed edges by
G′(V, E′). Let V ′

i be the set of all the nodes in G′ that have a degree i (in-degree
plus out-degree) and V ′

i be the set of all the nodes in G′ of degree bigger than
or equal to i. The next lemma estimates the size of V ′

1 , V ′
2 , V ′

3.

Lemma 5.1. Let G′ be the directed graph constructed as above. Then

E[|V ′
1 |] = (1 − 1

d
)dn ≤ 1

e
n

E[|V ′
2 |] = ((1 − 1

d
)d−1)n ≥ 1

e
n

E[|V ′
3|] = n − E[|V ′

2 |] − E[|V ′
1 |]

Proof. First we compute the probability for a node to have a degree 2. P [d′(v) =
2] = d

d (1 − 1
d )d−1 = (1 − 1

d )d−1 ≥ 1
e . The probability of a node to be of degree 1

is P [d′(v) = 1] = (1 − 1
d )d ≤ 1

e . Now we use the linearity of the expectation and
the lemma follows.

The next corollary shows that for a regular graph the expected size of V ′
2 is

linear.

Corollary 5.2. For all d ≥ 2

n/e ≥ E[|V ′
1 |] ≥ n/4

n/2 ≥ E[|V ′
2 |] ≥ n/e

0.416n ≥ E[|V ′
3|] ≥ (1 − 1/e − 1/2)n = 0.132n

When we remove the direction from the edges we get that each connected com-
ponent in G′ is a union of paths, and it ends in a cycle.

Let v be a node in G′ s.t d(v′) > 2. From the definition of G′ it follows that
there is only one edge that is outgoing from the node (this is the edge that was
chosen by the node) and this node has more than one ingoing edge. In the next
time step we transform the graph G′ into the graph G′′ by randomly removing
all the extra incoming edges except one. After this step all the nodes in V ′

3
have out-degree at most 1 and in-degree equal to 1. Note that the out-degree
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can actually become 0 if the outgoing edge happens to be incoming to another
node v′′ with degree d(v′′) > 2 who removes this edge to reduce its in-degree to
1. Clearly after this step E[|V ′′

1 |] + E[|V ′′
2 |] ≥ E[|V ′

3 |] > 0.132n.
Because all these nodes have degree 1 or 2, we have at least as many edges

in the graph as well. Now, we assign weights 1 to all remaining edges, and
run one of the algorithms from the previous section to compute a maximum
weighted matching for the remaining graph. This yields a matching of size at
least (E[|V ′′

1 |] + E[|V ′′
2 |])/3 ≥ 0.132

3 n. The reason we divide by 3 is that we may
have a cycle of length 3.

Since a maximum matching of the original unweighted regular graph is never
larger than n

2 , it follows that we have a randomised algorithm that proximate
the maximum matching with a in expected 1

2
3

0.132 = 11.36 approximation ratio
for a regular graph in a constant time.

Note that the same proof will work if the graph is not an r-regular graph but
an almost r-regular graph. We say that a graph G is an α-d-regular graph if
Δ
δ < α, where Δ is the maximal degree and δ is the minimal degree. The next
lemma replaces lemma 5.1 for α-d regular graphs.

Lemma 5.3. Let G be an α-d-regular graph then

E[|V ′
1 |] ≤ ne−1/α

E[|V ′
2 |] ≤ ne−1/α Δ

Δ − 1

E[|V ′
3|] = n − E[|V ′

2 |] − E[|V ′
1 |]

If Δ = 2 then our graph is a forest with some cycles. Using the results from sec-
tion 3.5 it follows that for a graph without cycles we have a 2+ ε approximation.
Sine a cycle is very close to a path we can use the same idea for cycles, and get
a 2 + ε approximation for graphs with Δ ≤ 2. So we may assume that Δ ≥ 3.
The next corollary shows that for 1/ log(5/2) = 1.09136 > α-d-regular graph the
expected size of V ′

3 is linear.

Corollary 5.4. for all δ ≥ 2 and 1.09136 > α,

E[|V ′
3 |] ≥ n

(
1 − e−1/α 2Δ − 1

Δ − 1

)
= Ω(n) .

Since the size of V ′
3 is linear in n we can apply the algorithm from the previous

section and get a constant approximation which depends on α.

Corollary 5.5. Let G(n, p) when p > log(n)
n be a random graph. Then our ap-

proximation algorithm for matching is a constant approximation.

From the previous corollary it may seem our algorithm always computes a match-
ing with a constant approximation to the maximum matching. The next example
shows that this is not the case. Let Kn be a clique of size n. Let Cn2 be a cycle
that contains n2 nodes. We connect all the node in Cn2 to all the nodes in Kn.
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Note that the number of node in this graph is |V | = n2 + n, and the number of
edges is n2 + n3. The order of the maximum matching is O(n2). However, the
expected size of the matching that our algorithm computes is 2n. So in this case
the approximation ratio of the algorithm is O(

√
|V |).

6 Conclusions

We have presented efficient distributed algorithms that compute good approx-
imations for the maximum weighted matchings for arbitrary weighted trees.
Equally good algorithms for general graphs that compute constant approxima-
tions in sub-logarithmic time are not known. We have shown why our approach
of constructing paths fails in the general case. Different techniques therefore seem
required to handle arbitrary graphs efficiently.
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