

Lecture Notes in Computer Science 4056
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Paola Flocchini Leszek Gąsieniec (Eds.)

Structural Information
and Communication
Complexity

13th International Colloquium, SIROCCO 2006
Chester, UK, July 2-5, 2006
Proceedings

13

Volume Editors

Paola Flocchini
University of Ottawa
School of Information Technology and Engineering (SITE)
Ottawa, ON, K1N 6N5, Canada
E-mail: flocchin@site.uottawa.ca

Leszek Gąsieniec
The University of Liverpool
Department of Computer Science
Liverpool, L69 7ZF, UK
E-mail: leszek@csc.liv.ac.uk

Library of Congress Control Number: 2006927796

CR Subject Classification (1998): F.2, C.2, G.2, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-35474-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35474-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11780823 06/3142 5 4 3 2 1 0

Preface

The Colloquium on Structural Information and Communication Complexity
(SIROCCO) is an annual meeting focused on the relationship between algorith-
mic aspects of computing and communication. Over its 13 years of existence,
SIROCCO has become an acknowledged forum bringing together specialists in-
terested in the fundamental principles underlying the interplay between informa-
tion, communication and computing. SIROCCO covers topics such as distributed
computing, high-speed networks, interconnection networks, mobile computing,
optical computing, parallel computing, sensor networks, wireless networks, au-
tonomous robots, and related areas.

SIROCCO 2006 was the 13th in this series, held in Chester, UK, July 3–5,
2006. Previous SIROCCO colloquia took place in Ottawa (1994), Olympia
(1995), Siena (1996), Ascona (1997), Amalfi (1998), Lacanau-Océan (1999),
L’Aquila (2000), Val de Nuria (2001), Andros (2002), Umeå (2003), Smolenice
Castle (2004), and Mont Saint-Michel (2005).

In the tradition of previous occasions, this year’s SIROCCO was a lively
event, encouraging the emergence of new research areas (related to distributed
computing in a broad sense) and the dissemination of original ideas. This was
achieved by dedicating ample time for informal discussions and open problem
sessions in addition to regular conference activities.

The 68 contributions submitted to SIROCCO 2006 were subject to a thorough
refereeing process and 24 high-quality submissions were selected for publication.
We would like to thank the authors of all the submitted papers. The excellent
quality of the final program is also due to the dedicated and careful work of the
Program Committee members. Our gratitude extends to the numerous subref-
erees for their valuable help.

We also thank the invited speakers: Hagit Attiya (Technion), Danny Krizanc
(Wesleyan), and Roger Wattenhofer (ETH) for accepting our invitation to share
their insights on new developments in their areas of interest, and for providing
such entertaining talks.

We would like to express our sincere gratitude to the conference Chair David
Peleg (Weizmann) for his enthusiasm and invaluable consultations, as well as
the local organizing team, in particular Christoph Ambühl, Catherine Atherton,
Alexey Fishkin, Dave Shield and Prudence Wong. Finally we would like to thank
EPSRC and the University of Liverpool for their support.

These proceedings include all the accepted papers revised according to the
feedback provided by the Program Committee, as well as the paper versions of
the three invited talks. We hope you will enjoy them as much as we did at the
conference.

July 2006 Paola Flocchini and Leszek Gąsieniec
Program Committee Co-chairs

Organization

Program Committee

Paolo Boldi, Milan
Shlomi Dolev, Ben-Gurion
Thomas Erlebach, Leicester
Paola Flocchini, Ottawa (Co-chair)
Fedor Fomin, Bergen
Pierre Fraigniaud, Paris Sud
Leszek Gąsieniec, Liverpool (Co-chair)
Christos Kaklamanis, Patras
Idit Keidar, Technion
Ralf Klasing, Bordeaux
Evangelos Kranakis, Carleton

Andrzej Lingas, Lund
Flaminia Luccio, Trieste
Andrzej Pelc, Québec
Giuseppe Prencipe, Pisa
Kirk Pruhs, Pittsburgh
Tomasz Radzik, Kings College
Violet R. Syrotiuk, Arizona State
Roger Wattenhofer, ETH
Masafumi Yamashita, Kyushu
Shmuel Zaks, Technion

Organizing Committee

Christoph Ambühl, Liverpool
Catherine Atherton, Liverpool
Alexei Fishkin, Liverpool

Leszek Gąsieniec, Liverpool (Chair)
Dave Shield, Liverpool
Prudence Wong, Liverpool

Steering Committee

Paola Flocchini, Ottawa
Leszek Gąsieniec, Liverpool
Christos Kaklamanis, Patras
Lefteris Kirousis, Patras
Rastislav Královič, Bratislava
Evangelos Kranakis, Carleton
Danny Krizanc, Wesleyan

Bernard Mans, Macquarie
Andrzej Pelc, Québec
David Peleg, Weizmann (Chair)
Michel Raynal, Rennes
Nicola Santoro, Ottawa
Paul Spirakis, Patras

Referees

Luca Allulli
Christoph Ambühl
Gal Badishi
René Beier

Amos Beimel
Sivan Bercovici
Edward Bortnikov
Olga Brukman

VIII Organization

Nicolas Burri
Ioannis Caragiannis
Carlos Castillo
Stefano Chessa
David Coudert
Shantanu Das
Stefan Dobrev
Michael Elkin
Leah Epstein
Alexey Fishkin
Hen Fitoussi
Michele Flammini
Roland Flury
Vincenzo Gervasi
Olga Goussevskaia
Yinnon Haviv
Jesper Jansson
Panagiotis Kanellopoulos
Ronen Kat
Dariusz Kowalski
Rastislav Kralovic
Danny Krizanc
Michael Kuhn
Łukasz Kuszner
Christos Levcopoulos
Thomas Locher
Violetta Lonati
Zvi Lotker
Fabrizio Luccio

Euripides Markou
Morten Mjelde
Manuela Montangero
Luca Moscardelli
Thomas Moscibroda
Alfredo Navarra
Linda Pagli
Evi Papaioannou
Paolo Penna
Mia Persson
Alessandro Provetti
Geppino Pucci
Pascal von Rickenbach
Fabiano Sarracco
Stefan Schmid
Hadas Shachnai
Alexander Shraer
Francesco Silvestri
Savio Tse
Nir Tzachar
Chi-Hung Tzeng
Ugo Vaccaro
Sebastiano Vigna
Martin Wahlen
Mirjam Wattenhofer
Yves Weber
Prudence Wong
Qin Xin

Sponsoring Institutions

The Engineering and Physical Sciences Research Council (EPSRC)

Table of Contents

Mobile Agent Rendezvous: A Survey
Evangelos Kranakis, Danny Krizanc, Sergio Rajsbaum 1

Adapting to Point Contention with Long-Lived Safe Agreement
Hagit Attiya . 10

Sensor Networks: Distributed Algorithms Reloaded – or Revolutions?
Roger Wattenhofer . 24

Local Algorithms for Autonomous Robot Systems
Reuven Cohen, David Peleg . 29

How to Meet in Anonymous Network
Dariusz R. Kowalski, Adam Malinowski . 44

Setting Port Numbers for Fast Graph Exploration
David Ilcinkas . 59

Distributed Chasing of Network Intruders
Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, Sandrine Vial 70

Election in the Qualitative World
Jérémie Chalopin . 85

Fast Deterministic Distributed Algorithms for Sparse Spanners
Bilel Derbel, Cyril Gavoille . 100

Efficient Distributed Weighted Matchings on Trees
Jaap-Henk Hoepman, Shay Kutten, Zvi Lotker . 115

Approximation Strategies for Routing Edge Disjoint Paths in Complete
Graphs

Adrian Kosowski . 130

Short Labels by Traversal and Jumping
Nicolas Bonichon, Cyril Gavoille, Arnaud Labourel 143

An Optimal Rebuilding Strategy for a Decremental Tree Problem
Nicolas Thibault, Christian Laforest . 157

Optimal Delay for Media-on-Demand with Pre-loading and Pre-buffering
Amotz Bar-Noy, Richard E. Ladner, Tami Tamir 171

X Table of Contents

Strongly Terminating Early-Stopping k-Set Agreement in Synchronous
Systems with General Omission Failures

Philippe Räıpin Parvédy, Michel Raynal, Corentin Travers 182

On Fractional Dynamic Faults with Threshold
Stefan Dobrev, Rastislav Královič, Richard Královič,
Nicola Santoro . 197

Discovering Network Topology in the Presence of Byzantine Faults
Mikhail Nesterenko, Sébastien Tixeuil . 212

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks
Tiziana Calamoneri, Andrea E.F. Clementi, Miriam Di Ianni,
Massimo Lauria, Angelo Monti, Riccardo Silvestri 227

3-D Minimum Energy Broadcasting
Alfredo Navarra . 240

Average-Time Complexity of Gossiping in Radio Networks
Bogdan S. Chlebus, Dariusz R. Kowalski, Mariusz A. Rokicki 253

L(h,1,1)-Labeling of Outerplanar Graphs
Tiziana Calamoneri, Emanuele G. Fusco, Richard B. Tan,
Paola Vocca . 268

Combinatorial Algorithms for Compressed Sensing
Graham Cormode, S. Muthukrishnan . 280

On the Existence of Truthful Mechanisms for the Minimum-Cost
Approximate Shortest-Paths Tree Problem

Davide Bilò, Luciano Gualà, Guido Proietti . 295

Dynamic Asymmetric Communication
Travis Gagie . 310

Approximate Top-k Queries in Sensor Networks
Boaz Patt-Shamir, Allon Shafrir . 319

Self-stabilizing Space Optimal Synchronization Algorithms on Trees
Doina Bein, Ajoy K. Datta, Lawrence L. Larmore 334

Distance-k Information in Self-stabilizing Algorithms
Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs,
Vilmar Trevisan . 349

Author Index . 357

Mobile Agent Rendezvous: A Survey

Evangelos Kranakis1, Danny Krizanc2, and Sergio Rajsbaum3

1 School of Computer Science, Carleton University, Ottawa, ON, Canada
2 Department of Mathematics and Computer Science, Wesleyan University,

Middletown, Connecticut 06459, USA
3 Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM),

Ciudad Universitaria, D. F. 04510, Mexico

Abstract. Recent results on the problem of mobile agent rendezvous on
distributed networks are surveyed with an emphasis on outlining the var-
ious approaches taken by researchers in the theoretical computer science
community.

1 Introduction

Consider the following problem originally proposed by Alpern [1] (as quoted
in [3]):

Two astronauts land on a spherical body that is much larger than the
detection radius (within which they can see each other). The body does
not have fixed orientation in space, nor does it have an axis of rotation, so
that no common notion of position or direction is available to the astro-
nauts for coordination. Given unit walking speeds for both astronauts,
how should they move about so as to minimize the expected meeting
time T (before they come within the detection radius)?

This is just one version of a problem that has been studied under many guises
under most of which it is referred to as rendezvous. In all settings, a set of agents
are placed in a domain and are required to all meet at the same place and time
within the domain, i.e., rendezvous. The settings differ mainly in the types and
properties of the agents and the types and properties of domains. Besides the
astronaut example above, rendezvous has been studied in settings as various
as ships at sea, mother and child at a mall and autonomous robots on a hilly
terrain.

Recently the theoretical computer science community has taken up the chal-
lenge of the problem of rendezvous for autonomous software agents moving
through a distributed network. Requiring such agents to meet in order to syn-
chronize, share information, divide up duties, etc. would seem to be a natural
fundamental operation useful as a subroutine in more complicated applications
such as web-crawling, peer-to-peer lookup, meeting scheduling, etc. In this paper,
we provide a short (perhaps biased) survey of recent work done on this version
of the problem. The research done in other settings is extensive and many of

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 1–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 E. Kranakis, D. Krizanc, and S. Rajsbaum

the solutions can be applied here. But it is often the case that the models used
and the concerns studied are sufficiently different as to require new approaches.
Having said that, one ignores the earlier work at one’s peril. For an excellent
discussion of mainly continuous domains with randomized agents see the book
by Alpern and Gal [3]. For work on robot rendezvous consider [26] and [28] as
possible starting points.

2 The Model

The definition of rendezvous must begin with establishing the properties of the
agents that will rendezvous and the domain in which rendezvous will occur. The
model below captures the essence of what has been termed the theory of mobile
agent computing.

2.1 Mobile Agents

We are interested in modeling a set of software entities that act more or less
autonomously from their originator and have the ability to move from node to
node in a distributed network maintaining some sort of state with the nodes of
the network providing some amount of (possibly longterm) storage and compu-
tational support. Either explicitly or implicitly such a mobile (software) agent
has most often been modeled using a finite automaton consisting of a set of states
and a transition function. The transition function takes as input the agent’s cur-
rent state as well as possibly the state of the node it resides in and outputs a
new agent state, possible modifications to the current node’s state and a possi-
ble move to another node. In some instances we consider probabilistic automata
which have available a source of randomness that is used as part of their input.
Such agents are referred to as randomized agents.

An important property to consider is whether or not the agents are distin-
guishable, i.e., if they have distinct labels or identities. Agents without identities
are referred to as anonymous agents. Anonymous agents are limited to running
precisely the same program, i.e., they are identical finite automata. As the iden-
tity is assumed to be part of the starting state of the automaton, agents with
identities have the potential to run different programs.

The knowledge the agent has about the network it is on and about the other
agents can make a difference in the solvability and efficiency of rendezvous. For
example, knowledge of the size of the network or its topology or the number
of and identities of the other agents may be used as part of the program for
rendezvous. If available to the agents, this information is assumed to be part of
its starting state. (One could imagine situations where the information is made
available by the nodes of the network and not necessarily encoded in the agent.)

Other properties that may be considered in mobile agent computing include
whether or not the agents have the ability to “clone” themselves, whether or not
they have the ability to “merge”upon meeting (sometimes referred to as “sticky”
agents) or whether or not they can send self-generated messages. At this point,
most of the research on rendezvous ignores these properties and they will not be
discussed below.

Mobile Agent Rendezvous: A Survey 3

2.2 Distributed Networks

The model of a distributed network is essentially inherited directly from the the-
ory of distributed computing. We model the network by a graph whose vertices
comprise the computing nodes and edges correspond to communication links.

The nodes of the network may or may not have distinct identities. In an
anonymous network the nodes have no identities. In particular this means that
an agent can not distinguish two nodes except perhaps by their degree. The out-
going edges of a node are usually thought of as distinguishable but an important
distinction is made between a globally consistent edge-labelling versus a locally
independent edge-labelling. A simple example is the case of a ring where clock-
wise and counterclockwise edges are marked consistently around the ring in one
case, and the edges are arbitrarily - say by an adversary - marked 1 and 2 in the
other case. If the labelling satisfies certain coding properties it is called a sense
of direction [13]. Sense of direction has turned out to greatly effect the solvability
and efficiency of solution of a number of problems in distributed computing and
has been shown to be important in rendezvous as well.

Networks are also classified by how they deal with time. In a synchronous
network there exists a global clock available to all nodes. This global clock is
inherited by the agents. In particular it is usually assumed that in a single step
an agent arrives at a node, performs some calculation, and exits the node and
that all agents are performing these tasks “in sync”. In an asynchronous network
such a global clock is not available. The speed with which an agent computes or
moves between nodes, while guaranteed to be finite, is not a priori determined.

Finally we have to consider the resources provided by the nodes to the agents.
All nodes are assumed to provide enough space to store the agent temporarily and
computing power for it to perform its tasks. (The case of malicious nodes refusing
agents or even worse destroying agents - so-called blackholes - is also sometimes
considered.) Beyond these basic services one considers nodes that might provide
some form of long-term storage, i.e., state that is left behind when the agent
leaves. In the rendezvous problem the idea of leaving an indistinguishable mark
or token at a node (introduced in [5]) has been studied. More accommodating
nodes might provide a whiteboard for agents to write messages to be left for
themselves or for other agents.

3 The Rendezvous Problem

Given a particular agent model (e.g., deterministic, anonymous agents with
knowledge they are on a ring of size n) and network model (e.g., anonymous,
synchronous with tokens) a set of k agents distributed arbitrarily over the nodes
of the network are said to rendezvous if after running their programs after some
finite time they all occupy the same node of the network at the same time. It
is generally assumed that two agents occupying the same node can recognize
this fact (though in many instances this fact is not required for rendezvous to
occur). As stated, rendezvous is assumed to occur at nodes. In some instances
one considers the possibility of rendezvous on an edge, i.e., if both agents use the

4 E. Kranakis, D. Krizanc, and S. Rajsbaum

same edge (in opposite directions) at the same time. (For physical robots this
makes sense. For software agents this perhaps is not so realistic but sometimes
necessary to allow for the possibility of rendezvous at all - especially in instances
where the network lacks a sense of direction.)

The first question one asks for an instance of rendezvous is whether or not
it is solvable. There are many situations where it is not possible to rendezvous
at all. This will depend upon both the properties of the agents (deterministic
or randomized, anonymous or with identities, knowledge of the size of the net-
work or not, etc.) and the network (synchronous or asynchronous, anonymous
or with identities, tokens available or not, etc.). The solvability is also a func-
tion of the starting positions chosen for the agents. For example, if the agents
start at the same node and can recognize this fact, rendezvous is possible in
this instance. Given a situation where some starting positions are not solvable
(i.e., rendezvous is not possible) but others are, we distinguish between algo-
rithms that are guaranteed to finish for all starting positions, with successful
rendezvous when possible but otherwise recognizing that rendezvous is impos-
sible, versus algorithms that are only guaranteed to halt when rendezvous is
possible. Algorithms of the former type are said to solve rendezvous with detec-
tion. (The distinction is perhaps analogous to Turing machines deciding versus
accepting a language.)

For solvable instances of rendezvous one is interested in comparing the effi-
ciency of different solutions. Much of the research focuses on the time required to
rendezvous. In the synchronous setting the time is measured via the global clock.
(In some situations, it makes a difference if the agents begin their rendezvous
procedure at the same time or there is possible delay between start times.) In the
asynchronous setting we adapt the standard time measures from the distributed
computing model. Also of interest is the size of the program required by the
agents to solve the problem. This is referred to as the memory requirement of
the agents and is considered to be proportional to the base two logarithm of the
number of states required by the finite state machine encoding the agent.

As is often the case, researchers are interested in examining the extremes in
order to get an understanding of the limits a problem imposes. Over time it has
become clear that for rendezvous symmetry (of the agents and the network) plays
a central role in determining its solvability and the efficiency of its solutions. As
such we divide our discussion below into the asymmetric and symmetric cases.
For simplicity we restrict ourselves to the case of just two agents in most of the
discussion below.

4 Asymmetric Rendezvous

Asymmetry in a rendezvous problem may arise from either the network or the
agents.

4.1 Network Asymmetry

A network is asymmetric if it has one or more uniquely distinguishable ver-
tices. A simple example is the case of a network where all of the nodes have

Mobile Agent Rendezvous: A Survey 5

unique identities chosen from a subset of some totally ordered set such as the
integers. In this case, the node labelled with the smallest identity (for exam-
ple) is unique and may be used as a meeting point for a rendezvous algorithm.
Uniqueness need not be conferred using node labels. For example, in a net-
work where there is a unique node of degree one, it may be used as a focal
point.

If a “map” of the graph with an agent’s starting position marked on it is
available to the agents then the problem of rendezvous is easily solved by just
traversing the path to an agreed upon unique node. Algorithms that use an
agreed upon meeting place are referred to by Alpern and Gal [3] as FOCAL
strategies. In the case where the graph is not available in advance but the agents
know that a focal point exists (e.g., they know the nodes are uniquely labelled
and therefore there exists a unique minimum label node) this strategy reduces
to the problem of graph traversal or graph exploration whereby all of the nodes
(sometimes edges) of the graph are to be visited by an agent. This has been
extensively studied in a number of contexts, e.g., [9, 25]. Much of the work in this
area has looked at improving the efficiency (time or memory) for restricted classes
of graphs, e.g., trees [11]. A closely related problem is that of robot exploration
of an unknown environment with obstacles which can often be modeled using
graphs. See for example [6].

4.2 Agent Asymmetry

By agent asymmetry one generally means the agents have unique identities that
allow them to act differently depending upon their values. In the simplest sce-
nario of two agents, the agent with the smaller value could decide to wait at its
starting position for the other agent to find it by exploring the graph as above.
Alpern and Gal [3] refer to this as the Wait For Mommy (WFM) strategy and
they show it to be optimal under certain conditions.

WFM depends upon the fact that the agents know in advance the identities
associated with the other agents. In some situations this may be an unrealistic
assumption. Yu and Yang [29] were the first to consider this problem. Under the
assumption that the algorithm designer may assign the identities to the agents
(as well as the existence of distinct whiteboards for each agent), they show
that rendezvous may be achieved deterministically on a synchronous network in
O(nl) steps where n is the size of the network and l is the size of the identities
assigned. The perhaps more interesting case where an adversary assigns the
labels was first considered in [10]. Extensions to this work including showing
rendezvous on an arbitrary graph is possible in time polynomial in n and l and
that there exist graphs requiring Ω(n2) time for rendezvous are described in
[17, 18]. The case of an asynchronous network is considered in [8] where a (non-
polynomial) upper bound is set for rendezvous in arbitrary graphs (assuming the
agents have an upper bound on the size of the graph). Improvements (in some
cases optimal) for the case of the ring network are discussed in each of the above
papers.

6 E. Kranakis, D. Krizanc, and S. Rajsbaum

5 Symmetric Rendezvous

In the case of symmetric rendezvous, both the (generally synchronous) network
and the agents are assumed to be anonymous. Further one considers classes of
networks that in the worst case contain highly symmetric networks that do not
submit to a FOCAL strategy. As might be expected some mechanism is required
to break symmetry in order for rendezvous to be possible. The use of random-
ization and of tokens to break symmetry have both been studied extensively.

5.1 Randomized Rendezvous

Many authors have observed that rendezvous may be solved by anonymous
agents on an anonymous network by having the agents perform a random walk.
The expected time to rendezvous is then a (polynomial) function of the (size of
the) network and is directly related to the cover time of the network. (See [24]
for definitions relating to random walks.)

For example, it is straightforward to show that two agents performing a sym-
metric random walk on ring of size n will rendezvous within expected O(n2) time.
This expected time can be improved by considering the following strategy (for a
ring with sense of direction). Repeat the following until rendezvous is achieved:
flip a (fair) coin and walk n/2 steps to the right if the result is heads, n/2 steps
to the left if the result is tails. If the two agents choose different directions (which
they do with probability 1/2) then they will rendezvous (at least on an edge if not
at a node). It is easy to see that expected time until rendezvous is O(n). Alpern
refers to this strategy as Coin Half Tour and studies it in detail in [2]. Note that
the agents are required to count up to n and thus seem to require O(log n) bits
of memory to perform this algorithm (whereas the straightforward random walk
requires only a constant number of states to implement). It can be shown that
O(log logn) bits are sufficient for achieving linear expected rendezvous time[23].

5.2 Rendezvous Using Tokens

The idea of using tokens or marks to break symmetry for rendezvous was first
suggested in [5] and expanded upon for the case of the ring in [27]. The first ob-
servation to make is that rendezvous is impossible for deterministic agents with
tokens (or whiteboards) on an even size ring when the agents start at distance
n/2 as the agents will remain in symmetric positions indefinitely. However, this
is the only starting position for the agents for which rendezvous is impossible.
This leads one to consider algorithms for rendezvous with detection where ren-
dezvous is achieved when possible and otherwise the agents detect they are in an
impossible to rendezvous situation. In this case, a simple algorithm suffices (de-
scribed here for the oriented case). Each agent marks their starting position with
a token. They then travel once around the ring counting the distances between
their tokens. If the two distances are the same, they halt declaring rendezvous
impossible. If they are different they agree to meet (for example) in the middle
of the shorter side.

Mobile Agent Rendezvous: A Survey 7

Again, one observes that the algorithm as stated requires O(log n) bits of
memory for each agent in order to keep track of the distances. Interestingly
enough this can be reduced to O(log logn) bits and this can be shown to be tight
for unidirectional algorithms [20]. If we are allowed two movable tokens (i.e., the
indistinguishable marks can be erased and written with up to two marks stored
per node) then rendezvous with detection becomes possible with an agent with
constant size memory [21].

Multi-agent rendezvous, i.e., more than two agents, on the ring is considered
in [14, 16], the second reference establishing optimal memory bounds for the
problem. Two agent rendezvous on the torus is studied in [21] where tradeoffs
between memory and the number of (movable) tokens used are given. Finally
[15] considers a model in which tokens may disappear or fail over time.

5.3 Whiteboards and Blackholes

The use of whiteboards to achieve multiagent rendezvous on an arbitrary anony-
mous asynchronous network is studied in [4] where the problem is shown to be
equivalent to that of leader election. In [12] rendezvous on an asynchronous ring
with whiteboards in the presence of blackholes is considered.

6 Related Problems

As was mentioned above the rendezvous problem is intimately related under
certain conditions to that of graph exploration [9, 25]. Besides this connection
there are a number of “search”problems that are at least tangentially related to
rendezvous in as much as techniques and/or models considered by researchers
on these problems may be of some use to those working on rendezvous. Some
examples are described below.

Imagine that the police have cornered a fugitive in a complicated warren of
tunnels and rooms. They know that she is situated at one of the nodes and would
like to capture her by searching the rooms. Their main concern is to decide what
is the least number of police personnel necessary in order to be certain the
fugitive does not evade capture. This number, referred to as the search number
of a graph, was introduced by Megiddo et al. [22] and has since been studied by
many authors.

Two friends check into an n room hotel. The hotel clerk is off duty and each
doesn’t know the room number of the other. They start calling rooms in order
to find each other. What is the least number of calls they must make before
at least one finds the other? This question was formalized and generalized as
mutual search by Buhrman et al.[7]

A friend has given you the name but not the address of a restaurant in down-
town Manhattan. You start searching for the restaurant by asking passersby
which direction the restaurant is in. Their answers are sometimes erroneous,
even contradictory. What is the best strategy to use in order to find the restau-
rant quickly? This problem was formalized in [19].

8 E. Kranakis, D. Krizanc, and S. Rajsbaum

7 Conclusions

Rendezvous is a natural and fundamental problem for mobile software agents
traveling through a distributed network. This makes it a natural choice as a
model problem to study in the development of the theory of mobile agent com-
puting much like leader election and consensus form model problems for the
traditional study of the theory of distributed algorithms. We have attempted to
bring together the current state of our knowledge of the study of rendezvous in
the theoretical computer science context. A lot of work remains to be done.

Acknowledgements

Research of the first author was supported in part by NSERC (Natural Sciences
and Engineering Research Council of Canada) and MITACS (Mathematics of
Information Technology and Complex Systems) grants. Research of the third
author was supported in part by PAPIIT-UNAM.

References

1. S. Alpern, Hide and Seek Games, Seminar, Institut für Höhere Studien, Wien, July
1976.

2. S. Alpern, The Rendezvous Search Problem, SIAM Journal of Control and Opti-
mization, 33, pp. 673-683, 1995.

3. S. Alpern and S. Gal, The Theory of Search Games and Rendezvous, Kluwer Aca-
demic Publishers, Norwell, Massachusetts, 2003.

4. L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, Election and Rendezvous
of Anonymous Mobile Agents in Anonymous Networks with Sense of Direction,
Proceedings of the 9th Sirocco, pp. 17-32, 2003.

5. V. Baston and S. Gal, Rendezvous Search When Marks Are Left at the Starting
Points, Naval Research Logistics, 47, No. 6, pp. 722-731, 2001.

6. A. Blum, P. Raghavan and B. Schieber, Navigating in Unfamiliar Geometric Ter-
rain, SIAM Journal on Computing 26 (1997), 110-137.

7. H. Buhrman, M. Franklin, J. Garay, J. Hoepman, J. Tromp and P. Vitanyi, Mutual
Search, Journal of the ACM 46 (1999), 517-536.

8. G. De Marco, L Gargano, E. Kranakis, D. Krizanc, A. Pelc and U. Vacaro, Asyn-
chronous deterministic rendezvous in graphs, Proc. 30th MFCS, 2005, 271-282.

9. X. Deng and C. H. Papadimitriou, Exploring an Unknown Graph, Journal of Graph
Theory 32 (1999), 265-297.

10. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic Rendezvous in Graphs,
Proc. 11th ESA, 184-195, 2003.

11. K. Diks, P. Fraigniaud, E. Kranakis, A. Pelc, Tree Exploration with Little Memory,
Journal of Algorithms, 51 (2004) 38-63.

12. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Multiple Agents Rendezvous
in a Ring in spite of a Black Hole, Proc. Symposium on Principles of Distributed
Systems (OPODIS ’03), LNCS 3144, pp. 34-46, 2004.

13. P. Flocchini, B. Mans and N. Santoro, Sense of direction: definition, properties and
classes, Networks 32 (1998), 29-53.

Mobile Agent Rendezvous: A Survey 9

14. P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Multiple Mobile
Agent Rendezvous in the Ring, Proc. LATIN 2004, LNCS 2976, pp. 599-608, 2004.

15. P. Flocchini, E. Kranakis, D. Krizanc, F. Luccio, N. Santoro and C. Sawchuk,
Mobile Agent Rendezvous When Tokens Fail, Proc. of 11th Sirocco, 2004.

16. L. Gasieniec, E. Kranakis, D. Krizanc, X. Zhang, Optimal Memory Rendezvous
of Anonymous Mobile Agents in a Uni-directional Ring, Proc. of 32nd SOFSEM
2006, to appear.

17. D. Kowalski and A. Pelc, Polynomial deterministic rendezvous in arbitrary graphs,
Proc. 15th ISAAC, 2004.

18. D. Kowalski and A. Malinowski, How to meet in an anonymous network, Proc.
13th Sirocco, 2006.

19. E. Kranakis, and D. Krizanc, Searching with Uncertainty. Proc. of 6th Sirocco,
1999.

20. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Mobile Agent Rendezvous
Search Problem in the Ring, Proc. International Conference on Distributed Com-
puting Systems (ICDCS), pp. 592-599, 2003.

21. E. Kranakis, D. Krizanc, E. Markou, Mobile Agent Rendezvous in a Synchronous
Torus. Proc. of LATIN, 653-664, 2006.

22. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The Com-
plexity of Searching a Graph, Journal of the ACM 35 (1988), 18-44.

23. P. Morin, personal communication.
24. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University

Press, New York, 1995.
25. P. Panaite and A. Pelc, Exploring Unknown Undirected Graphs, Journal of Algo-

rithms 33 (1999), 281-295.
26. N. Roy and G. Dudek, Collaborative robot exploration and rendezvous: Algorithms,

performance bounds and observations, Autonomous Robots 11 (2001), 117-136.
27. C. Sawchuk, Mobile Agent Rendezvous in the Ring, PhD thesis, Carleton University,

School of Computer Science, Ottawa, Canada, 2004.
28. I. Suzuki and M. Yamashita, Distributed anonymous mobile robots: Formation of

geometric patterns, SIAM Journal of Computing 28 (1999), 1347-1363.
29. X. Yu and M. Yung, Agent Rendezvous: A Dynamic Symmetry-Breaking Problem,

Proceedings of ICALP, LNCS 1099, 610-621, 1996.

Adapting to Point Contention
with Long-Lived Safe Agreement

(Extended Abstract)

Hagit Attiya

Department of Computer Science
Technion

hagit@cs.technion.ac.il

Abstract. Algorithms with step complexity that depends only on the
point contention—the number of simultaneously active processes—are
very attractive for distributed systems with varying degree of concur-
rency. Designing shared-memory algorithms that adapt to point con-
tention, using only read and write operations, is however, a challenging
task.

The paper specifies the long-lived safe agreement object, extending an
object of Borowsky et al. [1], and describes an implementation whose step
complexity is adaptive to point contention. Then, we illustrate how this
object is used to solve other problems, like renaming and information
collection, in an adaptive manner.

1 Introduction

In order to coordinate the actions of a distributed application, processes must
obtain up-to-date information from each other. In a typical wait-free algorithm,
which guarantees that a process completes an operation within a finite number
of its own steps, information is collected by reading from an array indexed with
process’ identifiers. If a distributed algorithm is designed to accommodate a
large number of processes, this scheme is an over-kill when only a few processes
simultaneously participate in the algorithm: many entries are read from the
array although they contain irrelevant information about processes not wishing
to coordinate.

The best performance is achieved when the step complexity of an operation is a
function only of its point contention, namely, the maximal number of processes
simultaneously executing the algorithm concurrently with it. In this way, an
operation is delayed only when many processes are simultaneously active. Note
that an algorithm whose step step complexity is adaptive to point contention is
necessarily wait-free.

For example, if an algorithm is adaptive to point contention, then the step
complexity of operation op in Figure 1 is constant since at most three processes
simultaneously participate at each point during its interval. This holds although
a large number of processes are active throughout op, and many processes are
simultaneously active just before it starts.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 10–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adapting to Point Contention with Long-Lived Safe Agreement 11

op

Fig. 1. An execution example

This article is devoted to explaining the design of algorithms that adapt to
point contention using only read and write operations. Our exposition is based
on an adaptive implementation of a long-lived safe agreement object.

The safe agreement object, originally defined by Borowsky et al. [1], allows
processes to propose information and to agree on an identical value. In the BG
simulation, the safe agreement object allows processes to agree on each step of a
simulated process. Both the specification and the implementation of the object
in [1] are neither wait-free (and hence, it is non-adaptive) nor long-lived.

We extend the specification to support adaptive and long-lived properties and
present an implementation with O(k) step complexity. Here and below, k denotes
the point contention during an operation. This implementation is based on work
by Attiya and Zach [2], which in turn follows ideas of Attiya and Fouren [3], as
well as Afek et al. [4] and Inoue et al. [5].

The article also describes how safe agreement objects are used to solve the
renaming problem and to implement two information collection objects, called
gather and collect.

Renaming [6, 7] allows a process to obtain a new name—a positive integer,
bounded by a function of the current number of active processes—and to release
it afterwards. We adjust a renaming algorithm of Attiya and Fouren [3] to use
long-lived safe agreement objects; in the algorithm, processes obtain names in a
range of size O(k2).

Gather and collect objects allow processes to store information and to retrieve
previously-stored information; they differ in the exact properties they provide.
Gather and collect objects are commonly used as modular building blocks for
efficient adaptive algorithms. We describe an implementation of a gather object,
with O(k2) step complexity for storing information and O(k) step complexity
for retrieving information. A collect object is easily implemented from a gather
object, with O(k2) step complexity for storing and retrieving information. The
algorithms and their presentation combine ideas from [2, 3, 8, 9].

2 Model of Computation

We use a standard asynchronous shared-memory model of computation, follow-
ing, e.g., [10]. A system consists of n processes, p1, . . . , pn, and a set of registers
that are accessed by read and write operations.

An event is a computation step by a single process; in an event, a process
determines the operation to perform according to its local state, and determines
its next local state according to the value returned by the operation.

12 H. Attiya

An execution is a (finite or infinite) sequence of events; each event occurs at
one process, which applies a read or a write operation to a single register and
changes its state according to its algorithm. We assume an asynchronous model
of computation, where process steps are arbitrarily interleaved.

An invocation of a high-level operation by a process causes the execution of
the appropriate algorithm. The execution interval of an operation opi by process
pi is the subsequence of the execution between the first event of pi in opi and
the last event of pi in opi. We denote opi → opj if the execution interval of
opi precedes the execution interval of the operation opj by process pj ; namely,
the last event of pi in opi appears before the first event of pj in opj . If neither
opi → opj nor opj → opi, we say that opi and opj are overlapping.

Let α′ be a finite prefix of an execution α; process pi is active at the end of
α′ if α′ includes an invocation of an operation op by pi without the matching
return.

The point contention at the end of α′, denoted pointCont(α′), is the number of
active processes at the end of α′. Consider a finite interval β of an execution α; we
can write α = α1βα2. The point contention during β is the maximum contention
in prefixes α1β

′ of α1β. We abuse notation and denote it by pointCont(β), as
well; that is

pointCont(β) = max{pointCont(α1β
′) : α1β

′ is a prefix of α1β } .

If pointCont(β) = k, then k processes are simultaneously active at some point
during β.

Another measure of concurrency is the interval contention during an interval
β, denoted intCont(β), counting the number of distinct processes that are active
at some point during β. Clearly, pointCont(β) ≤ intCont(β).

3 The Adaptive Safe Agreement Object

We start by specifying and implementing the one-shot safe agreement object
and later extend it to be long-lived.

The original safe agreement object [1] allows processes to propose values and
to agree on a single value; in our safe agreement object, processes agree on an
identical set of values. Clearly, a single value can be deduced from this set by
choosing some predefined value, e.g., the minimum.

In the original specification, a process may wait indefinitely until the agree-
ment value is decided, making it impossible to have a wait-free implementation.
This means that there is no adaptive implementation, either. To admit adaptive
implementations, we decouple the proposal of a value from the reading of the
agreed set, and allow the reading to return an empty set, indicating that decision
was not reached yet.

3.1 The One-Shot Object

The one-shot object provides two operations, propose and read. A process invokes
propose at most once, but can invoke read to query the object several times.

Adapting to Point Contention with Long-Lived Safe Agreement 13

A propose(info) operation tries to store info into the object; if it succeeds, it
returns true, otherwise it returns false. A read operation returns a set of values,
possibly empty.

A one-shot safe agreement object must provide the following properties:

Validity: Any value returned was previously proposed.
Agreement: All non-empty return sets are identical.

A process pi accesses safe agreement object, if it calls a propose operation.
A process pi is inside a safe agreement object, if it gets true from a propose
operation. A process is a candidate if its proposed value appears in the non-
empty return set of values.

For example, assume processes p0, p1, p2 and p3 access a safe agreement object
(we ignore the specific values proposed), and that p3 returned false, while all
other processes returned true, and thus, are inside the object. In later read
operations, p0 returns ∅, while p1, p2 and p3 return {p0, p1, p2}. In this case, the
candidates are p0, p1, and p2.

The liveness property, defined next, implies that at least one of the processes
that get inside the safe agreement object is guaranteed to recognize itself as a
candidate. These processes are called winners, and are necessarily also candi-
dates. In the above example, the winners are p1 and p2, since they return a
non-empty set containing themselves.

Liveness: In any execution, at least one of the processes accessing the object
becomes a winner.

Concurrency: If a process gets inside a safe agreement object, and does not
win, then some other process is inside the object concurrently.

The adaptive implementation of a one-shot safe agreement object is based on
the sieve object of Attiya and Fouren [3]. We use the following data structures:

– A Boolean variable inside, initially false, indicates whether some process is
already inside the object.

– An array R[1 . . . n] of views; all views are initially empty. R[pi] contains the
view obtained by process pi in this object.

We also associate a procedure for one-shot atomic snapshot [11] with the
object, called osSnap. A process calls the procedure with info and obtains a
view, namely a set of process id’s and their information, which must include
the process itself. The views returned by the procedure must be comparable by
containment.

The pseudo-code appears in Algorithm 1.
In a propose operation, a process first checks if it is among the first processes

to propose values. It succeeds only if the safe agreement object is empty, and
inside is false. In this case, the process indicates that the safe agreement object
is no longer empty, and then obtains a snapshot view, which it stores in its entry
in R. The process returns with true from propose. If the process does not get

14 H. Attiya

Algorithm 1. Adaptive one-shot safe agreement object: code for process pi

data types:
view : vector of 〈id, info〉

shared variables:
inside : Boolean, initially false
R[1 . . . n] : array of views, initially ∅

local variables:
V, W : view

Boolean procedure propose(info)
1: if (not inside) then
2: inside = true // notify that a process is inside the object
3: V = osSnap(info) // propose info; return view of 〈id, info〉
4: R[idi] = V // save the obtained view
5: return(true) // object is open
6: else return(false) // object is not open

view procedure read() // returns the subset of proposed values
7: V = R[idi]
8: W = min{R[idj] | 〈idj , ∗〉 ∈ V and R[idj] �= ∅} // min by containment
9: if ∀〈idj , ∗〉 ∈ W,R[idj] ⊇ W then
10: return(W)
11: else return(∅)

inside the object (i.e., inside is true), then some concurrent process is already
inside the object, and the process returns with false from propose.

In a read operation, process pi tries to distinguish the minimal (by contain-
ment) snapshot view. This is done by considering the minimal view written by
any process in the view obtained by pi; if one of these processes has not written
its view yet, due to the asynchrony of the system, then the read is inconclusive
and returns an empty set. Otherwise, the process returns the minimal view it
finds. As we shall see in the first lemma below, this suffices to guarantee that all
processes return the same set.

The validity property of the safe agreement object trivially holds by the code
(see [3]).

We argue that all non-empty sets are identical.

Lemma 1. Algorithm 1 satisfies the agreement property.

Proof. Let V be the minimal view (by containment) obtained in osSnap, by some
process pk. We argue that any non-empty view W returned in an invocation of
read by some process pi is equal to V . Assume, by way of contradiction, that
W �= V . Since W is non-empty, it was obtained in some invocation of osSnap;
therefore, W and V are comparable. By the minimality of V , V ⊂ W .

Since pk ∈ V ⊂ W , pi checks R[idk]. If R[idk] is empty then pi clearly fails
the test; otherwise, R[idk] = V and since V ⊂ W , pi also fails the test. In both
cases, pi returns ∅, which is contradiction. �	

Adapting to Point Contention with Long-Lived Safe Agreement 15

Next, we show that at least one of the processes accessing a safe agreement
object becomes a winner, when it calls read after returning from propose.

Lemma 2. Algorithm 1 satisfies the liveness property.

Proof. Let Wc be the set of candidates in the safe agreement object. Wc is not
empty since some processes access the object. Let pi be the last process in Wc

to write its view in propose; clearly, pi calls read after all processes in Wc write
their views in propose.

Let Vi be the view obtained by pi from osSnap. Since Wc is not empty, some
process pc obtains Wc, that is, the minimal (by containment) view, from osSnap.
Note that pc and pi could be the same process.

Since Wc and Vi are comparable and since Wc is minimal, pc ∈ Wc ⊆ Vi. By
assumption, pc writes its view to R[idc] before pi calls read. Therefore, pi reads
Wc from R[idc], and sets Vi to Wc, by its minimality.

By assumption, pi calls read after every process pj ∈ Vi = Wc wrote its view
Vj to R[idj]. By the minimality of Wc, Vi = Wc ⊆ Vj , and therefore, pi evaluates
the if condition to hold and obtains Wc. Thus, pi finds that it is a winner in the
safe agreement object. �	

A process that gets inside the safe agreement object first reads false from inside
and then sets inside to true. This fact can be used to prove that processes are
simultaneously inside a safe agreement object.

Lemma 3. The intervals of all processes that get inside a safe agreement object
are overlapping.

The next lemma shows that if process pi gets inside safe agreement object and
does not win, then some process pj with an overlapping interval is a candidate
in the object.

Lemma 4. Algorithm 1 satisfies the concurrency property.

Sketch of proof. If pi gets true from open then pi writes true to inside. By
Lemma 3, the intervals of all processes that write true to inside overlap. By
Lemma 2, at least one of them is a winner (and hence, a candidate) the safe
agreement object, and the lemma follows. �	

To evaluate the step complexity of the algorithm, suppose that pi accesses safe
agreement object in interval βi, and let k be the point contention during βi.

If A is the set of processes that are inside the object throughout the execution
(including pi itself), then Lemma 3 implies that processes in A access the object
concurrently, and hence, |A| ≤ pointCont(βi) = k. Thus, at most k processes
invoke the one-shot snapshot operation, which dominates the step complexity of
propose.

Attiya and Fouren [12] present a one-shot snapshot algorithm, whose step
complexity is O(KlogK), where K is the total number of processes that ever
invoke it (also known as the total contention). As we have just argued, in our

16 H. Attiya

case we have that K = k, the point contention, and thus, the step complexity of
the one-shot snapshot algorithm is O(k log k).

Inoue et al. [5] observed that the one-shot snapshot can be replaced with a
partial atomic snapshot that guarantees that if one or more processes access
the object concurrently, at least one process obtains a snapshot (the others may
obtain an empty view). They also present a partial atomic snapshot algorithm
with O(k) step complexity, implying that the step complexity of propose is O(k).

Since the maximal size of a view is k, the step complexity of read is O(k).
Therefore, a process performs O(k) operations in each invocation of the one-
shot safe agreement procedures.

This yields the following theorem:

Theorem 1. Algorithm 1 implements an adaptive one-shot safe agreement ob-
ject with O(k) step complexity, where k is the point contention during the oper-
ation’s execution interval.

3.2 The Long-Lived Object

The long-lived safe agreement object has an infinite number of generations. Its
interface is similar to that of the one-shot object, except that a generation number
is added as a parameter to the operations. The generation number is visible
from outside the object, in order to simplify the specification of the long-lived
object, and to facilitate applications that use the generation number, e.g., the
timestamps algorithm of [3].

Specifically, a long-lived safe agreement object supports three operations:
propose(info) tries to store information in the current generation; if it succeeds,
it returns 〈true,c〉, otherwise, it returns 〈false,c〉. read(c) returns either a non-
empty set of values or an empty set. release(c) leaves generation c and activates
the next generation c + 1, if possible.

A generation starts when the first invocation of a propose operation that re-
turns 〈∗,c〉 occurs, and ends when the last process that got inside this generation
leaves the generation, by invoking release(c). Ic denotes the execution interval of
generation c.

We assume that there is at most one invocation of propose by each process for
each generation, which means that after calling propose that returns a generation
number c, the process must call release(c), before calling propose again.

The properties of the one-shot object (validity, agreement, liveness and con-
currency) must hold for every generation of the long-lived safe agreement object.
We also require the following property:

Synchronization: The generation number is a non-decreasing counter and it
is incremented by one during interval Ic. Moreover, processes get inside gen-
eration c only after all candidates leave the smaller generations and the
generation number is set to c (see Figure 2).

A long-lived safe agreement object is implemented using an unbounded array
of one-shot safe agreement objects, each corresponding to a single generation. An

Adapting to Point Contention with Long-Lived Safe Agreement 17

1
2
3

Generation number

TimeI0 I1 I2 I3 I4
0

5
4

Fig. 2. Generation numbers are nondecreasing

integer variable, count, indicates the current generation and points to the current
one-shot object. There is also an array done[1 . . . n][0 . . .∞] of Boolean variables,
all initially false. The entry done[pi][c] indicates whether process pi is done with
the c’th one-shot safe agreement object. Boolean variables allDone[0 . . .∞], all
initially false, indicate whether all candidates of a specific generation are done.

The pseudo-code appears in Algorithm 2.
As in the one-shot object, a process proposes its value by checking if it is

among the first processes to access the current generation of the safe agreement
object. The process succeeds only if this generation is empty, that is, no other
process is already inside it. If the process does not succeed to get inside the
current generation, then some concurrent process is already inside the current
generation.

The key idea in proving the correctness of the algorithm is that different
generations of the same safe agreement object are accessed in disjoint intervals
(this is the synchronization property of the object). This property allows cor-
rect handling of the non-decreasing counter, and implies that the long-lived safe
agreement object inherits the properties of the one-shot object.

Process pi is inside generation c of a long-lived safe agreement object since
it gets true from a propose operation of generation c and until it leaves the
generation. In other words, process pi is inside generation c when it is inside the
one-shot object S[c] corresponding to generation c.

Careful inspection of the code, and agreement on the set of candidates show
that a safe agreement object is released when all candidates are done.

Lemma 5. If allDone[c] is set to true, then all candidates of S[c] invoked
release(c).

This lemma is the key for showing, by induction, that a process is inside gener-
ation c only after all candidates leave smaller generations.

Lemma 6. If process pi is inside generation c of a safe agreement object, then
all the candidates already called release of the smaller generations, 1, . . . , c− 1.

Sketch of proof. We concentrate on the induction step, assuming that the lemma
holds for generation c. Only a winner pj in generation c writes c + 1 to count,

18 H. Attiya

Algorithm 2. Adaptive long-lived safe agreement object: code for process pi

shared variables:
count : integer, initially 1
S[0 . . . ∞] : infinite array of one-shot safe agreement objects
done[1 . . . n][0 . . . ∞] : two-dimensional array of Boolean variables, all initially false
allDone[0 . . . ∞] : infinite array of Boolean variables, all initially false

local variables:
V, W : view

〈Boolean, integer〉 procedure propose(info)
1: if (all-done[count − 1] and // all candidates of the previous generation are done

S[count].propose(info)) // and no process is inside the current generation
2: return(〈true, count〉) // generation count is open
3: else release(count) // generation c is not open
4: return(〈false, count〉)

view procedure read(c) // returns the candidates of generation c
5: return (S[c].read())

void procedure release(c) // release generation c
6: done[idi][c] = true // indicate that pi is done in generation c
7: W = S[c].read() // re-calculate the set of candidates
8: if (pi ∈ W) then count =c+1 // pi is a winner in generation c
9: if (W �= ∅ and ∀pj ∈ W , done[pj] == true) then // all candidates are done
10: allDone[c] = true

implying that pj is inside generation c. By the induction hypothesis, all candi-
dates already called release of generation 1, . . . , c−1. Since pi is inside generation
c + 1 it reads true from S[c].allDone. Lemma 5 implies that all candidates of
the one-shot object S[c] already called release on this object. �	

Recall that Ic is the execution interval of generation c, starting with the first in-
vocation of a propose operation in generation c and ending when the last process
that got inside generation c leaves. The next lemma proves that the data struc-
tures of different generations of the same long-lived safe agreement object are
modified in disjoint intervals.

Lemma 7. For every c ≥ 1, Ic starts after all previous intervals I1, . . . , Ic−1
end.

Sketch of proof. We concentrate on the induction step, assuming that the
lemma holds for for Ic. By definition, Ic+1 starts with first invocation of a propose
operation in generation c + 1. Lemma 6 implies that if this invocation occurs,
then all the candidates already called release of the smaller generations. In par-
ticular, all candidates already called release of generation c, and by the induction
hypothesis all previous intervals I1, . . . , Ic−1 end.

Since all candidates of generation c already called release, Ic also ended, im-
plying that Ic+1 starts after all previous intervals end. �	

Adapting to Point Contention with Long-Lived Safe Agreement 19

The next lemma shows that the generation number is non-decreasing value, and
it is incremented by one during interval Ic.

Lemma 8. Algorithm 2 satisfies the synchronization property.

Sketch of proof. By the code, only a winner pw of generation c of a long-lived
agreement object writes c+1 to count. Since pw is a winner, it previously writes
true to inside of generation c, after Ic begins. Hence, pw writes c + 1 to count
after Ic begins, and before it leaves generation c. Lemma 5 implies that a one-
shot safe agreement object is released after all candidates leave the object, and
hence, pw writes c + 1 to count before Ic ends.

Lemma 7 implies that processes get inside generation c only during interval
Ic, after count is set to c. �	

Thus, distinct one-shot objects, associated with different generations, are ac-
cessed in disjoint intervals, and the step complexity of accessing the object is
dominated by the step complexity of the one-shot object.

Theorem 2. Algorithm 2 implements an adaptive long-lived safe agreement
object with O(k) step complexity, where k is the point contention during the
operation’s execution interval.

4 Application I: Renaming

In the (long-lived) renaming problem [6, 7] processes repeatedly get and release
names from a small range. Ideally, the size of the name range should depend
only on the current contention.

Long-lived safe agreement objects can be used in a simple renaming algorithm:
Place n long-lived safe agreement objects, SLL[1], . . . , SLL[n], in a row. To get
a name, a process pi accesses the objects sequentially, applying propose to safe
agreement object s; if it obtains 〈true,c〉, then pi invokes read(c) to get the set
of candidates W . Process pi returns as its new name the pair composed of s and
its rank in W . If pi obtains 〈false,c〉, then it releases SLL[s] and continues to
the next object, SLL[s + 1]. In the latter case, we say that pi skips the s’th safe
agreement object.

To release a name, process pi calls release on the safe agreement object where
it obtained a name.

The concurrency properties of the long-lived safe agreement object can easily
be used to prove that a process wins within k′ iterations, where k′ is the interval
contention while pi is getting a name.

It is more surprising—and harder to prove!—that in fact, process pi wins
within 2k − 1 iterations, where k is the point contention while pi is getting a
name. This is done using an interesting potential method, which considers two
sets of simultaneously active processes and shows that at least one of them is
increased by 1 when pi skips a safe agreement object.

The sets are indexed with an integer number s = 1, . . . , n. The first set,
denoted As, contains all processes that access the �’th safe agreement object,

20 H. Attiya

1 ≤ � ≤ s. The second set, denote Ws, contains all processes that win the �’th
safe agreement object, 1 ≤ � ≤ s. (As and Ws are not disjoint.)

The exact definitions of As and Ws depend on specific execution intervals, and
are used in proving that if process pi skips the s’th safe agreement object, then
|Ws|+ |As| ≥ s+ 1 (for appropriately chosen intervals). The detailed definitions
and statements, as well as the proofs, appear in [3, Section 4].

Since Ws and As contain simultaneously active processes, and since pi is not
in Ws, we have that |Ws| + |As| ≤ (k − 1) + k. This implies that pi skips at
most 2k − 2 safe agreement objects, and the first component of the new name
is ≤ 2k − 1. The second component of the new name is equal to the rank of the
process in the obtained view, and thus it is ≤ k. It follows that the size of the
name space is in O(k2).

Moreover, the step complexity of getting a name is O(k) times the step com-
plexity of proposing and reading in a safe agreement object, since pi accesses at
most 2k − 1 sieves. The step complexity of releasing a name is proportional to
the step complexity of releasing a safe agreement object.

Since both complexities can be bound by O(k) (see the previous section),
it follows that the algorithm solves long-lived O(k2)-renaming with O(k2) step
complexity.

5 Application II: Collecting Information

We discuss two objects, gather and collect, which allow a process to store its
value in a shared memory, or to retrieve the values stored in the shared memory.

The gather object provides two operations: a put operation stores its para-
meter in the object, while a gather operation returns the set of values stored in
the object before or possibly during the operation. (This is called the validity
property.)

The collect object provides a collect operation that inherits the validity prop-
erty of the gather operation, and further guarantees the regularity property.
Namely, later collect operations are at least as updated as previous ones.

5.1 Implementing a Gather Object

To implement a gather object, we again put n long-lived safe agreement objects,
SLL[1], . . . , SLL[n], in a row. With each safe agreement object we associate a set
containing the values of processes that were candidates in this object. In order
to store its information, a process iteratively tries to win in the safe agreement
objects.

In the first part of a put operation, a process goes through the row of safe
agreement objects, until it wins one of them. If it wins safe agreement object
SLL[s], the process merges the values of all candidates of the current generation
to the set associated with SLL[s]. The synchronization and agreement properties
of the safe agreement object guarantee that this set contains the values of all
candidates in all generations of SLL[s].

Adapting to Point Contention with Long-Lived Safe Agreement 21

In principle, in a gather operation, the process merely has to go through the
safe agreement objects and read the associated sets of values. This might cause a
problem, however, if a gather operation is performed after store operations with
high contention: A put operation encountering high contention may store a new
value in an entry with large index, and a subsequent gather operation will have
to access many entries, even if its point contention is low.

This is solved by a technique called bubble-up, in which processes propagate
new results to the beginning of the row. This allows a gather operation to find
the new values at the beginning of the row, when contention is low. Bubble-up
was presented by Afek et al. [8] and later used in [9, 3, 2].

After storing its value, the put operation bubbles the result to the top of
the array. The process goes from entry s up to entry 1, and for each entry
s′ = s, . . . , 1, it recursively gathers the values stored beyond entry s′, and stores
the result in its private register associated with entry s′. (See the description by
Stupp [13, Section 7.1].)

In a gather operation, a process starts from the beginning of the row and reads
until it find a value that was bubbled up by one of the processes. The number
of entries accessed is linear in the point contention during the operation: if the
contention is low, then the process reads the value near the beginning of the row;
if the contention is high, then the process is allowed to go further in the row.

The key to showing that the gather object is correctly implemented is to
show that the result array contains the most recent values of all candidates of
all generations of the corresponding safe agreement object. The synchronization
property of the safe agreement object is used to show that this property holds,
although several processes (winners of the same safe agreement object) may
concurrently write to the result entry. (See [3, Lemma 6.1].)

Next we explain how bubbling up restricts the step complexity of the gather
operation. Assume that a gather operation by process pi reads skips over entry
s. The key to the complexity analysis is to show that a process skips an entry
only if some concurrent process is bubbling up through this entry. By careful
inspection of the intervals, this is used to show that pi skips at most 3k entries,
where k is the point contention.

The same potential argument used for renaming can be used to show that in
its first part, a put operation accesses at most 2k − 1 safe agreement objects.
Together with the linear step complexity (in point contention) of operations on
a safe agreement object, this implies that the step complexity of a put operation
is O(k2).

5.2 Implementing a Collect Object

When a gather operation returns a value v for process p, it is still possible that
a later gather operation returns a value that was written by process p before v.
This can happen, for example, when the two gather operations are concurrent
with the update operation of process p.

The regularity property of the collect object disallows this behavior. In order
to guarantee this property, the collect procedure first calls gather and then calls

22 H. Attiya

put to store the result it has obtained. This increases the step complexity of a
collect operation to be O(k2).

6 Summary

We tried to provide a closer look at the algorithmic ideas that are employed in
order to have step complexity that adapts to point contention.

This article is not a comprehensive survey of the recent research on adaptive
algorithms. The issues not covered here include the space complexity of adaptive
algorithms [14,15], using stronger base objects [16,17], guaranteeing weaker types
of adaptivity [12,18,19], and adaptive algorithms for other problems, e.g., mutual
exclusion [20, 21, 22].

References

1. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3) (2001) 127–146

2. Attiya, H., Zach, I.: Fully adaptive algorithms for atomic and immediate snapshots.
www.cs.technion.ac.il/∼hagit/pubs/AZ03.pdf (2003)

3. Attiya, H., Fouren, A.: Algorithms adaptive to point contention. Journal of the
ACM 50(4) (2003) 444–468

4. Afek, Y., Attiya, H., Fouren, A., Stupp, G., Touitou, D.: Adaptive long-lived renam-
ing using bounded memory. www.cs.technion.ac.il/∼hagit/pubs/AAFST99disc.ps.gz
(1999)

5. Inoue, M., Umetani, S., Masuzawa, T., Fujiwara, H.: Adaptive long-lived O(k2)-
renaming with O(k2) steps. In: Proceedings of the 15th International Conference
on Distributed Computing, Berlin, Springer-Verlag (2001) 123–135

6. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. Journal of the ACM 37(3) (1990) 524–548

7. Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived renaming. Sci-
ence of Computer Programming 25(1) (1995) 1–39

8. Afek, Y., Stupp, G., Touitou, D.: Long-lived and adaptive collect with applications.
In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science,
Phoenix, IEEE Computer Society Press (1999) 262–272

9. Afek, Y., Stupp, G., Touitou, D.: Long-lived and adaptive atomic snapshot and
immediate snapshot. In: Proceedings of the 19th Annual ACM Symposium on
Principles of Distributed Computing, New-York, ACM Press (2000) 71–80

10. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1) (1991) 124–149

11. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM 40(4) (1993) 873–890

12. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM Journal on Computing 31(2) (2001) 642–664

13. Stupp, G.: Long Lived and Adaptive Shared Memory Implementations. PhD thesis,
Department of Computer Science, Tel-Aviv University (2001)

14. Afek, Y., Boxer, P., Touitou, D.: Bounds on the shared memory requirements for
long-lived adaptive objects. In: Proceedings of the 19th Annual ACM Symposium
on Principles of Distributed Computing, New-York, ACM Press (2000) 81–89

Adapting to Point Contention with Long-Lived Safe Agreement 23

15. Attiya, H., Fich, F., Kaplan, Y.: Lower bounds for adaptive collect and related
problems. In: Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing. (2004) 60–69

16. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. In: Proceedings of the
27th ACM Symposium on Theory of Computing, New-York, ACM Press (1995)
538–547

17. Herlihy, M., Luchangco, V., Moir, M.: Space- and time-adaptive non-blocking
algorithms. In: Electronic Notes in Theoretical Computer Science. Volume 78.,
Elsevier (2003)

18. Afek, Y., Stupp, G., Touitou, D.: Long-lived adaptive splitter and applications.
Distributed Computing 15(2) (2002) 67–86

19. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm with applications.
Distributed Computing 15(2) (2002) 87–96

20. Anderson, J., Kim, Y.J.: Adaptive mutual exclusion with local spinning. In: Pro-
ceedings of the 14th International Conference on Distributed Computing. (2000)

21. Attiya, H., Bortnikov, V.: Adaptive and efficient mutual exclusion. Distributed
Computing 15(3) (2002) 177–189

22. Choy, M., Singh, A.K.: Adaptive solutions to the mutual exclusion problem. Dis-
tributed Computing 8(1) (1994) 1–17

Sensor Networks: Distributed
Algorithms Reloaded – or Revolutions?

Roger Wattenhofer

Computer Engineering and Networks Laboratory
ETH Zurich, 8092 Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

Abstract. This paper wants to motivate the distributed algorithms community
to study sensor networks. We discuss why sensor networks are distributed algo-
rithms, and why they are not.

1 Introduction

Wireless sensor networks currently exhibit an incredible research momentum. Com-
puter scientists and engineers from all flavors are embracing the area. Sensor networks
are adopted by researchers from hardware technology to operating systems, from an-
tenna design to middleware, from graph theory to computational geometry. Information
and communication theorists study fundamental scaling laws such as the capacity of
a sensor network. Networking researchers propose new protocols for all layers of the
stack. And for the database community, a sensor network essentially is – a database.

The distributed algorithms community should join this big interdisciplinary party!
Distributed algorithms are central since – in a first approximation – a sensor network can
be modeled as a message passing graph. Hence there is hope that distributed algorithms
can be either directly used for or at least adapted to sensor networks.

In the last twenty years, distributed network algorithms have been a thriving theoreti-
cal research subject. So far however with limited influence on practice. Sensor networks
may be a foremost application area of this vivid theory. Unlike other natural applica-
tion areas such as the Internet or peer-to-peer/overlay networks, sensor networks are
less prone to side effects such as selfish behavior of individual nodes, as generally the
whole network is owned by a single entity.1

So, can we directly apply our distributed algorithms instruments when developing
algorithms for sensor networks? In other words, are sensor networks nothing but dis-
tributed algorithms reloaded?! In this paper we study to what extent the wireless nature
of sensor networks is changing the game. We identify and briefly discuss two model-
ing aspects for which we believe that sensor networks are fundamentally different from
orthodox distributed algorithms.

1 Interestingly, the other camp of the distributed computing community which deals less with
loosely-coupled networks and more with tightly-coupled multiprocessors (a.k.a. shared mem-
ory systems) is currently experiencing a similar impetus from the application domain with
forthcoming multicore architectures.

P. Flocchini and L. Gąsieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 24–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sensor Networks: Distributed Algorithms Reloaded – or Revolutions? 25

First, we need a model which reflects a typical topology of a sensor network. Tra-
ditionally, a sensor network is modeled as a graph, representing nodes by vertices and
wireless links by edges. Geometry comes into play as the distribution of nodes in space,
and the propagation range of wireless links, usually adhere to geometric constraints.
Several models inspired by both graph theory and geometry are possible; what model
is right depends on the question analyzed. A media access study might need a detailed
model capturing several low-level aspects. For instance, it has to be taken into account
that a message may not be received correctly due to a near-by concurrent transmis-
sion. Hence, it is crucial that the model appropriately incorporates interference aspects.
However, for a transport layer study, a much simpler model which assumes random
transmission errors might be sufficient. In a recent survey [12], a whole zoo of models
borrowing from both graph theory and geometry is presented, comprising classic mod-
els such as the unit disk graph or the signal-to-interference-plus-noise ratio, but also
novel generalizations such as the bounded independence graph or the unit ball graph.
These geometric graph models will probably influence the research on distributed net-
work algorithms. For details, we refer the reader to [12].

Second, the very definition of a distributed algorithm is about to change when en-
tering the sensor network domain. We believe that new algorithm types will emerge,
and will influence the distributed algorithms community in the coming years. In the
remainder of the paper, we briefly discuss possible directions of research.

2 Algorithms

The distributed algorithms community has never been shy of models. We study mes-
sage passing and shared memory systems, synchronous and asynchronous algorithms,
Byzantine and selfish nodes, self-stabilization and failure-detection, to only name a few
of the most typical modeling facets. In fact, what is (im)possible and/or (in)efficient in
which model of distributed computation often outranks the importance of solving this
or that problem in a specific model. Still, when it comes to sensor networks it seems
that our abundance of models is not enough.

Most algorithms for sensor networks proposed in literature are meant to be executed
by the sensor nodes during the system’s operation. For example, when a node receives
a message, it performs some (simple and local) computation, and—depending on the
computation’s results—sends a new message to its neighbors. A node a priori only
knows its own state. In order to learn more about the other nodes in the network, it has
to communicate with its neighbors. By collaboration of the nodes, global operations
such as (multi-hop) routing can be achieved. Since the activity is distributed among the
nodes, these algorithms are called distributed algorithms [10]. Distributed algorithms
raise many interesting research questions. For example: What can be computed in a
distributed fashion, and what not? How efficient is a distributed algorithm compared to
a corresponding global algorithm?

Every (global) algorithm can easily be turned into a distributed algorithm: Sim-
ply centrally collect the distributed state, compute a global solution, and distribute
this solution. However, this simple routine is often unreasonably pricey. Since sending
and receiving messages are expensive operations in wireless networks (e.g., medium

26 R. Wattenhofer

access control, energy consumption), a reasonable distributed algorithm should mini-
mize communication. This motivates the introduction of localized algorithms [5, 13].2

A localized algorithm is a special case of a distributed algorithm.

Model 1 (Localized Algorithms). In a k-localized algorithm, for some parameter k,
each node is allowed to communicate at most k times with its neighbors. A node can
decide to retard its right to communicate; for example, a node can wait to send messages
until all its neighbors having larger identifiers have reached a certain state of their
execution.

In spite of the restricted communication model, localized algorithms can be slow. A
node u might have to wait for a neighbor v, while node v in turn has to wait for its
neighbor w, etc. Thus, as a matter of fact there can be a linear chain of causality, with
only one node being active at any time. This yields a worst-case execution time of Θ(n),
where n is the number of nodes.3 If we do not want this linear running time, we need
to resort to another model [8, 10].

Model 2 (Local Algorithms). In a k-local algorithm, for some parameter k, each node
can communicate at most k times with its neighbors. In contrast to k-localized algo-
rithms nodes cannot delay their decisions. In particular, all nodes process k synchro-
nized phases, and a node’s operations in phase i may only depend on the information
received during phases 1 to i−1. The most efficient local algorithms are often random-
ized [7, 9]; that is, the number of rounds k can vary.

Observe that in a k-local algorithm, nodes can only gather information about nodes in
their k-neighborhood. In some local algorithms [7] the algorithm designer can choose
an arbitrarily small constant k (at the cost of a lesser approximation ratio). This makes
local algorithms particularly suited in scenarios where the nodes’ environment changes
frequently, as the algorithm can constantly adapt to the new circumstances. However,
due to the synchronous phases, local algorithms may make greater demands on the
media access sub-layer than localized algorithms. In particular, in unreliable wireless
networks it seems to be costly to implement a media access control scheme that al-
lows for synchronous rounds, as messages will be lost due to interference (conflicting
concurrent transmissions) or mobility (even if the nodes themselves are not mobile, the
environment is typically dynamic, temporarily enabling/disabling links).

Dealing with unreliability has always been a core interest of the distributed com-
puting community. A powerful concept for coping with failures is self-stabilization
[4]. Fortunately, using a simple trick [3], every local algorithm is immediately self-
stabilizing. The trick works as follows (Section 4 of [3]): Every node keeps a log of
every state transition it has taken until its current state; generally this boils down to
memorizing the local variables of each step of the main loop. If each node constantly
sends its current log to all neighbor nodes, each node can check and correct every tran-
sition it has made in the past. Assuming that all inputs are correct (variable initialization
and random seeds are stored in the imperishable program memory, sensor information

2 To the best of our knowledge nobody has ever bothered to formally define what a localized
algorithm is. However, all papers we are aware of implicitly use a model similar to Model 1.

3 And many localized algorithm do exhibit this linear worst-case.

Sensor Networks: Distributed Algorithms Reloaded – or Revolutions? 27

can be re-checked) every fault due to memory or message corruption will be detected
and corrected. For details we refer to [3].

Turning a k-local algorithm into a self-stabilizing algorithm with [3] blows up mes-
sages by a factor k (in the worst case); on the other hand we immediately get an algo-
rithm which works on a sensor network as the hardest wireless problems (messages lost
due to interference and mobility) are covered by the self-stabilization model. Also, in
case of an error (such as a lost message), only the k-neighborhood of a node is affected.4

In practice, for some local algorithms the detour to self-stabilization may be costly,
as the message overhead is prohibitive;5 instead we need models that integrate interfer-
ence. One solution is the so-called unstructured radio network model [1, 2, 6] where the
algorithm designer has to implement her own medium access scheme from scratch.

Model 3 (Unstructured Radio Networks). In the unstructured radio network model
time is divided into slots. In each time slot, each node can decide whether to transmit,
listen (or sleep). If two conflicting nodes transmit simultaneously, a potential receiver
cannot decode any message. Nodes are distributed in an arbitrary (worst-case) multi-
hop fashion, and may wake-up asynchronously (also worst-case).

The unstructured radio network model may be classified further, for example depend-
ing to what extent collisions can be detected by a receiver. The unstructured radio
network model seems to fit practice well, especially if teamed up with a sensible topol-
ogy/interference model such as signal-to-interference-plus-noise ratio or bounded inde-
pendence graph [12]. Clearly, the slotted-time assumption is a simplification, however
as usual the difference between slotted and unslotted can easily be bounded [11].

Unfortunately, unstructured radio network algorithms tend to be quite technical, as
even higher-layer algorithms need to specify media access. We believe that there is room
for novel models with more coarse-grained assumptions how the media is accessed.
One might for example imagine a model abstracting away from media access, where
an adversary schedules transmissions. It seems that this model only makes sense if
the adversary is restricted appropriately, that is, if there are fairness guarantees. For
example, the adversary might have to schedule each node at least once every Θ(n)
rounds. Moreover, one could imagine an adversary which delivers a message only to a
subset of a node’s neighbors, because the other neighbors experience collisions.

3 Conclusions

This paper has presented and compared a subjective selection of algorithmic models.
For other modeling aspects, we refer to [12]. We want to emphasize that there is no
optimal model, and that an engineer has to choose the model which reflects her needs
best. Generally, we believe that for efficiency considerations, a slightly idealistic model
can be fine. However, when it comes to issues such as correctness of an algorithm,

4 In principle localized algorithms can also benefit from [3], however, errors are not restricted
to a k-neighborhood but may propagate the whole network – we experience a troublesome
butterfly effect.

5 Currently the payload constant of a packet in TinyOS is 29 bytes.

28 R. Wattenhofer

it seems that a more pessimistic or conservative model should be preferred. In other
words, a robust algorithm is also correct in a more general model than for which it has
been studied or proven efficient.

Acknowledgments

We would like to thank Stefan Schmid and Thomas Moscibroda for valuable
discussions.

References

1. N. Abramson. The ALOHA System. In Computer-Communication Networks, Prentice Hall,
1973.

2. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A Lower Bound for Radio Broadcast. In
Journal of Computer and System Sciences, 1991.

3. B. Awerbuch and G. Varghese. Distributed Program Checking: A Paradigm for Building
Self-stabilizing Distributed Protocols. In 32nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1991.

4. E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. In Communications
of the ACM, 1974.

5. D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next Century Challenges: Scal-
able Coordination in Sensor Networks. In Fifth Annual International Conference on Mobile
Computing and Networking (MobiCom), 1999.

6. F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing Newly Depoloyed Ad-hoc and Sen-
sor Networks. In 10th Annual Intl. Conf. on Mobile Computing and Networking (MobiCom),
2004.

7. F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Price of Being Near-Sighted. In ACM-
SIAM Symp. on Discrete Algorithms (SODA), 2006.

8. N. Linial. Distributive Graph Algorithms – Global Solutions from Local Data. In 28th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1987.

9. M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. In SIAM
Journal on Computing, 1986.

10. D. Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

11. L. G. Roberts. Aloha packet system with and without slots and capture. In Computer Com-
munication Review, 1975.

12. S. Schmid and R. Wattenhofer. Algorithmic Models for Sensor Networks. In 14th Inter-
national Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), Island of
Rhodes, Greece, April 2006.

13. Y. Wang, X.-Y. Li, P.-J. Wan, and O. Frieder. Sparse Power Efficient Topology for Wireless
Networks. Journal of Parallel and Distributed Computing, 2002.

Local Algorithms for Autonomous Robot
Systems

Reuven Cohen1 and David Peleg2,�

1 Dept. of Electrical and Computer Eng., Boston University, Boston, MA, USA
cohenr@bu.edu

2 Dept. of Computer Science, Weizmann Institute, Rehovot, Israel
david.peleg@weizmann.ac.il

Abstract. This paper studies local algorithms for autonomous robot
systems, namely, algorithms that use only information of the positions
of a bounded number of their nearest neighbors. The paper focuses on
the spreading problem. It defines measures for the quality of spreading,
presents a local algorithm for the one-dimensional spreading problem,
prove its convergence to the equally spaced configuration and discusses
its convergence rate in the synchronous and semi-synchronous settings.
It then presents a local algorithm achieving the exact equally spaced
configuration in finite time in the synchronous setting, and proves it is
time optimal for local algorithms. Finally, the paper also proposes an
algorithm for the two-dimensional case and presents simulation results
of its effectiveness.

1 Introduction

1.1 Background and Motivation

Swarms of low cost robots provide an attractive alternative when facing various
large-scale tasks in hazardous or hostile environments. Such systems can be made
cheaper, more flexible and potentially resilient to malfunction. Indeed, interest
in autonomous mobile robot systems arose in a large variety of contexts (see
[3, 4, 11, 13, 14, 15, 16, 21] and the survey [5]).

Along with developments related to the physical engineering aspects of such
robot systems, there have been recent research attempts geared at developing
suitable algorithmics, particularly for handling the distributed coordination of
multiple robots [2, 6, 17, 19, 20]. A number of computational models were pro-
posed in the literature for multiple robot systems. In this paper we consider
the model of [2, 19]. (An alternative, weaker, model is found in [6, 9, 18].) In
this model, the robots are assumed to be identical and indistinguishable, lack
means of communication, and operate in discrete cycles. Each robot may wake
up at each of these cycles, and make a move according to the locations of the
other robots in the environment. The moves are assumed to be instantaneous.
� Supported in part by a grant from the Israel Science Foundation.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 29–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 R. Cohen and D. Peleg

The model also makes the assumption that the robots are oblivious, i.e., have
no memory and can only act according to a calculation based only on the their
last observation of the world. Oblivious algorithms have the advantage of being
self-stabilizing (i.e., insensitive to transient errors and to the addition or removal
of robots) and are also usually simple to design and implement.

Algorithms were developed in the literature for a variety of control problems
for robot swarms [2, 6, 9, 11, 17, 18, 19, 20]. Most of those algorithms, however,
require the robots to perform “global” calculations in each cycle, relying on the
entire current configuration. For example, algorithms for the gathering problem,
which requires the robots to gather at one point, typically instruct each robot to
calculate the goal point to which it should move based on the exact locations of
all the other robots in the current configuration. This calculation can be fairly
simple and require only linear time (e.g., computing the average location of the
robots), but in some cases involves a more complex computation, such as finding
the smallest enclosing circle or the convex hull of the robots. Moreover, for very
large swarms, and when each robot operates in fast short cycles, even a linear
time computation per cycle may be too costly. A similar difficulty may arise
when the task at hand involves coordinated movement in a certain direction
while avoiding collisions, or evenly spreading the robot swarm in a given area.

The current paper addresses the issue of local and simple algorithms for con-
trol and coordination in robot swarms. It may be instructive to turn to the
metaphor of insect swarms, and consider the way such problems are managed.
It would appear that in a large swarm of bees, for instance, an individual bee
would not calculate its next position based on the exact positions of all other
bees. Rather, it is likely to decide its course of movement based on the posi-
tions and trajectories of a few nearby bees forming its immediate neighborhood.
This local information is often sufficient to allow the individual insect to plan its
movement so as to follow its swarm, avoid collisions and so on. Such policy would
lead to a much “lighter” calculation, which can be carried out more frequently
and effectively.

This analogy thus motivates the idea of exploring the behavior and perfor-
mance of local, or “light-weight” algorithms for controlling a swarm of robots.
Such algorithms have several obvious advantages over their more traditional
“global” counterparts, in simplicity, computational complexity, energy consump-
tion and stability. They also have the advantage of being applicable in a “limited
visibility” model, where each robot sees only its close vicinity.

An enabling prerequisite is that each robot be equipped with a mechanism
enabling it to efficiently obtain as input information about its locality, i.e., its
immediate neighbors. (Clearly, if the robot’s input device is designed so that its
input consists a global picture of the configuration, and the robot’s neighborhood
can only be deciphered by going through this entire picture and performing
complex calculations, then the robot might as well perform a global algorithm
on its input). In particular, a robot equipped with a sonar may be able to first
detect nearby objects. If the input to the robot is in the form of a visual image,
then it may be necessary to have a scanning algorithm on the image, sweeping

Local Algorithms for Autonomous Robot Systems 31

the image from the point of the robot outwards, thus hitting the nearby robots
first. The scan can be terminated after identifying the immediate neighbors.
Hereafter we will ignore this issue, and assume that a suitable input mechanism
exists, efficiently providing the robot in each cycle with a concise and accurate
description of its immediate neighborhood.

In this paper we explore the “light-weight” approach to robot swarm control
through the concrete example of the robot spreading problem. In this problem,
N robots are initially distributed in the plane, and the goal is to spread them
“evenly”within the perimeters of a given region. To consider methods for spread-
ing one should first define a criterion for the quality of spreading of a given robot
distribution. For the one-dimensional case this is easy, as the best configuration
is clearly the equal spacing arrangement on the line, and all other configurations
can be compared to this one. Quantitative measures for the spreading qual-
ity are presented in Section 2. In higher dimensions even the definition of the
spreading quality becomes more difficult, as different criteria may be devised.
One may consider, to list but a few examples, the minimum distance over all
robot pairs, the average distance between each robot and its nearest neighbor,
or the time needed to reach the point most distant from any robot. The choice
of a definition may also depend on the motivation for the application of the
spreading algorithm. The definition we use here is the average over all robots of
the minimum distance to the nearest “object”,

dav =
1
N

∑
i

min
j �=i

{di,j} ,

where the objects considered in taking the minimum are all other robots and all
points of the perimeter of the region.

We discuss two timing models for the robot operations. In the FSYNC (syn-
chronous) model, it is assumed that the robots operate in cycles, where all robots
operate in each cycle, i.e. take a snapshot of their surroundings, run their algo-
rithm on the snapshot, and move accordingly. In the SSYNC (semi-synchronous)
model, the robots are again assumed to operate in cycles. However, not all robots
are active in every cycle. The activation schedule is assumed to be determined
by an adversary, but it is guaranteed that every robot is activated an infinite
number of times.

When the robots share a common orientation and the model is synchronous
the task of spreading via a global algorithm is quite easy. A simple solution can
be obtained by agreeing on an ordering (such as top-to-bottom and then left-
to-right) and deciding on each robot’s final location accordingly. This solution
can be applied even in asynchronous settings if the movements of each robot are
restricted so as to preserve the ordering. When only local information is used, it
is difficult to prevent the swarm from converging to a non-optimal configuration,
which is locally optimal for almost all robots. This phenomenon is well known
in physical systems, e.g., such “defects” are known to determine many of the
crystal’s properties, as well as in artificial intelligence search, where finding the
optimal state is difficult when many local minima exist.

32 R. Cohen and D. Peleg

Another advantage of global algorithms over local ones is the convergence rate
or finishing time of the algorithm. It is easily seen that an algorithm based on
ordering in a synchronous setting, will achieve the final position in a single step.
A local algorithm will require at least O(N) steps for the information to reach
each of the robots, as proven below in Section 3.

In this paper we present an oblivious local algorithm for spreading in one di-
mension. We prove its validity for the synchronous and semi-synchronous models
and discuss its convergence rate. We also present a non-oblivious local algorithm
for spreading in finite (and optimal) time, and discuss some of its shortcomings.
We then describe a generalization of the first algorithm to two dimensions and
present simulation results showing its behavior. We also discuss several other
alternatives and their relative strengths and weaknesses.

A related problem was studied by Dijkstra in [8]. There, n units labeled
{0, 1, . . . , n − 1} are initially placed around a ring, and apply a rule whereby
unit i moves to the middle point between units i − 1 and i + 1 (modulo n). It
is shown therein that under this rule, the system might in certain cases oscillate
and fail to converge, even in a synchronous setting. A discussion of a possible
solution to this problem appears in [7].

1.2 The Model

The basic model studied in [2, 20] can be summarized as follows. The N robots
execute a given algorithm in order to achieve a prespecified task. Time is divided
to discrete events, where in each of these events each robot may or may not be
active, under the condition that each robot is activated an infinite number of
times. Whenever a robot is activated it takes a snapshot of its surroundings,
which is used as the input for the algorithm executed by the robot. The output
of the algorithm is a destination point, to which the robot moves instantaneously.

Following the common model in this area, the robots are assumed to be rather
limited. To begin with, they have no means of directly communicating with each
other. Moreover, they are assumed to be oblivious (or memoryless), namely, they
cannot remember their previous states, their previous actions or the previous po-
sitions of the other robots. Hence the algorithm used in the robots’ computations
cannot rely on information from previous cycles, and its only input is the current
configuration. As explained earlier, while this is admittedly an over-restrictive
and unrealistic assumption, developing algorithms for the oblivious model has
the advantages of self-stabilization (i.e., the ability to recover from any finite
number of transient errors) and suitability to dynamical settings, where robots
are added and removed during operation.

1.3 Preliminaries

We review some properties of discrete Fourier transforms to be used in our
analysis later on.

The discrete sine transform: The discrete sine transform is appropriate for anti-
symmetric functions or alternatively, functions fixed to zero at both edges, which
can be made antisymmetric by an appropriate continuation.

Local Algorithms for Autonomous Robot Systems 33

Consider the N − 2 vectors v̄k of dimension N − 2 defined componentwise by

(vk)i =

√
2

N − 1
sin ki, i = 1, 2, . . . , N − 2 ,

for k values from the range K = {k = mπ
N−1 | m = 1, . . . , N − 2}. We make use of

the following known lemmas (proofs can be found in standard books on Fourier
series or digital signal processing; see, e.g., [1]).

Lemma 1. For k, q ∈ K, we have v̄k · v̄q = δk,q, where δ stands for Kroneker’s
delta, i.e., δk,q = 1 if k = q and 0 otherwise.

Corollary 1. The N − 2 vectors v̄k form an orthonormal basis to RN−2.

For a sequence of reals ηi, i = 0, · · · , N − 1, satisfying η0 = ηN−1 = 0, and for
k ∈ K, one can define the discrete Fourier transform of η̄ as

μk =

√
2

N − 1

N−1∑
i=0

ηi sinki. (1)

The inverse transform is given by the following lemma.

Lemma 2. ηj =

√
2

N − 1

(N−2)π
N−1∑

k= π
N−1

μk sin kj.

The discrete cosine transform: The discrete cosine transform is widely used in
digital signal processing. The version presented below is appropriate for sym-
metric functions, having a symmetry axis at x = −1/2.

Define the functions f(i, k) = A(i, k) cos
kîπ

m
, for i, k ∈ {0, 1, . . . , 2m − 1},

where hereafter î = i + 1
2 , and

A(i, k) =

{
1√
m

, k = 0,
1√
2m

, otherwise.

We bring the following without proof.

Lemma 3. (1)
∑2m−1

i=0 f(i, k)f(i, q) = δk,q, (2)
∑2m−1

k=0 f(i, k)f(j, k) = δi,j .

Suppose now that ηi, i = 0, . . . , 2m − 1 is a sequence of numbers with ηi =
η2m−1−i, and define the transformed sequence μk =

∑
i ηif(i, k) for k =

0, . . . , 2m− 1. Lemma 3 implies the following.

Corollary 2. ηi =
∑

k μkf(i, k).

Let φ(j, k, q) =
2m−1∑
i=0

f(i, k)f(i + j, q).

Lemma 4. φ(i, k, q) = δk,q cos jqπ
m .

34 R. Cohen and D. Peleg

2 A Local Spreading Algorithm in One Dimension

2.1 The Algorithm

A swarm of N robots are positioned on a line. The aim is to spread the robots
along this line with equal spacing between each pair of adjacent robots, where
the size of the occupied segment is determined by the positions of the leftmost
and rightmost robots. One may assume, instead, that the leftmost and rightmost
positions represent some perimeter marks rather than robots. Each robot uses its
own coordinate system. However, since the algorithm, presented below, is linear,
any coordinate system will give the same resulting destination. Therefore, we use
an external, global coordinate system, on which the robots have no knowledge.
We refer to the robots according to their order on the line, and denote the
position of each robot i, 0 ≤ i ≤ N − 1, at time t, in this global coordinate
system by Ri[t].

The local algorithm for spreading in constant distances operates as follows.

Algorithm Spread (Code for robot i)
If no other robot is seen on the left or on the right then do nothing.
Otherwise, move to the point Ri+1+Ri−1

2 .

2.2 The FSYNC Model

We now turn to prove the convergence of Algorithm Spread. We choose the
global coordinate system such that R0[t] = 0 and RN−1[t] = 1 for all t (since
the external robots do not move). As the goal is to spread the robots uniformly,
upon termination the ith robot should be placed in position i/(N − 1). Define
ηi[t] as the shift of the ith robot’s location at time t from its final designated
position, namely,

ηi[t] = Ri[t] −
i

N − 1
.

As our progress measure we define the quantity

ψ[t] =
N−1∑
i=0

η2
i [t] ,

where by definition, η0[t] = ηN−1[t] = 0 for all t.
By executing the algorithm, the position of a robot changes to

Ri[t + 1] =
Ri−1[t] + Ri+1[t]

2
,

hence for 1 ≤ i ≤ N − 2, the shifts change with time as

ηi[t + 1] =
ηi+1[t] + ηi−1[t]

2
. (2)

We now turn to prove our main lemma.

Local Algorithms for Autonomous Robot Systems 35

Lemma 5. For N robots executing Algorithm Spread in the FSYNC model
ψ[t] is a decreasing function of t unless the robots are already equally spread (in
which case it remains constantly zero).

Proof. Eq. (2) gives the change in η in every time step. The value of ψ thus
changes to

ψ[t + 1] =
1
4

N−2∑
i=1

(ηi+1[t] + ηi−1[t])2 .

The decrease in ψ is therefore

ψ[t] − ψ[t + 1] =
1
4
(η1[t]2 + ηN−2[t]2) +

1
4

N−2∑
i=1

(ηi+1[t] − ηi−1[t])2 ,

which is a positive quantity, proving the lemma.

Theorem 1. For N robots executing Algorithm Spread in the FSYNC model:
1. Every O(N) cycles, ψ[t] is at least halved.
2. The robots converge to a point.

Proof. The equations for the shift changes of the robots are given in Eq. (2) for
all 0 < i < N − 1. Denote by μk the Fourier (Sine) series as defined in Eq. (1).
By Eq. (1) and Lemmas 2 and 1,

ψ[t] =
∑

i

η2
i [t] =

2
N − 1

∑
i,k,q

μk[t]μq[t] sin ki sin qi

=
2

N − 1

∑
k,q

μk[t]μq[t]
N − 1

2
δk,q =

∑
k

μ2
k[t]. (3)

Similarly, applying the transform (1) to the linear equation array (2) and
noting that η0[t] = ηN−1[t] = 0 for all times, t, yields

μk[t + 1] =

√
1

2(N − 1)

N−2∑
i=1

sinki(ηi−1[t] + ηi+1[t])

=

√
1

2(N − 1)

N−3∑
j=0

sink(j + 1)ηj [t] +

√
1

2(N − 1)

N−1∑
j=2

sin k(j − 1)ηj [t]

=

√
1

2(N − 1)

N−1∑
j=0

sink(j + 1)ηj [t] +

√
1

2(N − 1)

N−1∑
j=0

sin k(j − 1)ηj [t],

where the two terms added to each sum at the last line are zero as sin k · (N − 1)
= sin k · 0 = 0, and η0[t] = ηN−1[t] = 0. Using the fact that sink(i± 1) =
sin ki cos k ± sin k cos ki, we get

36 R. Cohen and D. Peleg

μk[t + 1] =

√
1

2(N − 1)

N−1∑
j=0

(sin k(j + 1) + sink(j − 1))ηj [t]

=

√
1

2(N − 1)

N−1∑
j=0

2 sinkj cos kηj [t]

= cos k · μk[t].

Hence, by Eq. (3),

ψ[t + 1] =
∑

k

μ2
k[t + 1] =

∑
k

(cos kμk[t])2 =
∑

k

cos2 k · μ2
k[t]. (4)

The values of k are k = π
N−1 , . . . ,

π(N−2)
N−1 . The largest factor is cos π

N−1 ≈ 1− c
N

for constant c > 0, hence by (4) and using (3) again, we get that

ψ[t + 1] ≤
(
1 − c

N

)2∑
k

μ2
k[t] ≤

(
1 − c

N

)2
ψ[t].

Thus, ψ is at least halved every ln 2
2c N steps, proving the claim.

2.3 The SSYNC Model

We now turn to the SSYNC model. In the SSYNC model we can no longer
assume that all robots move at each time step. Therefore, when looking at the
robots moving at some time step we can no longer assume that the robots at
the boundary of the moving group are located at their final designated position.
Thus, the subsequent analysis employs the cosine series rather than the sine
series, since the cosines allow for a constant displacement term (because cos 0 �=
0 = sin 0).

Our rational for proving convergence is as follows. We first introduce a non-
decreasing quantity and prove its monotonicity. To prove that it decreases by a
constant factor, we need to show that the presented quantity is related to the
non-constant terms of the cosine series. This is done in Lemmas 7–9. Finally, in
Theorem 2, we show that the non-constant terms are decreased by a constant
factor on every round, proving convergence.

For i = 1, . . . , N − 1, define the robot gaps as the quantities

γi[t] = ηi[t] − ηi−1[t].

For each robot moving in the tth step, the equation for its position is given in
(2). For any time step t, the moving robots can be grouped into chains, each of
which is bounded by two stationary robots. Since the chains have no effect on
each other, each can be handled separately.

Consider one such chain consisting of m− 1 moving robots, which we number
1, . . . ,m− 1 regardless of their real numbering. The boundary stationary robots

Local Algorithms for Autonomous Robot Systems 37

will be numbered 0 and m. The appropriate equations for the gaps between them
are

γj [t + 1] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ1[t]+γ2[t]
2 , j = 1,

γj+1[t]+γj−1[t]
2 , j = 2, . . . ,m− 1,

γm[t]+γm−1[t]
2 , j = m.

To simplify this, we define virtual robots for every integer j outside the range
[0, N−1], and extend the definition of γ to every j outside [0, N−1] by requiring
that γj = γj+2m, and γj = γ−j+1 for every j. Using this definition, γ0 = γ1 and
γm+1 = γ−m+1 = γm. Therefore the equations take a simpler form

γj [t + 1] =
γj+1[t] + γj−1[t]

2
, for every j . (5)

Define the Fourier transform of γj to be εk for k = 0, . . . , 2m− 1 satisfying

γj [t] =
2m−1∑
n=0

εk[t]f(j, k) ; εk[t] =
2m−1∑
n=0

γj [t]f(j, k)

We now define the quantity ϕ[t] =
N−1∑
j=1

γ2
j [t] .

Lemma 6. In the SSYNC model ϕ[t] is a non-increasing function of t.

Proof. Apply the transform to Eq. (5) to obtain

εk[t + 1] =
m−1∑
j=0

γj [t + 1]f(j, k)

=
2m−1∑
j=0

f(j, k)
2

(
2m−1∑
p=0

f(j + 1, p)εp[t] +
2m−1∑
p=0

f(j − 1, p)εp[t]

)

=
2m−1∑
p=0

cos
pπ

m
δp,kεp[t] = cos

kπ

m
εk[t] , (6)

where the last line uses Lemma 4. Now, from the orthogonality of the functions
f(j, k) (Lemma 3) it follows that

m−1∑
j=0

γ2
j [t] =

1
2

2m−1∑
j=0

γ2
j [t] =

1
2

2m−1∑
k=0

ε2k[t].

By Eq. (6),
2m−1∑
k=0

ε2k[t + 1] =
2m−1∑
k=0

ε2k[t] cos2
kπ

m
≤

2m−1∑
k=0

ε2k[t].

38 R. Cohen and D. Peleg

Since the sum of terms for the moving robots decreased, and the other terms
were not affected, ϕ could not increase.

For a chain of robots 0, . . . ,m, define γmax[t] = maxj∈{1,...,m−1} γj [t] and
γmin[t] = minj∈{1,...,m−1} γj [t]

Lemma 7. For a chain of robots moving at time t, [γmin[t + 1], γmax[t + 1]] ⊆
[γmin[t], γmax[t]].

Proof. By Eq. (5) each new value is the average of two old ones.

For the entire group of robots define Γi to be the ith smallest value of the
γj ’s. Γmax[t] = ΓN−1[t] = maxj∈{1,...,N−1} γj [t] and Γmin[t] = Γ1[t] =
minj∈{1,...,N−1} γj [t].

Lemma 8. There exists 0 < i < m such that (Γi[t] − Γi−1[t])2 ≥ ϕ[t]
N3 .

Proof. By the definition,
∑N−1

j=0 γj [t] = 0, and therefore, Γmax[t] ≥ 0 ≥ Γmin[t].
Thus, for every i γi[t] ≤ Γmax[t] + Γmin[t] and ϕ[t] ≤ (N − 1)(Γmax[t] + Γmin[t]).
Now, ΓN−1[t] − Γ1[t] =

∑N−1
j=2 Γj [t] − Γj−1[t], so there must exist some i such

that

Γi[t] − Γi−1[t] ≥ Γmax[t] − Γmin[t]
N − 2

≥ Γmax[t] + Γmin[t]
N − 2

.

Therefore, (Γi[t] − Γi−1[t])2 ≥ ϕ[t]
N3 .

Lemma 9. For a chain of gaps, 0, . . . ,m− 1 with γmax[t] − γmin[t] ≥ c, ε20[t] +
c2

2 ≤
∑2m−1

k=0 ε2k[t].

Proof. By definition ε20[t] = 1
2m (
∑

Γi[t])2 ≤
∑

i γ
2
i [t]. Denote γs[t] = γmax[t] =

a + b and γp[t] = γmin[t] = a − b, with b ≥ c/2. The sequence with γs[t] and
γp[t] replaced by a will have the same ε0[t] since the average remains the same.
However∑

i

γ2
i [t] =

∑
i�=s,p

γ2
i [t] + (a− b)2 + (a + b)2 =

∑
i�=s,p

γ2
i [t] + 2a2 + 2b2 ≥ ε20[t] + 2b2.

Since b ≥ c/2 the lemma follows.

Theorem 2. In the SSYNC model N robots executing Algorithm Spread will
converge to a configuration with equal distances.

Proof. For a time t take Δ[t] = maxj(Γj [t]− Γj−1[t]) and g = arg maxj(Γj [t]−
Γj−1[t]). By Lemma 8, Δ2[t] > ϕ[t]/N3. Define the sets of gaps A = {i|γi[t] ≥
Γg[t]} and B = {i | γi[t] ≤ Γg−1[t]}. Suppose that t′ ≥ t is the first time a
robot i, such that one of its neighboring gaps is of set A and the other of set
B makes a move. For as long as no robot sitting between a gap in A and a
gap in B is activated no gap can leave either set, by Lemma 7 and therefore
Γg[t∗] − Γg−1[t∗] ≥ Γg[t] − Γg−1[t] for t ≤ t∗ ≤ t′.

Local Algorithms for Autonomous Robot Systems 39

Denote by C = {. . . , i, i + 1 . . .} the chain of gaps surrounding robot i that
change at time t′. By Lemma 8 |Γi[t′] − Γi−1[t′]| ≥

√
ϕ[t′]

N3/2 and therefore

max(|Γi[t′]|, |Γi−1[t′]|) ≥
√

ϕ[t′]
2N3/2 , leading to max(Γ 2

i [t′], Γ 2
i−1[t

′]) ≥ ϕ[t′]
4N3 . Now,∑

i∈C γ2
i [t′] ≥ max(Γ 2

i [t′], Γ 2
i−1[t

′]) ≥ ϕ[t′]
4N3 . Consider the change to

∑
i∈C γ2

i af-
ter step t′. Again, we number the gaps in C by j = 0, . . . ,m − 1 and complete
with virtual robots. We have

2m−1∑
j=0

γ2
j [t′ + 1] =

2m−1∑
k=0

ε2k[t′ + 1] =
2m−1∑
k=0

cos2
kπ

m
ε2k[t′].

For all k > 0, cos2 kπ
m ≤ cos2 π

m = O
(
1 − 1

m2

)
≤ O
(
1 − 1

N2

)
.

By Lemma 9
∑

k �=0 ε2k[t′] ≥ ϕ[t′]
N3 and by the above, whenever an appropriate

robot makes a move the terms εk, k �= 0 are decreased by O(1/N2), therefore, ϕ
is decreased by O(1/N5) at timestep t′. By Lemma 6 ϕ[t′] ≤ ϕ[t]. The theorem
follows.

3 An Exact Global Algorithm in One-Dimension

Assuming each robot knows the number of robots at each of its sides (i.e., robot
1 ≤ i ≤ N knows it is the ith robot in the line), it is possible to achieve the goal
state after a finite number of steps using the following algorithm.

Algorithm Fast_Spread (Code for robot i)
1. t ← 1.
2. While t < N − 2, move to the point Ri+1+Ri−1

2 , and set t ← t + 1.
3. If t = N − 2 then solve the linear equation array Eq. (7) and move to the
point (x1[0] + xN [0]) i−1

N−1 .

We assume each robots designates its coordinate center at the point where it
starts the algorithm. We first define the equation array:

xi[0] = 0 ; xi±1[t] =
t∑

j=0

(
t

j

)
xi±1+2j−t[0]

2t
(7)

We now show that Algorithm Fast_Spread guarantees reaching the wanted
position after exactly N − 2 moves.

Lemma 10. The equation array (7) for a fixed 1 < i < N , in conjunction with
the data of the robot’s neighbors xi±1[t] at times t = 0, 1, . . . , N − 3 provides a
unique solution for x1[0], . . . , xN [0].

Proof. Look at the set of equations for xi[0], xi−1[t] for t = 0, 1, . . . , i− 2 and
xi+1[t] for t = 0, 1, . . . , N − i − 1. This set includes exactly N equations in
N unknowns. The equations are independent since for each time t0 there is a
nonzero coefficient that was zero for all times t < t0. Therefore, a unique solution
exists.

40 R. Cohen and D. Peleg

Theorem 3. In the FSYNC model N robots executing algorithm Fast_Spread
will reach their exact final position after N − 2 steps.

Proof. By Lemma 10 each robot can deduce the position of all other robots
after N − 3 steps. Afterwards it can solve an array of linear equations (7) and
deduce its final position, which it will assume in the last step.

Theorem 4. In the SY N model the algorithm Fast_Spread achieves the fastest
possible convergence to the final position.

Proof. Since each robot can only see its nearest neighbors, and no communica-
tion is allowed, no information of the positions of the external robots can move
more than one robot per move. At the beginning, each robot has information on
its own position and its nearest neighbors. After the j step it has information on
its j + 1st nearest neighbors. Therefore, at least N − 3 steps are needed for the
2nd and N − 2st robots to get information on the position of the most distant
robots, and another move to achieve their final position.

Notice, however, that the coefficient of ηj [0] in the linear equations obtained
by robot k is proportional to 2−|j−k|. Therefore, the information accuracy de-
cays exponentially quickly with the distance, and thus is hardly usable in any
reasonable model of finite accuracy robots.

4 Local Spreading in Two Dimensional Space

In two dimensions the task of spreading via a local algorithm becomes more
complicated. The set of nearest neighbors is of undetermined size, as even with
no articulation points, a robot may have all other robots at an equal distance.
Furthermore, the boundaries of the region in which the robots may spread cannot
be efficiently marked by robots in a local manner. To simplify the situation we
assume that the robots are confined to the region [0, 1]× [0, 1], and that the walls
of this region are visible by the robots and serve as detractors. Furthermore, we
assume the robots share the same orientation, where the axes parallel the walls.
The algorithm is based on each robot, i, dividing space into four quadrants, Q0
to Q3, according to the orientation (see Fig. 1). In our simulation the quadrant
boundaries were taken to lay in an angle of 45◦ to the axes to simplify the
treatment of walls. This, assumption, however, should not be relevant to the
results. Objects situated on the dividing lines may be considered, for instance,
to belong to the lower numbered quadrant.

To illustrate the behavior of local algorithms for achieving spreading in two
dimensions, we introduce an algorithm, named Spread_2d, in the spirit of the
1-dimensional Algorithm Spread presented above, and present empirical results
indicating that this algorithm converges to a good approximation of the equal
spacing spreading. Let us remark that an inetresting alternative approach to the
problem follows from reversing the gathering technique presented in [10], for a
slightly different continuous model.

Local Algorithms for Autonomous Robot Systems 41

2
0

3

1m
Q

Q

Q

m
m

Q
m3

1

0

2

Fig. 1. The four quadrants of a robot’s view. Here mq = m2

Algorithm Spread_2d (Code for robot i)
For j = 0, . . . , 3 do:
(a) mj ←coordinate of nearest robot or perimeter point in quadrant Qj .
(b) dj ← dist(i,mj).

q ← arg minj {dj}; dmin = minj {dj}; dopp = d3−q;
Move away from current location by dmin−dopp

2dmin
mq.

Notice that in Algorithm Spread_2d an object may be either a robot or (the
nearest point of) the perimeter.

To study the behavior of Algorithm Spread_2d simulations were conducted
under various circumstances. We define the parameter

dav =
1
N

∑
i

min
j �=i

{di,j} ,

where the minimum is taken over all other robots and all points on the perime-
ter of the region. The behavior of this parameter, used as an indication of the
spreading efficiency, was studied as a function of time. In an equally spaced
square grid formation of the robots, the value of the parameter is dopt

av = 1√
N+1

.
This value can be used as an indication of the optimal spreading.

Fig. 2 presents the behavior of dav under Algorithm Spread_2d as a function
of time. The optimal value for this number of robots is dopt

av = 0.1 and, as can be
seen, the system saturates at a value close to the optimum. Fig. 3 presents the
locations of the robots at the initial and final states of the algorithm application.

One may consider other generalizations of the one-dimensional algorithm to
two dimensions. One such possible algorithm is based on moving to the average
position of the four nearest robots (one in each quadrant). Our experiments show
that this algorithm saturates quickly to a configuration which may sometimes
be very far from the optimal. Another possible algorithm may rely on each robot
calculating its Voronoi cell and moving to its center (according to some measure).
This algorithm has the problem of failing the locality criterion, since in the worst
case some of the robots may need to consider Ω(N) other robots in order to
calculate their Voronoi cell. The analysis of this algorithm is also difficult, since
the robots movement may change the entire structure of the Voronoi diagram
such that the Voronoi neighbors of a robot may change from cycle to cycle.
An approximation for this method may be obtained by using θ-graphs [12],

42 R. Cohen and D. Peleg

0 100 200 300steps0

0.02

0.04

0.06

0.08

0.1

d
av

Fig. 2. Results of the simulation of algorithm Spread_2d with N = 81 robots. The
dashed line is for the FSYNC timing model. The solid line is for the SSYNC timing
model with each robot having probability 1/2 for moving at each step.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 3. (a) The initial location of the robots, selected randomly in the region [0, 0.5] ×
[0.2, 0.5]. (b) The final locations of the robots, taken after 1000 steps.

which guarantees that each robot has exactly 2π/θ neighbors, thus guaranteeing
locality. The algorithm Spread_2d may be considered as such an approximation
with θ = π/2.

It should also be noted that Algorithm Spread_2d presented above, as well as
any other algorithm, will fail to break symmetry when starting from some highly
symmetrical configurations such as a line or a circle, which are very far from the
optimal configuration. This problem can be overcome by adding randomness to
the algorithm.

References

1. Ali N. Akansu and Richard A. Haddad. Multiresolution Signal Decomposition.
Academic Press, San Diego, CA, USA, 1992.

2. H. Ando, I. Suzuki, and M. Yamashita. Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In Proc. IEEE Symp. of Intelligent
Control, pages 453–460, August 1995.

Local Algorithms for Autonomous Robot Systems 43

3. T. Balch and R. Arkin. Behavior-based formation control for multi-robot teams.
IEEE Trans. on Robotics and Automation, 14, December 1998.

4. G. Beni and S. Hackwood. Coherent swarm motion under distributed control. In
Proc. DARS’92, pages 39–52, 1992.

5. Y.U. Cao, A.S. Fukunaga, and A.B. Kahng. Cooperative mobile robotics: An-
tecedents and directions. Autonomous Robots, 4(1):7–23, March 1997.

6. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gather-
ing problem. In Proc. 30th Int. Colloq. on Automata, Languages and Programming,
pages 1181–1196, 2003.

7. X. Defago and A. Konagaya. Circle formation for oblivious anonymous mobile
robots with no common sense of orientation. In Proc. 2nd ACM Workshop on
Principles of Mobile Computing, pages 97–104. ACM Press, 2002.

8. Edsger W. Dijkstra. Selected Writings on Computing: A Personal Perspective.
Springer, New York, 1982. pages 34-35.

9. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard tasks for weak
robots: The role of common knowledge in pattern formation by autonomous mobile
robots. In Proc. 10th Int. Symp. on Algorithms and Computation, 93–102, 1999.

10. N. Gordon, I.A. Wagner, and A.M. Bruckstein. Gathering multiple robotic a(ge)nts
with limited sensing capabilities. In Proc. 4th Int. Workshop on Ant Colony Opti-
mization and Swarm Intelligence, pages 142–153, September 2004.

11. D. Jung, G. Cheng, and A. Zelinsky. Experiments in realising cooperation between
autonomous mobile robots. In Proc. Int. Symp. on Experimental Robotics, 1997.

12. J.M. Keil and C.A Gutwin. Classes of graphs which approximate the complete
euclidean graph. Discrete computational Geometry, 7:13–28, 1992.

13. M.J. Mataric. Interaction and Intelligent Behavior. PhD thesis, MIT, 1994.
14. L.E. Parker. Designing control laws for cooperative agent teams. In Proc. IEEE

Conf. on Robotics and Automation, pages 582–587, 1993.
15. L.E. Parker. On the design of behavior-based multi-robot teams. J. of Advanced

Robotics, 10, 1996.
16. L.E. Parker, C. Touzet, and F. Fernandez. Techniques for learning in multi-robot

teams. In T. Balch and L.E. Parker, editors, Robot Teams: From Diversity to
Polymorphism. A. K. Peters, 2001.

17. G. Prencipe. CORDA: Distributed coordination of a set of atonomous mobile ro-
bots. In Proc. 4th European Research Seminar on Advances in Distributed Systems,
pages 185–190, May 2001.

18. G. Prencipe. Distributed Coordination of a Set of Atonomous Mobile Robots. PhD
thesis, Universita Degli Studi Di Pisa, 2002.

19. K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric
patterns with many mobile robots. J. of Robotic Systems, 13(3):127–139, 1996.

20. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. on Computing, 28:1347–1363, 1999.

21. I.A. Wagner and A.M. Bruckstein. From ants to a(ge)nts. Annals of Mathematics
and Artificial Intelligence, 31, special issue on ant-robotics:1–5, 1996.

How to Meet in Anonymous Network

Dariusz R. Kowalski1 and Adam Malinowski2,�

1 Department of Computer Science
The University of Liverpool

Liverpool L69 7ZF, UK
2 Instytut Informatyki, Uniwersytet Warszawski

Banacha 2, 02-097 Warszawa, Poland

Abstract. A set of k mobile agents with distinct identifiers and located in nodes
of an unknown anonymous connected network, have to meet at some node. We
show that this gathering problem is no harder than its special case for k = 2,
called the rendezvous problem, and design deterministic protocols solving the
rendezvous problem with arbitrary startups in rings and in general networks. The
measure of performance is the number of steps since the startup of the last agent
until the rendezvous is achieved.

For rings we design an oblivious protocol with cost O(n log �), where n is the
size of the network and � is the minimum label of participating agents. This result
is asymptotically optimal due to the lower bound showed in [18].

For general networks we show a protocol with cost polynomial in n and log�,
independent of the maximum difference τ of startup times, which answers in af-
firmative the open question from [22].

Keywords: mobile agents, gathering, rendezvous, anonymous networks, distri-
buted algorithms.

1 Introduction

We consider a gathering problem defined as follows: a set of k mobile agents originally
located at arbitrary nodes of a network—modeled as an undirected connected graph—
have to meet at some node. An important special case is the version for two agents,
known as the rendezvous problem. If nodes of the graph are equipped with unique labels
or the agents are allowed to save messages in nodes, then the problem gets significantly
simpler and can be reduced to graph exploration. However, in many applications such
facilities may not be available e.g. for technical or security reasons, which implies the
need to design gathering protocols working in anonymous networks modeled by graphs
with unlabeled nodes. We must assume however that ports at a node are locally distin-
guishable: otherwise two agents might be unable to meet even in a complete graph with
four nodes K4. Hence we make a natural assumption that all ports at a node are locally
labeled 1, . . . ,d, where d is the degree of the node (local labelings at different nodes
do not have to be consistent in any way). Unless otherwise stated, we do not assume
agents to know the topology of the graph or its size. We also assume that the agents
have distinct identifiers—otherwise it is easy to see that deterministic gathering even in
anonymous graph K2 (a clique of two nodes) is impossible.
� Work supported by the KBN Grant 4T11C04425.

P. Flocchini and L. Gąsieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 44–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

How to Meet in Anonymous Network 45

1.1 Related Work

Gathering is a very natural problem and it was considered in various settings, see
e.g., [12, 13, 19, 21, 24, 28]. Even for the ring topology, the gathering problem is im-
portant due to its application to self-stabilization problem where, starting from an ar-
bitrary state of the system, the goal is to recover into the legal single-agent state (see
e.g., [21, 25]).

Previous solutions considered either models with some additional information pro-
vided to agents, like sense of directions or a map of the network, or used randomization
to break the symmetry of the anonymous network. A model similar to the one studied
in this paper was considered in [29], but it still assumed some knowledge about the
graph and the localization of agents. Randomized approach to gathering exploits ran-
dom walks in graphs, which have been widely studied and applied in various contexts,
such as graph traversing [2], on-line algorithms [15], etc.

The special case of the gathering problem — the rendezvous problem — has been
also extensively studied (see [5] for references). It was introduced in [27] and contin-
ued in two directions: geometric space [8, 9, 10, 11, 20] and graphs [3, 6]. Most of the
papers, e.g., [3, 4, 7, 10, 21] adopted the probabilistic scenario where either inputs are
random or protocols use randomization (or both). Deterministic rendezvous with anony-
mous agents working in unlabeled graphs but equipped with tokens used to mark nodes
was considered e.g. in [23]). The so called hunter-rabbit game, in which one agent has
to catch the other, was also considered, see [1] for recent results and references. De
Marco et al. [17] considered the rendezvous problem in asynchronous networks. Unlike
in our model, they allowed a meeting of two agents passing the same edge but in the
opposite directions.

Dessmark et al. [18] were the first to study the rendezvous problem in the model
adopted in this paper. They designed protocols for trees, rings and general networks,
both in simultaneous and arbitrary startup model, and established lower bounds on time
complexity. We briefly describe their contribution focusing on the results corresponding
strictly to the results presented in this paper. For simultaneous startup they proved that
the optimal cost of rendezvous in any ring is Θ(D log�), where D is the initial distance
between agents. For arbitrary startup, they showed that Ω(n+D log�) is a lower bound
on the cost required for rendezvous on an n-node ring (since an adversary can make
D = Θ(n), the worst-case lower bound—viewed as a function of n and �—is Ω(n log�)).
They designed a rendezvous protocol for rings with cost O(�τ + ln2), where τ is the
difference between startup times, if the agents do not know ring size n. They also proved
that for arbitrary networks the problem is feasible.

Kowalski and Pelc [22] presented a deterministic rendezvous protocol with cost poly-
nomial in n, τ and log� for arbitrary connected graphs, as well as a lower bound Ω(n2)
on the cost of rendezvous in some family of graphs.

1.2 Our Results

For the ring network topology we design an oblivious gathering protocol with cost
O(n log�), which is asymptotically worst-case optimal due to the lower bound Ω(n log�)
showed in [18]. Note that this lower bound also holds for protocols which are adaptive
and work in simultaneous startup model. In this sense we show that the problem for

46 D.R. Kowalski and A. Malinowski

rings with and without arbitrary startup has the same difficulty, as well as for adaptive
and non-adaptive protocols.

For general networks we show a gathering protocol with cost polynomial in n, log�
and not depending on τ, which answers in affirmative the question stated in [22]. Our
protocol (as well as the one from [22]) is partly non-constructive: it uses some combina-
torial objects which are only proved to exist by the probabilistic method. Nevertheless
the protocol is in fact deterministic, since the agents can find the required combinatorial
objects locally by brute force. This may be quite expensive but our model described
below counts only moves of the agents and does not care about local computation time.

1.3 The Model

The model we adopt is essentially the same as the one used in [18, 22], so we just give
its brief description.

The network is modeled as a simple undirected connected graph with unlabeled
nodes. The ports at each node (i.e. the edges incident with the node) are labeled 1, . . . ,d,
where d is the degree of the node, but this labeling is only local and it does not have to
be consistent with labelings of this node’s neighbors. The size of the network, denoted
by n, is a-priori unknown to the agents.

There are k agents in the network, where k is a-priori not known to the agents (al-
though for the rendezvous problem we assume that the information that k = 2 is pro-
vided a-priori). Agents have distinct identifiers (labels), which are different integers
written as binary strings. Every agent knows only its own label, which is the sole input
to a gathering protocol it executes. Agents move in synchronous steps. In a single step,
an agent may either remain idle or move to an adjacent node. Agents can exchange their
informations iff they are in the same node at the same time step. The initial location of
agents is arbitrary (i.e. decided by an adversary). During the execution of the protocol,
if an agent currently located at some node decides to traverse some yet unexplored in-
cident edge, the actual edge is chosen by an adversary. The agent, however, learns the
local port number by which it enters a node and the degree of the node. Agents actually
meet only if they get to the same node in the same step, not if they cross each other
along an edge.

We consider a general scenario with arbitrary startup, in which starting times of
agents are arbitrarily decided by an adversary. Agents are not aware of the difference
between starting times; each of them is created at its startup and begins executing its
protocol and counting steps since then.

The cost of a gathering protocol is the worst-case number of steps since the startup
of the latest agent until gathering is achieved, taken over all mentioned above adversary
choices of initial locations, unexplored edges and startup times. Time of local compu-
tations performed by agents does not contribute to cost.

1.4 Notation and Preliminaries

Labels of agents are denoted by L1,L2, . . . ,Lk, in the order of the startup times: agent
with label Li appears not later than agent with label Li+1. An agent knows only the value
of its label Li, not its relative position i. The smallest of the considered labels L1, . . . ,Lk

is denoted by � and the difference between startup times of agents L1 and Lk is denoted

How to Meet in Anonymous Network 47

by τ. The number of nodes in the graph is denoted by n, and it is not known to the
agents.

For label L and integer r, let f (L,r) denote the string obtained by replacing each 0
in the binary representation of L with 04r

14r
and each 1 in a binary representation of

L with 14r
04r

. Note that f (L,r) is partitioned into homogenous (only 0s or only 1s)
blocks of size 4r, numbered from 1 to 2|L|. We say that one block is opposite to another
if one of them is a block of ones while the other one is a block of zeros. For technical
reasons we assume that |L| ≥ 16 (this can be achieved e.g. by adding 215 to all labels).
We use f (L,r) to control the actions of agent L in stage r of our gathering/rendezvous
protocols.

Let Cr(L) denote the concatenation of strings for label L and stages 0,1, . . .r, i.e.

Cr(L) = f (L,0)	 f (L,1)	·· · 	 f (L,r) .

Each step of our protocols will correspond to a single bit in the infinite control string
C∞(L), thus we will identify time segments during the execution of the protocol with
substrings of C∞(L) and say, e.g., that some segment S is covered by block P (which
means that the string corresponding to S is contained in P).

The following lemma shows useful combinatorial properties of control strings (proof
in the full version of the paper).

Lemma 1. For any substring S of Cr(L), with |S| = 4r+1, S contains at least 4r 0s and
at least 4r 1s.

2 Gathering vs. Rendezvous Problem

In this section we show that each rendezvous protocol can be easily modified to obtain
gathering protocol with asymptotically the same time complexity. Given the rendezvous
protocol R, each agent applies this protocol with the following modification:

after some agents meet in a node, they all continue rendezvous protocol R for
the smallest label from them, as it would be no rendezvous (we say that the
agent with the smallest label sticks all the other agents met in this node).

We call this protocol sticky-R protocol.

Lemma 2. Each sticky-R protocol is a gathering protocol with the same asymptotic
complexity as the original rendezvous protocol R for the same smallest label agent.

Proof. Fix anonymous network G and starting nodes and times. Consider two exe-
cutions: first is the worst-case execution of the sticky-R protocol for the smallest la-
bel �, the second is the worst-case execution of the original rendezvous protocol R
for the smallest label �. It is clear that if the agent with label � does not “stick” some
other agent L in the gathering protocol then it also does not meet L in the rendezvous
execution. �	

48 D.R. Kowalski and A. Malinowski

3 Rendezvous in Rings

In this section we assume that agents know that the underlying graph is a ring, although
they do not know its size. An agent arbitrarily chooses one direction in the ring as
’left’ and the other as ’right’ (note that these assignments may be different for different
agents). The starting direction for each agent is arbitrary. We present an asymptotically
optimal rendezvous protocol which, by Lemma 2, also solves the gathering problem.
(A similar idea was applied independently in an asynchronous setting in [17].)

Protocol RING-WALK(L)
step_count ← 0
Δ ← 1
for stage ← 0, 1, . . . do

T ← f (L,stage)
for i ← 1, . . . , |T | do

if T [i] = 1 then move to the next node in the current direction
else remain idle for one step
step_count ← step_count+1
if step_count= Δ then

change direction
Δ ← 2Δ

Step counter determines when the direction of walk is changed and after how many
steps Δ it will happen; the interval between ith and (i+1)th change of direction is called
period i+ 1. Note that period i, for i ≥ 1, takes Δ = 2i steps. The current value of Δ at
the beginning of a step is the period size of an agent in this step. It is straightforward to
prove by induction on i that the period size in step k is exactly i for 2i ≤ k < 2i+1.

Now we prove that the RING-WALK protocol guarantees fast rendezvous.

Theorem 1. Two agents performing RING-WALK protocol in a ring of size n meet after
O(n log�) steps.

Proof. Let i0 = �log4 n� and b = 4i0 (i0 is the number of the first stage with block size
b ≥ n).

First we note the general property which we will use in this proof: during any time
segment which consists of at most eight blocks in the same stage i > 1 of agent L2,
each agent can change direction at most once. The proof of this fact is as follows. Fix
stage i of agent L2 and segment S consisting of at most eight blocks of this stage. Since
|L2| ≥ 16, agent L2 executes at least

2|L2|
4i −1

3
≥ 2 ·4i+1

steps by the end of stage i−1, which means that at the beginning of stage i its period size
is at least 8 ·4i/2. If agent L2 changes its direction in S, its period size grows to at least
8 ·4i ≥ |S|, so it will not change again in S. The property for agent L1 is straightforward,
since its period size is always not smaller than the current period size of agent L2.

How to Meet in Anonymous Network 49

Now we proceed with the proof of the theorem, which is divided into three cases.

Case 1: |L1|> |L2|.
Let S be the time segment which consists of the first four blocks in stage i0 + 2 of
agent L2. Note that S has length 64b. We divide S into four succesive subsegments
S1,S2,S3,S4, each consisting of 16b steps.

Subcase 1a: at the beginning of segment S agent L1 is in stage bigger than i0 +2 or in
one of its last two blocks of stage i0 + 2.
If agent L1 is in stage bigger than i0 +2 at the beginning of segment S then it can change
its block at most once in S, and so at least one block of agent L2 in S is covered by an
opposite block of agent L1. This is also true when agent L1 is in one of its last two
blocks of stage i0 + 2 at the beginning of S, because then the first block in stage i0 + 3
of agent L1 covers S3 and S4, so it is opposite to one of them (the third and the fourth
blocks of a stage are always opposite to each other, so any block is opposite to one of
them). Summing up, we proved that S contains a subsegment of size 16b in which one
agent is idle and the other is moving. Since the period size of both agents is at least 8b,
the moving agent can change direction at most once in this subsegment, so it makes at
least 8b > n consecutive moves in one direction. Hence the rendezvous is achieved in S.

Subcase 1b: at the beginning of segment S agent L1 is in stage i0 + 2, but neither in
the last two blocks nor in the first two blocks.
Let S′ consists of the last four blocks of stage i0 + 1 of agent L2. Note that S′ has
size 16b and ends just before S. Using similar argument as in Subcase 1a but applied
to segment S′, we conclude that the rendezvous occurs in S′. More precisely, since
|L1|> |L2| and at the end of S′ agent L1 is at least in the third block of stage i0 + 2, we
see that S′ is covered by at most two blocks of size 16b from stage i0 + 2 of agent L1.
It follows that one of four blocks of agent L2 in S′ is covered by one opposite block of
agent L1. In time segment corresponding to this block of size 4b the moving agent can
change its direction at most once, hence it makes at least 2b > n consecutive moves in
one direction and the rendezvous is completed.

Subcase 1c: at the beginning of segment S agent L1 is either in its stage i0 + 1 or in
the first two blocks of its stage i0 + 2.
Consider time segment S′ consisting of the first 640b steps in stage i0 + 5 of agent L2.
Since |L1| > |L2| and at the beginning of S agent L1 is at most in the second block of
its stage i0 + 2, during segment S′ agent L1 is at least in its stage i0 + 1 (this is obvious
since S precedes S′) and at most in its stage i0 +4. Indeed, stages i0 +2, i0 +3, i0 +4 of
agent L1 take

2|L1| · (16b + 64b + 256b)≥ 2(|L2|+ 1) ·336b = 2|L2| ·336b + 32b +640b

steps, so even if we remove from stage i0 +2 its first two blocks of total length 32b, the
remaining part of stage i0 + 2 together with stages i0 + 3, i0 + 4 covers S′. Segment S′,
which in fact is a part of the first block of stage i0 + 5 of agent L2, contains blocks of
size at least 4b and at most 256b of agent L1, so there is a subsegment of S′ containing
at least

min{4b,640b−2 ·256b}= 4b

consecutive zeroes and another subsegment of S′ containing at least 4b consecutive ones
of agent L1. It follows that during one of these subsegments the agents are opposite, i.e.

50 D.R. Kowalski and A. Malinowski

one of them is idle and the other is moving. Since the considered subsegment has length
4b and is only a part of one block of agent L2, the moving agent can change its direction
at most once in this subsegment. Consequently during at least half of this subsegment
the agent moves in one direction, while the other one is idle, hence the rendezvous is
achieved.

Subcase 1d: at the beginning of segment S agent L1 is in stage at most i0.
Note that stage i0 + 1 of agent L1 lasts

2|L1| ·4b ≥ 2(|L2|+ 1) ·4b = 2|L2| ·4b + 8b≥ 136b > |S|

steps, since |L1| > |L2| ≥ 16. It follows that during segment S agent L1 is in stage at
most i0 +1, while agent L2 is in one of the first four blocks of its stage i0 +2. Consider
the first block of zeros of agent L2 within segment S. Its length is 16b and it is covered
by blocks from stages up to i0 + 1 of agent L1, hence by Lemma 1 agent L1 moves in
at least 4b steps within this block. S contains only four blocks of one stage of agent
L2, so each agent may change direction at most once within S (hence also within any
subsegment of S). It follows that agent L1 makes at least 2b moving steps (perhaps
separated with idle steps) without change of direction while agent L2 is idle. Hence
agent L1 finds agent L2 during the considered block in segment S.

To summarize Case 1, we proved in all subcases that the rendezvous happens by at

most the end of stage i0 + 5 of agent L2, which is by step 4i0+6−1
3 · 2|L2| = O(n log�)

after the startup of agent L2.

Case 2: |L1|< |L2|.
Subcase 2a: τ ≥ 16b|L1|.
Consider time segment S of length 16b which begins 4b steps after the startup of
agent L2. At the beginning of S agent L1 is in stage at least i0 + 2, hence S is cov-
ered by at most two blocks of agent L1. During this time segment the period size Δ1 of
agent L1 is at least 16b and agent L2 changes direction twice: first after 4b steps and then
after another 8b steps. It follows that S contains a subsegment S′ of length at least 4b
covered by a single block of agent L1 and such that the directions of both agents agree
in S′. Agent L2 is in stage at most i0 during S′, hence, by Lemma 1, the rendezvous is
achieved in this segment.

Subcase 2b: τ < 16b|L1|.
Consider the first block S of zeroes in stage i0 +4 of agent L1. Note that at the beginning
of segment S agent L2 has period size at least

44b−1
3

2|L1|− τ ≥ 44b−1
3

2|L1|−16b|L1| =

44b|L1| ·
(2

3
− 1

3 ·44b
− 1

42

)
> 44b/2 = |S|/2 ,

since segment S starts at least 44b−1
3 2|L1|−τ steps after the startup of agent L2. It follows

that agent L2 can change direction in S at most once—otherwise the length of S would
be at least twice the period size at the beginning of S, a contradiction. Consequently,
agent L1 also may change its direction within segment S at most once (its period size is

How to Meet in Anonymous Network 51

the same or bigger). Note also that the current stage of agent L2 is never bigger than the
one of agent L1, hence at the end of segment S agent L2 is in stage i0 + 4 or less.

First assume that at the end of segment S agent L2 is in stage at most i0 + 3. Agent
L2 may change direction at most once in S, so, by Lemma 1, it makes at least 16b > n
moving steps (perhaps separated with idle steps) without change of direction, while
agent L1 is idle, so the rendezvous happens in segment S.

Otherwise at the end of segment S agent L2 is in stage i0 + 4. We have

(f (L2, i0 + 3)+ τ)− f (L1, i0 + 3) > 2 ·4i0+3 ,

and two situations may happen:

– if S is the first block in stage i0 + 4 of agent L1 then during the first 2 · 4i0+3 steps
of S agent L2 is in its stage i0 +3. It follows that during these steps agent L2 makes
at least 43b/2 > n moves without change of direction.

– if S is the second block in stage i0 +4 of agent L1 then consider the previous block
S′, which is the block of ones. During the first 2 · 4i0+3 steps of S′ agent L2 is in
stage i0 +3. It follows that during at least 4i0+3/2 consecutive steps agent L2 is idle
while the earlier one is moving and changes direction at most once. Consequently
it makes at least 4i0+3/4 = 16b > n moves in one direction, so the rendezvous is
achieved in S′.

Summarizing Case 2, in all subcases the rendezvous is achieved by the end of seg-

ment S, which in both cases is at most 20b + 2|L1| 4i0+5−1
3 = O(n log�) steps after the

startup of agent L2.

Case 3: |L1| = |L2|.
Subcase 3a: τ ≥ 8b.
Consider time segment S consisting of the last eight blocks of stage i0 of agent L2.
During S agent L1 is already in stage at least i0 + 1, and the period size Δ (for both
agents) is at least 8b, hence by Lemma 1 during this segment there are b≥ n consecutive
steps in which one agent moves in one direction while the other remains idle, so the
rendezvous is achieved.
Subcase 3b: τ < 8b.
Let j be the position of the first difference in code strings f (L1,0) and f (L2,0) of the
agents and consider the j-th block of stage i0 + 2 of both agents. The block size is 16b
and the delay is less than 4b, so the size of the maximal segment S covered by both
these blocks is more than 12n. The period size Δ (for both agents) is at least 16b, hence,
by Lemma 1, during segment S there are b ≥ n consecutive steps in which one agent
moves in one direction while the other remains idle, so the rendezvous is achieved.

In view of the above theorem, the lower bound Ω(n log�) for rendezvous obtained
in [18], and Lemma 2, we have the following.

Corollary 1. RING-WALK is an asymptotically optimal agent protocol for gathering
in unknown rings.

52 D.R. Kowalski and A. Malinowski

4 Gathering in Arbitrary Networks

As in the previous section, we design a protocol for rendezvous problem, which auto-
matically works also for the general gathering problem.

4.1 Cover Walks and Network Exploration

In this subsection we present a generalization of the construction of deterministic cover
walks [26], previously used e.g., in [22] in the context of the rendezvous problem.

A walk of length x in a graph is a sequence (v1, ...,vx) of nodes such that node vi+1

is adjacent to vi, for all i < x. A cover walk is a walk in which every node of the graph
appears at least once. Given an unknown network, we consider a markovian procedure
which produces a walk in the network, i.e. a procedure in which the next move depends
only on the number of previous moves and the degree of the currently visited node
(ports are numbered but destination nodes have no labels). The aim of this subsection is
to design a deterministic markovian procedure called UCW (short for Universal Cover
Walk), consisting of λ(N) steps, where N is a given positive integer parameter and λ(N)
is polynomial in N, which satisfies the following condition for some function γN(n)
which is polynomial in n:

Property UniCoverWalk. for any initial node of an anonymous graph with n ≤ N
nodes, and for any step number a ≤ λ(N)− γN(n)+ 1, the sequence of steps a,a +
1, . . . ,a + γN(n)−1 of the procedure yields a cover walk in this graph.

Procedure UCW will be an important ingredient of our rendezvous protocol. Note that
this procedure itself guarantees exploring in γN(n) steps, which means that a single
agent visits all n nodes of anonymous network in every interval of γN(n) steps while
executing this procedure.

The existence of cover walks guaranteeing exploration of any n-node graph, for a
known parameter n, is a well known fact (cf. [26]). Note that the problem of explicit
construction of cover walks is hard (cf. hardness of construction of a universal traversal
sequence even for 3-regular graphs [14]). Our universal cover walk differs in two points
from the previously considered cover walks:

– it works fast for all networks of any size n ≤ N,
– it works even if we start in any point of the sequence and continue exploration from

this point according to the following part of the sequence.

Now we proceed with the construction of procedure UCW. We do it in two steps:
first we construct procedure ALMOSTUCW, which satisfies Property UniCoverWalk
only for restricted range of parameters n ≤ N, and then we use it as a building block in
construction of procedure UCW.

Almost Universal Cover Walks. Let λ∗(N) be a non-decreasing positive integer func-
tion, polynomial in N. For any positive integer N and any function hN :{1, ...,λ∗(N)}×
{1, ...,N−1}−→{1, ...,N−1}, such that hN(i,d)≤ d, we define the following generic
procedure ALMOSTUCW describing a walk of length λ∗(N) in an anonymous n-node
network G, for n ≤ N, starting at arbitrary node v (location v is unknown to the agent
executing the procedure, but a particular walk defined by this procedure depends on v).

How to Meet in Anonymous Network 53

Procedure ALMOSTUCW(N,hN)
In step i such that 0 < i ≤ λ∗(N), the agent, currently located at a node of
degree d, moves to an adjacent node by port hN(i,d).

In order to instantiate the procedure ALMOSTUCW we have to define functions hN

for integer N > 1. First we consider a random walk of an agent in graph G, i.e. a walk
in which the agent, currently located at a node of degree d, selects one port uniformly
at random (independently with probability 1/d) and exits the node through this port.

Let us define λ∗(N) = �2αN5 logN�, where α = 4/27 is the constant coefficient in
the upper bound on the expected length of the random cover walk [16]. Let γ∗N(n) =
λ∗(n), for all n ≤ N. The following lemma was proved in [22]:

Lemma 3. A random walk of length γ∗N(n) starting at node v in a connected graph G

with at most n nodes is a cover walk with probability at least 1−2−2n2 logn. �

Now we prove that for some deterministic functions hN procedure ALMOSTUCW be-
haves like a random walk.

Lemma 4. For any positive integer N, there exists a function hN : {1, ...,λ∗(N)} ×
{1, ...,N − 1} −→ {1, ...,N − 1}, such that hN(i,d) ≤ d and for any starting node of
any connected n-node graph G, where

√
8logN < n ≤ N for N > 4 or 1 ≤ n ≤ N for

1 ≤ N ≤ 4, the sequence of any γ∗N(n) consecutive steps a,a + 1, . . . ,a + γ∗N(n)−1 dur-
ing the execution of procedure ALMOSTUCW(N,hN) produces a cover walk in this
graph.

Proof. First assume that N > 4. We can select parameter n ≤ N in at most N different
ways, graph G (with labeled ports) in at most nn2

ways, starting node v in at most n
ways, and the first step a of the sequence in at most λ∗(N) ways. Hence we can make a
selection of a quadruple 〈n,G,v,a〉 in at most

nn2 ·N2 ·λ∗(N) ≤ 2n2 logn+8 logN

different ways.
Consider function hN selected randomly as follows: values hN(i,d), over all possible

i,d, are selected independently; hN(i,d) = j with probability 1/d for every 1 ≤ j ≤
d. It is easy to see that procedure ALMOSTUCW(N,hN) instantiated by this function
hN , started in node v and considered for consecutive steps in interval [a,a + γ∗N(n)),
generates a random walk on any graph G of at most n nodes.

Consider this random walk. By Lemma 3, the probability of the event ‘there exists
a connected n-node graph G and a starting node v in G, such that the random walk of
length γ∗N(n) in graph G starting in v is not a cover walk’ is at most

2−2n2 logn ·2n2 logn+8 logN < 1 ,

since n >
√

8logN. Using the probabilistic argument we prove the existence of the
desired function, which completes the proof for case N > 4.

54 D.R. Kowalski and A. Malinowski

For N ≤ 4 the proof is similar, but we obtain the existence of a function hN yielding
a cover walk for all n ≤ N. Indeed, for n ≤ 2 or N ≤ 2 it is straighforward. For 3 ≤ n ≤
N ≤ 4 the number of possible configurations is at most

nn2 ·N2 ·λ∗(N) ≤ 2n2 logn · 49

27
,

and again the probability of the event ‘there exists a connected n-node graph G and a
starting node v in G, such that the random walk of length γ∗N(n) in graph G starting in v
is not a cover walk’ is at most

2−2n2 logn ·2n2 logn · 49

27
≤ 2−9 log3 · 49

33 ≤ 49

312 < 1 ,

and the probabilistic argument shows the existence of hN . �	

Although an explicit construction of functions hN is hard, the agents can find them
locally by exhaustive search (which does not contribute to the cost of rendezvous pro-
tocol). Hence from now on we will assume that functions hN satisfying Lemma 4 are
fixed for all N ≥ 1 and we will omit the second parameter in calls to procedure AL-
MOSTUCW.

Universal Cover Walks. To overcome the constraints on n in Lemma 4 we modify
procedure ALMOSTUCW(N) to obtain more flexible procedure UCW(N), which es-
sentially after each step of the walk calls itself recursively for smaller argument, that is
for which the previous procedure ALMOSTUCW did not guarantee the cover walk.

Procedure UCW(N)

Case 2 ≤ N ≤ 4 : Run procedure ALMOSTUCW(N)
Case N > 4 : For each i, where 0 < i ≤ λ∗(N) the agent, currently located at a node of

degree d, does the following actions:
– it recursively runs procedure UCW(x), where x = �

√
8logN�, and goes back-

ward;
– it moves to an adjacent node by port hN(i,d);
– it recursively runs procedure UCW(x), where x = �

√
8logN�, and goes back-

ward.

Let λ(N) denote the number of steps in the procedure UCW(N).

Lemma 5. λ(N) = O(N5 log4 N).

Proof. We have the recurrence relation following directly from the pseudo-code of pro-
cedure UCW(N)

λ(N) = λ∗(N) · (1 + 4λ(x)) for N > 4 ,

where x = �
√

8logN�, and λ(N) = O(1) for N ≤ 4. Expanding this recurrence gives
λ(N) = O(N5 log4 N). �	

How to Meet in Anonymous Network 55

Now we prove that procedure UCW satisfies Property UniCoverWalk for function

γN(n) = min{8(λ(n))2,λ(N′)} ,

where N′ is such that procedure UCW(N′) is called during the execution of procedure
UCW(N) and

√
8logN′ < n ≤ N′. Note that γN(n) is polynomial in n, since it is not

bigger than 8(λ(n))2, which is polynomial in n by Lemma 5.

Lemma 6. For any positive integer N, there exists a function hN : {1, ...,λ(N)} ×
{1, ...,N − 1} −→ {1, ...,N − 1}, such that hN(i,d) ≤ d and the procedure UCW(N)
produces a cover walk of length at most γN(n) in any connected n-node graph G, for
1 ≤ n ≤ N, and starting in any node v and in any step a ≤ λ(N)− γN(n)+ 1.

Proof. For N ≤ 4 it follows directly from Lemma 4, so we assume that N > 4.
Consider parameters n,N and a corresponding value N′ as in the definition of func-

tion γN(n). Fix time segment S of length γN(n) in procedure UCW(N). Note that during
the execution of procedure UCW(N) at most one step from the call of some proce-
dure ALMOSTUCW(N′′) with N′′ > N′, is performed between two consecutive calls
of procedure UCW(N′). This property follows immediately from the observation that
any two steps from a single call of procedure ALMOSTUCW(N′′), as well as any two
steps from calls of procedure ALMOSTUCW(N′′) and procedure ALMOSTUCW(N′′′),
for N′′′,N′′ > N′ are separated by at least one execution of procedure UCW(N′). We
consider two cases.

Case 1: γN(n) = λ(N′).
In this case S contains either at least the first half or at least the second half of steps
of procedure UCW(N′) (otherwise the length of S would be at most λ(N′)/2−1 taken
twice plus at most one step according to some call to procedure ALMOSTUCW(N′′),
which would be less than λ(N′) = |S|). In either case the whole procedure ALMOST-
UCW(N′) is executed within teh considered segment of the call to procedure UCW(N′)
(either in the first part or in return part), which by Lemma 4 and inequality n≤N′ yields
the existence of cover walk in S for any n-node network.

Case 2: γN(n) < λ(N′).
In this case γN(n) = 8(λ(n))2. Similarly as in the previous case, it follows that S contains
at least 4(λ(n))2 consecutive steps from a call to procedure UCW(N′) which take place
either in the first or in the second half of this procedure (otherwise the length of S
is at most 4(λ(n))2 −1 taken twice plus additional at most one step according to some
procedure ALMOSTUCW(N′′), for N′′ > N′, which would result in a contradiction |S|≤
2 · (4(λ(n))2−1)+1 = 8(λ(n))2 −1). In either case at least 4(λ(n))2 consecutive steps
of procedure UCW(N′) are made. It follows that the number of consecutive steps of a
call to procedure ALMOSTUCW(N′) which are performed in either such segment is at
least

4(λ(n))2

4λ(�
√

8logN′�)
≥ λ(n) ≥ λ∗(n) = γ∗N(n) .

Since
√

8logN′ < n ≤ N′, Lemma 4 yields the existence of cover walk in S for any
n-node network. �	

56 D.R. Kowalski and A. Malinowski

4.2 Rendezvous

Procedure UCW is a building block of our rendezvous protocol. We start with describ-
ing the procedure RV(L, j), for label L and upper bound j on the number of stages,
which is the main ingredient of the protocol.

Procedure RV(L, j)
for stage ← 1, 2, . . . j do

T ← f (L,stage)
N ← max{n : λ(n) ≤ |L| ·4stage}
count ← 1
for i ← 1, . . . , |T | do

if T [i] = 1 then perform step number count in procedure UCW(N)
else stay idle for one step
count ← count + 1 mod λ(N)

For label L, let L| j be the first j positions in the binary representation of L, where
16 ≤ j ≤ |L|.

Protocol RENDEZVOUS(L)
for epoch j ← 16, 17, . . . |L|−1 do

RV(L| j,�log4 j�)
RV(L,∞)

Note that the agent moves only when a step number count from procedure UCW is
done, otherwise it idles. The execution of procedure RV(L| j,�log4 j�), for 1 ≤ j < |L|,
is called the j-th epoch, while the execution of procedure RV(L,∞) is called the |L|-th
epoch. Stage r of epoch j is partitioned into blocks, each consisting of consecutive 4r

moving steps or consecutive 4r idle steps. Since the smallest epoch number is 16, the
length of a label in every call to procedure RV is at least 16.

Theorem 2. Protocol RENDEZVOUS achieves rendezvous in time O(log3 �+(λ(n))3).

Proof. The idea is similar to the proof of theorem 1. We show that after O(log3 �+
(λ(n))3) steps since the startup of agent L2 there is a segment of length O(log3 �+
(λ(n))3) in which one agent is idle while the other one makes at least γN(n) moving
steps (perhaps separated with idle steps) during a single call to procedure UCW(N) for
some N ≥ n, which by Lemma 6 guarantees the rendezvous in this segment. Due to the
lack of space the detailed proof will appear in the full version of the paper. �	

Applying upper bound O(n5 log4 n) on λ(n) from Lemma 5, as well as Lemma 2, we
get the following results.

Corollary 2. Protocol RENDEZVOUS achieves rendezvous/gathering in time O(log3 �+
n15 log12 n).

How to Meet in Anonymous Network 57

4.3 Conclusions

We considered the problem of deterministic rendezvous and gathering with arbitrary
startup in anonymous networks. For rings we presected an optimal protocol, reaching
the lower bound Θ(n log�) from [18]. For arbitrary connected graphs we showed a de-
terministic rendezvous protocol polynomial in n and log�, and independent of τ, which
gives a positive answer to the question stated in [18, 22] about the existence of such a
protocol.
The following problems seem to be an interesting challenge for future research:

Reducing complexity. Can delay-independent rendezvous/gathering in general net-
works be made practical by eliminating non-constructive ingredients from the protocol
and/or lowering degrees of polynomials in complexity formula?

Simultaneous rendezvous/gathering and exploring. We say that a walk in a graph
is T -exploring if during its any interval of length T it visits all nodes of the graph.
Does there exist an optimal delay-independent rendezvous protocol in rings which is
O(n)-exploring? Does there exist a delay-independent rendezvous/gathering protocol
in general networks polynomial in n and � (or better log�) which is also T -exploring,
where T is a function polynomial in n and � (or better log�)?

Dynamic and fault-tolerant settings. Although we did not address this subject here,
it is clear that our protocol for rings is robust with respect to some dynamic changes of
the network (inserting/deleting nodes) and non-permanent faults. What is the degree of
this robustness? How about the case of general networks?

References

1. M. Adler, H. Racke, C. Sohler, N. Sivadasan, and B. Voecking, Randomized pursuit-
evasion in graphs, Proc. 29th Int. Colloquium on Automata, Languages and Programming
(ICALP’2002), 901-912.

2. R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász, and C. Rackoff, Random walks, universal
traversal sequences, and the complexity of maze problems, Proc. 20th Annual Symposium
on Foundations of Computer Science (FOCS’1979), 218-223.

3. S. Alpern, The rendezvous search problem, SIAM J. on Control and Optimization 33 (1995),
673-683.

4. S. Alpern, Rendezvous search on labelled networks, Naval Research Logistics 49 (2002),
256-274.

5. S. Alpern, and S. Gal, The theory of search games and rendezvous. Int. Series in Operations
research and Management Science, Kluwer Academic Publisher, 2002.

6. J. Alpern, V. Baston, and S. Essegaier, Rendezvous search on a graph, Journal of Applied
Probability 36 (1999), 223-231.

7. E. Anderson, and R. Weber, The rendezvous problem on discrete locations, Journal of Ap-
plied Probability 28 (1990), 839-851.

8. E. Anderson, and S. Fekete, Asymmetric rendezvous on the plane, Proc. 14th Annual ACM
Symp. on Computational Geometry, 1998.

9. E. Anderson, and S. Fekete, Two-dimensional rendezvous search, Oper. Research 49 (2001),
107-118.

58 D.R. Kowalski and A. Malinowski

10. V. Baston, and S. Gal, Rendezvous on the line when the players’ initial distance is given
by an unknown probability distribution, SIAM J. on Control and Optimization 36 (1998),
1880-1889.

11. V. Baston, and S. Gal, Rendezvous search when marks are left at the starting points, Naval
Reaserch Logistics 48 (2001), 722-731.

12. N. H. Bshouty, L. Higham, and J. Warpechowska-Gruca, Meeting times of random walks on
graphs, Information Processing Letters 69(5) (1999), 259-265.

13. M. Cielibak, P. Flocchini, G. Prencipe, and N. Santoro, Solving the robots gathering
problem, Proc. 30th International Colloquium on Automata, Languages and Programming
(ICALP’2003), LNCS 2719, 1181-1196.

14. S.A. Cook and P. McKenzie, Problems complete for deterministic logarithmic space, Journal
of Algorithms 8 (5) (1987), 385-394.

15. D. Coppersmith„ P. Doyle, P. Raghavan, and M. Snir, Random walks on weighted graphs, and
applications to on-line algorithms, Proc. 22nd Annual ACM Symp. on Theory of Computing
(STOC’1990), 369-378.

16. D. Coppersmith, P. Tetali, and P. Winkler, Collisions among random walks on a graph, SIAM
J. on Discrete Math. 6 (1993), 363-374.

17. G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro, Asynchronous
deterministic rendezvous in graphs, Proc. 30th Int. Symp. on Math. Found. of Comp. Science
(MFCS’2005), LNCS 3618, 271-282.

18. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic rendezvous in graphs, Proc. 11th
European Symposium on Algorithms (ESA’2003), LNCS 2832, 184-195.

19. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Gathering of asynchronous oblivi-
ous robots with limited visibility, Proc. 18th Ann. Symp. on Theoretical Aspects of Comp.
Science (STACS’2001), LNCS 2010, 247-258.

20. S. Gal, Rendezvous search on the line, Operations Research 47 (1999), 974-976.
21. A. Israeli, and M. Jalfon, Token management schemes and random walks yield self sta-

bilizing mutual exclusion, Proc. 9th ACM Symp. on Principles of Distributed Computing
(PODC’1990), 119-131.

22. D. Kowalski, and A. Pelc, Polynomial deterministic rendezvous in arbitrary graphs, Proc.
15th Annual Symp. on Algorithms and Computation (ISAAC’2004), LNCS 3341, 644-656.

23. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Mobile agent rendezvous in a ring,
Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS’2003), 592-599.

24. W. Lim, and S. Alpern, Minimax rendezvous on the line, SIAM J. on Control and Optimiza-
tion 34 (1996), 1650-1665.

25. A.J. Mayer, R. Ostrovsky, and M. Yung, Self-stabilizing algorithms for synchronous
unidirectional rings, Proc. 7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’1996), 564-573.

26. Motwani, Raghawan, Randomized Algorithms, Cambridge University Press, 1995.
27. T. Schelling, The strategy of conflict, Oxford University Press, Oxford, 1960.
28. L. Thomas, Finding your kids when they are lost, Journal on Operational Res. Soc. 43 (1992),

637-639.
29. X. Yu, and M. Yung, Agent rendezvous: a dynamic symmetry-breaking problem, Proc. In-

ternational Colloquium on Automata, Languages, and Programming (ICALP’1996), LNCS
1099, 610-621.

Setting Port Numbers
for Fast Graph Exploration

David Ilcinkas�

LRI, Université Paris-Sud, France
ilcinkas@lri.fr

Abstract. We consider the problem of periodic graph exploration by
a finite automaton in which an automaton with a constant number of
states has to explore all unknown anonymous graphs of arbitrary size and
arbitrary maximum degree. In anonymous graphs, nodes are not labeled
but edges are labeled in a local manner (called local orientation) so that
the automaton is able to distinguish them. Precisely, the edges incident
to a node v are given port numbers from 1 to dv, where dv is the degree
of v.

Periodic graph exploration means visiting every node infinitely often.
We are interested in the length of the period, i.e., the maximum num-
ber of edge traversals between two consecutive visits of any node by the
automaton in the same state and entering the node by the same port.
This problem is unsolvable if local orientations are set arbitrarily. Given
this impossibility result, we address the following problem: what is the
mimimum function π(n) such that there exist an algorithm for setting
the local orientation, and a finite automaton using it, such that the au-
tomaton explores all graphs of size n within the period π(n)?

The best result so far is the upper bound π(n) ≤ 10n, by Dobrev
et al. [SIROCCO 2005], using an automaton with no memory (i.e. only
one state). In this paper we prove a better upper bound π(n) ≤ 4n. Our
automaton uses three states but performs periodic exploration indepen-
dently of its starting position and initial state.

1 Introduction

The task of visiting all nodes is fundamental when searching for data in a net-
work. The specific case of periodic exploration is particularly useful for network
maintenance, where every node has to be regularly checked. In this paper we
consider the task of periodic exploration, in which a mobile entity, or robot, has
to periodically visit every node of an unknown graph.

We assume that the graph is anonymous, i.e., the nodes are unlabeled. Note
that node labels would not help much the robot anyway because, as we will see
later, it is modeled as a finite automaton, and thus is unable to store even a
� Supported by the project “PairAPair” of the ACI Masses de Données, the project

“Fragile” of the ACI Sécurité et Informatique, and the project “Grand Large” of
INRIA.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 59–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

60 D. Ilcinkas

single node label. To enable the robot to distinguish the different edges incident
to a node, edges at a node v are assigned port numbers in {1, . . . , dv} in a one-
to-one manner, where dv is the degree of node v. Such port-numbering is called
a local orientation.

The robot is modeled by a deterministic finite automaton. More precisely, we
consider Mealy automata. A Mealy automaton has a transition function f and a
finite number of states. If the automaton enters a node of degree d through port i,
in state s, then it switches to state s′ and exits the node through port i′, with
f(s, i, d) = (s′, i′). Since the transition function takes as input a port number,
we say that the automaton is on an edge e towards the extremity v of e or, in
short, is on (e, v). Such a pair is called a position.

We consider the problem of periodic graph exploration where the finite au-
tomaton has to explore any unknown anonymous connected graph of arbitrary
size and arbitrary maximum degree. Periodically exploring a graph means vis-
iting every node infinitely often. We are interested in the length of the period,
i.e., the maximum number of edge traversals between two consecutive visits of
any node by the automaton in the same configuration (i.e., same position and
same state). Budach [4] proved that no finite automaton can explore all graphs
if the local orientation is given by an adversary. Given this impossibility result,
we adress the following problem:

Problem. What is the mimimum function π(n) such that there exist an algorithm
for setting the local orientation, and a finite automaton using it, such that the
automaton explores all graphs of size n within the period at most π(n)?

A trivial upper bound on the period is 2m, where m is the number of edges
of the explored graph. One can indeed set the local orientation such that a
right-hand-on-the-wall walk defined by f(s, i, d) = (s, (i mod d) + 1) induces an
eulerian cycle of the graph, where all edges are traversed twice, once in each
direction. Dobrev et al. [10] presented a port-numbering algorithm, and an au-
tomaton using it, achieving a period of at most 10n for graphs of size n. Hence
π(n) ≤ 10n. The main advantage of their approach is that their automaton is
ultimately simple: it is oblivious (i.e. it uses only one state). Using an oblivious
automaton naturally solves the problem of setting the initial state. However, the
good performance of the automaton in [10] relies on the fact that the agent must
start the exploration by the edge with port number 1.

In this paper we prove that π(n) ≤ 4n − 2. Our automaton is not oblivious
but has only three states. Moreover, it performs periodic exploration indepen-
dently from its starting position and initial state. Our port-numbering algorithm
is based on a spanning tree of the graph and can be easily implemented in a dis-
tributed environment, and extended to dynamic networks.

1.1 Related Work

Exploration of unknown environments have been extensively studied in the lit-
erature (cf. [19, 21]). The environment can be modeled using geometry as a plan
with obstacles or as a graph. In the latter case, moves are restricted to the

Setting Port Numbers for Fast Graph Exploration 61

edges of the graph. The graph setting can be further specified in two differ-
ent ways. In [3, 8, 13, 17] the robot explores strongly connected directed graphs
and it can move only in the head-to-tail direction of an edge, not vice-versa. In
[4, 9, 11, 12, 15, 20, 23] the explored graph is undirected and the robot can tra-
verse edges in both directions. Again two different assumptions are used in the
literature: it is either assumed that nodes of the graph have unique labels which
the robot can recognize (as in, e.g., [8, 12, 20]), or it is assumed that nodes are
anonymous (as in, e.g., [3, 4, 11, 23]). We are concerned with the latter context.

It is often assumed that the robot has an unlimited amount of memory to per-
form his task. In this paper, we are interested in robots using very little memory.
More precisely we want the robots to have only a constant number of memory
bits. A very natural model in this case is the finite automaton. Budach [4] proved
that no finite automaton can explore all graphs. Rollik [23] proved that even a
finite team of finite automata cannot explore all planar cubic graphs. This re-
sult is improved in [6], in which the authors introduced an even more powerful
machine, called the JAG, for Jumping Automaton for Graphs. A JAG is a fi-
nite team of finite automata that can permanently cooperate and that can use
“teleportation” to move from their current location to the location of any other
automaton. Cook and Rackoff [6] proved that no JAG can explore all graphs. It
was proved later in [18] that an automaton requires at least n states to explore
all graphs of size n. Reingold [22] proved a very challenging result stating that
SL = L by providing a log-space algorithm solving the USTCON problem. A
consequence of his work is the existence of a robot with O(log n) bits performing
exploration in n-node graphs, matching the lower bound of Ω(log n) bits in [18].

Several papers investigated graph exploration in which nodes of the graph are
provided with a whiteboard (as in, e.g., [1, 7, 17]). A whiteboard is a memory
where the automaton can read, write and erase information. Initially, all white-
boards are empty. In this setting, exploration requires at least m edge traversals,
where m is the number of edges in the graph, because any unexplored edge may
lead to an unexplored node. It is proved in [5] that there is an algorithm coloring
the nodes using only three colors, and a finite automaton using this coloring
which can explore all graphs. The traversal is of length approximately 20m.
Other assumptions are used in the literature to improve the performances of
algorithms (see, e.g., [14, 16]).

In this paper we restrict attention to fully anonymous graphs: nodes are not
labeled and not colored, no whiteboard is provided, and the automaton is not
allowed to use any marker on nodes or edges. Having in mind the impossibility
result of Budach [4], the only freedom is the setting of the local orientation. This
method is used by Dobrev et al. [10]. As stated before, the authors presented
a port-numbering algorithm, and an oblivious automaton using it, achieving a
period of at most 10n for graphs of size n.

1.2 Our Results

Our main result is the design of a very simple algorithm for setting the lo-
cal orientation of any graph and the design of a 3-state automaton performing

62 D. Ilcinkas

periodic exploration using the local orientation computed by the algorithm. The
periodic traversal of the agent is of length at most 4n− 2, where n is the num-
ber of vertices of G. Hence π(n) ≤ 4n− 2. Moreover, the good performances of
the exploration do not depend on the initial state and starting position of the
automaton.

Our port-numbering algorithm is based on computing a spanning tree of the
graph and constructing the local orientation from this spanning tree. We prove
that our labeling scheme can be easily transformed in a distributed algorithm or
used in a dynamic environment, answering open problems stated in [10].

2 The Port-Numbering and the Corresponding
Automaton

We first describe our algorithm computing the local orientation of the edges. This
algorithm is mainly based on coding a spanning tree of the graph by choosing
the small port numbers for the edges of the spanning tree.

Next, we will present a 3-state Mealy automaton that explores the constructed
spanning tree (plus some additionnal edges) in a DFS manner.

We will conclude this section by proving the correctness of our algorithm and
of the corresponding automaton.

2.1 Local Orientation Algorithm

Let G = (V,E) be a graph. Let us consider an arbitrary spanning tree T of G.
Let F ⊆ E be the set of edges of T . For any node v ∈ V , let Fv be the set of
edges in F that are incident to v.

Definition 1. A local orientation of the edges of the graph G is compatible with
a spanning tree T = (V, F) if and only if:

– for any edge e ∈ E, at least one of its two port numbers is 1 if and only if
e ∈ F ;

– for any node v ∈ V , the edges in Fv have their port numbers from 1 to |Fv|.

We say that a local orientation of G is tree-oriented if there exists a spanning
tree T of G such that the local orientation is compatible with T .

Our algorithm, called Small-Ports, constructs local orientations that are tree-
oriented. To fix attention, the algorithm uses the following local orientation.

Algorithm Small-Ports

1. Pick a rooted spanning tree T of G. Let r be its root.
2. For any node v �= r, assign port number 1 to the edge of T leading toward

the root. At r, assign 1 to an arbitrary edge in Fr.
3. For any node v of G, assign arbitrarily port numbers from 2 to |Fv| to the

remaining edges of Fv, if any.

Setting Port Numbers for Fast Graph Exploration 63

4. Finally, assign arbitrarily port numbers from |Fv|+ 1 to dv (the degree of v)
to the edges that have not yet assigned port numbers, if any.

Clearly this local orientation is compatible with T .

Remark 1. Small-Ports is very simple since it only requires the computation
of a spanning tree to set the local orientation. Moreover, many applications use
a spanning tree as underlying structure and in this case, Small-Ports gets the
spanning tree for free. The performance and simplicity of Small-Ports has to
be compared with the ones of the algorithm presented in [10]. Small-Ports
performs in time O(m) whereas the algorithm in [10] performs in time O(n3).

Remark 2. Consider a graph G and a tree-oriented local orientation of G. There
is a unique spanning tree T such that this local orientation is compatible with T .
Namely, T is the tree composed of the n− 1 edges of G that have at least one of
their port numbers equal to 1. Moreover there exist exactly two possible roots
for T such that the local orientation can be obtained by running Algorithm
Small-Ports with this rooted spanning tree. These two roots are the two ex-
tremities of the unique edge with both port numbers equal to 1.

2.2 Description of the Exploring Automaton

Our exploring automaton, called A, has three states: N (for Normal), T (for
Test), and B (for Backtrack). The transition function f of the automaton is
defined as follows. Here d denotes the degree of the current node, and i the
incoming port number. (Recall that the second parameter outputed by the tran-
sition function is the output port number.)

f(N, i, d) =
{

(N, 1) if i = d
(T, i + 1) if i �= d

f(T, i, d) =

⎧⎨
⎩

(N, 1) if i = 1 and d = 1
(T, i + 1) if i = 1 and d �= 1
(B, i) if i �= 1

f(B, i, d) = (N, 1)

Intuitively, the automaton traverses an edge in state N when it knows that
the edge is in the spanning tree, in state T when it does not know yet, and in
state B when it knows that the edge does not belong to the spanning tree.

2.3 Correctness

Theorem 1. Let G be a graph of size n, with a tree-oriented local orientation.
Start the automaton A in an arbitrary state at any arbitrary position in the graph.
After at most two steps, the automaton enters a closed walk P and explores it
forever. Moreover, P is of length at most 4n−2 and contains all the nodes of G.

Proof. Let G be an arbitrary graph and let n be its number of nodes. Assume
that the local orientation is compatible with some spanning tree T . We first study
the periodic behavior of the automaton, and then the initial transient regime.

64 D. Ilcinkas

Let v be an arbitrary node of G, and let e be its incident edge with port
number 1. The removal of e in T results in two connected components (subtree).
Let T ′ be the component containing v. Finally, let n′ be the number of nodes
of T ′.

Claim. If the automaton A enters v through port 1 in a state different from B,
then it eventually leaves v through port 1 in state N . Moreover, between these
two events, it explores all nodes of T ′ in at most 4n′ − 2 edge traversals, and
does not leave any node not in T ′ through port 1 during those traversals.

We prove this by induction on the height h of T ′ rooted in v, i.e., the ec-
centricity of v in T ′. The case h = 0 corresponds to v leaf of T . If v is also a
leaf in G, then the automaton immediately leaves v through port 1 in state N
and the claim is proved. Therefore we assume that deg(v) > 1. By hypothesis
of the claim, the automaton enters v in state T or N . In both cases, it switches
to state T , and traverses the edge e′ of port number 2. v is a leaf of T and
since e is in T , e′ is not. Thus the port number of e′ at the other extremity is not
equal to 1. Hence the automaton comes back to v in state B, and finally leaves
v through port 1 after 4 · 1− 2 = 2 edge traversals, which proves the basis of the
induction.

Let us now consider the case h > 0. Let d be the degree of v. We have d �= 1
because v is incident to e and depth(T ′) > 0. For i ≥ 2, let vi be the node at
the other extremity of the edge ei with port number i at v. If ei is in T , then
let Ti be the connected component of T ′ \ {ei} containing vi. Finally, let p be
the largest port number of an edge in T incident to v. We have p ≥ 2 because v
is not a leaf in T . By hypothesis of the claim, the automaton enters v in state
T or N . In both cases, it switches to state T , and traverses the edge e2 of port
number 2. Assume that the automaton leaves v through port i in state T , with
2 ≤ i ≤ p. It reaches node vi. By induction hypothesis on h, the automaton
eventually comes back from vi to v through port i, in state N , after at most
4ni − 2 edge traversals. (Note that during these traversals, the automaton may
have visited nodes outside Ti but it never left these nodes through port 1.) If
i �= d, then the automaton leaves v through port i + 1 in state T . Hence, the
automaton successively explores the subtrees Ti.

If p = d, then the automaton eventually leaves v through port 1 in state
N after finishing the exploration of Tp. If p < d, then the automaton takes
the edge ep+1 in state T . Since ep+1 is not in the tree T , the port number of
ep+1 at the other extremity is not equal to 1. Thus the automaton comes back
to v in state B and finally leaves v through port 1 in state N . In both cases,
it remains to bound the number of edge traversals. The automaton traversed∑p

i=2(4ni−2) = 4(n′−1)−2(p−1) edges during the exploration of the subtrees Ti.
It also traversed twice each edge ei, 2 ≤ i ≤ p. Finally there are possibly two
additional edge traversals, in the case p �= d. To summarize, the number of edge
traversals is at most 4(n′ − 1)− 2(p− 1)+ 2(p− 1)+2 = 4n′− 2. This concludes
the proof of the claim.

We now use the previous claim to exhibit the closed path traversed periodically
by the automaton. There is a unique edge e = {v, v′} with both its port numbers

Setting Port Numbers for Fast Graph Exploration 65

equal to 1. Assume that the automaton is at position (e, v) in state N . Applying
the claim, the automaton explores the subtree of T \ {e} rooted in v, comes
back to v and goes at position (e, v′) in state N . Applying again the claim, the
automaton explores the subtree of T \ {e} rooted in v′, comes back to v′ and
goes at position (e, v) in state N . Therefore the automaton traverses a closed
walk P of length at most 4n− 2 visiting all nodes of T , and thus of G.

It remains to prove that the automaton enters P after at most two edge
traversals. The automaton starts in an arbitrary state at an arbitrary position.
By definition of the transition function of the automaton, there are three cases:

– Case 1: the automaton leaves the node through port 1 in state N . This
implies that the automaton immediately enters the closed walk P .

– Case 2: the automaton leaves the node in state B. The next edge traversal
is then along the edge with port number 1, in state N . This implies that the
automaton enters P during the second traversal.

– Case 3: the automaton leaves the node v by edge e of port number i, with
i ≥ 2, in state T . Assume that either e is in T or e is the edge with the
smallest port number that is not in T . In this case the edge traversal is in
the closed walk. If it is not the case, then the port number j at the other
extremity u of e is not equal to 1 because e is not in T . Hence the automaton
switches to state B at u, and comes back to v by e. Then, it leaves v through
port 1 in state N . This latter edge traversal is in P .

Finally, in all cases, the automaton enters the closed walk after at most two edge
traversals. �	

3 Additional Properties

In the previous section, we presented a simple algorithm, using a spanning tree
of the graph, to set the local orientation of the edges, and a 3-state automaton
that performs periodic exploration in time at most 4n using this orientation,
where n is the number of nodes of the explored graph. We prove that thanks to
the robustness and simplicity of our approach, it is possible to use our algorithm
in a distributed environment, and in dynamic networks.

3.1 The Distributed Variant

The distributed construction of a tree spanning an anonymous graph may be
impossible if the graph has symmetry. However this task is possible if a single
node initiates it. In our setting, we use the automaton to break the symmetry
between nodes. The starting position of the automaton is used as the distin-
guished node, that becomes the root of the spanning tree. This node will wake
up all the other nodes of the network by flooding. A node distinct from the root
chooses his parent as the node from which it received the wakeup message (ties
are broken arbitrarily). Finally, the technique described in Section 2.1 is used to
set up the local orientation, based on the constructed spanning tree.

66 D. Ilcinkas

More precisely, the distributed variant of our algorithm, called Distributed-
Small-Ports, proceeds as follows. At the beginning, only the node hosting the
automaton is awake. This node is the root r of the future spanning tree. It starts
the process by sending a “Hello” message to all its neighbors. A node v, except
the root, is said to be awake when it has received at least one message. An awake
node v chooses as parent the sender of the first message it has received. Ties are
broken arbitrarily. Finally v sends a “Parent” message to the neighbor choosen
as its parent and a “Hello” message to all its other neighbors.

When a node u has received a message from all its neighbors, it chooses the
local orientation as follows. Let p be the number of “Parent” messages node u
has received.

– If u is the root, then it assigns arbitrarily port numbers from 1 to p to the p
edges leading to the senders of “Parent” messages. It assigns the remaining
port numbers, if any, to the remaining edges arbitrarily.

– If u is not the root, then it assigns port number 1 to the neighbor that was
choosen as its parent. Then it assigns arbitrarily port numbers from 2 to
p + 1 to the p edges leading to the senders of a “Parent” message, if any.
Finally it assigns the remaining port numbers, if any, to the remaining edges
arbitrarily.

Theorem 2. Algorithm Distributed-Small-Ports constructs a spanning
tree of the graph and sets a local orientation compatible with it, using 2m
messages.

3.2 Exploration of Dynamic Networks

As proved in Theorem 1, the automaton periodically explores any graph in at
most 4n steps, whatever the starting position and the initial state are, provided
that the local orientation is compatible with some spanning tree of the graph.
Therefore the automaton can be used in dynamic networks under the unique
constraint that the local orientation of the network remains tree-oriented after
every change.

We consider changes of the graph that keep it connected. A change of a graph
can be decomposed in a sequence of the following basic changes.

– Addition of a new edge between two existing nodes;
– Addition of a new node, connected by a new edge to an existing node;
– Removal of an edge, without disconnecting the graph;
– Removal of a degree-1 node and of its unique incident edge.

Theorem 3. In the case of a removal of an edge belonging to the spanning tree
of a n-node graph G, Θ(n) modifications in the local orientation are necessary
and sufficient to maintain it tree-oriented. Our algorithm updating the local ori-
entation performs in time O(m) in this case, where m is the number of edges. In
all other cases, the update of the local orientation can be done in constant time,
and thus with a constant number of modifications.

Setting Port Numbers for Fast Graph Exploration 67

Proof. Local orientations are updated as follows:

– Addition of an edge. This edge is not placed in the spanning tree. Let u
and v be the two extremities of the new edge e and let du and dv be their
new respective degree. We set du, respectively dv, as the port number of
edge e at u, respectively v.

– Addition of a leaf. The new edge e connecting the new node u to node v of
the existing graph is necessarily in the spanning tree. Let d be the degree
of v and let p be the largest port number at v corresponding to an edge in
the spanning tree, before modification. If p = d, then the port number of
edge e at v is d + 1. Otherwise (p �= d), the edge with port number p + 1
has now the port number d + 1 and edge e has the port number p + 1 at v.
Edge e is assigned port number 1 at u.

– Removal of an edge. If the removed edge e does not belong to the spanning
tree T , then let u and v be its two extremities. We describe the modifications
of the local orientation in node u. The modifications in v are done similarly.
Let i be the port number of e at u. Let d be the degree of u before the
removal of e. Finally, let e′ be the edge incident to u with port number d. If
e = e′ (i.e., i = d), then no port number is modified at u. If e �= e′, then we
set i as the new port number of e′ at u.
If edge e belongs to the spanning tree T , then T without edge e is not
connected. Since we assume that the graph remains connected, there exists
an edge e′ in the new graph connecting the two parts of T . This edge e′

is added to the tree. Some port numbers have to be changed so that the
local orientation become compatible with the resulting spanning tree. We
claim that only a constant number of port numbers have to be modified at
each node. At the extremities of e and e′, the set of tree-edges incident to
it changes. However, at most two edges are concerned. Apart from this, the
only modifications to do concern the choice of the incident edge with port
number 1. A switch between two port numbers is sufficient. Therefore, at
most a constant number of port numbers are modified at each node.

– Removal of a leaf. Let v be the node connected to the removed leaf u. Let i
be the port number at v of the edge leading to u. Let p be the largest port
number at v of an edge in T . Let d be the degree of v before the removal
of e. Finally, let e′, resp. e′′, be the edge incident to v with port number p,
resp. d. Since edge e is in the tree T , we have i ≤ p ≤ d. We modify the port
number of e′, resp. e′′, if and only if i �= p, resp. p �= d. If i �= p, then we
set i as the new port number of e′. If p �= d, then we set p as the new port
number of e′′.

In all cases, the other port numbers in the graph remain inchanged.
It may not be possible to avoid a linear number of modifications in the case of

the removal of a tree-edge. For example, consider a cycle C of odd length 2n+1.
To simplify the description, let us give names from 1 to 2n+ 1 to the nodes. For
any node i ≤ n, resp. i > n, 1 is the port number of the edge leading to node
i+ 1, resp. i− 1. Thus the local orientation is compatible with the path starting
at node 1 and ending at node 2n + 1. Now assume that the edge {n, n + 1} is

68 D. Ilcinkas

removed. The port numbers at node n and n+ 1 are set to 1 since they are now
leaves. All edges are necessarily in the spanning tree but the edge {2n+1, 0} has
both its port numbers equal to 2. The local orientation is not tree-oriented. In
fact, in a tree-oriented orientation, exactly one edge e must have both its port
numbers equal to 1. Moreover, for any node v, excluding the extremities of e,
the edge with port number 1 must point toward e, i.e., the edge must be in the
path from v to the closer extremity of e. Hence, the local orientation has to be
modified in at least n nodes to obtain a tree-oriented local orientation. �	

4 Further Investigations

In this paper, we proved the upper bound 4n − 2 on the minimal period π(n)
for periodic graph exploration by a finite automaton. Our algorithm uses an
arbitrary spanning tree to set the local orientations. The automaton explores
this spanning tree plus at least one additional edge per node. It seems difficult
to avoid these additional edge traversals. Hence 4n − O(1) may be optimal for
tree-based approach. We conjecture that this bound cannot be improved even
with other techniques.

Conjecture. π(n) = 4n−O(1).

Since graphs are anonymous, using an extensive amount of memory does not
help much. Therefore finding the minimal period for machine with unbounded
memory may be very challenging.

Open problem. What is the mimimum period ψ(n) such that there exists an
algorithm setting the local orientations and a robot with unlimited memory
such that the automaton explores any graph of size n within the period ψ(n)?

Finally, it remains open if the period 10n proved in [10] can be improved if
the robot is restricted to be oblivious.

References

1. Y. Afek and E. Gafni. Distributed Algorithms for Unidirectional Networks. SIAM
J. Computing 23(6):1152-1178, 1994.

2. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J. Com-
puting 29:1164-1188, 2000.

3. M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation 176(1):1-
21, 2002.

4. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.
5. R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman and D. Peleg. Label-Guided

Graph Exploration by a Finite Automaton. In 32nd Int. Colloq. on Automata,
Languages & Prog. (ICALP), LNCS 3580, pages 335-346, 2005.

6. S. Cook and C. Rackoff. Space lower bounds for maze threadability on restricted
machines. SIAM J. on Computing 9(3):636–652, 1980.

Setting Port Numbers for Fast Graph Exploration 69

7. S. Das, P. Flocchini, A. Nayak, and N. Santoro. Distributed Exploration of an Un-
known Graph. In 12th Colloquium on Structural Information and Communication
Complexity (SIROCCO), LNCS 3499, pages 99-114, 2005.

8. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory
32(3):265-297, 1999.

9. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little
Memory. J. Algorithms 51(1):38-63, 2004.

10. S. Dobrev, J. Jansson, K. Sadakane, and W.-K. Sung. Finding Short Right-Hand-
on-the-Wall Walks in Graphs. In 12th Colloquium on Structural Information and
Communication Complexity (SIROCCO), LNCS 3499, pages 127-139, 2005.

11. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic Exploration as Graph
Construction. IEEE Transaction on Robotics and Automation 7(6):859-865, 1991.

12. C. Duncan, S. Kobourov, and V. Kumar. Optimal constrained graph exploration.
In 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 807-814,
2001.

13. R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In 13th
Annual International Symposium on Algorithms (ESA), LNCS 3669, pages 11-22,
2005.

14. P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing.
Theoretical Computer Science 291(1):29-53, 2003.

15. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective Tree Exploration.
In 6th Latin American Theoretical Informatics (LATIN), LNCS 2976, pages 141-
151, 2004.

16. P. Fraigniaud, C. Gavoille, and B. Mans. Interval routing schemes allow broadcast-
ing with linear message-complexity. Distributed Computing 14(4):217-229, 2001.

17. P. Fraigniaud, and D. Ilcinkas. Digraphs Exploration with Little Memory. In 21st
Symposium on Theoretical Aspects of Computer Science (STACS), LNCS 1996,
pages 246-257, 2004.

18. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph Exploration by a
Finite Automaton. In 29th International Symposium on Mathematical Foundations
of Computer Science (MFCS), LNCS 3153, pages 451-462, 2004.

19. A. Hemmerling. Labyrinth Problems: Labyrinth-Searching Abilities of Automata.
Volume 114 of Teubner-Texte zur Mathematik. B. G. Teubner Verlagsgesellschaft,
Leipzig, 1989.

20. P. Panaite and A. Pelc. Exploring unknown undirected graphs. J. Algorithms
33(2):281-295, 1999.

21. N. Rao, S. Kareti, W. Shi, and S. Iyengar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Tech. Report ORNL/TM-12410,
Oak Ridge National Lab., 1993.

22. O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Symp. on
Theory of Computing (STOC), pages 376-385, 2005.

23. H. Rollik. Automaten in planaren Graphen. Acta Informatica 13:287-298, 1980
(also in LNCS 67, pages 266-275, 1979).

Distributed Chasing of Network Intruders

Lélia Blin1, Pierre Fraigniaud2, Nicolas Nisse2, and Sandrine Vial1

1 IBISC, University of Evry, 91000 Evry, France
2 LRI, CNRS and Université Paris-Sud, 91405 Orsay, France

Abstract. This paper addresses the graph searching problem in a
distributed setting. We describe a distributed protocol that enables sear-
chers with logarithmic size memory to clear any network, in a fully de-
centralized manner. The search strategy for the network in which the
searchers are launched is computed online by the searchers themselves
without knowing the topology of the network in advance. It performs in
an asynchronous environment, i.e., it implements the necessary synchro-
nization mechanism in a decentralized manner. In every network, our
protocol performs a connected strategy using at most k + 1 searchers,
where k is the minimum number of searchers required to clear the net-
work in a monotone connected way, computed in the centralized and
synchronous setting.

1 Introduction

Graph searching [18] is one of the most popular tool for analyzing the chase for
a powerful and hostile agent, by a set of software agents in a network. Roughly
speaking, graph searching involves an intruder and a set of searchers, all moving
from node to node along the links of a network. The intruder is powerful in the
sense that it is supposed to move arbitrarily fast, and to be permanently aware
of the positions of the searchers. However, the intruder cannot cross a node or
an edge occupied by a searcher without being caught. Conversely, the searchers
are unaware of the position of the intruder. They are aiming at surrounding the
intruder in the network. The intruder is caught by the searchers when a searcher
enters the node it occupies. For instance, one searcher can catch an intruder
in a path (by moving from one extremity of the path to the other extremity),
while two searchers are required to catch an intruder in a cycle (starting from
the same node, the two searchers move in opposite directions). In addition to
network security, graph searching has several other practical motivations, such as
rescuing speleologists in caves [6] or decontaminating a set of polluted pipes [19].
It has also several applications to the Graph Minor theory as it provides a
dynamic approach to the analysis of static graph parameters such as treewidth
and pathwidth [4].

1.1 The Problem

The main question addressed by graph searching is: given a graph G, what is the
search number of G? That is, what is the minimum number of searchers, s(G),

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 70–84, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Chasing of Network Intruders 71

required to clear the graph G, i.e., to capture the intruder? This question is
motivated by, e.g., the need for consuming the minimum amount of computing
resources of the network at any time, while clearing it. The decision problem
corresponding to computing the search number s(G) of a graph G is NP-hard
[18], and NP-completeness follows from [5, 16]. Computing the search number
is however polynomial for trees [17, 18], and the corresponding search strategy
can be computed in linear time [20]. In fact, the search number of a graph is
known to be roughly equal to the pathwidth, pw, of the graph, and therefore the
search number of an n-node graph can be approximated in polynomial time, up
to multiplicative factor O(log n

√
log tw) where tw denotes the treewidth of the

graph (see [7], and use the fact that pw/tw ≤ O(log n)).
The graph searching problem has given rise to a vast literature, and several

variants of the problem have been considered (see, e.g., [14, 15]). Nevertheless,
from a distributed systems point of view, the existing solutions for the graph
searching problem (cf., e.g., [17, 18, 20]) suffer from a serious drawback: they are
mostly centralized. In particular, (1) the search strategy for every network is
computed based on the knowledge of the entire topology of the network, and
(2) the moves of the searchers are controlled by a centralized mechanism that
decides at every step which searcher has to move, and what movement it has to
perform. These two facts limit the applicability of the solutions. Indeed, as far
as networking or speleology is concerned, the topology of the network is often
unknown, or its map unprecise. The topology can even evolve with time (either
slowly as for, e.g., Internet, or rapidly as for, e.g., P2P networks). Moreover,
the mobile entities involved in the search strategy can hardly be controlled by a
central mechanism dictating their actions. All these constraints make centralized
algorithms inappropriate for many instances of the graph searching problem.

This paper addresses the graph searching problem in a distributed setting,
that is the searchers must compute their own search strategy for the network in
which they are currently running. This distributed computation must not require
knowing the topology of the network in advance, and the searchers must act in
absence of any global synchronization mechanism, hence they must be able to
perform in a fully asynchronous environment. Distributed strategies have been
proposed for specific topologies only, such as trees [2], hypercubes [9], and rings
and tori [8]. In this paper, we address the problem in arbitrary topologies.

1.2 The Model

The searchers are modeled by autonomous mobile computing entities with dis-
tinct IDs. More precisely, they are labeled from 1 to the current number k of
searchers in the network (if a new searcher has to join the team, it will take
number k+1). Otherwise searchers are all identical, and run the same program.
The network and the searchers are asynchronous in the sense that every action of
a searcher takes a finite but unpredictable amount of time. Moreover, motivated
by the fact that the intruder models a potentially hostile agent that can, e.g., cor-
rupt the node memories, the search strategy must perform independently from
any local information stored at nodes a priori, and even independently from the

72 L. Blin et al.

node IDs. We thus consider anonymous networks, i.e., networks in which nodes
do not have labels, or these labels are not accessible to the searchers. The deg(u)
edges incident to any node u are labeled from 1 to deg(u), so that the searchers
can distinguish the different edges incident to a node. These labels are called port
numbers. Every node of the network has a whiteboard in which searchers can
read, erase, and write symbols. (A whiteboard is modeling a specific zone of the
local node memory that is reserved for the purpose of exchanging information
between software agents). At every node, the local whiteboard is assumed to
be accessible by the searchers in fair mutual exclusion. Since the content of the
whiteboard at every node accessible by the intruder is corruptible, it is the role
of the searchers to protect information stored at nodes’ whiteboards.

The decisions taken by a searcher at a node (moving via port number p,
writing the word w on the whiteboard, etc.) is local and depends only on (1) the
current state of the searcher, and (2) the content of the node’s whiteboard (plus
possibly (3) the incoming port number, if the searcher just entered the node).

The powerful intruder is assumed to be aware of the edge-labeled network
topology, and thus it does not need the whiteboards to navigate. In fact, as
mentioned before, when the intruder enters a node that is not occupied by a
searcher, then it can modify or even remove the content of the local whiteboard.

All searchers start from the same node u0, called the entrance of the network,
or the homebase of the searchers. This node u0 is also a source of searchers, in the
sense that if the current team of searchers realize that they are not numerous
enough for clearing the network, then they can ask for a new searcher, that
will appear at the source. Initially, one searcher spontaneously appears at the
source. The size of the team will increase until it becomes large enough to clear
the network. Basically, the searchers are aiming at expanding a cleared zone
around their homebase u0, that is at expanding a connected sub-network of the
network G, containing u0, until the whole network is clear. In particular, as the
entrance u0 of the network is a critical node, it has to be permanently protected
from the intruder in the sense that the intruder must never be able to access it.

Among all search strategies, monotone ones play an important role. A mono-
tone strategy insures that, once an edge has been cleared, it will always remain
clear. Monotone strategies guaranty a polynomial number of moves: exactly one
move for clearing every edge, plus few moves required by the searchers to set
up their positions before clearing the next edge. In the connected setting, the
corresponding graph searching parameter is called monotone connected search
number starting at u0 (cf., [2, 3, 13]), and is denoted by mcs(G, u0).

1.3 Our Results

We describe a distributed protocol, called dist_search, that enables the searchers
to clear any asynchronous network in a fully decentralized manner, i.e., the search
strategy is computed online by the searchers themselves, after being launched
in the network without any information about its topology. To the best of our
knowledge, this is the first distributed protocol that addresses the graph searching
problem in its whole generality, i.e., for arbitrary network topologies.

Distributed Chasing of Network Intruders 73

The distributed search strategy self-computed by the searchers in an asynchro-
nous environment uses a number of searchers very close to the optimal. Indeed,
we prove that the number of searchers involved in the strategy computed by our
protocol in a network G is equal to 1 plus the minimum number of searchers
required to clear G by a monotone connected search strategy starting at u0, i.e.,
is equal to mcs(G, u0)+1. It is known [13] that mcs(G, u0) ≤ s(G)�log n�. Hence
our protocol is optimal up to a logarithmic factor.

Our protocol is space-efficient from many respects. In particular, it requires
only O(log k) bits of memory for each of the k searchers involved in the search.
This amount of memory is independent from the size n of the network. Moreover,
the amount of information stored at every whiteboard never exceeds O(m log n)
bits, where m is the number of edges of the network.

To obtain our results, we had to address several problems. First, since the
network is a priori unknown to the searchers, they have to explore it. However,
this exploration cannot be achieved easily because of the potential corruption
of the whiteboards by the intruder. Our protocol insures that exploration and
searching are performed somehow simultaneously, and that the whiteboards of
cleared nodes remain permanently protected unless there is no need to protect
the stored information anymore. Second, as the searchers asynchronously spread
out in the network, they become rapidly unaware of their relative positions. Our
protocol synchronizes the searchers in a non trivial manner so that an action
by a searcher is not ruined by the action of another searcher. Finally, to obtain
space-efficient solutions, our protocol takes advantage from the accesses to the
whiteboards, to store and read information useful to the searchers: it maintains
a stack at every whiteboard, and every searcher at a node has access only to the
top of a stack stored locally on the current node’s whiteboard, and to few other
variables also stored on the whiteboard.

2 Main Result and Sketch of the Protocol

The following theorem summarizes the main characteristics of dist_search.

Theorem 1. For any connected, asynchronous, and anonymous network G,
and any u0 ∈ V (G), dist_search enables capturing an intruder in G us-
ing searchers starting from the homebase u0, and initially unaware of G. The
main characteristics of dist_search are the following: (1) dist_search uses
at most k = mcs(G, u0) + 1 searchers if mcs(G, u0) > 1, and k = 1 searcher if
mcs(G, u0) = 1; (2) Every searcher involved in the search strategy computed
by dist_search uses O(log k) bits of memory; (3) During the execution of
dist_search, at most O(m log n) bits of information are stored at every white-
board.

Note that the theorem above implies that for networks searchable by a monotone
connected search strategy using a constant number of searchers, the protocol
dist_search can be implemented using finite state automata.

74 L. Blin et al.

Let us briefly sketch Protocol dist_search and its proof. Given a connected
network G, and X ⊆ E(G), we denote by δ(X) the nodes in V (G) that are
incident to an edge in X and an edge in E(G) \ X . Given k ≥ 1, we call k-
configuration any set X ⊆ E(G) such that |δ(X)| ≤ k. The k-configuration di-
graph Ck of G is defined as follows. V (Ck) is the set of all possible k-configurations.
There is an arc from X to X ′ in Ck if the configuration X ′ can be reached from X
by one step of a monotone connected search strategy using at most k searchers (a
step of a monotone connected search strategy starting at node u0 is the action
consisting in moving a searcher along an edge, all searchers being initially at
u0). The objective of Protocol dist_search is essentially to try, for successive
k = 1, 2, . . ., whether the configuration graph Ck can be traversed from ∅ to E(G)
under the constraint that the searchers starts at u0. If yes, then dist_search
completes after having captured the intruder using ≤ k searchers. Otherwise,
dist_search tries with k + 1 searchers. Note that this approach is similar to
the (centralized) parametrized algorithms of the literature (cf., e.g., [1, 10, 11]).
However, the difficulty of our approach is to discover whether the configuration
digraph Ck can be traversed from ∅ to E(G) in a decentralized manner.

For a fixed k, the objective of dist_search is to organize the movements of
the searchers so that they perform a DFS of Ck (again, ignoring the topology of
G, and in an asynchronous environment). This objective is achieved according to
an order specified by a virtual stack in which are stored information related to
the moves of the searchers. Roughly, Protocol dist_search constructs all possi-
ble states for the virtual stack, according to a lexicographic order on the states
of the stack. The difficulty of the protocol is to distribute the virtual stack on
the whiteboards so that when a searcher visits a node, it finds on the whiteboard
enough information for computing the next step of the search strategy that it
should perform. Since the intruder can corrupt the whiteboards, withdrawals
from previously visited nodes must be scheduled so that to make sure that no
information will be lost. Note here that, albeit the search strategy eventually
computed by the searchers is monotone (in the sense that the contents of all the
whiteboards describe a monotone search strategy when the protocol completes),
failing search strategies investigated before (according to the lexicographic order
on the states of the virtual stack) lead to withdrawals, and therefore to recontam-
ination. If all strategies with k searchers have failed, then the searchers terminate
at the homebase, call a new searcher, and restart searching the network with k+1
searchers.

The additional searcher used by dist_search, compared to mcs(G, u0), is
required for avoiding deadlocks. It is also used to schedule the moves of the other
searchers and to transmit few information between the searchers. It could be
replaced by simple communication facilities. For instance, if the searchers would
have the ability to send to and read from a mailbox available at the homebase,
this additional searcher could be avoided. In particular, in the Internet, each
searcher would just have to keep in its memory the IP address of the homebase.

The proof of correctness of Protocol dist_search is twofold. First, we prove
the correctness of an algorithm, denoted by A, that uses a centralized stack for

Distributed Chasing of Network Intruders 75

traversing the configuration digraph Ck. The second part of the proof consists in
proving a one-to-one correspondence between every execution of dist_search
using a virtual (i.e., decentralized) stack, and every execution of A using a cen-
tralized stack.

3 Search Strategy Using a Centralized Stack

In this section, we describe the algorithmA enabling a team of searchers launched
in an unknown network to capture an intruder hidden in this network. Algorithm
A is not fully distributed because it uses a centralized stack whose top is acces-
sible from every node by every searchers.

3.1 Description of Algorithm A

Algorithm A uses the notion of extended moves, that are triples (ai, aj , p) where
ai and aj denote searchers, and p is a port number.

Definition 1. An extended move (ai, aj , p) corresponds to the following: (1)
searcher ai joins searcher aj, and (2) the searcher with the smallest ID among
ai and aj leaves the node now occupied by the two searchers via port p. (Note
that i = j is allowed, in which case ai leaves the node it occupies by port p).

The central stack stores extended moves and thus describes a sequence of oper-
ations performed by the searchers. More precisely, reading the stack bottom-up
defines a sequence of operations that describes a partial execution of a search
strategy.

Definition 2. For a fix parameter k ≥ 1, a state of the virtual stack is valid
if there exists a monotone connected search strategy using at most k searchers
whose partial execution is described by this state.

By some abuse of terminology, we sometime say that a stack Q is valid, meaning
that the current state S of the stack Q is valid. Given a valid state S of a stack
Q, we denote by XS the configuration induced by S, that is XS is the set of
clear edges after the execution of the extended moves in S.

The principle of Algorithm A is to try, for each k = 1, 2, . . ., every possible
monotone connected search strategy using k searchers, until one reaches a sit-
uation in which either the whole network is clear, or all search strategies have
been exhausted. In the latter case, Algorithm A proceeds with k+1 searchers by
calling for a new searcher at the homebase u0. From now on, we assume that k is
fixed. The k searchers are denoted by a1, . . . , ak, where the ID of ai is simply its
index i. Algorithm A is described in Figure 1. It returns a boolean possible. If
possible is true then clearing the network with k searchers is possible, in which
case the stack Q returned by Algorithm A is valid, and contains a monotone
connected search strategy clearing G with k searchers.

In Algorithm A, the stack Q is initially empty, and only a1 is placed at u0. the
other searchers a2, . . . , ak are available. In addition to the centralized stack Q,

76 L. Blin et al.

Algorithm A uses a global variable state that takes two possible values clear or
backtrack whose meaning will appear clear later on. Finally, Algorithm A uses
a boolean variable decided that is false until either a monotone connected search
strategy using k searchers clearing the network is discovered, or all possible
monotone connected search strategies using k searchers have been considered.
Hence the main while-loop of Algorithm A is based on the value of decided (cf.
Figure 1). This main while-loop mainly contains two blocks of instructions. These
blocks are executed depending on the value of state (clear or backtrack).

Case clear corresponds to a situation in which Algorithm A has just cleared
an edge, i.e., the last execution of the main while-loop has resulted in pushing
some extended move in Q. Case backtrack corresponds to a situation when
the last execution of main while-loop has resulted in popping the stack Q, i.e.,
has resulted in the recontamination of an edge.

Let us first focus on the case state = clear. Algorithm A focuses on specific
extended moves, only those that do not imply recontamination (this is because
A eventually computes a monotone strategy). More formally, let us consider a
valid state S of the stack Q, i.e., S is a sequence of extended moves denoted by
M1| . . . |Mr. Pushing an extended move M in Q results in a new state, denoted
by S|M . We say that a extended move M is valid according to Q if S′ = S|M
is a valid state. Note that A does not maintain the set X of clear edges and
the set of available searchers. Indeed, given a valid state S of the stack Q, one
can easily construct XS by executing the partial search strategy described by
S. A searcher is then available if either it stands at a node not in δ(XS) or it
stands at a node also occupied by a searcher of lower index. There is therefore
a simple characterization of a valid extended move M according to a valid state
S of Q: If S = ∅, then M is valid if and only if either u0 is a 1-degree node and
M = (a1, a1, 1), or k > 1 and M = (a2, a1, 1). If S �= ∅, M = (ai, aj , p) is valid
according to Q if and only if either i = j, ai stands at a node u ∈ δ(XS), and p
is the only contaminated port of node u, or i �= j, ai is available, aj stands at a
node u ∈ δ(XS), and p is a contaminated port of node u.

The first instruction of the case state = clear consists in checking whether
there exists a valid extended move according to Q. The key issue is to choose
which extended move to apply, among all possible valid extended moves. For this
choice, the extended moves are ordered in lexicographic order.

Definition 3. Let M = (ai, aj , p) and M ′ = (ai′ , aj′ , p′) be two extended moves.
We define M ≺ M ′ if and only if either (i < i′), or (i = i′, and j < j′), or
(i = i′, j = j′, and p < p′).

If there is an extended move that is valid according to Q then Algorithm A
chooses the one that has minimum lexicographic order among all extended moves
that are valid according to Q. If there is no extended moves that are valid
according to Q, then A switches to the state backtrack. For this purpose, the
last move in Q is popped out, and stored in the global variable Mlast. If fact, if
Q = ∅, then backtracking is not possible, and A decides that k searchers are not
sufficient to clear the network.

Distributed Chasing of Network Intruders 77

Input: k ≥ 1 searchers a1, a2, · · · , ak and a node u0 of a graph G.
Output: a boolean possible, and a stack Q of extended moves.
begin

Q ← ∅;
state ← clear;
decided ← false;
while not decided do

if all searchers are available then
decided ← true;
possible ← true;

else
/* case state = clear */
if state = clear then

if there exists a valid extended move according to Q then
(ai, aj , p) ← minimum valid extended move according to Q;
push(ai, aj , p);

else
if Q �= ∅ then

Mlast ← pop();
state ← backtrack;

else
decided ← true;
possible ← false;

/* case state = backtrack */
else

Let Mlast = (ai, aj , p);
if there exists a valid extended move according to Q larger than (ai, aj , p) then

(a′
i, a′

j , p′) ← min valid extended move according to Q larger than (ai, aj , p);
push(a′

i, a′
j , p′);

state ← clear;
else

if Q �= ∅ then Mlast ← pop();
else

decided ← true;
possible ← false;

endif
endif

endwhile
return(possible, Q);

end.

Fig. 1. The Algorithm A

Let us now focus on the case state = backtrack. A considers the move
Mlast. If there is an extend move M � Mlast that is valid according to the stack,
then A performs the smallest such move by pushing M in the stack, and going
back to state clear. Otherwise A carries on backtracking by popping out the
last extended move from the stack.

3.2 Property of Algorithm A

Lemma 1. Algorithm A completes for k = mcs(G, u0), and then the stack Q
describes a monotone connected search strategy for G starting at u0 and using k
searchers.

Sketch of proof. First we prove that, after any execution of the while-loop, the
state of the stack is valid. The main tools for the proof in then an ordering
of the states of the stack. We order them the same way we ordered extended
moves. Precisely, given S = M1| · · · |Mr and S′ = M ′

1| · · · |M ′
r′ , two states of

78 L. Blin et al.

the stack Q, S ≺ S′ if and only if there exists i ≤ min{r, r′} such that Mi ≺
M ′

i and, for any j < i, Mj = M ′
j. Also, let us say that a valid sequence of

extended moves is complete if the corresponding search strategy clears the whole
network. Consider S = M1| . . . |Mr a sequence of extended moves corresponding
to a partial execution of a search strategy using at most k searchers. We prove
that either there exists a complete sequence S′ of extended moves with S′ ≺
S, or Algorithm A eventually computes state S of the stack. Based on these
preliminary results, we prove that if mcs(G, u0) > k then Algorithm A returns
(false, ∅) for k. Conversally, we prove that if mcs(G, u0) = k, and if S is the
smallest complete sequence of valid extended moves corresponding to a monotone
connected search strategy in G starting from u0, then Algorithm A returns
(true,Q) for k, where Q is in state S. As a direct consequence of these results, we
get that Algorithm A computes a minimal monotone connected search strategy
starting from u0 in G. �	

4 Fully Distributed Search Strategy

In this section, we describe the main features of protocol dist_search. In this
description, we assume that searchers are able to communicate by exchanging
messages of size O(log k) bits where k is the number of searchers currently in-
volved in the search. With this facility, we will show that dist_search captures
the intruder with mcs(G, u0) searchers. Using an additional searcher for imple-
menting communications between the mcs(G, u0) other searchers, dist_search
captures the intruder with mcs(G, u0) + 1 searchers in total. Assuming that the
searchers can communicate by exchanging messages is only for the purpose of
simplifying the presentation. Moreover, for the sake of simplicity, we assume
that two searchers on the same node can ”see” each other. Obviously, this can
be implemented with the whiteboards, but would unnecessarily complicate the
presentation. First, we describe the data structure used by dist_search.

4.1 Data Structure of dist_search

Every searcher has a state variable that can take k+2 different values where k is
the current number of searchers. These k+2 states are: clear, backtrack, and
(help, j), for j = 1, . . . , k. Initially, all searchers are in state clear. During the
execution of the protocol, (1) a searcher is in state clear if it has just cleared
an edge; (2) a searcher is in state backtrack if it has just backtracked through
an edge that it has previously cleared; and (3) a searcher is in state (help, j) if
it is aiming at joining the searcher j to help him clearing the network (i.e., one of
them will guard a node, while the other will clear an edge incident to this node).

The messages that searchers can exchange are of four types: start, move,
help and sorry. (1) start is an initialization message that is only used to start
Protocol dist_search (only agent a1 receives this message, at the very beginning
of the protocol execution). (2) If a searcher i receives a message (move, j) from
some searcher aj , then it is the turn of searcher ai to proceed. (As it should
appear clear later, the searchers schedule themselves so that exactly one searcher

Distributed Chasing of Network Intruders 79

performs an action at a time). (3) If a searcher ai receives a message (help, j)
from some searcher aj, then aj is currently just arriving at the same node as
ai to help ai. (Note that ai and aj could use the whiteboard to communicate,
and this type of messages is just used for a purpose of unification with the other
message types). (4) If a searcher ai had received a message (move, j) or (help, j)
from some searcher aj and, after having possibly performed several actions, it
turns out that these actions are useless, then ai sends a message (sorry, i) back
to searcher aj .

The whiteboard of every node contains a local stack, and two vectors direc−
tion[] and cleared_port[]. The protocol insures that, after the node has been
visited by a searcher, direction[0] indicates the port number to take for reaching
the homebase, and, for i > 0, direction[i] is the port number of the edge that
searcher ai has used to leave the current node the last time it was at this node.
At node v, for any 1 ≤ p ≤ deg(v), cleared_port[p] = 1 if and only if the edge
corresponding to the port number p is clear.

When a searcher at a node v decides to perform any action, it saves a trace of
this action in the local stack. A trace is a triple (X, a, x) where X is a symbol, a
is a searcher’s ID, and x is either a port number, or a searcher’s ID, depending on
symbol X . More precisely: (1) (CC, i, p) means that p is the only contaminated
(C) port, and searcher ai decided to clear (C) the edge that corresponds to p;
(2) (CJ, i, p) means that some searcher joined (J) ai at this node, and ai decided
to clear (C) the edge that corresponds to p; (3) (JJ, i, j) means that searcher ai

decided to join (J) the searcher aj ; (4) (RT, i, j) means that searcher ai received
(R) a message from searcher aj ; (5) (ST, i, j) means that searcher ai decided to
send (S) a message to searcher aj ; (6) (AC, i, p) means that searcher ai arrived
(A) at v by port p after clearing (C) the corresponding edge; (7) (AH, i, p) means
that searcher ai arrived (A) at v by port p in order to join another (H) searcher.

4.2 The Protocol Dist_Search

The protocol dist_search organizes the movements of the searchers, and the
messages exchanged between the searchers, in a specific order. Based on a lex-
icographic order of the searchers’ actions, dist_search orders them in order
to always execute the smallest action that can be performed. The principle of
dist_search is to try every possible monotone connected search strategy us-
ing k searchers, until either the whole graph is clear, or no searcher can move
without implying recontamination. In the latter case, the searcher that made the
last move backtracks, and dist_search tries the next action according to the
lexicographic order on the actions.

The termination of dist_search is insured as follows. The graph is cleared
at time t if and only if all searchers are occupying clear nodes at this time, i.e.,
nodes whose all incident edges are clear. This configuration is identified by the
searchers because searcher a1 tries to help all the other searchers, from a2 to ak,
but none of them needed help. Conversely, the searchers identify that k searchers
are not sufficient to clear the graph when they are all occupying the homebase,
and try to pop the local stack that is empty. In this case, a1 calls for a new

80 L. Blin et al.

Program of searcher i at node v.

begin
/* Searcher i receives a message */
Case:

message = start
decide();

message = (move, j)
push(RT, i, j);
decide();

message = (help, j)
push(RT, i, j);
p ← smallest contaminated port;
clear edge(CJ, i, p)

message = (sorry, j)
back();

/* Searcher i arrives at node v by port p */
Case:

state = clear
if no other searcher is at v then

erase whiteboard;
direction[0] ← p;
cleared_port[p] ← 1;
push(AC, i, p);
if i �= 1 then

push(ST, i, 1);
send message (move, i) to 1;

else decide();
state = (help, j)

push(AH, i, p);
join(j);

state = backtrack
back();

end

Fig. 2. Skeleton of Protocol dist_search

searcher, and the k + 1 searchers are ready to try again capturing the intruder
from the homebase.

A skeleton of the protocol dist_search is given in Figures 2-3. More precisely,
Figure 2 describe the global behavior of a searchers, using subroutines described
in Figure 3. A searcher reacts to either the reception of a message (cf. left part
of Figure 2), or to its arrival at a node (cf. right part of Figure 2). The message
type start is uniquely for the purpose of the initialization: initially, searcher a1
receives a message start (and hence calls procedure decide()).

If searcher ai receives a message (move, j), then, by definition of such a mes-
sage, it simply means that it is the turn of ai to proceed. Therefore, ai writes
on the whiteboard of the node where it is currently standing that received a
message from searcher aj giving it turn to proceed. For this purpose, ai pushes
(RT, i, j) in the local stack. The nature of the next actions of ai depends on
the result of procedure decide(). Let us list all other cases depending on the
message received by ai. If ai receives a message (help, j) then it means that aj

has just arrived at the same node as ai to help him. Thus, ai pushes (RT, i, j)
in the local stack, and clears the edge with the smallest port number p among
all contaminated edges incident to the node where ai is standing. This action is
performed by calling procedure clear edge(CJ, i, p). Finally, if ai receives a mes-
sage (sorry, j), then it means that ai had sent a message (move, i) or a message
(help, i) to aj but aj could not do anything, or all actions aj attempted lead to
backtracking. Therefore, ai calls procedure back() to figure out which searcher
it can help next.

The action of searcher ai arriving at some node v by port p depends on
its local state. In state (help, j), ai aims at joining aj to help him clearing
the network. Hence ai pushes (AH, i, p) in the local stack to indicate that it
arrived here by port p in order to join another searcher, and then calls procedure
join() to figure out what to do next in order to join aj . Procedure join() uses
indications on whiteboards. Recall that if aj was at a node, the whiteboard
contains in direction[j] the port number through which aj left that node.

Distributed Chasing of Network Intruders 81

clear_edge(action X, ID i, port p)
/* X ∈ {CC;CJ} */
begin

push(X, i, p);
cleared_port[p] ← 1;
state ← clear;
move(p);

end

move(port_number p)
begin

direction[i] ← p;
leave current vertex by port number p;

end

next_searcher(searcher_ID i)
begin

j ← i + 1;
if i is not smallest searcher at v then

while (j is at node v) and (j ≤ k) do
j ← j + 1;

if j ≤ k then
push(ST, i, j);
send (move, i) to j;

else
back()

end

Fig. 3. Procedures clear_edge, next_searcher and move

Agent ai returns to the homebase using direction[0] until it passes through a
node where direction[j] is set, in which case ai starts following this direction
to eventually find aj. In state backtrack, ai simply calls procedure back() to
carry on its backtracking. The case where ai arrive at a node v in state clear
is more evolved. If there is no other searcher at v then ai erases the whiteboard
since it was accessible to the intruder, and thus its content is meaningless (when
a searchers arases a whiteboard, it reset all local variables to 0, and the stack
to ∅). Then ai sets direction[0] to p to indicate that it arrived here via port
p, and sets cleared_port[p] to 1 to indicate that the edge of port p is clear. ai

then pushes (AC, i, p) in the local stack at v to indicate that indeed ai arrived at
v by port p after clearing the corresponding edge. At this point, the behavior of
ai depends on whether i = 1 or not. While a1 simply calls decide() to figure out
what to do next, ai for i > 1 proposes to a1 to proceed next. For this purpose, ai

sends a message (move, i) to a1. Of course, to keep trace of this action, ai pushes
(ST, i, 1) in the local stack.
Remark. Note that the actions are ordered. For instance, if several incident edges
can be cleared then the cleared one is with the smallest port number. Similarly,
after clearing an edge, ai proposes to the smallest searcher a1 to proceed next.
Protocol dist_search always tries to perform the smallest action. This is in
particular the role of procedure next searcher(i) described on the right side of
Figure 3. This procedure aims at determining which searcher aj proceeds next.
In the case where ai is the searcher with smallest index occupying the node,
j = i + 1. Otherwise, i.e., ai is not the searcher with smallest index occupying
the node, j is the smallest index > i such that aj is not occupying the same
node as ai. Once j is found, ai offers to aj to proceed next, by sending it a
message (move, i). As always, a trace of this action is kept at the current node
by pushing (ST, i, j) in the local stack. If there is no aj with j > i occupying a
node different from the one occupied by ai, then ai calls back() for the purpose
of backtracking.

The procedures clear edge() and move() described in the left side of Figure 3
execute clearing an edge, and traversing an edge, respectively. (Of course, clear-
ing an edge requires traversing it). Procedures decide(), back(), and join() are
avoided due to lack of space.

82 L. Blin et al.

5 Sketch of Proof of Dist_Search

First, one can check that at any step of dist_search there is only one operation
performed, on only one of the stacks distributed over all nodes of the network.
Indeed, only the searcher who has just received a message can perform an action,
and in particular modify a stack. Thus we can define a virtual stack, Qvirtual,
where we push or pop all the moves performed by the searchers, instead of
pushing or popping them in and out of the distributed stacks.

Precisely, a move is a pair (ai → aj , p) to be interpreted as follows. If i �= j,
then (ai → aj , p) means that ai leaves its current node by port p with the
objective of joining aj . The move (ai → ai, p) means that ai leaves its current
node by port p, for clearing the corresponding edge. Clearly, an extended move
corresponds to a sequence of moves. From the interpretation above, the extended
move (ai, ai, p) is identical to the move (ai → ai, p), and if i �= j then the
extended move (ai, aj, p) is identical to the sequence of moves

(ai → aj , p1), (ai → aj , p2), . . . , (ai → aj , p�), (min{ai, aj} → min{ai, aj}, p)

where p1, . . . , p� is a sequence of port numbers corresponding to a clear path
from the node occupied by ai to the node occupied by aj when the extended
move (ai, aj , p) is considered.

Qvirtual is updated in the following way. At every execution of the Procedure
move(), we push or pop a move in Qvirtual as follows. If ai applies move(p) dur-
ing the execution of Procedure clear edge(X, i, p), then the move (ai → ai, p)
is pushed in Qvirtual. If ai applies move(p) during the execution of Procedure
join(j), then the move (ai → aj, p) is pushed in Qvirtual. Finally, if a searcher ap-
plies move(p) during the execution of Procedure back(), then Qvirtual is popped.

With this definition of Qvirtual, we show that the stack Q of the centralized
algorithm A, and the virtual stack Qvirtual are equivalent in the following way.
Let Q = M1| · · · |Mr be a sequence of extended moves (possibly empty). Qvirtual

is strongly equivalent to Q if, for any 1 ≤ j ≤ r, there exists a sequence of moves Sj

equivalent to Mj such that Qvirtual = S1| · · · |Sr. Qvirtual is weakly equivalent to Q
if for any 1 ≤ j ≤ r, there exists a sequence of moves Sj equivalent to Mj such that
Qvirtual = S1| · · · |Sr|Sr+1 where Sr+1 = (ai → ai′ , p1), (ai → ai′ , p2), . . . , (ai →
ai′ , p�) where p1, · · · , p� is a sequence of port numbers corresponding to a path
from a searcher ai to a searcher ai′ , in the cleared part of the graph corresponding
to the configuration associated to Q in state M1| · · · |Mr.

Two strongly equivalent stacks correspond to exactly the same strategy (i.e.,
at the end of both strategies, the set of cleared edges, and the positions of
the searchers are the same). If Q and Qvirtual are weakly equivalent, then the
strategy associated to Qvirtual consists in performing the strategy associated to
Q and then to move some searcher to the node occupied by some other searcher
(via a path in the cleared part of the graph, and without recontamination).

The proof of dist_search proceeds by considering the algorithm step by step,
where a step is a moment of the execution where an edge is either cleared or
recontaminated. That is, a step of dist_search denotes a step of its execution
when a move of type (ai → ai, p) is pushed in or popped out Qvirtual.

Distributed Chasing of Network Intruders 83

Formally, we prove that, for any t ≥ 0, the virtual stack Qvirtual after step t
of dist_search is equivalent to the stack Q constructed by A. In other words,
we prove that, at any step t ≥ 0, both algorithms construct the same partial
strategy, that is the cleared subgraph and the positions of the searchers that
guard the border of this cleared subgraph are the same for both strategies.
Simultaneously, we prove that for any step, when an extended move is popped
out in A, all the traces of the equivalent sequence of moves in dist_search are
removed from the distributed whiteboards.

Our proof is by induction on number of steps. Let us assume that the cen-
tralized stack Q and the virtual stack Qvirtual are equivalent up to step t. We
consider the next step. The difficulty of the proof is in the number of different
cases to consider. There are actually exactly fourteen cases to consider, grouped
in two groups:

– Group A: Q and Qvirtual just cleared an edge e. The first case is if the graph
is entirely clear. Otherwise there are 3 cases: (1) a searcher can clear a new
edge alone, or (2) a searcher can join another searcher and one of them can
clear a new edge, or (3) no other edge can be cleared and the clearing of e has
to be canceled. These cases have to be combined with 3 other cases depending
on the way e has been cleared. Thus Group A yields 7 cases in total.

– Group B: Q and Qvirtual just cancelled the clearing of an edge. Then, either
another edge e can be cleared, or no other edge can be cleared (and the
last cleared edge, say e′, has to be canceled). In the former case, there are 3
subcases depending on the type of move that has been popped out the stack
(canceling corresponding to popping out the stack). In the latter case, there
are 4 subcases depending on the way e′ had been cleared. Thus Group B
yields 7 additional cases.

The proof of correctness consists in a careful analysis of each of these 14 cases.
Finally, every agent uses at most O(log k) bits of memory to store the label of
another agent in state (help, j). The whiteboard size is O(m logn) by a careful
analysis of the protocol.

Acknowledgments. The first and fourth authors received additional supports
from the project “ALGOL”of the ACI Masses de Données, and from the project
“ROM-EO” of the RNRT program. The second and third authors received ad-
ditional supports from the project “PairAPair” of the ACI Masses de Données,
from the project“Fragile”of the ACI Sécurité Informatique, and from the project
“Grand Large” of INRIA.

References

1. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth. 8(2):277-284, 1987.

2. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder
by mobile agents. In 14th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 200-209, 2002.

84 L. Blin et al.

3. L. Barrière, P. Fraigniaud, N. Santoro, and D. M. Thilikos. Searching is not jump-
ing. In 29th Workshop on Graph Theoretic Concepts in Computer Science (WG),
Springer-Verlag, LNCS 2880, pages 34–45, 2003.

4. D. Bienstock, Graph searching, path-width, tree-width and related problems (a
survey), DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science,
5 (1991), pp. 33–49.

5. D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algo-
rithms 12:239–245, 1991.

6. R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers
VI(5):72–78, 1967.

7. U. Feige, M. Hajiaghayi, and J. Lee. Improved approximation algorithms for
minimum-weight vertex separators. In 37th ACM Symposium on Theory of Com-
puting (STOC), 2005.

8. P. Flocchini, F.L. Luccio, and L. Song. Decontamination of chordal rings and tori.
Proc. of 8th Workshop on Advances in Parallel and Distributed Computational
Models (APDCM), 2006.

9. P. Flocchini, M. J. Huang, F.L. Luccio. Contiguous search in the hypercube for
capturing an intruder. Proc. of 18th IEEE Int. Parallel and Distributed Processing
Symposium (IPDPS), 2005.

10. F. Fomin, P. Fraigniaud and N. Nisse. Nondeterministic Graph Searching: From
Pathwidth to Treewidth. In 30th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), LNCS 3618, pages 364-375, Springer, 2005.

11. F. V. Fomin, D. Kratsch, and I. Todinca. Exact algorithms for treewidth and min-
imum fill-in. In 31st Int. Colloquium on Automata, Languages and Programming
(ICALP 2004), LNCS vol. 3142, Springer, pp. 568–580, 2004.

12. P. Fraigniaud and D. Ilcinkas. Directed Graphs Exploration with Little Mem-
ory. Proc. 21st Symposium on Theoretical Aspects of Computer Science (STACS),
LNCS 2296, pages 246-257, 2004.

13. P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching.
In 7th Latin American Theoretical Informatics, LNCS 3887, pages 470-490, 2005.

14. L. Kirousis, C. Papadimitriou. Interval graphs and searching. Discrete Math. 55,
pages 181-184, 1985.

15. L. Kirousis, C. Papadimitriou. Searching and Pebbling. Theoretical Computer
Science 47, pages 205-218, 1986.

16. A. Lapaugh. Recontamination does not help to search a graph. Journal of the
ACM 40(2):224–245, 1993.

17. F. S. Makedon and I. H. Sudborough, On minimizing width in linear layouts,
Discrete Appl. Math., 23:243–265, 1989.

18. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The com-
plexity of searching a graph. Journal of the ACM 35(1):18–44, 1988.

19. T. Parsons. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, Springer-Verlag, pages 426–441, 1976.

20. K. Skodinis Computing optimal linear layout of trees in linear time. In 8th Eu-
ropean Symp. on Algorithms (ESA), Springer, LNCS 1879, pages 403-414, 2000.
(Also, to appear in SIAM Journal on Computing).

21. B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number. In
15th Annual International Symposium on Algorithms and Computation (ISAAC),
pages 908-920, 2004.

Election in the Qualitative World

Jérémie Chalopin

LaBRI, Université Bordeaux 1
351 cours de la Libération

33405 Talence, France
chalopin@labri.fr

Abstract. In [3], Barrière et al. consider a qualitative model of distrib-
uted computing, where the labels of the entities are distinct but mutually
incomparable. They study the leader election problem in a distributed
mobile environment and they wonder whether there exists an algorithm
such that for each distributed mobile environment, it either states that
the problem cannot be solved in this environment, or it successfully elects
a leader. In this paper, we give a positive answer to this question. We
also give a characterization of the distributed mobile environments where
the election problem can be solved.

1 Introduction

Consider an intercontinental highway network linking different cities in different
countries. In each city, the directions to the other cities are written in the lan-
guage that is locally spoken. Consider now a set of different drivers coming from
different countries. Initially, each driver starts in his town and all the drivers
want to meet at a single place. The only mean they have to communicate is
to leave messages in each city they reach, but each driver can only speak his
mother tongue: he can see that another driver left some message, but he cannot
understand it. Moreover, each driver can consistently distinguish the different
directions in each city, but the drivers cannot agree on an alphabetical order on
these directions: a French driver would not be able to figure out how to order
Chinese words in the Chinese way, for example. We wonder whether there exists
a procedure that enables them to meet at a single point in a finite time.

In distributed computing, the links incident to each process are usually la-
belled by distinct numbers in order to allow each process (or each mobile agent)
to consistently distinguish its neighbours; this labelling is usually called a ports-
numbering. In fact, these numbers allow not only to distinguish the links, but also
to order them. Many distributed algorithms assume also that all the processes
can be unambiguously identified, and therefore the processes are given numbers.
Again, one can see that this allows to order the different processes according to
their labels. This usual setting is a quantitative model, since each label can be
seen as a number.

Nevertheless, as in the example presented above, one may be able to dis-
tinguish labels without being able to order them. In this paper, we consider

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 85–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

86 J. Chalopin

distributed mobile environments where mobile agents are scattered all over a
network. All the agents have distinct colors (their labels), which are mutually
incomparable: each agent can just check whether two colors are equal or not.
The links incident to each vertex are also given distinct incomparable colors.
This model is close to the one introduced by Barrière et al. in [3]; it is qual-
itative, in the sense that there is no a priori order between the labels. As in
[3], we study the impact of the lack of a total order on the set of labels in a
distributed mobile environment. In this way, we investigate the leader election
problem, that is a classical problem to highlight the differences between various
models of distributed computing.

In usual models, there is always an implicit order over the set of labels, since
for each agent, each information is just a sequence of bits. Nevertheless, consider
an algorithm designed to be executed by mobile agents over a network. If the
agents have been implemented by different companies, and if the specifications
of the algorithm do not specify how the integers must be represented, some
agents can for instance store numbers with most significant bit first whereas
other agents store numbers with least significant bit first; in this case, the agents
would not agree on the meaning of the sequence 01101. Moreover, it is always
interesting to deal with algorithms that need less specifications, since they are
generally more robust, and easier to implement in different models of distributed
computing.

The Model. In this paper, an agent is an entity which executes an algorithm: it
can move from place to place (with some data and its algorithm) through com-
munication links, it can make local computations on a place (a place provides
tools for local computations: data, memories and process) and leave messages
on a place. In our model, the environment is represented by a simple undirected
connected graph G = (V (G), E(G)) and a set E of mobile agents is scattered
over G. Communications between agents is achieved through writing messages
on whiteboards, where agents can read, write, and erase messages. There is one
whiteboard on each vertex of G, and access to a whiteboard is in mutual exclu-
sion. Initially, all the whiteboards are empty. Let p : E → V (G) be the injection
describing the initial placement of the agents in G. The vertex p(r) is called
the homebase of the agent r ∈ E . We will denote such a distributed mobile
environment by (G, E , p).

We consider a set of colors C and a function color : E → C that associates to
each agent a unique color. There is no a priori order on the set of colors: each
agent can give its own order on the set of colors, but the agents do not agree
on a particular order. Each agent can understand a message it has written, but
it cannot understand a message written by another agent, it can just know the
color of the message. We also suppose that initially, the homebases are marked:
they contain a marker that enables each agent to know that a place is a homebase
and to detect the color of this homebase. In each place, the incident links are
labelled by different colors that enable each agent to consistently distinguish the
neighbours of the place: for each vertex u, there exists an injective function δu

that associates a color from a new set C′ (i.e., C′ ∩C = ∅) to each edge incident

Election in the Qualitative World 87

to u. The set δ = {δu : u ∈ V (G)} constitutes the ports-labelling of G. Thanks
to this labelling δ, each agent can make a distinction between the incident edges
of each vertex. Such a distributed colored mobile environment will be denoted
by (G, δ, E , p, color).

The agents are asynchronous, in the sense that every action they perform
(computing, moving, etc.) takes a finite but otherwise unpredictable amount of
time. Moreover, we suppose that an agent has not an initial knowledge of the
network topology, neither of its size nor of the number of agents in the system.
The actions an agent a located at a node v can perform depends on the current
state of a, the current state of the whiteboard at v, and the color of the port
through which a entered v. According to these informations, a can decide to
write a message on the whiteboard of v, to leave v (through a port whose color
may result from some computation), or to stay at v (for example, to wait that
another agent leaves a message on the whiteboard).

This model is more restrictive than the one presented in [3], since in the model
of Barrière et al. the agents cannot agree on an order on the set of colors, but
they fully understand the symbols written by the other agents. However, the
necessary condition presented in our model is the same as the one presented in
[3]: the results presented in this paper remain true in the model of [3].

The Election Problem. The election problem is one of the paradigms of the
theory of distributed computing. In the distributed mobile setting, the aim of
a leader election algorithm is to distinguish one agent among the others. All
the agents execute the same protocol, i.e., the only initial difference between
two agents is their colors. At the end of the execution of the algorithm, there
is exactly one agent in the state elected, whereas all the other agents enter the
state non-elected. Moreover, it is supposed that once an agent enters in the state
elected or non-elected, it remains in such a state until the end of the computation.
Another important problem in this setting is the rendez-vous problem. The aim
of a rendez-vous algorithm is to reach a configuration where all the mobile agents
gather in the same vertex of the graph. These two problems are equivalent, since
once an agent has been elected, if all the agents agree on the label elected, all the
agents can gather in the homebase of the elected agent. Reversely, once all the
agents have gathered in some place, the first agent that writes on the whiteboard
of this place is elected, whereas all the others become non-elected. There exists
a large variety of results for these problems in the mobile agent setting assum-
ing different properties of the environment [2, 4, 5, 10, 11]. The election problem
has also been extensively studied in the distributed setting, and particularly in
anonymous networks, where the processes do not have distinct labels [1, 6, 9, 13].

Consider a graph G and a set of agents E scattered over the network according
to a function p. We say that we can solve the election problem on (G, E , p) if
the problem can be solved on (G, δ, E , p, color) for all ports-labellings δ and all
agent-coloring functions color. This implies that an election algorithm in the
distributed mobile environment (G, E , p) must not use some particularity of the
ports-labelling or make any assumption on the set of colors (for example, if one
know that there is always a red agent, one can design an algorithm that elects

88 J. Chalopin

the red agent). Note that, as for anonymous networks in the distributed setting
[9, 13], the protocols must not depend on the ports-labelling. Indeed, the role of
the ports-labelling is just to enable an agent to make a distinction between the
different neighbours of a vertex.

As in [3], we say that an algorithm A is an effective election algorithm if for
each distributed mobile environment (G, E , p), each ports-labelling δ and each
coloring function color, for all the executions of A on (G, δ, E , p, color), either all
the agents detect that the election problem cannot be solved in (G, E , p), or the
agents successfully elect one of them. In particular, note that such an algorithm
does not need any initial knowledge about the topology, the size, the diameter
of the network or about the number of agents.

Main Results. In this work, we give a characterization (Theorem 1) of distrib-
uted mobile environments, where the election problem can be solved.

In [3], Barrière et al. wonder whether there exists an effective algorithm for
the qualitative world. The algorithm we describe gives a positive answer to this
question (Theorem 2).

To obtain a necessary condition (Proposition 2), we use well-balanced auto-
morphisms that have been introduced by Bougé in [8].

Then, we show that this necessary condition is also sufficient: we use some links
between fibrations and automorphisms presented in [7] to describe an effective
algorithm in Section 4.2 that solves the election problem when the necessary
condition is satisfied.

2 Preliminaries

Labelled Digraphs. In the following, we will consider directed graphs (di-
graphs) with multiple arcs and self-loops. A digraph D = (V (D), A(D), sD, tD)
is defined by a set V (D) of vertices, a set A(D) of arcs and by two maps sD

and tD that assign to each arc two elements of V (D) : a source and a target
(in general, the subscripts will be omitted); if a is an arc, the arc a is said to
be going out of s(a) and coming into t(a). We say that s(a) is a predecessor of
t(a) and that t(a) is a successor of s(a). A digraph D is strongly connected if for
all vertices u, v ∈ V (D), there exists a sequence of arcs a1, a2, . . . ap such that
s(a1) = u, ∀i ∈ [1, p− 1], t(ai) = s(ai+1) and t(ap) = v. In the following, we will
only consider strongly connected digraphs. A symmetric digraph D is a digraph
endowed with a symmetry, that is, an involution Sym : A(D) → A(D) such that
for every a ∈ A(D), s(a) = t(Sym(a)).

A digraph homomorphism γ between the digraph D and the digraph D′ is
a mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) such that if u, v are vertices of
D and a is an arc such that u = s(a) and v = t(a) then γ(u) = s(γ(a)) and
γ(v) = t(γ(a)). We say that γ is an isomorphism if γ is bijective and γ−1 is a
homomorphism, too.

Throughout the paper we will consider digraphs where the vertices and the
arcs are labelled with labels from a recursive label set L. A digraph G labelled
over L will be denoted by (D,λ), where λ : V (D) ∪ A(D) → L is the labelling

Election in the Qualitative World 89

function. The digraph D is called the underlying digraph and the mapping λ is a
labelling of D. A mapping γ : V (D)∪A(D) → V (D′)∪A(D′) is a homomorphism
from (D,λ) to (D′, λ′) if γ is a digraph homomorphism from D to D′ which
preserves the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (D)∪A(D).
Labelled digraphs will be designated by bold letters like D,G, . . . If D is a
labelled digraph, then D denotes the underlying digraph.

Let G = (V (G), E(G)) be a connected simple graph. The symmetric strongly
connected digraph associated to G and denoted by Dir(G) is (V,A) defined by:
there is an arc a1 from v1 to v2 and an arc a2 from v2 to v1 in A if {v1, v2} ∈ E(G)
and Sym(a1) = a2. Note that this digraph does not contain multiple arcs or self-
loops. Given a mobile environment (G, E , p), we define the labelling function χp

of the vertices by χp(v) = 1 if there exists an agent a such that p(a) = v, and
χp(v) = 0 otherwise. A distributed mobile environment (G, E , p) can therefore
be represented by the labelled digraph (Dir(G), χp).

For any set S, |S| denotes the cardinality of S. For any integer q, we denote
by [1, q] the set of integers {1, 2, . . . , q}.

Fibrations and Coverings. The notions of fibrations and coverings are fun-
damental in this work; definitions and main properties are presented in [7].

A fibration between the digraphs D and D′ is a homomorphism ϕ from D to
D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such that
ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v and
ϕ(a) = a′. The arc a is called the lifting of a′ at v, D is called the total digraph
and D′ the base of ϕ. We shall also say that D is fibred (over D′). The fibre over
a vertex v′ (resp. an arc a′) of D′ is the set ϕ−1(v′) of vertices of D (resp. the
set ϕ−1(a′) of arcs of D).

An opfibration between the digraphs D and D′ is a homomorphism ϕ from
D to D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such
that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that s(a) = v
and ϕ(a) = a′.

A covering projection is a fibration that is also an opfibration. If a covering pro-
jection ϕ : D → D′ exists, D is said to be a covering of D′ via ϕ. A symmetric di-
graph D is a symmetric covering of a symmetric digraph D′ via a homomorphism
ϕ if D is a covering of D′ via ϕ such that ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)).
A digraph D is symmetric-covering-minimal if there does not exist any digraph
D′ not isomorphic to D such that D is a symmetric covering of D′.

Given two strongly connected digraphs D and D′, an interesting property
satisfied by any covering projection ϕ from D to D′ is that there exists q ∈ N
such that ∀x′ ∈ V (D′) ∪A(D′), |ϕ−1(x′)| = q.

The notions of fibrations and coverings extend to labelled digraphs in a natural
way: the homomorphisms must preserve the labelling. Examples of fibrations and
coverings are given in Figure 1.

Fibrations, Coverings and Automorphisms. We now describe some prop-
erties of the relations that exist between fibrations and the automorphisms of a
digraph. These results are described and proved in [7].

90 J. Chalopin

G/Γ (G)
1 2

BΓ (G)(G)
1 2

G
1 2 1

H/Γ (H)
1 2

BΓ (H)(H)
1 2

H

1 2

2 1

Fig. 1. The digraph G is fibred over BΓ (G)(G) via the homomorphism ϕG that maps
each vertex of G labelled i to the unique vertex labelled i of BΓ (G)(G). The digraph
H is a covering of BΓ (H)(H) via the homomorphism ϕH defined in the same way. The
digraph G/Γ (G) (resp. H/Γ (H)) is the digraph whose vertices and arcs correspond
to equivalence classes of vertices and arcs of G (resp. H) under the action of Γ (G)
(resp. Γ (H)).

An automorphism σ of a digraph G is an isomorphism from the digraph
G onto itself. Consider a subgroup Γ of the group Γ (G) = Aut(G) of the
automorphisms of a digraph G = (G, λ); we will denote by Id the identity
automorphism of G. The action of this group on G induces an equivalence
relation over the vertices and the arcs of G: for each x, x′ ∈ V (G)∪A(G), x ∼Γ x′

if there exists σ ∈ Γ such that σ(x) = x′. The equivalence class of x is called the
orbit of x and is denoted by [x]Γ . Recall that an automorphism of (G, λ) must
preserve the labelling, and therefore for all elements x1, x2 ∈ [x]Γ , λ(x1) = λ(x2).
If Γ = Γ (G), we will note x ∼ x′ (resp. [x]) for x ∼Γ x′ (resp. [x]Γ).

Remark 1. For all vertices v, v′ ∈ V (G), if v ∼Γ v′, then there is a bijection
between the incoming arcs of v and the incoming arcs of v′.

We will now describe two kinds of constructions. The first one allows us to build
a digraph BΓ (G) from a digraph G such that G is fibred over BΓ (G). The
second one allows to build the quotient-graph G/Γ . Examples are presented in
Figure 1 where Γ = Γ (G).

From the relation ∼Γ , we construct the directed graph BΓ (G) defined as
follows: V (BΓ (G)) is the set of the equivalence classes of V (G) under the action
of Γ and there are as many arcs from [v]Γ to [w]Γ as each vertex in [w]Γ has
predecessors in [v]Γ . Due to Remark 1, this does not depend on the choice of the
element of [w]Γ . We define the labelling ν of BΓ (G) by ν([v]Γ) = λ(v) for each
v ∈ V (G). We label the arcs from [v] to [w] with the labels of the arcs from the
elements of [v] to w in G. By Remark 1, there exists a fibration ϕ from G to
(BΓ (G), ν).

We consider also the quotient-graph G/Γ whose vertices and arcs are the
equivalence classes of the vertices and the arcs of G under the action of Γ and
whose labelling μ is defined by μ([x]Γ) = λ(x) for each x ∈ V (G)∪A(G). There
exists a natural surjective homomorphism from (BΓ (G), ν) to G/Γ which is the

Election in the Qualitative World 91

identity on the vertices and which maps an arc a to [a]Γ (a can be seen as an
arc of G).

We say that a subgroup Γ of Γ (G) acts freely on G if for each x, y ∈ V (G)∪
A(G), there is at most one σ ∈ Γ such that σ(x) = y. Equivalently, Γ acts freely
on G if and only if for each σ ∈ Γ \ {Id}, σ has no fixpoint.

In the following, we will use a particular class of automorphisms: the class
of well-balanced automorphisms. These automorphisms have been introduced by
Bougé in [8] to study the importance of the guards in CSP through the symmetric
election problem. In [12], Palamidessi uses also well-balanced automorphisms to
study the same problem in order to give a hierarchy between different subsets
of the π-calculus. An automorphism σ of a digraph G is well-balanced if there
exists an integer q such that for each vertex or arc x of G, |{σk(x) | k ∈ N}| = q.
Equivalently, σ is well-balanced if and only if the subgroup Γσ generated by σ
acts freely on G.

The group Γ contains only well-balanced automorphisms if and only if Γ acts
freely on G. Thanks to this equivalence and the results of Boldi and Vigna [7],
we have the following property.

Proposition 1. Given any strongly connected digraph G, the quotient projec-
tion Γ : G → G/Γ is a covering projection if and only if for each σ ∈ Γ , σ is
well-balanced.

3 Impossibility Result

The following proposition gives a necessary condition that the distributed mo-
bile environment (G, E , p) must verify if there exists an election algorithm for
(G, E , p). This necessary condition is equivalent to the one presented in [3].

Proposition 2. Consider a graph G and an initial placement of the agents p.
If there exists a non-trivial well-balanced automorphism σ of the digraph G′ =
(Dir(G), χp), then there is no election algorithm over the graph G with the initial
placement of the agents p.

Using known results in distributed computing [6, 9, 13], we can show that in
the anonymous setting, i.e., when the agents can understand each other but do
not have distinct labels, there exists an election algorithm for an environment
(G, E , p) if and only if the labelled digraph G′ = (Dir(G), χp) is symmetric-
covering-minimal. Moreover, from Proposition 1, we know that if the symmetric
digraph G′ = (Dir(G), χp) admits a non-trivial well-balanced automorphism σ,
then G′ is a symmetric covering of G′/Γσ that is not isomorphic to G′.

Consequently, an interesting corollary of Proposition 2 is that if the election
problem cannot be solved on (G, E , p) in the qualitative setting, then it cannot be
solved on (G, E , p) in the anonymous setting. On the other hand, we will show in
the following that this necessary condition is also sufficient. Note that there exist
symmetric digraphs that are not symmetric-covering-minimal and that does not
admit any non-trivial well-balanced automorphism. It means that one can solve
the election problem in strictly more environments in the qualitative setting than
in the anonymous one.

92 J. Chalopin

4 An Effective Election Algorithm

4.1 How to Order the Equivalence Classes?

We use the same ideas as Barrière et al. [3] to define a total order between
the different equivalent classes. The idea is to construct an ordering on the
unlabelled digraphs of size n; we extend it to digraphs labelled by elements of a
totally ordered set.

Consider a labelled digraph G = (G, λ) without multiple arcs where λ is a
labelling function from V (G) ∪ A(G) to a totally ordered set L with a minimal
element ⊥. We suppose that ∀x ∈ V (G) ∪A(G), λ(x) ∈ L \ {⊥}.

Let n = |V (G)| and consider an enumeration function num of the vertices
(i.e., num is a one-to-one mapping from V (G) onto [1, n]). We say that num
is an increasing enumeration of the vertices if for all vertices v, v′ ∈ V (G),
if num(v) ≤ num(v′), then λ(v) ≤L λ(v′). Given an increasing enumeration
num, we define the adjacency matrix Mnum as follows: for all vertices v, v′,
Mnum[num(v), num(v′)] = �, if there is an arc from v to v′ labelled by �, and
Mnum[num(v), num(v′)] = ⊥ otherwise. To this matrix, we associate the word
w(Mnum) obtained by the concatenation of the n rows of Mnum.

To each vertex v ∈ V (G) (resp. arc a ∈ A(G)), we choose num such that
(num(v), w(Mnum)) (resp. (num(s(a)), num(t(a)), w(Mnum))) is minimum for
the lexicographic order and associate this value, denoted by π(v) (resp. π(a)), to
v (resp. a). Note that there exists an automorphism σ of G such that σ(x) = x′

if and only if π(x) = π(x′). Consequently, this induces a total ordering of the
equivalence classes of vertices and arcs: we will write [x′] ≺ [x] if π(x) is greater
than π(x′) in the lexicographic order.

Remark 2. In the following, we will show that all the agents agree on a total
order of the classes and all the agents use the same order. Actually, as it was
already explained in [3], even if the agents cannot agree on an a priori order over
the set of colors, they can agree on an order on the different classes, provided that
all the agents have the same representation of the graph (up to isomorphism).

In fact, we suppose that each agent has its own totally ordered set isomorphic
to (N,≤) and each agent can use its own way to compute its order: the algorithm
does not make any assumption on the way the order is implemented by each
agent.

4.2 An Election Algorithm

In this subsection, we describe our effective election algorithm. In a first phase
all the agents reconstruct the digraph (Dir(G), χp) and check that the election
problem can be solved on (G, E , p). Then, using its knowledge of the graph, each
agent constructs the equivalence classes induced by Γ ((Dir(G), χp)). During suc-
cessive rounds, using the order between the different classes defined above, some
agents become passive and get the label non-elected, whereas the active agents
mark some vertices and some arcs of the digraph to obtain a new labelling μ of
the digraph on which all the active agents agree. At the end of the computation,

Election in the Qualitative World 93

the automorphism group of (Dir(G), μ) consists only of the identity and each
vertex has a unique label. At this point, there is exactly one active agent that is
elected. A high level description of the algorithm is presented in Algorithm 1.

Algorithm 1. The Election Algorithm
Every agent builds a map of the graph;
Synchronization;
if there exists a non-trivial well-balanced automorphism of G′ = (Dir(G), χp)
then

Every agent knows that it is impossible to solve the election problem;
else

Every agent marks as many vertices as possible;
Synchronization;
/* Initially, all the agents are active */
repeat

The active agents compute the classes of all the vertices and all the arcs;
The active agents give different numbers to different classes of vertices
and arcs;
if All the active agents are not in the same class then

Select active agents;
The passive agents take the label non-elected ;
The active agents mark the homebases of the passive agents;
Synchronization;

else if G′ is not a covering of BΓ (G′)(G′) then
The active agents mark a class of vertices;
Synchronization;

else if G′ is not a covering of G′/Γ (G′) then
The active agents mark a class of arcs;
Synchronization;

else
/* In this case, there is exactly one active agent */
The active agent takes the label elected ;

until An agent is elected ;

A Synchronization Procedure. In the algorithm we describe below, we dis-
tinguish different rounds. An important point is that an active agent does not
enter in a new round if another active agent has not finished the previous one.
To be able to avoid this kind of situation, we synchronize the active agents.

Each agent can consistently distinguish its homebase; therefore, we can con-
struct an algorithm such that no agent needs to write anything on its homebase.
Moreover, we suppose that each agent has already built its own map of the graph
and does not need to write anything on any whiteboard in order to perform a
traversal of the graph.

In the following, the active agents will do some traversals of the network and
they will store the colors of the marks that appear on each vertex to construct
what we will call a colored map of the network. The marks that appear in a
colored map of an active agent will correspond to marks that have been put
by other active agents during the round (but it will not necessary contain all

94 J. Chalopin

the marks the active agents should put during this round). In the algorithm
described below, each active agent can know from a colored map if any other
active agent has marked all the vertices it should have marked during the round.
Furthermore, in each round of the algorithm, each agent will mark at least one
vertex (which is not its homebase).

In the synchronization procedure described below, some active agents will
have to wait on some particular vertices for other agents to put (resp. remove)
some marks. Each time an agent arrives on a place where it has to wait for
a mark to be put (resp. removed), it can immediately continue to execute the
procedure if this mark is present (resp. not present).

To synchronize the agents, we proceed as follows. During each round, each
active agent r executes the following instructions.

(1) The agent r marks some vertices (but not its homebase) according to the
computation rules of the round.

(2) The agent r does a traversal of the network and stores all the colors of the
marks that appear on each vertex to construct a colored map of the network.

(3) If there exists another active agent r′ that has not finished Step (1) (the
agent r can detect it from the colored map it has of the network), then the
agent r goes to the homebase of r′ and waits until the agent r′ puts a mark
on its homebase. Then the agent r does a traversal of the network and stores
all the colors of the marks that appear on each vertex in order to update its
colored map of the network.

(4) The agent r puts a mark on its homebase.
(5) The agent r does a traversal of the network and each time it arrives on the

homebase of another agent r′, it waits until the agent r′ marks its homebase.
(6) The agent r does a traversal of the network and it removes the marks it puts

during Step (1), but not the mark on its homebase.
(7) The agent r does a traversal of the network. Each time it arrives on a vertex

that has been marked by another active agent r′ during this round (but that
is not the homebase of r′), it waits until the agent r′ removes its mark.

(8) The agent r removes the mark it puts on its homebase.
(9) The agent r does a traversal of the network. Each time it arrives on the

homebase of an active agent r′, it waits until the agent r′ removes its mark
on its homebase.

We can note that the synchronization procedure enables also to erase all the
marks that have been put on the vertices during the round, i.e., when one agent
has finished Step (9) of a round, then all the marks that have been left by
the active agents during this round have been erased. The following proposition
ensures that the procedure is indeed a synchronization procedure.

Proposition 3. Each time an agent starts executing Step (1) of the i + 1th
round, then each active agent knows what vertices have been marked by the other
active agents during Step (1) of the ith round and all the marks that have been put
during the ith round have been removed. Moreover, the synchronization procedure
avoids any deadlock.

Election in the Qualitative World 95

Initialization. During the first phase of the algorithm, each agent reconstructs
the graph with the position and the colors of the different homebases. Using the
whiteboards, each agent performs a depth first traversal of the graph.

Since each agent can distinguish all the homebases, we suppose that during
this traversal, the agents do not write anything on the whiteboard of any of
the homebases. Once an agent has reconstructed the whole graph, it performs
a traversal of the network using the information it has stored to erase what it
has written on the whiteboards. At this point, each agent puts a mark on the
homebase of another agent.

During this first phase, no agent has written anything on its homebase. Fur-
thermore, an agent has finished to perform this phase if and only if it has marked
the homebase of another agent and this can be checked from a colored map of
the network. Moreover, at the end of this phase, each agent has reconstructed
a map of the network and it knows the position of all the homebases. We can
therefore use the synchronization procedure defined above at this point.

If the digraph (Dir(G), χp) admits a well-balanced automorphism σ different
from Id, then each agent detects it and declares that the election problem is
unsolvable in this environment. We will now suppose that (Dir(G), χp) does not
admit such an automorphism.

Once the graph is known by all the agents, each agent tries to mark as many
vertices of the networks as possible. It does a traversal of the network and each
time it arrives on a vertex that is not a homebase, it performs one of the two
following actions. Either the whiteboard is blank and it puts a mark with its color
on the whiteboard, or there is already a mark on the whiteboard and it stores
the color of the mark. Once an agent has finished this traversal, it puts a mark
on the homebase of another agent. Again we use the synchronization procedure
at this point. Then each agent is aware of the different vertices marked by the
other agents during this round.

At the end of this phase, each agent reconstructs a graph where all the vertices
are colored (they belong to the agent that has this color) and it knows the
position and the color of the homebases of all the other agents.

How can the agents increase their territory? During the different phases
of the algorithm, some agents become passive whereas the others continue to
execute the protocol in order to elect one of them. In our algorithm, in order
to break the symmetry between the agents, all the vertices must belong to one
active agent, and all the active agents must agree on which agent a vertex belongs
to. During the initialization, each vertex is marked by one agent and we say that
it belongs to this agent. Once an agent becomes passive, the vertices that were
belonging to this agent must be given to another agent.

Once a selection between agents is done, the agents that become passive take
the label non-elected and become passive until the end of the algorithm, whereas
the others try to mark the homebases of these agents that have just become
passive. Each active agent knows what are the colors of the other active agents.
From its representation of the graph, each active agent can reach the homebases
of the passive agents.

96 J. Chalopin

The first agent that reaches such a homebase during this round puts a mark
with its color on the vertex. The other agents (there is already a mark on the
homebase when they reach it) store the color of the agent that owns this vertex
(i.e., the color of the mark). Again, at the end of its traversal of the graph, each
agent puts a mark on the homebase of another active agent. Therefore, each
active agent can detect from a colored map if another active agent has finished
this phase. Then the active agents apply the synchronization procedure.

If an agent has marked the homebase of a passive agent, then all the vertices
that were belonging to this passive agent belong now to this active agent. For
each vertex of the graph, all the active agents agree on the color of the agent
that owns this vertex.

How to refine the labelling μ? During the execution of the algorithm, the
agents mark vertices and arcs to break the symmetry that may exist in the
network. In this way, at each round, numbers will be associated to some vertices
and arcs and we will obtain a labelling of the graph μ. Initially, all the homebases
have the label 1 whereas all the other vertices have the label 0 and all the arcs
are labelled 0.

At the beginning of each round, from its representation (Dir(G), μ) of the
graph, each agent computes the value π(v) (resp. π(a)) for each vertex v ∈
V (Dir(G)) (resp. for each arc a ∈ A(Dir(G))). We say that two agents are
equivalent if their homebases are in the same equivalence class, and we use the
order ≺ on the homebases of the agents to order the classes of agents.

Since all the agents agree on the order to compare the equivalence classes,
we can use the following procedure. If there exist two vertices v, v′ such that
μ(v) = μ(v′) and π(v) �= π(v′), then let m be the lowest number such that there
exist v, v′ with μ(v) = μ(v′) = m and [v] ≺ [v′]. Suppose that there exist exactly
j classes {[vi]|i ∈ [1, j]} such that μ(vi) = m and [v1] ≺ [v2] ≺ · · · ≺ [vj]. For
each vertex v ∈ [vi] with i < j, we define μ′(v) = q + i, where q is the greatest
label that appears on a vertex in (G,μ). The labels of the other vertices are not
changed.

We apply the same method to arcs using the order we have on the classes
of arcs, i.e., the lexicographic order over the π(a). Thanks to this procedure,
two arcs that are not in the same class are given distinct labels. We repeat this
procedure, until all the vertices (resp. all the arcs) that have the same label are
in the same equivalence class.

If some active agents do not own the same number of vertices in a given class.
We consider now a configuration such that two vertices (resp. arcs) in different
classes have different numbers. Consider a class of agents [r] and a class of
vertices [v]. We define NotBalanced([r], [v]) to be false if all the agents of [r]
own the same number of vertices in [v], and true otherwise. If there exist [r], [v]
such that NotBalanced([r], [v]) is true, then we apply the following technique
to split some class of vertices.

Consider the minimum class [r] of agents, according to ≺, such that there
exists a class [v] of vertices satisfying NotBalanced([r], [v]). Consider the mini-
mum class of vertices [v] such that NotBalanced([r], [v]) is true. In this case, we

Election in the Qualitative World 97

give different numbers to the homebases of the agents that do not own the same
number of vertices in [v]. We subdivide the class [r] into a partition R1, . . . , Rj

such that the agents in Ri own strictly more vertices in [v] than the agents in
Ri′ when i < i′. Using the same technique as before, we give different numbers
to the homebases of the agents that are not in the same Ri and then obtain a
new representation of the digraph (Dir(G), μ′). Then, the agents try to refine
again this new labelling.

How to split the arc classes thanks to the colors of their ends? We will say that
an arc a belongs to an agent r, if r owns s(a) and t(a). Otherwise, the arc is
such that s(a) belongs to an agent r1 and t(a) to a distinct agent r2. We will
say that this arc is shared by r1 and r2. If there exists a class of arcs [a] such
that some arcs of [a] belong to some agents, whereas the other arcs are shared
by distinct agents, then we apply the following technique.

Consider a class of arcs a such that for each class [a′] ≺ [a], either [a′] contains
only arcs that belong to some agents or [a′] contains only arcs shared by different
agents. We suppose also that [a] contains arcs that belong to some agents and arcs
that are shared. All the arcs in [a] that are shared by distinct agents are relabelled
q + 1, where q is the greatest label that appears on an arc in (Dir(G), μ). Then,
the agents try to refine again this new labelling.

If some active agents are in different classes. At this point, if the active
agents are not in the same equivalence class, we are able to select some agents.
Consider all the equivalence classes of active agents that contains a minimal
number of agents. Among these classes, we select the class [r] such that π(v) is
minimal, where v is the homebase of r. The agents that do not belong to this
class take the label non-elected and become passive. The agents of the class [r]
remain active and try to increase their territory as explained above. Then they
try to refine again the labelling μ.

If G′ = (Dir(G), μ) is not a covering of BΓ (G′)(G′). There exist some
configurations where it is impossible to select some agents just by using the
representation the agents have of the graph, because there is too much symmetry
in the graph. Nevertheless, we now explain how active agents can break these
symmetries by marking some vertices or arcs.

All the active agents agree on the graph G′ = (Dir(G), μ). All these agents
consider the automorphism group Γ (G′) and construct the graphs BΓ (G′)(G′)
and G′/Γ (G′). We already know that G′ is fibred over BΓ (G′)(G′). If G′ is not
a covering of BΓ (G′)(G′), it implies that there exist two classes of vertices [v]
and [v′] such that |[v]| �= |[v′]|. Let [r] be the class of the homebases of the active
agents.

Consider a class [v] such that for each class [v′] ≺ [v], |[v′]| = |[r]| and |[v]| �=
|[r]|. We already know that each active agent owns the same number of vertices
in [v] and therefore |[r]| divides |[v]|. Each active agent then marks a vertex it
owns that is in [v]. An agent has finished this round if and only if it has marked
exactly one vertex in [v]: it can be detected from a colored map of the graph.
Then, the agents synchronize.

98 J. Chalopin

At the end of this round, all the agents give the number q + 1 to the vertices
that have just been marked, where q is the greatest label that appears on a
vertex in (Dir(G), μ). Using this new labelling μ′, the active agents try to refine
the labelling μ′, as explained above.

If G′ = (Dir(G), μ) is not a covering of G′/Γ (G′). We suppose now
that G′ is a covering of BΓ (G′)(G′) but not of G′/Γ (G′). It means that all
the equivalence classes of vertices have the same size s, but there exists an
equivalence class of arcs [a] such that |[a]| > s. Instead of marking vertices, we
mark arcs in this round.

Each class [a] of arcs of G′ corresponds to exactly one arc in G′/Γ (G′).
Consider the class of arcs [a] such that for each class [a′] ≺ [a], |[a′]| = s but
|[a]| > s. We already know that each active agent owns exactly one vertex in
[s(a)] and one vertex in [t(a)]. Since |[a]| > s and since two arcs in the same class
are either both owned by an agent or both shared by distinct agents, we know
that each arc in [a] is shared.

To select arcs from [a], each agent r just chooses one arc ar in [a] such that
s(ar) belongs to r and then puts a mark with its color on t(ar). An agent has
finished this round if and only if it has marked exactly one vertex: it can be
detected from a colored map of the graph. Then, the agents synchronize. Once
an agent knows what vertices have been marked by the other agents, it knows
what are the arcs that have been marked.

At the end of this round, all the agents give the number q +1 to the arcs that
have just been marked, where q is the greatest label that appears on an arc in
(Dir(G), μ). Using this new labelling μ′, the active agents try to refine again the
labelling μ′, as explained above.

If G′ is a covering of G′/Γ (G′). At this point, G′ = (Dir(G), μ) is a
covering of G′/Γ (G′). From Proposition 1, it implies that Γ (G′) contains only
well-balanced automorphisms, and since we already know that there is no well-
balanced isomorphism of (Dir(G), χp) different from Id, we have Γ (G′) = {Id}.
Consequently, there is exactly one active agent, since the set of active agents is
an equivalence class of the relation induced by Γ (G′) and this agent takes the
label elected.

4.3 The Characterization

In Section 3, we have shown that if the graph (Dir(G), χp) admits a well-balanced
automorphism, then it is impossible to solve the election problem on (G, E , p).
The algorithm described in Section 4.2 is an algorithm that answers that it is
impossible to solve the problem if the graph (Dir(G), χp) admits a well-balanced
automorphism, and otherwise it successfully elects an agent: it is an effective
algorithm. We have therefore proved the following theorems.

Theorem 1. There exists an election algorithm for a distributed mobile envi-
ronment (G, E , p) if and only if (Dir(G), χp) does not admit a non-trivial well-
balanced automorphism.

Election in the Qualitative World 99

Theorem 2. Algorithm 1 is an effective election algorithm in the qualitative
world.

The traditional complexity measures for mobile agents are the number of agents
moves and the amount of time of a synchronous execution of the algorithm,
where in each round, each active agent traverses an edge.

In a distributed mobile environment (G, E , p) with |V (G)| = n, |E(G)| = m
and |E| = k, when executing Algorithm 1, the agents detect with O(mk) moves in
time O(m) if the election problem can be solved; if it is possible, they successfully
elects a leader with O(mn log k) moves in time O(mn).

References

1. D. Angluin. Local and global properties in networks of processors. In Proceedings
of the 12th Symposium on Theory of Computing, STOC’80, pages 82–93, 1980.

2. B. Awerbuch, M. Betke, R. Rivest, and M. Singh. Piecemeal graph exploration
by a mobile robot (extended abstract). In Proc. of the 8th annual conference on
Computational Learning Theory, COLT’95, pages 321–328. ACM Press, 1995.

3. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Can we elect if we cannot
compare? In Proc. of the 15th annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA’03, pages 324–332. ACM Press, 2003.

4. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Rendezvous and election
of mobile agents: Impact of sense of direction. Theory of Computing Systems, to
appear.

5. M. Bender and D. Slonim. The power of team exploration: Two robots can learn
unlabeled directed graphs. In Proc. of the 35th annual Symposium on Foundations
of Computer Science, FOCS’94, pages 75–85, 1994.

6. P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna. Sym-
metry breaking in anonymous networks: Characterizations. In Proc. 4th Israeli
Symposium on Theory of Computing and Systems, pages 16–26. IEEE Press, 1996.

7. P. Boldi and S. Vigna. Fibrations of graphs. Discrete Math., 243:21–66, 2002.
8. L. Bougé. On the existence of symmetric algorithms to find leaders in networks of

communicating sequential processes. Acta Informatica, 25(2):179–201, 1988.
9. J. Chalopin and Y. Métivier. A bridge between the asynchronous message passing

model and local computations in graphs (extended abstract). In Proc. of Mathe-
matical Foundations of Computer Science, MFCS’05, volume 3618 of LNCS, pages
212–223, 2005.

10. S. Das, P. Flocchini, A.Nayak, and N. Santoro. Distributed exploration of an
unknown graph. In Proc. of the 12th international colloquium on Structural In-
formation and Communication Complexity, SIROCCO’05, volume 3499 of LNCS,
pages 99–114, 2005.

11. A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in graphs.
In Proc. of the 11th annual European Symposium on Algorithms, ESA’03, volume
2832 of LNCS, pages 184–195, 2003.

12. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. Mathematical Structures in Computer Science, 13(5):685–719,
2003.

13. M. Yamashita and T. Kameda. Computing on anonymous networks: Part i - charac-
terizing the solvable cases. IEEE Transactions on parallel and distributed systems,
7(1):69–89, 1996.

Fast Deterministic Distributed Algorithms for
Sparse Spanners

Bilel Derbel and Cyril Gavoille�

LaBRI, Université Bordeaux 1
351, Cours de la Libération,

33405 Talence, France
{derbel, gavoille}@labri.fr

Abstract. This paper concerns the efficient construction of sparse and
low stretch spanners for unweighted arbitrary graphs with n nodes. All
previous deterministic distributed algorithms, for constant stretch span-
ner of o(n2) edges, have a running time Ω(nε) for some constant ε > 0
depending on the stretch. Our deterministic distributed algorithms con-
struct constant stretch spanners of o(n2) edges in o(nε) time for any
constant ε > 0.

More precisely, in the Linial’s free model, we construct in nO(1/
√

log n)

time, for every graph, a 5-spanner of O(n3/2) edges. The result is ex-
tended to O(k2.322)-spanners with O(n1+1/k) edges for every parameter
k � 1. If the minimum degree of the graph is Ω(

√
n), then, in the same

time complexity, a 9-spanner with O(n) edges can be constructed.

Keywords: Distributed algorithms, graph spanners, time complexity,
Linial’s free model, deterministic and randomized algorithms.

1 Introduction

This paper deals with deterministic distributed construction of sparse and low
stretch graph spanners. Intuitively, spanners can be thought of as a generalization
of the concept of a spanning tree. We look for a spanning subgraph such that the
distance between any two nodes in the subgraph is bounded by some constant
times the distance in the whole graph. More formally, H is a k-spanner of a
graph G if H is a spanning subgraph of G, and if dH(u, v) � k · dG(u, v) for all
nodes u, v of G, where dX(u, v) denotes the distance from u to v in the graph
X . The smallest k for which H is a k-spanner is called the stretch of H , and the
size of H is its number of edges. The quality of a spanner refers to the trade-off
between the stretch and the size of the spanner.

The distributed model of computation we will be concerned with is the Linial’s
free model [26], also known as LOCAL model in [34]. In this model, communica-
tion is completely synchronous and reliable. At every time unit, each node may
send or receive a message of unlimited size to or from all its neighbors, and can

� Supported by the project “PairAPair” of the ACI Masses de Données.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 100–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fast Deterministic Distributed Algorithms for Sparse Spanners 101

locally compute any function. The model also assumes that each node is equipped
with a unique identifier. Much as PRAM algorithms in parallel computing give
a good indication of parallelism, the free model gives a good indication of the
locality and distributed time.

From a theoretical point of view, we are interested in the locality nature of
constructing graph spanners, i.e., what spanners can we compute assuming only
some local knowledge? The locality of a distributed problem is often expressed
in term of the time needed to resolve it. In fact, in the distributed setting,
the best a node can do in O(t) time units is to collect its t neighborhood. For
instance, Θ(log∗ n) time are necessary and sufficient to compute a maximal in-
dependent set for trees, bounded degree graphs, or bounded growth graphs with
n nodes [11, 21, 27, 22]. Results are known for other fundamental problems such
as non-uniform coloring [2, 33], minimum spanning tree [16, 17, 29, 28, 35], small
dominating set [25, 38], and maximal matching [23, 27].

Graph spanners are in the basis of various applications in distributed systems.
For instance, Peleg and Ullman [36] establish the relationship between the quality
of spanners, and the time and message complexity of network synchronizers (see
also [1, 32]). Spanners are also implicitly used for the design of low stretch routing
schemes with compact tables [12, 14, 37, 39, 41], and appear in many parallel and
distributed algorithms for computing approximate shortest paths and for the
design of compact data-structures, a.k.a. distance oracles [9, 20, 40, 42, 10].

1.1 Related Works

Sparse and low stretch spanners can be constructed from (d, c)-decomposition of
Awerbuch and Peleg [6], that is a partition of the graph into clusters of diameter
at most d such that the graph obtained by contracting each cluster can be
properly c-colored. There are several deterministic algorithms for constructing
(d, c)-decompositions [3, 4, 5, 33]. The resulting distributed algorithms provide
O(k)-spanners of size O(n1+1/k), for any integral parameter k � 1. However,
these algorithms run in Ω(n1/k+ε) time, where ε = Ω(1/

√
logn), and provide a

stretch s � 4k − 3.
Better stretch-size trade-offs exist but with an increasing time complexity.

Recently, a deterministic distributed algorithm has been proposed for construct-
ing a (2k − 1)-spanner of size O(n1+1/k) in O(n1−1/k) time [13]. In particular,
3-spanners of size O(n3/2) can be deterministically constructed in O(

√
n) time.

Elkin et al. [15, 19, 18] develop a distributed algorithm for spanners such that
the distance between two nodes in the spanner is at most 1+ε times the distance
in the original graph plus β. The size is O(βn1+δ) whereas the time is O(nδ),
where β = β(δ, ε) is independent of n but grows super-polynomially in δ−1

and ε−1.
Randomized algorithms achieving better performances exist. Baswana et al.

[8, 7] gave a randomized algorithm which computes an optimal (2k− 1)-spanner
with expected size O(n1+1/k) in O(k) time. The latter stretch-size trade-off is
optimal since, according to an Erdös Conjecture verified for k = 1, 2, 3, 5 [43],
there are graphs with Ω(n1+1/k) edges and girth 2k+2 (the length of the small-

102 B. Derbel and C. Gavoille

est induced cycle), thus for which every s-spanner requires Ω(n1+1/k) edges if
s < 2k + 1. However, as mentioned in [4], a randomized solution might not be
acceptable in some cases, especially for distributed computing applications. In
the case of graph spanners, deterministic algorithms that guarantee a high qual-
ity spanner are more than of a theoretical interest. Indeed, one cannot just run
a randomized distributed algorithm several times to guarantee a good decompo-
sition, since it is impossible to efficiently check the global quality of the spanner
in the distributed model.

1.2 Results

We consider unweighted connected graphs with n nodes. All previous determin-
istic distributed algorithm for O(1)-spanner of size o(n2) have a running time
Ω(nδ) for some constant δ > 0 depending on the stretch. In this paper we con-
struct constant stretch spanner of size o(n2) in o(nε) time for any constant ε > 0.

More precisely, in the free model we construct in nO(1/
√

log n) time for every
graph a 5-spanner of O(n3/2) edges. The result is extended to larger stretch
spanner of size O(n1+1/k) for every k � 1. More precisely, for k power of two,
the stretch is at most klog2 5 < k2.322. For other values of k, we obtain stretches
s = s(k) which surprisingly depend on the positions of the first two leading 1’s
in the binary written of k (cf. the table below for the first values).

k 1 2 3 4 5
s(k) 1 5 9 25 33

We also show that if the minimum degree of the graph is Ω(
√
n), then, in the

same time complexity, a 9-spanner with O(n) edges can be constructed.
The previous algorithms have simple randomized versions with improved per-

formances. In particular, we can compute a 5-spanner of size O(n log2 n) in
O(log n) time if the minimum degree is Ω(

√
n).

1.3 Outline of the Paper

The main idea to break the O(nδ) time barrier is to abandon the optimality
on the stretch-size trade-off. We show that constant stretch spanners can be
constructed on the basis of a maximal independent set, i.e., a set of pairwise
non-adjacent nodes, maximal for inclusion. This can be deterministically com-
puted in nO(1/

√
log n) time [4, 33]. Therefore, the time complexity to construct

our spanners is improved by a factor of n1/k.
The generic algorithm is described in Section 2 and analyzed in Section 3,

where a distributed implementation is presented.
We mainly reduce the problem to the computation of an independent ρ-

dominating set, that is a set X of pairwise non-adjacent nodes such that every
node of the graph is at distance at most ρ from X . Using the terminology of [34],
a ρ-dominating set if nothing else than a (ρ, s)-ruling set for some s > 1. Actu-
ally, in order to optimize the stretch, the main algorithm combines two strategies
in a way depending on the binary written of k.

Fast Deterministic Distributed Algorithms for Sparse Spanners 103

In Section 4, we present the main results about 5- and 9-spanners. Observing
that for ρ = 1 an independent ρ-dominating set is a maximal independent set, we
conclude that our generic algorithm can be implemented to run in nO(1/

√
log n)

time for ρ = 1. Several optimizations are then proposed including randomization
and graphs of large minimum degree.

2 A Generic Algorithm

2.1 Definitions

Let us consider an unweighted connected graph G = (V,E). Given an integer
t � 1, the t-th power of G, denoted by Gt, is the graph obtained from G by
adding an edge between any two nodes at distance at most t in G. For a set
of nodes H , G[H] denotes the subgraph of G induced by H . For X,Y ⊆ V , let
dG(X,Y) = min {dG(x, y) | x ∈ X and y ∈ Y }.

We associate with each v ∈ V a region, denoted by R(v), that is a set of
nodes containing v and inducing a connected subgraph of G. Given C ⊆ V , GC

denotes the graph whose node set is C, and there is an edge between u and v in
C if dG(R(v), R(u)) = 1. We denote by R+(v) = {u ∈ V | dG(u,R(v)) � 1} and
by R+

C(v) = {u ∈ C | dG(R(u), R(v)) � 1}.
The eccentricity of a node v in G is defined as maxu∈V {dG(u, v)}. For a node

v ∈ X , we denote by BFS(v,X) a Breadth First Search spanning tree in X
rooted at v. We define IDS(G, ρ) as any independent ρ-dominating set of G.
Finally, we define the integer �(x) as follows:

�(x) =
{
−1 if x � 0,
�log2 x� otherwise.

In the reminder of the paper we assume the free model of computation as
defined in the introduction. We define the time complexity of a distributed al-
gorithm to be the worst-case number of time units from the beginning of the
algorithm to its termination.

2.2 Description of the Algorithm

The main idea of the algorithm is to find an efficient clustering of dense regions
in the graph. A high level description of the algorithm, named Spanner, is given
in Fig. 1. Intuitively, i0 represents the relative position of the first two leading
1’s in the binary written of k.

The algorithm works in many phases, where new regions are formed at each
phase. There are two types: the light regions (L) and the heavy regions (H). At
a given phase, some of the heavy regions are selected and enlarged by including
nodes from other neighboring regions. One important observation is that each
new enlarged region is connected and the new constructed regions are mutually
disjoint.

At each phase of the algorithm, one of the two strategies depicted in Fig. 2
and Fig. 3 applies. The main idea behind the two strategies is the same: choose

104 B. Derbel and C. Gavoille

Spanner

Input : a graph G = (V, E) with n = |V |, and integers ρ, k � 1
Output : a spanner S

1. i0 := 	(k)−	(k−2�(k)); C := V ; r = 0; ∀v ∈ V , R(v) := {v}, and c(v) := v
2. for i := 1 to 	(k) + 1 do: if i = i0 then Strategy 1 else Strategy 2

Fig. 1. The algorithm Spanner

some well selected dense regions and merge them with the other ones in order
to form new larger regions. The main difference is that the density of a region
is computed in a different way. The stretch of the output spanner depends on
the way the radius of the regions increases and on the total number of phases of
the algorithm, depending on the volume of the regions. And, radius and volume
increase very differently.

On one hand, in Strategy 1, a region is dense if its neighborhood is n1/k

times greater than its size. Applying only Strategy 1 allows to obtain small
stretch for small values of k. However, asymptotically, the stretch is exponential
in k. On the other hand, in Strategy 2, a region is dense if the number of
its neighboring regions is n1/k times greater than its size which provides an
exponential growth of the size of a region. Applying only Strategy 2 allows to
obtain asymptotically stretches polynomial in k.

The main idea of algorithm Spanner is to switch from one strategy to an
other at each phase in order to obtain the smallest possible stretch. A full analysis
shows that, by alternating Strategy 1 and Strategy 2, the best stretch can be
obtained by applying Strategy 1 only once at a well chosen phase i0. Typically,
i0 = p− q if k = 2p + 2q with p > q.

We associate with each region R(v) an active node, called center, and the set
of centers forms C. Initially, each node is the center of the region formed by
itself. Each phase i ∈ {1, . . . , �(k) + 1} can be decomposed in seven parts we
briefly sketch.

1. L := v ∈ C, |R+(v)| � n1/k · |R(v)| and H := C \ L;
2. ∀(u, v) ∈ L × V such that ∃ edge e between R(u) and v, S := S ∪ {e}
3. X := IDS(G2(r+1)[H], ρ)
4. ∀z ∈ V , if dG(z,X) � (2ρ + 1)r + 2ρ, then set c(z) to be its closest node

of X, breaking ties with identities.
5. ∀v ∈ X, R(v) := {z ∈ V | c(z) = v}
6. ∀v ∈ X, S := S ∪ BFS(v, R(v))
7. C := X and r := (2ρ + 1)r + 2ρ

Fig. 2. Strategy 1

Fast Deterministic Distributed Algorithms for Sparse Spanners 105

1. L := v ∈ C, |R+
C(v)| � n1/k · |R(v)| and H := C \ L

2. ∀(u, v) ∈ L × C such that ∃ edge e between R(u) and R(v), S := S ∪ {e}
3. X := IDS((GC)2[H], ρ)
4. ∀u ∈ C, if dGC (u, X) � 2ρ, then set c(u) to be its closest node of X in

GC , breaking ties with identities.
5. ∀v ∈ X, R(v) := {R(u) | u ∈ C and c(u) = v}
6. ∀v ∈ X, S := S ∪ BFS(v, R(v))
7. C := X and r := (4ρ + 1)r + 2ρ

Fig. 3. Strategy 2

In Step 1, we compute the two sets H and L corresponding respectively to
heavy and light regions. In Step 2, a light region is connected with some neigh-
boring nodes. This step is crucial in the stretch bound analysis. If Strategy 1
is applied, then each light region is connected with each neighboring node in
V , i.e., ∀u ∈ L,R+(u) is spanned. If Strategy 2 is applied, then each light
region is connected with every neighboring region. Note that at the beginning
of a given phase, every region is spanned by a BFS tree constructed in Step 6 of
the previous phase.

The nodes H are then processed at the aim of constructing new regions with
a set of new centers. The key point of our construction is to efficiently merge
all the regions defined by the set H into more dense, connected and disjoint
regions. In order to guarantee that the algorithm terminates quickly, the dense
regions must grow enough. More precisely, if a dense region R(v) is enlarged it
must contain at least its neighborhood R+(v) when Strategy 1 is applied or
its neighborhood in the graph GC if Strategy 2 is applied. It is clear that two
regions at distance one or two (in G or in GC depending on the strategy 1 or 2)
cannot grow simultaneously without overlapping. Thus, a difficulty is to elect in
an efficient way the centers of regions that are allowed to grow in parallel.

In Step 3, we compute an independent ρ-dominating set X in the graph
G2(r+1)[H] if Strategy 1 is applied (resp. (GC)2[H] for Strategy 2), where r
is a radius that grows at each phase. The set X defines the set of nodes allowed
to grow in parallel.

In order to guarantee that nodes in non selected regions in Step 3 (the set
H \X) will be spanned by the output spanner, we must merge them with nodes
in the selected regions. Thus, in Step 4, we define a coloring strategy allowing a
correct merge process. In fact, in order to ensure that the new regions are disjoint,
we let nodes choose their new region in a consistent manner, i.e., a node chooses
to be in the region of the closest node in X breaking ties using identities. If
Strategy 1 is applied then each node chooses by itself its new dominator, i.e.,
its new region. However, once a node u chooses its new dominator node v, and
in order to ensure that the new formed regions are connected, we include all the
nodes in the shortest path between u and v, even those in non dense region. If
Strategy 2 is applied then, the center of each region chooses a new region and
merge its whole region with the new chosen region.

106 B. Derbel and C. Gavoille

In Step 5, the new regions are formed according to the coloring step. Note
that as soon as the new region are formed, they are spanned in Step 6. Finally,
in Step 7, the set C and the variable r are updated for the next phase.

3 Analysis of the Algorithm

For every phase i, we denote by Hi (resp. Xi and Li) the set H (resp. X and
L) computed during phase i, i.e., after Steps 1 and 3 of phase i. Similarly, we
denote by ci(z) the color of z assigned during phase i, i.e., after Step 4 of phase
i. We denote by Ci the set C at the beginning of phase i, and ri denotes the
value of r at the beginning of phase i. For a node v ∈ Ci, we denote by Ri(v)
the region of v at the beginning of phase i. In the following we need the four
important properties.

Lemma 1. At the beginning of phase i, every v ∈ Ci is of eccentricity at most
r in G[Ri(v)].

Lemma 2. At the beginning of phase i, for every two nodes u �= v ∈ Ci, Ri(u)∩
Ri(v) = ∅.

Lemma 3. At the beginning of phase i �= i0, if |Ri(v)| � Vi for every v ∈ Ci,
then |Ri+1(v)| � n1/k · V2

i for every v ∈ Ci+1.

Lemma 4. For every node u ∈ V , there exists a phase i and a node v ∈ V such
that:

– at the beginning of phase i, v ∈ Ci and u ∈ Ri(v); and
– v is in the set Li computed in Step 1 of phase i.

3.1 Stretch and Size Analysis

Lemma 5. For any integer k, ρ � 1, the stretch s of the output spanner S of
algorithm Spanner verifies

s �
{

(4ρ + 1)�(k) if k = 2�(k),

2(2ρ + 1)(4ρ + 1)�(k)−1 + 4ρ(4ρ + 1)�(k−2�(k)) − 1 otherwise.

Proof. As a consequence of Lemma 4 and Step 6 of the algorithm, every node
u ∈ V is spanned by the output S of the algorithm, i.e., S is a spanner of G.
From the initialization step of the algorithm, we have r1 = 0. Let us denote by
i1 = �(k) and i2 = �(k − 2�(k)), i.e., i0 = i1 − i2. For every 1 < i � i0, we have
ri = (4ρ + 1)ri−1 + 2ρ. Thus, ri = 1

2 ·
(
(4ρ + 1)i−1 − 1

)
for 1 � i � i0.

Let us consider an edge (z, z′) ∈ E. Using Lemma 4, there exists a phase j
(resp. j′) and a node v (resp. v′) such that v ∈ Cj (resp. v′ ∈ Cj′), z ∈ Rj(v)
(resp. z′ ∈ Rj′ (v′)) and v ∈ Lj (resp. v′ ∈ Lj′). We take v (resp. v′) to be the
first dominator of z, i.e., node in C whose region contains z, (resp. z′) that fall
into set L. In fact, one can see that node z (or z′) can be in a sparse region at

Fast Deterministic Distributed Algorithms for Sparse Spanners 107

some phase and switch to a dense region at the next phase, because either its
sparse region has been merged with a neighboring dense one (if Strategy 2 is
applied), or it is in the neighborhood of a dense region, or it is on a shortest
path leading to a dense region (if Strategy 1 is applied). W.l.o.g., suppose that
j � j′.

Case 1: i2 = −1. Hence, i0 = �(k) + 1 and k = 2�(k). By induction and using
Lemma 3, at the beginning of phase i0, the size of the region of any node in Ci0

is at least n(2i0−1−1)/k = n(k−1)/k. Note that we apply Strategy 1 at phase i0.
Thus, every node in Ci0 will be in L.
Subcase 1.1: Suppose that j � j′ < i0. Thus, using Step 6, a BFS tree spanning
Rj(v) is added to the output spanner at phase j − 1. In addition, one can easily
show that there exists a node v′′ ∈ Cj such that z′ ∈ Rj(v′′). Hence, a BFS tree
spanning Rj(v′′) is added to the output spanner at phase j − 1. Using Step 2,
there exists an edge e ∈ S connecting Rj(v) and Rj(v′′). Thus, dS(z, z′) �
4rj + 1 = 2(4ρ + 1)j−1 − 1.
Subcase 1.2: Suppose that j = j′ = i0. Hence, Strategy 1 is applied at phase
j. Thus, a BFS tree spanning Rj(v) is added to the output spanner at phase
j−1. Using Step 2, R+

j (v) is also spanned. Thus, because z′ ∈ R+
j (v), dS(z, z′) �

2rj + 1 = 2ri0 + 1 � (4ρ + 1)i0−1.
Finally, because ρ > 0, in both subcases, the stretch is bounded by (4ρ + 1)�(k).

Case 2: i2 � 0. Hence, at the beginning of phase i0 + 1, the radius of a region
is at most (2ρ + 1)ri0 + 2ρ. Thus,

ri0+1 =
1
2
(2ρ + 1) ·

(
(4ρ + 1)i0−1 − 1

)
+ 2ρ (1)

Suppose i2 �= 0. For every i0+1 < i � �(k)+1, we have ri = (4ρ+1)ri−1+2ρ.
Thus, by induction, for every i0 + 1 < i � �(k) + 1,

ri = (4ρ + 1)i−i0−1 · ri0+1 +
1
2
((4ρ + 1)i−i0−1 − 1)

In particular,

r�(k)+1 = (4ρ + 1)�(k)−i0 · ri0+1 +
1
2
((4ρ + 1)�(k)−i0 − 1)

Thus,

r�(k)+1 = (4ρ + 1)i2 · ri0+1 +
1
2
((4ρ + 1)i2 − 1) (2)

Now suppose that i2 = 0. Hence, i0 = �(k) and it is easy to see that Eq. 2 is
still true.

Subcase 2.1: Suppose that j �= i0. Thus, it easy to show that there exists a node
v′′ ∈ Cj such that z′ ∈ Rj(v′′). Using Step 6, Rj(v′′) and Rj(v) were spanned
by a BFS tree at phase j − 1. In addition, because Strategy 2 is applied at
phase j, an edge e connecting Rj(v) and Rj(v′′) is added at phase j (Step 2).
Thus, dS(z, z′) � 4rj + 1.

108 B. Derbel and C. Gavoille

Subcase 2.2: Suppose that j = i0. Thus, because R+
j (v) is spanned, dS(z, z′) �

2rj + 1.
At phase �(k)+1, all active nodes will be in the set L�(k)+1. Thus the stretch

is bounded by 4r�(k)+1 + 1. Using Eq. (1) and (2), we have:

4r�(k)+1 + 1 = 4
(
(4ρ + 1)i2 · ri0+1 + 1

2 ((4ρ + 1)i2 − 1)
)

+ 1
= 2(2ρ + 1)(4ρ + 1)i1−1 + 4ρ(4ρ + 1)i2 − 1 �	

Lemma 6. For any integer k, ρ � 1, the size of the output spanner S of algo-
rithm Spanner is O(log k · n1+1/k).

3.2 Distributed Implementation and Time Complexity

In the free model, distributed computation of some distributed procedure A on
Gt[H] can be easily simulated on G as follows, charging the overall time by
a factor of t. Hereafter, we assume that each node u ∈ G can determine if it
belongs or not to H . Indeed, consider one communication step in A running on
some node u of Gt[H] followed by one local computation step. In G, an original
message in A is sent from u with a counter initialized to t− 1 as an extra field.
Now, each node v ∈ G, upon the reception of a message with some counter in
its header: 1) decrements the counter; 2) stores this message if v ∈ H ; and 3)
forwards the incoming message with the updated counter to all its neighbors in
G if the updated counter is non-null (if many messages are received during a
round, then they are concatenated before being sent). After t communication
rounds in G, every node u ∈ H starts the local computation step of A on the
base of all received messages during the last t communication rounds.

Similarly, given C ⊆ V , the computation of some distributed procedure A on
GC can be simulated on G as follows, charging the overall time by a factor O(r)
where r is an upper bound of the eccentricity of a node v ∈ C in G[R(v)]. At each
time procedure A requires for a node v of GC to send a message to a neighbor,
v broadcasts the message in G[R(v)] (which is connected). The nodes at the
frontier of R(v), i.e., nodes having neighbors in different regions, broadcast also
the message out their region. Symmetrically, upon the reception of messages from
different regions, messages are concatenated and a convergecast is performed to
v. The time overhead for one step of A is at most 2r + 1.

Relying on the above discussions, running procedure A on G2(r+1)[H] or on
(GC)2[H] can be simulated on G within a factor of O(r) on the time complexity.

Lemma 7. For any integer k, ρ � 1, Spanner can be implemented with a de-
terministic distributed algorithm in O(log k · ρlog k · τ) time, where τ is the time
complexity to compute an independent ρ-dominating set in a graph of at most n
nodes.

4 Applications to Low Stretch Spanners

4.1 Constant Stretch Spanners with Sub-quadratic Size

Let MIS(n) denote the time complexity for computing, by a deterministic dis-
tributed algorithm, a maximal independent set (MIS) in a graph with at most n

Fast Deterministic Distributed Algorithms for Sparse Spanners 109

nodes. The fastest deterministic algorithm [33] shows that MIS(n) � nO(1/
√

log n).
It is also known that MIS(n) � Ω(

√
logn/ log logn) [23].

It is not difficult to check that a set X is an independent 1-dominating set
if and only if X is a maximal independent set (cf. [34, pp. 259, Ex. 4]). Thus,
using the fast distributed MIS algorithm as a subroutine in algorithm Spanner,
we obtain:

Theorem 1. There is a deterministic distributed algorithm that given a graph
G with n nodes and any fixed integer k = 2p with p � 0, constructs a (klog2 5)-
spanner for G with O(n1+1/k) edges in O(MIS(n)) time.

Proof. Size and time are direct consequences of lemmas 3 and 7 fixing k and
ρ = 1. Note that �(k) = p = log k. Thus, using Lemma 5, the stretch of the
output spanner is bounded by 5log k = klog 5. �	

Theorem 2. There is a deterministic distributed algorithm that given a graph
G with n nodes and any fixed integer k = 2p + 2q − 1 with p � q > 0, constructs
a (6 · 5p−1 + 4 · 5q−1 − 1)-spanner for G with O(n1+1/k) edges in O(MIS(n))
time.

Proof. Size and time are direct consequences of lemmas 3 and 7 fixing k and
ρ = 1.

If p = q, then k = 2p+1 − 1 =
∑p

j=0 2j . Hence, �(k) = p and �(k − 2�(k)) =
�(2p+1 − 1 − 2p) = �(2p − 1) = p − 1. Thus, using Lemma 5 (second case), the
stretch of the output spanner is bounded by 6 · 5p + 4 · 5p−1 − 1.

If p �= q, then k = 2p +
∑q−1

j=0 2j. Hence, �(k) = p. In addition, �(k − 2�(k)) =
�(2p + 2q − 1− 2p) = �(2q − 1) = q− 1. Thus, using Lemma 5 (second case), the
stretch of the output spanner is bounded by 6 · 5p + 4 · 5q−1 − 1. �	

Corollary 1. For every integer k such that k = 2p + 2q − 1, where p � q � 0,
there is a deterministic distributed algorithm that given a graph G with n nodes,
constructs a s[k]-spanner for G with O(n1+1/k) edges in O(MIS(n)) time, where
s[k] is given by Table 1.

Table 1. Stretch and Strategy examples for k = 2p + 2q − 1

(p, q) (0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2) (3, 3)
k 1 2 3 4 5 7 8 9 11 15

s[k] 1 5 9 25 33 49 125 153 169 249
i0 1 2 1 3 2 1 4 3 2 1

4.2 Graphs with Large Minimum Degree

It is known that sparser spanners exist whenever the minimum degree increases
(cf. the concluding remark of [7]). In this paragraph, we show that graphs with
minimum degree large enough enjoy an O(1)-spanner with only O(n) edges,
moreover computable with a fast deterministic distributed algorithm.

110 B. Derbel and C. Gavoille

Let us first note that if a graph G has a ρ-dominating set X , then G has a
(4ρ + 1)-spanner with at most n + |X |2/2 edges. Assuming we are given such a
dominating set, the spanner can be constructed distributively in O(ρ) time by
first clustering the nodes of the graph around the nodes in the dominating set,
and then by connecting every two neighboring clusters. The two endpoints either
belong to the same cluster, and thus the endpoints are at distance at most 2ρ in
the spanner, or belong to two adjacent clusters. In that case the endpoints are
at distance at most 2ρ + 1 + 2ρ in the spanner using the selected inter-cluster
edge of the spanner.

Proposition 1. For every parameter ρ � 1, there exists a deterministic distrib-
uted algorithm that given a graph G with n nodes and a ρ-dominating set X,
constructs a (4ρ+1)-spanner for G with at most n+ |X |2/2 edges in O(ρ) time.

This proposition can be combined with the observation that if G has minimum
degree δ �

√
n logn, then G has a 1-dominating set X of size O(

√
n logn).

Indeed, this can be proved using the following greedy algorithm [30]: one starts
with X = ∅ and with the set of all radius-1 balls, B = {N [v] | v ∈ V }, where
N [v] = {u ∈ V | dG(u, v) � 1}. Then, while B is nonempty, one selects a node
x ∈ V for X that belongs to the maximum number of balls in the current set B.
The set B is updated by removing all balls containing x. The constructed set X
is a 1-dominating set and it can be shown that |X | � n(1 + lnn)/minv∈V |N [v]|
which is at most O(

√
n logn) if δ �

√
n logn. Thus, the problem is to efficiently

compute such 1-dominating set.
Unfortunately, no deterministic distributed implementation of the greedy al-

gorithm faster than O(|X |) is known. A small ρ-dominating set can be computed
much more efficiently in O(ρ log∗ n) time by the algorithm of [25]. Unfortunately,
its guaranteed size for X is only of O(n/ρ). Finally, no algorithm is known to
run in o(

√
n logn) time for this problem.

However, using our algorithm, we obtain a 9-spanner with only O(n) edges,
moreover with a better time complexity.

Theorem 3. There exists a deterministic distributed algorithm that given a
graph G with n nodes and minimum degree δ � √

n, constructs a 9-spanner
for G with at most 3n/2 edges in O(MIS(n)) time.

Proof. The algorithm consists in two stages. First, we construct an MIS for G2.
Then, each node of the MIS constructs its region using the coloring technique of
Spanner. The spanner is obtained by considering the edges spanning the regions
and the edges connecting every two adjacent regions (cf. Proposition 1).

The number of nodes belonging to the MIS, and thus the number of regions,
is at most n/δ � √

n. Therefore, the number of edges of the spanner is at most
n +

√
n

2
/2 = 3n/2. The radius of a region is bounded by 2. Thus, the stretch is

2 · 2 + 1 + 2 · 2 = 9. �	

4.3 Randomized Distributed Implementation Issues

In [31], Luby gives a simple and efficient randomized PRAM algorithm for com-
puting an MIS in O(log n) expected time. Luby’s algorithm can be turned to run

Fast Deterministic Distributed Algorithms for Sparse Spanners 111

in the free model, and we obtain a distributed algorithm for computing an inde-
pendent 1-dominating set which terminates within O(log n) expected time. We
remark that upon termination of the algorithm, the constructed 1-dominating
set is always correct, the randomization is only on the running time, i.e., it is a
Las Vegas algorithm.

The two randomized algorithms we present below guarantee the stretch and
the size bounds for the constructed spanners, while the O(k) time (Monte Carlo)
randomized algorithms [8] do not give any guarantee on the spanner size. This
is of course achieved at the price of increasing the stretch factor of the spanner.

Thus, we obtain the following randomized version of Theorems 1 and 2:

Theorem 4. There is a (Las Vegas) randomized distributed algorithm that given
a graph G with n nodes and any fixed integer k = 2p with p � 0, constructs a
(klog2 5)-spanner for G with O(n1+1/k) edges in O(log n) expected time.

Theorem 5. For every fixed integer k � 3, there is a (Las Vegas) randomized
distributed algorithm that given a graph G with n nodes and any fixed integer
k = 2p + 2q − 1 with p � q > 0, constructs a (6 · 5p−1 + 4 · 5q−1 − 1)-spanner for
G with O(n1+1/k) edges in O(log n) expected time.

Recently, in [24], Khun et al. show that every packing problem can be approx-
imated by a constant factor with high probability in O(log n) time in the free
model. Therefore, the (Monte Carlo) algorithm of [24] implies a randomized con-
stant approximation algorithm for the minimum 1-dominating set problem with
O(log n) time. Thus, using Proposition 1, we obtain the following result (to be
compared with Theorem 3 and [8]):

Theorem 6. There exists a (Monte Carlo) randomized distributed algorithm
that given a graph G with n nodes of minimum degree δ � √

n, constructs a
5-spanner for G in O(log n) time. The size is O(n log2 n) edges with high prob-
ability. More generally, for a minimum degree δ graph, we obtain a 5-spanner
with O(n + (n logn/δ)2) edges.

Let us remark that, in Theorem 6, 5 is the best possible bound on the stretch if
δ � w(n1/4 logn). In fact, there exist graphs with minimum degree c

√
n (for some

constant c > 0) and girth 6 (the length of its smallest cycle). Thus, the deletion of
any edge implies a stretch of at least 5 for its endpoints. Therefore, any spanner
with size less than 1

2cn
√
n have stretch at least 5, and O(n + (n logn/δ)2) =

o(n
√
n) if δ � w(n1/4 logn).

5 Conclusion

In this paper we have considered deterministic distributed algorithm to con-
struct low stretch and sparse spanners of unweighted arbitrary graphs. In par-
ticular we have shown that 5-spanner with O(n3/2) edges can be constructed in
nO(1/

√
log n) time. Let us observe that logn < n1/

√
log n only for n > 242

. In other

112 B. Derbel and C. Gavoille

words, deterministic distributed n1/
√

log n time algorithms might be competitive1

over randomized logn time algorithms for distributed system up to n � 32656
processors. We left open the two following problems:

1. Reduce the stretch from 5 to optimal stretch 3, without increasing the size
of the spanner and the running time. More generally, is it possible, for every
k � 1, to compute with a deterministic distributed algorithm a (2k − 1)-
spanners of size O(n1+1/k) in O(MIS(n)) time?

2. Reduce the time complexity to o(MIS(n)), possibly with some small stretch
and size increasings. More precisely, is it possible to compute with a deter-
ministic distributed algorithm a constant stretch spanner with o(n2) edges
in o(MIS(n)) time? Using our approach, it suffices to show that there is a
constant ρ for which an independent ρ-dominating set can be computed in
o(MIS(n)) time for every graph.

References

1. Baruch Awerbuch. Complexity of network synchronization. Journal of the Associ-
ation for Computing Machinery, 32:804–823, 1985.

2. Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning
tree, counting, leader election and related problems. In 19th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 230–240. ACM Press, May 1987.

3. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Near-linear
cost sequential and distributed constructions of sparse neighborhood coverss. In
34th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
638–647. IEEE Computer Society Press, November 1993.

4. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Fast dis-
tributed network decompositions and covers. Journal of Parallel and Distributed
Computing, 39:105–114, 1996.

5. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Near-linear
time construction of sparse neighborhood covers. SIAM Journal on Computing,
28(1):263–277, February 1998.

6. Baruch Awerbuch and David Peleg. Sparse partitions. In 31th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 503–513. IEEE
Computer Society Press, October 1990.

7. Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New
constructions of (α, β)-spanners and purely additive spanners. In 16th Symposium
on Discrete Algorithms (SODA), pages 672–681. ACM-SIAM, January 2005.

8. Surender Baswana and Sandeep Sen. A simple linear time algorithm for computing
a (2k − 1)-spanner of O(n1+1/k) size in weighted graphs. In 30th International
Colloquium on Automata, Languages and Programming (ICALP), volume 2719 of
Lecture Notes in Computer Science, pages 384–396. Springer, July 2003.

9. Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted
graphs in Õ(n2) time. In 15th Symposium on Discrete Algorithms (SODA), pages
271–280. ACM-SIAM, January 2004.

10. Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch
t. SIAM Journal on Computing, 28(1):210–236, 1998.

1 This obviously depends on the constants hidden in the O-notation.

Fast Deterministic Distributed Algorithms for Sparse Spanners 113

11. Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to
optimal parallel list ranking. Information and Control, 70(1):32–53, 1986.

12. Lenore J. Cowen. Compact routing with minimum stretch. Journal of Algorithms,
38(1):170–183, 2001.

13. Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Fast distributed graph parti-
tion and application. In 20th IEEE International Parallel & Distributed Processing
Symposium (IPDPS). IEEE Computer Society Press, April 2006.

14. Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low
stretch factor. Journal of Algorithms, 46:97–114, 2003.

15. Michael Elkin. Computing almost shortest paths. In 20th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 53–62. ACM Press, 2001.

16. Michael Elkin. A faster distributed protocol for constructing a minimum spanning
tree. In 15th Symposium on Discrete Algorithms (SODA), pages 359–368. ACM-
SIAM, January 2004.

17. Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for
the distributed minimum spanning tree problems. In 36th Annual ACM Symposium
on Theory of Computing (STOC), pages 331–340. ACM Press, May 2004.

18. Michael Elkin and David Peleg. (1+ε, β)-spanner constructions for general graphs.
SIAM Journal on Computing, 33(3):608–631, 2004.

19. Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-
spanners in the distributed and streaming models. In 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 160–168. ACM Press, July
2004.

20. Cyril Gavoille, David Peleg, Stéphane Pérennès, and Ran Raz. Distance labeling
in graphs. Journal of Algorithms, 53(1):85–112, 2004.

21. Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics,
1(4):434–446, 1988.

22. Fabian Kuhn, Thomas Moscibroda, Tim Nieberg, and Roger Wattenhofer. Fast de-
terministic distributed maximal independent set computation on growth-bounded
graphs. In 19th International Symposium on Distributed Computing (DISC), vol-
ume Lecture Notes in Computer Science. Springer, September 2005.

23. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be com-
puted locally! In 23rd Annual ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 300–309. ACM Press, July 2004.

24. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being
near-sighted. In 17th Symposium on Discrete Algorithms (SODA), pages 980–989.
ACM-SIAM, January 2006.

25. Shay Kutten and David Peleg. Fast distributed construction of small k-dominating
sets and applications. Journal of Algorithms, 28(1):40–66, 1998.

26. Nathan Linial. Distributive graph algorithms - Global solutions from local data.
In 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 331–335. IEEE Computer Society Press, October 1987.

27. Nathan Linial. Locality in distributed graphs algorithms. SIAM Journal on Com-
puting, 21(1):193–201, 1992.

28. Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight
spanning tree construction in O(log log n) communication rounds. SIAM Journal
on Discrete Mathematics, 35(1):120–131, 2005.

29. Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant
diameter graphs. In 20th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 63–71. ACM Press, 2001.

114 B. Derbel and C. Gavoille

30. Laszlo Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

31. Michael Luby. A simple parallel algorithm for the maximal independent set prob-
lem. SIAM Journal on Computing, 15(4):1036–1053, November 1986.

32. Shlomo Moran and Sagi Snir. Simple and efficient network decomposition and
synchronization. Theoretical Computer Science, 243(1-2):217–241, 2000.

33. Alessandro Panconesi and Aravind Srinivasan. On the complexity of distributed
network decomposition. Journal of Algorithms, 20(2):356–374, 1996.

34. David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications, 2000.

35. David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time com-
plexity of distributed minimum-weight spanning tree construction. SIAM Journal
on Computing, 30(5):1427–1442, 2000.

36. David Peleg and Jeffrey D. Ullman. An optimal synchornizer for the hypercube.
SIAM Journal on Computing, 18(4):740–747, 1989.

37. David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM, 36(3):510–530, July 1989.

38. Lucia Draque Penso and C. Barbosa Valmir. A distributed algorithm to find k-
dominating sets. Discrete Applied Mathematics, 141(1-3):243–253, May 2004.

39. Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and roundtrip
routing in directed graphs. In 13th Symposium on Discrete Algorithms (SODA),
pages 844–851. ACM-SIAM, January 2002.

40. Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of ap-
proximate distance oracles and spanners. In 32nd International Colloquium on
Automata, Languages and Programming (ICALP), volume Lecture Notes in Com-
puter Science, 2005.

41. Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 1–10. ACM
Press, July 2001.

42. Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM,
52(1):1–24, January 2005.

43. Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Com-
binatorial Theory, Series B, 52(1):113–116, 1991.

Efficient Distributed Weighted Matchings
on Trees�

Jaap-Henk Hoepman1, Shay Kutten2, and Zvi Lotker3

1 Institute for Computing and Information Sciences
Radboud University Nijmegen, Nijmegen, the Netherlands

jhh@cs.ru.nl
2 Faculty of Industrial Engineering and Management

Technion, Haifa, Israel
kutten@ie.technion.ac.il

3 CWI, Amsterdam, the Netherlands
Z.Lotker@cwi.nl

Abstract. In this paper, we study distributed algorithms to compute
a weighted matching that have constant (or at least sub-logarithmic)
running time and that achieve approximation ratio 2 + ε or better. In
fact we present two such synchronous algorithms, that work on arbitrary
weighted trees.

The first algorithm is a randomised distributed algorithm that com-
putes a weighted matching of an arbitrary weighted tree, that approxi-
mates the maximum weighted matching by a factor 2 + ε. The running
time is O(1). The second algorithm is deterministic, and approximates
the maximum weighted matching by a factor 2 + ε, but has running
time O(log∗ |V |). Our algorithms can also be used to compute maximum
unweighted matchings on regular and almost regular graphs within a
constant approximation.

1 Introduction

A matching M(G) of a graph G = (V,E) is any subgraph of G where no two edges
are incident to the same vertex. A matching is maximal if no other edge from G
can be added to the matching without violating this requirement. Let w(e) be
the weight of an edge e ∈ E of G, where w(e) > 0. Define the weight w(G) of a
graph G to be the sum of the weights of all its edges. Then a maximum weighted
matching M∗(G) of G is a matching whose weight is the maximum among all
matchings of G. We say that an algorithm achieves approximation ratio α if for
all graphs G, the matching it returns has weight at least 1

αw(M∗(G)), i.e., 1
α of

the weight of the maximum weighted matching of that graph.
For sequential algorithms, the problem is well studied. For unweighted graphs,

Micali and Vazirani [MV80] present an O(
√

|V ||E|) time algorithm that com-
putes a maximum matching. For weighted graphs Gabow [Gab90] gives an O(|V ||E|+
� Id: random-matchings.tex,v 1.18 2006/04/20 08:28:26 jhh Exp .

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 115–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 J.-H. Hoepman, S. Kutten, and Z. Lotker

|V |2 log |V |) time algorithm, computing the maximum weighted
matching. Both return an exact solution, and not approximations.

Surprisingly, few distributed algorithms to compute (an approximation of)
the maximum weighted matching of the communication graph are known. For
unweighted graphs, there are deterministic distributed algorithms computing a
maximal matching in trees [KS00], and bipartite and general graphs [CHS02]. A
randomised algorithm for the general case also exists: Israeli and Itai [II86] com-
pute a maximal matching (i.e., no approximation) in running time O(log |V |).

For weighted graphs, Uehara et al. [UC00] present a constant time distributed
algorithm with approximation ratio O(Δ) (where Δ is the maximum degree of
the graph). Recently, Wattenhofer et al. [WW04] presented a randomised dis-
tributed algorithm to compute a weighted matching M(G) with approximation
ratio 5 and running time O(log2 |V |) for general graphs, and approximation ratio
4 and O(1) running time for trees.

Hoepman [Hoe04] presents an O(|E|) time1 deterministic distributed algo-
rithm that computes a weighted matching for general graphs with approximation
ratio 2. This algorithm is based on sequential algorithms by Preis [Pre99] and
Avis [Avi83], and does not require collecting all information in one node (which
increases the message complexity).

In this paper, we study distributed algorithms to compute a weighted match-
ing that have constant (or at least sub-logarithmic) running time and that
achieve approximation ratio 2 + ε or better. In fact, we present two such al-
gorithms for arbitrary weighted trees, thus improving the previous algorithm of
Wattenhofer et al. [WW04].

The first algorithm — presented in Sect. 3 — is randomised, and achieves
approximation ratio 2 + ε in running time O(1). An interesting feature of this
algorithm is that the quality of the approximation depends on the number of
rounds the algorithm is allowed to run. The second algorithm — presented in
Sect. 4 — is deterministic, and achieves approximation ratio 2+ε in running time
O(log∗ |V |). We start by introducing our computation model and some notation
in Sect. 2, show how our algorithms can also be applied to achieve constant
approximations to the maximum (unweighted) matchings for regular and almost
regular graphs in Sect. 5, and finish with some pointers to further research in
Sect. 6.

2 Model and Notation

Consider a distributed system with n nodes, whose communication graph is
G = (V,E). In this paper, G is a tree (denoted T) or a regular graph. Nodes can
exchange point-to-point messages with their neighbours over the edges E in the
graph. Each edge e has a weight w(e), known to both endpoints of that edge. The
system is synchronous and operates in rounds of message exchanges. We measure
time complexity of our algorithms as the number of rounds needed to perform
1 Careful analysis shows that the time complexity is actually at most O(diam G), the

diameter of the graph.

Efficient Distributed Weighted Matchings on Trees 117

the computation. We note that our algorithms also work in the asynchronous
setting, after some minor modifications.

We write G for general graphs, T for trees, P for paths and S for segments
(that are pieces of a path). The number of edges in G is |G|, and w(G) is the
weight of G, i.e., the sum of the weights of all edges of G. M(G) is a weighted
matching of graph G, and M∗(G) is the maximum weighted matching of graph G.

Let X be a random variable. We write E
[
X
∣∣ Q(X)

]
for the conditional ex-

pectation over X given that Q(X) holds. By definition

E
[
X
∣∣ Q(X)

]
=
∑

x:Q(x)

xPr
[
X = x

∣∣ Q(X)
]

(1)

and for disjoint Qi that together span the whole range of X we have

E [X] =
∑

i

E
[
X
∣∣ Qi(X)

]
Pr [Qi(X)] . (2)

Our protocols are described in plain English, and not in any formal protocol
notation, because they are quite straightforward.

3 Randomised Case: Constant Running Time

The protocol runs in four phases, and is parameterised by a real-valued constant
p between 0 and 1 and an integer constant k greater than 1.

First, given input tree T , a set of paths P (T) is generated by letting nodes
select their heaviest incident edge as a potential member of a path. In the second
phase, each path is cut into short segments by randomly removing edges from
the path, each with probability p. Subsequently, each segment is tested to see
whether its length is shorter than k. In the fourth phase, for these short segments
an optimal matching is computed in time O(k), while for the remaining longer
segments a constant-time randomised algorithm computes a 2 approximation of
the optimal matching for this segment. Combining all matchings, and compen-
sating for the loss of dropped edges when cutting paths into segments, this gives
an O(k) algorithm to compute a matching, for which we prove an approximation
ratio of 2 + ε for arbitrary ε > 0. Because k is a constant, the running time is
O(1).

3.1 Computing the Paths

We use the same procedure to construct a set of paths P (T) from a given tree T as
presented by Wattenhofer et al. [WW04]. That is, a node u requests the addition
of its heaviest incident edge (u, v) to this set of paths from its neighbour v. Such a
requested edge is only added to the set of paths if either u also receives a request
from v (for the same edge), or if v sent a grant to u for its request. Nodes request
exactly one edge each. Nodes only grant at most one request, being the heaviest
request coming in over an edge it didn’t request itself (assuming unique weights,

118 J.-H. Hoepman, S. Kutten, and Z. Lotker

Fig. 1. Counterexample for non-tree graphs

or breaking ties). All remaining edges (either not granted or not requested) are
dropped and will not be members of any path. Because at most 2 edges per
node remain, a node is a part of at most one path, and the procedure yields a
set of disjoint paths. Because nodes select the heaviest incident edge, these paths
cannot be cycles (we assume unique edge weights).

The following lemma shows that we do not loose too much weight constructing
paths this way, provided that the graph we start with is a tree.

Lemma 3.1 ([WW04]). For trees T and P (T) computed as described above,

w(P (T)) ≥ w(M∗(T)) .

In contrast, the following counterexample shows that for non-trees the difference
in weight between the paths constructed for that graph and its maximum weight
matching can be unbounded. Consider the graph in Fig. 1. One node connects
to the central node over an edge with weight 3. This node requests this edge as a
path member, and the central node grants that request. Furthermore, 2n nodes
are connected to the central node through an edge with weight 2, while these
nodes are connected pairwise through edges with weight 1. These 2n nodes each
request the edge with weight 2 as a potential path member, but all these requests
are rejected by the central node. Hence, the path consists of just one edge,
and has total weight w(P (G)) = 3. However, the maximum weighted matching
consists of the edge with weight 3, as well as all n edges with weight 1. Hence
w(M∗(G)) = 3 + n.

3.2 Cutting the Paths into Segments

In the next phase, each path P is cut into segments S(P) as follows. Every
vertex sends, for each of its edges on the path, a cut request over this edge with
probability

√
p. An edge is cut if both endpoints sent a cut request to each other.

The other edges remain. Each connected component forms a segment S in S(P).
We see that the probability for each edge to be cut is exactly p. The expected
number of removed edges is p|P |, and the expected weight of all edges removed
together is p · w(P).

Efficient Distributed Weighted Matchings on Trees 119

Lemma 3.2. Let S(P) be a random variable corresponding to the segments com-
puted for a path P by the random process described above. Then

E

⎡
⎣ ∑

S∈S(P)

w(S)

⎤
⎦ = (1 − p)w(P) .

Proof. Only edges in some S ∈ S(P) contribute to the weight. Let P consist of
edges ei, and define random variables Xei such that Xei = 1 iff ei is a member
of some segment (i.e., not cut), and 0 otherwise. Then Pr [Xei = 1] = (1 − p)
and

E

⎡
⎣ ∑

S∈S(P)

w(S)

⎤
⎦ =E

[∑
ei∈P

w(ei)Xei

]

=
∑
ei∈P

E [w(ei)Xei]

=
∑
ei∈P

w(ei)Pr [Xei = 1] = (1 − p)
∑
ei∈P

w(ei) .

This proves the lemma. �	

3.3 Estimating the Size of the Segment

After cutting the path into segments, each vertex determines the size of the
segment it is a member of. Or, to be more precise, it determines whether the
segment is smaller or larger than k edges. It does so in the following manner.
Vertices at the edge of a segment start the computation, by sending a distance
message with value 1 along the only incident edge that belongs to a segment
(and recording 0 as the distance from the other end). Nodes that receive a
distance message record the distance coming in over that edge, and add one
before forwarding it over the other segment edge. Forwarding stops if a segment
endpoint is reached, or when the distance in the message equals k. If nodes do
not record a distance for both edges, the total length of the segment is larger
than k. Otherwise, the sum of both distances equals the length of the segment.
In either case, all nodes know whether the length of the segment is ≤ k or > k.
The running time is at most k.

3.4 Computing Matchings on the Segments

Segments compute their matching depending on their sizes, as determined in the
previous phase. If a node finds it is not a member of a segment (or rather, it is
a member of a segment of size 0) it does nothing. Otherwise, it cooperates with
all other nodes in the same segment as described below.

Consider a segment S ∈ S(P). If |S| ≤ k, we compute a good matching M(S)
for S in time k by computing two matchings M and M ′ by adding edges in S
alternately to M or M ′, and selecting the matching with maximum weight. Such

120 J.-H. Hoepman, S. Kutten, and Z. Lotker

a computation could be initiated by both endpoints of the segment. We note the
running time is O(k).

In the following lemma we bound the weight of the resulting matching from
below2.

Lemma 3.3. For a matching M(S) of S (with |S| ≤ k) computed as described
above,

E [w(M(S))] ≥ 1
2
w(S) .

Proof. By construction we find two matchings M and M ′ with S = M + M ′,
and therefore w(S) = w(M) + w(M ′). As we select the heaviest matching, the
lemma follows. �	

If |S| > k, we compute a matching M(S) for S in one round by letting vertices
vote for the incident edge that should be added to the matching with equal
probability (segment endpoints vote for their only edge with p = 1). An edge is
only added if both its endpoints vote for it.

Lemma 3.4. For a matching M(S) of S (with |S| > k) computed as described
above,

E [w(M(S))] ≥ 1
4
w(S) .

Proof. As each edge has at most 2 incident edges on the segment, the probability
that an edge is added is at least 1

4 . Define random variables Xei such that Xei = 1
if the i-th edge ei of S is in the matching. Then, similar to the proof of lemma 3.2,

E [w(M(S))] =
∑
ei∈S

w(ei)Pr [Xei = 1] .

As Pr [Xei = 1] ≥ 1
4 , the lemma follows. �	

3.5 Merging the Results

The final matching M(T) for tree T is obtained by merging all matchings com-
puted for all segments in S(P) for each path P in P (T). We conclude our analysis
by estimating the weight of the resulting matching.

First we look at a single, but arbitrary, path P . In what follows, let S(P) be a
random variable corresponding to the segments computed for P by the random
process described in section 3.2. Let S be a random variable ranging over all
members of S(P).

For such a path P , define C(P) to be the cycle obtained by merging the two
endpoints of P into a single node. Given a segmentation of P , define sb and se to
be the first and last segment of P , respectively, where sb starts at the endpoint
and se ends at the endpoint (and where either segment may be empty if the

2 Even though the process is deterministic, we state the bound in terms of an expec-
tation, because that is more useful further on.

Efficient Distributed Weighted Matchings on Trees 121

first and/or last edge of P happened to be cut). A segmentation of P induces
a segmentation on the cycle C(P), by taking all segments, and merging sb and
se into a single segment s̄c. Let S(C(P)) be a random variable corresponding to
the segments computed for C(P). Let S̄ be a random variable ranging over all
members of S(C(P)).

For segments computed on this cycle, we have the following proposition.

Proposition 3.5. For all i ≤ |P |,

Pr
[
|S̄| = i

]
≤ (1 − p)i .

Proof. Clearly, to have a segment of length i, we need i uncut edges. This hap-
pens with probability (1 − p)i. If i = |P |, then this is the exact probability (the
segment happens to be the whole cycle), otherwise we need at least 1 (i = |P |−1)
or 2 cut edges, that each lower the probability with a factor p. �	
We also need the following uniformity property on the distribution of the weights
over the segments computed for the cycle.

Proposition 3.6. For any k ≥ 0,

E
[
w(S̄)

∣∣ |S̄| = k
]

= k
E
[
w(S̄)
]

E
[
|S̄|
]

Proof. Let σ be a random variable, ranging over the single edges in a segment
S̄. Let σ1, σ2, . . . be the edges in S̄. Then

E
[
w(S̄)

∣∣ |S̄| = k
]

={Using the fact that S̄ consists of k edges σi.}

E

[
k∑

i=1

w(σi)
∣∣ |S̄| = k

]

={Independent of length of S̄ now.}

E

[
k∑

i=1

w(σi)

]

={By symmetry of C(p)
all edges appear the same number of times. }
kE [w(σ)]

By Eq. 2 we have

E
[
w(S̄)
]

=
∑

i

E
[
w(S̄)

∣∣ |S̄| = i
]
Pr
[
|S̄| = i

]
={By the above.}∑

i

iE [w(σ)] Pr
[
|S̄| = i

]
=E [w(σ)] E

[
|S̄|
]

Combining both equations proves the proposition. �	

122 J.-H. Hoepman, S. Kutten, and Z. Lotker

Next, we bound the expected weight of a matching of an arbitrary segment S̄
from S(C(P)) in terms of the expected weight of S̄ itself.

Lemma 3.7. For a matching M(S̄) of S̄ computed as described above,

E
[
w(M(S̄))

]
≥ 1

2

(
1 − (1 + kp)(1 − p)k+1

2p2

)
E
[
w(S̄)
]

.

Proof. First observe that E
[
w(M(S̄))

]
depends on two random processes: the

selection of a segment s̄ from S(C(P)), and the random variable C denoting
the coin sequence thrown by the randomised algorithm that computes M(s̄).
Let M(c, s̄) denote the (deterministic) result of M(s̄) when the coins thrown are
fixed to sequence c. Then

E
[
w(M(S̄))

]
={S̄ and C are independent}∑

s̄

(
∑

c

M(c, s̄)Pr [C = c])Pr
[
S̄ = s̄

]
≥{Split according to |s̄| and using Lemma 3.3 and 3.4}

=
∑

s̄:|s̄|≤k

1
2
w(s̄)Pr

[
S̄ = s̄

]
+
∑

s̄:|s̄|>k

1
4
w(s̄)Pr

[
S̄ = s̄

]
={Rearranging sums and definition of E

[
w(S̄)
]
. }

1
2
E
[
w(S̄)
]
−
∑

s̄:|s̄|>k

1
4
w(s̄)Pr

[
S̄ = s̄

]
={Using Eq. 1 and Pr

[
S̄ = s̄

∣∣ |S̄|>k
]
Pr
[
|S̄|>k

]
=Pr

[
S̄ = s̄

]
}

1
2
E
[
w(S̄)
]
− 1

4
E
[
w(S̄)

∣∣ |S̄| > k
]
Pr
[
|S̄| > k

]
={Using Prop. 3.6}

1
2
E
[
w(S̄)
]
− 1

4
E
[
w(S̄)
]∑

i>k

i
Pr
[
|S̄| = i

]
E
[
|S̄|
]

≥{Using Prop. 3.5 and E
[
|S̄|
]
≥ 1}(

1
2
− 1

4

∑
i>k

i(1 − p)i

)
E
[
w(S̄)
]

={Rearranging sums and computing geometric series.}

=
(

1
2
− 1

4

(
1 − p

p2 − k(1 − p)k+2 − (k + 1)(1 − p)k+1 + (1 − p)
(−p)2

))
E
[
w(S̄)
]

=
(

1
2
− 1

4
(1 + kp)

(1 − p)k+1

p2

)
E
[
w(S̄)
]

This proves the lemma. �	

Efficient Distributed Weighted Matchings on Trees 123

We also need the following two propositions.

Proposition 3.8.

E
[
w(S̄
]
≥ E [w(S)] .

Proof. Any random segmentation for S(P) induces a segmentation of S(C(P)),
with se and sb merged into s̄c where w(s̄c = w(sb) + w(se). �	

Proposition 3.9.

E

⎡
⎣ ∑

S∈S(P)

w(M(S))

⎤
⎦ ≥ E

⎡
⎣ ∑

S̄∈S(C(P))

w(M(S̄))

⎤
⎦

Proof. In what follows, let S(P) be a random variable corresponding to the
segments computed for a path P by the random process described in section 3.2.
Let S(C(P)) be the corresponding set of segments for the cycle C(P).

For all S ∈ S(P) unequal to the end segments sb and se, the corresponding seg-
ment S̄ in S(C(P)) is the same, and hence w(M(S)) = w(M(S̄)). It remains to
show that E [w(M(sb)) + w(M(se))] ≥ E [w(M(s̄c))]. Split the matching M(s̄c)
into two parts, mb (for s̄b) and me (for s̄e), that cover sb and se respectively.
Let i ∈ {e, b}. We show E [w(M(si))] ≥ E [w(mi)]. There are two cases.

|si| ≤ k : In this case (see proof Lemma 3.3), the matching computed for si

is optimal. As matching mi on s̄i is also a matching for si, the statement
follows.

|si| > k : Then |s̄| > k as well, and the matching M(s̄c) is computed using
the probabilistic method for long segments (cf. Lemma 3.4). Consider the
random process that selects edges for inclusion in M(s̄c) and hence mi. The
‘end-edge’ of s̄i (the splitting edge at which the cycle is cut into the path P)
has probability 1/2 to be included in M(si) but only probability 1/4 to be
included in mi = M(s̄i). Hence the expected weight of the matching mi is
lower than M(si).

This completes the proof. �	

We now bound the weight of the matching computed for P as a whole.

Theorem 3.10. For any path P , and matching M(P) computed as above,

E [w(M(P))] ≥ 1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

)
(1 − p)w(P) .

Proof. In what follows, let S(P) be a random variable corresponding to the
segments computed for a path P by the random process described in section 3.2.

124 J.-H. Hoepman, S. Kutten, and Z. Lotker

We have

E [w(M(P))] =E

⎡
⎣w
⎛
⎝ ⋃

S∈S(P)

M(S)

⎞
⎠
⎤
⎦ = E

⎡
⎣ ∑

S∈S(P)

w(M(S))

⎤
⎦

≥{By Prop. 3.9}

E

⎡
⎣ ∑

S̄∈S(C(P))

w(M(S̄))

⎤
⎦ =

∑
S̄∈S(C(P))

E
[
w(M(S̄))

]

By Lemma 3.7 this is greater than or equal to

1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

) ∑
S̄∈S(C(P))

E
[
w(S̄)
]

which is bounded from below through Prop 3.8

1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

) ∑
S∈S(P)

E [w(S)]

which is further bounded from below using Lemma 3.2 by

1
2

(
1 − (1 + kp)(1 − p)k+1

2p2

)
(1 − p)w(P) .

This completes the proof. �	

We finish by combining all matchings for all paths.

Corollary 3.11. For any tree T , and matching M(T) computed as above, we
have

2E [w(M(T))] ≥
(

1 − (1 + kp)(1 − p)k+1

2p2

)
(1 − p)M∗(T) .

Hence, the approximation ratio of the algorithm is 2 + ε for arbitrary ε > 0.

Proof. Follows from Theorem 3.10 and Lemma 3.1 and the fact that M(T) =
∪P∈P (T)M(P).

To see that the approximation ratio is equivalent to 2 + ε, set ε = p
1−p and

observe that 1 − (1+kp)(1−p)k+1

2p2 tends to 1 for k going to infinity. �	

4 Deterministic Case: O(log∗ n) Running Time

Now consider a model where every node v has a unique identity ID(v). Again,
fix a constant k. In [KP98] a deterministic distributed algorithm is presented to
partition a tree (or a forest) into clusters of diameter O(k), each containing at
least k+1 nodes. This constructions is done in O(k log∗ n) time. More precisely:

Efficient Distributed Weighted Matchings on Trees 125

Lemma 4.1. [KP98] The collection Pout output by Algorithm DOM-Partition(k)
is a partition (of the input tree T). Furthermore, if T is of size n ≥ k + 1, then
every cluster C in Pout has the following properties:

– (a) |C| ≥ k + 1.
– (b) Radius(C) ≤ 5k + 2.

Moreover, Algorithm DOM-Partition(k) requires time O(k log∗ n).

This algorithm uses, as a subroutine, the algorithm of [GPS87].
Using this algorithm, it is easy to modify the randomised algorithm of the

previous sections to become a deterministic algorithm (with a slightly higher time
complexity of O(log∗ n)) as follows. Replace the second phase of the probabilistic
algorithm (the randomised cutting of the paths into segments) by Algorithm
DOM-Partition(k).

This change would have been enough, had the weights of the edges been equal.
We need to take some care here, because DOM-Partition(k) may have deleted
heavy edges. The nodes of each segment si cooperate to perform the following
operation. Consider ei

l, e
i
r, the edges whose deletion separated segment si from

the rest of the path. Let also ei
m be the minimum weight edge in this segment.

If the weight of either ei
l or ei

r is larger than that of ei
m then ei

m is removed from
the segment, and the largest of ei

l or ei
r is reinserted as a part of the segment.

If two adjacent segments wish to swap the same separator (ei
l equals ei+1

r) for a
lighter one, then the segment with the smallest minimum weight edge ei

m wins
and performs the swap. Clearly the above can be performed distributively in
constant time (since k is a constant).

The above correction may create segments that contain less than k nodes,
or segments that are at most three times as long as the original segments. (A
segment that itself is not split may join both the segment at its left and its right,
however then these two segments are cut in exchange for the separating edges.)

The rest of the algorithm needs no changes, except that we will have no seg-
ments that are longer than 15k+6 for some constant k, so the special treatment
of long segments is not necessary. The time complexity of the resulting procedure
is O(log∗ n) since in the current paper we assume that k is a constant.

Theorem 4.2. For any tree T , and matching M(T) computed as above, we have

2w(M(T)) ≥
(

1 − 1
k + 1

)
M∗(T) .

Hence, the approximation ratio of the algorithm is 2/(1 − 1
k+1) = 2k+1

k , which
equals 2 + ε if we set ε = 2

k .

Proof. First we compute
∑

S∈S(P) w(S) for an arbitrary path P . As Algorithm
DOM-Partition(k) returns segments of length at least k + 1 (if the path has
length at least k + 1, otherwise no edges are cut), the number of cut edges from
P is at most |P |/(k+1). Swapping the originally cut edges by lower weight ones
does not change the number of cut edges. Since in every original segment we

126 J.-H. Hoepman, S. Kutten, and Z. Lotker

Fig. 2. Examples of simple graphs

swapped the minimum weight edge for a removed edge, the expected weight of
the cut edges (after the swap) is at most w(P)/(k + 1). Hence

∑
S∈S(P)

w(S) = (1 − 1
k + 1

)w(P) .

Next we consider the weight of the matching returned for P . Similar to the proof
of Th. 3.10, and using only Lemma 3.3 to bound w(M(S)) by 1

2w(S) (the proof
of that lemma not only works in the expected case but also in the deterministic
case, because all segments have length less than 15k + 6) we have

w(M(P)) ≥
∑

S∈S(P)

1
2
w(S) .

This equals
1
2

∑
S∈S(P)

w(S) ,

and using the above result we see that

w(M(P)) ≥ 1
2
(1 − 1

k + 1
)w(P) .

Combining the matching for all paths constructed for the tree, and by Lemma 3.1,
the theorem follows. �	

5 Regular and Almost Regular Graphs

We now show how the algorithms from the previous sections can be used to
compute a constant approximation for the maximum matching of unweighted,
arbitrary regular graph and almost regular graphs.

In order to describe the algorithm we need the following notations. We denote
by ”directed simple”a directed graph were each node has only one outgoing edge,
in other words the out degree of the node is 1. Note that the number of directed
edges in a directed-simple graph is n and therefore there is at least one directed
cycle. See Fig. 2.

Efficient Distributed Weighted Matchings on Trees 127

The algorithm works in three phases. In the first phase we generate a directed-
simple spanning subgraph, and in the second phase we transform the directed-
simple spanning subgraph into a collection of disjoint paths. Finally, in the third
phase, we can use one of the algorithms of the previous sections to compute the
maximum matching for the graph (by assigning weight 1 to all edges). We make
sure that the number of remaining edges after the second phase is a constant
fraction of the number of nodes n. Because the maximum matching of an un-
weighted graph is never larger than n

2 , the resulting maximum matching is a
constant approximation.

A natural way to construct a directed-simple spanning subgraph is for each
node to select a random neighbour from the d neighbours uniformly. After this
step, we have n directed edges. Denote the union of all these directed edges by
G′(V,E′). Let V ′

i be the set of all the nodes in G′ that have a degree i (in-degree
plus out-degree) and V ′

i be the set of all the nodes in G′ of degree bigger than
or equal to i. The next lemma estimates the size of V ′

1 , V
′
2 , V

′
3.

Lemma 5.1. Let G′ be the directed graph constructed as above. Then

E[|V ′
1 |] = (1 − 1

d
)dn ≤ 1

e
n

E[|V ′
2 |] = ((1 − 1

d
)d−1)n ≥ 1

e
n

E[|V ′
3|] = n− E[|V ′

2 |] − E[|V ′
1 |]

Proof. First we compute the probability for a node to have a degree 2. P [d′(v) =
2] = d

d (1 − 1
d)d−1 = (1 − 1

d)d−1 ≥ 1
e . The probability of a node to be of degree 1

is P [d′(v) = 1] = (1 − 1
d)d ≤ 1

e . Now we use the linearity of the expectation and
the lemma follows.

The next corollary shows that for a regular graph the expected size of V ′
2 is

linear.

Corollary 5.2. For all d ≥ 2

n/e ≥ E[|V ′
1 |] ≥ n/4

n/2 ≥ E[|V ′
2 |] ≥ n/e

0.416n ≥ E[|V ′
3|] ≥ (1 − 1/e− 1/2)n = 0.132n

When we remove the direction from the edges we get that each connected com-
ponent in G′ is a union of paths, and it ends in a cycle.

Let v be a node in G′ s.t d(v′) > 2. From the definition of G′ it follows that
there is only one edge that is outgoing from the node (this is the edge that was
chosen by the node) and this node has more than one ingoing edge. In the next
time step we transform the graph G′ into the graph G′′ by randomly removing
all the extra incoming edges except one. After this step all the nodes in V ′

3
have out-degree at most 1 and in-degree equal to 1. Note that the out-degree

128 J.-H. Hoepman, S. Kutten, and Z. Lotker

can actually become 0 if the outgoing edge happens to be incoming to another
node v′′ with degree d(v′′) > 2 who removes this edge to reduce its in-degree to
1. Clearly after this step E[|V ′′

1 |] + E[|V ′′
2 |] ≥ E[|V ′

3 |] > 0.132n.
Because all these nodes have degree 1 or 2, we have at least as many edges

in the graph as well. Now, we assign weights 1 to all remaining edges, and
run one of the algorithms from the previous section to compute a maximum
weighted matching for the remaining graph. This yields a matching of size at
least (E[|V ′′

1 |] + E[|V ′′
2 |])/3 ≥ 0.132

3 n. The reason we divide by 3 is that we may
have a cycle of length 3.

Since a maximum matching of the original unweighted regular graph is never
larger than n

2 , it follows that we have a randomised algorithm that proximate
the maximum matching with a in expected 1

2
3

0.132 = 11.36 approximation ratio
for a regular graph in a constant time.

Note that the same proof will work if the graph is not an r-regular graph but
an almost r-regular graph. We say that a graph G is an α-d-regular graph if
Δ
δ < α, where Δ is the maximal degree and δ is the minimal degree. The next
lemma replaces lemma 5.1 for α-d regular graphs.

Lemma 5.3. Let G be an α-d-regular graph then

E[|V ′
1 |] ≤ ne−1/α

E[|V ′
2 |] ≤ ne−1/α Δ

Δ− 1

E[|V ′
3|] = n− E[|V ′

2 |] − E[|V ′
1 |]

If Δ = 2 then our graph is a forest with some cycles. Using the results from sec-
tion 3.5 it follows that for a graph without cycles we have a 2+ ε approximation.
Sine a cycle is very close to a path we can use the same idea for cycles, and get
a 2 + ε approximation for graphs with Δ ≤ 2. So we may assume that Δ ≥ 3.
The next corollary shows that for 1/ log(5/2) = 1.09136 > α-d-regular graph the
expected size of V ′

3 is linear.

Corollary 5.4. for all δ ≥ 2 and 1.09136 > α,

E[|V ′
3 |] ≥ n

(
1 − e−1/α 2Δ− 1

Δ− 1

)
= Ω(n) .

Since the size of V ′
3 is linear in n we can apply the algorithm from the previous

section and get a constant approximation which depends on α.

Corollary 5.5. Let G(n, p) when p > log(n)
n be a random graph. Then our ap-

proximation algorithm for matching is a constant approximation.

From the previous corollary it may seem our algorithm always computes a match-
ing with a constant approximation to the maximum matching. The next example
shows that this is not the case. Let Kn be a clique of size n. Let Cn2 be a cycle
that contains n2 nodes. We connect all the node in Cn2 to all the nodes in Kn.

Efficient Distributed Weighted Matchings on Trees 129

Note that the number of node in this graph is |V | = n2 + n, and the number of
edges is n2 + n3. The order of the maximum matching is O(n2). However, the
expected size of the matching that our algorithm computes is 2n. So in this case
the approximation ratio of the algorithm is O(

√
|V |).

6 Conclusions

We have presented efficient distributed algorithms that compute good approx-
imations for the maximum weighted matchings for arbitrary weighted trees.
Equally good algorithms for general graphs that compute constant approxima-
tions in sub-logarithmic time are not known. We have shown why our approach
of constructing paths fails in the general case. Different techniques therefore seem
required to handle arbitrary graphs efficiently.

References

[Avi83] Avis, D. A survey of heuristics for the weighted matching problem. Networks
13 (1983), 475–493.

[CHS02] Chattopadhyay, S., Higham, L., and Seyffarth, K. Dynamic and self-
stabilizing distributed matching. In 21st PODC (Monterey, CA, USA, 2002),
ACM Press, pp. 290–297.

[Gab90] Gabow, H. Data structures for weighted matching and nearest common
ancestors with linking. In 1th SODA (San Fransisco, Ca., USA, 1990), ACM
Press, pp. 434–443.

[GPS87] Goldberg, A. V., Plotkin, S., and Shannon, G. Parallel symmetry
breaking in sparse graphs. In 19th STOC (New York City, NY, USA, 1987),
ACM Press.

[Hoe04] Hoepman, J.-H. Simple distributed weighted matchings, 2004. eprint
cs.DC/0410047.

[II86] Israeli, A., and Itai, A. A fast and simple randomized parallel algorithm
for maximal matching. Inf. Proc. Letters 22 (1986), 77–80.

[KS00] Karaata, M., and Saleh, K. A distributed self-stabilizing algorithm for
finding maximal matching. Computer Systems Science and Engineering 3
(2000), 175–180.

[KP98] Kutten, S., and Peleg, D. Fast distributed construction of k-dominating
sets and applications. Journal of Algorithms 28, 1 (1998), 40–66.

[MV80] Micali, S., and Vazirani, V. An O(
√

V E) algorithm for finding maximum
matching in general graphs. In 21st FOCS (Syracuse, NY, USA, 1980), IEEE
Comp. Soc. Press, pp. 17–27.

[Pre99] Preis, R. Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In 16th STACS (Trier, Germany, 1999),
C. Meinel and S. Tison (Eds.), LNCS 1563, Springer, pp. 259–269.

[UC00] Uehara, R., and Chen, Z. Parallel approximation algorithms for maximum
weighted matching in general graphs. Inf. Proc. Letters 76 (2000), 13–17.

[WW04] Wattenhofer, M., and Wattenhofer, R. Distributed weighted match-
ing. In 18th DISC (Amsterdam, the Netherlands, 2004), R. Guerraoui (Ed.),
LNCS 3274, Springer, pp. 335–348.

Approximation Strategies for Routing
Edge Disjoint Paths in Complete Graphs

Adrian Kosowski�

Gdańsk University of Technology
Department of Algorithms and System Modeling

kosowski@sphere.eti.pg.gda.pl

Abstract. The paper deals with the well known Maximum Edge Dis-
joint Paths Problem (MaxEDP), restricted to complete graphs. We
propose an off-line 3.75-approximation algorithm and an on-line 6.47-
approximation algorithm, improving earlier 9-approximation algorithms
due to Carmi, Erlebach and Okamoto (Proceedings WG’03, 143–155).
Next, it is shown that no on-line algorithm for the considered problem
is ever better than a 1.50-approximation. Finally, the proposed approx-
imation techniques are adapted for other routing problems in complete
graphs, leading to an off-line 3-approximation (on-line 4-approximation)
for routing with minimum edge load, and an off-line 4.5-approximation
(on-line 6-approximation) for routing with a minimum number of WDM
wavelengths.

1 Introduction

The fundamental networking problem of establishing point-to-point connections
between pairs of nodes in order to handle communication requests has given rise
to numerous path routing problems in graph theory. The topology of the net-
work is modeled in the form of a graph whose vertices correspond to nodes, while
edges represent direct physical connections between nodes. This paper deals with
the well established problem of handling the maximum possible number of com-
munication requests without using a single physical link more than once, known
as the Maximum Edge Disjoint Paths Problem (MaxEDP). We focus on the
construction of approximation algorithms for the NP-hard MaxEDP problem
in complete graphs, which are used to model networks with direct connections
between all pairs of nodes. Two basic algorithmic approaches are considered —
off-line algorithms, which compute a routing for a known set of requests provided
at input, and on-line algorithms, which have to handle requests individually, in
the order in which they appear.

Problem definition. The physical architecture of the network is given in the
form of an undirected graph G = (V,E), where V denotes the set of nodes, while

� Research supported by the State Committee for Scientific Research (Poland) Grant
No. 4 T11C 047 25.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 130–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Strategies for Routing Edge Disjoint Paths 131

E represents the set of connections between them. A sequence of edges P =
(e1, e2, . . . , el) ∈ El, such that ei = {vi, vi+1} for some two vertices vi, vi+1 ∈ V ,
is called a path of length l = |P | in G, with endpoints v1 and vl+1. The symbol
P{u,v} is used to denote any path in G with endpoints u, v ∈ V . A pair of paths
P1 and P2 is called conflicting if there exists an edge e ∈ E such that e ∈ P1 and
e ∈ P2. For a given set of paths R in graph G, the conflict graph Q(R) is a simple
graph with vertex set R and edges connecting all pairs of vertices corresponding
to paths from set R which conflict in G.

An instance I in network G is defined as any multiset of pairs {u, v}, u, v ∈ V ,
u �= v, such that each element of I represents a single communication request
between a pair of nodes. An equivalent representation of instance I may be given
in the form of the instance multigraph H(I) = (V, I), where communication
requests are treated as edges of H(I). A routing R of instance I in network G is
a multiset of paths in G, such that there is a one-to-one correspondence between
paths P{u,v} ∈ R and elements {u, v} ∈ I. The set of all routings of instance
I is denoted as R(I). For use in further considerations, we define the following
parameters for any routing R:

– dilation d(R), defined as the length of the longest path in routing R: d(R)=
maxP∈R |P |,

– edge load π(R), given by the formula: π(R) = maxe∈E |{P ∈ R : e ∈ P}|.

A routing R is said to consist of edge disjoint paths if π(R) = 1, or equivalently, if
conflict graph Q(R) has no edges. A formal definition of the MaxEDP problem,
expressed in these terms, is given below.

Maximum Edge Disjoint Paths Problem [MaxEDP]

Input: Instance I in graph G.
Solution: A set of pairwise edge-disjoint paths Ropt, such that Ropt ∈ R(Iopt)

for some instance Iopt ⊆ I.
Goal: Maximise the cardinality of Ropt.

Notation. Throughout the paper, the complete graph with vertex set V is
denoted KV . Unless otherwise stated, we will assume that the MaxEDP problem
is considered for the instance I in complete graph G = KV = (V,E). The optimal
solution to the MaxEDP problem is some routing Ropt ∈ R(Iopt) (Iopt ⊆ I),
while approximation algorithms yield a solution denoted as RS ∈ R(IS) (IS ⊆ I),
of not greater cardinality than Ropt. Approximation ratios are understood in
terms of upper bounds on the ratio |Iopt|

|IS | .The number of elements of a set or
multiset, and also the length of a path, is written as |P |. The symbols ΔH and
χ′

H are used to denote the maximum vertex degree and the chromatic index of
multigraph H , respectively.

State-of-the-art results. In the case of general networks G, the MaxEDP
problem is closely related to a family of unsplittable flow problems. In conse-
quence MaxEDP is NP-hard, difficult to approximate in polynomial time within

132 A. Kosowski

Table 1. New complexity results for the MaxEDP problem in complete graphs

Instance restriction Off-line complexity On-line complexity

ΔH(I) ≤ |V |
12 O(|V |3) Prop. 3 O(|V |) per request Cor. 3

|I | < |V | O(|V |) Prop. 2 O(|V |) per request Cor. 3
|I | < k|V |, const k > 0 O(|V |3) Thm. 2 not approx. within

1.50 for |I | ≥ 3|V | Thm. 8
|I | < |V |s, const s ∈ (1, 2) NPH , PTAS Thm. 3, 4
general case 3.75-approximation Thm. 1 6.47-approximation Thm. 7

a constant factor, and difficult to approximate within a factor of O(log
1
3−ε |E|),

for any ε > 0 (unless NP ⊆ ZPTIME(npoly log n), [1]). The variant of MaxEDP
defined for directed graphs is even difficult to approximate within O(|E| 12−ε),
for any ε > 0 [12]. Both the directed and undirected version are approximable
within a factor of O(|E| 12) [15].

When graph G is the complete graph KV , the MaxEDP problem, though
remaining NP-hard, becomes approximable within a constant factor. The best
known approximation ratio was equal to 9 both in the off-line and on-line model
of computation, due to Carmi, Erlebach and Okamoto [4]. A comparison of
known approximation algorithms is provided in Table 2 at the end of the paper.

Our contribution and outline of the paper. In Section 2 we deal with the
off-line MaxEDP problem in complete graphs, providing a 3.75-approximation
algorithm based on the simple combinatorial concept of edge-coloring. More-
over, we show that for instances with significantly fewer than |V |2 requests, the
problem is either polynomially solvable, or admits a polynomial time approxi-
mation scheme. For the on-line version of the problem, in Section 3 we provide a
6.47-approximation algorithm, and show that no algorithm is better than 1.50-
approximate, even for restricted instances. A summary of the most important
new results concerning the MaxEDP problem is given in Table 1. Finally, in
Section 4 we discuss the application of similar approximation techniques to other
routing problems in complete graphs, and remark on their implementation in a
distributed setting.

2 The Off-Line MaxEDP Problem in Complete Graphs

In the off-line routing model, it is assumed that all pairs of vertices forming the
routed instance are initially known and all paths are determined by the routing
algorithm at the same time.

2.1 Preliminaries: Bounds on Solution Cardinality

Factors in a multigraph. Let Fv be a set of nonnegative integers defined for
each vertex v ∈ V . An F -factor in multigraph H = (V, I) is a set of edges of
H such that the number of edges from this set which are incident to vertex v

Approximation Strategies for Routing Edge Disjoint Paths 133

belongs to Fv. An [a, b]-factor is defined as an F -factor such that each set Fv

consists of all integers from the range [a, b]. An [a, b]-factor with the maximum
number of edges may be found efficiently by reduction to a minimum weighted
perfect matching problem.

Proposition 1 ([16],[11]). The problem of finding an [a, b]-factor with the
maximum possible number of edges in multigraph H = (V, I) can be solved in
O(|I|3) time.

Let I be an instance in graph KV . Consider an instance Iopt yielding an optimal
solution to the MaxEDP problem for instance I. It is immediately evident that
any vertex v ∈ V can belong to at most degKV

v = |V | − 1 requests of Iopt,
hence Iopt is a [0, |V | − 1]-factor in H(I) and we have the following bound.

Corollary 1. The cardinality of the optimal solution to the MaxEDP problem
for I is bounded from above by the size of the maximum [0, |V |−1]-factor in H(I).

Instances admitting an edge-disjoint routing. It is interesting to note that
relatively wide classes of instances can be entirely routed using edge disjoint
paths and in polynomial time. A short characterisation of two classes useful in
further considerations is given below.

Proposition 2. If |I| < |V |, then the entire instance I can be routed in KV by
edge disjoint paths, and a solution Ropt ∈ R(I) to the MaxEDP problem, such
that d(Ropt) ≤ 2, can be determined in O(|V |) time.

Proof. The proof is constructive and proceeds by induction with respect to |V |.
For |V | = 2, we have |I| ≤ 1 and the proposition is obviously true. Next, let
|V | > 2 be fixed and let u ∈ V be a vertex belonging to the smallest number
of requests in I, i.e. such that u is of minimal degree in H(I). Since |I| < |V |,
it is evident that degH(I) u = 0 or degH(I) u = 1. In the former case, we select
an arbitrary request {v1, v2} ∈ I, and return the solution to the MaxEDP
problem for I in KV in the form of path ({v1, u}, {u, v2}) added to the solution
to MaxEDP for instance I\{{v1, v2}} in complete graph KV \{u}. Thus |Ropt| =
1 + (|I| − 1) = |I| by the inductive assumption. In the latter case, let {u, v} ∈ I
be the only request involving vertex u. The sought routing then consists of
the single-edge path ({u, v}) added to the solution to MaxEDP for instance
I \ {{u, v}} in KV \{u}. The described approach may easily be implemented in
the form of an algorithm with O(|V |) time complexity. �

Observe that the thesis of Proposition 2 does not hold if |I| = |V | (it suffices to
consider an instance composed of |V | requests between a fixed pair of vertices).
Nevertheless, if |I| ∈ O(|V |) the problem can be solved in polynomial time (see
Theorem 2).

Proposition 3. If ΔH(I) ≤ |V |
12 , then the entire instance I can be routed in KV

by edge disjoint paths, and a solution Ropt ∈ R(I) to the MaxEDP problem,
such that d(Ropt) ≤ 2, can be determined in O(|V ||I|) time.

134 A. Kosowski

Proof. First, let us observe that the size of any instance I fulfilling the assump-
tions of the theorem is bounded by |I| ≤ |V |

2 · |V |
12 . The sought routing Ropt ∈ R(I)

consisting of edge disjoint paths can be formed by sequentially assigning paths
to requests from I (in arbitrary order), in such a way as to preserve the following
conditions:

1. The length of any path added to Ropt is at most 2.
2. Each vertex of graph KV is the center of at most |V |

12 paths.

It suffices to show that the described construction of routing Ropt is always
possible. Suppose that at some stage of the algorithm Ropt fulfills conditions 1
and 2, and the next considered request is {v1, v2}. Vertex v1 is the endpoint of
at most |V |

12 − 1 paths and the center of at most |V |
12 paths already belonging to

Ropt, thus at least 3|V |
4 edges of KV incident to v1 do not belong to any path of

Ropt. The same is true for vertex v2. Thus we immediately have that the set U
of vertices connected to both v1 and v2 by edges unused in Ropt is of cardinality
|U | ≥ 3|V |

4 + 3|V |
4 −|V | = |V |

2 . Since routing Ropt currently consists of fewer than
|I| ≤ |V |

2 · |V |
12 paths, by the pigeonhole principle there must exist a vertex u ∈ U

such that u is the center of fewer than |V |
12 paths from Ropt. Therefore the request

{v1, v2} may be fulfilled by adding path ({v1, u}, {u, v2}) 1 to routing Ropt, thus
preserving the assumptions of the construction, which completes the proof. �

2.2 An Off-Line 3.75-Approximation Algorithm

Theorem 1. There exists a 3.75-approximation algorithm for the MaxEDP
problem in complete graphs with O(|I|3) runtime. The dilation of the returned
solution is not greater than 2.

Proof. Let I be an arbitrary instance in complete graph KV , and let Iopt ⊆ I
be a subset of the considered instance whose routing is an optimal solution to
the MaxEDP problem. We denote by H∗ = (V, I∗) a multigraph H∗ ⊆ H(I)
with the maximum possible number of edges, such that ΔH∗ < |V |. Since the
edge set of multigraph H∗ is in fact a maximum [0, |V | − 1]-factor in H(I), by
Proposition 1 multigraph H∗ can be determined in O(|I|3) time. Moreover, by
Corollary 1 we have |Iopt| ≤ |I∗|.

We will now show that there exists an algorithm with O(|I|3) runtime which
finds a routing RS ∈ R(IS) composed of edge disjoint paths, such that IS ⊆ I∗ ⊆
I and the obtained solution is a 3.75-approximation of the optimal MaxEDP
solution, |IS | ≥ |I∗|

3.75 ≥ |Iopt|
3.75 . Instance IS is constructed as a subset of the edge set

of multigraph H∗. Since ΔH∗ < |V |, by a well known result due to Shannon [10],
the chromatic index χ′

H∗ is bounded by χ′
H∗ ≤ 3ΔH∗

2 < 3|V |
2 , and an edge

coloring of multigraph H∗ using not more than 3|V |
2 colors can be obtained in

O(|I|3) time. Without loss of generality we may assume that colors are labelled
1 Throughout the paper, we assume that edges of the form {v, v} which appear in

notation when enumerating edges of paths should be treated as nonexistent.

Approximation Strategies for Routing Edge Disjoint Paths 135

with integers from the range {1, . . . , 3|V |
2 }, in such a way that a color with a

smaller label is never assigned to fewer edges than a color with a larger label.
Let IC denote the subset of edges from I∗ colored with colors from the range
{1, . . . , |V |}. Due to the adopted ordering of the color labels, we immediately
have |IC | ≥ 2

3 |I∗|. For each edge {v1, v2} ∈ IC , let c{v1,v2} denote the color
assigned to this edge, which is an integer from the range {1, . . . , |V |}, and as
such may be treated as an identifier of some vertex in graph KV (see Fig. 1 for
an exemplary illustration).

Let us now consider routing RC of instance IC in graph KV , defined as follows:
RC = {({v1, c{v1,v2}}, {c{v1,v2}, v2}) : {v1, v2} ∈ IC}. No vertex of H∗ may ever
be incident to two edges from IC of the same color, therefore each edge {v1, v2} of
graph KV belongs to at most two paths of routing RC — one path, in which v1 is
an end vertex and v2 is a central vertex (an edge color in IC), and another path in
which the functions of vertices v1 and v2 are reversed. Routing RC thus fulfills the
following conditions: d(RC) ≤ 2 and π(RC) ≤ 2. Consequently, each path of RC

may only conflict with at most two other paths, and the conflict graph Q(RC) is
of degree bounded by ΔQ(RC) ≤ 2. Graph Q(RC) is thus a set of isolated vertices,
paths and cycles. Notice that the three vertex cycle C3 is a connected component
of Q(RC) only if some three paths form a triangle, i.e. P1, P2, P3 ∈ RC and P1 =
({v1, v3}, {v3, v2}), P2 = ({v2, v1}, {v1, v3}), P3 = ({v3, v2}, {v2, v1}), for some
three vertices v1, v2, v3 ∈ V . Such a structure may however be easily eliminated
by removing paths P1, P2, P3 from RC and replacing them by the following three
paths: P ′

1 = ({v1, v2}), P ′
2 = ({v2, v3}), P ′

3 = ({v3, v1}), which satisfy the same
set of requests and whose conflict graph consists of three isolated vertices.

The sought suboptimal solution RS to the MaxEDP problem is now obtained
by indicating a maximum independent set RS in conflict graph Q(RC). Graph
Q(RC) has |RC | vertices, and once all cycles C3 have been eliminated the inde-
pendent set RS consists of at least 2

5 |RC | vertices (or equivalently, |IS | ≥ 2
5 |IC |).

Therefore, we finally obtain the following bound:

|Iopt|
|IS |

≤ |I∗|
|IS |

=
|I∗|
|IC |

|IC |
|IS |

≤ 3
2
· 5
2

= 3.75

which completes the proof of the approximation ratio of the designed algorithm.
�

It is interesting to note that although the off-line MaxEDP problem in complete
graphs is NP-hard even for relatively small instances (Theorem 3), the conjecture
that it is APX -hard still remains open [4], and the only inapproximability result
concerns the on-line problem (Theorem 8). In fact, in the following subsection
we show that for all instances of sufficiently bounded size, the off-line MaxEDP
problem is not APX -hard.

2.3 Problem Complexity for Bounded Instances

We now deal with the MaxEDP problem restricted to instances I such that
|I| < |V |s for some s < 2, and study the increasing difficulty of the problem
with the increase of the bound on |I|.

136 A. Kosowski

Fig. 1. Construction of an approximate solution to the MaxEDP problem for instance
I = {{1, 2}, {1, 2}, {1, 3}, {2, 3}, {3, 4}} in complete graph K4: a) an edge coloring of
multigraph H∗ (in the considered case IC = I∗ = I), b) a routing RC of instance IC

in graph K4 and its conflict graph Q(RC) (the independent set of paths forming the
sought routing RS is marked in bold)

Theorem 2. An optimal solution to the MaxEDP problem in complete graphs
can be determined in O(|V |3) time if the size of the input instance is bounded by
|I| ≤ k|V |, for any constant value of parameter k > 0.

Proof. Let T ⊆ V be defined as the set of all vertices belonging to more than
|V |
24 requests, T = {v ∈ V : degH(I) v > |V |

24 }. Suppose that |V | ≥ 1248k (the
problem for all smaller graphs may be solved by exhaustive search).
Property. The size of the solution Ropt ∈ R(Iopt) to the MaxEDP problem for
instance I remains unchanged even if paths need not be disjoint with respect to
edges from the edge set E∗ of subgraph KV \T ⊆ KV . Indeed, let R∗ be a routing of
a maximal possible instance I∗ ⊆ I such that no edge from E\E∗ belongs to more
than one path of R∗. We create an instance I∗∗ in graph KV \T by successively
considering all paths P ∈ R∗, and adding to I∗∗ a request consisting of the first
and the last vertex from V \T which appears in P . We now proceed to establish
that it is possible to reroute instance I∗∗ in KV \T using edge disjoint paths,
leading to the conclusion that Iopt = I∗ is a valid solution to MaxEDP in KV .
Let v ∈ V \T be arbitrarily chosen. By definition of set T , we have degH(I∗) v ≤
degH(I) v ≤ |V |

24 . Since each vertex v ∈ V \ T is obviously connected to at most
|T | vertices from T , we immediately have degH(I∗∗\I∗) v ≤ |T |. Combining the

last two inequalities we obtain degH(I∗∗) v ≤ |V |
24 + |T |. Since 2k|V | ≥ 2|I| =∑

v∈V degH(I) v ≥
∑

v∈T degH(I) v ≥ |V |
24 |T |, we have |T | ≤ 48k. Taking into

account the assumption |V | ≥ 1248k, we finally obtain degH(I∗∗) v ≤ |V |
24 + |T | ≤

|V |
24 +48k = 1

12 (|V |+1248k
2 −48k) ≤ 1

12 |V \T |, which means that by Proposition 3
instance I∗∗ can be routed in KV \T by means of edge disjoint paths, closing the
proof of the property.

Let I ′ ⊆ I denote the set of requests from I with at least one vertex in T , and
let I ′opt ⊆ I ′ be a maximal subset of I ′ which can be routed by edge disjoint paths
in KV . The instance I ′opt ∪ (I \ I ′) ⊆ I is therefore a maximal subset of I which
can be routed by paths conflicting only within the edge set of graph KV \T , and
by the proven Property such a routing can be converted to a correct solution to

Approximation Strategies for Routing Edge Disjoint Paths 137

the MaxEDP problem for I. The problem of finding Iopt ⊆ I is thus reduced to
finding I ′opt ⊆ I ′. Furthermore, when considering instance I ′ all vertices from set
V \ T may be regarded as indistinguishable (after once more relaxing the edge
disjointness condition within KV \T). Thus graph KV may be reduced to the
multigraph G′ formed by connecting each of the vertices of KT to one additional
vertex u using exactly |V \T | edges. In order to solve the MaxEDP problem for
instance I ′ in G′, we consider all possible arrangements of paths in the edge set
of KT , taken over all routings of all subsets of instance I ′. Note that the number
of such arrangements is bounded, since |T | ∈ O(1). For a fixed arrangement of
paths in the edge set of KT , the MaxEDP problem for instance I ′ in G′ can be
easily reduced to the MaxEDP problem for a related instance in the multistar
G′ \ KT . The latter problem can in turn be solved in O(|I|3) = O(|V |3) time,
using a generalisation of a technique from [7] (the solution proceeds by reduction
to the problem of finding a maximal [0, |V \ T |]-factor in a multigraph). This
procedure determines the complexity of the entire algorithm; the final rerouting
step within KV \T only requires O(|V ||I|) = O(|V |2) time by Proposition 3. �

Theorem 3. The MaxEDP problem in complete graphs is NP-hard even for
instances of size bounded by |I| ≤ |V |s, for any value of parameter s > 1.

Proof (sketch). The proof proceeds by reduction from the MaxEDP problem in
complete graphs with cardinality restriction |I| ≤ |V |2, which was shown to be
NP-hard in [8]. Let s = 1 + ε, ε > 0. Consider an arbitrary subset of vertices
V ′ ⊆ V of cardinality equal to at most |V |ε. Let I ′ be any instance in KV ′ .
We define instance I in KV as follows: I = I ′ ∪ {{u, v} : u ∈ V ′, v ∈ V \ V ′};
for sufficiently large |V | we have |I| ≤ |V |s. The proof is complete when we
observe that an optimal solution Ropt to the MaxEDP problem for instance I
in graph KV is always equal to the union of two sets of paths: the set of all one-
edge paths connecting vertices from KV ′ with vertices from KV \V ′ , and some
optimal solution R′

opt to the MaxEDP problem for instance I ′ in graph KV ′ .
In particular, we have: |Ropt| = |R′

opt| + |V ′|(|V | − |V ′|). �

Theorem 4. The MaxEDP problem in complete graphs admits a polynomial
time approximation scheme for instances of size bounded by |I| ≤ |V |s, for any
value of parameter s < 2.

Proof (sketch). Let |I| = |V |s, where s = 2 − ε, ε > 0. The proof is in essence
similar to that of Theorem 2. We adopt the same definition of set T , obtaining
|T | ≤ 48|V |1−ε. In all considerations we assume |V | ≥ 1248

1
ε , so that the Prop-

erty stated in the proof of Theorem 2 also holds in this case. By this property,
any subset of instance I such that each vertex from T is the endpoint of at most
|V \T | paths can be routed in KV using edge disjoint paths. This implies that any
maximal [0, |V \T |]-factor in H(I) is a suboptimal solution IS to the considered
MaxEDP problem. On the other hand, the cardinality of the optimal solution
|Iopt| is bounded from above by the size of the maximal [0, |V |−1]-factor in H(I)
by Corollary 1. The sizes of the considered factors in H(I) are closely related,
which leads to the following bound: |Iopt|

|IS | ≤ |V |
|V |−2|T | ≤

1
1−96|V |− ε . Thus, for any

138 A. Kosowski

δ > 0 the considered approach achieves an approximation ratio of 1+δ provided
|V | > (96(1 + max{12, δ−1})) 1

ε , whereas the problem may be optimally solved
by exhaustive search for all smaller values of |V |. �

A summary of the main results of the section is given in Table 1.

3 The On-Line MaxEDP Problem in Complete Graphs

On-line algorithms for the MaxEDP problem, which are considered in this pa-
per, are treated as a special case of greedy algorithms. We assume that successive
requests from instance I appear sequentially at input, becoming known to the
algorithm only once the previous request has been processed. The decision taken
at every step as to whether some path fulfilling the current request should be
added to the constructed edge disjoint routing RS is inadvertent and impossible
to change at a later stage of the algorithm. Approximation ratios are calculated
with respect to the best possible solution Ropt in the off-line model.

3.1 An On-Line 6.47-Approximation Algorithm

A slight modification of the approximation algorithm provided for the off-line
case (Theorem 1) allows for its on-line operation. In the considered approach,
the algorithm sequentially processes requests from instance I, treating them as
edges of multigraph H(I), and at every step attempts to color the edge using a
color from the range {1, . . . , |V |}. A generalization of this problem was recently
considered by Favrholdt and Nielsen [9], under the name of the maximum k-edge-
colorable subgraph problem for a multigraph. They stated that any fair on-line
algorithm (i.e. an algorithm which always colors an edge, if only a color from the
range {1, . . . , k} is available) leads to a 1

2
√

3−3
-approximation of the solution. In

fact, the obtained result was significantly stronger; we shall reformulate it here
for easier use in further considerations.

Theorem 5 ([9]). For any multigraph H = (V, I), any fair on-line algorithm
for the k-edge-colorable subgraph problem labels a subset of edges IC ⊆ I with
colors {1, . . . , k}, such that |IC | ≥ (2

√
3 − 3)|I∗∗|, where I∗∗ denotes a maximal

[0, k]-factor in H.

In particular, the above theorem holds for k = |V |, thus using the notation from
Theorem 1 we may write |IC | ≥ (2

√
3 − 3)|I∗|. As the coloring proceeds, the

sought routing RS may be incrementally constructed using an on-line indepen-
dent set algorithm applied to graph Q(RC). Since graph Q(RC) only consists
of cycles, paths and isolated vertices, we obtain |IS | ≥ 1

3 |IC |. Combining the
obtained relations leads to the bound:

|Iopt|
|IS |

≤ |I∗|
|IS |

=
|I∗|
|IC |

|IC |
|IS |

≤ 1
2
√

3 − 3
· 3 < 6.47

which may be expressed by means of the following statement.

Approximation Strategies for Routing Edge Disjoint Paths 139

Corollary 2. There exists a 6.47-approximation algorithm for the on-line Max-
EDP problem in complete graphs, requiring O(|V |) time to process a single re-
quest. The dilation of the returned solution is not greater than 2.

In fact, the algorithm resulting from the above considerations can be written in
much simpler form, as described in the next subsection.

3.2 Performance Analysis of the BGA Algorithm

The bounded length greedy algorithm (BGA) is an on-line strategy for the Max-
EDP problem, introduced in [13]. The basic principle of its operation is that
at every step an attempt is made to route the current request by the shortest
possible path P which does not contain any of the edges already belonging to RS ,
and to add P to the solution RS provided |P | ≤ L, where L is a fixed parameter of
the algorithm. The computed routing RS therefore fulfills the bound d(RS) ≤ L.
The BGA strategy was last studied by Carmi, Erlebach and Okamoto [4], who
bounded its approximation ratio for L = 4 using an unsplittable flow technique.

Theorem 6 ([4]). The BGA strategy with L = 4 is a 9-approximation on-line
algorithm for the MaxEDP problem in complete graphs.

However, it is interesting to note that further bounding of the parameter L may
lead to algorithms for which a better approximation ratio can be proven.

Theorem 7. The BGA strategy with L = 2 is a 6.47-approximation on-line
algorithm for the MaxEDP problem in complete graphs.

Proof (sketch). The proof is based on the observation that each step of BGA
with L = 2 combines the properties of an on-line algorithm for the edge-colorable
subgraph problem with those of an on-line independent set algorithm, thus im-
plementing an approach very similar to that described in Subsection 3.1. A
request {u, v} can only be routed using BGA by a path P = ({u,w}, {w, v}) of
length at most 2 via some vertex w ∈ V if edge {u, v} of multigraph H(I) can
be labeled with color w ∈ {1, . . . , |V |}, and if path P does not conflict with any
paths previously added to RS . The only difference is that the |V |-edge-colorable
subgraph of H(I) implicitly found by the BGA algorithm need not correspond
to that obtained by means of any fair algorithm, since in a step of BGA an edge
of H(I) is not colored whenever any color assignment is possible, but only when
assigning a color contributes to the size of the resultant solution RS . Careful
analysis shows that this does not affect the overall approximation ratio which
remains equal to 6.47 (Corollary 2). �

A further interesting property of the BGA strategy with parameter L = 2 is that
it finds an edge disjoint routing of the whole instance I in the cases considered
in Propositions 2 and 3.

Corollary 3. If ΔH(I) ≤ |V |
12 , or |I| ≤ |V |−1, then the entire instance I can be

routed in GV by edge disjoint paths, and an optimal solution such that d(Ropt) ≤
2 is always determined by the BGA strategy with L = 2.

140 A. Kosowski

3.3 Inapproximability Results

Whereas the complexity of finding a solution to the off-line MaxEDP problem
in complete graphs still remains open, we now show that the on-line version is
not approximable within a constant factor for sufficiently large instances.

Theorem 8. There does not exist any on-line approximation algorithm for the
MaxEDP problem in complete graphs with an approximation ratio smaller than
1.50, even when considering instances of size |I| < k|V |, for any k ≥ 3.

Proof. By contradiction, suppose that some on-line MaxEDP algorithm A has
an approximation ratio not worse than 1.50. Given any graph KV , let instance
I begin with |V | − 1 requests of the form {u, v}, for some two distinguished
vertices u, v ∈ V . At this point the routing RS obtained by algorithm A consists
of p paths, where p ≥ 2

3 (|V | − 1) (otherwise the instance is ended, and we have
|Ropt| = |V | − 1 > 1.50|RS|). Instance I is now completed by presenting a
further 2(|V | − 2) requests of the form {u,w} and {v, w}, taken over all vertices
w ∈ V \{u, v}. Since the number of paths which end in any vertex (in particular,
u or v) cannot exceed |V | − 1, the total number of paths eventually belonging
to RS is bounded by |RS | ≤ p+ 2((|V | − 1)− p) ≤ 4

3 (|V | − 1), whereas |Ropt| =
2(|V | − 2) + 1 = 2(|V | − 1) − 1, hence the ratio |Ropt|

|RS | cannot be smaller than
1.50 for arbitrarily large values of |V |. �

Even in the on-line model, the gap remaining between the 1.50 inapproximability
result of Theorem 8 and the 6.47-approximation algorithm from Theorem 7 is
quite substantial. A partial attempt to bridge it may be performed by considering
the inapproximability of specific classes of on-line algorithms. For example, the
BGA algorithm and similar strategies are never better than 3-approximate for
certain classes of instances [4].

4 Final Conclusions

The technique adopted in the proof of Theorem 1 — which may basically be
thought of as routing by edge coloring — provides efficient approximation

Table 2. A comparison of presented approximation algorithms for the MaxEDP prob-
lem in complete graphs with previous results (updated from [4])

Principle of operation Model Approximation ratio Dilation Reference

Shortest-path-first variant of BGA off-line 54 [8], 2001
Set tripartition off-line 27 [8], 2001
BGA with L = 4 on-line 17 ≤ 4 [13], 2002
BGA with L = 4 on-line 9 ≤ 4 [4], 2003

BGA with L = 2 on-line 6.47 ≤ 2 Thm. 7
Routing by edge coloring off-line 3.75 ≤ 2 Thm. 1

Approximation Strategies for Routing Edge Disjoint Paths 141

algorithms for a number of routing problems in complete graphs and similar
extremely dense topologies. When applying this approach, the approximation
ratio may vary depending on the considered problem, and is usually given in the
form of the product of two parameters M1 ·M2, where M1 denotes the relative
loss in the first phase of the algorithm (determining an edge coloring), and M2
is the relative loss in the second phase (post-processing the edge coloring).

For the MaxEDP problem, the applied techniques constitute a substantial
improvement on earlier results (Table 2). We now give two more examples of
routing problems for which fixed-ratio approximation algorithms can be similarly
obtained.

The edge load routing problem. For a given instance I in graph KV , we
consider the problem of finding a routing Ropt ∈ R(I), such that edge load
π(Ropt) is the minimum possible [2, 3]. In order to construct an approximation
approach with respect to π(RS) within KV , observe that multigraph H(I) can
always be efficiently edge-colored with at most 1.5(|V |− 1)π(Ropt) colors in the
off-line model, or 2(|V | − 1)π(Ropt) colors in the on-line model. By applying a
similar approach as that in the proof of Theorem 2, it is easy to see that the
instance corresponding to any (|V | − 1)-edge-colorable subgraph of H(I) can
always be routed with load at most 2, both in the off-line and the on-line model.
Thus we have M2 = 2 and M1 = 1.5 (off-line) or M1 = 2 (on-line), finally
obtaining an off-line 3-approximation algorithm and an on-line 4-approximation
algorithm for edge load routing in complete graphs.

The WDM wavelength count routing problem. This modification of the
edge load routing problem is of special importance from the point of view of
application in so called all-optical wavelength division multiplexing (WDM) net-
works [2, 5, 6]. For a given instance I in graph KV , the sought routing Ropt ∈
R(I) should minimize the value of a parameter called WDM wavelength count
w(Ropt), defined as the chromatic number of conflict graph Q(Ropt). The pro-
posed construction of an approximation algorithm with respect to w(RS) is nearly
the same as for bounded edge load, the only difference being that in the second
stage of the algorithm (|V |− 1)-edge-colorable subgraphs of H(I) can always be
routed using 3 wavelengths. Therefore in this case we have M2 = 3 and M1 = 1.5
(off-line) or M1 = 2 (on-line), yielding an off-line 4.5-approximation algorithm
and an on-line 6-approximation algorithm for the considered problem.

Finally, let us remark on a general property of the approximate solutions ob-
tained using the proposed approach: in all cases the dilation is bounded by a
value of 2. Using paths with at most 1 intermediary node between the commu-
nicating pair of endpoints is advantageous from the point of view of resource
usage, and additionally simplifies the routing process. Indeed, if the on-line ver-
sion of the routing algorithm is considered in a distributed setting, each node
can independently decide whether it may participate in the routing of a given
communication request. Thus each request can be processed in O(1) synchronous
rounds, achieving a time-optimal routing process.

142 A. Kosowski

Acknowledgement. The author would like to express his gratitude to the
anonymous referees for their numerous helpful comments and suggestions for
the improvement of this paper.

References

1. M. Andrews, L. Zhang, Hardness of the undirected edge-disjoint paths problem.
Proc. STOC’05 (2005), 276–283.

2. B. Beauquier, J.C. Bermond, L. Gargano, P. Hell, S. Pèrennes and U. Vac-
caro, Graph problems arising from wavelength routing in all-optical networks.
Proc. WOCS’97 (1997), Geneve, Switzerland.

3. J. Bia�logrodzki, Path Coloring and Routing in Graphs. In: Graph Colorings,
M. Kubale ed., Contemporary Math. 352, AMS (2004), USA, 139–152.

4. P. Carmi, T. Erlebach, Y. Okamoto, Greedy edge-disjoint paths in complete graphs.
Proc. WG’03, LNCS 2880 (2003), 143–155.

5. S. Choplin, L. Narayanan, J. Opatrny, Two-Hop Virtual Path Layout in Tori. Proc.
SIROCCO’04, LNCS 3104 (2004), 69–78.

6. T. Erlebach, K. Jansen, The complexity of path coloring and call scheduling. The-
oret. Comp. Sci. 255 (2001), 33–50.

7. T. Erlebach, K. Jansen, The Maximum Edge-Disjoint Paths Problem in Bidirected
Trees. SIAM J. Discret. Math. 14 (2001), 326–355.

8. T. Erlebach, D. Vukadinović, New results for path problems in generalized stars,
complete graphs, and brick wall graphs. Proc. FCT’01, LNCS 2138 (2001), 483–494.

9. L.M. Favrholdt, M.N. Nielsen, On-line edge-coloring with a fixed number of colors.
Algorithmica 35 (2003), 176–191.

10. S. Fiorini, R.J. Wilson: Edge-Colourings of Graphs, Pittman (1977), USA.
11. H.N. Gabow, Data structures for weighted matching and nearest common ancestors

with linking. Proc. SODA’90 (1990), 434–443.
12. V. Guruswami et al, Near-optimal hardness results and approximation algorithms

for edge-disjoint paths and related problems. J. Comput. Syst. Sci. 67 (2003), 473–
496.

13. P. Kolman, C. Scheideler, Improved bounds for the unsplittable flow problem.
Proc. SODA’02 (2002), 184–193.

14. B. Ma, L. Wang, On the inapproximability of disjoint paths and minimum Steiner
forest with bandwidth constraints, J. Comput. Syst. Sci. 60 (2000), 1–12.

15. A. Srinivasan, Improved approximations for edge-disjoint paths, unsplittable flow,
and related routing problems, Proc. FOCS’97 (1997), 416–425.

16. W.T. Tutte, A short proof of the factor theorem for finite graphs. Canad. J. Math.
6 (1954), 347–352.

Short Labels by Traversal and Jumping�

Nicolas Bonichon, Cyril Gavoille, and Arnaud Labourel

Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux 1
{bonichon, gavoille, labourel}@labri.fr

Abstract. In this paper, we propose an efficient implicit representa-
tion of caterpillars and binary trees with n vertices. Our schemes, called
Traversal & Jumping, assign to vertices of the tree distinct labels of
log2 n+O(1) bits, and support constant time adjacency queries between
any two vertices by using only their labels. Moreover, all the labels can
be constructed in O(n) time.

1 Introduction

The two basic ways of representing a graph are adjacency matrices and adjacency
lists. The latter representation is space efficient for sparse graphs, but adjacency
queries require searching in the list, whereas matrices allow fast queries to the
price of a super-linear space. Another technique, called implicit representation or
adjacency labeling scheme, consists in assigning labels to each vertex such that
adjacency queries can be computed alone from the labels of the two involved
vertices without any extra information source. The goal is to minimize the max-
imum length of a label associated with a vertex while keeping fast adjacency
queries.

Adjacency labeling schemes, introduced by [Bre66, BF67], have been inves-
tigated by [KNR88, KNR92]. They construct for several families of graphs ad-
jacency labeling schemes with O(log n)-bit labels. In particular, for trees the
scheme consists in: 1) choosing an arbitrary prelabeling of the n vertices, a per-
mutation of {1, . . . , n}; 2) choosing a root; and 3) setting the label of a vertex to
be the pair formed by its prelabel and the prelabel of its parent. The adjacency
test checks whether the prelabel for one vertex equals the parent prelabel of the
other vertex. Such labels are of 2 �logn� bits1, whereas �logn� bits are clearly
necessary since labels must be different.

Improving the label length of this straightforward scheme is not an easy task.
It has been however improved in a non trivial way by [AKM01] to 1.5 logn +
O(log logn) bits, and more recently to logn + O(log∗ n) bits2 [AR02], leaving
open the question of whether trees enjoy a labeling scheme with logn+O(1) bit
labels.
� The three authors are supported by the project ”GeoComp” of the ACI Masses de

Données.
1 All the logarithms are in base two.
2 Log∗n denotes the number of times log should be iterated to get a constant.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 143–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

144 N. Bonichon, C. Gavoille, and A. Labourel

1.1 Related Work

Motivated by applications in XML search engines, and distributed applications
as peer-to-peer networks or network routing, several other distributed data-
structures with optimal O(log n)-bit labels, have been developed.

For instance, routing in trees [FG01, TZ01], near-shortest path routing in
specific networks [BG05, DL02, DL04], distance queries for interval, circular-
arc, and permutation graphs [BG05, GP03a], etc. have O(log n)-bit distributed
data-structures. And, specifically for several queries on trees, we have: near-
est common ancestor [AGKR04] with O(log n)-bit labels, ancestry [AAK+05]
with logn + O(

√
logn) bit labels, and small distance queries and other related

functions with log n + Θ(log logn) bit labels [KM01, ABR05]. Interestingly, it
is shown in [ABR05] that for sibling queries in trees of maximum degree Δ,
logn + Θ(log logΔ) bit labels are necessary and sufficient. A survey on labeling
schemes can be founded in [GP03b]. All these schemes achieve labeling of length3

logn + ω(1).
To our best knowledge, for reasonably large families of graphs, no distributed

data-structure is known to have an optimal label size up to an additive constant.
In particular, for adjacency queries in trees, the current lower bound is logn and
the upper bound is logn + O(log∗ n) [AR02]. This latter scheme, based on a
recursive decomposition of the tree in Θ(log∗ n) levels, has adjacency query time
of Ω(log∗ n).

1.2 Our Contributions

In this paper we present adjacency labeling schemes for caterpillars (i.e., a tree
whose nonleaf vertices induce a path), and binary trees with n vertices. Both
schemes assign distinct labels of logn + O(1) bits, and support constant time
adjacency queries. Moreover, all the labels can be constructed in O(n) time. We
observe that the recursive scheme of [AR02] for general trees does not simplify for
caterpillars or binary trees. The worst-case label length remains logn+O(log∗ n)
and the adjacency query time Ω(log∗ n).

As far as we know, this is the first logn+O(1) bit adjacency labeling support-
ing constant query time for a family of trees including trees with an arbitrary
numbers of arbitrary degree vertices (caterpillars). The technique, called Tra-
versal & Jumping, is interesting on its own, and we believe that it might be
extended to larger families of graphs, and to other queries.

1.3 Outline of Techniques

To introduce our labeling technique, let us consider an n-vertex caterpillar whose
path is x1, . . . , xk and where the j-th leaf of xi is denoted by yi,j .

The first naive approach consists in labeling each vertex xi with the pair (i, 0)
and yi,j with (i, 1) but this scheme does not respect the uniqueness condition for
the labels. A correct scheme can be obtained by using labels (i, j) for yi,j. The

3 f(n) = ω(g(n)) if and only if g(n) = o(f(n)).

Short Labels by Traversal and Jumping 145

adjacency test is then trivial. This labeling, which is a variant of the tree labeling
scheme presented above, is not efficient since every pair of nonnegative integers
(i, j) with i + j � n will be assigned by the scheme to some caterpillars. There
are at least (n/2)2 such pairs, yielding some labels of at least 2 logn−O(1) bits.

A second less trivial labeling (with distinct labels) assigns to each vertex yi,j

the pair (ri, j) where ri is the rank of the number of leaves of xi, so that less
bits are used for ri if xi has many leaves, leaving room for the index j. Because
j � n/ri, the label length reduced now to �log ri� + �log(n/ri)� � logn + O(1).
However, the fields of the pair (ri, j) have variable length, so log log min {ri, j}+
O(1) bits are required to code the position of the two values of the pair. Moreover,
this scheme does not give adjacency for two nodes in the path. Anyway, as all
possible pairs (ri, j) can occur, this required an extra information of log log

√
n

bits (in the worst-case min {ri, j} � √
n), yielding labels of length at least logn+

log logn−O(1).
A third solution is to apply some recursive decomposition, as in [AR02]. How-

ever, any decomposition in a non-constant levels produces labels with a non-
constant number of fields, yielding a label length of logn+ω(1) bits, furthermore
with ω(1) adjacency query time. Labelings with log n+O(1) bits require new ideas.

Roughly speaking, the Traversal & Jumping technique consists in:

1. Selecting a suitable traversal of the tree (or of the graph);
2. Associating with each vertex x some information C(x);
3. Performing the traversal and assign the labels with increasing but non nec-

essarily consecutive numbers to the vertices.

Intuitively, the adjacency test between x and y is done on the basis of C(x)
and C(y). Actually, the jumps achieved in Step 3 are done by selecting an interval
associated with each vertex in which its label must be. It is important to note
that the intervals are ordered in the same way as the corresponding vertices in
the traversal. Moreover, all vertex intervals must be disjoint. The position of
the label of x in its interval is tuned in order to encode C(x) in the label in
a self-extracting way. In general, the information C(x) determines the intervals
length of all the neighbours of x which are after in the traversal.

The main difficulty is to design the minimal information C(x) and to tune the
jumps, i.e., the interval length. The maximum label length is simply determined
by the value of the last label assigned during the traversal.

This technique fundamentally differs from previous schemes, in which a label is
essentially viewed as a unique prelabel of �logn� bits plus some small extra fields,
inevitably leading to labels of logn + ω(1) bits. On the contrary, Traversal &
Jumping abandons this representation, and uses the full range of values [0, O(n)]
to get labels of length logn + O(1).

Section 2 presents the scheme for caterpillars, and Section 3 for binary trees.
We propose further works in Section 4.

1.4 Preliminaries

We assume a RAM model of computation with Ω(log n)-bit words. In this model,
standard arithmetic operations on words of O(log n) bits can be done in constant

146 N. Bonichon, C. Gavoille, and A. Labourel

time. These include additions, comparisons, binary masks, shifting, MSB and
LSB (returning respectively the position of the most and least significant bit of
a word).

Given a binary string A, we denote by |A| its length, and for a binary string
B, A ◦B denotes the concatenation of A followed by B.

Given an x ∈ N, we denote by lg x = log max {x, 1}, and by bin(x) its standard
binary representation. We have |bin(x)| = �lg x� + 1. We denote by val(w) the
integer x such that w = bin(x). When it is clear from the context, we confuse w
and val(w). We also denote by �x�2 = 2lg x�.

A code is a set of words, and a code is suffix-free if no words of the code is the
ending of another one. A basic property of suffix-free codes it that they can be
composed, by the concatenation of a fixed number of fields, to form new suffix-
free codes. A simple suffix-free code is defined by code0(x) = 1 ◦ 0x, where 0x is
the binary string composed of x zeros. This code extends to more succinct codes
defined recursively by codei+1(x) = bin(x)◦codei(|bin(x)|−1) for every i � 0. It
is easy to check that, for every i � 0, codei is suffix-free. E.g., code0(5) = 100000,
code1(5) = 101 100, and code2(5) = 101 10 10.

If a word w has codei(x) as suffix, then x can be extracted from w in O(i) time
(in particular with the use of LSB to extract the length of code0). In the sequel,
any integer sequence x1, . . . , xk can be stored as a suffix codei(x1)◦· · ·◦codei(xk),
and can be extracted in O(ik) time.

In this paper, we will essentially use codei for i ∈ {0, 1, 2}. We check that
for every x ∈ N, |code0(x)| = x + 1, |code1(x)| = 2 �lg x� + 2, and |code2(x)| =
�lg x� + 2 �lg �lg x�� + 3.

Claim. Let w be a word, and z an integer. One can compute in constant time
an integer x ∈ [z, z + 2|w|) such that w is a suffix of bin(x).

Proof. Observe that, for all strings A and B, val(A ◦B) = val(A) · 2|B| +val(B),
and that val(A) < 2|A|.

Let u =
⌊
z/2|w|⌋ and v = z mod 2|w|, so that z = u · 2|w| + v. Set b = 0

if val(w) � v, and set b = 1 otherwise. The integer x is defined by bin(x) =
bin(u + b) ◦ w, that clearly contains w as suffix. Note that x can be computed
in constant time using shifts, masks and MSB (in particular MSB is used to
compute |w| from w).

It remains to check that x ∈ [z, z+2|w|). We have x = (u+ b) ·2|w| +val(w) =
z − v + b · 2|w| + val(w).

If b = 0, then x = z−v+val(w) � z+val(w) < z+2|w|. For b = 0, val(w) � v,
thus x � z.

If b = 1, then x = z − v + 2|w| + val(w) > z + val(w) � z since v < 2|w|. For
b = 1, val(w) < v, thus z − v + 2|w| + val(w) < z + 2|w|.

2 Caterpillars

A leaf is a vertex of degree one, and an inner vertex is a nonleaf vertex. A tree
is a caterpillar if the subgraph induced by its inner vertices is a path.

Short Labels by Traversal and Jumping 147

Theorem 1. The family of caterpillars with n vertices enjoys an adjacency la-
beling scheme with labels of length at most �logn� + 6 bits, supporting constant
time adjacency query. Moreover, all the labels can be constructed in O(n) time.

2.1 Description of the Labeling Scheme

Consider a caterpillar G of n vertices. We denote by X = {x1, . . . , xk} the inner
vertices of G (ordered along the path). For every i, let Yi = {yi,1, . . . , yi,di} be
the set of leaves attached to xi, with di = 0 if Yi = ∅.

The traversal used in our scheme is a prefix traversal of the caterpillar rooted
at x1 where the vertices of Yi are traversed before the vertex xi+1. According to
this traversal, the inner vertex xi stores necessary information to determine the
adjacency with the vertices of Yi ∪ {xi+1}. The leaves do not store any specific
information in their label.

With each inner vertex xi, we associate an interval of length pi, for some
suitable integer pi, in which its label �(xi) must be. For some technical reasons,
impose that pi = 2ti+3 with ti is an integer � 0. With the set of the labels of
Yi we associate an interval of same length: (�(xi), �(xi) + pi]. In this interval
�(yi,j) = �(xi) + j. Finally, the interval associated with vertex xi+1 is (�(xi) +
pi, �(xi) + pi + pi+1].

The information encoded by xi is the ordered pair (ti, ti+1). To encode this
information, we propose the following suffix-free code:

C(xi) = code0(ti + 3 − |code1(ti+1)|) ◦ code1(ti+1) .

Three conditions on pi (and so on ti) have to be satisfied to ensure that the code
is valid. The value pi must be large enough to encode the information, large
enough so that all the labels of the vertices of Yi can be placed in the interval
(�(xi), �(xi) + pi], and pi � 8. The following relation ensures such conditions:

ti = max {|code1(ti+1)| − 3, �lg di� − 3, 0} , with tk+1 = 0 .

So, given �(xi), �(xi+1) is computed applying Claim 1.4 with w = C(xi+1) and
z = �(xi) + pi.

One can remark that the value of ti depends on the value of ti+1. The compu-
tation of the labels can be done with two traversals of the caterpillar. The value of
the ti is computed from a traversal of the path from xk to x1. A second traversal
(a prefix one starting from x1) computes the labels of the vertices. Each traversal
takes O(n) time. Finally, an additional bit is added to the labels to determine if
the vertex is an inner vertex: �′(xi) = 1 ◦ �(xi) and �′(yi,j) = 0 ◦ �(yi,j).

2.2 Adjacency Test

Lemma 1. For every pair of vertices u and v, the adjacency between u and v
can be computed in constant time from �′(u) and �′(v).

148 N. Bonichon, C. Gavoille, and A. Labourel

Proof. Looking at the first bit of �′(u) and �′(v) one can check whether u and v

belongs to X or to Y =
⋃i=k

i=1 Yi. Because two leaves cannot be adjacent, let us
assume that u ∈ X with u = xi.

In constant time, we can compute �(xi), ti and ti+1 from �′(xi), decoding C(xi).
Recall that pi and pi+1 can be directly deduced from ti and ti+1. There are two
cases to consider:

– Case 1: v ∈ Y (the first bit of the label is 0). By construction, the labels of
vertices of Yi and only these belong to the interval (�(xi), �(xi) + pi]. Since
the length of the labels is O(log n) (see Lemma 2), this test can be performed
in constant time.

– Case 2: v ∈ X (the first bit of the label is 1). Let v = xj , and w.l.o.g. assume
that j > i (we simply check whether �′(v) > �′(u)).
By construction if j = i+1, then �(xi)+ pi < �(xj) � �(xi)+ pi + pi+1. This
interval may contain other labels (labels of vertices of Yi+1), but the only
label of inner vertex if �(xi+1). This test can also be performed in constant
time.

2.3 Label Length

Lemma 2. The length of the labels is at most �logn� + 6.

Proof. First, let us show by induction the following property (Pm):

(Pm) :
k∑

i=m

pi � 8

(
k∑

i=m

�di + 1�2

)
− pm .

(Pk) is true since dk > 0 and
∑i=k

i=k pi = pk = max {8, �dk + 1�2} �
8
∑k

i=k �di + 1�2 − pk. Assume that (Pm) is true for some m ∈ [2, k], and let
us show (Pm−1):

Applying the induction hypothesis:

k∑
i=m−1

pi � 8

(
k∑

i=m

�di + 1�2

)
− pm + pm−1 .

There are three cases to consider:

– Case 1: �dm−1�2 � 8 and 2|code1(tm)| � 8 ⇒ pm−1 = 8.

k∑
i=m−1

pi � 8

(
k∑

i=m

�di + 1�2

)
− pm + 8

Since �dm−1 + 1�2 � 1:

k∑
i=m−1

pi � 8

(
k∑

i=m−1

�di + 1�2

)
− pm

Short Labels by Traversal and Jumping 149

Since pm � pm−1:

k∑
i=m−1

pi � 8

(
k∑

i=m−1

�di + 1�2

)
− pm−1

– Case 2: �dm−1�2 � 2|code1(tm)| ⇒ pm−1 = �dm−1�2.

k∑
i=m−1

pi � 8

(
k∑

i=m

�di + 1�2

)
− pk + �dm−1�2

� 8

(
k∑

i=m−1

�di + 1�2

)
− pk − 7 �dm−1 + 1�2

� 8

(
k∑

i=m−1

�di + 1�2

)
− pm−1

– Case 3: �dm−1�2 < 2|code1(tm)| and 8 < 2|code1(tm)| ⇒ pm−1 = 2|code1(tm)|.

k∑
i=m−1

pi � 8

(
k∑

i=m

�di + 1�2

)
− pm + 2|code1(tm)| .

Since pm−1 = 2|code1(tm)| = 22log((log(pm)−3)+1)� � 1
2pm:

k∑
i=m−1

pi � 8

(
k∑

i=m−1

�di + 1�2

)
− 1

2
pm

� 8

(
k∑

i=m−1

�di + 1�2

)
− pm−1 .

So (Pm) is true for any positive m � k. Hence:

k∑
i=1

pi � 8

(
k∑

i=1

�di + 1�2

)
.

The maximum label length is determined by the label of the last leaf of xk,
say yk,j . We can bound �(yk,j) by:

�(yk,j) � 2
k∑

i=1

pi � 24
k∑

i=1

�di + 1�2 � 25
k∑

i=1

(di + 1) � 25n .

The length labels �(yk,j) is at most �logn�+ 5. The effective labels, �′(v), use
one more bit. So the label length is at most �logn� + 6.

150 N. Bonichon, C. Gavoille, and A. Labourel

3 Binary Trees

Theorem 2. The family of binary trees with n vertices enjoys an adjacency
labeling scheme with labels of length at most logn+O(1) bits, supporting constant
time adjacency query. Moreover, all the labels can be constructed in O(n) time.

3.1 Description of the Labeling Scheme

Let T be a rooted binary tree with n vertices. For any vertex v, let Tv denote
the subtree of T rooted at v. Let rT be the root of T . We denote by v− and
v+ respectively the left and the right child of v (if exist). We assume that the
children of every inner vertex v are ordered such that the weight of v− is at
most the weight of v+, i.e., |V (Tv−)| � |V (Tv+)|. For the shake of the proof, we
assume that v− exists for every inner vertex v, possibly by completing the tree
with some extra vertices. Note that this at most double the size of the tree.

The traversal considered in our scheme is a prefix traversal of T in which v− is
visited before v+, for every inner vertex v. Let s(v) be the length of the interval
assigned to v, and let p(v) be the length of the interval of values assigned to
the labels of vertices of Tv (see Fig. 1). In the scheme, the interval associate
with v is at the beginning of the interval of Tv (on Fig. 2 arrows s(v) and p(v)
are aligned on the left). The interval of Tv− is at distance s(v) from �(v) (i.e.,
the difference of the left boundaries of the intervals is s(v)). The interval of Tv+

begins at distance s(v)+q(v−) from �(v) (cf. Fig. 2), for a suitable length q(v−).
In addition, our scheme imposes that s(v) is a power of 2, and that q(v−) is

a square. More precisely, s(v) = 2m(v) for some integer m(v) � 0, and q(v−) =
�
√

p(v−) �2. Observe that for every v, q(v) = p(v) + O(
√

p(v)), and that q(v)
can be encoded with half many bits than for p(v).

p(v)

�(v)

�(v−) �(v+)

p(v+)q(v−)

Fig. 1. Traversal of the tree

Short Labels by Traversal and Jumping 151

�(v+)

s(v)

�(v)

s(v) s(v−)

s(v−)

�(v−)

p(v−)

q(v−)

p(v)

s(v+)

s(v+)

p(v+)

Fig. 2. Description of the labeling

To compute the adjacency with its children, vertex v stores a single bit 0 if it
is a leaf, and the quadruple (s(v−), s(v+), q(v−), 1) if it is inner. To encode this
information, we propose the following suffix-free code:

C(v) =
{

0 if v is a leaf
code1(m(v−)) ◦ code1(m(v+)) ◦ code2(

√
q(v−)) ◦ 1 otherwise

We set s(v) = 2|C(v)|−1, i.e., m(v) = |C(v)| − 1. To compute the labels we
need first to compute s(v) and p(v) for each vertex v of T . This is done in linear
time with a postfix traversal considering the recursive relation:

p(v) =
{

2 if v is a leaf
q(v−) + p(v+) + 2s(v) otherwise

Then, the labels can be computed in linear time with a traversal of T , and
applying Claim 1.4 with w = C(v).

3.2 Adjacency Test

Lemma 3. Let any pair of vertices v and u, the adjacency of v and u can be
computed in constant time from �(v) and �(u).

Proof. W.l.o.g., we can consider that �(v) < �(u). To test adjacency between v
and u, we use the following conditions:

v and u are adjacent if and only if y is inner and:

– either �(u) ∈ [�(v) + s(v), �(v) + s(v) + s(v−)) (in this case u = v−);
– or �(u) ∈ [�(v) + s(v) + q(v−), �(v) + s(v) + q(v−) + s(v+)) (in this case

u = v+)

We can remark that this test can be computed in constant time from the labels of
the vertices. Indeed, s(v), s(v−), s(v+), and q(v−) can be extracted in constant
time from �(u).

It remains to prove the validity of this test. If v is a leaf (and �(v) < �(u)),
v and u cannot be adjacent. To check it, it suffices to extract the last bit of

152 N. Bonichon, C. Gavoille, and A. Labourel

�(v). Now assume v is inner. By construction, if u = v− then �(u) ∈ [�(v) +
s(v), �(v) + s(v) + s(v−)). In the same way, if u = v+ then �(u) ∈ [�(v) +
s(v) + q(v−), �(v) + s(v) + q(v−) + s(v+)). Moreover, �(v−) is the only label in
[�(v) + s(v), �(v) + s(v) + s(v−)) because, in the construction we make a jump
from �(v) to �(v−) of length s(v) and we make another jump from �(v−) to
�(v−−) (if exists) of length at least s(v−).

With the same argument, we prove that �(v+) is the only label in [�(v) +
s(v) + q(v−), �(v) + s(v) + q(v−) + s(v+)).

3.3 Label Length

Lemma 4. The length of the labels is at most log n + O(1).

Proof. Let Bn be the family of all binary trees of at most n vertices such that
every leaf has a sibling (i.e., v− and v+ exist for every inner vertex v).

For every tree T ∈ Bn with n � 3:

p(rT) = q(rT
−) + p(rT

+) + 2s(rT) where
log s(rT) = |C(rT)| − 1 = |code1(m(rT

−))| + |code1(m(rT
+))|

+ |code2(�
√

p(rT
−)�)|

= |code1(log s(rT
−))| + |code1(log s(rT

+))| + |code2(�
√

p(rT
−)�)|

Let P (n) = maxT∈Bn p(rT), and S(n) = maxT∈Bn s(rT). Because every label
assigned to T ranges in [0, P (n)), our goal is to upper bound P (n) by O(n).

Let i = |V (TrT
−)| be the weight of the left subtree. We have p(rT

−) � P (i)
and p(rT

+) � P (n− 1− i). Similarly, s(rT
−) � S(i) and s(rT

+) � S(n− 1− i).
By the ordering of the children, observe that i � n− 1− i, i.e., i can only range
in I = {1, . . . , �(n− 1)/2�}.

From previous equations we derive (recall that q(v−) = �
√

p(v−) �2):

P (n) = max
i∈I

{⌈√
P (i)
⌉2

+ P (n− i− 1) + 2S
}

where

logS = |code1(logS(i))| + |code1(logS(n− i− 1))| + |code2(�
√

P (i)�)|

with P (1) = 2 and S(1) = 1. Note that for x ∈ N, 2lg x � x + 1. The two first
terms of logS can be bounded by:

|code1(log S(i))| = 2 �lg logS(i)� + 2, and thus
2|code1(log S(i))| � 4 log2 S(i) + 4, and similarly

2|code1(log S(n−i−1))| � 4 log2 S(n− i− 1) + 4 .

By construction, p(v) � 2s(v) for every v, thus S(n) � P (n)/2 for every n. So,
bounding (x− 1)2 � x2 − 1, we obtain:

2|code1(log S(i))| � 4 log2 P (i) and 2|code1(log S(n−i−1))| � 4 log2 P (n− i− 1).

Short Labels by Traversal and Jumping 153

Let u =
√

P (i). We have u � 1. The third term of logS can be bounded by:

|code2(�u�)| = �lg �u�� + 2 �lg �lg �u��� + 3, and thus

2|code2(u�)| � 8 · (�u� + 1) · (�lg �u��2 + 1) � 16u(log2 u + 2) .

Therefore,

S � 4 · log2 P (i) · log2 P (n− i− 1)) · 16
√

P (i) · (log2
√

P (i) + 2)

� 16
√

P (i) · (log2 P (i) + 8) · log2 P (i) · log2 P (n− i− 1)

One can check that for x � 1, �
√
x �2 � x + 2

√
x. Hence:

P (n) � max
i∈I

{
P (i) + 2

√
P (i) + P (n− i− 1) + 2S

}
� max

i∈I

{
P (i) + P (n− i− 1) + 34

√
P (i) log4 P (i) log2 P (n− i− 1)

}
In particular, we deduce that ∃α, β, γ, δ ∈ R+, δ < 1/2 < γ < 1 and δ + γ < 1
such that:

P (n) � max
i∈I

{
P (i) + P (n− i− 1) + αP (i)γP (n− i− 1)δ + β

}
.

The following claim shows that P (n) = O(n), and so the label length is logn +
O(1).

Claim. Let P (n) be a sequence. If there are α, β, γ, δ ∈ R+, δ < γ < 1, δ + γ < 1
such that P (n) � maxi∈I

{
P (i) + P (n− i− 1) + αP (i)γP (n− i− 1)δ + β

}
and

P (1) > 0, then P (n) = O(n).

Proof. Let a and b be two positive constants we will determine later. Let us
prove by induction the property (Qn):

(Qn) : P (n) � an− bnγ+δ.

Q1 is true if and only if a and b satisfy P (1) � a− b. Assume that Qi is true for
i < n.

P (n) � max
i∈I

{
an− biγ+δ − b(n− i− 1)γ+δ + α(an)γ(a(n− i− 1))δ − (a− β)

}
� an− (a− β) + max

i∈I
{h(n, i) + f(n, i)}

with h(n, i) = −biγ+δ − b(n− i− 1)γ+δ and f(n, i) = aγ+δnγ(n− i− 1)δ.
In order to bound maxi∈I h(n, i), we compute:

∂

∂i
h(n, i) = biγ+δ(n− i− 1)γ+δ

(
i1−γ−δ − (n− i− 1)1−γ−δ

i(n− i− 1)

)

For i ∈ I, ∂
∂ih(n, i) � 0 because i � n− i− 1 and γ > δ. So, we obtain:

max
i∈I

h(n, i) � − bnγ+δ � − 2γ+δb
(n

2

)γ+δ

154 N. Bonichon, C. Gavoille, and A. Labourel

In order to bound maxi∈I f(n, i), we compute:

∂

∂i
f(n, i) = aγ+δiγ(n− i− 1)δ

(
γ(n− i− 1) − δi

i(n− i− 1)

)
.

For i ∈ I, ∂
∂if(n, i) � 0 because i � n− i− 1 and γ > δ. So:

max
i∈I

f(n, i) � aγ+δ
(n

2

)γ+δ

and thus,
P (n) � an−

(
2γ+δb− aγ+δ

)
nγ+δ − (a− β).

The two constants must fulfill the following equalities:⎧⎨
⎩

P (1) � a− b
2γ+δb− aγ+δα � b
a− β � 0

For instance, it suffices to choose b such that:

a− P (1) � b � aγ+δα with a � β

which is possible for a large enough since γ + δ < 1.

This completes the proof of Lemma 4.

4 Conclusion

The unsolved implicit graph representation conjecture of [KNR88, KNR92] asks
whether every hereditary4 family of graphs with 2O(n log n) labeled graphs of n
vertices enjoys a O(log n)-bit adjacency labeling scheme. This is motivated by
the fact that every family with at least 2cn log n labeled graphs of n vertices
requires adjacency labels of at least c logn bits.

Our schemes suggest that, at least for trees, labels of logn + O(1) bits may
be possible. Therefore, we propose to prove or to disprove the following:

Every hereditary family of graphs with at most n!2O(n) = 2n log n+O(n) labeled
graphs of n vertices enjoys an adjacency labeling scheme with labels of logn+O(1)
bits.

We observe that several well-known families of graphs are concerned by this
proposition: trees, planar graphs, bounded treewidth graphs, graphs of bounded
genus, graphs excluding a fixed minor (cf. [NRTW05] for counting such graphs).
Proving the latter conjecture appears to be hard, e.g., the best upper bound for
planar graphs is only 3 logn + O(log∗ n).

4 That is a family of graphs closed under induced subgraph taking.

Short Labels by Traversal and Jumping 155

References

[AAK+05] Serge Abiteboul, Stephen Alstrup, Haim Kaplan, Tova Milo, and Theis
Rauhe. Compact labeling schemes for ancestor queries. SIAM Journal on
Computing, 2005.

[ABR05] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes
for small distances in trees. SIAM Journal on Discrete Mathematics,
19(2):448–462, 2005.

[AGKR04] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Near-
est common ancestors: A survey and a new algorithm for a distributed
environment. Theory of Computing Systems, 37:441–456, 2004.

[AKM01] Serge Abiteboul, Haim Kaplan, and Tova Milo. Compact labeling schemes
for ancestor queries. In 12th Symposium on Discrete Algorithms (SODA),
pages 547–556. ACM-SIAM, January 2001.

[AR02] Stephen Alstrup and Theis Rauhe. Small induced-universal graphs and
compact implicit graph representations. In 43rd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 53–62. IEEE
Computer Society Press, November 2002.

[BF67] Melvin A. Breuer and Jon Folkman. An unexpected result on coding the
vertices of a graph. Journal of Mathematical Analysis and Applications,
20:583–600, 1967.

[BG05] Fabrice Bazzaro and Cyril Gavoille. Localized and compact data-structure
for comparability graphs. In 16th Annual International Symposium on
Algorithms and Computation (ISAAC), volume 3827 of Lecture Notes in
Computer Science, pages 1122–1131. Springer, December 2005.

[Bre66] Melvin A. Breuer. Coding the vertexes of a graph. IEEE Transactions on
Information Theory, IT-12:148–153, 1966.

[DL02] Feodor F. Dragan and Irina Lomonosov. New routing schemes for interval
graphs, circular-arc graphs, and permutation graphs. In 14th IASTED
International Conference on Parallel and Distributed Computing and Sys-
tems (PDCS), pages 78–83, November 2002.

[DL04] Feodor F. Dragan and Irina Lomonosov. On compact and efficient routing
in certain graph classes. In 15th Annual International Symposium on
Algorithms and Computation (ISAAC), volume 3341 of Lecture Notes in
Computer Science, pages 402–414. Springer, December 2004.

[FG01] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Fernando
Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, 28th International
Colloquium on Automata, Languages and Programming (ICALP), volume
2076 of Lecture Notes in Computer Science, pages 757–772. Springer, July
2001.

[GP03a] Cyril Gavoille and Christophe Paul. Optimal distance labeling schemes for
interval and circular-arc graphs. InG.DiBattistaandU.Zwick, editors, 11th

Annual European Symposium on Algorithms (ESA), volume 2832 of Lecture
Notes in Computer Science, pages 254–265. Springer, September 2003.

[GP03b] Cyril Gavoille and David Peleg. Compact and localized distributed data
structures. Journal of Distributed Computing, 16:111–120, May 2003.
PODC 20-Year Special Issue.

[KM01] Haim Kaplan and Tova Milo. Short and simple labels for small distances
and other functions. In 7th International Workshop on Algorithms and
Data Structures (WADS), volume 2125 of Lecture Notes in Computer
Science, pages 32–40. Springer, August 2001.

156 N. Bonichon, C. Gavoille, and A. Labourel

[KNR88] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation
of graphs. In 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 334–343. ACM Press, May 1988.

[KNR92] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation
of graphs. SIAM Journal on Discrete Mathematics, 5:596–603, 1992.

[NRTW05] Serguei Norine, Neil Robertson, Robin Thomas, and Paul Wollan. Proper
minor-closed families are small. Journal of Combinatorial Theory, Series
B, 2005. To appear.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
1–10. ACM Press, July 2001.

An Optimal Rebuilding Strategy for a
Decremental Tree Problem

Nicolas Thibault and Christian Laforest

Tour Evry 2, LaMI/IBISC, Université d’Evry, 523 place des terrasses,
91000 EVRY France

{nthibaul, laforest}@lami.univ-evry.fr

Abstract. This paper is devoted to the following decremental problem.
Initially, a graph and a distinguished subset of vertices, called initial
group, are given. This group is connected by an initial tree. The decre-
mental part of the input is given by an on-line sequence of withdrawals
of vertices of the initial group, removed on-line one after one. The goal
is to keep connected each successive group by a tree, satisfying a quality
constraint: The maximum distance (called diameter) in each constructed
tree must be kept in a given range compared to the best possible one.
Under this quality constraint, our objective is to minimize the number
of critical stages of the sequence of constructed trees. We call “critical” a
stage where the current tree is rebuilt. We propose a strategy leading to
at most O(log i) critical stages (i is the number of removed members).
We also prove that there exist situations where Ω(log i) critical stages
are necessary to any algorithm to maintain the quality constraint. Our
strategy is then worst case optimal in order of magnitude.

A lot of works have been devoted to the construction of trees spanning a given
set of vertices in a graph. For example the Steiner tree problem, where the goal
is to span a set (called group) of distinguished vertices (called members) with
a minimum weight tree, has been extensively studied. As the problem is NP-
complete, numerous approximation algorithms have been designed (see [1, 3] for
example). In [8], Waxman was the first author to present the on-line version of
this problem in which vertices to add in, or to remove from, the current group
revealed one by one (see [2] references on on-line problems). In this first paper,
he divides the problem into two categories: A model in which “heavy”changes of
the current tree are not allowed and a model in which changes are allowed. Then,
Imase and Waxman proposed in [4] two different strategies corresponding to the
two models above. In the first one the tree is just incremented or decremented
and the degradation of weight is evaluated, whereas in the second one they allow
changes in the current tree to maintain a guaranty on the weight. At each stage,
they prove that they construct with the first strategy a tree whose weight is at
a logarithmic ratio compared to the optimal one (i.e. the weight of a Steiner
tree of the current group), and that they construct with the second strategy a
tree whose weight is at a constant ratio compared to the optimal one. They give
for the second strategy an upper bound of O(

√
i) on the number of elementary

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 157–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 N. Thibault and C. Laforest

changes per stage (where i is the number of new members). However, the tree can
potentially be changed at each stage; this means that each stage is potentially
what we call later a critical stage.

In [6], a very similar on-line Steiner tree problem with a delay constraint from
one node to the others is studied. But the authors only evaluate their method with
simulations, and they give no upper bound for the different competitive ratios.
Note that in [4, 6], only the number of elementary changes is taken into account
to measure the level of damage due to the allowed changes in the current tree.

In this paper we are concerned with a decremental group problem where
the members to remove are revealed on-line one by one. However, we do not
focus on the same objective function (the weight of the tree) but on a different
measure: The diameter of the current group induced by the current tree. Note
that we consider here a model in which changes are allowed because it can easily
be shown that any on-line algorithm without critical stage cannot guarantee a
constant competitive ratio (for the diameter objective function we consider in
this paper). That is why we fix here a “relative budget”, called quality constraint,
on the diameter and we propose an algorithm minimizing the number of critical
stages necessary to guarantee this budget constraint at each stage. Note also that
we have proved that our algorithm leads to a constant number of elementary
changes per stage in average (but we do not give in this paper the definitions
and the proof associated to this problem because of the limitation on the number
of pages).

A motivation for such model and objective function is the construction of
connection structures for groups of members in networks. An important QoS pa-
rameter is latency that is expressed here in terms of maximum distance between
users. This maximum distance must be guaranteed (our quality constraint). How-
ever, this must be done by minimizing the number of critical stages since they
induce perturbations in communications in the current group (implying many
re-routing operations between members in the current tree).

In Section 1 we describe more formally our problem. More precisely, in Sub-
section 1.1 we describe and motivate the constraints (namely the tree and quality
constraints) that must be satisfied at each stage. In Subsection 1.2 we give the
definitions of a critical stage. In Subsection 2.1 we propose an algorithm satisfy-
ing the construction constraints (in Section 2.2). In Subsection 2.3 we prove that
our algorithm leads to at most O(log i) critical stages (where i is the number of
removed members). We prove in Section 3 that our strategy is worst case optimal
in order of magnitude for the number of critical stages criterion by constructing a
scenario in which at least Ω(log i) critical stages are necessary for any algorithm
to satisfy the quality constraint. These results show that our algorithm is worst
case optimal for the number of critical stages.

1 Definitions and Notations

Let G = (V,E,w) be any connected weighted graph representing a network. V
is the set of vertices (modeling the nodes of the network), E the set of edges

An Optimal Rebuilding Strategy for a Decremental Tree Problem 159

(modeling the set of physical links) and w a positive weight function of the edges
(modeling the length of the edges). We denote by dG(u, v) the distance between
u and v in G, i.e. the sum of the weights of the edges of a minimum weight path
between u and v in G.

Definition 1 (Diameter of a group M). Let G = (V,E,w) be a graph and
let M ⊆ V be a group. We denote the diameter of M in G by

DG(M) = max{dG(u, v) : u, v ∈ M}.

1.1 Construction Constraints

In our problem, the graph G = (V,E,w) and an initial group M0 ⊆ V are given
(with M0 �= ∅). For example, in a meeting on network (called net-meeting)
this initial group M0 represents the set of members present at the beginning of
the meeting. A structure, noted T0 = (V0, E0), must be created to connect the
members of M0 (T0 spans M0 in G : M0 ⊆ V0 ⊆ V , E0 ⊆ E).

However, members may leave the meeting. These members must be removed
from the current group (we underline that they are not removed from the
underlying graph G). Let m0 = |M0| be the size of the initial group. Let
u1, u2, . . . , ui, . . . (i ≤ m0 − 1) be the sequence of members to remove. For
every i, 1 ≤ i ≤ m0 − 1, we denote by Mi = Mi−1\{ui} the ith group, and by
mi = |Mi| its size. Thus, starting from the initial connection structure T0 for
M0, at each stage of withdrawal i, the member ui is removed by updating the
current structure Ti−1 (spanning Mi−1) to obtain Ti spanning Mi.

Note that as the members to remove are revealed one by one, we are in an
on-line model. It means that we do not know the future: Neither in which order
the members are removed, nor what is the set of members to remove. Hence,
each stage can potentially be the last one; this explains why we are interested
by giving guarantees at each stage.
We need the following definition that presents the best possible connection tree
for the group Mk, minimizing the diameter parameter.

Definition 2 (Optimal tree). Let G = (V,E,w) be a graph. For every i,
0 ≤ i ≤ m0 − 1, we denote by T ∗

i a tree satisfying

DT ∗
i
(Mi) = min{DT (Mi) : T tree spanning Mi}.

We are now ready to give the two constraints that each current structure Ti

must satisfy.

– The tree constraint: For every i, 0 ≤ i ≤ m0 − 1, Ti must be a tree,
spanning Mi, in which all leaves are in Mi (we call that a pruned tree).

– The quality constraint: Let c ≥ 1 be any fixed constant representing
the required level of quality. For every i, 0 ≤ i ≤ m0 − 1, we must have
DTi(Mi) ≤ c ·DT ∗

i
(Mi).

160 N. Thibault and C. Laforest

As in a net-meeting the current structure Ti is used to support the communi-
cations between members of Mi, the tree constraint is set in order to simplify
the mechanisms of routing and duplication of information in Ti. Indeed, there is
only one route between any pair of members in a tree; moreover as there is no
cycle, a simple flooding process can be used to broadcast information from any
member. This flooding naturally ends at the leaves that are members (because
trees are pruned); there is no need of costly process to control it.

The quality constraint of level c is set to guarantee that the induced diameter
of the current group in Ti is not too large compared to the best possible diameter
in T ∗

i (at most c times the best possible diameter).
In the rest of the paper we say that an algorithm solves our problem if, for

any on-line sequence of successive groups M0 ⊃ · · · ⊃ Mi, it returns a sequence
of trees T0, . . . , Ti (Ti spanning Mi) satisfying the tree and quality constraints.

1.2 The Criterion to Minimize

In this subsection we present the cost associated with any algorithm satisfying
the tree and quality constraints. We first need the following definitions.

Definition 3 (Critical stage). Let A be an algorithm solving our problem.
At stage i, 1 ≤ i ≤ m0 − 1, Algorithm A builds Ti = (Vi, Ei) from Ti−1 =
(Vi−1, Ei−1). Stage i is a critical stage if Ei � Ei−1.

We distinguish critical stages from other stages since they generate a lot of
perturbations. Indeed, if i is a critical stage, the communication routes in Ti−1
between members already in the current group Mi−1 have to be changed in Ti.
Potentially all the routing tables of the connecting nodes must be modified. This
generates a heavy traffic to update them. Moreover the current communications
between members of Mi−1 initiated before the changes may be interrupted. That
is why the number of critical stages must be minimized.

On the other hand, the withdrawal of a member by just removing useless
branches in the tree generates only local changes and is not considered as a
critical stage (since in this case Ei ⊆ Ei−1). The update of the routing can just be
done by broadcasting the information of the departure of the leaving member in
the new tree Ti. This does not create any re-routing between the other members.
The aim of this paper is to minimize the total number �CS(T0, . . . , Ti) of critical
stages while respecting the tree and the quality constraints.

2 Our Algorithm CS

2.1 Definition of Algorithm CS (Critical Stages)

To define Algorithm CS, we need the following algorithm, called MD for Min-
imum Distance. We denote by MD(M) Algorithm MD applied to group M of
size m to find a particular group M(r∗) of size

⌊
m
2

⌋
+ 1 and what we call its

associated root.

An Optimal Rebuilding Strategy for a Decremental Tree Problem 161

Algorithm MD(M)
1. For each r ∈ M, sort the m vertices of M by

non decreasing value of their distance to r:
r, ur

1, . . . , u
r
m−1 (dG(r, ur

1) ≤ dG(r, ur
2) ≤ · · · ≤ dG(r, ur

m−1)).

Let M(r) =
{
r, ur

1, . . . , u
r

�m
2 �

}
.

2. Return r∗ and its associated group M(r∗) such that

dG

(
r∗, ur∗

�m
2 �
)

= min
{
dG

(
r, ur

�m
2 �
)

: r ∈ M
}

Note that for all r ∈ M , the vertices ur
1, . . . , u

r
m−1 can be sorted by non de-

creasing value of dG(r, ur
k) and the associated group M(r) can be constructed in

polynomial time by using Dijkstra’s algorithm. Thus, Algorithm MD(M) finds
M(r∗) and its associated root r∗ in polynomial time.

The main idea of Algorithm CS is to define particular stages numbers, called
rebuilding stages during which we (totally) reconstruct the current tree (to match
the quality constraint). Between two successive rebuilding stages, a member is
leaving by just removing the dead branches of the current tree (in order to
maintain at each stage a pruned tree to satisfy the tree constraint).

The following sequence (ak) defines the rebuilding stages of our algorithm:
ma0 = m0 is the size of the initial group M0 and for every ak (k ≥ 1),
mak

=
⌊

mak−1
2

⌋
is the size of the group Mak

.

Algorithm CS

– Initially, at stage a0 = 0:
CS builds a shortest path tree spanning the first group M0,
rooted in r0 ∈ M0, where r0 ∈ M0 is the root found by MD(M0).

– After the last rebuilding stage ak:
Let Mak+j be the current group and let uak+j be the jth member
revealed to be removed since the last rebuilding stage ak.
• If mak+j >

⌊mak

2

⌋
(corresponding to j < mak

−
⌊mak

2

⌋
):

Update the tree Tak+j−1 = (Vak+j−1, Eak+j−1) by pruning
potential useless branches.
We obtain the pruned tree Tak+j = (Vak+j , Eak+j) spanning
Mak+j satisfying Eak+j ⊆ Eak+j−1.

• Otherwise, we have mak+j =
⌊mak

2

⌋
(corresponding to j = mak

−
⌊mak

2

⌋
):

This is a rebuilding stage and we have mak+j =
⌊mak

2

⌋
=mak+1.

Break the current tree and construct Tak+1, a shortest path
tree spanning Mak+1, rooted in rak+1(where rak+1∈ Mak+1 is
the root found by MD(Mak+1)). Thus, ak+1 is the new last
rebuilding stage.

The rebuilding stages of CS can be critical stages (because the current tree is
broken and rebuilt). The other stages are non critical because the algorithm only
removes from the current tree useless branches to obtain the new tree.

162 N. Thibault and C. Laforest

Note that this algorithm is polynomial because it uses Algorithm MD (MD is
polynomial) and because updating a tree by removing useless branches can be
done in polynomial time.

Note also that by construction, at each stage, the tree constraint is satisfied.
Section 2.2 shows that it also respects the quality constraint for a level of quality
c = 4.

2.2 CS Respects the Quality Constraint

Theorem 1 shows that CS respects the quality constraint with a level of quality
c = 4.

Theorem 1. Let G = (V,E,w) be a graph. For any sequence of withdrawals, at
every stage i, 0 ≤ i ≤ m0 − 1 (i is the number of removed members), let T ∗

i be
an optimal (off-line) tree spanning Mi for the diameter. CS respects the quality
constraint with a level of quality c = 4, i.e. for every i, 0 ≤ i ≤ m0 − 1, we have

DTi(Mi) ≤ 4DT ∗
i
(Mi).

Proof.

– If i is a stage of rebuilding. In this case, i = ak. Let u0, v0 ∈ Mak
be such

that dTak
(u0, v0) = DTak

(Mak
) (where Tak

is the tree spanning Mak
rooted

in r∗ built by CS at stage ak). We have

DTak
(Mak

) = dTak
(u0, v0) ≤ dTak

(u0, r
∗) + dTak

(r∗, v0)
(by triangular inequality)

= dG(u0, r
∗) + dG(r∗, v0) ≤ 2DG(Mak

)
(because Tak

is a shortest path tree rooted
in r∗ and because u0, v0, r

∗ ∈ Mak
)

≤ 2DT ∗
ak

(Mak
) ≤ 4DT ∗

ak
(Mak

)

(because for every tree T spanning
a group M , DG(M) ≤ DT (M))

– Otherwise ak is not a stage of rebuilding. Let j, 1 ≤ j < mak
−
⌊mak

2

⌋
be the

number of removed vertices after the last rebuilding, happening at stage ak

(i.e. j is such that mak+j ≥
⌊mak

2

⌋
+ 1). Let M(r∗) = {r∗, ur∗

1 , . . . , ur∗

�mak
2 �}

be the set returned by MD(Mak
). As Mak+j ⊂ Mak

(by definition of the
sequence of withdrawals) and M(r∗) ⊆ Mak

with mak+j ≥
⌊mak

2

⌋
+ 1 and

|M(r∗)| =
⌊mak

2

⌋
+ 1, we have Mak+j ∩ M(r∗) �= ∅. Thus, there exists

v ∈ Mak+j ∩ M(r∗). As v ∈ M(r∗), v = r∗ or v = ur∗
l , with l ≤

⌊mak

2

⌋
. As

r∗, ur∗
1 , . . . , ur∗

�mak
2 � are sorted by non decreasing value of their distance to

r∗ (see definition of Algorithm MD), we have

dG(r∗, v) ≤ dG

(
r∗, ur∗

�mak
2 �

)
(1)

An Optimal Rebuilding Strategy for a Decremental Tree Problem 163

Moreover, as Algorithm MD(Mak
) finds r∗ and M(r∗) such that

dG

(
r∗, ur∗

�mak
2 �

)
= min

{
dG

(
r, ur

�mak
2 �

)
: r ∈ Mak

}
, for every

r0 ∈ Mak+j ⊂ Mak
we have

dG

(
r∗, ur∗

�mak
2 �

)
≤ dG

(
r0, ur0

�mak
2 �

)
(2)

As mak+j ≥
⌊mak

2

⌋
+1 and as r0, ur0

1 , . . . , ur0

mak
−1 are sorted by non decreas-

ing value of their distance to r0, there exists ur0

l ∈ Mak+j with
⌊mak

2

⌋
≤ l ≤

mak+j − 1 such that

dG

(
r0, ur0

�mak
2 �

)
≤ dG

(
r0, ur0

l

)
(3)

By (1), (2), (3) and as r0 and ur0

l are in Mak+j , by definition of the diameter,
we obtain

∃v ∈ Mak+j ∩M(r∗) : dG(r∗, v) ≤ DG(Mak+j) (4)

Let u0∈ Mak+j and v0∈ Mak+j be such that dTak+j(u0, v0)=DTak+j(Mak+j)
(where Tak+j is the tree spanning Mak+j built by CS at stage ak + j).
We have

DTak+j (Mak+j) = dTak+j (u
0, v0) = dTak

(u0, v0)
(since, by definition of Algorithm CS,
we have Tak+j ⊆ Tak

)
≤ dTak

(u0, r∗) + dTak
(r∗, v0)

(by triangular inequality)
= dG(u0, r∗) + dG(r∗, v0)

(because Tak
is a shortest path tree rooted in r∗)

≤ dG(u0, v) + dG(v, r∗) + dG(r∗, v) + dG(v, v0)
(by triangular inequality, using vertex v of (4))

≤ 4DG(Mak+j)
(because v ∈ Mak+j, u0 ∈ Mak+j ,
v0 ∈ Mak+j and by (4))

≤ 4DT ∗
ak+j

(Mak+j)

(because for every tree T spanning
a group M , DG(M) ≤ DT (M))

In conclusion, for every i, 0 ≤ i ≤ m0 − 1, we obtain DTi(Mi) ≤ 4DT ∗
i
(Mi). �	

164 N. Thibault and C. Laforest

2.3 CS Leads to O(log i) Critical Stages

Theorem 2. Let G = (V,E,w) be a graph. For any sequence of withdrawals, let
T0, . . . , Ti (0 ≤ i ≤ m0 − 1) be the sequence of trees constructed by CS. We have

�CS(T0, . . . , Ti) ≤ �log2(2i)� = O(log i)

Proof. Two cases may occur:

– If i < m0 −
⌊

m0
2

⌋
, by definition of CS, there is no rebuilding stage. Thus,

CS(T0, . . . , Ti) = 0.
– Otherwise, i ≥ m0 −

⌊
m0
2

⌋
≥ m0

2 and we obtain

m0 ≤ 2i (5)

Moreover, by definition of the sequence (ak) and CS, if there are p re-
buildings (that are critical stages), then p is such that

map+1 < m0 − i ≤ map ⇒ m0 − i ≤ m0
2p (by definiton of sequence (ak),

∀k, mak
≤ m0

2k)

⇒ m0 − i ≤ 2i
2p (by (5))

⇒ 1 ≤ 2i
2p (by definition, i ≤ m0 − 1)

⇒ p ≤ �log2(2i)� (because p is an integer)

⇒ p ≤ O(log i) �	

3 Lower Bound for the Number of Critical Stages of Any
Algorithm

In this section, we prove that for any algorithm respecting the tree constraint
and the quality constraint, for any sufficiently large i, there exists a particular
sequence of withdrawals leading to at least Ω(log i) critical stages. To prove that,
we describe the graph G in Section 3.1. Then, we define the particular on-line
sequence of withdrawals in Section 3.2 and prove the main result in Section 3.3.

3.1 Description of the Graph G

Let k, d, 0 ≤ k ≤ d and 3 ≤ p be any integer. We define graphs Gp
k = (V p

k , Ep
k , w

p
k)

recursively on k as follows:

– Gp
0 = (V p

0 , Ep
0 , w

p
0) is the cycle of length p such that ∀e ∈ Ep

0 , wp
0(e) = 2d.

– ∀k, 1 ≤ k ≤ d, we define Gp
k = (V p

k , Ep
k , w

p
k) as follows. ∀v ∈ V p

k−1, let Cv =
(V C

v , EC
v , wC

v) be a cycle of length p such that v ∈ V C
v ,
(
V C

v \{v}
)
∩V p

k−1 = ∅
and wC

v (e) = 2d−k

pk .

An Optimal Rebuilding Strategy for a Decremental Tree Problem 165

edge of weight 2d = 4

edge of weight 2d−1

p
= 1

2

edge of weight 2d−2

p2 = 1
16

v

cycle of level 2

G0(v)

Fig. 1. The graph G4
2

Gp
k = (V p

k , Ep
k , w

p
k) is the graph such that:

• V p
k = V p

k−1 ∪
⋃

v∈V p
k−1

V C
v

• Ep
k = Ep

k−1 ∪
⋃

v∈V p
k−1

EC
v

• ∀e ∈ Ep
k−1, w

p
k(e) = wp

k−1(e) and ∀e ∈
⋃

v∈V p
k−1

EC
v , wp

k(e) = wC
v (e).

See Figure 1 for an illustration of Gp
k (with k = 2 and p = 4). We can now

define the graph G = (V,E,w). Let c ≥ 1 be the constant corresponding to the
required level of quality and let d be a positive integer sufficiently large such that
i ≤
∣∣∣V 6c+2�

d

∣∣∣− 1 (where i is the number of removed vertices and V
6c+2�
d = M0

is the initial group). We set G = G
6c+2�
d .

Definition of a Cycle of Level k
We say that a cycle C = (V C , EC , w) (subgraph of G) is of level k (0 ≤ k ≤ d)
if each edge e ∈ EC has weight w(e) = 2d−k

pk . See Figure 1 for an illustration of

such cycle (Note that G4
2 is too small to be a possible graph of the form G

6c+2�
d ,

but this is just an illustration).

Definition of the Subgraphs Gk(v)
Let v be any vertex of the graph G (v ∈ V). Let k be the smallest index such
that Ck = (V C

k , EC
k , w) is the cycle of level k containing v (v ∈ V C

k). We define
Gk(v) = (Vk(v), Ek(v), w) the subgraph induced by every vertices and edges
which can be reached from vertex v by going through edges of weight strictly
less than 2d−k

pk (i.e. by going through edges of cycles of level strictly more than
k). See Figure 1 for an illustration of such subgraph.

3.2 Definition of the Sequence of Withdrawals M0 ⊃ · · · ⊃ Mi

Let A be any online algorithm respecting the tree and quality of level c con-
straints. We use an adaptive adversary to define the sequence of withdrawals in
the graph G = (V,E,w) defined above.

166 N. Thibault and C. Laforest

We first define a generic sequence of withdrawals of vertices. Note that we
do not specify each elementary stage of withdrawal, but only the “main” stages
interesting for our analysis (stages of the form i = α(k, b)). For every k ≥ 0, for
every b ∈ {0, 1}, for every i = α(k, b) (0 ≤ α(k, b) ≤ m0 − 1), let Ti be the tree
spanning Mi constructed by Algorithm A at stage i. Note that at each stage,
we have α(k, b) = |M0| − |Mα(k,b)| (0 ≤ α(k, b) ≤ m0 − 1). The sequence of
withdrawals is defined as follows. We set p = �6c + 2�.

Basic Cases
– At stage α(0, 0) = 0, we have

Mα(0,0) = V

As Tα(0,0) is a tree spanning Mα(0,0), it is necessarily made up of, amongst
other things, all the edges of the cycle C0 = (V C

0 , EC
0 , w), except one

edge e0. Let v1
0 and v2

0 be the two vertices connected by e0. The adap-
tive adversary now removes (one by one) from Mα(0,0) all the vertices in⋃

v∈V C
0 \{v1

0 ,v2
0} V1(v) in order to obtain Mα(0,1).

– At stage α(0, 1), we have

Mα(0,1) = V1(v1
0) ∪ V1(v2

0)

The adaptive adversary now removes (one by one) from Mα(0,1) all the
vertices in V1(v1

0) in order to obtain Mα(1,0) (note that the adversary
chooses arbitrarily to remove all the vertices in V1(v1

0) rather than in
V1(v2

0)).

Main Cases
– At stage α(k, 0). Let Ck = (V C

k , EC
k , w) be the cycle of level k such that

V C
k ⊂ Mα(k−1,1). We have

Mα(k,0) =
⋃

v∈V C
k

Vk+1(v)

As Tα(k,0) is a tree spanning Mα(k,0), it is necessarily made up of, amongst
other things, all the edges of the cycle Ck, except one edge ek. Let v1

k and
v2

k be the two vertices connected by ek. The adaptive adversary now re-
moves (one by one) from Mα(k,0) all the vertices in

⋃
v∈V C

k \{v1
k,v2

k} Vk+1(v)
in order to obtain Mα(k,1).

– At stage α(k, 1), we have

Mα(k,1) = Vk+1(v1
k) ∪ Vk+1(v2

k)

The adaptive adversary now removes (one by one) from Mα(k,1) all the
vertices in Vk+1(v1

k) in order to obtain Mα(k+1,0) (note that the adversary
chooses arbitrarily to remove all the vertices in Vk+1(v1

k) rather than in
Vk+1(v2

k)).

An Optimal Rebuilding Strategy for a Decremental Tree Problem 167

We specify with α(k, b) only the “main” stages of the sequence of withdrawals,
corresponding to the stages where the adaptive adversary has to make a choice.
Indeed, between two successive “main” stages α(k, 0) and α(k, 1) (resp. α(k, 1)
and α(k + 1, 0)), the vertices are removed one by one in any order. Note that
we stop removing vertices after the last “main” stage, when exactly i vertices
have been removed. See Figure 2 for an illustration of the six first “main” stages
α(0, 0), α(0, 1), α(1, 0), α(1, 1), α(2, 0) and α(2, 1), where the successive trees
are built by an arbitrary algorithm (Note that G4

2 is too small to be a possible
graph of the form G

6c+2�
d , but this figure is just an illustration of a sequence of

withdrawals).

v1
0 v2

0

α(0, 0)

v1
0 v2

0

α(0, 1)

v1
1

v1
1

v2
1

v2
1

α(1, 0)

α(1, 1)

v1
2 v2

2

α(2, 0)

v1
2 v2

2

α(2, 1)

Fig. 2. Illustration of the sequence of withdrawals on graph G4
2

3.3 Any Algorithm Leads to Ω(log i) Critical Stages

Lemmas 1 and 2 are preliminary technical results (Lemma 1 is trivial. A proof
can be found in [5]).

Lemma 1. Let G = (V,E,w) be any graph. For every M ⊆ V , there exists a
tree T off spanning M such that

DT off (M) ≤ 2DG(M)

The following Lemma is central in our analysis. It describes sub-sequences of
withdrawals where at least one rebuilding/critical stage occurs.

Lemma 2. Let c ≥ 1 be any constant (representing the required level of quality).
For every k ≥ 0, let T ∗

α(k,0), T
∗
α(k,0)+1, . . . , T

∗
α(k,1) be the trees respectively span-

ning Mα(k,0),Mα(k,0)+1, . . . ,Mα(k,1) optimal for the diameter and let Tα(k,0),

168 N. Thibault and C. Laforest

Tα(k,0)+1, . . . , Tα(k,1) be any trees respectively spanning Mα(k,0),Mα(k,0)+1, . . . ,
Mα(k,1). If for every i, α(k, 0) ≤ i ≤ α(k, 1), we have DTi(Mi) ≤ c · DT ∗

i
(Mi),

then
�CS(Tα(k,0), Tα(k,0)+1, . . . , Tα(k,1)) ≥ 1.

Proof. We prove Lemma 2 by contradiction. Suppose that there exists k ≥ 0
such that for every i, α(k, 0) ≤ i ≤ α(k, 1), the quality constraint is satisfied and
there is no critical stage, i.e. there exists k ≥ 0 such that for every i, α(k, 0) ≤ i ≤
α(k, 1), we have DTi(Mi) ≤ c ·DT ∗

i
(Mi) and Tα(k,0) ⊇ Tα(k,0)+1 ⊇ · · · ⊇ Tα(k,1).

These trees are made up of, amongst other things, all edges of the cycle Ck ⊂
G, except one edge, noted ek. We insist on the fact that, because there is no criti-
cal stage, this edge ek is always the same in all trees Tα(k,0), Tα(k,0)+1, . . . , Tα(k,1).

Let us focus now on stage α(k, 1), where Mα(k,1) = Vk+1(v1
k) ∪ Vk+1(v2

k). We
lower bound DTα(k,1)

(
Mα(k,1)

)
and upper bound DT ∗

α(k,1)

(
Mα(k,1)

)
to show that

at this particular stage, the quality constraint is not satisfied. This leads to the
wanted contradiction and proves the Lemma.

– Lower bound of DTα(k,1)

(
Mα(k,1)

)
As the two extremities v1

k and v2
k of the edge ek are separated by a path

made of p− 1 = �6c + 1� edges of weight 2d−k

pk in Tα(k,1) we have

DTα(k,1)

(
Mα(k,1)

)
≥ (p− 1)

2d−k

pk
≥ (6c + 1)

2d−k

pk
(6)

– Upper bound of DT ∗
α(k,1)

(
Mα(k,1)

)
In order to upper bound DT ∗

α(k,1)

(
Mα(k,1)

)
, we first upper bound DG

(
Mα(k,1)

)
.

By construction of the graph G, two cases may occur:
1. If k = d, there is no cycle of level k + 1 in G. Thus, we have

DG

(
Mα(k,1)

)
= w(ek) =

2d−k

pk
≤ 3

2d−k

pk

2. If k ≤ d− 1, we have

DG

(
Mα(k,1)

)
≤ DG

(
Vk+1(v1

k)
)

+ dG(v1
k, v

2
k) + DG

(
Vk+1(v2

k)
)

≤
∑

e∈Ek+1(v1
k)

w(e) + w(ek) +
∑

e∈Ek+1(v2
k)

w(e)

(because for every graph or subgraph

G = (V,E,w), DG(V) ≤
∑
e∈E

w(e))

=
d∑

l=k+1

2d−l

pl
pl−k +

2d−k

pk
+

d∑
l=k+1

2d−l

pl
pl−k

≤ 2
pk

d∑
l=k+1

2d−l +
2d−k

pk
≤ 2

2d−k

pk
+

2d−k

pk
= 3

2d−k

pk

An Optimal Rebuilding Strategy for a Decremental Tree Problem 169

Moreover, by Lemma 1, there exists a tree T off
α(k,1) spanning Mα(k,1) such that

DT off
α(k,1)

(Mα(k,1)) ≤ 2DG(Mα(k,1)). Thus, as T ∗
α(k,1) is a tree spanning Mα(k,1)

optimal for the diameter, we have

DT ∗
α(k,1)

(Mα(k,1)) ≤ DT off
α(k,1)

(Mα(k,1)) ≤ 2DG(Mα(k,1)) ≤ 6
2d−k

pk
(7)

By (6) and (7), we obtain

DTα(k,1)

(
Mα(k,1)

)
DT ∗

α(k,1)

(
Mα(k,1)

) ≥
(6c + 1)2d−k

pk

6 2d−k

pk

≥ c +
1
6

> c

This result contradicts the assumption that the quality constraint is satisfied.
Thus, Lemma 2 is proved by contradiction. �	

The following Theorem shows that if the tree constraint and the quality con-
straint are satisfied, any algorithm leads to Ω(log i) critical stages, where i is
the number of removed vertices.

Theorem 3. Let c ≥ 1 be any constant. For any algorithm A, for every suf-
ficiently large i, there exists a graph G0, there exists M0 ⊃ · · · ⊃ Mi, such
that if Algorithm A returns a sequence of trees T0, . . . , Ti respectively spanning
M0 ⊃ · · · ⊃ Mi respecting the quality constraint of level c, then

�CS(T0, . . . , Ti) = Ω(log i)

Proof. Let c ≥ 1 be any constant. We set p = �6c + 2�. Let i be the number
of removed vertices. There exists d and G0 (where G0 is graph G, defined in
Section 3.1), there exists M0 ⊃ · · · ⊃ Mi (the sequence defined in Section 3.2)
such that

α(d− 1, 1) ≤ i ≤ α(d, 1) ≤ |V | = pd

Thus, we have i ≤ pd ⇒ logp i ≤ d ⇒ logp i ≤ d. And as p = �6c + 2�
is a constant, we have d ≥ Ω(log i). Moreover, by Lemma 2, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�CS(Tα(0,0), Tα(0,0)+1, . . . , Tα(0,1)) ≥ 1
�CS(Tα(1,0), Tα(1,0)+1, . . . , Tα(1,1)) ≥ 1

...
�CS(Tα(d−1,0), Tα(d−1,0)+1, . . . , Tα(d−1,1)) ≥ 1

⇒ �CS(Tα(0,0), . . . , Tα(d−1,1)) ≥ d

⇒ �CS(T0, . . . , Ti) ≥ d (because i ≥ α(d− 1, 1))

⇒ �CS(T0, . . . , Ti) ≥ Ω(log i) (because d ≥ Ω(log i)) �	

Theorem 2 and Theorem 3 show that Algorithm CS is worst case optimal in
order of magnitude for the number of critical stages criterion.

170 N. Thibault and C. Laforest

4 Conclusion

We have proposed an algorithm, called CS, solving an on-line covering problem
of members by respecting the following quality constraint: For each stage of
withdrawal, the diameter between members induced by the built tree is at most
a constant time the best possible value. Moreover, our algorithm is easy to use.
Indeed, for a stage of withdrawal, either it breaks the tree and rebuilds a new
one which is a tree of shortest paths (only O(log i) times, where i is the number
of removed members), or it just updates the current tree by removing useless
branches (in all the other cases).

Moreover, our algorithm is worst case optimal in order of magnitude for the
number of critical stages: It leads to O(log i) critical stages and we showed that
any algorithm leads to Ω(log i) critical stages in the worst case. We also have
proved that the number of elementary changes per stage (see equivalent defin-
ition in [4]) is constant in average. Due to space limitation, we do not include
these results. Note that we only consider the decremental problem because the
incremental problem (adding new members in the current tree) considering the
diameter as quality constraint is trivial. Indeed, plugging each new member
with a shortest path to the initial member leads to 0 critical stage with a level of
quality c = 2. We also have results with another objective function than the di-
ameter. Indeed, concerning the average distance between members of the groups,
we proved similar results in [7] for the incremental version of the problem. We
are now currently working on mixing additions and withdrawals.

Acknowledgments

The authors wish to thank the anonymous referees for their very useful
comments.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti Spac-
camela, and M. Protasi, Complexity and approximation, Springer, 1999.

2. A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cam-
bridge University press, 1998.

3. D. Hochbaum, Approximation algorithms for NP-hard problems, PWS publishing
compagny, 1997.

4. M. Imase and B. Waxman, Dynamic steiner tree problem, SIAM J. Discr. Math.,
4 (1991), pp. 369–384.

5. C. Laforest, A good balance between weight and distances for multipoint trees, in
International Conference On Principles Of DIstributed Systems 2002, pp. 195–204.

6. S. Raghavan, G. Manimaran, and C. S. R. Murthy, A rearrangeable algorithm
for the construction of delay-constrained dynamic multicast trees, IEEE/ACM (SIG-
COMM), ACM Press, 7 (1999).

7. N. Thibault and C. Laforest, An optimal rebuilding strategy for an incremental
tree problem, submitted in 2004 to journal of interconnection networks.

8. B. Waxman, Routing of multipoint connections, IEEE Journal on Selected Areas in
Communications, 6 (1988), pp. 1617–1622.

Optimal Delay for Media-on-Demand with
Pre-loading and Pre-buffering

Amotz Bar-Noy1, Richard E. Ladner2,�, and Tami Tamir3

1 Computer and Information Science Department, Brooklyn College, 2900 Bedford
Avenue Brooklyn, NY 11210

amotz@sci.brooklyn.cuny.edu
2 Department of Computer Science and Engineering, Box 352350, University of

Washington, Seattle, WA 98195
ladner@cs.washington.edu

3 School of Computer Science, The Interdisciplinary Center, P.O.Box 167,
Herzliya 46150, Israel

tami@idc.ac.il

Abstract. Broadcasting popular media to clients is the ultimate scal-
able solution for media-on-demand. The simple solution of downloading
and viewing the media from one channel cannot guarantee a reasonable
startup delay for viewing with no interruptions. Two known techniques
to reduce the delay are pre-loading and pre-buffering. In the former an
initial segment of the media is already in the client buffer, and in the
latter segments of the media are not transmitted in sequence and clients
may pre-buffer later segments of the media before viewing them. In both
techniques, the client should be capable to receive streams from chan-
nels at the same time of handling its own buffer and view the media from
either one of the channels or the buffer.

In this paper we consider broadcasting schemes that combine pre-
loading and pre-buffering. We present a complete tradeoff between (i)
the size of the pre-loading; (ii) the maximal possible delay for an un-
interrupted playback; (iii) the number of media; and (iv) the number
of channels allocated per one media. For a given B the size of the pre-
loading as a fraction of the media length, for m media, and for h channels
per media, we first establish a lower bound for the minimal maximum
delay, D, as a fraction of the movie length, for an uninterrupted playback
of any media out of the m media. We then present an upper bound that
approaches this lower bound when each media can be fragmented into
many segments.

1 Introduction

Media-on-demand (MoD) is the demand by clients to read, listen, or view various
types of media. In its simplest function, the clients would like to have an uninter-
rupted playback with as minimal as possible start-up delay. The subject of this
paper is to reduce the maximal start-up delay for MoD systems that support
� The research was partially funded by NSF Grant No. CCF-0223578.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 171–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

172 A. Bar-Noy, R.E. Ladner, and T. Tamir

uninterrupted service. Our main objective is to achieve the smallest maximal
start-up delay for given amount of two resources: the bandwidth of the system,
and the client local memory.

There are two main types of systems that support MoD: unicast systems
and broadcast systems. The former guarantees an immediate service as long as
there are not too many clients. The latter can support many clients but cannot
guarantee immediate service. For popular media, broadcasting is the ultimate
scalable solution. In various broadcasting schemes, different parts of the media
are transmitted on channels viewable to the clients. This paper considers the
potential benefit of broadcasting schemes from using some of the client memory
for storing in advance (pre-loading) parts of the media.

In the simplest implementation of MoD systems, clients who wish to view a
movie1, select the channel that would start broadcasting this movie the earliest
after their request time. Movies are broadcast on one channel or several channels.
Thus if h channels are allocated to a movie of length L time units, the maximal
start-up delay is L/h units by starting a new transmission every L/h time units.

In recent years, more efficient broadcasting schemes that are based on pre-
buffering were suggested. In these schemes, each movie is partitioned into seg-
ments, and the segments are transmitted on the channels in some order, not
necessarily their order in the movie. The client is reading all the channels simul-
taneously, ’collecting’ segments to its local memory, and is watching the segments
of the movie in order - some directly from the channels and some from its own
memory.

The above broadcasting schemes require customers to get the service through
a set-top-box (STB) capable of storing locally the transmitted data. This requires
that the STB is equipped with a local memory (disk). In fact, this technology
is already available: digital VCRs offered by ReplayTV [19], TiVo [22], and Ul-
timateTV [23], have capacities of at least 300 gigabytes, enabling the client to
store hours of movies in perfect quality. The disk capacity can be used to store
entire movies and also pre-buffered segments and pre-loaded segments of other
movies. Usually the former type of movies will be non-popular movies where
the latter type will be popular movies for which the broadcasting solution is
more beneficial. In this paper, we consider broadcasting schemes that combine
pre-loading and pre-buffering. That is, we assume that some prefix of the movie
is stored at the client’s machine, and therefore he or she should only receive the
remainder of the movie. We present a complete tradeoff between (i) the size of
the pre-loading; (ii) the maximal possible delay for an uninterrupted playback;
(iii) the number of movies; and (iv) the number of channels allocated per movie.

For a given B the size of the pre-loading as a fraction of the movie length,
for m movies, and for h channels per movie, we first establish a lower bound
for the minimal maximum delay, D, as a fraction of the movie length, for an
uninterrupted playback of any movie out of the m movies. We then present
an upper bound that approaches this lower bound when each movie can be
fragmented to many segments.

1 For convenience, we use the terminology of movies in Video-on-Demand (VoD).

Optimal Delay for Media-on-Demand with Pre-loading and Pre-buffering 173

1.1 Model and Preliminaries

The system broadcasts m movies on h channels. Unless specified otherwise, as-
sume that all m movies have the same length, L, normalized to be one time unit
(L = 1). Each movie is partitioned into s segments of equal length. Segment
size may range from a single bit (which is theoretically interesting) to the whole
movie (in case of a single segment). The segments are indexed 1 to s in the order
they should be viewed. The segments of the movies may be broadcast in any
order on any channel. Assume that it takes one time slot to transmit or view
a segment and thus, the length of the time slot is 1/s. Assume further that all
the channels are synchronized in the sense that the starting points for the time
slots coincide in all of them. Clients may buffer or view segments from any chan-
nel since they may receive data from all of them. In other words, the receiving
bandwidth of each client is h. This implies that a client buffers or views segment
i the first time he or she can do so after the arrival time. Clients may buffer any
number of segments before the viewing process begins.

The maximal possible delay of a client is denoted by D and is given as a
fraction of the movie length. That is, if for example D = 1/4, no client will
wait more than 1/4 of a movie length till it can start an uninterrupted play-
back of the movie. Let d = Ds denote the maximal delay measured as number
of segments (time-slots). In the broadcasting schemes we present, the maxi-
mum delay is given in units of time-slots, thus we assume that D is a multiple
of 1/s.

The basic principle in all the schemes that use pre-buffering is that early
segments should be broadcast more frequently than later segments. Intuitively,
a client needs to watch the zth segment only z − 1 time-slots after it starts
watching the movie, therefore, the zth segment, can be transmitted less often
than earlier segments. Formally, in [2], optimal schemes that are based on pre-
buffering are developed using the windows scheduling problem and the following
is shown:

Theorem 1. Let S be a schedule that broadcasts s ≥ 1 segments for a movie on
h ≥ 1 channels. Then S guarantees a maximum start-up delay of d > 0 time-
slots if and only if segment z is transmitted once in any window of d + z − 1
segments for each 1 ≤ z ≤ s.

Assume now that out of the s segments composing the movie, the first b are pre-
loaded and are stored at the client’s local machine (set top box), the other s− b
segments are transmitted on channels. Clearly, the client can always watch the
first b segments with no delay. Consider the remainder of the movie as a complete
(shorter) movie. Assume there exists a broadcasting scheme that enables any
client to view this movie with delay at most d′ (in number of segments units).
The idea is to overlap the time the client watches the first b segments with
the time it is waiting to the rest of the data. This would result in a delay
max(0, d′ − b). The challenge is to schedule the remaining s− b segments on the
broadcasting channels in a way that minimizes this term.

174 A. Bar-Noy, R.E. Ladner, and T. Tamir

Example: Consider a single movie transmitted on a single channel. Assume that
the client has at his local machine all but the last 5 segments, which are not pre-
loaded, and are transmitted on the channel in the following (repeated) order:

[1, 3, 2, 4, 1, 5, 2, 3, 1, 4, 2, 5]

In this order, the segments 1, 2 are transmitted every 4 slots and the segments
3, 4, 5 are transmitted every 6 slots. Recall that the movie is partitioned into s
segments, thus, these 5 segments are segments s−4, . . . , s of the movie. The first
b = s− 5 segments are pre-loaded and available to the client at any time (thus,
B = (s − 5)/s). By Theorem 1 the above transmission of the last 5 segments
guarantees a delay of at most d′ = 4 slots for viewing with no interruptions the
last 5 segments. Thus, if s ≥ 9, or equivalently, b ≥ 4 meaning that the client has
at least the first 4 segments of the movie, then there is no delay at all. If s < 9,
the delay with pre-loading is 4− b slots which is D = (4− b)/(b+ 5) = (9− s)/s
of the whole movie. We get the following tradeoff between B and D:

s B D

5 0 4/5
6 1/6 3/6
7 2/7 2/7
8 3/8 1/8
9 4/9 0
> 9 (s− 5)/s 0

In particular, this means that in order to guarantee no delay the pre-loading size
should be 4/9 of the movie length, and with no pre-loading the maximal delay
is 4/5 of the movie length.

Table 1 provides a glossary of the notation used in the paper.
The lower bound and the matching broadcasting scheme we present assume

that the client’s memory stores only prefixes of movies. One might doubt that
this is optimal, and suggest it might be better to store late parts of the movie

Table 1. Glossary of notations

notation meaning

h number of channels
m number of different movies

ρ = h/m the ratio between number of channels and number of movies.
s number of segments per each movie.
B the size of the pre-loading buffer as a fraction of the movie length.

b = Bs the size of the pre-loading buffer as a number of segments
D the maximal delay for an uninterrupted playback as a fraction of the movie length.

d = Ds the maximal delay as a number of segments
d′ the maximal delay for the non pre-loaded part, as a number of segments

Optimal Delay for Media-on-Demand with Pre-loading and Pre-buffering 175

and broadcast earlier ones. The following Theorem should remove such doubts -
it states that the best way to use an allocated amount B of memory to a movie
is by storing (pre-loading) a prefix of size B of this movie.

Theorem 2. For any broadcasting scheme that combines pre-loading and broad-
casting, if memory of size B is allocated to a movie, then it is optimal to store
from this movie a prefix of size B.

Proof. The idea is similar to the optimality proof of the offline algorithm for
caching - that evicts from the cache the page that will be requested last among
the pages that are currently in the cache. Consider any broadcasting scheme S
in which for some movie there exists a bit i that is not pre-loaded, while some
bit j > i is. Since j is pre-loaded, it is never transmitted by the scheme.

Consider the scheme S′ in which bit i is pre-loaded and bit j is transmitted
whenever bit i was transmitted in S. Clearly, the user will have bit i on time
(from its memory) and bit j will be available at the time bit i was available in
S. Since we assume that all clients read the movie in order, bit i is requested
before bit j, therefore, by having bit j available in S′ at the time i was available
in S, the client’s delay can only decrease.

1.2 Related Work

MoD systems, and in particular the solution of broadcasting, have been studied
extensively in recent years. The paper [3] surveys broadcasting protocols and de-
scribes the development of these protocols, starting with Staggered broadcasting
protocols, in which the movies are simply transmitted repeatedly on the chan-
nels (e.g., [4]), through Pyramid-based broadcasting protocols, in which movies
are partitioned into segments and different segments are broadcast on different
channels [24], and finally Harmonic broadcasting protocols in which segment i
is allocated bandwidth proportional to 1/i (e.g., [8]).

The case when there is no pre-loading and pre-buffering may start only when
clients start viewing the movie received much attention in the recent decade. The
papers [7, 9] present a simple schedule of one movie on h channels by partitioning
the movie into 2h−1 segments. Their schedule implies a maximal start-up delay
of 1/(2h − 1) for a movie of length 1. This scheme is improved in the Pagoda
scheme ([15]), the new Pagoda scheme ([11]), the Recursive Frequency-Splitting
scheme ([21]), the Harmonic broadcasting scheme ([1]), and the Polyharmonic
broadcasting scheme ([14]. In these schemes, the worst-case maximal delay as-
ymptotically approaches 1/(eb − 1) for total bandwidth b. Several papers, e.g.,
[6] have shown this bound on delay to be optimal.

Harmonic broadcasting is implemented in [1] by a reduction from the window-
scheduling problem. Specifically, the movie is partitioned into s equal-sized seg-
ments that are scheduled on the channels such that the gap between any two
consecutive appearances of segment i is at most i. For a given number of channels,
the goal is to maximize s, and as a result, minimize the start-up delay (which
is at most 1/s). A schedule based on this principle is shown to approach the
lower bound as h → ∞. The papers [12, 13] also allow clients to start buffering

176 A. Bar-Noy, R.E. Ladner, and T. Tamir

segments before they start viewing the movie to achieve better results. However,
they demonstrate the usefulness of this observation only for small examples. The
paper [2] gives asymptotic matching upper and lower bounds on the maximal
delay of a broadcasting scheme that uses pre-buffering.

The papers [18, 16] consider pre-loading, but only for the case of zero delay.
The paper [18] does not allow pre-buffering before the clients start watching
the movie whereas the paper [16] improves the results by allowing this feature.
In another work on pre-loading [10], it is assumed that each client pre-loads
segments of a different set of movies, according to the client’s choice. Earlier
works on pre-loading assume that the preloaded data is stored at a proxy server
and not at the client’s local machine [5, 20].

1.3 Contribution

We consider broadcasting schemes that combine pre-loading and pre-buffering.
We present a complete tradeoff between (i) the size of the pre-loading; (ii) the
maximal possible delay for an uninterrupted playback; (iii) the number of media;
and (iv) the number of channels allocated per one media.

For a given B the size of the pre-loading as a fraction of the media length,
for m media, and for h channels per media, we first establish a lower bound for
the minimal maximum delay, D, as a fraction of the movie length, for an unin-
terrupted playback of any media out of the m media. We then present an upper
bound that approaches this lower bound when each media can be fragmented to
many segments.

2 A Lower Bound for the Maximal Delay

We first compute a lower bound for the maximal delay for a fixed s ≥ 1 number
of segments per movie. Then we calculate the general lower bound by letting
s tend to infinity. For ease of presentation we assume that both b = Bs and
d = Ds are integers.

Each client has the first b = Bs segments of each movie in its buffer. Therefore,
the channels need to broadcast only segments b + 1, . . . , s. Since the maximal
delay is d, segment i of each movie should be broadcast at least once in any
window of size d + i for b + 1 ≤ i ≤ s. That is, segment i consumes at least
1/(d + i) of a channel. Since the total number of channels is h and since there
are m movies, it follows that

m
s∑

i=b+1

1
i + d

≤ h .

This is equivalent to
s+d∑

i=b+d+1

1
i
≤ ρ .

Optimal Delay for Media-on-Demand with Pre-loading and Pre-buffering 177

Using the known bound on the harmonic number Hn =
∑n

i=1(1/i) implies

ln
(
s + d

b + d

)
≤ ρ .

Since b = Bs and d = Ds, this is equivalent to

1 + D

B + D
≤ eρ .

By manipulating the above inequality we get the lower bound for D given B

D ≥ 1 −Beρ

eρ − 1
.

Equivalently, the lower bound for B given D is

B ≥ 1 −D(eρ − 1)
eρ

.

In particular, when B = 0 the lower bound matches the known lower bound [6]

D ≥ 1
eρ − 1

.

When D = 0 the lower bound for B is

B ≥ 1
eρ

.

For example, in order to guarantee no delay for a single movie transmitted on
a single channel the client must pre-load at least 1/e ≈ 0.368 of the movie.

3 Optimal Schedules

In this section we present an upper bound that approaches the lower bound
from Section 2 when each movie can be fragmented into many segments. In the
optimal schedule the last segments of each movie are transmitted in such a way
that earlier segments are transmitted more often. Assume first a transition of
a single movie, that is, m = 1. Consider a schedule of the numbers [x..y] on h
channels such that for any x ≤ i ≤ y, in each window of i consecutive slots, the
number i appears at least once in one of the channels. For example

[4, 6, 5, 7, 4, 8, 5, 6, 4, 7, 5, 8]

is such a schedule for h = 1, x = 4, and y = 8.
Suppose we interpret the numbers x, . . . , y as segments s− y + x, . . . , s of the

movie. This reflects a partition of the movie into s segments each of length 1/s
of the movie length. The segments that are not transmitted should be stored
at the client memory, thus, the pre-loading size is b = s − y + x − 1 which
implies B = (s − y + x − 1)/s. Furthermore, the delay with pre-buffering is
D = (y + 1− s)/s. It follows that a viable range for s is from y − x + 1 to y + 1
(it might be that s > y+1 but the delay never reduces below 0), and we get the
following tradeoff between B and Dg:

178 A. Bar-Noy, R.E. Ladner, and T. Tamir

s B D

y − x + 1 0 x/(y − x + 1)
y − x + 2 1/(y − x + 2) (x− 1)/(y − x + 2)
y − x + i (i− 1)/(y − x + i) (x− i + 1)/(y − x + i)

y (x − 1)/y 1/y
y + 1 x/(y + 1) 0

> y + 1 (s + x− y − 1)/s 0

In particular, this means that in order to guarantee no delay with this schedule
the pre-loading size should be x/(y + 1) of the movie length and with no pre-
loading the maximal delay is x/(y − x + 1) of the movie length.

The upper bound is achieved for such a schedule of the last segments, that is,
for some range [x..y], any x ≤ i ≤ y, is transmitted at least once in each window
of i consecutive slots. This is a special instance of the windows scheduling problem
studied in [2]. Consider the general case s = y−x+i in which B = (i−1)/(y−x+i)
and D = (x− i + 1)/(y− x + i). Assign z = y + 1 and j = x− i + 1. With these
variables,

B =
x− j

z − j
D =

j

z − j
.

Further, assign w = z/j. It follows that

B =
x/j − 1
w − 1

D =
1

w − 1
.

As shown in [2], in the limit, for large values of s (and consequently large
values of x, y), there exists a valid schedule of [x..y] such that

x

y − x + 1
≈ 1

eh − 1
.

This implies that

x =
y + 1
eh

≈ z

eh
.

Furthermore, the values of B and D as a function of w are

B =
w/eh − 1
w − 1

D =
1

w − 1
.

Plugging w = 1 + 1/D in the equality for B yields

B = D

(
1 + 1/D

eh
− 1
)

=
D + 1
eh

−D =
1
eh

−
(

1 − 1
eh

)
D .

Equivalently,

D =
1/eh −B

1 − 1/eh
=

1 − ehB

eh − 1
.

Optimal Delay for Media-on-Demand with Pre-loading and Pre-buffering 179

For the special case of D = 0 we have (1 − ehB) = 0 or equivalently

B =
1
eh

.

For the special case of B = 0 we have 1/eh = (1 − 1/eh)D or equivalently

D =
1

eh − 1
.

The calculation for the general case of m > 1 is identical. For each of the
m movies, segments s − y + x, . . . , s are transmitted with windows x, . . . , y,
respectively. Along the whole calculation it is possible to replace h by ρ = h/m.
Note that all the above upper bounds match the lower bounds from Section 2.

4 Discussion

In this paper we showed a tradeoff between the size of the pre-loaded buffer and
the guaranteed delay for an uninterrupted playback of movies. We first proved
the optimal possible tradeoff and then demonstrated how to achieve it when a
movie may be partitioned to many segments. In what follows we discuss several
possible extensions.

Limiting the receiving bandwidth. In this paper we assumed that a client can
buffer segments of the movie from all the channels. This means that the receiving
bandwidth of a client is h times more than the playback bandwidth. Several
papers explored the case where the receiving bandwidth is only r times the
playback bandwidth for some 1 < r < h (e.g. [17]). However, no paper consider
this case with the pre-loading capability.

Limited size buffers. Early works on this model assumed that the buffer size
for the pre-buffered segments is bounded as a fraction of the movie length (see
the survey [3]). Although it seems that the sky is the limit for cheap and large
memory, this might not be the case for hand-held set top boxes. It is interesting
therefore to investigate the tradeoff between the pre-loaded buffer size and the
pre-buffered buffer size when their sum is bounded.

Movies with different popularity. The solution of broadcasting (in contrast to
unicast) is suitable for popular media. However, even among popular media there
are different levels of popularity. In particular, only a small number of movies is
very popular at a specific time. It is very intriguing to see how the combination of
pre-loading and pre-buffering can be used to provide smaller delay to the highly
requested movies while increasing the maximal possible delay for less popular
movies. The problem can be modelled as follows. Consider a system with m
movies with different popularity. The popularity parameter of movie i is denoted
by pi such that

∑m
i=1

1
pi

= 1. The parameter pi can be viewed as the probability
that the next client’s request is to watch movie i. Let Di denote the maximal

180 A. Bar-Noy, R.E. Ladner, and T. Tamir

possible delay a broadcasting scheme guarantees for a movie i, then the goal is
to minimize

∑m
i=1 piDi. That is, the weighted maximal possible delay (also the

expected maximal delay) of the whole system. In practice, especially since the
popularity parameter varies drastically over time, it is not practical to assume
that each movie has a specific popularity parameter and instead a simpler model
may be addressed. The system distinguishes between the hot movies and the rest
of the popular movies. There are various ways to ensure smaller delay to the hot
movies, they can be transmitted more often, or a larger portion of these movies
might be pre-loaded.

References

1. A. Bar-Noy and R. E. Ladner. Windows Scheduling Problems for Broadcast Sys-
tems. SIAM Journal on Computing (SICOMP), 32(4):1091–1113, 2003.

2. A. Bar-Noy, R. E. Ladner, and T. Tamir. Scheduling techniques for media-on-
demand. Proc. of the 14-th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 791-800, 2003.

3. S. W. Carter, D. D. E. Long, and J. Pâris. Video-on-Demand Broadcasting Proto-
cols. In Multimedia Communications: Directions and Innovations (J. D. Gibson,
Editors), Academic Press, San Diego, 179–189, 2000.

4. A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic Batching Policies for an On-
Demand Video Server. ACM Multimedia Systems Journal, 4(3):112–121, 1996.

5. D. Eager, M. Ferris and M. Vernon. Optimized regional caching for on-demand
data delivery. In Proc. 1999 Multimedia Computing and Networking Conference
(MMCN’99), 1999.

6. L. Engebretsen and M. Sudan. Harmonic Broadcasting is Optimal. In Proceed-
ings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
431 – 432, 2002.

7. K. A. Hua, Y. Cai, and S. Sheu Exploiting Client Bandwidth for More Efficient
Video Broadcast. In Proceedings of the 7th International Conference on Computer
Communication and Networks (ICCCN), 848–856, 1998.

8. L. Juhn and L. Tseng. Harmonic Broadcasting for Video-on-Demand Service. IEEE
Transactions on Broadcasting, 43(3):268–271, 1997.

9. L. Juhn and L. Tseng. Fast Data Broadcasting and Receiving Scheme for Popular
Video Service. IEEE Transactions on Broadcasting, 44(1):100–105, 1998.

10. J. F. Pâris. A Broadcasting Protocol for Video-on-Demand Using Optional Partial
Preloading. In Proceedings of the 11th International Conference on Computing,
vol.I, 319Ű-329, 2002.

11. J. Pâris. A Simple Low-Bandwidth Broadcasting Protocol for Video-on-Demand.
In Proceedings of the 8th International Conference on Computer Communications
and Networks (IC3N), 118–123, 1999.

12. J. Pâris. A Fixed-Delay Broadcasting Protocol for Video-on-Demand. In Pro-
ceedings of the 10th International Conference on Computer Communications and
Networks (IC3N), 418–423, 2001.

13. J. Pâris. A Simple but Efficient Broadcasting Protocol for Video-on-Demand. In
Proceedings of the 24th International Performance of Computers and Communica-
tion Conference (IPCCC 2005), 167-Ű174, 2005.

Optimal Delay for Media-on-Demand with Pre-loading and Pre-buffering 181

14. J. Pâris, S. W. Carter, and D. D. E. Long. A Low Bandwidth Broadcasting Pro-
tocol for Video on Demand. In Proceedings of the 7th International Conference on
Computer Communications and Networks (IC3N), 690–697, 1998.

15. J. Pâris, S. W. Carter, and D. D. E. Long. A Hybrid Broadcasting Protocol for
Video on Demand. In Proceedings of the IS&T/SPIE Conference on Multimedia
Computing and Networking (MMCN), 317–326, 1999.

16. J. Pâris and D. D. E. Long. The Case for Aggressive Partial Preloading in Broad-
casting Protocols for Video-on-Demand. In Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME), 113–116, 2001.

17. J. Pâris and D. D. E. Long. Limiting the Receiving Bandwidth of Broadcasting
Protocols for Video-on-Demand. In Proceedings of the Euromedia Conference, 107-
111, 2000.

18. J. Pâris, D. D. E. Long, and P. E. Mantey, Zero-Delay Broadcasting Protocols for
Video-on-Demand. In Proceedings of the 1999 ACM Multimedia Conference pages
189-197,

19. ReplayTV. http://www.replay.com
20. S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia streams.

In Proceedings of the IEEE 18th Conference on Computer Communications (IN-
FOCOM), 1310–1319, 1999.

21. Y. C. Tseng, M. H. Yang, and C. H. Chang. A Recursive Frequency-Splitting
Scheme for Broadcasting Hot Video in VOD Service. IEEE Transactions on Com-
munications, 50(8):1348–1355, 2002.

22. TiVo Technologies. http://www.tivo.com
23. UltimateTV. http://www.ultimatetv.com
24. S. Viswanathan and T. Imielinski. Metropolitan Area Video-on-Demand Service

Using Pyramid Broadcasting. ACM Multimedia Systems, 4(3):197–208, 1996.

Strongly Terminating Early-Stopping k-Set Agreement
in Synchronous Systems with General Omission Failures

Philippe Raïpin Parvédy, Michel Raynal, and Corentin Travers

IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
{praipinp, raynal, ctravers}@irisa.fr

Abstract. The k-set agreement problem is a generalization of the consensus
problem: considering a system made up of n processes where each process pro-
poses a value, each non-faulty process has to decide a value such that a decided
value is a proposed value, and no more than k different values are decided. It
has recently be shown that, in the crash failure model, min(� f

k
� + 2, � t

k
� + 1)

is a lower bound on the number of rounds for the non-faulty processes to decide
(where t is an upper bound on the number of process crashes, and f , 0 ≤ f ≤ t,
the actual number of crashes).

This paper considers the k-set agreement problem in synchronous systems
where up to t < n/2 processes can experience general omission failures (i.e.,
a process can crash or omit sending or receiving messages). It first introduces a
new property, called strong termination. This property is on the processes that
decide. It is satisfied if, not only every non-faulty process, but any process that
neither crashes nor commits receive omission failures decides. The paper then
presents a k-set agreement protocol that enjoys the following features. First, it is
strongly terminating (to our knowledge, it is the first agreement protocol to satisfy
this property, whatever the failure model considered). Then, it is early deciding
and stopping in the sense that a process that either is non-faulty or commits only
send omission failures decides and halts by round min(� f

k
� + 2, � t

k
� + 1). To

our knowledge, this is the first early deciding k-set agreement protocol for the
general omission failure model. Moreover, the protocol provides also the follow-
ing additional early stopping property: a process that commits receive omission
failures (and does not crash) executes at most min(� f

k
� + 2, � t

k
� + 1) rounds.

It is worth noticing that the protocol allows each property (strong termination vs
early deciding/stopping vs early stopping) not to be obtained at the detriment of
the two others.

The combination of the fact that min(� f
k
� + 2, � t

k
� + 1) is lower bound on

the number of rounds in the crash failure model, and the very existence of the
proposed protocol has two very interesting consequences. First, it shows that,
although general omission failure model is more severe than the crash failure
model, both models have the same lower bound for the non-faulty processes to
decide. Second, it shows that, in the general omission failure model, that bound
applies also the processes that commit only send omission failures.

Keywords: Agreement problem, Crash failure, Strong Termination, Early
decision, Early stopping, Efficiency, k-set agreement, Message-passing system,
Receive omission failure, Round-based computation, Send omission failure, Syn-
chronous system.

P. Flocchini and L. Gąsieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 182–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Strongly Terminating Early-Stopping k-Set Agreement 183

1 Introduction

Context of the paper k-set and consensus problems. The k-set agreement problem gen-
eralizes the uniform consensus problem (that corresponds to the case k = 1). It has been
introduced by S. Chaudhuri who, considering the crash failure model, investigated how
the number of choices (k) allowed to the processes is related to the maximum number
(t) of processes that can be faulty (i.e., that can crash) [7]. The problem can be defined
as follows. Each of the n processes (processors) defining the system starts with its own
value (called “proposed value”). Each process that does not crash has to decide a value
(termination), in such a way that a decided value is a proposed value (validity) and no
more than k different values are decided (agreement)1.

k-set agreement can trivially be solved in crash-prone asynchronous systems when
k > t [7]. A one communication step protocol is as follows: (1) t + 1 processes are ar-
bitrarily selected prior to the execution; (2) each of these processes sends its value to all
processes; (3) a process decides the first value it receives. Differently, it has been shown
that there is no solution in these systems as soon as k ≤ t [5, 17, 31]. (The asynchronous
consensus impossibility, case k = 1, was demonstrated before, using a different tech-
nique [11]. A combinatorial characterization of the tasks which are solvable in presence
of one process crash is presented in [3]). Several approaches have been proposed to cir-
cumvent the impossibility to solve the k-set agreement problem in process crash prone
asynchronous systems (e.g., probabilistic protocols [22], or unreliable failure detectors
with limited scope accuracy [16, 21, 32]).

The situation is different in process crash prone synchronous systems where the k-
set agreement problem can always be solved, whatever the value of t with respect to k.
It has also been shown that, in the worst case, the lower bound on the number of rounds
(time complexity measured in communication steps) is �t/k�+ 1 [8]. (This bound gen-
eralizes the t+ 1 lower bound associated with the consensus problem [1, 2, 10, 20]. See
also [4] for the case t = 1.)

Early decision. Although failures do occur, they are rare in practice. For the uniform
consensus problem (k = 1), this observation has motivated the design of early deciding
synchronous protocols [6, 9, 19, 30], i.e., protocols that can cope with up to t process
crashes, but decide in less than t + 1 rounds in favorable circumstances (i.e., when
there are few failures). More precisely, these protocols allow the processes to decide in
min(f + 2, t + 1) rounds, where f is the number of processes that crash during a run,
0 ≤ f ≤ t, which has been shown to be optimal (the worst scenario being when there
is exactly one crash per round) [6, 18]2.

In a very interesting way, it has very recently been shown that the early deciding
lower bound for the k-set agreement problem in the synchronous crash failure model is
�f/k�+2 for 0 ≤ �f/k� ≤ �t/k�−2, and �f/k�+1 otherwise [12]. This lower bound,

1 A process that decides and thereafter crashes is not allowed to decide one more value, in ad-
dition to the k allowed values. This is why k-set agreement generalizes uniform consensus
where no two processes (be they faulty or not) can decide different values. Non-uniform con-
sensus allows a faulty process to decide a value different from the value decided by the correct
processes. The non-uniform version of the k-set agreement problem has not been investigated
in the literature.

2 More precisely, the lower bound is f +2 when f ≤ t−2, and f +1 when f = t−1 or f = t.

184 P. Raïpin Parvédy, M. Raynal, and C. Travers

not only generalizes the corresponding uniform consensus lower bound, but also shows
an “inescapable tradeoff” among the number t of crashes tolerated, the number f of
actual crashes, the degree k of coordination we want to achieve, and the best running
time achievable [8]. As far as the time/coordination degree tradeoff is concerned, it
is important to notice that, when compared to consensus, k-set agreement divides the
running time by k (e.g., allowing two values to be decided halves the running time).

Related work. While not-early deciding k-set agreement protocols for the synchronous
crash failure model (i.e., protocols that always terminate in �t/k� + 1 rounds) are now
well understood [2, 8, 20], to our knowledge, so far only two early deciding k-set agree-
ment protocols have been proposed [13, 27] for that model. The protocol described in
[13] assumes t < n − k, which means that (contrarily to what we could “normally”
hope) the number of crashes t that can be tolerated decreases as the coordination de-
gree k increases. The protocol described in [27], which imposes no constraint on t (i.e.,
t < n), is based on a mechanism that allows the processes to take into account the actual
pattern of crash failures and not only their number, thereby allowing the processes to
decide in much less than �f/k� + 2 rounds in a lot of cases (the worst case being only
when the crashes are evenly distributed in the rounds with k crashes per round). We
have recently designed an early deciding k-set agreement protocol for the synchronous
send (only) omission failure model [28].

Content of the paper. This paper investigates the k-set agreement problem in synchro-
nous systems prone to general omission failures and presents a corresponding protocol.
This failure model lies between the crash failure model and the Byzantine failure model
[24]: a faulty process is a process that crashes, or omits sending or receiving messages
[14, 25]. This failure model is particularly interesting as it provides the system design-
ers with a realistic way to represent input or output buffer overflow failures of at most t
processes [14, 25]. The proposed protocol enjoys several noteworthy properties.

– The usual termination property used to define an agreement problem concerns only
the correct processes: they all have to decide. This requirement is tied to the prob-
lem, independently of a particular model. Due to the very nature of the correspond-
ing faults, there is no way to force a faulty process to decide in the crash failure
model. It is the same in the Byzantine failure model where a faulty process that
does not crash can decide an arbitrary value.

The situation is different in the general omission failure model where a faulty
process that does not crash cannot have an arbitrary behavior. On one side, due to
the nature of the receive omission failures committed by a process, there are runs
where that process can forever be prevented from learning that it can decide a value
without violating the agreement property (at most k different values are decided).
So, for such a process, the best that can be done in the general case is either to
decide a (correct) value, or halt without deciding because it does not know whether
it has a value that can be decided. On the other side, a process that commits only
send omission failures receives all the messages sent to it, and should consequently
be able to always decide a correct value.

We say that a protocol is strongly terminating if it forces to decide all the
processes that neither crash nor commit receive omission failures (we call them

Strongly Terminating Early-Stopping k-Set Agreement 185

the good processes; the other processes are called bad processes). This new termi-
nation criterion is both theoretically and practically relevant: it extends the termi-
nation property to all the processes that are committing only “benign” faults. The
proposed protocol is strongly terminating3.

– Although, as discussed before, early decision be an interesting property, some
early-deciding (consensus) protocols make a difference between early decision and
early stopping: they allow a correct process to decide in min(f + 2, t+ 1) but stop
only at a later round (e.g., [9]). Here we are interested in early-deciding protocols
in which a process decides and stops during the very same round. More precisely,
the protocol has the following property:
• A good process decides and halts by round min(� f

k � + 2, � t
k� + 1).

So, when � f
k � ≤ � t

k � − 2, the protocol has the noteworthy property to extend the
� f

k �+2 lower bound for a correct process to decide (1) from the crash failure model
to the general omission failure model, and (2) from the correct processes to all the
good processes.

As noticed before, it is not possible to force a bad process to decide. So, for
these processes the protocol “does its best”, namely it ensures the following early
stopping property:
• No process executes more than min(� f

k � + 2, � t
k � + 1) rounds.

Let us notice that it is possible that a bad process decides just before halting. More-
over, when f = x k where x is an integer (which is always the case for consensus),
or when there is no fault (f = 0), a bad process executes no more rounds than a
good process. In the other cases, it executes at most one additional round.

– Each message carries a proposed value and two boolean arrays of size n (sets of
process identities). This means that, if we do not consider the size of the proposed
values (that does not depends on the protocol), the bit complexity is upper bounded
by O(n2f/k) per process.

The design of a protocol that satisfies, simultaneously and despite process crashes
and general omission faults, the agreement property of the k-set problem, strong termi-
nation, early decision and stopping for the good processes and early stopping for the
bad processes is not entirely obvious, as these properties are partly antagonistic. This is
due to the fact that agreement requires that no more than k distinct values be decided
(be the deciding processes correct or not), strong termination requires that, in addition
to the correct processes, a well defined class of faulty processes decide, and early stop-
ping requires the processes to halt as soon as possible. Consequently the protocol should
not prevent processes from deciding at different rounds, and so, after it has decided, a
process can appear to the other processes as committing omission failures, while it is
actually correct. Finally, the strong termination property prevents the elimination from
the protocol of a faulty process that commits only send omission failures as soon as it
has been discovered faulty, as that process has to decide a value if it does not crash later.
A major difficulty in the design of the protocol consists in obtaining simultaneously all
these properties and not each one at the price of not satisfying one of the others.

3 None of the uniform consensus protocols for the synchronous general omission failure model
that we are aware of (e.g., [25, 26]) is strongly terminating.

186 P. Raïpin Parvédy, M. Raynal, and C. Travers

General transformations from a synchronous failure model to another synchronous
failure model (e.g., from omission to crash) are presented in [23]. These transformations
are general (they are not associated with particular problems) and have a cost (simulat-
ing a round in the crash failure model requires two rounds in the more severe omission
failure model). So, they are not relevant for our purpose.

When instantiated with k = 1, the protocol provides a new uniform consensus pro-
tocol for the synchronous general omission failure model. To our knowledge, this is
the first uniform consensus protocol that enjoys strong termination and directs all the
processes to terminate by round min(f +2, t+ 1). Let us finally observe that the paper
leaves open two problems for future research. The first consists in proving or disproving
that � f

k � + 2 is a tight lower bound for a bad process to stop when f = k x + y with x
and y being integers and 0 < y < k (we think it is). The second problem concerns t: is
t < n/2 a lower bound to solve the strongly terminating early stopping k-set problem?
(Let us remark that the answer is “yes” for k = 1 [23, 30].)

k-set protocol can be useful to allocate shareable resources. As an example, let us
consider the allocation of broadcast frequencies in communication networks (this ex-
ample is taken from [20]). Such a protocol allows processes to agree on a small number
of frequencies for broadcasting large data (e.g., a movie). As the communication is
broadcast based, the processes can receive the data using the same frequency.

Roadmap. The paper consists of 6 sections. Section 2 presents the computation model
and gives a definition of the k-set agreement problem. To underline its basic design
principles and make its understanding easier, the protocol is presented incrementally.
Section 3 presents first a strongly terminating k-set agreement protocol. Then,
Section 5 enriches this basic protocol to obtain a strongly terminating, early stopping
k-set agreement protocol. Formal statements of the properties (lemmas and theorems)
of both protocols are provided in Section 4 and Section 6, respectively. Due to the page
limitation, the full proofs of these properties do not appear in this paper. The interested
reader can find them in a companion technical report [29] available on-line.

2 Computation Model and Strongly Terminating k-Set Agreement

2.1 Round-Based Synchronous System

The system model consists of a finite set of processes, namely, Π = {p1, . . . , pn},
that communicate and synchronize by sending and receiving messages through chan-
nels. Every pair of processes pi and pj is connected by a channel denoted (pi, pj). The
underlying communication system is assumed to be failure-free: there is no creation,
alteration, loss or duplication of message.

The system is synchronous. This means that each of its executions consists of a
sequence of rounds. Those are identified by the successive integers 1, 2, etc. For the
processes, the current round number appears as a global variable r that they can read,
and whose progress is managed by the underlying system. A round is made up of three
consecutive phases:

Strongly Terminating Early-Stopping k-Set Agreement 187

– A send phase in which each process sends messages.
– A receive phase in which each process receives messages. The fundamental prop-

erty of the synchronous model lies in the fact that a message sent by a process pi to
a process pj at round r, is received by pj at the same round r.

– A computation phase during which each process processes the messages it re-
ceived during that round and executes local computation.

2.2 Process Failure Model

A process is faulty during an execution if its behavior deviates from that prescribed by
its algorithm, otherwise it is correct. A failure model defines how a faulty process can
deviate from its algorithm [15]. We consider here the following failure models:

– Crash failure. A faulty process stops its execution prematurely. After it has crashed,
a process does nothing. Let us observe that if a process crashes in the middle of a
sending phase, only a subset of the messages it was supposed to send might actually
be sent.

– Send Omission failure. A faulty process crashes or omits sending messages it was
supposed to send [14].

– General Omission failure. A faulty process crashes, omits sending messages it
was supposed to send or omits receiving messages it was supposed to receive (re-
ceive omission) [25].

It is easy to see that these failure models are of increasing “severity” in the sense that
any protocol that solves a problem in the General Omission (resp., Send Omission)
failure model, also solves it in the (less severe) Send Omission (resp., Crash) failure
model [15]. This paper considers the General Omission failure model. As already
indicated, n, t and f denote the total number of processes, the maximum number of
processes that can be faulty, and the actual number of processes that are faulty in a
given run, respectively (0 ≤ f ≤ t < n/2).

As defined in the introduction, good processes are the processes that neither crash
nor commit receive omission failures. A bad process is a process that commits receive
omission failures or crashes. So, given a run, each process is either good or bad. A good
process commits only “benign” failures, while a bad process commits “severe” failures.

2.3 Strongly Terminating k-Set Agreement

The problem has been informally stated in the Introduction: every process pi proposes
a value vi and each correct process has to decide on a value in relation to the set of pro-
posed values. More precisely, the k-set agreement problem is defined by the following
three properties:

– Termination: Every correct process decides.
– Validity: If a process decides v, then v was proposed by some process.
– Agreement: No more than k different values are decided.

As we have seen 1-set agreement is the uniform consensus problem. In the following,
we implicitly assume k ≤ t (this is because, as we have seen in the introduction, k-set
agreement is trivial when k > t).

188 P. Raïpin Parvédy, M. Raynal, and C. Travers

As already mentioned, we are interested here in protocols that direct all the good
processes to decide. So, we consider a stronger version of the k-set agreement problem,
in which the termination property is replaced by the following property:

– Strong Termination: Every good process decides.

3 A Strongly Terminating k-Set Agreement Protocol

We first present a strongly terminating k-set agreement protocol where the good pro-
cesses terminate in � t

k � + 1 rounds. The protocol is described in Figure 1. r is a global
variable that defines the current round number; the processes can only read it.

A process pi starts the protocol by invoking the function k-SET_AGREEMENT(vi)
where vi is the value it proposes. It terminates either by crashing, by returning the
default value ⊥ at line 08, or by returning a proposed value at line 11. As we will
see, only a bad process can exit at line 08 and return ⊥. That default value cannot be
proposed by a process. So, returning ⊥ means “no decision” from the k-set agreement
point of view.

3.1 Local Variables

A process pi manages four local variables. The scope of the first two is the whole
execution, while the scope of the last two is limited to each round. Their meaning is the
following:

– esti is pi’s current estimate of the decision value. Its initial value is vi (line 01).
– trustedi represents the set of processes that pi currently considers as being correct.

Its initial value is Π (the whole set of processes). So, i ∈ trustedi (line 04) means
that pi considers it is correct. If j ∈ trustedi we say “pi trusts pj”; if j /∈ trustedi

we say “pi suspects pj”.
– rec_fromi is a round local variable used to contain the ids of the processes that

pi does not currently suspect and from which it has received messages during that
round (line 05).

– Wi(j) is a set of processes identities that represents the set of the processes p� that
are currently trusted by pi and that (to pi’s knowledge) trust pj (line 06).

3.2 Process Behavior

The aim is for a process to decide the smallest value it has seen. But, due to the send
and receive omission failures possibly committed by some processes, a process cannot
safely decide the smallest value it has ever seen, it can only safely decide the smallest in
a subset of the values it has received during the rounds. The crucial part of the protocol
consists in providing each process with correct rules that allow it to determine its “safe
subset”.

During each round r, these rules are implemented by the following process behav-
ior decomposed in three parts according to the synchronous round-based computation
model.

Strongly Terminating Early-Stopping k-Set Agreement 189

Function k-SET_AGREEMENT(vi)
(01) esti ← vi; trusted i ← Π ; % r = 0 %
(02) for r = 1, . . . , � t

k
� + 1 do

(03) begin_round
(04) if (i ∈ trusted i) then foreach j ∈ Π do send(esti, trusted i) to pj enddo endif;
(05) let rec_fromi = {j : (estj , trust j) is received from pj during r ∧ j ∈ trusted i};
(06) foreach j ∈ rec_fromi let Wi(j) = {� : � ∈ rec_fromi ∧ j ∈ trust �};
(07) trusted i ← rec_fromi − j : |Wi(j)| < n − t ;
(08) if (|trusted i| < n − t) then return (⊥) endif;
(09) esti ← min(estj received during r and such that j ∈ trustedi)
(10) end_round;
(11) return (esti)

Fig. 1. Strongly terminating k-set protocol for general omission failures, code for pi, t < n
2

– If pi considers it is correct (i ∈ trustedi), it first sends to all the processes its
current local state, namely, the current pair (esti, trustedi) (line 04). Otherwise,
pi skips the sending phase.

– Then, pi executes the receive phase (line 05). As already indicated, when it con-
siders the messages it has received during the current round, pi considers only the
messages sent by the the processes it trusts (here, the set trustedi can be seen as a
filter).

– Finally, pi executes the local computation phase that is the core of the protocol
(lines 06-09). This phase is made up of the following statements where the value
n− t constitutes a threshold that plays a fundamental role.
• First, pi determines the new value of trustedi (lines 06-07). It is equal to the

current set rec_fromi from which are suppressed all the processes pj such
that |Wi(j)| < n − t. These processes pj are no longer trusted by pi because
there are “not enough” processes trusted by pi that trust them (pj is missing
“Witnesses” to remain trusted by pi, hence the name Wi(j)); “not enough”
means here less than n− t.

• Then, pi checks if it trusts enough processes, i.e., at least n− t (line 08). If the
answer is negative, as we will see in the proof, pi knows that it has commit-
ted receive omission failures and cannot safely decide. It consequently halts,
returning the default value ⊥.

• Finally, if it has not stopped at line 08, pi computes its new estimate of the
decision value (line 09) according to the estimate values it has received from
the processes it currently trusts.

4 Proof of the Strongly Terminating Protocol

The full proof of the protocol is given in [29]. The protocol proof assumes t < n/2. It
uses the following notations.

– Given a set of process identities X = {i, j, . . .}, we sometimes use pi ∈ X for
i ∈ X .

– C is the set of correct processes in a given execution.

190 P. Raïpin Parvédy, M. Raynal, and C. Travers

– xi[r] denotes the value of pi’s local variable x at the end of round r.
By definition trustedi[0] = Π . When j ∈ trustedi, we say that “pi trusts pj” (or
“pj is trusted by pi”).

– Completing [r] = {i : pi proceeds to r + 1 }. By definition Completing[0] = Π .
(If r = � t

k � + 1, “pi proceeds to r + 1” means pi executes line 11.)
– EST [r] = {esti[r] : i ∈ Completing [r]}. By definition EST [0] = the proposed

values.
EST [r] contains the values that are present in the system at the end of round r.

– Silent[r] = {i : ∀j ∈ Completing[r] : i /∈ trustedj [r]}. It is important to
remark that if i ∈ Silent[r], then no process pj (including pi itself) takes into
account esti sent by pi (if any) to update its local variables estj at line 09 of the
round r. (Silent[0] = ∅.)

The proof of the following relations are left to the reader: Completing[r + 1] ⊆
Completing[r], Silent[r] ⊆ Silent[r + 1], ∀i ∈ Completing[r] : Silent[r] ⊆ Π −
trustedi[r].

4.1 Basic Lemmas

The first lemma that follows will be used to prove that a process that does not commit
receive omission failure decides.

Lemma 1. Let pi be a process that is correct or commits only send omission failures.
We have ∀r : (1) C ⊆ trustedi[r] and (2) i ∈ Completing[r].

The next two lemmas show that n − t is a critical threshold related to the number of
processes (1) for a process to become silent or (2) for the process estimates to become
smaller or equal to some value. More explicitly, the first of these lemmas states that
if a process px is not trusted by “enough” processes (i.e., trusted by less than n − t
processes4) at the end of a round r − 1, then that process px is not trusted by the
processes that complete round r.

Lemma 2. ∀r ≥ 1 : ∀x :
∣∣{y : y ∈ Completing[r − 1] ∧ x ∈ trustedy[r − 1]}

∣∣ <
n− t ⇒ x ∈ Silent[r].

The next lemma shows that if “enough” (i.e., at least n− t) processes have an estimate
smaller than or equal to a value v at the end of a round r − 1, then no process pi ∈
Completing[r] has a value greater than v at the end of r.

Lemma 3. Let v be an arbitrary value. ∀r ≥ 1 :
∣∣{x : estx[r − 1] ≤ v ∧ x ∈

Completing[r− 1]}
∣∣ ≥ n− t ⇒ ∀i ∈ Completing[r] : esti[r] ≤ v.

Finally, the next lemma states that the sequence of set values EST [0], EST [1],. . . is
monotonic and never increases.

Lemma 4. ∀r ≥ 0 : EST [r + 1] ⊆ EST [r].

4 Equivalently, trusted by at most t processes.

Strongly Terminating Early-Stopping k-Set Agreement 191

4.2 Central Lemma

The lemma that follows is central to prove the agreement property, namely, at most k
distinct values are decided. Its formulation is early-stopping oriented. Being general,
this formulation allows using the same lemma to prove both the non-early stopping
version of the protocol (Theorem 3) and the early stopping protocol (Theorem 4).

Lemma 5. Let r (1 ≤ r ≤ � t
k�+ 1) be a round such that (1) C ⊆ Completing[r− 1],

and (2) |EST [r]| > k (let vm denote the kth smallest value in EST [r], i.e., the greatest
value among the k smallest values of EST [r]). Let i ∈ Completing[r]. We have n −
k r < |trustedi[r]| ⇒ esti[r] ≤ vm.

4.3 Properties of the Protocol

Theorem 1. [Validity] A decided value is a proposed value.

Theorem 2. [Strong Termination] A process pi that neither crashes nor commits re-
ceive omission failures decides.

As a correct process does not commit receive omission failures, the following corollary
is an immediate consequence of the previous theorem.

Corollary 1. [Termination] Every correct process decides.

Theorem 3. [Agreement] No more than k different values are decided.

5 A Strongly Terminating and Early Stopping k-Set Agreement
Protocol

This section enriches the previous strongly terminating k-set agreement protocol to
obtain an early stopping protocol, namely, a protocol where a good process decides and
halts by round min(� f

k � + 2, � t
k � + 1), and a bad process executes at most min(� f

k �+
2, � t

k � + 1) rounds.
The protocol is described in Figure 2. To make reading and understanding easier,

all the lines from the first protocol appears with the same number. The line number of
each of the 10 new lines that make the protocol early stopping are prefixed by “E”. We
explain here only the new parts of the protocol.

5.1 Additional Local Variables

A process pi manages three additional local variables, one (can_deci) whose scope is
the whole computation, and two (CAN _DECi and REC_FROMi) whose scope is
limited to each round. Their meaning is the following.

– can_deci is a set of process identities that contains, to pi’s knowledge, all the
processes that can decide a value without violating the agreement property. The
current value of can_deci is part of each message sent by pi. Its initial value is ∅.

192 P. Raïpin Parvédy, M. Raynal, and C. Travers

Function k-SET_AGREEMENT(vi)
(01) esti ← vi; trusted i ← Π ; can_deci ← ∅; % r = 0 %
(02) for r = 1, . . . , � t

k
� + 1 do

(03) begin_round
(04) if (i ∈ trusted i) then

foreach j ∈ Π do send(esti, trusted i, can_deci) to pj enddo endif;
(E01) let REC_FROMi = {i} ∪ {j : (estj, trust j , c_decj) rec. from pj during r};
(E02) let CAN _DECi = ∪(c_decj : j ∈ REC_FROMi);
(E03) if (i /∈ trustedi ∨ i ∈ can_deci) then
(E04) if |CAN _DECi | > t then let ESTi = {estj : j ∈ REC_FROMi ∧ c_decj �= ∅};
(E05) return (min(ESTi))
(E06) endif endif;
(05) let rec_fromi = {j : (estj, trustj , c_decj) rec. from pj during r ∧ j ∈ trusted i};
(06) foreach j ∈ rec_fromi let Wi(j) = {� : � ∈ rec_fromi ∧ j ∈ trust �};
(07) trusted i ← rec_fromi − j : |Wi(j)| < n − t ;
(08) if (|trusted i| < n − t) then return (⊥) endif;
(09) esti ← min(estj received during r and such that j ∈ trustedi);
(E07) can_deci ← ∪(c_decj received during r and such that j ∈ trustedi);
(E08) if (i ∈ trustedi ∧ i /∈ can_deci)then
(E09) if (n − k r < |trustedi|) ∨ (can_deci �= ∅) then can_deci ← can_deci ∪ {i}
(E10) endif endif
(10) end_round;
(11) return (esti)

Fig. 2. k-set early-deciding protocol for general omission failures, code for pi, t < n
2

– REC_FROMi is used by pi to store its id plus the ids of all the processes from
which it has received messages during the current round r (line E01). Differently
from the way rec_fromi is computed (line 05), no filtering (with the set trustedi)
is used to compute REC_FROMi .

– CAN _DECi is used to store the union of all the can_decj sets that pi has received
during the current round r (line E02).

5.2 Process Behavior

As already indicated, the behavior of a process pi is modified by adding only 10 lines
(E01-E10). It is important to notice that no variable used in the basic protocol is updated
by these lines; the basic protocol variables are only read. This means that, when there
is no early deciding/stopping at line E05, the enriched protocol behaves exactly as the
basic protocol.

Let us now examine the two parts of the protocol where the new statements appear.

– Let us first consider the lines E07-E10.
After it has updated its current estimate esti (line 09), pi updates similarly its set
can_deci , to learn the processes that can early decide. As we can see, esti and
can_deci constitute a pair that is sent (line 04) and updated “atomically”.
Then, if pi trusts itself (i ∈ trustedi) and, up to now, was not allowed to early
decide and stop (i /∈ can_deci), it tests a predicate to know if it can early decide. If

Strongly Terminating Early-Stopping k-Set Agreement 193

it can, pi adds its identity to can_deci (line E09). The “early decision” predicate is
made up of two parts:
• If can_deci �= ∅, then pi learns that other processes can early decide. Conse-

quently, as it has received and processed their estimates values (line 09), it can
safely adds its identity to can_deci .

• If n − k r < |trustedi|, then pi discovers that the set of processes it trusts
is “big enough” for it to conclude that it knows one of the k smallest estimate
values currently present in the system. “Big enough” means here greater than
n− k r. (Let us notice that threshold was used in Lemma 5 in the proof of the
basic protocol.)

– Let us now consider the lines E01-E06.
As already indicated REC_FROMi and CAN _DECi are updated in the receive
phase of the current round.
To use these values to decide during the current round (at line E05), pi must either
be faulty (predicate i /∈ trustedi) or have previously sent its pair (esti, can_deci)
to the other processes (predicate i /∈ trustedi∨i ∈ can_deci evaluated at line E03).
But, when i ∈ trustedi, i ∈ can_deci is not a sufficiently strong predicate for pi to
safely decide. This is because it is possible that pi committed omission faults just
during the current round. So, to allow pi to early decide, we need to be sure that
at least one correct process can decide (as it is correct such a process pj can play
a “pivot” role sending its (estj , can_decj) pair to all the processes). Hence, the
intuition for the final early decision/stopping predicate, namely |CAN _DECi | >
t used at line E04: that additional predicate guarantees that at least one correct
process can early decide and consequently has transmitted or will transmit its
(estj , can_decj) pair to all.

So, the early decision/stopping predicate for a process pi spans actually two rounds
r and r′ (r′ > r). This is a “two phase” predicate split as follows:

– During r (lines E08|E09): (i ∈ trustedi∧i /∈ can_deci)∧(n−k r < |trustedi|)∨
(can_deci �= ∅), and

– During r′ (lines E03|E04): (i /∈ trustedi ∨ i ∈ can_deci) ∧ |CAN _DECi | > t.

Moreover, for a correct process pi, the assignment can_deci ← can_deci ∪ {i} can
be interpreted as a synchronization point separating the time instants when they are
evaluated to true.

6 Proof of the Strongly Terminating Early Stopping Protocol

Detailed proofs of the following lemmas and theorems are given in [29].

6.1 Basic Lemmas

The next lemma extends Lemma 1 to the early stopping context.

Lemma 6. Let rd be the first round during which a correct process decides at line E05
(If there is no such round, let rd = � t

k � + 1). Let pi be a process that is correct or
commits only send omission failures. ∀r ≤ rd: if pi does not decide at line E05 of the
round r, we have (1) C ⊆ trustedi[r] and (2) i ∈ Completing[r].

194 P. Raïpin Parvédy, M. Raynal, and C. Travers

Lemma 5 considers a round r such that C ⊆ Completing[r− 1] (i.e., a round executed
by all the correct processes). Its proof relies on Lemma 1, but considers only the rounds
r′ ≤ r. As, until a correct process decides, the Lemma 1 and the Lemma 6 are equiva-
lent, it follows that the Lemma 1 can be replaced by Lemma 6 in the proof of Lemma
5. Let us also observe that the proofs of the Lemmas 2, 3 and 4 are still valid in the
early stopping context (these proofs use the set Completing[r] and do not rely on the
set C). We now state and prove additional lemmas used to prove the early stopping k-set
agreement protocol.

Lemma 7. The set ESTi[r] computed by pi during round r (line E04) is not empty.

Lemma 8. Assuming that a process decides at line E05 during round r, let px be a
process that proceeds to round r + 1 (if r = � t

k � + 1, “proceed to round r + 1”
means “execute the return() statement at line 11”). We have: x /∈ trustedx[r] ∨ x ∈
can_decx[r].

Lemma 9. Let i ∈ Completing[r] (1 ≤ r ≤ � t
k � + 1). can_deci[r] �= ∅ ⇒ esti[r] is

one of the k smallest values in EST [r].

Lemma 10. Assuming that a process decides at line E05 during round r, let px be a
process that proceeds to round r + 1 (if r = � t

k �+ 1, “proceed to round r + 1” means
“execute the return() statement at line 11”). We have: estx[r] is among the k smallest
values in EST [r − 1].

Lemma 11. Let r ≤ � t
k� be the first round during which a process decides at line E05.

Then, (1) every process that is correct or commits only send omission failures decides
at line E05 during round r or r + 1. Moreover, (2) no process executes more than r + 1
rounds.

6.2 Properties of the Protocol

Theorem 4. [Agreement] No more than k different values are decided.

Theorem 5. [Strong Termination and Early Stopping] (i) A process that is correct or
commits only send omission failures decides and halts by round min(� f

k �+2, � t
k �+1).

(ii) No process halts after min(� f
k � + 2, � t

k � + 1) rounds.

The next corollary is an immediate consequence of the previous theorem.

Corollary 2. [Termination] Every correct process decides.

Theorem 6. [Validity] A decided value is a proposed value.

Theorem 7. [Bit Complexity] Let b be the number of bits required to represent a pro-
posed value. The bit complexity is upper bounded by O(n(b + 2n)f/k) per process.

Strongly Terminating Early-Stopping k-Set Agreement 195

References

1. Aguilera M.K. and Toueg S., A Simple Bivalency Proof that t-Resilient Consensus Requires
t + 1 Rounds. Information Processing Letters, 71:155-178, 1999.

2. Attiya H. and Welch J., Distributed Computing, Fundamentals, Simulation and Advanced
Topics (Second edition). Wiley Series on Parallel and Distributed Computing, 414 pages,
2004.

3. Biran O., Moran S. and Zaks S., A Combinatorial Characterization of the Distributed 1-
Solvable Tasks. Journal of Algorithms, 11(3): 420-440, 1990.

4. Biran O., Moran S. and Zaks S., Tight Bounds on the Round Complexity of Distributed
1-Solvable Tasks. Theoretical Computer Science, 145(1-2):271-290, 1995.

5. Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchro-
nous Computations. Proc. 25th ACM Symposium on Theory of Computation (STOC’93),
California (USA), pp. 91-100, 1993.

6. Charron-Bost B. and Schiper A., Uniform Consensus is Harder than Consensus. Journal of
Algorithms, 51(1):15-37, 2004.

7. Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105:132-158, 1993.

8. Chaudhuri S., Herlihy M., Lynch N. and Tuttle M., Tight Bounds for k-Set Agreement. Jour-
nal of the ACM, 47(5):912-943, 2000.

9. Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Agreement. Journal of
the ACM, 37(4):720-741, April 1990.

10. Fischer M.J., Lynch N.A., A Lower Bound on the Time to Assure Interactive Consistency.
Information Processing Letters, 14(4):183-186, 1982.

11. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

12. Gafni E., Guerraoui R. and Pochon B., >From a Static Impossibility to an Adaptive Lower
Bound: The Complexity of Early Deciding Set Agreement. Proc. 37th ACM Symposium on
Theory of Computing (STOC’05), Baltimore (MD), pp.714-722, May 2005.

13. Guerraoui R. and Pochon B., The Complexity of Early Deciding Set Agreement: how Topol-
ogy Can Help? Proc. 4th Workshop in Geometry and Topology in Concurrency and Distrib-
uted Computing (GETCO’04), BRICS Notes Series, NS-04-2, pp. 26-31, Amsterdam (NL),
2004.

14. Hadzilacos V., Issues of Fault Tolerance in Concurrent Computations. PhD Thesis, Tech Re-
port 11-84, Harvard University, Cambridge (MA), 1985.

15. Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Distributed Sys-
tems, ACM Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

16. Herlihy M.P. and Penso L. D., Tight Bounds for k-Set Agreement with Limited Scope Ac-
curacy Failure Detectors. Distributed Computing, 18(2): 157-166, 2005.

17. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability.
Journal of the ACM, 46(6):858-923, 1999.

18. Keidar I. and Rajsbaum S., A Simple Proof of the Uniform Consensus Synchronous Lower
Bound. Information Processing Letters, 85:47-52, 2003.

19. Lamport L. and Fischer M., Byzantine Generals and Transaction Commit Protocols. Unpub-
lished manuscript, 16 pages, April 1982.

20. Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Fransisco (CA), 872
pages, 1996.

21. Mostéfaoui A. and Raynal M., k-Set Agreement with Limited Accuracy Failure Detectors.
Proc. 19th ACM Symposium on Principles of Distributed Computing (PODC’00), ACM
Press, pp. 143-152, Portland (OR), 2000.

196 P. Raïpin Parvédy, M. Raynal, and C. Travers

22. Mostéfaoui A. and Raynal M., Randomized Set Agreement. Proc. 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA’01), ACM Press, pp. 291-297, Hersonissos
(Crete), 2001.

23. Neiger G. and Toueg S., Automatically Increasing the Fault-Tolerance of Distributed Algo-
rithms. Journal of Algorithms, 11:374-419, 1990.

24. Pease L., Shostak R. and Lamport L., Reaching Agreement in Presence of Faults. Journal of
the ACM, 27(2):228-234, 1980.

25. Perry K.J. and Toueg S., Distributed Agreement in the Presence of Processor and Communi-
cation Faults. IEEE Transactions on Software Eng., SE-12(3):477-482, 1986.

26. Raïpin Parvédy Ph. and Raynal M., Optimal Early Stopping Uniform Consensus in Syn-
chronous Systems with Process Omission Failures. Proc. 16th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’04), Barcelona (Spain), ACM Press, pp. 302-310, 2004.

27. Raïpin Parvédy Ph., Raynal M. and Travers C., Early-Stopping k-set Agreement in Syn-
chronous Systems Prone to any Number of Process Crashes. 8th Int. Conference on Parallel
Computing Technologies (PaCT’05), Krasnoyarsk (Russia), Springer Verlag LNCS #3606,
pp. 49-58, 2005.

28. Raïpin Parvédy Ph., Raynal M. and Travers C., Decision Optimal Early-Stopping k-set
Agreement in Synchronous Systems Prone to Send Omission Failures. Proc. 11th IEEE Pa-
cific Rim Int. Symposium on Dependable Computing (PRDC’05), Changsa (China), IEEE
Computer Press, pp. 23-30, 2005.

29. Raïpin Parvédy Ph., Raynal M. and Travers C., Strongly Terminating Early-Stopping k-set
Agreement in Synchronous Systems with General Omission Failures. Tech Report #1711,
IRISA, Université de Rennes (France), 22 pages 2005.
ftp://ftp.irisa.fr/techreports/2005/PI-1711.ps.gz

30. Raynal M., Consensus in Synchronous Systems: a Concise Guided Tour. Proc. 9th IEEE
Pacific Rim Int. Symposium on Dependable Computing (PRDC’02), Tsukuba (Japan), IEEE
Computer Press, pp. 221-228, 2002.

31. Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of
Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

32. Yang J., Neiger G. and Gafni E., Structured Derivations of Consensus Algorithms for Fail-
ure Detectors. Proc. 17th Int. ACM Symposium on Principles of Distributed Computing
(PODC’98), ACM Press, pp. 297-308, Puerto Vallarta (Mexico), July 1998.

On Fractional Dynamic Faults with Threshold�

Stefan Dobrev1, Rastislav Královič2, Richard Královič2, and Nicola Santoro3

1 School of Information Technology and Engineering, University of Ottawa, Ottawa,
K1N 6N5, Canada

2 Dept. of Computer Science, Comenius University, Mlynská dolina,
84248 Bratislava, Slovakia

3 School of Computer Science, Carleton University, Ottawa, K1S 5B6, Canada

Abstract. Unlike localized communication failures that occur on a fixed
(although a priori unknown) set of links, dynamic faults can occur on any
link. Known also as mobile or ubiquitous faults, their presence makes
many tasks difficult if not impossible to solve even in synchronous sys-
tems. Their analysis and the development of fault-tolerant protocols have
been carried out under two main models. In this paper, we introduce a
new model for dynamic faults in synchronous distributed systems. This
model includes as special cases the existing settings studied in the lit-
erature. We focus on the hardest setting of this model, called simple
threshold, where to be guaranteed that at least one message is delivered
in a time step, the total number of transmitted messages in that time
step must reach a threshold T ≤ c(G), where c(G) is the edge connectiv-
ity of the network. We investigate the problem of broadcasting under this
model for the worst threshold T = c(G) in several classes of graphs as
well as in arbitrary networks. We design solution protocols, proving that
broadcast is possible even in this harsh environment. We analyze the
time costs showing that broadcast can be completed in (low) polynomial
time for several networks including rings (with or without knowledge of
n), complete graphs (with or without chordal sense of direction), hyper-
cubes (with or without orientation), and constant-degree networks (with
or without full topological knowledge).

1 Introduction

1.1 Dynamic Faults

In a message-passing distributed computing environment, entities communicate
by sending messages to their neighbors in the underlying communication net-
work. However, during transmission, messages might be lost.

The presence of communication faults renders the solution of problems diffi-
cult if not impossible. In particular, in asynchronous settings, the mere possibility
of faults renders unsolvable almost all non trivial tasks, even if the faults are lo-
calized to (i.e., restricted to occur on the links of) a single entity [11]. Due to this

� Partially supported by VEGA 1/3106/06, UK/404/2006, NSERC, and TECSIS Co.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 197–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

198 S. Dobrev et al.

inherent difficulty connected with asynchrony, the focus is on synchronous envi-
ronments, both from the point of view of theoretical investigation, and industrial
application (e.g. communication protocols for wireless networks).

Since synchrony provides a perfect omission detection mechanism [2], localized
faults are easily dealt with in these systems; indeed, any number of faulty links
can be tolerated provided they do not disconnect the network. The immediate
question is then whether synchrony allows to tolerate also dynamic communica-
tion faults; that is, faults that are not restricted to a fixed (but a priori unknown)
set of links, but can occur between any two neighbors [17]. These types of faults,
also called mobile or ubiquitous, are clearly more difficult to handle.

In this regard, the investigations have focused mostly on the basic problem of
broadcast: an entity has some information that must communicate to all other
entities in the network. Indeed, the ability or impossibility of performing this
task has immediate consequence for many other tasks. Not surprisingly, a large
research effort has been on the analysis of broadcasting in the presence of dy-
namic communication faults.

Clearly no computation, including broadcast, is possible if the amount of faults
that can occur per time unit and the modality of their occurrence is unrestricted.
The research quest has thus been on determining under what conditions on
the faults non-trivial computations can be performed in spite of those faults.
Constructively, the effort is on designing protocols that can correctly solve a
problem provided some restrictions on the occurrence of faults hold.

A first large group of investigations have considered the so-called cumulative
model; that is, there is a (known) limit L on the number1 of messages that
can be lost at each time unit. If the limit is less than the edge connectivity
of the network, L < c(G), then broadcast can be achieved by simply flooding
and repeating transmissions for an appropriate amount of time. The research
has been on determining what is the smallest amount of time in general or for
specific topologies [3, 4, 5, 6, 8, 9, 10, 12, 14, 15], as well as on how to use broadcast
for efficiently computing functions and achieving other tasks [7, 18, 19].

The advantage of the cumulative model is that solutions designed for it are
L-tolerant; that is they tolerate up to L communication faults per time units.
The disadvantage of this approach is that it neglects the fact that in real systems
the number of lost messages is generally a function of the number of all message
transitions. This feature leads to an anomaly of the cumulative model, where
solutions that flood the network with large amounts of messages tend to work
well, while their behavior in real faulty environments is often quite poor.

A setting that takes into account the interplay between amount of transmis-
sions and number of losses is the probabilistic model: there is no a priori upper
bound on the total number of faults per time unit, but each transmission has a
(known) probability p < 1 to fail. The investigations in this model have focused
on designing broadcasting algorithms with low time complexity and high proba-
bility of success [1, 16]. The drawback of this model is that the solutions derived
for it have no deterministic guarantee of correctness.

1 Since the faults are dynamic, no restriction is clearly posed on their location.

On Fractional Dynamic Faults with Threshold 199

The drawbacks of these two models have been the motivation behind the intro-
duction of the so called fractional model, a deterministic setting that explicitly
takes into account the interaction between the number of omissions and the num-
ber of messages. In the fractional model, the amount of faults that can occur at
time t is not fixed but rather a linear fraction �α mt� of the total number mt of
messages sent at time t, where 0 ≤ α < 1 is a (known) constant. The advantage
of the fractional model is that solutions designed for it tolerate the loss of up to
a fraction of all transmitted messages [13]. The anomaly of the fractional model
is that, in this setting, transmitting a single message per communication round
ensures its delivery; thus, the model leads to very counterintuitive algorithms
which do not behave well in real faulty environments.

Summarizing, to obtain optimal solutions, message redundancy must be
avoided in the fractional model, while massive redundancy of messages must
be used in the cumulative model; in real systems, both solutions might not fare
well. In many ways, the two models are opposite extremes. The lesson to be
learned from their anomalies is that on one hand there is need to use redun-
dant communication, but on the other hand brute force algorithms based on
repeatedly flooding the network do not necessarily solve the problem.

In this paper we propose a deterministic model that combines the cumulative
and fractional models in a way that might better reflect reality. This model is
actually more general, in that it includes those models as particular, extreme
cases. It also defines a spectrum of settings that avoid the anomalies of both
extreme cases.

1.2 Fractional Threshold and Broadcast

The failure model we consider, and that we shall call fractional dynamic faults
with threshold or simply fractional threshold model, is a combination of the frac-
tional model with the cumulative model. Both fractional and cumulative models
can be described as a game between the algorithm and an adversary: in a time
step t, the algorithm tries to send mt messages, and the adversary may destroy
up to F (mt) of them. While in the cumulative model, the dependency function
F is a constant function, in fractional model F (mt) = �αmt�. The dependency
function of the fractional threshold model is the maximum of those two:

F (mt) = max{T − 1, �α mt�}

where T ≤ c(G) is a constant at most equal to the edge connectivity of the
graph, and α is a constant 0 ≤ α < 1. The name “fractional threshold” comes
from the fact that it is the fractional model with the additional requirement that
the algorithm has to send at least T messages in a time step t in order to have
any guarantees about the number of faults.

Note that both the cumulative and the fractional models are particular, ex-
treme instances of this model. In fact, α = 0 yields the cumulative setting: at
most T − 1 faults occur at each time step. On the other hand, the case T = 1
results in the fractional setting. In between, it defines a spectrum of new settings
never explored before, which avoid the anomalies of both extreme cases.

200 S. Dobrev et al.

From this spectrum, the settings that give the maximum power to the ad-
versary, thus making the broadcasting most difficult, are what will be called a
simple threshold model defined by T = c(G) and α = 1− ε with ε infinitely close
to 0. In this model, if less than c(G) messages are sent in a step, none of them is
guaranteed to arrive (i.e., they all may be lost); on the other hand, if at least c(G)
messages are transmitted, at least one message is guaranteed to be delivered.

In this paper we start the analysis of fault-tolerant computing in the fractional
threshold model, focusing on the simple threshold setting. In this draconian
setting the tricks from cumulative and fractional models fail: if the algorithm
uses simple flooding the adversary can deliver only one message between the
same pair of vertices over and over. If, on the other hand, the algorithm sends
too few messages, they all may be lost.

1.3 The Results

The network is represented by a simple graph G of n vertices representing the
entities and m edges representing the links. The vertices are anonymous, i.e.
they are without distinct IDs. The communication is by means of synchronous
message passing (i.e. in globally synchronized communication rounds), local com-
putation is performed between the communication rounds and is considered in-
stantaneous. The communication failures are dynamic omissions in the simple
threshold model.

We consider the problem of broadcasting: At the beginning, there is a single
initiator v containing the information to be disseminated. Upon algorithm ter-
mination, all entities must have learned this information. We consider explicit
termination, i.e. when the algorithm terminates at an entity, it will not process
any more messages (and, in fact, no messages should be arriving anyway).

The complexity measure of interest is time (i.e., number of communication
rounds). We consider various levels of topological knowledge about the network
(knowing network size n, being aware of the network topology, having Sense of
Direction or having full topological knowledge).

In this paper, we focus on the hardest setting, the simple threshold, where to
be guaranteed that at least one message is delivered in a time step, the total
amount of transmitted messages in that time step must be at least c(G), i.e. the
edge connectivity of the network.

By definition, it is sufficient to ensure that c(G) or more messages are trans-
mitted at each time unit to guarantee that at least one of these messages is
delivered. The problem however is that an entity does not know which other
entities are transmitting at the same time and in general does not know which
of its neighbors has already received its messages. Indeed the problem, in spite
of synchrony and of the simplicity of its statement, is not simple.

We investigate the problem of broadcasting under this model in several classes
of graphs as well as in arbitrary networks. We design solution protocols, proving
that broadcast is possible even under the worst threshold c(G). We analyze the
time costs showing the surprising result that broadcast can be completed in (low)
polynomial time for several networks including rings (with or without knowledge

On Fractional Dynamic Faults with Threshold 201

Table 1. Summary of results presented in this paper

Topology Condition Time complexity
ring n not necessarily known Θ(n)
complete graph with chordal sense of direction O(n2)
complete graph unoriented Ω(n2), O(n3)
hypercube oriented O(n2 log n)
hypercube unoriented O(n4 log2 n)
arbitrary network full topological knowledge O(2c(G)nm)

arbitrary network no topological knowledge
except c(G), n, m O(2c(G)m2n)

of n), complete graphs (with or without chordal sense of direction), hypercubes
(with or without orientation), and constant-degree networks (with or without
full topological knowledge). In addition to the upper bounds, we also establish
a lower bound in the case of complete graphs without sense of direction. The
results are summarized in the Table 1. Due to space constraints some technical
parts have been omitted.

2 Ring

The ring is a 2-connected network, i.e. T = c(G) = 2. Hence, at least two
messages must be sent in a round to ensure that not all of them are lost.

We first present the algorithm assuming the ring size n is known, and then
show how it can be extended to the case n unknown.

At any moment of time, the vertices can be either informed or uninformed.
Since the information is spreading from the single initiator vertex s, informed
vertices form a connected component. The initiator splits this component into
the left part and the right part. Each informed vertex v can easily determine
whether it is on the left part or on the right part of the informed component –
this information is delivered in the message that informs the vertex v.

Each informed vertex can be further classified as either active or passive. A
vertex is active if and only if it has received a message from only one of its
neighbor. A passive vertex has received a message from both neighbors. This
implies that, as long as the broadcast has not yet finished, there is at least one
active vertex in both left and right part of the informed component (the left-
most and the right-most informed vertices must be active; note, however, that
also the intermediate vertices might be active).

The computation consists of n− 1 phases, with each phase taking four com-
munication rounds. The goal of a phase is to ensure that at least one active
vertex becomes passive.

Each phase consists of the following four steps:

1. Each active vertex sends a message to its possibly uninformed neighbor.
2. Each active vertex in the right part sends a message to its possibly unin-

formed neighbor. Each vertex in the left part that received a message in step
1 replies to this message.

202 S. Dobrev et al.

3. Same as step 2, but left and right parts are reversed.
4. Each vertex that received a non-reply message in steps 1–3 replies to that

message.

To avoid corner cases at the initiator of the broadcast, the initiator is split
into two virtual vertices such that each of them starts in active state (i.e. the
initiator acts as if it belongs both to the left and to the right part).

Lemma 1. At least one reply message passes during the phase.

Initially, there are two active (virtual) vertices (the left- and right- part of the
initiator). Lemma 1 ensures that during each of the subsequent phases, at least
one previously active vertex becomes passive. Since passive vertices never be-
come active again, it follows that after at most n − 1 phases, there are n − 1
passive vertices. Once there are n−1 passive vertices, the remaining two must be
informed (both are neighbors of a passive vertex), i.e. n− 1 phases are sufficient
to complete the broadcast.

Note also that the algorithm does not require distinct IDs or ring orientation
(it can compute them, though, as it is initiated by a single vertex).

Theorem 1. There is 4(n − 1)-time fault-tolerant broadcasting algorithm for
(anonymous, unoriented) rings of known size.

If n is unknown, the above algorithm cannot be directly used, as it does not
know when to terminate. This is not a serious obstacle, though. Assume that
the algorithm is run without a time bound, and each discover message also
contains a counter how far is the vertex from the initiator. After at most n
phases there will be a vertex v that has received discover messages from both
directions. From the counters in those messages v can compute the ring size n. In
the second part of the algorithm v broadcasts n (and the time since the start of
the second broadcast) using the algorithm for known n; when that broadcast is
finished, the whole algorithm terminates. In order to make this work, we have to
ensure that there is no interaction between the execution of the first broadcast
and the second broadcast. That can be easily accomplished by scheduling the
communication steps of the first broadcast in odd time slots and the second
broadcast in even time slots.

Theorem 2. There is an O(n)-time fault-tolerant broadcasting algorithm for
(anonymous, unoriented) rings of unknown size.

3 Complete Graphs

As the connectivity of complete graphs is n − 1, we assume that least n − 1
messages must be sent to ensure that at least one passes through.

On Fractional Dynamic Faults with Threshold 203

3.1 Complete Graphs with Chordal Sense of Direction

Chordal Sense of Direction in a complete graphs means that vertices are num-
bered 0, 1, . . . , n − 1 and the link from a vertex u to a vertex v is labelled
v − u mod n.2

The algorithm consists of two parts. The purpose of the first part is to make
sure that at least �n/2� vertices are informed; the second part uses these vertices
to inform the remaining ones. The algorithm is executed by informed vertices.
Each message contains a time counter, so a newly informed vertex can learn the
time and join the computation at the right place.

The first part of the algorithm consists of phases 0, 1, . . . , �n/2� − 2. During
phase 0 the initiator sends messages to all its neighbors. The goal of phase k is to
ensure that there are at least k + 1 informed vertices distinct from the initiator;
this ensures that after the first part, there are at least �n/2� informed vertices.

Consider a phase k and suppose that there are exactly k informed vertices
distinct from the initiator at the beginning of phase k. Let d =

⌊
n−1
k+1

⌋
, and

consider k+1 disjoint intervals I0, . . . , Ik each of size d, consisting of non-initiator
vertices. The phase will consist of k + 1 steps. The idea is that during the i-th
step, the informed vertices (including initiator) try to inform an additional vertex
in the interval Ii by sending messages to all vertices in Ii. If Ii does not contain
any informed vertices, and at least one message is delivered, then a new vertex
must be informed. The problem is, however, that only d(k+1) messages are sent,
which may not be sufficient to guarantee delivery. To remedy this, the i-th step
will span over d rounds. In a j-th round, all informed vertices send messages to all
vertices in Ii and to the j-th vertex of Ii⊕1 (the addition is taken modulo k+1).
Now, in each step there are (k + 1)(d + 1) messages sent, so at least one must
be delivered. Hence we can argue that, during phase k, a new vertex is informed
if there is an interval Ii that does not contain any informed vertices, followed
by interval Ii⊕1 that contains at least one non-informed vertex. However, the
existence of such Ii follows readily from the fact that there are only k informed
vertices distinct from initiator and d ≥ 2.

Lemma 2. After phase k there are at least k+1 informed vertices distinct from
the initiator.

Each phase k consists of k + 1 steps with d rounds each, therefore every phase
takes O(n) time steps. Since there are O(n) phases, the first part of the algorithm
finishes in O(n2) time.

The second part of the algorithm starts with at least �n/2� informed vertices
and informs all remaining ones. The algorithm is as follows: consider all pairs
[i, j] such that 1 ≤ i, j ≤ n − 1, sorted in lexicographic order. In each step, all
informed vertices consider one pair and send messages to vertices i and j. Since
2 Strictly speaking, the vertices do not necessarily need to know their ID, the link

labels are sufficient: The initiator may assume ID 0 and each message will also carry
the link label it travels on and the ID of the sender, allowing the receiver to compute
its ID.

204 S. Dobrev et al.

at least 2�n/2� ≥ n−1 messages are sent, at least one of them is delivered. This
ensures that a new vertex is informed whenever both i and j were uninformed.
In this manner, all but one vertex can be informed (at any moment the two
smallest unexplored vertices form a pair that has not been considered yet).

To inform the last vertex, all n − 1 informed vertices send in turn messages
to vertices 1, 2, . . . , n− 1.

Theorem 3. There is a O(n2) time fault-tolerant broadcasting algorithm for
complete graphs with chordal sense of direction.

Proof. The first part consist of �n/2� − 2 phases, with each phase taking O(n)
steps. The second part consists of n(n−1)/2 steps and informing the last vertex
takes n− 1 steps.

Note that the algorithm did not exploit all properties of the chordal sense of
direction, it is sufficient for the informed vertices to agree on the IDs of the
vertices, and to be able to determine the ID of the vertex on the other side of a
link. Therefore, we get:

Corollary 1. There is a O(n2) time broadcasting algorithm for complete graphs
with neighboring (Abelian group based) sense of direction.

3.2 Unoriented Complete Graphs

The algorithm in the previous section strongly relied on the fact that the vertices
know the IDs of the vertices on the other side of the links. In this section, we
use very different techniques to develop an algorithm that works for unoriented
complete graphs (i.e. the only structural information available is the knowledge
that the graph is complete; of course, local orientation – being able to distinguish
incident ports – is also required).

We will view the flow of messages as tokens traveling through the network
(and possibly spawning new tokens). A message (token) arriving to a vertex
may cause the vertex to transmit some messages (either immediately, or in some
of the subsequent steps). We will view those new messages as child tokens of
the parent token. This means the tokens form a tree structure, and each token
can be assigned unique identifier (corresponding to a path in the tree structure).
Note that each vertex can also be given unique identifier (the ID of the token
that first informed it). Each token carries all information about itself and its
ancestors (i.e. IDs of its ancestors, traversed vertices and traversed ports).

Each token may be of two types: green and red. The intuition is that a token is
green if it is“exploring”, i.e. trying to traverse a port that has never been explored
by its ancestors. When every port has been explored by the token’s ancestors,
the broadcast is finished, and no new tokens are sent. Ideally, if a token arrives to
a vertex v, it would be spawned as a green token along all links that have not yet
been explored by its ancestors. However, there is usually not enough unexplored
ports in v3. In this case red tokens are sent along some already explored links.
3 Recall that at least n − 1 messages must be sent in every step to make sure that at

least one is delivered.

On Fractional Dynamic Faults with Threshold 205

The meaning is that a red token carries a “request for help” to already explored
vertices that are not yet engaged in helping. This request triggers new tokens to
be sent from those vertices, and eventually a situation occurs when only green
tokens are sent and at least one of them is delivered.

Let T be any token. The green ancestor of T is the closest green ancestor of
T , if T is red, and T itself, if T is green. The red tail of token T is the path
(sequence of tokens) between the green ancestor of T and T itself. Note that all
tokens on the red tail are red except the first one.

We present a fault-tolerant broadcast algorithm that satisfies the following
invariants:

I1. Let T be a token that is sent over an oriented edge 〈a, b〉. If T is green, then
it holds that no ancestor of T has been sent over 〈a, b〉. Conversely, if T is
red, there exists some ancestor of T that has been sent over 〈a, b〉.

I2. Let T be a red token. Then the red tail of T contains at most n vertices.
I3. Let T be a red token. Then T is sent exactly one round later than the parent

of T .
I4. Let T be a green token. Then T is sent at most n + 1 rounds later than the

last green ancestor of the parent of T .
I5. Let T be a green token delivered in round t. If the broadcast is not finished

yet, at least one green token is delivered in some of the rounds t+1, . . . t+n.

These invariants imply that the broadcast completes in O(n3) time: the invari-
ant I5 ensures that the algorithm can not stop before the broadcast is finished.
Consider a path from root to a leaf in the tree of tokens. Invariant I1 ensures
that the leaf is green and that there are at most O(n2) green tokens on this path.
Invariant I4 implies that there are at most n + 1 consecutive red tokens on the
path. Hence the overall time of the broadcasting algorithm is O(n3).

The algorithm works as follows. In the first round of the algorithm, the initia-
tor sends green tokens through all its ports. All these tokens are children of some
virtual root token. In each subsequent round t, each vertex gathers all received
tokens in this round and processes them in parallel using procedure Process
described in Algorithm 1..

If some processor should send more than one token through a port in one
round, it (arbitrarily) chooses single one of them to send and discards the re-
maining ones.

Lemma 3. The presented algorithm satisfies invariants I1, I2, . . . , I5.

Combining Lemma 3 with the discussion about the invariants we get

Theorem 4. There exist a O(n3) fault-tolerant broadcasting algorithm for un-
oriented complete networks.

3.3 Lower Bound for Unoriented Complete Networks

The O(n) algorithm for rings is obviously asymptotically optimal. An interesting
question is: How far from optimal are our algorithms for oriented and unoriented
complete networks? In this section we show that

206 S. Dobrev et al.

Algorithm 1. Complete graphs without sense of direction
1: procedure Process(T) // process token T
2: Let P be the set of all ports
3: Let A be the set of ports that have never been traversed by any ancestor of T
4: If A = ∅, the broadcast is finished.
5: Let S be the set of vertices acting as a source of a red token in the red tail of T .
6: Let B ⊆ P − A be the set of ports that lead to a vertex in S.
7: Let C = P − (A ∪ B)

// Note that since only ports already traversed by (an ancestor of) T
// are considered, the vertex processing T can indeed compute B and C.

8: for the first round of processing T do
9: Send new red tokens with parent T to all ports in C

10: Send new green tokens with parent T to all ports in A
11: end for

12: Let l be the length of the red tail of T .
13: for subsequent n − l rounds of processing T do
14: Send new green token with parent T to all ports in A
15: end for
16: end procedure

Theorem 5. Any fault-tolerant broadcasting algorithm on unoriented complete
networks must spend Ω(n2) time.

Proof. In the course of the computation there are two kinds of ports: the ports
that have never been traversed by any message in any direction are called “free”,
the ports that are not free are called “bound”. The lower bound proof is based
on the following simple fact:

Let p be a free port of vertex u in time t. Let v be any vertex such that no
bound port of u leads to v. Then it is possible that port p leads to vertex v.

Indeed, if p would lead to v, the first t rounds of computation would be the
same. Hence, the computation can be viewed as a game of two players: the
algorithm chooses a set of ports through which messages are to be sent. The
adversary chooses one port through which the requested message passes. If this
port is free, it chooses also the vertex to which this port will be bound.

We show now that it is possible for the adversary to keep the vertex n un-
informed for (n−1)(n−2)

2 = Ω(n2) communication rounds. The idea is that some
message has to traverse through all edges between vertices 1 . . . n− 1 before any
message arrives to the vertex n.

Consider the time step i < (n−1)(n−2)
2 and assume that the vertex n is not

informed yet. There exist at most 2i bound ports, since in each time step at most
one edge, i.e two ports are bounded. This means that at least (n−1)(n−1)−2i ≥
n ports of vertices 1 . . . n− 1 are free.

The following cases can occur:

On Fractional Dynamic Faults with Threshold 207

1. The algorithm sends some message through some bound port. The adversary
passes this message, hence the vertex n stays uninformed.

2. The algorithm sends messages only through free ports.
(a) The algorithm does not send messages from all vertices 1 . . . n− 1. Then

there have to be at least 2 messages sent from one vertex. The adversary
delivers one of these messages and binds the corresponding port to any
vertex other than n. (Since there are at least two free ports, it is possible
for the adversary to do so.)

(b) The algorithm sends messages from all vertices 1 . . . n−1. Since at least n
ports of vertices 1 . . . n−1 are free, at least one vertex w from 1 . . . n−1,
has 2 free ports. The adversary delivers the message sent from w, and
binds corresponding port to any vertex other than n. (Again, since there
are at least two free ports, it is possible for the adversary to do so.)

Hence it is possible for the adversary to keep the vertex n uninformed for the
first Ω(n2) time steps.

Now assume a stronger computation model: each vertex immediately learns for
any message it has sent whether this message has been delivered or not. It is
interesting to note that our lower bound is valid also in this model. Furthermore,
it is easy to see that the lower bound is tight in this model.

4 Arbitrary k-Connected Graphs

In this section we consider k-edge-connected graphs and we assume the threshold
is k, i.e. at least k messages must be sent to ensure that a message is delivered.

4.1 With Full Topological Knowledge

The algorithm runs in n − 1 phases. Each phase has an initiator vertex u (in-
formed) and a destination vertex v (uninformed), with the source s being the
initiator of the first phase. The goal of a phase is to inform vertex v, which then
becomes the initiator of the next phase; the process is repeated until all vertices
are informed.

The basic idea is a generalization of the idea from rings. The ring algorithm
tried to“push”the information simultaneously along the left and right part of the
ring. Here, the initiator u chooses k edge-disjoint paths4 P = {P1 . . . Pk} from
itself to v and then pushes the information through all the paths simultaneously.
Let Pi = (u0 = u, u1, . . . uli = v); consider an oriented edge e = 〈uj , uj+1〉. This
edge can be either sleeping, active or passive:

1. The edge e is passive if and only if a message has been received over both e
and the edge opposite to e, i.e. 〈uj+1, uj〉.

4 Since the graph is k-edge-connected and the vertices have full topological knowledge,
the initiator can always find these paths.

208 S. Dobrev et al.

2. The edge e is active if and only if it is not passive and a message has been
received over the edge 〈uj−1, uj〉. In case j = 0 the edge e is active whenever
it is not passive.

3. The edge e is sleeping if and only if it is not active nor passive.

One phase consists of several rounds, each round spanning over many com-
munication steps. The goal of one round is to ensure that a progress over at least
one edge has been made: at least one active edge becomes passive, at least one
sleeping edge becomes active or the vertex v becomes informed.

The procedure Round() defined in Algorithm 2. is the core of the algorithm;
it is performed in each round by every vertex w ∈ P .

Algorithm 2. k-connected graphs
1: procedure Round(vertex w)
2: Let A be the set of active edges incident to w at the beginning of the round
3: for i:=0 to k do // One subround:
4: for B ⊆ {1 . . . k} such that |B| = i do // one iteration per time step
5: Let C be the set of edges incident to w via which an activating message
6: has been received in the current round // not in the current time step
7: for e ∈ C do
8: send deactivating message through e // all in one time step
9: end for

10: for e ∈ A such that e ∈ Pz ∧ z /∈ B do
11: send activating message through e // all in the same time step as

in 8
12: end for
13: end for
14: end for
15: end procedure

It is easy to see that the uninformed vertices never send any messages and that
at any time each vertex can determine all active edges incident to it. Synchro-
nous communication and full topological knowledge ensure that all procedures
(phases/rounds/subrounds) are started and executed simultaneously by all par-
ticipating vertices.

Lemma 4. During one round at least one active edge becomes passive, or a
sleeping edge becomes active, or v is informed.

Proof. By contradiction. Assume the contrary, we show that in such case, at the
beginning of the i-th subround there will be at least i paths P ′ ⊆ P such that
on any path Pj ∈ P ′ there is an edge through which an activating message has
been delivered in the current round. This would mean that in the k-th subround
there are at least k deactivating messages sent and therefore at least one of them
will be delivered and an active edge will become passive, a contradiction.

We prove that above statement about subrounds by induction on i. The state-
ment trivially holds for i = 0, as there is nothing to prove. Assume (by induction

On Fractional Dynamic Faults with Threshold 209

hypothesis) that at the beginning of the i-th subround there are exactly i paths
P ′ with an edge over which an activating message has been delivered in the
current round(if there are more, the hypothesis is already true for i + 1). From
the definition of an active edge and from construction it follows that unless the
vertex v is informed, there is at least one active edge on each path Pj . Let us
focus on the time step in the i-th subround when B contains exactly the num-
bers of paths from P ′ (i.e. B = {j|Pj ∈ P ′}). In this time step, at least k − i
activating and at least i deactivating messages are sent, therefore at least one of
them must be delivered. As no activating message is sent over an edge e ∈ P ′

and no deactivating message is delivered (by assumption that no active edge
becomes passive), an activating message must be delivered on a path not in P ′.
Hence, the invariant is ensured for the subround i + 1, too.

Theorem 6. There is a fault-tolerant broadcasting algorithm on k-connected
graphs with full topology knowledge that uses O(2knm) time, where n is the
number of vertices and m is the number of edges in the graph.

Proof. The correctness follows straightforwardly from construction and Lemma 4.
The time complexity of one round is 2k, as it spends one time step for each

subset of {1, 2, . . . , k}. The number of rounds per phase is5 2m, as all paths in
P together cannot contain more than all m edges and each edge can change
its state at most twice (from sleeping to active to passive). Finally, the number
of phases is n − 1 as n − 1 vertices need to be informed. Multiplying we get
O(2kmn).

Theorem 6 can be successfully applied to many commonly used interconnection
topologies. However, better results can usually be obtained by carefully choosing
the order in which the vertices should be informed, allowing for short paths in
P . One such example is oriented hypercubes (i.e. each link is marked by the
dimension it lies in):

Theorem 7. There is a fault-tolerant broadcasting algorithm for oriented d-
dimensional hypercubes that uses O(n2 logn) time, where n = 2d is the number
of vertices of the hypercube.

Proof. The basic idea is to use the algorithm for k-connected graphs, with the
initiator of a phase choosing as the next vertex to inform its successor in (a fixed)
Hamiltonian path of the hypercube.

The algorithm for one phase is the same as in the case of k-connected graphs
with the following exception: it is possible to choose d edge-disjoint paths from
vertex u to its neighbor vertex v such that each of these paths has length at
most 3. This results in P containing only O(d) edges instead of O(n logn), thus
reducing the cost of one phase from O(n2 logn) to O(nd) = O(n log n). The
resulting time complexity is therefore O(n2 logn).

5 Some topology-specific optimization is possible here.

210 S. Dobrev et al.

4.2 Without Topological Knowledge

Finally, we show that the broadcasting on a k-connected graph with n vertices
and m edges can be performed in time O(2km2n) even in the case when the only
known information about the graph are the values of n, m, and k. To achieve this,
we combine the ideas used for complete graphs with those using full topology
knowledge. In particular, the vertices accumulate topology information (using
local identifiers) in a fashion similar to the algorithm for complete graphs. The
algorithm works in phases, where each phase is performed within one informed
component, and uses the topology knowledge of that component. However, since
there may be many phases active at the same moment, great care must be given
to avoid unwanted interference. The detailed result has been omitted due to
space constraints.

Applying this result to the case of d-dimensional hypercube without sense of
direction yields an algorithm that uses O(n4 log2 n) time.

5 Conclusions

We have introduced a new model for dynamic faults in synchronous distributed
systems. This model includes as special cases the existing settings studied in the
literature. We have focused on the simple threshold setting where, to be guar-
anteed that at least one message is delivered in a time step, the total amount
of transmitted messages in that time step must be above the threshold T . We
have investigated broadcasting in rings and complete graphs, as well as arbitrary
networks, and we have designed solution protocols, proving that broadcast is pos-
sible also under the worst threshold (i.e., equal to the connectivity). The perhaps
surprising result is that the time costs are (low) polynomial for several networks
including rings, complete graphs, hypercubes, and constant-degree networks.

This investigation is the first step in the analysis of distributed computing in
spite of fractional dynamic faults with threshold.

References

1. P. Berman, K. Diks, and A. Pelc, “Reliable broadcasting in logarithmic time with
Byzantine link failures”. Journal of Algorithms, 22 (2), 199–211, 1997.

2. T. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector for solving
consensus”. Journal of ACM, 43(4), 685–722, 1996.

3. B.S. Chlebus, K. Diks, and A. Pelc, “Broadcasting in synchronous networks with
dynamic faults”. Networks 27, 309–318, 1996.

4. G. De Marco and A. Rescigno, “Tighter time bounds on broadcasting in torus
networks in presence of dynamic faults”. Parallel Processing Letters 10 (1), 39–50,
2000.

5. G. De Marco and U. Vaccaro, “Broadcasting in hypercubes and star graphs with
dynamic faults”. Information Processing Letters 66, 309–318, 1998.

6. S. Dobrev, “Communication-efficient broadcasting in complete networks with dy-
namic faults”. Theory of Computing Systems 36(6), 695–709, 2003.

On Fractional Dynamic Faults with Threshold 211

7. S. Dobrev, “Computing input multiplicity in anonymous synchronous networks
with dynamic faults”. Journal of Discrete Algorithms 2, 425–438, 2004.

8. S. Dobrev and I. Vrt’o, “Optimal broadcasting in hypercubes with dynamic faults”.
Information Processing Letters 71, 81–85, 1999.

9. S. Dobrev and I. Vrt’o, “Optimal broadcasting in even tori with dynamic faults”.
Parallel Processing Letters 12, 17–22, 2002.

10. S. Dobrev and I. Vrt’o, “Dynamic faults have small effect on broadcasting in hy-
percubes”. Discrete Applied Mathematics 137(2), 155–158, 2004.

11. M. J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of distributed con-
sensus with one faulty process”, Journal of the ACM 32 (2), 1985.

12. P. Fraigniaud and C. Peyrat, “Broadcasting in a hypercube when some calls fail”,
Information Processing Letters 39, 115–119, 1991.

13. R. Královič, R. Královič, and P. Ružička,“Broadcasting with many faulty links”. In
Proc. 10th Colloquium on Structural Information and Communication complexity
(SIROCCO’03), 211–222, 2003.

14. Z. Liptak and A. Nickelsen,“Broadcasting in complete networks with dynamic edge
faults”, In Proc. 4th International Conference on Principles of Distributed Systems
(OPODIS 00), Paris, 123–142, 2000.

15. Tz. Ostromsky and Z. Nedev, “Broadcasting a Message in a Hypercube with Pos-
sible Link Faults”. In Parallel and Distributed Processing ’91 (K. Boyanov, editor),
Elsevier, 231–240, 1992.

16. A. Pelc and D. Peleg, “Feasibility and complexity of broadcasting with random
transmission failures”. In Proc. 24th ACM Symposium on Principles of Distributed
Computing (PODC 05), 334–341, 2005.

17. N. Santoro and P. Widmayer, “Time is not a healer”. In Proc. 6th Ann. Symposium
on Theoretical Aspects of Computer Science (STACS 89), LNCS 349, 304–313,
1989.

18. N. Santoro and P. Widmayer, “Distributed function evaluation in the presence of
transmission faults”. In Proc. International Symposium on Algorithms (SIGAL 90),
Tokyo, LNCS 450, 358–367, 1990.

19. N. Santoro and P. Widmayer,“Agreement in synchronous networks with ubiquitous
faults”. In Theoretical Computer Science, 2006, to appear; preliminary version in
Proc. 12th Colloquium on Structural Information and Communication Complexity
(SIROCCO’05), LNCS, 2005.

Discovering Network Topology in the Presence
of Byzantine Faults

Mikhail Nesterenko1,� and Sébastien Tixeuil2,��

1 Computer Science Department, Kent State University Kent, OH, 44242, USA
mikhail@cs.kent.edu

2 LRI-CNRS UMR 8623 & INRIA Grand Large
Université Paris Sud, France

tixeuil@lri.fr

Abstract. We study the problem of Byzantine-robust topology discov-
ery in an arbitrary asynchronous network. We formally state the weak
and strong versions of the problem. The weak version requires that ei-
ther each node discovers the topology of the network or at least one node
detects the presence of a faulty node. The strong version requires that
each node discovers the topology regardless of faults.

We focus on non-cryptographic solutions to these problems. We ex-
plore their bounds. We prove that the weak topology discovery problem
is solvable only if the connectivity of the network exceeds the number of
faults in the system. Similarly, we show that the strong version of the
problem is solvable only if the network connectivity is more than twice
the number of faults.

We present solutions to both versions of the problem. Our solutions
match the established graph connectivity bounds. The programs are ter-
minating, they do not require the individual nodes to know either the
diameter or the size of the network. The message complexity of both
programs is low polynomial with respect to the network size.

1 Introduction

In this paper, we investigate the problem of Byzantine-tolerant distributed topol-
ogy discovery in an arbitrary network. Each node is only aware of its neighboring
peers and it needs to learn the topology of the entire network.

Topology discovery is an essential problem in distributed computing (e.g.
see [1]). It has direct applicability in practical systems. For example, link-state
based routing protocols such as OSPF use topology discovery mechanisms to
compute the routing tables. Recently, the problem has come to the fore with
the introduction of ad hoc wireless sensor networks, such as Berkeley motes [2],
where topology discovery is essential for routing decisions.
� This author was supported in part by DARPA contract OSU-RF#F33615-01-C-1901

and by NSF CAREER Award 0347485.
�� This author was supported in part by the FNS grants FRAGILE and SR2I from

ACI “Sécurité et Informatique”.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 212–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Discovering Network Topology in the Presence of Byzantine Faults 213

As reliability demands on distributed systems increase, the interest in de-
veloping robust topology discovery programs grows. One of the strongest fault
models is Byzantine [3]: the faulty node behaves arbitrarily. This model encom-
passes rich set of fault scenarios. Moreover, Byzantine fault tolerance has security
implications, as the behavior of an intruder can be modeled as Byzantine. One
approach to deal with Byzantine faults is by enabling the nodes to use crypto-
graphic operations such as digital signatures or certificates. This limits the power
of a Byzantine node as a non-faulty node can verify the validity of received topol-
ogy information and authenticate the sender across multiple hops. However, this
option may not be available. For example, wireless sensors may not have the
capacity to manipulate digital signatures. Another way to limit the power of
a Byzantine process is to assume synchrony: all processes proceed in lock-step.
Indeed, if a process is required to send a message with each pulse, a Byzantine
process cannot refuse to send a message without being detected. However, the
synchrony assumption may be too restrictive for practical systems.

Our Contribution. In this study we explore the fundamental properties of
topology discovery. We select the weakest practical programming model, estab-
lish the limits on the solutions and present the programs matching those limits.

Specifically, we consider arbitrary networks of arbitrary topology where up to
fixed number of nodes k is faulty. The execution model is asynchronous. We are
interested in solutions that do not use cryptographic primitives. The solutions
should be terminating and the individual processes should not be aware of the
network parameters such as network diameter or its total number of nodes.

We state two variants of the topology discovery problem: weak and strong. In
the former — either each non-faulty node learns the topology of the network or
one of them detects a fault; in the latter — each non-faulty node has to learn
the topology of the network regardless of the presence of faults.

As negative results we show that any solution to the weak topology discovery
problem can not ascertain the presence of an edge between two faulty nodes.
Similarly, any solution to the strong variant can not determine the presence
of a edge between a pair of nodes at least one of which is faulty. Moreover, the
solution to the weak variant requires the network to be at least (k+1)-connected.
In case of the strong variant the network must be at least (2k + 1)-connected.

The main contribution of this study are the algorithms that solve the two prob-
lems: Detector and Explorer. The algorithms match the respective lower bounds.
To the best of our knowledge, these are the first asynchronous Byzantine-robust
solutions to the topology discovery problem that do not use cryptographic oper-
ations. Explorer solves the stronger problem. However, Detector has better mes-
sage complexity. Detector either determines topology or signals fault in O(δn3)
messages where δ and n are the maximum neighborhood size and the number
of nodes in the system respectively. Explorer finishes in O(n4) messages. We ex-
tend our algorithms to (a) discover a fixed number of routes instead of complete
topology and (b) reliably propagate arbitrary information instead of topological
data.

214 M. Nesterenko and S. Tixeuil

Related Work. A number of researchers employ cryptographic operations to
counter Byzantine faults. Avromopolus et al [4] consider the problem of secure
routing. Therein see the references to other secure routing solutions that rely
on cryptography. Perrig et al [5] survey robust routing methods in ad hoc sen-
sor networks. The techniques covered there also assume that the processes are
capable of cryptographic operations.

A naive approach of solving the topology discovery problem without cryp-
tography would be to use a Byzantine-resilient broadcast [6, 7, 8, 9]: each node
advertises its neighborhood. However all existing solutions for arbitrary topology
known to us require that the graph topology is a priori known to the nodes.

Let us survey the non-cryptography based approaches to Byzantine fault-
tolerance. Most programs described in the literature [10, 11, 12, 13] assume com-
pletely connected networks and can not be easily extended to deal with arbitrary
topology. Dolev [7] considers Byzantine agreement on arbitrary graphs. He states
that for agreement in the presence of up to k Byzantine nodes, it is necessary
and sufficient that the network is (2k+1)-connected and the number of nodes in
the system is at least 3k + 1. However, his solution requires that the nodes are
aware of the topology in advance. Also, this solution assumes the synchronous
execution model. Recently, the problem of Byzantine-robust reliable broadcast
has attracted attention [6, 8, 9]. However, in all cases the topology is assumed to
be known. Bhandari and Vaidya [6] and Koo [8] assume two-dimensional grid.
Pelc and Peleg [9] consider arbitrary topology but assume that each node knows
the exact topology a priori. A notable class of algorithms tolerates Byzantine
faults locally [14, 15, 16]. Yet, the emphasis of these algorithms is on containing
the fault as close to its source as possible. This is only applicable to the prob-
lems where the information from remote nodes is unimportant such as vertex
coloring, link coloring or dining philosophers. Thus, local containment approach
is not applicable to topology discovery.

Masuzawa [17] considers the problem of topology discovery and update. How-
ever, Masuzawa is interested in designing a self-stabilizing solution to the prob-
lem and thus his fault model is not as general as Byzantine: he considers only
transient and crash faults.

The rest of the paper is organized as follows. After stating our programming
model and notation in Section 2, we formulate the topology discovery problems,
as well as state the impossibility results in Section 3. We present Detector and
Explorer in Sections 4 and 5 respectively. We discuss the composition of our
programs and their extensions in Section 6 and conclude the paper in Section 7.

2 Notation, Definitions and Assumptions

Graphs. A distributed system (or program) consists of a set of processes and
a neighbor relation between them. This relation is the system topology. The
topology forms a graph G. Denote n and e to be the number of nodes1 and edges
in G respectively. Two processes are neighbors if there is an edge in G connecting
1 We use terms process and node interchangeably.

Discovering Network Topology in the Presence of Byzantine Faults 215

them. A set P of neighbors of process p is neighborhood of p. In the sequel we use
small letters to denote singleton variables and capital letters to denote sets. In
particular, we use a small letter for a process and a matching capital one for this
process’ neighborhood. Since the topology is symmetric, if q ∈ P then p ∈ Q.
Denote δ to be the maximum number of nodes in a neighborhood.

A node-cut of a graph is the set of nodes U such that G \ U is disconnected
or trivial. A node-connectivity (or just connectivity) of a graph is the minimum
cardinality of a node-cut of this graph. In this paper we make use of the following
fact about graph connectivity that follows from Menger’s theorem (see [18]): if
a graph is k-connected (where k is some constant) then for every two vertices u
and v there exists at least k internally node-disjoint paths connecting u and v
in this graph.

Program Model. A process contains a set of variables. When it is clear from
the context, we refer to a variable var of process p as var.p. Every variable ranges
over a fixed domain of values. For each variable, certain values are initial. Each
pair of neighbor processes share a pair of special variables called channels. We
denote Ch.b.c the channel from process b to process c. Process b is the sender
and c is the receiver. The value for a channel variable is chosen from the domain
of (potentially infinite) sequences of messages.

A state of the program is the assignment of a value to every variable of each
process from its corresponding domain. A state is initial if every variable has
initial value. Each process contains a set of actions. An action has the form
〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean predicate over the vari-
ables of the process. A command is sequence of assignment and branching state-
ments. A guard may be a receive-statement that accesses the incoming channel.
A command may contain a send-statement that modifies the outgoing channel.
A parameter is used to define a set of actions as one parameterized action. For
example, let j be a parameter ranging over values 2, 5 and 9; then a parameter-
ized action ac.j defines the set of actions ac.(j = 2)][ac.(j = 5)][ac.(j = 9).
Either guard or command can contain quantified constructs [19] of the form:
(〈quantifier〉〈bound variables〉 : 〈range〉 : 〈term〉), where range and term are
boolean constructs.

Semantics. An action of a process of the program is enabled in a certain state
if its guard evaluates to true. An action containing receive-statement is enabled
when appropriate message is at the head of the incoming channel. The execution
of the command of an action updates variables of the process. The execution of
an action containing receive-statement removes the received message from the
head of the incoming channel and inserts the value the message contains into
the specified variables. The execution of send-statement appends the specified
message to the tail of the outgoing message.

A computation of the program is a maximal fair sequence of states of the
program such that the first state s0 is initial and for each state si the state si+1
is obtained by executing the command of an action whose state is enabled in
si. That is, we assume that the action execution is atomic. The maximality of

216 M. Nesterenko and S. Tixeuil

a computation means that the computation is either infinite or it terminates
in a state where none of the actions are enabled. The fairness means that if
an action is enabled in all but finitely many states of an infinite computation
then this action is executed infinitely often. That is, we assume weak fairness
of action execution. Notice that we define the receive statement to appear as a
standalone guard of an action. This means, that if a message of the appropriate
type is at the head of the incoming channel, the receive action is enabled. Due
to weak fairness assumption, this leads to fair message receipt assumption: each
message in the channel is eventually received. Observe that our definition of a
computation considers asynchronous computations.

To reason about program behavior we define boolean predicates on program
states. A program invariant is a predicate that is true in every initial state of the
program and if the predicate holds before the execution of the program action,
it also holds afterwards. Notice that by this definition a program invariant holds
in each state of every program computation.

Faults. Throughout a computation, a process may be either Byzantine (faulty)
or non-faulty. A Byzantine process contains an action that assigns to each lo-
cal variable an arbitrary value from its domain. This action is always enabled.
Observe that this allows a faulty node to send arbitrary messages. We assume,
however, that messages sent by such node conform to the format specified by the
algorithm: each message carries the specified number of values, and the values
are drawn from appropriate domains. This assumption is not difficult to imple-
ment as message syntax checking logic can be incorporated in receive-action of
each process. We assume oral record [3] of message transmission: the receiver
can always correctly identify the message sender. The channels are reliable: the
messages are delivered in FIFO order and without loss or corruption. Through-
out the paper we assume that the maximum number of faults in the system is
bounded by some constant k.

Graph Exploration. The processes discover the topology of the system by
exchanging messages. Each message contains the identifier of the process and
its neighborhood. Process p explored process q if p received a message with
(q,Q). When it is clear from the context, we omit the mention of p. An explored
subgraph of a graph contains only explored processes. A Byzantine process may
potentially circulate information about the processes that do not exist in the
system altogether. A process is fake if it does not exist in the system, a process
is real otherwise.

3 Topology Discovery Problem: Statement and Solution
Bounds

Problem Statement

Definition 1 (Weak Topology Discovery Problem). A program is a solu-
tion to the weak topology discovery problem if each of the program’s computation

Discovering Network Topology in the Presence of Byzantine Faults 217

satisfies the following properties: termination — either all non-faulty processes
determine the system topology or at least one process detects a fault; safety —
for each non-faulty process, the determined topology is a subset of the actual
system topology; validity — the fault is detected only if there are faulty processes
in the system.

Definition 2 (Strong Topology Discovery Problem). A program is a so-
lution to the strong topology discovery problem if each of the program’s compu-
tations satisfies the following properties: termination — all non-faulty processes
determine the system topology; safety — the determined topology is a subset of
the actual system topology.

According to the safety property of both problem definitions each non-faulty
process is only required to discover a subset of the actual system topology. How-
ever, the desired objective is for each node to discover as much of it as possible.
The following definitions capture this idea. A solution to a topology discovery
problem is complete if every non-faulty process always discovers the complete
topology of the system. A solution to the problem is node-complete if every
non-faulty process discovers all nodes of the system. A solution is adjacent-edge
complete if every non-faulty node discovers each edge adjacent to at least one
non-faulty node. A solution is two-adjacent-edge complete if every non-faulty
node discovers each edge adjacent to two non-faulty nodes.

Solution Bounds. The proofs for the theorems stated in this section are to be
found elsewhere [20].

Theorem 1. There does not exist a complete solution to the weak topology
discovery problem.

Theorem 2. There exists no node- and adjacent-edge complete solution to the
weak topology problem if the connectivity of the graph is lower or equal to the
total number of faults k.

Observe that for (k+1)-connected graphs an adjacent-edge complete solution is
also node complete.

Theorem 3. There does not exist an adjacent-edge complete solution to the
strong topology discovery problem.

Theorem 4. There exists no node- and two-adjacent-edge complete solution to
the strong topology problem if the connectivity of the graph is less than or equal
to twice the total number of faults k.

4 Detector

Outline. Detector solves the weak topology discovery problem for system graphs
whose connectivity exceeds the number of faulty nodes k. The algorithm lever-
ages the connectivity of the graph. For each pair of nodes, the graph guarantees

218 M. Nesterenko and S. Tixeuil

the presence of at least one path that does not include a faulty node. The topol-
ogy data travels along every path of the graph. Hence, the process that collects
information about another process can find the potential inconsistency between
the information that proceeds along the path containing faulty nodes and the
path containing only non-faulty ones.

Care is taken to detect the fake nodes whose information is introduced by
faulty processes. Since the processes do not know the size of the system, a faulty
process may potentially introduce an infinite number of fake nodes. However, the
graph connectivity assumption is used to detect fake nodes. As faulty processes
are the only source of information about fake nodes, all the paths from the real
nodes to the fake ones have to contain a faulty node. Yet, the graph connectivity
is assumed to be greater than k. If a fake node is ever introduced, one of the
non-faulty processes eventually detects a graph with too few paths leading to
the fake node.

Detailed Description. The program is shown in Figure 1. Each process p stores
the identifiers of its immediate neighbors. They are kept in set P . Each process
keeps the upper bound k on the number of faulty processes. Process p maintains
the following variables. Boolean variable detect indicates if p discovers a fault

process p
const

P : set of neighbor identifiers of p
k: integer, upper bound on the number of faulty processes

parameter
q : P

var
detect : boolean, initially false, signals fault
start : boolean, initially true, controls sending of p’s neighborhood info
TOP : set of tuples, initially {(p, P)}, (process ids, neighbor id set)

received by p
∗[

init : start −→
start := false,
(∀j : j ∈ P : send (p, P) to j)

][
accept : receive (r,R) from q −→

if (∃s, S : (s, S) ∈ TOP : s = r ∧ S �= R) ∨
(path number(TOP ∪ {(r, R)}) < k + 1)

then
detect := true

else
if (�s, S : (s, S) ∈ TOP : s = r) then

TOP := TOP ∪ {(r, R)},
(∀j : j ∈ P : send (r,R) to j)

]

Fig. 1. Process of Detector

Discovering Network Topology in the Presence of Byzantine Faults 219

in the system. Boolean variable start guards the execution of the action that
sends p’s neighborhood information to its neighbors. Set TOP (for topology)
stores the subgraph explored by p; TOP contains tuples of the form: (process
identifier, its neighborhood). In the initial state, TOP contains (p, P).

Function path number evaluates the topology of the subgraph stored in
TOP . Recall that a node u is unexplored by p if for every tuple (s, S) ∈ TOP ,
s is not the same as u. That is u may appear in S only. We construct graph G′

by adding an edge to every pair of unexplored processes present in TOP . We
calculate the value of path number as follows. If the information of TOP is
inconsistent, that is:

(∃u, v, U, V : ((u, U) ∈ TOP) ∧ ((v, V) ∈ TOP) :
(u ∈ V) ∧ (v �∈ U))

then path number returns 0. If there is exactly one explored node in TOP ,
path number returns k+1. Otherwise the function returns the minimum num-
ber of internally node disjoint paths between two explored nodes in G′. In the
correctness proof for this program we show that unless there is a fake node, the
path number of G′ is no smaller than the connectivity of G.

Processes exchange messages of the form (process identifier, its neighborhood
id set). A process contains two actions: init and accept. Action init starts the
propagation of p’s neighborhood throughout the system. Action accept receives
the neighborhood data of some process, records it, checks against other data
already available for p and possibly further disseminates the data. If the data
received from neighbor q about a process r contradicts what p already holds
about r in TOP or if the newly arrived information implies that G is less than
(k + 1)-connected p indicates that it detected a fault by setting detect to true.
Alternatively, if p did not previously have the information about r, p updates
TOP and sends the received information to all its neighbors.

Theorem 5. Detector is an adjacent-edge complete solution to the weak topol-
ogy discovery problem in case the connectivity of system topology graph exceeds
the number of faults.

A correctness proof of the theorem can be found elsewhere [21].

Efficiency Evaluation. Since we consider an asynchronous model, the number
of messages a Byzantine process can send in a computation is infinite. To evaluate
the efficiency of Detector we assume that each process is familiar with the upper
bound on the number of processes in the system and this upper bound is in O(n).
A non-faulty process then detects a fault if the number of processes it explores
exceeds this bound or if it receives more than one identical message from the
same neighbor. We assume that the process stops and does not send or receive
any more messages if it detects a fault.

In this case we can estimate the number of messages that are received by non-
faulty processes before one of them detects a fault or before the computation
terminates. To make the estimation fair, the assume that the unit is log(n) bits.

220 M. Nesterenko and S. Tixeuil

Since it takes that many bits to assign unique process identifiers to n processes,
we assume that one identifier is exactly one unit of information. A message in
Detector carries up to δ+1 identifiers, where δ is the maximum number of nodes
in the neighborhood of a process. Observe that a process can receive at most n
messages from each incoming channel. Thus, the total number of messages that
can be sent by Detector is 2en, where e is the number of edges in the graph.
The message complexity of the program is in O(2enδ). If e is proportional to n2,
then the complexity of the program is in O(δn3).

5 Explorer

Outline. The main idea of Explorer is for each process to collect information
about some node’s neighborhood such that the information goes along more than
twice as many paths as the maximum number of Byzantine nodes. While the
paths are node-disjoint, the information is correct if it comes across the majority
of the paths. In this case the recipient is in possession of confirmed information.
It turns out that the topology information does not have to come directly from
the source. Instead it can come from processes with confirmed information. The
detailed description of Explorer follows.

To simplify the presentation, we describe and prove correct the version of
Explorer that tolerates only one Byzantine fault. We describe how this version
can be extended to tolerate multiple faults in the end of the section.

Description. Since we first describe the 1-fault tolerant version of Explorer we
assume that the graph is 3-connected. The program is shown in Figure 2. Similar
to Detector, each process p in Explorer, stores the ids of its immediate neighbors.
Process p maintains the variable start, whose function is to guard the execution
of the action that initiates the propagation of p’s own neighborhood. Unlike
Detector, however, p maintains two sets that store the topology information
of the network: uTOP and cTOP . Set uTOP stores the topology data that
is unconfirmed; cTOP stores confirmed topology data. Set uTOP contains the
tuples of neighborhood information that p received from other nodes. Besides
the process id and the set of its neighbor ids, each such tuple contains a set of
process identifiers, that relayed the information. We call it visited set. The tuples
in cTOP do not require visited set.

Processes exchange messages where, along with the neighbor identifiers for
a certain process, a visited set is propagated. A process contains two actions:
init and accept. The purpose of init is similar to that in the process of Detec-
tor. Action accept receives the neighborhood information of some process r, its
neighborhood R which was relayed by nodes in set S. The information is received
from p’s neighbor — q.

First, accept checks if the information about r is already confirmed. If so, the
only manipulation is to record the received information in uTOP . Actually, this
update of uTOP is not necessary for the correct operation of the program, but
it makes the its proof of correctness easier to follow.

Discovering Network Topology in the Presence of Byzantine Faults 221

process p
const

P , set of neighbor identifiers of p
parameter

q : P
var

start : boolean, initially true, controls sending of p’s neighbor ids
cTOP : set of tuples, initially {(p, P)},

(process id, neighbor id set) confirmed topology info
uTOP : set of tuples, initially ∅,

(process id, neighbor id set, visited id set)
unconfirmed topology info

∗[
init : start −→

start := false,
(∀j : j ∈ P : send (p,P, ∅) to j)

][
accept : receive (r,R, S) from q −→

if (∀t, T : (t, T) ∈ cTOP : t �= r) then
if (∀t, T, U : (t, T, U) ∈ uTOP : t �= r ∨ T �= R) then

(∀j : j ∈ P : send (r,R, S ∪ {q}) to j)
elsif (∃t, T, U : (t, T, U) ∈ uTOP :

t = r ∧ R = T ∧ ((U ∩ (S ∪ {q}))) ⊂ {r}))
then

cTOP := cTOP ∪ {(r, R)},
(∀j : j ∈ P : send (r,R, ∅) to j)

uTOP := uTOP ∪ {(r, R, S ∪ {q})}
]

Fig. 2. Process of Explorer

If the received information does not concern already confirmed process, accept
checks if this information differs from what is already recorded in uTOP either
in r or in R. In either case the information is broadcast to all neighbors of p.
Before broadcasting p appends the sender — q to the visited set S.

If the information about r and R has already been received and recorded
in uTOP , accept checks if the previously recorded information came along an
internally node disjoint path. If so, the information about r is added to cTOP . In
this case, this information is also broadcast to all p’s neighbors. Note, however,
that p is now sure of the information it received. Hence, the visited set of nodes
in the broadcast message is empty.

Theorem 6. Explorer is a two-adjacent-edge complete solution to the strong
topology discovery problem in case of one fault and the system topology graph
is at least 3-connected.

A correctness proof of the theorem be found elsewhere [21].

Modification to Handle k > 1 faults. Observe that Explorer confirms the
topology information about a node’s neighborhood, when it receives two mes-

222 M. Nesterenko and S. Tixeuil

sages carrying it over internally node disjoint paths. Thus, the program can
handle a single Byzantine fault. The explorer can handle k > 1 faults, if it waits
until it receives k+1 messages before it confirms the topology info. All the mes-
sages have to travel along internally node disjoint paths. For the correctness of
the algorithm, the topology graph has to be (2k + 1)-connected.

Proposition 1. Explorer is a two-adjacent-edge complete solution to the strong
topology discovery problem in case of k faults and the system topology graph is
at least (2k + 1)-connected.

Efficiency evaluation. Unlike Detector, Explorer does not quit when a fault is
discovered. Thus, the number of messages a faulty node may send is arbitrary
large. However, we can estimate the message complexity of Explorer in the ab-
sence of faults. Each message carries a process identifier, a neighborhood of this
process and a visited set. The number of the identifiers in a neighborhood is no
more than δ, and the number of identifiers in the visited set can be as large as
n. Hence the message size is bounded by δ + n + 1 which is in O(n).

Notice, that for the neighborhood A of each process a, every process broad-
casts a message twice: when it first receives the information, and when it con-
firms it. Thus, the total number of sent messages is 4e ·n and the overall message
complexity of Explorer if no faults are detected is in O(n4).

6 Composition and Extensions

Composing Detector and Explorer . Observe that Detector has better mes-
sage complexity than Explorer if the neighborhood size is bounded. Hence, if the
incidence of faults is low, it is advantageous to run Detector and invoke Explorer
only if a fault is detected. We assume that the processes can distinguish between
message types of Explorer and Detector. In the combined program, a process
running Detector switches to Explorer if it discovers a fault. Other processes
follow suit, when they receive their first Explorer messages. They ignore Detec-
tor messages henceforth. A Byzantine process may potentially send an Explorer
message as well, which leads to the whole system switching to Explorer. Observe
that if there are no faults, the system will not invoke Explorer. Thus, the com-
plexity of the combined program in the absence of faults is the same as that of
Detector. Notice that even though Detector alone only needs (k+1)-connectivity
of the system topology, the combined program requires (2k + 1)-connectivity.

Message Termination. We have shown that Detector and Explorer comply
with the functional termination properties of the topology discovery problem.
That is, all processes eventually discover topology. However, the performance
aspect of termination, viz. message termination, is also of interest. Usually an
algorithm is said to be message terminating if all its computations contain a
finite number of sent messages [22].

However, a Byzantine process may send messages indefinitely. To capture
this, we weaken the definition of message termination. We consider a Byzantine-
tolerant program message terminating if the system eventually arrives at a state

Discovering Network Topology in the Presence of Byzantine Faults 223

where: (a) all channels are empty except for the outgoing channels of a faulty
process; (b) all actions in non-faulty processes are disabled except for possibly the
receive-actions of the incoming channels from Byzantine processes, these receive-
actions do not update the variables of the process. That is, in a terminating
program, each non-faulty process starts to eventually discard messages it receives
from its Byzantine neighbors.

Making Detector terminating is fairly straightforward. As one process detects
a fault, the process floods the announcement throughout the system. Since the
topology graph for Detector is assumed (k+1)-connected, every process receives
such announcement. As the process learns of the detection, it stops processing or
forwarding of the messages. Notice that the initiation of the flood by a Byzantine
node itself, only accelerates the termination of Detector as the other processes
quickly learn of the faulty node’s existence.

The addition of termination to Explorer is more involved. To ensure termi-
nation, restrictions have to be placed on message processing and forwarding.
However, the restrictions should be delicate as they may compromise the live-
ness properties of the program.

By the design of Explorer, each process may send at most one message about
its own neighborhood to its neighbors. Hence, the subsequent messages can be
ignored. However, a faulty process may send messages about neighborhoods of
other processes. These processes may be real or fake. We discuss these cases
separately.

Note that each process in Explorer can eventually obtain an estimate of the
identities of the processes in the system and disregard fake process information.
Indeed, a path to a fake node can only lead through faulty processes. Thus, if a
process discovers that there may be at most k internally node disjoint paths be-
tween itself and a certain node, this node is fake. Therefore, the process may cease
to process messages about the fake node’s neighborhood. Notice, that since the
system is (2k+1)-connected, messages about real nodes will always be processed.
Therefore, the liveness properties of Explorer are not affected.

As to the real processes, they can be either Byzantine or non-faulty. Recall
that each non-faulty process of Explorer eventually confirms neighborhoods of
all other non-faulty processes. After the neighborhood of a process is confirmed,
further messages about it are ignored.

The last case is a Byzantine process u sending a message to its correct neigh-
bor v about the neighborhood of another Byzantine process w. By the design of
Explorer, v relays the message about w provided that the neighborhood infor-
mation about w differs from what previously received about w. As we discussed
above, eventually v estimates the identities of all real processes in the system.
Therefore, there is a finite number of possible different neighborhoods of w that
u can create. Hence, eventually they will be exhausted, and v starts ignoring
further messages form u about w.

Thus, Explorer can be made terminating as well.

Other Extensions. Observe that Explorer is designed to disseminate the infor-
mation about the complete topology to all processes in the system. However, it

224 M. Nesterenko and S. Tixeuil

may be desirable to just establish the routes from all processes in the system to
one or a fixed number of distinguished ones. To accomplish this Explorer needs
to be modified as follows. No, neighborhood information is propagated. Instead
of the visited set, each message carries the propagation path of the message.
That is the order of the relays is significant.

Only the distinguished processes initiate the message propagation. The other
processes only relay the messages. Just as in the original Explorer, a process
confirms a path to another process only if it receives 2k + 1 internally node
disjoint paths from the source or from other confirming nodes. Again, like in
Explorer, such process rebroadcasts the message, but empties the propagation
path. In the outcome of this program, for every distinguished process, each non-
faulty process will contain paths to at least 2k + 1 processes that lead to this
distinguished node. Out of these paths, at least k + 1 ultimately lead to the
distinguished node.

In Explorer, for each process the propagation of its neighborhood information
is independent of the other neighborhoods. Thus, instead of topology, Explorer
can be used for efficient fault-tolerant propagation of arbitrary information from
the processes to the rest of the network.

7 Conclusion

In conclusion, we would like to outline a couple of interesting avenues of further
research.

The existence of Byzantine-robust topology discovery solutions opens the ques-
tion of theoretical limits of efficiency of such programs. The obvious lower bound
on message complexity can be derived as follows. Every process must transmit
its neighborhood to the rest of the nodes in the system. Transmitting informa-
tion to every node requires at least n messages, so the overall message complexity
is at least δn2. If k processes are Byzantine, they may not relay the messages of
other nodes. Thus, to ensure that other nodes learn about its neighborhood, each
process has to send at least k+1 messages. Thus, the complexity of any Byzantine-
robust solution to the topology discovery problem is at least in Ω(δn2k).

Observe that Explorer and Detector may not explicitly identify faulty nodes or
the inconsistent view of the their immediate neighborhoods. We believe that this
can be accomplished using the technique used by Dolev [7]. In case there are 3k+1
non-faulty processes, they may exchange the topologies they collected to discover
the inconsistencies. This approach, may potentially expedite termination of Ex-
plorer at the expense of greater message complexity: if a certain Byzantine node
is discovered, the other processes may ignore its further messages.

References

1. Spinelli, J.M., Gallager, R.G.: Event-driven topology broadcast without sequence
numbers. IEEE trans. on commun. COM-37, 5 (1989) 468–474

2. Hill, J., Culler, D.: Mica: A wireless platform for deeply embedded networks. IEEE
Micro 22 (2002) 12–24

Discovering Network Topology in the Presence of Byzantine Faults 225

3. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
Transactions on Programming Languages and Systems 4 (1982) 382–401

4. Avramopoulos, I.C., Kobayashi, H., Wang, R., Krishnamurthy, A.: Highly secure
and efficient routing. In: Proceedings of INFOCOM: The Conference on Computer
Communications, joint conference of the IEEE Computer and Communications
Societies, Hong Kong (2004)

5. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Com-
munications of the ACM 47 (2004) 53–57

6. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Pro-
ceedings of the Twenty-Fourth Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC 2005), Las Vegas, Nevada (2005) to
appear

7. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3 (1982)
14–30

8. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: PODC ’04: Proceedings of the twenty-third annual ACM symposium on Prin-
ciples of distributed computing, New York, NY, USA, ACM Press (2004) 275–282

9. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Informa-
tion Processing Letters 93 (2005) 109–115

10. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill Publishing Company, New York (1998) 6.

11. Malkhi, D., Reiter, M., Rodeh, O., Sella, Y.: Efficient update diffusion in byzantine
environments. In: The 20th IEEE Symposium on Reliable Distributed Systems
(SRDS ’01), Washington - Brussels - Tokyo, IEEE (2001) 90–98

12. Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on prop-
agating updates in a Byzantine environment. Theoretical Computer Science 299
(2003) 289–306

13. Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Computing
16 (2003) 49–68

14. Masuzawa, T., Tixeuil, S.: A self-stabilizing link-coloring protocol resilient to un-
bounded byzantine faults in arbitrary networks. Technical Report 1396, Labora-
toire de Recherche en Informatique (2005)

15. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceed-
ings of 21st IEEE Symposium on Reliable Distributed Systems. (2002) 22–29

16. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Proceedings of the 2004 Interna-
tional Conference on Principles of Distributed Systems (OPODIS’2004). Lecture
Notes in Computer Science, Springer-Verlag (2004)

17. Masuzawa, T.: A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In: Proceedings of the Second Workshop on Self-Stabilizing Systems. (1995)
1.1–1.15

18. Yellen, J., Gross, J.L.: Graph Theory & Its Applications. CRC Press (1998) ISBN:
0–849–33982–0.

19. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin (1990)

20. Nesterenko, M., Tixeuil, S.: Bounds on topology discovery in the presence of byzan-
tine faults. Technical Report TR-KSU-CS-2006-01, Dept. of Computer Science,
Kent State University (2006) http://www.cs.kent.edu/techreps/TR-KSU-CS-2006-
01.pdf.

226 M. Nesterenko and S. Tixeuil

21. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzan-
tine faults. Technical Report TR-KSU-CS-2005-01, Dept. of Computer Science,
Kent State University (2005) http://www.cs.kent.edu/techreps/TR-KSU-CS-2005-
01.pdf.

22. Dijkstra, E., Scholten, C.: Termination detection for diffusing computations. In-
formation Processing Letters 11 (1980) 1–4

Minimum Energy Broadcast and Disk Cover
in Grid Wireless Networks�

(Extended Abstract)

Tiziana Calamoneri2, Andrea E.F. Clementi1, Miriam Di Ianni1,
Massimo Lauria2, Angelo Monti2, and Riccardo Silvestri2

1 Dipartimento di Matematica, Università degli Studi di Roma“Tor Vergata”
{clementi, diianni}@mat.uniroma2.it

2 Dipartimento di Informatica, Università degli Studi di Roma “La Sapienza”
{calamo, lauria, monti, silver}@di.uniroma1.it

Abstract. The Minimum Energy Broadcast problem consists in finding
the minimum-energy range assignment for a given set S of n stations
of an ad hoc wireless network that allows a source station to perform
broadcast operations over S.

We prove a nearly tight asymptotical bound on the optimal cost for
the Minimum Energy Broadcast problem on square grids. We emphasize
that finding tight bounds for this problem restriction is far to be easy: it
involves the Gauss’s Circle problem and the Apollonian Circle Packing.
We also derive near-tight bounds for the Bounded-Hop version of this
problem. Our results imply that the best-known heuristic, the MST-
based one, for the Minimum Energy Broadcast problem is far to achieve
optimal solutions (even) on very regular, well-spread instances: its worst-
case approximation ratio is about π and it yields Ω(

√
n) hops.

As a by product, we get nearly tight bounds for the Minimum Disk
Cover problem and for its restriction in which the allowed disks must
have non-constant radius.
Finally, we emphasize that our upper bounds are obtained via polynomial
time constructions.

1 Introduction

An ad-hoc wireless network consists of a set S of radio stations connected by
wireless links. We assume that stations are located on the Euclidean plane. A
transmission range is assigned to every station: a range assignment r : S → R
determines a directed communication graph G(S,E) where edge (i, j) ∈ E if and
only if dist(i, j) ≤ r(i) where dist(i, j) is the Euclidean distance between i and
j. In other words, (i, j) ∈ E if and only if j belongs to the disk of radius r(i)
centered at i. The transmission range of a station depends on the energy power
supplied to the station. In particular, the power Ps required by a station s to
transmit data to another station t must satisfy the inequality

Ps

dist(s, t)α
≥ 1

� Research partially supported by the EC Project AEOLUS.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 227–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 T. Calamoneri et al.

where α ≥ 1 is the distance-power gradient. In the empty space, α = 2 (see [20]):
this is the case considered in this paper.

Stations of an ad-hoc network cooperate in order to provide specific net-
work connectivity properties by adapting their transmission ranges. A Broadcast
Range Assignment (for short Broadcast) is a range assignment that yields a com-
munication graph G containing a directed spanning tree rooted at a given source
station s. A fundamental problem in the design of ad-hoc wireless networks is
the Minimum Energy Broadcast Problem (for short Minimum Broadcast): it con-
sists in finding a Broadcast of minimal overall energy power [7, 10, 18]. A range
assignment r can be represented by the corresponding family D = {D1, . . . , D�}
of disks, and its overall energy power (i.e. cost(D)) is defined as

cost(D) =
�∑

i=1

r2
i where ri is the radius of Di (1)

The Minimum Broadcast problem is known to be NP-hard [5] and the best-
known approximation algorithm is the MST-based heuristic [1, 10]. The MST-
based heuristic computes the minimum spanning tree of the complete graph
induced by S, then, it assigns a direction to the edges from the source s to
the leaves; finally, it assigns to each node i a range equal to the length of the
longest edge outgoing from i. This heuristic is efficient and easy to implement,
so, its worst-case approximation analysis has been the subject of several works
over the last five years. In particular, the first constant upper bound (' 40) on
the approximation ratio was determined in [5]. A rather sophisticated analysis,
recently introduced in [1], yields the tight upper bound 6. The tightness follows
from the lower bound proved in [4, 10] by considering unlike input configurations.
The worst-case analysis is often not sufficient to evaluate the practical inter-
est of a heuristic. It might be the case that the MST-based heuristic provides
nearly optimal solutions for most of natural and practically-relevant instances.
Recently, experimental studies have been presented on this issue [11, 6, 10].

1.1 Our Results

Minimum Broadcast Problem. In this paper, we address the above issue
by adopting an analytical approach: we consider Minimum Broadcast and some
other related problems on square grids. Square grids have been often considered
in wireless networks since they well-model some well-spread, practically relevant
ad-hoc network topologies [8, 19, 20]. One can see that the MST-based heuristic,
on a square grid of n points (without loss of generality, adjacent points are
placed at unit distance), returns, in the worst-case, a solution of cost n− 1. On
the other hand, what is the optimal cost on the square grids? One may think that
determining this cost is an easy task for so simple instances. On the contrary,
this is far to be true: as we will see later, this analysis involves the well-known
mathematical Gauss’ Circle problem [15, 17] and the Apollonian Circle Packing
[13, 21]. Our first contribution is the following result.

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks 229

Theorem [Broadcast]. If B∗ is any optimal Broadcast for the square grid G of
n points, then

n

π
−O(

√
n) ≤ cost(B∗) ≤ 1.01013

n

π
+ O(

√
n)

The upper bound is achieved via a polynomial time construction.

The above upper bound implies that the MST-based heuristic yields, in the
worst-case, a solution cost which is about π times larger than the optimum.

Minimum Cover Problem. Any Broadcast yields a (disk) cover of the grid
and a communication graph that contains a spanning tree. A cover C of a set
S of points is a set of disks C = {D1, . . . , D�} of radius at least 1, centered
at some points of S, that covers all points in S. The cost of C is defined as
cost(C) (see Eq. 1). The Minimum Cover problem consists in finding a cover for
S of minimum cost. Observe that this is a variant of the well-known NP-hard
Minimum Geometric Disk Cover [9, 16].
In general, a cover does not suffice to provide a feasible solution for the Minimum
Broadcast problem. A natural question here is whether (or when) the minimum
cover cost is asymptotically equivalent to the minimum broadcast cost. This
question is formally addressed by determining the cost of a minimum cover for
square grids.

Theorem [Cover]. If C∗ is any optimal cover of the square grid G of n points,
then

n/5 ≤ cost(C∗) ≤ n/5 + O(
√
n)

The upper bound is achieved via a polynomial time construction.

From the above theorems, it turns out that the cost of the cover is significantly
lower than the cost of the broadcast. However, next theorem shows that this is
not the case when we require that the disks are sufficiently large.

Theorem [Large Disk Cover]. Let f(n) = ω(1). The cost of any cover of G with
disks of radius at least f(n) is at least n

π − o(n). The upper bound is achieved via
a polynomial time construction.

We emphasize that there are important network scenarios in which the installing
cost (i.e. the cost of installing an omni-directional transmitter at a given location)
is rather high and it must be ”amortized” by a relevant use of the antenna. In
such cases, it is convenient to assign positive range to a station only if such a
range (so, disk) is large enough.

Bounded-Hop Broadcast. An important version of the Minimum Broadcast
problem is the one in which feasible solutions must guarantee a bounded number
of hops : The number of links (i.e. hops) in the path from the source to any other
node must be not larger than a fixed bound. This problem version is relevant since
the number of hops is closely related to the delay transmission time. The hop
restriction finds another application in the context of reliability: Assume that,

230 T. Calamoneri et al.

in a communication network, link faults happen with probability p and that all
faults occur independently. Then, the probability that a multi-hop transmission
fails exponentially increases with the number of hops. For further motivations
in studying bounded hops communication see [2, 12, 14, 22].

A main question here is the following: Does broadcasting with a bounded
number of hops require a significantly larger cost than broadcasting with an
unbounded number of hops? Intuitively speaking, one might figure out that the
right answer is the positive one since the cost is proportional to the area of
the solution disks and bounded-hop solutions require larger disks. Observe also
that the use of large disks yields large disk overlapping. Rather surprisingly,
this is not the case: we derive a broadcast for grids that uses only a constant
(i.e. not depending on n) number of disks and thus yields a constant number of
hops. This solution has a cost which is very close to that of the unbounded-hops
version.

Theorem [Broadcast with few Hops]. A positive constant c exists such that it is
possible to construct in polynomial time a broadcast B for G with (only) c disks
(of radius Ω(

√
n)) and such that

cost(B) < 1.1171
n

π
+ O(

√
n).

By comparing the above theorem with Theorem [Large Disks Cover], we can state
that covering and broadcasting over grids have almost asymptotically-equivalent
cost when the solution disks have non-constant radius (remind that any broad-
cast is also a cover). We also remark that the MST-based heuristic always returns
a solution for the grid that has an unbounded (i.e. Ω(

√
n)) number of hops. So,

our almost optimal polynomial-time construction yields bounded-hop solutions
whose structure significantly departs from that of the MST-based solutions.

Square grids are thus the first family of well-spread, natural instances that
perfectly capture the ”hardness” of solving the Minimum Broadcast problem via
the MST-based heuristic. It is our opinion that the set of results presented in this
paper provides strong theoretical arguments that open new possibilities in the
design of an efficient heuristic that significantly improves over the MST-based
one (at least) in the case of well-spread and uniform-random instances.

1.2 Preliminaries

We consider a Cartesian coordinates system and a square grid G of side length
m − 1 with its bottom left vertex in the origin. G contains n = m2 points at
integer coordinates; the coordinates of point P of the grid will be denoted as xp

and yp. A G-disk D is a disk centered at any point of the grid and having at
least one point of the grid on its boundary. We also denote as D the set of points
of grid G covered by D.

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks 231

2 The Minimum Cover Problem on the Grid

In this section we study two versions of the disk cover problem of the grid G.
In the first version, we consider coverings by disks of arbitrary radius, while, in
the second one, disks are required to have a minimal non constant radius. For
both versions, we need to evaluate the number N(r) of points of the infinite grid
covered by a G-disk of radius r. This problem, known as Gauss’ Circle problem,
has been extensively studied [15, 17] in order to derive the best exponent δ < 1
such that N(r) ≤ πr2 + crδ for some constant c. However, all these studies are
not useful to provide a good bound on c: instead, we need an upper bound on
N(r) with a small constant c while the exponent δ can be 1. The proof of next
lemma is given in the full version of the paper [3].

Lemma 1. For any radius r ≥ 1, it holds that N(r) < πr2 + (π
√

2 − 2)r +
1
5
√
r + π

2 . Moreover, for r >
√

10, it holds that N(r) < πr2 + 2
√

2r − 5.

The above lemma is now exploited to prove asymptotically tight lower and upper
bounds on the minimum cost of a cover of grid G.

Theorem 1. If C∗ is any minimum cover of the square grid G of n points, then

n/5 ≤ cost(C∗) ≤ n/5 + O(
√
n)

The upper bound is achieved via a polynomial time construction.

Proof. We first observe that, for any r > 0, it holds that

N(r) ≤ 5r2. (2)

Indeed, N(1) = 5, N(
√

2) = 9, and Lemma 1 implies that N(r) ≤ 5r2, for any
r ≥ 2. Let D1, D2, . . .Dt be the G-disks of an optimal cover and let cost∗ be
its cost. Let ri be the radius of Di, 1 ≤ i ≤ t. Since Di covers N(ri) points,
Inequality (2) implies that

n ≤
t∑

i=1

N(ri) ≤
t∑

i=1

5r2
i = 5 · cost∗

and so cost∗ ≥ n
5 .

A cover of G with cost n
5 +O(

√
n) is shown in Figure 1 for m = 11. It is easy to

see that the number of grey G-disks (i.e. disks not completely contained in G) is
O(

√
n), and the number of white G-disks (i.e. disks completely contained in G) is

not greater than n
5 . Since all G-disks have unit radius, then the cost n

5 + O(
√
n)

follows. It is easy to check that the above construction can be computed in time
polynomial in n. �

The cover resulting by the construction in Theorem 1 uses only G-disks of unit
radius. Next theorem investigates the cost of covers using only G-disks of large,
non constant radius.

232 T. Calamoneri et al.

Fig. 1. An asymptotically optimum disk cover for G with m = 11

Theorem 2. Let f(n) = ω(1). The cost of any cover of G with G-disks of radius
at least f(n) is at least n

π − o(n).

Proof. Let D1, D2, . . .Dt be the G-disks of a cover of G and let cost be its cost.
Let ri be the radius of Di, 1 ≤ i ≤ t. As Di covers N(ri) points, Lemma 1
implies that

n <

t∑
i=1

N(ri) <

t∑
i=1

(
πri

2 + (π
√

2)ri +
1
5
√
ri +

π

2

)
< (3)

<

t∑
i=1

(
πri

2 + 2πri

)
= πcost+ 2π

t∑
i=1

ri

By hypothesis ri ≥ f(n), hence we get

cost =
t∑

i=1

ri
2 ≥ f(n)

t∑
i=1

ri

and thus
t∑

i=1

ri ≤
cost

f(n)

From the above inequality and from Inequality 3, we get n < πcost + 2πcostf(n)
and, finally,

cost > n

(
f(n)

πf(n) + 2π

)
=

n

π

(
1 − 2

f(n) + 2

)
=

n

π
−o(n). �

As we shall see in the next section, the lower bound of this theorem is almost
tight.

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks 233

3 The Minimum Broadcast Problem on the Grid

The aim of this section is to prove lower and upper bounds on the cost of an
optimal broadcast. In particular, in order to prove the lower bound, we introduce
the following definitions. A chain H is a sequence of G-disks D1, D2, . . . , Dk,
k ≥ 1, such that Di+1 is centered at some point contained in Di for 1 ≤ i < k.
We also say that a chain H activates a disk D if (i) D does not belong to H,
(ii) the center of D is contained in Dk, and (iii) D does not contain the center
of D1. Furthermore, we define

U(H) =
k⋃

i=1

Di

where the union refers to points of the infinite grid contained in disks Di.
For any r ≥ 1, consider any disk D of radius r; we define

M(r) = min{|U(H) ∩D| such that H activates D}.

Notice that M(r) does not depend on the choice of D and that any disk of a
broadcast tree not containing the source is activated by a chain of disks belonging
to the tree. The cardinality of the intersection between the disk and the chain is
at least M(r), where r is the radius of the disk. In order to evaluate the broadcast
cost, we need a lower bound on M(r). The proof of next lemma is given in the
full version of the paper [3].

Lemma 2. For any r ≥ 1, it holds that M(r) ≥ 2
√

2r − 5.

Theorem 3. The cost of any broadcast of G is at least n
π −O(

√
n).

Proof. Let D1, D2, . . . Dt be the G-disks of an optimal broadcast of G and let
cost∗ be its cost. Let ri be the radius of Di, 1 ≤ i ≤ t. If there exists a disk
Di with radius ri ≥

√
n
π , the thesis holds. Hence, we assume that ri <

√
n
π ,

1 ≤ i ≤ t. In order to exploit Lemma 1, we partition the set {D1, D2, . . .Dt}
into two sets: X and its complement X, where

X = {Di | ri >
√

10}

From Lemma 1, it follows that

t∑
i=1

N(ri) =
∑

Di∈X

N(ri) +
∑

Di∈X

N(ri) ≤
∑

Di∈X

(πri
2 + 2

√
2ri − 5) +

∑
Di∈X

N(ri)

= π · cost∗ + 2
√

2
∑

Di∈X

ri − 5|X |+
∑

Di∈X

(
N(ri) − πri

2) (4)

As a consequence, we have that

π · cost∗ ≥
t∑

i=1

N(ri) − 2
√

2
∑

Di∈X

ri + 5|X | −
∑

Di∈X

(
N(ri) − πri

2) (5)

234 T. Calamoneri et al.

Now, we derive a lower bound on
∑t

i=1 N(ri). Observe that the communication
graph yielded by the optimal broadcast contains a directed spanning tree T
rooted at the source node. We partition {D1, D2, . . .Dt} into two sets Y and Y ,
where Y is the set of G-disks that cover the source point. We observe that every
G-disk Di ∈ Y is activated by a chain of G-disks whose centers induce a directed
path in T . This implies that the number of intersection points between the
activating chain and Di is at least M(ri). Now we prove the following inequality:

t∑
i=1

N(ri) ≥ n +
∑

Di∈Y

M(ri)

We consider a numbering of the T disks such that the disks on a root→leaf path
have strictly increasing numbers. Let

E = {(p, i) | ∃i : 1 ≤ i ≤ t ∧ p ∈ Di} and

F = {(p, j) | (p, j) ∈ E ∧ j = min{k | (p, k) ∈ E}}
In other words, (p, j) ∈ F if and only if Dj is the ”first”disk that covers p. Clearly,
it holds that |E| =

∑
i N(ri), F ⊆ E, and |F | ≥ n. Now, for every i ∈ Y , let

Hi be the chain that activates Di. Define Ei = {(p, i) | p ∈ U(Hi) ∩ Di}. The
following properties hold: (a) Ei ⊆ E − F ; (b) if i �= j then Ei ∩ Ej = ∅;
(c) |Ei| ≥ M(ri). As for (a), clearly Ei ⊆ E. Furthermore, if (p, i) ∈ Ei then
p ∈ U(Hi) ∩ Di; thus, there exists a disk Dj ∈ Hi such that p ∈ Dj and j < i.
This implies that min{k | (p, k) ∈ E} ≤ j < i and so (p, i) �∈ F . The proofs of
(b) and (c) are immediate from the definitions of Ei and M(·). Finally, it holds
that

t∑
i=1

N(ri) = |E| = |F | + (|E| − |F |) ≥ n +
∑
i∈Y

|Ei| ≥ n +
∑
i∈Y

M(ri).

Lemma 2 implies that∑
Di∈Y

M(ri) =
∑

Di∈Y ∩X

M(ri) +
∑

Di∈Y ∩X

M(ri) ≥

≥ 2
√

2
∑

Di∈Y ∩X

ri − 5|Y ∩X | +
∑

Di∈Y ∩X

M(ri)

From the above inequality, Inequality (5), and simple calculations, we get:

π·cost∗≥n−2
√

2
∑

Di∈Y ∩X

ri+5|X |−5|Y ∩X |+
∑

Di∈Y ∩X

M(ri)−
∑

Di∈X

(
N(ri) − πri

2)

and

cost∗ >
n

π
− 2

√
2

π

∑
Di∈Y ∩X

ri+ (6)

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks 235

+
1
π

∑
Di∈Y ∩X

(
M(ri) −N(ri) + πri

2)− 1
π

∑
Di∈Y ∩X

(N(ri) − πri
2)

Now we bound
∑

Di∈Y ∩X ri. Consider the sets

Bk = {Dj ∈ Y | 2k−1 ≤ rj < 2k}, 1 ≤ k ≤ l

where l = �log rmax� + 1 and rmax = max{rj | Dj ∈ Y }. It holds that

∑
Di∈Y ∩X

ri ≤
∑

Di∈Y

ri =
l∑

k=1

∑
Di∈Bk

ri ≤
l∑

k=1

1
2k−1

∑
Di∈Bk

ri
2 (7)

Replace the G-disks in B1 ∪ B2 ∪ . . . Bk by a G-disk with radius (2k+1) and
centered in the source point. This operation produces a new broadcast with cost

cost∗ −
∑

Di∈B1∪B2∪...Bk

ri
2 + (2 · 2k)2

Hence, from the optimality of the previous broadcast it must be∑
Di∈B1∪B2∪...Bk

ri
2 ≤ (2 · 2k)2

From the above inequality and from Inequality (7) we have

∑
Di∈Y ∩X

ri ≤
l∑

k=1

22k+2

2k−1 =
l∑

k=1

2k+3 < 2l+4 < 26rmax = O(
√
n) (8)

where the last step follows from the initial assumption that broadcast G-disks
have radii less than

√
n
π . It is possible to exhaustively prove that M(r)−N(r)+

πr2 > 0 when r ≤
√

10, i.e., r ∈ {1,
√

2, 2,
√

5,
√

8, 3,
√

10}. Hence,∑
Di∈Y ∩X

(
M(ri) −N(ri) + πri

2) > 0 (9)

Moreover, the number of G-disks in Y ∩ X is bounded by constant N(
√

10).
Thus, ∑

Di∈Y ∩X

(
N(ri) − πri

2) = O(1) (10)

Finally, by combining Inequality (6) with bounds (8), (9) and (10) we get the
thesis. �

The construction of optimal Broadcasts for the grid is somewhat connected with
the famous problem known as Apollonian Circle Packing [13, 21]. More precisely,
we observe that if it were possible to evaluate the cost of the Apollonian Circle
Packing of the grid then it would be possible to obtain the optimal bound on the
Broadcast cost. We strongly believe that this is the only way to obtain such an
optimal bound. The former problem is known to be a hard mathematical prob-
lem. In order to get a near-tight bound, we here adopt a simpler construction.

236 T. Calamoneri et al.

Theorem 4. Given any source s ∈ G, it is possible to construct, in polynomial
time, a Broadcast for G of cost 1.01013n

π + O(
√
n).

Proof. In order to provide a Broadcast of cost 1.01013n
π + O(

√
n), we assume

that m− 1 is a multiple of 6. If this is not the case, we can add O(m) new unit
radius G-disks to our construction in order to broadcast to the remaining points.

S

Fig. 2. An almost optimal Broadcast for the grid where m = 19

Consider the Broadcast shown in figure 2. Its cost can be computed by sum-
ming up the following three contributions.

– A chain of G-disks of radius 1 from the source point to the middle point of
G. The cost of this chain is O(m).

– A big G-disk of radius r = m−1
2 centered in the middle point of G. This disk

has cost r2 = n
4 −Θ(m).

– A set of G-disks of radius 1 that broadcast to all nodes of G out of the big
G-disk. In order to compute the cost of this set, assume that the origin of
the Cartesian plane lies in the middle point of G and compute only the cost
of the G-disks in the first quadrant, multiplied by 4. Furthermore, observe
that the contribution of the first quadrant consists of m−1

6 horizontal chains
of unit-radius G-disks whose length depends on their y-coordinates. So the
cost of this contribution is:

C = 4

r
3∑

i=0

(
r −
⌊√

r2 − (3i)2
⌋)

<
4
3
r2 − 4

r
3−1∑
i=0

(√
r2 − (3i)2 − 1

)
<

<
4
3
r2 +

4
3
r−4−4

∫ r
3

0

√
r2 − (3x)2dx <

4
3
r2 +

4
3
r−4− 4

3

∫ r

0

√
r2 − x2dx <

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks 237

<
4
3
r2 +

4
3
r − 4 − 4

3

[
r2

2
arcsin

x

r
+

x

2

√
r2 − x2

]r
0

=

=
(

4 − π

3

)
n

4
+ O(m)

Finally, the cost of this Broadcast is n
4 +
(4−π

3

)
n
4 +O(m) = 1.01013n

π +O(
√
n).

The construction of this solution can be clearly performed in time polynomial
in n. �

Even when the G-disks must be very large, we are able to provide a Broadcast
whose cost is very close to the lower bound, as shown in the following result.
We remark that its proof makes use of a construction that approximates the
Apollonian Circle Packing of the grid. The proof of next lemma is given in the
full version of the paper [3].

Lemma 3. Let 0 < c < 1 be a constant. For any source s ∈ G, it is possible to
construct, in polynomial time, a broadcast B for G with disks of radius at least
c
√
n and such that

cost(B) = f(c)
n

π
+ O(

√
n)

where

f(c) < π
(
0.35483 + 24.6814c2−log1+

√
2 3 − 0.5551c + 0.5c2

)
The following upper bound is an easy consequence of the previous lemma.

Theorem 5. For any source point, there exists a (polynomial-time computable)
Broadcast B for G that uses disks with radius at least

√
n

106 and such that

cost(B) < 1.1171
n

π
+ O(

√
n)

As a consequence, B consists of a constant number of disks.
Observe that Theorem 3 implies that the upper bound of Theorem 5 is almost

tight.

4 Future Research

Our asymptotical bounds on the Broadcast Problem on grids are not tight:
achieving tight bounds here is an interesting theoretical open problem. However,
as mentioned in the Introduction, we believe that our results open new promising
directions in the design of new, good heuristics for a wide and practically relevant
class of input configurations: well-spread, regular instances and uniform random
instances [8, 19]. This is, in our opinion, the most relevant challenge in this
topic. Efficient implementation, performance analysis and tests of some heuristics
inspired by our constructive upper bounds are the subject of our present research
activity.

238 T. Calamoneri et al.

References

1. C. Ambuehl. An optimal bound for the MST algorithm to compute energy efficient
broadcast trees in wireless networks. In Proc. of 32th ICALP, 1139–1150, 2005.

2. A. Balakrishnan and K. Altinkemer. Using a hop-constrained model to generate
alternative communication network design. ORSA Journal of Computing, 4, 147–
159, 1992.

3. T. Calamoneri, A. Clementi, M. Di Ianni, M. Lauria, A. Monti, and R. Silvestri.
Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks (Full Ver-
sion). Available at http://www.dsi.uniroma1.it/ calamo/papers.html.

4. G. Cǎlinescu, X.Y. Li, O. Frieder, and P.J. Wan. Minimum-Energy Broadcast Rout-
ing in Static Ad Hoc Wireless Networks. In Proc. of 20th IEEE INFOCOM, 1162–
1171, April 2001.

5. A. Clementi, P. Crescenzi, P. Penna, G. Rossi and P. Vocca. On the Complexity
of Computing Minimum Energy Consumption Broadcast Subgraphs. In Proc. of
18th STACS, LNCS 2010, 121–131, February 2001.

6. A. Clementi, G. Huiban, P. Penna, G. Rossi, Y. C. Verhoeven. On the Approxima-
tion Ratio of the MST-based Heuristic for the Energy-Efficient Broadcast Problem
in Static Ad-Hoc Radio Networks. In Proc. of 3rd IEEE Intern. Workshop on
Wireless, Mobile and Ad Hoc Networks (WMAN’03), 2003.

7. A. Clementi, G. Huiban, P. Penna, G. Rossi, and Y. Verhoeven. Some Recent
Theoretical Advances and Open Questions on Energy Consumption in Static Ad-
Hoc in Wireless Networks. In Proc. of 3rd Int. Workshop ARACNE, Carleton
Scientific, 23–38, 2002.

8. A. Clementi, P. Penna, and R. Silvestri. On the Power Assignment Problem in
Radio Networks. Mobile Networks and Applications (MONET), 9, 125–140, 2004.

9. P. Crescenzi and V. Kann, A Compendium of NP Optimization Problems. http://
www.nada.kth.se/ viggo/wwwcompendium/

10. A. Ephremides, G.D. Nguyen, and J.E. Wieselthier. On the Construction of Energy-
Efficient Broadcast and Multicast Trees in Wireless Networks. In Proc. of 19th
IEEE INFOCOM, 585–594, 2000.

11. M. Flammini, A. Navarra, and S. Perennes. The Real Approximation Factor of the
MST Heuristic for the Minimum Energy Broadcast. In Proc. of WEA, 22–31, 2005.

12. L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal
spanning tree problem with hop-constraint. European Journal of Operational Re-
search, 95, 170–190, 2001.

13. R.L. Graham, J.C. Lagarias, C.L. Mallows, A. R. Wilks, and C.H. Yan. Apollonian
Circle Packings: Number Theory. J. Number Theory, 100, 1-45, 2003.

14. M. Haenggi. Twelve Reasons not to Route over Many Short Hops, in Proc. of IEEE
Vehicular Technology Conference (VTC’04 Fall), (5), 3130- 3134, 2004.

15. D. Hilbert and S. Cohn-Vossen. Geometry and the Immagination, Chelsea, 33–35,
1999.

16. D.S. Hochbaum and W. Maass. Approximation Schemes for Covering and Packing
problems in Image Processing and VLSI. Journal of ACM, 32, 130–136, 1985.

17. M.N. Huxley. Exponential sums and lattice points. Proc. London Math. Soc., 60,
471–502, 1990.

18. L. M. Kirousis, E. Kranakis, and D. Krizanc, and A. Pelc. Power Consumption in
Packet Radio Networks. Theoretical Computer Science, 243, 289–305, 2000.

19. E. Kranakis, D. Krizanc, and A. Pelc. Fault-tolerant broadcasting in radio net-
works. Journal of Algorithms, 39, 47–67, 2001.

Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks 239

20. K. Pahlavan and A. Levesque. Wireless Information Networks. Wiley-Interscience,
1995.

21. B. Söderberg. Apollonian Tiling, the Lorentz Group, and Regular Trees. Physical
Review A, 46, 1859-1866, 1992.

22. S. Voss, The steiner tree problem with hop constraint. Annals of Operations Re-
search, 86, 321-345, 1999.

3-D Minimum Energy Broadcasting�

Alfredo Navarra

Computer Science Department, University of L’Aquila
Via Vetoio I-67100 L’Aquila, Italy

navarra@di.univaq.it

Abstract. The Minimum Energy Broadcast Routing problem was ex-
tensively studied during the last years. Given a sample space where wire-
less devices are distributed, the aim is to perform the broadcast pattern
of communication from a given source while minimizing the total energy
consumption. While many papers deal with the 2-dimensional case where
the sample space is given by a flat area, few results are known about the
more interesting and practical 3-dimensional case. In this paper we study
such a case and we present a tighter analysis of the minimum spanning
tree heuristic in order to considerably decrease its approximation fac-
tor from the known 26 to roughly 18.8. This decreases the gap with the
known lower bound of 12 given by the so called kissing number.

1 Introduction

The study of a basic pattern of communication such as the Broadcast is of
main interest in the context of Wireless Ad Hoc Networks. The broadcast can
be in fact used to setup the network or to rapidly spread useful information.
The wireless environment allows to all the devices in the range of a transmitter
to receive the message. The range of a transmission basically depends by the
environment in which the devices are distributed. According to the mostly used
power attenuation model [1], for some constants α, β ∈ IR+, when a station s
transmits with power Ps, a station r can receive its message if and only if

Ps

‖s, r‖α
> β,

where ‖s, r‖ is the Euclidean distance between s and r. Clearly in environments
with obstacles the needed power α increases. Due to the nonlinear power atten-
uation, multi-hop transmission of messages through intermediate devices may
result in energy saving. Thus, a naturally arising issue is that of supporting
the broadcast with a minimum total energy consumption. The problem is called
Minimum Energy Broadcast Routing (MEBR) and it is NP -hard, while if α = 1
or d = 1 it is solvable in polynomial time [2, 3]. One of the most extensively stud-
ied cases concerns the 2-dimensional Euclidean space with α = 2. Several papers
� Work supported by the European project COST Action 293,“Graphs and Algorithms

in Communication Networks” (GRAAL).

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 240–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

3-D Minimum Energy Broadcasting 241

progressively reduced the estimate of the approximation ratio of the fundamental
Minimum Spanning Tree (MST) heuristic from 40 to 6 [4, 5, 6, 7, 8, 9, 10]. In [6]
it was proven that for any considered dimension d > 1, the critical case to study
is when α = d while for α > d any result can be easily extended to any power
between d and α. Note that for α < d the ratios cannot be bounded by any func-
tion of α and d [4]. The MST and other heuristics have been presented in [1, 11]
also for the multicasting variation of the problem. As already noted, the perfor-
mance of the MST heuristic has been investigated by several authors and in the
2-dimensional Euclidean space, for α = 2, the performed approximation ratio
is 6 [5], and it is optimal [10]. Such a value coincides with the so called kissing
number that was proven to be a lower bound for the approximation ratio of the
MST heuristic for any dimension d > 2 and power α ≥ d [4]. More precisely,
the kissing number is the maximum number of d-spheres (or hyperspheres) of
a given radius r that can simultaneously touch a d-sphere of radius r in the
d-dimensional Euclidean space [12]. In the 3-dimensional Euclidean space the
kissing number is 12 (see Figure 1) but the best known approximation ratio so
far is 26 [6].

Fig. 1. The kissing number in the 2- and in the 3-dimensional case. It is given by 6
circles and 12 spheres respectively, simultaneously touching a central one.

In this paper we are interested in investigating more carefully this 3-
dimensional case. We reduce the gap between upper and lower bound by de-
creasing the upper bound to roughly 18.8 (the exact obtained ratio is 18.802).
Note that the 3-dimensional space better models practical environments since,
in real life scenarios, radio stations are distributed over a 3-dimensional Euclid-
ean space. Again the presence of obstacles can be overcome by the increasing
of the power of transmission α. The main analysis is based on the study pre-
sented in [9] where a 6.33-approximation ratio of the MST heuristic for the
2-dimensional case was proven.

The paper is organised as follows. In the next section, we introduce the MEBR
problem with notations and the necessary definitions. In Section 3, we describe
the technique that was used in [6] to prove the mentioned upper bound of 26

242 A. Navarra

and we explain how to modify it in order to obtain a tighter bound for the
3-dimensional case. In Section 4, we present our main contribution that leads
to the 18.8-approximation ratio. Finally, in Section 5, we give some conclusive
remarks and discuss some open questions.

2 Minimum Energy Broadcast Routing

Let us first provide a formal definition of the Minimum Energy Broadcast Rout-
ing problem. Given a set of points S in a d-dimensional Euclidean space that
represents the set of radio stations, an integer α ≥ 1 and a constant β ∈ IR+, let
Gα(S) be the complete weighted graph obtained as follows. The nodes of Gα(S)
represent the points of S and the weight of each edge {x, y} is the power consump-
tion needed for a correct communication between x and y, that is β · ‖(x, y)‖α.
For any subset of stations Q ⊆ S, let Gα(Q) be the subgraph of Gα(S) induced
by Q.

A range assignment for S is a function r : S → IR+ such that the range r(x)
of a station x denotes the maximal distance from x at which signals can be
correctly received. The total cost of a range assignment is then

cost(r) =
∑
x∈S

β · r(x)α.

A range assignment r for S yields a directed communication graph Gr = (S,A)
such that, for each (x, y) ∈ S2, the directed edge (x, y) belongs to A if and only
if y is at distance at most r(x) from x. In other words, (x, y) belongs to A if
and only if the emission power of x is at least equal to the weight of {x, y} in
Gα(S). In order to perform the required MEBR from a given source s ∈ S, Gr

must contain a directed spanning tree rooted at s and must have a minimum
cost, from now on denoted as m∗

α(S, s).
One fundamental algorithm, called the MST heuristic [1], is based on the

idea of tuning ranges so as to include a spanning tree of minimum cost. Roughly
speaking, the heuristic computes the directed minimum spanning tree from
the given source to the leaves. Such a computation is made over the complete
weighted graph obtained from the set of nodes in which weights are the power of
α of the distances of the endpoints of the edges. For each node, then, the heuris-
tic assigns a power of transmission equal to the weight of the longest outgoing
edge.

More precisely, let Tα(S) be a minimum spanning tree of Gα(S) and
MST (Gα(S)) its cost. Considering Tα(S) rooted at the source station s, the
heuristic directs the edges of Tα(S) toward the leaves and sets the range r(x)
of every internal station x of Tα(S) with k children x1, . . . , xk in such a way
that r(x) = β ·maxi=1,...,k‖x, xi‖α. In other words, r is the range assignment of
minimum cost inducing the directed tree derived from Tα(S) and is such that
cost(r) ≤ MST (Gα(S)). Therefore, in order to bound the approximation ratio
of the heuristic, it is sufficient to bound the ratio between the cost MST (Gα(S))
of a minimum spanning tree of Gα(S) and the optimal cost m∗

α(S, s).

3-D Minimum Energy Broadcasting 243

Starting from the definition of minimum spanning tree given in [13], in [6]
an interesting way to evaluate the cost of the heuristic is provided. For any
subset of stations Q ⊆ S, let Gα(Q, r) be the graph obtained by considering
only the edges of Gα(Q) of length at most r (that clearly have cost at most
βrα) and let CC(Q, r) be the set of the connected components of Gα(Q, r). Let
n(Q, r) = |CC(Q, r)| be the number of connected components in Gα(Q, r) and
rmax(Q) be the minimum r such that Gα(Q, r) is connected (i.e. n(Q, rmax) = 1).

Corollary 1. [6] For any subset of stations Q ⊆ S,

MST (Gα(Q)) = αβ

∫ rmax(Q)

0
(n(Q, r) − 1)rα−1∂r.

For any set of stations Q let e(Q) = minx∈Q maxy∈Q ‖x, y‖ be the eccentricity
of Q. Hence, there exists a station x ∈ Q such that ‖x, y‖ ≤ e(Q) for every
other y ∈ Q. Once chosen such a station x, let c(Q) be the sphere of radius e(Q)
centered at x. The following general lemma is useful in the estimation of the
approximation ratio of the MST heuristic.

Lemma 1. [6] If MST (Gα(Q)) ≤ ρβe(Q)α for any subset of stations Q ⊆ S,
then the MST heuristic is a ρ-approximation algorithm for the MEBR problem.

In the following we will concentrate on the MEBR problem with α = 3 in the
3-dimensional case. Thus, the cost of each edge of the weighted complete graph
G3(S) representing the input network is proportional to the cube of the distance
between its endpoints. For ease of notation, for any set of stations Q we will
denote G3(Q) simply as G(Q). Moreover, for the sake of simplicity, without loss
of generality we assume β = 1 and e(Q) = 1, as all the results provided under
this assumption can be directly extended to the general case [6].

3 Description of the Approach

In this section we firstly describe the general technique presented in [6]. Such
a technique leads to the (3d − 1)-approximation ratio of the MST heuristic for
the MEBR problem for any d > 1 and any α ≥ d. In our specific case, that is
d = 3, α = 3, the obtained approximation is 26. Secondly, by following the ideas
in [9], we describe how to modify the previous technique hence leading to a new
and tighter estimation of the upper bound, that is, of roughly 18.8.

For the general case the technique was based on a growing process (from now
on called basic) in which d-spheres of equal radii centered in the stations of
the subset Q are synchronously grown (see for instance Figure 2). The process
starts by setting the radius r = 0 and ends when r = rmax(Q)

2 ≤ 1
2 , that is,

when G(Q, 2r) becomes connected. This is accomplished by increasing at any
infinitesimal step the current radii, all equal to a given r, by ∂r.

Starting from the equality established in Corollary 1 on the cost MST (G(Q))
of any minimum spanning tree of G(Q), the idea was to provide suitable lower

244 A. Navarra

|CC(rmax)| = 1,

e(Q) + rmax

2

e(Q)

x

xx

x

r = r2
2|CC(r2)| = 5,

r = rmax

2

r = r1
2|CC(r1)| = 6,r = 0|CC(0)| = 7,

Fig. 2. The growing process of circles around the radio stations of the set Q in the
2-dimensional case

and upper bounds on the overall volume covered by the union of all the d-spheres
at the end of the described process. In [6] the bound MST (G(Q)) ≤ 3d − 1 was
proven, that by Lemma 1 implies the 26-approximability of the MST heuristic
in the 3-dimensional case. Note that the lower bound is instead 12 and it is given
by the kissing number [4, 12].

We now show how to improve the 26-approximation ratio by means of a new
technique. The new analysis is based on the method presented in [9] where the
2-dimensional case was considered. The idea is to slightly change the shapes
that are grown around stations at each infinitesimal step of the previously de-
scribed basic growing process. More precisely, being in the 3-dimensional case we
consider c(Q) as the spherical place inside which the radio stations are thrown
uniformly at random. While before each station was wrapped by a sphere, now
things remain the same inside c(Q), but the volume is thinned when growing out-
side c(Q). Informally speaking, this allows to maintain the lower bound on the
covered volume at the end of the growing process. On the other hand, the upper
bound decreases since all the volume can be now included in a smaller sphere
with respect to [6], thus improving the bound on the cost of the returned solution.

For the sake of clarity from now on we often drop Q from the notation, thus
for instance writing G, G(r), CC(r), n(r) and rmax instead of G(Q), G(Q, r),
CC(Q, r), n(Q, r) and rmax(Q), respectively.

In order to better explain the new reshaping technique we describe it in two
phases. For any given radius r, the shape of radius r associated to a given

3-D Minimum Energy Broadcasting 245

θ

x x

y
r

d

h(r,d)

Fig. 3. Section of the new associated growing shape to each radio station

station y inside c(Q) having distance d from the central station x is such that
its intersection with c(Q) coincides with the circular intersection of c(Q) with a
sphere of radius r centered at y. In other words, the intersection with c(Q) of
the new shape coincides with the basic shape given by the sphere of [6]. Outside
c(Q), the remaining portion of the sphere of radius r, if any, is reshaped as a kind
of cylinder of suitable height h(r, d) wrapping the outside spherical surface of
c(Q). In Figure 3 it is showed a cut section of the sphere c(Q) centered at x and
of the new shape. The height h(r, d) is evaluated in such a way that its volume
coincides with the volume of the corresponding portion of the basic shape outside
c(Q). This implies that the total volume remains 4

3πr
3. With θ(r, d) we identify

a conic angle obtained by connecting the center x with the circular intersection
of the shape with c(Q) (see Figure 3).

At each infinitesimal step in which the radius r grows by ∂r, given any function
g depending on r, we denote by ∂g(r) = g(r+∂r)−g(r) the infinitesimal variation
of g(r).

At each infinitesimal step, while the growth of the spherical part inside c(Q)
is the same as in the basic case, the angle θ(r, d) of the outside part augments
by a given quantity ∂θ(r, d). This is done according to the intersection of the
increased sphere of radius r+∂r with c(Q). About the height h(r, d), it augments
by ∂h(r, d) in such a way that the total volume added to the shape is 4πr2∂r as
in the basic case.

Clearly, two shapes corresponding to a given radius r overlap if and only if the
corresponding centers are at distance at most 2r, as in the basic case. Starting
from the observation that the shapes never meet at the circular intersections
with the spherical surface of c(Q),1 it is possible to slightly enlarge the outside
part of each shape.

This introduces the second phase of our shape modification by which enlarging
the shape outside c(Q) decreases its height. This must be done by increasing
the angles θ(r, d) without violating the constraint that two shapes never meet
outside c(Q) before they meet inside. This allows to decrease the maximum

1 The only exception is given when such intersections are subtended by the biggest
section of the current sphere that they represent. To better explain this concept,
in the 2-dimensional Euclidean space, this happen when the intersections are the
endpoints of the diameter of the corresponding growing circle.

246 A. Navarra

c(z,r) with z inside c(Q)

2 z2

y2

y1

z’1

z1

y1

y2

z2

z1

z’1

z’2X

z

z

c(z,r) with z along the
circumference of c(Q)

z’

Fig. 4. Section of the new shape given by the increase of the angle θ by the black
portions, yielding the new angle θ′ and the decrease of the height from the dotted lines
to the bold ones

height of the outside part of the shapes, thus yielding a further improvement on
the approximation ratio. In other words the new shape will be larger but lower
and it is defined as follows. Consider any point z inside c(Q). Let c(z, r) be the
sphere of radius r centered at z and let I(z, r) be the circular intersection of
c(z, r) with the spherical surface of c(Q). Consider the sphere c(z′, r′) centered
on the border of c(Q) and having the same intersection with the spherical surface
of c(Q), i.e., I(z, r) ≡ I(z′, r′). The conic angle associated to z is now defined
by the vertex x and the cone tangent to c(z′, r′) (see the cut section of the
conic angle in the right of Figure 4). Note that, in the case in which z lies on
the spherical surface of c(Q), c(z, r) and c(z′, r′) coincide (see the cut section of
the new conic angle on the left of Figure 4). Indeed their angle does not, since,
as already described, it is given by the tangent cone to the internal spherical
shape and not, as before, by the cone wrapping the intersection with the surface
of c(Q).

When two new shapes are centered along the spherical surface of c(Q) at
distance 2r, by construction, they meet outside at the same moment they meet
inside, that is, when the radius grows till r. If we move one or both the corre-
sponding centers more inside c(Q) and leaving their distance at 2r, the corre-
sponding reshaped outside volumes remain disjoint.

4 18.8-Approximation Analysis of the MST Heuristic

In this section we formalise what was previously described. We provide a set
of lemmata that describe a corresponding set of properties of the defined new
shape that are useful in order to prove the 18.8-approximation claimed in the
concluding theorem. The new shape must guarantee some properties that were
true by means of the standard sphere. One of those properties is that two shapes
growing according to a given radius r, touch each other only when the corre-

3-D Minimum Energy Broadcasting 247

sponding centers are at distance at most 2r. Note that this is the fundamental
property without which Corollary 1 cannot be applied for the estimation of the
cost of the MST heuristic.

Lemma 2. Given any subset of stations Q ⊆ S, for any r < rmax

2 , two shapes
overlap if and only if the corresponding points are at distance at most 2r.

Proof. If two shapes meet inside c(Q), the property easily holds since the shape
has the same behavior of spheres. In order to prove the claim we have to show that
two shape never meet outside if they do not meet inside also. By construction,
the external part of a shape is more extended (in terms of occupancy of the outer
spherical surface) when the center resides along the spherical surface of c(Q). In
such a case, if two shapes touch each other, they do exactly at their intersection
with the spherical surface of c(Q) (see Figure 4). If one them has the center more
inside, its growing outside part is less extended hence it cannot touch any other
outer part of another shape. �

The following two lemmata consider more carefully the structure of the new shape
by considering the conic angle and the outside growing height, respectively. About
the angle, it is proven that the more a station, whose associated shape grows also
outside, is closer to x, the more its angle grows at each infinitesimal step.

Lemma 3. Given any subset of stations Q ⊆ S, for any r < rmax

2 and any
d1 ≤ 1 and d2 ≤ 1 such that 1 − r ≤ d1 ≤ d2, ∂θ(r, d1) ≥ ∂θ(r, d2).

The following lemma, instead, proves that the further a station is from x, the
more its height outside c(Q) grows. Moreover it gives also a very useful lower
bound to the infinitesimal growth of the height and its maximum extension. The
new shape, in fact, grows in height, outside c(Q) as at least 3

5 the growth of the
basic shape at any infinitesimal step. This guarantees that the growth of such
a shape is quite uniform during the whole process hence it is still suitable for
bounding the MST heuristic cost. Moreover the maximal height outside c(Q)
is bounded by .3527 hence decreasing the maximal extension of the basic shape
that was of .5.

Lemma 4. Given any subset of stations Q ⊆ S, for any r < rmax

2 and any
d1 ≤ 1 and d2 ≤ 1 such that 1 − r ≤ d1 ≤ d2, h(r, d1) ≤ h(r, d2). Moreover for
any d ≤ 1, h(r, d) ≤ .3527... and ∂h(r, d) ≥ 3

5∂r.

Note that Lemma 3 and Lemma 4 follow directly from the corresponding lem-
mata of the 2-dimensional case [9]. In order to better understand this, it is
sufficient to consider the new shape as the 2-dimensional one rotated along the
line passing through its center and the center of c(Q) (see Figure 5). In this way
it is clear that what was true about the angle of the 2-dimensional case is now
straightforward for the new conic angle θ (Lemma 3). And the same happens for
the height h that remains unchanged (Lemma 4).

With the last lemma we ensure that the new shape guarantees an infinitesimal
growth, for each connected component equal to at least the same growth of one

248 A. Navarra

Fig. 5. The new shape obtained by means of a rotation of the 2-dimensional one along
the line passing through its center and the center of c(Q)

sphere for each component. This was straightforward in the general case of d-
spheres while it is quite complicated both in the 2- and the 3-dimensional case
for the modified shapes.

Lemma 5. The infinitesimal growth of the volume v(P, r) of the region P (r)
covered by the shapes of a connected component P ∈ CC(2r) of G(2r) is
∂v(P, r) ≥ 4πr2∂r.

Proof. (Sketch) If P contains just one station, then, by construction, the claim
clearly holds. In fact, if the growth of the shape associated to such a station
does not concern outside c(Q) then it coincides with a growing sphere. Since the
spherical surface is given by 4πr2, the infinitesimal growth is ∂v(P, r) = 4πr2∂r.
In the case the growth of the shape associated to the considered station goes
outside c(Q), then, by construction, the new shape is made in such a way that
inside c(Q) things do not change. Outside, the volume is maintained equal to
the spherical case at every infinitesimal step, hence its growing too. When P
contains more than one station, intuitively things can just go better, i.e., the
growth of the union of the associated shapes is at least the growth of one sphere.
This is given by the fact that both inside and outside c(Q) when two shapes
join in one connected component, their physical extension contains the shape

3-D Minimum Energy Broadcasting 249

corresponding to just one station. This suggest that at any infinitesimal step, its
growth is bigger than the sphere. �

From all the above lemmata we can finally obtain the following theorem.

Theorem 1. In the 3-dimensional Euclidean space the MST heuristic is a 18.8-
approximation algorithm for the MEBR problem.

Proof. It is enough to prove that for any subset of stations Q ⊆ S,
MST (G(Q)) < 18.8. The claim then follows by Lemma 1. Exploiting Lemma 5,
we can easily provide a lower bound for the total region of the space covered by
the union of all the shapes related to Q of radius rmax

2 , that is v(Q, rmax

2), the
covered volume at the end of the described growing process. In fact, recalling
that by Corollary 1 MST (G(Q)) = 3

∫ rmax(Q)
0 (n(Q, r) − 1)r2∂r,

v
(
Q,

rmax

2

)
=
∫ rmax

2

0

∑
P∈CC(2r)

∂v(P, r)∂r ≥
∫ rmax

2

0
n(2r)4πr2∂r =

=
1
8
4π
∫ rmax

0
n(r)r2∂r =

1
2
π

∫ rmax

0
(n(r) − 1)r2∂r +

1
2
π

∫ rmax

0
r2∂r =

=
π

6
MST (G) +

π

6
r3
max.

Moreover, by Lemma 4, v(Q, rmax

2) is included in a sphere of radius 1 +
h(rmax

2 , 1) centered at the station x. Therefore, v(Q, rmax

2) ≤ 4
3π(1+h(rmax

2 , 1))3,
so that

π

6
MST (G) +

π

6
r3
max ≤ v

(
Q,

rmax

2

)
≤ 4

3
π
(
1 + h

(rmax

2
, 1
))3

,

hence,

MST (G) ≤ 8
(
1 + h

(rmax

2
, 1
))3

− r3
max.

Standard maximization argument obtained for rmax ranging from 0 to 1 shows
that the quantity 8(1+h(rmax

2 , 1))3− r3
max is maximised for rmax = 1, and since

by Lemma 4, h(r, d) ≤ .3527..., it finally results

MST (G) ≤ 8
(

1 + h

(
1
2
, 1
))3

− 1 < 18.802. �

5 Conclusion

In this paper we have investigated the Minimum Energy Broadcast Routing
problem in the 3-dimensional Euclidean space. We have improved the previous
known upper bound on the approximation ratio of the MST heuristic from 26 to
18.8, considerably decreasing the gap with the lower bound of 12 [4]. It is worth
noting that, according to the considered method, such a new bound is not tight in

250 A. Navarra

terms of the associated volume outside c(Q) as it was in the 2-dimensional case.
Let us consider, in fact, the instance of the lower bound obtained by thirteen
stations distributed like the centers of the spheres of the kissing number, i.e.,
everyone at distance at least rmax = 1 from each other inside c(Q). The resulting
associated volume of the new shapes does not fulfil neither c(Q) as it was for the
2-dimensional case, nor the external volume in between the two spheres of radii
1 and 1+hmax ≈ 1.3527 respectively, see Figure 6. Assuming the lower bound of
12 as the real bound of the MST heuristic in the 3-dimensional Euclidean space,
the loss of 6.8 with respect to it must be found then in those “holes” inside and
outside c(Q), that is, the shaded volumes of Figure 6.

1 + hmax

1

Fig. 6. On the right, a cut section of the lower bound case with the associated shapes.
Shaded areas represent the mentioned holes inside the sphere c(Q) of radius 1. On the
left, a squeesed representation of what happens outside c(Q). Again the shaded surfaces
represent the mentioned holes outside c(Q).

An interesting issue for a future work is of trying to apply the arguments
of [5] in this 3-dimensional case and check whether they lead to anything better
than the obtained 18.8 bound. The 3-D Delaunay triangulation is something
known [14, 15] but it is not clear if the 2-dimensional arguments of [5] can be
directly extended to the 3-dimensional case.

Another interesting case in the 3-dimensional environment is given for 2 ≤
α < d. Since it can happen in practical application that the presence of obstacles
can be both in contrast and in favor of communications, it depends on the desired
directions. In the former case the given solution for the free 3-dimensional case
is still valid since it is enough to suitably increase the value of α. In the latter,
things become harder. In this case, in fact, it is not clear what the best solution
may be. Moreover, the 18.8-approximation ratio does not hold for values of α
smaller than d.

As last remark, from the experimental point of view, no results are known
concerning the 3-dimensional case. All the experimental papers and the proposed
heuristics start to investigate the 2-dimensional case (see for instance [16, 17, 18]).
Is there any property not already captured that may lead to a better heuristic

3-D Minimum Energy Broadcasting 251

in the 3-dimensional case? In [7, 19], for instance, nice approaches to better
understand the behavior of the MST heuristic in the 2-dimensional case are
provided. The experiments have shown how good is the heuristic when applied
on practical instances, like the high-density ones. It may be of deep interest to
investigate in this direction for the 3-dimensional case as well.

References

1. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: Proceedings of
the 19th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), IEEE Computer Society (2000) 585–594

2. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: New results for energy-efficient
broadcasting in wireless networks. In: Proceedings of the 13th International Sym-
posium on Algorithms and Computation (ISAAC), Springer-Verlag (2002) 332–343

3. Clementi, A.E.F., Ianni, M.D., Silvestri, R.: The minimum broadcast range as-
signment problem on linear multi-hop wireless networks. Theoretical Computer
Science 299(1-3) (2003) 751–761

4. Clementi, A., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity of
computing minimum energy consumption broadcast subgraph. In: Proceedings of
the 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS).
Volume 2010 of Lecture Notes in Computer Science., Springer-Verlag (2001)
121–131

5. Ambuehl, C.: An optimal bound for the mst algorithm to compute energy efficient
broadcast trees in wireless networks. In: Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming (ICALP). Volume 3580 of
Lecture Notes in Computer Science., Springer Verlag (2005) 1139–1150

6. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved approximation
results for the Minimum Energy Broadcasting Problem. In: Proceedings of ACM
Joint Workshop on Foundations of Mobile Computing (DIALM-POMC). (2004)
85–91. To appear on the associated Special Issue of Algorithmica.

7. Flammini, M., Navarra, A., Perennes, S.: The “Real” approximation factor of the
MST heuristic for the Minimum Energy Broadcasting. In: Proceedings of the 4th

International Workshop on Efficient and Experimental Algorithms (WEA). Volume
3503 of Lecture Notes in Computer Science., Springer Verlag (2005) 22–31. To
appear on the associated Special Issue of Journal of Experimental Algorithmics.

8. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adaptive Broadcast
Consumption (ABC), a new heuristic and new bounds for the minimum energy
broadcast routing problem. In: Proceedings of the 3rd IFIP-TC6 International Net-
working Conference. Volume 3042 of Lecture Notes in Computer Science., Springer
Verlag (2004) 866–877

9. Navarra, A.: Tighter bounds for the Minimum Energy Broadcasting problem. In:
Proceedings of the 3rd International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt). (2005) 313–322

10. Wan, P.J., Calinescu, G., Li, X., Frieder, O.: Minimum energy broadcasting in
static ad hoc wireless networks. Wireless Networks 8(6) (2002) 607–617

11. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In: Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking and computing (MOBIHOC). (2002) 112–122

252 A. Navarra

12. Conway, J.H., Sloane, N.J.A.: ”The Kissing Number Problem” and ”Bounds on
Kissing Numbers”. Ch. 2.1 and Ch. 13 in: Sphere Packings, Lattices, and Groups.
Springer-Verlag, New York (3rd edition, 1998)

13. Frieze, A.M., McDiarmid, C.J.H.: On Random Minimum Length Spanning Trees.
Combinatorica 9 (1989) 363–374

14. Attali, D., Boissonnat, J.D.: A linear bound on the complexity of the delaunay
triangulation of points on polyhedral surfaces. In: Proceedings of the 7th ACM
symposium on Solid modeling and applications (SMA). (2002) 139–146

15. Fang, T.P., Piegl, L.A.: Delaunay triangulation in three dimensions. IEEE Com-
puter Graphics and Applications 15(5) (1995) 62–69

16. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Exper-
imental Comparison of Algorithms for Energy-Efficient Multicasting in Ad Hoc
Networks. In: Proceedings of the 3rd International Conference on Ad-Hoc Net-
works and Wireless (ADHOC-NOW). Volume 3158 of Lecture Notes in Computer
Science., Springer Verlag (2004) 183–196

17. Penna, P., Ventre, C.: Energy-efficient broadcasting in ad-hoc networks: combin-
ing msts with shortest-path trees. In: Proceedings of the 1st ACM International
Workshop on Performance Evaluation of Wireless, Ad Hoc, Sensor and Ubiquitous
Networks (PE-WASUN). (2004) 61–68

18. Yuan, D.: Computing Optimal or Near-Optimal Trees for Minimum-Energy Broad-
casting in Wireless Networks. In: Proceedings of the 3rd International Symposium
on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt).
(2005) 323–331

19. Clementi, A., Huiban, G., Penna, P., Rossi, G., Verhoeven, Y.C.: On the approxi-
mation ratio of the mst-based heuristic for the energy-efficient broadcast problem
in static ad-hoc radio networks. In: Proceedings of the 3rd IEEE IPDPS Workshop
on Wireless, Mobile and Ad Hoc Networks (WMAN). (2003) 222

Average-Time Complexity of Gossiping
in Radio Networks

Bogdan S. Chlebus1,�, Dariusz R. Kowalski2, and Mariusz A. Rokicki1,�

1 Department of Computer Science and Eng., UCDHSC, Denver, CO 80217, USA
2 Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK

Abstract. Radio networks model wireless synchronous communication
with only one wave frequency used for transmissions. In the problem of
many-to-all (M2A) communication, some nodes hold input rumors, and
the goal is to have all nodes learn all the rumors. We study the average
time complexity of distributed many-to-all communication by determin-
istic protocols in directed networks under two scenarios: of combined
messages, in which all input rumors can be sent in one packet, and of
separate messages, in which every rumor requires a separate packet to
be transmitted. Let n denote the size of a network and k be the number
of nodes activated with rumors; the case when k = n is called gossiping.
We give a gossiping protocol for combined messages that works in the
average time O(n/ log n), which is shown to be optimal. For the gen-
eral M2A communication problem, we show that it can be performed in
the average time O(min{k log(n/k), n/ log n}) with combined messages,
and that Ω(k/ log n + log n) is a lower bound. We give a gossiping pro-
tocol for separate messages that works in the average time O(n log n),
which is shown to be optimal. For the general M2A communication prob-
lem, we develop a protocol for separate messages with the average time
O(k log(n/k) log n), and show that Ω(k log n) is a lower bound.

1 Introduction

Packet radio networks are a class of wireless networks in which only one wave fre-
quency is used for communication. The restricted bandwidth results in a conflict
when different messages arrive simultaneously at a node. The main challenge,
in developing communication protocols for such networks, is in resolving local
conflicts for access to the limited bandwidth.

The networks we consider are directed, which captures a scenario in which a
possibility of a direct transmission from node x to node y does not necessarily
make it possible for node y to transmit directly to node x. Networks are ad-hoc, in
that protocols do not rely on the knowledge of the topology; the only information
about the network that may be a part of code of a protocol is the size n, which
is the number of nodes. We consider deterministic distributed communication
protocols. Initially, some k among the nodes are simultaneously activated with
input data; these data are called rumors. The communication task is to make
� The work of this author is supported by the NSF Grant 0310503.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 253–267, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

254 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

all the nodes in the network learn all the input rumors. This communication
task can be called many-to-all communication (M2A). The special case in which
k = n is called gossiping. The underlying network is assumed to be strongly
connected, so that gossiping is always possible to achieve.

Nodes exchange packets carrying rumors. A node sends at most one packet
per round. In the model of combined messages, a packet can carry all the rumors.
In such a setting, it is natural to have a node send all the rumors learned so far
in any transmitted packet. In the model of separate messages, a packet can carry
only one rumor. With such a restriction, a protocol needs to rely on a mechanism
to prioritize rumors so that a node sends a rumor of the highest current priority
at a round.

The time of an execution of a protocol is defined to be the first round when the
communication goal has been achieved. Such a completion of the communication
task is not required to be known by the nodes. The complexity measure we
investigate is the average time as a function of the size n of the network. To
find the average time for size n, first compute conceptually the durations of
executions of the protocol on all strongly connected networks of size n, and next
take the average of the times accrued for these networks.

Our results. We give upper and lower bounds on the average-case complex-
ity of gossiping and many-to-all communication. Protocols are distributed and
designed for both the models of combined and separate messages. Let n denote
the size of a network and k the number of nodes activated with rumors. The
summary of the contributions is as follows.

I. Gossiping with combined messages can be performed in the average time
O(n/ logn), which is shown to be optimal.

II. We show that M2A communication can be performed in the average time
O(min{k log(n/k), n/ logn}) with combined messages and that Ω(k/ logn+
logn) is a lower bound.

III. Gossiping with separate messages can be performed in the average time
O(n logn), which is shown to be optimal.

IV. M2A communication can be achieved in the average time O(k log(n/k) logn)
with separate messages. We show a lower bound Ω(k logn).

Previous work. Broadcasting in radio networks with topology modeled by
random graphs was considered by Elsässer and G ↪asieniec [12], who showed that
O(log n) expected time was optimum for distributed protocols. This result can be
interpreted as giving the optimum average-time complexity of broadcasting. The
authors of this paper do not know of any other results related to the average-time
complexity of communication in radio networks.

A many-to-many communication problem in radio networks, similar to what
we consider, was studied by G ↪asieniec, Kranakis, Pelc and Xin [13]. The problem
is defined as follows: There is a set S of k nodes initialized with rumors and
every one among these nodes needs to get to know all the rumors. Networks are
undirected, each node knows the topology of the network but does not know the
set S, the maximum distance d among any pair of nodes in S is an additional

Average-Time Complexity of Gossiping in Radio Networks 255

parameter. A protocol solving this problem of time complexity O(d log2 n +
k log3 n) was given in [13].

Related work. The model of multi-hop radio networks was introduced by
Chlamtac and Kutten [4] who considered sequential algorithms to find an efficient
broadcast protocol for a given input network. The first distributed randomized
broadcast protocols of sub-quadratic expected-time performance were given by
Bar-Yehuda, Goldreich and Itai [2]. The first distributed deterministic explicit
broadcast protocol with sub-quadratic time performance was given by Chlebus,
G ↪asieniec, Gibbons, Pelc and Rytter [5]. Alon, Bar-Noy, Linial and Peleg [1]
showed that there exists a bipartite graph of n nodes for which any broadcasting
protocol requires time Ω(log2 n) . The fastest known deterministic distributed
broadcasting protocol was given by Czumaj and Rytter [10], who showed that
it works in time O(n log2 D), where D is the diameter of the network.

Gossiping was initially studied for the model of combined messages. The first
distributed protocol of sub-quadratic time complexity was given by Chrobak,
G ↪asieniec and Rytter [8]. The fastest known distributed deterministic protocol
works in time O(n4/3 log4 n); it was given by G ↪asieniec, Radzik and Xin [14].
The best randomized protocol operates in the expected time O(n log2 n), it was
given by Czumaj and Rytter [10].

Oblivious gossiping was first studied by Chlebus, G ↪asieniec, Lingas, and
Pagourtzis [6]. The paper gave a deterministic gossiping protocol that works in
time O(n3/2) on undirected networks; this was shown to be optimal by Kowalski
and Pelc [15]. Randomized oblivious gossiping protocols working in the expected
time O(n log2 n) on undirected networks and O(min {m,DΔ} log2 n) on directed
networks, where Δ is the maximum node in-degree, were presented in [6].

The model of separate messages was first considered by Bar-Yehuda, Israeli
and Itai [3] and Clementi, Monti and Silvestri [9]. Christersson, G ↪asieniec, and
Lingas [7] considered gossiping in undirected networks; they gave an adaptive
deterministic gossiping protocol with time complexity O(n3/2 logn) and a ran-
domized protocol of the expected time complexity O(n log2 n).

2 Technical Preliminaries

A radio network is modeled as a graph G = (V,E), in which the set of vertices V
represents the physical nodes of the network, and the set of edges E represents
the possibilities of direct transmissions among the nodes. If node x of a radio
network can send a message directly to y, then node y is reachable from x. For
any ordered pair 〈u, v〉 of nodes in the network, edge u → v is in the graph G if
and only if node v is reachable from node u. The size of the network is defined
to be the number of nodes |V |, which we usually denote by n.

We assume full synchrony in that all nodes are equipped with local clocks that
are clicking at the same rate and indicate the same round numbers. Protocols
we consider are for a scenario when all the nodes activated with inputs start
simultaneously at round zero. When some two nodes v and v′ transmit simulta-
neously at a given round, and are both in-neighbors of node x in the reachability

256 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

graph of the network, then a conflict occurs at x. A conflict at x results in all
the messages arriving at x interfering with one another so that each is received
as garbled. A message is said to be heard when it is received as fully readable in
its correct form. Radio networks have the following properties:

(a) If a node performs a transmission, then it transmits a single message.
(b) The message transmitted by a node is delivered in that round to all the

reachable nodes.
(c) A node can hear a message delivered at a round, if exactly one among its

in-neighbors transmitted in this round.

Communication problems. Initially some nodes hold their input data called
rumors. When node i is initialized with a rumor, then this rumor is denoted
by ri. The goal of communication protocols is to disseminate such input rumors.

In the problem of gossiping, each node v is a source for its private input
rumor rv, and the goal is to have all the nodes learn all the rumors. Gossiping
may be called all-to-all communication problem.

A generalization of gossiping called many-to-all problem, or simply M2A, is
about a scenario in which only some of the nodes have input rumors. Such nodes
are called activated. The goal is to have all the nodes in the network get to know
all the rumors of the activated nodes. All nodes in the network participate in
forwarding messages in the course of an execution of an M2A protocol.

To have a communication problem in radio networks meaningful, we need to
assume that the topology of the underlying graph makes the communication
task at hand possible to perform. In the case of gossiping and M2A, the graph
is assumed to be strongly connected.

Communication protocols. Correctness of an M2A or gossiping protocol
means that the communication goal is eventually achieved on any strongly con-
nected network. Nodes running a protocol are not required to reach eventually a
state representing the completion of a task. This is assumed in order to decouple
termination from complexity considerations. The time complexity of a protocol
at hand, for a given strongly connected network, is defined to be the first round
when the communication goal has been achieved.

Nodes of a network of size n are identified by their unique names. We assume
that names give a one-to-one correspondence between the nodes and integers in
the range [0, n− 1]. While designing communication protocols, we assume that
the size of the network is known.

A simple protocol called Round-Robin operates as follows. In round i, the
unique node with name k such that i ≡ k (mod n) is scheduled to perform a
transmission. There are variants of this protocol depending on the size of packets.
In the model of combined messages, a node scheduled to transmit at the current
round transmits a message with all the rumors it has learned so far. In the model
of combined messages, the protocol is augmented by a selection rule to choose a
rumor to transmit from among those that have been learned by the given round.
Usually the selection is made by resorting to a queuing mechanism.

Average-Time Complexity of Gossiping in Radio Networks 257

for k := 0 to �n do
if v is in Gk then transmit

call Round-Robin

Fig. 1. Protocol Gossip-Combined-Messages; the code for node v

Average complexity. We consider the average time complexity of gossiping
and M2A communication on strongly-connected networks. This is the same as
the expected time complexity when the probabilistic space has all strongly con-
nected networks on n nodes as elementary events, each occurring with the same
probability. A random directed network is strongly connected with the probabil-
ity exponentially close to 1. This fact allows to obtain expected time estimates
while working with arbitrary random directed networks. These estimates are the
same when conditioned on the networks being strongly connected, provided the
time estimates are polynomial. An explicit termination in polynomial time could
be obtained for all protocols we develop, since there are polynomial-time worst-
case time estimates for these protocols, valid for strongly connected networks.

We do not want M2A protocols to have their performance biased towards
specific sets of activated nodes. Therefore we work with the average complexity
of M2A protocols defined in an adversarial manner as follows. Suppose there is an
adversary who is given a protocol P for n nodes together with a number k ≤ n.
The adversary chooses a set K of k specific names of nodes to be activated;
the goal of the adversary is to show a scenario maximizing the complexity of
the protocol. The average complexity of the protocol P , for n-node networks, is
defined to be the average complexity of protocol P measured when exactly the
nodes in K are activated with rumors.

3 Gossiping with Combined Messages

We show that gossiping can be performed with the average time cn/ lgn, for any
fixed c > 1, and that the average time always has to be at least cn/ lgn, for any
fixed c < 1/2. (The logarithm of x to the base 2 is denoted by lg x.)

Gossiping protocol for combined messages. Let �n = �n/b lgn�, where
b = 1

2 (1 + 1
c). Observe that the inequalities 1 > b > 1/c hold. Define group

Gk, for 0 ≤ k ≤ �n, to consist of nodes i, for 0 ≤ i < n, with the property
that the congruence i ≡ k (mod �n) holds. The size of a group is about b lgn.
The sizes of two groups differ by at most 1. We consider an oblivious protocol
Gossip-Combined-Messages, which is given in Figure 1. A transmission by a
node contains all the rumors that the node has already learnt in the execution.

Theorem 1. For any c > 1, the average number of rounds to complete gossiping
by protocol Gossip-Combined-Messages on a network of n nodes is smaller
than cn/ lgn, for a sufficiently large n.

258 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

Proof. Take a node y and group Gk. Let x be in Gk. The node y can hear x at
the kth round of the first phase when the following two events hold:

(i) x is an in-neighbor of y; and
(ii) no other node in Gk is an in-neighbor of y.

It follows that the probability of the event that y hears x ∈ Gk during the kth
round of the first phase of the protocol is 2−|Gk| = 2−b lg n = n−b. Let x and v be
two nodes. Node y is called a relay for the pair 〈x, v〉 when the following holds:

(i) y is an in-neighbor of v; and
(ii) y heard x in the first phase.

Observe that
Pr [y is a relay for 〈x, v〉] =

1
2nb

,

because the events “y heard x in the first phase” and “y is an in-neighbor of v”
are independent.

Consider the first t nodes, that is, the nodes i with 0 ≤ i < t. These nodes
are scheduled to perform a transmission among the first t rounds of the protocol
Round-Robin in the second phase. Node i may make node v learn the rumor
rx of x if i is a relay for the pair 〈x, v〉. For all such nodes i making the first t
transmission during Round-Robin and different from x and v, the events “i is
a relay for the pair (x, v)” are independent.

If v has not learnt rx in the first t rounds of the second phase, then no i such
that 0 ≤ i < t is a relay for the pair 〈x, v〉. The latter event holds with the
probability (1 − 1

2nb)t by independence of the events of being a relay node. It
follows that v does not learn rx in the first t rounds of Round-Robin with the
probability of at most (1 − 1

2nb)t.
We use the inequality (

1 − 1
s

)s

< exp
(
−1 +

1
2s

)
, (1)

which holds for real s > 1. It yields the following estimate:(
1 − 1

2nb

)t

< exp
((

−1 +
1

4nb

) t

2nb

)
= exp

(
− t

2nb

)
exp
(t

8n2b

)
. (2)

Let d = min{2b, 1}. Take t = na where b < a < d. Now the right-hand side of
(2) becomes

exp(−na−b/2) exp(na−d/8) = exp(−na−b/2)(1 + o(1)). (3)

Consider the event that for any pair of nodes 〈x, v〉 there is a relay node during
the first t rounds of the second phase. The event does not hold with the prob-
ability of at most n2 exp(−na−b/2)(1 + o(1)) by the estimate (3). If this event
holds, then gossiping is completed by round n

b lg n + na, which is smaller than
cn
lg n for a sufficiently large n. Otherwise the time of gossiping can be estimated
by n

b lg n + n2. These two estimates contribute to the expected value of the time
of protocol A to complete gossiping, which together is smaller than cn

lg n , for all
sufficiently large n.

Average-Time Complexity of Gossiping in Radio Networks 259

Lower bound for gossiping with combined messages. We show that any
gossiping protocol for the model of combined messages has the average time com-
plexity Ω(n/ logn). This implies that protocol Gossip-Combined-Messages is
asymptotically optimal.

Theorem 2. For any c < 1/2 and gossiping protocol A for the model of com-
bined messages, the average number of rounds to complete gossiping by A on a
network of n nodes is larger than cn/ lgn, for a sufficiently large n.

Proof. Let X be the random variable defined on the domain of all directed graphs
of n nodes. For such a graph G, run A on G and let s be the first round when
the gossiping has been completed. Define X(G) = s. Let an execution of A be
given as a sequence 〈T0, T1, T2, . . .〉 of transmissions.

We estimate the probability of the event X > s, for integer s > 0. Take event
H(v, s), for node v and round s, which holds when no node has heard from node v
by round s. Observe that

Pr [X > s] ≥ Pr [H(v, s)]. (4)

We want to estimate the probability that H(v, s) holds.
We start with choosing v. If some node v does not belong to any of the first s

transmissions, then such v yields the best possible estimate Pr [H(v, s)] = 1,
which also implies that EX > s.

Assume that every node belongs to at least one among the first s transmissions
of protocol A. Next we restrict our attention only to these transmissions. We
claim that there is a node, say, v with the property that every transmission
Ti that v belongs to, for i ≤ s, is of a size at least |Ti| ≥ n/s. This is because
otherwise, even if every node belonged to only one transmission, the total number
of nodes in the initial segment of s transmissions of A were smaller than n, which
would contradict the assumption that these transmissions include all the nodes.

A node x hears from v at round i ≤ s, provided v ∈ Ti, when the following
two events hold:

(i) v is an in-neighbor of x in Ti, and
(ii) no other node y �= x in Ti is an in-neighbor of x.

This implies that the estimate

Pr [x hears from v at round i | v ∈ Ti] ≤ 2−n/s

holds. Node v could belong to a number of transmissions Ti for i ≤ s, so we use
the estimate

Pr [x hears from v in the first s rounds] ≤ s2−n/s.

Node x was arbitrary, and we need to be concerned with all the nodes. We use
the estimate

Pr [some node hears from v in the first s rounds] ≤ ns2−n/s.

260 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

The event H(v, s), that no node hears v during the first s transmissions, holds
with a probability of at most

Pr [H(v, s)] ≥ 1 − ns2−n/s. (5)

To estimate the expected value EX of X , we use the formula

EX =
∞∑

k=0

Pr [X > k],

which holds true for any random variable X with non-negative integer values.
Combining this with the estimates (4) and (5), we obtain the inequality

EX ≥
t∑

k=1

(
1 − nk · 2−n/k

)
, (6)

for any integer t > 0.
Let k0 be the largest value of k for which the expression 1 − nk · 2−n/k is

positive. We take the upper bound t on the range of summation in (6) to be
close to k0.

Next we estimate the magnitude of k0 as a function of n. Observe that k0 is
the largest k for which the inequality

nk ≤ 2n/k (7)

holds. Take the binary logarithm lg of both sides of (7) to obtain the equivalent
inequality lgn + lg k ≤ n

k , which implies k0 = n
2 lg n (1 + o(1)). We use the value

t = n/(2 lgn) in the estimate (6) to obtain

EX ≥
n/(2 lg n)∑

k=1

(
1 − nk · 2−n/k

)
=

n

2 lgn
− n

n/(2 lg n)∑
k=1

k · 2−n/k. (8)

The function f(k)= k2−n/k is increasing as k → ∞. The value f(t)=f(n/(2 lgn))
is the largest term in the sum on the right-hand side of (8). Observe that

f(t) =
n

2 lgn
· 2−2 lg n =

n

2 lgn
· n−2 =

1
2n lgn

and hence the estimate
n/(2 lg n)∑

k=1

k · 2−n/k ≤ n

2 lgn
· 1
2n lgn

=
1

4 lg2 n

holds. Therefore (8) can be bounded from below as follows:

EX ≥ n

2 lgn
− n

4 lg2 n
=

n

2 lgn

(
1 − 1

2 lgn

)
,

which completes the proof of Theorem 2.

Average-Time Complexity of Gossiping in Radio Networks 261

for i := lg k downto 0 do
call Selector-Subroutine(2i)
continue Round-Robin for 10 lg n rounds

Fig. 2. Procedure M2A-Combined(k)

4 M2A Communication with Combined Messages

Suppose k nodes among n in the network are activated with rumors. We give a
protocol with average time complexity O(min{k log(n/k), n/ logn}). We assume
that k is a power of 2.

Two schedules of transmissions P1 and P2 are said to be interleaved, when the
consecutive actions as specified by P1 are performed in even-numbered rounds,
while P2 determines the actions for the odd-numbered rounds. Infinite schedules
of transmissions are called protocols, while finite schedules are called procedures
in this paper. When a procedure P1 is interleaved with a protocol P2, then
eventually P1 ends. At this point we make the protocol P2 take over completely,
such that its actions are performed in all the following rounds; this is explicitly
marked in the pseudocode of our protocols by the instruction continue P2.
Another mode of using a protocol P specifies that the schedule of P is repeatedly
executed for an interval of x rounds, then it is frozen. This is indicated in the
pseudocode by the instruction continue P for x rounds.

We use families of sets called (n, j)-selectors in [8]. They are defined as follows.
A set Y selects element v from a set X when X∩Y = {v}. A family F of subsets
of [n] = [0, n − 1] is an (n, j)-selector when, for any set X ⊆ [n] of size �, at
least |X |/2 elements in X can be selected by sets in F . The size of F is called
its length. We refer to any used selector F as a sequence F = 〈F1, F2, . . .〉 in an
arbitrary fixed order.

Selectors are used to determine schedules of transmissions. Given positive
integer number � and a (n, �)-selector F , we define Selector-Subroutine(�)
as follows. Node v transmits in round i if v ∈ Fi; rounds are counted from the
call of this subroutine. We use (n, 2i)-selectors of length Θ(2i log(n/2i)), which
were proved to exist in [11].

A M2A procedure, representing the case when k may be a part of code, is
given in Figure 2. Protocol M2A-Combined-Messages is given in Figure 3.
Next we analyze the average complexity of the protocol.

A node v is said to be a unique transmitter at a round, when v is the only node
transmitting at that round. We say that broadcast of rv was successful/completed,
or that node v broadcast successfully, when every node has received rv.

Lemma 1. Suppose that node v transmits its rumor rv as the unique trans-
mitter, and after this Round-Robin is executed. Then the broadcast of rv is
completed in at most 10 lgn following rounds of Round-Robin with the proba-
bility of at least 1 − 1/n3.

262 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

for j := 0 to lg n do
call M2A-Combined(2j) interleaved with Gossip-Combined-Messages

continue Gossip-Combined-Messages

Fig. 3. Protocol M2A-Combined-Messages

Theorem 3. Protocol M2A-Combined-Messages, on networks of n nodes
with any k activated nodes, works in average time O(min{k log(n/k), n/ logn}).
Proof. First we show that the protocol completes M2A by the end of the loop
for j = �lg k� with the probability of at least 1−4k/n3. The protocol runs M2A-
Combined(2j) which involves Selector-Subroutine(2j). Since there are k ≤
2j activated nodes, during Selector-Subroutine(2j) at most 2j−1 activated
nodes did not transmit as unique transmitters. Being a unique transmitter results
in a successful broadcast during the next Round-Robin part, with probability
at least 1 − 1/n3 by Lemma 1.

During Selector-Subroutine(2j−1), at most 2j−2 activated nodes did not
transmit as unique transmitters, since there are at most 2j−1 participating nodes
with probability at least 1 − 2j/n3. Those which transmitted as unique trans-
mitters have a successful broadcast during the next Round-Robin rounds with
probability at least 1 − 2j/n3 − 2j−1/n3.

In general, in an execution of Selector-Subroutine(2i) within M2A-
Combined(2j), there are at most 2i activated nodes for which broadcast was not
successful during previous iterations with probability at least 1−

∑j
a=i+1 2a/n3.

Conditioned on this event, during Selector-Subroutine(2i) at most 2i−1 of
activated nodes did not transmit as unique transmitters. It follows that after the
ith iteration of the loop, at most 2i−1 rumors have not been broadcast success-
fully with probability at least 1 −

∑j
a=i 2a/n3.

Considering only M2A-Combined(2j), it completes M2A for k activated
nodes in time

∑j
i=0 O(2i log(n/2i) + logn) ≤ O(k log(n/k)) with probability at

least 1 −
∑j

a=0 2a/n3 ≥ 1 − 4k/n3. Including also previous executions of M2A-
Combined(2j′

) for j′ < j produces time estimate
∑

j′≤j O(2j′
log(n/2j′

)) =
O(k log(n/k)).

Since O(n2) is the worst-case time bound, the average time of M2A-
Combined-Messages is O(k log(n/k)) + O(n2) · 4k/n3 = O(k log(n/k)).

Theorem 4. The average cost of any M2A protocol, for the model of combined
messages, executed on network of n nodes with some k of them activated is
Ω(k/ logn + logn).

Proof. Let A be a M2A protocol. Fix a set K of activated nodes, where |K| = k.
Let 〈T0, T1, . . .〉 be the sequence in which Ti denotes the set of nodes transmitting
at round i in the execution of A. There are two kinds of rounds i:

Case 1: Rounds i in which Ti includes at most 4 lgn nodes in K that transmit
for the first time.

Average-Time Complexity of Gossiping in Radio Networks 263

Even k/(4 lgn) such rounds are not sufficient to exhaust all the elements in K.

Case 2: Rounds i in which there are more than 4 lgn nodes from K transmitting
for the first time.

We show that with a large probability in any round, up to round s = k/(4 lgn),
there is no successful transmission between any pair of nodes. Take node v. Let
a = |Ti| > 4 lgn. The probability that v receives a rumor for a node in Ti at round
i is (a/2)(1/2)a−1 > 1/n3, for sufficiently large n. It follows that the probability
of existence of a node that receives a rumor at round i is smaller than 1/n2. The
probability that some node receives a rumor by round s is smaller than s/n2.
The expected value of the number of rounds by completion of the communication
task is at least s · (1 − s/n2) > s/2 for n > 2.

The complexity of our protocol is close to the lower bound by a factor of
O(log n log(n/k)).

5 Gossiping with Separate Messages

We consider now gossiping in the case when input rumors are so large that it
takes a separate packet to carry one rumor. We show that gossiping can be
performed with the average time O(n log n), and that the average time has to
be Ω(n logn).

Gossiping protocol for separate messages. Every node v maintains a prior-
ity queue Queuev in the private memory. The queue is used to store rumors that
v still needs to transmit. There is a set Receivedv to store all the rumors learned
so far. A newly received message with a rumor that is not stored in Receivedv is
added to both Receivedv and Queuev. The protocol working according to these
rules is called Gossip-Separate-Messages; it is given in Figure 4.

Let the nodes be ordered cyclically by their names in [n] = [0, n−1], so that i is
followed by number (i + 1) mod n. This ordering governs which nodes transmit
in any Round-Robin type of protocol, like Gossip-Separate-Messages in
particular.

The priority queue Queuev has its own queuing discipline. Rumors are ordered
cyclically, starting from the own input rumor rv. This rumor is followed by
rumors with larger indices according to their order, that is, rv+1, rv+2, until
rn−1, which is then followed by r0, r1, through the final rv−1.

Theorem 5. The average number of rounds to complete gossiping by protocol
Gossip-Separate-Messages on a network of n nodes is O(n logn).

Proof. Every node transmits every rumor exactly once. The worst-case time
complexity of this gossiping protocol is n2. The full cycle of n rounds makes an
epoch. During the first epoch, every node v transmits its input rumor rv.

Take some rumor r and consider an event Ea(r) which holds when r has been
transmitted by a lg n different nodes. The probability of the event that some

264 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

initialize Receivedv := Queuev := {rv};
for round i := 0 to ∞ do

if v ≡ i (mod n) then
if Queuev nonempty then

transmit the first rumor r in Queuev

and remove r from Queuev

else
attempt to receive a message;
if rumor r received then

if r is not in Receivedv then
insert r into Queuev and add to Receivedv

Fig. 4. Protocol Gossip-Separate-Messages; the code for node v

node y has not heard r, conditioned on Ea(r), is n−a. The probability that
some node has not heard r, conditioned on Ea(r), is at most n · n−a = n1−a.
The probability that some node has not heard some rumor, conditioned on the
events Ea(r) for all rumors r, is at most n2−a. In the following application we
will use a = 4 to obtain the probability n2−4 = n−2.

Consider the following event B: every rumor was transmitted at least 3 lgn
times during the first b lgn epochs, for some fixed integer b to be determined
later. Take a node v and the b lgn nodes preceding v in the cyclic ordering. If
any of these nodes receives rumor rv in the first epoch from v, then it transmits
rv in the first b lgn epochs. When v transmits in the first epoch, then every
other node receives rv with probability 1/2 independently over all the nodes.
The expected value of the number of these nodes that receive rv in the first
epoch is μ = b

2 lg n. Take δ determined by the equality (1−δ) b
2 lgn = 3 lgn, that

is, δ = 1 − 6
b . Then by the Chernoff bound, the probability that less than 3 lgn

nodes receives rumor rv in the first epoch is at most

exp
{
−
(
1 − 6

b

)2 b

4
lg n
}
≤ n−(1− 6

b)2 b
4 lg e .

Take integer b > 6 for which the inequality (1 − 6
b)2 b

4 lg e ≥ 3 holds. This b is
sufficient to guarantee that event B does not to hold with the probability of at
most n−2.

Conditional on B, the expected time of gossiping is at most bn lgn+n−2 ·n3 =
n(1+b lgn), because the worst-case time complexity is n3. Since event B does not
hold with probability at most n−2, the unconditional expected time complexity
is at most n(1 + b lgn) + n−2 · n3 = n(2 + b lgn), for a similar reason.

The average number of rounds to complete gossiping on a network of n nodes is
Ω(n logn); this is a corollary of a more general lower bound for M2A communi-
cation shown in Section 6.

Average-Time Complexity of Gossiping in Radio Networks 265

for i := lg k downto 0 do
for j := 1 to m(n, 2i) do

(a) if v ∈ Fj(n, 2i) then transmit rumor rv

else attempt to hear a message
(this is jth round of Selector-Subroutine(2i))

(r) continue Round-Robin-Stack in next 10 lg n rounds

Fig. 5. Procedure M2A-Separate(k); the code for node v

6 M2A Communication with Separate Messages

We give a protocol with average time O(k log(n/k) logn). Let k be a power of 2.
Selector-Subroutine(2i) is similar to the one described for the protocol

with combined messages, in that it uses (n, 2i)-selector. There are two main
differences in how they are used. The first difference is that after each round of
Selector-Subroutine(2i) we continue with Round-Robin-Stack for 10 lgn
rounds, while in the case of combined messages we put 10 lgn of Round-Robin
rounds after every used (n, 2i)-selector. The second difference is that specific
rumor needs to be selected for each transmission by a node.

An M2A procedure, representing the case when k may be a part of code, is given
in Figure 5. An auxiliary protocolRound-Robin-Stack used in procedureM2A-
Separate(k) is defined as follows. A node maintains a stack of rumors different
from its original one. A rumor heard by the node is pushed on its stack. A rumor
to transmit is obtained by popping the stack; when the stack is empty, then the
node pauses. The stack is initialized to be empty, and is made empty just before
Round-Robin-Stack is to be continued for 10 lgn rounds, see Figure 5.

Protocol M2A-Separate-Messages is given in Figure 6. Next we analyze
the average complexity and optimality of the protocol.

Theorem 6. Protocol M2A-Separate-Messages, on a network of n nodes
with k nodes initially activated, has the average time O(k log(n/k) logn).

Proof. First, M2A task is completed by the end of M2A-Separate(2j), where
j = �lg k�, with probability at least 1− 4k/n3. Consider M2A-Separate(2j). It
follows that during Selector-Subroutine(2j) of M2A-Separate(2j) at most
2j−1 activated nodes do not transmit as unique transmitters in rounds (a). Those
who transmit as unique transmitters in some rounds (a) have also successful
broadcasts in the following 10 lgn rounds of Round-Robin-Stack in code
line (r), with probability at least 1 − 1/n3 each, by Lemma 1.

Consider Selector-Subroutine(2j−1), which is the second subroutine of
M2A-Separate(2j). During this part at most 2j−2 activated nodes did not trans-
mit as unique transmitters in rounds (a). Conditioned on this event, certain ru-
mors are completed during 10 lgn following rounds of Round-Robin-Stack in
part (r) of the loop, with probability at least 1 − 1/n3 each, again by Lemma 1.
We continue analyzing subroutines of M2A-Separate(2j) which are based on

266 B.S. Chlebus, D.R. Kowalski, and M.A. Rokicki

for j = 0 to lg n do
call M2A-Separate(2j)

call Gossip-Separate-Messages

Fig. 6. Protocol M2A-Separate-Messages

(n, 2i)-selectors for i = lg(k/4), lg(k/8), . . . , 1, 0. Quantitatively, by the beginning
of Selector-Subroutine(2i) at most 2i selected nodes have not broadcasted
successfully, with the probability of at least 1−

∑j
a=i+1 2a/n3. Conditioned on this

event, during Selector-Subroutine(2i) at most 2i−1 activated nodes did not
transmit as unique transmitters in rounds (a), while those which have transmitted
as unique transmitters in rounds (a) complete broadcast during next 10 lgn rounds
in line (r) of the code, with the probability of at least 1− 2i/n3. Consequently, by
the beginning of Selector-Subroutine(2i−1) at most 2i−1 of activated nodes
have not complete broadcast, with probability at least 1 −

∑j
a=i 2a/n3.

M2A-Separate(2j) takes
∑lg k

i=0 O(2i log(n/2i) lgn) = O(k log(n/k) logn)
rounds, and during this procedure M2A task is completed with probability at
least 1 −

∑j
a=0 2a/n3 ≥ 1 − 4k/n3.

The number of rounds in M2A-Separate-Messages by the end of execution
of M2A-Separate(2j) is

∑j
j′=0 O(2j′

log(n/2j′
) logn) = O(k log(n/k) logn).

The worst-case O(n3) can occur with probability at most 4k/n3. This justifies
the estimate O(k log(n/k) logn) + O(n3) · 4k/n3 = O(k log(n/k) logn) to be an
upper bound on the average time.

We also show a lower bound for M2A communication with separate messages.

Theorem 7. For any M2A protocol for the model of separate messages, the
average number of rounds to complete gossiping on a network of n nodes with k
nodes initially activated is Ω(k logn).

Corollary 1. For any gossiping protocol for the model of separate messages,
the average number of rounds to complete gossiping on a network of n nodes is
Ω(n logn).

Our M2A protocol is within a factor of at most O(log(n/k)) close to optimality.
In the case of k = Ω(n), which includes gossiping, the protocol is asymptotically
optimal.

References

1. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, A lower bound for radio broadcast,
Journal of Computer and System Sciences, 43 (1991) 290 - 298.

2. R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time complexity of broadcast in
radio networks: An exponential gap between determinism and randomization, J.
Computer and System Sciences, 45 (1992) 104 - 126.

Average-Time Complexity of Gossiping in Radio Networks 267

3. R. Bar-Yehuda, A. Israeli, and A. Itai, Multiple communication in multi-hop radio
networks, SIAM J. on Computing, 22 (1993) 875 - 887.

4. I. Chlamtac, and S. Kutten, On broadcasting in radio networks - problem analysis
and protocol design, IEEE Transactions on Communication, 33 (1985) 1240 - 1246.

5. B.S. Chlebus, L. G ↪asieniec, A.M. Gibbons, A. Pelc, and W. Rytter, Deterministic
broadcasting in ad hoc radio networks, Distributed Computing, 15 (2002) 27 - 38.

6. B.S. Chlebus, L. G ↪asieniec, A. Lingas, and A. Pagourtzis, Oblivious gossiping in ad-
hoc radio networks, in Proc., 5th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications (DIALM), 2001, pp.
44 - 51.

7. M. Christersson, L. G ↪asieniec, and A. Lingas, Gossiping with bounded size mes-
sages in ad-hoc radio networks, in Proc., 29th International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2002, pp. 377 - 389.

8. M. Chrobak, L. G ↪asieniec, and W. Rytter, Fast broadcasting and gossiping in radio
networks, Journal of Algorithms, 43 (2002) 177 - 189.

9. A.E.F. Clementi, A. Monti, and R. Silvestri, Distributed broadcasting in radio net-
works of unknown topology, Theoretical Computer Science, 302 (2003) 337 - 364.

10. A. Czumaj, and W. Rytter, Broadcasting algorithms in radio networks with un-
known topology, in Proc., 44th IEEE Symposium on Foundations of Computer
Science (FOCS), 2003, pp. 492 - 501.

11. A. De Bonis, L. G ↪asieniec, U. Vaccaro, Generalized framework for selectors with
applications in optimal group testing, in Proc., 30th International Colloquium on
Automata, Languages and Programming (ICALP), 2003, pp. 81 - 96.

12. R. Elsässer, and L. G ↪asieniec, Radio communication in random graphs, in Proc.,
17th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2005, pp. 309 - 315.

13. L. G ↪asieniec, E. Kranakis, A. Pelc, and Q.Xin, Deterministic M2M multicast in
radio networks, in Proc., 31st International Colloquium on Automata, Languages
and Programming (ICALP), 2004, pp. 670 - 682.

14. L. G ↪asieniec, T. Radzik, and Q. Xin, Faster deterministic gossiping in directed
ad-hoc radio networks, in Proc., 9th Scandinavian Workshop on Algorithm Theory
(SWAT), 2004, pp. 397 - 407.

15. D.R. Kowalski, and A. Pelc, Time of radio broadcasting: adaptiveness vs. oblivious-
ness and randomization vs. determinism, in Proc., 10th International Colloquium
on Structural Information and Communication Complexity (SIROCCO), 2003, pp.
195 - 210.

L(h,1,1)-Labeling of Outerplanar Graphs�

Tiziana Calamoneri1, Emanuele G. Fusco1,
Richard B. Tan2,3, and Paola Vocca4

1 Dipartimento di Informatica
Università di Roma “La Sapienza”, via Salaria, 113-00198 Rome, Italy

{calamoneri, fusco}@di.uniroma1.it
2 Institute of Information and Computing Sciences

Utrecht University, Padualaan 14, 3584 CH Utrecht, The Netherlands
rbtan@cs.uu.nl

3 Department of Computer Science
University of Sciences & Arts of Oklahoma

Chickasha, OK 73018, U.S.A.
4 Dipartimento di Matematica “Ennio de Giorgi”

Università diegli Studi di Lecce, via Provinciale Lecce-Arnesano, P.O. Box 193,73100
Lecce, Italy

paola.vocca@unile.it

Abstract. An L(h, 1, 1)-labeling of a graph is an assignment of labels
from the set of integers {0, · · · , λ} to the vertices of the graph such that
adjacent vertices are assigned integers of at least distance h ≥ 1 apart
and all vertices of distance three or less must be assigned different labels.
The aim of the L(h, 1, 1)-labeling problem is to minimize λ, denoted by
λh,1,1 and called span of the L(h, 1, 1)-labeling.

As outerplanar graphs have bounded treewidth, the L(1, 1, 1)-labeling
problem on outerplanar graphs can be exactly solved in O(n3), but the
multiplicative factor depends on the maximum degree Δ and is too big
to be of practical use. In this paper we give a linear time approximation
algorithm for computing the more general L (h, 1, 1)-labeling for outer-
planar graphs that is within additive constants of the optimum values.

1 Introduction

In multi-hop radio networks, one of the problems that have been studied exten-
sively is the radio-frequency assignment problem. Each station and its neighbors
are assigned frequencies so as to avoid signal collisions. This is equivalent to a
graph coloring problem, where vertices are stations and edges represent interfer-
ences between the stations.

The type of graph coloring problem varies depending on the kinds of frequency
collisions that are to be avoided. If the only requirement is to avoid direct col-
lisions between two neighbors, then this coincides with the normal graph color-
ing problem with its associated chromatic number χ. We call this L(1)-labeling

� This work was partially supported by the Università di Roma “La Sapienza”, Italy.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 268–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

L(h,1,1)-Labeling of Outerplanar Graphs 269

problem of a graph G. Should it be desired that each station and all of its neigh-
bors have distinct frequencies, we have the L(1, 1)-labeling problem. This is also
known as the distance-two coloring of a graph or coloring of the square of the
graph, and has been well-studied.
In [7], Griggs and Yeh introduced a variation of a graph coloring problem which
they called λ-coloring problem. In this problem, each vertex is assigned a color
from the set of integers {0, · · · , λ} in such a way that adjacent vertices must be
assigned colors of at least two apart and vertices of distance two must have dis-
tinct colors. This is also known as the L(2, 1)-labeling problem. The motivation of
this type of coloring problem comes from radio frequency adjacent-band interfer-
ence problem, where adjacent frequencies may leak across the frequency bands.
Subsequently, the problem has been extended to L(h, k)-labeling, where adjacent
vertices must be assigned colors of distance at least h ≥ 0 apart and vertices of
distance two must be assigned colors at least k ≥ 0 apart. The L(h, k)-labeling
problem has been studied on many different graphs. Of particular interest is
the class of planar graphs and its subclass the outerplanar graphs. See [5] for a
comprehensive survey.

In practice, the distances in some wireless networks can be quite close (for
example, the cellular network). Thus it may be necessary that not only stations
of distance two apart must have distinct frequencies, but perhaps distance three
or more. This motivates the study of L(h, 1, 1)-labeling problem, where adjacent
nodes must have frequencies at least h ≥ 1 bands apart and all nodes of distance
two or three must also have distinct frequencies.

In this paper we only focus on L(h, 1, 1)-labeling of outerplanar graphs. More
precisely, we start from L(1, 1, 1)-labeling of outerplanar graphs, i.e. the distance
three coloring, where colors are distinct for vertices that are within distance three
of each other, then we extend it to L(h, 1, 1)-labeling of outerplanar graphs for
any h ≥ 1.

1.1 Our Results

For an outerplanar graph G of maximum degree Δ we present lower bounds
of 3Δ − 3 for the maximum number of colors that are needed to perform the
L(1, 1, 1)-labeling. We show that by using a simple greedy approach 4Δ−2 colors
are necessary in the worst case for L(1, 1, 1)-labeling an outerplanar graph. Then
we give a linear time approximation algorithm to L(1, 1, 1)-label an outerplanar
graph using no more than 3Δ+9 colors for Δ ≥ 6 and extend it to L(h, 1, 1)-label
an outerplanar graph using no more than 3Δ + 2h + 7 colors for Δ ≥ h + 5.

1.2 Related Results

The distance-d coloring problem, L(1, · · · , 1) = L(1d)-labeling of a graph, where
all vertices within distance d ≥ 1 must have distinct colors have been studied
in the literature. In [13], Nizisheki et al gave an O(n3) time algorithm to L(1d)-
label a graph of bounded treewidth k. As an outerplanar graph G is a graph of
treewidth two, this algorithm can be used to give an optimal L(1, 1, 1)-labeling
of G in O(n3) time. Let α be the chromatic number of the third power of a graph

270 T. Calamoneri et al.

of bounded threewidth 2, then the multiplicative factor of this algorithm is α231
;

a number way too big to be of practical use.
In contrast, our approximation algorithm is linear of O(nΔ), and only within

an additive constant of the optimum value.
For outerplanar graphs G, the L(h, 1)-labeling problem for h ≥ 1 has also been

studied. The L(1, 1)-labeling problem appeared in [3, 6] and the L(2, 1)-labeling
in [3, 6, 9]. To the best of our knowledge, nothing is known for the L(h, 1, 1)-
labeling of outerplanar graphs for h ≥ 2.

The rest of the paper is organized as follows. The next section gives the
preliminary materials on L(h, 1, 1)-labeling and outerplanar graphs. Section 3
describes the techniques and results of L(1, 1, 1)-labeling of outerplanar graphs.
The same techniques are then used in section 4 to obtain results for L(h, 1, 1)-
labeling for h ≥ 1. The final section gives the conclusion and state some open
problems.

2 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. The number of
vertices of the graph is denoted by n and the maximum degree by Δ. Throughout
the paper we assume our graph is connected, loopless and simple.

2.1 L(h,1,1)-Labeling

Definition 1. Let G be a graph and h ≥ 1 be a non-negative integer. A L(h, 1, 1)-
labeling of G is an assignment of colors (integers) to the vertices of G from the
set of integers {0, · · · , λ} such that vertices of distance 1, have colors that differ
by at least h and vertices of distance two or three have colors that differ by at
least 1. The minimum value λ for which G has a L(h, 1, 1)-labeling is denoted by
λh,1,1 and the minimum number of colors is denoted by χh,1,1 = λh,1,1 + 1.

In order to make easier the reading, we will deal with χh,1,1 most of the time,
even if most of the literature use λh,1,1.

2.2 Outerplanar Graphs

An outerplanar graph is a graph that has a planar embedding such that all the
vertices lie on the exterior face.

We first state some known facts about outerplanar graphs, of which the first
two are well-known.

Characterization by Minors. A graph G is outerplanar iff it does not contain
the complete graph K4 nor the complete bipartite graph K2,3 as minors. (A
minor of a graph is obtained by edge contractions, edge deletions, or deleting
isolated vertices.)

Degree 1 or 2. An outerplanar graph G has a node of degree 1 or 2.

OBFT(G) [6]. An outerplanar graph G has an ordered breadth first tree graph
OBFT(G), constructed in the following manner. Choose a node r and induce a

L(h,1,1)-Labeling of Outerplanar Graphs 271

total ordering on the vertices clockwise on the exterior face of a planar embedding
of G. Do a breadth first search starting with the root r and visit the vertices in
order of the given ordering. We end up with an OBFT(G) with possibly some
non-tree edges which have the following properties.

A non-tree edge can only exist between vertices x and y if :

1. they are adjacent vertices on the same level, i.e. x = vl,i and y = vl,i+1 for
some level l ≥ 1 and i ≥ 1, where vl,i denotes the vertex at level l and it is
the ith vertex from the left,

2. they are vertices on adjacent levels, x = vl,i and y = vl+1,j , and y must be
the rightmost child of its parent w = vl,k and k = i − 1, i.e. vertex x must
be the next vertex after w on the same level in the OBFT(G).

See Fig. 1 for an example of OBFT(G), where dotted lines denote non-tree
edges.

1

2

3

4

5
6

7

8

9

10

11

12

13
14

15

16

a

1

2 11 14
15 16

7 10 12 13

4
6 8 9

3 5

v1,1

v2,1 v2,2 v2,3 v2,4 v2,5

v3,1
v3,2

v3,3
v3,4

v4,1
v4,2

v4,3 v4,4

v5,1 v5,2

b c

Fig. 1. Example of OBFT(G)

Given as input an outerplanar embedding of G, an OBFT(G) can be computed
in O(n) time.

We prove the following results concerning an OBFT(G) that will be useful to
prove the upper bound of our algorithms.

Lemma 1. Let G be an outerplanar graph with its associated OBFT(G), and
two siblings x and y, x < y, in OBFT(G). Any node u in the subtree of OBFT(G)
rooted at x is less than any node w in the subtree of OBFT(G) rooted at y.

Proof. First observe that the parent of x and y, say r, can assume three possible
relative positions with respect to x and y: r < x < y, x < r < y and x < y < r
(see Fig. 2).

272 T. Calamoneri et al.

Œ
a b c

Fig. 2. Proof of Lemma 1. Lines with double bars are paths while simple lines represent
edges.

In the first case (Fig. 2.a), u can lie either between r and x or between x and
y, otherwise a crossing would be generated. Assume by contradiction that there
exists a w < u. Now, w cannot lie between 1 and r (path w � y would cross
path 1 � r); w cannot lie between r and x (path w � y would cross edge (r, x));
so the only feasible interval for w is between x and y. Nevertheless, also in this
interval, w < u implies a crossing between paths x � u and y � w. So u < w.

In the second case (Fig. 2.b) 1 < u < r as there is necessarily a path connecting
root 1 to r, and w > r for similar reasons. So u < w.

Finally, in the third case (Fig. 2.c) u is either between 1 and x or between x
and y. With similar reasonings as in the first case, we prove again that u < w. �	

Theorem 1. Any OBFT(G) of an outerplanar graph G is an outerplanar em-
bedding of G.

Proof. First observe that if the embedding is not outerplanar, then either there
exists some node embedded inside an internal face, or there is some node on the
boundary of internal faces only.

Given an OBFT(G), let us suppose first that there is a node v embedded
inside an internal face f . In fact, if a whole subtree is embedded inside f then
we can contract it to its root, say v. We will prove the claim by contradiction.
The boundary of f is the cycle created in the OBFT(G) by at least one non-tree
edge (u,w) (see fig. 3 a). Let us consider the lower common ancestor of u and
w, lca(u,w), and its two children on the boundary of f , let they be x and y. By
OBFT(G) construction, it must be x < y. By Lemma 1, we have u < v < w if
(i) v is in the subtree rooted at x, ii) v is in the subtree rooted at y and (iii) v
is a child of lca(u,w). This configuration leads to an absurdity, as 1 must lie to
the left of u and it is impossible to place path 1 � v not passing through u and
not crossing edge (u,w). It follows that v does not exists.

Let us suppose now that a node v lies on the boundary of internal faces only
and consider the simple cycle C constituted by the boundary of the union of
all such faces. By construction, if v lies on level l of the OBFT(G), then on C
there are necessarily a node w on a level strictly greater than l and a node u
on a level strictly less than l such that there exist paths w � v and u � v not

L(h,1,1)-Labeling of Outerplanar Graphs 273

using nodes of C. As u and w both lie on C, then there are two distinct paths
inside C connecting u and w both passing through a node at level l. This leads
to an absurdity as we can construct the forbidden minor K2,3: v represents the
internal node, u and w are the degree 3 nodes and the two nodes on level l are
the remaining degree 2 nodes. �	
Corollary 1. In an OBFT(G) of an outerplanar graph G, for each node c, there
exists at least one of c’s children not having non-tree edges on both sides. (Refer
to Fig. 3 b.)

Proof. The claim directly follows from Theorem 1 as node c would be internal.
�	

a b

Fig. 3. a) Proof of Theorem 1. Lines with double bars are paths while simple lines
represent edges. b) Proof of Corollary 1.

3 L(1,1,1)-Labeling

In this section we deal with the L(1, 1, 1)-labeling of outerplanar graphs. The
technique used here will be generalized in the next section in order to handle the
L(h, 1, 1)-labeling.

First we give the lower bound.

Theorem 2. There exists an outerplanar graph of degree Δ that requires at least
3Δ− 3 colors to be L(1, 1, 1)-labeled.

Proof. Consider the graph shown in Fig. 4 a; x, y and z are vertices of degree
Δ. As all adjacent vertices of x, y and z are at mutual distance ≤ 3, it is easy to
see that it requires at least 3Δ− 3 colors. �	
The greedy first-fit approach is a frequently used technique for labeling vertices
of graphs and usually performs well in practise. This technique consists in con-
sidering nodes one by one in any order and assigning them the first color not
used by any of their labeled neighbors satisfying the L(1, 1, 1)-labeling condition.
If there is a tree-like structure, the followed order is typically the top-down left
to right one. In our case, we can state the following theorem.

274 T. Calamoneri et al.

a b

Fig. 4. a) Lower Bound. b) Greedy Algorithm.

Theorem 3. There exists an outerplanar graph G of degree Δ such that the
greedy first-fit approach requires at least 4Δ− 2 colors to L(1, 1, 1)-label G

Proof. The worst case occurs when we have the configuration shown in Fig. 4 b
where there are 4Δ− 3 vertices that are within distance three of a vertex v. �	

Since the gap between the lower bound on χ1,1,1 and the guaranteed performance
of the greedy first-fit approach is rather large, we now present an algorithm that,
given an outerplanar graph G of maximum degree Δ ≥ 6, finds an L(1, 1, 1)-
labeling of vertices of G using at most 3Δ + 9 colors, and hence almost optimal
as the lower bound is at least 3Δ− 3.

Let A contains colors {0, 1, . . .Δ + 2}, B colors {Δ+ 3, Δ+ 4, . . . 2Δ+ 5} and
C colors {2Δ+ 6, 2Δ+ 7, . . . , 3Δ+ 8}. The first step of the algorithm is to build
an OBFT(G), rooted on a node of degree 1 or 2. Then the algorithm proceeds
to assign a group of colors to the children of each node. Finally, it colors each
node with a color from its color group.

Before describing how to assign groups of colors, in order to make easier the
comprehension of the algorithm we introduce some definitions.

For a node v, let Cv denote the set of all the children of v in the OBFT(G)
and G(Cv) be the color group that is assigned to Cv. At each step we try to
assign color groups in such a way as to avoid conflicting groups. By conflicting
groups we mean that all the colors in a group may violate the L(1, 1, 1)-labeling
condition.

For the algorithm refer to Fig. 5 a: Let v be a vertex assigned to a specific
group of colors. All grandchildren of v are at distance ≤ 3 from Cv, hence we
must forbid group G (Cv) to all grandchildren of v and, in general, we are free to
choose between the two remaining groups. Since v and possibly its left and right
siblings (if they are adjacent to v), are at distance ≤ 3 from the grandchildren
of v, we prefer to choose the color group different from that one assigned to v
and its siblings when possible. Occasionally we will have no choice but to assign
a specific color group because it is the only color group left that can be assigned
without causing conflicts. This can occur for the grandchildren of a leftmost or
rightmost child for a node. We call these color groups fixed (see Fig. 5 b and
Fig. 6 b).

L(h,1,1)-Labeling of Outerplanar Graphs 275

a b

Fig. 5. a) Color group assignment. b) Fixed right color group.

a b

Fig. 6. a) Alternate color groups. b) Fixed left color group.

We now describe how to assign a color group. The color groups are assigned
level by level top down from the root to the leaves and from the left to the right
within each level of the tree, except in some special cases that will be explained
later.

After we have assigned two separate color groups to the root and its children,
we have two levels that are fully assigned and we have to assign group colors to
the third level. At the general iteration we have already assigned color groups to
level h and h + 1, h ≥ 1, we are now ready to assign color groups to level h + 2.
Refer to Fig 5 a: suppose v and its children Cv have been assigned groups, to
assign color groups to v’s grandchildren we first have to check Cr, where r is the
rightmost child of v. The only case in which we do not follow the left to right
order is depicted in Fig. 5 b: if there is edge (r, x) (i.e. the distance between any
node in Cr and any node in Cx is ≤ 3) and G (Cv) �= G (Cx) then we have no
choice but to assign the only color group available to Cr .

Afterwards, we have to check if node r is connected to its left sibling by a
non-tree edge. If so, we have to assign groups from right to left, alternating with
the only color groups left available (see Fig. 6 a), until there is a missing non-tree
edge, which will occur due to Corollary 1. Next, we check the leftmost child l of
node v. Again, if the color group to be assigned to Cl is fixed (Fig. 6 b), we have
to assign the only available group and then check if node l is connected via a
non-tree edge to its right sibling. If so, repeat the alternating group assignment
as before (until a missing non-tree edge is encountered). After the two boundary

276 T. Calamoneri et al.

Color Group Assignment Algorithm Let A, B and C be the three groups of
distinct colors;

Construct OBFS(G) tree T of an outerplanar graph G, rooted on a
node of degree 1 or 2;

Assign G(root)=A and G(Croot)=B;
Suppose color groups have been assigned to nodes at levels h and

h + 1, h ≥ 1.
Visit nodes of T top down, left to right starting from the root;
For each node v on level h ≥ 1:

If G(Cr) is fixed (see Fig. 5) then
Assign G(Cr) to the only available color-group;
Proceed right to left, assign G(Cx) (see Fig. 6) switch-

ing color-group until there is a missing non-tree edge
between x and y or until G(Cl) is assigned;

If G(Cl) is fixed then
Assign G(Cl) to the only available color-group;
Proceed left to right, assign G(Cy) (see Fig. 6) switch-

ing color-group until there is a missing non-tree edge
between x,y or until G(Cr) is assigned;

Let z be the leftmost node in Cv such that G(Cz) is not as-
signed.

While there is such a node z
Assign G(Cz) to the available color-group not used by z ;
Proceed from left to right alternating color group as in

Fig. 6.

Fig. 7. Color group assignment algorithm

groups have been assigned, we try to assign color groups from left to right using
a color group that is different from Gv if possible, alternating color groups from
left to right for any non-tree edge that is present.

A more formal description is given in Fig. 7.

Theorem 4. There exists a linear time algorithm that L(1, 1, 1)-labels any out-
erplanar graph with 3Δ + 9 colors, where Δ ≥ 6.

Proof. We have already described the first two steps of the algorithm (i.e. the
construction of OBFT(G) and the color group assignment), so it remains to
detail how to assign to each node a color from its color group.

Given a node group and its assigned color group, we can randomly choose a
different color for each node, paying only attention to nodes that are at distance
≤ 3 from a node group having the same color group. So, we first assign colors
to such nodes (there are no more than four: the leftmost, its right sibling, the
rightmost and its left sibling) avoiding conflicts, and then we proceed with all
other nodes.

It is straightforward to see that this algorithm correctly labels the graph in
linear time. It remains to show that Δ+3 colors in each group are always enough.

L(h,1,1)-Labeling of Outerplanar Graphs 277

Fig. 8. Proof

By scanning in an exhaustive way all possible configurations in an OBFT(G),
it is possible to see that the worst case is that in Fig. 8: at most Δ − 1 nodes
in Cx must be labeled using colors from a group (A in the figure) avoiding the
colors assigned to m, l, w and v all at distance ≤ 3 from nodes in Cx. It follows
that Δ + 3 colors in each group are always enough.

Furthermore, observe that the color assigned to j cannot be used in p, the
color assigned to k cannot be used neither in p nor in q, and similarly the color
assigned to o cannot be used in s and the color assigned to n cannot be used
neither in r nor in s. It follows that, after removing the 4 colors forbidden by m,
l, w and v, the Δ− 1 remaining colors must be at least 4. In the special case in
which the color assigned to k is the same as the color assigned to n, one color
more is necessary. Hence Δ ≥ 6. �	

4 L(h,1,1)-Labeling

In this section we show how to generalize to the L(h, 1, 1)-labeling the results
obtained for the L(1, 1, 1)-labeling.

First, observe that Theorem 2 provides a lower bound of 3Δ − 3 for χh,1,1,
for any h ≥ 1. Also Theorem 3 on the greedy first-fit approach applies to the
general case h ≥ 1.

In the following we get an L(h, 1, 1)-labeling by exploiting the Color-Group
Assignment Algorithm and then by opportunely labeling nodes. Namely, we can
prove the following theorem.

Theorem 5. For any h ≥ 2, there exists a linear time algorithm that L(h, 1, 1)-
labels any outerplanar graph with 3Δ + 2h + 7 colors, Δ ≥ h + 5.

Proof. (sketched) The reasonings are exactly the same as those presented in the
proof of Theorem 4 with two main changes:

278 T. Calamoneri et al.

1. Colors in a group. Group A contains colors {0, 1, . . .Δ + 2}; group B con-
tains colors {Δ + h + 2, Δ + h + 3, . . . 2Δ + h + 4}; and, group C colors
{2Δ+2h+4, 2Δ+2h+5, . . . , 3Δ+2h+6}. The h−1 colors in the gaps be-
tween color groups guarantee that the distance 1 constraint between adjacent
group of nodes is respected;

2. Assignment of colors to vertices of a group. It is possible to prove that
the number of colors in a group is sufficient to label vertices in a group so
as to guarantee the distance 1 constraint between vertices connected to each
other in a path.

It is straightforward to see that, with an analysis similar to the one used in
the proof of Theorem 4, the provided algorithm correctly L(h, 1, 1)-labels the
outerplanar graph in linear time and it requires at most 3Δ + 2h + 7 colors,
where Δ ≥ h + 5. �	

5 Conclusion

In this paper we provide very close upper and lower bounds on χh,1,1 for out-
erplanar graphs, showing also that the greedy first-fit technique does not work
well in this case. In the literature, there is a known algorithm that optimally
L(1, 1, 1)-labeling outerplanar graphs running in O(n3) time, but the multiplica-
tive factor is extremely large to be of practical use. Our algorithm produces an
approximate solution that only differs from the optimal solution by a constant
additive factor and it is linear.

Some open problems arise from this work. First, there is a gap between the
upper bound provided by the algorithm and the lower bound shown. It would
be nice to close the gaps between the bounds.

Furthermore, for L(h, 1d) = L(h, 1, · · · , 1), we have only studied the case when
d = 2. It would be interesting also to study the L(h, 1d)-labeling problem for
outerplanar graphs for d ≥ 3 . The same technique of using color group assign-
ments can be applied, but the number of cases to be considered increases quite
a bit. The problem here is to find good estimates for f(h, d) and g(h, d) in the
inequality χh,1d ≤ f(h, d)Δ d

2 � + g(h, d).

References

1. G. Agnarsson and M. Halldórsson. Coloring Powers of planar graphs. In Proc.
11th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA 2000): 654–
662, 2000.

2. A.A. Bertossi, C.M. Pinotti and R.B. Tan. Channel assignment with separation
for interference avoidance in wireless networks. IEEE Transactions on Parallel and
Distributed Systems 14(3): 222–235, 2003. Preliminary version in ACM Workshop
DIAL M 2000, 2000.

3. H.L. Bodlaender, T. Kloks, R.B. Tan and J. van Leeuwen. Approximations for λ-
Colorings of Graphs. The Computer Journal 47: 193-204, 2004. Preliminary version
in Proc. 17th Annual Symp. on Theoretical Aspects of Computer Science (STACS
2000), Lectures Notes in Computer Science 1770: 395–406, 2000.

L(h,1,1)-Labeling of Outerplanar Graphs 279

4. R.J. Bruce and M. Hoffmann. L(p, q)-labeling of outerplanar graphs. Tech. Rep. No.
2003/9, Department of Mathematics and Computer Science, University of Leices-
ter, England.

5. T. Calamoneri. The L(h, k)-labeling problem: an annotated bibliography. Accepted
to The Computer Journal, 2006. A continuously updated version is available online
at http://www.dsi.uniroma1.it/~calamo/survey.html

6. T. Calamoneri and R. Petreschi. L(h, 1)-Labeling Subclasses of Planar Graphs.
Journal on Parallel and Distributed Computing 64(3): 414-426, 2004.

7. J.R. Griggs and R.K. Yeh. Labeling graphs with a Condition at Distance 2. SIAM
J. Disc. Math 5:586–595, 1992.

8. W. K. Hale. Frequency assignment: theory and applications. In Proc. IEEE
68:1497–1514, 1980.

9. K. Jonas. Graph Coloring Analogues With a Condition at Distance Two: L(2, 1)-
Labelings and List λ-Labelings. Ph.D. thesis, University of South Carolina,
Columbia, 1993.

10. S.T. McCormick. Optimal approximation of sparse Hessians and its equivalence to
a graph coloring problem. Math. Programming 26: 153–171, 1983.

11. R.K. Yeh. A Survey on Labeling Graphs with a Condition at Distance Two. Man-
uscript. 2004.

12. R.K. Yeh. Labeling Graphs with a Condition at Distance Two. Ph.D. Thesis, Uni-
versity of South Carolina, 1990.

13. X. Zhou, Y. Kanari and T. Nishizeki. Generalized vertex-coloring of partial k-
trees. IEICE Trans. Fundamentals of Electronics, Communication and Computer
Sciences E83-A: 671-678, 2000.

Combinatorial Algorithms for Compressed Sensing

Graham Cormode1 and S. Muthukrishnan2

1 Bell Labs, Lucent Technologies
cormode@lucent.com

2 Rutgers University
muthu@cs.rutgers.edu

Abstract. In sparse approximation theory, the fundamental problem is to recon-
struct a signal A ∈ Rn from linear measurements 〈A, ψi〉 with respect to a
dictionary of ψi’s. Recently, there is focus on the novel direction of Compressed
Sensing [9] where the reconstruction can be done with very few—O(k log n)—
linear measurements over a modified dictionary if the signal is compressible, that
is, its information is concentrated in k coefficients with the original dictionary. In
particular, these results [9, 4, 23] prove that there exists a single O(k log n) × n
measurement matrix such that any such signal can be reconstructed from these
measurements, with error at most O(1) times the worst case error for the class
of such signals. Compressed sensing has generated tremendous excitement both
because of the sophisticated underlying Mathematics and because of its potential
applications.

In this paper, we address outstanding open problems in Compressed Sensing.
Our main result is an explicit construction of a non-adaptive measurement matrix
and the corresponding reconstruction algorithm so that with a number of mea-
surements polynomial in k, log n, 1/ε, we can reconstruct compressible signals.
This is the first known polynomial time explicit construction of any such mea-
surement matrix. In addition, our result improves the error guarantee from O(1)
to 1 + ε and improves the reconstruction time from poly(n) to poly(k log n).

Our second result is a randomized construction of O(k polylog(n)) measure-
ments that work for each signal with high probability and gives per-instance ap-
proximation guarantees rather than over the class of all signals. Previous work on
Compressed Sensing does not provide such per-instance approximation guaran-
tees; our result improves the best known number of measurements known from
prior work in other areas including Learning Theory [20, 21], Streaming algo-
rithms [11, 12, 6] and Complexity Theory [1] for this case.

Our approach is combinatorial. In particular, we use two parallel sets of group
tests, one to filter and the other to certify and estimate; the resulting algorithms
are quite simple to implement.

1 Introduction

We study a modern twist to a fundamental problem in sparse approximation theory,
called Compressed Sensing, recently proposed in the Mathematics community.

Sparse Approximation Theory Background. The dictionary Ψ denotes an orthonor-
mal basis for Rn, i.e. Ψ is a set of n real-valued vectors ψi each of dimension n and
ψi ⊥ ψj . The standard basis is the traditional coordinate system for n dimensions,

P. Flocchini and L. Gąsieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 280–294, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Combinatorial Algorithms for Compressed Sensing 281

namely, for i = 1, . . . , n, the vector ψi = [ψi,j] where ψi,j = 1 iff i = j.1 A sig-
nal vector A in Rn is transformed by this dictionary into a vector of coefficients θ(A)
formed by inner products between A and vectors from Ψ . That is, θi(A) = 〈A, ψi〉
and A =

∑
i θi(A)ψi by the orthonormality of Ψ .2 From now on (for convenience of

reference only), we reorder the vectors in the dictionary so |θ1| ≥ |θ2| ≥ . . . ≥ |θn|.
In the area of sparse approximation theory [8], one seeks representations of A that

are sparse, i.e., use few coefficients. Formally, R =
∑

i∈K θiψi, for some set K of
coefficients, |K| = k * n. Clearly, R(A) cannot exactly equal the signal A for all
signals. The error is typically taken as ‖R − A‖2

2 =
∑

i(Ri − Ai)2. By the classical
Parseval’s equality, this is equivalently ‖θ(A) − θ(R)‖2

2. The optimal k representation
of A under Ψ , Rk

opt, therefore takes k coefficients with the largest |θi|’s. The error
then is ‖A − Rk

opt‖2
2 =
∑n

i=k+1 θ2
i . This is the error in representing the signal A in a

compressed form using k coefficients from Ψ .
In any application (say audio signal processing), one has a “class” of input signals

(A’s) (e.g., sinusoidal waveforms comprising the audio signal), one chooses an appro-
priate dictionary Ψ (say discrete Fourier) so that most of the signals are “compressible”
using that dictionary, and represents the signal using the adequate number (k * n)
of coefficients (θ1, . . . , θk). There are different notions of a signal being compressible
in a dictionary. In the past, e.g., in audio applications, researchers focused on the α-
exponentially decaying case where the coefficients decay faster than any polynomial.
That is, for some α, |θi| = O(2−αi), for all i. More recently, there is focus on the
p-Compressible case. Specifically the coefficients have a power-law decay: for some
p ∈ (0, 1), and for all i, |θi| = O(i−1/p). Consequently, ‖A − Rk

opt‖2
2 ≤ Cpk

1−2/p

for some constant Cp. A simplification of these models is the k-support case, where the
signal has at most k non-zero coefficients, so Rk

opt = A.
Study of sparse approximation problems involves the art of identifying suitable Ψ

so the signals from an application are compressible, and studying their mathematical
properties. This is a mature area of Mathematics with highly successful applications to
signal processing, communication theory and compression [8].

Compressed Sensing. Recently, Donoho posed a fundamental question [9]: Since most
of the information in the signal is contained in only a few coefficients and the rest of the
signal is not needed for the applications, can one directly determine (acquire) only the
relevant coefficients without reading (measuring) each of the coefficients? In a series of
papers over the past year, the following result has emerged.

Theorem 1. [9, 4, 23] There exists a non-adaptive set V of O(k log(n/k)) vectors in
Rn which can be constructed once and for all from the standard basis. Then, for fixed
p ∈ (0, 1) and any p-compressible signal A in the standard basis, given only measure-
ments 〈A, vi〉, vi ∈ V , a representation R can be determined in time polynomial in n
such that ‖A − R‖2

2 = O(k1−2/p).

1 Examples of other basis are discrete Fourier where ψi,j = 1√
n

exp(−2π
√

−1ij/n); and
Haar wavelet where every ψi is a scaled and shifted copy of the same step like function. By
applying an appropriate rotation to the basis and signal vectors, our problem can be thought of
in the standard basis only.

2 We refer to θi where A is implicitly clear.

282 G. Cormode and S. Muthukrishnan

There are several important points to note. First, since the worst case error for a p-
compressible signal is Cpk

1−2/p, the representation above is optimal, up to constant
factors for the class of all p-compressible signals, for a fixed p. Second, even if the
signal consisted of precisely k nonzero coefficients θi1 , . . . , θik

, one needs k measure-
ments 〈A, ψij 〉 for j ∈ [1, k]; hence, the set V of measurements is only a log(n/k) fac-
tor larger than the naive lower bound of measurements needed. Third, the proof shows
existence of V by showing that a random set of V vectors will satisfy the theorem with
nonzero probability. The proof immediately gives a Monte Carlo randomized algorithm
by using such a random V .

This result has generated much interest, and a sequence of papers have improved
different aspects of the result [9, 25, 4, 23]; found interesting applications including
MR imaging wireless communication [23] and generated implementations [22]; found
mathematical applications to coding and information theory [3]; and extended the re-
sults to noisy and distributed settings [2]. The interest arises for two main reasons. First,
there is deep mathematics underlying the results, with interpretations in terms of high
dimensional geometry [23], uncertainty principles [4], and linear algebra [9]. Second,
there are serious applications—for example, in going from analog to digital represen-
tation of the signals, existing hardware chips can execute measurements 〈A, vi〉 ex-
tremely efficiently, so performing O(k log(n/k)) measurements is significantly more
efficient than measuring each component of the signal (hence “compressed sensing”).
The results have inspired a number of workshops, meetings and talks [15, 18].

Outstanding Problems and Our Results. There are several outstanding questions in
Compressed Sensing. The most fundamental issue is to explicitly construct the non-
adaptive measurement set of vectors V (or equivalently, a transformation matrix T
in which T [i, j] = vi[j]) in the theorem. The existing results first show that if T
satisfies certain conditions, the theorem holds; then they show that T chosen from
an appropriate random distribution suffices. The necessary conditions are quite in-
volved, such as computing the eigenvalues of every O(k logn) square submatrix of
T [9], and testing that each such submatrix is an isometry, behaving like an orthonor-
mal system [4]. No explicit construction is known to produce T ’s with these proper-
ties. Instead, algorithms for Compressed Sensing choose a random T , and assume that
the conditions are met. Thus, these are Monte Carlo algorithms, with some probabil-
ity of failure. This is a serious drawback for Compressed Sensing applications moti-
vated by hardware implementations which will sense many, many signals over time.
So it is highly desirable that there be an explicit construction of T suitable for Com-
pressed Sensing. A natural approach is to take a random T and test whether it satisfies
the necessary conditions. However, this is much too expensive, taking time at least
Ω(nk log n).

There are several other outstanding questions. For example, the time to obtain a rep-
resentation from the measurements is significantly superlinear in n (it typically involves
solving a Linear Program [9, 4, 23]). For large signals, this cost is overly burdensome.
Since we make a small number of measurements, it is much better to find algorithms
with running time polynomial in the number of measurements and hence, sublinear in
n. Lastly, the guarantee given by the above theorem is not relative to the best possi-
ble for the given signal (i.e., per-instance), but to the worst case over the whole class

Combinatorial Algorithms for Compressed Sensing 283

of p-compressible signals. Clearly per-instance error guarantees (equivalently, true ap-
proximation algorithms) are preferable.

We address these questions and present the first known explicit algorithms for Com-
pressed Sensing. Our approach is combinatorial, and yields a number of technical im-
provements such as sublinear time reconstruction, and tolerance to error. Our main
results are twofold.

1. We present a deterministic algorithm that in time polynomial in k and n constructs
a non-adaptive transformation matrix T of number of rows polynomial in k logn, and
present an associated reconstruction algorithm in the spirit of Theorem 1. More specif-
ically, our algorithm outputs a representation R for a compressible signal A such that
‖R−A‖2

2 < ‖Rk
opt −A‖2

2 + ε‖Ck
opt‖2. Here, ‖Ck

opt‖2 denotes the optimal error over
the whole class of signals considered. This is the first explicit construction known for
this problem in polynomial time.

In addition, this result leads to the following improvements: (a) the reconstruction
time is subquadratic in the number of measurements (and hence sublinear in n), (b) the
overall error is optimal up to 1 + ε of the worst case error ‖Ck

opt‖2 for p-compressible
signals, improving the O(1) approximation factor in prior results, and (c) the approach
applies to other cases of compressible signals with tighter bounds. For the exponentially
decaying and k-sparse family, the size of T is only O(k2 polylog(n)). The algorithms
are simple and easy to implement, without linear programming and without running
into precision-issues inherent in the choice of Gaussian random T in prior methods.

2. We address the issue of obtaining per-instance guarantees for each signal. We present
a randomized algorithm that on any given A, produces a T with O(k

ε2 polylog(n)) rows
such that in time linear in O(k polylog(n)), we can reconstruct a R with ‖A−R‖2

2 ≤
(1 + ε)‖A− Rk

opt‖2
2, with probability at least 1 − 1

nO(1) .
Notice crucially that this second result does not produce a T that works for all p-

compressible signals, merely, that on any given signal A, we can produce a good R
with high probability. In this regime, which is quite different from the regime in earlier
papers on Compressed Sensing where a fixed T works for all p-compressible signals,
many results in the Computer Science literature apply, in particular, from learning the-
ory [20, 21], streaming algorithms [12, 11] and complexity theory [1]. Some of these
results do not completely translate to our scenario: the learning theory approaches as-
sume that the signal can be probed in the light of the results of prior measurements
(this is similar to adaptive group testing). Other results can be thought of as produc-
ing a T with O(k2+O(1) polylog(n)) rows which is improved by our result here. An
exception is the result in [13] which works by sampling (that is, finding 〈A, vi〉 where
vi,j = 1 for some j and is 0 elsewhere) for the Fourier basis, but can be thought of as
solving our problem using O(k polylog(1/ε, logn, log ‖A‖)) measurements. Our re-
sult improves [13] in the term polylog(‖A‖2) which governs the number of iterations
in [13]. Finally, we extend to the case when the measurements are noisy—an important
practical concern articulated in [14]—and obtain novel results that give per-instance
approximation results.

Technical Overview. The intuitive way to think about these problems is to consider
combinatorial group testing problems. We have a set U = [n] of items and a set D of
distinguished items, |D| ≤ k. We identify the items in D by performing group tests on

284 G. Cormode and S. Muthukrishnan

subsets Si ⊆ U whose output is 1 or 0, revealing whether that subset contains one or
more distinguished items, that is |Si ∩D| ≥ 1. There exist collections of O((k logn)2)
nonadaptive tests which identify each of the distinguished items precisely.

There is a strong connection between this problem and Compressed Sensing. We can
treat θi’s as items and the largest (in magnitude) k as the members of D. Each test set
Si can be written as its characteristic vector χSi of n dimensions. A difficulty arises
in interpreting the outcome of 〈A, χSi〉. The discussion so far has been entirely com-
binatorial, but the outcome of this linear-algebraic operation of inner product must be
interpreted as a binary outcome to apply standard combinatorial group testing methods.
In general, there is no direct connection between 〈A, χSi〉 and presence or absence of
the first k coefficients in Si when the signal is from the p-compressible class. This is
also the reason that prior work on this problem has delved into the linear-algebraic and
geometric structure of the problem.

Our approach here is combinatorial. Our first results show that one can focus at-
tention on some k′ > k coefficients, in order to meet our error guarantees. Then, we
show that separating the k′ coefficients using group testing methods serves as a filter
and subsequently, using a different set of group tests serves to certify and estimate the
largest k coefficients in magnitude. This use of two parallel sets of group tests is novel.
For the second set of results, combinatorial group testing has been applied previously in
Learning Theory [20, 21], Streaming Algorithms [11, 12, 6] and Complexity Theory [1].
Here, our contribution is to adapt the approach from our first set of results and provide
a tighter analysis of the error in terms of ‖Rk

opt −A‖2 rather than in terms of ‖A‖2 as
is more typical.

Note. Preliminary versions of this paper have appeared as technical reports [7], which
are superseded by the results here. Several proofs have been omitted, for space reasons.

2 Preliminaries

Definition 1. A collection S of l subsets of {1 . . . n} is called k-selective if for any X
such that X ⊂ {1 . . . n} and |X | ≤ k, there exists Si ∈ S such that |Si ∩ X | = 1, i.e.
there is a member of X which is separated from all other members of X in some Si.

Definition 2. A collection S of m subsets of {1 . . . n} is called k-strongly selective if
for any X with |X | ≤ k, and for all x ∈ X there exists Si ∈ S such that Si∩X = {x},
i.e. every member of X occurs separated from all other members of X in some Si.

We note that the k-strongly selectivity is a stronger condition than k-selectivity, and so
the former implies the latter. Explicit constructions of both collections of sets are known
for arbitrary k and n. Strongly selective sets are used heavily in group testing [10], and
can be constructed using superimposed codes [19] with m = O((k logn)2). Indyk pro-
vided explicit constructions of k-selective collections of size l = O(k logO(1) n), where
the power depends on the degree bounds of constructions of disperser graphs [16].
Probabilistic constructions are also possible [5] of near-optimal size O(k log(n/k)),
which yield a more expensive Las Vegas-style algorithm for constructing such a set
in O(nk poly(k logn)): after randomly constructing a collection of sets, verify the re-
quired property holds for all (n

k) choices of X .

Combinatorial Algorithms for Compressed Sensing 285

We will also make use of the Hamming code matrix Hn, which is the �1 + log2 n�
matrix whose ith column is 1 followed by the binary representation of i. We will com-
bine matrices together to get larger matrices by (a) concatenating the rows of N to M
and get matrix denoted M

⋃
N , or (b) a Tensor product-like operation we denote ⊗,

defined as follows:

Definition 3. Given matrices V and W of dimension v × n and w × n respectively,
define the matrix (V ⊗W) of dimension vw × n as (V ⊗W)iv+l,j = Vi,jWl,j .

3 Non-adaptive Constructions

We must describe the construction of a set of m (row) vectors Ψ ′ that will allow us to
recover sufficient information to identify a good set of coefficients. We treat Ψ ′ as an
m×n matrix whose ith row is Ψ ′

i . When given the vector of measurementsΨ ′A we must
find an approximate representation of A. Ψ ′ is a function of Ψ , and more strongly (as
is standard in compressed sensing) we only consider matrices Ψ ′ that can be written as
a linear combination of vectors from the dictionary Ψ , i.e., Ψ ′ = TΨ , for some m × n
transform matrix T . Thus Ψ ′A = T (ΨA) = Tθ. Recall that the best representation
under Ψ using k coefficients is given by picking k largest coefficients from θ. We use
T to let us estimate k large coefficients from θ, and use these to represent A; we show
that the error in this representation can be tightly bounded.

Observe that we could trivially use the identity matrix I as our transform matrix
T . From this we would have Tθ = θ, and so could recover A exactly. However, our
goal is to use a transform matrix that is much smaller than the n rows of I , preferably
polynomial in k and logn. In general for most classes of signals, the only way to achieve
exact recovery of the optimal representation is to take a linear number of measurements:

Lemma 1. Any deterministic construction which returns k coefficients and guarantees
error exactly ‖Rk

opt − A‖2 requires Θ(n) measurements.

3.1 p-Compressible Signals

In the p-compressible case the coefficients (sorted by magnitude) obey |θi| = O(i−1/p)
for appropriate scaling constants and some parameter p. Previous work has focused on
the cases 0 < p < 1 [4, 9]. Integrating shows that

∑n
i=k+1 θ2

i = ‖Rk
opt − A‖2

2 =
O(k1−2/p). Our results, like those of [4, 9], are stated with respect to the error due to
the worst case over all signals in the class, which we denote ‖Ck

opt‖2 = O(k1−2/p).
For any signal that is p-compressible with fixed p and Cp it follows that ‖Rk

opt−A‖2 ≤
‖Ck

opt‖2. We give two results on the p-compressible case, one that applies when p < 1
2 ,

the other that applies for all 0 < p < 1 provided the p-compressible case is tight, i.e.
|θi| = θ(i−1/p). The measurements made are the same, but the analysis varies.

Our transform collects information based on two collections of strongly separating
sets. The first ensures that sufficient separation occurs, allowing all large coefficients to
be recovered. The second allows accurate estimates of the weight of each coefficient to
be made.

286 G. Cormode and S. Muthukrishnan

Transform Definition. We define our transform matrix as follows. Let k′ and k′′ be
functions of k, ε, logn to be defined later. Let S be a k′-strongly separating collection
of sets (so that the number of sets in the collection is k′′), and write T1 as the matrix
formed by the concatenation of χSi for all Si in S. Similarly, let R be a k′′-strongly
separating collection of sets, and write T2 as its characteristic matrix. We form our
transform matrix Tp as (T1 ⊗H)

⋃
T2.

The intuition is that rather than ensuring separation for just the k largest coefficients,
we will guarantee separation for the top-t coefficients (even though we do not know a
priori which those top-t coefficients are), where t is chosen so that the remaining coef-
ficients are so small that even if taken all together, the error introduced to the estimation
of any coefficient is still within our allowable error bounds.

Reconstruction Algorithm. Our algorithm for recovering a representation from the re-
sults of the measurements TpΨA is as follows: for each set of �1+logn� measurements
due to Si ⊗H , we recover x0 . . . xlog n� = (Si ⊗H)ΨA, and decode identifier ji as

ji =
log n∑
b=1

2b−1 |xb| − min{|xb|, |x0 − xb|}
max{|xb|, |x0 − xb|} − min{|xb|, |x0 − xb|}

.

This generates a set of coefficients J = {j1, j2 . . . jk′′}. We then use the measurements
due to T2 to estimate the weight of each coefficient named in J : for each j ∈ J , we
set θ̂j = χRiΨA for J ∩ Ri = {j}. The strong separation properties of R ensure that
there will be at least one such Ri, and if there is more than one, then we can pick one
arbitrarily. Our output is the set of k pairs (j, θ̂j) with the k largest values of |θ̂j |.

Lemma 2. Consider the case when the p-compressible case is tight within constant
factors for all coefficients, i.e. |θi| = Θ(i−1/p). Let k′ = c′(kε−p)1/(1−p)2 and k′′ =
c′′(k′ log n

log k′)2 for appropriately chosen c′ and c′′.
Let K ′ denote the set of the k′1−p largest coefficients.

1. ∀1 ≤ j ≤ n : θ2
j ≥ ε2

25k‖Ck
opt‖2

2 ⇒ j ∈ K ′

2. ∀j ∈ K ′ : j ∈ J .
3. ∀j ∈ J : |θ̂j − θj | ≤ ε

5
√

k
‖Ck

opt‖2.

Proof. Observe that the square of the (absolute) sums of coefficients after removing
the top t is (

∑n
i=t+1 |θi|)2 = O(t2−2/p). Over the whole class of p-compressible

signals, this is bounded by O(t2−2/p/k1−2/p)‖Ck
opt‖2

2. Substituting in t = k′1−p ≥
C(kε−p)1/(1−p) for an appropriate constant C ensures (

∑n
i=k′+1 |θi|)2 ≤ ε2

25k‖Ck
opt‖2

2;
Further, we have |θj | ≥

∑n
i=k′+1 |θi|, provided j < k′1−p. This shows (1).

Now consider θj that satisfies the condition in the lemma. Although K ′ is unknown,
we can be sure that, since R is k′-strongly separating, there is at least one set Ri such
that K ′ ∩ Ri = {j}, and more strongly, K ′′ ∩ Ri = {j}, where K ′′ is the set of the
k′ largest coefficients. Consider the vector of measurements involving this set, x =
(χRi ⊕ H)ΨA. When Hj,b = 1, |xb| ≥ |θj | −

∑
l �=j∈Ri

Hl,b|θl| and |x0 − xb| ≤∑
l �=j∈Ri

(1−Hl,b)|θl|. Since θ2
j > (
∑n

l=k′+1 |θl|)2 we have |θj | >
∑

l �=j∈Ri
Hl,b|θl|+

(1−Hl,b)|θl|. Hence min{|xb|, |x0−xb|} = |x0−xb|, and max{|xb|, |x0−xb|} = |xb|.

Combinatorial Algorithms for Compressed Sensing 287

Thus |xb|−min{|xb|,|x0−xb|}
max{|xb|,|x0−xb|}−min{|xb|,|x0−xb|} = 1 = Hj,b. Symmetrically, the results are

reversed when Hj,b = 0, where |xb|−min{|xb|,|x0−xb|}
max{|xb|,|x0−xb|}−min{|xb|,|x0−xb|} = 0 = Hj,b. Thus

the decoded identifier ji =
∑log n

b=1 2b−1Hj,b = j and so j ∈ J , showing (2).
For (3), observe that |J | ≤ k′′, since each Ri ∈ R generates at most one j ∈ J ,

and k′′ is chosen as the number of sets forming the collection of k′-strongly separating
sets. Hence, we can guarantee for each j ∈ J there is at least one Si such that J ∩
Si = j. We chose our k′ to be sufficiently large that we can identify the k′1/(1−p) =
O(kε−p)1/1−p) largest coefficients. Since J contains the identities of the (kε−p)1/1−p

largest coefficients, we can choose the estimate of θj as any measurement of θj that
avoids all other members of J . Thus, we can be sure that |θ̂j − θj | = |χRiΨA− θj | =
|
∑

l∈Ri,l �=j θl| ≤
∑n

l=(kε−p)1/1−p+1 |θl| ≤ ε

5
√

k
‖Ck

opt‖2.

Lemma 3. Consider the p-compressible case with p < 1
2 . Let k′ = c′(kε−p)1/(1−2p)

and k′′ = c′′(k′ log n
log k′)2 for appropriately chosen c′ and c′′.

Let K ′ denote the set of the k′ largest coefficients.

1. ∀1 ≤ j ≤ n : θ2
j ≥ ε2

25k‖Ck
opt‖2

2 ⇒ j ∈ J

2. ∀j ∈ K ′ : θ2
j > ckk

′2−2/p ⇒ j ∈ J , for appropriate scaling constant ck.

3. ∀j ∈ J : |θ̂j − θj | ≤ ε
5
√

k
‖Ck

opt‖2.

Proof. Consider j ≤ k′. We know that R is k′-strongly separating, so there is some
set Ri so that K ′ ∩ Ri = {j}. From the vector of measurements involving this set,
we know that the identity j will be recovered, as in the previous lemma, provided that
j is the majority items in this set, i.e. if |θj | >

∑
l �=j∈Ri

|θl|. This can be at most∑
l>k′ |θl| ≤ ckk

′1−1/p. Provided |θj | > ckk
′1−1/p, j will be found and so j ∈ J ,

showing (2). By our choice of k′, ckk
′2−2/p ≥ ε

5
√

k
‖Ck

opt‖2, so (2) implies (1).

For (3), we consider the error in the estimation of θj . We have |θ̂j −θj | ≤
∑

l �∈J |θl|,
and from (2), we have that l �∈ J ⇒ θ2

j ≤ k′2−2/p ∨ l > k′ (for p ≥ 1
2 , this bound is

not useful). Hence,

|θ̂j − θj | ≤
∑

l<k′,l �∈J

|θl| +
∑
l>k′

|θl| ≤ ck(k′ − 1)k′1−1/p + ckk
′1−1/p ≤ ckk

′2−1/p.

By our choice of k′ and ck, we ensure that ckk
′2−1/p ≤ ε

5
√

k
‖Ck

opt‖2, as required.

Lemma 4 (Reconstruction accuracy). Given θ̂(A) = {θ̂i(A)} such that (θ̂i−θi)2 ≤
ε2

25k‖Ck
opt‖2

2 if θ2
i ≥ ε2

25k‖Ck
opt‖2

2, picking the k largest coefficients from θ̂(A) gives an
error ‖Rk

opt − A‖2
2 + ε‖Ck

opt‖2
2 k-term representation of A.

Proof. As stated in the introduction, the error from picking the k largest coefficients
exactly is ‖θ(A) − θ(Rk

opt)‖2
2 =
∑n

i=k+1 θ2
i (where we index the θis in decreasing

order of magnitude). We will write φ̂i for the ith largest approximate coefficient, and
φi for its exact value. Let π(i) denote the mapping such that φi = θπ(i), and let σ(i)
denote a bijection satisfying σ(i) = j ⇒ (i > k ∧ π(i) ≤ k ∧ j ≤ k ∧ π(j) > k).

Picking the k largest approximate coefficients has energy error

288 G. Cormode and S. Muthukrishnan

‖R − A‖2
2 =

k∑
i=1

(φi − φ̂i)2 +
n∑

i=k+1

φ2
i

=
∑
i≤k

(φi − φ̂i)2 +
∑

i>k,π(i)>k

φ2
i +

∑
i>k,π(i)≤k

φ2
i

≤
∑
i≤k

ε2

25k
‖Ck

opt‖2
2 +

∑
i>k,π(i)>k

φ2
i +

∑
i>k,π(i)≤k

φ2
i

Consider i such that i > k but π(i) ≤ k: this corresponds to a coefficient that belongs
in the top-k but whose estimate leads us to not choose it. Then either φ2

i ≤ ε2

2k‖Ck
opt‖2

2,
i.e. the top-k coefficient is small compared to the optimal error, or else our estimate of
φ2

σ(i) was too high. In this case φ̂2
i < φ̂2

σ(i) but φ2
σ(i) ≤ φ2

i . Assuming this, we can write

φ2
i − φ2

σ(i) = (φi + φσ(i))(φi − φσ(i))
= (|φi| + |φσ(i)|)(|φi| − |φσ(i)|)
= (2|φσ(i)| + |φi| − |φσ(i)|)(|φi + φ̂i − φ̂i| − |φσ(i) + φ̂σ(i) − φ̂σ(i)|)
≤ (2|φσ(i)| + |φi| − |φσ(i)|)(|φi − φ̂i| + |φσ(i) − φ̂σ(i)| + |φ̂i| − |φ̂σ(i)|)

≤ (2|φσ(i)| +
ε

5
√
k
‖Ck

opt‖2)(
2ε

5
√
k
‖Ck

opt‖2)

In the case that φ2
i ≤ ε2

25k‖Ck
opt‖2

2 we can immediately write

φ2
i − φ2

σ(i) ≤ φ2
i ≤ ε‖Ck

opt‖2

5
√

k
· ε‖Ck

opt‖2

5
√

k
≤ (2|φσ(i)| + ε

5
√

k
‖Ck

opt‖2)(2ε
5
√

k
‖Ck

opt‖2)

Substituting this bound into the expression above, we use the facts that
∑k

j=1 |aj | ≤√
k(
∑k

j=1 a2
j)

1/2 and
∑

i>k,π(i)≤k φ2
σi

=
∑

j≤k,π(j)>k φ2
j , to bound ‖R − A‖2

2 by

∑
i≤k,π(i)≤k

ε

25k
‖Ck

opt‖2
2 +

∑
i>k,π(i)>k

φ2
i

+
∑

i>k,π(i)≤k

(φ2
σ(i) + (2|φσ(i)| +

ε

5
√
k
‖Ck

opt‖2)(
2ε

5
√
k
‖Ck

opt‖2))

≤ ε

25
‖Ck

opt‖2
2 + (2

√
k +

ε
√
k

5
)

2ε
5
√
k
‖Ck

opt‖2
2 +
∑

π(i)>k

φ2
i

≤23ε
25

‖Ck
opt‖2

2 +
∑
i>k

θ2
i < ‖Rk

opt − A‖2
2 + ε‖Ck

opt‖2
2

Theorem 2. We can construct a set of measurements for a signal A in time polynomial
in k and n and return a R for A of at most k coefficients θ̂ under Ψ such that ‖θ̂ −
θ‖2

2 = ‖R − A‖2
2 < ‖Rk

opt − A‖2
2 + ε‖Ck

opt‖2
2, and (i) if p < 1

2 , then the number

of measurements is O((kεp)4/(1−2p) log4 n) and the time to produce the coefficients
from the measurements is O((kεp)6/(1−2p) log6 n). (ii) if the p-compressible case is
tight, then the number of measurements is O((kεp)4/(1−p2) log4 n) and the time to find
coefficients is O((kεp)6/(1−p)2 log6 n).

Combinatorial Algorithms for Compressed Sensing 289

Combining the above lemmas shows that the result of the algorithm has the desired
accuracy. The reconstruction time can be broken down into the time to build J from the
coefficients and the time to estimate the weight of each j in J . Building J takes time
O(k′′ logn), since it requires a linear pass over the results of the measurements. To
choose the location to find estimates quickly, we can build a vector y = T2χ

T
J in time

O(|J |(k′′ logn)2), by selecting and summing the necessary columns. Then for each
j ∈ J , we find some i such that yi = T2j,i = 1 and return the measurement (T2ΨA)
as θ̂j . This takes O((k′′ logn)2) time per coefficient. Lastly, picking the k largest of the
estimated coefficients can be done with a linear pass over them. The dominating cost is
O(|J |(k′′ logn)2) = O((k′′ logn)3)

The number of measurements is polynomial in k, logn (recall that p is fixed inde-
pendent of n and A). We have not fully optimized the various polynomial factors, but
still, our methods will not yield less than k4 measurements, due to the use of the two
collections of k-strongly separating sets. It is an open problem to further improve the
number of measurements in explicit non-adaptive constructions. Note although we need
to use p to define the measurements, we do not need the exact value of p. Rather, we
need an upper bound on the true value of p (recall, the smaller the value of p, the faster
the coefficients must reduce) — this is because our construction will simply take more
coefficients than is necessary to get the required approximation accuracy.

3.2 Exponential Decay

As in the p-compressible case we state our results for the exponential decay case relative
to the worst case error in the class for given α and Cα. In the case that |θi| ≤ Cα2−αi,
we write ‖Ck

opt‖2
2 =
∑n

i=k+1 θ2
i as the worst case error over the class.

Measurements. The set of measurements we make is similar to the p-compressible
case at the high level, but differs in the details. We set k′ = k + O(log((k log n)/ε)

α),
and k′′ = O((k′ logn)2) As before, we build S, a k′-strongly separating collection
of sets, and write T3 as the concatenation of χsi for all Si ∈ S (k′′ is chosen as the
number of sets in the collection). However, we set Q to be a k′′-separating collection
of sets (not strongly separating), and write T4 as its characteristic matrix. We form
Tα = (T3 ⊗H)

⋃
T4, and use TαΨ as the measurement matrix.

Reconstruction Algorithm. We recover a representation from the measurements from
T3 ⊗ H as before, to build a set J of identifiers. To make our estimates, we proceed
iteratively to build θ̂, the vector of approximate coefficients. Initially θ̂ = 0, and M = ∅.
Let j1 ∈ (J\M) satisfy (J\M) ∩ Qi = {j1} (there will be at least one such Qi and
j1). We set θ̂j = χQi(ΨA − θ̂) and M = M ∪ {j1}. We now proceed to find a new
j2 ∈ (J\M) with (J\M)∩Qi′ = {j2} as the next coefficient to estimate, and proceed
until J = M . We then return the k highest estimated coefficients as before.

Lemma 5. Let K ′ denote the set of the k′ largest coefficients.
1. ∀1 ≤ j ≤ n : θ2

j > (
∑n

l=k′ |θl|)2 ⇒ j ∈ J

2. ∀j ∈ K ′ : θ2
j ≥ ε2

25k‖Ck
opt‖2 ⇒ j ∈ J

3. ∀j ∈ J : |θ̂j − θj | ≤ ε
5
√

k
‖Ck

opt‖2.

290 G. Cormode and S. Muthukrishnan

Proof. To show (1) and (2), we must bound the tail sums of coefficients of α-exponen-
tially decaying signals. One can easily show that

∑n
i=k+1 θ2

i ≤ cα2−2αk and

(
∑n

i=k′+1 |θi|)2 ≤ c′α2−αk′
. Over the class of α-exponentially decaying signals,

(
∑n

i=k′ |θi|)2 ≤ Cα2−α(k′−k) ‖Ck
opt‖2

2. Setting k′ = k + O(1
α log k

ε) gives

(
∑n

i=k′ |θi|)2 ≤ ε2

25k‖Ck
opt‖2

2. The remainder of the proof of (2) continues as in Lemma 2
(2), and (1) follows immediately as a consequence of the identification process.

To show (3), we scale ε by a factor of O(kk′′). Note that this does not affect the as-
ymptotic sizes of k′ or k′′. This now ensures that the first coefficient j1 is estimated with
error |θ̂j1 −θj1 | ≤ k′∑n

l=k′+1 |θi| ≤ ε
k5/2 ‖Ck

opt‖2. Now consider the estimation of the
next coefficient j2: it is possible that j2 and j1 occur in the same set Qi′ , in which case
the error is bounded by |θ̂j2 −θj2 | ≤ |(

∑
l �=j2,l∈Qi2

θl)− θ̂j | ≤
∑

l �=j1,l �=j2,l∈Qi2
|θl|+

|θ̂j1 − θj1 | ≤ 2ε
(k′ log n)5/2 ‖Ck

opt‖2; else the error is bounded by ε
(k′ log n)5/2 ‖Ck

opt‖2 as

before. One can therefore show inductively that |θ̂jm − θjm | ≤ mε
5(k′ log n)5/2 ‖Ck

opt‖2,

and so, since |J | ≤ k′′ = O((k′ log n)2), we have ∀j ∈ J.|θ̂j − θj | ≤ ε
5
√

k
‖Ck

opt‖2, as
required.

Theorem 3. We can construct a set of O(k2 polylog(n)) measurements in time polyno-
mial in k and n. For any α-exponentially decaying signal A, from these measurements
of A, we can return a representation R for A of at most k coefficients θ̂ under Ψ such
that ‖θ̂− θ‖2

2 = ‖R−A‖2
2 < ‖Rk

opt−A‖2
2 + ε‖Ck

opt‖2
2. The time required to produce

the coefficients from the measurements is O(k2 polylog(n))

Proof. Using the results of Lemma 5 allows us to apply Lemma 4 and achieve the main
theorem. For the time cost, we must first generate J , which takes time O(k′′ logn), and
then iteratively build the estimates. This can be done efficiently in timeO(k′′polylog(n))
per coordinate, a constant number of operations on each of the O(k′′ polylog(n))
measurements. For constant α and ε = O(poly(1/n)), we have k′ = O(k), k′′ =
O((k logn)2) and the total number of measurements = k′′ polylog(n) =
O(k2 logO(1) n).

k-Support Case. We note that the same approach can be used to give an explicit con-
struction with Õ(k2) measurements for signals that have ‖Rk

opt − A‖2 = 0, i.e., there
are at most k non-zero coefficients. This “k-support” case is a simplification of real-
istic signals, but has attracted interest in prior work (see [24] and references therein).
The same approach outlined above, of using a combination of measurements based
on k′-strongly separating sets and k′′-separating sets, with an appropriate setting of
k′ = Õ(k) and k′′ = Õ(k2), is sufficient to recover the signal exactly.

4 Randomized Constructions

Here we focus on providing per-instance error estimates. For compressible signals (this
section also works for arbitrary signals) one can give randomized constructions which
guarantee to return a near-optimal representation for that signal, with high probability
for each signal.

Combinatorial Algorithms for Compressed Sensing 291

Transform Definition. Instead of using collections of sets with guaranteed separating
properties, we make use of sets defined implicitly by hash functions to give a ran-
domized separation property. We also use a random ±1 valued vector to improve the
accuracy of estimation of the coefficients. The necessary components are as follows:

Separation Matrix M . M is a 0/1 s×n matrix with the property that for every column,
exactly one entry is 1, and the rest are zero. We will define M based on a randomly
chosen function g : [n] → [s], where Pr[g(i) = j] = 1/s for i ∈ [n], j ∈ [s]. Hence,
Mi,j = 1 ⇐⇒ g(i) = j, and zero otherwise. The effect is to separate out the
contributions of the coefficients: we say i is separated from a set K if ∀j ∈ K.g(i) �=
g(j). For our proofs, we require that the mapping g is only three-wise independent, and
we set s = O(k log n

ε2). This will ensure sufficient probability that any i is separated
from the largest coefficients.

Estimation Vector E. E is a ±1 valued vector of dimension n so Pr[Ei = 1] =
Pr[Ei = −1] = 1

2 . We will use the function h : [n] → {−1,+1} to refer to E, so that
Ei = h(i). For our proofs, we only require h to be four-wise independent.

Lastly, we compose T from M , Hamming matrix H and E by: T = M ⊗H ⊗ E.

Reconstruction Procedure. We consider each set of inner-products generated by the
row Mj . When composed with (H ⊗ E), this leads to 1 + log2 n inner products,
x0 . . . xlog n = (TΨA)j(1+log n) . . . θ

′
(j+1)(1+log n)−1. From this, we attempt to recover

a coefficient i by setting i =
∑log n

b=1 2b−1 x2
b−min {x2

b,(x0−xb)2}
max {x2

b,(x0−xb)2}−min {x2
b,(x0−xb)2} , and add

i to our set of approximate coefficients, θ̂. We estimate θ̂i = h(i)x0, and output the k

approximate coefficients obtaining the k largest values of |θ̂i|.

Lemma 6 (Coefficient recovery). (1) For every coefficient θi with θ2
i > ε2

25k‖Rk
opt −

A‖2
2, there is constant probability that the reconstruction procedure will return i (over

the random choices of g and h).
(2) We obtain an estimate of θi as θ̂i such that (θi − θ̂i)2 ≤ ε2

25k‖Rk
opt − A‖2

2 with
constant probability.

Proof. The outline of the proof is as follows: for each coefficient θi with θ2
i >

ε2

25k‖Rk
opt − A‖2

2, we show that there is constant probability that it is correctly re-
covered. Let xb = (Ψ ′A)g(i)(1+log n)+b =

∑
g(j)=g(i) Hj,bh(j)θj . One can show that

(i) E(x2
b) ≤ Hi,bθi + O(ε2

k log n)‖Rk
opt − A‖2

2 and

(ii) Var(x2
b) ≤ O(ε2

k log nθ2
i Hi,b‖Rk

opt − A‖2
2 + ε4

k2 log2 n
‖Rk

opt − A‖4
2).

Using the Chebyshev inequality on both x2
b and (x0 − xb)2, and rearranging it can

then be shown that Pr[θ2
i − Hi,b(x2

b) − (1 − Hi,b)(x0 − xb)2 ≤ θ2
i

2] ≤ 2
9 log n and

Pr[(1 − Hi,b)x2
b + Hi,b(x0 − xb)2 ≥ θ2

i

2] ≤ 2
9 log n . Combining these two results en-

ables us to show that Pr[x2
b−min {x2

b,(x0−xb)2}
max {x2

b,(x0−xb)2}−min {x2
b,(x0−xb)2} �= Hi,b] ≤ 4

9 log n . Thus,

the probability that we recover i correctly is at least 5
9 .

For (2), we consider θ̂i = h(i)x0 = h(i)
∑

g(j)=g(i) h(j)θj . One can easily verify

that E(θ̂i) = θi and Var(θ̂i) = E(
∑

g(j)=g(i),j �=i θ
2
j). We argue that with constant

292 G. Cormode and S. Muthukrishnan

probability none of the k largest coefficients collide with i under g, and so in expectation
assuming this event Var(θ̂i) = 1

s‖Rk
opt − A‖2

2. Applying the Chebyshev inequality to
this, we show (2) with (better than) constant probability:

Pr[|θ̂i − θi| >
√

ε2

9k‖Rk
opt − A‖2] <

Var(θ̂i)
ε2
9k ‖Rk

opt−A‖2
2

≤ 1
9 log n .

Lemma 7 (Failure probability). By taking O(ck log3 n
ε2) measurements we obtain a set

of estimated coefficients θ̂i such that (θi − θ̂i)2 ≤ ε2

25k‖Rk
opt −A‖2

2 with probability at
least 1 − 1

nc .

Proof. In order to increase the probability of success from constant probability per
coefficient to high probability over all coefficients, we will repeat the construction of
T several times over using different randomly chosen functions g and h to generate
the entries. We take O(c logn) repetitions: this guarantees that the probability of not
returning any i with θ2

i > ε2

25k‖Rk
opt −A‖2

2 is n−c, polynomially small. We also obtain
O(c log n) estimates of θi from this procedure, one from each repetition of T . Each
is within the desired bounds with constant probability at least 7

8 ; taking the median
of these estimates amplifies this to high probability using a Chernoff bounds. T has
m = s(log n + 1) = O(k log2 n

ε2) rows, O(c log n) repetitions gives the stated bound.

Theorem 4. We can construct a dictionary Ψ ′ = TΨ of O(ck log3 n
ε2) vectors, in time

O(cn2 logn). For any signal A, given the measurements Ψ ′A, we can find a repre-
sentation R of A under Ψ such that with probability at least 1 − 1

nc ‖R − A‖2
2 ≤

(1 + ε)‖Rk
opt − A‖2

2. The reconstruction process takes time O(c2k log3 n
ε2).

The proof follows by combining the results of Lemma 6 with those of Lemma 4 to
get the main result. We modify Lemma 4 to use ‖Rk

opt −A‖2 in place of ‖Ck
opt‖2; the

proof is essentially the same. It is easy to verify that the number of coefficients identified
by the first part of the reconstruction process is O(ck log2 n

ε) (taking time linear in m).
We find an accurate estimate of each recovered coefficient by taking the median of
O(c log n) estimates of each one. If we spend linear time or more on reconstruction, we
can work with fewer measurements:

Theorem 5. We can construct a dictionary Ψ ′ = TΨ of O(ck log n
ε2) vectors, in time

O(cn2 logn). For any signal A, given the measurements Ψ ′A, we can find a repre-
sentation R of A under Ψ such that with probability at least 1 − 1

nc ‖R − A‖2
2 ≤

(1 + ε)‖Rk
opt − A‖2

2. The reconstruction process takes time O(cn log n).

The construction is similar to our main randomized result, but we do not use H and
reduce s by a logn factor. Using only the separation and estimation matrices, we esti-
mate each of the n coefficients, and take the k largest of them as before. By a similar
argument to Lemma 6 (2), each coefficient is estimated with accuracy ε2

25k‖Rk
opt−A‖2

2,
and we can again apply Lemma 4.

Tolerance to Error. Several recent works have shown that compressed sensing-style
techniques allow accurate reconstruction of the original signal even in the presence of

Combinatorial Algorithms for Compressed Sensing 293

error in the measurements (i.e. omission or distortion of certain θ′is). We adopt the same
model of error as [3, 23]3 and show:

Lemma 8. 1. If a fraction ρ = O(1) of the measurements are chosen at random to be
corrupted in an arbitrary fashion, we can still recover a representation R with error
‖R− A‖2

2 ≤ (1 + ε)‖Rk
opt − A‖2

2 in time O(cn logn).
2. If only a ρ = O(log−1 n) fraction of the measurements are corrupted we can recover

a representation R with error ‖R−A‖2
2 ≤ (1 + ε)‖Rk

opt −A‖2
2 in time O(kc2 log n

ε2).

Proof. 1. Consider the estimation of each coefficient in the process outlined in
Theorem 5. Estimating θi takes the median of O(log n) estimates, each of which is
accurate with constant probability. If the probability of an estimate being inaccurate or
an error corrupting it is still constant, then the same Chernoff bounds argument guaran-
tees accurate reconstruction. As long as ρ is less than a constant (say, 1/10) then every
coefficient is recovered with error ε‖Rk

opt − A‖2, with high probability.
2. Consider the recovery of θi from T . We will be able to recover i provided the

previous conditions hold, and additionally the some set of logn measurements of θi are
not corrupted (we may still be able to recover i under corruption, but we pessimisti-
cally assume that this is not the case). Provided ρ ≤ 1/(3 logn) then each set of logn
measurements are uncorrupted with constant probability at least 2/3 and with high
probability i is recovered, and θi is estimated accurately (as in case (1)).

5 Concluding Remarks

We have presented a simple combinatorial approach of two sets of group tests with
different separation properties that yields the first known polynomial time explicit con-
struction of a non-adaptive transformation matrix and a reconstruction algorithm for
the Compressed Sensing problem. The polynomial dependency is large, but we empha-
size that no other construction with polynomial creation time is known, and the cost
may be improved in future work. Our approach yields other results including sublin-
ear reconstruction, improved approximation in error and others. Given the excitement
about Compressed Sensing in the Applied Mathematics community, we expect many
new results soon. The main open problem is to reduce the number of measurements
used by explicit algorithms: our result here gives a cost polynomial in k, which is not
close to the linear factor k in the existential results of [4, 9, 23]. For the case of k-sparse
signals, (which have no more than k nonzero coefficients) Indyk recently developed a
set of measurements, near linear in k in number (but has other superlogarithmic factors
in n) [17]. Another outstanding question is to tease apart other properties of Com-
pressed Sensing results—such as their ability to measure in one basis and reconstruct
in another—and study their algorithmics.

Acknowledgments. We thank Ron Devore, Ingrid Daubechies, Anna Gilbert and Mar-
tin Strauss for explaining compressed sensing.

3 These consider the exact recovery of a signal by taking Ω(n) measurements, and so do not
compare to our result above of approximately recovering a signal using o(n) measurements.

294 G. Cormode and S. Muthukrishnan

References
1. A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates by list decoding. In

FOCS, pages 146–157, 2003.
2. E. Candès, J. Romberg, and T. Tao. Stable signals recovery from incomplete and inaccurate

measurements. Unpublished Manuscript, 2005.
3. E. Candès, M. Rudelson, T. Tao, and R. Vershynin. Error correction via linear programming.

In FOCS, 2005.
4. E. Candès and T. Tao. Near optimal signal recovery from random projections and universal

encoding strategies. http://arxiv.org/abs/math.CA/0410542, 2004.
5. A. Clementi, A. Monti, and R. Silvestri. Selective families, superimposed codes, and broad-

casting on unknown radio networks. In SODA, 2001.
6. G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most frequent items

dynamically. In ACM PODS, 2003.
7. G. Cormode and S. Muthukrishnan. Towards an algorithmic theory of compressed sensing.

DIMACS Tech Report 2005-25, 2005.
8. R. Devore and G. G. Lorentz. Constructive Approximation, volume 303. Springer

Grundlehren, 1993.
9. D. Donoho. Compressed sensing. Unpublished Manuscript, 2004.

10. D-Z Du and F.K. Hwang. Combinatorial Group Testing and Its Applications, volume 3 of
Series on Applied Mathematics. World Scientific, 1993.

11. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Fast, small-
space algorithms for approximate histogram maintenance. In STOC, 2002.

12. A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal sparse Fourier
representation via sampling. In STOC, 2002.

13. A. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal sparse
Fourier representations. In SPIE Conference on Wavelets, 2005.

14. J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. Unpublished
Manuscript, 2005.

15. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.
16. P. Indyk. Explicit constructions of selectors and related combinatorial structures, with appli-

cations. In SODA, 2002.
17. P. Indyk. Personal communication, 2005.
18. Integration of Sensing and Processing, Workshop at IMA, 2005.
19. W.H. Kautz and R.R. Singleton. Nonrandom binary superimposed codes. IEEE Transactions

on on Information Theory, 10:363–377, 1964.
20. E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. SIAM

Journal on Computing, 22(6):1331–1348, 1993.
21. Y. Mansour. Randomized interpoloation and approximation of sparse polynomials. SIAM

Journal of Computing, 24(2), 1995.
22. Compressed sensing website. http://www.dsp.ece.rice.edu/CS/.
23. M. Rudelson and R. Vershynin. Geometric approach to error correcting codes and recon-

struction of signals. Unpublished Manuscript, 2005.
24. J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal matching

pursuit. Unpublished Manuscript, 2005.
25. Y. Tsaig and D. Donoho. Extensions of compressed sensing. Unpublished Manuscript, 2004.

On the Existence of Truthful Mechanisms
for the Minimum-Cost Approximate

Shortest-Paths Tree Problem�

Davide Bilò1, Luciano Gualà1, and Guido Proietti1,2

1 Dipartimento di Informatica, Università di L’Aquila, Italy
2 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy

{davide.bilo, guala, proietti}@di.univaq.it

Abstract. Let a communication network be modeled by a graph G =
(V, E) of n nodes and m edges, where with each edge is associated a pair
of values, namely its cost and its length. Assume now that each edge is
controlled by a selfish agent, which privately holds the cost of the edge.
In this paper we analyze the problem of designing in this non-cooperative
scenario a truthful mechanism for building a broadcasting tree aiming to
balance costs and lengths. More precisely, given a root node r ∈ V and
a real value λ ≥ 1, we want to find a minimum cost (as computed w.r.t.
the edge costs) spanning tree of G rooted at r such that the maximum
stretching factor on the distances from the root (as computed w.r.t. the
edge lengths) is λ. We call such a tree the Minimum-cost λ-Approximate
Shortest-paths Tree (λ-MAST).

First, we prove that, already for the unit length case, the λ-MAST
problem is hard to approximate within better than a logarithmic factor,
unless NP admits slightly superpolynomial time algorithms. After,
assuming that the graph G is directed, we provide a (1 + ε)(n − 1)-
approximate truthful mechanism for solving the problem, for any ε > 0.
Finally, we analyze a variant of the problem in which the edge lengths
coincide with the private costs, and we provide: (i) a constant lower
bound (depending on λ) to the approximation ratio that can be achieved
by any truthful mechanism; (ii) a 1 + n−1

λ
-approximate truthful

mechanism.

Keywords: Algorithmic Mechanism Design, Bicriteria Network Design
Problems, Broadcasting Tree, Truthful Mechanisms.

1 Introduction

Mechanisms are a classical concept of the theory of non-cooperative games [15].
In these games there are several independent agents that have to work together
in order to optimize a global objective function. However, each agent has its
� Work partially supported by the Research Project GRID.IT, funded by the Italian

Ministry of Education, University and Research, and by the European Union under
IST FET Integrated Project 015964 AEOLUS and COST Action 293 GRAAL.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 295–309, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

296 D. Bilò, L. Gualà, and G. Proietti

own valuation function and may lie in the hope of getting a higher profit. This
leads to economically suboptimal resource allocation and is therefore undesirable.
The main objective of mechanism design theory is to study how to incentive
the agents in order to cooperate with the solving algorithm. A mechanism is
a pair M = 〈g(·), p(·)〉, where g(·) is an algorithm computing a solution, and
p(·) specifies the payments provided to the agents. Informally, a mechanism is
truthful if its payments guarantee that agents are not stimulated to lie.

Recently, there was a growing attention towards the question of designing a
truthful mechanism by taking into account the computational complexity issues
concerned with the underlying problem. This is exactly the topic of algorithmic
mechanism design (AMD) for selfish agents. In their seminal paper concerned
with AMD [14], Nisan and Ronen addressed the classic shortest path problem.
This problem enjoys the property of being utilitarian. For utilitarian problems,
there exists a well-known class of truthful mechanisms, i.e., the Vickrey-Clarke-
Groves (VCG) mechanisms [20, 4, 6], and therefore the shortest path problem
can be solved optimally. Another well-known class of truthful mechanisms is the
class of one-parameter mechanisms [2]. Informally, a one-parameter mechanism
applies to mechanism design problems where the information held by each agent
can be expressed by a single parameter. Recently, in [11] the authors provided
a general framework for designing truthful mechanisms for a subclass of one-
parameter problems, called binary demand games, in which the agents’ only
available actions are to take part in the a game or not to.

By exploiting the results in [14, 2], in a sequel of papers efficient truth-
ful mechanisms have been designed for solving several network design prob-
lems [1, 7, 8, 10, 14, 18]. In this paper we continue in this direction, by focusing
on the following problem: Given a graph G = (V,E) with n nodes and m edges,
and with two functions c(·) and l(·) mapping edges to positive real numbers,
called the cost and the length of an edge, respectively, we want to design a
broadcasting tree network balancing total cost and distances from the source
node. More precisely, given a root node r ∈ V and a real value λ ≥ 1, we want
to find a minimum cost (w.r.t. to c(·)) spanning tree of G rooted at r such that
the maximum stretching factor on the distances (w.r.t. to l(·)) from the root is
λ. We call such a tree the Minimum-cost λ-Approximate Shortest-paths Tree (λ-
MAST). We will address the problem under the assumption that each edge of G
is controlled by a selfish agent, which privately holds the cost of the edge, while
edge lengths are supposed to be public. This setting reflects a realistic scenario
in which distances (i.e., transmission delays) between nodes are public, since
induced by the everybody known physical layer of the network, while effective
costs of transmission are unknown, since the various network components may
be given in concession to private managers.

Leaving aside the non-cooperativeness aspect, our problem falls within the
class of bicriteria network design problems [13]. In this class of problems, we
are given a graph and two minimization objectives (under different edge-weight
functions), with a budget specified on the first, and we have to find a subgraph –
from a given set of feasible solutions – that minimizes the second objective

Truthful Mechanisms for the Min-cost Apx Shortest-Paths Tree 297

subject to the budget on the first. In our specific case, the budget is defined by
the parameter λ on the distances. To the best of our knowledge, despite of its
apparent naturalness, the λ-MAST has been addressed in the past only when
the two edge-weight functions coincide [12]. In the rest of the paper, we will refer
to this special case as to the single-weighted case. With this restriction, in [12]
the authors studied the more general (α, β)-Light Approximate Shortest-path
Tree ((α, β)-LAST) problem, namely the problem of finding, given two values
α, β ≥ 1 and a node r ∈ V , a spanning tree of G rooted at r such that: (i) for
every vertex v ∈ V , the distance between r and v in T is at most α times the
shortest distance from r to v in G, and (ii) the weight of T is at most β times
the weight of a minimum spanning tree (MST) of G. For α > 1 and β ≥ 1+ 2

α−1 ,
this problem has been shown to be polynomial-time solvable. On the other hand,
for α > 1 and 1 ≤ β < 1 + 2

α−1 , the authors proved that deciding whether a
given graph contains an (α, β)-LAST rooted at a given vertex is NP-complete.
From these results, it immediately follows that: (i) the λ-MAST problem is NP-
hard, and (ii) in its single-weighted formulation, it can be approximated within
a factor of (1 + 2

λ−1), for any λ > 1.
In this paper, we first show that in our biweighted formulation, the λ-MAST

problem is considerably hard. Indeed, we show that it has no polynomial time
(1−o(1)) ln n−2

λ -approximate algorithm, unless NP ⊆ DTIME
(
(n/λ)O(log log n

λ)
)
.

Afterwards, we turn our attention to the problem of designing a truthful mecha-
nism for it, and we point out the existence of a polynomial time approximate one-
parameter truthful mechanism, with a performance guarantee of (1 + ε)(n− 1),
for any ε > 0. Unfortunately, such mechanism applies to directed graphs only.
Due to lack of space, we defer the detailed presentation of such mechanism to
the full version of this paper. Finally, we also study the problem of designing a
truthful mechanism for the single-weighted case, but also here we obtain rather
negative results. Indeed, we prove a lower bound (depending on λ) to the ap-
proximation ratio that can be achieved by any (even exponential time) truthful
mechanism. On a positive side, after showing that the algorithm in [12] cannot
be used to design a truthful mechanism, we present a

(
1 + n−1

λ

)
-approximate

truthful mechanism which can be computed in O(m + n logn) time.
The paper is organized as follows: in Section 2 we give the definition of the

problem and we recall some basic notions from the mechanism design theory.
In Section 3 we present an inapproximability result for the problem, while in
Section 4 we provide an approximate truthful mechanism for directed graphs.
Finally, in Section 5 we analyze the existence of truthful mechanisms for the
single-weighted version of the problem.

2 Preliminaries

2.1 Problem Definition and Notation

Let G = (V,E) be a (either undirected or directed) graph, with n nodes and m
edges, and with two different functions c(·) and l(·) mapping edges to positive
real numbers. We will call c(e) the cost of e, and l(e) the length of e. A graph

298 D. Bilò, L. Gualà, and G. Proietti

H = (V (H), E(H)) is called a subgraph of G if V (H) ⊆ V and E(H) ⊆ E. If
V (H) = V then H is called a spanning subgraph of G. A simple path P (or a path
for short) from v1 to vk in G is a subgraph with V (P) = {v1, . . . , vk | vi �= vj

for i �= j} and E(P) = {ei = (vi, vi+1) | 1 ≤ i < k}, and it is denoted by
(v1, . . . , vk). Given a source node r and a destination node s, a path in G from
r to s is a shortest path, say PG(r, s), if the sum of its edge lengths (called
distance, and denoted by dG(r, s)) is minimum. We define the total cost of a
spanning subgraph H of G as c(H) =

∑
e∈E(H) c(e).

In this paper, we will focus on the following problem: Given a source node
r, and a real value λ ≥ 1, the λ-MAST problem asks for computing a cheapest
(i.e., of minimum total cost) spanning tree T of G which satisfies the following
distance constraint: for each node v ∈ V , the distance from r to v in T is at most
λ times the distance in G between the same nodes, i.e., dT (r, v) ≤ λdG(r, v).

2.2 Algorithmic Mechanism Design

Algorithmic mechanism design deals with algorithmic problems in a non-
cooperative setting, in which part of the input is owned by selfish agents. As
such agents may lie about their parts of input, they are capable of manipulating
the algorithm. The main task of the mechanism design theory is the study of
how to pay the agents in order to convince them to cooperate with the algo-
rithm. We will deal with the case in which each agent controls a single link of
a communication network. We provide a simplified formalization below, and we
refer the interested reader to [14, 2].

For an edge e of G owned by a selfish agent ae, we denote by te the private
information held by ae. We call te the (private) type of the agent ae. Each agent
has to declare a (public) bid be to the mechanism. We will denote by t the vector
of private types, and by b the vector of bids.

For a given optimization problem defined on G, let F denote the correspond-
ing set of feasible solutions. For each feasible solution x ∈ F , some measure
function μ(x, t) is defined, which depends on the true types. A mechanism is
a pair M = 〈g(b), p(b)〉, where g(b) is an algorithm that, given agents’ bids,
computes a solution, and p(b) is a scheme which describes the payments pro-
vided to the agents. A mechanism has a runtime of O(f(n)) if g(·) and p(·)
are computable in O(f(n)) time. For each solution x, ae incurs a cost νe(te, x)
(sometimes called valuation of ae w.r.t. x). The utility of an agent is defined
as the difference between the payment provided by the mechanism and its cost
w.r.t. the computed solution. Each agent tries to maximize its utility, while an
exact mechanism aims to compute a solution which optimizes μ(x, t), but of
course it does not know t directly. Similarly, if we denote by ε(n) a positive real
function of the input size n, an ε(n)-approximate mechanism returns a solution
g(b) whose measure comes within a factor ε(n) from the optimum. In a truthful
mechanism this tension between the agents and the system is resolved, since each
agent maximizes its utility when it declares its type, regardless of what the other
agents do. Moreover, a mechanism design problem is called utilitarian if its mea-
sure function satisfies μ(x, t) =

∑
e∈E νe(te, x). For utilitarian problems, there

Truthful Mechanisms for the Min-cost Apx Shortest-Paths Tree 299

exists a well-known class of truthful mechanisms, i.e., the Vickrey-Clarke-Groves
(VCG) mechanisms [20, 4, 6].

Basically, VCG-mechanisms handle arbitrary valuation functions, but only
utilitarian problems. In [2], Archer and Tardos have shown how to design truthful
mechanisms for non-utilitarian problems under the assumption that the problem
is one-parameter. A problem is said one-parameter if: (i) the type of each agent
ae can be expressed as single parameter te ∈ R, and (ii) each agent’s valuation
has the form νe(te, x) = tewe(b), where we(b) is called work curve for agent
ae, i.e., the amount of work for ae depending on the output specified by the
mechanism algorithm, which in its turn is a function of the bid vector b. In [2], it
is shown that for one-parameter problems, a sufficient condition for truthfulness
is given by a particular monotonicity property of the mechanism algorithm. Let
b be the vector of the bids of the agents, and let b−e denote the vector of all
bids besides c(e); the pair (b−e, c(e)) will denote the vector b. If we fix b−e, a
monotone algorithm defines a threshold value θe such that if ae bids no more
than θe, then e will be selected, while if ae bids above θe, e will not be selected.
Then, the following holds:

Theorem 1 ([2]). A one-parameter mechanism M = 〈g(·), p(·)〉 is truthful if
and only if g(·) is monotone and the payment for each agent is defined as its
threshold value if it owns a selected edge, and 0 otherwise.

We will consider the case in which the type of each agent ae represents the true
cost incurred for forwarding a message through the link e, denoted by ĉ(e) ∈ R+.
Under these assumptions, the non-cooperative λ-MAST problem can be handled
through a one-parameter mechanism. Indeed, for each agent ae, we can rewrite
the valuation of ae as νe(ĉ(e), g(b)) = ĉ(e)we(b), where we(b) is equal to 1 if e
belongs to the solution computed by the mechanism, 0 otherwise. Notice that
this assumption on the work curve also implies that the λ-MAST problem is a
binary optimization demand game [11].

3 Hardness of the λ-MAST Problem

In this section we prove an inapproximability result for the λ-MAST problem.
This result is obtained by a reduction (preserving the approximation) from the
Set Cover Problem (SCP). An instance I = 〈O,S〉 for the SCP consists of a
set O = {o1, . . . , oh} of h objects, and a set S = {S1, . . . , S�} of � subsets of O.
The objective is to find a minimum-size collection of subsets in S whose union
is O. In [5] it is shown that SCP cannot be approximated within (1− o(1)) ln h,
unless NP ⊆ DTIME(hO(log log h)). The same result holds even for the case � ≤
h [5]. The following holds:

Theorem 2. Let λ > 1 be a real. Then the λ-MAST problem has no polynomial-
time approximate algorithm with a performance guarantee better than (1 −
o(1)) ln n−2

λ , where n ≥ λ + 2, unless NP ⊆ DTIME
(
(n/λ)O(log log n

λ)
)
, even

for the unit length case.

300 D. Bilò, L. Gualà, and G. Proietti

0

vj
�L/2�−1

vj
�L/2�

0 0

0si
�L/2�

si
�L/2�−1

vj
1

0
si′
�L/2�

p
0

si′
�L/2�−1

r

1 1

si′
1si

1

Fig. 1. The reduction of Theorem 2 when L is odd. Edges with cost greater than � are
omitted. Note that here oj belongs to Si, but not to Si′ .

Proof. Let L = �λ� and let I = 〈O,S〉 be an instance for the SCP with � ≤ h,
and h such that L ≤ hk for some integer k. From I we build an instance I =
〈G, c, l, r, λ〉 for the λ-MAST problem in the following way (see Figure 1).
Graph G is complete and its node set is defined as follows:

– a node r, which is the source;
– �L/2� nodes si

1, . . . , s
i
�L/2�, for each Si ∈ S;

– �L/2� nodes vj
1, . . . , v

j
�L/2�, for each oj ∈ O;

– a node p only if L is odd.

The costs of the edges in G are defined as follows:

– c(r, si
1) = 1 for each Si ∈ S;

– c
(
si

k, s
i
k+1

)
= 0, k = 1, . . . ,

(
�L/2� − 1

)
, for each Si ∈ S;

– c
(
vj

k, v
j
k+1

)
= 0, k = 1, . . . ,

(
�L/2� − 1

)
, for each oj ∈ O;

– c
(
si
�L/2�, v

j
1

)
= 0, for each Si and for each oj such that oj ∈ Si;

– if L is even then c
(
si
�L/2�, s

j
�L/2�
)

= 0, for each Si, Sj ∈ S, otherwise(
si
�L/2�, p

)
= 0, for each Si ∈ S;

– all other edges have a cost greater than �.

Every edge has length 1 and the stretch factor is λ. Notice that, in any λ-
MAST, the distance between any node v and r must be less or equal than L.
We claim that G has a λ-MAST of cost k if and only if the original instance of
the SCP has a solution of size k.

It is easy to see that a solution C for the SCP instance provides a solution for
I with the same total cost. Indeed, the feasible solution is given by the spanning
tree T defined as follows:

– begin with H = (V (G), ∅);
– for each set Si ∈ C, add to H the path

(
r, si

1, s
i
2, . . . , s

i
�L/2�
)
, and all the

paths
(
si
�L/2�, v

j
1, v

j
2, . . . , v

j
�L/2�
)
, for each oj ∈ Si;

Truthful Mechanisms for the Min-cost Apx Shortest-Paths Tree 301

– for each set Sj /∈ C, add to H either the path
(
si
�L/2�, s

j
�L/2�,

sj
�L/2�−1, . . . , s

j
1

)
if L is even, or the path

(
si
�L/2�, p, s

j
�L/2�, s

j
�L/2�−1, . . . , s

j
1

)
if L is odd, where Si ∈ C.

– Let T be a shortest-paths tree (SPT) of H .

Now, let T be a solution for I of total cost k ≤ � (notice that such a solution
always exists). It is not hard to see that for each vj

�L/2�, T must have a path(
r, si

1, s
i
2, . . . , s

i
�L/2�, v

j
1, v

j
2, . . . , v

j
�L/2�
)
, for some Si ∈ S such that oj ∈ Si, oth-

erwise T has a total cost greater than �. Hence, C = {Si ∈ S | (r, si
1) ∈ E(T)} is

a solution for I of size no more than the total cost of T . Since � ≤ h, the number
of nodes n is at most 2�L/2�h + 2. The claim now follows from the inapprox-
imability result for the SCP proved in [5]. �	
We conclude the section by noticing that Theorem 2 holds for directed graphs
as well.

4 An Approximate Mechanism in Directed Graphs

In this section we claim the existence of an approximate one-parameter mech-
anism for the λ-MAST problem in directed graphs. Due to lack of space, we
only provide the monotone algorithm representing the core of the mechanism,
while we defer the formal proof of the approximation guarantee and the time
complexity of the mechanism to the full version of the paper.

Our algorithm uses the monotone algorithm in [3] (denoted by A) for the
constrained shortest path problem. In such a problem one looks for a cheapest
path from a source node r to a destination node s among paths of length L or
less. This problem is (weakly) NP-hard, and it admits a pseudo-polynomial time
algorithm, which is transformed by scaling techniques to a fully polynomial-time
approximation scheme for the problem [9, 17]. Moreover, in [3] it is shown how
to make the algorithm in [17] monotone.

The algorithm computes a set Π = {πv : v ∈ V \{r}} of“light”paths, meaning
that πv is a (1+ξ)-approximation of a cheapest path of length at most λdG(r, v),
for any ξ > 0. Then, it considers the subgraph H of G consisting of the union of
all these paths. As H may not be an arborescence, then the algorithm needs to
remove edges from H so that a feasible arborescence of G is returned. We point
out that the removal steps (Lines 5–7) must be defined in order to guarantee
both the monotonicity property and the feasibility of the solution. Indeed, for
instance, computing a SPT of H yields to a non-monotone algorithm, since the
composition of monotone algorithms is not necessarily monotone.

In the full version of the paper, we will show that Algorithm 1 can be used to
prove the following:

Theorem 3. Given any ε > 0, there exists a (1 + ε)(n − 1)-approximate
truthful mechanism for the λ-MAST problem on directed graphs, running in
O
(

mn4√
1+ε−1 · log n

log(1+ε) · log n√
1+ε−1 · log n

2−√
1+ε

)
time. �	

302 D. Bilò, L. Gualà, and G. Proietti

Algorithm 1
Input: G = (V, E, c, l), r ∈ V , λ > 1, ξ > 0.
Output: An arborescence T of G rooted at r.
1: for each v ∈ V do
2: find a (1 + ξ)-apx πv of a cheapest path from r to v with l(πv) ≤ λdG(r, v);
3: end for
4: Let T be the digraph made up of the union of all edges in πv , ∀v ∈ V
5: for each v ∈ V do
6: remove all edges in T entering in v but that belonging to the shortest path in Π from r to v
7: end for
8: return T

5 The Non-cooperative Single-Weighted λ-MAST
Problem

In this section we analyze the problem of designing a truthful mechanism for the
single-weighted λ-MAST problem.

5.1 A Constant Lower Bound

We start by proving the following negative result:

Theorem 4. Let λ > 1, and let p > x > 0. Then, it does not exist any truthful
σ-approximate mechanism for the single-weighted λ-MAST problem, for any σ <

L(λ, p, x) = 1 + min
{

x
λ (x+p)+p−x ,

p−x
λ (p+x)

}
.

Proof. Let 0 < ε < x. Suppose by contradiction that M is a σ-approximate
mechanism for the single-weighted λ-MAST problem, with σ < L(λ, p, x), and
consider the instance of Figure 2, where all the edges on the path joining u and
v have a small enough cost.
It is easy to see that the MST M of G consists of all the edges of G except e2
and e3. Note that M is not a feasible solution because the node v is unfeasible
in M , i.e., dM (r, v) = λ (x + p) + (λ− 1) ε > λ (x + p) = λdG(r, v).

In fact, any feasible solution must contain at least one of the edges e2 or e3.
Since x > ε, the optimal solution is given by the tree T¬e1 , obtained from M
by adding the edge e2 and by removing e1. The following lemma shows that the
mechanism must compute T¬e1 as a solution.

Lemma 1. The mechanism M returns T¬e1 as solution.

Proof. Let T be a feasible solution containing e1, and suppose by contradiction
that M computes T as solution. It is easy to see that c(T) ≥ λ (x+p)+p. Then,
the approximation ratio achieved by the mechanism is

ρ =
c(T)

c(T¬e1)
≥ λ (x + p) + p

λ (x + p) + (λ − 1)ε + p− x
,

which goes to 1+ x
λ (x+p)+p−x for ε that goes to 0. This means that by choosing ε

small enough, we can make ρ arbitrary close to the value 1 + x
λ (x+p)+p−x . Since

σ < L(λ) ≤ 1 + x
λ (x+p)+p−x , we obtain a contradiction (since M was supposed

to be σ-approximate), and the lemma follows. �	

Truthful Mechanisms for the Min-cost Apx Shortest-Paths Tree 303

r

x

pe2

u

v

e3

e1

p

λp − x − ε

λx + λε

Fig. 2. The scheme of the instance of Theorem 4

Consider now the same instance in which the cost of e1 becomes x′ = x+ε. Since
g(·) is monotone, the solution computed by the mechanism remains T¬e1 , while
the optimal solution is changed. Indeed, M is now a feasible solution. Thus, the
approximation ratio achieved by the algorithm is

ρ =
c(T¬e1)
c(M)

=
λ (x + p) + (λ − 1)ε + p− x

λ (x + p + ε)
,

which goes to 1+ p−x
λ (p+x) for ε that goes to 0. Once again, we can choose ε small

enough to make ρ > σ, which contradicts the σ-approximation assumption, and
the claim follows. �	

By choosing x and p in order to maximize the function L(λ, x, p), we obtain the
following:

Corollary 1. Let λ ≥ 1. Then, it does not exist any truthful σ-approximate
mechanism for the single-weighted λ-MAST problem, for any σ < L(λ), where

L(λ) = 1 +
5λ−

√
λ (9λ + 8)

λ (3λ− 4 +
√

λ (9λ + 8))
. �	

Since it can be shown that L(λ) remains constantly below the 1+ 2
λ−1 threshold

of approximability established in [12] for the single-weighted λ-MAST problem,
we cannot conclude that the mechanism design version of the problem is harder
than its corresponding optimization version. However, we stress the fact that our
inapproximability result holds unconditionally, i.e., even for exponential time
mechanisms. Besides, we want to point out an interesting peculiarity of the
non-cooperative single-weighted λ-MAST problem: the set of feasible solutions
depends on the agents’ types. For this reason, even if in this problem the objective
function is the sum of the agents’ costs, as in utilitarian problems, it cannot be
handled by VCG-mechanisms. Indeed, the algorithm of a VCG-mechanism is
exactly the optimal algorithm of the corresponding optimization problem, but
from Theorem 4 this algorithm cannot be monotone. It is also interesting to

304 D. Bilò, L. Gualà, and G. Proietti

notice that this reasoning does not apply to the biweighted formulation of the λ-
MAST problem, which in fact might be solved optimally by a (computationally
unfeasible) VCG-mechanism.

5.2 An Approximate Truthful Mechanism

We start by pointing out the following:

Fact 1. The algorithm given in [12] does not enjoy the monotonicity property.

Proof. The high-level description of the algorithm in [12] is the following. The
algorithm computes a MST M of G, then it performs a depth-first search of M
by starting from the root r and in such a way, it fixes an ordering of the nodes.
Then, at each step it maintains a current tree T . Initially, T is equal to M . The
algorithm visits the nodes by following the (depth-first) fixed order. When a
node v which is unfeasible in T is visited, the algorithm adds the shortest path
PG(r, v) to T , and yields a new current tree by computing a SPT of the graph
consisting of all the edges of M and all the edges of every added shortest path.
Then the algorithm goes on to visit nodes by following the fixed ordering.

5

10

u

10

5

v

(a) (b)

v

u

e e

rr

1210

4
14

12

14

10

4 + ε

Fig. 3. A counterexample to the monotonicity of the algorithm in [12]. Bold edges are
edges in the solution. In (a) it is shown the solution computed by the algorithm when
e has cost 4, while in (b) e raises its cost of ε.

Consider now the instance in Figure 3. Let λ = 2, and let ε be a tiny positive
value. Clearly, the (unique) MST is the line joining r and v. When the cost of
the edge e is 4, the node u is feasible, and the algorithm does not select e (see
Figure 3.a), while when e raises its cost to 4 + ε, the node u becomes unfeasible
and the algorithm adds the shortest path PG(r, u) (instead of PG(r, v)), and e
enters into the solution (see Figure 3.b). This contradicts the monotonicity. �	

Thus, for an approximate mechanism, we need a different approach, as described
in the following.

Truthful Mechanisms for the Min-cost Apx Shortest-Paths Tree 305

A monotone algorithm. The algorithm starts by computing a MST Mb and
a SPT Sb of the graph, and then it looks at the set of unfeasible nodes in Mb,
i.e., all the nodes v ∈ V for which dMb

(r, v) > λdG(r, v). For each unfeasible
node, say v, it adds to Mb the winning edge e∗v for v of the path PSb

(r, v), i.e.,
the (unique) edge of PSb

(r, v) incident to v, in order to make v feasible. As Mb

may be cyclic, then in Lines 6–8 edges are removed until there is no cycle left.

Algorithm 2
Input: G = (V, E), r ∈ V , λ ≥ 1, b = (c(e1), . . . , c(em))
Output: A spanning tree T
1: Let Sb be a SPT of G, b, r
2: Let Mb be a MST of G, b
3: Let U be the set of unfeasible nodes in Mb

4: F = {e∗
v | v ∈ U}

5: Let H be the digraph obtained as follows
− edges of Mb are directed from r towards the leaves
− every winning edges e∗

v is directed towards v
6: while ∃ v ∈ V with in-degree 2 in H do
7: delete from H all edges entering in v but the winning one e∗

v
8: end while
9: Let T be the undirected version of H
10: return T

From now on, we will assume that edge costs are distinct.1 It is easy to see
that the computed solution satisfies the following property:

Lemma 2. Algorithm 2 returns a (1+ n−1
λ)-approximate solution for the single-

weighted λ-MAST problem.

Proof. First of all, we prove that Algorithm 2 returns a feasible solution. Hence,
we must prove that T is a spanning tree satisfying the distance constraints.
Since T has n−1 edges, then it suffices to prove that for each node v, dT (r, v) ≤
λdSb

(r, v), which implies T to be connected. The proof is by induction on the
number k of the edges on the path PSb

(r, v). The basic case is k = 0, which is
trivial. Now assume that for every node u ∈ V such that PSb

(r, u) is made up
of h < k edges, the claim is true. Let v be an unfeasible node in Mb such that
PSb

(r, v) consists of k edges. Consider the winning edge e∗v = (u, v) for node v.
From the fact that PSb

(r, u) has k − 1 edges, by the inductive hypothesis u is
feasible in T and thus

dT (r, v) = dT (r, u)+c(e∗v) ≤ λdSb
(r, u)+c(e∗v) ≤ λ (dSb

(r, u)+c(e∗v)) = λdSb
(r, v),

where the last inequality holds because λ ≥ 1.
Now we show that Algorithm 2 returns a (1 + n−1

λ)-approximate solution.
Let T be an optimal solution, and let v1, v2, . . . , vk be the unfeasible nodes
in Mb. Then, the algorithm adds the winning edge e∗vi

whose cost is at most

1 This is not a restrictive hypothesis, as we can suppose that each edge e has a unique
index ie, and we can assume that for every pair of distinct edges e, e′, c(e) ≺ c(e′)
iff c(e) < c(e′), or c(e) = c(e′) and ie < ie′ .

306 D. Bilò, L. Gualà, and G. Proietti

dSb
(r, vi), for each i = 1, . . . , k. Moreover, as vi is unfeasible in Mb, we have that

λdSb
(r, vi) < dMb

(r, vi). Summing over i, we can bound the cost of the added
edges as follows:

λ

k∑
i=1

dSb
(r, vi) <

k∑
i=1

dMb
(r, vi) ≤ k c(Mb) ≤ (n− 1) c(Mb),

from which we obtain that the cost of the added edges is less than n−1
λ c(Mb) ≤

n−1
λ c(T). �	

Lemma 3. Algorithm 2 is monotone.

Proof. Let e be a non-selected edge in b. We have to show that e is still a non-
selected edge in b′ = (c−e, c

′(e)), for any c′(e) ≥ c(e). The proof breaks into the
following cases:

Case 1: e ∈ E(Sb) \ E(Mb). Let e = (u, v), such that u is closer to r in Sb than
v. Then, by construction, v must be feasible in Mb, otherwise e was the
winning edge for v, and hence, by the simple observation that F ⊆ E(T), it
follows that e was in T . When the cost of e raises, the distance in Sb′ from
r to v does not decrease, while the distance between the same nodes in Mb′

remains the same as e /∈ Mb. Then, v will still be feasible, and the algorithm
will still not select e.

Case 2: e ∈ E(Mb) \ E(Sb). Notice that the distance between r and v in Sb and
Sb′ is the same. We can assume that e ∈ E(Mb′), otherwise e will be clearly
a non-selected edge. Let e = (u, v), such that u is closer to r in Mb than v.
It is easy to see that v must be unfeasible in Mb, otherwise e was in T . As
v is unfeasible in Mb′ , then the algorithm will still not select it.

Case 3: e ∈ E(Sb) ∩ E(Mb). We can assume that e appears in H in both direc-
tions, otherwise e was in the selected solution. Let e = (u, v), such that u is
closer to r in Mb than v, while v is closer to r in Sb than u. It is easy to see
that v must be unfeasible in Mb, while u must be feasible in Mb. We have
two subcases:
• e ∈ E(Mb′). Then, v remains unfeasible in Mb′ , since dMb′ (r, v) ≥

dMb
(r, v), while the distance in Sb′ between r and v remains the same,

since PSb′ (r, v) does not depend on e. Moreover, it is clear that u is still
feasible in Mb′ , hence e will still be not selected.

• e /∈ E(Mb′). Once again, it is easy to see that u remains feasible in M ′
b.

Then, the algorithm will still not select e. �	

Computing the payments. We now show how to efficiently compute the
payments for the agents. Let T be the solution returned by the algorithm. Then,
we have to compute the threshold value θe, for each selected edge e ∈ E(T).

Assume b−e is fixed. By θe(M, b−e) and by θe(S, b−e), we denote the threshold
values for the edge e w.r.t. Mb and Sb, respectively. Note that such values are
always defined, since any algorithm computing the MST or the SPT is monotone.

Truthful Mechanisms for the Min-cost Apx Shortest-Paths Tree 307

Henceforth, for the purpose of lightening the notation, whenever b−e is clear
from the context, we will simply write θe(M) and θe(S) instead of θe(M, b−e)
and θe(S, b−e).

Let e = (u, v) ∈ E(T) be e selected edge. We have three cases:

1. e ∈ E(Sb) \E(Mb). W.l.o.g. assume that u is closer to r than v in Sb. Since
e is a selected edge, v must be unfeasible, i.e., dMb

(r, v) > λdSb
(r, v). Then

e exits from the solution T if either e exits from the SPT, or e still remains
in the SPT but v becomes feasible. This latter condition holds whenever e
declares a value xe which satisfies dMb

(r, v) ≤ λdSb
(r, u) + λxe. By solving

this inequality for xe and by taking the minimum, we obtain

θe = min
{
θe(S),

dMb
(r, v)
λ

− dSb
(r, u)
}

. (1)

2. e ∈ E(Mb) \ E(Sb). W.l.o.g. assume that u is closer to r than v in Mb. It
is easy to see that v must be feasible, i.e., dMb

(r, v) ≤ λdSb
(r, v). Then e

exits from T if either e exits from the MST, or v becomes unfeasible, which
happens whenever e declares a value xe such that dMb

(r, u)+xe > λdSb
(r, v).

By taking the minimum value for xe satisfying the latter inequality, we have
that

θe = min {θe(M), λ dSb
(r, v) − dMb

(r, u)} . (2)

3. e ∈ E(Sb) ∪ E(Mb). We have two subcases:
(a) u is closer to r than v in Mb but not in Sb. It is easy to see that v feasible

implies u feasible, and u unfeasible implies v unfeasible.
Let u and v be feasible. Since dMb

(r, u) does not depend on e, u remains
feasible when ae raises its bid. This implies that e exits from T if either
e exits from the MST, or v becomes unfeasible. Hence, θe is defined as
in (2).
Now assume u, v are unfeasible. Since dSb

(r, v) does not depend on e,
node v remains unfeasible when ae raises its bid and e remains in the
MST. This implies that e exits from T if either e exits from the SPT, or
u becomes feasible. Hence, similarly to (1), θe is defined as follows:

θe = min
{
θe(S),

dMb
(r, u)
λ

− dSb
(r, v)
}

.

(b) u is closer to r than v both in Mb and Sb. Note that, since in H the
unique edge entering in v is e, it is easy to see that

min{θe(M), θe(S)} ≤ θe ≤ max{θe(M), θe(S)}.

We have three subcases:
i. θe(M) = θe(S). Clearly, θe = θe(M) = θe(S).
ii. θe(M) < θe(S). Let M−e be the (unique) MST when ae declares a

value xe > θe(M). The only case of interest is when xe ≤ θe(S). It

is easy to see that v is feasible in M−e iff xe ≥ dM−e
(r,v)

λ − dSb
(r, u).

308 D. Bilò, L. Gualà, and G. Proietti

Then e exits from T if either v becomes feasible or e exits from Sb.
We obtain:

θe = min
{
θe(S),max

{
θe(M),

dM−e(r, v)
λ

− dSb
(r, u)
}}

.

iii. θe(M) > θe(S). Let S′ be the SPT when ae declares a value xe >
θe(S). Notice that dS′(r, v) = dSb

(r, u) + θe(S). The only case of
interest is when xe ≤ θe(M). It is easy to see that v is unfeasible in
M iff xe > λ (dSb

(r, u) + θe(S)) − dM (r, u). Then e exits from T if
either v becomes unfeasible or e exits from Mb. We obtain:

θe = min
{
θe(M),max

{
θe(S), λ

(
dSb

(r, u) + θe(S)
)
− dM (r, u)

}}
.

The mechanism. By using the results in [8, 16, 19], we can finally prove the
following:

Theorem 5. There exists a
(
1 + n−1

λ

)
-approximate truthful mechanism for the

single-weighted λ-MAST problem running in O(m + n logn) time.

Proof. Truthfulness and approximation ratio follow from Lemma 3 and
Lemma 2, respectively.

Concerning the time complexity, the algorithm first computes a SPT of G
in O(m + n logn) time, next it computes a MST of G in O(mα(m,n)) =
O(m + n logn) time [16], where α(m,n) is the classical inverse of Ackermann’s
function [19]. The other steps of the algorithm takes O(n + m) time. Concern-
ing the payments, the mechanism first computes θe(M), θe(S) for each selected
edge e. This can be done in O(mα(m,n)) time [8]. Next, for each selected edge
e = (u, v) ∈ E(Mb), it computes dM−e(r, v), where v is farther to r than u
and M−e is the (unique) MST computed in G − e. Once again, this can be
accomplished in O(mα(m,n)) time by using the algorithm for the sensitive
analysis [19]. Indeed, such algorithm computes the swap edge fe for each edge
e ∈ E(Mb), where fe = (u′, v′) is the unique edge belonging to M−e but not to
Mb. It is not hard to prove that

dM−e(r, v) = dMb
(r, u′) + c(fe) +

(
dMb

(r, v′) − dMb
(r, v)
)
,

where u′ is closer to r than v′ in M−e. From this, the claim follows. �	

Acknowledgements. The authors would like to thank the anonymous referees for
their very helpful comments.

References

1. C. Ambühl, A. Clementi, P. Penna, G. Rossi, and R. Silvestri, Energy consump-
tion in radio networks: selfish agents and rewarding mechanisms, Proc. 10th Int.
Colloquium on Structural Information Complexity (SIROCCO’03), Proceedings in
Informatics 17, Carleton Scientific, 1–16, 2003.

Truthful Mechanisms for the Min-cost Apx Shortest-Paths Tree 309

2. A. Archer and É. Tardos, Truthful mechanisms for one-parameter agents, Proc.
42nd IEEE Symp. on Foundations of Computer Science (FOCS’01), 482–491, 2001.

3. P. Briest, P. Krysta, and B. Vöcking, Approximation techniques for utilitar-
ian mechanism design, Proc. 37th Ann. ACM Symp. on Theory of Computing
(STOC’05), 39–48, 2005.

4. E. Clarke, Multipart pricing of public goods, Public Choice, 8:17–33, 1971.
5. U. Feige, A threshold of ln n for approximating set cover, J. of the ACM, 45(4):

634-652, 1998.
6. T. Groves, Incentives in teams, Econometrica, 41(4):617–631, 1973.
7. L. Gualà and G. Proietti, A truthful (2-2/k)-approximation mechanism for the

Steiner tree problem with k terminals, Proc. 11th Int. Computing and Combina-
torics Conference (COCOON’05), Vol. 3595 of Lecture Notes in Computer Science,
Springer-Verlag, 390–400, 2005.

8. L. Gualà and G. Proietti, Efficient truthful mechanisms for the single-source short-
est paths tree problem, Proc. 11th Int. Euro-Par Conf. (Euro-Par’05), Vol. 3648 of
Lecture Notes in Computer Science, Springer-Verlag, 941–951, 2005.

9. R. Hassin, Approximation schemes for restricted shortest path problems, Math.
Oper. Res., 17(1):36–42, 1992.

10. J. Hershberger and S. Suri, Vickrey prices and shortest paths: what is an edge
worth?, Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS’01),
252–259, 2001.

11. M.-Y. Kao, X.-Y. Li, and W. Wang, Towards truthful mechanisms for binary de-
mand games: a general framework, Proc. 6th ACM Conference on Electronic Com-
merce (EC’05), 213–222, 2005.

12. S. Khuller, B. Raghavachari, and N.E. Young, Balancing minimum spanning trees
and shortest-path trees, Algorithmica, 14(4):305–321, 1995.

13. M.V. Marathe, R. Ravi, R. Sundaram, S.S. Ravi, D.J. Rosenkrantz, and H.B. Hunt
III, Bicriteria network design problems, J. Algorithms 28(1):142–171, 1998.

14. N. Nisan and A. Ronen, Algorithmic mechanism design, Games and Economic
Behaviour, 35:166–196, 2001.

15. M.J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
16. S. Pettie and V. Ramachandran, An optimal minimum spanning tree algorithm, J.

of the ACM, 49(1):16–34, 2002.
17. C.A. Phillips, The network inhibition problem, Proc. 25th Ann. ACM Symp. on

Theory of Computing (STOC’93), 776–785, 1993.
18. G. Proietti and P. Widmayer, A truthful mechanism for the non-utilitarian min-

imum radius spanning tree problem, Proc. 17th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA’05), 195–202, 2005.

19. R.E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest path
problems, Inform. Proc. Lett., 14:30–33, 1982.

20. W. Vickrey, Counterspeculation, auctions and competitive sealed tenders, J. of
Finance, 16:8–37, 1961.

Dynamic Asymmetric Communication

Travis Gagie

Department of Computer Science
University of Toronto

Toronto, Canada
travis@cs.toronto.edu

Abstract. We present four new asymmetric communication protocols,
with which a server with high bandwidth can help clients with low band-
width send it messages. Three of our protocols are the first to use only
a single round of communication for each message. Unlike previous au-
thors, we do not assume the server knows the messages’ distribution.

1 Introduction

Internet users usually download more than they upload, and many technolo-
gies have asymmetric bandwidth — greater from servers to clients than from
clients to servers. Adler and Maggs [3] considered whether a server can use its
greater bandwidth to help clients send it messages. They proved it can, assum-
ing it knows the messages’ distribution. We argue this assumption is often both
unwarranted and, fortunately, unnecessary.

Suppose a number of clients want to send messages to a server. At any point,
the server knows all the messages it has received so far; each client only knows
its own messages and does not overhear communication between other clients
and the server. Thus, the server may be able to construct a good code but the
clients individually cannot. Adler and Maggs assumed the server, after receiving a
sample of messages, can accurately estimate the distribution of all the messages.
This assumption let them simplify the problem: Can the server help a single
client send it a message drawn from a distribution known to the server? Given a
representative sample of messages and a protocol for this simpler problem, the
server can just repeat the protocol for each remaining message. In fact, it can
even do this in parallel.

Adler and Maggs gave protocols for the simpler problem in which the server
uses its knowledge to reduce the expected number of bits the client sends to
roughly the entropy of the distribution. Their work has been improved and ex-
tended by several authors [17, 10, 13, 5], whose results are summarized in Ta-
ble 1,1 and used in the Infranet anti-censorship system [7, 8]. However, while
1 Table 1 does not include a recent paper by Adler [1], in which he considered a harder

version of the original problem with many clients: Can the server take advantage
of correlations between messages? He showed it can, but used the even stronger
assumption that the server knows the probability distribution over entire sequences
of messages.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 310–318, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Dynamic Asymmetric Communication 311

Table 1. Suppose a server tries to help a client send it one of N messages, chosen
according to a distribution with entropy H that is known to the server but not the
client. Adler and Maggs [3], Watkinson, Adler and Fich [17], Ghazizadeh, Ghodsi and
Saberi [10] and Bose, Krizanc, Langerman and Morin [5] gave protocols for this prob-
lem whose expected-case upper bounds appear above; the last three protocols take a
parameter k ≥ 1. This table is based on one given by Bose et al. but, to be consistent
with the data compression literature (particularly [4]), we use a different notation.

References Bits sent by Server Bits sent by Client Rounds
[3, 13] 3�log N� 1.09H + 1 1.09H + 1

[3] O(log N) O(H + 1) O(1)
[17] (H + 2)�log N� H + 2 H + 2
[17] O(2kH log N) H + 2 (H + 1)/k + 2
[10] kH�log N� + 1 H logk−1 k + 1 H/ log k + 1
[5] (k + 2)�log N� H log(k+2)

log(k+2)−1 + log(k + 2) H
log(k+2)−1 + 1

implementing Infranet, Wang [16] found the distribution of the messages
(webpage requests) changed over time — the sample was unreliable.

We return to the original problem but without the assumption of a representa-
tive sample. We present and analyze four asymmetric communication protocols
based on techniques from data compression for handling changing and unknown
distributions. Our results are summarized in Table 2. To make it easier to com-
pare our results and previous results, we show the average cost of each message;
notice H is same in both tables, because the distribution of messages in a rep-
resentative sample is the same as in the whole sequence. In Section 2 we give a
dynamic version of Watkinson, Adler and Fich’s Bit-Efficient Split protocol [17].
In Section 3, we present and analyze our TreeQuery and ListQuery protocols,
which are the first to use only a single round of communication for each message.
This is desirable because, as Adler, Demaine, Harvey and Pǎtraşcu [2] wrote:

Any time savings obtained from reducing the number of bits sent by the
client could easily be lost by the extra latency cost induced by multiple
rounds in the protocol, particularly in long-distance networks, such as
satellites, where communication has very high latency.

Finally, in Section 4 we show how Bentley, Sleator, Tarjan and Wei’s Move-
to-Front compression algorithm [4] can be turned into an elegant single-round
asymmetric communication protocol, QueueQuery. Our protocols can be imple-
mented so that each party’s computation is proportional to the number of bits
it sends and receives.

Consider an everyday example of asymmetric communication — placing a call
on a cellular telephone. Because reading information from the phone’s display is
much faster than typing that information on its keypad, we can say the phone
has greater bandwidth than the user. One of the ways the phone helps the user
place calls faster is by storing a list of recently called numbers. This feature
is common and frequently used, even though the phone may only store the 10
most recently called numbers, which demonstrates the advantage of dynamic

312 T. Gagie

Table 2. Suppose a server tries to help clients send it m messages whose distribution
— known to neither the server nor the clients — has entropy H ; of N possible distinct
messages, n occur. We present four protocols for this problem and prove upper bounds
on the average cost of sending each message, which appear above; the last two protocols
take a parameter k > 1.

Protocol Bits sent by Server Bits sent by Client Rounds
DBES (H + O(1)) log N H + n log N

m
+ O(1) H + O(1)

TreeQuery 2N − 1 H + n log N
m

+ O(1) 1
ListQuery �N1/k��log N� kH + n log N

m
+ O(1) 1

QueueQuery �N1/k��log N� kH + n log N
m

+ O(1) 1

asymmetric communication protocols; it would be difficult or impossible to ac-
curately estimate the called numbers’ distribution from a preliminary sample
because, for most users, that distribution changes over time. Let m be the num-
ber of calls made from the phone, n be the number of distinct phone numbers
called, H be the entropy of the called numbers’ distribution, and N be the num-
ber of phone numbers in the world. If the phone only stores the 10 most recently
called numbers, then it displays about 10 log10 N digits per call. To call the ith
number in this list, the user types about log10 i digits and, to call a number not
stored, he or she types about log10 N digits. Notice this takes a single round. We
speculate this protocol is, in practice, so efficient that many users type far fewer
than H/ log10 2 + n log10 N

m digits on average per call. Unfortunately, in theory,
it is almost useless — if the user calls 11 numbers in turn over and over, then
H/ log10 2 = log10 11 ≈ 1.04 but he or she has to type every number in full.

The drawback of our single-round protocols is the large bound on the num-
ber of bits the server sends; this seems unavoidable if we want to prove good
upper bounds. For the simpler problem with a single client and message and the
distribution known to the server, Adler and Maggs showed that single-round pro-
tocols in which the client sends O(H +1) bits cannot have an No(1) upper bound
on the number of bits the server sends. Adler, Demaine, Harvey and Pǎtraşcu
showed that protocols that use o

(
log log N

log log log N

)
rounds with high probability and

in which the client sends O(H + 1) bits cannot have a 2(log N)1−ε

upper bound
on the number of bits the server sends, for any ε > 0.2

2 Dynamic Bit-Efficient Split

Let S = s1, . . . , sm be a sequence of messages some clients want to send a server.
Let N be the number of possible distinct messages and let n be the number that
occur in S. Let H =

∑
a∈S

#a(S)
m log m

#a(S) , where a ∈ S means message a occurs

2 This does not contradict the second row of Table 1; Adler and Maggs’ second protocol
uses O(1) rounds in the expected case but not with high probability.

Dynamic Asymmetric Communication 313

in S, #a(S) is a’s frequency in S and log means log2; i.e., H is the entropy of the
messages’ distribution (sometimes called the 0th-order empirical entropy of S).

We now present Watkinson, Adler and Fich’s Bit-Efficient Split protocol [17].
For the moment, assume the server has a representative sample and uses it to
build a leaf-oriented binary search tree T on the distinct messages in S; the
jth leaf of T stores the jth lexicographically largest message a ∈ S, at depth
at most

⌈
log m

#a(S)

⌉
+ 1; each internal node has exactly two children (i.e., T is

strictly binary) and stores the lexicographically largest message in its left subtree.
Gilbert and Moore’s algorithm [11], for example, will build such a tree in linear
time. For each message si, the server starts at the root of T and descends to the
leaf v of T storing si, as follows. At each proper ancestor u of v, the server sends
the active client the message a stored at u; if a ≥ si, then the client responds
with 0 and the server descends to u’s left child; if a > si, then the client responds
with 1 and the server descends to u’s right child. By active we mean the client
currently sending its message to the server. Without loss of generality, assume
messages are �logN� bits long; otherwise, we use their indices. For a ∈ S, the
server descends #a(S) times to the leaf storing a. Thus, there are at most

∑
a∈S

#a(S)
(⌈

log
m

#a(S)

⌉
+ 1
)

< (H + 2)m

rounds. During each round, the server sends �logN� bits and the active client
sends 1 bit.

In contrast, our Dynamic Bit-Efficient Split (DBES) protocol does not re-
quire the server to know the distribution beforehand. Next, we give a simple
implementation of DBES; for each message, the server sends (H + O(1)) logN
bits, on average, and performs O(N) computations. It is possible to reduce the
number of computations the server makes to O((H +1) logN) using a technique
developed for dynamic alphabetic coding [9].3

For each message si, the server builds a leaf-oriented binary search tree Ti on
all N possible distinct messages; the jth leaf of Ti stores the jth lexicographically
largest possible message a, at depth at most

⌈
log i

#a(s1,...,si−1)+1/N

⌉
+1. (Notice∑

a #a(s1, . . . , si−1) = i− 1, so
∑

a

(
#a(s1, . . . , si−1) + 1/N

)
= i.).

The server starts at the root of Ti and descends to the leaf v storing si. If v
is high in the tree, the server descends as in Bit-Efficient Split; however, if the
server reaches an internal node at depth �log i� + 1, then it knows the active
client’s message must be one it has not seen before. In the latter case, to cut
short the protocol and save rounds, the server signals the client by sending the
same message twice (notice it never does this otherwise); the client responds
with si. Our analysis relies on the following technical lemma.

3 Gilbert and Moore’s algorithm builds T as a binary trie, with the path to the leaf
storing a labeled by a prefix of the binary representation of a′<a

#a′ (S)
m

+ #a(S)
2m

;
we can use an augmented splay-tree [15] as a dynamic partial-sum data structure to
implicitly represent T , and update it as frequencies change.

314 T. Gagie

Lemma 1.
m∑

i=1

log
i

max
(
#si(s1, . . . , si−1), 1

) < (H + 2)m.

Proof. Shannon [14] showed that, once we have recorded the frequency of each
distinct message in S, we can encode S in less than (H +1)m bits. However, the
frequencies tell us nothing about how the messages are ordered in S; since there
are m!/

∏
a∈S #a(S)! possible orderings,

(H + 1)m > log
m!∏

a∈S #a(S)!
=

m∑
i=1

log i−
∑
a∈S

log(#a(S)!) .

Notice ∑
a∈S

log(#a(S)!)

=
∑
a∈S

#a(S)−1∑
j=1

log j +
∑
a∈S

log #a(S)

=
∑
a∈S

∑
si=a

log max
(
#si(s1, . . . , si−1), 1

)
+
∑
a∈S

log #a(S)

=
m∑

i=1

log max
(
#si(s1, . . . , si−1), 1

)
+
∑
a∈S

log #a(S) ,

so

(H + 1)m >

m∑
i=1

log
i

max
(
#si(s1, . . . , si−1), 1

) −∑
a∈S

log #a(S) .

Since
∑

a∈S log #a(S) ≤ n log m
n < m, the claim follows. �	

Using Lemma 1, it is easy to bound the number of bits the server sends, the
number the clients send and the number of rounds in DBES.

Theorem 1. Suppose some clients send S to a server using DBES. On av-
erage, each message takes H + O(1) rounds, during which the server sends
(H + O(1)) logN bits and the active client sends H + n log N

m + O(1) bits.

Proof. There is one round for each level the server descends in a tree. For each
message si, the server descends at most

min
(⌈

log
i

#si(s1, . . . , si−1)

⌉
+ 1, �log i� + 1

)

=
⌈
log

i

max(#si (s1, . . . , si−1), 1)

⌉
+ 1

times so, by Lemma 1, there are a total of (H+O(1))m rounds for all m messages.
The server sends �logN� bits during each round. If si has occurred before, then
the client sends 1 bit during each round; otherwise, it sends 1 bit during each
round except the last, when it may send �logN� bits. �	

Dynamic Asymmetric Communication 315

As an aside, we note DBES can easily be modified so the trees are only based on
the distribution of recent messages — a data compression technique for increas-
ing robustness. The server maintains a queue of messages; for each message si, it
builds a tree based on the distribution of messages in the queue; after receiving
si, it dequeues the oldest message and enqueues si. Knuth [12] discusses “sliding
windows” such as this.

3 TreeQuery and ListQuery

Our next protocol, TreeQuery, is a simple modification of DBES. Instead of
querying the active client repeatedly to find a path in a tree, the server encodes
and sends the whole tree; the client finds the path and sends back all of what
would have been its responses. To encode the tree, the server performs a pre-
order traversal, recording each internal node as a 1 and each leaf as a 0. Since
Gilbert and Moore’s algorithm is linear, both the server and the client perform
O(N) computations.

Theorem 2. Suppose some clients send S to a server using TreeQuery. For
each message, the server sends 2N − 1 bits and, on average, the active client
sends H + n log N

m + O(1) bits.

Proof. For each message, the server encodes and sends a strict binary tree on N
leaves, which takes 2N − 1 bits; the number of bits the clients send is bounded
as in Theorem 1. �	

For ListQuery, the server keeps a list of the possible messages, in non-increasing
order by their frequency in the prefix of S it has received so far. If the server
stores the list in a standard balanced binary-search tree implementation of a
priority-queue, then updating it takes O(logN) time after each message.

For each message si, the server sends the active client the first �N1/k� messages
in the list, where k > 1 is a parameter. The client makes a single pass through this
sublist and, if si is rth in the sublist, responds with 1 followed by the codeword
for r in Elias’ delta code [6]; if si is not in the sublist, the client responds with
0 followed by si. The codeword for r ≥ 1 in the delta code consists of a self-
delimiting, (2�log(log r + 1)� + 1)-bit encoding of �log r� + 1 followed by the
(�log r� + 1)-bit binary representation of r with the leading 1 removed.

Theorem 3. Suppose some clients send S to a server using ListQuery with
parameter k > 1. For each message, the server sends at most �N1/k��logN� bits
and, on average, the active client sends kH + n log N

m + O(1) bits.

Proof. Suppose the client’s message si appears rth in the sublist it receives from
the server; then r ≤ N1/k and #si(s1, . . . , si−1) ≤ (i − 1)/r. Since k > 1, the
length of the codeword for r in the delta code — i.e., �log r�+2�log(log r+1)�+1
— is bounded by

k log r + O(1) ≤ min
(
k log

i− 1
#si(s1, . . . , si−1)

, logN

)
+ O(1) .

316 T. Gagie

Now suppose si does not appear in the sublist; then #si(s1, . . . , si−1) ≤ (i −
1)/N1/k, so logN ≤ k log i−1

#si
(s1,...,si−1)

. Again, the number of bits the client
sends is bounded by

min
(
k log

i− 1
#si(s1, . . . , si−1)

, logN

)
+ O(1) .

Therefore, by Lemma 1 and straightforward calculation, the average number of
bits a client sends is kH + n log N

m + O(1). �	

4 QueueQuery

ListQuery is reminiscent of Bentley, Sleator, Tarjan and Wei’s Move-to-Front
(MTF) compression algorithm [4]. To encode S, MTF keeps a list of the possible
messages in increasing order by the time since their last occurrence; e.g., the
most recent message is first in the list. For each message si, if si is the rth
message in the list, then MTF records the codeword for r in the delta code
and moves si to the front of the list. Bentley et al. proved MTF encodes S
using (H + o(H))m+n logN bits. In fact, if the messages’ distribution changes,
MTF may use significantly fewer than H bits. Notice MTF’s list is essentially a
reversed queue; the tail is first, the head is last and when messages occur, they
move to the tail.

Inspired by MTF and our cell phone example in the introduction, we modify
ListQuery to obtain QueueQuery. The server keeps a queue of the �N1/k� most
recent distinct messages, where k > 1 is a parameter. This is the only thing the
server stores, so QueueQuery is more space-efficient than our previous protocols.

For each message si, the server sends the active client this queue. The client
makes a single pass through the queue and, if si is rth from the tail, responds
with 1 followed by the codeword for r in the delta code; if si is not in the queue,
it responds with 0 followed by si. The server then puts si at the tail and, if that
lengthens the queue, dequeues the message at the head.

Notice that, if si is in the queue, then apart from the leading 1 indicating
si’s presence the client sends as many bits as MTF would use to encode si. If
si is not in the queue, then apart from the leading 0 indicating si’s absence the
client sends at most about k times as many bits as MTF would use; i.e., �logN�
instead of at least �logN1/k�+2�log(logN1/k +1)�+1 bits. Thus, although our
analysis below of QueueQuery is self-contained, it is naturally very similar to
that of MTF.

Theorem 4. Suppose some clients send S to a server using QueueQuery with
parameter k > 1. For each message, the server sends �N1/k��logN� bits and,
on average, the active client sends kH + n log N

m + O(1) bits.

Proof. Suppose the client’s message si is the first occurrence of that distinct
message a in S; then it responds with logN + O(1) bits. Now suppose si is not
the first occurrence of a and let sh be the preceding occurrence. If the number

Dynamic Asymmetric Communication 317

of distinct messages in sh, . . . , si−1 is greater than N1/k, then si is no longer in
the queue and the client responds with logN + O(1) bits; since i − h must be
greater than N1/k, this is bounded by k log(i− h) + O(1). Otherwise, si is still
in the queue and the client responds with log(i−h)+2 log log(i−h)+O(1) bits
which, since k > 1, is also bounded by k log(i− h) + O(1).

Let si1 , . . . , si#a(S) be the occurrences of a in S. The clients with these mes-
sages send a total of

logN +
#a(S)∑
j=2

k log(ij − ij−1) + O(#a(S))

≤ logN + #a(S)k log
m

#a(S)
+ O(#a(S))

bits to communicate them to the server. Summing over the distinct messages in
S, the clients send kHm + n logN + O(m) bits in total; the average number of
bits a client sends is kH + n log N

m + O(1). �	

Acknowledgments

Many thanks to Faith Ellen Fich, Giovanni Manzini and Charlie Rackoff, who
supervised this research, and to the anonymous referees, for helpful comments.

References

1. M. Adler. Collecting correlated information from a sensor network. In Proceedings
of the 16th Symposium on Discrete Algorithms, pages 479–488, 2005.

2. M. Adler, E.D. Demaine, N.J.A. Harvey, and M. Pǎtraşcu. Lower bounds for asym-
metric communication complexity and distributed source coding. In Proceedings
of the 17th Symposium on Discrete Algorithms, pages 251–260, 2006.

3. M. Adler and B.M. Maggs. Protocols for asymmetric communication channels.
Journal of Computer and System Sciences, 64(4):573–596, 2001.

4. J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei. A locally adaptive data
compression scheme. Communications of the ACM, 29(4):320–330, 1986.

5. P. Bose, D. Krizanc, S. Langerman, and P. Morin. Asymmetric communication
protocols via hotlink assignments. Theory of Computing Systems, 36(6):655–661,
2003.

6. P. Elias. Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory, 21(2):194–203, 1975.

7. N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. Infranet:
Circumventing web censorship and surveillance. In Proceedings of the 11th USENIX
Security Symposium, pages 247–262, 2002.

8. N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and D. Karger. Thwarting
web censorship with untrusted messenger discovery. In Proceedings of the 3rd
International Workshop on Privacy Enhancing Technologies, pages 125–140, 2003.

9. T. Gagie. Dynamic Shannon coding. In Proceedings of the 12th European Sympo-
sium on Algorithms, pages 359–370, 2004.

318 T. Gagie

10. S. Ghazizadeh, M. Ghodsi, and A. Saberi. A new protocol for asymmetric com-
munication channels: Reaching the lower bounds. Scientia Iranica, 8(4):297–302,
2001.

11. E.N. Gilbert and E. Moore. Variable-length binary encodings. Bell System Tech-
nical Journal, 38:933–968, 1959.

12. D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6(2):163–180, 1985.
13. E.S. Laber and L.G. Holanda. Improved bounds for asymmetric communication

protocols. Information Processing Letters, 83(4):205–209, 2002.
14. C.E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423, 623–656, 1948.
15. D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the

ACM, 32:652–686, 1985.
16. W. Wang. Implementation and security analysis of the Infranet anti-censorship

system. Master’s thesis, Massachusetts Institute of Technology, 2003.
17. J. Watkinson, M. Adler, and F. Fich. New protocols for asymmetric communi-

cation channels. In Proceedings of the 8th International Colloquium on Structural
Information and Communication Complexity, pages 337–350, 2001.

Approximate Top-k Queries in Sensor Networks�

(Extended Abstract)

Boaz Patt-Shamir and Allon Shafrir

Dept. of Electrical Engineering
Tel Aviv University

Tel Aviv 69978, Israel
boaz@eng.tau.ac.il, shafrir@eng.tau.ac.il

Abstract. We consider a distributed system where each node has a lo-
cal count for each item (similar to elections where nodes are ballot boxes
and items are candidates). A top-k query in such a system asks which
are the k items whose sum of counts, across all nodes in the system, is
the largest. In this paper we present a Monte-Carlo algorithm that out-
puts, with high probability, a set of k candidates which approximates the
top-k items. The algorithm is motivated by sensor networks in that it fo-
cuses on reducing the individual communication complexity. In contrast
to previous algorithms, the communication complexity depends only on
the global scores and not on the partition of scores among nodes. If the
number of nodes is large, our algorithm dramatically reduces the com-
munication complexity when compared with deterministic algorithms.
We show that the complexity of our algorithm is close to a lower bound
on the cell-probe complexity of any non-interactive top-k approximation
algorithm. We show that for some natural global distributions (such as
the Geometric or Zipf distributions), our algorithm needs only polyloga-
rithmic number of communication bits per node.

1 Introduction

Possibly one of the clearest examples of the difference between “global” and “lo-
cal” can be seen in elections: each ballot box has a local score for each candidate,
but the result we care about is the global scores, i.e., how many votes does each
candidate have overall. A top-k query in this case is “Which are the k globally
most popular candidates?”. Other examples for the top-k task abound: in peer-
to-peer file-sharing networks (such as Gnutella), users may wish to find which
are today’s most popular downloads; in sensor networks, a sensor may count the
number of occurrences of different species of birds, and a user might be inter-
ested in the most frequent species observed over the whole instrumented area; in
a server farm with several gateways, denial-of-service (DoS) attacks are a major
concern. The first question to be answered in this case is which are the most
frequent sources of requests; and many others.
� This research was supported in part by Israel Ministry of Science and Technology

contract 3-941.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 319–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

320 B. Patt-Shamir and A. Shafrir

In general, a top-k query returns the k items having largest global score in a
distributed system, where each item has a set of local scores. The global score of
an item is just the sum of its local scores, over all locations. The main difficulty
is that the scores may be divided arbitrarily among the different locations. In
elections, for example, it may be the case that the most popular global candidate
has the lowest (positive) count in each ballot box.

When computing top-k queries in a distributed system, a key question is how
to minimize the communication complexity required to provide an answer. This
issue is particularly important in sensor networks, where the communication sub-
system is by far the largest energy consumer at the nodes. An algorithm which
allows us to trade communication for local computation may have a decisive
effect on the longevity of node batteries and hence on the usability of the sys-
tem (see, e.g. [14]). This observation has established the measure of individual
communication complexity as a key performance criterion in sensor networks
[14, 16, 24, 7, 20]. In this work, we adopt this measure to evaluate the complex-
ity of top-k computation. Observe that deterministic algorithms are sensitive to
the way scores are partitioned among the different nodes and for some partitions
they may communicate all scores to a single node.

Our Results. In this paper we propose a simple and effective way to overcome the
problem of adversarial partition of the scores among the nodes. Our algorithm is
Monte Carlo (it may err with some arbitrarily small probability), and its results
are only approximate: using very little communication, the algorithm can tell,
roughly, which items are in the top-k set. We focus on the worst-case individual
communication complexity, i.e., our goal is to minimize the maximal number of
bits communicated (sent or received) by any single node.

Our basic tool is random sampling. Done in the right way, sampling strips
away the difficulties due to geographical distribution of scores which are the
main difficulties for deterministic and Las Vegas algorithms. The basic idea is
compounded with techniques adapting it to the specific input at hand. The
performance of the algorithm depends on how popular are the top-k items, and
on how “flat” is the distribution of scores. Specifically, suppose that the global
scores adhere to the Zipf distribution with parameter a > 1 (namely the relative
popularity of the ith popular item is proportional to i−a). Then our Algorithm R
guarantees that the communication complexity is bounded by O(k

ε2) times a
polylogarithmic factor, where ε is the required approximation accuracy. This case
is quite important, as it is widely believed that the statistics of many phenomena
are well approximated by the Zipf distribution (see, e.g., [3, 12]).

We note that the communication complexity of our algorithms scales very well
compared with previous algorithms [11, 6]. Our simulations demonstrate that
the performance of our algorithm is significantly superior to the best previously
known algorithms.

We give some evidence showing that our algorithm is close to optimal. In
particular, we demonstrate the optimality of its cell-probe complexity [23, 13]
among a limited class of single-round Monte Carlo algorithms.

Approximate Top-k Queries in Sensor Networks 321

Previous Work. In [11], Fagin, Lotem and Naor introduced the Threshold Al-
gorithm (TA) in the context of databases. They define a notion of ‘instance-
optimality,’ and prove that TA incurs at most n accesses times the optimum,
where n is the number of nodes in the system (they also show that an Ω(n) factor
blowup is unavoidable for any deterministic or Las-Vegas algorithm). In [6], Cao
and Wang propose the TPUT algorithm to reduce latency and save communica-
tion for the case where the local inputs are generated by Zipf-like distributions.
As expected from deterministic algorithms, the performance of TPUT and TA
depend crucially on the partition of scores to nodes. Other related work include
variations of TA and TPUT optimized for certain network models [17, 25, 5].

From the sensor networks perspective, top-k queries are viewed as a special
case of aggregate queries (see, e.g., [16, 24]). Typically, it is assumed that data
is routed on a spanning tree, and each node does some aggregation en-route.
Simple aggregates (such as counting the number of items, summing numbers
etc.) can be done with O(log n) bits per node. Considine et al. [7], and Gibbons
et al. [18], present methodologies for robust approximation of aggregates in sensor
networks. In [18] they also present a sketch of a top-k-approximation algorithm
that appears promising, but the algorithm is not fully specified, and no formal
statement or analysis is given.

Techniques for efficient monitoring of aggregates in sensor networks are stud-
ied by [21, 4, 8, 2]. The main question in these works is how to efficiently update
the results under some assumptions on the way the input changes.

Paper Organization. The remainder of the paper is organized as follows. Sec-
tion 2 describes our model, problem definition and a few known results about
efficient counting. Section 3 presents our algorithms with formal analysis results.
Simulation results are presented in Sect. 4. In Sect. 5, we present our lower
bound, and we conclude in Sect. 6. Due to lack of space, proofs are omitted from
this extended abstract.

2 Model and Preliminaries

System Model. The system is modeled as a communication graph G(V,E) with
n � |V |, where each node models a classical RAM machine with access to its
local input and to an infinite tape of random bits. A distinguished node v∗ ∈ V
is the root node and is assumed to have a special write-once output register.

The system executes distributed algorithms according to the standard asyn-
chronous message passing model (see, e.g., [1, 15]). Very briefly, in this model an
event (such as arrival of a message to node u) triggers a state-transition (e.g., u
computes a response message and inserts it to the link buffer). An execution in
our model is considered terminated when the root-node has written the result
to the output register.

Let M denote some finite string of bits. We assume that the system contains a
message passing infrastructure supporting the following facilities:
– Each node u ∈ V may send a message M to any other node v ∈ V . This causes

each node along a path from u to v to send and receive Θ (|M |) bits.

322 B. Patt-Shamir and A. Shafrir

– Each node u ∈ V can broadcast a message M to all other nodes. This causes
every node in V to send and receive Θ (|M |) bits.

While the particular way in which these actions are implemented is immaterial for
our purposes, we note that these assumptions can be justified by the existence of a
spanning-tree of constant degree for message passing (see, e.g., [14, 16, 24, 7, 20]).

Input Model and Problem Statement. Let I denote the set of possible items. We
assume I is finite. An instance of the problem, denoted by X , is a vector of
multisets of I: one multiset, denoted Xv, for each node v ∈ V . We sometimes
slightly abuse notation and use X to also denote the multiset

⋃
v∈V Xv.

It is convenient to imagine each multiset as a set of cells, where each cell
contains a single item, so that an item with multiplicity w has w replicas, one in
a cell. The weight of item i in node v, denoted wv(i), is the multiplicity of i in
Xv. The weight of a node v is the total number of cells in v, formally Wv � |Xv|.
The weight of an item i ∈ I, is the sum of its multiplicities over all nodes, i.e.,
w(i) �

∑
v∈V wv(i). The input size is defined to be the total number of cells,

W (X) �
∑

v∈V |Xv|. The empirical probability, or frequency, of an item i ∈ I in
X , is defined by p

X
(i) � w(i)

W . When the context is clear we omit the subscript.
Using this notation, we define the top-k set of X as follows.

Definition 1. Let k be a natural number, and suppose that |I| ≥ k. The top-k
set of X, denoted top(k,X), is a subset of I of size k containing the items with
the maximal weights.

Following [11], we extend Definition 1 to the concept of approximate top-k sets.

Definition 2. Let ε ≥ 0. An ε-approximation of the top-k set of X is a set
topε of k items, such that for all items i ∈ topε and j /∈ topε, we have p

X
(j) ≤

(1 + ε)p
X
(i).

We will mainly be interested in small values of ε so without loss of generality,
we assume henceforth that ε ≤ 1.

It turns out that the following quantity has a central role in the complexity of
computing top-k (and approximate top-k) queries. For a given input, the critical
frequency of the instance, denoted p∗(X, k), is the empirical probability of the
least popular item in top(k,X), i.e., given input X and a natural number k, we
define p∗(X, k) � min {p

X
(i) | i ∈ top(k,X)}.

Throughout the paper, we assume instances having n nodes, total weight W ,
and critical frequency p∗. We denote the set of all such instances by X (W,n, p∗).

Complexity Measures. We evaluate the performance of certain algorithms using
a worst-case measure per node. Specifically, the communication complexity of
an algorithm is the maximum, over all inputs and over all nodes, of the total
number of bits transmitted and received by a node throughout the execution of
the algorithm. Formally, cA(X, v) denotes the total number of bits transmitted
and received by node v, throughout the execution of algorithm A, for the input

Approximate Top-k Queries in Sensor Networks 323

X ; cA(X) denotes the maximal node-communication of algorithm A on input X ,
i.e., cA(X) � max {cA(X, v) | v ∈ V }. Finally, given a collection X of possible
inputs, CA(X) denotes the worst-case communication complexity of algorithm
A over all inputs in X , i.e., CA(X) � max {cA(X) | X ∈ X}.

Note that our communication complexity measure is individual in the sense
that we measure the maximal number of bits communicated by any single node.
The motivation for such a measure is that in sensor networks, each node has
an individual energy source, and the longevity of the system often depends on
the longevity of the weakest sensors (see, e.g., [14]). Furthermore, assuming a
spanning tree of bounded degree, we can disregard many aspects of wireless
communication and focus on the net communication used by the algorithm.

Loglog Counting. Let us present a known result which we use. First we define
the following concept.

Definition 3. Let Z be a positive number we wish to estimate, let ε ≥ 0 and
σ ≥ 0 be real numbers. A random variable Ẑ is a (ε, σ2)-estimate of Z if
1
Z |E[Ẑ] − Z| ≤ ε, and 1

Z2 Var[Ẑ] ≤ σ2 .

Durand and Flajolet [10] prove a result which, specialized to our system model,
can be stated as follows.

Fact 4 ([10]). There exists an algorithm Aloglog which outputs an (ε, σ2)-estimate
of W with ε = 10−6 and σ = 1, using O (log logW) bits of communication.

To get bounds that hold with high probability, we iterate Algorithm Aloglog and
use Bernstein’s Inequality (see, e.g., [9]).

Algorithm BoundCount (Input: ε, δ, i)

1. M ← (6/ε2) ln 1/δ.
2. Broadcast a filtering message indicating that only input cells holding item i should

be considered in Step 3.
3. for � = 1 to M , run Aloglog obtaining an independent estimate ŵ� of w(i).
4. Output ŵ � 1

M
M
�=1 ŵ�.

Corollary 5 (high-probability estimates). For 10−5 ≤ ε ≤ 1 and δ > 0,
the output ŵ of Algorithm BoundCount satisfies Pr

{
1

w(i) |ŵ − w(i)| < ε
}

≥
1 − δ. The individual communication complexity of the algorithm is of order
O
(
log |I| + 1

ε2 log 1
δ log logw(i)

)
. Also, if the algorithm ran M iterations in Step

3, then for any ζ > 10−5, Pr
{

1
w(i) |ŵ − w(i)| < ζ

}
≥ 1 − exp

(
−Ω
(
Mζ2
))

.

3 Algorithms

In this section we present our main result, namely a randomized algorithm for
computing top-k. In our algorithm, the basic idea is to view each cell (represent-
ing a unit of weight, or score) as a “vote,”and to sample each vote independently.

324 B. Patt-Shamir and A. Shafrir

Thus, the expected number of sampled votes for candidate i is proportional to
the total number of votes candidate i has in the input regardless of their parti-
tion into nodes. The sampling results provide a good indication which items are
globally popular, so that counting can be applied only to these items.

Next, we need to determine the sample size. Let p∗ denote the frequency of
the least popular of the top-k items. Clearly, if we sample once, the sample size
should be proportional to O(1/p∗) (or else the sample will fail to find all top
k items). A more refined analysis shows what should be the sample size as a
function of p∗, the approximation parameter ε, and the confidence parameter
δ. To deal with unknown p∗, we augment the basic sampling algorithm with a
technique to find the right sample size. Intuitively, we have a simple test which
can prove whether the sample size is sufficiently large; if it isn’t, we double the
sample size.

Finally, we address the issue of very small p∗ values: while Ω(1/p∗) sample size
cannot be avoided for worst-case inputs, a much better bound can be obtained
if the popularity of items decreases relatively rapidly. Consider, for example,
the case where the global scores are close to the geometric distribution, e.g.,
when the frequency of the �th popular element is about 2−�. Then we have
p∗ = 2−k, and therefore the sample size should be Ω(2k). This cost can be
reduced exponentially by utilizing the following simple idea: Whenever a sample
is taken, the top item in the sample is by far the most popular (it is expected to
have half of the weight in the sample). Therefore it is safe to add the top item to
the output list, remove it from further consideration, and take another sample
of the same size. In the geometric case, this approach has communication cost
linear in k. This intuition leads us to our final algorithm, called Algorithm R. In
essence, the idea is to iteratively discover the very top items, “shave them off,”
and to continue recursively with the remainder of the population. The algorithm
combines this idea with an additional way to verify that the top-k items have
been discovered. Algorithm R is far better than naive sampling for some common
input distributions, such as Zipf distribution.

We start, in Sect. 3.1, by describing the basic algorithm we later use as a
building block. Section 3.2 presents Algorithm S which uses adaptive sample
size. Section 3.3 presents Algorithm R, which is our main result.

3.1 Algorithm B: Basic Sampling

Consider basic sampling: if the top-k items occupy a constant fraction of the
total weight, then a log-size sample is sufficient to detect them for any input size
(the logarithm is of the inverse of the error probability).

It is convenient to first analyze the following sampling routine.

Algorithm A (Input: PSAMPLE)

1. The root sends PSAMPLE to all other nodes.
2. Each node sends each cell to the root with probability PSAMPLE .

Approximate Top-k Queries in Sensor Networks 325

Lemma 6. There exists a function S∗(p∗, ε, δ) = Θ
(

1
p∗ ε2 · ln 1

p∗ δ

)
, such that

for any input X ∈ X (W,n, p∗), the top-k elements of a random sample of size at
least S∗(p∗, ε, δ) is a top-k ε-approximation of X with probability at least 1 − δ.

The proof (like all others) is omitted from this extended abstract. Intuitively,
the argument is as follows. Define a ‘swap’ to be a pair of items i, j such that i
is more popular than j in the input but less popular than j in the sample. We
identify which item-pairs may not be swapped in an ε-approximation, and bound
the probability that such a swap occurs using the Chernoff-like bound for self-
weakening random variables presented in [19]. The probability bound is used
to deduce the required sample size. The exact definition of S∗ used by our algo-
rithms is S∗(p∗, ε, δ) � g(ε)

p∗ ·
(
ln 1+ε

p∗δ + 4
)
, where g(ε) � (1+ε) ln(1+ε)

ε ln(ε
ln(1+ε))+ln(1+ε)−ε

.

Algorithm B, presented below, first determines the sampling probability PSAMPLE
using the function S∗ from Lemma 6. Each cell (i.e., unit of weight) is then sent
to the root with probability PSAMPLE, and the root outputs the top k items in the
sample as an approximation of the top k items in the complete input.

Algorithm B (Input: W,p∗, k, ε, δ)

1. The root computes PSAMPLE ← 2 · S∗(p∗, ε, δ
2)/W .

2. Execute Algorithm A with parameter PSAMPLE to get a sample S .
3. Output top(k, S).

When running Algorithm B as described above, each sampled vote is sent to
the root separately incurring communication log |I|. An obvious optimization is
to aggregate votes for the same candidate along the way, for example by sending
the count of votes for each candidate. While such optimization is very worthwhile
to implement, it would not help much when the partition of votes to nodes is
adversarial. We therefore ignore such optimizations in our upper bounds.

Theorem 7. Let X ∈ X (W,n, p∗) be an instance. Provided that p∗, ε, δ and
W are known, Algorithm B outputs a top-k ε-approximation with probability at
least 1 − δ and communication O

(
1

p∗ ε2 · ln 1
p∗δ · log |I|

)
.

The proof is rather standard; we omit it due to lack of space. Note the 1/p∗

factor: It is unavoidable because if the sample is to contain the top k elements,
it should contain the least popular of them, and hence the sample size must be
Ω(1/p∗). A stronger bound is proved in Sect. 5.

3.2 Algorithm S: Adaptive Sample Size

Algorithm B requires knowing the values of W and p∗. While estimating W is
straightforward and cheap (by deterministic or randomized counting, at the cost
of O(logW) or O(log logW) communication, respectively), obtaining a lower
bound on p∗ seems less trivial. We solve this problem as follows.

326 B. Patt-Shamir and A. Shafrir

First, we note that by counting the weight of any k items, we obtain a lower
bound on p∗: the least popular among any k items is certainly no more popu-
lar than the least popular among the top-k items. Second, we note that exact
counting is not necessary: we can use high-probability estimates as described in
Corollary 5 to get a lower bound on p∗ that holds with high probability. However,
if we simply use an arbitrary set of k items to bound p∗, that value can be smaller
than the true value of p∗ by an arbitrary factor, resulting in communication cost
that is higher than the bound in Theorem 7 by an arbitrary factor.

Our solution, in Algorithm S below, combines the ideas described above with
an iterative approach that avoids unbounded ‘overshoots.’ The algorithm uses a
variable p̂ as an estimate of p∗. The algorithm repeatedly halves p̂ while improv-
ing its lower bound on p∗, stopping when p̂ is smaller than the lower bound.

Algorithm S (Input: k, ε, δ)

1. Ŵ ← BoundCount(ε = 1, δ/5, ‘ALL’)
2. p̂ ← 1 (p̂ is the current estimate of p∗)
3. Repeat

(a) p̂ ← p̂
2

(b) Execute Algorithm B with parameters (Ŵ/2, p̂, ε, δ/5), to get a candidate
top-k-set T .

(c) For each item i ∈ T ,
ŵ(i) ← BoundCount(ε = 1, δ/5, i)

Until p̂ < 1
8 min ŵ(i)/Ŵ | i ∈ T .

4. Output the set T computed at Step 3b of the last iteration.

Theorem 8. For any input X ∈ X (W,n, p∗), with probability at least 1 − δ,
Algorithm S outputs a top-k ε-approximation with communication complexity
CS = O

(
1

p∗ ε2 · log 1
p∗ δ · log |I| + k log 1

p∗ log 1
δ log logW

)
.

Note that when |I| ≥ logW and k < O (1/(−p∗ log p∗)), the communication
complexity of Algorithm S is within a constant factor of the complexity of Al-
gorithm B.

The general idea in the proof is that the high-probability estimates ensure that
we run approximately log 1

p∗ iterations. As a result, the last iteration is similar to
an execution of Algorithm B with the correct parameters and its communication
complexity is as specified in Theorem 7.

3.3 Algorithm R: Sample and Remove

As already mentioned above, it appears that the 1/p∗ factor is unavoidable when
we want all the top-k items to be included in the sample (because p∗ is the em-
pirical probability of the kth popular item). However, when the popularity of the
popular items is far from uniform, one can do much better, as mentioned for the
geometric distribution example in the beginning of this section: the 1/p∗ factor
in the communication complexity can be replaced by a factor of k. Algorithm R

Approximate Top-k Queries in Sensor Networks 327

Algorithm R (Input: k, ε, δ)

1. Q ← ∅ (Q holds all items whose weights were already estimates)
2. p̂ ← 1, � ← 0. (p̂ is the current estimate of p∗, � is the iteration index)
3. Repeat

(a) Ŵ ← BoundCount(ε = 1, δ/7, ‘ALL’).
(b) � ← � + 1 ; Ŵ [�] ← Ŵ .
(c) p̂ ← p̂ · 1

2 · Ŵ [� − 1]/Ŵ [�].
(d) PSAMPLE ← 2S∗(p̂, ε/4, δ/7) / Ŵ .
(e) Execute Algorithm A with parameter PSAMPLE to get sample S .
(f) η ← (δ/7) · (1/ − log plo(top(k, Q), Ŵ));

T S ← top(|S| log |I| /(log |I| + log log Ŵ), S).
(g) For each i ∈ T S , ŵ(i) ← BoundCount(ε = 1, η, i).
(h) Q ← Q ∪ T S ; remove elements of T S from the input.
Until safe(Ŵ , Q, S , p̂, ε, δ).

4. If |T S | < k, then for each i ∈ top(k, S), do ŵ(i) ← BoundCount(ε = 1, η, i) and
add i to Q.

5. Q ← i ∈ Q | ŵ(i)/Ŵ > plo(top(k, Q), Ŵ)

6. For each i ∈ Q, ŵ(i) ← BoundCount(ε/4, δ
5|Q| , i).

7. Output the top k items in Q according to the new estimates.

Function plo (Input: Q, W)

1. Return 1
4W

min {ŵ(i) | i ∈ Q}.

Predicate safe (Input: W,Q, S , p̂, ε, δ)

1. If p̂ · (W [�]/W [1]) < plo(top(k, Q), W) return true.
2. rhi ← plo(S ∩ Q, W)
3. q ← (1 + ε/2) · plo(top(k, Q),W); α ← q/rhi.
4. If α > 1 and exp −|S|q α−1

α

2
< qδ

5 then return true else return false.

Fig. 1. Algorithm R

achieves this improvement for both geometric and Zipf distributions. In a nut-
shell, the idea is still to cut the estimate of p∗ by half in each iteration; however,
while Algorithm S achieves this by doubling the sample size, Algorithm R tries
also to reduce the size of the relevant population.

In more detail, the algorithm works as follows (see Fig. 1). In each iteration,
the algorithm samples with probability PSAMPLE, obtained from the current es-
timate p̂ of p∗. Then, in Step 3f, the algorithm counts (approximately) some
of the top items in the sample: the number of items is such that the cost of
counting equals the cost of sampling. The counted items (recorded in Q) are not
considered part of the input anymore. In Step 3c, p̂ is adjusted so that its value
in the full input is halved (but since the input is smaller now, p̂ is multiplied
by a factor larger than 1/2). The loop is executed until one of the stopping
rules specified in Predicate safe is met. These rules use a lower bound on p∗

computed by function plo: it is a high-probability lower bound on the kth smallest

328 B. Patt-Shamir and A. Shafrir

value among all values counted so far. Using plo, the stopping rules are defined
as follows.

First (Step 1 of Predicate safe), we can stop if the value of p̂ w.r.t. the full
input is smaller than the lower bound on p∗. This test is done in Step 1. Second,
we bound the probability that an “important” item did not arrive at the top of
the current sample and therefore was not counted. More specifically, we bound
the probability that an item with frequency q, where q is sufficiently larger than
p∗, was not counted, while an item whose frequency is rhi was counted. If the
probability of this event is low, we know that the top items counted by the
algorithm contain an ε-approximation to the top-k set (Step 4). This test is
useless in some cases (say, the uniform distribution), but it is effective in some
distributions (such as Zipf).

Theorem 9 shows some general bounds on its complexity. As expected, it
shows that for some inputs, Algorithm R has very little advantage over Algo-
rithm S. Theorem 10, however, presents an alternative analysis which, when
applied to some natural input distributions, attains much better bounds than
those of Theorem 9.

Theorem 9. For any input X ∈ X (W,n, p∗), with probability at least 1− δ, Al-
gorithm R outputs a top-k ε-approximation while the communication complexity
satisfies CR = O

(
1

p∗ ε2 log 1
δp∗ (log |I| + log logW)

)
.

Again, when |I| < logW , the communication complexity of Algorithm R is
within a constant factor of the complexity of Algorithm B.

Next we refine the analysis to depend more closely on the global distribution
(rather than only on p∗). Let π� denote the probability that a random item has
global frequency at most 2−�, namely π� is the fraction of the votes for candidates
whose popularity is at most 2−�.

Theorem 10 (Main result). Let X ∈ X (W,n, p∗). Then with probability at
least 1 − δ, Algorithm R outputs a top-k ε-approximation of X while using

O

(
1
ε2 log 1

p∗ δ (log |I| + log logW) ·
∑log 1

p∗
�=1 2�π�

)
communication bits per node.

Using Theorem 10, we can prove the following corollaries for specific distribu-
tions. The proof of Corollary 11 is straightforward; the proof of Corollary 12 is
based on approximating the Zipf distribution by the Pareto distribution.

Corollary 11. Let X be an instance where item frequencies are geometrically
distributed, i.e., p

X
(i) = (1 − λ)λi−1 for some constant 0 < λ < 1. Then Al-

gorithm R, when run on input X with parameters δ, ε > 0 has communication
complexity cR(X) = O

(
k
ε2 log 1

p∗ δ (log |I| + log logW)
)
.

For the important case of Zipf distribution, we have the following corollary.

Corollary 12. Let X be an instance where item frequencies have Zipf distribution

with parameter a > 1, i.e., p
X
(i) � i−a

h
, where a > 1 and h is the normalization

Approximate Top-k Queries in Sensor Networks 329

factor. Then Algorithm R, when run on input X with parameters δ, ε > 0 has com-
munication complexity cR(X) = O

(
a+1
a−1 · k

ε2 · log 1
p∗ δ · (log |I| + log logW)

)
.

The results in this section analyze the behavior of R for asymptotically large in-
puts. As described in the next section, we have tested our algorithms on realistic-
size inputs to study the effect of the hidden constants. We have also compared
R with other known algorithms from the literature. We remark that Algorithm
R turns out to have significantly superior performance.

4 Simulations Results

To evaluate the performance of our algorithm in more realistic scenarios, we
ran simulations examining the actual number of bits communicated throughout
the execution. We compared our algorithm R with the best known algorithms,
namely TA [11] and TPUT [6]. We compared the performance of the algorithms
when the input is partitioned randomly and when it is partitioned adversarially.
Finally, we evaluated the performance of R for various values of p∗ (popularity
of the kth most popular item) and various values of ε (the approximation pa-
rameter). Informally, we find that Algorithm R offers a dramatic improvement
over TA and TPUT unless the system is very small and the distribution is par-
ticularly favorable to TA and TPUT. Moreover, for typical inputs, R behaves
better than predicted by our analytical bounds.

Simulated Instances. We used randomly generated inputs of various sizes, and
our main focus was on inputs generated by Zipf distribution with exponent
between 0.8 and 3; all shown charts used Zipf distribution with exponent 1.5
(different exponent values showed qualitatively similar behavior). Typical other
parameters were k = 5, ε = 0.5 and δ = 0.05. The total number of votes (W)
was either 106 or 107 and the varying parameter is the number of nodes (n).
The number of candidate-items was equal to the number of nodes (|I| = n). All
simulations measured the worst-case individual communication (in bits).

Comparison with Existing Algorithms. In Fig. 2 we compare algorithms R, TA
and TPUT. We used the approximation version of the TA algorithm. We note

1 2 3 4
0

1

2

3

4

5

6

7

Log
10

(n)

Lo
g 10

(C
om

m
un

ic
at

io
n

in
 b

its
)

TA

TPUT

R

Fig. 2. Communication costs of algorithm R compared to TA and TPUT for random
partition of scores in various system scales

330 B. Patt-Shamir and A. Shafrir

2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Log
10

(n)

Lo
g 10

(C
om

m
un

ic
at

io
n

in
 b

its
) TA

opt

R
opt

2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

Log
10

(n)

Lo
g 10

(C
om

m
un

ic
at

io
n

in
 b

its
)

TA

opt

R
opt

Fig. 3. Communication costs of optimized algorithms for various system scales. Left:
with an adversarial partition of scores among nodes. Right: with a random partition of
scores among nodes.

that TPUT has no approximation version, but in all simulations we ran, TPUT
appeared less efficient than TA, even for high accuracy such as ε = 0.01.

Results for adversarial and random partition of scores were similar. As shown
in Fig. 2, the performance of TA and TPUT for a random partition is rather
poor for large systems and Algorithm R is superior even for a system of 100
nodes. R is overwhelmingly superior (by more than two orders of magnitude) for
n > 10000.

Next, we modified the deterministic algorithms by using loglog counting and
allowing them to err. We also assumed the existence of a bounded degree span-
ning tree, and used unlimited memory at each node (which allows simple
aggregation while traversing the tree). These modifications resulted in drastic
improvement in TA performance: see Fig. 3. The optimized version of TPUT
is not shown because it performed far worse than the optimized version of TA.
Note that when the input is adversarially partitioned, R beats TA for n > 2000.
But even when the input is partitioned randomly (which is close to the best
case of TA), R performs better for n large enough, where large enough means
n > 200000 in this case.

The Effect of Accuracy and Critical Frequency on Performance. We examined
the performance of Algorithms R and algorithm S while varying ε and p∗

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
4

10
6

c(
X

)
(c

om
m

un
ic

at
io

n
in

 b
its

)

p* (probability of k−heaviest item in X)

← W log|I|
Algorithm S

Algorithm R

0 0.5 1 1.5 2 2.5 3 3.5 4

10
4

10
6

c(
X

)
(c

om
m

un
ic

at
io

n
in

 b
its

)

ε (required approximation level)

← W log|I| Algorithm S

Algorithm R

Fig. 4. Communication costs of algorithms S and R. Left: as a function of p∗. Right:
as a function of ε. The communication cost of reading the entire input is W log |I|, (W
is the input size and |I| is the number of items).

Approximate Top-k Queries in Sensor Networks 331

(for n fixed). The results are given in Fig. 4. Obviously, Algorithm R was always
superior to Algorithm S. The results for p∗ (Fig. 4, left) show that Algorithm R
is less sensitive to p∗ when the input is generated by Zipf distribution. We note
that the flat left segment in the graph of S is due to the fact that for small values
of p∗, the sample of Algorithm S consists of the entire input.

The effect of the approximation factor ε (Fig. 4, right) on the communication
of both algorithms is proportional to

(1+ε
ε

)2, as suggested by our upper bounds.
Algorithm R is more efficient due to its improved termination criterion.

5 A Lower Bound on the Total Cell-Probe Complexity

In this section we give a lower bound on the total cell probe complexity [23, 13]
of randomized algorithms for the top-k problem. For a restricted settings, we
can deduce a lower bound on the individual communication complexity of such
randomized algorithms.

We define the total cell probe complexity of an algorithm as the total number
of input cells accessed by a all nodes for the worst-case input. Formally, cpA(X, v)
denotes the number of input cells accessed by node v, throughout the execution of
A for input X ; cpT

A(X) denotes the total number of cell-probes for an instance X ,
i.e., cpT

A(X) �
∑

v∈V cpA(X, v). The total cell-probe complexity of A is defined
by CPT

A(X) � max
{
cpT

A(X) | X ∈ X
}
. Note that the set of all probed cells can

be viewed as a sample whose size is the total number of cell-probes.

Theorem 13. For some natural k, let ε > 0, 0 < p∗ ≤ 1
2k , 0 < δ < 0.014, and

W = Ω
(

1
δ(p∗)2 · (1+ε)2

ε4

)
and let A be any Monte Carlo algorithm. If A outputs a

top-k ε-approximation with probability at least 1−δ for any input in X (W,n, p∗),
then its total cell-probe complexity satisfies E

[
CPT

A

]
= Ω
(

1
p∗ ε2 · log 1

δ

)
.

The proof (omitted from this extended abstract) applies Yao’s Minimax Principle
to obtain a lower bound on Monte Carlo algorithms. To this end, we prove a
lower bound on the expected sample size used by any deterministic algorithm
when the input is drawn from a certain distribution we construct, so that there is
a single correct output to the top-k ε-approximation query. Furthermore, under
our distribution, the local view of each node is just a random subset of the items.
We show that any algorithm which does not output the top-k set of its sample
is doomed to err with probability at least 1/2. Finally, we bound the required
sample size for other algorithms.

Star Topology and “Smart Dust” Systems. Theorem 13 demonstrates the opti-
mality of Algorithm B with respect to the total cell-probe complexity but not
the individual cell-probe complexity. Consider a setting where the system has
star topology, i.e., all nodes are connected to a root node, and suppose that each
node holds a single cell. This model is a reasonable abstraction of the setting in
sensor networks using passive communication. In these systems, the only commu-
nication is between a powered base-station and a sensor, forming a star topology

332 B. Patt-Shamir and A. Shafrir

(as opposed to the common spanning tree). Passive communication is suitable for
very small devices, such as “smart dust” systems (see e.g., [22]). Now, for these
systems, Theorem 13 says that any algorithm that satisfies the conditions of
the theorem has individual communication complexity at least Ω

(
1

p∗ ε2 · log 1
δ

)
.

We stress that while our model assumes certain routing capabilities, our algo-
rithms only use a broadcast-convergecast scheme rooted by the root node. Such
communication is suitable for star topology.

6 Conclusions and Future Work

In this paper we have proposed algorithms solving the top-k problem by adaptive
sampling. The communication complexity of our algorithms does not depend on
the way the input is partitioned in the network: only the global statistics affect
the complexity. Our final algorithm performs particularly well when the global
statistics are far from flat. We have tested our algorithm by simulation and
found empirical support for our analytical claims. Although our study is mainly
theoretical, simulation results indicate that our algorithm is rather practical and
can be very useful in real-life scenarios. Future work may extend our algorithm to
specific models, where spatial and temporal dependence among different sensors
holds (e.g., nearby nodes have similar readings).

From the theoretical viewpoint, we think that it is very interesting to extend
our lower bound to the case of interactive algorithms. We conjecture that our
Algorithm R is nearly optimal in this more general model.

References

[1] H. Attiya and J. Welch. Distributed Algorithms. McGraw-Hill Publishing Com-
pany, UK, 1998.

[2] B. Babcock and C. Olston. Distributed top-k monitoring. In Proc. 2003 ACM
SIGMOD.

[3] P. Bak. How Nature Works: The science of self-organized criticality. Springer-
Verlag, New York, 1996.

[4] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive distributed top
k retrieval in peer-to-peer networks. In Proc. 21st Int. Conf. on Data Engineering,
2005.

[5] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-
accessible databases. In Proc. 18th Int. Conf. on Data Engineering, 2002.

[6] P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks. In
Proc. 23rd Ann. ACM Symp. on Principles of Distributed Computing, 2004.

[7] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation techniques
for sensor databases. Apr. 2004.

[8] G. Cormode, M. N. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic
aggregates in a networked world: Distributed tracking of approximate quantiles.
In Proc. 2005 ACM SIGMOD, 2005.

[9] P. Dagum, R. M. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte
Carlo estimation. SIAM J. Comput., 29(5), 2000.

Approximate Top-k Queries in Sensor Networks 333

[10] M. Durand and P. Flajolet. Loglog counting of large cardinalities (extended ab-
stract). In Algorithms: ESA 11th Ann. European Symp., 2003.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In Proc. 20th ACM Symp. on Principles of Database Systems, 2001.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. In Proc. SIGCOMM ’99, New York, NY, USA. ACM Press.

[13] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May
1989.

[14] M. Greenwald and S. Khanna. Power-conserving computation of order-statistics
over sensor networks. In Proc. 23rd ACM Symp. on Principles of Database Sys-
tems, 2004.

[15] N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Mateo, CA, 1995.
[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an

acquisitional query processor for sensor networks. In Proc. 2003 ACM SIGMOD.
[17] S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework for distributed

top-k query algorithms. In Proc. 31st Int. Conf. on Very Large Data Bases, 2005.
[18] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for

robust aggregation in sensor networks. In SenSys ’04: Proc. 2nd international
conference on Embedded networked sensor systems, 2004.

[19] A. Panconesi and A. Srinivasan. Fast randomized algorithms for distributed edge
coloring (extended abstract). In Proc. 11th Ann. ACM Symp. on Principles of
Distributed Computing, 1992.

[20] B. Patt-Shamir. A note on efficient aggregate queries in sensor networks. In Proc.
23rd Ann. ACM Symp. on Principles of Distributed Computing, 2004.

[21] A. Silberstein, R. Braynard, C. Ellis, K. Munagala, and J. Yang. A sampling-
based approach to optimizing top-k queries in sensor networks. In Proc. 22nd Int.
Conf. on Data Engineering, 2006.

[22] B. Warneke. Miniaturizing sensor networks with mems. In M. Ilyas and I. Mah-
goub, editors, Handbook of Sensor Networks: Compact Wireless and Wired Sensing
Systems. CRC Press, 2004.

[23] A. C.-C. Yao. Should tables be sorted? J. ACM, 28(3), 1981.
[24] Y. Yao and J. Gehrke. The Cougar approach to in-network query processing in

sensor networks. ACM SIGMOD Record, 31(3):9–18, Sept. 2002.
[25] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tsotras, M. Vla-

chos, N. Koudas, and D. Srivastava. The threshold join algorithm for top-k queries
in distributed sensor networks. In Proc. 2nd Int. Workshop on Data Management
for Sensor Networks, 2005.

Self-stabilizing Space Optimal Synchronization
Algorithms on Trees

Doina Bein, Ajoy K. Datta, and Lawrence L. Larmore

University of Nevada, Las Vegas, USA
{siona, datta, larmore}@cs.unlv.edu

Abstract. We present a space and (asymptotically) time optimal
self-stabilizing algorithm for simultaneously activating non-adjacent
processes in a rooted tree (Algorithm SSDST). We then give two appli-
cations of the proposed algorithm: a time and space optimal solution to
the local mutual exclusion problem (Algorithm LMET) and a space and
(asymptotically) time optimal distributed algorithm to place the values
in min-heap order (Algorithm HEAP). All algorithms are self-stabilizing
and uniform, and they work under any unfair distributed daemon. In
proving the time complexity of the heap construction, we use the no-
tion of pseudo-time. Pseudo-time is similar to logical time introduced by
Lamport [12].

Keywords: heap, local mutual exclusion, self-stabilization.

1 Introduction

Fault-tolerance is the ability of a system to withstand transient faults. A fault-
tolerant system is guaranteed to continue to perform its function when a number
of transient errors has occurred. In 1973 [8], Dijkstra defined a distributed system
to be self-stabilizing when,“regardless of its initial state, it is guaranteed to arrive
at a legitimate state in a finite number of steps.”

Self-stabilizing algorithms aim to achieve performance comparable to that
of non-stabilizing distributed algorithms when transient faults or arbitrary ini-
tialization cause the system to enter a state where a non-stabilizing algorithm
cannot continue to perform its task properly. In this paper, we propose a gen-
eral synchronization scheme for a rooted tree, and use this scheme to solve two
fundamental problems: heap construction and local mutual exclusion.

Related Work. The self-stabilizing heap problem has been studied in
[1, 4, 5, 10, 13]. The first self-stabilizing binary-search tree construction algorithm
was proposed in [4]. In [1], the self-stabilizing algorithm for a min-heap construc-
tion improves the algorithm of [5] in three ways: no global reset is required, the
time complexity is reduced from O(nh) to O(h) (h is the height of the tree
with n nodes), and the space complexity per node is reduced from O(degL) to
O(deg + L) (deg is the degree of the process and L is the maximal size of the
initial values in the tree). Synchronization among the nodes is achieved by us-
ing the global rooted synchronizer defined in [2], plus two additional bits. In

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 334–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-stabilizing Space Optimal Synchronization Algorithms on Trees 335

[13], the self-stabilizing max-heap protocol that uses a neighborhood synchro-
nizer protocol [11] reduces the memory requirement further to 2L + 3 bits; its
time complexity is O(h). A heap construction that supports insert and delete
operations in arbitrary states of a variant of the standard binary heap [7] with
capacity K is proposed in [10]. It takes O(m logK) heap operations to stabilize
(m is the initial number of items in the heap). The space complexity per node i
is O(hi), where hi is the height of the subtree Ti rooted at i.

Bein et al. [4] proposed the first snap-stabilizing binary search tree (BST)
and the first snap-stabilizing heap construction algorithm. (A snap-stabilizing
algorithm is a self-stabilizing algorithm with stabilization time of 0 rounds).
The algorithms use a PIF scheme [6] to synchronize the nodes in the tree. The
space complexity of the snap-stabilizing heap construction algorithm is 3L + 3.

Contributions. We propose a space and (asymptotically) time optimal self-
stabilizing algorithm for simultaneously activating non-adjacent processes in a
rooted tree (Algorithm SSDST). It uses 1+�log(deg)� bits in each node (deg is
the node degree); during the first 2h + 2t− 1 rounds, every node is enabled at
least t times, i.e., on the average, once every second round. For a synchronous
system, after at most 2h steps, every node is enabled every second step. If the
synchronous network starts in a normal starting configuration, then a node is
active every other step from the beginning.

We then give two applications on rooted trees of the proposed algorithm: a
time and space optimal solution to the local mutual exclusion problem (Algo-
rithm LMET), and a space and (asymptotic) time optimal solution to the heap
problem (Algorithm HEAP). Algorithm LMET uses only 2+�log(deg)� bits per
node and stabilizes in 0 rounds (it is snap-stabilizing). During the first 2h+2t−1
rounds, a node enters its CS at least t times. Algorithm HEAP arranges n values,
not necessarily distinct, in non-decreasing order from top to bottom (min-heap),
in at most 4(7h/2 − 4) rounds (h = height). Each process holds only one value
at any moment, and uses a total of 1+�log(deg)� bits per node, not counting
the bits needed to store the value being sorted (deg = node degree) which is
optimal, thus an improvement over [13, 4].

In proving the time complexity of heap-building, we use the notion of pseudo-
time. Each node in the network has a “local clock” which has the property that
when any action must be executed between the node and its children, the local
clocks of all the nodes involved in the action have the same value.

Outline of the Paper. In Section 2, we briefly introduce self-stabilization and
the topological models used by the proposed algorithms. Section 3 contains a
description of Algorithm SSDST , followed by a sketch of its proof of correctness.
Algorithm LMET is presented in Section 4. In Section 5 we first present a min-
heap algorithm for an abstract model of communication (Algorithm A HEAP),
and then show how the min-heap will be built using the usual shared-memory
model of communication (Algorithm HEAP). A sketch of correctness proof of
Algorithm A HEAP is given in 5.3. The reduction of Algorithm A HEAP to
Algorithm HEAP is given in 5.4. We finish with concluding remarks in Section 6.

336 D. Bein, A.K. Datta, and L.L. Larmore

2 Computational Models

We consider an asynchronous, rooted tree of n processors, with height h. The root
node is denoted by R. We assume that an underlying self-stabilizing spanning
tree construction protocol maintains the parent pointer pv and the set of children
Dv of a node v. For the root node R, pR = ⊥. For a leaf node v, Dv = ⊥.

If the topology of the network that is given as the input to the spanning tree
construction algorithm changes, the spanning tree may change. This will change
the input to our protocols (local mutual exclusion and heap). In that sense, the
proposed protocols can deal with dynamic trees. The model of communication
among the neighboring nodes is shared memory — a process can read and write
its own memory, but can only read the memory of its neighbors.

The program of every processor consists of a finite set of guarded actions of
the form: < label >::< guard >→< action >, where each guard is a function of
the variables of the processor and its direct neighbors. The state of a process
is defined by the values of its variables. The system state (configuration) is the
Cartesian product of all the nodes’ states. If an action has its guard, a Boolean
expression, evaluated to true, then it is called enabled. A node with at least one
enabled guard is called enabled. A daemon will non-deterministically select a
non-empty subset of enabled nodes to execute one of its enabled actions. Guard
evaluation and execution of the its action are done in one atomic step.

We assume an asynchronous system. In order to compute the time complexity,
we use the definition of round [9]. A round is a minimal sequence of computation
steps during which each processor that was enabled in the first configuration of
the sequence executes at least once during this sequence.

We consider the strongest distributed daemon, the unfair daemon. The unfair
daemon does not have a fairness mechanism: a continuously enabled process will
not necessarily be selected for execution unless it is the only enabled process.

Let C, the set of all possible states, and a predicate P over C. We denote by
LP ⊆ C the set of all legitimate states with respect to P . Let C1, C2 ⊆ C. C2 is a
closed attractor for C1 if (i) every execution starting in C1 eventually reaches a
configuration in C2, and (ii) every execution starting in C2 remains in C2.

Definition 1 (Self-stabilization). If P is a predicate, a protocol S is called
self-stabilizing to P if LP is a closed attractor for C.

3 Self-stabilizing Distributed Simultaneous Execution of
Non-adjacent Nodes in a Rooted Tree SSDST

Each node v holds a variable S ∈ {A,B} and a pointer i ∈ 0..|Dv| − 1 to some
child of v. Thus, the total memory requirement of node v is 1 + �log (deg)� bits
(deg is the node degree). (For a binary tree, Algorithm HEAP uses at most three
bits per node.)

For simplicity we write S = S.v. The predicate check(v, s) means that the
node v exists and has the value s for its variable S. Let execute(v) denote a
generic action.

Self-stabilizing Space Optimal Synchronization Algorithms on Trees 337

Algorithm 3.1. Algorithm SSDST
Predicate check(v, s) ≡ (v = ⊥ ∨ S.v = s)

Actions for any node v
ABB S =B ∧ check(pv, A) ∧ ∀i, 0≤ i< |Dv| : check(Dv[i], B) −→ execute(v) ; S=A
BAA S =A ∧ check(pv, B) ∧ ∀i, 0≤ i< |Dv| : check(Dv[i], A) −→ execute(v) ; S =B

Actions ABB and BAA are enabled at node v when the following two condi-
tions are true: (i) either it has no parent, or its parent’s S-value is different from
its S-value, and (ii) all its children’s S-values are the same as its S-value.

For example, given a network of eight nodes starting in a so-called normal
starting configuration (Figure 1(a)), the only enabled nodes are of even depth
(the root and the children of the root’s children). If we assume a synchronous
system, the next execution step brings the system into the configuration in Figure
1(b), in which the only enabled nodes are of odd depth. The next configuration
is shown in Figure 1(c), followed by the one in Figure 1(d). Then the system
returns to the configuration illustrated in Figure 1(a). The cycle repeats forever.

A

A
B B

BB

B

A

AAA

B

A

A

BB

A

B

AA

B
AA

B

BB
B

A

B

AA

B

(a) A configuration (b) After one step (c) After two steps (d) After three steps

Fig. 1. Four steps in a synchronous system

3.1 Proof of Correctness for SSDST

In this section, we show that Algorithm SSDST stabilizes in at most 2h+2k−1
rounds, to the global predicate

k-Exec: ≡ {∀ node v, v has executed macro execute at least k times }
and works under the unfair distributed daemon.

We extend the notions of configuration-string and difference-string to the tree
network. We show that in every configuration, during execution of SSDST :

- No node is enabled if any of its neighbors is enabled (local mutual exclusion)
(Property 1)
- At least one node is enabled (no deadlock); after it executes, a node becomes
disabled until all its neighbors execute (Property 2)
- During the first 2h + 2k − 1 rounds every node executes at least k times (no
starvation) (Lemma 1).

338 D. Bein, A.K. Datta, and L.L. Larmore

We then show that SSDST works under the unfair distributed daemon (Prop-
erty 3, Section 3.2).

Henceforth, n > 1, as the case n = 1 is trivial. Let the configuration tree be
the tree in which every node is represented by its S-value only.

A normal starting configuration is a configuration in which each branch of the
configuration tree is a prefix of (AABB)n (the string of length 4n obtained by
concatenating AABB n times). Starting from a normal starting configuration,
the enabled nodes are alternately of even and odd depth (Figure 1). The binary
edge labeling is the labeling where an edge between nodes with the same S value
is labeled 0 and other edges are labeled 1.

Definition 2. Given a configuration tree C, we let DTC , the difference tree, be
the tree in which every node v is represented by a two-bit string DTC(v) = b0b1
such that:

b0 =
1, if pv = ⊥ or the link (pv, v) is labeled 1
0 otherwise

b1 =
1, if ∃w ∈ Dv s.t. the link (v, w) is labeled 1
0 otherwise

If C is understood, write DT instead of DTC . Given a binary edge labeling and
the S-value of some node, the corresponding configuration tree C is uniquely
defined. Given a difference tree DT and the S-value of some node, the corre-
sponding configuration tree C is uniquely defined.

For example, for the configuration in Figure 1(a), the binary edge labeling is
given in Figure 2(a) and the difference tree is given in Figure 2(b).

A

A
0

1 1 1

B
B

A

B

B B

0 0

0

10

00
01

10
10 10

00 00

(a) Binary edge labeling (b) Difference tree

Fig. 2. Some configuration

Given any configuration tree C, a node v is enabled if and only if DTC(v) = 10.

Property 1. For any configuration tree C and for any node v, if node v is enabled
to execute, then no neighbor of v is enabled.

Property 2. (i) In any configuration tree C there exists at least one enabled node.
(ii) For any node v, if node v is enabled and is selected to execute, then after

the execution is completed, its actions are disabled.

Given a node v and its parent pv where S.pv = a and S.v = b, the notation
“a ← b” denotes that state b does not block state a from being enabled (for pv

Self-stabilizing Space Optimal Synchronization Algorithms on Trees 339

to be enabled in state a, S.v must be b). The notation a → b indicates that state
a does not block state b from being enabled (for v to be enabled in state b, S.pv

needs to be a).
We use the above notation to define layers as follows. We start defining the

layers of nodes from node R and going down the tree until we reach the leaf
nodes. Node R is placed on some layer. If node v is an internal node on a certain
layer, then for any child node w ∈ Dv:

– if S.v → S.w then w is one layer higher
– if S.v ← S.w then w is one layer lower.

We can represent a configuration tree using this notation in a level ordering,
where the peak nodes are the enabled nodes. The binary edge labeling is consis-
tent with the orientation of the arrows between a node and its parent, and a node
and its children (1 for ↗, 0 for ↖). For example, the sawtooth-like arrangement
of the configuration tree in Figure 3(a) is given in Figure 3(b).

0
1

0

1

A

A
B

B

A

A A

A

0

B

root R

1

0 1

root R

0
B

1
A

1 B

00
AA

1
A

1 B

0
A

A A

A

B

A

A A

B

A

B

0

2

1

2

3

3

3

4

5

(a) A configuration tree (b) Layered arrangement (c) Delay values

Fig. 3. Calculating the delay values

Definition 3 (Node Delay). For each node v we define delay[v] to be a non-
negative integer characterized as follows: (i) there exists at least one node whose
delay is 0, and (ii) if delay[u] = d and node v is a neighbor of node u such that
S.v → S.u then delay[v] = delay[u] + 1, and (iii) if S.v ← S.u then delay[v] =
delay[u]− 1.

The delay of some node is in fact the layer on which the node is arranged in the
layered arrangement.

The delay values of the nodes in Figure 3(a) are given in Figure 3(c). An
enabled node has all the adjacent arrows pointing towards it. For a tree of height
h, for any node v, delay[v] is a value between 0 and 2h. The number of rounds
that a node waits before it becomes enabled cannot exceed its delay value.

Let d0 be the array of the delay values in the starting configuration and D0
be the maximal value of d0 over all nodes: 1 ≤ D0 ≤ 2h.

Lemma 1. For any node v and any value t > 0 node v executes t times within
the first d0[v] + 2t− 1 rounds.

340 D. Bein, A.K. Datta, and L.L. Larmore

Proof. We define the predicate P(q) as follows: For any node v, for any t ≥ 1,
node v executes t times within the first q rounds if q ≥ d0[v] + 2t− 1.
For any q ≥ 1, Predicate P(q) holds (induction on q).

Corollary 1. For any node v and any value t > 0 node v executes t times within
the first 2h + 2t− 1 rounds.

Proof. Follows from Lemma 1: for any node v, 2h ≥ d0[v].

3.2 The Unfair Distributed Daemon

In this section we show that Algorithm SSDST works under the unfair dis-
tributed daemon. A sufficient condition to prove that a certain algorithm works
under the unfair daemon is to show that a continuously enabled node which is
never selected eventually becomes the only enabled node. If a node v is enabled
to execute but not selected by the distributed daemon, it remains enabled. Since
the unfair daemon must select a non-empty subset of the enabled nodes in every
computation step, it will be forced to select v (Property 3).

Property 3. If a node v is enabled to execute but is not selected by the daemon,
it remains enabled until it gets selected. Every continuously enabled node will
be eventually selected by the unfair distributed daemon.

4 Self-stabilizing Local Mutual Exclusion Algorithm
on Rooted Trees LMET

Each node holds three variables: variable S that takes values in the set {A,B},
a pointer i ∈ 0..|Dv| − 1 to some child of v, and a Boolean variable request that
is true whenever the process requests access to its critical section CS. Thus, the
total memory requirement of node v is 2 + �log (deg)� bits per node (deg is the
node degree).

For some node v, let S = S.v and request = request.v. The predicate
check(v, s) is defined in Section 3.

A protocol solves the local mutual exclusion problem if any configuration of the
system running the protocol has two properties ([3]): (i) safety - no two neighbor-
ing nodes can be simultaneously enabled to execute their critical sections (CS),
and (ii) liveness - a node requesting to execute its CS will eventually do so.

Algorithm 4.1. Algorithm LMET
Actions for any node v
ABB S = B ∧ check(pv, A) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], B) −→

if request then CS; request = false
S = A

BAA S = A ∧ check(pv, B) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], A) −→
if request then CS; request = false
S = B

Self-stabilizing Space Optimal Synchronization Algorithms on Trees 341

Property 1 shows that LMET has the safety property. Lemma 1 shows that
LMET has the liveness property.

5 Self-stabilizing Min-heap Algorithms for a Rooted Tree

In this section we present two algorithms for min-heap problem in a rooted
tree: A HEAP (Section 5.1), and HEAP (Section 5.2). Algorithm A HEAP
is implemented in an abstract model. Algorithm HEAP is implemented in the
shared-memory model.

Let x and y be two values to be swapped. Swapping can be done in three
steps without using an extra variable, as follows:

1. x = x + y 2. y = x− y 3. x = x− y

Alternatively, we could use “⊕, bit-wise exclusive or, instead of addition and
subtraction.

5.1 Heap Construction in a Rooted Tree

Algorithm A HEAP (Figure 5.1) is a particular case of Algorithm SSDST , in
which the macro execute(v) is replaced by the macro heap(v) that sets IV.v to
the minimal value among itself and its children’s IV -values.

Consider an abstract model, different from the shared-memory model, in
which a node v, in order to have the heap property locally, can modify the vari-
able IV.J of some child J . Intuitively, since by executing Algorithm SSDST ,
local mutual exclusion is satisfied in any configuration (see Property 1), a node
can synchronize the swap of values with some child. We assume for now that the
swap is done in an atomic step (macro heap), and we show in Section 5.2 how
this is done in the shared-memory model.

Each node, besides the variable IV to be sorted, holds a variable S ∈ {A,B},
a pointer i ∈ 0 . . . |Dv| − 1, and a variable j ∈ {−1, 0, . . . , |Dv| − 1} that either
points to some child of node v that holds a value smaller than node v, or has
the value −1 if either node v is a leaf or all its children have larger values. Thus,
the total memory requirement of node v is 1 + 2�log (deg)� bits per node (deg is
the node degree).

For some node v, let S = S.v and IV = IV.v. Predicate check(v, s) is defined
in Section 3. If all children of v hold values greater than or equal to IV , then
min(v) returns the default value −1. Otherwise, min(v) returns the index in the
array Dv of a child of node v which holds the minimum value.

The guards C1-C3 “correct” the variable S of the node to some value in the
set {A,B} (a result of a fault or arbitrary initialization).

5.2 Heap Construction in the Shared-Memory Model

In Algorithm HEAP (Figure 5.2), each node v holds, besides the variable IV
to be sorted, a variable S ∈ {A,B,X, Y }, a pointer i, a variable j, a variable J
which is a pointer to some child, and a variable tmpS ∈ {A,B}. Variable tmpS

342 D. Bein, A.K. Datta, and L.L. Larmore

Algorithm 5.1. S-S. Min-Heap in a Rooted Tree in the Abstract Model
A HEAP
Macro heap(v) ::
j = min(v)
if (j ≥ 0) then J = Dv[j]; IV.v=IV.v+IV.J ; IV.J=IV.v- IV.J ; IV.v=IV.v-IV.J

Function min(v) ::
if Dv = ⊥ then return -1
else

j = 0
forall l ∈ {0, |Dv| − 1} do if (IV.Dv[j] > IV.Dv[l]) then j = l
if (IV.Dv[j] < IV.v) then return j else return −1

Heap actions for any node v

ABB S = B ∧ check(pv, A) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], B) −→ heap(v); S = A
BAA S = A ∧ check(pv, B) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], A) −→ heap(v); S = B

stores the value of S temporarily while the swap is performed between node v
and its child J . Thus, the total memory requirement of node v is 3+2�log (deg)�
bits per node (deg is the node degree).

For any node v, let S = S.v, IV = IV.v, J = J.v, tmpS = tmpS.v, Sp =
S.pv, Jp = J.pv, IVp = IV.pv, SJ = S.(J.v), and IVj = IV.(J.v). The macro
heap′(v, value) executes the first step of swapping between node v and the child
J = Dv[j], and the value value to be given to variable S.v after the swap is
performed is stored in variable tmpS.v.

Predicate check(v, s) has been defined in Section3. Function min(v) is defined
in Section 5.1.

In order to perform the swap, nodes v and Jv must change their S-value (from
either A or B to either X or Y). Since node v will change its S-value after the
swap, the value to-be for S.v and the value of SJ are stored in variables tmpS.v,
respectively tmpS.J , by each node. Node v changes its S-value to X (macro
heap′) and node J changes its S-value to Y (Guard S1). The swap started by
node v already in macro heap′ is continued by node J in Guard S1, and finished
by node v in Guard S2 (where also node v restores its S). Once the swap is
done, the S-values are restored back to A or B, node v in Guard S2, node J in
Guard S3.

In Figure 4, nodes v and J swap their IV -values (a state of is a triple
S; IV ; tmpS).

heap’(v,B)

S1(w)

v

w

A;5;_

A;1;_

X;6;B

Y;5;A

S2(v) B;1;_

S3(w) A;5;_

Fig. 4. Nodes v and J swap their IV values

Self-stabilizing Space Optimal Synchronization Algorithms on Trees 343

Algorithm 5.2. Self-stabilizing Heap in a Rooted Tree in the Shared-Memory
Model HEAP
Macro heap′(v, tS) ::
j = min(v)
if (j ≥ 0) then J = Dv[j]; tmpS.v = tS; IV.v = IV.v + IV.J ; S.v = X

Heap actions for any node v

ABB S = B ∧ check(pv, A) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], B) −→ heap′(v, A)
BAA S = A ∧ check(pv, B) ∧ ∀i, 0 ≤ i < |Dv | : check(Dv[i], A) −→ heap′(v, B)

Synchronizing actions for any node v

S1 S ∈ {A, B} ∧ pv �= ⊥ ∧ Sp = X ∧ Jp = v −→ IV =IVp-IV ; tmpS = S ; S = Y
S2 S = X ∧ J �= ⊥ ∧ SJ = Y −→ IV = IV − IVJ ; S = tmpS
S3 S = Y ∧ pv �= ⊥ ∧ Sp �= X −→ S = tmpS
C1 S = Y ∧ pv = ⊥ −→ S = tmpS
C2 S = X ∧ Dv = ⊥ −→ S = tmpS
C3 S = X ∧ Dv �= ⊥ ∧ ∃w ∈ Dv : S.w = X −→ S = tmpS

5.3 Proof of Correctness of A HEAP
The root node R has level 1. Besides local mutual exclusion, heap-building re-
quires synchronization between neighboring nodes. Each node has a local clock
measuring pseudo-time such that the comparison between the node and its child
with the minimal IV value (and eventual swapping) is done when the two nodes
have the same pseudo-time values.

For each configuration, the pseudo-time function Ψ is defined from the node
to non-negative integers. Ψ is initially computed from the delay values, and is
updated at each step.

Ψ0, the pseudo-time at the initial configuration, is defined as follows:

(i) given node v and its parent pv, Ψ0(v) = d0[v]+d0[pv]−1
2 , and

(ii) Ψ0(R) = max{Ψ0(v), v ∈ childR}, where R is the root.

For example, given the configuration in Figure 3(c), the Ψ0 values are given
in Figure 5(a).

We observe that if a node v is enabled, then Ψ0(v) = Ψ0(w) for all w ∈ Dv.

Definition 4. Let Ψj and Ψj+1 be the pseudo-time functions for two consecutive
configurations in some execution Cj 0→ Cj+1. Then Ψj+1 is computed as follows:

- if node v has executed during this step then Ψj(v) and Ψj(w) for all children
w ∈ Dv increase by 1: Ψj+1(v) = Ψj(v) + 1 and Ψj+1(w) = Ψj(w) + 1.
- if any child of the root R executes, Ψ(R) is updated if necessary, i.e., Ψj+1(R) =
maxw∈childR

{Ψj+1(w)}
- all other nodes u keep their current pseudo-time values, i.e., Ψj+1(u) = Ψj(u).

344 D. Bein, A.K. Datta, and L.L. Larmore

A

A

B

A

A A

B

A

B

0

1

2

3

4

1

2

2

4

root A

A

B

A

A A

B

B

1

2

3

4 2

4

1

2

1 B

root

(a) Start configuration (b) After one step

Fig. 5. Pseudo-time values

For example, given Ψ0 from Figure 5(a), if the marked node executes, then the
next pseudo-time values are the ones in Figure 5(b).

The following relations hold:

(i) Ψ0(R) ≤ h
(ii) Ψ0(v) ≤ i + h− 1 for v �= R, where i = level(v).

Thus Ψ0(v) ≤ 2h− 1, for any node v.

Let E(v, t) be the predicate: “Node v is enabled if Ψ(v) = t.”

Observation 1. (i) If E(v, t) is true then E(v, t+2k+1) is false and E(v, t+2k)
is true, for all k ≥ 0.

(ii) If E(v, t) is false and t ≥ Ψ0(v) then E(v, t+2k+1) is true and E(v, t+2k)
is false, for all k ≥ 0.

Property 4. Given a starting configuration C0, and Cj some configuration after
Algorithm SSDST has executed j steps, then the number of rounds elapsed is
q ≤ min{∀ nodes v, Ψj(v)}.

Proof. A round has elapsed if all nodes enabled in the first configuration of the
round have increased their Ψ values by at least one unit; thus the minimum value
among all nodes has increased at least by one.

We assume that the values to be placed in min-heap order are distinct. (If nec-
essary, we can add infinitesimal tie-breakers to the values.) Thus they can be
arranged in a strict sorted order: r1 < r2 < . . . < rn, and we say that the value
ri has rank i.

Definition 5. For any given configuration C of Algorithm A HEAP, let li be
the level of the node that holds the value ri; we call the function W (C) =

∑n
i=1 lii

the weighted path length of the configuration C.

The function W is strictly positive. It increases when a swap is executed between
some node v that holds the value ri and some child w ∈ Dv that holds the value
rj , where ri < rj . The value by which W increases is j − i.

Self-stabilizing Space Optimal Synchronization Algorithms on Trees 345

By Lemma 1, if the heap property does not hold at some node v, node v
will execute a swap in finitely many rounds. Since W (C) is an increasing integer
function bounded by hn, it must converge in finitely many steps. Thus:

Observation 2. Function W converges in finitely many of rounds. Let C∗ be
the configuration after convergence. Then C∗ has the heap property.

Let Li be the level of the node that holds the value ri in configuration C∗. Array
pos is defined as follows.

Definition 6. Given j, 1 ≤ j ≤ n, and some t ≥ 0, the value pos[j, t] represents
the level of node v that holds the value rj when Ψ(v) = t.

If initially, the element of ri is held by the node v situated at level li and Ψ(v) =
t0, then we assume that for any t, 0 ≤ t ≤ t0, pos[j, t] = pos[j, t0].

First, we show that once the Ψ value of some node is t, the level pos[j, t] of
the element rj is within a certain range (Property 5). In order to show that
Algorithm A HEAP arranges the values as a heap, we show that after 7h/2− 4
rounds, pos[j, t] = Lj for all j (Lemma 2).

Property 5. For any t ≥ 0 and for any j, 1 ≤ j ≤ n,

min{Lj, Q[j, t]} ≤ pos[j, t] ≤ max{Lj, P [j, t]}

where P [j, t] = −t+ 2Lj +3h− 5 and Q[j, t] = t+ 2Lj + 3− 4h, for any j and t.

Proof. Consider the predicates:

P(t) : for any j ∈ 1 . . . n, pos[j, t] ≤ max{Lj, P [j, t]}
Q(t) : for any j ∈ 1 . . . n, pos[j, t] ≥ min{Lj, Q[j, t]}

It can be shown by induction on t that P(t) holds. The proof that Q(t) holds is
similar.

Lemma 2. Algorithms A HEAP arranges the values into min-heap order in
7h/2-4 rounds; thus the stabilization time is O(h) rounds.

Proof. Follows from Property 5.

5.4 Reduction of Algorithm HEAP to A HEAP
In this section we first show that Algorithm HEAP reduces to Algorithm
A HEAP . We can then conclude that, starting from an arbitrary configura-
tion, in at most 4(7h/2− 4) rounds, Algorithm HEAP arranges the values into
min-heap order (Lemma 5).

Definition 7 (Reduction). Given two different models of communication M
and M′, an algorithm A in the model M can be reduced to another algorithm
A′ in the model M′ if there exists a one-to-many relation R from the set of
system configurations in the model M to the set of the system configurations in
the model M′ such that the following conditions are true:

346 D. Bein, A.K. Datta, and L.L. Larmore

i) For each configuration of Algorithm A in the model M there exists at least
one configuration of Algorithm A′ in the model M′.

ii) (Lifting property) Given C1 and C2 two configurations of Algorithm A in
the model M such that C1 −→ C2 is an execution step of Algorithm A, for
any configuration C′

1 ∈ R(C1), if Algorithm A′ in the model M′ starts in C′
1

there exists at least one execution path that starts in C′
1 and ends in some

configuration C′
2 ∈ R(C2).

If A accomplishes a task in the model M and A reduces to A′, then by
Definition 7, A′ accomplishes the same task in the model M′.

We now show that Algorithm HEAP reduces to Algorithm A HEAP . Let
Sv = (sv, xv, Jv) be the set of all variables of node v in order (S, IV, J) used by
Algorithm A HEAP in the abstract model. Let Stv

v = (sv, xv, tv, Jv) be the set
of all variables of node v in order (S, IV, tmpS, J) used by Algorithm HEAP in
the shared-memory model.

Then R is defined as follows:

R(S1, . . . Sn) = {(St1
1 , . . . Stn

n), ti ∈ {A,B}, ∀i, 1 ≤ i ≤ n}

For each state Si of some configuration C1 of Algorithm A HEAP in the abstract
model, 1 ≤ i ≤ n, there exists two possible states SA

i and SB
i in the shared-

memory model. Thus for each configuration C1 there exists 2n configurations in
R(C1) of Algorithm HEAP in the shared-memory model, thus Condition (i) of
Definition 7 is satisfied. We are left to show that Condition (ii) of Definition 7
is satisfied (Lemma 3).

Lemma 3. Given C1 and C2, two configurations of Algorithm A HEAP in the
abstract model, such that C1 −→ C2 is an execution step of Algorithm A HEAP;
for any configuration C′

1 ∈ R(C1), if Algorithm HEAP in the shared-memory
model starts in C′

1 there exists at least one execution path that starts in C′
1 and

ends in some configuration C′
2 ∈ R(C2).

Proof. We give a sketch of the proof. A node state contains all the variables
stored at that node. The system configuration contains the states of all the
nodes. An execution step is a transition from one configuration to another. We
break the system configuration into a number of chunks. A chunk is a set of a
node and its descendants in the tree such that the first node in each chunk is
enabled, and all the descendants of the first node reachable by a path of disabled
nodes are added to the chunk. We build the set of chunks starting from the root
in depth-first-search (DFS) order. If the root node is currently disabled, then
the root and all nodes reachable from the root reachable by a path of disabled
nodes are not part of any chunk. We call the set of those nodes the null chunk.

Given a configuration, there is a unique way to break it into chunks. An
execution step of Algorithm A HEAP in the abstract model in one chunk affects
only the nodes’ states in that chunk.

From Property 1 we know that if a non-leaf node is enabled, its children are
disabled. So, except for the leaf nodes, every chunk contains at least two nodes.

Self-stabilizing Space Optimal Synchronization Algorithms on Trees 347

If the chunk contains at least two nodes, then the last node in the chunk is
disabled, so it cannot affect the state of the first node of other chunks.

Instead of considering an execution step between global configurations, we
consider an execution step between the chunks of a global configuration.

If the starting state of the node is either A or B, then the value to be sorted is
its initial value. If some node starting state is either X or Y , then it is possible
for some of the three steps of the swap to be applied (see Section 5) and the
initial value of that node to be modified accordingly, and that modified value
to be sorted. This drawback is caused by arbitrary initialization, and would be
encountered even if we had used an extra variable for swapping.

We recall that node J.v is the child of node v that holds the minimal IV value
among all node v’s children. The variable J.v is ⊥ if and only if node v is a leaf
node (child.v = ⊥).

For any node v such that Sv = X , either Sv remains X and then the node J.v
will have its S equal to Y in at most three rounds (by executing Action S1), or
v changes its S to A or B in at most one round.

For any node v such that S.v = X ∧ S.(J.v) = Y then IV.v gets the value
IV.(J.v) and then node v changes its Sv to A or B in at most one round. Node
J.v had already stored in IV.(J.v) the old value of IV.v (by executing Action
S1) and will restore its SJ.v from Y to either A or B (depending on the value of
tmpS) in at most one round. We can then conclude that if S.v is either X or Y ,
then in at most four rounds S.v is either A or B (Lemma 4).

Lemma 4. For any node v, if S.v ∈ {X,Y }, in at most four rounds S.v becomes
either A or B.

Lemma 5. Starting from an arbitrary configuration, in at most 4(7h/2 − 4)
rounds, Algorithm HEAP arranges the n values in min-heap order.

Proof. From Lemma 4, each swap takes at most 4 rounds. From Lemma 2, if a
swap takes at most 1 round, then heapification takes at most 7h/2 − 4 rounds.
Since the swap takes at most 4 rounds, we obtain a total of at most 14h − 16
rounds.

6 Conclusion

In this paper, we present the first self-stabilizing algorithm for simultaneously
activating non-adjacent processes in a rooted tree, called SSDST . The algorithm
is optimal in the space complexity, and asymptotically optimal in the time com-
plexity. We then give two applications of the proposed algorithm for rooted trees,
a time and space optimal solution to the local mutual exclusion problem (Algo-
rithm LMET) and a space and (asymptotically) time optimal solution to the
min-heap problem (Algorithm HEAP).

All algorithms are self-stabilizing and uniform, and they work under the unfair
distributed daemon.

348 D. Bein, A.K. Datta, and L.L. Larmore

In proving the time complexity of heap-building, we use the notion of pseudo-
time. Pseudo-time is similar to logical time introduced by Lamport [12].

We expect that Algorithm SSDST can be used to obtain optimal space solu-
tions for other problems in a rooted tree. For example, for broadcasting m mes-
sages, a solution based on Algorithm SSDST stabilizes in at most 2h + 2m− 5
rounds (the root node executes m times).

References

1. L. Alima. Self-stabilizing max-heap. Proceedings of the ICDCS Workshop on Self-
stabilizing Systems, pages 94–101, 1999.

2. L. Alima, J. Beauquier, A. Datta, and S. Tixeuil. Self-stabilization with global
rooted synchronizers. Proceedings of the 18-th ICDCS, pages 102–109, 1998.

3. A. Arora and M. Nesterenko. Stabilization-preserving atomicity refinement. Jour-
nal of Parallel and Distributed Computing, 62:766–791, 2002.

4. D. Bein, A. Datta, and V. Villain. Snap-stabilizing optimal binary-search-tree.
Proceedings of the 7-th International Symposium on Self-Stabilizing Systems, 2005.

5. B. Bourgon and A. Datta. A self-stabilizing distributed heap maintenance protocol.
Proceedings of the Second Workshop on Self-stabilizing Systems, 1995.

6. A. Bui, A. Datta, F. Petit, and V. Villain. State-optimal snap-stabilizing PIF in
tree networks. In Proceedings of the Third Workshop on Self-Stabilizing Systems,
pages 78–85. IEEE Computer Society, 1999.

7. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms
(second edition). MIT Press, 2001.

8. E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the Association of the Computing Machinery, 17:643–644, 1974.

9. S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems, 8(4):424–440, 1997.

10. T. Herman and T. Masuzawa. Available stabilizing heaps. Information Processing
Letters, 77:115–121, 2001.

11. C. Johnen, L. Alima, A. Datta, and S. Tixeuil. Self-stabilizing neighborhood syn-
chronizer in tree networks. Parallel Processing Letters, 12(3 & 4):327–340, 2002.

12. L. Lamport. Time, clocks and the ordering of events in a distributed systems.
Communications of the ACM, 21:558–565, 1978.

13. S. Ukena, M. Hasegawa, Y. Katayama, T. Masuzawa, and H. Fujiwara. A self-
stabilizing max-heap protocol in tree networks. Electronics and Communications
in Japan, Part III: Fundamental Electronic Science (English translation of Denshi
Tsushin Gakkai Ronbunshi), 86(9):63–72, 2003.

Distance-k Information in Self-stabilizing
Algorithms�

Wayne Goddard1, Stephen T. Hedetniemi1,
David P. Jacobs1, and Vilmar Trevisan2

1 Department of Computer Science, Clemson University, SC 29634 USA
{goddard, hedet, dpj}@cs.clemson.edu

2 Instituto de Matemática, UFRGS, Porto Alegre, Brazil
trevisan@mat.ufrgs.br

Abstract. Many graph problems seem to require knowledge that
extends beyond the immediate neighbors of a node. The usual self-
stabilizing model only allows for nodes to make decisions based on the
states of their immediate neighbors. We provide a general polynomial
transformation for constructing self-stabilizing algorithms which utilize
distance-k knowledge, with a slowdown of nO(log k). Our main application
is a polynomial-time self-stabilizing algorithm for finding maximal irre-
dundant sets, a problem which seems to require distance-4 information.
We also show how to find maximal k-packings in polynomial-time. Our
techniques extend results in a recent paper by Gairing et al. for achieving
distance-two information.

1 Introduction

Self-stabilization, introduced by Dijkstra [1], is the most inclusive approach to
fault tolerance in distributed systems. In a self-stabilizing algorithm, each node
maintains its local variables, and can make decisions based on the correct knowl-
edge of its neighbors’ states. In a self-stabilizing algorithm, a node may change
its local state by making a move (an action which causes a change of local state).
Algorithms are given as a set of rules of the form “if p(i) then M”, where p(i)
is a predicate and M is a move. A node i becomes privileged if p(i) is true.
When a node becomes privileged, it may execute the corresponding move. We
assume a serial model in which no two nodes move simultaneously. A central
daemon selects, among all privileged nodes, the next node to move. If two or
more nodes are privileged, we cannot predict which node will move next. In this
paper we say that an algorithm stabilizes if no node is privileged. An execution
will be represented as a sequence of moves M1,M2, . . ., in which Ms denotes
the s-th move. One can transform the algorithm to work under other daemons,
using established techniques. We refer the reader to [2] for a general treatment
of self-stabilizing algorithms.

� Research supported by: NSF grant CCR-0222648; CNPq grant 453991/2005-0; and
FAPERGS grant 05/2024.1.

P. Flocchini and L. G ↪asieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 349–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

350 W. Goddard et al.

A distributed system can be modeled with an undirected graph G = (V,E),
where V is a set of n nodes and E is a set of m edges. If i ∈ V , then N(i),
its open neighborhood, denotes the set of nodes to which i is adjacent, and N [i]
= N(i) ∪ {i} denotes its closed neighborhood. Every node j ∈ N(i) is called a
neighbor of node i. Throughout this paper we assume G is connected and n > 1.

In the usual self-stabilizing model, each node i can read only the variables of
its neighbors, that is, those nodes which are a distance of one from i. In this
paper, we show how to obtain self-stabilizing algorithms in which a node i can
effectively read the contents of variables which are within distance k of i, for
any fixed k ≥ 1, extending results in [3] for achieving distance-two information.
This will result in a slowdown of nO(log k). In Section 3, we obtain a polynomial
time self-stabilizing algorithm for finding a maximal irredundant set, a problem
which requires distance-4 information.

We assume throughout this paper that all nodes have a unique integer ID.
Sometimes we do not distinguish between a node i and its ID. For each k ≥ 1,
we let Nk[i] denote the set of nodes whose distance from i is at most k, and we
let Nk(i) = Nk[i]− {i}. When k = 1, these sets correspond, respectively, to the
closed and open neighborhoods of i.

A k-packing in a graph G = (V,E) is a set S ⊆ V of nodes such that for every
pair of distinct nodes, u, v ∈ S, their minimum distance d(u, v) > k. A 1-packing
is, therefore, a set S having the property that no two nodes in S are adjacent
(d(u, v) > 1). This is normally called an independent set.

Algorithm 1.1 is a well-known and simple self-stabilizing algorithm for finding
the characteristic function of a maximal independent set. It is easy to show that
this algorithm stabilizes in at most 2n moves [6] in the distance-1 model.

Algorithm 1.1. Maximal independent set

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N(i))(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N(i))(f(j) = 1)
then f(i) = 0

2 Distance-k problems

In [3], it was observed that certain algorithmic problems can be solved more easily
on an extended model in which each node can instantly see all state information
of nodes that are within distance two. Having done this, the extended model can
be simulated using a conventional self-stabilizing algorithm, provided all nodes
have unique IDs. In this paper we show how arbitrary distances greater than
two can be achieved. Our idea is to use the technique in [3] recursively.

We now define a class of self-stabilizing algorithm models. For each k ≥ 1, in the
distance-k self-stabilizing model, each node i can instantly see all state information

Distance-k Information in Self-stabilizing Algorithms 351

of all nodes in Nk[i]. We assume that node i can read the ID of j and its state
information f(j) for each j ∈ Nk[i]. For brevity, we refer to this as the distance-k
model. The distance-1 model is the usual self-stabilizing algorithmic model. It will
be convenient to assume for now that k is a power of two.

Now let k = 4, and consider Algorithm 2.1, which assumes the distance-4
model. If Algorithm 2.1 stabilizes, the set S = {i | f(i) = 1} is a maximal
4-packing. For if no node is privileged to LEAVE, then S must be a 4-packing,
and if no node can ENTER, the 4-packing is maximal. Moreover, the algorithm
must always stabilize. Indeed, once a node makes an ENTER move, no node in
N4(i) can ENTER, and so no node in N4[i] can move again. If a node makes a
LEAVE move, its next move must be an ENTER, after which it cannot move.
It follows that

Lemma 1. The distance-4 Algorithm 2.1 finds a maximal 4-packing in at most
2n moves.

Algorithm 2.1. Maximal 4-packing in distance 4

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N4(i))(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N4(i))(f(j) = 1)
then f(i) = 0

Assume now that we have some distance-2k algorithm S2k, such as Algorithm 2.1,
in which every node has a local variable f . We now will describe a way to simulate
S2k using a distance-k algorithm Sk. We will see that the running times of Sk

and S2k are related to within a factor in O(n3). In Algorithm Sk, each node i
has three local variables:

– The variable f stores the state of node i with respect to S2k, that is, the
value of S2k’s local variable.

– The variable σ stores a local copy of f(j) for each j ∈ Nk(i). We may assume
that σ(i) is a list of pairs of the form (j, fj), where j is an ID of a node in
Nk(i). We say that σ(i) is correct if for all j ∈ Nk(i), f(j) = fj.

– A pointer stores the ID of a member of Nk[i], or has the value NULL. We
write i → j, i → i, and i → NULL to mean, respectively, that i points to j,
i points to itself, and i’s pointer is NULL.

At each step in the execution of Sk, the values f(i) represent a state with
respect to S2k. A node i in the distance-k model can read directly only state
information of nodes in Nk(i). However if j′ ∈ N2k(i), then j′ ∈ Nk(j) for some
j ∈ Nk[i]. It follows that in the distance-k model, by reading σ(j), node i has a
view of f(j′). However, it is possible for this view to be incorrect.

During the execution of Sk, we say that node i is S2k-alive if it is privileged
for S2k, under the assumption that its view of {(j, f(j)) | j ∈ N2k(i)} is correct.

352 W. Goddard et al.

We define

minNk[i] = min{j | j ∈ Nk[i] ∧ j → j}, where min{∅} = NULL .

That is, minNk[i] is the smallest ID, within distance k of i, which is pointing to
itself; minNk[i] is defined to be NULL if no member of Nk[i] points to itself.

Algorithm Sk is displayed as Algorithm 2.2. When k = 1, it is exactly the
algorithm described in [3].

Algorithm 2.2. Sk

comment: Simulates distance-2k algorithm S2k

local variables:f, σ,→
UPDATE-σ: if σ(i) is incorrect
then update σ(i)

ASK: if i is S2k-alive ∧ (∀j ∈ Nk[i] : j → NULL) ∧ σ(i) is correct
then i → i

RESET: if i �→ minNk[i] ∧ σ(i) is correct
then i → minNk[i]

CHANGE: if ∀j ∈ Nk[i] : j → i ∧ σ(i) is correct

then
{

if i is S2k-alive, then update f(i)
i → NULL

Lemma 2. If Algorithm Sk stabilizes, then all pointers are null, σ(i) is correct
for all i, and no node is S2k-privileged.

Proof. Assume the algorithm has stabilized. Then no node points to itself, for
otherwise the node i pointing to itself having the smallest ID would have all
members of Nk[i] pointing to it, and i would be privileged for a CHANGE move.
Since no node points to itself, minNk[i] is NULL, and therefore all pointers are
NULL. All σ(i) are correct since no node is privileged for an UPDATE-σ. No
node is S2k-privileged, for otherwise it would be privileged to execute ASK.

Lemma 3. While i is pointing to itself, no node in Nk(i) can execute an ASK
or CHANGE.

Proof. For j ∈ Nk(i) to execute ASK, i must be NULL. For j to execute
CHANGE, i must be pointing to j.

Lemma 4. If i makes an ASK move, its next move must be a CHANGE move.

Proof. When i makes an ASK move, all members of Nk[i] are NULL. Suppose
its next move is a RESET. Then this means that some j ∈ Nk(i) is pointing
to itself. But this is impossible because i → i. Nor can its next move be an
UPDATE-σ, because at the time of the ASK move, σ(i) was correct. But this
can’t change by Lemma 3, nor can its next move be another ASK move because
i → i.

Distance-k Information in Self-stabilizing Algorithms 353

Let us say that a move by i is correct if σ(j) is correct for all j ∈ Nk(i), and
incorrect otherwise.

Lemma 5. If node i makes an ASK move, then its next CHANGE move is
correct.

Proof. Let j be some member of Nk[i]. During the interval between the ASK
and CHANGE moves, j must have changed its pointer from NULL to i, at which
time σ(j) was correct, and there must have been a last time during this interval
when this occurred. But σ(j) must have remained correct, because no member
of Nk[j] could have performed a CHANGE while j was pointing to i.

Lemma 6. If a node i makes a CHANGE move, then its next ASK move is
correct.

Proof. During this interval, all j ∈ Nk[i] changed their pointers from i to NULL.
There is a last time at which j became NULL, prior to the ASK move. At this
time, σ(j) is correct, and it must remain so up until the ASK move, since no
member of Nk[j] could have performed a CHANGE move as long as j’s pointer
is NULL.

Lemma 7. Between any two RESET moves made by i, some some j ∈ Nk[i]
must execute an ASK or a CHANGE.

Proof. This is clear.

For convenience, we define a REAL-CHANGE move as a CHANGE move in
which the variable f is assigned. We let dk

i =|Nk(i) |.

Lemma 8. Consider an interval without a REAL-CHANGE move. Then each
node i can make:

1. at most one UPDATE-σ move;
2. at most one ASK move;
3. at most one CHANGE move; and
4. O(dk

i) RESET moves.

Proof. 8.1 is obvious. To see 8.2, suppose i makes an ASK move. By Lemma 4,
its next move must be a CHANGE move. Then by Lemma 5, the CHANGE move
is correct. Since this is not a REAL-CHANGE, i is not S2k-privileged. Since no
other REAL-CHANGE moves occur, i cannot become S2k-alive again to execute
another ASK move. To see 8.3, suppose i makes a CHANGE move, and then
makes an ASK move. By Lemma 6, the ASK move is correct. Since no REAL-
CHANGE can take place, the σ’s remain the same, and if i were to execute
another CHANGE move, it would have to be a REAL-CHANGE. Finally, 8.4
follows from Lemma 7.

Lemma 9. There are at most O(n2) moves during an interval without REAL-
CHANGE moves.

354 W. Goddard et al.

Proof. This follows immediately from Lemma 8.

Lemma 10. Each node can make at most one incorrect REAL-CHANGE move.

Proof. An incorrect REAL-CHANGE move can only occur as a node’s first
CHANGE move, because subsequent CHANGE moves will be preceded by an
ASK move, which by Lemma 5, must be correct.

Lemma 11. Let (Mi) be a sequence of moves made by Algorithm 2.2 dur-
ing which no incorrect REAL-CHANGE occurs. Then the subsequence (M ′

i) of
REAL-CHANGE moves is a valid computation of S2k.

Proof. This is clear.

Lemma 12. Suppose Algorithm S2k can execute at most A moves. Then in any
interval without an incorrect REAL-CHANGE move, Algorithm Sk can execute
at most O(An2) moves.

Proof. By Lemma 11, there can be at most A REAL-CHANGE moves, and by
Lemma 9, between any two REAL-CHANGE moves, there are at most O(n2)
moves.

Theorem 1. In a network with n nodes, a distance-2k algorithm S2k that sta-
bilizes within A moves can be implemented with a distance-k algorithm Sk that
stabilizes in O(An3) moves.

Proof. By Lemma 10 there can be at most n incorrect REAL-CHANGE moves.
By Lemma 12, during the intervals without incorrect moves, there can be at
most O(An2) moves. Finally by Lemma 2, the algorithm is correct.

By repeating Theorem 1, we obtain

Theorem 2. In a network with n nodes, a distance-k algorithm Sk which sta-
bilizes in A moves can be implemented in the distance-1 model by an algorithm
that stabilizes in O(An3log2(k)�) moves.

Corollary 1. There is a self-stabilizing algorithm to find a maximal 4-packing
that stabilizes in O(n7)moves.

Proof. This follows by Lemma 1 and Theorem 2.

When we translate, say, a distance-4 algorithm S4 to a distance-2 algorithm S2,
each node will contain the original variable f used in S4 in addition to a pointer
and a σ. Note that when S2 is then translated to a distance-1 algorithm S1,
each node will contain these three variables in addition to another pointer and
another σ.

A maximal 4-packing can be found by using a single boolean variable in the
distance-4 model. However, to find a maximal 3-packing in the distance-4 model,
nodes must know the distances of their neighbors. If we assume that in addition
to its usual variables, each node displays a list of the IDs of its neighbors, then in

Distance-k Information in Self-stabilizing Algorithms 355

the distance-1 model, each node can compute the subgraph induced by its closed
neighborhood. In the distance-k model, each node i can compute the subgraph
induced by Nk[i], and can compute, for example, the distance d(i, j) for j ∈
Nk[i]. This is illustrated in Algorithm 2.3. This generalizes to a polynomial time
self-stabilizing algorithm for maximal k-packing, for any fixed k, and improves
upon the maximal k-packing algorithm in [4] that was given without analysis.

Algorithm 2.3. Distance-4 algorithm for maximal 3-packing

local variable: f
ENTER: if f(i) = 0 ∧ (∀j ∈ N4(i), d(i, j) ≤ 3)(f(j) = 0)
then f(i) = 1

LEAVE: if f(i) = 1 ∧ (∃j ∈ N4(i), d(i, j) ≤ 3)(f(j) = 1)
then f(i) = 0

3 Maximal Irredundant Sets

Given a set S of nodes, we say a node s ∈ S has a private neighbor with respect
to S if there exists some x ∈ N [s] − N [S − {s}]. A set S is irredundant [5] if
every s ∈ S has a private neighbor with respect to S. Self-stabilizing algorithms
have been found for many kinds of related sets, such as maximal independent
sets and minimal dominating sets [6], but finding maximal irredundant sets has
proven difficult because the problem seems to require distance-4 knowledge.

Let S be a set of nodes, not necessarily irredundant, and let s ∈ S. If s has a
private neighbor with respect to S, but s has no private neighbor with respect
to S ∪ {x}, we say x destroys s. Finally, we say x ∈ V − S is safe if x has a
private neighbor with respect to S ∪ {x}, and no s ∈ S is destroyed by x.

Consider Algorithm 3.1. It is easy to see that if this algorithm stabilizes, then
S = {i | f(i) = 1} is maximal irredundant. For if it is not irredundant, some i is
privileged to execute a LEAVE move. And if it is not maximal irredundant, some
i can execute an ENTER move. Note also that once a node executes an ENTER,
it will never execute a LEAVE. Thus, given a sufficiently powerful model, each
node moves at most twice.

Algorithm 3.1. Maximal irredundant set

local variable: f
ENTER: if f(i) = 0 ∧ i is safe
then f(i) = 1

LEAVE: if f(i) = 1 ∧ i has no private neighbor
then f(i) = 0

356 W. Goddard et al.

Lemma 13. Node i can decide if it has a private neighbor from the information
in N2[i].

Proof. A node x is a private neighbor of i if and only if x ∈ N [i], but for all
j ∈ N2(i), j ∈ S implies x �∈ N [j].

Lemma 14. Node i can decide if it is safe from the information in N4[i].

Proof. If node i is not safe, then it must destroy some node j ∈ N2[i]. However,
to know whether such a node j has a private neighbor requires examining {f(j′) |
j′ ∈ N2[j]}.

Theorem 3. There is a self-stabilizing algorithm for finding a maximal irredun-
dant set that stabilizes in O(n7) moves.

Proof. By Lemma 13 and Lemma 14 it follows that Algorithm 3.1 can be im-
plemented in the distance-4 model. By our earlier comments, Algorithm 3.1
stabilizes in a linear number of moves. The analysis follows by Theorem 2.

We observe that while Algorithm 3.1 makes a linear number of moves in the
distance-4 model, each simulated move may not take constant time, although it
will be polynomial.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Comm. ACM
17 (11) (1974) 643–644

2. Dolev, S.: Self-Stabilization. MIT Press, 2000
3. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.:

Distance-two information in self-stabilizing algorithms, Parallel Process. Lett., 14
(2004) 387–398

4. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing global
optimization algorithms for large network graphs, Int. J. Dist. Sensor Net., 1 (2005)
329–344

5. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs, Marcel Dekker, New York, 1998

6. Hedetniemi, S.M., Hedetniemi, S.T, Jacobs, D.P., Srimani, P.K.: Self-stabilizing
algorithms for minimal dominating sets and maximal independent sets, Comput.
Math. Appl., 46 (2003) 805–811

Author Index

Attiya, Hagit 10

Bar-Noy, Amotz 171
Bein, Doina 334
Bilò, Davide 295
Blin, Lélia 70
Bonichon, Nicolas 143

Calamoneri, Tiziana 227, 268
Chalopin, Jérémie 85
Chlebus, Bogdan S. 253
Clementi, Andrea E.F. 227
Cohen, Reuven 29
Cormode, Graham 280

Datta, Ajoy K. 334
Derbel, Bilel 100
Di Ianni, Miriam 227
Dobrev, Stefan 197

Fraigniaud, Pierre 70
Fusco, Emanuele G. 268

Gagie, Travis 310
Gavoille, Cyril 100, 143
Goddard, Wayne 349
Gualà, Luciano 295

Hedetniemi, Stephen T. 349
Hoepman, Jaap-Henk 115

Ilcinkas, David 59

Jacobs, David P. 349

Kosowski, Adrian 130
Kowalski, Dariusz R. 44, 253
Královič, Rastislav 197
Královič, Richard 197
Kranakis, Evangelos 1

Krizanc, Danny 1
Kutten, Shay 115

Labourel, Arnaud 143
Ladner, Richard E. 171
Laforest, Christian 157
Larmore, Lawrence L. 334
Lauria, Massimo 227
Lotker, Zvi 115

Malinowski, Adam 44
Monti, Angelo 227
Muthukrishnan, S. 280

Navarra, Alfredo 240
Nesterenko, Mikhail 212
Nisse, Nicolas 70

Patt-Shamir, Boaz 319
Peleg, David 29
Proietti, Guido 295

Räıpin Parvédy, Philippe 182
Rajsbaum, Sergio 1
Raynal, Michel 182
Rokicki, Mariusz A. 253

Santoro, Nicola 197
Shafrir, Allon 319
Silvestri, Riccardo 227

Tamir, Tami 171
Tan, Richard B. 268
Thibault, Nicolas 157
Tixeuil, Sébastien 212
Travers, Corentin 182
Trevisan, Vilmar 349

Vial, Sandrine 70
Vocca, Paola 268

Wattenhofer, Roger 24

	Frontmatter
	Mobile Agent Rendezvous: A Survey
	Adapting to Point Contention with Long-Lived Safe Agreement
	Sensor Networks: Distributed Algorithms Reloaded -- or Revolutions?
	Local Algorithms for Autonomous Robot Systems
	How to Meet in Anonymous Network
	Setting Port Numbers for Fast Graph Exploration
	Distributed Chasing of Network Intruders
	Election in the Qualitative World
	Fast Deterministic Distributed Algorithms for Sparse Spanners
	Efficient Distributed Weighted Matchings on Trees
	Approximation Strategies for Routing Edge~Disjoint Paths in Complete Graphs
	Short Labels by Traversal and Jumping
	An Optimal Rebuilding Strategy for a Decremental Tree Problem
	Optimal Delay for Media-on-Demand with Pre-loading and Pre-buffering
	Strongly Terminating Early-Stopping {\itshape k}-Set Agreement in Synchronous Systems with General Omission Failures
	On Fractional Dynamic Faults with Threshold
	Discovering Network Topology in the Presence of Byzantine Faults
	Minimum Energy Broadcast and Disk Cover in Grid Wireless Networks
	3-D Minimum Energy Broadcasting
	Average-Time Complexity of Gossiping in Radio Networks
	L(h,1,1)-Labeling of Outerplanar Graphs
	Combinatorial Algorithms for Compressed Sensing
	On the Existence of Truthful Mechanisms for the Minimum-Cost Approximate Shortest-Paths Tree Problem
	Dynamic Asymmetric Communication
	Approximate Top-k Queries in Sensor Networks
	Self-stabilizing Space Optimal Synchronization Algorithms on Trees
	Distance-{\itshape k} Information in Self-stabilizing Algorithms
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

