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Abstract. In this paper we look at the statistical decoding attack on
the McEliece cryptosystem from [4]. The statistical decoding algorithm
is a probabilistic algorithm for correcting errors in random codes. It
uses precomptuations to provide faster error correction than the classi-
cal general decoding algorithms. We analyze the success probability of
the algorithm and show how to improve it. Further, we show that the
algorithm may not be used to attack the McEliece cryptosystem, due to
the large amount of precomputation needed.
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1 Introduction

The security of cryptosystems based on error correcting codes is connected to
the hardness of the general decoding problem. The first cryptosystem, which is
based on that technique is the one presented by McEliece in 1978. McEliece’s
cryptosystem is very effective in en- and decryption, has a good information
rate and we can even build a signature scheme from it. Furthermore, despite all
effort, it remains unbroken for large public key sizes.

The statistical decoding attack on the McEliece PKC is a general decoding
attack. It uses a precomputed alternative description of the public key, which
has exponential space complexity. The author of [4] claims, that this alternative
description can be computed in reasonable time. We show, that this is not pos-
sible employing the method proposed by Al Jabri. As a consequence, the attack
fails even for the original parameter set of the McEliece cryptosystem, which is
insecure against general decoding attacks [2].

However, statistical decoding can be used to correct errors in short random
codes. After some precomputation, statistical decoding corrects errors more ef-
ficiently than the standard general decoding algorithms. Its mayor disadvantage
is, that the algorithm is probabilistic and fails in some cases. We show how to
improve the probability of correct decoding in that case.

The paper is structured as follows: In this section we give an introduction
into the basic concepts of coding theory and the McEliece cryptosystem. In the
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second and third section we present the statistical decoding algorithm and show,
how to improve it. In the fourth sections we analyze the precomputation phase
of the statistical decoding algorithm.

1.1 Coding Theory and Problems

The security of the McEliece cryptosystem is based on the difficulty of some
classical problems of coding theory. Here we give a short introduction into the
topic of coding theory.

Definition 1.1. An (n, k)-code C over a finite field F is a k-dimensional sub-
vectorspace of the vector space F

n. We call C an (n, k, d)-code if the minimum
distance is d = minx,y∈C dist (x,y), where “dist” denotes the Hamming distance.
The distance of an element x ∈ F

n to the null-vector wt (x) := dist (0,x) is called
weight of x.

Definition 1.2. The matrix C ∈ F
k×n is a generator matrix for the (n, k) code

C over F, if the rows of C span C over F. The matrix H ∈ F
(n−k)×n is called

check matrix for the code C if H� is the right kernel of C. The code generated by
H is called dual code of C and denoted by C⊥.

With these definitions, we are able to define the problems of coding theory on
which the security of the McEliece cryptosystem rely. The NP-hardness of these
problems is proven e.g. in [1].

Definition 1.3. The general decoding problem for linear codes is defined as fol-
lows: For a given (n, k) linear code C over F and a vector y ∈ F

n find x ∈ C,
where dist (y,x) is minimal.

Let e be a vector of weight ≤ t :=
⌊

d−1
2

⌋
and x ∈ C. Then there is a unique

solution to the general decoding problem for y = x + e. The code C is said to
be an t-error correcting code.

Definition 1.4. The problem of finding weights of a linear code is defined as
follows: For a given linear code C over F and w ∈ N find a vector x ∈ C with
weight w.

Throughout this paper, we will use the following notation. We write G = 〈G〉 if
the linear (n, k)-code G over F has the generator matrix G. We can write x ∈ G
as (x1, · · · , xn) ∈ K

n. For any (ordered) subset {j1, · · · jm} = J ⊆ {1, · · ·n} we
denote the vector (xj1 , · · · , xjm ) ∈ K

m with xJ . Similarly we denote by M·J the
submatrix of a k × n matrix M consisting of the columns corresponding to the
indices of J and MJ′· =

(
M�)

·J′ for any (ordered) subset J ′ of {1, · · · , k}.

1.2 The McEliece PKC

This cryptosystem was proposed by McEliece [5] and is the first, which uses
error correcting codes as a trapdoor. It remains unbroken in its original version,
which uses irreducible binary Goppa codes. There exist efficient algorithms to
correct errors up to half of the designed minimum distance of the Goppa code.
We briefly describe the cryptosystem:
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– System Parameters: n = 2m, t ∈ N, where t � n.
– Key Generation: Given the parameters n, t generate the following matri-

ces:
G′ : k × n generator matrix of a binary irreducible

(n, k = 2m − mt, 2t + 1) Goppa code G
S : k × k random binary non-singular matrix
P : n × n random permutation matrix

Then, compute the k × n matrix G = SG′P .
– Public Key: (G, t)
– Private Key: (S, DG , P), where DG is an efficient decoding algorithm for G

.
– Encryption: To encrypt a plaintext m ∈ {0, 1}k choose a vector z ∈ {0, 1}n

of weight t randomly and compute the ciphertext c as follows:

c = mG ⊕ z .

– Decryption: To decrypt a ciphertext c calculate

cP−1 = (mS)G′ ⊕ zP−1

first, and apply the decoding algorithm DG for G to it. Since cP−1 has a
hamming distance of t to the Goppa code we obtain the codeword

mSG′ = DG
(
cP−1) .

Let J ⊆ {1, · · · , n} be a set, such that G·J is invertible, then we can compute
the plaintext m = (mSG′)J (G′

·J )−1
S−1

In its initial version from 1978, McEliece proposed to choose m = 10 and t =
50, i.e. using a (1024, 524, 101) Goppa code. After the proposal of several general
decoding attacks the parameters had to be modified. The fastest of these attacks
was proposed in [2], compare section 4 and 5. Today parameter sets with m = 11
and 40 ≤ t ≤ 93 are considered to be secure. There exists also a signature scheme
based on the McEliece PKC (CFS, see [3]), which is as secure as the McEliece PKC
with the same parameters. For CFS it is proposed to choose e.g. m = 16 and t = 9.

2 Statistical Decoding

This general decoding algorithm was presented by A Kh. Al Jabri in [4]. The
idea of statistical decoding may be described as follows: Given an (n, k, d) code
G, we first compute a sufficiently large set Hw of dual vectors of weight w (i.e.
an alternative description of G = H⊥

w). In the following we assume that w < n/2.
However all observations are analogous for w > n/2. Given a word y = x + e,
where x ∈ G and wt(e) is small, we take a vector h ∈ Hw, where yh� 	= 0. As
xh� = 0, the non-zero positions of h reveals some information about e. (Let e.g.
wt(e) = 4, then either one or three non-zero entries of e correspond to non-zero
entries of h). Collecting the information each of the different vectors h ∈ Hw

reveals, we are able to find e in some cases.
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There are three major questions regarding this technique, which we will ad-
dress in the following sections: “How to compute the set Hw?” (section 4), “How
to combine the information the vectors of Hw reveal about e ?” (this section)
and “What is the probability of identifying e?” (section 3). In section 3.2 we
show how to improve the success probability of correct decoding.

Let Hw be a set of vectors of weight w of the dual space of the (n, k, 2t + 1)
linear binary code G with generator Matrix G. Let y be the sum of a code-
word uG ∈ G and a error vector e with weight at most t. A Kh. Al Jabri
points out, that for randomly generated codes the probability that a value of
1 appears in the i-th position of h ∈ Hw with yhT = 1 depends on i be-
ing a erroneous position in the vector y. We have an odd error detection in
i if yhT = 1 and hi = 1. Assume that we have an odd error detection in i,
then let p+

w be the probability that i is a erroneous position and q+
w be the

probability that i is a non-erroneous position. We can compute these probab-
ilities as

p+
w =

∑m≤t
m odd

(
n−t

w−m

)(
t−1
m−1

)

∑m≤t
m odd

(
t
m

)(
n−t

w−m

) , q+
w =

∑m≤t
m odd

(
n−t−1

w−m−1

)(
t
m

)

∑m≤t
m odd

(
t
m

)(
n−t

w−m

) .

Since w < n/2 the inequation p+
w > q+

w holds, although for large w the difference
is small. We define v+

y,w :=
∑

h∈Hw

(
yhT mod 2

)
. Then, for i ∈ {1, · · · , n} an

(non-)error position the random variable
1

v+
y,w

∑

h∈Hw

(
yhT mod 2

)
hi

is the relative frequency estimate for p+
w (q+

w respectively). Its variance is (σ+
w )2 =

p+
w(p+

w − 1)/v+
y,w. Thus, we can recover u using algorithm 2.1 if Hw is chosen in

a way so that we can distinguish between p+
w and q+

w .

Algorithm 2.1. StatDec

Input: Hw, y.
Output: u, the information vector.

v =
∑

h∈Hw

(
yh� mod 2

)
h ∈ Z

n.

choose I = {positions of the k smallest entries of v} s.t. G·I is invertible.

u = yIG−1
·I

Al Jabri claims, that precomputing a set Hw with

|Hw| = 625 · 10−6 · p+
w

(
1 − p+

w

)
ε−2 (1)

vectors is sufficient for correct decoding [4]. The work factor for algorithm 2.1 is

O
(
n · |Hw| + 2k3 + kn

)
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binary operations having computed the set Hw in advance. The author of [4]
claims that the latter can be done e.g. by the methods of [2]. However, com-
puting the set Hw is solving problem 1.4, which is a NP-hard problem in
general. In addition, a set Hw of the desired size will not even exist if w is
chosen too small. Goppa codes, as BCH codes and GRS codes have a weight
distribution “close” to the expected weight distribution of random code, which
is the binomial distribution [4]. Consequently, we get the following condition
for Hw:

|Hw| ≤
(

n

w

)
2−k, (2)

if we want to decode e.g. a random code or a Goppa code. We come back to
this problem in section 4, but first we want to analyze the success probability of
StatDec.

3 The Success Probability of Statistical Decoding

The first point of critique on the statistical decoding is its success probability.
In our experiments for small parameter sets we had difficulties, to correct errors
with a set Hw of size given in equation (1). It seems, that the set has to be about
213 times larger than claimed by Al Jabri to allow correct decoding in most cases.
We give a brief example: For a (26, 40, 9) Goppa code (or a (26, 40, 9) random
code), Al Jabri’s bound for |H17| is 1 ≤ |H17| ≤

(64
17

)
2−40 ≈ 210. However,

one vector of the dual code can not be sufficient for correct decoding in most
cases. Therefore we want to take a closer look at the success probability of
statistical decoding. Later we show how to improve StatDec and give a small
example.

In the following, we assume, that every set Hw consists of random vectors of
weight w. If the vectors in Hw are somehow related, the probability for finding
the correct error vector decreases.

3.1 The Initial Algorithm

We return to the notations of the previous section. On input Hw and y StatDec

does only return the correct error vector if for some δ with p+
w − 1 < δ < p+

w the
following two conditions hold:

(i) For every error position i:

vi > (p+
w − δ)v+

y,w.

(ii) There are at least k non-error positions j, such that

vj < (p+
w − δ)v+

y,w.
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We may assume, that v+
y,w ≈ 1

2 |Hw|, and thus the probability, that a certain δ
fulfills the first condition is smaller than

P := Φ
(
δ/σ+

w

)t = Φ

⎛

⎝δ

√
1
2 |Hw|

p+
w(p+

w − 1)

⎞

⎠

t

, (3)

where Φ refers to the distribution function of the standardized normal distribu-
tion. Thus, we have to choose

2
(
Φ−1

(
P1/t

))2
p+

w(1 − p+
w)δ−2 ≤ |Hw| ≤

(
n

w

)
2−k. (4)

Assume k ≈ (n − t)/2, then it is probable, that half of the values vj for non
error positions j will be below their mean value p+

wv+
y,w. Thus, if there exists an

δ for a given ciphertext y, such that the two conditions above are fulfilled, then
it will probably be smaller than |p+

w − q+
w |. Since Φ−1(0.95) = 1.65 we conclude,

that with a set of size

|Hw| ≈ 5.4p+
w(1 − p+

w)
1

(p+
w − q+

w )2
. (5)

we can correct errors with a probability about 0.95t. Note, that this number is
a factor 213 larger than the one given by Al Jabri. We expect that with a set of
size given in equation (1) we could correct errors with a probability about 1/2t,
only.

3.2 An Improved Version

To improve the probability of correct error correction, we want to include even
error detection. Let y be the sum of a codeword uG ∈ G and a error vector e with
weight at most t. We observe, that for randomly generated codes the probability
that a value of 1 appears in the i-th position of h ∈ Hw with yhT = 0 depends
on i being a erroneous position in the vector y. Thus, we have an even error
detection if yhT = 0 and hi = 1. Let p−w be the probability that i is a erroneous
position and q−w be the probability that i is a non-erroneous position in the case
of an even error detection. These probabilities can be computed as follows:

p−w =

∑m≤t
2≤m even

(
n−t

w−m

)(
t−1
m−1

)

∑m≤t
m even

(
t
m

)(
n−t

w−m

) , q−w =

∑m≤t
m even

(
n−t−1

w−m−1

)(
t
m

)

∑m≤t
m even

(
t
m

)(
n−t

w−m

) .

We define v−y,w :=
∑

h∈Hw

(
1 − yhT mod 2

)
. Then, for an (non-)error position

i the value
1

v−y,w

∑

h∈Hw

(
1 − yhT mod 2

)
hi

is the relative frequency estimate for p−w (q−w respectively). We observe, that if
p+

w > q+
w , then p−w < q−w .
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For all possible weights, the relative frequency estimates of p+
w and p−w are

approximately normal distributed if |Hw| is large enough. Therefore we can
use the standard transformation, s.t. all the relative frequency estimates are
N (0, 1) distributed. It follows, that one can sum the scaled relative frequency
estimates obtained by several sets containing dual vectors of different weights. As
a consequence, we consider H as the set of all dual vectors of weight w satisfying
b ≤ w ≤ B < n/2, i.e. H =

⋃B
w=b Hw. All in all, we get the modified algorithm

3.1. With the notation of StatDec+: If i is an error position, then for all v,
(v)i has mean value 0. For an implementation one should omit the previous
computation of σ+

w and σ−
w . and compute these values while computing vw.

Algorithm 3.1. StatDec+

Input: H =
⋃B

w=b Hw, y.
Output: u, the information vector.

for w = b to B do(
σ+

w

)2 = p+
w · (1 − p+

w) · v+
y,w.

(
σ−

w

)2 = p−
w · (1 − p−

w) · v−
y,w.

1 = (1, 1, · · · , 1) ∈ {0, 1}n.
for w = b to B do

vw =
∑

h∈Hw

(
yh� mod 2

)
(h − p+

w1)/σ+
w ∈ R

n.
vw+B = −

∑
h∈Hw

(
1 − yh� mod 2

)
(h − p−

w1)/σ−
w ∈ R

n.

for all binary combinations v of the different vl do
choose I = {positions of the k smalles entries of v} s.t. G·I is invertible.
u = yIG−1

·I
if weight(uG ⊕ y) ≤ t then

return u = u

Let us assume, that the different relative frequency estimates are independent.
We define v =

∑B
w=b ewvw +

∑B
w=b ew+Bvw+B, where each ei ∈ {0, 1}. Then for

an error position j, (v)j is normal distributed with mean value 0 and variance σ2

equal to the number of ew 	= 0. If j is a non-error position, then (v)j is normal
distributed with mean value

E :=
B∑

w=b

ew

(
|q+

w − p+
w |

σ+
w

v+
y,w

)
+

B∑

w=b

ew+B

(
|q−w − p−w |

σ−
w

v−y,w

)

and variance

S2 =
B∑

w=b

ww

(
q+
w (1 − q+

w )
(
σ+

w

)2 v+
y,w

)

+
B∑

w=b

ww+B

(
q−w (1 − q−w )

(
σ−

w

)2 v−y,w

)

In most cases we will have 2v+
y,w ≈ 2v−y,w ≈ |Hw|. To distinguish between error

and non-error positions by v, we get the following conditions: There exists an
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δ ∈ R such, that for every error position i the inequation |vi| < δ holds and there
are at least k non-error positions j, such that |vj | > δ. The probability, that a
certain δ fulfills this conditions is smaller than Φ (δ/σ)t. Again, we expect, that
the condition δ ≤ E has to be true in most cases, and thus we get

P ≈ Φ

⎛

⎝ 1
σ

⎛

⎝
B∑

w=b

ew

√∣
∣q+

w − p+
w

∣
∣2 |Hw|

2p+
w(1 − p+

w)
+

B∑

w=b

ew+B

√∣
∣q−w − p−w

∣
∣2 |Hw|

2p−w(1 − p−w)

⎞

⎠

⎞

⎠

t

as a suitable estimate for the probability of correct decoding with StatDec+.
However we are not able to prove, that the different relative frequency estimates
for p+

w and q+
w are independent. Nevertheless, for an implementation it seems

recommendable, to start with the vectors v where |{ei 	= 0}| is large.

3.3 Experimental Results

We made several experiments with codes of small length. As expected, the pro-
posed variant StatDec+ of the initial algorithm allows error correction in a
significant larger number of cases than StatDec, especially when the size of
the sets Hw is small. Further, it seems recommendable to include sets Hw with
small w, even if their size is smaller than desired (e.g. up to a factor 4).

In the following we present three examples of our experiments. Note that for
all our examples the bound for |Hw| given by equation (1) is useless, as it is
smaller than 0. Further, the precomputation to find the sets Hw was quite time-
consuming and an exhaustive search in some cases. The time needed to perform
the precomputation for StatDec+ is the same as for StatDec.

In our first example we considered a (26, 40, 9) Goppa code. For this code
the relative frequency estimates and the desired sizes of each Hw are given by
table 3.1. We computed a set H = {H16, H17, H18}, where each of the sets Hw

Table 3.1. Correcting errors of weight 4 in a (64, 40) code

w p+
w q+

w p−
w q−

w |Hw|
16 0.295 0.248 0.210 0.263 1433
17 0.302 0.263 0.232 0.268 2160
18 0.311 0.280 0.254 0.284 3393

consisted of 100 random vectors. With StatDec+ we were able to correct errors
of weight 4 in 93.2% of the cases. With the original algorithm, called with each
set Hw, correct error correction was possible in 17.5% of the cases, only.

In the second example, we looked at the same code as in the first example, but
chose each Hw to be the set of all vectors of weight w. For our particular Goppa
code, we got: |H16| = 345, |H17| = 1234 and |H18| = 3149. In this case, error
correction was possible with StatDec and StatDec+ in all cases. An correct
error correction with StatDec would not have been possible in all cases, if only
one of the sets Hw would have been used.
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Table 3.2. Correcting errors of weight 6 in a (64, 22) code

w p+
w q+

w p−
w q−

w |Hw| StatDec success rate
8 0.183 0.119 0.082 0.129 562 95.0%
9 0.189 0.136 0.102 0.145 835 79.4%

10 0.196 0.152 0.122 0.160 1283 73.8%

In our last example, we looked at a (26, 22, 13) random code. The values for
the relative frequency estimates and the sizes of Hw resulting from equation
(5) are given by table 3.2. The expected success probability of StatDec is
≈ 0.956 = 73.5% for each set Hw. However, the experimented success probability
for StatDec is larger, compare table 3.2. In this case we were able to compute
the desired sets in reasonable time. Again, we made 1000 attempts to correct
errors of weight 6. With StatDec+ we were able to correct all errors, whereas
with StatDec we would have been able to correct them in 99.2% of the cases.

4 On the Problem of Finding Weights

Al Jabri proposes to use a variant of Sterns algorithm to solve the problem of
finding weights, i.e. to compute Hw. J. Stern designed his algorithm to find a
(unique) shortest codeword of a binary linear code. Such an algorithm can be
used to correct up to t := (d−1)/2 errors in a binary (n, k, d) code G: Let c be a
binary n-vector with distance t to G and G be the generator matrix of G. Then
the sum of c and the unique shortest codeword of the code generated by

(
G
c

)

is the solution to the general decoding problem for G and c.
We recall the original algorithm of Stern [7], which tries to find a vector of low

weight w. Let H be the check matrix of the code G. Given the parameters p and
l, successively choose two disjoint sets of p < k/2 columns I1 and I2 at random.
Then choose a set J ⊆ {1, · · · , n} \ (I1 ∪ I2) of l rows at random. We may
assume without loss of generality, that I1 = {n − k + 1, · · · , n − k/2} and I1 =
{n − k/2 + 1, · · · , n}. If we can not transform the matrix H into a systematic
matrix, the algorithm fails at this point, and is started anew. Otherwise we
transform H into the desired form. Now we may assume, that J = {1, · · · , l}
and get a check matrix of the following form:

H =
(

Idn−k
Z1 Z2

B

)
,

where Z1 and Z2 are l × k/2 matrices, and B is a (k − l) × k matrix. For all
pairs of vectors (e1, e2) ∈ ( {0, 1}k/2 )2 where wt(e1) = wt(e2) = p we check
whether e1Z1 = e2Z2. If the condition is fulfilled for such a pair, then we compute
the unique vector e0 ∈ {0, 1}n−k, such that (e0, e1, e2)H� = 0. The vector
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e = (e0, e1, e2) is our candidate for a short codeword. One can observe, that the
fist l entries of e are zeros and thus the weight of e is smaller than n−k− l+2p.
If none of the constructed vectors e is of the desired weight, then the algorithm
fails. The success probability of one iteration of the algorithm is

Pp,l,w =

(
n−w

k/2−p

)(
w
p

)(n−w−k/2−p
k/2−p

)(
w−p

p

)(
n−k−(w−2p)

l

)

(
n

k/2

)(
n−k/2

k/2

)(
n−k

l

)

in the case of a unique code word e′ of weight w.
To improve the performance of Sterns algorithm, one can view its dual variant

– depending on the ratio of k/n – and try to avoid the costly Gaussian elimi-
nation by choosing I1 and I2 iteratively and not at random. This method was
introduced and analyzed by Canteaut and Chabaud, compare [2]. The success
probability of the algorithm for finding the shortest codeword is to be modeled
by a Markov chain in that case. We omit details and just take the result, that
the work factor for one iteration becomes

Ωp,l =

(
1
2
n(n − k) + 2l

(
k/2
p

)
(p − 1) + (n − k − l)(2p − 1)

(
k/2
p

)2 1
2l

)

.

The work factor of the resulting algorithm may be approximated by

O(n3)2−t log2(1−k/n),

if t is small and k/n is not too close to 1 (compare [6]).
In the case of statistical decoding we use the algorithm from [2] not to find a

single lowest weight code word, but several code words of a certain weight w. If
there are several code words of weight w, the work factor decreases by a factor
equal to the number of such code words. As the expected number of vectors of
weight w is given by the binomial distribution, we get the expected workfactor
to compute a set Hw of vectors of weight w as

Wp,l,w =
2k

(
n
w

)
Ωp,l

Pp,l,w
·
|Hw|−1∑

i=0

(

1 − i · 2k

(
n
w

)

)−1

. (6)

If one wants to compute a set H, which serves as an input for the StatDec+,
we expect, that every execution of a single round of the algorithm returns

B∑

w=b

2k

(
n
w

)P−1
p,l,w

vectors of weight w satisfying b ≤ w ≤ B. However, using the algorithm from [2]
might not always be the best choice to use, when trying to find multiple words
of any given weight, even if we did not find a better way to do so.

Unfortunately we were not able to find an example parameter set, where the
precomputation required for StatDec could be performed in less time than
the one needs for a single call of Canteaut’s and Chabaud’s general decoding
algorithm.
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5 Attacking the McEliece PKC with Statistical Decoding

To our knowledge, the best way to attack the McEliece PKC is the attack pro-
posed by Canteaut and Chabaud [2], see section 4. Since for the McEliece cryp-
tosystem n = 2m and k = n − tm, N. Sendrier concludes, that the maximum
degree of security for the McEliece cryptosystem against the general decoding
attack from [2] is obtained for an information rate k/n ≈ 1 − 1/ exp(1) [6].
This would lead e.g. to the choice of m = 11 and t ≈ 70 for the McEliece
cryptosystem.

To attack the McEliece PKC with parameters m = 10 and t = 50 with
statistical decoding, Al Jabri claims that computing a set Hw consisting of 238

vectors is sufficient. Unfortunately Al Jabri does not name w, but we are quite
sure, that he referred to the set H133. However, equation (3) implies, that the
probability of correct decoding is about 2−50 in that case. A decoding attempt
with StatDec takes 248 binary operations for this input. Consequently, one
would expect, that it would take approximately 298 binary operations, before an
attack on one of 250 given ciphertexts is successful.

We have shown, that an attacker would need a set H137 consisting of approx-
imately 251 vectors to attack ciphertext of the McEliece PKC with parameters
n = 10 and t = 50. Even storing a set of this size seems impossible nowadays
and the work factor for a single decoding attempt would be larger than 261,
which is not much faster than the general decoding algorithm of Canteaut and
Chabaud [2]. However, it takes at least 2152 binary operations to compute the
set H137 with the algorithm proposed by Canteaut and Chabaud. For this pa-
rameter set, one iteration for l = 19 and p = 2 of the algorithm requires about
224 binary operations. Most of the vectors returned by the algorithm will be of
weight 241. For each one of 2−17 iterations, we will get only one of those vectors.
Thus, after performing 280 Operations, one will still have computed less than
239 vectors of weight 241. Having a range of 114 ≤ w ≤ 241, we will have still
have not enough vectors of the dual space to attack the McEliece cryptosystem.
Thus, it is not possible to attack the McEliece cryptosystem with StatDec or
StatDec+.

Table 5.3. StatDec for example parameter sets

McEliece parameters w
∣
∣p+

w − q+
w

∣
∣ |Hw|

(
n
w

)
2−k Workfactor

(2m, k, d = 2t + 1) StatDec precomput.
(1024, 524, 101) 137 0.2 · 10−7 251 252.5 261 2152

(1024, 524, 101) 153 0.21 · 10−8 258 294 268 2138

(2048, 1278, 141) 363 0.41 · 10−14 296 296.9 2107 2609

(65536, 65392, 9) 32000 0.17 · 10−13 293 2109.7 2109 >> 2131

The situation for the signature scheme CFS is the same: Any set, that would
allow correct decoding in a non-negligible fraction of the cases is to big to be
stored efficiently and it is infeasible to perform the precomputation (compare
Table 5.3).
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6 Conclusion

We have shown, how to improve the probability of correct error correction of the
statistical decoding algorithm. We have performed experiments and have shown,
that statistical decoding can be used for fast decoding of random linear codes
after some precomputation. Nevertheless, we needed several sets of vectors, each
about 213 times larger than claimed by Al Jabri. Additionally the problem how
to perform the precomputation efficiently remains unsolved. We conclude, that
it is not possible to attack the McEliece cryptosystem (or the CFS signature
scheme) with reasonable parameter sets by statistical decoding. However, there
might exist non-standard parameter sets for the McEliece cryptosystem, which
can be attacked by statistical decoding.
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