

Lecture Notes in Computer Science 4058
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lynn Margaret Batten
Reihaneh Safavi-Naini (Eds.)

Information Security
and Privacy

11th Australasian Conference, ACISP 2006
Melbourne, Australia, July 3-5, 2006
Proceedings

13

Volume Editors

Lynn Margaret Batten
Deakin University
221 Burwood Highway, Burwood 3125, Victoria, Australia
E-mail: lmbatten@deakin.edu.au

Reihaneh Safavi-Naini
University of Wollongong
Centre for Information Security
Wollongong, NSW 2519, Australia
E-mail: rei@uow.edu.au

Library of Congress Control Number: 2006927435

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, E.4, F.2.1, K.4.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-35458-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35458-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11780656 06/3142 5 4 3 2 1 0

Preface

The 11th Australasian Conference on Information Security and Privacy (ACISP
2006) was held in Melbourne, 3–5 July, 2006. The conference was sponsored
by Deakin University, the Research Network for a Secure Australia, and was
organized in cooperation with the University of Wollongong. The conference
brought together researchers, practitioners and a wide range of other users from
academia, industries and government organizations.

The program included 35 papers covering important aspects of information
security technologies. The papers were selected from 133 submissions through a
two-stage anonymous review process. Each paper received at least three reviews
by members of the Program Committee, and was then scrutinized by the whole
committee during a two-week discussion. There were 19 papers eligible for the
“best student paper” award. The award was given to Yang Cui from the Uni-
versity of Tokyo for the paper “Tag-KEM from Set Partial Domain One-Way
Permutations.”

In addition to the regular papers the program also included three invited
talks. Bart Preneel gave an invited talk entitled “Electronic Identity Cards:
Threats and Opportunities.” Mike Burmester’s talk was “Towards Provable Se-
curity for Ubiquitous Applications.” The details of the third talk had not been
finalized at the time of publication of these proceedings.

We wish to thank all the authors of submitted papers for providing the con-
tent for the conference; their high-quality submissions made the task of selecting
a program very difficult. We are indebted to the diligence and enthusiasm of the
Program Committee members in ensuring selection of the most deserving papers
and to the external reviewers who helped in the refereeing process. We wish to
thank our sponsors, Research Network for a Secure Australia, for their support
of the main speakers and students as well as Springer for their continued support
of ACISP. We further wish to thank Judy Chow, the conference secretary, for
her many organizational skills and patience with the registration process, and
our Technical Chair, Jeffrey Horton, for his continuous effort and meticulous at-
tention to every detail, which made the task of the Program Co-chairs so much
easier.

Without the help of all the above this conference would not have been a
possibility.

July 2006 Lynn Batten
Reihaneh Safavi-Naini

ACISP 2006

July 3–5, 2006, Melbourne, Australia

General Chair
Lynn Batten, Deakin University, Australia

Program Co-chairs
Lynn Batten, Deakin University, Australia

Reihaneh Safavi-Naini, University of Wollongong, Australia

Technical Chair
Jeffrey Horton, University of Wollongong, Australia

Program Committee

Tuomas Aura Microsoft Research, UK
Feng Bao Institute for Infocomm Research, Singapore
Colin Boyd QUT, Australia
Liqun Chen Hewlett-Packard Laboratories, UK
Kefei Chen Shanghai Jiaotong University, China
Nicolas T. Courtois Axalto Smart Cards, France
Robert Deng Singapore Management University, Singapore
Marc Dacier Eurecom Institute, France
Ed Dawson QUT, Australia
Josep Domingo University of Tarragona, Catalonia
Dieter Gollmann Hamburg University of Technology, Germany
Juan Gonzalez Nieto QUT, Australia
Goichiro Hanaoka Nat. Inst. of Adv. Industrial Sci. and Tech., Japan
Markus Jakobsson Indiana University, USA
Marc Joye Gemplus & CIM-PACA, France
Tanja Lange Technical University of Denmark, Denmark
Byoungcheon Lee Joongbu University, Korea
Javier Lopez University of Malaga, Spain
Subhamoy Maitra Indian Statistical Institute, Kolkata, India
Catherine Meadows Naval Research Lab, USA
Atsuko Miyaji JAIST, Japan
Nasir Memon New York Polytechnic, USA
SangJae Moon Kyungpook National University, Korea
Keith Martin Royal Holloway, University of London, UK
Peng Ning North Carolina State University, USA
Kaisa Nyberg Helsinki University of Technology and Nokia, Finland
Eiji Okamoto Tsukuba University, Japan
Giuseppe Persiano Università di Salerno, Italy
Josef Pieprzyk Macquarie University, Australia
David Pointcheval CNRS/ENS, Paris, France
Bimal Roy Indian Statistical Institute, Kolkata, India
Palash Sarkar Indian Statistical Institute, India

VIII Organization

Jennifer Seberry University of Wollongong, Australia
Juji Shikata Yokohama National University, Japan
Nigel Smart University of Bristol, UK
Douglas Stinson University of Waterloo, Canada
Tim Strayer BBN Technologies, USA
Clark Thomborson University of Auckland, New Zealand
Serge Vaudenay EPFL, Switzerland
Vijay Varadharajan Macquarie University, Australia
Victor K. Wei Chinese University of Hong Kong, Hong Kong

External Reviewers

Masayuki Abe Xuan Hong Ahmed Patel
Joel Alwen Zhenjie Huang Kenny Paterson
Nuttapong Attrapadung Sarath Indrakanti Kun Peng
Roberto M. Avanzi Toshiyuki Isshiki Pai Peng
Gildas Avoine Tetsuya Izu Krzysztof Pietrzak
Thomas Baignères Christine Jones Jordi Castellà Roca
Daniel J. Bernstein Ari Juels Rodrigo Roman
Srimanta Bhattacharya Lars Knudsen Kurt Rosenfeld
Olivier Billet Sandeep Kumar Chun Ruan
Mark Branagan Noboru Kunihiro Naouel Ben Salem
Emmanuel Bresson Kaoru Kurosawa Sumanta Sarkar
Jaimee Brown Eyal Kushilevitz Francesc Sebé
Billy Brumley David Lapsley Taha Sencar
Debrup Chakraborty Jens Ove Lauf Abdulattif Shikfa
Zhaohui Cheng HoonJae Lee SeongHan Shin
Andrew Clark Corrado Leita Leonie Simpson
Christophe Clavier Qiming Li Agust́ı Solanas
Yvonne Cliff Ching Lin Masakazu Soshi
Scott Contini Joseph Liu Ron Steinfeld
Yang Cui Carl Livadas Gene Tsudik
Paolo D’Arco Yu Long Udaya Kiran Tupakula
Vanesa Daza Yi Lu Ivan Visconti
Ling Dong John Malone-Lee Martin Vuagnoux
Ratna Dutta Antoni Mart́ınez-Ballesté Zhiguo Wan
Stefan Dziembowski Sebastia Martin Guilin Wang
Sarah Edwards Krystian Matusiewicz Huaxiong Wang
Mari Carmen Fernandez-Gago Bill Millan Pan Wang
Matthieu Finiasz Hideyuki Miyake Ruizhong Wei
Eiichiro Fujisaki Kunihiko Miyazaki Mi Wen
Jun Furukawa Jean Monnerat Jian Weng
Clemente Galdi Mridul Nandy Christopher Wolf
Zheng Gong Stan Nurislov Katsunari Yoshioka
Aline Gouget Wakaha Ogata Qinghua Zhang
Vanessa Gratzer Juan J. Ortega Rui Zhang
Jens Groth Akira Otsuka Weiliang Zhao
JaeCheol Ha Vikram PAdman Huafei Zhu
Matt Henricksen Dan Page
Jason Hinek Sylvain Pasini

Table of Contents

Stream Ciphers

Algebraic Attacks on Clock-Controlled Stream Ciphers
Sultan Al-Hinai, Lynn Batten, Bernard Colbert,
Kenneth Wong . 1

Cache Based Power Analysis Attacks on AES
Jacques Fournier, Michael Tunstall . 17

Distinguishing Attack on SOBER-128 with Linear Masking
Joo Yeon Cho, Josef Pieprzyk . 29

Evaluating the Resistance of Stream Ciphers with Linear Feedback
Against Fast Algebraic Attacks

An Braeken, Joseph Lano, Bart Preneel . 40

Symmetric Key Ciphers

Ensuring Fast Implementations of Symmetric Ciphers on the Intel
Pentium 4 and Beyond

Matt Henricksen, Ed Dawson . 52

Improved Cryptanalysis of MAG
Leonie Simpson, Matt Henricksen . 64

On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power
Functions

Nicolas T. Courtois, Blandine Debraize, Eric Garrido 76

Network Security

Augmented Certificate Revocation Lists
A. Lakshminarayanan, T.L. Lim . 87

Online/Offline Signatures and Multisignatures for AODV and DSR
Routing Security

Shidi Xu, Yi Mu, Willy Susilo . 99

Towards an Invisible Honeypot Monitoring System
Nguyen Anh Quynh, Yoshiyasu Takefuji . 111

X Table of Contents

Cryptographic Applications

Adaptively Secure Traitor Tracing Against Key Exposure and Its
Application to Anywhere TV Service

Kazuto Ogawa, Goichiro Hanaoka,
Hideki Imai . 123

Fingercasting—Joint Fingerprinting and Decryption of Broadcast
Messages

André Adelsbach, Ulrich Huber, Ahmad-Reza Sadeghi 136

More on Stand-Alone and Setup-Free Verifiably Committed Signatures
Huafei Zhu, Feng Bao . 148

Secure Implementation

API Monitoring System for Defeating Worms and Exploits in
MS-Windows System

Hung-Min Sun, Yue-Hsun Lin, Ming-Fung Wu . 159

Hiding Circuit Topology from Unbounded Reverse Engineers
Yu Yu, Jussipekka Leiwo, Benjamin Premkumar 171

The Role of the Self-Defending Object Concept in Developing
Distributed Security-Aware Applications

John W. Holford, William J. Caelli . 183

Signatures

Efficient and Provably Secure Multi-receiver Identity-Based
Signcryption

Shanshan Duan, Zhenfu Cao . 195

Efficient Identity-Based Signatures Secure in the Standard Model
Kenneth G. Paterson, Jacob C.N. Schuldt . 207

Event-Oriented k-Times Revocable-iff-Linked Group Signatures
Man Ho Au, Willy Susilo, Siu-Ming Yiu . 223

Key Replacement Attack Against a Generic Construction of
Certificateless Signature

Bessie C. Hu, Duncan S. Wong, Zhenfeng Zhang,
Xiaotie Deng . 235

Table of Contents XI

Theory

A Novel Range Test
Kun Peng, Colin Boyd, Ed Dawson, Eiji Okamoto 247

Efficient Primitives from Exponentiation in Zp

Shaoquan Jiang . 259

PA in the Two-Key Setting and a Generic Conversion for Encryption
with Anonymity

Ryotaro Hayashi, Keisuke Tanaka . 271

Statistical Decoding Revisited
R. Overbeck . 283

Invited Talk

Towards Provable Security for Ubiquitous Applications
Mike Burmester, Tri Van Le, Breno de Medeiros 295

Security Applications

Oblivious Scalar-Product Protocols
Huafei Zhu, Feng Bao . 313

On Optimizing the k-Ward Micro-aggregation Technique for Secure
Statistical Databases

Ebaa Fayyoumi, B. John Oommen . 324

Provable Security

Direct Chosen-Ciphertext Secure Identity-Based Key Encapsulation
Without Random Oracles

Eike Kiltz, David Galindo . 336

Generic Transforms to Acquire CCA-Security for Identity Based
Encryption: The Cases of FOpkc and REACT

Takashi Kitagawa, Peng Yang, Goichiro Hanaoka, Rui Zhang,
Hajime Watanabe, Kanta Matsuura, Hideki Imai 348

Tag-KEM from Set Partial Domain One-Way Permutations
Masayuki Abe, Yang Cui, Hideki Imai, Kaoru Kurosawa 360

XII Table of Contents

Protocols

An Extension to Bellare and Rogaway (1993) Model: Resetting
Compromised Long-Term Keys

Colin Boyd, Kim-Kwang Raymond Choo, Anish Mathuria 371

Graphical Representation of Authorization Policies for Weighted
Credentials

Isaac Agudo, Javier Lopez, Jose A. Montenegro . 383

Secure Cross-Realm C2C-PAKE Protocol
Yin Yin, Li Bao . 395

Hashing and Message Authentication

Constructing Secure Hash Functions by Enhancing Merkle-Damg̊ard
Construction

Praveen Gauravaram, William Millan, Ed Dawson,
Kapali Viswanathan . 407

Forgery and Key Recovery Attacks on PMAC and Mitchell’s TMAC
Variant

Changhoon Lee, Jongsung Kim, Jaechul Sung, Seokhie Hong,
Sangjin Lee . 421

Side Channel Attacks Against HMACs Based on Block-Cipher Based
Hash Functions

Katsuyuki Okeya . 432

Author Index . 445

Algebraic Attacks on Clock-Controlled
Stream Ciphers

Sultan Al-Hinai1, Lynn Batten2,�, Bernard Colbert2, and Kenneth Wong1

1 Information Security Institute (ISI)
Queensland University of Technology (QUT), Australia

2 Deakin University, Australia

Abstract. We present an algebraic attack approach to a family of irreg-
ularly clock-controlled bit-based linear feedback shift register systems. In
the general set-up, we assume that the output bit of one shift register con-
trols the clocking of other registers in the system and produces a family of
equations relating the output bits to the internal state bits. We then ap-
ply this general theory to four specific stream ciphers: the (strengthened)
stop-and-go generator, the alternating step generator, the self-decimated
generator and the step1/step2 generator. In the case of the strengthened
stop-and-go generator and of the self-decimated generator, we obtain the
initial state of the registers in a significantly faster time than any other
known attack. In the other two situations, we do better than or as well
as all attacks but the correlation attack. In all cases, we demonstrate
that the degree of a functional relationship between the registers can be
bounded by two. Finally, we determine the effective key length of all four
systems.

Keywords: clock control, stream cipher, linear feedback shift register,
irregular clocking, algebraic attack.

1 Introduction

Algebraic attacks, in which the generation of equations assists in determining
the initial state or the key-stream of a cipher, were first applied to block ci-
phers and public key cryptosystems by Courtois and Pieprzyk [8, 13]. Algebraic
attacks have been effectively applied to linear feedback shift register (LFSR)
based systems as demonstrated in [1,2,6,9,10,11,12]. Our interest in this paper
is their application to a class of bit-based LFSRs, which has not yet been exam-
ined from this direction — the irregularly clocked LFSR systems. We show that
algebraic attacks are effective against this class of stream ciphers and we provide
improvements to currently known attacks. In particular, known attacks against
the Beth-Piper [3] strengthened stop-and-go cipher depend on the generation
of weight three polynomials which cannot be done efficiently. We present a fast
attack that is independent of the weight of the polynomial used.
� This author wishes to thank the Australian Research Council for support of this

work with a Discovery grant.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 S. Al-Hinai et al.

Irregular clocking in LFSRs is used to enhance their complexity and conse-
quent security. Zenner [27] has developed a general approach to attacking such
ciphers by guessing at the clocking through a clock cycle and applies this ap-
proach to several ciphers including A5/1, the stop-and-go generator, the alternat-
ing step generator and the step1/step2 generator with varying levels of success.
Molland [20] introduces a general approach for dealing with LFSR systems with
two registers where one register controls the clocking of the other. This applies
to the basic stop-and-go generator, LILI-128 and step1/step2 generator. To our
knowledge, the only algebraic attack on such a cipher is that on LILI-128 in [12],
but guessing the clock control is an integral part of the approach.

Clock-controlled ciphers assume the existence of an underlying clock that
maintains a consistent set of basic time intervals against which a register and its
output can be compared. A bit-based LFSR system can then be established in
a number of ways. A register can be stepped in synchrony with the underlying
clock; it may move more slowly than the underlying clock, taking more than one
basic unit to shift the registers; but it can be assumed that it will never shift
faster than the clock as otherwise we can adjust the basic clocking time to the
step time of the register. Similarly, the output from a system of clock-controlled
LFSRs can be synchronized with the clock time or can be slowed down or varied
against the clock time. If a register shifts with the basic time interval, we refer
to is as regularly clocked. If the output is delivered with the basic time interval,
we refer to it as regular output.

We shall focus on four systems, which fall into the above types. The Beth-
Piper strengthened stop-and-go generator uses two regularly clocked registers
and one irregularly clocked register along with regular output. The alternating
step generator has one regularly clocked register and two which are irregularly
clocked. Again, the output is regular. In the self-decimated generator, the output
is irregular while the sole register actually clocks regularly. The step1/step2
generator has two irregularly clocked LFSRs with irregular output.

In the next section, we introduce the notation standardized throughout the
paper and present our generic approach to determining algebraic equations in-
volving the initial state bits from bit-based clock-controlled ciphers in which a
linear combination of bits from regularly clocked registers determines the clock-
ing of the others. Our aim is to recover the initial state bits. We ignore key
initialization schemes altogether and compute effective key length assuming that
the key and initial state of the registers are one and the same. We therefore use
the phrase effective key length, and make the assumption that for computational
purposes eighty bit registers are safe from a brute force attack. In subsequent
sections, we use the equations to find the initial states of the four ciphers men-
tioned above. In the case of the strengthened stop-and-go generator and of the
self-decimated generator, we obtain the initial state of the registers in a signifi-
cantly faster time than any other known attack. In the other two situations, we
do better than or as well as all attacks but the correlation attack. In all cases,
we demonstrate relationships between the registers indicating that a low degree
multiple of the polynomials corresponding to irregularly clocked registers can

Algebraic Attacks on Clock-Controlled Stream Ciphers 3

be bounded by two. Finally, we determine the effective key length of all four
systems and present our computational results.

2 The General Set-Up

We consistently label registers A, B and C with lengths l, m and n. The ith bit
of register A at time t is denoted by At

i and so the output bit is At
l . Similarly for

registers B and C. We use zt to denote the output from the entire system at time
t. M denotes the number of monomials occurring in a given system of equations.
If this system is linear, the complexity of solving the system is in general about
M3; if the system is sparse, this reduces to M2 [25]. If the system is quadratic,
the complexity of using the linearisation methods in [12] is about

(
M
2

)3
. In this

paper, we make use of both linear algebra and Gröbner bases methods of solving
equations. All computations are performed using the F4 algorithm in Magma
2.11 [19] on the SGI Origin 3000 using CPU at 600 MHz.

In setting up a general approach to acquiring an equation from a clock-
controlled stream cipher of our type, we need to consider three things: first
of all, which LFSR controls the clocking (we always use the letter A for this reg-
ister), secondly, which bits of the controlling register are used to determine the
clocking, and thirdly, the effect on the shift of the controlled register. Suppose
that the ith bit of A controls the clocking of B in such a way that if it is 0, B
does not clock and if it is 1, B clocks j times. In this case, we can express the
change to the kth position of B as follows:

Bt
k = Bt−1

k (At−1
i ⊕ 1)⊕Bt−1

k−jA
t−1
i . (1)

Of course, this applies if (k − j) > 0 as otherwise, we need to accommodate
the feedback polynomial into the equation, which is easily done. Modifications
can also be made to take into consideration the use of several bits of A being
used to determine the clocking of B and in cases where more than one register
is used in determining the clocking of other registers. As we shall see in the
basic stop-and-go generator, a system as simple as the above is inherently weak
because if the sum of two consecutive output bits is 1, we already get information
about bits in register A. In the more general situation of a polynomial P in the
bits of A controlling the clocking of the register B, equation (1) becomes

Bt
k = Bt−1

k (P ⊕ 1)⊕Bt−1
k−jP. (2)

We state and prove the following theorem involving several regularly clocked
registers Ai.

Theorem. Consider a bit-based LFSR system with k regularly clocked LFSRsAi of
length li respectively, 1 ≤ i ≤ k, in which a linear polynomial L involving bits of the
Ai determines the clocking of a register B of length m as described in (2). Suppose
the output zt at time t is the binary sum of the outputs of all registers. Then the
initial state of all Ai can be recovered from a system of quadratic equations, and can
subsequently be used to recover the output of B.

4 S. Al-Hinai et al.

Proof. We have zt = Bt
m ⊕
∑

i

At
li , and using (2), can write

zt+1 = Bt
m(L⊕ 1)⊕Bt

m−jL⊕
∑

i

At+1
li

. (3)

Therefore, zt ⊕ zt+1 = L(Bt
m ⊕Bt

m−j)⊕
∑

i

(At
li ⊕At+1

li
). (4)

Multiplying by L⊕1, this results in an equation of degree at most two involving
the bits of the Ai:

(L⊕ 1)(zt ⊕ zt+1) = (L⊕ 1)
∑

i

(At
li ⊕At+1

li
). (5)

This quadratic system can be solved for all bits of the registers Ai by running
off sufficiently many output bits from the system. The output of B can then be
calculated from

Bt
m = zt⊕

∑
i

At
li . �

The above theorem indicates that using more than one regularly clocked reg-
ister in a linear way to produce the output of the system adds no additional
security, as one sufficiently long such register will suffice. This confirms, as a
special case, the result of [23]. Although the assumptions of the Theorem apply
only to the stop-and-go generator in our list of target ciphers, the method used
in the proof applies to a general class of clock-controlled LFSR based systems,
those in which a linear function of register bits controls the clocking of several
registers. The alternating step and step1/step2 ciphers fall into this category.
As we shall see in section 4, the method also works on a system with only one
register - the self-decimated generator.

The generation of the equations (sufficiently many to be able to derive a so-
lution from them for the unknowns) is independent of the register values, and
so is assumed to be a precomputation procedure. In all cases below, we use a
maximum of approximately 2 GB of memory for equation generation. While A
produces linear equations from its feedback polynomial, B is producing higher
degree equations and so its output is always used in the output of the entire
system, which is therefore also highly non-linear. Our aim is therefore to reduce
the high degree of the output equations. In each of the four systems discussed
below, we take combinations of consecutive output bits in order to obtain re-
duced degree equations. We compare our attack against each system with other
best attacks, based on the keystream requirements, the attack complexity, and
the precomputation complexity. We also determine the effective key length for
securing the system against the attacks.

Algebraic Attacks on Clock-Controlled Stream Ciphers 5

3 Beth-Piper Stop-and-Go Generator — Strengthened
Version

The basic Beth-Piper stop-and-go generator [3], has two LFSRs A and B of
lengths l and m respectively. A is regularly clocked and its output controls the
clocking of B. Register B is clocked if and only if the output of A is 1. Rueppel
[22] and Kanso [18] point out that the generator has statistical weaknesses. They
observed that when the binary derivative output zt⊕ zt+1 is equal to 1, then At

l

has to be 1.
Because of the weakness of the basic stop-and-go, we will move directly to

an analysis of the strengthened stop-and-go generator. However, we wish first
to describe in detail our general technique for generating equations on the basic
system.

From equation (1) , we produce equations as follows for two consecutive output
bits of the system.

zt = Bt
m = Bt−1

m At−1
l ⊕Bt−1

m ⊕Bt−1
m−1A

t−1
l , (6)

zt+1 = Bt
mAt

l ⊕Bt
m ⊕Bt

m−1A
t
l . (7)

Adding (6) and (7) yields

zt ⊕ zt+1 = Bt−1
m At−1

l ⊕Bt−1
m ⊕Bt−1

m−1A
t−1
l ⊕Bt

mAt
l ⊕Bt

m ⊕Bt
m−1A

t
l . (8)

Substituting for Bt
m in the right hand side of (8) we obtain

zt ⊕ zt+1 = At
l(B

t
m ⊕Bt

m−1). (9)

From equation (9), we observe easily, as did Kanso and Rueppel, that when the
left side is 1, then At

l is 1. However, we also obtain the fact that Bt
m⊕Bt

m−1 equals
1 in this case, giving us new information about the bit Bt

m−1 in the irregularly
clocked register which differs by 1 from the output bit zt. Note also that in (9)
the right-hand side is a product of a linear term with a high degree term and
this is reduced to the constant on the left-hand side. Consequently, running off
about l keystream bits gives enough equations to solve the sparse linear system
in A with a complexity of l2. Once the initial state of A is determined, we can
then use the output from the system to determine the initial state of B directly.

Molland [20] points out that his method applies to the basic stop-and-go
generator, but with a complexity of order 2l. His method does not apply to the
strengthened stop-and-go generator which we now consider.

3.1 The Strengthened Version

The strengthened version of the Beth-Piper stop-and-go generator [3] as shown
in Figure 1, employs three LFSRs; in addition to A and B as in the basic stop-
and-go, it uses a third regularly clocked register C of length n. The output bit
at time t is formed by combining, using XOR, the sequences from B and C. A

6 S. Al-Hinai et al.

LFSR A

LFSR B

LFSR C

Output bitClock
 l

m

n

Fig. 1. The Beth-Piper Stop-and-Go Generator - Strengthened Version

thorough analysis of the cipher has been conducted in [18], confirming that the
cipher generates sequences with good statistical properties.

The one significant attack on the strengthened version of the stop-and-go gen-
erator is due to [26], which uses an improved linear syndrome algorithm. The
approach uses trinomial multiples of the feedback polynomial of each LFSR to
generate syndromes which are equations in the output bits. It is assumed that
the feedback polynomials are primitive trinomials. Under this assumption, the
attack is very fast, solving the problem in 896 max(l, m) computations based on
37 max(l, m) keystream bits. When a feedback polynomial is not trinomial, the
linear syndrome method relies on being able to replace it by its trinomial multi-
ple of the least degree. The best-known method for determining such multiples
is due to Coppersmith [7,24] and only works when the register length is a power
of two as the approach relies on determining discrete logarithms in fields of char-
acteristic 2. We note that our algebraic attack method is applicable regardless
of the weight of the feedback polynomial.

3.2 Algebraic Attack on the Strengthened Version

We apply the same method as that used for the basic stop-and-go generator.
The output of the irregularly clocked register is given by

Bt
m = Bt−1

m (At−1
l ⊕ 1)⊕Bt−1

m−1A
t−1
l . (10)

The output is then
zt = Bt

m ⊕ Ct
n. (11)

The maximum degree an equation can have for this system is l +1. The number
of monomials is M = m(2l−1)+n+1 and the complexity of solving this system
of equations using the standard linearization method is then M3 which is greater
than exhaustive keysearch.

3.3 Reducing the Degree of the Equations

In this section we reduce the degree of the equations generated by the irregularly
clocked generator. The method of degree reduction is basic to the algebraic attack
method. From (9),

zt+1 = Bt+1
m ⊕ Ct+1

n = Bt
mAt

l ⊕Bt
m ⊕Bt

m−1A
t
l ⊕ Ct

n−1. (12)

Algebraic Attacks on Clock-Controlled Stream Ciphers 7

Combining this with (11) yields

zt ⊕ zt+1 = (Bt
m ⊕Bt

m−1)A
t
l ⊕ Ct+1

n ⊕ Ct
n. (13)

We eliminate the high degree terms in this equation by multiplying both sides
by At

l ⊕ 1.

(At
l ⊕ 1)(zt ⊕ zt+1) = At

lC
t+1
n ⊕At

lC
t
n ⊕ Ct

n ⊕ Ct+1
n . (14)

Equation (14) determines a system of quadratic equations in the bits of regu-
larly clocked registers A and C. In determining the effective key length, we use
280 as a rule of thumb value for resistance to brute force attacks. Because the
system of equations generated may well be sparse and therefore computable in
square rather than cube time, we recommend register lengths of about 215 as a
minimum. We applied algebraic attacks using Gröbner bases methods to solve
the system of equations obtained from the cipher.

Table 1. Best Known Attacks on Beth-Piper Stop-and-Go

Attack
Minimum MK pre Solution Total attack TC TC
keystream l = m = computation complexity complexity l = m = l = m =
required MK n = 64 complexity TC n = 64 n = 128

Linear
37 max(l, n)� 212

2n2/3+2n2(n1/3
−1)/3 (l + n)3 2n2/3+2n2(n1/3

−1)/3 230 247

syndrome to �� to +(l + n)3 to to
attack [26] 2n1/3+2n(4n2/3

−1)/3 (l + n)2 2132 2241

Our attack
l + n 27 O(l2) Gr Gr Gr Gr

Gröbner

Table 1 presents both for ours and other attacks the minimum keystream re-
quired, precomputation complexity, where applicable, solution complexity, and
the total attack complexity which is the combination of precomputation and
solution complexities; where there is essentially no precomputation (reusable)
work, we leave this spot blank. We also give values of the keystream and the
total complexity for register sizes 64 and/or 128. The entry Gr indicates that
complexity of the work using a Gröbner bases method is generally unknown. To
obtain a measure of this complexity we obtained empirical results from experi-
mental attacks (see Section 3.4).

It should be noticed that it is not useful to solve the system obtained from
equation (14) with Gaussian elimination by linearisation of the system. This is
because when we multiply the equations by At

l ⊕ 1, we introduce a new set of
monomials that need to be linearised into more variables, while the rank of the
system stays constant. The system then becomes underdetermined and hence
cannot be solved for a unique solution. We solve the system by Gröbner bases
methods instead.
� This only applies for LFSRs with trinomial primitive polynomials, in which case the

attack takes time 896 max(l, m). Trinomial Polynomials should not be used.
�� The lower precomplexity corresponds to higher solution complexity and higher pre-

complexity to lower solution complexity in this table. The total attack complexity
averages these out. The total attack complexity is then derived from the best case.

8 S. Al-Hinai et al.

3.4 Implementation of the Gröbner Bases Methods on the
Beth-Piper Stop-and-Go Generator

From equation (14) we obtain quadratic equations in terms of initial state bits
of registers A and C, with l+n variables. When we used the F4 algorithm of the
Gröbner bases methods, we obtained a unique solution to the initial states of A
and C. This means that the minimum keystream required for the attack is l+n.
In practice, we usually need significantly more than l +n equations for finding a
unique solution. It can be seen from Table 2 that the more keystream we have,
the more efficient it is to find a solution of the system of equations we generate.
Performing multiplication on the algebraic equations introduces dependencies

Table 2. Attack Times for Beth-Piper Stop-and-Go Generator

l, n
Number of Keystream Time to generate Time to find
variables used equations solution

16 bit 32 128 bit 0.8 s 32 s
16 bit 32 256 bit 1.6 s 0.75 s
32 bit 64 1024 bit 40 s 60 s
32 bit 64 1536 bit 60 s 10 s
64 bit 128 4096 bit 513 s 3889 s
64 bit 128 5120 bit 649 s 618 s

and so the attack requires about l2/2 bits of keystream to find unique solutions.
These results indicate that this method is significantly better than the technique
proposed in [26].

4 Self-decimated Generator

The (d, k) self-decimated generator, proposed by Rueppel [21] and shown in
Figure 2, consists of a single LFSR A which controls its own clocking on the
principle that if the output is 0, then A clocks d times before producing new
output, and if the output is 1, A clocks k times before doing so.

LFSR A Output 0 : Clock d times

1: Clock k times
l

Fig. 2. The Self-Decimated Generator

Rueppel has proved [21] that a (d, k) self-decimated generator is theoretically
equivalent to a (1, k) self-decimated generator in combination with a generator
regularly clocked in intervals of length d. In [4], it was pointed out that if d and

Algebraic Attacks on Clock-Controlled Stream Ciphers 9

k are at most 3, the generator might be subject to a correlation attack. Though
we know of no such attack, we present here an attack on a (1, 4) self-decimated
generator. However, the situation can be generalized fully to the (1, k) case.
Equation (1) gives for 5 ≤ i ≤ l and 2 ≤ j ≤ 4

At
i = At−1

i−1

(
At−1

l ⊕ 1
)
⊕At−1

i−4A
t−1
l (15)

At
j = At−1

j−1

(
At−1

l ⊕ 1
)
⊕ F t−1

l−(4−j)A
t−1
l

At
1 = F t−1

l

(
At−1

l ⊕ 1
)
⊕ F t−1

l−3 At−1
l

where F t−1
j applies the feedback polynomial from the j′th position at time t−1,

and incorporates knowledge of previous bits. The generator will produce equa-
tions of maximum degree l + 1 where l is the length of the underlying LFSR,
and the number of monomials that the system of equations can have is therefore
equal to M = 2l − 1. Thus the maximum attack complexity is M3, using the
linearisation methods of [12]. As in the method of the theorem, using (1), the
output of the generator at time t + 1 is

zt+1 = At+1
l = At

l−1(A
t
l + 1)⊕At

l−4A
t
l . (16)

This can be rewritten as

zt+1 = At
l−1z

t ⊕At
l−4z

t ⊕At
l−1. (17)

Thus the knowledge of two consecutive keystream bits gives us a linear equa-
tion in the bits of A. Our complexity, as described in Table 3, shows that O(l)
keystream bits is sufficient to get a system of linear equations solvable for the
initial state. The effective key length is 230. Table 3 presents for our attack the
minimum keystream required, precomputation complexity, where applicable, so-
lution complexity, and the total attack complexity which is the combination of
precomputation and solution complexities. We also give values of the keystream
and the total complexity for register sizes 64 and/or 128.

Table 3. Best Known Attacks on the Self-Decimated Generator

Attack
Minimum MK pre Solution Total attack TC
keystream l = 128 computation complexity complexity l = 128
required MK complexity TC

Our attack O(l) 27 O(1) O(l3) O(l3) 221

Rueppel [22] notes that since this generator outputs directly bits of A, this
reveals information about A and so could be weak. He suggests the possibility
of out-putting a linear combination of bits of A. We consider, as in equation (2),
the situation where a polynomial P in bits Ai of A is added to the output:

zt+1 = P (At
i)⊕At

l−1z
t ⊕At

l−4z
t ⊕At

l−1.

10 S. Al-Hinai et al.

Table 4. Algebraic Attack Times for Self-Decimated Generator

l
Number of Keystream Time to generate Time to find
variables used equations solution

128 bit 128 160 bit 6 s 0.07 s
256 bit 256 384 bit 71 s 0.6 s
512 bit 512 640 bit 182 s 3 s

If P is linear, the system is subject to attack with the same complexity as the
original system. As the degree of P increases, so does the complexity.

We have implemented the attack on the self-decimated generator for different
register lengths. From equation (17) we obtain linear equations in terms of the
initial state bits of register A, with l variables in constant time. Given l lin-
early independent equations, Gröbner bases methods are equivalent to Gaussian
elimination. In practice, we usually need more than l equations to yield a linear
system of full rank. Equations can be generated in linear time and the system
can be solved in O(l3). It can be seen from Table 4 that the self-decimated gen-
erator can be broken in polynomial time, and for standard register lengths, the
initial state of the generator can be found efficiently using keystream of order l.

5 Step1/Step2 Generator

Gollmann and Chambers proposed the step1/step2 generator in [16]. As shown
in Figure 3, the generator consists of two LFSRs, A and B, which are of the
same length. A controls the shifting of B in the following way. If the output of
A is 0, then B is clocked once and if the output of A is 1, B is clocked twice
before producing the keystream bits. Note that if A outputs 1, it must wait
for B to clock twice and hence does not regularly clock. An alternate approach
to considering this system such that A is regularly clocked is to have A move
twice every clock beat and consequently B will move either once or twice every
clock beat. The output of the system is the output of B. There have been three
substantial attacks on this generator [28, 27, 20].

LFSR A LFSR B Output0 : clock 1 time

l m
1 : clock 2 times

Fig. 3. The Step1/Step2 Generator

5.1 Algebraic Analysis of the Step1/Step2 Generator

In this section, we algebraically analyse the step1/step2 generator. Using the
general equation of Section 2, each stage i of B for 2 < i < m is replaced by the
following expression.

Algebraic Attacks on Clock-Controlled Stream Ciphers 11

Table 5. Best Known Attacks on Step1/Step2 Generator

Attack
Minimum MK pre

Solution complexity Total attack TC
TC

required l = m computation l = m
MK = 64 complexity = 64

Embedding
5m 28 2mm up to m3 > 2m5m 272

corr’n attack [28]
Clock control
guessing attack [27] l + m 27 — O((l + m)32(l+m)/2) O((l + m)32(l+m)/2) 284

Improved LCT
attack [20] 3l/2 27 > O(l9) O(2l) O(2l) 264

Our attack
l 27 — 2lm3 2lm3 282

Gaussian
Our attack

l + m 27 O(2l) Gr Gr Gr
Gröbner

Bt
i = Bt−1

i−1 (At−1
l ⊕ 1)⊕Bt−1

i−2At−1
l (18)

and B2 is given by

Bt
2 = Bt−1

1 (At−1
l ⊕ 1)⊕ F t−1

m At−1
l . (19)

The right-most position is given by

Bt
1 = F t−1

m (At−1
l ⊕ 1)⊕ F t−1

m−1A
t−1
l (20)

where F t−1
j applies the feedback polynomial from the j′th position at time t−1.

Since A controls the clocking of B, the maximum degree an equation can have
is l + 1 and M = m(2l − 1) + 1. The output is given by

zt = Bt
m = Bt−1

m−1A
t−1
l ⊕Bt−1

m−1 ⊕Bt−1
m−2A

t−1
l . (21)

We add two consecutive output bits zt = Bt
m and zt+1 = Bt

m−1(A
t
l⊕1)⊕Bt

m−2A
t
l

to get
zt ⊕ zt+1 = (Bt

m−1 ⊕Bt
m−2)A

t
l ⊕Bt

m−1 ⊕Bt
m. (22)

Multiplying through by At
l ⊕ 1 produces

(At
l ⊕ 1)(zt ⊕ zt+1) = (At

l ⊕ 1)(Bt
m−1 ⊕Bt

m). (23)

Thus a linear multiple of the complex component in B reduces to a low degree
function on the left. We can now guess register A bits and solve the resulting
system in B with complexity 2lm3, using the linearisation methods of [12]. Ef-
fective key length is 80. Table 5 presents both for ours and other attacks the
minimum keystream required, precomputation complexity, where applicable, so-
lution complexity, and the total attack complexity which is the combination of
precomputation and solution complexities; where there is essentially no precom-
putation (reusable) work, we leave this spot blank. We also give values of the
keystream and the total complexity for register sizes 64 and/ or 128.

12 S. Al-Hinai et al.

Table 6. Algebraic Attack Times for Step1/Step2 Generator

l, m
Number of Keystream Time to generate Time to find
variables used equations solution

8 bit 16 16 bit 13 s 3 s
10 bit 20 20 bit 936 s 89 s
12 bit 24 24 bit 153699 s 5958 s

Table 5 gives separate rows for complexities derived using linear algebra meth-
ods and respectively Gröbner bases methods. In Table 5, the precomputation
complexity shown in the last line is derived from polynomial multiplication. The
entry Gr indicates that complexity of the work using a Gröbner bases method is
generally unknown. We provide empirical data derived from using the Gröbner
bases method as shown in Table 6. Since multivariate polynomial multiplication
is exponential in the number of variables, we restricted bit sizes to values we
were able to run in under two days as can be seen in Tables 6 and 8.

5.2 Implementation of the Gröbner Bases Methods on the
Step1-Step2 Generator

If we do not guess any bits of A or B, we would generate a system of equations
of degree l+1 with l+m variables. Using Gröbner bases methods we can obtain
a unique solution to the initial states of A and B. This means that the minimum
keystream required for the attack is l + m. In Table 6 we generate the equations
without guesses at bits of A; nevertheless we can still recover the initial states
with the minimum required keystream. Although the computations of Section
5.1 indicate that a larger size for A increases the complexity faster, we have
implemented attacks with l = m.

6 Alternating Step Generator

The alternating step generator was introduced in [17] and is shown in Figure 4. It
employs three LFSRs A, B and C of lengths l, m and n respectively. A is regularly
clocked and controls the clocking of B and C. If the output of A at time t is 1, then
B is clocked; otherwise, C is clocked. The output of the system is the sum of the
outputs of registers B and C. Several attacks have been applied to the alternating
step generator [14, 15, 27] with complexity indicated in Table 7.

6.1 Algebraic Attack on the Alternating Step Generator

Using the general equation of Section 2,

Bt
i = Bt−1

i (At−1
l ⊕ 1)⊕Bt−1

i−1At−1
l (24)

Ct
i = Ct−1

i At−1
l ⊕ Ct−1

i−1 (At−1
l ⊕ 1). (25)

Algebraic Attacks on Clock-Controlled Stream Ciphers 13

LFSR A

LFSR B

LFSR C

Output bitClock
 l

m

n

Fig. 4. The Alternating Step Generator

Table 7. Best Known Attacks on the Alternating Step Generator

Attack
Minimum MK pre

Solution complexity
Total attack TC

keystream l = m = computation complexity l = m =
required MK n = 64 complexity TC n = 64

Edit distance
O(m + n) 29 — O(2m+n(m + n)) O(2m+n(m + n)) 2135

corr’n [14]
Clock control

l + m + n 28 — O((l + m + n)32(l+m+n)/2) O((l + m + n)32(l+m+n)/2) 2119guessing
attack [27]
Improved edit

O(max(m, n)) 211 — O(2max(m,n) max(m,n)) O(2max(m,n) max(m, n)) 270distance
corr’n [15]
Our attack

max(m,n) 27 — O(2l(n3 + m3)) O(2l(n3 + m3)) 283

Gaussian
Our attack

l + max(m,n) 28 O(2l) Gr Gr Gr
Gröbner

The keystream bit at time t is then zt = Bt
m ⊕ Ct

n. The maximum degree an
equation can have is l + 1 and the number of monomials is M = (n + m)(2l −
1) + n + 1.

In applying our algebraic attack, we again use the method of the theorem of
Section 2 to obtain

zt ⊕ zt+1 = Bt+1
m ⊕Bt

m ⊕ Ct+1
n ⊕ Ct

n (26)

which can be rewritten as

zt ⊕ zt+1 = (Bt
m ⊕Bt

m−1)A
t
l ⊕ (Ct

n ⊕ Ct
n−1)(A

t
l ⊕ 1). (27)

Multiplying both sides of (27) by At
l ⊕ 1 produces

(At
l ⊕ 1)(zt ⊕ zt+1) = (At

l ⊕ 1)(Ct
n ⊕ Ct

n−1). (28)

Thus, a linear multiple of the complex component in C reduces to a low degree
function on the left. We can guess register A bits and solve the resulting system
in C with complexity 2ln3. Then equation (26) can be used to solve for the
bits of B with additional complexity m3. The total complexity is 2l(n3 + m3).
Alternatively, we can guess register C, recover the bits of A and then B with
total complexity 2n(l3 + m3). Guessing the shortest register is clearly the best
option. The effective key length is 26.

Table 7 presents both for ours and other attacks the minimum keystream re-
quired, precomputation complexity, where applicable, solution complexity, and

14 S. Al-Hinai et al.

the total attack complexity which is the combination of precomputation and so-
lution complexities; where there is essentially no precomputation (reusable) work,
we leave this spot blank. We also give values of the keystream and the total com-
plexity for register sizes 64 and/or 128. Table 7 gives separate rows for complexities
derived using linear algebra methods and respectively Gröbner bases methods. In
Table 7, the precomputation complexity shown in the last line is derived from poly-
nomial multiplication. The entry Gr indicates that complexity of the work using
a Gröbner bases method is generally unknown. We provide empirical data derived
from using the Gröbner bases method as shown in Table 8.

6.2 Implementation of the Gröbner Bases Methods on the
Alternating Step Generator

If we do not guess any bits of A, B or C, we would generate a system of equations
of degree l + 1 with l + m + n variables. Using Gröbner bases methods we can
obtain a unique solution to the initial states of A and B. This means that the
minimum keystream required for the attack is l + m + n. It is shown in Table 8
that we can recover the initial states with the minimum required keystream.

Table 8. Algebraic Attack Times on Alternating Step Generator

l, m
Number of Keystream Time to generate Time to find
variables used equations solution

8 bit 16 24 bit 27 s 7 s
10 bit 20 30 bit 2706 s 1830 s

7 Conclusions and Suggestions for Future Research

We have presented an algebraic method of attacking a general type of clock-
controlled bit-based stream cipher along with a theorem bounding by two the
degree of the derived equations from the cipher. The method of the theorem can
be used for a broader range of ciphers in determining their levels of security,
and we have demonstrated its effectiveness on the strengthened stop-and-go,
self-decimated, step1/step2 and alternating step generators. In comparing the
efficiency of our attacks with other attacks, we observed that when the feedback
polynomial is not a trinomial, the known attacks generate trinomial polynomials
which is a highly complex procedure. Our results, however, do not depend on con-
structions of polynomials. For the Beth-Piper stop-and-go generator strength-
ened version and for the self-decimated generator, we obtain significantly better
attacks than any other known attack. For the other two ciphers, our attack
complexity is not far from the best known attacks. For each of the generators
studied, we have presented the effective register length of the system providing
useful information for implementations.

This paper is the first presenting a general algebraic attack approach to clock-
controlled bit-based stream ciphers in which the output of a single LFSR (or a

Algebraic Attacks on Clock-Controlled Stream Ciphers 15

linear combination of its bits) determines the clocking of other LFSRs in the
system. Our results indicate that long register lengths are needed to protect
against algebraic attacks. In future work, we will develop the technique for use
against other classes of clock-controlled ciphers including the cascade ciphers [5].

Acknowledgments. The authors wish to express their appreciation to Ed Daw-
son, Matt Henricksen, William Millan and Leonie Simpson for helpful discus-
sions on this work, to the High Performace Computing and Research Support at
Queensland Univeristy of Technology for providing us hardware and assistance
with our computational experiements, and also to the Computational Algebra
Group at the University of Sydney for a complimentary copy of Magma for use
on our hardware.

References

1. F. Armknecht. Improving fast algebraic attacks. FSE, pages 65–82, 2004.
2. F. Armknecht and M. Krause. Algebraic attacks on combiners with memory.

Crypto, pages 162–175, 2003.
3. T. Beth and F. C. Piper. The stop-and-go generator. In T. Beth, N. Cot, and I.

Ingemarsson, editors, Advances in Cryptology: Proceedings of Eurocrypt 84, volume
209 of Lecture Notes in Computer Science, pages 88–92. Springer-Verlag, 1985.

4. W. G. Chambers and D. Gollmann. Embedding attacks on step[1..D] clock con-
trolled generators. Electronics Letters, 36, pages 1771–1773, 2000.

5. W. G. Chambers and D. Gollmann. Lock-in Effect in Cascades of Clock-Controlled
Shift-Registers. In Christoph G. Günther,editor,Advances in Cryptology: Proceed-
ings of Eurocrypt 88,volume 330 of Lecture Notes in Computer Science, pages 331–
344. Springer-Verlag, 1988.

6. J. Y. Cho and J. Pieprzyk. Algebraic attacks on SOBER-t32 and SOBER-t16
without stuttering. FSE, pages 49–64, 2004.

7. D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE
Transactions on Information Theory, 30(4), pages 587–593, 1984.

8. N. Courtois. The security of hidden field equations (HFE). CT-RSA, pages 266–
281, 2001.

9. N. Courtois. Higher order correlation attacks, XL algorithm and cryptanalysis of
Toyocrypt. ICISC, pages 182–199, 2002.

10. N. Courtois. Algebraic attacks on combiners with memory and several outputs.
Cryptology ePrint Archive, Report 2003/125, 2003.

11. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. Crypto,
pages 176–194, 2003.

12. N. Courtois and W. Meier. Algebraic attacks on stream cipher with linear feedback.
In Advances in Cryptology - Eurocrypt - LNCS 2656, Springer-Verlag, pages 346–
359, 2003.

13. N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined sys-
tems of equations. Asiacrypt, pages 267–287, 2002.

14. J. Dj. Golić and R. Menicocci. Edit distance correlation attack on the alternating
step generator. In Burton S. Kaliski Jr., editor, Advances in Cryptology–Crypto
‘97, volume 1294 of Lecture Notes in Computer Science, pages 499–512. Springer-
Verlag, 1997.

16 S. Al-Hinai et al.

15. J. Dj. Golić and R. Menicocci. Correlation analysis of the alternating step genera-
tor. Des. Codes Cryptography, 31(1), pages 51–74, 2004.

16. D. Gollmann and W. G. Chambers. Clock-controlled shift registers: a review. IEEE
Journal on Selected Areas in Communications, 7 (1989), pages 525–533, 1989.

17. C. G. Günther. alternating step generators controlled by de Bruijn sequences. In
David Chaum and Wyn L. Price, editors, Advances in Cryptology–Eurocrypt 87,
volume 304 of Lecture Notes in Computer Science, pages 5–14. Springer-Verlag,
1988.

18. A. A. Kanso, Clock-Controlled Generators. PhD thesis, Royal Holloway and Bed-
ford New College, University of London, Egham, London, 1999.

19. http://magma.maths.usyd.edu.au/.
20. H. Molland. Improved linear consistency attack on irregular clocked keystream

generators. FSE, pages 109–126, 2004.
21. R. A. Rueppel. When shift registers clock themselves. In David Chaum and Wyn L.

Price, editors, Advances in Cryptology–Eurocrypt 87, volume 304 of Lecture Notes
in Computer Science, pages 53–56. Springer-Verlag, 1988.

22. R. A. Rueppel. Stream ciphers. In Gustavus J. Simmons (Ed.), Contemporary
Cryptology: The Science of Information Integrity, IEEE Press. 1992.

23. R. A. Rueppel, editor. Analysis and Design of Stream Ciphers. Springer-Verlag,
Berlin, 1986.

24. E. Thomé. Computation of discrete logarithms in F2607 . Asiacrypt: Advances in
Cryptology - Asiacrypt: International Conference on the Theory and Application
of Cryptology, pages 107–124. LNCS, Springer-Verlag, 2001.

25. D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans-
actions on Information Theory, 32(1), pages 54–62, 1986.

26. K. Zeng, C. H. Yang and T. R. N. Rao. An improved linear syndrome algorithm
in cryptanalysis with application. In A. J. Menezes and S. A. Vanstone, editors,
Advances in Cryptology–Crypto ‘90, volume 537 of Lecture Notes in Computer
Science, pages 34–47. Springer-Verlag, 1991.

27. E. Zenner. On the efficiency of the clock control guessing attack. ICISC, pages
200–212, 2002.

28. M. V. Zivkovic. An algorithm for the initial state reconstruction of the clock-
controlled shift register. IEEE Transactions on Information Theory, 37(5), page
1488, 1991.

Cache Based Power Analysis Attacks on AES

Jacques Fournier1,2 and Michael Tunstall3

1 Computer Laboratory, University of Cambridge,
JJ Thomson Avenue, Cambridge CB3 0FD, UK

2 Gemplus Card International, Security Technologies Department,
Avenue des Jujubiers, La Ciotat, F-13705, France

jacques.fournier@gemplus.com
3 Smart Card Centre, Information Security Group,

Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK

m.j.tunstall@rhul.ac.uk

Abstract. This paper describes possible attacks against software im-
plementations of AES running on processors with cache mechanisms,
particularly in the case of smart cards. These attacks are based on side-
channel information gained by observing cache hits and misses in the
current drawn by the smart card. Two different attacks are described.
The first is a combination of ideas proposed in [2] and [11] to produce
an attack that only requires the manipulation of the plain text and the
observation of the current. The second is an attack based on specific
implementations of the xtime function [10]. These attacks are shown to
also work against algorithms using Boolean data masking techniques as
a DPA countermeasure.

1 Introduction

Several attacks have been published on using cache access events as a side-
channel [2, 3, 11, 16] on DES and AES. These are predominately timing attacks
taking into account the total number of cache misses in the algorithm to de-
termine information on the secret key being used. The use of a side-channel to
analyse the pattern of cache accesses is described in [12].

More recently, an attack was published using the cache lines accessed at each
table look-up in the ByteSub function of an AES implemented on a PC to derive
the secret key [11]. This involves detecting what cache lines are used for every
table look-up to derive the secret key. This was done by having a separate process
running in parallel to observe the change in the cache after each table look-up.
As each process is sharing the same cache, the changes in the lines could be
directly observed by the attacking process.

Attacks using the change in current signature caused by a cache miss have
also been published [2] but only part of the key could be obtained. The amount
of information on the key that is derived is determined by the size of the
cache lines i.e. the larger the cache lines the smaller the amount of information
available.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 17–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 J. Fournier and M. Tunstall

In this paper, an extension to the attack presented in [2] is proposed. This
improvement allows the entire AES key to be derived, and focuses on the cache
hit event rather than the cache misses. The attack is somewhat similar to the
attack described in [11], but less information is retrieved in the initial steps as
the exact cache lines used are unknown. The resulting attack requires no ma-
nipulation of the cache as required in [2, 11] but involves manipulating the plain
text and observing the corresponding patterns of cache hits generated. Further-
more, another attack is described based on optimisations (for performance and
security reasons) used for the xtime function [10]. Both attacks are extended to
show that these attacks are a realistic threat to DPA resistant algorithms that
just use Boolean data masking to protect against DPA [6]. These attacks are
described in the context of smart cards, as smart card chips are available that
use a cache for data and code accesses e.g. [8, 15], and the power consumption
is a readily available side-channel in smart cards.

The remainder of the paper is structured as follows: Section 2 provides some
details about cache mechanisms, while Section 3 explains how the latter mecha-
nisms influence the current to briefly describe the side-channel model. Section 4
describes the first part of the attack where roughly half of the secret key can be
derived. Section 5 shows how the rest of the key can be derived by two separate
methods. Section 6 illustrates how these attacks can be adapted so that they
can be applied to DPA resistant algorithms. Section 8 describes some suitable
countermeasures, which is followed by a conclusion.

Notation: Throughout this paper the algorithm under attack will be AES
where a plaintext P = (p1, p2, p3 . . . p16)256 is enciphered with a secret key K =
(k1, k2, k3 . . . k16)256. Where the subscript 256 means that the values are to this
base. This notation is used throughout this paper e.g. F016 is 240 written in
base 16.

2 Cache Description

The shrink of technologies along with the growing need for more sophisticated
applications is currently generating a significant shift in the hardware platforms
used in smart cards, which have traditionally been based on 8-bit CISC-like
CPUs. More sophisticated smart cards are emerging based on 32-bit CPUs con-
taining dedicated peripherals (cryptographic co-processors, memory managers,
large memories . . .) [8, 15]. Such CPUs are optimised to achieve high perfor-
mance involving dedicated mechanisms that are implemented to compensate for
time consuming operations or long data paths. Details about those sophisticated
mechanisms can be obtained from [5, 9]. In order to understand the attacks pre-
sented in this paper, we focus on two of these mechanisms, namely pipelining
and caching.

Pipelining: Pipelining is a technique whereby the execution of each instruction
is decomposed into elementary and independent steps. Each step is implemented
as a separate hardware block that can work in parallel. Typically, a 3-stage

Cache Based Power Analysis Attacks on AES 19

pipeline can be decomposed into an Instruction Fetch (IF), an Execute (EX)
stage and a Write Back (WB) stage. More sophisticated 5-stage pipelines like [9]
can involve an IF stage, a DC (Decode) stage, an EX stage, a MEM (Memory
access) stage and a WB stage. Each stage is designed to be completed within
one clock cycle, which means that even if each instruction takes 5 clock cycles,
as in the case of a 5-stage pipeline, an instruction can be issued at every clock
cycle.

Caching: Smart card architectures include embedded Non-Volatile Memories
(NVM) like EEPROM or Flash to store code or data. The memories usually
have high read latencies where, for example, reading one byte involves reading
a whole line that takes several clock cycles.This would mean that the IF stage
and the MEM stage would take more than one clock cycle, which would stall
the pipeline. This would considerably reduce the rate in which instructions can
be issued. To compensate for these ‘slow’ memories, cache mechanisms are im-
plemented. A cache is a small, fast RAM memory whose role is to buffer the
lines of NVM being fetched. Due to their technology and small size (leading to
faster decode and access times) caches allow a word to be fetched in one clock
cycle.

When the data or instruction word is to be fetched from the NVM, the CPU
will first check whether this particular word is already in the cache: if yes (this
is a cache hit), the word is fetched directly from the cache. If, on the contrary,
this particular word is not cached this is a cache miss. The CPU will then fetch
a whole line (e.g. 16 bytes) within which the targeted word is found. This means
that even if fetching this word takes more than one clock the other words of this
line will already be in the cache when required.

This mechanism considerably increases the instruction issue rate and there-
fore performance. On Harvard architectures, the cache is applied to both the
instruction and data memories in separate caches. Detailed studies of the per-
formance enhancements of cache mechanisms can obtained from [5]. In order to
keep power consumption low smart card CPUs usually only implement one level
of cache with a granularity in the order of 8 to 16 bytes.

3 The Side Channel

Given the above description of the cache mechanism, we can easily see that in
the case of a cache hit the pipeline is not stalled and normal execution occurs.
In the case of a cache miss the pipeline flow is stalled and the NVM is accessed.
In terms of side-channel information leakage (namely the power consumption)
when reading data from memory:

– In the case of a cache miss, the instruction takes more cycles than a cache
hit.

– In the case of a cache miss, the power consumed by the execution is signifi-
cantly higher than in the case of a cache hit because NVM accesses should
consume more power than a normal CPU.

20 J. Fournier and M. Tunstall

With these observations we can build a power analysis attack based on the
distinctive signatures of cache hits and cache misses.

The rest of the paper details a method of using this model to build an attack
on AES based on cache hits and cache misses.

In our description, the first assumption is that we have a pipelined CPU
embedding a one level cache mechanism for both the instructions and data. An
example of a hardware simulation of this side-channel is given in [2]. To simplify
our illustration, we suppose that on the architecture being attacked the NVM
is accessed by lines of 16 bytes i.e. each cache miss will mean that 16 bytes are
loaded into the cache.

4 The First ByteSub Function

Our attack is implemented against the AES algorithm as described in [10]. The
first step of the attack targets the ByteSub function of the first round. Just
before entering this function the input data is XORed with the secret key. The
resulting 16 bytes enter the ByteSub function that is usually implemented as a
look-up on a table of 256 entries.

4.1 The Power Consumption

An attack on this function is already described in [2]; a slightly modified version
is stated here. The main difference is this attack relies purely on the observation
of the side-channel described in Section 3, whereas the attack described in [2]
manipulates the cache. Less information is generated but the attack is more
powerful as it only needs to manipulate the messages being ciphered and observe
the cache access pattern generated.

Key information can be derived from the cache access events during the table
look-up depending on the order in which the look-up table is loaded into the
cache. It is assumed that for each acquisition the cache has been flushed, which
can easily be provoked by resetting the smart card under observation.

The first byte of the message is fixed to a value, p1, and different values of the
second byte of the message, p2 can be tried until a cache hit occurs. At which
point it is known that p1 ⊕ k1 ≈ p2⊕ k2, which is only an approximation due to
the size of the cache granularity. In the case under study (i.e. we have a cache
with a granularity of 16 bytes) we can only be sure of the high nibble of the
approximation given. Therefore (p1⊕p2)∧F016 will give (k1⊕k2)∧F016 with at
most sixteen different messages i.e. all sixteen possible values for the high nibble
of p2 can be tried until a cache hit is observed.

Once (k1 ⊕ k2) ∧ F016 is found, (k2 ⊕ k3) ∧ F016 can be found using the same
method by choosing p1 and p2 so that a cache hit is always generated between
the first two look-ups, and varying p3 until another cache hit is generated. It
is important to have a cache hit between the first two look-ups, as otherwise it
is not known which cache line corresponds to the observed cache hit and some
information is lost. If this process is repeated for each subsequent key byte, the
high nibble of each byte will be known as a function of the high nibble of the

Cache Based Power Analysis Attacks on AES 21

first byte. With at most 240 acquisitions the exhaustive search to find the key
of an AES implementation can be reduced from 2128 to 268.

In practice, this will only be true if the implementation is known. The Byte-
Sub function can be implemented before or after the ShiftRow function, as the
ShiftRow function is a bytewise permutation. A permutation is sometimes also
used on the message and key on entry to the algorithm to convert the array
format to the grid format used in the specification [10]. This is an optional
bytewise permutation that will change addressing during the algorithm. Both
permutations will change the order in which the data is treated by the ByteSub
function.

In the following sections we will assume that the implementation details are
known, as the added complexity due to these permutations is negligible. The
grid permutation will be ignored and the ShiftRow function will be assumed to
take place after the ByteSub function.

5 Finding the Rest of the Key

The first step described in Section 4 reduces the keyspace to 268 and is theoret-
ically trivial. There are two ways to continue the attack to derive the rest of the
key using the same side-channel. These two independent methods are described
below.

5.1 The Second ByteSub Function

The second ByteSub function (i.e. the ByteSub of the second round of AES) can
be used to determine the rest of the key in a similar manner to that described
in [11], and the same notation has been used for clarity. Plain texts are chosen
such that there are no cache misses in the first ByteSub function, except for the
first table look-up. The plain text bits that are XORed with the unknown bits
of the key (i.e. the first byte and the lower nibbles of the rest of the plain text)
are randomised for each acquisition. If the first look-up in the second ByteSub
function is a cache hit then information on the unknown key bits can be derived.
In this case the following relationship is known:

(2 • s(p1⊕k1)⊕ 3 • s(p6 ⊕ k6)⊕ s(p11 ⊕ k11)
⊕s(p16 ⊕ k16)⊕ k1 ⊕ s(k8)⊕ 1) ∧ F016 = (k1 ⊕ k2) ∧ F016

Where the function s(·) represents the look-up table used in the ByteSub
function and • represents multiplication over GF(28).

The value of (k1⊕k2)∧F016 is known from the first part of the attack described
in Section 4. The value of k1 is unknown but given k1 the high nibbles of k6,
k11, k16 and k8 can be derived. This means that there are 24 unknown bits in
the equation. The evaluation of the 224 possible combinations of the left hand
side of the equation will be equal to (k1 ⊕ k2) ∧ F016 with a frequency of 1 in
16. One plaintext that produces a cache hit in the second ByteSub function will
therefore reduce the unknown bits in the equation from 224 to 220.

22 J. Fournier and M. Tunstall

A second cache hit with a different plain text can then be analysed, the correct
key values will be in the intersection of the two sets of 220 values produced. With
6 evaluations of the above equation all the unknown bits can be derived. This
corresponds to 96 acquisitions, as the cache hit occurs with a probability of 1/16
given that the plaintext input is mostly random. This reduces the unknown key
bits from 268 to 244. The cache misses could also be used as they would reduce
the keyspace by 15/16, but given the small amount of acquisitions required this
should not be necessary.

Any acquisition with two successive cache hits can then be used to derive
information on another 5 key bytes. If the second look up in the second ByteSub
function is also a cache hit, the following equation holds.

(2 • s(p2⊕k2)⊕ 3 • s(p7 ⊕ k7)⊕ s(p12 ⊕ k12)
⊕s(p13 ⊕ k13)⊕ k2 ⊕ k1 ⊕ s(k8)⊕ 1) ∧ F016 = (k1 ⊕ k2) ∧ F016

It is faster to search through the possible values of this equation as there are
20 unknown bits, the values of k1 and k8 being provided by the previous step.
As previously, the evaluation of this equation reduces the unknown values by a
factor of 16. It is expected that 5 such equations need to be evaluated, taking
the intersection as before, to provide one value for all of the key bytes in the
equation. This event occurs with a probability of 1/256 so the acquisition phase
will be lengthier than the previous step. A total of 1280 acquisitions should be
required.

If all of the key bytes in the above equations are derived, the key can then
be found by an exhaustive search of the remaining unknown key bits. This will
be a search in a keyspace of size 224 (i.e. 9 complete key bytes are given by
the formulae above, for the remaining six the high nibble is known, leaving 24
unknown bits), which can easily be exhausted on a PC. This is fortunate as
continuing the attack for three successive cache hits would be difficult as the
probability of seeing such an event is 1/4096, which would make the attack
excessively time consuming.

The last set of equation evaluations are time consuming, which means that
it can be advantageous to acquire less data and let the exhaustive search com-
plete the key search. If, for example, an attacker takes 768 acquisitions the
expected exhaustive key search would be around 232. Another means of speed-
ing up the evaluation of the possible key values for the second equation would
be to use the event of a cache hit followed by a cache miss, which occurs with
a probability of 15/256, each of which will reduce the unknown keyspace by
15/16.

5.2 The xtime Function

A second method to reduce the key search space is to focus on the xtime func-
tion. The xtime function is a multiplication by 2 over GF(28) and is used in the
MixColumn function [10]. The xtime function is a bit shift followed by a con-
ditional XOR (as shown in Algorithm 1). This is difficult to implement securely
in smart cards as there is a danger that the result of the conditional test can be

Cache Based Power Analysis Attacks on AES 23

Algorithm 1. The xtime function
Input: x = (x7, x6, . . . , x0)2
Output: y = xtime(x)

y ← (x << 1) ∧ FF16

if x7 = 1 then
y ← y ⊕ 1B16

end

return y

leaked through the power consumption as the two branches will take different
amounts of time to complete. Even if this is implemented so that the calcula-
tion always takes the same amount of time, there is still a risk of a partitioning
attack [14].

In smart cards a possible replacement for this function is with a look-up table
of 256 bytes to avoid any conditional testing. This protects the implementation
against Simple PowerAnalysis but the table will be in Non-Volatile Memory so will
be accessed via the cache as with the look-up table used in the ByteSub function.
The pattern of cache hits and misses can therefore be analysed in a similar way to
the first phase of the attack described in Section 4. The first look-up to the xtime
table will be a cache miss, if this is followed by a cache hit then:

s(p1 ⊕ k1) ∧ F016 = s(p6 ⊕ k6) ∧ F016

Where, as previously, the s(.) represents the look-up table in the ByteSub func-
tion. The right hand side of the equation uses p6 ⊕ k6 rather than p4 ⊕ k4, that
would be expected due to the ShiftRow function, due to the ShiftRow function.
In this equation there are 212 possible combinations given that the high nibble of
k6 is known as a function of k1, from the first part of the attack described in Sec-
tion 4. Searching through all the combinations will give 28 possible values for the
pair (k1, k6). Due to the non-linear nature of the s(·) function another cache hit
can be found with a different message that will provide a different set of 28 values.
The correct key will be in the intersection between the two sets of possible values.
After three cache hits with three different messages are found there should only be
one hypothesis for both k1 and k6. Each cache hit will occur with a probability of
1/16, so 48 acquisitions should be enough to find the value of k1 and k6.

The next cache access is the first xtime function call for the next output byte.
The values for p1 and p6 can be fixed so that a cache hit is always generated
between the first two xtime look-ups. If a cache hit occurs for the next xtime
look-up then:

s(p6 ⊕ k6) ∧ F016 = s(p2 ⊕ k2) ∧ F016

In this case k6 is known and the high nibble of k2 is known, as k1 has been
determined the high nibble of all the key bytes are known. The 4 unknown bits
of k2 in the equation can be exhausted for the value of p2 that provokes a cache
hit. One cache hit of this nature would be enough to determine the 4 unknown
bits. This process can be continued with the following equations:

24 J. Fournier and M. Tunstall

s(p2 ⊕ k2) ∧ F016 = s(p7 ⊕ k7) ∧ F016

s(p7 ⊕ k7) ∧ F016 = s(p3 ⊕ k3) ∧ F016

s(p3 ⊕ k3) ∧ F016 = s(p8 ⊕ k8) ∧ F016

s(p8 ⊕ k8) ∧ F016 = s(p4 ⊕ k4) ∧ F016

s(p4 ⊕ k4) ∧ F016 = s(p5 ⊕ k5) ∧ F016

This can determine the first 8 bytes of the key with 192 acquisitions, leaving an
exhaustive search of 232 possible keys. An exhaustive search of 232 is prohibitive
so further analysis would be advantageous.

The next 4 cache accesses can be analysed requiring a further 64 acquisitions
(for a total of 256 acquisitions) and reduces the amount of unknown key bits to
16. As an exhaustive search of 216 is trivial, no further acquisitions are required
to derive the key.

6 Application to DPA Resistant Implementations

In smart cards implementations of cryptographic algorithms like AES are im-
plemented with countermeasures to protect against Differential Power Analysis
(DPA) [6]. One of the techniques used to protect the AES is by masking the
data being manipulated with a random value. The data is then manipulated in
such a way that the value present in memory is always masked with the same
random. This mask is then removed at the end of the algorithm to produce the
ciphertext. The most common form of masking is Boolean masking where all
data manipulated is treated after being XORed with a random, such that the
result is also XORed with the same random value. An example of this sort of
implementation can be found in [1].

The size of the random is generally limited as look-up tables need to be
randomised before the execution of the algorithm so that the input and output
values of the s-box leak no information. An example of how this is done is given
in Algorithm 2. As illustrated in the latter, the random used for masking the
input data can be no larger than n, and the random used for the output value
can be no larger that x.

In the case of AES both R and r are on one byte, which means that the
random mask during the calculation of AES will also be on one byte.

Algorithm 2. Randomising S-Box Values
Input: S = (s0, s1, s2, . . . , sn)x containing the s-box, R a random ∈ [0, n], and r

a random ∈ [0, x).
Output: RS = (rs0, rs1, rs2, . . . , rsn)x containing the randomised s-box.

for i ← 0 to n do
rsi ← s(i⊕R) ⊕ r

end

return RS

Cache Based Power Analysis Attacks on AES 25

6.1 Implementing the Attack

The described attack can be implemented as described in the above sections, as
the random will provide one byte of variation. In all the equations used to test
key hypotheses, the values generated are always compared with the neighbouring
byte. If, for example, all bytes in the algorithm are masked with the random R
the first phase of the attack described in Section 4 will give (k1⊕R⊕k2⊕R)∧F016.
The R’s will cancel leaving (k1 ⊕ k2) ∧ F016 as with the approach detailed in
Section 4. The random will just change the order of the cache lines and the order
of the bytes within them, but the same plaintext values will give the same cache
access pattern.

This does not mean that a DPA resistant algorithm is as easy to attack as a
naive implementation. There will be an initialisation phase during the algorithm
execution where the look-up table for the ByteSub function is randomised and
written into RAM, as described in Algorithm 2. In order for the cache to reveal
information as described above, enough time needs to have passed between the
execution of Algorithm 2 and the ciphering algorithm so that the cache no longer
contains the randomised look-up table. In theory, it may be possible to apply the
attack in [3] but it is necessary to know the cache lines that no longer contain
the randomised look-up table.

6.2 The xtime Function

The attack described in Sections 4 and 5 can work against a DPA resistant
algorithm assuming the randomised look-up table is no longer present in the
cache, but this assumption is probably not reasonable. It would be simpler to
directly attack the xtime function instead of the ByteSub function. The xtime
function has the property that if y =xtime(x) then y ⊕R =xtime(x⊕R) for
R ∈ [0, 255] i.e. the data mask will carry across the xtime function. This means
that there is no need to load the xtime table into RAM in a DPA resistant
implementation of AES.

In this case the attack described in Section 5.2 can be extended to recover all
of the key data rather than just the first byte and the lower nibbles. The first
equation for a cache hit between the first and second xtime look-up becomes:

(s(p1 ⊕ k1)⊕R) ∧ F016 = (s(p6 ⊕ k6)⊕R) ∧ F016

s(p1 ⊕ k1) ∧ F016 = s(p6 ⊕ k6) ∧ F016

In this case there are 16 unknown bits and an evaluation will reduce the
keyspace by a factor of 16. After four evaluations of this equation a single solution
can be found for the pair (k1, k6). This cache hit event occurs with a probability
of 1/16 for a random plain text. An attack therefore requires a maximum of 64
acquisitions before being able to derive the key byte.

The attack can continue in the same manner as the attack described in Sec-
tion 5.2 but the total attack will require around 480 acquisitions and an exhaus-
tive search of 216 to derive the entire key.

26 J. Fournier and M. Tunstall

Algorithm 3. Calculating xtime on a 32 bit platform
Input: A = (a0, a1, a2, . . . , a15)256.
Output: B = (b0, b1, b2, . . . , b15)256.

for i ← 0 to 3 do
LOAD R1 ← (a4i, a4i+1, a4i+2, a4i+3)
R2 ← R1 ∧ 8080808016

R2 ← R2 >> 7
R3 ← R2 ∗ 1B16

R1 ← R1 << 1
R1 ← R1 ∧ FEFEFEFE16

R1 ← R1 ⊕ R3

STORE (b4i, b4i+1, b4i+2, b4i+3) ← R1

end

return B

7 Countermeasures

Several countermeasures can provide a protection against this attack in smart
cards. A more complete discussion of the countermeasures for protecting algo-
rithms against attacks using a side-channel to observe cache accesses is given
in [13]. A summary of these countermeasures is presented here:

Programming Instructions: On some architectures the caching of data can
be avoided by fetching data without caching it. Such instructions do incur
performance penalties but they have the advantage of always taking the
same amount of time to execute.

Random Delay: The use of dummy code in cryptographic algorithms is a com-
mon countermeasure used to prevent side-channel attacks. Such mechanisms
lower the signal-to-noise ratios of such side-channels, thus adding another
level of difficulty to the implementation of this attack. A discussion of this
effect is given in [4], further discussion in the specific context of side-channel
attacks on cache access patterns appears in [13].

Random Order: If all the functions are conducted in a random order it will
not be possible to determine any relationship between a cache hit/miss and
the actual values being manipulated, which can either be implemented in
hardware [13] or software [7]. In an actual DPA resistant implementation this
countermeasure would be expected, as it renders power attacks exceedingly
difficult especially when combined with data masking.

Calculating the xtime Function: On a 32-bit architecture, the xtime op-
eration can be computed without a performance penalty compared to the
table look-up implementation. On an assembly instruction level, the table
look-up implementation of the xtime could be implemented simply with
four instructions, i.e. two LOAD, one addition a STORE function.

On a 32-bit architecture Algorithm 3 can be implemented, which not only
avoids any memory accesses but may be faster on a 32-bit platform as the

Cache Based Power Analysis Attacks on AES 27

operation would take 8 instruction cycles, but calculates 4 bytes in parallel.
The side-channel issues concerning the visibility of the most significant bit of
each byte is less of an issue as four bytes are being manipulated separately.

8 Conclusion

In this paper we propose an attack against software AES implemented on a smart
card with cache mechanisms. Our attack is based on the observation of the power
consumption information leakage generated by the different mechanisms behind
the caching techniques. We first explain how cache events generate different side-
channel signatures, before showing how varying the input message on the first
round can be combined with this observation to reduce the AES key search space
from 2128 to 268.

We propose two alternatives to find the remaining key bits either by focussing
on cache events during a ByteSub operation of the second AES round, or by
targeting the xtime of the MixColumn operation in the first round. Furthermore,
we argue that these attacks are also valid against implementations where masking
techniques are implemented as a countermeasure against DPA-like attacks.

This shows that when implementing cryptography on a given processor, the
specificities of the processor must be taken into account in order to have a se-
cure implementation. Caches are highly important features in high performance
embedded processors but they need to be carefully used when executing crypto-
graphic algorithms like AES.

References

1. M.-L. Akkar and C. Giraud. An implementation of DES and AES secure against
some attacks. In Ç. K. Koç, D. Naccache, and C. Paar, editors, Cryptogaphic
Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 309–318. Springer-Verlag, 2001.

2. D. J. Bernstein. Cache timing attacks on AES, 2004.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

3. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES power
attack based on induced cache miss and countermeasures. In International Sym-
posium on Information Technology: Coding and Computing – ITCC 2005, pages
586–591. IEEE Computer Society, 2005.

4. C. Clavier, J.-S. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In Ç. K. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 252–263. Springer-Verlag, 2000.

5. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 2003.

6. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer-Verlag, 1999.

7. T. S. Messerges. Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois, Chicago, 2000.

28 J. Fournier and M. Tunstall

8. MIPS-Technologies. SmartMIPS ASE.
http://www.mips.com/content/Products/.

9. MIPS-Technologies. MIPSTMarchitecture for programmers volume I: Introduction
to the MIPS32TMarchitecture. Technical Report MD00082, Revision 0.95, March
2001.

10. National Institute of Standards and Technology. Advanced encryption standard
(AES) (FIPS–197), 2001.

11. D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the
case of AES. In D. Pointcheval, editor, Topics in Cryptology – CT-RSA 2006,
volume 3860 of Lecture Notes in Computer Science, pages 1–20. Springer-Verlag,
2006.

12. D. Page. Theoretical use of cache memory as a cryptanalytic side–channel. Cryp-
tology ePrint Archive, Report 2002/169, 2002. http://eprint.iacr.org/.

13. D. Page. Defending against cache based side-channel attacks. Information Security
Technical Report, 8(1):30–44, April 2003.

14. J. R. Rao, P. Rohatgi, H. Scherzer, and S. Tinguely. Partitioning attacks: or how to
rapidly clone some gsm cards. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 31–41, 2002.

15. Infineon Technologies AG Secure and Mobile Solutions Security Group. Security &
chip cards ICs SLE88Cx4000P, preliminary short product information 04.03, 2003.

16. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Cryptanalysis of
DES implemented on computers with cache. In C. D. Walter, Ç. K. Koç, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2003,
volume 2779 of Lecture Notes in Computer Science, pages 62–76. Springer-Verlag,
2003.

Distinguishing Attack on SOBER-128
with Linear Masking

Joo Yeon Cho and Josef Pieprzyk

Centre for Advanced Computing – Algorithms and Cryptography,
Department of Computing, Macquarie University,

NSW, Australia, 2109
{jcho, josef}@ics.mq.edu.au

Abstract. We present a distinguishing attack against SOBER-128 with
linear masking. We found a linear approximation which has a bias of 2−8.8

for the non-linear filter. The attack applies the observation made by Ek-
dahl and Johansson that there is a sequence of clocks for which the linear
combination of some states vanishes. This linear dependency allows that
the linear masking method can be applied. We also show that the bias of
the distinguisher can be improved (or estimated more precisely) by con-
sidering quadratic terms of the approximation. The probability bias of
the quadratic approximation used in the distinguisher is estimated to be
equal to O(2−51.8), so that we claim that SOBER-128 is distinguishable
from truly random cipher by observing O(2103.6) keystream words.

Keywords: Distinguishing attack, Stream ciphers, Linear masking,
Modular addition, SOBER-128.

1 Introduction

One of the recent trends in designing stream ciphers is that stream ciphers are
word-oriented. Since the operation of ciphers are based on words and keystreams
are produced word by word at each clock, they are fast and efficient when imple-
mented in software. This class of ciphers includes SNOW [3], SOBER [4], MUGI
[2] and many others. In particular, among eSTREAM stream cipher submissions,
the word-oriented ciphers are Dragon, Phelix, NLS, HC-256 to mention a few [1].

The SOBER-128 is one of recently proposed word-oriented stream ciphers.
The cipher is built using the classical structure with a linear feedback shift
register (LFSR) and a non-linear filter function. SOBER-128 is an improved
version of SOBER-t32 which was a candidate of the stream cipher primitives in
NESSIE project [10]. The non-linear function has been strengthened by adding
a fixed rotation and the second S-box transformation. The stuttering phase that
was present in SOBER-t32 is not used in SOBER-128.

In this work, we develop a distinguishing attack on SOBER-128 with linear
masking introduced by Coppersmith, Halevi and Jutla at CRYPTO 2002 [6].
The authors of [6] study two types of distinguishing characteristic of non-linear
processes : the linear approximation and the low diffusion. We use the linear ap-
proximation to develop the attack against SOBER-128. In addition, we combine

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 29–39, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 J.Y. Cho and J. Pieprzyk

a quadratic polynomial with the linear approximations for a precise estimation
of the expected probability bias.

The authors of [6] shows that if there is a linear approximation σ of the non-
linear function with bias ε, then the bit ξj =

⊕
j∈J σj has the bias of ε|J|, where

J is a set of steps such that
⊕

j∈J sj = 0, provided sj is a state bit of a linear
feedback shift register.We claim that the bias of ξj could be slightly higher than
ε|J| when quadratic terms are considered.

Our attack on SOBER-128 is based on two linear approximations that ex-
hibit a big enough probability bias. We observe that the bias of the quadratic
approximation for non-linear filter of SOBER-128 is O(2−51.8). Therefore, we
claim that SOBER-128 is distinguishable from a random process by observing
around O(2103.6) keystream words.

This paper is organized as follows. In Section 2, the distinguishing attack with
linear masking using a linear approximation is briefly described. In Section 3, the
structure of SOBER-128 is given. In Section 4, we derive linear approximations on
the nonlinear Filter (NLF). In Section 5, a linear distinguishing attack is applied
by using the derived approximation. Section 6 applies an improved distinguishing
attack using a quadratic approximation. Conclusions are given in Section 7.

2 Linear Masking Using Linear Approximation

We describe briefly the linear masking method for the linear attack which is pre-
sented in [6]. The attack is applicable for a class of stream ciphers with a special
structure that consist of the linear process (LF) and the non-linear process (NF).
The state in a such cipher is identified by a pair: linear state x and non-linear
state z. The cipher works in steps (clocks) and at each step i, the cipher

– sets the linear state as xi := LF (xi−1),
– calculates two variables ui := L1(xi) and vi := L2(xi), where L1, L2 are

linear functions,
– determines non-linear state zi := NF (zi−1 ⊕ ui)⊕ vi,
– outputs zi.

Assume that we have a linear function l : {0, 1}2n → {0, 1}, such that

Pr[l(z, NF (z)) = 0] =
1
2
(1 + ε), |ε| > 01

in other words, the function l is a linear approximation of the non-linear function
NF and ε is the bias of the approximation.

Suppose that the adversary observes a bit σj = l(zj ⊕ uj , NF (zj) ⊕ vj) where
the variables u and v come from a linear space. Then there is always a linear combi-
nation of steps (not necessarily consecutive) for which the variables u and v vanish.
Let J be a set of such steps for which

⊕
j∈J uj =

⊕
j∈J vj = 0. Thus, we can write

1 This definition simplifies the computation of bias of multiple approximations when
the piling-up lemma is considered. If we have n independent approximations, the
probability of n approximations becomes 1

2 (1 + εn). Whereas, if p is defined by a
form of p = 1

2 + ε, the probability of n approximations becomes 1
2 (1 + 2n−1εn).

Distinguishing Attack on SOBER-128 with Linear Masking 31⊕
j∈J σj =

⊕
j∈J l(zj, NF (zj))⊕

⊕
j∈J l(uj + vj)

=
⊕

j∈J l(zj, NF (zj))
(1)

Therefore, if the number of elements in the set J is n,
⊕

j∈J σj has the bias
of εn.

Using this bias, an adversary can reliably distinguish the stream cipher from
the random process by observing around ε−2n outputs. For more details, see [6].

3 Brief Description of SOBER-128

The SOBER-128 consists of a linear feedback shift register (LFSR) and a nonlin-
ear filter (NLF). The LFSR consists of 17 words state registers which is denoted
by the vector (st, · · · , st+16). Since each si is a 32-bit integer, the size of LFSR
is 544 bits. The new state of the LFSR is generated by the following connection
polynomial

st+17 = st+15 ⊕ st+4 ⊕ γst,

where γ = 0x00000100 (hexadecimal).

�s0 � s16

S-box
0

�ω
(H)

ω
(H)

: most sig. byte of ω

ω′
(H)

ω′
(H)

: most sig. byte of ω′

� �
�

αα : 32 bits

β : 32 bits

ω

ω

ω′

ω′

�
�
�

�
�≫ 8

��s1

�� K

�s6

S-box
0

�

�

� ��
��s13

v

β

Fig. 1. The non-linear filter (NLF) of SOBER-128

32 J.Y. Cho and J. Pieprzyk

A Nonlinear Filter (NLF) produces an output word zt by taking st, st+1, st+6,
st+13, st+16 from the LFSR states and the constant K. The NLF consists of two
substitution functions (S-box), one rotation, four adders modulo 232 and three
XOR additions. For the detail description of the NLF , see Figure 1.

The K is a 32-bit key-dependent constant. The function f is defined as f(a) =
S-box(aH)⊕a where the S-box is 8×32-bit and aH is the most significant 8 bits
of 32-bit word a. The output zt of the nonlinear filter is described as

zt = f((((f(st � st+16) ≫ 8) � st+1)⊕K) � st+6) � st+13,

where � denotes an addition modulo 232 and ≫ 8 denotes a 8-bit right rotation.
The LFSR states and a constant K are initialized from the 128-bit secret key
using the initialization procedure. More details can be found in [8].

4 Deriving Linear Approximations on NLF

According to the structure of the non-linear filter, the following equation holds
for the least significant bit (see Figure 1). Let us denote that α is 32-bit output
of the first S-box, β is 32-bit output of the second S-box and ω is 32-bit output
of the addition of s0 and s16, respectively. Then, the following equation holds at
any clock

α(8) ⊕ β(0) ⊕ ω(8) ⊕ s1,(0) ⊕ s6,(0) ⊕ s13,(0) ⊕K(0) = z(0), (2)

where xt,(i) stands for the i-th bit of the 32-bit word x at clock t. (This notation
will be also used for the other equations.)

We will find the best linear approximation for α(8), β(0) and ω(8). In or-
der to apply the linear masking method for a distinguisher of SOBER-128, we
use a low weight linear relationship among the states of LFSR which was pre-
sented for attack on SOBER-t32 [7]. The LFSR of SOBER-128 is not same as
that of SOBER-t32 but the following relationship still holds for both stream
ciphers

st+τ1
⊕ st+τ2

⊕ st+τ3
⊕ st+τ4

⊕ st+τ5
⊕ st+τ6

= 0 (3)

with τ1 = 0, τ2 = 11, τ3 = 13, τ4 = 4 · 232 − 4, τ5 = 15 · 232 − 4, τ6 = 17 · 232 − 4.
This linear recurrence is valid for each bit position individually.

4.1 Linear Approximations of α(8)

The bit α(8) is the 8-th output bit of the first S-box. The input of the S-box is the
most significant 8-bit of the addition of the state register s0 and s16. Thus, α(8)
is completely determined by both s0 and s16 registers. However, the input of the
S-box is mostly affected by the most significant 8 bits of the register s0 (which is
called s0,(H)) and s16 (which is called s16,(H)), respectively. Hence, we try to find
the best linear approximation for α(8) from the whole set of linear combinations
of s0,(H) and s16,(H). In order to calculate the correlation of each combination,
we introduce the carry bit carry1, which is induced from the addition of two 24

Distinguishing Attack on SOBER-128 with Linear Masking 33

least significant bits of s0 and s16. We regard the bit carry1 as a uniform and
independent variable. Then,

The input of the first S-box = s0,(H) � s16,(H) � carry1

We build the truth table with 217 rows and 216 columns. Each row corresponds
to the unique collection of input variables (8 bits of s0,(H), 8 bits of s16,(H), and
a single bit for carry1). Each column relates to the unique linear combination of
bits from s0,(H) and s16,(H). In result, we have found four linear approximation
for α(8), which have the best bias (see Table 1).

Table 1. The best linear approximations for α(8)

linear approximation bias
s0,(25) ⊕ s0,(26) ⊕ s0,(28) ⊕ s0,(29) ⊕ s16,(26) ⊕ s16,(29) 1/2(1 - 0.057618)

s0,(26) ⊕ s0,(29) ⊕ s16,(25) ⊕ s16,(26) ⊕ s16,(28) ⊕ s16,(29) 1/2(1 - 0.057618)
s0,(26) ⊕ s0,(28) ⊕ s0,(29) ⊕ s16,(25) ⊕ s16,(26) ⊕ s16,(29) 1/2(1 - 0.057618)
s0,(25) ⊕ s0,(26) ⊕ s0,(29) ⊕ s16,(26) ⊕ s16,(28) ⊕ s16,(29) 1/2(1 - 0.057618)

Let us choose the first approximation from the table so

α(8) ≈ s0,(25) ⊕ s0,(26) ⊕ s0,(28) ⊕ s0,(29) ⊕ s16,(26) ⊕ s16,(29) (4)

and the probability is 1
2 (1− 0.057618) = 1

2 (1− 2−4.1).

4.2 Linear Approximation of β(0)

The best linear approximation of β(0) can be obtained by a similar approach we
have applied for α(8) with an addition trick.

The S-box of the SOBER-128 consists of two different S-boxes which are
the Skipjack S-box and the S-box that was custom-designed by the researchers
from QUT. Using the structure of S-Box, we can observe that not only the in-
put of the second S-box but also the 8-bit output of the S-box determines the
bit β0 completely. The output of the Skipjack S-box is the most significant 8
bits of the subtraction of the state register s13 from the output z. Thus, β(0)
is determined by both s13 and z. However, in a similar way to α(8), the most
significant 8 bits of the register s13 (which is called s13,(H)) and the output
z (which is called z(H)) contribute to β0. Hence, we try to find the best lin-
ear approximation for β(0) from the whole set of linear combinations of s13,(H)
and z(H).

In order to calculate the best linear approximation, we also introduce the
carry bit carry2 which is induced from the addition of two 24 least significant
bits of the register s13 and the output of the second f-function. We regard the
bit carry2 as a uniform and independent variable. So,

The output of the Skipjack S-box � s13,(H) � carry2 = z(H)

34 J.Y. Cho and J. Pieprzyk

In a similar way to α(8), we build the truth table with 217 rows and 216 columns
for β(0). Each row corresponds to the collection of variables (8 bits of s13,(H),
8-bit output of the Skipjack S-box , and a single bit for carry2). Each column
relates to the unique linear combination of bits from s13,(H) and z(H).

Table 2 displays the best and the second best linear approximations of β(0).

Table 2. Linear approximations on β(0)

linear approximation bias
s13,(29) ⊕ s13,(30) ⊕ z(29) ⊕ z(30) 1/2(1+0.07666)

s13,(31) ⊕ z(31) 1/2(1+0.072388)
s13,(30) ⊕ s13,(31) ⊕ z(30) ⊕ z(31) 1/2(1+0.072388)

Hence, the best linear approximation on β(0) is such that

β(0) ≈ s13,(29) ⊕ s13,(30) ⊕ z(29) ⊕ z(30) (5)

with the probability of 1
2 (1 + 0.07666) = 1

2 (1 + 2−3.7).

Remark. We may improve the bias by considering non-linear approximations
for β(0) in such a way that the approximations take the following form.

β(0) = linear(s13,(H))⊕ nonlinear(z(H))

Since only linear(s13,(H)) vanishes by the linear masking method and nonlinear
(z(H)) becomes a part of a distinguisher, we may improve the bias by manipu-
lating all the non-linear monomials which are generated by the 8 bits of z(H).

4.3 Linear Approximations of ω(8)

The bit ω(8) is the 8-th bit of output which is produced by adding the registers
s0 and s16. Clearly ω(8) is determined by the least significant 9 bits of s0 and
and s16 (which are denoted as s0,(L) and s16,(L) respectively). Thus,

ω(8) = (s0,(L) � s16,(L))(8) (6)

In order to find the best approximation for ω(8), a truth table is constructed
by considering all the possible linear combinations among the bit string s0,(L)

Table 3. The best linear approximations for ω(8)

linear approximation bias
s0,(8) ⊕ s0,(7) ⊕ s16,(8) 1/2(1+0.5)
s0,(8) ⊕ s16,(8) ⊕ s16,(7) 1/2(1+0.5)

s0,(8) ⊕ s0,(7) ⊕ s0,(0) ⊕ s16,(8) ⊕ s16,(0) 1/2(1+0.5)
s0,(8) ⊕ s0,(0) ⊕ s16,(8) ⊕ s16,(7) ⊕ s16,(0) 1/2(1+0.5)

Distinguishing Attack on SOBER-128 with Linear Masking 35

and s16,(L). In result, we found the four best linear approximations for ω(8) with
same bias (see Table 3). Let us choose the first approximation from the table.
Then,

ω(8) ≈ s0,(8) ⊕ s16,(8) ⊕ s0,(7) (7)

and the probability of approximation is 1
2 (1 + 2−1).

5 Distinguishing Attack on SOBER-128 with Linear
Masking

Recall Equation (2) on NLF. If we replace α(8), β(0) and ω(8) by Approximations
(4), (5) and (7) respectively, we build a linear approximation on NLF as follows.

s0,(25) ⊕ s0,(26) ⊕ s0,(28) ⊕ s0,(29) ⊕ s16,(26) ⊕ s16,(29)︸ ︷︷ ︸
α(8)

⊕ s13,(29) ⊕ s13,(30) ⊕ z(29) ⊕ z(30)︸ ︷︷ ︸
β(0)

⊕ s0,(8) ⊕ s16,(8) ⊕ s0,(7)︸ ︷︷ ︸
ω(8)

⊕s1,(0) ⊕ s6,(0) ⊕ s13,(0) ⊕ K(0) = z(0)

(8)

where the bias is

1
2
(1 + 2−4.1 · 2−3.7 · 2−1) =

1
2
(1 + 2−8.8) (9)

Let us divide Approximation (8) into two parts : a linear combination of the
state bits and that of the output bits. Then, Approximation (8) will be

s0,(25) ⊕ s0,(26) ⊕ s0,(28) ⊕ s0,(29) ⊕ s16,(26) ⊕ s16,(29) ⊕ s13,(29) ⊕ s13,(30)
⊕s0,(8) ⊕ s16,(8) ⊕ s0,(7) ⊕ s1,(0) ⊕ s6,(0) ⊕ s13,(0) ⊕K(0)
= z(0) ⊕ z(29) ⊕ z(30)

(10)

If we apply the linear masking method described in Section 2, then, the left
part of Approximation (10) with linear masking vanishes by the linear connection
of Equation (3).

Therefore, we can build a distinguisher of
⊕τ6

t=τ1
(z(0)⊕ z(29)⊕ z(30)) with the

bias of (2−8.8)6 = 2−52.8.

6 An Improved Distinguishing Attack on SOBER-128

In this section, we improve the bias of the distinguisher by introducing an idea
of quadratic approximations with linear masking. This idea is applied to the
approximation of ω(8). We show that the bit ω(8) with linear masking is (2−1)5

rather than (2−1)6.
This section is organized as follows. First, we derive a general formula for the

bias of a quadratic monomial with linear masking. Then, the formula is applied
to the modular addition which is the case of ω(8).

36 J.Y. Cho and J. Pieprzyk

6.1 Correlation of Quadratic Monomials

Let us assume that a connection polynomial of LFSR has the weight n. That is,⊕n
i=1 xi = 0 where xi represents one bit of the state register. Then, the weight

of the vector ρ = (x1, x2, . . . , xn) is always even. This means that one of the
component of ρ is completely determined by the others. In general, the space of
ρ is 2n−1.

If we consider a monomial of degree d such that σd = xi1xi2 · · ·xid
, then, the

monomial σd is correlated due to the restriction on the space of ρ. It is clear
that such correlation always exists and is dependent on the degree d and the
weight n.

Let us consider a quadratic monomial which is the simplest form of non-linear
function.

Lemma 1. Given two vectors x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)
such that

⊕n
i=1 xi = 0 and

⊕n
i=1 yi = 0, then σxy =

⊕n
i=1 xiyi is a Boolean func-

tion in GF (22n) → GF (2) with the bias determined by the following
probability

Pr[σxy = 0] =
{ 1

2 (1 + 2−n+2) n is even
1
2 (1 + 2−n+1) n is odd (11)

Proof. We count how many times the zero (or one) happens when all the possible
values of two vectors x and y are considered.

At first, let us consider when n is even. Assuming that x1 = · · · = xn = 0.
Then, σxy is always zero for all values of y. Thus, the zero count is 2n−1.

Secondly, let assume that x1 = · · · = xn = 1. Then, σxy is again always zero
for all values of y because the weight of y is even. Thus, the zero count increases
2n−1.

In other values of x, the number of one is equal to that of zero. Thus, the zero
count increases 2n−2 · (2n−1 − 2) = 2n−1 · (2n−2 − 1).

All together, the zero count becomes 2n−1+2n−1+2n−1 ·(2n−2−1). Therefore,
the correlation becomes

2n−1+2n−1+2n−1·(2n−2−1)
2n−1·2n−1 = 1+1+2n−2−1

2n−1 = 1
2 (1 + 2−n+2)

A proof is similar when n is odd. �	

The following corollary is useful when a combined monomial with an output bit
is considered.

Corollary 1. If the vector x=(x1, x2, · · · , xn) satisfies the condition
⊕n

i=1 xi=
0 but the vector y = (y1, y2, · · · , yn) does not, then

Pr[σxy = 0] =
1
2
(1 + 2−n+1)

Proof. A proof is similar to Lemma 1.

Distinguishing Attack on SOBER-128 with Linear Masking 37

6.2 Quadratic Approximation of ω(8) with Linear Masking

Recall Equation (6). The bit ω(8) can be expressed as a quadratic polynomial
by using the previous ω(7) bit recursively in a following way.⎧⎪⎪⎨⎪⎪⎩

ω(0) = s0,(0) ⊕ s16,(0)
ω(1) = s0,(1) ⊕ s16,(1) ⊕ s0,(0)s16,(0)
· · ·
ω(8) = s0,(8) ⊕ s16,(8) ⊕ s0,(7)s16,(7) ⊕ (s0,(7) ⊕ s16,(7))(1 ⊕ ω(7))

(12)

If we apply the linear masking method, then,

Pr[
τ6⊕

t=τ1

ωt,(8) = 0] = Pr[
τ6⊕

t=τ1

(s0,(7)s16,(7) ⊕ (s0,(7) ⊕ s16,(7))(1⊕ ω(7))) = 0] (13)

Note that
⊕τ6

t=τ1
(s0,(8) ⊕ s16,(8)) = 0.

Since the bit ω(7) can be regarded as a (almost) balanced variable, the correla-
tion of Equation (13) can be estimated by building a truth table where there are
the condition that

⊕τ6

t=τ1
st,(7) =

⊕τ6

t=τ1
st+16,(7) = 0 but no condition on ωt,(7) ,

which corresponds the condition of Corollary 1. In result, a bit
⊕τ6

t=τ1
ωt,(8) has

the bias of around 2−5. Experiments confirmed this result. See Appendix A.

6.3 Improved Bias of the Distinguisher

Recall again Equation (2) on NLF. If we replace α(8) and β(0) by Approximations
(4) and (5) respectively, but remain ω(8), then, we build an approximation on
NLF as follows.

s0,(25) ⊕ s0,(26) ⊕ s0,(28) ⊕ s0,(29) ⊕ s16,(26) ⊕ s16,(29)︸ ︷︷ ︸
α(8)

⊕ s13,(29) ⊕ s13,(30) ⊕ z(29) ⊕ z(30)︸ ︷︷ ︸
β(0)

⊕ω(8) ⊕ s1,(0) ⊕ s6,(0) ⊕ s13,(0) ⊕ K(0) = z(0)

(14)

with the bias of 2−4.1 · 2−3.7 = 2−7.8.
Let us denote Approximation (14) simply as follows.

l1(s)⊕ ω(8) = l2(z) (15)

where

l1(s) = s0,(25) ⊕ s0,(26) ⊕ s0,(28) ⊕ s0,(29) ⊕ s16,(26) ⊕ s16,(29) ⊕ s13,(29)
⊕s13,(30) ⊕ s1,(0) ⊕ s6,(0) ⊕ s13,(0) ⊕K(0)

l2(z) = z(0) ⊕ z(29) ⊕ z(30)

(16)

If we apply the linear masking method to Approximation (15),

τ6⊕
t=τ1

(l1(s)⊕ ω(8)) =
τ6⊕

t=τ1

(z(0) ⊕ z(29) ⊕ z(30)) (17)

38 J.Y. Cho and J. Pieprzyk

Due to the linear connection of state bits by Equation (3) and Approximation
(13), the left part of Approximation (17) vanishes with the probability of

1
2
(1 + (2−7.8)6 ∗ 2−5) =

1
2
(1 + 2−51.8) (18)

Therefore, in fact, a distinguisher of
⊕τ6

t=τ1
(z(0)⊕ z(29) ⊕ z(30)) = 0 has the bias

of 2−51.8. Even though the distinguisher has not been changed, the usage of a
quadratic terms improves the bias of distinguisher by a factor of 2, which reflects
more accurate bias of the distinguisher.

7 Conclusions

In this paper, we show a distinguishing attack with linear masking against
SOBER-128 stream cipher. This is the first work which presents an attack on
SOBER-128. In particular, this work is interesting to eSTREAM project be-
cause the S-box of SOBER-128 is re-used for the NLS cipher [9, 5] which is one
of the candidate stream ciphers. We estimate the correlation of a distinguisher
by deriving a quadratic approximation on NLF.

Our attack shows that the correlation of the distinguisher with linear masking
could be higher than the estimation at the paper [6] by considering a quadratic
terms with a factor of at least 2.

References

1. The home page for eSTREAM. http://www.ecrypt.eu.org/stream/.
2. The home page for MUGI. http://www.sdl.hitachi.co.jp/crypto/mugi/

index-e.html.
3. The home page for SNOW. http://www.it.lth.se/cryptology/snow/.
4. The home page for SOBER. http://www.qualcomm.com.au/Sober.html.
5. Joo Yeon Cho and Josef Pieprzyk. Linear distinguishing attack on

NLS. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/018, 2006.
http://www.ecrypt.eu.org/stream/papersdir/2006/018.pdf .

6. Don Coppersmith, Shai Halevi, and Charanjit Jutla. Cryptanalysis of stream ci-
phers with linear masking. In Advances in Cryptology - CRYPTO 2002, volume
2442 in Lecture Notes in Computer Science, pages 515 – 532. Springer-Verlag, Jan.
2002.

7. P. Ekdahl and T.Johansson. Distinguishing attacks on SOBER-t16 and t32. In
V. Rijmen J. Daemen, editor, Fast Software Encryption, volume 2365 in Lecture
Notes in Computer Science, pages 210–224. Springer-Verlag, 2002.

8. P. Hawkes and G. Rose. Primitive specification for SOBER-128.
http://www.qualcomm.com.au/Sober128.html, Apr. 2003.

9. P. Hawkes and G. Rose. Primitive specification for NLS. http://
www.ecrypt.eu.org/stream/nls.html , Apr. 2005.

10. P.Hawkes and G.Rose. Sober. Primitive submitted to NESSIE by Qualcomm
International, Sep. 2000.

Distinguishing Attack on SOBER-128 with Linear Masking 39

A Experiments for Section 6.2

Experiments are begun by finding the initial states which would satisfy the
following linear relation of the LFSR.

st+τ1
⊕ st+τ2

⊕ st+τ3
⊕ st+τ4

⊕ st+τ5
⊕ st+τ6

= 0

with τ1 = 0, τ2 = 11, τ3 = 13, τ4 = 4 · 232 − 4, τ5 = 15 · 232 − 4, τ6 = 17 · 232 − 4.
Table 4 displays an example of initial states of τ1, . . . , τ6. Note that all contents
of the table are hexadecimal.

When t = τ1, we compute ω8 by conducting (s0 � s16)8. (e.g. from the table,
b0213cbe � 7c0c7591 = 2c2db24f so that ω8 = 0) The same calculations are
performed for t = τ2 to t = τ6. In result, we have 6 bits of ω8 so that we can
compute

⊕τ6

t=τ1
ωt,(8). We carry on this process for t = {τ1 + 1, . . . , τ6 + 1}, t =

{τ1 + 2, . . . , τ6 + 2} and so on. New state is generated by the LFSR connection
polynomial.

By counting the number of zeros (or ones) of the bit value
⊕τ6

t=τ1
ωt,(8) at

every clock, we can compute the probability which is the number of zeros (or
ones) divided by the number of clocks.

The experiment shows that Pr[
⊕τ6

t=τ1
ωt,(8) = 0] is around 1

2 (1 + 2−5) which
was expected in Section 6.2.

Table 4. An example of initial states for the linear relation of LFSR

Register τ1 τ2 τ3 τ4 τ5 τ6

s0 b0213cbe 81144c40 ea5f4936 80b626f2 7daca7b7 2670b88d
s1 dee601f9 c0849eda 0da3e7a9 fd36421d 08f60296 e6013801
s2 bb9d85af 18ce1254 a89d02b9 398e7a8a 80b626f2 b2f6c93a
s3 6ddd2873 3937a5e3 19537890 e8eb08ef fd36421d 5864bff2
s4 3b3abd0f 6e162713 9e3a4268 6a8c43fa 398e7a8a 9814e104
s5 98f4854a e5ad513c db7a3b35 387b5c1f e8eb08ef 76b3bbb3
s6 e77fc5c1 9983c08f b100b099 0bfe370f 6a8c43fa ae8ec122
s7 b59aa80a 1e709998 a5c26138 1cfa270e 387b5c1f 2aa92bbb
s8 9d0a4482 48ffd86a b7368175 3b72bba8 0bfe370f 524f913a
s9 2c927b9c 8c1aa656 a11f1bfb 983fe11e 1cfa270e 85520021
s10 824e4c06 76126b97 713b00eb 79f12dc9 3b72bba8 c7e4b11b
s11 d2389fa0 910a6bb8 a50ed952 03af6be3 983fe11e 7daca7b7
s12 420962cd 0518c989 ec5437cf da42b3d4 79f12dc9 08f60296
s13 35949133 cbf0c10f 38fea16b 4583bc46 03af6be3 80b626f2
s14 2be0a38b 3b5e5827 426bdfe3 75a1d586 da42b3d4 fd36421d
s15 183186a9 83fe1b6a db2c18b4 3cee43bb 4583bc46 398e7a8a
s16 7c0c7591 d05172be 394a13c0 085dc986 75a1d586 e8eb08ef

Evaluating the Resistance of Stream Ciphers
with Linear Feedback Against

Fast Algebraic Attacks

An Braeken, Joseph Lano, and Bart Preneel

Katholieke Universiteit Leuven
Dept. Elect. Eng.-ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{an.braeken, joseph.lano, bart.preneel}@esat.kuleuven.be

Abstract. In this paper we evaluate the resistance of stream ciphers
with linear feedback against fast algebraic attacks. We summarize the
current knowledge about fast algebraic attacks, develop new and more
efficient algorithms to evaluate the resistance against fast algebraic at-
tacks, study theoretical bounds on the attacks, and apply our method-
ology to the eSTREAM candidates SFINKS and WG as an illustration.

1 Introduction

Algebraic attacks (AAs) and fast algebraic attacks (FAAs), proposed in 2002 and
2003 respectively, are a very interesting and powerful development in the crypt-
analysis of stream ciphers. So far, most papers on this subject (see e.g. [1, 5, 3, 6])
present ways to improve the algorithms to perform these attacks. Another inter-
esting problem in this context is how to evaluate the resistance of stream ciphers
against these attacks. Meier et al. [7] discuss how to evaluate the resistance of
stream ciphers with linear feedback and a Boolean output function against AA.
Therefore they define the property of algebraic immunity of a Boolean function.

In this paper, we will discuss how the resistance of such ciphers against fast
algebraic attacks can be evaluated. We will approach this problem both from a
theoretical and a practical perspective. As FAAs are very often the most efficient
attacks against such designs, the evaluation of the resistance against FAAs is a
very important tool when analyzing a stream cipher.

The outline of this paper is as follows. We first introduce some preliminaries in
Sect. 2. In Sect. 3, we give an explicit description of the current state of the art in
(fast) algebraic attacks. In Sect. 4, a new algorithm to evaluate the resistance of
a Boolean function against a class of FAAs is presented. Section 5 studies some
theoretical bounds on the resistance of Boolean functions against FAAs. We
discuss the resistance of eSTREAM candidates SFINKS and WG against FAAs
in Sect. 6 as an illustration and conclude in Sect. 7. Due to page restrictions,
we could not include all results in this proceedings version. An extended version
containing more results and a comparison with recent similar results will be
made available.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 40–51, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Evaluating the Resistance of Stream Ciphers 41

2 Preliminaries

The framework we develop applies to stream ciphers with a linear state update
mechanism and a Boolean output function. The k-bit internal state is loaded
with an initial state s0 = (s0, s1, . . . sk−1), updated by a linear function L at
each time t, i.e., st = Lt(s0) where Lt = L◦ · · ·◦L. The Boolean output function
f takes ϕ bits from the internal state and produces one key stream bit zt.

We now introduce briefly some concepts on Boolean functions. A Boolean
function f is a mapping from F

ϕ
2 into F2. The support of f is defined as sup(f) =

{x ∈ F
ϕ
2 : f(x) = 1}. The cardinality of sup(f) represents the weight wt(f) of

the function. A Boolean function f can be uniquely represented by means of its
algebraic normal form (ANF):

f(x) = f(x0, . . . , xϕ−1) =
⊕

(a0,...,aϕ−1)∈F
ϕ
2

cf (a0, . . . , aϕ−1)xa0

0 . . . x
aϕ−1

ϕ−1 ,

with cf (a) =
⊕

x�a f(x) ,

(1)
where x � a means that xi ≤ ai for all i ∈ {0, . . . , n− 1}. The algebraic degree
of f , denoted by df , is defined as the highest number of variables in the terms
xa0

0 . . . x
aϕ−1

ϕ−1 in the ANF of f .
Two functions f1, f2 on F

ϕ
2 are said to be affine equivalent if

f1(x) = f2(xA⊕ b)⊕ x · c⊕ d, (2)

where A is an invertible ϕ× ϕ matrix over F2, b, c ∈ F
ϕ
2 , d ∈ F2. Two functions

are said to be affine equivalent in the input variables if and only if c = 0, d = 0
in the above equation.

The lowest degree of a function g from F
ϕ
2 into F2 for which f(x) · g(x) = 0

for all x ∈ F
ϕ
2 or (f(x) ⊕ 1) · g(x) = 0 for all x ∈ F

ϕ
2 is called the algebraic

immunity (AI) [7] of the function f . A function g is said to be an annihilator
of f if f(x) · g(x) = 0 for all x ∈ F

ϕ
2 . It has been shown [5] that any function f

with ϕ inputs has algebraic immunity at most ϕ
2 �.

We now introduce a similar notion that will be of relevance for FAAs. A
Boolean function f on F

ϕ
2 satisfies a (dg, dh)-relation (shortly (dg, dh)−R) if a

tuple of Boolean functions (g, h) of degree (dg, dh) exists such that f(x) · g(x) =
h(x) for all x ∈ F

ϕ
2 . This notion will only be relevant here when dg < dh.

In the rest of this paper, we denote the number of combinations with cardi-
nality less than or equal to d in a set of u elements by Mu

d =
∑d

i=0

(
u
i

)
. Note

that this number also represents the number of linearly independent functions
(e.g. monomials) of degree less than or equal to d in Fu

2 .

3 Algebraic Attacks and Fast Algebraic Attacks

In this section we will describe AAs and FAAs, as developed in [5, 3] by Courtois
and Meier. AAs are very basic and straightforward attacks. We write out the
system of nonlinear equations between the initial state s0 and the key stream
(zt)t≥0 and try to solve this. These attacks turn out to be very powerful. The

42 A. Braeken, J. Lano, and B. Preneel

system of equations we are trying to solve consists of equations f(Li(s0)) = zi.
Clearly, this original system of equations has k unknowns (corresponding with
the k bits of the initial state) and degree df .

3.1 Algebraic Attacks

In a standard AA we will try to reduce the degree of the above system of equa-
tions before we solve it. This will lower the attack complexity considerably.

First, we need to perform a relation search step. Here we search for nonzero
functions g and/or h of lower degree dg and/or dh both smaller than df , such
that the following holds for all x ∈ F

ϕ
2 :{

f(x) · g(x) = 0
(f(x)⊕ 1) · h(x) = 0 .

(3)

It is easy to see that we can then replace each equation in by a lower degree
equation as follows:

g(Li(s0)) = 0, ∀ i where zi = 1
h(Li(s0)) = 0, ∀ i where zi = 0 .

(4)

This new system of equations can be solved much faster because of its lower de-
gree. To facilitate the complexity analysis, we use linearization (replacing each
monomial by a new variable) followed by Gaussian elimination of this overde-
termined system of equations. Consequently, the time complexity of solving the
system of equations (4) is of order (Mk

dg
)ω , with ω = log2(7) ≈ 2.807 (Strassen’s

exponent [9]). The data complexity is about Mk
dg

but can be lowered if multiple
functions g and/or h exist.

The complexity of the AA clearly decreases rapidly with the degree of the
multiples of f and f ⊕ 1. Hence the efficiency of an AA depends on the low-
est degree of any multiple. This corresponds to the algebraic immunity of the
Boolean function, as defined above. So in essence to determine the resistance
of a design against the AA, all that needs to be done is to make sure that the
AI of its output function is sufficiently high. We will explain how this can be
computed in Sect. 4.

3.2 Fast Algebraic Attacks

FAAs can be much more efficient than the standard AAs. In the FAA introduced
by Courtois [3], the attacker tries to decrease the degree d of the system of
equations even further by searching for relations between the initial state and
several bits of the output function simultaneously, i.e., equations of the form

F (s0, zt, zt+1, . . . , zt+T) = 0, ∀t, (5)

with F (s0, z) = g(s0, z) ⊕ h(s0) and dg < dh. See [6] for a general description.
Let us now restrict to the case T = 1 in (5) and thus obtain the equations

zig(Li(k))⊕ h(Li(k)) = 0, i ≥ 0 , (6)

Evaluating the Resistance of Stream Ciphers 43

where (g, h) represents the tuple of functions with low degrees (dg , dh) and dg <
dh for which f · g = h.

So far, FAAs mounted on actual stream ciphers with linear update mechanism
all use equations of type (6). These are the FAAs we are going to consider here.
It is an open problem whether better attacks of type (5) can be found for actual
stream ciphers.

The considered attack can be described by the following simple framework,
as briefly described by Courtois in [3] and more explicitly in [4].

1. Relation search step : We need to find (dg , dh)−R for our Boolean function.
As defined above, f satisfies (dg, dh) − R if an equation exists of of the
following form, where g and h are nonzero and dg < dh:

f(x) · g(x) = h(x) ∀x ∈ F
ϕ
2 . (7)

Multiplying the original equations by g, our system of equations now becomes
of degree dh: ⎧⎪⎪⎨⎪⎪⎩

h(s0) = z0 · g(s0)
h(L(s0)) = z1 · g(L(s0))
h(L2(s0)) = z2 · g(L2(s0))
. . .

(8)

2. Precomputation step : We now reduce the degree of (8) further from dh to
dg in a precomputation step. Because the combination of linear recurring
sequences is again a linear recurring sequence, there always exists a single
linear combination of every Mk

dh
+ 1 consecutive bits such that for every

t ≥ 0:
Mk

dh⊕
i=0

αi · h(Li+t(s0)) = 0, (9)

and therefore our system of equations (8) becomes of degree dg and has the
following form: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊕Mk
dh

i=0 αi · zi · g(Li(s0)) = 0⊕Mk
dh

i=0 αi · zi+1 · g(Li+1(s0)) = 0⊕Mk
dh

i=0 αi · zi+2 · g(Li+2(s0)) = 0
. . .

(10)

The complexity of this precomputation step has been shown to be Mk
dh
·

(log2Mk
dh

)2 (see Hawkes and Rose, [6]).
3. Substitution step : As we obtain an actual key stream and use it in a FAA, we

need to substitute this key stream into (10). The best algorithm to do this
so far has been described in [6] and has complexity 2 ·Mk

dg
·Mk

dh
· log2Mk

dh
.

4. Solving step : We solve the system (10) by linearization. The time complexity
to do so is of order (Mk

dg
)ω. The data needed is Mk

dg
+ Mk

dh
≈ Mk

dh
.

This data complexity can be reduced by a factor if we find several linear
combinations, but then the substitution complexity will increase by the same
factor.

44 A. Braeken, J. Lano, and B. Preneel

The following observation is very important : to evaluate the resistance of a
stream cipher with linear feedback and Boolean output function against this
particular FAA, all we need to do is to perform step 1 (the relation search) for
its Boolean function. Namely, we need to find out which (dg , dh)−R the Boolean
function satisfies. In Sect. 4, we will show a new algorithm which performs this
step much faster than previously thought possible, and which hence makes it
possible to evaluate the resistance of stream cipher with linear feedback using
relatively large Boolean functions against such a FAA (see Sect. 6 for some
examples).

4 Algorithms for Computing AI and (dg, dh) − R
As we explained in Sect. 3, to evaluate the resistance of a generator against
the considered classes of (fast) AAs, all that needs to be done is performing
the corresponding relation search step for its Boolean function. We now de-
scribe the algorithms to do so. In Sect. 4.1 we describe the algorithms from [7]
to find relations for mounting AAs, but explain them in a more elegant way.
This will help to understand the new algorithm we will develop in Sect. 4.2,
and why this algorithm is much more efficient than previously thought
possible.

4.1 Computing the AI of a Boolean Function

The aim is to find or to disprove the existence of a function g(x) of degree dg

such that f(x) · g(x) = 0 for all inputs x. The unknowns we need to find are the
coefficients cg(a) with wt(a) ≤ dg in the ANF of g:

g(x) =
⊕
a∈F

ϕ
2

wt(a)≤dg

cg(a)xa0

0 . . . x
aϕ−1

ϕ−1 . (11)

Hence the number of unknown coefficients is Mϕ
dg

. The equations we can use to
find these unknowns are found as follows: the requirement f(x) · g(x) = 0 can be
easily seen to correspond to the requirement that g(x) = 0 whenever f(x) = 1.
As a good cryptographic Boolean function should be balanced, we have exactly
2ϕ−1 such equations. As we are looking for dg < ϕ

2 �, the number of equations
2ϕ−1 is always larger than the number of unknowns Mϕ

dg
.

Solving the above system of equations corresponds to algorithm 1 in [7].
The complexity of solving this system naively is of order 2ϕ−1 · (Mϕ

dg
)2. How-

ever, we can also just solve a subsystem of Mϕ
dg

equations and check whether
its solution fits the other equations. Then we get a complexity in the order
of (Mϕ

dg
)3.

Algorithm 2 of [7] improves this complexity. In this algorithm, a specific choice
is made for the subsystem ofMϕ

dg
equations that we will solve. Denote the system

we are solving by
M · cg = 0 , (12)

Evaluating the Resistance of Stream Ciphers 45

where cg is the Mϕ
dg
× 1 column matrix containing the ANF coefficients cg(a)

ordered lexicographically on a, and M is a Mϕ
dg
×Mϕ

dg
matrix of which we

choose the rows as follows: the first row corresponds with the equation g(x) = 0
with wt(x) = 0 (if it exists, i.e., if f(0) = 1). The following rows correspond
to the equations (if they exist) where the Hamming weight of the input vector
is 1, 2, . . . , until Hamming weight dg, all ordered lexicographically. By now we
have about 1

2M
ϕ
dg

rows of our matrix M . We fill up the remaining rows of M
by choosing other values x at random.

Now we look at the upper part of this matrix, corresponding to the rows
up to Hamming weight dg. It is easy to see that this part of the matrix is in
echelon form and its size is of order 1

2M
ϕ
dg
×Mϕ

dg
. From the structure of the

problem presented, it is easy to see that this echelon form has order of 1
2M

ϕ
dg

pivot columns, 1
2

(
ϕ
dg

)
zero columns (which we can ignore) and 1

2M
ϕ
dg−1 nonzero

nonpivot columns. The solution of this underdetermined system of equations
can be found efficiently, with a complexity of order 1

4M
ϕ
dg
· (Mϕ

dg
+ Mϕ

dg−1
)

operations.
We now substitute these solutions into the remaining 1

2M
ϕ
dg

equations. Only
the nonzero pivot columns need to be substituted into the system, resulting
in a substitution complexity of order 1

8 (Mϕ
dg

)2 · Mϕ
dg−1

, and we obtain a sys-
tem of 1

2M
ϕ
dg

equations in 1
2M

ϕ
dg

unknowns, which can be solved by Gaussian
elimination in order of 1

8 (Mϕ
dg

)3 operations.
This approach corresponds to algorithm 2 in [7]. The last step will be the

dominating step in terms of time complexity. To make the algorithm memory
efficient we will process the matrix row by row and only store the nonzero
nonpivot elements for later use, resulting in a memory complexity of order
1
4M

ϕ
dg
Mϕ

dg−1.

4.2 Computing the (dg, dh) − R for a Boolean Function

The gain of algorithm 2 compared to algorithm 1 for computing the AI is only
modest because the final system we need to solve still has half the number
of unknowns as the original system. We will now show that for the search of
(dg, dh)−R, we can do much better.

Our aim is to find out whether the Boolean function satisfies (dg, dh)−R for
certain values dg < dh at which the complexity of a FAA would be less than
exhaustive search. The unknowns we need to find are the coefficients cg(a) with
wt(a) ≤ dg and ch(a) with wt(a) ≤ dh in the ANFs of g and h:

g(x) =
⊕

a∈F
ϕ
2

wt(a)≤dg

cg(a)xa0

0 . . . x
aϕ−1

ϕ−1

h(x) =
⊕

a∈F
ϕ
2

wt(a)≤dh

ch(a)xa0

0 . . . x
aϕ−1

ϕ−1 .
(13)

Hence the number of unknown coefficients is Mϕ
dh

+Mϕ
dg

.
Previously, it was thought that the complexity of solving this system of equa-

tions is of order (Mϕ
dh

)3, making it hard to evaluate the resistance against FAAs

46 A. Braeken, J. Lano, and B. Preneel

even for functions with modest input dimension. We will now show a new algo-
rithm that can solve the problem in time complexity of order Mϕ

dh
· (Mϕ

dg
)2 +

(Mϕ
dh

)2. This makes evaluation of the resistance against FAAs achievable for
larger Boolean functions, as shown by the examples in Sect. 6.

The equations used to find the unknown coefficients of the ANFs of g and
h are as follows: the requirement f(x) · g(x) = h(x) for all x ∈ F

ϕ
2 gives us a

condition on the ANF coefficients of g and h for every value of x. This results
in an equation that can be of one of the following two types:

g(x) = h(x) whenever f(x) = 1
h(x) = 0 whenever f(x) = 0 .

(14)

The number of equations obtained, 2ϕ, will always be larger than the number of
unknowns Mϕ

dh
+Mϕ

dg
in situations of practical interest.

The naive solution is again to solve this system of equations, which has com-
plexity of order 2ϕ · (Mϕ

dh
+Mϕ

dg
)2. However, we can also just solve a subsystem

of Mϕ
dh

+ Mϕ
dg

equations and see if its solution fits the other equations. Then
we get a complexity in the order of (Mϕ

dh
+Mϕ

dg
)3.

It is possible to significantly reduce the complexity further by a good choice
of the subsystem to be solved and by making use of its structure. Denote again
the system we are solving by

M · cg,h = 0 , (15)

where cg,h is the (Mϕ
dh

+Mϕ
dg

)×1 column matrix containing the ANF coefficients
ch(a) ordered lexicographically, where we intercalate the coefficients cg(a) right
before the corresponding ch(a) as long as such coefficients exist - recall that
dg < dh. The matrix M is a (Mϕ

dh
+ Mϕ

dg
) × (Mϕ

dh
+ Mϕ

dg
) matrix of which

we choose the rows as follows: the first row corresponds to the equation (14)
with wt(x) = 0. The following ϕ rows correspond to the equations (14) with
wt(x) = 1 ordered lexicographically, followed by the

(
ϕ
2

)
rows corresponding to

the equations (14) with wt(x) = 2. We continue this procedure until the
(

ϕ
dh

)
rows corresponding to the equations (14) with wt(x) = dh. The remaining Mϕ

dg

rows of M are then filled up by choosing other values x at random for obtaining
additional equations (14).

Again, we can reduce the complexity significantly by looking at the structure
of this M . Let’s look at the Mϕ

dh
first rows of this matrix. It is easy to see that

this part of the matrix is in echelon form and its size is exactly Mϕ
dh
× (Mϕ

dh
+

Mϕ
dg

). The solution of this underdetermined system of equations can be found
efficiently, requiring order of (Mϕ

dh
)2 + Mϕ

dh
Mϕ

dg
≈ (Mϕ

dh
)2 operations. The

Mϕ
dh

pivot columns correspond to the coefficients ch(a) with wt(a) ≤ dh, the
Mϕ

dg
nonpivot columns correspond to the coefficients cg(a) with wt(a) ≤ dg.

We now substitute this into the remaining equations. We need to substitute
order of Mϕ

dh
coefficients by Mϕ

dg
coefficients and do this in Mϕ

dg
rows, resulting

in a substitution complexity of order Mϕ
dh
· (Mϕ

dg
)2. We can then solve this

Evaluating the Resistance of Stream Ciphers 47

system to obtain the coefficients cg(a) through Gaussian elimination, requiring
order of (Mϕ

dg
)3 operations. Finally, we introduce the solution for the coefficients

cg(a) with wt(a) ≤ dg into the upper part of the matrix and can efficiently find
the solution for the coefficients ch(a) with wt(a) ≤ dh.

The gain in complexity is much more important here than in the case of
the previous section. Adding up the complexities of the steps and discard-
ing terms that will not be relevant for the analysis, the time complexity will
be dominated by either finding the solution of the echelon matrix or by the
substitution complexity. Our algorithm hence has a time complexity of order
Mϕ

dh
· (Mϕ

dg
)2 + (Mϕ

dh
)2. To make the algorithm memory efficient, we will pro-

cess the matrix row by row and only store the nonpivot elements for later use,
resulting in a memory complexity of order Mϕ

dh
Mϕ

dg
.

5 Theoretical Bounds on the Existence of (dg, dh) − R
Relation Between ϕ and (dg, dh) − R. We will first look into the relation
between the existence of (dg, dh)−R and the number of inputs ϕ of the Boolean
function. To do so, we first investigate the affine invariance of (dg , dh)−R. For
AI, it holds that the AI of affine equivalent functions can differ with one. Only
for functions that are affine equivalent in the input variables, the AI is invariant.
We now show that (dg , dh)−R satisfies a stronger invariance:
Theorem 1. The (dg, dh)−R (with dg < dh) of Boolean functions is an affine
invariant property.

Proof. Let f(x) satisfy a (dg , dh)−R with dg < dh:

f(x) · g(x) = h(x). (16)

Then for any function f ′ that is affine equivalent to f expressed by Equation (2),
the following relation holds:

f ′(x) · g(xA⊕ b) = (f(xA⊕ b)⊕ x · c⊕ d) · g(xA⊕ b)
= [f(xA⊕ b) · g(xA⊕ b)]⊕ [(x · c⊕ d)g(xA⊕ b)]

(17)

In the right hand side, the first term is equal to h(xA⊕ b) because of (16), and
the second term has degree ≤ dh because dg < dh. So (17) shows that f ′ satisfies
(dg, dh)−R. �	
A bound on the relation between (dg, dh)−R and ϕ has already been given in
[3, Theorem 7.2.1] by Courtois:
Theorem 2. A Boolean function f always satisfies (dg, dh)−R for any dg and
dh such that dg + dh ≥ ϕ.

Relation Between df and (dg, dh) − R. Second, we investigate the bounds
posed by the degree of the Boolean function on the existence of (dg , dh) − R.
The following straightforward relation exists between (dg, dh)−R and the degree
(also mentioned in [3, Theorem 7.1.1]) .
Theorem 3. If f has degree df , then f satisfies (i, df + i)−R for every i < df .

48 A. Braeken, J. Lano, and B. Preneel

Relation Between AI and (dg, dh) − R. We now show that if f satisfies
(dg, dh) − R, the parameter dh is greater than or equal to AI(f), due to the
following relation with the annihilators of f and f ⊕ 1.

Lemma 1. Let f, g, h be three Boolean functions on F
ϕ
2 . The equation f · g = h

is satisfied if and only if both f ·(g⊕h) = 0 and (f⊕1)·h = 0 hold simultaneously.
In other words, if and only if g⊕h is an annihilator of f and h is an annihilator
of f ⊕ 1.

Proof. Let f · g = h. Multiplying both sides of the equation with f leads to
f2 · g = f · h. Consequently, f · g = f · h and f · h = h. The other side of the
implication is trivial. �	
As a consequence, for every dh greater than or equal to AI(f), the lowest possible
dg such that f satisfies (dg, dh) − R could be found by searching the lowest
degree function which is a linear combination of functions belonging to the set
of annihilators with degree dh of f and f⊕1. We have implemented an algorithm
that uses this methodology. This algorithm is less efficient than the one described
in Sect. 4.2, but the implementation effort of this new algorithm is more complex
and is work in progress.

6 Application to Concrete Designs

6.1 SFINKS

SFINKS [2] is a filter generator with 80-bit secret key and 256-bit internal state.
The filter function has 17 inputs and degree 15 (ϕ = 17 and df = 15). The
resistance against AAs was measured using the algorithm of [7], resulting in
an AI of 6. To analyze the resistance against FAAs, we need to check whether
the function satisfies (dg, dh) − R in all cases where the corresponding attack
complexity is smaller than 280. Table 1 presents the total complexity order (i.e.,
the precomputation, substitution and solving complexities together) of the FAA
for an arbitrary filter generator with internal size 256 and filter function which
satisfies (dg, dh)−R, only when dh ≥ 6 because of Lemma 1.

Theoretical bounds. From Theorem 2, it follows that f satisfies (1, 16)−R,
(2, 15)−R, (3, 14)−R, . . . but none of these are a threat. From Theorem 3, it
follows that f satisfies (1, 16)−R, (2, 17)−R,. . . which is not a problem as well.

Table 1. log2 of order of complexities of FAA for a 256-bit state if f satisfies (dg, dh)−R

dg\dh 6 7 8 9 10 11 12
1 52.73 58.10 63.20 68.12 72.88 77.47 81.93
2 59.73 65.10 70.20 75.12 79.88 84.47 88.93
3 66.14 71.48 76.61 81.53 86.28 90.88 95.34
4 76.94 77.47 82.60 87.52 92.27 96.87 101.33
5 92.83 92.83 92.83 93.18 97.94 102.53 106.99

Evaluating the Resistance of Stream Ciphers 49

Table 2. log2 of order of complexities of FAA for a 319-bit state if f satisfies (dg, dh)−R

dg\dh 1 2 3 4 5 6 7 8 9 10 11
1 23.36 28.93 36.17 42.84 49.09 55.03 60.70 66.15 71.40 76.48 81.41
2 0 43.91 43.91 50.16 56.41 62.35 68.02 73.47 78.72 83.80 88.73
3 0 0 62.79 62.79 63.14 69.07 74.75 80.19 85.45 90.53 95.45
4 0 0 0 80.50 80.50 80.50 81.05 86.50 91.76 96.84 101.76

Searching for relations. It is possible that we can improve on the theoretical
bounds by actually searching for relations. With our algorithm of Sect. 4.2,
this can be done easily. We only need to verify the existence of relations for
which the attack complexity is less than 280. The complexity of doing so can
be calculated to be of order 239. Courtois [4] already checked for the existence
of such relations, using the old algorithm but which found the relations in a
few days. We repeated his experiments with the old algorithm and confirm his
simulations.

In particular, Courtois found that f satisfies (4, 6)−R, (3, 7)−R and (2, 8)−R.
Note that if one assumes that the number of key stream bits is limited to 240

(as stated in [2]), not all of these attacks are possible. But still the (4, 6) − R
and (3, 7)−R (using several relations simultaneously for the latter) attacks are
practical and can be mounted faster than exhaustive key search.

Remark 1. Due to the particular form of the filter function f in SFINKS, i.e.,
f(x, x16) : F17

2 → F2 : x �→ f1(x) ⊕ x16, where f1 is a Boolean function on
F16

2 affine equivalent to the trace function of the inverse function on F16
2 , we can

restrict us to the computation of the (dg, dh)−R with dg < dh of f1. This follows
from the observation that

f1 · g = h ⇒ (f1 ⊕ x16) · g = h⊕ x16 · g
f1 · g = h⊕ x16 · g ⇐ (f1 ⊕ x16) · g = h .

In general, we have the following theorem.

Theorem 4. Let fi be a Boolean function on Fi
2 that satisfies (ei, di) − R for

i = 1, 2. Then f1 ⊕ f2 on F
n1+n2

2 satisfies also (e1, max{deg(f2) + e1, d1}) −R
and (e2, max{deg(f1) + e2, d2})−R.

6.2 WG

The stream cipher WG [8] is also a simple filter generator with 80-bit secret key,
319-bit internal state and a filter function with 29 inputs and degree 11. The
AI could not be measured yet. For the FAA, we should again check whether f
satisfies (dg, dh) −R for all cases where the attack complexity is less than 280.
Table 2 presents these complexity orders.

Theoretical Bounds. From Theorem 2, it follows that f satisfies (1, 28)−R,
(2, 27)−R, (3, 26)−R, . . . but none of these are a threat. From Theorem 3, it
follows that f satisfies (1, 12)−R, (2, 13)−R,. . .

50 A. Braeken, J. Lano, and B. Preneel

Table 3. log2 of order of complexities for the Relation Search Step for WG with new
algorithm

dg\dh 1 2 3 4 5 6 7 8 9 10 11
1 14.77 19.15 24.28 29.58 34.33 38.49 42.12 45.25 47.95 50.24 0
2 0 26.31 29.57 32.50 35.52 38.88 42.24 45.30 47.97 0 0
3 0 0 36.00 38.76 41.17 43.29 45.23 0 0 0 0

Let us investigate this (1, 12)−R into more detail. We know that there exist at
most 230 equations of this type. These equations are simply found by multiplying
the function with an arbitrary affine function which increases the degree with
at most one. The required key stream length is equal to 270.73 and the attack
complexities are as follows.

– Precomputation complexity: 281.958

– Substitution complexity: 286.19

– Solving complexity: 223.36

In the proposal of the stream cipher WG [8], the key stream has been restricted
to sequences of length 245. A FAA may still exist if at least 225.73 out of the 230

equations are linearly independent. In this situation, the substitution complexity
will increase with a factor of 225.73, leading to a complexity of 2111.4.

Searching for relations. It may also be that better FAAs can be performed on
WG. To check this, we need to run our algorithm and search for relations. Table 3
presents the complexity of our algorithm for determining if f is (dg, dh)−R. We
expect that most of these values are attainable when implementing the algorithm
on a modern PC. On the contrary, the old algorithm would have an infeasible
complexity of order 275.

7 Conclusion

In this paper, we have presented a framework to evaluate the resistance of mem-
oryless nonlinear filters and combiners against FAAs, using the (non-)existence
of (dg , dh)−relations to assess the security. We developed a new algorithm to
efficiently calculate these relations, and presented some bounds that relate the
resistance against FAAs to some properties of the Boolean function. Finally, we
have illustrated the application of our approach on two eSTREAM candidates,
SFINKS (as previously done by Courtois) and WG. Further study of FAAs is
still required, especially towards general classes of these attacks.

Acknowledgements. This work was supported in part by the Concerted Re-
search Action (GOA) Ambiorics 2005/11 of the Flemish Government and by
the European Commission through the IST Programme ECRYPT. An Braeken
is an FWO Research Assistant, sponsored by the Fund for Scientific Research
- Flanders (Belgium), Joseph Lano is financed by a PhD grant of the Institute

Evaluating the Resistance of Stream Ciphers 51

for the Promotion of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen). The authors also would like to thank Nicolas Courtois and
the anonymous referees for their useful comments.

References

1. F. Armknecht and M. Krause. Algebraic attacks on combiners with memory. In
D. Boneh, editor, Crypto 2003, volume 2729 of Lecture Notes in Computer Science,
pages 162–175. Springer-Verlag, 2003.

2. A. Braeken, J. Lano, N. Mentens, B. Preneel, and I. Verbauwhede.
SFINKS: A synchronous stream cipher for restricted hardware environ-
ments. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/035, 2005.
http://www.ecrypt.eu.org/stream.

3. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
D. Boneh, editor, Crypto 2003, volume 2729 of Lecture Notes in Computer Science,
pages 176–194. Springer-Verlag, 2003.

4. N. Courtois. Cryptanalysis of SFINKS. In M. Rhee and B. Lee, editors, Information
Security and Cryptology - ICISC 2005, number 3935 in Lecture Notes in Computer
Science. Springer-Verlag, 2005.

5. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback.
In E. Biham, editor, Eurocrypt 2003, volume 2656 of Lecture Notes in Computer
Science, pages 345–359. Springer-Verlag, 2003.

6. P. Hawkes and G. Rose. Rewriting variables: The complexity of fast algebraic
attacks on stream ciphers. In M. Franklin, editor, Crypto 2004, volume 3152 of
Lecture Notes in Computer Science, pages 390–406. Springer-Verlag, 2004.

7. W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of Boolean
functions. In C. Cachin and J. Camenisch, editors, Eurocrypt 2004, volume 3027 of
Lecture Notes in Computer Science, pages 474–491. Springer-Verlag, 2004.

8. Y. Nawaz and G. Gong. The WG stream cipher. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/033, 2005. http://www.ecrypt.eu.org/stream.

9. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–
356, 1969.

Ensuring Fast Implementations of Symmetric
Ciphers on the Intel Pentium 4 and Beyond�

Matt Henricksen and Ed Dawson

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland, 4001, Australia

{m.henricksen, e.dawson}@qut.edu.au

Abstract. Cipher design is a multi-faceted process. Many designers fo-
cus on security, or present novel designs, but neglect to consider the
impact on their ciphers’ efficiency. This paper presents simple guidelines
for ensuring efficient symmetric cipher implementations on the Intel Pen-
tium 4 and associated architectures. The paper examines the suitability
of a handful of ECRYPT eSTREAM ciphers for the platform, including
Dragon, HC-256, MAG, Mir-1, Phelix, and Py.

Keywords: Stream cipher, Implementation, Intel Pentium 4, Dragon,
HC-256, MAG, Mir-1, Py, RC4.

1 Introduction

The days of slow symmetric ciphers are over. It is widely considered that effi-
ciency of ciphers is nearly as important as their security. The benchmark set in
software by the Advanced Encryption Standard (AES) [4] is around fifteen cycles
per byte on the Intel Pentium 4 [13]. Symmetric ciphers that do not equal or
surpass this benchmark are widely regarded as non-competitive 1. Word-based
stream ciphers are, in many cases ([1], [3], [18]), notably faster than block ciphers,
while not demonstrably less secure.

In 2005, the ECRYPT NoE eSTREAM stream cipher project released a call
[5] for stream cipher primitives. Of the thirty-five candidates, twenty-two were
profiled as suitable for software implementation, with efficiencies ranging from
three cycles [1] through to a sluggish 1,400 cycles per byte [11]. The diversity of
results reveals that many cipher designers do not understand either the need for
efficiency, or how to achieve it in their ciphers.

This paper discusses the design of ciphers with respect to the Intel Pentium
4. As this architecture is backwards compatible with the entire Intel x86 line,
most of the advice holds for the other members of the Pentium family, such as
the Pentium III. It also holds for the Pentium-D, which contains two Pentium 4
� This work was partially funded by Australian Research Council Discovery Project

Grant DP0450920.
1 For example, in the second round of the ECRYPT eSTREAM project, stream ciphers

that did not compete with the block cipher AES were “archived” [6].

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 52–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ensuring Fast Implementations of Symmetric Ciphers 53

Prescott chips in a single package. Much of the advice is, at a high level, similar
to that found in the paper of Schneier and Whiting [15], published nearly a
decade earlier. This is a natural consequence of Intel’s strategy of backwards
compatibility in the Pentium line of processors.

The guidelines within this paper are prioritized as High, Medium or Low ac-
cording to their impact. They are presented at an algorithmic rather than imple-
mentation level. It is easy to obtain an efficient implementation of a cipher that
has been well designed. Conversely, it may prove to be impossible to derive a fast
implementation if attention is not paid to efficiency during the cipher’s design
phase. The designer of a cipher and its optimizer are frequently different people.
This paper is presented to help the designer to understand how to facilitate the
job of the optimizer. For a good discussion about efficient implementation of
ciphers on recent architectures, see [13].

Section 2 describes how to commence the task of cipher design with imple-
mentation considerations in mind. Sections 3 and 4 respectively describe the
impact that the number of cipher variables and state size have on the cipher’s
speed. Section 5 shows how to choose cipher operations for maximum speed.
Section 6 describes how special features of the Intel Pentium 4 may be use-
ful in implementing ciphers. Section 7 contains a discussion and summary of
results.

2 Grounding Cipher Design in Reality

Many cipher designers hold the misconception that they can derive an accurate
estimate of their cipher’s efficiency by counting the number of its operations. This
belief is reinforced by the prediction of Schneier and Whiting [15] in 1997 that
all personal computing processors were converging rapidly to a RISC (Reduced
Instruction Set Computing) architecture. History has shown this trend to be
mythical. The Pentium 4 architecture is very complex, and this way of obtaining
a benchmark on the cipher is inaccurate.

Consider the MAG cipher specification [16], which computes the relative ef-
ficiency of that cipher to RC4 by counting the number of operations in their
update functions. It is concluded there, without the support of empirical evi-
dence, that 32-bit MAG is four times faster than 8-bit RC4, due to the number
and nature of their respective operations. The results given in Section 7 show
that a basic implementation of MAG is more than four times slower than a basic
implementation of RC4. Similar counting strategies are employed for HERMES
[12], the estimate of which is at least qualified by specifying an 8-bit RISC ar-
chitecture, and for MIR-1 [14], which also mistakenly assumes a lower bound
of one operation per clock. Counting operations is not an effective method for
calculating cipher efficiency.

Guideline 1 (High). Run practical tests during the design process to gauge
the efficiency of the cipher.

54 M. Henricksen and E. Dawson

A corollary to this is “don’t make up concrete timing information based upon
your paper design”. The reality of a cipher’s efficiency is connected not just with
the contained operations, but also with how well its design is matched to the
target architecture. This means that the performance of a cipher will vary even
between variants of a processor (for example, the Willamette, Northwood and
Prescott variants of the Intel Pentium 4).

For example, MUGI [17] looks simple on paper: it uses an Linear Feedback
Shift Register (LFSR), s-boxes, byte swapping, and simple arithmetic operations.
However, it runs slowly on the Pentium 4, at around 25 cycles/byte [8], being a
64-bit cipher implemented on a 32-bit platform. The simple operation counting
outlined above does not determine the impact of this design-architecture mis-
match. The story is similar for 64-bit MIR-1 [14]. The second guideline not only
leads to a better approximation of the performance of the cipher, but also to a
more efficient cipher.

Guideline 2 (High). Understand (in general terms) the architectures on which
the cipher is likely to be implemented.

By paying attention to the Intel register set, how data is transferred between the
registers and memory, and how it is processed by the CPU, the cipher designer
can learn how to make a more efficient cipher. The designer can also manipulate
architecture-specific features to this end.

Fig. 1. Intel Pentium 4 Architecture

Ensuring Fast Implementations of Symmetric Ciphers 55

3 The Pentium 4’s Register Set

Registers are very fast memory locations on the CPU die that operate at clock
speed, rather than the slower speeds of general-purpose memory. Ideally, each
variable in the cipher algorithm can be mapped directly to a register, rather
than to general-purpose memory. The Intel Pentium 4 is register-poor in that
the programmer has direct access to only eight 32-bit general purpose registers,
shown at the right of Figure 1.

Not all registers are treated equally: for example, the multiplication instruc-
tion MUL works exclusively upon the EAX and EDX registers; common string
operations operate on ESI and EDI; and stack-based operations relating to pro-
cedure calls and local variables use EBP and ESP. This reduces the availabil-
ity of these registers without precluding their use. The instructions that op-
erate on these eight registers, and the rules for dealing with them are found
in [9].

Most members of the the Pentium family sport additional registers that can
also be used by the programmer. The Multimedia Extensions (MMX) duplex a
series of eight 64-bit registers on the back of the Floating Processor Unit (FPU).
Members of the family from Intel Pentium III onwards contain eight independent
128-bit (XMM) registers as part of the Streaming Extensions (SSE). The MMX
and XMM registers are controlled by their own sets of specialized (and in most
regards, limited) instructions. So there are three sets of registers, and three sets
of mostly incompatible instructions.

Register pressure occurs when, at a given time, there are more cipher variables
to deal with, than there are registers in which to store them. In this case, some
of the registers need to be stored in slower memory. This is likely to have a
negative impact on the performance of the cipher.

Guideline 3 (Medium). For optimal efficiency, the number of variables in any
locality of the cipher algorithm should not exceed the number of usable registers.

A good example of adherence to this guideline can be seen in the stream cipher
Phelix [18]. Its designers chose to use a 160-bit internal state in their cipher,
because this directly maps to five 32-bit registers, meaning that the state does
not need to be stored in slower memory. In Mir-1, register pressure is generated
through the use of the four sixty-four bit variables in its loop update state func-
tion. These variables translate into eight thirty-two bit variables xt

i, 0 ≤ i < 8.
Because each updated variable xt+1

i depends upon all xt
i, eight additional reg-

isters are required. Ignoring the intermediates, this results in a demand for ten
registers at any time. This problem is insoluble using just the general purpose
registers.

4 Transferring Data

The Pentium 4’s registers are accessible at clock speed (between 1.3 GHz and
3.8 GHz). The memory from which the registers acquire their data is up to three

56 M. Henricksen and E. Dawson

times slower, and there is a latency penalty of as much 75 cycles, depending upon
the chip variant, the front side bus, and how the data transfer is managed. The
Pentium 4 contains mechanisms to reduce memory bottlenecks, one of which is a
series of high-speed caches positioned between the CPU and the main memory.
Data is summoned, on demand, to the caches from the main memory. When the
data is required by the CPU, but not available within the registers or the caches,
then a efficiency penalty (hidden to the cipher designer) is incurred.

The Pentium 4 generally has two caches: the first, the L1 cache, operates
at clock speed. In the Willamette and Northwood, the L1 cache has a data
capacity of eight kilobytes. In the Prescott, this capacity is increased to sixteen
kilobytes. The L2 cache has a shared code and data capacity of between 256 and
2,048 kilobytes. There is L1 cache access latency of between two and four cycles,
which increases to as much as sixteen cycles for the Willamette/Northwood’s L2
cache (twenty-three cycles for the Prescott). These latencies are incurred if the
data is not present in the registers, and has to be summoned from the cache.

The L1 cache stores up to 12,000 micro-operations (μops), which are decom-
posed assembly code instructions. Most instructions are converted into between
one and four μops. Programs which contain more than 12,000 μops are partially
stored in the L2 cache or memory. While manipulating the caches is the task
of the implementer rather than that of the cipher designer, there is a simple
guideline that the designer can use to benefit the implementer.

Guideline 4 (Medium). Design the cipher so that both its code and the state
fit within the L1 cache.

This guideline is ranked as Medium, because a cipher that does not fit within
the L1 cache is still shielded from the effects of slow memory by the much
larger L2 cache. Phelix [18] adheres to this guideline, with its 160-bit state
and small code size easily fitting into the Northwood’s L1 cache. The block
cipher LOKI97 [2] uses two s-boxes, one 13× 8 and the other 11× 8. Together
this amounts to ten kilobytes of memory, and the s-boxes will not fit into the
Willamette/Northwood’s L1 cache. The tabular form of the AES also causes
pressure in the L1 cache, as noted by its degraded performance [20].

One of the more interesting examples in this regard is Py [1]. It is one of the
fastest ECRYPT ciphers on the Pentium III, with a throughput of one byte for
each 2.8 cycles. Py uses two large tables. Elements in each table are modified
using elements from both tables. The “novelty” of Py is the rolling array, which
uses an old optimization trick commonly applied to LFSRs.

The traditional way to represent a LFSR with l stages is to use a circular
buffer B of size m = l. A pointer p, B ≤ p < B + m indicates the location of
stage W0. The element W1 is located at p+1 if p+1 < l otherwise at location B.
When the LFSR clocks, the feedback is written into the LFSR (usually at W0),
and the pointer increments by one. No elements are moved, or changed, except
for where the feedback is placed. At each step, the pointer has to be checked to
see if p equals B + m, in which case it is set to B. Any access into the LFSR
also need to be bound checked.

Ensuring Fast Implementations of Symmetric Ciphers 57

Py’s designers reason that the check on p is an expensive overhead. Py miti-
gates this expense by trading off memory. The trick it uses to allocate a buffer
that is much larger than the LFSR, that is, m � l. As time passes, the pointer
p moves along this buffer, and the feedback element normally written at W0 is
instead written at Wl. When the pointer reaches the end of the buffer, all of the
elements representing the LFSR, from B+m−(l+1) to B+m−1 are physically
copied back to B through to B + l. The bound check on p needs to be made once
in (m/|W |) words of outputs, where |W | is the size of the output word. This
strategy can be adapted to any cipher in which the feedback is written only to
the contiguous positions at the start of the LFSR. The copy operation employed
by Py is expensive, but the cost is amortized over all of the intervening opera-
tions. Thus Py is at its most effective when the size of the buffer approaches the
size of the L1 cache.

The default size for the buffers in the Py code submitted to ECRYPT is
b = 4000 stages, where each stage is 32 bits. There are two buffers, so the state
size is 32 kilobytes, which is commensurate with the size of the Pentium III’s
L1 cache. Clearly the cipher is less efficient on the Pentium 4, since the copy
operation needs to be called four times more frequently to accommodate the
much smaller size of that machine’s L1 data cache. Benchmarks for Py with
varying buffer sizes are given in Table 1 in Section 7.

5 Processing Data

From the cache, the data moves to the CPU. The cipher designer needs to
understand how the data is processed, and from there choose instructions that
optimize that processing.

5.1 The Pentium 4’s Execution Engine

The CPU operates on data summoned to the registers, using its three-phase
execution engine. The first phase, the Instruction Front-End converts assembly
instructions into μops and supplies them in the order provided through the
instruction portion of the L1 cache to the Instruction Execution core.

In theory, the super-scalar Instruction Execution core is able to execute six
μops (for example, six exclusive-ors) within a single clock-cycle. It re-orders the
instructions provided by the Instruction Front-End to provide the fastest possible
execution, withstanding dependencies between the operands. The core has four
ports that provide access to its execution units, including

1. port #0 has a fast integer unit and a MMX/SSE move unit2. The port can
dispatch two fast integer operations per cycle; or one fast integer operation
and one MMX/SSE move or store operation. Fast integer operations include
logical operations, addition, subtraction and exclusive-or.

2 Floating point operations are ignored in this discussion, since floating point arith-
metic rarely features in symmetric cipher design.

58 M. Henricksen and E. Dawson

2. port #1 has a fast integer unit, and a normal integer unit. The port can
dispatch two fast integer operations per cycle. An integer multiply, shift or
rotate, or MMX/SSE operation can be substituted for the second fast integer
operation.

3. port #2 deals with fetching memory for the general purpose registers. It can
deal with one operation per cycle.

4. port #3 deals with storing data to memory. It can deal with one operation
per cycle.

When the execution units have processed the μops, the third phase of the
execution engine, the Instruction Retirement Unit, takes them and retires them
in the correct order to maintain program correctness. Although the instruction
core can execute six μops in parallel, the instruction retirement unit retires three
μops in one clock cycle. This is the upper bound on the CPU throughput.

Guideline 5 (Medium). To take advantage of the Pentium 4’s super-scalar
ability, ensure that all instruction ports are occupied at all times for optimal
execution.

There are some mechanisms within the Pentium 4 architecture, such as register
renaming, which work to maximize the efficiency of the core (which is why this
guideline has a medium priority). But the cipher designer needs to consider the
types and order of operations used within a cipher. For example, if the cipher
design requires two parallel executions of a multiplication, they will be executed
serially as only port #1 handles general-purpose multiplication. Alternatively, if
the cipher design requires parallel execution of a multiplication and an addition,
the operations can be shunted to ports #1 and #0 respectively for simultaneous
execution.

5.2 Throughtputs and Latencies

Each instruction is associated with a latency and a throughput. The latency
of the instruction is the delay incurred before the CPU can operate on the
next dependent instruction. For example, the latency affects the timing of the
instruction sequence a = a ⊕ b; a = a � c. The throughput is the delay before
an independent operation can be scheduled on the same execution unit. For
example, throughput affects the timing of a = a⊕ b; c = c⊕ d.

On the Intel Pentium 4, fast integer operations such as 32-bit addition, sub-
traction, exclusive-or and logical operations such as AND and OR all have
throughputs and latencies of 1

2 cycle (except on the Prescott, where these op-
erations have latencies of one cycle). Two of these 1

2 cycle operations can be
scheduled and completed on a fast integer port within each clock cycle (assum-
ing that their operands are dependency-free and located within the registers).
As there are two fast integer ports, this means that up to four fast operations
can be processed within the execution unit per cycle! This is a peak rate, and
is subject to the limiting factor of three operations per cycle on the Instruction
Retirement unit.

Ensuring Fast Implementations of Symmetric Ciphers 59

Shifts and rotates are executed on the normal integer unit, and on the
Willamette/Northwood, have a worst-case latency of four cycles. On the same
platforms, multiplication has a worst case throughput on five cycles, and latency
of up to eighteen cycles. Timings for all operations can be found in [10].

Many 32-bit compilers offer decent support for 64-bit operands, and trans-
late simple 64-bit arithmetic and logical operations into the underlying 32-bit
instruction codes quite efficiently. A sixty-four bit exclusive-or can be simulated
using two thirty-bit exclusive-ors. A sixty-four bit addition can be simulated
using two thirty-bit additions, a comparison, and possibly an additional carry.
Sixty-four bit rotation can be simulated using four thirty-two bit shifts and two
exclusive-ors. On a per-bit basis, none of these operations is much worse than
on 32-bit operands.

Mir-1’s loop state update sub-function updates four sixty-four bit variables
using the simple operations of addition, shifting, AND, OR, and multiplication.
A sixty-four bit multiplication can be simulated on thirty-two registers using
four multiplications, and eight additions. Considering the dependencies between
operations, the four multiplications in loop state update, responsible in the pro-
duction of one eight byte keystream word, expend as much as one hundred and
twelve clock cycles!

Guideline 6 (High). Choose operations with low latency and low throughput.
Avoid expensive operations such as multiplication or division, unless necessary.

The fastest ECRYPT ciphers on this platform (HC-256 [19], Phelix [18], and
Py [1]) adhere to this guideline and also do not make extensive use of s-boxes
or table-lookups. Unlike other cipher primitives, s-boxes do not take single or
fractional clock cycles. For example, a single 8 × 8 s-box lookup y = S(x) on a
32-bit machine may take up to three operations, as shown in Figure 2.

movzx eax, DWORD PTR _x$[ebx] ; copy source to index register
mov ecx, DWORD PTR _sbox[eax*4] ; copy address of s-box
mov DWORD PTR _y$[ebx], ecx ; perform s-box lookup

Fig. 2. Assembly Code for 8 × 8 S-box Lookup

Because of the dependencies between them, these operations all occur in serial.
Register pressure prevents complete parallelization of more than two neighbour-
ing s-box lookups. Additionally, the cache issues demonstrated in Section 4 come
into play.

Guideline 7 (Medium). S-boxes are large and slow. Use with caution.

This guideline has a Medium priority because the s-box provides a potentially
rich source of non-linearity. Many ciphers, including HERMES [12], use 8 × 8
s-boxes, whereas Dragon [3] uses 32 × 32 s-boxes. The use of larger s-boxes
improves their non-linearity, but also poses a practical problem: whereas 8 × 8
s-boxes require 256 bytes of storage, 32× 32 s-boxes require sixteen gigabytes.

60 M. Henricksen and E. Dawson

This is clearly not practical, so in Dragon a virtual s-box is constructed as
y = S0(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S3(x3) where x = x0‖x1‖x2‖x3. The memory
requirement of the virtual s-box is further reduced to two kilobytes by reusing
one of the 8 × 32 s-boxes, avoiding a likely L1 cache overflow. Performing a
lookup on Dragon’s virtual 32× 32 s-box consists of four 8× 32 s-box lookups,
isolating individual bytes in the source word, using three ANDs and three shifts,
and combining the results using three exclusive-ors. Four index registers are
required for a single 8 × 32 s-box. As there are six s-box implementations, and
seven registers, register pressure means that the s-box invocations are compelled
to be serialized. This was considered by the designers of Dragon as a necessary
security efficiency trade-off.

Guideline 8 (High). Maximize productivity for processor work.

Having chosen a series of efficient operations that provide the cipher with neces-
sary security, make sure that the work performed by processor to execute those
operations is not wasted. The most obvious way to ensure this is to output
keystream in blocks that are multiples of the word size used by the cipher’s
internal state. HC-256, Py, RC4, and MIR-1 all output keystream blocks that
are same size as an internal state word. Dragon has a 32-bit internal state word,
and outputs 64-bit words. These all represent good usage of the work performed
by the processor. Conversely, MAG outputs a block one-quarter the size of the
internal state word, which wastes much of the work performed by the processor.

5.3 Branch Prediction

Some ciphers use branching as an intrinsic part of the algorithm. For example,
MAG’s concise update function contains just four assignments, including one
based upon the result of an inequality comparison (that is, a branch).

The Intel Pentium 4 has a branch prediction unit that analyzes the antici-
pated path of the branch, executes it, and prepares the result by the time the
branch expression is evaluated. When the branch is mis-predicted, the results are
discarded and many cycles of CPU time are wasted, depending upon the size of
the execution pipeline. The Pentium 4 has an exceptionally large pipeline, with
as many as 31 stages, compared to the ten stages of the Pentium III. Thus a
branch mis-prediction will have much worse consequences on the former. Unfor-
tunately, the branch prediction algorithms of the Pentium 4 perform badly with
random data, causing a delay of up between 24 and one hundred cycles with
each mis-prediction. This situation is worse than if the Pentium 4 contained no
branch prediction at all [7].

Guideline 9 (Medium). Avoid branching within the cipher algorithm.

Branch mis-prediction plays a major role in the poor performance of MAG. Yet
RC4, to which MAG is most closely compared by the latter’s designer, contains
no branching of this type. The small size of MAG’s update function means that
the CPU has no chance to recover from the mis-prediction penalties. This is one

Ensuring Fast Implementations of Symmetric Ciphers 61

reason as to why, despite the similar number of operations, MAG is four times
slower than RC4. If branches can not be omitted, in some cases the pipeline
penalties can be avoided by careful coding (for example, using the CMOV or
SETcc instructions).

6 Instruction Extensions

The MMXand SSE extensions have potential as a valuable avenue for cipher imple-
mentors. The MMX extensions offer 47 new instructions on eight 64-bit registers.
The SSE2/SSE3 instructions bring a wide range of integer and floating point oper-
ations to a set of eight 128-bit XMM registers. Many of the instructions are varia-
tions based around the size of the operands, which can have widths of 8, 16, 32, 64,
or (for SSE) 128 bits. The primary benefit of MMX/SSE, aside from the additional
registers, is that one instruction processes multiple operands in parallel.

The new instruction sets are somewhat deficient, and not particularly efficient.
The SSE instructions have typical throughputs and latencies of two cycles. This
puts them on an even footing with the fast integer operations on general purpose
registers, which operate on 32-bits and execute in half a cycle.

Most valuable to cryptographers are the instructions for parallel execution
of simple arithmetic and logical operations, and for a faster multiplication. The
MMX and SSE instructions cannot address memory, which poses problems with
s-boxes. S-boxes can be implemented on the general purpose registers, and in-
dexed using operands computed using MMX/SSE. There is a strong penalty of
six cycles for transferring data between the XMM registers and general purpose
memory, making it problematic to implement any cipher containing s-boxes using
MMX/SSE. Also the MMX and SSE instruction sets lack branching instructions,
which can be simulated at a price on the general purpose registers.

Guideline 10 (Medium). Do not assume that there is a significant advantage
in using MMX or SSE instruction extensions.

In particular, stream ciphers based on small functions that incorporate s-boxes,
or other indirect addressing mechanisms, are probably not amenable for im-
plementation using MMX or SSE. Some of the ECRYPT ciphers that are not
suitable for efficient implementation using these extensions include Dragon, Py
and HC-256.

7 Discussion and Conclusion

In symmetric cipher design, security is paramount and efficiency is a secondary
consideration. However, it is an area in which there are now many successful
candidates, fulfilling both security and efficiency requirements. The ciphers are
judged now, on the platforms that we have available. A cipher designer who
does not understand at a high-level, the architecture of the target machine,
should expect sub-optimal performance from the cipher. This results in a non-
competitive cipher.

62 M. Henricksen and E. Dawson

Table 1. Performance of Modern Stream Ciphers on the Intel Pentium 4 (Northwood)

Cipher Features
Payload (bytes)

Word Size Internal State 100 1,000 10,000 109

(bits) (bits) Throughput (mbits/s)
Dragon 32 1,088 large s-boxes 407 708 1,028 1,380
HC-256 32 65,536 very large tables 7 66 414 1,372
MAG 32 4,096 frequent branching < 1 7 43 163
MIR-1 64 768 64-bit multiplication 198 362 419 464
Py-1 32 1,560 no rolling array 59 258 491 602
Py-4 32 6,240 large state 68 270 443 797
Py-16 32 24,960 very large state 65 256 446 801
RC4 8 2,048 small and fast 244 488 622 729

The performance of some sub-optimized stream ciphers is shown in Table 1,
for varying payload lengths. The metrics are gathered from an Intel Pentium 4
(Northwood) processor, running at 2.6 GHz, with an 8 kilobyte L1 data cache.
For each test, one gigabyte of data is encrypted. When the specified payload
has been encrypted, IV rekeying occurs. This overhead is incorporated into the
metric, which is expressed as megabits per second. Py-x represents Py with a
rolling array x× the state size of Py implemented using traditional techniques.

Those ciphers that most closely adhere to the guidelines issued in this paper —
Py, Dragon, and HC256 – are the fastest on the Intel Pentium 4. The metrics of
all the ciphers shown degrade with frequent rekeying, but those worst affected are
those that rekey by updating each element in a large state (such as HC-256), or
by excessively updating each element (for example, MAG, which during rekeying
discards 214 bytes of keystream, for each 100-byte payload). These metrics imply
that designers need to pay attention to the key agility of their ciphers. They also
suggest that the rolling arrays of Py lose their advantage on architectures with
small cache sizes, such as the Intel Pentium 4.

This paper does not suggest that ciphers should be designed exclusively for the
Intel Pentium 4. Most of the guidelines should be considered irrespective of the tar-
geted architecture. All that is required to implement the guidelines is some knowl-
edge about computer architectures, including the register set; the memory layout
including the size and speed of the caches; the types, throughputs and latencies of
available instructions; and special features of the architecture, such as SSE2.

References

1. E Biham and J Seberry. Py (Roo): A Fast and Secure Stream Cipher Using Rolling
Arrays, 2005. Available at http://www.ecrypt.eu.org/stream/py.html.

2. L Brown and J Pieprzyk. Introducing the new LOKI97 block cipher.
In First Advanced Encryption Standard Candidate Conference, National In-
stitute of Standards and Technology (NIST), August 1998. Available at
http://csrc.nist.gov/encryption/aes/.

Ensuring Fast Implementations of Symmetric Ciphers 63

3. K Chen, M Henricksen, L Simpson, W Millian, and E Dawson. Dragon: A fast
word based cipher. In ICISC ’04, volume 3506 of LNCS, pages 33–50, 2004.

4. J Daemen and V Rijmen. Rijndael. In First Advanced Encryption Standard Candi-
date Conference, National Institute of Standards and Technology (NIST), August
1998. Available at http://csrc.nist.gov/encryption/aes/.

5. ECRYPT. Call for stream cipher primitives, April 2005. Available at
http://www.ecrypt.eu.org/stream/call/.

6. ECRYPT. ESTREAM End of Phase 1, March 2006. Available at
http://www.ecrypt.eu.org/stream/endofphase1.html.

7. A Fog. How to optmize for the Pentium family of microprocessors, 2004. Available
at http://www.agner.org/assem/pentopt.pdf.

8. M Henricksen and E Dawson. Rekeying issues in the MUGI stream cipher. In
SAC’2005, volume 3897 of LNCS. Springer-Verlag, 2006.

9. Intel Corporation. IA-32 Intel Architecture Software Developers Manual Volume
2: Instruction Set Reference. Intel Press, 2001.

10. Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization Refer-
ence Manual. Intel Press, 2001.

11. C Jansen, T Helleseth, and A Kholosha. Cascade Jump Controlled Se-
quence Generator (CJCSG), 2005. Available at http://www.ecrypt.eu.org/
stream/ciphers/pomaranch/pomaranch.pdf.

12. U Kaiser. Hermes Stream Cipher, 2005. Available at http://www.ecrypt.eu.org/
stream/hermes.html.

13. M Matsui and S Fukuda. How to maximize software performance of symmetric
primitives on Pentium III and 4 Processors. In FSE 2005, LNCS, pages 398–412.
Springer-Verlag, 2005. To appear.

14. A Maximov. A new stream cipher “Mir-1”, 2005. Available at http://
www.ecrypt.eu.org/stream/mir1.html.

15. B Schneier and D Whiting. Fast software encryption: Designing encryption algo-
rithms for optimal software speed on the Intel Pentium Processor. In FSE ’97,
volume 1267 of LNCS. Springer-Verlag, 1997.

16. R Vuckovac. MAG My Array Generator (a new strategy for random number
generation), 2005. Available at http://www.ecrypt.eu.org/stream/mag.html.

17. D Watanabe, S Furuya, H Yoshida, and K Takaragi. A new keystream generator
MUGI. In FSE’03, volume 2365 of LNCS, pages 179–194. Springer-Verlag, 2003.

18. D Whiting, B Schneier, S Lucks, and F Muller. Phelix: Fast Encryption
and Authentication in a Single Cryptographic Primitive, 2005. Available at
http://www.ecrypt.eu.org/stream/phelix.html.

19. H Wu. A New Stream Cipher HC-256, 2004. Available at http://
eprint.iacr.org/2004/092.pdf.

20. E Young. Re: More LTC timings... Posting to sci.crypt usenet group on 18 June,
2003.

Improved Cryptanalysis of MAG�

Leonie Simpson1 and Matt Henricksen2

1 School of Software Engineering and Data Communications,
Queensland University of Technology

GPO Box 2434, Brisbane Q 4001, Australia
lr.simpson@qut.edu.au

2 Information Security Institute, Queensland University of Technology
GPO Box 2434, Brisbane Q 4001, Australia

m.henricksen@isrc.qut.edu.au

Abstract. MAG is a synchronous stream cipher submitted to the
E-CRYPT eSTREAM project. The design criterion for the cipher is cellu-
lar automata, although it can be modelled as a word-based shift-register
with a single word of memory. Cryptanalysis of MAG reveals serious
structural weaknesses within the cipher. This paper presents simple dis-
tinguishing attacks against MAG with an 80-bit or 128-bit key that can,
under certain circumstances, be carried out by hand. The approach is
extended to a partial-key recovery attack. For the 80-bit and 128-bit
keys, we recover 40 key bits and 32 key bits respectively from about
32 bytes keystream. A proposed modification to MAG, intended to pre-
vent an earlier distinguishing attack, has no effect upon our distinguisher
but instead allows a full key recovery attack for both 80-bit and 128-bit
keys using around thirty-two bytes of keystream and a practical pre-
computation. Therefore the modification actually weakens an already
insecure cipher.

Keywords: Cryptography, Stream Ciphers, Key Recovery, Disting-
uisher, MAG Keystream Generator.

1 Introduction

MAG (My Array Generator) [3] is a synchronous stream cipher submitted to the
eSTREAM stream cipher project at the ECRYPT network of excellence. MAG
is submitted under both Profile 1 (software-suitable cipher using a 128-bit key)
and Profile 2 (hardware-suitable cipher using an 80-bit key) categories.

MAG’s design is influenced by cellular automata, in which the state of each cell
in the automata changes over time, based upon the state values of its neighbors.
MAG is one of a long line of stream ciphers based upon cellular automata, and
is strongly influenced by Wolfram’s Rule 30 stream cipher [6] from 1985. MAG
uses conditional branching rather than algebraic functions to provide the cipher
with complexity. MAG’s designer Vuckovac says in its specification:
� This research was supported by Australian Research Council Discovery Project

Grant DP0450920.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 64–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Cryptanalysis of MAG 65

The advantage of [this] approach is: a set of criteria such as linear com-
plexity, nonlinearity, statistics, confusion and diffusion does not have
to be addressed directly as is the case with more complicated system-
theoretic approaches. The whole security issue is shifted to the compu-
tational irreducibility principle alone. [3, page 15].

In this paper, we show that MAG can be modelled as a cipher consisting
of a word-based shift register combined with a single word of memory. This
model permits analysis with respect to the set of criteria Vuckovac has not di-
rectly addressed. From this perspective, cryptanalysis of MAG reveals structural
weaknesses that can be used in a distinguishing attack. When combined with
the rekeying scheme, this allows recovery of a substantial portion of the key in
a simple known plaintext attack.

This result improves upon the previous cryptanalysis of Künzli and Meier [1].
Their distinguishing attack on MAG requires up to 129 consecutive words of
keystream, with negligible operational and memory requirements. Künzli and
Meier’s attack makes no use of MAG’s weak rekeying strategy, and does not
recover any key material, however it demonstrates that the cryptanalyst can
distinguish between the keystream produced by the MAG cipher and a random
bitstream. Some cryptographers regard distinguishing attacks as a far less sig-
nificant security threat than key recovery attacks [2], so in this paper we also
demonstrate simple key recovery attacks on MAG.

Vuckovac proposed modifications to the output function of MAG in response
to Künzli and Meier’s distinguishing attack. Although the modifications do de-
feat that particular attack, they do not prevent other distinguishers, such as the
distinguisher described in Section 4 of this paper. Additionally, the modifications
enable the partial key recovery attack described in this paper to be extended to
a complete key recovery attack.

In Section 2, we describe in detail our model of the MAG stream cipher.
In Section 3, we make some observations about the stream cipher, including
structural weaknesses that can be exploited by cryptographic attacks. In Section
4, we introduce a new distinguishing attack on MAG and detail a partial key-
recovery attack. In Section 5, we address a modification made by Vuckovac in
[4]. We show that although this modification may provide greater variability in
the keystream, increasing the complexity of the Künzli and Meier distinguishing
attack [1], it has negligible impact upon our new distinguishing attack, and
improves the performance of our key recovery attack upon MAG so that complete
key recovery is possible. Section 6 presents a discussion and summary.

2 Description of the MAG Stream Cipher

MAG is based upon a cellular automaton. The MAG submission to ECRYPT
[3] contains a vague textual specification, and a reference implementation of the
cipher. There are inconsistencies between the two. The description in this section
is gleaned from the implementation, which spells out the structure of the cipher.

66 L. Simpson and M. Henricksen

The internal state of MAG contains a large shift register, denoted R, which has
127 stages each consisting of a 32-bit word. An additional 32-bit word, described
as a ”carry”, acts as the cipher’s memory. Thus the total internal state consists
of 128 32-bit words, or 4096 bits. Let Rt

i denote the contents of the ith stage
of register R at time t, where 0 ≤ i < 127. Let Ct denote the contents of the
memory word at time t.

We use the following notations to represent the algebraic operations used by
the cipher: addition modulo 232 (+), binary addition (⊕), concatenation (||),
truncation (trunci), where only the i least-significant bits of the argument are
retained, bitwise complementation (R), and word-based comparison (<).

As is standard for modern stream ciphers, MAG’s state is populated using
a dedicated key initialization algorithm. The state is subsequently modified us-
ing an update function, which is used in conjunction with the cipher’s output
function to produce the keystream. The original MAG specification [3] does
not describe any key initialization algorithm. The reference implementation has
been used to derive the algorithm described below. This algorithm does not
make provisions for initialization vectors (IVs). This causes practical key man-
agement problems, particularly with modern cryptographic protocols that use
IVs to avoid related-key attacks. Although the eSTREAM project profiles re-
quest stream ciphers that use IVs, in this paper we analyse MAG as it has been
specified within the code. Note that earlier this year, Vuckovac released a note
on the cipher design [5] which addresses the use of IVs by treating them as a
supplement to the key. That is, the key and the IV are concatenated, and the
resultant is used in the manner described for keys in the algorithm below. For
example, for an 80-bit key and a 64 bit IV, this would be concatenated and
treated as a 144-bit key (although 64 bits are known). Thus the approach de-
scribed for keys without IVs in this paper can be applied directly when IVs are
used, and may be more successful.

2.1 MAG’s Update Function

The update function of MAG is used by both the output function and the key
initialization algorithm. The update function takes five 32-bit words as input:
the carry element and four consecutive stages from start of the shift register R.
The update function is performed in two phases, as follows.

Firstly, the carry element C is modified, using the result of a comparison
between two stages in the register.

Ct+1 = ((Ct ⊕Dt) + E) mod 232 (1)

where Dt =

⎧⎨⎩
Rt

1 if Rt
2 > Rt

3

Rt
1 if Rt

2 ≤ Rt
3

(2)

and E is an arbitrary 32-bit constant when used in the key initialization, or zero
when used in keystream generation. D represents the branching component of
the cipher.

Improved Cryptanalysis of MAG 67

Secondly, register R is updated as follows:

Rt+1
i =

⎧⎨⎩
Rt

i ⊕ Ct+1 for i = 126

Rt
i+1 for 0 ≤ i < 126

(3)

The update function is depicted in Figure 1.

Fig. 1. MAG update function

2.2 MAG’s Key Initialization

MAG’s key initialization function is two-phased. In the first phase, the initial
state is populated using a key K, and in the second phase, the state is modified
using the MAG update function.

The first phase of the initialization algorithm uses a key K of length l bits,
where 0 ≤ l ≤ 4, 096 and generates an extended key EK of length 4,096 bits by
concatenating copies of the key K. Let ki represent the ith of K, where 0 ≤ i < l.
Then, K is represented by K = (k0k1 . . . kl−1), and

EK = (k0k1 . . . kl−1 ‖ k0k1 . . . ‖ k4,096 mod l)

This extended key EK forms the initial state of the cipher. That is,EK =
R0

0‖R0
1‖ . . . ‖R0

126‖C0 at the start of the second phase of initialization.
As MAG has been submitted to the eSTREAM project under profiles 1 and

two, it is expected to support both 80-bit and 128-bit keys. In the remaining
sections of the paper, we discuss attacks for these specific key sizes, without
IVs, so here we define notation relating the 32-bit words of the initial states and
specific key bits for these two key sizes.

A 128-bit key can be represented as a sequence of four 32-bit subkeys Si, 0 ≤
i ≤ 3. Using this notation, the extended key can be represented by the concate-
nation of these four subkeys, with each subkey appearing thirty-two times, as
follows.

EK = (S0 ‖ S1 ‖ S2 ‖ S3 ‖ ... ‖ S0 ‖ S1‖ ... ‖ S3) where
S0 = (k0, k1, ..., k31), S1 = (k32, k33, ..., k63)
S2 = (k64, ..., k95), S3 = (k96, k97, ..., k127)

68 L. Simpson and M. Henricksen

An 80-bit key is not amultiple of the 32-bitword size. However, the extended key
formed fromconcatenation of an 80-bit key canbe represented as the concatenation
of a sequence of five 32-bit subkeys Si, 0 ≤ i ≤ 4. These are simply the five 32-bit
words which are formed when two copies of the 80-bit key are concatenated. Note
that particular key bits appear in different positions in the subkeys.

EK = (S0 ‖ S1 ‖ ... ‖ S4 ‖ S0 ‖ S1 ‖ ... ‖ S4) where
S0 = (k0, k1, ..., k31), S1 = (k32, k33, ..., k63)
S2 = (k64, ..., k79, k0, ..., k15), S3 = (k16, k17, ..., k47)
S4 = (k48, ..., k79)

In the second phase of key initialization, the state is modified by iteratively
calling the update function F times, using an arbitrary 32-bit constant E. After
this has occurred, the cipher is ready to produce keystream.

In the reference code, the constant E is assigned the hexadecimal value
0x11111111. A comment within the code indicates that this value is chosen
arbitrarily. In the attacks described in this paper, we assign the value of zero to
the constant, the same value that is used during keystream generation. As this
is an arbitrarily chosen but known constant, applied in every iteration of the
initialisation phase, it is our belief that the chosen value should not be critical
to the security of the cipher.

The value assigned to F by the reference code is 214; that is, the key ini-
tialization algorithm iterates the update function 214 times. From an efficiency
perspective, this amount seems excessive. For applications which specify frequent
rekeying (for example, at the end of each frame), the key initialization in MAG
may be as much as an order of magnitude slower than the bulk encryption of
the frame. From the perspective of cryptanalysis, when the value of constant E
is chosen to be zero, then the value of F has no effect on the requirements of
our attacks.

2.3 MAG’s Output Function

Following initialization of the cipher, the output function generates one byte of
keystream after each clocking of the register. The keystream byte zt produced
at time t, t ≥ 1 is generated by truncating the contents of the last stage of the
register R. That is,

zt = trunc8(Rt+1
126)

3 Observations on Weaknesses in MAG

In this section, we make a series of observations on MAG about structural weak-
nesses that can be exploited in both distinguishing and key recovery attacks.

1. MAG has a large internal state, with a 4,064 bit register R, consisting of 127
× 32-bit words. The update function clocks the register once, altering a single
word. No other diffusion mechanisms are present. Consequently diffusion

Improved Cryptanalysis of MAG 69

between words within the register is particularly slow. A single change made
to one of the stages will be reflected in all other stages in the register only
after 127 calls to the update function have been made. The cryptanalyst has
more opportunity to amass information about the internal state when it is
mixed slowly.

2. Of the 127 stages in the register R, only the first four are considered in the
generation of any word of keystream.

3. For an instance of the cipher initialized with a key longer than 128 bits, a
guess-and-determine attack is possible by guessing the contents of R0, R1,
C, and one bit relating to whether R2 > R3. For keys much larger than 128
bits, such an attack will be particularly effective.

4. During keystream generation, the only mixing operation used is exclusive-
or. This bitwise operation provides no diffusion within 32-bit words. During
keystream initialization, modular addition of a constant of E is also used,
but this provides very limited diffusion.

5. The output function takes the least significant byte of one register stage and,
without any filtering, emits it as keystream. Thus the keystream provides a
window into the internal state. Note that after the register has been clocked
127 times, one quarter of the internal state has been revealed. Given the
weakness of the update function, this should reveal a large amount of key
material.

6. Much is made by Vuckovac of MAG’s use of conditional branching (termed in
that document as “selection programming structure”) rather than boolean
or algebraic techniques. He says:

MAG evolution uses binary branching through iteration. Therefore
[the] complexity of path [through] which one cell evolves increases
exponentially. From [the] software testing point of view, [the] MAG
algorithm is unmanageable. [3, page 6].

This claim of unmanageability is demonstrably false, as is the implication
that MAG belongs to an unusual paradigm of ciphers, since the update
function of MAG can be written in standard algebraic notation. For E = 0,
as it is for keystream generation, equation 2 can be rewritten as:

Ct+1 = Ct ⊕
t∑

i=0

Rt+1
126 ⊕G(N t mod 2) (4)

where G = (−1) mod 232 and N t is equal to the number of times for
which Ri

2 > Ri
3, for 0 ≤ i < t. This simple equation occurs because con-

secutive complements in equation 2 cancel: for register stages Ra and Rb,
Ra⊕(−1 mod 232)⊕Rb⊕(−1 mod 232) = Ra⊕Rb, irrespective of the values
of Ra and Rb. Using this representation, it is clear that even if the value of
N t is unknown, that the branching technique used in MAG adds only one
bit of uncertainty to each of its output words.

7. During keystream generation, the update function uses only the exclusive-
or and complement operations. Therefore, new register words can only be

70 L. Simpson and M. Henricksen

linear combinations of register words which are present at the end of the
initialisation process. If E = 0 during initialisation, then new register words
can only be linear combinations of the register words formed by loading the
key (and the known IVs).

8. The implication of observations 5 and 7 is that irrespective of how many
times the shift register R is clocked during key initialization, for some key
lengths, there are byte patterns that can never occur in the keystream. Table
1 shows the maximum number of possible byte patterns for keys of lengths
between 64 and 128 bits in multiples of eight bits, given E = 0. Note that
for keys which result in subkeys that are not distinct, the number of distinct
output bytes will be fewer than this.

For a 128 bit key with no IV, there are four 32-bit subkeys. New register
words are a linear combination of these subkeys, and the constant G:

a0S0 + a1S1 + ... + a4G

So the maximum number of distinct output bytes, obtained when the four
subkeys are distinct, is 32. For an 80-bit key with no IV, there are five subkeys
S0...S4, and similarly the maximum number of distinct output bytes is 64.
For a 128 bit key with a 64-bit IV, this could be considered as a 192 bit
key. Thus there are six 32-bit subkeys, although two of these (formed from
the IV) are known. New register words are a linear combination of these
subkeys, and the constant G:

a0S0 + a1S1 + ... + a6G

So the maximum number of distinct output bytes, obtained when the four
subkeys are distinct, is 128. For an 80 bit key with a 64-bit IV, this could
be considered as a 144 bit key. Thus there are nine 32-bit subkeys, although
three of these (formed from the IV) are known, and half the bits are known
in two other subkeys. New register words are a linear combination of these
subkeys, and the constant G:

a0S0 + a1S1 + ... + a9G

So the maximum number of distinct output bytes, obtained when the four
subkeys are distinct, is 256.

Note that the 80 bit key, when concatenated to form the extended key,
produces a larger number of subkeys than the 128-bit key. This results in
exposure of a greater number of key bits through the output function. For
example, the 128-bit key has four subkeys, from which the output function
exposes 32 bits of key material. The smaller 80-bit key has five subkeys, from
which the output function exposes 40 bits of key material.

4 Two Attacks on MAG

This section presents a simple distinguishing attack against MAG, considered as
in the original submission, without IVs. The approach is then developed into a
partial key recovery attack.

Improved Cryptanalysis of MAG 71

Table 1. Maximum number of byte patterns in MAG keystream output

Key size (bits) max # byte patterns
64 8
72 256
80 64
96 16
128 32
144 256
192 128
256 128
512 256
1024 256
2048 32
4096 32

4.1 A Distinguishing Attack

A successful distinguishing attack against the cipher MAG is able to differentiate
between a random sequence and keystream produced by MAG. Künzli and Meier
present such an attack in [1] where they observe a relation between keystream
bytes Ki, Ki+i, Ki+2, and Ki+127 for all i. Knowledge of these four bytes allows
keystream byte Ki+128 to be predicted in a MAG keystream as either one of two
possible values, with 50% accuracy. The second guess can be made with negligible
effort for 100% accuracy. If the actual keystream byte does not match either
of these two predicted values, the keystream has not been produced by MAG.
Alternatively, a random keystream generator will produce either of the predicted
bytes with total probability 1

128 . Two bytes of keystream produced by MAG and
the random generator will coincide with probability 1

65,536 . Consequently, Künzli
and Meier have presented a simple and effective attack that works with 99.9%
accuracy, if only seven bytes of keystream with indices i, i + 1, i + 2, i + 3, i +
127, i+128, i+129 are known. For 129 consecutive known keystream bytes, their
distinguisher works in all cases.

In this paper, we present a distinguishing attack without the requirement
that the attacker knows keystream bytes with particular indices. In our attack,
knowledge of a handful of keystream bytes with any indices suffices to distin-
guish the MAG keystream from a keystream produced by a random generator.
However, our attack works better for some key lengths than for others, unlike
the attack of [1] which works effectively without consideration of MAG’s key
initialization algorithm. We make the additional assumption that the value of
the initialisation constant E = 0.

In our attack, we carry out a pre-computation for the given key length to
generate a map of outputs in terms of the unknown sub-keys. For example,
consider a 128-bit key K = S0‖S1‖S2‖S3. Then we know that following phase 1
of the key initialization algorithm, R0 = (S0‖S1‖S2‖S3‖S0‖S1‖S2) and C0 = S3.
Aside from the actual values of the subkeys, the only information that is not

72 L. Simpson and M. Henricksen

known is the values of G(N t mod 2) (see observation 6). Using equations 3 and 4,
we can map out the internal state to the register update in terms of St

i , 0 ≤ i < 4
at any time t, as shown in Table 2. Recall from observation 5 that at time t, the
output byte zt is related to register Rt+1

126 .

Table 2. MAG Keystream phrased in terms of subkeys for E = F = 0 and l = 128

time (t) Rt
1 Rt

2 Ct+1 Rt+1
0

0 S0 S1 S3 ⊕ S1 ⊕ G(N0mod 2) S3 ⊕ S1 ⊕ S0 ⊕ G(N0mod 2)
1 S1 S2 S3 ⊕ S2 ⊕ S1 ⊕ G(N1mod 2) S3 ⊕ S2 ⊕ G(N1mod 2)
2 S2 S3 S2 ⊕ S1 ⊕ G(N2mod 2) S1 ⊕ G(N2mod 2)
3 S3 S0 S2 ⊕ S1 ⊕ S0 ⊕ G(N3mod 2) S3 ⊕ S2 ⊕ S1 ⊕ S0 ⊕ G(N3mod 2)
4 S0 S1 S2 ⊕ S0 ⊕ G(N4mod 2) S2 ⊕ G(N4mod 2)
5 S1 S2 S0 ⊕ G(N5mod 2) S0 ⊕ S1 ⊕ G(N5mod 2)
6 S2 S3 S3 ⊕ S0 ⊕ G(N6mod 2) S3 ⊕ S2 ⊕ S0 ⊕ G(N6mod 2)
7 S3 S0 S3 ⊕ G(N7mod 2) G(N7mod 2)

The number of iterations of the update function, denoted F , during the key
initialization algorithm has no bearing on the success of our attack, just linearly
in the number of outputs contained within our map. We have not made a precise
investigation of the effect of the constant E upon the attack, although as it is a
known constant, it can be factored into the map, with a corresponding increase
in complexity.

From observation 8, when the key initialization algorithm is used with E = 0
and a 128-bit key, the MAG keystream generation produces only thirty-two
possible output bytes. Therefore, any keystream which contains more than 32
distinct output bytes is not generated by MAG with E = 0 and a 128-
bit key.

Specific indices also show output bytes that are not keystream dependent. For
example, we know that G(N t mod 2) has the value of either 0 or −1 mod 232. In
some cases, the map predicts these output values (for example, in Table 2 when
t = 7). If the keystream at this point does not contain either of these values,
then it is not generated by MAG with E = 0 and a 128-bit key.

In other cases, the map predicts output of a single subkey or simple combina-
tions of a few subkeys. For example, in Table 2, when t = 2, the map predicts an
output value derived solely from subkey S1, and at t = 4, it predicts an output
value derived solely from S2. Although the values of the subkeys are not known,
the map allows consistency checks on the obtained keystream. If the checks are
satisfied, then with a good measure of confidence, the keystream is generated by
MAG under the aforementioned conditions. The chance that a byte produced by
a random generator will match the corresponding map entry at index t + 128F
is 1

128 . The chance that a keystream byte produced by MAG will match the cor-
responding entries is 100%. After comparison of a few known keystream bytes
against the map, a keystream generated by MAG can easily be distinguished
from a random keystream.

Improved Cryptanalysis of MAG 73

This distinguishing attack involves pre-computation with complexity of ≈ F
operations, where F is the number of iterations of the update function in the key
initialization algorithm. Note that this pre-computation is performed once for a
given key length, and applies irrespective of the key content. That is, rekeying
does not necessitate any additional pre-computation.

Once the pre-computation has been performed, the complexity of the attack
is negligible in terms of keystream requirements, memory, and time as it only
involves comparing intercepted keystream words with those values predicted by
the map. For small values of F , and E = 0, both the pre-computation and
distinguishing attack can be carried out by hand.

4.2 A Key Recovery Attack on MAG

Observation 5 shows that one quarter of the internal state is leaked through the
output function, which merely masks out the highest 24-bits of R126. The map
used to distinguish MAG from a random keystream sequence specifies the linear
combination of subkeys used to form the output byte, independently of the carry
variable C.

Given precomputation of the map for a specific key length, recovery of at least
one quarter of the key is trivial by solving some of these equations. For a 128-bit
key, about thirty-two bytes of keystream are necessary to recover 32 bits of the
key. As noted in [1], information is leaked about the higher bits of some register
in the internal state by observing whether G(N t mod 2) is 0 or −1 mod 232.
However, given that the proposed modifications of MAG examined in the next
section permit a complete key recovery, we have not attempted to use this extra
information for complete key recovery.

5 Addressing the MAG Modifications

To avoid the distinguishing attack outlined in [1], Vuckovac proposes a modifi-
cation to the output function of MAG [4]. Instead of taking the keystream from
the least significant byte of Rt+1

126 , he proposes outputting byte (t mod 4) of Rt+1
126 ,

where R is partitioned into bytes b3‖b2‖b1‖b0. Thus the distinguishing attack in
[1] can no longer be applied to the modified MAG.

However, our distinguisher applies as before. As different byte patterns ap-
pear in consecutive positions, we merely separate the keystream into four sub-
keystreams, by taking every fourth output byte. That is, one sub-keystream
consists of the least significant bytes from R0, another from the second-to-least
significant bytes, and so on. We can apply the distinguisher to any of these
streams, or to all of them.

For a distinguisher on the 128-bit or 80-bit keys, which are used by ECRYPT
Profile 1 ciphers, we do not need extra keystream, and we do not need to generate
a new map. The major effect of the modification to the MAG output function is
in relation to key recovery. Taking output from all bytes, rather than from just
the least significant byte, exposes all of the key bits, and so permits complete

74 L. Simpson and M. Henricksen

key recovery. We can apply the key recovery attack, outlined in Section 4.2 of
this paper, on each stream, and combine the mutually disjoint key information
gained from each stream to recover the entire 128- or 80-bit with minimal effort,
using around 32 bytes of keystream.

6 Discussion and Summary

In this paper we have shown that the branching operation used in the MAG cipher
does not exponentially increase the cipher’s complexity, or protect it from standard
methods of cryptanalysis, as claimed by MAG’s designer in [3]. Instead, we have
demonstrated that MAG is a very insecure cipher requiring negligible computing
power to attack. We have shown a separate distinguishing attack to that described
by [1], and extended our attack to incorporate partial key recovery. More impor-
tantly, we have shown that the modification in the output function, intended by
Vuckovac to prevent the distinguishing attack of [1], does not prevent the distin-
guishing attack presented in this paper and actually makes the cipher more vul-
nerable to key recovery attacks, permitting complete key recovery.

Our attacks are performed under the assumptions that IVs are not used, and
that E = 0 during key initialization, as it is during keystream generation. This is
consistent with the original textual specification of MAG. However, the attacks
can still be applied when IVs are used as outlined in [5], by considering the
concatenation of key and IV as a key of increased length, of which a portion
is known. We believe it feasible, although more complex, to perform the same
attacks when E is assigned an arbitrary constant. This is because the known
constant is used in a regular way by the key initialization algorithm, such that
it does not depend on secret material. The attacker knows the value of E and
can factor this into the pre-computation. In any case, we believe that the weakly
non-linear addition associated with an arbitrary but known constant adds little
security to the cipher.

Problems with MAG start with the absence of a sensible key initialization al-
gorithm. This includes failure to specify an upper limit on the key size, so that for
larger key sizes, the cipher becomes vulnerable to standard time-memory-tradeoff
attacks. Additionally, because the diffusion at each stage is limited to four stages
of the 127-stage register, a guess-and-determine attack becomes possible for large
keys (of around 256-bits or larger), as outlined in observation 3.

Irrespective of key size, MAG shows serious weaknesses in that it contains
no highly nonlinear components, and directly reveals one-quarter of its internal
state through its very weak output function. Within the update function, there
is no diffusion between bits within each register stage.

There is an element of security by obscurity in that the specification of MAG is
poorly written and at odds with the submitted reference code. We do not believe
that MAG can be used as a secure cipher, either as originally described in [3],
or with the modifications proposed in [4] and [5]. The modifications required to
address the inherent problems in MAG will change its structure so much as to
make it unrecognizable.

Improved Cryptanalysis of MAG 75

References

1. Simon Künzli and Willi Meier, Distinguishing Attack on MAG, eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/053, 2005.
http://www.ecrypt.eu.org/stream/mag.html

2. William Millan, Which software ciphers will survive?, eSTREAM,
ECRYPT Stream Cipher Project, Phorum thread, November 22, 2005.
http://www.ecrypt.eu.org/stream/phorum/read.php?1,313

3. Rade Vuckovac. MAG: My Array Generator (a new strategy for random number
generation), eSTREAM, ECRYPT Stream Cipher Project, Report 2005/014, 2005.
http://www.ecrypt.eu.org/stream/mag.html

4. Rade Vuckovac. MAG alternating methods notes, eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/068, 2005. http://www.ecrypt.eu.org/
stream/mag.html

5. Rade Vuckovac. MAG Cipher Design Notes, eSTREAM, ECRYPT Stream Cipher
Project, Report 2006/001, 2006. http://www.ecrypt.eu.org/stream/mag.html

6. Stephen Wolfram. Cryptography with Cellular Automata, Proceedings of Crypto ’85,
LNCS 218, Springer-Verlag, 1986, pages 429–432.

On Exact Algebraic [Non-]Immunity of
S-Boxes Based on Power Functions�

Nicolas T. Courtois1, Blandine Debraize1,2, and Eric Garrido3

1 Axalto Cryptographic Research & Advanced Security,
36-38 rue de la Princesse, BP 45, F-78430 Louveciennes Cedex, France

2 Versailles University, 45 avenue des États-Unis, 78035 Versailles Cedex France
3 Thales Communications, 160 bd de Valmy, BP 82, 92704 Colombes Cedex France

Abstract. In this paper we are interested in algebraic immunity of
several well known highly-nonlinear vectorial Boolean functions (or S-
boxes), designed for block and stream ciphers. Unfortunately, ciphers
that use such S-boxes may still be vulnerable to so called “algebraic at-
tacks” proposed recently by Courtois, Pieprzyk, Meier, Armknecht, et
al. These attacks are not always feasible in practice but are in general
very powerful. They become possible, if we regard the S-boxes, no longer
as highly-nonlinear functions of their inputs, but rather exhibit (and ex-
ploit) much simpler algebraic equations, that involve both input and the
output bits. Instead of complex and “explicit” Boolean functions we
have then simple and “implicit” algebraic relations that can be com-
bined to fully describe the secret key of the system.

In this paper we look at the number and the type of relations that
do exist for several well known components. We wish to correct or/and
complete several inexact results on this topic that were presented at
FSE 2004.

We also wish to bring a theoretical contribution. One of the main
problems in the area of algebraic attacks is to prove that some systems
of equations (derived from some more fundamental equations), are still
linearly independent. We give a complete proof that the number of lin-
early independent equations for the Rijndael S-box (derived from the
basic equation XY = 1) is indeed as reported by Courtois and Pieprzyk.
It seems that nobody has so far proven this fundamental statement.

Keywords: Boolean functions, Power functions, highly non-linear func-
tions S-boxes, design of block and stream ciphers, algebraic attacks, mul-
tivariate systems of equations, XL algorithm, Gröbner bases, XSL attack.

Note: This paper is (and should be) dedicated to the memory of Hans Dobbertin
[1952-2006], that is recognised for his substantial contributions to the theory of
Boolean functions, and did also pioneering work (that remains classified) in the
area of algebraic cryptanalysis.
� This work was partially supported by the French Ministry of Research RNRT

X-CRYPT project and by the European Commission via ECRYPT network of
excellence IST-2002-507932.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 76–86, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power Functions 77

1 Introduction

Algebraic attacks are attacks in which a cryptosystem is broken (for example the
key, the plaintext, or a signature is computed) by solving a system of multivariate
equations over a finite field (e.g. GF (2)) that describes the whole cryptosystem.
The main idea goes in fact back to Shannon, and the main contributions in the
area are (starting from the oldest) [40, 36, 28, 17, 39, 18, 13, 14, 30, 2]. We refer
to [21] for a comprehensive survey that outlines respective contributions and
(importantly) shows how much in common all these attacks do have.

Algebraic attacks are very successful in cryptanalysis of LFSR-based stream
ciphers, see among others [14, 15, 2] as well as for many public key schemes based
on multivariate polynomials, for example see [17, 30, 8]. However an essential
problem still remains widely open: can an algebraic attack such as XSL or similar
break modern block ciphers such as AES faster that the exhaustive search of key
space ? - Courtois and Pieprzyk contend it should be possible, see [18, 33, 34],
but nobody was so far able to neither prove nor disprove it.

2 How to Measure Algebraic Vulnerability

The notion of algebraic immunity that is used in the literature [4, 21, 1, 5, 6, 7]
(and can be defined in several meaningful ways, not only as in [4]) is meant
to quantify the security of some cryptosystems (mostly stream ciphers for the
notion of [4]) against some algebraic attacks. It does not assure any ”immunity”,
i.e. cannot guarantee security of all ciphers w.r.t. to all algebraic attacks. In this
paper we wish to study algebraic immunity in a broader perspective: for Boolean
components with several outputs (S-boxes), and for both block and stream ci-
phers. Our motivation lies in numerous recent proposals of algebraic attacks. A
large variety of attacks (cf. among others [21, 1, 14, 15, 2, 16, 18, 20, 12]), and for
stream and block ciphers alike, have a commun feature. They all depend on the
existence of some ”simple” algebraic relations that relate input and output bits
of the non-linear components (S-boxes and Boolean functions alike). Thus we
will not define a formal notion of algebraic immunity, but will simply look at the
critical parameters of the most commonly used algebraic relations of low degree.

In fact, all the S-boxes we study here, are quite weak in this respect, therefore
this paper is in fact about algebraic non-immunity or algebraic vulnerability. This
term also reflects the fact that though some algebraic attacks on ciphers using
such weak components are very fast and practical, yet some extremely slow and
that may never pose a practical threat (in particular AES has not been shown
to be really broken), see [21] for an overview.

Having the aforementioned attacks in mind, the main parameters that do
determine algebraic [non-]immunity of an S-box are in general:

1. The size s in bits of the S-box (s stands for size). In this paper we only
consider bijective components GF (2)s → GF (2)s.

2. The type of equations we consider (is usually determined by the kind of
monomials we allow, for example quadratic equations).

78 N.T. Courtois, B. Debraize, and E. Garrido

3. The degree of the monomials that do appear in the equations.
4. The dimension of the space of equations r, (r stands for relations).
5. The sparsity of these equations measured by the number of monomials t (t

stands for terms) that do appear in these equations.
6. From (r, s, t) we can compute the number Γ , conjectured by Courtois and

Pieprzyk to measure the resistance against the XSL attack. We note that Γ
has two different definitions, depending on the version of the XSL attack,
see [18]. In this paper we will call Γ the value Γ (r, s, t) = (t/s)�t/r	 from
the eprint.iacr.org version of the XSL attack. This version is claimed
to be more powerful in practice but requires the internal key scheduling of
the block cipher to be built with the same S-box (and otherwise only linear
components).

7. Similarly we will call Γ ′ the definition Γ ′(r, s, t) = ((t− r)/s)�(t−r)/s	 pub-
lished in the proceeding of Asiacrypt 2002. This version of the XSL attack is
more of a theoretical interest: it is simpler to study, does not make any as-
sumption on the key scheduling, but gives in general (but not always) much
bigger systems of equations to solve.

In the future, it is possible that a better understanding of the hardness of the
problem of solving special systems of multivariate equations will force us to enrich
andmaybe re-define our notions of algebraic [non-]immunity.The easiest casesmay
be not the ones that we think, and we may even use totally different types of equa-
tions, see for example Section 6.2. in [19]. Nevertheless the types of equations and
their main parameters r, s, t that we study in this paper will remain important to
look at when studying algebraic attacks on block and stream ciphers.

3 S-Boxes Based on Power Functions over a Finite Field

In this paper we look at various types of exponent functions X �→ Xα in a finite
field GF (2s) (we restrict ourselves to the characteristic 2). These functions can
be classified according to the exponent α and some exponents are recommended
for usage in ciphers on the criteria of satisfying (to some degree) the following
two requirements:

1. It is better to use bijective S-boxes (though it is not an obligation for Feistel
ciphers). X �→ Xα is bijective when gcd(α, 2s − 1) = 1. For example when
α = 3 it is known that the function X �→ Xα is bijective if and only if s is
odd.

2. The exponent function should be non-linear, which excludes all α being a
power of 2. Non-linearity is not sufficient, and exponents should rather be
very highly non-linear, but maybe not optimal in this respect, as we explain
below.

3.1 High Nonlinearity Versus Algebraic Immunity

Non-linearity can be defined in many meaningful ways, depending on the metrics
with respect to which we wish the cryptographic components to be ”far apart”

On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power Functions 79

from linear components. Highly non-linear components have been widely studied
in the literature.

In particular, for power S-boxes, several classes of special exponents have been
studied: Gold, Kasami, Dobbertin, Welch, Niho and Inverse, see [9, 3]. These
exponents are known to have a very good, optimal or very close to optimal resis-
tance against differential and linear cryptanalysis that is formalised respectively
by the notions of Almost-Perfect Nonlinear functions (APN), and [maximally]
non-linear functions. We refer to [9, 3] for a bibliography on this topic.

Unfortunately, it turns out that all these “very good” exponents and many
other known highly-nonlinear components, are frequently somewhat “very bad”
in terms of algebraic immunity, cf. [9, 14, 15, 18, 21, 20]. Yet, research on algebraic
attacks and resulting algebraic immunity does not invalidate the previously stud-
ied “non-linearity criteria” (such as being an APN) that have been defined for
S-boxes and Boolean functions. It rather does complement them, as already sug-
gested in [21, 14, 5]. The new ”algebraic relation-related” non-linearity notion,
is expected to be related to the other notions and though using (sufficiently
large) random S-boxes should be a good idea to avoid all algebraic attacks one
can think of, it is also possible to exhibit special components that are reason-
ably highly non-linear, and at the same time immune to algebraic attacks. For
Boolean functions (one output) such constructions have already been studied by
Carlet [5] and by Dalai, Gupta and Maitra in [6, 7].

3.2 Prior Work: The FSE 2004 Paper

This paper is meant to be a follow-up to the paper published by Cheon and Lee
at FSE 2004 [9]. In this paper the authors follow what can be called “Patarin
or/and Courtois-Pieprzyk-style” method (see [36, 18]) for deriving the existence
of algebraic equations for the power S-boxes. They do it for 5 other S-boxes
known from the literature, find some equations and present 6 theorems to the
effect that, some specified equations exist and are linearly independent. In fact
as we will see later, 2 of these 6 theorems are not exact, all the other being
incomplete (i.e. they do not always take into account all existing equations).

4 Inverse Exponents

The AES so called Inverse S-box, and in fact the power X �→ X2s−2 is non-
linear for s > 2. According to Courtois and Pieprzyk [18], it usually gives 3s− 1
bi-affine equations (and 5s − 1 quadratic). This S-box is not at all the same
thing that the inverse function in a finite field, 0 is mapped onto itself, and this
singularity has surprising and non-trivial consequences, see [20]. One of them is
that the number of linearly independent equations is one less than the results
incorrectly given in [9] - Theorem 1 of [9] is false.

In the appendix of this paper we give (for a first time) a complete proof that
for s > 2 the number of linearly independent bi-affine equations is exactly
3s − 1, and for s > 4 the dimension of the set of fully quadratic equations

80 N.T. Courtois, B. Debraize, and E. Garrido

is exactly 5s − 1. Our proof uses the powerful Trace Form representation of
Boolean functions and reduces a complex problem of existence and independence
of multivariate polynomials into a simpler problem with bivariate polynomials
over GF (2n). The result is confirmed by computer simulations below.

Table 1. Predictions and simulations for the number of linearly independent equations
and resulting algebraic immunity for the AES-type S-box X �→ X2s−2 over GF (2s)

equation type size s = 2 3 4 5 7 8 9 15 16 17

bi-affine
equations

t = s(s + 2) + 1

Rijndael Inv S-box X �→ X−1, 0 �→ 0
r obtained 5 8 11 14 20 23 26 44 47 50

expected=3s − 1 8 11 14 20 23 26 44 47 50
Γ = (t/s)�t/r� 24.3 24.8 27.9 28.5 212.8 213.4 213.9 224.6 229.2 229.8

Γ ′ =
(

t−r
s

)� t−r
s

� 22 24.2 27.2 210.7 218.6 222.9 227.3 257.3 262.7 268.2

fully
quadratic

t = s(2s+1)+1

r obtained 7 14 21 24 34 39 44 74 79 84
expected=5s − 1 24 34 39 44 74 79 84

Γ = (t/s)�t/r� 25.4 26.1 26.7 210.8 216 216.7 221.6 235 235.6 241.4

Γ ′ =
(

t−r
s

)� t−r
s

� 24.7 27.5 211.6 223.1 242 252.2 262.8 2133 2146 2159

5 Gold Exponents

Gold exponents (cf. [35, 27, 9]) are functions of type X �→ X2k+1 with gcd(k, s) =
1. In [9] we read that these functions are APN, which is not quite true in gen-
eral, for example when s = 2, k = 1. The real result is that all permutation
polynomials of this type are APN, i.e. when also gcd(2k + 1, 2s − 1) = 1, see
[35]. As S-boxes these exponents were first studied by Pieprzyk [38] and Nyberg
[35]. Permutation Gold powers are also used in the Matsumoto-Imai multivariate
public key scheme and the equations we study below, are precisely the equations
that Patarin uses to break this cryptosystem, see [36] for details.

From Theorem 2 of [9] we expect that for every Gold exponent α = 2k + 1 we
obtain 3s quadratic equations for k �= 1 and 5s for k = 1. Another theorem of
FSE 2004 that is false: for s = 3, the S-box X �→ X3 gives 14 quadratic equations,
instead of 15 expected. In all other cases we studied, looking at Theorem 2 of
[9] seems to provide a lower bound for the number of equations found, but this
bound is frequently not tight.

For example, for s = 8, the S-box X �→ X5 (that is not bijective) gives
34 quadratic equations, instead of 24 expected (which is not even a multiple
of s). We also get more equations than expected from this theorem for many
permutation polynomials, for example X �→ X5 for s = 5 and for s = 7 we
get respectively 25 and 28 quadratic equations instead of 15 and 21 expected
from Theorem 2 of [9]. Moreover we do not see any regularity here: in the fist
case we get 5s, in the second case 4s equations. The algebraic behaviour of Gold
exponents is much more complex to understand that the authors of [9] have

On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power Functions 81

Table 2. Comparing simulations to expectations on the number of linearly independent
equations and resulting algebraic immunity Γ and Γ ′, for selected permutation Gold
polynomials X �→ X2k+1, gcd(k, s) = 1, gcd(2k + 1, 2s − 1) = 1, 1 ≤ k ≤ s/2 (for
completeness we also indicate between parentheses r obtained when these conditions
are not all satisfied, e.g. polynomials that are not permutations)

equation type size s = 2 3 4 5 7 8 9 15 16 17

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X �→ X3, k = 1
r obtained (6) 8 (10) 10 14 (16) 18 30 (32) 34

compare to 2s 6 10 14 18 30 34
Γ = (t/s)�t/r� 24.8 211.4 216 220.8 236.8 242.5

Γ ′ =
(

t−r
s

)� t−r
s

� 24.2 214.3 222.7 231.9 262.6 275.7

fully
quadratic

t = s(2s+1)+1

r obtained (7) 14 (21) 25 35 (40) 45 75 (80) 85
predicted in [9] 15 25 35 45 75 85
Γ = (t/s)�t/r� 26.1 210.8 216 221.6 235 241.4

Γ ′ =
(

t−r
s

)� t−r
s

� 27.5 222.8 241.7 262.7 2133 2159

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X �→ X5, k = 2
r obtained (5) (8) (10) 10 7 (8) 9 15 (16) 17

compare to s 5 7 9 15 17
Γ = (t/s)�t/r� 211.4 231.9 241.7 273.7 285

Γ ′ =
(

t−r
s

)� t−r
s

� 214.3 227.2 236.7 268.1 279.3

fully
quadratic

t = s(2s+1)+1

r obtained (7) (14) (21) 25 28 (34) 36 60 (64) 68
predicted in [9] 15 21 27 45 51
Γ = (t/s)�t/r� 210.8 220 226 245 251.7

Γ ′ =
(

t−r
s

)� t−r
s

� 222.8 246.8 268.2 2140 2165

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X �→ X9, k = 3
r obtained (6) (9) (10) (10) 14 (12) (6) (15) (16) 17

compare to s 7 17
Γ = (t/s)�t/r� 216 285

Γ ′ =
(

t−r
s

)� t−r
s

� 222.7 279.3

fully
quadratic

t = s(2s+1)+1

r obtained (7) (15) (21) (25) 35 (32) (42) (60) (64) 68
predicted in [9] 21 51
Γ = (t/s)�t/r� 216.1 251.7

Γ ′ =
(

t−r
s

)� t−r
s

� 241.7 2165

bi-affine
equations

t = s(s + 2) + 1

Gold-type S-box X �→ X17, k = 4
r obtained (5) (8) (14) (10) (14) (36) 18 15 (16) 17

compare to s 9 15 17
Γ = (t/s)�t/r� 220.8 275.7 285

Γ ′ =
(

t−r
s

)� t−r
s

� 231.9 268.1 279.3

fully
quadratic

t = s(2s+1)+1

r obtained (7) (14) (26) (25) (35) (70) 45 60 (68) 68
expected 27 45 51

Γ = (t/s)�t/r� 221.6 245 251.7

Γ ′ =
(

t−r
s

)� t−r
s

� 262.7 2140 2165

82 N.T. Courtois, B. Debraize, and E. Garrido

expected, and their results on Γ algebraic immunity of S-boxes are only upper
bounds.

Observations on Algebraic Immunity: In Table 2 we see that for XSL at-
tacks both types of equations are interesting. For some S-boxes bi-linear equa-
tions give a lower Γ , for other S-boxes, better attacks will be obtained with fully
quadratic equations. We also observe, as expected, that usually Γ ′ is much larger
than Γ , but in some cases it isn’t.

6 Dobbertin Exponents

Dobbertin exponents are following [9, 24] the power functions of the form X �→
X24k+23k+22k+2k−1 over GF (2s) with s = 5k. From Theorem 6 of [9] we expect
that there should give s quadratic equations. Again there are conter-examples
for this: for example X �→ X4679 over GF (215) is a Dobbertin permutation
that gives only 12 quadratic equations instead of s = 15 expected. Some other
examples can be explained, for example X �→ X29 is a Dobbertin permutation
over GF (25) gives 24 = 5s− 1 quadratic equations, and this is because this case
is degenerated, (we thank the anonymous referee for pointing this out) X29 lies
in the same cyclotomic coset that the inverse exponent 30.

We note that the Theorem 6 of [9] is neither a lower bound nor an upper
bound, and it seems that the correct lower bound for Dobbertin exponents would
be 4s/5 = 4k and not s = 5k.

7 Niho Exponents

Niho exponents are defined in [25, 9] as functions of type X �→ X2m+2m/2−1 over
GF (2s) with s = 2m + 1 and m even, or X �→ X2m+2(3m+1)/2−1 over GF (2s)
with s = 2m + 1 and m odd. Though from Theorem 5 of [9] we learn that there
should be s linearly independent quadratic equations, again we have found that
there are more of them.

For example X �→ X39 is a Niho permutation polynomial over GF (27), and
it gives as many as 21 = 3s quadratic equations, instead of s = 7 expected.

We not also that X �→ X39 is a Niho permutation polynomial over GF (27),
and it gives 21 = 3s quadratic equations, instead of s = 7 expected. This however
can be explained: it lies in the same cyclotomic class as the inverse of the Kasami
exponent 57.

8 Welch Exponents

Welch exponents are following [24, 9] functions of type X �→ X2m+3 over GF (2s)
with s = 2m + 1. From Theorem 4 of [9] we learn that for these functions there
are as many as 9s or 10s quadratic equations. Unfortunately these are obtained
at the cost of introducing additional variables zi, and we may still compute Γ but

On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power Functions 83

it does not pertain exactly to the XSL attack anymore. However we may deduce
from Table 6 that among these there are s equations (and 2s when m = 2) that
do not use these additional variables.

This prediction is not at all confirmed by our simulations. For example X �→
X5 is a Welch permutation over GF (23), and it gives 14 = 5s − 1 quadratic
equations, instead of s = 3 expected. Other examples are X �→ X7 over GF (25),
and X �→ X11 over GF (27), that are Welch permutations, and give respectively
25 = 5s and 21 = 3s quadratic equations, instead of 2s = 10 and s = 7 we
expect.

Only some examples confirm what we expect from Theorem 4 and Table 6 of
[9]. For example X �→ X19 over GF (29) and X �→ X131 over GF (215) are Welch
permutations and in both cases there are indeed s quadratic equations.

9 Kasami Exponents

Kasami exponents are defined in [31, 9] as functions of type X �→ X22m−2m+1

over GF (2s) with gcd(m, s) = 1 and 1 ≤ m ≤ s/2. From Theorem 3 of [9] we
learn that for these functions there are as many as 7s or 10s quadratic equa-
tions (but again they introduce additional variables). Out of them s quadratic
equations do not involve additional variables.

Again, this is not at all confirmed by our simulations. For example X �→ X13

is a Kasami permutation over GF (27), GF (29) and GF (211)with k = 2, and it
gives respectively 21 = 3s, 18 = 2s and 22 = 2s quadratic equations instead of
s expected. Another example is X �→ X57 which is a Kasami function (not a
permutation) over GF (28), GF (210) and GF (214)with k = 3, and in all these
cases we get 2s quadratic equations, instead of s expected.

10 Which S-Box Has the Lowest Algebraic Immunity?

In this paper we see that in most cases the algebraic behaviour of power functions
over finite fields is far from being simple and predictable. For many results of [9]
up to 5 times more equations do exist which results in a much lower algebraic
immunity than expected.

Which S-box is the worse ? During the Asiacrypt 2002 presentation, Courtois
conjectured (based on some early comparisons) that there is no non-linear S-box
that allows to write more multivariate relations that for the AES S-box (i.e. in
terms of algebraic immunity AES uses the worst S-box that exists). In this paper
we show that strictly speaking this conjecture is not true.

We found that if s is odd, the function X �→ X3 over GF (2s) is an APN
permutation S-box and gives usually (but not always as claimed in [9], see sim-
ulations in Table 2) as many as 5s equations instead of 5s − 1 for the inverse
S-box. Yet, in an algebraic attack on AES such as in [18] it is still possible to
use 5s equations for all S-boxes of AES and this with pretty good probability.
Therefore, arguably, an S-box based on X �→ X3 is in fact only very slightly
worse than the AES S-box. In some sense the Courtois conjecture remains valid.

84 N.T. Courtois, B. Debraize, and E. Garrido

Remark: For one s = 4 (and only for this s) we can even do better than 5s,
and we have 21 = 5s + 1 quadratic equations for the AES S-box itself on 4 bits.
This is due to the following fact proven by Courtois and Pieprzyk in [18]: there
is no S-box on 4 bits for which there would be less than 21 equations. From this
one can conjecture that, when s > 4, there (maybe) is no non-linear S-box that
would give strictly more than 5s quadratic equations.

11 Conclusion

Algebraic attacks work by creating algebraically dependent but linearly inde-
pendent sets of equations, derived from some given initial set of equations. The
complexity of algebraic attacks on block ciphers does greatly depend on whether
there are sufficiently many linearly independent equations compared to some
evaluation. In this paper we showed that this problem is complex and not triv-
ial even for tiny systems of equations resulting in a finite field from one single
power-function S-box.

At FSE 2004 a paper was published with 6 theorems that determine the
number of linearly independent multivariate quadratic equations and resulting
algebraic immunity for 6 different highly non-linear power S-boxes known from
the literature. In this paper we showed that all these 6 results are false and in
some cases heavily underestimate the number of linearly independent algebraic
relations (up to 5 times). For Inverse and Dobbertin, the actual dimension may
also be lower than claimed.

For the time being, computer simulations rather than extant theory, are the
only way known to determine correctly the number of linearly independent equa-
tions, even for one single S-box. Nevertheless, we managed to solve the problem
completely for the AES S-box: we give a complete proof using the Trace Form of
Boolean functions that the number of linearly independent equations is indeed
as established by heuristic derivation combined with computer simulations by
Courtois and Pieprzyk. It seems that it is the first time such an exact result
is proved. Moreover, our proof methodology should be of independent interest
and might help to prove the independence of more complex systems of equations
that arise in algebraic attacks.

References

1. Frederik Armknecht: On the Existence of low-degree Equations for Algebraic At-
tacks, preprint available at eprint.iacr.org/2004/185/. Also presented at SASC
Ecrypt workshop (State of the Art in Stream Ciphers), Bruges, Belgium, October
14-15 2004.

2. Frederik Armknecht, Matthias Krause: Algebraic Atacks on Combiners with Mem-
ory, Crypto 2003, LNCS 2729, pp. 162-176, Springer.

3. Anne Canteaut, Marion Videau: Degree of composition of highly nonlinear func-
tions and applications to higher order differential cryptanalysis, Eurocrypt 2002,
LNCS 2332, Springer.

On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power Functions 85

4. Claude Carlet, Will Meier and Enes Pasalic: Algebraic Attacks and Decomposition
of Boolean Functions, Eurocrypt 2004, pp. 474-491, LNCS 3027, Springer, 2004.

5. Claude Carlet: Improving the algebraic immunity of resilient and non-
linear functions and constructing bent functions, preprint available at
eprint.iacr.org/2004/276.pdf.

6. Deepak Kumar Dalai, Kishan Chand Gupta and Subhamoy Maitra: Results on al-
gebraic immunity for cryptographically significant Boolean functions, In Indocrypt
2004, LNCS 3348, pp. 92-106, Springer, 2004.

7. Deepak Kumar Dalai, Kishan Chand Gupta and Subhamoy Maitra: Cryptograph-
ically Significant Boolean functions: Construction and Analysis in terms of Alge-
braic Immunity, To appear in FSE 2005, LNCS, Springer.

8. Jiun-Ming Chen, Nicolas Courtois and Bo-Yin Yang: On Asymptotic Security Esti-
mates in XL and Gröbner Bases-Related Algebraic Cryptanalysis, ICICS’04, LNCS
3269, pp. 401-413, Springer, 2004.

9. Jung Hee Cheon and Dong Hoon Lee: Resistance of S-boxes
against Algebraic Attacks, In FSE 2004, Springer. Can be found at
http://www.math.snu.ac.kr/∼jhcheon/Published/2004 FSE/FSE04 CL.pdf.

10. Don Coppersmith, Shmuel Winograd: ”Matrix multiplication via arithmetic pro-
gressions”, J. Symbolic Computation (1990), 9, pp. 251-280.

11. Paul Camion, Claude Carlet, Pascale Charpin and Nicolas Sendrier, On
Correlation-immune Functions, In Crypto’91, LNCS 576, Springer, pp. 86-100.

12. Nicolas Courtois: Feistel Schemes and Bi-Linear Cryptanalysis, in Crypto 2004,
LNCS 3152, pp. 23-40, Springer, 2004.

13. Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587, Springer.

14. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS, Springer.

15. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
In Crypto 2003, LNCS 2729, pp: 177-194, Springer 2003.

16. Nicolas Courtois: Algebraic Attacks on Combiners with Memory and Several Out-
puts, ICISC 2004, LNCS, to appear in Springer in early 2005. Extended version
available on http://eprint.iacr.org/2003/125/.

17. Nicolas Courtois: The security of Hidden Field Equations (HFE), Cryptographers’
Track Rsa Conference 2001, LNCS 2020, Springer, pp. 266-281.

18. Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations, Asiacrypt 2002, LNCS 2501, Springer, a preprint with a
different version of the attack is available at http://eprint.iacr.org/2002/044/.

19. Nicolas Courtois, Guilhem Castagnos and Louis Goubin: What do DES S-boxes
Say to Each Other ? Available on eprint.iacr.org/2003/184/.

20. Nicolas Courtois: The Inverse S-box, Non-linear Polynomial Relations and Crypt-
analysis of Block Ciphers, in AES 4 Conference, Bonn May 10-12 2004, LNCS 3373,
pp. 170-188, Springer.

21. Nicolas Courtois: General Principles of Algebraic Attacks and New Design Criteria
for Components of Symmetric Ciphers, in AES 4 Conference, Bonn May 10-12 2004,
LNCS 3373, pp. 67-83, Springer.

22. Joan Daemen, Vincent Rijmen: AES proposal: Rijndael, The lat-
est revised version of the proposal is available on the Internet,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

23. Hans Dobbertin: One-to-One Highly Nonlinear Power Functions on GF(2n), Appl.
Algebra Eng. Commun. Comput. 9(2): 139-152 (1998).

86 N.T. Courtois, B. Debraize, and E. Garrido

24. Hans Dobbertin: Almost perfect nonlinear power functions on GF(2n): the Welch
case. IEEE Transactions on Information Theory, 45(4):1271-1275, 1999.

25. Hans Dobbertin: Almost perfect nonlinear power functions on GF(2n): the Niho
case. Information and Computation, 151:57–72, 1998.

26. Jovan Dj. Golic: On the Security of Nonlinear Filter Generators, FSE’96, LNCS
1039, Springer, pp. 173-188.

27. R. Gold: Maximal recursive sequences with 3-valued recursive crosscorrelation func-
tions, IEEE Transactions on Information Theory, 14:154–156, 1968.

28. Thomas Jakobsen: Cryptanalysis of Block Ciphers with Probabilistic Non-Linear
Relations of Low Degree, Crypto 98, LNCS 1462, Springer, pp. 212-222, 1998.

29. Thomas Jakobsen, Lars R. Knudsen: The Interpolation Attack on Block Ciphers,
FSE 97, LNCS 1267, Springer, pp.28-40, 1997.

30. Antoine Joux, Jean-Charles Faugère: Algebraic Cryptanalysis of Hidden Field
Equation (HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, LNCS 2729,
pp. 44-60, Springer.

31. T. Kasami: The weight enumerators for several classes of subcodes of the second
order binary Reed-Muller codes. Information and Control, 18:369–394, 1971.

32. Will Meier, Enes Pasalic and Claude Carlet: Algebraic Attacks and Decomposition
of Boolean Functions, In Eurocrypt 2004, pp. 474-491, LNCS 3027, Springer, 2004.

33. Sean Murphy, Matt Robshaw: Essential Algebraic Structure within the AES,
Crypto 2002, LNCS 2442, Springer.

34. Sean Murphy, Matt Robshaw: An analysis of the XSL attack and it’s impact
on the security of AES, Nessie report, https://www.cosic.esat.kuleuven.ac.be
/nessie/reports/phase2/Xslbes8 Ness.pdf.

35. Kaisa Nyberg and Lars R. Knudsen: Provable security against differential crypt-
analysis, Journal of Cryptology, vol 8, n. 1, 1995, pp. 27-37, also appears in
Crypto’92, LNCS 746, pp. 566-574, Springer, 1992.

36. Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88, Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

37. Jacques Patarin: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymmetric Algorithms, in Eurocrypt’96, Springer, pp.
33-48. The extended version can be found at http://www.minrank.org/hfe.ps

38. J. Pieprzyk: On bent premutations, Technical Report CS 91/11; The University of
New South Wales, Australia.

39. Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, Efficient Al-
gorithms for solving Overdefined Systems of Multivariate Polynomial Equations,
Eurocrypt’2000, LNCS 1807, Springer, pp. 392-407.

40. Claude Elwood Shannon: Communication theory of secrecy systems, Bell System
Technical Journal 28 (1949), see in patricular page 704.

41. Volker Strassen: Gaussian Elimination is Not Optimal, Numerische Mathematik,
vol 13, pp 354-356, 1969.

42. A.M. Youssef and G. Gong: Hyper-bent Functions, In Eurocrypt 2001, LNCS 2045,
pp 406-419, Springer, 2001.

A Proof of the Main Theorem

Due to the space limitations of these proceedings, the proof can be found in the
full version of this paper available from the authors or at eprint.iacr.org/
2005/203.

Augmented Certificate Revocation Lists

A. Lakshminarayanan and T.L. Lim

Institute for Infocomm Research, Singapore
{lux, tllim}@i2r.a-star.edu.sg

Abstract. We present a simple yet clever extension to the delta certifi-
cate revocation list(CRL) [1], the augmented certificate revocation list
(ACRL). ACRLs contain revocation updates only and certificate verifiers
construct complete CRLs locally. Locally constructed complete CRLs are
identical to complete CRLs issued by the CRL issuer. So certificate ver-
ifiers need not download complete CRLs. ACRLs are much smaller in
size compared to complete CRLs providing significant network savings.
Contrary to existing opinion - that CRLs cannot provide efficient online
certificate status - we present an ACRL based online certificate status
scheme which has many advantages over OCSP [2]. ACRLs are backward
compatible and can easily be integrated into existing X.509 CRL based
schemes.

1 Introduction

Many security protocols use digitally signed public-key certificates. A public-key
certificate binds a public key with the identity of the owner of the corresponding
private key. X.509 is an industry standard that defines the format of public-
key certificates [1]. The primary contents of a public-key certificate include a
public key, the certificate’s unique identifier e.g. serial number, the certificate
owner’s identity, the certificate expiry date and certificate extensions (in this
paper, public key certificate means X.509 version 3 certificate). To ensure the
authenticity of the certificate owner’s identity, certificates are digitally signed by
a trusted third party called certificate authority (CA). The binding between the
public key and the owner identity can be broken if the associated private key is
compromised e.g. stolen or lost. In such circumstances, the certificate needs to
be revoked and this revocation information made available to certificate verifiers.
Providing timely and reliable certificate status information is expensive. Even
though certificate status schemes have been proposed in the past, the most
popular schemes are periodically issued certificate revocation lists (CRLs) [1]
and IETF’s online certificate status protocol (OCSP) [2].

To compare certificate status schemes, we use the following performance met-
rics 1) Network costs: bandwidth, total certificate status data downloaded and
peak request rates 2) Computational costs and 3) Operational costs: server se-
curity and replication. Section 2 discusses popular CRL schemes. In section 3,
we present our augmented certificate revocation list (ACRL), a simple yet clever
extension to the delta CRL. ACRLs contain revocation updates only and certifi-
cate verifiers (henceforth referred to as clients) construct complete CRLs locally.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 87–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

88 A. Lakshminarayanan and T.L. Lim

These locally constructed complete CRLs are identical to complete CRLs is-
sued by the CRL issuer. So clients do not need to download complete CRLs.
Using our PKI model, we show that ACRLs are significantly superior to any
existing CRL scheme. We also present our delta ACRL scheme and show that
it can provide efficient online certificate status. In section 4, we show that our
ACRL scheme has significant advantages over OCSP. ACRLs are delta CRLs
with X.509 CRL extensions - so using ACRLs, existing CRL based schemes can
be easily upgraded to provide online certificate status.

2 Certificate Revocation Lists

A complete CRL is a time-stamped digitally signed list of serial numbers (or other
certificate identifiers) of un-expired certificates that have been revoked by the re-
vocation authority (henceforth referred to as the CRL issuer). CRLs (in this paper,
CRL means X.509 version 2 CRL) are updated and issued at regular intervals even
if the revocation list has not changed. CRLs can be distributed using a variety of
protocols, e.g. LDAP, HTTP and FTP [1]. Revoked certificates remain in the CRL
list until they expire. The key elements of a CRL is shown in Fig.1.

CRL Header (approx. 50 bytes)
• Issuer’s name: 32 bytes (if X.500 name used)
• Date/time of CRL issuance (thisUpdate): 6 bytes
• Date/time of next CRL issuance (nextUpdate): 6 bytes
List of revoked certificates (9 bytes per revoked certificate)
• Serial number : 3 bytes
• Revocation date : 6 bytes
• CRL entry extensions (e.g. revocation reason)
CRL general extensions (e.g. CRL Number)
Signature of CRL issuer (RSA 1024 bit signature, approx. 130 bytes)

Fig. 1. Key elements of X.509 v2 CRL

CRLs are digitally signed, so can easily be replicated and shared. Expen-
sive trusted servers are not necessary to distribute CRLs. Since CRLs are not
generated on a per-request basis, only a few fixed number of CRLs need to be
created in any period of time making CRL generation computationally inexpen-
sive. These reasons make CRLs attractive. A trivial certificate status scheme
involves publishing complete CRLs at regular periodic intervals. However, when
PKI population is large, complete CRLs tend to become large imposing high
network costs on the CRL distribution server. Moreover, if clients have lim-
ited bandwidth capability e.g. dial-up connections, long download times can be
annoying. Factors influencing complete CRL size include PKI population, revo-
cation rate and certificate validity period, the first two factors usually beyond

Augmented Certificate Revocation Lists 89

the CRL issuer’s control. Since expired certificates can be removed from a CRL,
it is tempting to set shorter certificate validity periods to reduce complete CRL
size. But this is not preferable since frequent certificate generation and updates
leads to greater user inconveniences and higher administration costs. To allevi-
ate high CRL distribution costs - especially for large PKIs, several CRL variants
have been proposed.

Segmented CRLs. It is possible to arbitrarily divide the certificate population
into many partitions, each partition being associated with a CRL distribution
point [1]. While segmenting CRLs does not reduce peak CRL request rate, it
reduces the size of each CRL downloaded reducing peak bandwidth [3]. However,
if relying clients operate off-line, segmentation is not useful. Relying parties that
operate off-line will not know which certificates they will be validating at the
time they obtain CRLs and so need to download all segmented CRLs [3]. Even
if clients are on-line - in the worst-case - clients need to download CRLs from
all distribution points.

Over-Issued CRLs. Traditionally, a new CRL is not issued (and clients with
unexpired CRLs do not request new CRLs) until the time specified in the
nextUpdate field of the currently issued CRL has been reached. However, if
CRLs are over-issued, i.e. a new CRL is issued before the previous one expires
(before the nextUpdate time of the previous CRL has been reached), some re-
lying clients will retrieve this new CRL while others continue to use previously
issued yet valid CRL. Though Cooper showed in [3] and [4] that over-issued
CRLs are effective in reducing peak bandwidth, using over-issued CRLs results
in different clients possessing different revocation lists at the same time.

Delta CRLs. A delta CRL is a time-stamped digitally signed list containing
information of new certificate revocations that occurred since the issuance of a
prior base CRL. A base CRL is a complete CRL to which the revocation list in the
delta CRL needs to be applied to produce the latest list of revoked certificates.
A delta CRL uses its DeltaCRLIndicator extension [1] to identify the base CRL
it refers to, the base CRL identified by its CRLNumber. If clients possess secure
repositories, it is possible to completely eliminate the need to download base
CRLs because such clients can keep updating their revoked certificate lists using
just delta CRLs. This approach is not practical because secure repositories -
which also need to be maintained for long time periods - are expensive especially
on simple clients such as desktops and mobile clients.

Sliding Window Delta CRLs. Cooper [4] showed that if delta CRLs are
issued in the traditional manner, i.e. base CRLs issued at regular intervals
and delta CRLs issued regularly but more frequently, the performance gain of
using delta CRLs is not as significant as one would expect. Cooper’s sliding
window delta CRL scheme [4] uses a large window size (time interval between
delta CRL issuance and the referenced base CRL issuance) for all delta CRLs
which reduces peak bandwidth loads considerably. Clients using the sliding win-
dow CRL scheme use local repositories to update their revocation lists. These

90 A. Lakshminarayanan and T.L. Lim

local repositories not only should be secure but also cannot be shared with other
relying clients.

In this paper, we use a model almost identical to Cooper’s PKI model [3]
to analyze the performance of various certificate status schemes. This model
is characteristic of large PKI populations. As in [3], we make the following as-
sumptions. Clients cache CRLs and do not download a new CRL until the cached
CRL’s nextUpdate. For analysis purposes, we assume just one CRL distribution
server. Once a certificate is revoked, its status is reflected in the CRL until the
certificate expires. A revoked certificate will remain in a CRL for approximately
half its lifetime [3].

– N = 300,000 (PKI population size)
– P = 365 days (certificate validity period)
– v = 10 certificates validated per day by each client
– rrevoke = 200 revocations per day
– rexpiry = 200 revoked certificates expire per day
– At steady state, rrevoke = rexpiry . In [3] and [4], Cooper makes the same

assumption.

Assuming that revoked certificates remain in a CRL for half their lifetime, the
size of a CRL (SCRL) is given by (1), where SH is the CRL header size (180 bytes:
50 bytes CRL header info + 130 bytes RSA 1024 bit signature) and SE the CRL
entry size (9 bytes). If T is the base CRL issuance interval and M delta CRLs
are issued every T interval, the size of the jth delta CRL (SDCRL) is given by
(2). If client validation requests arrive independent of each other, an exponential
inter-arrival probability density function can be used to derive the request rate
(R) for downloaded CRLs as given by (3) [3]. The total bandwidth is a product
of CRL size and request rate (4). CRL data downloaded (CRLDataT) during
one CRL update interval T is given by (5). Table 1 shows the performance of
different CRL schemes under our PKI model.

SCRL = SH + 0.5SErrevokeP . (1)

SDCRL(j, T) = SH + SE(jT/M)rrevoke , j = 1 to M . (2)

R(t) = Nve−vt . (3)

TBW (t) = SCRLR(t) . (4)

CRLDataT (T) =
∫ T

0
SCRLR(t)dt = SCRLN(1− e−vT) . (5)

3 Augmented Certificate Revocation Lists (ACRLs)

The attributes of a periodically issued X.509 complete CRL that change with
every fresh CRL issuance are 1) date and time of CRL issuance - thisUpdate 2)
date and time of next CRL issuance - nextUpdate 3) CRL number 4) latest list

Augmented Certificate Revocation Lists 91

Table 1. Performance of different CRL schemes

CRL scheme CRL size Peak Peak Total data
(KB) request bandwidth transferred

rate (/sec) (KB/sec) (GB/day)
Base CRL only 321 34.7 11138 182.4
12 hrs interval
Segmented CRL 32.1 34.7 1113.8 182.4 (worst case)
10 segments 18.2 (best case)
12 hrs interval
Over-issued CRL 321 11.1 3562 182.4
12 hrs interval,
over-issued every 4 hrs
Traditional delta CRL base CRL: 321 base CRL: 22.9 7356 121.8
base interval: 12 hrs delta CRL: 0.25 to delta CRL: 34.7
delta interval: 1 hr 1.05
Sliding window delta CRL base CRL: 321 base CRL: 0.019 58.1 3.9
base interval: 12 hrs delta CRL: 1.5 delta CRL: 34.7
delta interval: 1 hr
window size: 18 hrs
Sliding window delta CRL base CRL: 321 base CRL: 0.019 58.1 4.8
base interval: 12 hrs delta CRL: 1.5 delta CRL: 34.7
delta interval: 1 min
window size: 18 hrs

of revoked certificates and 5) signature over CRL contents. Changes in the latest
list of revoked certificates include new revocations reported between issuance of
previous complete CRL and the freshly issued complete CRL as well as deletions
of revoked expired certificates during the same time. This list can be ordered
(e.g. certificate serial numbers in ascending order) using the ordered list CRL
extension [1]. To construct ACRLs, we follow certain rules.

– The list of revoked certificates in a CRL is ordered
– CRL issuer name and CRL update intervals are publicly known attributes
– When a delta CRL is issued, a complete CRL is also issued at the same time.

This complete CRL can serve as a base CRL for delta CRLs issued later
– All CRLs have CRL numbers. The CRLNumber (and thisUpdate field) of

the base CRL and delta CRL issued at the same time is same (since CRL
update intervals are publicly known, the nextUpdate attribute of CRLs can
be easily derived)

– CRLs expire when the CRL issuer’s signing key expires

An augmented CRL (ACRL) is a delta CRL that carries the CRL issuer’s
digital signature over the base CRL (base CRL issued at the same time as the
ACRL) in an additional CRL general extension (this CRL general extension
henceforth referred to as signature bytes extension). Fig.2 shows the ACRL is-
suance time-line. The data structures of X.509 Base and ACRLs are very similar,
so a client with the latest ACRL (and the previous base CRL this ACRL refers
to) possesses all key attributes of the latest base CRL. The client obtains the
CRLNumber, thisUpdate and nextUpdate fields from the latest ACRL. The re-
voked certificates list contained in the latest base CRL is a union of two lists
- the list contained in the latest ACRL and the revocation list of the previous
base CRL (which the latest ACRL references). Since an ACRL carries the sig-
nature bytes of the base CRL (issued at the same time) in its signature bytes

92 A. Lakshminarayanan and T.L. Lim

CRL general extension, a client can construct locally the latest base CRL using
just the latest ACRL and the previous base CRL. Similarly, if the client does
not possess the previous base CRL (or any prior base CRL), it can download
the previous ACRL (or prior ACRLs) to construct the previous base CRL (or
any prior base CRL). Hence base CRLs can be constructed with just ACRLs
without any need to download large base CRLs (a client needs to download one
base CRL though, the very first time it issues a CRL request. Thereafter, it can
locally construct base CRLs using just ACRLs).

Fig. 2. ACRL issuance timeline

3.1 Handling Expired Certificates

A CRL revocation list contains the serial numbers of un-expired revoked certifi-
cates. In earlier CRL schemes, the CRL issuer regularly deletes expired certifi-
cate entries from base CRLs. With ACRLs, how do clients know which revoked
certificates have expired? We use a X.509 CRL general extension (henceforth
referred to as expired revoked certificate extension) to remove expired revoked
certificates. This extension contains the serial numbers of revoked certificates
that have expired since the issuance of the previous ACRL. Assuming that the
certificate serial number is 3 bytes, the size of an ACRL is given by (6) where
SAH is the ACRL’s header size, SE size of a CRL entry, SAE size of a ACRL
entry and T the ACRL issuance interval (In our model rrevoke = rexpiry , so
SAE = SE +3. SAH is 310 (= 180 + 130) bytes, approx. 130 bytes for RSA 1024
bit signature).

3.2 Constructing Base CRLs Locally

Let T0 be current time and BaseCRLj and ACRLj be the jth base CRL
and ACRL respectively, both issued at time Tj , T being the ACRL update
interval. BaseCRL0 and ACRL0 are the latest base CRL and ACRL respec-
tively, both issued at time T0. To construct BaseCRL0 with ACRL0, a client
needs BaseCRL−1. If the client doesn’t possess BaseCRL−1 but possesses
BaseCRL−2, the client downloads ACRL−1, constructs BaseCRL−1’s revo-
cation list and then BaseCRL0. If a client possesses a base CRL (BaseCRL−i)
issued i ACRL issuance time intervals earlier, the client needs all ACRLs -
ACRL−i+1 to ACRL0 (which we shall refer to as intermediate ACRLs) to con-
struct BaseCRL0. When a client constructs the latest base CRL locally, the

Augmented Certificate Revocation Lists 93

latest base CRL’s signature bytes is sufficient to guarantee the integrity of the
locally constructed base CRL. The client does not need the CRL issuer’s digital
signature on each intermediate ACRL. A client just needs to download the latest
base CRL’s signature bytes (BaseCRLSB) and the list of revoked certificates (and
revoked expired certificates) of each intermediate ACRL to construct the latest
base CRL. The data structure that contains just the list of revoked certificates
(and the list of revoked expired certificates) of an ACRL is called the augmented
CRL RevocationInfo (ACRLRI). The size of an ACRLRI is given by (7). If a
client suspects that any ACRL RevocationInfo has been altered, it can request
ACRLs in their entirety and verify the CRL Issuer’s digital signature over each
such ACRL. The base CRL signature byte size (SSB) is approximately 130 bytes
(RSA 1024 bit signature).

In our scheme, the CRL number (CRLNumber) is a function of the time interval
the ACRL is issued. If t is time and T the ACRL update issuance interval, the
CRLNumber is given by (8) where K and C are publicly known constants.
The CRL issuer constructs a fresh ACRL at the start of every ACRL update
interval and uploads it to the ACRL distribution server. This server extracts the
associated ACRL RevocationInfo and base CRL’s signature bytes from the
ACRL and makes them available to clients.

SACRL(T) = SAH + (SErrevoke + 3rexpiry)T = SAH + SAE rrevokeT . (6)

SACRLRI(T) = SAE rrevokeT . (7)

CRLNumber(t, T) = K �t/T �+ C . (8)

3.3 Performance Analysis

In the time interval between T0 and T1, any client requesting certificate status
will need BaseCRLSB0 and ACRLRI0. Assuming that CRL requests arrive
independent of each other, the request rate (RA0) for these two data structures
is given by (9). The same clients if they do not possess the revocation information
present in ACRL−1 (or ACRL−i), will request for ACRLRI−1 (or ACRLRI−i).
The request rate for the ACRL RevocationInfo issued i ACRL intervals earlier
is given by (10). Assuming that the first ACRL was issued q intervals earlier
and at steady-state q is a very large number, the combined request rate and
peak combined request rate for ACRL data structures is given by (11) and
(12) respectively. The total bandwidth (TBW) is a summation of the bandwidth
contributions from all downloaded ACRL data structures (13), and the peak
bandwidth (PBW) is given by (14). The total data downloaded from the CRL
distribution server in one ACRL update interval T is given in (15). As we reduce
the ACRL update interval to shorter values, the peak bandwidth and total ACRL
data downloaded in one day approach values given by (16) and (17) respectively.

RA0(t, T) = Nve−vt (0 ≤ t < T) . (9)

RA−i(t, T) = Nve−v(t+iT) (0 ≤ t < T) . (10)

94 A. Lakshminarayanan and T.L. Lim

Combined Request Rate, RA(t) = lim
q→∞

q−1∑
i=0

RA−i(t, T)

= Nve−vt/(1− e−vT) . (11)

Peak Combined Request Rate, PRA(T) = Nv/(1− e−vT) . (12)

TBW (t, T) = lim
q→∞

q−1∑
i=0

(Size of ACRLRI−i ×RA−i(t, T)) + SSBRA0(t, T)

= Nve−vt(SSB + SAErrevokeT/(1− e−vT)) . (13)

PBW (T) = Nv(SSB + SAErrevokeT/(1− e−vT)) . (14)

ACRLDataT (T) = lim
q→∞

q−1∑
i=0

(No. of Reqs. for ACRLRI−i × Size of ACRLRI−i)

= N
(
SSB(1 − e−vT) + SAErrevokeT

)
. (15)

PBW (T → 0) = N(SSBv + SAErrevoke) . (16)

ACRLData24Hours(T → 0) = 86400N(SSBv + SAErrevoke) . (17)

Table 2 shows the performance of the ACRL scheme for different ACRL up-
date intervals for our PKI model. Comparing Tables 1 and 2, it is clear that the
ACRL scheme performs significantly better than any other existing CRL scheme
including Cooper’s sliding window scheme [4], with respect to peak bandwidth
and total CRL data downloaded. Complete CRLs provide a full list of all revoked
certificates every time they are downloaded. This is highly inefficient since clients
download revocation information they already possess. Using ACRLs, which con-
tain only revocation updates, clients do not need to download complete CRLs
making ACRL performance significantly better.

3.4 Delta ACRLs

Even though the peak bandwidth reduces as we reduce the ACRL update in-
terval, the peak request rate increases exponentially making very short ACRL
update intervals expensive. For our PKI model, if ACRL update interval is 1
minute, the peak request rate is around 5000/sec, a high value. To manage high
requests rates, we use delta ACRLs. A delta ACRL contains a digitally signed
revocation list containing information about new revocations that occurred since
the issuance of the ACRL that the delta ACRL refers to (see Fig.3). The role
of a delta ACRL is very similar to that of a traditional delta CRL. Every time
a delta ACRL is issued, the CRL issuer also issues a complete CRL. The signa-
ture bytes of the complete CRL is included in the delta ACRL using its signa-
ture bytes extension. Using the delta ACRL and earlier issued ACRLs, a client

Augmented Certificate Revocation Lists 95

Table 2. ACRL Performance. As the ACRL update interval T → 0, the combined
peak bandwidth → 12.5 KB/sec and the total data transferred → 1.03 GB/day.

ACRL Size of Size of Peak Combined peak Total data
issuance ACRL ACRLRI request bandwidth transferred

interval (min) (bytes) (bytes) rate (/sec) (KB/sec) (GB/day)
60 410.0 100.0 101.9 14.4 0.97
30 360.0 50.0 184.6 13.4 1.00
15 335.0 25.0 351.0 13.0 1.02
10 326.7 16.67 517.5 12.8 1.02
5 318.3 8.33 1017.4 12.7 1.03
1 311.7 1.67 5017.1 12.6 1.03

Fig. 3. Delta ACRL issuance timeline

can construct the complete CRL issued at the same time as the delta ACRL.
Unlike ACRLs, delta ACRLs do not carry CRLNumber or a list of revoked ex-
pired certificates. As with ACRLs, a client need not download a delta ACRL in
its entirety. It just needs the revocation list present in the latest delta ACRL
(delta ACRL RevocationInfo), the signature bytes of the complete CRL (is-
sued along with the latest delta ACRL) and the ACRL RevocationInfo of all
intermediate ACRLs. Using these attributes, the client can construct the latest
complete CRL.

Let M − 1 delta ACRLs be issued in one ACRL issuance interval (T), one
every T/M interval. Let T0 be current time, ACRL0 be the most recent ACRL
issued at time T0. RDAj is the request rate for jth delta ACRL and RA−i the re-
quest rate for the ACRL RevocationInfo (ACRLRI−i) issued i ACRL intervals
earlier. The size of the jth delta ACRL (SDACRL) is given by (18). The request
rate for the jth delta ACRLRI is given by (19). Clients that have not obtained
the most recent ACRL RevocationInfo (ACRLRI0) and any earlier ACRL
RevocationInfo (ACRLRI−i) request them, the request rate for ACRLRI−i

issued i ACRL intervals earlier given by (20). Assuming that the first ACRL
was issued q intervals earlier and at steady-state q is a very large number, the
combined request rate and combined peak request rate for all ACRL (includ-
ing delta ACRL) data structures are given by (21) and (22) respectively. The
total bandwidth (TBW) is a summation of the bandwidth contributions from
all downloaded ACRL data structures (23). For our PKI model, if ACRLs are
issued every ten minutes, the peak bandwidth (PBW) occurs when the first delta
ACRL is issued (24). The total data downloaded in one ACRL update interval

96 A. Lakshminarayanan and T.L. Lim

is given by (25). As we reduce the ACRL update interval to shorter values, the
peak bandwidth and total ACRL data downloaded (in one day) are still given
by (16) and (17).

The delta ACRL performance scheme for different delta ACRL issuance in-
tervals is shown in Table 3 (as applied to our PKI model with ACRLs issued
every 10 minutes). Using delta ACRLs, we can issue ACRLs at intervals which
does not overload the ACRL distribution server with high request rates, e.g.
ACRLs can be issued every 10 minutes (the peak request rate for such issuance
being around 520/sec, which can be easily managed by off-the-shelf servers). So
delta ACRLs can be issued very frequently e.g. 1 minute, 30 seconds providing
efficient online certificate status without imposing high network costs.

SDACRL(j, T) = SAH + SE(jT/M)rrevoke , j = 1 to M − 1 . (18)

RDAj(t, T) = Nve−vt (0 ≤ t < T/M) . (19)

RA−i(j, t, T) = Nve−v(t+jT/M+iT) (0 ≤ t < T/M) . (20)

Combined Request Rate, RA(t, T) = RDAj(t, T) + lim
q→∞

q−1∑
i=0

RA−i(j, t, T)

=Nve−vt+Nve−v(t+jT/M)/(1− e−vT).

Peak Combined Request Rate, PRA(T) = Nv +Nve−v(T/M)/(1− e−vT) . (22)

TBW (j, t, T) = (SSB + SE(jT/M)rrevoke)RDAj(t)

+ lim
q→∞

q−1∑
i=0

(Size of ACRLRI−i)RA−i(j, t, T)

= (SSB + SE(jT/M)rrevoke)Nve−vt

+Nve−v(t+jT/M)SAErrevokeT/(1− e−vT) . (23)

PBW (T) = Nv
(
SSB + SE(T/M)rrevoke + SAErrevokeTe−vT/M/(1− e−vT)

)
.

(24)

ACRLDataT (T)

= lim
q→∞

M−1∑
j=1

q−1∑
i=0

(
(Size of DCRLRIj + SSB) × No. of Reqs. for DCRLRIj

+ Size of ACRLRI−i × No. of Reqs. for ACRLRI−i,j

)
= NSAE rrevokeT + N(1 − e−vT/M) (MSSB + 0.5SErrevokeT (M − 1)) . (25)

Compared to traditional CRL schemes, ACRLs have two minor disadvantages.
Firstly, the ACRL distribution server needs to store all issued ACRLs. In our
PKI model with ACRLs issued every 10 minutes, and each ACRL approximately
325 bytes, 16.3 Mbytes of ACRLs need to be stored every year. Since computer

(21)

Augmented Certificate Revocation Lists 97

Table 3. Delta ACRL performance for ACRLs issued every 10 minutes. As the ACRL
update interval T → 0, the combined peak bandwidth → 12.8KB/sec and the total
data transferred → 1.05 GB/day.

Delta ACRL Combined peak Combined peak Total data
issuance interval request rate bandwidth transferred

(seconds) (/sec) (KB/sec) (GB/day)
300 534.6 12.8 1.04
120 545.1 12.8 1.05
60 548.7 12.8 1.05
30 550.5 12.8 1.05

memory is extremely cheap, this cost is negligible. Secondly, the ACRL peak
request rate is considerably higher than any other CRL scheme especially at
short ACRL update intervals. But as shown earlier in this section, ACRL request
rates can be reduced to manageable levels using delta ACRLs.

4 ACRL vs. OCSP

Currently the most popular online certificate status protocol is OCSP [2]. A
client issues a status request to an OCSP responder and suspends acceptance of
the certificate until the responder provides a definitive response. The primary
objective of OCSP is to provide online certificate status at relatively (compared
to traditional CRL schemes) low network loads. In this section, we show that
our ACRL scheme has many advantages over OCSP. To compare, we assume
that fresh certificate validation information is required every minute. So delta
ACRLs are issued every minute and ACRLs every 10 minutes resulting in 12.8
KB/sec peak bandwidth and 1.05 GB/day of ACRLs downloaded. Assuming
that certificate validation requests arrive independent of each other, the sus-
tained OCSP request rate is Nv (for our PKI model, this is 34.7 requests/sec).
The size of a typical OCSP response is 250 bytes (RSA 1024bit) resulting in
sustained bandwidth of 8.5 KB/sec. The total OCSP response data downloaded
per day is 0.7 GB/day. These values are just marginally better than our ACRL
scheme. With ACRL caching, ACRLs might even perform better than OCSP.
So the general opinion that only OCSP has low bandwidth costs is no longer
valid.

OCSP has high operational costs. Firstly, since every OCSP response is dig-
itally signed, the online OCSP responder is a trusted server. Operating trusted
high availability online servers is expensive. Moreover, replicating OCSP respon-
ders means replicating signing keys: this increases the vulnerability of signing
keys. Secondly, as each OCSP response is digitally signed, OCSP responders are
particularly vulnerable to denial of service (DOS) attacks. Thirdly, the OCSP
signer should either be the CA, a trusted responder or a CA designated responder
[2]. If a signing key other than the CA’s signing key is used, additional mecha-
nisms are needed to determine the OCSP signing key’s validity status. Lastly,
OCSP has high computational demands since every OCSP response is digitally

98 A. Lakshminarayanan and T.L. Lim

signed. On the other hand, ACRLs can be created on offline (and more secure)
computers and uploaded onto cheap online un-trusted servers making ACRL
distribution inexpensive and less vulnerable to DOS attacks. Since ACRLs are
not created on a per-request basis, the number of digital signatures created is
much lesser compared to OCSP, making ACRLs computationally light-weight.

Complete CRLs constructed from ACRLs are identical to complete CRLs
issued by the CRL issuer. The integrity of locally constructed complete CRLs is
protected by the CRL issuer’s signature, so CRLs can be cached, replicated and
shared with any other entity. Moreover, unlike OCSP which provides certificate
status on a per-request basis, complete CRLs (constructed using ACRLs) contain
a complete list of all revoked un-expired certificates. Since ACRLs are delta CRLs
with extensions, our scheme can be easily integrated into existing CRL based
schemes unlike OCSP.

5 Conclusion

We have presented a simple yet highly effective ACRL based certificate sta-
tus scheme applicable even to large PKIs. Clients have no need to download
complete CRLs, clients download much smaller ACRLs and construct complete
CRLs locally resulting in significantly reduced network costs. Unlike earlier CRL
schemes, clients never download revocation information they already possess -
ACRLs contain only revocation updates. Using our PKI model, we show that
ACRLs significantly out-perform all existing CRL schemes. Contrary to exist-
ing opinion, we have presented an online certificate status scheme using ACRLs
which has significant advantages over OCSP [2]. A major practical advantage of
our ACRL scheme is its backward compatibility: ACRLs are delta CRLs with
X.509 extensions and hence can easily be integrated into existing X.509 based
certificate schemes.

References

1. ITU-T. “Information technology - Open systems interconnection - The directory:
Public-key and attribute certificate frameworks”, ITU-T Recommendation X.509
(V4), 2000.

2. M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams, “X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol - OCSP”, RFC 2560, June
1999.

3. D. A. Cooper, “A model of certificate revocation”, Proceedings of the
15th annual computer security applications conference, December 1999.
http://csrc.nist.gov/pki/PKImodels/.

4. D. A. Cooper, “A more efficient use of delta CRLs”, Proceedings of the IEEE sym-
posium on security and privacy, May 2000. http://csrc.nist.gov/pki/PKImodels/.

Online/Offline Signatures and Multisignatures
for AODV and DSR Routing Security

Shidi Xu, Yi Mu, and Willy Susilo

School of Information Technology and Computer Science
University of Wollongong, Australia
{sdx86, wsusilo, ymu}@uow.edu.au

Abstract. Efficient authentication is one of important security require-
ments in mobile ad hoc network (MANET) routing systems. However,
the digital signature enabled approach is too costly for MANET due to
the computation overheads. In addition, due to the diversity of differ-
ent routing protocols, a universal scheme that suits all MANET rout-
ing systems does not exist in the literature. Specifically, an authenti-
cation scheme for the AODV routing is believed to be not suitable to
the DSR routing. In this paper, we first introduce an efficient ID-based
online/offline scheme for authentication in AODV and then provide a for-
mal transformation to convert the scheme to an ID-based online/offline
multisignature scheme. Our scheme is unique, in the sense that a single
ID-based online/offline signature scheme can be applied to both AODV
and DSR routing protocols.

Keywords:MANET, Routing, Online/offline, signature, Multisignature.

1 Introduction

The security technology deployed in the existing MANET is very weak [9]. Sev-
eral well-known MANET routing protocols such as DSR [6] and AODV [10]
were designed without a security consideration. Consequently, MANET rout-
ing systems face a number of security threats, from basic spoofing attacks to
more complex rushing attacks. Providing full-scale security to MANET with
a low computational overhead and bandwidth consumption becomes an open
problem.

The security deployment to MANET is stunted by cryptographic techniques.
The nature of the network requires low computational overheads, whereas ex-
isting authentication methods, such as digital signatures, are too expensive to
apply. In [14], an ID-based online/offline signature scheme was proposed to pro-
vide a solution to this problem. However, this scheme is not universally applicable
to all the MANET routing protocols in the sense of achieving the best efficiency.
We found that the online/offline signature scheme for AODV routing protocol
does not help for securing DSR, because of their difference in packet processing
operations. To date, constructing an authentication scheme that is applicable
for both AODV and DSR is remaining an interesting open problem.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 99–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 S. Xu, Y. Mu, and W. Susilo

Our Contribution. We are motivated to provide a universal authentication
scheme for MANET routing protocols. We firstly introduce an identity-based
(or ID-based, for short) online/offline signature scheme suitable for AODV pro-
tocol and then transform this scheme to an ID-based multisignature scheme
which is suitable for the DSR protocol. We give the generic construction and
the concrete constructions, and analyse the security and efficiency of the result-
ing scheme. Since the online/offline signature based authentication scheme for
AODV protocol has been discussed in [14], in this paper, we only concentrate
on providing an applicable authentication scheme for DSR protocol using above
transformation.

Organisation of the paper. The rest of the paper is organised as follow. In
section 2, we define the notion of the ID-based online/offline signature schemes
and the ID-based multisignature scheme. Then we give the generic construction
from the ID-based online/offline signature scheme to the ID-based multisignature
scheme. In section 3, we present our concrete implementation of these signature
schemes. We also prove the security and analyse the efficiency of the schemes. In
section 4, we introduce the basics of DSR protocol and describe the application.
Finally, we conclude the paper.

2 Generic Constructions

In this section, we review the definition of the ID-based online/offline signature
scheme and accountable subgroup multisignature scheme and their security re-
quirements. We also provide the generic construction of ID-based multisignature
scheme based on the ID-based online/offline signature scheme.

2.1 ID-Based Online/Offline Signature Scheme

Definition 1. ID-based online/offline digital signature scheme DS is comprised
of five polynomial time algorithms: IO ParamGen, IO Ext, IO OffSign, IO OnSign,
and IO Verify.

IO ParamGen. The master key and parameter generation algorithm, is a prob-
abilistic algorithm that on input a security parameter 1k, outputs a master
key IOSK∗ and a parameter list params.

IO Ext. The signing key issuing algorithm, is a deterministic algorithm that on
input a user’s identity id and a master key IOSK∗, returns a pair of match-
ing public and secret keys (iopkid, ioskid).

IO OffSign. The offline signing algorithm, is a probabilistic algorithm that on
input a parameter list params and a signing key ioskid, outputs an offline
signature S.

IO OnSign. The online signing algorithm, is a probabilistic algorithm that on input
a message m and an offline signature S, returns an online signature σ.

IO Verify. The verification algorithm, is a deterministic algorithm that on input a
message m, a user’s identity id, a parameter list params, an offline signature
S, and an online signature σ, returns 1 (accept) or 0 (reject).

Online/Offline Signatures and Multisignatures 101

The security of the online/offline signature can be defined as followed.

Definition 2. An identity based online/offline signature is said to be existen-
tially unforgeable under chosen-message attacks if no probabilistic polynomial
time adversary has a non-negligible advantage in this game:

1. The challenger A runs the setup algorithm to generate the system parameters
and sends them to the adversary F .

2. The adversary F performs the following queries:
– Key Extraction Query OIOS

Ext : F produces an identity ID and receives
corresponding secret key DID.

– Offline Signing Query OIOS
OffSign: F produces an identity ID, and re-

ceives an offline signature generated by offline signing oracle using the
secret key corresponding to ID.

– Online Signing Query OIOS
OnSign: F produces a message m, and re-

ceives a online signature generated by online signing oracle. The online
signature is corresponding to the offline signature.

3. After a polynomial number of queries, F produces a tuple (ID∗, m∗, S∗, σ∗)
of identity ID∗, whose secret key was never asked in key extraction query.
Besides, the pair (ID∗, m∗) was never asked in online/offline signing queries.

The success probability of winning the above game is defined by
SuccEF−IOS−CMA

A (). An online/offline signature scheme is secure if the suc-
cess probability of above attack is negligible.

SuccEF−IOS−CMA
A () ≤ ε,

where ε is negligible.

2.2 ID-Based Multisignature Scheme

Multisignature schemes, since firstly introduced by Itakura and Nakamura [5],
have been extensively studied in the literature. However the first formal definition
of multisignature scheme was provided by Micali et al. [8]. Their scheme, named
Accountable Subgroup Multisignatures (ASM), enables any subgroup GSub of
a given group G of potential signers, to sign a message efficiently, so that the
signature provably reveals the identity of the signers in GSub to any verifier.

According to Micali et al, we extend the definition of ASM to ID-based ASM.

Definition 3. An ID-based multisignature consists of four components. We as-
sume that the group GSub consists of L signers.

AM ParamGen. The master key and parameter generation algorithm, is a prob-
abilistic algorithm that on input a security parameter 1k, outputs a master
key AMSK∗ and a parameter list params.

AM KeyGen. The signing key issuing algorithm, is a probabilistic algorithm that
on input a subgroup GSub, a user’s identity id and a master key AMSK∗,
returns a pair of matching public and secret keys (ampkid, amskid) for each
user in the group.

102 S. Xu, Y. Mu, and W. Susilo

AM Signing. The signing algorithm, is a probabilistic algorithm that on input the
following from each signer:
1. a description of subgroup GSub

2. the public key ampki of each member in GSub

3. the message m

4. the signer’s secret key amski

produces a signature σ which is generated jointly by all the members of GSub.
AM Verifying. The verification algorithm, is a deterministic algorithm, on input

the following
1. a description of subgroup GSub

2. the public key ampki of each member in GSub

3. the message m

4. the signature σ

outputs 1 (accept) or 0 (reject).

The security definition of ID-based ASM can be adapted from the ID-based
online/offline signature scheme.

Definition 4. An ID-based multisignature (IBMS) of subgroup S ⊆ G is said
to be existentially unforgeable under chosen-message attacks if no probabilistic
polynomial time adversary has a non-negligible advantage in producing a tuple
(σ, m, S) such that:

1. The challenger A runs the setup algorithm to generate the system parameters
and sends them to the adversary F .

2. The adversary F performs the following queries:
– Key Generation Query OAM

KGN: F produces an identity ID of the
uncorrupted player in S and receives corresponding secret key DID and
its temporary signing commitment S for current signing session.

– Signing Query OAM
Sign: F produces a message m, and receives a sig-

nature generated by signing oracle using the secret key corresponding to
ID.

3. After a polynomial number of queries, F produces a tuple (m∗, σ∗, S∗) such
that
– σ∗ is a valid signature on the message m by the subgroup S of players.
– there exists an uncorrupted player P ∗ ∈ S who has never been asked by
F to execute the signing query on m and S.

The success probability of winning the above game is defined by
SuccEF−IMS−CMA

A (). An ID based multisignature scheme is secure if the suc-
cess probability of the above attack is negligible. In other words,

SuccEF−IBMS−CMA
A () ≤ ε,

where ε is negligible.

Online/Offline Signatures and Multisignatures 103

2.3 Generic Construction of IBSM from IOS

We observe the similarity between online/offline signature and multisignature: the
offline signing phase does not involve any message in computation, therefore the
resulting offline signature togetherwith the signer’s identity canbe used as the pub-
lic key for verifying online signature, which in turn can be treated as the signature
in multisignature scheme. We provide the generic construction of multisignature
scheme based on identity based online/offline signature scheme (Figure 1).

AM ParamGen (1k)
(IOSK∗, params) ← IO ParamGen(1k)
AMSK∗ ← IOSK∗

return (AMSK∗, params)
AM KeyGen (GSub, id, AMPpub)

(ioskid, iopkid) ← IO Ext(id, AMSK∗, params)
amskid ← ioskid

ampkid ← iopkid return (ampkid, amskid)
AM Signing (m, GSub, amskid)

Cid ← IO OffSign(id, ioskid, params)
σid ← IO OnSign(m, id, S, params, amskid)
σ̃ ← ΣGSub(σid)
C̃ ← ΣGSub(Cid)
return (σ̃, C̃)

AM Verifying (m, GSub, σ̃, C̃)
b ← IO Verify(m, GSub, params, σ̃, C̃)
return b

Fig. 1. Generic Construction from IOS to IBMS

Theorem 1. The ID-based multisignature scheme is secure only if the corre-
sponding ID-based online/offline signature scheme is existentially unforgeable
against chosen-message attacks.

Note: Due to the lack of space, we omit the security proof, but we refer the
reader to the full version of this paper [13].

3 The Concrete Schemes

In this section, we provide a concrete ID-based online/offline signature scheme,
and transform this scheme into the multisignature scheme using the above gen-
eral construction. We also prove the security of these two signature schemes.

4 Cryptographic Tools: Bilinear Pairings

Let G1 be a cyclic additive group generated by P , with a prime order q, and G2 be
a cyclic multiplicative group with the same prime order p. Let e : G1×G1 → G2
be a map with with the following properties:

104 S. Xu, Y. Mu, and W. Susilo

1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1, a, b ∈ Z∗
q ;

2. Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q) �= 1;
3. Computability: There is an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1;

We call such bilinear map as an admissible bilinear pairing. The problem con-
sidered in the additive group G1 is:

- Computational Diffie-Hellman Problem (CDHP): For a, b ∈ Z∗
q , given

P, aP, bP compute abP .

Above system parameters can be obtain through running the GDH Param-
eter Generator [4] IG which takes a security parameter k ∈ Z+ as input,
runs in polynomial time in k, and outputs a prime number q, the description of
two groups G1, G2 of order q, and the description of an admissible bilinear map
e : G1 ×G1 → G2.

Definition 5. The advantage of an algorithm A in solving CDHP in group
G is

AdvCDH
A = Pr[A(P, aP, bP) = abP : a, b

R← Z
∗
q]

where the probability is over the choice of a and b, and the coin tosses of A. We
say that an algorithm A(t, ε)-breaks CDHP in G if A runs in time at most t,
and AdvCDH

A > ε.

4.1 Online/Offline Signature Scheme

Our scheme involves four algorithms: System Setup, ID Extract, Offline Signing,
Online Signing and Verify.

Setup. Given G1 and its generator P , pick a random s ∈ Z∗
q , and set Ppub = sP .

Choose a cryptographic hash function H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ →
Z∗

q . The system parameters are (P, Ppub, H0, H1). The master key is s. H0
and H1 behave as random oracles.

Extract. Given an identity ID, the algorithm computes DID = sH0(ID) and
outputs it as the private key related to ID corresponding to QID = H0(ID).

OffSign. Given a secret key DID, pick random r, x ∈ Z
∗
q , output the offline

signature pair (S, R), where S = DID − xPpub, R = rP .
OnSign. Given a message m and offline signature S, compute the online signature

as σ = H1(m)r + x. The resulting signature is a triple (S, σ, R).
Verify. Given a signature tuple (S, σ, R) of a message m for an identity ID, check

whether (Ppub, S +σPpub, P, QID +H1(m)R) is a valid Diffie-Hellman tuple.

Signing algorithms satisfy the requirement of online/offline signature as the ac-
tual message signing takes only one hash. The size of our signature is 2 log2 ρ +
log2 q, in which ρ stands for the safe length of GDH group G1.

Online/Offline Signatures and Multisignatures 105

4.2 Security Analysis

To prove our scheme is existentially unforgeable under adaptive chosen-message
attack, we use Libert and Quisquater’s proof technique [7].

Theorem 2. In the random oracle model, if a probabilistic polynomial time
forger F has an advantage ε in forging an online/offline signature with run-
ning time t and asking H0,H1,key extraction oracle and online/offline signing
oracle qH0

, qH1
, qe and qs times respectively, then the CDH problem can be solved

with an advantage

ε′ > (
1
qe
· (1 − 1

qe + 1
)qe+1)(ε− qS(qH1

+ qS) + 1
2k

)

with running time t′ < t + (qH0
+ qe + 2qs)tm, where tm is the time to compute

a scalar multiplication in G1.

Note: Due to the lack of space, we omit the security proof, but we refer the
reader to the full version of this paper [13].

4.3 ID-Based Multisignature Scheme

We adopt our ID-based online/offline signature scheme to the ID-based mul-
tisignature scheme according to our generic construction. The resulting scheme
consists of four algorithms: system setup, key generation, signing and verifying.

Setup. Given G1 and its generator P , pick a random s ∈ Z∗
q , and set Ppub = sP .

Choose a cryptographic hash function H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ →
Z∗

q . The system parameters are (P, Ppub, H0, H1). The master key is s. H0
and H1 behave as random oracles

KeyGen. For each player Pi (1 ≤ i ≤ L) in G, given an identity IDi, the
algorithm computes DIDi = sH0(IDi) and outputs it as the private key
related to IDi corresponding to Qi = H0(IDi).

Signing. Each player Pi (1 ≤ i ≤ L) in G pre-computes the following:
1. randomly choose xi, ri ∈ Z

∗
q

2. compute the signing commitment for the current session as Ci = Di −
xiPpub, Ri = riP , and Ui = xiP

3. broadcast (Ci, Ri, Ui) to all the players.
Suppose the players in a subgroup S = Pi1 , ..., Pil

wish to jointly sign a
message m. Upon receiving (Ci, Ri) from all the other players, each of them
does the following:

1. verify the received public key by checking the equality of the equation:

e(Ci, P) = e(Qi − UiP, Ppub)

2. if the equality holds, compute C̃ =
∑l

j=1 Cj =
∑l

i=1 Dj −
∑l

j=1 xjPpub

3. compute R̃ =
∑l

j=1 Rj =
∑l

j=1 rjP

106 S. Xu, Y. Mu, and W. Susilo

4. compute the signature as
(a) each signer computes the signature σj = H1(m)rj + xj and broad-

casts to all the signer Pij (1 ≤ j ≤ l)
(b) upon receiving all the σj , each signer computes σ̃ =

∑l
j=1 σj =

H1(m)
∑l

j=1 rj +
∑l

j=1 xj .
The resulting multisignature for messagem is (σ̃, C̃, R̃). To further reduce
the signature size, we combine σ̃ and C̃ to obtain a new parameter Ṽ by

Ṽ = C̃ + σ̃Ppub

The final signature is a pair (Ṽ , R̃).
Verifying. The multisignature can be verified by all the group members who

possess the pair (C̃, R̃). Given signature σ̃, commitment (p̃k, R̃) and message
m, check wether (Ppub, Ṽ , P,

∑l
j=1 Qj +H1(m, R̃)R̃) is a valid Diffie-Hellman

tuple.

4.4 Security Analysis

We still start from assuming the existence of a forger F and an attacker A, and
initialise the system public key as Ppub = aP . Since the target subgroup we are
supposed to attack contains one uncorrupted signer ID∗ (we obtain the secret
keys of all the other corrupted signers), A only needs to simulate Puncorrupted

during key generation and signing. A big difference to the previous proof is that
instead of letting A flip a coin to decide the corresponding identity is to be
attack or not, we calculate the probability of getting a fixed identity by using
Cha-Cheon’s ID attack [1]. This probability can be used to replace δ.

Theorem 3. In the random oracle model, if a probabilistic polynomial time
forger F has an advantage ε in forging an ASM with running time t and ask-
ing H0,H1,key extraction oracle and signing oracle qH0

, qH1
, qe and qs times

respectively, then the CDH problem can be solve with an advantage

ε′ > ((1 − 1
q
)

1
qH0

)(ε− qS(qH1
+ qS) + 1
2k

)

with running time t′ < t + (qH0
+ 4qe)tm, where tm is the time to compute a

scalar multiplication in G1.

Note: Due to the lack of space, we omit the security proof, but we refer the
reader to the full version of this paper [13].

4.5 Efficiency Comparison

To compare the efficiency, we assume the safe length of GDH group G1 is ρ
and the order of multiplicative group is q. We analyze the efficiency of signa-
ture schemes in relation to four indicators: signature size, pre-computation cost,
signing cost, verification cost and problem based. We define the pre-computation
phase to include all the operations taken irrelevant to the message to be signed.

Online/Offline Signatures and Multisignatures 107

The signing phase only contains the operation aiming at the message. The signing
cost and pre-computation cost are justified in terms of the elliptic curve scalar
multiplications (ESM), or exponentiations being used. The verification cost is
justified by counting the number of pairings being used. We also assume the
multisignature is generated by n signers.

We choose five existing ID-based multisignature schemes, in which three of
them use bilinear pairings and the other two are based on RSA. Besides our
scheme (IBMS, based on IOS), another four schemes include: SOK-IBMS
[11] proposed by Sakai et al., CZK-IBMS [3], the ID-based blind
multisignature scheme proposed by Chen et al, based on Cha-Cheon scheme
[1], WH-IBMS [12] proposed by Wu and Hsu, CLL-IBMS [2] proposed by
Chang et al.

We firstly look at the comparison between single ID-based signature schemes
in Table 1. It is obvious that our online/offline signature scheme is efficient in
online signing since no ESM needs to be performed. Two RSA based signature
schemes are efficient in signing and verification, but signature sizes are appar-
ently larger than others. The comparison of the ID-based multisignature schemes

Table 1. ID-based Signature Efficiency Comparison

Signature Size Pre-comp. Signing Cost Verification Cost Problem
SOK-IBS [11] 2 log2 ρ 1 ESM 1 ESM 2 pairings CDHP
Cha-Cheon [1] 2 log2 ρ 1 ESM 1 ESM 2 pairings CDHP
IOS 2 log2 ρ + log2 q 2 ESM 0 ESM 2 pairings CDHP
WH-IBS [12] log2 N N/A 1 expon. 2 expon. RSA
CLL-IBS [2] log2 N N/A 1 expon. 3 expon. RSA

is listed in Table 2. We can see that the Chen et al.’s scheme is very efficient
in average, requiring 2n scalar multiplications in the pre-computation phase and
the signing phase. Our scheme performs the same number of scalar multiplica-
tions (2n) in pre-computation phase. However, the actual signing phase needs
only 1 scalar multiplication. We can draw this conclusion that our ID-based
multisignature scheme preserves the advantage of its original scheme (ID-based
online/offline signature scheme), which is able to shift the computational over-
head to the pre-computation phase.

Table 2. ID-based Multisignature Efficiency Comparison

Signature Size Pre-comp. Signing Cost Verification Cost Problem
SOK-IBMS [11] (n + 1) log2 ρ n ESM Σn

i=1i ESM 3 pairings CDHP
CZK-IBMS [3] 2 log2 ρ n ESM n ESM 2 pairings CDHP
IBMS 2 log2 ρ 2n ESM 1 ESM 2 pairings CDHP
WH-IBMS [12] log2 q N/A n expon. (n + 1) expon. RSA
CLL-IBMS [2] log2 q N/A 2n expon. 3 expon. RSA

108 S. Xu, Y. Mu, and W. Susilo

5 Application to the DSR Protocol

We firstly introduce some basics of the DSR protocol and analyse its security
requirements. Then we will provide the implementation of ASM over DSR.

5.1 DSR Protocol

DSR stands for dynamic source routing protocol, presented by Johnson and
Maltz [6] in 1996. It is an on-demand routing protocol based on the concept of
source routing, which means the initiator knows the complete hop-by-hop route
to the destination. To perform DSR, each node is required to maintain a route
cache which contains the topology information of the network. The route cache
is consistently updated to reflect the current situation of the network.

DSR consists of two phases: route discovery and route maintenance. When a
node wants to send data to another node, it firstly searches its route cache to
see if there is a route to this destination. If yes, this route will be used. Oth-
erwise, this node generates a route request packet (RREQ) which consists of a
data structure called route record listing the IP addresses of all the intermediate
nodes. This RREQ will be broadcasted to neighbours. Each of the neighbouring
nodes will search its own route cache to see if there exists an active route to the
destination. If not, it appends its own IP address to route record and rebroad-
casts it to its neighbours. This process will be continued until the RREQ packet
reaches the destination. The original message is not changed during the trans-
mission (except the RREQ data length field which is a number). The resulting
route will be found in the route record.

In replying the RREQ, the destination node generates a route reply packet
(RREP) and sends it back to the initiator by two ways. It could search its route
cache, use the route already existed, or perform its own route discovery. It could
also simply reverse the sequence of hops in record list.

5.2 Installation of IBMS over DSR

We firstly define the total signers’ group to include all the mobile nodes in
MANET. The maximum size of the total group G should agree with the network
capacity. We then define the subgroup S to include the mobile nodes involved in
a routing operation. Therefore, each routing operation will accordingly form a
subgroup whose maximum size equals the maximum hop count allowed by DSR
protocol. Before a DSR based network is initialised, the total group is set as
empty G ← φ, so as to the subgroup.

To perform the ID-based authentication, we assume the existence of an offline
key generation center (KGC). KGC runs the system Setup algorithm to generate
all the parameters required. Each node, before entering the network, has to
submit its credential to KGC. The KGC will run the key generation algorithm
(KeyGen) to generate a public-secret key pair for each node. Once a node has
obtained all the necessary parameters, it can start to do all the pre-computations
according to signing algorithm, in order to achieve the best efficiency in signing.

Online/Offline Signatures and Multisignatures 109

When a RREQ is issued, the initiator runs the signing algorithm Signing to
generate a signature over all the immutable fields. The mutable fields, the RREQ
data length field and the route address field, are excluded and their values are
set to 0 during the signature generation.

The RREQ along with the signature will be broadcasted to next hop neigh-
bours. The next hop nodes will firstly run the verification algorithm Verifying to
evaluate the signature validity. To run this algorithm, the verifier firstly needs to
extract the IP addresses, which are also the public keys of previous hop nodes,
from the RREQ. Accordingly, if a malicious node deliberately removes some IP
addresses from the RREQ, the signature will not pass the verification and the
route carried by the RREQ will be considered as incorrect and rejected. There-
fore, by performing the signature verification, both the signature and the route
are authenticated.

If the signature is valid, the verifier (the next hop neighbour) will produce
a new signature over the immutable field of the original received message. This
node then appends its own IP address to the RREQ and broadcasts the RREQ
along with the signature. The neighbours of the third hop will perform the same
operations as the neighbours of the second hop did to produce signatures over the
original RREQ generated by the initiator. This process will continue until the
RREQ reaches the target node. The target node, after verifying and accepting
the RREQ, will respond with a RREP. This RREP will be transmitted back to
the initiator along the route discovered. In this condition, the signature of the
RREP will be processed the same as the RREQ.

One arguable point of using multisignature in a sequential form is that the
node is able to remove itself from the path. We argue that removing itself does
not make any sense. To remove itself, a node passes the routing packet to its
next hop neighbour without changing anything. For example, the node M re-
ceives a route packet from node A and passes the packet to node B without
adding its IP address to route record and increasing the value of data length
field. There are two situations that could happen. Firstly, if node A is in the
neighbourhood of node B and node M’s behaviour actually results in a legal
route which is one hop shorter. This route will be accepted by node B, or
generated by node B sooner or later. On the other hand, if node A is not in
the neighbourhood of node B, removing node M results in node B to receive a
packet from a distant node. Since node B constantly uses acknowledge packet
(ACK) to confirm the link, it will detect the illegality of this packet and finally
drop it.

6 Conclusion

We introduced the notion of ID-based online/offline signature scheme and ID
-based multisignature scheme. We presented a generic construction of ID-based
multisignature scheme based on ID-based online/offline signature scheme. We
also provided a concrete scheme of ID-based online/offline signature scheme and
transformed it into the ID-based multisignature scheme using our generic con-
struction. Our scheme is proved secure against existential forgery under adaptive

110 S. Xu, Y. Mu, and W. Susilo

chosen message attacks based on the random oracle model assuming that CDHP
problem is hard. We compared our scheme with other ID-based multisignature
schemes and concluded the transformation could inherit the quick signing capa-
bility from the online/offline signature scheme. We provided the application over
the DSR protocol and argue that our scheme is especially suitable for DSR where
the routing messages are modified by appending IP addresses and discussed the
implementation issue of the DSR protocol.

References

1. J. Cha and J. Cheon. An ID-based signature from gap-diffie-hellman groups. In
Proceedings of Public Key Cryptography - PKC 2003, volume 2567, pages 1–24.
Springer-Verlag, 2003.

2. C. Chang, I. Lin, and K. Lam. An ID-based multisignatures scheme without re-
blocking and predetermined signing order. In Computer Standards and Interfaces,
pages 407–413. Elsevier Science Inc., 2004.

3. X. Chen, F. Zhang, and K. Kim. ID-based multi-proxy signature and blind mul-
tisignature from bilinear pairings. In Proceedings of KIISC’2003, pages 11–19,
2003.

4. D.Boneh, B. Lynn, and H. Shacham. Short signature from the weil pairing. In
Proceedings of Asiacrypt ’01, Lecture Notes in Computer Sciences, volume 2248,
pages 514–532. MANET working group, 2001.

5. K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Research and Development, 1983.

6. D. B. Johnson, D. A. Maltz, and Y. C. Hu. The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks (DSR), 2004.

7. B. Libert and J-J. Quisquater. The exact security of an identity based signature
and its applications. In Cryptology ePrint Archive, Report 2004/102, 2004.

8. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. In Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security:
CCS ’01. Springer, 2001.

9. P. Papadimitratos and Z. J. Haas. Secure routing for mobile ad hoc networks. In
Proceedings of the SCS Communication Networks and Distributed Systems Model-
ing and Simulation Conference: CNDS 2002, 2002.

10. C. E. Perkins, E. M. Royer, and S. R. Das. Ad Hoc On-Demand Distance Vector
(AODV) Routing, 2003.

11. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
Proceedings of Symposium on cryptography and Information Security: SCIS 2000,
2000.

12. T. Wu and C. Hsu. ID-based multisignatures with distinguished signing author-
ities for sequential and broadcasting architectures. In Applied Mathematics and
Computation, pages 349–356. Elsevier Science Inc., 2002.

13. S. Xu, Y. Mu, and W. Susilo. Online/offline signatures and multisignatures for
AODV and DSR routing security full version (available upon request).

14. S. Xu, Y. Mu, and W. Susilo. An efficient authentication scheme for manet routing.
In Proceedings of the Embedded and Ubiquitous Computing: EUC 2005 Workshops.
Springer, 2004.

Towards an Invisible Honeypot Monitoring System

Nguyen Anh Quynh and Yoshiyasu Takefuji

Graduate School of Media and Governance, Keio University
5322 Endoh, Fujisawa, Kanagawa, Japan 252-8520

{quynh, takefuji}@sfc.keio.ac.jp

Abstract. Honeypot is a decoy system to trap attackers, and data capture tool
is one of the components of the honeypot architecture. Being used to collect
the intruder’s activities inside the honeypot, this key component must be able
to function as stealthily as possible, so the intruder does not know that he is under
watch. Unfortunately Sebek, a de-facto tool for this purpose in the modern honey-
pot technology, is rather easy to detect, even with unprivileged right access. This
paper proposes to use Xen Virtual Machine to deploy honeypot, and takes the
advantage introduced by Xen to fix some of the outstanding problems of Sebek.
We present a design and implementation of a Xen-based system named Xebek as
a solution. While Xebek provides similar features as Sebek does, our system is
more “invisible” and harder to defeat. The experimental results also demonstrate
that Xebek is more flexible, while the reliability and efficiency are significantly
improved over its counterpart.

1 Introduction

Honeypot ([1]) is a computer system with the purpose: to lure attacker in order to
gather information about threats. These collected information is used to better under-
stand threats, how they are evolving and changing, in order to counter those threats in
the best way possible. If applying the honeypot technology properly, we can discover
the novel attack patterns and unknown security holes. Honeypot also helps to study the
attacker’s motives.

The modern honeypot offers high level of interaction for the intruders, and consists
of 3 key components:

– Data control: this component is used to contain the intruder’s activities and ensure
that he does not cause any harm to other production systems outside the honeypot.

– Data capture: a honeypot must capture all the activities within the honeypot, in-
cluding the information entered and left the system.

– Data collection: the gathered information got from the capture component must be
securely and secretly forwarded to a central data server for analysis and archiving.

Sebek ([2]) is a de-facto, widely-used tool in current honeypot technology. Sebek
architecture consists of 2 key components: a kernel module run on the honeypot system,
and a central server to collect data. The first component, Sebek kernel module, serves
as the data capture tool, and can capture intruder’s activities in the honeypot. It also
serves as a part of the data collection component: the collected data is then transferred

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 111–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 N.A. Quynh and Y. Takefuji

by this module to the server component (sebekd) running on a central machine, and
then analyzing process is taken there with some utilities provided with Sebek package.

One of the vital requirements of the data capture component is that it must function
as stealthily as possible, so the intruder never knows that he is being observed. Unfor-
tunately researchers have pointed out many methods to detect Sebek’s presence, and
some of them do not even require privileged access.

This paper analyses some of the outstanding problems of Sebek, then proposes a
novel approach based on Xen Virtual Machine ([3]) to address these problems. We will
present a new architecture together with an implementation of a data capture tool named
Xebek. While Xebek still has the capture ability of Sebek, it is much more “invisible”,
far more reliable and the efficiency also significantly increases.

The rest of this paper consists of 5 sections: The 2nd section outlines some problems
with current capture tools (specifically focus on Sebek). The 3rd section proposes Xe-
bek architecture together with its implementation in detail. The next section evaluates
our solution with some benchmarks, while the section 5th discusses some methods to
harden Xebek. Section 6th summaries related works, and finally conclusion closes this
paper in the 7th section.

2 Sebek Problems

Technically, Sebek kerne module stays inside the honeypot kernel, and this module
tries to capture all the data that can disclose the intruder’s activities. The collected data
include keystrokes, input and output data from file system or network socket. Sebek
even patches the kernel to hide its presence from system users, so the intruder would
have hard time to discover its existence.

Unfortunately while many efforts are put on to make Sebek stealthy, the attacker can
still easily uncover and defeat it. Here are 8 outstanding problems of Sebek:

(1) Unprivileged local user can run a simple command that generates big input or out-
put data, such as the dd-attack method proposed in [4], then checks to see if the
network performance is decreased with ping command. The reason is that the data
captured from all the input and output are secretly forwarded to the central sebekd
server via network stack, and this activity may lead to congest network if the data
is enormous.

(2) Though Sebek tries to patch the network stack to hide the actual network statistics
when using network layer to send data, we can still compare the internal statistics
got from inside the kernel with what the system shows to user-space ([4]). The
difference will disclose the presence of Sebek.

(3) Sebek inserts a kernel module into the system, and this module could be listed in
the kernel module list (with lsmod command on Linux). Though we can try to hide
it (like using the method proposed by adore-ng [5]), hidden kernel module can still
be found with a brute-force scanning technique [6].

(4) Sebek replaces some system-calls with its own functions. Paper [4] exploits this fact
to propose another way to discover Sebek: we just need to check if the address of
these system-calls are at abnormal places in the memory. If that is the case, chances
are Sebek is present in the kernel.

Towards an Invisible Honeypot Monitoring System 113

(5) Sebek replaces some system-calls with the code that packs the data into UDP pack-
ets and send them out to the sebekd machine. This change significantly increases
the time to complete the system-calls, and the difference (more than 184 times in
the case of open system-call as in our experimental) can be easily recognized from
user-space by unprivileged user.

(6) After detecting Sebek, the intruder can remove it by recovering the original system-
call (for example with unsebek.c tool in [7]). The fact that Sebek is a kernel module
makes it easier to do that.

(7) Sebek sends the captured data to the central server via network. If the intruder has
a sniffer (such as tcpdump [8]) installed at the right place in the network, he will
see these data and easily figure out that the system he has penetrated is a honeypot.

(8) The central server must expose to the network to receive data sent from the honey-
pot. That will tempt the intruder to attack this server to bring down this fundamental
component of our honeypot. This is not a theory, but the actual threat: Paper [9] pro-
poses such a method, in which sebekd will be taken over if it uses a libpcap library
with buffer overflow bug.

As we see, there are too many problems with the current Sebek, and they all make
honeypot less attractive solution for security practices.

3 Xebek Solution

Traditionally, honeypots have been physical systems on a dedicated network, with mul-
tiple physical machines to monitor and collect logging data from the honeypots. The
requirement resources posed by honeypot prevent it become a common network secu-
rity solution. Fortunately, the advent of virtual machines such as Xen has made setting
up honeypots far easier. Instead of a set of physical machines, the honeypots is now the
Xen virtual machines running on the same physical machine: each virtual machine can
play a specific role: data control, data capture or data collection.

Our solution Xebek is based on Xen, and takes some advantages provided by Xen to
address the outstanding problems which Sebek currently experiences.

3.1 Xen Virtual Machine

Xen is an open source virtual machine that allows to partition a machine to support
the concurrent execution of multiple operating systems (OS). Commodity OS (now
officially Linux, FreeBSD, NetBSD are supported) can run on Xen with small changes
to the kernel. Technically, Xen is a thin layer of software above the bare hardware, and
Xen exposes a virtual machine abstraction that is slightly different from the underlying
hardware. In Linux, Xen introduces a new architecture called xen, which is very similar
to x86 architecture. The virtual machine (VM) executing on Xen are modified (at kernel
level) to work with xen architecture. Running on top of Xen, VM is called Xen domain,
or domain in short. A privileged special domain named Domain0 (or Dom0 in short)
always runs. Dom0 manages other domains (called User Domain, or DomU in short),
including jobs like start, shutdown, reboot, save, restore and migrate them between
physical machines.

114 N.A. Quynh and Y. Takefuji

3.2 Xebek’s Goals and Approaches

Xebek is designed with the aim to overcome 8 problems experienced by Sebek we
discussed above.

1. The first goal of Xebek is to capture data as Sebek does on honeypot system. In our
Xen diagram the honeypot system runs on a DomU, and all the activities happened
inside this domain must be captured : this includes keystrokes, input and output
from file system and socket. To do that, Xebek employs the same techniques as
Sebek does by modifying kernel system-calls. But while Sebek works as a module,
we propose Xebek as kernel patch, so we do not need to worry about hiding kernel
module as Sebek does, and it is also more difficult for the intruder to remove Xe-
bek from kernel. With this trick, we are not worried any more about hiding kernel
module as Sebek does, and it is also more difficult for the intruder to remove Xebek
from kernel. Therefore, the problem (3) of Sebek is addressed with our approach,
while the problem (6) is much more relieved (we will discuss further on this later).
Moreover, since we no longer patch the system-call, our solution fixes the problem
(4) of Sebek.

2. Another mission for Xebek is to eliminate the problem of leaving many traces while
sending data to through the network stack with Sebek. To solve this trouble, Xebek
is designed so all the data is forwarded to the central server via shared memory, and
it never uses network stack like Sebek does. Specifically, we will instead take the
advantage of Xen to send the data out via shared memory. Since all the domains run
on the same physical machine, they can share memory with each other. Thanks to
Xen intercommunication mechanisms, we can establish a shared memory between
DomU, the virtual machine we are trying to run Xebek on, and Dom0. DomU puts
all the gathered data in the shared memory, then notifies Dom0 to pick up them.
Obviously with this scheme, data is no longer sent out through the network stack,
thus the process becomes more quietly, stealthily, and subsequently the intruder
cannot detect Xebek by looking at network traffic like he can with Sebek. This
trick solves the problems (1), (2), (5) and (7) Sebek currently suffers.

In addition, this approach brings one more merit: data is sent via shared memory
(but not network stack and the unreliable UDP protocol employed by Sebek), the
overall reliability and efficiency is significantly increased.

3. Xebek should harden central logging server: With the strategy of exchanging data
between DomU and Dom0 via shared memory, we run a daemon process in Dom0
to pick up logging data forwarded out by DomU. Because all the communication
is done via shared memory and other Xen communication mechanisms, the whole
process is not carried out on the network. Consequently the daemon process is not
necessarily exposed on the network like sebekd does, hence it is not vulnerable to
the direct attack from outside. Thus our approach is able to address the problem (8)
of Sebek.

Because Xen provides strong isolation between DomU and Dom0, even if the
intruder knows that he is under observation, he cannot access or modify the log-
ging data kept in Dom0. This advantage still stands even if he somehow gains the
ultimate privileges of root user.

Towards an Invisible Honeypot Monitoring System 115

4. Xebek must be flexible, so the administrator can disable or enable it as he desires
at run-time.

All of those goals and approaches lead us to the architecture for Xebek as followings.

3.3 Xebek Architecture

Xebek consists of 3 main components: The Xebek device in DomU, which plays as a
data capture tool (xebekU); the logging recorder in Dom0, which plays as a data collec-
tion daemon (xebekd); and utilities in Dom0 (including keystroke extractors, database
up-loader and others). The overall architecture of Xebek is outlined as in Fig.1.
xebekU: xebekU is a kernel code Xebek put in kernel-space of DomU. This code
patches the system-calls (such as open, close, read, write, socket,...) to gather the data
coming in and out of the system. The collected data is then delivered to Dom0 via a
shared memory between DomU and Dom0.

To be flexible, xebekU can be disabled and enabled by an instruction sent from
Dom0’s user-space. When inactive, it costs no overhead in the DomU.

xebekd: xebekd is a logging recorder running in user-space of Dom0 to record data
sent from xebekU. This daemon process patiently waits for the notifications on the new
data from xebekU. If it detects that the new data arrived, it gets the data from the shared
memory between Dom0 and DomU above, then saves the data into separate logging
files for each domain respectively.

Fig. 1. Xebek architecture

116 N.A. Quynh and Y. Takefuji

Add-on utilities: Xebek has some utilities to extract interested data from the logging
files of xebekd. We intend to provide what Sebek provides with Sebek package, so it
is easier for people familiar with Sebek to adopt Xebek. For the time being, a tool to
extract keystrokes from logging data and another tool to upload data to a SQL server
are available.

3.4 Xebek Implementation

At the moment Xebek is only implemented in Linux, because other Os-es (like FreeBSD
and NetBSD) are not ready for Xen 3.0, the most advanced Xen version we are working
on, yet. So in this part we will present Xebek’s implementation specifically for Linux
environment. The same techniques can be applied for others, however.

xebekU: xebekU is the kernel code run in DomU. One of the most important jobs of
xebekU is to gather the data from I/O system-calls such as read, write, socket,.... To
do that these system-calls in DomU’s kernel are modified, so the patched system-calls
deliver their data to xebekU. With each of these system-calls, we define corresponding
type, and the type is recorded with the logging data, so we can distinguish these data
when analyzing them later. Some of the types are: OPEN, READ, WRITE, SOCKET,...
(for sys open, sys read, sys write, sys socket...). Those records are saved in a structure
of xebek packet type (see Fig.2), in which we store also information such as the owner’s
uid, process ID, file descriptor and inode number of the corresponding file. The actual
data follows the packet. This format is compatible with Sebek logging format, and that
is one of our important targets.

Since DomU and Dom0 run on the same physical machine, they can share memory
with each other. When xebekU initializes, it allocates some memory for sharing (the
amount of shared memory is configurable at runtime - by default is 1 page, which
is equivalent to 4KB on x86 systems). This shared memory is then used to store the
collection data fetched from the kernel mentioned above.

To communicate with xebekd, xebekU assigns an event-channel port to send notifica-
tions to xebekd. After that, xebekU informs xebekd the value of the physical address of

struct xebek_packet {
uint16_t magic;
uint16_t event;
uint16_t version;
unsigned int fd;
uid_t uid;
pid_t pid;
pid_t ppid;
unsigned long inode;
uint32_t size;
char comm[12];
struct timeval time;

} __attribute__((packed));

Fig. 2. The xebek packet structure

Towards an Invisible Honeypot Monitoring System 117

the shared memory got in the above step, together with the event-channel port. At this
moment, the event-channel is not established yet, so xebekU writes these information to
xenstore via xenbus interface ([10]). The xenstore nodes where xebekU saves these data
are xebek/ring-mfn and xebek/event-channel nodes in the xenstore home of the domain.

Shared Memory Structure and xebekd’s Internal Buffer. The shared buffer must be
read and written at the same time by xebekU and xebekd. These conflicted activities can
causes the unpleasant race issues. This directs us to a decision: the shared buffer should
be designed as a ring buffer. Ring buffer is special data structure with 2 heads: one
for reading and one for writing, and these heads can wrap-around when they reach the
end of the buffer. Writing data to buffer will take away some spaces, but reading from
the buffer will release some spaces, and the free space then might be used for another
written request later.

The internal buffer of xebekd also uses the same data structure, so at the same time
it can be written to with data from the shared memory, and read out by the recording
thread.

Logging Recorder. xebekd is a multiple thread daemon runs in user-space of Dom0 to
gather collection data forwarded from xebekU. Those data are put in the shared memory
between Dom0 and DomU. In order to do that, xebekd must do the following jobs:

(i) Manage the DomUs
To mange DomUs, xebekd must detect when a DomU notifies xebekd that it wants
to exchange information with xebekd, so xebekd must be aware of domain initial-
ized event. xebekd registers xenstore watch ([10]) for the event @introduceDo-
main. Whenever a domain appears, this watch notifies xebekd, and xebekd setups a
new xenbus watch to detect the written event of ring-mfn and event-channel nodes
in the xenstore home of that domain. The watch allows xebekd to detect when the
domain writes down ring-mfn and event-channel to the xenstore. Once xebekd gets
such a notify, it allocates some internal structures to manage the domain, maps the
memory shared by DomU (with given ring-mfn is the physical address of shared
memory), and bounds to the event-channel received above. From then on, xebekd
is able to handle and exchange notifications with DomU via event-channel.

(ii) Pick up data sent from xebekU and save them to logging files
To pick up data delivered from xebekU and save them to logging files, we use 2
separate theads: a main thread is used to pick up data, and a worker thread is used
to save the data to file-system. The main thread quietly waits for the notification
about the new data from xebekU. When it detects that the new data arrives, it reads
the data out from the corresponding shared memory, then copies them to a host-
buffer allocated by xebekd when initializing (this host-buffer is of the ring buffer
format declared above). While the shared memory size should be limited (because
that is the memory allocated by DomU’s kernel, and kernel memory is a precious
limited resource), this memory can be much bigger (we set aside 32KB for this
area). After collecting data from the shared memory, the main thread wakes the
worker up to do its job. Fig.3 below outlines the diagram of the whole process.

Regarding the worker thread, this thread simply waits to be waken up by the
main thread (via pthread cond signal() function), and reads the data from host-

118 N.A. Quynh and Y. Takefuji

Fig. 3. The xebekd work-flow

buffer. The xebek packet structure is extracted out, and the record is saved to the
logging files on file-system, separately for each domains.

(iii) Other stuffs
Finally, to be more flexible, xebekd has one option (-a) to enable or disable xebekU
of a certain domain, so the administrator can start or stop xebekU logging from
any domain any time he wants.

Add-On Utilities. Similarly to Sebek, Xebek provides some tools to extract data out
from the logging files output from xebekd. For the time being we provides 2 kits: xe-
bek key (written in C language) is the tool to extract keystrokes from the logging data,
and xebek upload (written in Python language) to upload the data to a MySQL database
server for analyzing later. We adapted Walleye ([11]), the Web-based interface analysis
tool of Sebek, for Xebek to investigate the collected data. Fig.4 describes the scheme of
the above utilities.

All in all, our Xebek system is around 3600 lines of C and Python source code.
Because we propose Xebek as a patch to the DomU’s kernel, we try to isolate the change
to the kernel, so Xebek is as less intrusive as possible: totally our code alters the kernel
code only 267 lines, including comments. Table 1 shows the detailed modification (in
number of lines) to the Xen-tinized Linux kernel 2.6.12.5.

Table 1. Number of lines of modification to Xen-tinized Linux kernel 2.6.12.5

File name Number of altered lines
kernel/fork.c 54
fs/open.c 21
fs/read write.c 148
net/socket.c 44

Towards an Invisible Honeypot Monitoring System 119

Fig. 4. Xebek utilities

4 Evaluation

To evaluate the efficiency of Xebek over Sebek, we run several benchmarks on the
native OS (DomU without any capture tool), DomU’s kernel loaded with Sebek, and
DomU’s kernel with Xebek patch, then compare the latency measurements. We focus
on the latency because it is an effortless method to defeat honeypot (proposed by [12]).
Especially many micro-benchmarks can be run without the privileged access right, and
the intruder can employ them to discover our capture tool.

In the evaluation, we employed LMbench to run the latency tests on read, write,
open, fork and socket system-calls, and call them READ, WRITE, OPEN, FORK, TCP
and UDP test respectively: READ test measures how long it takes to read one byte
from /dev/zero, WRITE test measures the time to write one byte to /dev/null, while
OPEN measures the time to open and then close a file, and FORK test measures the
time necessarily to create a new process and then shutdown it. Finally TCP and UDP
measures interprocess communication latencies of TCP and UDP protocols. These tests
cover all the modifications Sebek/Xebek does to the kernel.

We run each test 10 times, and then gets the average result. The configurations of the
domains in the benchmarks are as below:

Dom0: Memory: 384MB RAM, CPU: Pentium3 600MHZ, IDE HDD: 40GB, NIC:
100Mbps
DomU: Memory: 128MB RAM, file-backed swap partition: 512MB, file-backed root
partition: 2GB

All the domains in the tests run Linux Ubuntu distribution (version Breezy Badger),
with the latest updates.

The Sebek software we use in the evaluation is 3.1.2b, which is the latest Sebek
release as of this writing. This version of Sebek supports Linux kernel 2.6.x, and is
compiled and loaded into the memory as a kernel module. In the test we configured
Sebek so it modifies the sock system-call to track down INET family protocol (this
configuration is to measure the impact on the TCP and UDP benchmarks). Besides,

120 N.A. Quynh and Y. Takefuji

though Sebek also patches the write system-call, we turned off this feature because
there are some stable problems as recommended by the authors of Sebek.

The TCP/UDP test needs one machine functioning as a server. We established a
private LAN of 100Mbps bandwidth, which consists of only 2 physical machines: one
is the Xen machine, the other is a machine that runs the TCP and UDP servers of
LMbench (command lat tcp and lat udp with -s option). The TCP/UDP benchmarks
measures the latency to send a block data of 64MB between DomU and the server
machine. During the evaluation we shutdowns all the unnecessary services to ensure
that the result is not affected by outsiders.

Table 2 shows the result of the benchmarks - all the numbers are in microseconds.

Table 2. Latency benchmark of native kernel, kernel with Sebek and kernel with Xebek

Native kernel Sebek kernel Xebek kernel
OPEN 8.19417 1509.07384 9.72046
READ 1.22187 972.64953 1.96883
WRITE 1.10639 1.11343 1.82222
FORK 900.38095 900.43333 900.42144
TCP 842.25625 1276.56287 1004.91216
UDP 1050.99115 1100.26256 1085.24115

We can see that for Sebek kernel, except the WRITE test is not different from the
native kernel (the reason is that we chosen not to active the Sebek write system-call,
as we mentioned above), all the other benchmarks demonstrate that Sebek incurs too
much overhead: 184.16 times of the native kernel in the case of OPEN benchmark, and
796.07 times of the native kernel in the case of READ benchmark. The overheads of
the TCP test and UDP test are 51.56% and 4.68%, respectively. The reason of the bad
performance of Sebek on Xen in the first 3 cases seems to be the inefficient way Sebek
allocates and manages kernel memory while it is functioning. We are investigating the
solution to improve Sebek on this aspect.

Meanwhile Xebek kernel costs significantly less overhead: 18.62% in OPEN test,
61.13% in READ test and 64.69% in WRITE test, while TCP and UDP latency over-
heads are around 19.31% and 3.25%. In all the cases the latencies made by Xebek are
lower than Sebek.

To best of our knowledge, there is no published benchmark of Sebek, and we con-
sider the above evaluation a minor contribution of this paper.

5 Discussion

While Xebek is able to observe DomUs, we do not intend to watch the control domain
(Dom0), because Dom0 is the trusted domain. The administrator must protect the Dom0
at all cost, as if the intruder takes over Dom0, the game is over: he can do anything he
likes to other DomU. Normally it is a good idea to run Dom0 without network address,
so the outsider have less chance to attack it.

To prevent the intruder from disabling Xebek, all the path to the kernel memory
should be prohibited, as the intruder might somehow get the root access in DomU and

Towards an Invisible Honeypot Monitoring System 121

use that privilege to access the kernel internal and modify it to disable Xebek. In order to
prevent this problem, DomU’s kernel should be compiled with /dev/{kmem,mem,port}
removed ([13]), and the ability of loading kernel module at run-time should be elim-
inated, too. This can lead to some objections: the honeypot becomes too restrictive,
and the attacker might suspect. But we argue that this kind of harden environment
is increasingly popular, and it should be expected by the attacker on any industrial
systems.

While we tried hard to make Xebek as covert as possible, unfortunately there is still a
weak point: the attacker can rely on the latency created by Xebek to detect its presence.
Further optimize our code to mitigate this problem is our on-going research topic.

Some might argue that the intruder can easily detect Xebek if he recognizes that
he is in a Xen machine. But that is not really we are worried about: Xen community is
working to merge Xen into Linux kernel, and once the job is completed, Xen is available
everywhere. Thus a machine running Xen is not necessarily a honeypot, but can be a
production system as well.

6 Related Works

Honeypot is the hot topic on security research field. Many papers focus on applying
honeypot to improve defense system or to trap malwares. The honeypot can be broken
down into 2 kinds: low-interaction and high-interaction type.

The low-interaction honeypots have limited interaction: they normally work by em-
ulating services and operating systems. Attacker activity is limited to the level of emu-
lation by the honeypot.

The honeynet ([14]), the high-interaction honeypot, which is the main research topic
of this paper. A honeynet may contain one of more honeypots, and Sebek plays a key-
role in a honeypot, with the job is to capture the intruder’s activities. Though Sebek is
a popular tool in the honeypot community, there are few papers that discuss the weak
points of honeypot or propose methods to improve Sebek, which are related to the topic
of this paper.

In [4], [12], [7] and [9] J.Corey, M.Dornseif and T.Holz have pointed out some prob-
lems with honeypot, especially with Sebek, and several methods were proposed to de-
feat it (more details are in the section 2 of this paper). Our paper investigates all the
current outstanding problems of Sebek, and proposes Xebek as the solution to address
or mitigate them.

7 Conclusions

This paper analyses the “visible” problem of Sebek, a data capture component of the
modern honeynet architecture. We then proposed the design and implementation of
a solution based on Xen virtual machine to eliminate some problems of Sebek. We
demonstrated that Xebek can be used instead of Sebek in Xen environment, and if being
installed in a strict manner, Xebek is stealthier, harder to detect, even with privileged
user. Besides, we also believe that Xebek is more flexible, effective and reliable than
Sebek.

122 N.A. Quynh and Y. Takefuji

For the time being, Xebek only works for Linux-based domains. We plan to provide
support for other Os-es such as FreeBSD, NetBSD once these ports are working stably
on Xen.

References

1. Balas, E., Viecco, C.: Towards a Third Generation Data Capture Architecture for Honeynets.
In: The 6th IEEE Information Assurance Workshop. (2005)

2. The Honeynet Project: Know your enemy: Sebek. http://www.honeynet.org/
papers/sebek.pdf (2003)

3. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., Barham, P.,
Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of the ACM Symposium
on Operating Systems Principles. (2003)

4. Dornseif, M., Holz, T., Klein, C.: NoSEBrEaK - Attacking honeynets. In: The 5th Annual
IEEE Information Assurance Workshop. (2004)

5. stealth: adore-ng rootkit. http://stealth.7530.org/rootkits/ (2004)
6. madsys: Advanced incident response tool. http://sourceforge.net/projects/

airt-linux/ (2005)
7. Corey, J.: Local honeypot identification. http://www.phrack.org/unofficial/

p62/p62-0x07.txt (2003)
8. TCPdump project: tcpdump/libpcap tool. http://www.tcpdump.org (2005)
9. Corey, J.: Advanced honeypot identification and exploitation.

http://www.phrack.org/ unofficial/p63/p63-0x09.txt (2004)
10. Xen project: Xen interface manual. http://www.cl.cam.ac.uk/Research/

SRG/netos/xen/readmes/interface/interface.html (2005)
11. The Honeynet Project: Know Your Enemy: Honeywall CDROM Roo.

http://www.honeynet.org/papers/cdrom/roo/ (2005)
12. Holz, T.: Detecting honeypots and other suspicious environments. In: Proceedings of the 6th

IEEE Information Assurance Workshop. (2005)
13. sd: Linux on-the-fly kernel patching. http://www.phrack.org/show.

php?p=58&a=7 (2002)
14. The Honeynet Project: Know your enemy: Honeynets. http://www.honeynet.org/

papers/honeynet/ (2005)

Adaptively Secure Traitor Tracing Against Key
Exposure and Its Application to Anywhere

TV Service

Kazuto Ogawa1, Goichiro Hanaoka2, and Hideki Imai2

1 Science & Technical Research Laboratories,
Japan Broadcasting Corporation

1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan
ogawa.k-cm@nhk.or.jp

2 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology

1102 Akihabara Daibiru, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan
{hanaoka-goichiro, h-imai}@aist.go.jp

Abstract. We propose a secure traitor tracing scheme against adaptive
key exposure (TTaKE) which contains the properties of both a traitor
tracing scheme and a forward secure public key cryptosystem. It is con-
structed by using a polynomial with two variables to generate the user
secret keys. This scheme enables identification of at least one of traitors.
It employs temporary secret keys by updating them. Moreover, we show
the way how the building blocks of the TTaKE can be applied to any-
where TV service. Its structure fits current broadcasting systems. The
system can improve content broadcasting/distribution services and it en-
ables users to obtain the service at the places where there are not their
own STBs/receivers.

1 Introduction

Background: Several methods of protecting copyrighted work from illegal dis-
tribution have been developed. Content providers, prior to content distribution,
distribute decoders (STB) which contain secret keys for content decryption. A
content provider sends encrypted content to each user, who then decodes it
with his STB. In such a system, if a malicious user (traitor) extracts the se-
cret keys from his STB, they can make a pirate decoder. Several traitor trac-
ing methods have been developed to protect content against such violations
[2, 3, 5, 8, 9, 10, 11]. When a pirate decoder is found, these methods are used to
check the secret keys in the decoder and trace the traitor.

On the other hand, users require obtaining services anywhere they want, which
is called anywhere TV service. Though they generally set their STBs and get the
services at their houses, and it is hard to extract decryption keys from STBs.
Consequently, they cannot get the services outside. It is possible, if users can take
along their decryption key with them, and providers’ risk due to key exposure is
taken into account. Various countermeasures have been developed to minimize

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 123–135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

124 K. Ogawa, G. Hanaoka, and H. Imai

the damage resulting from key exposure [4, 6, 7]. They employ key updating and
give secret keys a temporal property.

To make anywhere TV service secure, properties of both traitor tracing and
robustness against key exposures are needed. The traitor tracing property deters
traitors to make a pirate decoder and the robustness against users’ accidental
key exposure is necessary for minimizing the damage to content providers.

TTaKE: In this paper, we propose a secure traitor tracing scheme against adap-
tive key exposure attacks (TTaKE). We first define a TTaKE scheme, and then
construct a TTaKE scheme which is semantically secure against chosen plaintext
attacks under the assumption of the Decision Diffie-Hellman problem. Its trace-
ability is based on the difficulties of solving the discrete logarithm problem. This
scheme combines the properties of a traitor tracing scheme and a forward secure
public key cryptosystem. It enables identifying users from their secret keys and
tracing at least one of the traitors. Each user’s secret key is updated using two
kinds of keys, and the user therefore can update his secret key, only when he has
the two keys.

In the initial phase, a polynomial with two variables is produced. Then one
public key and multiple initial secret keys as well as master keys are made. In
the TTaKE scheme, there are multiple secret keys for one public key. Each user’s
master key is stored in his physically secure device (PSD) such as a smart card
and his initial secret key is stored in his portable memory device (PMD) such
as a USB memory device.

The users cannot access the data stored in PSDs directly and hence master
keys are resistant to compromise. On the other hand, when the user decrypts
contents, his secret key is picked up from his PMD and is put into an insecure
device such as PC. Then the secret key is likely to be exposed. To minimize
damage of such key exposure, we employ user secret key updating. The user
contacts with the master key stored in the PSD, when he updates his secret key.
We consider the case in which the PSD is not fully trusted, and the master key is
used to generate a partial key. After generating a partial key, the user calculates
a new secret key using both previous secret key and a partial key. When he does
not have both a previous secret key and a master key, it is impossible to generate
a new secret key.

We assume that the secret key is stored in a PMD and is carried out. Thus
the secret key is copied easily, and it is possible to make a pirate decoder (PD).
The TTaKE scheme that we propose here can identify illegal users, who make
PDs.

TTaKE Application to Anywhere TV Service: We show how the building
blocks can be used for applying the scheme to anywhere TV Service. The service
is an improved service of a conventional broadcasting service and is the one that
users can obtain the service at any location where they want. Therefore users
would have to take along their decryption keys with them.

In the conventional broadcasting system, a STB has a PSD or tamper re-
sistant module (TRM). When we apply TTaKE to anywhere TV service, we

Adaptively Secure Traitor Tracing Against Key Exposure 125

consider its compatibility with conventional broadcasting system. We thus use
this PSD/TRM for storing a master key and generating a partial key. More-
over, considering users’ convenience, users can carry their secret keys stored in
a PMD. Furthermore, owing to the TTaKE, the system enables to trace illegal
users and to minimize damage from key exposure.

2 Definitions

2.1 Model

TTaKE is a public key system in which there is a unique encryption key and
multiple decryption (secret) keys.

One public key is registered, which will not be changed for as long as the
service continues. Different master keys SK∗

1 , · · · , SK∗
N and initial secret keys

SK1,0, · · · , SKN,0 are distributed to N users. These master keys SK∗
u are stored

in each user’s PSD. The user secret key SKu,t is updated and stored outside the
PSD. The user can receive the service in any location by using SKu,t stored in
a PMD which a user can carry with him.

First, the period during which the service will continue is set, and then this
period is divided into T number of small periods. A user will have to periodically
update the secret key.

The distributed content is encrypted and constructed as a header Head. The
time index t is added toHead and the distributiondata is formatted as<t, Head>.

If authorized users collude and make an illegal decoder and the number of
colluders is at most k, at least one of them should be traceable. Furthermore,
even if m secret keys of the T periods have been exposed, there is no exposure
of the other keys’ information.

The user inputs t into the PSD, when a secret key is updated. The PSD
outputs a partial key SK

′
u,t. The user calculates SKu,t using SKu,t−1 and SK

′
u,t.

If it is hard to extract SK∗
u from the PSD and to obtain any information about

SK∗
u from SKu,t, the user secret key is secure.

We formally describe this model as follows.

Definition 1. A TTaKE scheme consists of the following six polynomial time
algorithms (Gen,Upd*,Upd,Enc,Dec,TT).

Gen: The public key and user secret key generation algorithm. This is a proba-
bilistic algorithm which takes as input a security parameter, s, the total number
of users, N , the maximum number of colluding users (traitors) per one service
period, k, which include true colluders and honest users who expose all of their
secret keys, the total number of time periods, T , and the maximum number of
time periods, m, at which honest users’ secret keys are exposed unintentionally.
It returns a public key, PK, users’ master key, SK∗

1 , · · · , SK∗
N , users’ initial key,

SK1,0, · · · , SKN,0, and secret information to trace users, f .
Upd*: The device key updating algorithm. This is a deterministic algorithm
which takes as input the time period index, t (1 ≤ t ≤ T), and SK∗

u. It returns
a user partial key, SK

′
u,t.

126 K. Ogawa, G. Hanaoka, and H. Imai

Upd: The user key updating algorithm. This is a deterministic algorithm which
takes as input t, SK

′
u,t, and a user previous secret key, SKu,t−1. It returns a

user current secret key, SKu,t.
Enc: The encryption algorithm. This is a probabilistic algorithm which takes as
input PK, t, and a message, M . It returns a ciphertext, C :=< t, Head >.
Dec: The decryption algorithm. This is a deterministic algorithm which takes
as input SKu,t, and C. It returns M , or a special symbol, ⊥. We require the
following for all messages, Dec(SKu,t, (Enc(t, PK, M)) = M .
TT: The user tracing algorithm. This is a deterministic algorithm which takes
as input PK, f , and {SKpi,t}i=1,··· ,kl

⊆ {SKu,t}u=1,··· ,N where 1 ≤ kl ≤ k. It
returns one of the suspected traitors’ IDs, p ∈ {pi}i=1,··· ,kl

.

We should consider a traitor tracing against a linear attack proposed in [11].
We describe it briefly in section 4.1. Moreover, we should consider a black box
traitor tracing, but we will study it in future.

Next, we define the pirate decoders.

FPD: The pirate decoder with full functionality. This must correctly decrypt all
the valid ciphertext generated by Enc for all service periods.
TPDt: The pirate decoder with limited functionality. This must correctly de-
crypt all the valid ciphertext generated by Enc for a service period t.

2.2 Security

We address security definition of a TTaKE scheme. The TTaKE scheme is con-
sidered secure if

– for a given FPD or TPDt (PD), TT of the TTaKE can detect one of the IDs
of authorized users who collude to make a PD, or who carelessly exposed
their temporal keys that were then used to make a PD.

– without a PD, an adversary cannot obtain any information on the dis-
tributed content for the target time period t.

First we define (k, N, m, T)-traceability which addresses security against forgery
of a PD such that any of colluders cannot be traced.

Each user has his identical secret key. Since, when traitors make a PD with
their own secret keys, it is easy to identify one of traitors, traitors want to make
a PD that holds the secret key that is not theirs. Hence, when we consider
the traceability, we consider that traitors generate a different secret key from
their own ones. Intuitively, we say a TTaKE scheme is (k, N, m, T)-traceable if
k colluders cannot forge any SKu,t as long as none of honest users’ keys for a
time period t is exposed and the number of time periods that an honest user’s
key is exposed is at most m.

For a given public key PK, an adversary adaptively chooses k colluders and
m time periods such that at least one honest user’s key is exposed. Then, the
adversary decides a target time period t∗, and a victim u∗. To formally model
key exposure attacks, we give an adversary access to two types of key exposure
oracle Expu(·) and Expt(·). Expu(·) takes as input a user ID u and returns all

Adaptively Secure Traitor Tracing Against Key Exposure 127

of the time periods’ user secret keys, {SKu,tj}j=1,··· ,T . Expt(·) takes as input
a time period index t and returns all of users’ secret keys of the time period t,
{SKui,t}i=1,··· ,N . We allow that the key exposure requests of the adversary may
be made adaptively and in any order.

Definition 2. Let Π=(Gen,Upd*,Upd,Enc,Dec,TT) be a TTaKE scheme. Let A
be an adversary. Define the success probability of guessing the value of SKu∗,t∗

as follows:

SuccA,Π(s, k, N, m, T) def= Pr[
(PK, SK∗

1 , · · · , SK∗
N , SK1,0, · · · , SKN,0, f) ← Gen(1s, k, N, m, T);

(u∗, t∗, SKA
u∗,t∗) ← AExpu(·),Expt(·)(PK) :

∀M ∈M, Dec(SKA
u∗,t∗ , Enc(t∗, PK, M)) = M],

where M is the message space. An adversary can access Expu(·) and Expt(·),
and is allowed to request Expu(·) at most k times except for the target user(u∗)’s
secret key and Expt(·) at most m times except for the target time period(t∗)’s
secret key. Then Π is (k, N, m, T)-traceable if for any adversary |SuccA,Π(s, k, N,
m, T)| is negligible.

Next, we define (m, T)-indistinguishability which addresses semantic security
against an adversary who can adaptively obtains exposed secret keys. Similarly
to the standard definition of semantic security, for a given public key PK, an
adversary chooses a time period t∗, and a pair of messages with the same length
M0 and M1, and submits them to a left-or-right encryption oracle which returns
a challenge ciphertext c∗ := Enc(t∗, PK, Mb) for b ∈R {0, 1}. A TTaKE is con-
sidered semantically secure if any probabilistic polynomial time Turing machine
can answer the correct value of b with probability at most 1/2+neg where neg is
a negligible value. In our definition, an adversary can obtain exposed keys which
he chooses, and he may use these keys for the attack with a restriction that
t∗ may not be identical to a valid time period of any exposed key. To formally
model key exposure attacks, we give an adversary access to Expt(·). We allow
that the key exposure requests of the adversary may be made adaptively and in
any order. See also Def. 1 on other restrictions for the number of exposed keys
with respect to m.

Definition 3. Let Π = (Gen, Upd∗, Upd, Enc, Dec, TT) be a TTaKE scheme. Let
A = (Afind, Aguess) be an adversary. Define the success probability of guessing
the value of b as follows:

SuccA,Π(s, k, N, m, T) def= Pr[
(PK, SK∗

1 , · · · , SK∗
N , SK1,0, · · · , SKN,0, f) ← Gen(1s, k, N, m, T);

(t∗, M0, M1, σ) ← A
Expt(·)
find (PK);

b ∈R {0, 1}; c∗ ← Enc(t∗, PK, Mb);
b′ ← AExpt(·)

guess (PK, σ, c∗) :
b′ = b],

128 K. Ogawa, G. Hanaoka, and H. Imai

where σ is side information obtained by Afind, and an adversary can access
Expt(·) and is allowed to request to Expt(·) at most m times except for the
target time period t∗. Then Π is (m, T)-indistinguishable if for any adversary∣∣SuccA,Π(s, k, N, m, T)− 1

2

∣∣ is negligible.

Finally, we define (k, N, m, T)-security.

Definition 4. Let Π = (Gen, Upd∗, Upd, Enc, Dec, TT) be a TTaKE scheme. Π
is (k, N, m, T)-secure if it is (k, N, m, T)-traceable and (m, T)-indistinguishable.

When traitors make an FPD or TPDt∗ , it is not necessary to consider semantic
security for the target time period t∗, and we consider only traitor tracing,
described in Def. 2. On the other hand, it is important to consider semantic
security in Def. 3. Even if an adversary gets exposed secret keys, which are valid
at some periods, content of the other time periods should be safe. Totally a
TTaKE scheme has (k, N, m, T)-security described in Def. 4.

3 (k, N, m, T)-Secure Traitor Tracing Scheme Against
Key Exposure

We demonstrate a (k, N, m, T)-secure traitor tracing scheme against adaptive
key exposure ((k, N, m, T)-TTaKE), which is based on the corrected Kurosawa-
Desmedt traitor tracing scheme [8, 9] and the (m, T)-key-insulated public-key
cryptosystems [7]. Below we propose a way to construct a (k, N, m, T)-TTaKE
scheme.

Gen(1s, k, N, m, T): Let p and q be primes such that q | p−1 where the size of |q| is
s and let Gq be a subgroup of Z

∗
p of its order q. After this setting, all calculations

are executed in Zp. Two generators, g, h ∈ Gq, and random numbers, xi,j , yi,j ∈
Zq for i = 0, · · · , 2k−1; j = 0, · · · , m, are selected, and two two-variable polyno-
mials, f1(u, t) :=

∑2k−1
i=0

∑m
j=0 xi,ju

itj and f2(u, t) :=
∑2k−1

i=0
∑m

j=0 yi,ju
itj , are

made, and a public key, PK := (g, h, p, q, z∗0,0, z
∗
0,1, · · · , z∗2k−1,m) where z∗i,j =

gxi,jhyi,j for i = 0, · · · , 2k − 1; j = 0, · · · , m, is published. Then each user’s
master key, SK∗

u := (x∗
u,1, y

∗
u,1, x

∗
u,2, y

∗
u,2, · · · , x∗

u,m, y∗
u,m), and initial secret key,

SKu,0 := (x(s)
u,0, y

(s)
u,0) where x∗

u,j =
∑2k−1

i=0 xi,ju
i, y∗

u,j =
∑2k−1

i=0 yi,ju
i for j =

1, · · · , m , and x
(s)
u,0 =

∑2k−1
i=0 xi,0u

i, y
(s)
u,0 =

∑2k−1
i=0 yi,0u

i, are made.
Upd*(t, SK∗

u): A partial key, SK
′
u,t := (x

′
u,t, y

′
u,t) where x

′
u,t =

∑m
j=1 x∗

u,j(t
j −

(t− 1)j), y
′
u,t =

∑m
j=1 y∗

u,j(t
j − (t − 1)j), is calculated using input time index t

and SK∗
u.

Upd(t, SK
′
u,t, SKu,t−1): A secret key, SKu,t = (x(s)

u,t, y
(s)
u,t) where x

(s)
u,t = x

′
u,t +

x
(s)
u,t−1, y

(s)
u,t = y

′
u,t + y

(s)
u,t−1, is calculated using SK

′
u,t and SKu,t−1.

Enc(t, PK, M): A random number, α ∈ Zq, is chosen and a header, Head(t) :=
(yg, yh, z0,t, · · · , z2k−1,t) where yg = gα, yh = hα, zt,0 = M(

∏m
j=0(z

∗
0,j)

tj

)α,

zi,t = (
∏m

j=0(z
∗
i,j)

tj

)α for i = 1, · · · , 2k − 1, is produced using PK, a message
M , and t. Then a ciphertext C :=< t, Head(t) > is created.

Adaptively Secure Traitor Tracing Against Key Exposure 129

Dec(C, SKu,t = (x(s)
u,t, y

(s)
u,t)): C is decrypted using SKu,t. Then M is obtained

through the following calculation: M = z0,t

∏2k−1
i=1 (zi,t)ui

/y
x
(s)

u,t
g y

y
(s)

u,t

h .
Furthermore, a traitor tracing capability is necessary to fit into the model.

TT(PK, f1(u, t), f2(u, t), SKp,t): When an FPD or TPDt is found, a secret key
SKp,t is checked and one of traitors p is identified.

We describe and discuss this tracing algorithm in section 4.1.

4 Security Analysis

4.1 Tracing Traitors

It should be noticed that an FPD is considered as a set of TPDts for every
time periods and therefore with regard to traceability it is sufficient to consider
forgery of a TPDt.

Tracing traitors: When a TPDt is confiscated, the user identity and secret key
((up, f1(up, t), f2(up, t)) contained in it are exposed. The exposed user up is a
traitor.

When the traitors collude to make a TPDt, they might try to make a TPDt

that includes a different user’s identity and secret key to avoid being traced.
We show that it is hard for at most k traitors to make the other users’ secret
keys and our proposed scheme can trace one of the k traitors, who extract their
secret keys and collude to make a TPDt. As a result, it is (k, N, m, T)-traceable
as described in Def. 2.

Theorem 1. The proposed scheme is a (k, N, m, T)-traceable assuming infeasi-
bility of the discrete logarithm (DL) problem in Gq.

Proof. Here, we assume that there exists a probabilistic polynomial time adver-
sary A that can produce a TPDt such that none of traitors can be traced. Then,
we show that it is possible to construct another adversary B which can solve the
DL problem in Gq with non-negligible probability by using A.

For a given instance of the DL problem (g1, g2 = gr
1) ∈ G2

q, B works as follows.
First, B chooses {xi,j , yi,j}i=0,··· ,2k−1,j=0,··· ,m ∈ Zq, generates two polynomials,
f1(u, t) :=

∑2k−1
i=0

∑m
j=0 xi,ju

itj and f2(u, t) :=
∑2k−1

i=0
∑m

j=0 yi,ju
itj , and calcu-

lates a public key PK := (g1, g2, p, q, g
x0,0

1 g
y0,0

2 , · · · , g
x2k−1,m

1 g
y2k−1,m

2). Then, B
gives PK to A. When A submits a query u to Expu(·), it returns secret keys
{SKu,tj}j=1,··· ,T , and when A submits a query t to Expt(·), it returns secret
key {SKui,t}i=1,··· ,N . When A outputs a secret key SKu∗,t∗ := (z1, z2) for u∗

and t∗, B calculates r = −(z1 − f1(u∗, t∗))/(z2 − f2(u∗, t∗)), and outputs r as
the solution of the DL problem. �	

Claim 1. Simulation of Expu(·) and Expt(·) are perfect, and therefore, A out-
puts a TPDt∗ for u∗ with non-negligible probability.

Proof. It is clear that B knows all coefficients of f1(u, t) and f2(u, t), and hence,
B can answer any user’s key of any time period. �	

130 K. Ogawa, G. Hanaoka, and H. Imai

From Claim 1, we have that A is given the same environment as a real attack.

Claim 2. It is information theoretically impossible to obtain any information
on SKu∗,t∗ from the answers of Expu(·) and Expt(·).

Proof. For simplicity of the proof, we relax the restriction on Expu(·) oracle ac-
cess, that is, we set the maximum number of the queries to be 2k−1 instead of k.
Without loss of generality, we assume that A asks u1, · · · , u2k−1 to Expu(·) and

t1, · · · , tm to Expt(·). Let U :=

⎛⎜⎝ u0
1 · · · u2k−1

1
...

. . .
...

u0
2k−1 · · · u2k−1

2k−1

⎞⎟⎠ and P :=

⎛⎜⎝ t01 · · · t0m
...

. . .
...

tm1 · · · tmm

⎞⎟⎠.

Also, let A and B be (2k − 1) × (m + 1) and 2k × m matrices such that

A

⎛⎜⎝ t0

...
tm

⎞⎟⎠ =

⎛⎜⎝ f1(u1, t)
...

f1(u2k−1, t)

⎞⎟⎠ and (u0, · · · , u2k−1)B = (f1(u, t1), · · · , f1(u, tm)),

respectively. Here, we show that there exist q different 2k× (m + 1) matrices D
such that UD = A and DP = B, and that these q different matrices result in q
different values for f1(u∗, t∗) with a uniform distribution.

Without loss of generality, we can set D = D0 + D1 where D0 and D1 are
2k × (m + 1) matrices such that UD0 = A, D0P = B, UD1 = 0 and D1P = 0.
Therefore, to prove the existence of q different D, it is sufficient to prove that
there exist q different D1 for a fixed D0. Since Rank(U) is 2k − 1, there exists
a non-zero 2k dimensional column vector v such that Uv = 0 and therefore, D1
can be expressed as (α0v, · · · , αmv) for certain (α0, · · · , αm) ∈ Zm+1

q . Similarly,
since Rank(P) is m, there exists a non-zero (m + 1) dimensional row vector

u such that uT = 0 and therefore, D1 can be expressed as

⎛⎜⎝ β0u
...

β2k−1u

⎞⎟⎠ for

certain (β0, · · · , β2k−1) ∈ Z2k
q . D1 then can be expressed as γvu for γ ∈ Zq.

Hence, there exist q different D according to γ. Finally, we prove the above q
different D results in q different values for f1(u∗, t∗). For this, it is sufficient to

prove that δ := (u∗0, · · · , u∗2k−1)D1

⎛⎜⎝ t∗0

...
t∗m

⎞⎟⎠ has q different values according

to D1. Since D1 can be expressed as γvu, δ can also be expressed as δ =

γ(u∗0, · · · , u∗2k−1)vu

⎛⎜⎝ t∗0

...
t∗m

⎞⎟⎠. Therefore, to prove the existence of q different

values for δ, it is sufficient to prove that (u∗0, · · · , u∗2k−1)v �= 0 and u

⎛⎜⎝ t∗0

...
t∗m

⎞⎟⎠ �=

Adaptively Secure Traitor Tracing Against Key Exposure 131

0. Assuming (u∗0, · · · , u∗2k−1)v = 0, we have

⎛⎜⎜⎜⎝
u∗0 · · · u∗2k−1

u0
1 · · · u2k−1

1
...

. . .
...

u0
2k−1 · · · u2k−1

2k−1

⎞⎟⎟⎟⎠v = 0,

and thus, v=0. This is a contradiction. Similar to this, we can prove u

⎛⎜⎝ t∗0

...
t∗m

⎞⎟⎠�=
0. Hence, we see that answers from Expu(·) and Expt(·) does not give any in-
formation on f1(u∗, t∗). Similarly to this, we can also show that any information
on f2(u∗, t∗) cannot be exposed from Expu(·) and Expt(·), either. �	

Claim 3. For the given PK, there exist q possible pairs for (f1(u∗, t∗), f2(u∗, t∗))
even if accesses to Expu(·) and Expt(·) are allowed.

Proof. From Claim 2, Expu(·) and Expt(·) do not give any information on
SKu∗,t∗ . Therefore, it is sufficient to prove that A cannot find a correct
(f1(u∗, t∗), f2(u∗, t∗)) from q possible pairs even if A has unlimited compu-
tational power. Since for all i ∈ {0, · · · , 2k − 1} and j ∈ {0, · · · , m}, we have
g

xi,j

1 g
yi,j

2 = g
xi,j+ryi,j

1 , and there exist q different pairs for (xi,j , yi,j) for all i
and j, even if A can compute the discrete logarithm problem. In other words,
A knows only F (u, t) := f1(u, t) + rf2(u, t), but cannot specify f1(u, t) and
f2(u, t) from q possible pairs of polynomials f ′

1(u, t) and f ′
2(u, t) such that

F (u, t) := f ′
1(u, t) + rf ′

2(u, t). Consequently, there also exist q different pairs
of (z1, z2) such that F (u∗, t∗) = z1 + rz2. �	

From Claim 3, we have that A outputs (z1, z2) uniformly from q possible pairs
such that F (u∗, t∗) = z1+rz2. Consequently, we can compute r = −(f1(u∗, t∗)−
z1)/(f2(u∗, t∗)− z2) unless (z1, z2) = (f1(u∗, t∗), f2(u∗, t∗)).

Linear Attack Traceability: Here, we briefly discuss security against forgery
of TPDt whose key does not form as (u∗, z1, z2). More specifically, we should con-
sider traceability against linear attacks [11]. The linear attack for the TTaKE
scheme is as follows. First k traitors make a combined secret key SKc,t :=
(x(s)

c,t , y
(s)
c,t), with their valid secret keys {SKupl

,t}l=1,··· ,k for the target time pe-
riod t, and extra information U1, · · · , U2k−1, where αl ∈ Zq for l = 1, · · · , k,∑k

l=1 αl = 1, x
(s)
c,t :=

∑k
l=1 αlx

(s)
upl

,t, y
(s)
c,t :=

∑k
l=1 αly

(s)
upl

,t, Ui :=
∑k

l=1 αlu
i
pl

for i = 1, · · · , 2k − 1. With these data and C, M is decrypted as follows:

M = z0,t

∏2k−1
i=1 (zi,t)Ui/y

x
(s)

c,t
g y

y
(s)

c,t

h .
It is proven in [12] that, when k traitors collude to make a pirate decoder

with the linear attack, one of the traitors can be identified when the degree of
polynomial is more than 2k − 2. In the (k, N, m, T)-TTaKE scheme, the poly-
nomial’s degree on u is 2k − 1, and it can be proven by the same proof method
of [12] that TTaKE scheme can be identified one of k colluders. As a result our
scheme is secure against a linear attack.

132 K. Ogawa, G. Hanaoka, and H. Imai

4.2 Chosen-Plaintext Security Based on DDH

Above, we showed that our proposed scheme is a (k, N, m, T)-traceable scheme.
Here, we show a proof of (m, T)-indistinguishability for our proposed scheme and
that overall, it is a (k, N, m, T)-secure TTaKE scheme as described in Def. 4.
First we show that our proposed scheme is semantically secure against a passive
adversary, assuming the difficulty of the Decision Diffie-Hellman (DDH) problem
in Gq. The assumption is that no polynomial time algorithm can distinguish with
non-negligible advantage between the two distributions D =< g1, g2, g

a
1 , ga

2 >
and R =< g1, g2, g

a
1 , gb

2 >, where g1 and g2 are generators chosen at random in
Gq, and a and b are chosen at random in Zq.

Theorem 2. The proposed scheme is an (m, T)-indistinguishable scheme as de-
scribed in Def. 3 assuming the difficulty of the DDH problem in Gq.

Proof. Here, assuming that there exists a probabilistic polynomial time adver-
sary A which can break our proposed scheme, we show that it is possible to
construct another adversary B which can solve the DDH problem with a non-
negligible advantage.

For a input (g1, g2, h1, h2), B solves the DDH problem as follows. First, B
chooses xi,j , yi,j ∈ Zq for i = 0, · · · , 2k− 1; j = 0, · · · , m and calculates a public
key PK := (g1, g2, p, q, g

x0,0

1 g
y0,0

2 , · · · , g
x2k−1,m

1 g
y2k−1,m

2). Next, B gives PK to A,
and A submits queries to key exposure oracle according to the restrictions in
Def. 1 and 3. When A submits a query tp to Expt(·), it returns correct secret
keys {SKui,tp}i=1,··· ,N . Since Expt(·) knows all of the coefficients, it can return
secret keys correctly. Then, A submits a query (t∗, M0, M1) to the left-or-right
encryption oracle. B, then, picks b ∈R {0, 1} and returns a challenge ciphertext
c := (h1, h2, zt∗,0, zt∗,1, · · · , zt∗,2k−1) such that zt∗,0 = Mb

∏m
j=0(h

x0,j

1 h
y0,j

2)tj

,

zt∗,i =
∏m

j=0(h
xi,j

1 h
yi,j

2)tj

for i = 1, · · · , 2k − 1.
It is clear that if (g1, g2, h1, h2) is a DDH-tuple, then c∗ is a valid ciphertext

of Mb. On the other hand, if it is a random tuple, it is information theoretically
impossible to obtain any information on b (due to randomness of “logh1

h2”).
Letting b′ be A’s output, B outputs “(g1, g2, h1, h2) is a DDH-tuple” if b′ = b,
otherwise, B outputs “(g1, g2, h1, h2) is a random tuple”. Consequently, B solves
the DDH problem with a non-negligible advantage. �	

5 Application

When users receive content distribution service at home, they store their se-
cret keys in their security devices installed in their STBs and use their secret
keys to decrypt contents. Current digital broadcasting systems use a smart card
as a PSD; it is called Conditional Access System (CAS) card [1]. The CAS
cards are now used to protect broadcasting content copyright by more than
11,200,000 subscribers (users) in Japan. Subscribers are able to receive its ser-
vice only at home, because they cannot extract their secret keys from their CAS
cards.

Adaptively Secure Traitor Tracing Against Key Exposure 133

If it were possible to copy their secret keys, subscribers would be able to obtain
services beyond the proximity of the STB. It is ”Anywhere TV service”. The
system could be constructed easily, if broadcasters (content providers) allowed
subscribers to copy the secret keys to PMDs, but there could be a problem for
broadcasters to be exposed to serious damage. They are unwilling to accept such
risk, so they do not allow their subscribers to copy their secret keys.

The system, which enables subscribers to take along their secret keys and
minimizes damage of subscriber’s key exposure, is required. The TTaKE scheme,
that we proposed, is useful for such a service. It is compatible with the current
broadcasting system and it meets both of the broadcasters’ and subscribers’
requirements.

5.1 TTaKE Application to Anywhere TV Service

As an example of anywhere TV service, we show that a TTaKE scheme can be
used for a broadcasting service which contains series type drama program. Each
subscriber has a STB at his house, and the STB contains a CAS card.

A broadcaster sets the total number of episodes of series type drama program
T , and distributes each episode week by week in turn. Each subscriber get a
master key SK∗

u, and an initial key SKu,0 prior to the drama series start. SK∗
u

is stored in the subscriber’s CAS card. The card can force him not to copy SK∗
u.

SKu,0 is stored into storage of his STB. SKu,0 is only used to create the 1st
secret key SKu,1.

When a broadcaster distributes j(j = 1, · · · , T)th episode, it encrypts content
with the episode number j and the public key. Each subscriber has to create jth
secret key SKu,j. When he holds SKu,j−1 in his PMD, he sets his PMD to his
STB. The STB inputs the index j to the CAS card and the CAS card returns jth
partial key SK

′
u,j. Simultaneously, the STB gets SKu,j−1 from the PMD/storage

of STB, and erases SKu,j−1 from there. The STB then calculates SKu,j with
SKu,j−1 and SK

′
u,j, and then erases SKu,j−1 and SK

′
u,j it holds. When he

travels somewhere and wants to watch the jth episode there, he sets the PMD
to another STB, and can watch the jth episode.

Although malicious use of secret keys and key exposure have to been taken
into accounts, owing to TTaKE it can be secure against such attacks.

5.2 System Structure

We then show system structures. Figure 1 shows the current broadcasting system
standardized in Japan [1] and anywhere TV system we propose. Scramble is
content encryption process, which uses symmetric encryption scheme with a
secret key Ks. Ks is decrypted in each CAS card. Km is a unique key of each
CAS card and it is used to transmit individual data to each CAS card. These
processes are common in the two systems and the anywhere TV system can have
compatibility with the current broadcasting system.

Kw is a unique key for each contract in the current system. It is encrypted
with Km and transmitted to each CAS card after a user makes a contract with

134 K. Ogawa, G. Hanaoka, and H. Imai

CAS card
(PSD)

Scramble De-
scramble

Ks

SKj

Enc: Encryption
Dec: Decryption
UPD: Secret key update

Index:j
SKj’

PMD

SKj

Km

SKj-1

Index:j

CAS card

Ks Enc

Km

M
ultiplex Ks

Kw

: content flow
: data flow

Broadcaster STB

D
e-

M
ultiplex

Kw

Ks

Scramble De-
scramble

Km

Dec

Dec

Broadcaster STB

Enc

Km

Enc

EncSK*

PK

Dec SK*

UPD

Dec

M
ultiplex

D
e-

M
ultiplex

Current system[1] Anywhere TV system

CAS card
(PSD)

Scramble De-
scramble

Ks

SKj

Enc: Encryption
Dec: Decryption
UPD: Secret key update

Index:j
SKj’

PMD

SKj

Km

SKj-1

Index:j

CAS card

Ks Enc

Km

M
ultiplex Ks

Kw

: content flow
: data flow

Broadcaster STB

D
e-

M
ultiplex

Kw

Ks

Scramble De-
scramble

Km

Dec

Dec

Broadcaster STB

Enc

Km

Enc

EncSK*

PK

Dec SK*

UPD

Dec

M
ultiplex

D
e-

M
ultiplex

Current system[1] Anywhere TV system

Fig. 1. Comparison of Current Broadcasting System [1] and Anywhere TV system

a broadcaster. Kw is a key for symmetric encryption and unchanged during all
service periods, so Kw’s exposure affects all episodes copyrights. In addition,
only the providers, which know Kw, can use this system.

In the anywhere TV system, SK∗ and SK0 (only SK∗ is described in Fig. 1)
are encrypted and transmitted to each CAS card. Instead of Kw, SK∗ is trans-
mitted after a contract, and Km is used to encrypt this individual data. This
process is compatible with that of current broadcasting system. Each decryption
key, SKj, is different from the other time periods’, so the key’s exposure affects
only the jth episode. Moreover, this system employs a public key cryptosystem.
Although CPU cost becomes high, any broadcasters can use this system and the
system improves content usability.

As described above, a TTaKE scheme could apply to the anywhere TV service,
and the system has compatibility with the current broadcasting system.

References

1. “Conditional Access System Specifications for Digital Broadcasting ARIB-STD-
B25,” Association of Radio Industries and Businesses.

2. D. Boneh and M. Franklin, “An Efficient Public Key Traitor Tracing Scheme,”
Proc. of Crypto’99, LNCS 1666, Springer-Verlag, pp.338-353, 1999.

3. O. Billet and H. Gilbert, “A Traceable Block Cipher,” Proc. of Asiacrypt’03, LNCS
2894, Springer-Verlag, pp.331-346, 2003.

4. M. Bellare and S. K. Miner, “A Forward-Secure Digital Signature Scheme,” Proc.
of Crypto’99, LNCS 1666, Springer-Verlag, pp.431-448, 1999.

5. B. Chor, A. Fiat and M. Naor, “Tracing Traitors,” Proc. of Crypto’94, LNCS 839,
Springer-Verlag, pp.257-270, 1994.

Adaptively Secure Traitor Tracing Against Key Exposure 135

6. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, “A Generic Construction
for Intrusion-Resilient Public-Key Encryption,” Proc. of CT-RSA’04, LNCS 2964,
Springer-Verlag, pp.81-98, 2004.

7. Y. Dodis, J. Katz, S. Xu and M. Yung, “Key-Insulated Public-Key Cryptosystems,”
Proc. of Eurocrypt’02, LNCS 2332, Springer-Verlag, pp.65-82, 2002.

8. K. Kurosawa and Y. Desmedt, “Optimum Traitor Tracing and Asymmetric
Schemes,” Proc. of Eurocrypt’98, LNCS 1403, Springer-Verlag, pp.145-157, 1998.

9. K. Kurosawa and T. Yoshida, “Linear Code Implies Public-Key Traitor Tracing,”
Proc. of PKC’02, LNCS 2274, Springer-Verlag, pp.172-187, 2002.

10. T. Matsushita and H. Imai, “A Public-Key Black-Box Traitor Tracing Scheme with
Sublinear Ciphertext Size Against Self-Defensive Pirates,” Proc. of Asiacrypt’04,
LNCS 3329, Springer-Verlag, pp.260-275, 2004.

11. D. R. Stinson and R. Wei, “Key Preassigned Traceability Schemes for Broad-
cast Encryption,” Proc. of Selected Areas in Cryptography (SAC’98), LNCS 1556,
Springer-Verlag, pp.144-156, 1998.

12. V. D. To, R. Safavi-Naini, and F. Zhang, “New traitor tracing schemes using bi-
linear map,” Proc. of ACM Workshop on Digital Rights Management (DRM’03),
pp.67-76, 2003.

Fingercasting—Joint Fingerprinting
and Decryption of Broadcast Messages

André Adelsbach, Ulrich Huber, and Ahmad-Reza Sadeghi

Horst Görtz Institute for IT Security
Ruhr-Universität Bochum, Germany

andre.adelsbach@nds.rub.de, {huber, sadeghi}@crypto.rub.de

Abstract. We propose a stream cipher that provides confidentiality,
traceability and renewability in the context of broadcast encryption.
We prove it to be as secure as the generic pseudo-random sequence on
which it operates. This encryption scheme, termed fingercasting scheme,
achieves joint decryption and fingerprinting of broadcast messages in
such a way that an adversary cannot separate both operations or pre-
vent them from happening simultaneously. The scheme is a combination
of a broadcast encryption scheme, a fingerprinting scheme and an encryp-
tion scheme inspired by the Chameleon cipher. It is the first to provide
a formal security proof and a non-constant lower bound for resistance
against collusion of malicious users, i.e., a minimum number of content
copies needed to remove all fingerprints. The scheme is efficient and in-
cludes parameters that allow, for example, to trade-off storage size for
computation cost at the receiving end.

1 Introduction

Experience shows that adversaries attack Broadcast Encryption (BE) systems
in a variety of different ways. Their attacks may be on the hardware that stores
cryptographic keys, e.g., when they extract keys from a compliant device to
develop a pirate device such as the DeCSS software that circumvents the Content
Scrambling System [1]. Alternatively, their attacks may be on the decrypted
content, e.g., when a legitimate user shares decrypted content with illegitimate
users on a file sharing system such as Napster, Kazaa, and BitTorrent.

The broadcasting sender thus has three security requirements: confidentiality,
traceability of content and keys, and renewability of the encryption scheme. Con-
fidentiality tries to prevent illegal copies, whereas traceability is a second line of
defense aimed at finding the origin of an illegal copy. The need for traceability
implies that confidentiality may be compromised in rare cases, e.g., when a few
users illegally distribute their secret keys. Renewability ensures that after such
rare events, the encryption system can recover from the security breach.

In broadcasting systems deployed today, e.g., CPPM [2] or AACS [3], confi-
dentiality and renewability often rely on BE because it provides short cipher-
texts while at the same time having realistic storage requirements in devices and
acceptable computational overhead. Traitor tracing enables traceability of keys,

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 136–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fingercasting—Joint Fingerprinting and Decryption of Broadcast Messages 137

whereas fingerprinting provides traceability of content. Finally, renewability may
be achieved using revocation of the leaked keys.

However, none of the mentioned cryptographic schemes covers all three secu-
rity requirements. Some BE schemes lack traceability of keys, whereas no prac-
tically relevant scheme provides traceability of content [4, 5, 6, 7]. Traitor tracing
does not provide traceability of of content [8, 9]. Fingerprinting schemes do not
provide confidentiality [10]. The original Chameleon cipher provides confiden-
tiality, traceability and a hint on renewability, but with a small constant bound
for collusion resistance and without formal proof of security [11]. Asymmetric
schemes, which provide each compliant device with a certificate and accompany
content with Certificate Revocation Lists (CRLs), lack traceability of content
and reach the limits of renewability when CRLs become too large. A trivial
combination of fingerprinting and encryption leads to an unacceptable trans-
mission overhead because the sender needs to sequentially transmit each finger-
printed copy. Finally, receiver-side fingerprint embedding relies on the tamper
resistance of the receivers’ hardware [10], which is doubtful in practice. Each
receiver is trusted to embed the fingerprint after decryption. However, perfect
tamper-resistance cannot be achieved under realistic assumptions [15].

We present, to the best of our knowledge, the first rigorous security proof
of Chameleon ciphers, thus providing a sound foundation for their recent ap-
plications, e.g., [12]. Furthermore, we give an explicit criterion to judge the
security of the Chameleon cipher’s key table. Our fingercasting approach fulfills
all three security requirements at the same time. It is a combination of (i) a
new Chameleon cipher based on the fingerprinting capabilities of a class of wa-
termarking schemes and (ii) an arbitrary broadcast encryption scheme, which
explains the name of the approach. The basic idea is to use the Chameleon ci-
pher for combining decryption and fingerprinting. To achieve renewability, we
use a BE scheme to provide fresh session keys as input to the Chameleon ci-
pher. To achieve traceability, we fingerprint the receivers’ key tables such that
they embed a fingerprint into the content during decryption. To enable higher
collusion resistance than the original Chameleon scheme, we tailor our cipher
to emulate any watermarking scheme whose coefficients can be disaggregated
into additive components. As proof of concept, we instantiate the watermarking
scheme with Spread Spectrum Watermarking (SSW), which has proven collusion
resistance [13, 14]. However, we might as well use any other such scheme.

We note that our fingercasting approach distributes a single encrypted copy of
the content. In addition, it ensures embedding of a fingerprint even if a malicious
user succeeds in extracting the decryption keys of his receiver. As long as the
number of colluding users remains below a threshold, they can only create new
decryption keys and content copies that incriminate at least one of them.

2 Related Work

The original Chameleon cipher of Anderson and Manifavas is a 3-collusion-
resistant fingercasting scheme [11]: A collusion of up to 3 malicious users has
a negligible chance of creating of a good copy that does not incriminate them.

138 A. Adelsbach, U. Huber, and A.-R. Sadeghi

Each legitimate user knows the seed of a Pseudo-Random Sequence (PRS) and a
long table filled with random keywords. Based on the sender’s master table, each
receiver obtains a slightly different table copy, where individual bits are modified
in a characteristic way. Interpreting the PRS as a sequence of addresses in the
table, the sender adds the corresponding keywords in the master table bitwise
modulo 2 in order to mask the plaintext word. The receiver applies the same
operation to the ciphertext using its table copy, thus embedding the fingerprint.

The original cipher, however, has some inconveniences. Most importantly, it
has no formal security analysis and bounds the collusion resistance by the con-
stant number 3, whereas our scheme allows to choose this bound depending on
the number of available watermark coefficients. In addition, the original scheme
limits the content space (and keywords) to strings with characteristic bit po-
sitions that may be modified without visibly altering the content. In contrast,
our scheme uses algebraic operations in a group of large order, which enables
modification of any bit in the keyword and processing of arbitrary documents.

Chameleon was inspired by work from Maurer [16]. His cipher achieves infor-
mation-theoretical security in the bounded storage model with high probability.
In contrast, Chameleon and our proposed scheme only achieve computational
security. However, Maurer’s cipher was never intended to provide traceability of
content or renewability, but only confidentiality.

Ferguson et al. discovered security weaknesses in a randomized stream cipher
similar to Chameleon [17]. However, their attack only works for linear sequences
of keywords in the master table, not for the PRSs of our proposed solution.

Ergun, Kilian, and Kumar prove that an averaging attack with additional
Gaussian noise defeats any watermarking scheme [18]. Their bound on the min-
imum number of different content copies needed for the attack asymptotically
coincides with the bound on the maximum number of different content copies
to which the watermarking scheme of Kilian et al. is collusion-resistant [14].
As we emulate [14], its collusion resistance is asymptotically the best we can
hope for.

Recently there was a great deal of interest in joint fingerprinting and decryp-
tion [12, 19, 20, 10, 21]. Basically, we can distinguish three strands of work. The
first strand of work applies Chameleon in different application settings. Briscoe et
al. introduce Nark, which is an application of the original Chameleon scheme in
the context of Internet multicast [12]. However, in contrast to our new Chameleon
scheme they neither enhance the original scheme nor analyze its security. The
second strand of work tries to achieve joint fingerprinting and decryption by
either trusting network nodes to embed fingerprints (Watercasting in [19]) or
doubling the size of the ciphertext by sending differently fingerprinted packets
of content [20]. Our proposed solution neither relies on trusted network nodes
nor increases the ciphertext size. The third strand of work proposes new joint
fingerprinting and decryption processes, but at the price of replacing encryption
with scrambling, which does not achieve indistinguishability of ciphertext and
has security concerns [10, 21]. In contrast, our new Chameleon scheme achieves
indistinguishability of ciphertext.

Fingercasting—Joint Fingerprinting and Decryption of Broadcast Messages 139

3 Preliminaries

3.1 Notation

We recall some standard notations that will be used throughout the paper. First,
we denote scalar objects with lower-case variables, e.g., o1, and object tuples as
well as roles with upper-case variables, e.g., X1. When we summarize objects
or roles in set notation, we use an upper-case calligraphic variable, e.g., O :=
{o1, o2, . . .} or X := {X1,X2, . . .}. Second, let A be an algorithm. By y ← A(x)
we denote that y was obtained by running A on input x. For example, by y ←
N(μ, σ) we denote that y was obtained by selecting it at random with normal
distribution, where μ is the mean and σ the standard deviation. Third, o1

R← O
and o2

R← [0, z] denote the selection of a random element of the set O and the
interval [0, z] with uniform distribution. Finally, V ·W denotes the dot product
of two vectors V := (v1, . . . , vn) and W := (w1, . . . ,wn), which is defined as
V ·W :=

∑n
j=1 vjwj , while ||V || denotes the Euclidean norm ||V || :=

√
V · V .

3.2 Roles and Objects in Our System Model

The (broadcast) center manages the broadcast channel, distributes decryption
keys and is fully trusted. The users obtain the content via devices that we refer to
as receivers. For example, a receiver may be a set-top box in the context of pay-
TV or a DVD player in movie distribution. We denote the number of receivers
with N ; the set of receivers is U := {ui | 1 ≤ i ≤ N }. When a receiver violates
the terms and conditions of the application, e.g., leaks its keys or shares content,
the center revokes the receiver’s keys and thus makes them useless for decryption
purposes. We denote the set of revoked receivers with R := {r1, r2, . . .} ⊂ U .

We represent broadcast content as a sequence M := (m1, . . . ,mn) of real
numbers in [0, z], where M is an element of the content space M. For example,
these numbers may be the n most significant coefficients of the Discrete Cosine
Transform (DCT) of an image as described in [13]. However, they should not be
thought of as a literal description of the underlying content, but as a represen-
tation of the values that are to be changed by the watermarking process [18].

3.3 Cryptographic Building Blocks

Chameleon Encryption. To set up the scheme CE := (KeyGenCE, KeyExtrCE,
EncCE, DecCE), the center generates the secret master table MT and the secret
table fingerprints TF := (TF (1), . . . ,TF (N)) using the key generation algorithm
(MT ,TF) ← KeyGenCE(N , 1λ′

, parCE), where N is the number of receivers, λ′

a security parameter, and parCE a set of parameters. To add receiver ui to the
system, the center uses the key extraction algorithm RT (i) ← KeyExtrCE(MT ,
TF , i) to deliver the secret receiver table RT (i) to ui . To encrypt content M
exclusively for the receivers in possession of a receiver table RT (i) and a session
key k sess, the center uses the encryption algorithm C ← EncCE(MT , k sess,M),
where the output is the ciphertext C . Only a receiver ui in possession of RT (i)

140 A. Adelsbach, U. Huber, and A.-R. Sadeghi

and k sess is capable of decrypting C and obtaining a fingerprinted copy M (i)

of M using the decryption algorithm M (i) ← DecCE(RT (i), k sess,C). When the
center discovers an illegal copy M ∗ of content M , it uses the fingerprint detection
algorithm of the underlying fingerprinting scheme.

Fingerprinting. To set up the scheme, the center generates the secret content
fingerprints CF := (CF (1), . . . ,CF (N)) and the secret similarity threshold t using
the setup algorithm (CF , t) ← SetupFP(N ,n ′, parFP), where N is the number of
receivers, n ′ the number of content coefficients, and parFP a set of performance
parameters. To embed the content fingerprint CF (i) := (cf (i)

1 , . . . , cf (i)
n′) of re-

ceiver ui into the original content M , the center uses the embedding algorithm
M (i) ← EmbedFP(M ,CF (i)). To verify whether an illegal copy M ∗ of content M
contains traces of the content fingerprint CF (i) of receiver ui , the center uses the
detection algorithm dec ← DetectFP(M ,M ∗,CF (i), t). It calculates the similar-
ity between the detected fingerprint CF ∗ := M ∗−M and CF (i) using a similarity
measure. If the similarity is above the threshold t , then the center declares ui
guilty (dec = true), otherwise innocent (dec = false). The detection algorithm
is called non-blind because it needs the original content M as input.

In the sequel, we call a fingerprinting scheme additive if the probability distri-
bution Prob of its coefficients has the following property: Adding two indepen-
dent random variables that follow Prob results in a random variable that also
follows Prob. Spread Spectrum Watermarking (SSW) is an instance of an additive
fingerprinting scheme [14]. The content fingerprint CF (i) consists of independent
random variables cf (i)

j with distribution Prob = N(0, σ′), where σ′ is a function
fσ′(N ,n ′, parFP). The similarity threshold t is a function ft (σ′,N , parFP). Both
functions fσ′ and ft are specified in [14]. During EmbedFP, the center adds the
fingerprint coefficients to the content coefficients: m(i)

j ← mj + cf (i)
j . The simi-

larity measure is Sim(CF ∗,CF (i)) := (CF ∗ · CF (i))/||CF ∗||.

Theorem 1. [14, Section 3.4] In the SSW scheme with the above parameters,
an adversarial coalition needs Ω(

√
n ′/ lnN) differently fingerprinted copies of

content M to have a non-negligible chance of creating a good copy M ∗ without
any coalition member’s fingerprint.

Broadcast Encryption. To set up the scheme, the center generates the secret
master key MK using the key generation algorithm MK ← KeyGenBE(N , 1λ′′

),
where N is the number of receivers and 1λ′′

the security parameter. To add
receiver ui to the system, the center uses the key extraction algorithm SK (i) ←
KeyExtrBE(MK , i) to extract the secret key SK (i) of ui . To encrypt content M
exclusively for the non-revoked receivers U \ R, the center uses the encryption
algorithm C ← EncBE(MK ,R,M), where the output is the ciphertext C . Only a
non-revoked receiver ui has a matching private key SK (i) that allows to decrypt
C and obtain M using the decryption algorithm M ← DecBE(i ,SK (i),C).

Pseudo-random Sequence (PRS). We formally define the term PRS in the
technical report [22]. Informally, a PRS is a long bit string that no efficient
algorithm can distinguish from a truly random bit string of identical length. In

Fingercasting—Joint Fingerprinting and Decryption of Broadcast Messages 141

order to create a PRS, a Pseudo-Random Sequence Generator (PRSG), which is
a deterministic polynomial-time algorithm G, derives the long bit string from a
short random seed. If |σ| ∈ N is the length of the seed σ, then the expansion factor
len : N → N of the PRSG determines the length of the PRS: |G(σ)| = len(|σ|).

3.4 Requirements of a Fingercasting Scheme

Before we enter into the details of our fingercasting (FC) approach, we summarize
its requirements: correctness, security, collusion resistance, and frame-proofness.
To put it simply, the aim of the fingercasting approach is to generically combine
an instance of a BE scheme, a Chameleon scheme, and a fingerprinting scheme
such that the combination inherits the security of BE and Chameleon scheme as
well as the collusion resistance of fingerprinting.

We informally explain the requirements one by one; a formal definition is avail-
able in [22]. Correctness requires that the receiver obtains with high probability
a fingerprinted copy that is perceptually indistinguishable from the original; in
other words, the fingerprint may not deteriorate the content and lead to a bad
copy. We denote the residual probability of a bad copy with pbad, which obvi-
ously should be close to 0 for practical purposes. The SSW scheme of [14] uses
the measure ||M (i) −M || ≤

√
n ′δ to decide whether a copy is good, where n ′ is

the number of content coefficients and δ a goodness criterion.
All relevant BE schemes provide even stronger security notions than Chame-

leon [5, 6, 7]. The remaining requirements therefore only relate to the Chameleon
scheme CE . We informally define security of CE as follows: No efficient algorithm
may be capable of distinguishing the ciphertexts of two messages, even if this
algorithm selects the two messages to be encrypted and obtains an encryption
of one of the two messages selected at random.

Resistance against a collusion of up to q colluders (or q-collusion resist-
ance) means that no efficient algorithm with access to the secret information
of at most q colluders may be capable of creating a good content copy such
that the fingerprint detection algorithm incriminates none of the colluders. We
denote the residual probability of a successful collusion with pneg, which is
usually called the false negative probability. 1-collusion resistance is known as
robustness.

Frame-proofness is similar to collusion resistance, but the adversarial coalition
wins if the detection algorithm accuses an innocent user. We denote the residual
probability of a successful framing attack with ppos, which is usually called the
false positive probability.

4 Proposed Solution

4.1 High-Level Overview of the Proposed Fingercasting Scheme

To fingercast content, the center uses the BE scheme to send a fresh session
key to each non-revoked receiver. This session key initializes a pseudo-random
sequence generator. The resulting pseudo-random sequence represents a sequence

142 A. Adelsbach, U. Huber, and A.-R. Sadeghi

of addresses in the master table of our new Chameleon scheme. The center
encrypts the content with the master table entries to which the addresses refer.
Each receiver has a unique receiver table that differs only slightly from the
master table. During decryption, these slight differences in the receiver table
lead to slight, but characteristic differences in the content copy.

We divide this approach into the same five steps that we have seen for
Chameleon schemes in Section 3.3. First, the key generation algorithm of the
fingercasting scheme consists of the key generations algorithms of the two under-
lying schemes KeyGenBE and KeyGenCE. The center’s master key thus consists
of MK , MT and TF . Second, the same observation holds for the key extraction
algorithm of the fingercasting scheme. It consists of the respective algorithms in
the two underlying schemes KeyExtrBE and KeyExtrCE. The secret key of receiver
ui therefore has two elements: SK (i) and RT (i).

Third, the encryption algorithm defines how we interlock the two underly-
ing schemes. To encrypt, the center generates a fresh and random session key
k sess R← {0, 1}λ. This session key is broadcasted to the non-revoked receivers us-
ing the BE scheme: CBE ← EncBE(MK ,R, k sess). Subsequently, the center uses
k sess to determine addresses in the master table MT of the Chameleon scheme
and encrypts with the corresponding entries: CCE ← EncCE(MT , k sess,M). The
ciphertext of the fingercasting scheme thus has two elements CBE and CCE.

Fourth, the decryption algorithm inverts the encryption algorithm with un-
noticeable, but characteristic errors. First of all, each non-revoked receiver ui

recovers the correct session key: k sess ← DecBE(i ,SK (i),CBE). Therefore, ui can
recalculate the PRS and the correct addresses in receiver table RT (i). How-
ever, this receiver table is slightly different from the master table. Therefore, ui

obtains a fingerprinted copy M (i) that is slightly different from the original con-
tent: M (i) ← DecCE(RT (i), k sess,CCE). Last, the fingerprint detection algorithm
of the fingercasting scheme is identical to that of the underlying fingerprinting
scheme.

4.2 A New Chameleon Scheme

Up to now, we have focused on the straightforward aspects of our approach; we
have neglected the impact of the requirements on the Chameleon scheme. In the
sequel, we will show a specific Chameleon scheme that fulfills all of them. We de-
sign it such that its content fingerprints can emulate any additive fingerprinting
scheme, which we later instantiate with the SSW scheme as proof of concept.

Key Generation. To define this algorithm, we need to determine how the
center generates the master table MT and the table fingerprints TF . To generate
MT , the center chooses L = 2l table entries at random from the interval [0, z]
with independent uniform distribution: mtα

R← [0, z] for all α ∈ {1, . . . , L}. The
center thus obtains the master table MT := (mt1,mt2, . . . ,mtL).

To generate the table fingerprints TF := (TF (1), . . . ,TF (N)), the center se-
lects for each receiver ui and each master table entry mtα a fingerprint coefficient
in order to disturb the original entry. Specifically, each fingerprint coefficient tf (i)

α

Fingercasting—Joint Fingerprinting and Decryption of Broadcast Messages 143

(a) To derive RT (i) from MT , the cen-
ter subtracts the L fingerprint coefficients
tf (i)

α at address α for all α ∈ {1, . . . , L}.

(b) To derive C from M , the center uses
the session key to generate a PRS. It adds
the addressed master table entries to M .

Fig. 1. Receiver table derivation and ciphertext calculation

of table fingerprint TF (i) is independently distributed according to the proba-
bility distribution Prob of the additive fingerprinting scheme, but scaled down
with an attenuation factor f ∈ R, f ≥ 1:

tf (i)
α ← 1/f · Prob(parFP) (1)

Key Extraction. After the probabilistic key generation algorithm we now de-
scribe the deterministic key extraction algorithm. The center processes table
fingerprint TF (i) := (tf (i)

1 , . . . , tf (i)
L) of receiver ui as follows: The center sub-

tracts each fingerprint coefficient in TF (i) from the corresponding master table
entry to obtain the receiver table entry, which we illustrate in Fig. 1(a):

∀α ∈ {1, . . . , L} : rt (i)
α ← mtα − tf (i)

α mod p (2)

Remark 1. The modulo operator allows only integer values to be added. How-
ever, MT , TF , and M are based on real numbers. We solve this ostensible
contradiction by scaling the real values to the integer domain with an appropri-
ate scaling factor ρ and ignoring further decimal digits. ρ must be large enough
to allow a computation in the integer domain with a sufficiently high precision
suitable for the current application. We implicitly assume this scaling to the
integer domain whenever real values are used. For example, with real-valued
variables rt (i), mt , and tf (i) the operation rt (i) ← (mt − tf (i)) mod p actually
stands for ρ · rt (i) ← (ρ · mt − ρ · tf (i)) mod p. Note that the scaling operation
does not give the adversary more information than in the original fingerprinting
scheme.

144 A. Adelsbach, U. Huber, and A.-R. Sadeghi

Encryption. Fig. 1(b) gives an overview of the encryption algorithm. The ses-
sion key k sess is used as the seed of a PRSG with len(|k sess|) ≥ n · s · l , where s
will be specified below. To give a practical example for a PRSG, k sess may serve
as the key for a conventional block cipher, e.g., AES, in output feedback mode.
Each block of l bits of the PRS is interpreted as an address β in the master
table MT . For each coefficient of the plaintext, the center uses s addresses that
define s entries of the master table. In total, the center obtains n · s addresses
that we denote with βj ,k , where j is the coefficient index, k the address index,
and Extracti extracts the i-th block of length l from its input string:

∀ j ∈ {1, . . . ,n}, ∀ k ∈ {1, . . . , s} : βj ,k ← Extract(j−1)s+k (G(k sess)) (3)

For each content coefficient, the center adds the s master table entries modulo
the group order. In Fig. 1(b), we illustrate the case s = 4, which is the design
choice in the original Chameleon cipher. Let mtβj ,k be the master table entry
referenced by address βj ,k from (3). Then coefficient cj of C is calculated as

cj ←
(
mj +

s∑
k=1

mtβj ,k

)
mod p , j ∈ {1, . . . ,n} . (4)

Decryption. The decryption algorithm proceeds in the same way as the en-
cryption algorithm with two exceptions. First, the receiver has to use its receiver
table RT (i) instead of MT . Second, the addition is replaced by subtraction. The
j -th coefficient m(i)

j of the plaintext copy M (i) of receiver ui is thus calculated
as

m(i)
j ←

(
cj −

s∑
k=1

rt (i)
βj ,k

)
mod p, (5)

where rt (i)
βj ,k

denotes the receiver table entry of receiver ui referenced by address
βj ,k generated in (3). As the receiver table RT (i) slightly differs from MT , the
plaintext copy M (i) obtained by receiver ui slightly differs from M . The ratio of
distortion is the same as that of the instantiated fingerprinting scheme.

Fingerprint Detection. When the center detects an illegal copy M ∗=(m∗
1 , . . . ,

m∗
n) of M , it tries to identify the receivers that participated in the generation of

M ∗. To do so, the center verifies whether the fingerprint of a suspect receiver ui
is present in M ∗. Obviously, the fingerprint is unlikely to appear in its original
form; an adversary may have modified it by applying common attacks such as re-
sampling, requantization, and compression. In addition, an adversarial coalition
may have colluded and created M ∗ using several different copies of M .

The fingerprint detection algorithm is identical to that of the underlying fin-
gerprinting scheme: dec ← DetectFP(M ,M ∗,CF (i), t). In order to scale the con-
tent fingerprint, we need to select the attenuation factor f in (1). We choose it
such that adding s attenuated fingerprint coefficients generates a random vari-
able that follows Prob without attenuation. We give an example in Section 4.3.

In order to verify whether the table fingerprint TF (i) of receiver ui left traces in
M ∗, DetectFP calculates the similarity between the detected content fingerprint

Fingercasting—Joint Fingerprinting and Decryption of Broadcast Messages 145

CF ∗ with coefficients cf ∗j := m∗
j −mj and the content fingerprint CF (i) in ui ’s

copy M (i) with cf (i)
j := m(i)

j − mj
(4),(5)

=
∑s

k=1(mtβj ,k − rt (i)
βj ,k

)
(2)
=
∑s

k=1 tf (i)
βj ,k

,
where tf (i)

βj ,k
is the fingerprint coefficient that fingerprinted receiver table RT (i) at

address α = βj ,k in (2). If the similarity is above threshold t , the center declares
ui guilty. Note that the calculation of CF ∗ necessitates the original content M ,
whereas the calculation of CF (i) relies on the session key k sess and the table
fingerprint TF (i); the scheme is thus non-blind. The same algorithm applies to
detection of fingerprints in illegal copies of receiver tables. Their fingerprints have
the same construction and statistical properties (for further details see [22]).

Parameter Selection. The scheme has two major parameters L and s that
allow a trade-off between the size of RT (i), which ui has to store, and the com-
putation cost, which grows linearly with the number s of addresses per content
coefficient in (4). By increasing L, we can decrease s in order to replace compu-
tation cost with storage size. Further details appear in [22].

4.3 Instantiation with Spread Spectrum Watermarking

In this section, we instantiate the fingerprinting scheme with the SSW scheme
of [14] and thereby inherit its collusion resistance and frame-proofness. Let the
center choose the SSW scheme’s parameters parFP = (δ, pbad, ppos), which al-
lows to calculate a standard deviation σ′ and a threshold t via two functions
fσ′(N ,n ′, δ, pbad) and ft (σ′,N , ppos) defined in [14]. The probability distribu-
tion of the SSW scheme is then Prob = N(0, σ′). We set f = s such that
1/f · N(0, σ′) in (1) is still a normal distribution with mean 0 and standard
deviation 1/

√
s ·σ′. It remains to define the similarity measure for the detection

algorithm dec ← DetectFP(M ,M ∗,CF (i), t), which [14] defines as dec = true if
(CF ∗ ·CF (i))/||CF ∗|| > t . We call this instantiation exact if it achieves the same
statistical properties as the fingerprinting scheme that it instantiates. Theorem 2
below states that the above choice is an exact instantiation; we prove it in [22]:

Theorem 2. Let σ′ and σ be the standard deviations of the SSW scheme and
the Chameleon scheme instantiated with SSW, respectively, and n ′ and n be their
number of content coefficients. Then the following mapping between both schemes
is an exact instantiation: σ′ =

√
s · σ (⇔ f = s) and n ′ = n

4.4 Analysis

Correctness, Collusion Resistance and Frame-Proofness. Correctness
follows trivially from the correctness of the two underlying schemes, i.e., the BE
scheme and the SSW scheme. Collusion resistance and frame-proofness of content
and receiver tables follows from the collusion resistance and frame-proofness of
the instantiated fingerprinting scheme.

Security of the Chameleon Encryption Scheme. In the technical re-
port [22] we reduce the security of our Chameleon scheme CE to that of the

146 A. Adelsbach, U. Huber, and A.-R. Sadeghi

PRSG with which it is instantiated. To do so, we prove that no efficient algo-
rithm can distinguish the key stream produced by CE from a truly random key
stream.

In the remainder of this section we give the results of the security analysis,
whereas further details and the proofs appear in [22]. As pointed out in Remark 1
there is a one-to-one mapping between the actual plaintext symbol space [0, z]
containing real numbers with finite precision and the scaled space {0, 1, . . . ,Z −
1}, which enumerates the elements of [0, z] starting from 0. Further, we define the
key symbol space K to be equal to {0, 1, . . . ,Z − 1} and therefore p := |K| = Z .
In the sequel, by key symbols we mean the elements of K.

Definition 1. Let U be a uniformly distributed key symbol. Let pk denote the
probability Pr

[
X (1) = xk

]
of drawing key symbol xk ∈ K in a single draw X (1)

from master table MT. Let the statistical quality SQ (1) of MT be the statistical
difference between X (1) and U : SQ (1) := 1

2

∑Z−1
k=0

∣∣pk − 1
Z

∣∣. Then we call the
master table strongly converging if 2SQ(1) ≤ d for some d ∈ R such that d < 1.

Theorem 3. Let Xk denote the k-th draw from master table MT and X (s) the
random variable resulting from s independent uniformly distributed draws added
modulo Z : X (s) :=

∑s
k=1 Xk mod Z . Let MT be a strongly converging mas-

ter table. Then X (s) has a negligible statistical difference SQ (s) from U , where
SQ (s) has an upper bound of 1

2d s . In addition, no probabilistic polynomial-time
adversary can distinguish the key stream of CE from a truly random key stream.

Implementation. We discuss implementation aspects and practical parameter
choices, which allow to trade off storage size for computation cost, in [22].

5 Conclusion

In this document we gave a formal proof of the security of a new Chameleon
cipher. Applied to a generic fingercasting approach, it provides confidentiality of
ciphertext, traceability of content and keys as well as renewability. We achieved
confidentiality through a combination of a generic broadcast encryption (BE)
scheme and the new Chameleon cipher. In addition, we obtained traceability
of keys and content through embedding of a receiver-specific fingerprint into
the master table copies, which are given to the receivers. Finally, we achieved
renewability through revocation, which is performed in the BE scheme.

References

1. Touretzky, D.S.: Gallery of CSS descramblers. Webpage, Computer
Science Department of Carnegie Mellon University (2000) URL http://
www.cs.cmu.edu/∼dst/DeCSS/Gallery (November 17, 2005).

2. 4C Entity, LLC: CPPM specification—introduction and common cryptographic
elements. Specification, Revision 1.0 (2003)

3. AACS Licensing Administrator: Advanced access content system (AACS): Intro-
duction and common cryptographic elements. Specification, Revision 0.90 (2005)

Fingercasting—Joint Fingerprinting and Decryption of Broadcast Messages 147

4. Fiat, A., Naor, M.: Broadcast encryption. In Stinson, D.R., ed.: CRYPTO 1993.
Volume 773 of LNCS, Springer (1994) 480–491

5. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In Kilian, J., ed.: CRYPTO 2001. Volume 2139 of LNCS, Springer (2001)
41–62

6. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In Yung, M., ed.:
CRYPTO 2002. Volume 2442 of LNCS, Springer (2002) 47–60

7. Jho, N.S., Hwang, J.Y., Cheon, J.H., Kim, M.H., Lee, D.H., Yoo, E.S.: One-way
chain based broadcast encryption schemes. In Cramer, R., ed.: EUROCRYPT
2005. Volume 3494 of LNCS, Springer (2005) 559–574

8. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In Desmedt, Y., ed.: CRYPTO
1994. Volume 839 of LNCS, Springer (1994) 257–270

9. Naor, M., Pinkas, B.: Threshold traitor tracing. In Krawczyk, H., ed.: CRYPTO
1998. Volume 1462 of LNCS, Springer (1998) 502–517

10. Kundur, D., Karthik, K.: Video fingerprinting and encryption principles for digital
rights management. Proceedings of the IEEE 92(6) (2004) 918–932

11. Anderson, R.J., Manifavas, C.: Chameleon—a new kind of stream cipher. In
Biham, E., ed.: FSE 1997. Volume 1267 of LNCS, Springer (1997) 107–113

12. Briscoe, B., Fairman, I.: Nark: Receiver-based multicast non-repudiation and key
management. In: ACM EC 1999, ACM Press (1999) 22–30

13. Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum water-
marking for multimedia. IEEE Trans. Image Process. 6(12) (1997) 1673–1687

14. Kilian, J., Leighton, F.T., Matheson, L.R., Shamoon, T.G., Tarjan, R.E., Zane, F.:
Resistance of digital watermarks to collusive attacks. Technical Report TR-585-98,
Princeton University, Department of Computer Science (1998)

15. Anderson, R.J., Kuhn, M.: Tamper resistance—a cautionary note. In Tygar, D.,
ed.: USENIX Electronic Commerce 1996, USENIX (1996) 1–11

16. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized ci-
pher. Journal of Cryptology 5(1) (1992) 53–66

17. Ferguson, N., Schneier, B., Wagner, D.: Security weaknesses in a randomized
stream cipher. In Dawson, E., Clark, A., Boyd, C., eds.: ACISP 2000. Volume
1841 of LNCS, Springer (2000) 234–241

18. Ergün, F., Kilian, J., Kumar, R.: A note on the limits of collusion-resistant wa-
termarks. In Stern, J., ed.: EUROCRYPT 1999. Volume 1592 of LNCS, Springer
(1999) 140–149

19. Brown, I., Perkins, C., Crowcroft, J.: Watercasting: Distributed watermarking of
multicast media. In Rizzo, L., Fdida, S., eds.: Networked Group Communication
1999. Volume 1736 of LNCS, Springer (1999) 286–300

20. Parviainen, R., Parnes, P.: Large scale distributed watermarking of multicast media
through encryption. In: Communications and Multimedia Security (CMS 2001).
Volume 192 of IFIP Conference Proceedings, Kluwer (2001) 149–158

21. Luh, W., Kundur, D.: New paradigms for effective multicasting and fingerprinting
of entertainment media. IEEE Communications Magazine 43(5) (2005) 77–84

22. Adelsbach, A., Huber, U., Sadeghi, A.R.: Fingercasting—joint fingerprinting and
decryption of broadcast messages. Technical Report, Horst Görtz Institute for IT
Security (2006) http://www.prosec.rub.de/publications .

More on Stand-Alone and Setup-Free Verifiably
Committed Signatures

Huafei Zhu and Feng Bao

Institute for Infocomm Research, A-star, Singapore
{huafei, baofeng}@i2r.a-star.edu.sg

Abstract. Two notions regarding fair exchange protocols have been
introduced and formalized in the literature − one is verifiably encrypted
signatures; the other is verifiably committed signatures. Thus it is always
interesting to explore relationship between two notions. In this paper, we
first show that the existence of verifiably encrypted signatures implies
the existence of the verifiably committed signatures while the existence of
verifiably committed signatures does not imply the existence of verifiably
encrypted signatures. As a result, the notion of verifiably committed
signatures is a general extension of the notion of verifiably encrypted
signatures.

The state-of-the-art verifiably committed signature that enjoys the
off-line, setup-free and stand-alone properties is due to Zhu and Bao
[21]. The main criticism of their paper is the use of Boudot’s protocol
which is pretty expensive indeed. This paper further makes contribu-
tions regarding the removal of Boudot’s protocol from their construc-
tion [21]. To cope with this challenge problem, we provide a general
construction of stand-alone and setup-free verifiably committed signa-
tures from Schnorr’s signature without the help of Boudot’s protocol.
We show that our implementation is provably secure in the random or-
acle model assuming that the underlying Schnorr’s signature scheme is
secure against adaptive chosen message attack and Paillier’s encryption
scheme is one-way. Since Cramer-Shoup’s trapdoor hash signature is of
ad hoc structure, we can embed the discrete logarithm structure where
Schnorr’s signature is defined into Cramer-Shoup’s scheme and then ap-
ply the proved result to the verifiably committed signature of [21].

Keywords: Fair-exchange, verifiably committed signature, verifiably en-
crypted signature.

1 Introduction

Two notions regarding fair exchange protocols have been introduced and for-
malized in the literature − one is verifiably encrypted signatures; the other is
verifiably committed signatures.

Verifiably encrypted signatures. The notion of verifiably encrypted
signatures was introduced by Asokan et al [1, 2] in 1988. Verifiably encrypted
signatures consist of the following things: a primary signer Alice wants to show

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 148–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

More on Stand-Alone and Setup-Free Verifiably Committed Signatures 149

a verifier Bob that she has signed a message, but does not want Bob to possess
her signature of that message, and Alice will give her signature to Bob only
when she gets what she needs from Bob. Alice can achieve this by encrypting
her signature using the public key of a trusted third party (TTP), and send-
ing this to Bob along with a proof that she has given him a valid encryption
of her signature. Bob can verify that Alice has signed the message, but cannot
deduced any information about her signature. Later, in the protocol, if Alice
is unable to or unwilling to reveal her signature, Bob can ask the trusted third
party Charlie (arbitrator/TTP) to reveal Alice’s signature.

Verifiably committed signatures. The notion of verifiably committed sig-
natures was introduced by Park, Chong and Siegel[18] and later formalized
by Dodis and Reyzin[13]. Verifiably committed signatures consist of the fol-
lowing things: a primary signer Alice can produce a partial signature to her
verifier Bob; upon receiving what she needs from Bob, she can convert it to
a full signature. If she refuses, a trusted third party Charlie (arbitrator) can
do it for her upon the receipt of a partial signature and proper verification
that Bob fulfilled his obligation to Alice.

1.1 A Gap Between Two Notions

We will provide the following two observations regarding two notions above. We
show that

Claim 1. the existence of verifiably encrypted signatures implies the existence
of the verifiably committed signatures;

Claim 2. the existence of verifiably committed signatures does not imply the
existence of verifiably encrypted signatures.

To see the first claim, we consider the following verifiably encrypted signatures
below[8]:

Step 1: Alice sends Bob her verifiable encryption of a signature, attaching a
condition that describes the signature that Bob is supposed to give Alice;

Step 2: Bob receives and verifies the verifiable encryption of the signature from
Alice. If this succeeds (e.g, the verification algorithm outputs 1), Bob sends Al-
ice his signature (an ordinary signature on the message); otherwise, Bob quits;

Step 3: Alice receives and verifies the ordinary signature from Bob. If this suc-
ceeds, Alice sends Bob her signature, and quit;

Step 4: Bob receives and verifies the signature from Alice. If this succeeds,
Bob outputs the signature sent by Alice and quit; otherwise, Bob takes the
received message in Step 1 and a proof that he fulfilled his obligation to
Alice in Step 2 to the trust third party for obtaining a valid full signature of
Alice on the message.

We now simply define Alice’s verifiably encrypted signature as her partial sig-
nature and her signature sent to Bob in the Step 3 as her full signature (in terms of
verifiably committed signatures). Thus, the existence of verifiably encrypted sig-
natures implies the existence of the verifiably committed signatures.

150 H. Zhu and F. Bao

To see the second claim, we consider the illustrative counterexample below:
suppose a primary signer has public/secret key (pk1, sk1) for the first signature
scheme, and at the same time the prime signer and its TTP share another pub-
lic/secret key (pk2, sk2) of the second signature scheme. By PK = (pk1, pk2) we
denote the public key of the entire signature scheme, and by SK = (sk1, sk2),
we denote the corresponding secret keys. Now given a message m, the primary
signer produces its partial signature σ1 on the message m. A full signature of the
message m is defined as σ =(σ1, σ2), where σ2 is the signature of m correspon-
dent the public/secret key pair (pk2, sk2). It is easy to verify that the resulting
signature is a verifiably committed signature scheme. Obviously, there is no
semantically secure public key encryption scheme involved in the above coun-
terexample (thus the verifiably committed signature scheme described above is
not a verifiably encrypted signature scheme).

Summary. In summary, we have the following claim:the notion of verifiably
committed signatures is a general extension of the notion of verifiably encrypted
signatures.

1.2 More on Verifiably Committed Signatures

Informally, a verifiably committed signature consists of three participants: a
primary signer, a verifier and a trusted third party (TTP). TTP can be on-
line or off-line (the advantage of the off-line protocol to the on-line protocol is
obvious). We provide further observations regarding off-line verifiably committed
signatures below:

Off-line verifiably committed signatures can be classified into two categories:
with or without initial-key-setup procedures. An off-line verifiably committed
signature is called setup-free if no initial-key-setup procedure between a primary
signer and its TTP is involved except for one requirement that the primary
signer can obtain and verify TTP’s certificate and vice versa. An off-line verifi-
ably committed signature is called setup-driven if an initial-key-setup protocol
between a primary signer and its TTP must be involved such that at the end
of the key setup protocol, the primary signer and its TTP share prior auxil-
iary information. This shared auxiliary information enables TTP to convert any
valid partial signature into the corresponding full signature if a confliction occurs
between the primary signer and its verifier.

Another interesting feature of verifiably committed signatures is stand-alone
property. The stand-alone property means that the resulting signature (from an
off-line fair exchange) is identical as one of an ordinary signature scheme. From
the point of views of both practical application and theoretical research, any
verifiably committed signature with off-line, step-free and stand-alone properties
is certainly welcome.

1.3 Previous Works and Problem Statement

The research of fair exchange protocols has a rich history due to its fundamental
importance (see [5, 8, 10, 14, 15, 16] for general references). Several works have

More on Stand-Alone and Setup-Free Verifiably Committed Signatures 151

been done within the setup-driven model (e.g., [7], [20], [18] and [13]). We stress
that the definition of verifiably encrypted signatures in [1, 2] implies the off-
line, setup-free and stand-alone properties inherently but it does not imply that
a verifiably committed signature satisfies setup-free and stand-alone properties
inherently (e.g., the recent work of Boneh, Gentry, Lynn and Shacham [6] is a
two-signature based verifiably committed signature scheme thus the stand-alone
property of the BGLS protocol is completely NOT satisfied (e(ω, g2)= e(h, υ)
e(μ, υ′))).

The state-of-the-art verifiably committed signature that enjoys the off-line,
setup-free and stand-alone properties is due to Zhu and Bao [21]. Their scheme
is based on the Cramer-Shoup’s signature scheme. The main criticism of Zhu
and Bao’s paper is the use of Boudot’s protocol which is pretty expensive
indeed. Based on this observation, we further presented a challenge problem
below:

Question (suggested by Dodis): Is it possible to remove Boudot’s protocol
from Zhu and Bao’s construction [21]?

1.4 This Work

In this paper, we provide a positive solution to the challenge problem suggested
by Dodis if stand-alone, setup-free verifiably committed signatures presented in
[21] are constructed form Cramer-Shoup’s trapdoor hash signatures. The gen-
eral idea behind our solution is that − we first provide a general construction
of stand-alone and setup-free verifiably committed signatures from Schnorr’s
signature without the help of Boudot’s protocol, and show that our imple-
mentation is provably secure in the random oracle model assuming that the
underlying Schnorr’s signature scheme is secure against adaptive chosen mes-
sage attack and Paillier’s encryption scheme is one-way. Since Cramer-Shoup’s
trapdoor hash signature is of ad hoc structure, we can embed the discrete
logarithm structure where Schnorr’s signature is defined into Cramer-Shoup’s
scheme and then apply the proved result to the verifiably committed signature
of [21].

Limitation of our approach: we stress that the results presented in [21]cover
two cases:

Case 1: stand-alone, setup-free verifiably committed signatures constructed
from Cramer-Shoup’s trapdoor hash signatures;

Case 2: stand-alone, setup-free verifiably committed signatures constructed
from Zhu’s signatures [20];

We remark that our approach presented in this paper cannot be adopted to
deal with Case 2 since a primary signer must prove that a salt used to generate
a valid signature lies in the correct interval (e.g., t ∈ {0, 1}l). How to remove
Boudot’s protocol from Zhu-Bao’s construction if underlying signature scheme
is Zhu’s signature scheme is still unknown. This leaves an open problem to the
research community.

152 H. Zhu and F. Bao

1.5 Road Map

The rest of the paper is organized as follows: In section 2, syntax and secu-
rity definition of off-line, stand-alone and setup-free verifiably committed sig-
natures are briefly introduced. In Section 3, the building blocks that will be
used for the construction of the Dlog-based scheme are sketched; In section 4,
an efficient implementation of verifiably committed signatures (from Schnorr’s
signature schemes) as well as the proof of the security are proposed. We em-
bed the discrete logarithm structure where Schnorr’s signatures are defined into
Cramer-Shoup’s scheme and then apply the proved result to the verifiably com-
mitted signature of [21] is presented in Section 5. We conclude our works in
Section 6.

2 Syntax and Security Definition

2.1 Syntax

This paper presents a verifiably committed signature which has the following
properties: first it is setup-free, which means that no interaction is required
between a signer and its TTP except for an exchange of certificates; second
it is stand-alone, which means that the resulting signature (from an off-line
fair exchange) is identical as one of an ordinary signature scheme. The for-
mal definition of stand-alone and setup-free verifiably committed signatures
has been formalized by Zhu and Bao and we refer to the reader [21] for more
details.

2.2 The Definition of Security

Recall that the concept of verifiably committed signatures is formalized the
same thing as off-line fair-exchange protocols. Thus the security definition of a
verifiably committed signature should consist of three aspects: security against
a primary signer Alice, security against a verifier Bob, and security against a
arbitrator/TTP Charlie. The security definitions of verifiably committed signa-
tures follows Dodis and Reyzin’s and we thus refer to the reader [13] for more
details).

3 Building Blocks

3.1 Schnorr Signature Scheme

The Schnorr signature scheme [19] sketched below, was first proposed as an
application of the Fiat-Shamir transformation. It can be instantiated on any
group G of prime order in which the discrete logarithm problem is believed to
be hard. Schnorr signature scheme has been proven secure under the standard
notion of existential unforgeability against an adaptive chosen-message attack
in the random oracle model.

More on Stand-Alone and Setup-Free Verifiably Committed Signatures 153

– The key generation algorithm KG: On input 1k, it produces two large primes
p, q such that q|(p−1), and an element g ∈ Z∗

p of order q. Then it picks a ran-
dom element x ∈ Z∗

q , and sets y = gxmod p. The public key is {p, q, g, y, H},
where H is a cryptographic hash function, mapping arbitrary strings to the
elements of Zq, while the correspondent secret key is x.

– The signing algorithm Sig: To sign a message m, the signer picks a random
t ∈ Z∗

q , and sets r = gt mod p. It then computes e = H(m, r), s = t + xe
mod q, and outputs the signature σ = (r, s).

– The verification algorithm V er: To check whether a given (r, s) is indeed a
signature of some message m, it suffice to know the correspondent public
key {p, q, g, y, H} and verify that gs = rye mod p, where e = H(m, r).

3.2 Paillier’s Cryptographic System

Paillier investigated a novel computational problem, called Composite Residuos-
ity Class Problem, and its applications to public key cryptography in [17]. Our
construction will heavily rely on this probabilistic encryption scheme which is
sketched below.

The public key is a k1-bit RSA modulus N = PQ, where P , Q are two large
safe primes. The plain-text space is ZN and the cipher-text space is Z∗

N2 . To
encrypt α ∈ ZN , one chooses r ∈ Z∗

N uniformly at random and computes the
cipher-text as EPK(a, r) = garN mod N2, where g = (1 + N) has order N in
Z∗

N2 . The private key is (P, Q).
It is straightforward to verify that given c =(1+N)arN mod N2, and trapdoor

information (P, Q), one can first computes c1:=c mod N , and then compute r

from the equation r=c
N−1modφ(N)
1 mod N ; Finally, one can compute a from the

equation cr−N mod N2 =1 + aN .
The encryption function is homomorphic, i.e., EPK(a1, r1) × EPK(a2, r2)

mod N2 = EPK(a1 + a2 mod N , r1 × r2 mod N).

3.3 Proof of Knowledge of Encryptions

We make use of the following protocols for proof of knowledge of encryptions.
An efficient implementation has been proposed by Damg̊ard and Jurik[11] can
be tailored for our purpose:

– Let λ be maximum bit length of x. Suppose u = gx is defined over G, where
p, q are two large primes such that q|(p − 1), and an element g ∈ Z∗

p of
order q. Given a cipher-text c= EPK(x) which is computed from Paillier’s
encryption scheme, the prover should provide a proof that u and c hide the
same value x.

– The prover chooses at random ω ∈ {0, 1}λ+2l, where l is a security parameter.
The prover sends a =EPK(ω) and b=gω to the verifier. Here we assume that
the security parameter k1 of Paillier’s system is larger than (λ + 2l)

– The verifier chooses a l-bit challenge f ;

154 H. Zhu and F. Bao

– The prover opens the encryptions acf mod N2 and buf mod p, to reveal in
both cases the number z = ω + xf defined over the integer domain. The
verifier checks the opening were correct.

We stress that the proof of knowledge of encryptions u = gx and c = EPK(x),
does not ensure that u and c hide the same value. In fact, for any value a = x
mod q which lies in the interval (λ + 2l) may satisfy the equation since q is a
publicly known value if follows that once given a one can easily compute the
exact value x that lies in the interval [0, q − 1]. We also stress that one can not
compute b = x mod N at the same time since we assume that (λ + 2l) ≤ N . In
the following argument, we extract of knowledge of encryptions in the sense of
above.

4 Verifiably Committed Signatures with Dlog Structures

4.1 The Implementation

In this section, we describe our implementation of stand-alone and setup-free
verifiably committed signature scheme from Schnorr’s signatures.

– Primary signer key generation algorithm: on input 1k1 , a probabilistic poly-
nomial time primary signer Alice generates two large safe primes p and q
such that q|(p− 1). Let G ⊂ Z∗

p with order q and g be a generator of G, i.e.,
< g > =G. Alice also chooses a random element x ∈ [1, q] to compute her
public key y = gx mod p. The public key of a primary signer is (p, q, g, y, H),
where H : {0, 1}∗ → [1, q] is a collision-free hash function. The private key
is x. Alice also proves to her CA that all values are correctly generated and
then obtains her certificate certA from her CA;

– Cosigner key generation algorithm: on input 1k2 , a probabilistic polynomial
time cosigner Charlie generates a k2-bit RSA modulus n = pcqc, where pc,
qc are two large safe primes. The public key is ((1 + n), n), and the private
key is (pc, qc). Charlie also proves to his CA that all values are correctly
generated and then obtains his certificate certC from his CA;

– Fully signing algorithm Sig and its correspondent verification algorithm V er:
To sign a message m, the signer picks a random s ∈ Z∗

q , and sets u = gs

mod p. It then computes e = H(m, u), t = s + xe mod q, and outputs
the signature σ = (u, t). The verification algorithm V er: To check whether
a given (u, t) is indeed a signature of some message m, it suffice to know
the correspondent public key {p, q, g, y, H} and verify that gt = uye mod p,
where e = H(m, u).

– Partially signing algorithm PSig: The partial signature σ′ is (u, v, w, pr).
That is, to generated a partial signature Alice first chooses a random string
s ∈ zq and then computes t =s + xe, v = gt and w = EpkC (t) =(1 + n)trn

t

mod n2 such that v = uye mod p and a proof pr that both v and w hide
the same value t by means of the proof of knowledge of encryption (see
section 3 for more details). We stress that the proof can be interactive and

More on Stand-Alone and Setup-Free Verifiably Committed Signatures 155

non-interactive (a transform from an interactive proof to the correspondent
non-interactive can be trivially implemented by the standard Fiat-Shamir’s
technique).

– The correspondent partial signature verification algorithm PV er: Given a
putative signature σ′= (u, v, w, pr), the verifier Bob checks the validity of
the equation v = uye, and if the equation is valid then Bob further checks
the validity of the proof (a proof to show that both v and w hide the same
value t). If both both are valid then Bob accepts (the partial signature is
valid), otherwise, it rejects.

– Resolution algorithm Res: Given σ′=(u, v, w, pr) and a proof that Bob ful-
filled his obligation to the primary signer. If the verification is passed, then
Charlie outputs a valid full signature of (u, t) using his decryption key, oth-
erwise, it rejects.

4.2 The Proof of Security

In this section, we will prove that our construction is secure in the sense of
section 2. That is,

Lemma 1. Our construction is provably secure against a primary signer Alice.

Proof: Suppose Alice is able to provide a valid partial signature σ′ = (u, v, w, pr)
correspondent to a message m. Since σ′ is valid from the point views of both
the verifier and the cosigner, by rewinding Alice, both verifier and cosigner can
extract t such that v=gt, w=EpkC (t) and gt =uye mod p, where e = H(m, u)
(without loss of generality, we here simply assume that v and w hide the same
value t, see Section3.3 for more details). It follows that the cosigner can always
transform any valid partial signature scheme (u, v, w, pr) into the correspondent
valid signature σ=(u, t) of the same message m.

Lemma 2. Our construction is provably secure against a verifier Bob if the
underlying Paillier’s encryption scheme is one-way.

Proof: By B, we denote an attacker that attacks our verifiably committed signa-
ture scheme. By B′, we denote an inverter of a random cipher-text generated by
the underlying encryption scheme. B′ simulates the environment of B as follows.
First it runs Alice to generate primary signer’s public key and secret key same
as that in the real protocol and outputs (PK, SK); Then it runs Charlie to
generate a cosigner’s public key and secret key such that ASK is not an output
to B′. That is, PK and APK are given to B, and B′ obtains (PK, SK) and
APK. Let (m∗, σ∗) be a successful forgery of the attacker B, without loss of
generality, we assume that B obtains (m∗, σ′∗) from the partial signing oracle
PSig since the underlying Schnorr’s signature scheme is secure against adaptive
chosen-message attack. Let qPsig be the total number of P queries made by B,
and let ξ be a random number chosen from {1, qPsig} by B′. We now simulate
PSig oracle queries as follows: 1) if i �= ξ, then B′ runs the partial signing oracle
as the real partial signature scheme; 2) if i = ξ, for a given target cipher-text

156 H. Zhu and F. Bao

w, B′ chooses random strings s ∈ Zq then computes u = gs and v = gt, where
t = s + xe, e = H(m, u).

The rest work is simulate that v and w hide the same value. To do so, the
simulator chooses a random string t̄, and computes v̄ = gt̄. The simulator then
computes w̄ from the equation EpkC (zt) = w̄ wf , where f is a random string
distributed over domain G, and zt = t̄ + tf which is computed from the integer
domain; 3) finally B′ assigns f be a hash value of the random oracle; B′ simulates
R oracle queries as follows: 1) for (mj , σ

′
j) that is in the partial signature query

list, if j �= ξ, then R outputs ti, otherwise it aborts; 2) for (mj , σ
′
j) that is NOT

in the partial signature query list, then R outputs ⊥; Notice that the probability
that the simulator does not abort is at 1 − 1/qPsig, thus when the adversary
outputs a successfully forgery (m∗, σ∗) whose partial signature is the list of P
oracle query, then the probability that B′ invert w with probability at least
ε/qPsig, where B forgers successfully a forgery with probability ε.

Lemma 3. Our construction is provably secure against a arbitrator/cosigner
Charlie assuming that the underlying Schnorr scheme is secure against adaptive
chosen-message attack.

Proof: Suppose Charlie is able to forgery partial signature σ′ with non-negligible
probability, then by rewinding Charlie, an adversary can extract t from pr, and
thus, Charlie is able to forge a valid signature of the Schnorr’s signature scheme
with non-negligible probability. This is a contradiction.

In summary, we have proved the main result below:

Theorem 1. The stand-alone and setup-free verifiably committed signature
scheme constructed above is provably secure assuming that the underlying Schnorr’s
signature scheme is secure against adaptive chosen-message attack, and Paillier’s
encryption is one-way.

5 Embedding the Dlog Structure to Cramer-Shoup’s
Trapdoor Hash Signatures

5.1 Cramer-Shoup’s Trapdoor Hash Signatures

Cramer-Shoup’s signature scheme (CS) is one of the fastest and few known
signatures without involving random oracle and it would be faster than two
non-random oracle based signatures. To embed our proved result above into the
CS scheme, we first sketch this notable scheme below [9]:

– Key generation algorithm: Let p, q be two large safe primes such that p−1 =
2p′ and q−1 = 2q′, where p′, q′ are two l′-bit primes. Let n = pq and QRn be
the quadratic residue of Z∗

n. Let x, h be two generators of QRn. Also chosen
are a group G of order s, where s is (l + 1)-bit prime, and two random
generators g1, g2 of G. The public key is (n, h, x, g1, g2, H) along with an
appropriate description of G including s. The private key is (p, q).

More on Stand-Alone and Setup-Free Verifiably Committed Signatures 157

– Signature algorithm: To sign a message m, a (l + 1)-bit prime e and a string
t ∈ Zs is chosen at random. The equation ye = xhH(gt

1
g

H(m)

2
)modn is solved

for y. The corresponding signature of the message m is (e, t, y), where the
variable gt

1g
H(m)
2 is a virtual commitment.

– Verification algorithm: given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that
x = yeh−H(gt

1
g

H(m)

2
)modn. If the equation is valid, then the verifier accepts,

otherwise, it rejects.

5.2 An Ad-Hoc Solution

We stress that the choice of a group G described in the CS scheme is independent
of the choice of RSA moduli. Thus, we simply define G used in the CS scheme
is the same group where Schnorr’s signature scheme is defined. Based on this
observation provide an ad-hoc solution below:

Full signature: the full signature is defined as ordinary signature of the CS
scheme;

Partial signature: the partial signature is defined as follows: on input a mes-
sage m, (l + 1)-bit prime e and a string t ∈ G which is chosen at random.
The equation ye = xhH(gt

1
g

H(m)

2
) mod n is solved for y. Then Alice hides t

by computing u=gt
1 and c=EAPK(t) together with a proof pr that u and c

hide the same value x by means of Damg̊d and Jurik’s protocol specified in
Section 3. The partial signature is defined by σ′=(e, y, u, c, pr).

Resolution algorithm: the resolution algorithm is the same as that presented
in protocol constructed from Schnorr’s signature (see Section 4 for more
details).

As an immediately application of Theorem 1, we have the following statement:

Corollary 1. It is possible to remove Boudot’s protocol from Zhu and Bao’s con-
struction if their verifiably committed signatures are constructed from Cramer-
Shoup’s trapdoor hash signatures.

6 Conclusion

We have presented an efficient implementation of off-line, stand-alone and setup-
free verifiably committed signature scheme from Schnorr signatures. We then
embed the discrete logarithm structure where Schnorr’s signature is defined into
Cramer-Shoup’s scheme. Finally, we show that there is a method to remove
Boudot’s protocol from Zhu and Bao’s construction [21] if it is constructed from
Cramer-Shoup’s trapdoor hash signature.

Acknowledgment. The first author thanks Professor Yevgeniy Dodis for his
contribution of the motivation problem and his continuous encouragement.

158 H. Zhu and F. Bao

References

1. N.Asokan, M.Schunter, M.Waidner: Optimistic Protocols for Fair Exchange. ACM
Conference on Computer and Communications Security 1997: 7 - 17.

2. N.Asokan, V.Shoup, M.Waidner: Optimistic Fair Exchange of Digital Signatures
(Extended Abstract). EUROCRYPT 1998: 591 - 606.

3. N.Asokan, V.Shoup, M.Waidner Optimistic fair exchange of digital signatures,
IEEE Journal on Selected Areas in Communications 18(4):593-610, 2000

4. F.Boudot: Efficient Proofs that a Committed Number Lies in an Interval. Proc. of
EUROCRYPT 2000: 431 - 444, Springer Verlag.

5. M.Ben-Or, O.Goldreich, S.Micali and R.L.Rivest: A Fair Protocol for Signing Con-
tracts (Extended Abstract). ICALP 1985: 43 - 52.

6. D.Boneh, C.Gentry, B.Lynn and H.Shacham: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. EUROCRYPT 2003: 416 - 432

7. C. Boyd, E. Foo: Off-Line Fair Payment Protocols Using Convertible Signatures.
ASIACRYPT 1998: 271 - 285

8. J.Camenisch, V.Shoup: Practical Verifiable Encryption and Decryption of Discrete
Logarithms. CRYPTO 2003: 126 - 144

9. R. Cramer and V. Shoup. Signature scheme based on the Strong RAS assumption.
6th ACM Conference on Computer and Communication Security, Singapore, ACM
Press, November 1999.

10. I.Damg̊ard: Practical and Provably Secure Release of a Secret and Exchange of
Signatures. EUROCRYPT 1993: 200 - 217.

11. I.Damg̊ard, M.Jurik: Client/Server Tradeoffs for Online Elections. Proc. of Public
Key Cryptography 2002: 125 - 140. Springer Verlag.

12. I.Damg̊ard, E.Fujisaki: A Statistically-Hiding Integer Commitment Scheme Based
on Groups with Hidden Order. Proc. of ASIACRYPT 2002: 125 - 142, Springer
Verlag.

13. Y.Dodis and L.Reyzin. Breaking and Repairing Optimistic Fair Exchange from
PODC 2003, ACM Workshop on Digital Rights Management (DRM), October
2003.

14. J.Garay, M.Jakobsson and P.MacKenzie: Abuse-Free Optimistic Contract Signing.
CRYPTO 1999: 449 - 466

15. W.Mao: Verifiable Escrowed Signature. ACISP 1997: 240 - 248
16. S. Micali: Simple and fast optimistic protocols for fair electronic exchange. PODC

2003: 12 - 19.
17. P.Paillier: Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. Proc. of EUROCRYPT 1999: 223 - 238, Springer Verlag.
18. J.Park, P.Chong and H.Siegel: Constructing fair-exchange protocols for E-

commerce via distributed computation of RSA signatures. PODC 2003: 172 - 181
19. C.Schnorr. Efficient identification and signature for smart card. Cryptology-

Crypto’89, 235-251.
20. H.Zhu: Constructing Committed Signatures from Strong-RSA Assumption in the

Standard Complexity Model. Public Key Cryptography 2004: 101 - 114.
21. H.Zhu, F.Bao: Stand-Alone and Setup-Free Verifiably Committed Signatures. CT-

RSA 2006: 159-173

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 159 – 170, 2006.
© Springer-Verlag Berlin Heidelberg 2006

API Monitoring System for Defeating Worms
and Exploits in MS-Windows System

Hung-Min Sun, Yue-Hsun Lin, and Ming-Fung Wu

Department of Computer Science
National Tsing-Hua University

Hsinchu, Taiwan 30013
hmsun@cs.nthu.edu.tw, {tenma, coolflame}@is.cs.nthu.edu.tw

Abstract. Worms and Exploits attacks are currently the most prevalent security
problems; they are responsible for over half of the CERT advisories issued in
the last three years. To initiate an infection or intrusion, both of them inject a
small piece of malicious code (ShellCode) into software through buffer or heap
overflow vulnerabilities. Unlike Unix-like operating systems, ShellCodes for
Microsoft Windows system need more complex steps to acquire Win32 API
calls from DLL file (Dynamic Load Library) in Microsoft Windows. In this
paper, we proposed an effective API monitoring system to get rid of worms and
exploits attacks for the Microsoft Windows without hardware support. We
address the problem by noticing that ShellCodes need the extra complex steps
in accessing Win32 API calls. Through the API monitoring system we
purposed, we can successfully stop the attacks made by worms and exploits.
Moreover, the efficiency of Win32 API Calls hooking and monitoring system
can be improved. Incapability to disassemble and analysis the protected
software processes are overcome as well.

Keywords: Worm Protection, System Security, API Hooking.

1 Introduction

From the last decade, computers have been threaten by worms and exploits attacks.
General speaking, worms and exploits are some “harmful code” implanted in victim
computer to hack secure data and widespread the “harmful code” to another machine
by any other means [11, 12]. They bring large damages to the world from finances to
militaries. It has been wars between security-expects and hackers in defending and
creating new worms and exploits.

Microsoft Windows systems are the most popular operating system series
nowadays. Perhaps, owing to its closure of source code, hackers have some
advantages over security-expects in developing new worms and exploits while the
latter has not enough time and knowledge to react. For its popularity and hardness of
making up patches, attacks of worms and exploits incur significant consequences
which raise the interest of researches. Unless explicitly declare, we will focus on
Microsoft Windows system in the rest of the paper.

A passive movement against worms and exploits attacks is waiting for the new
release of the code and writing new patches. It not only involves great humanity

160 H.-M. Sun, Y.-H. Lin, and M.-F. Wu

resources, but also induces damages until the time when new patches are released.
Otherwise, an active movement is to develop a prevention system as a safeguard
which monitors the behaviors of all running processes. This safeguard should not be
codes dependent, i.e., it should prohibit all malicious behaviors of processes like
formatting hard disk, or more specifically, calling some APIs. In fact, the active
mechanism has better performance to resist malicious code.

In this paper, we develop an active mechanism, a monitoring system in windows
environment to protect software process from injecting malicious codes. The main
advantage of our method is that it does not stick to any type of code injection and can
be applied to Microsoft Windows NT series Operating Systems such as Windows
2000 and Windows XP, since our process can be applied to the Win32 Portable
Executable File Format (PE32) [13].

The main idea of this paper is that all software including malicious codes, worms,
exploits and Trojan horses, need to use the Win32 API Calls [4] to interact with the
Windows operating system. If we can monitor any irregular use of these API Calls,
the malicious code can then be detected and stopped.

The rest of the paper will be organized as follows. In section 2, we will go through
some characteristic of ShellCodes and its variations. In section 3, we will present our
monitor system. Its performance will be evaluated at section 4. In section 5, the
comparisons among different types of monitoring system will be given. In section 6,
we will end up with a conclusion.

2 Primitives

In this section, we will first introduce some basic characteristics of ShellCodes. Then
we will classify different kinds of ShellCodes.

2.1 Basic Aspect of Shellcodes

Both worms and exploits need a hook to download them from the network to the
vulnerable machine, and then execute or work to control the target. After that, the
attacker may be able to destroy the system or to raise DDoS attack [5, 7]. These hooks
are called ShellCodes.

According to our studies, a successful injection of malicious code will require three
conditions [3, 19, 22-24]:

 Overflow Vulnerabilities: Hackers may find some security holes in software that
are vulnerable to buffer or heap overflow attacks. Therefore, Hackers can
overwrite the return address of that function and inject the malicious code via
these holes.

 Return Address Overwrite: To run the injected code correctly, ShellCodes must
overwrite the return address of the vulnerable function exactly where the
malicious code starts and overwrite the address of EIP.

 Independent execution: Usually, ShellCodes must call Win32 APIs when they
implant the target system. However, ShellCodes do not know where the APIs are
since they are not loaded by the loader but injected into software process at
runtime. ShellCodes have to get APIs’ addresses without the help of loader.

The ShellCodes would be success when all three conditions hold.

 API Monitoring System for Defeating Worms and Exploits 161

2.2 Classification of Shellcodes

ShellCodes can be grouped into three types by how they find windows native APIs’
addresses [21] to control the system. Each type will be described in the following
subsections:

1) Manual Input Addresses of API Calls
The direct way for hackers to get the addresses of API Calls is searching their own
computers to get APIs’ addresses and assign these APIs’ addresses to an array in
ShellCodes [23]. The program code is showed in Fig. 1.

In fact, hackers only need to input two API addresses manually into ShellCodes in
order to use them to get other APIs in Windows. These two API addresses are
“LoadLibraryA” and “GetProcAddress” [3, 19, 22-24]. The main drawback of this
kind of ShellCodes is that they cannot run correctly on different version of operating
systems, such as different language versions of Microsoft Window XP. This will
decrease the probability of successful attack.

Fig. 1. The program code to get the address of user32.dll in the local machine

2) Scan Memory to Find API Addresses
To improve the portability of ShellCodes, hackers try to find the API addresses by
scanning the memory space. These Win32 APIs are placed in some DLLs (Dynamic
Link Libraries) that are loaded to memory with 64k boundary1. DLL files are also
PE32 files [13]. When the DLL is loaded into memory, its memory segment has a pair
of tags “MZ” and “PE” inside. Therefore, the ShellCodes can scan memory address
above 0x70000000h2 to find the “MZ” and “PE” tag in order to locate the start
address of DLLs [23].

After the ShellCode has retrieved the starting address of the DLL, it can locate
APIs’ addresses in the ExportTable in where to obtain the address of API function
using similar technique as type 1. However, this technique has its limitation. While
ShellCodes scanning memory to find API addresses, GPF (General Protect Fault)
might probably occur. The ShellCodes will then be terminated.

3) Get ImageBase of DLLs from TEB
The last kind of ShellCodes can get the ImageBase of kernel32.dll which is the base
memory address of kernel32.dll from the Thread Environment Block (TEB) directly

1 The DLL address must align with 0x00010000h.
2 Base address of kernel32.dll is always placed above 0x70000000h in Windows NT series. For

example, the base address of kernel32.dll in Windows XP is 0x77E60000h.

162 H.-M. Sun, Y.-H. Lin, and M.-F. Wu

without scanning memory or inputting them manually. Most of recent worms and
exploits are in this form. We can further subcategorize two ways of getting the
kernel32.dll from the TEB:

a) Get ImageBase of DLLs from PEB
The kernel32.dll base address can be determined through the Process Environment
Block (PEB). Every process has a PEB to record environment variables. The PEB of
every process can always be found at fs: 0x30 within the process. The address of the
kernel32.dll can be obtained from the PEB structure through the following steps:

1st: Find the memory address of TEB from the fs pointer (fs: 0).
2nd: Find the address of PEB structure at fs: 0x30h (0x30h offset from fs: 0).
3rd: Find the address of PEB_LDR_DATA structure at offset 0x0c from PEB

structure (PEB+0x0c).
4th: Find the start address of the DLLs list at offset 0x1c from PEB_LDR_DATA

structure (PEB_LDR_DATA+0x1c).
5th: Search DLL module list and find the address of kernel32.dll.

b) Get ImageBase of DLLs from SEH (Structured Exception Handling)
The other way to obtain the base address of kernel32.dll depends on the SEH
structure. SEH is a mechanism for handling both hardware and software exceptions.
Since the default Unhandled Exception Handler is set to use a function that exists
inside kernel32.dll, the address of the kernel32.dll can be obtained in the following
steps:

1st: Find the memory address of TEB from the fs: 0 as before.
2nd: Find the address of pvExcept from TEB for which will point to a series of

exception handler (SEH).
3rd: Iteratively search the SEH until the end. The end of SEH is the unhandled

exception handler.
4th: The address of unhandled exception handler can be used as a starting point

for walking down in increments of 64KB.

As we mentioned before, the addresses of DLLs will only align on 64KB
boundaries. At each 64KB boundary, we can check whether it is a DLL file. Once a
match is found it is safe to assume that the base address for kernel32.dll has been
found.

3 The Proposed Approach

Basically, our approach can be divided into four parts: (A) PE loader method: It
creates our own loader for monitoring and memory allocation. (B) Prevent
ShellCodes to get the address of Kernel32.dll from SEH and PEB structure: It
prevents the ShellCodes from getting the right API addresses from SEH and PEB in
TEB. (C) API Hooking and Monitoring: We provide an interface between API calls
and running process to prevent ShellCodes to get the real address of API calls. (D)
Rebasing method: It uses the relocation method to rebase (relocate) the address of
Kernel32.dll.

 API Monitoring System for Defeating Worms and Exploits 163

These methods not only allow program that already compiled to binary be correctly
executed, but also the software itself is encrypted for software protection can also be
performed.

3.1 PE Loader Method

To protect software processes from being attacked by worms and exploits, we have to
change the location where the processes would be loaded into the memory and vary
the stack memory. In general, most of ShellCodes are about 300~1000 bytes. If our
variation is bigger than 1000 bytes, it would be difficult for worms and exploits to hit
the right position of ShellCodes in stack memory.

1) Change the Location of Software Processes (CLSP)
Unlike DLL Files, executable files (EXE) do not have relocation tables for us to
rebase their ImageBase address. Therefore, we decide to use our own PE loader [13]
to adjust where the processes would be placed.

Our loader starts by checking PE header and setting the StartupInfo of the
executable file that we wanted to load. After checking the validity of all the headers in
the executable file, we mapped and loaded the process file into the memory location
we allocated manually. Finally, we created a remote thread from where we allocated
and started from there.

The only problem is how to replace the original PE Loader from Software
processes that were locked by Windows. By using the Win32 API call MoveEx(), we
moved the running processes to other position and replaced our loader to the original
place. Next time when these processes started by Windows, it will run our loader first
and change the location where processes run.

2) Variations of Stack Memory Address (VSMA)
The stack memory addresses in windows system are not as unstable as we consider. If
the order of creating processes or startup are the same, their stack address would most
likely be at the same place too. This is the reason that worms and exploits can inject
their ShellCodes into stack memory and run them correctly. Here are some features
that would affect the stack address of each process: (1) Memory address of runtime
processes, (2) Stack reserved and commit from software processes’ PE header and (3)
Stack size commit from each thread.

We have changed processes’ memory address in the previous section. By
modifying two fields, “SizeOfStackReserve” and “SizeOfStackCommit”, in the PE
header of software processes, we successfully influence the variations of stack
memory address. After modifying the PE header, we also hook Win32 API
CreateThread() and CreateRemoteThread() to change the stack size of each thread
when it create. In fact, every program which uses dynamic memory allocation can be
loaded and executed by our PE loader.

3.2 Prevent ShellCodes to Get the Address of Kernel32.dll from SEH and PEB
Structure

After the static analysis (disassemble) of ShellCodes used by recent worms and
exploits, we can find that these ShellCodes executed independently by calling API
function calls. The first step is to get the base address of kernel32.dll. In the following

164 H.-M. Sun, Y.-H. Lin, and M.-F. Wu

sections, we will illustrate two methods to prevent the address of kernel32.dll from
being obtained by ShellCodes.

1) Modify SEH Handler
As mentioned in section 2.3.2, ShellCodes finds the memory address of kernel32.dll
through the Unhandled Exception Handler. After getting the memory address of the
unhandled Exception Handler, ShellCodes would know where the kernel32.dll’s
memory address is around. They can then scan the memory with 64k boundary [23].

In order to stop the ShellCodes, we change the pointer of the Unhandled Exception
Handler to our own Unhandled Exception Handler, whose original memory is not in
kernel32.dll’s memory space. And we also keep the pNextmember as 0xffffffff, this
will make ShellCodes only find the address of our own Unhandled Exception Handler
and get its address then scan on wrong memory space.

2) Replace Kernel32.dll from DLL Record List
The other way for ShellCodes to get the address of kernel32.dll is through the PEB
structure. PEB is the structure for each process to store some information about itself.
The PEB can always be found at fs: 0x30 within the process which holds information
about the process heaps, binary image information, and, most importantly, three
linked lists regarding loaded modules that have been mapped into process space. The
linked lists themselves differ in purposes from showing the order in which the
modules were loaded to the order in which the modules were initialized. Most
interesting is that the order of kernel32.dll is always the second module to be
initialized. This explains why ShellCodes can get kernel32.dll‘s memory address
easily by walking from the list to the second entry.

The module list in PEB looks more complex and significant than the record of
exception handler list. Before we replace the pointer that points to kernel32.dll in the
memory space, we must have a copy of original kernel32.dll. The following problems
were encountered when we started to duplicate kernel32.dll:

1. If we use LoadLibrary()to load our own copy of kernel32.dll, the system would
have errors, showing that functions can not have the same names.
2. If we use CreateFileMapping()to create a mapping of our own kernel32.dll in the
memory, it is slightly different from using LoadLibrary() to load it into the memory.
3. File that was mapped into the memory requires relocation and realignment.

After all, we decided to dump kernel32.dll from its memory space and map the file
that we have dumped into memory. This would solve the first and the second
problems that we encountered above, and it would not require realignment.
Subsequently, we would rebase and relocate our mapping of kernel32.dll to its new
base address. After the duplication of kernel32.dll is created, we start to trace PEB
just like what ShellCodes do to find where the module list is. Here are the steps of
how to find and trace module list in PEB:

1st: Find the pointer to PEB header at fs: 0x30.
2nd: Find the pointer to PEB_LDR_DATA at offset 0x0c from PEB header.
3rd: Find the pointer to the module list at offset 0x1c from PEB_LDR_DATA.
4th: Walk the module list to second entry and find the pointer to kernel32.dll’s
address.
5th: Write duplication of kernel32.dll’s address to the pointer

 API Monitoring System for Defeating Worms and Exploits 165

At this point, ShellCodes can only get the address of our duplication. However, we
still need to prevent APIs in our kernel32.dll to be found by ShellCodes. To do this,
we searched the ExportTable in our duplication and rewrote the address of
“LoadLibraryA” and “GetProcAddress.” This way, we can monitor the utilization of
both addresses and stop the execution of ShellCodes.

3.3 API Hooking and Monitoring

Windows systems create TEB for each thread and create PEB for each process. This
means that we need to modify all the TEBs and PEBs when processes and threads are
created. API hooking technique therefore achieves this goal. By directly patching the
entry point of each Win32 API, we can inject our method into the selected API calls
[1, 2, 12, 13].

After mapped our own function which is placed in the hooking DLL to all
processes’ memory by Win32 API CreateRemoteThread()[13], we rewrote each
runtime processes’ IAT Table which contains API addresses assigned by the Loader
to our own functions’ addresses in hooking DLL which just mapped into process
memory and recorded its original address of IAT in an array (we can recovery it if
unhook our DLL). When process calling the API we rewrote in IAT, it will jump to
our functions first. Once this happens, we can then run our methods as processes call
it. After our methods have finished, we would call the real Win32 API functions to do
the work that process wanted to do and return the function.

Fig. 2 shows the API call sequence of a runtime processes by applying our Win32
API hooking technique. The process runs our method before calling APIs within the
kernel32.dll. Our method changes the addresses and makes ShellCodes call APIs
within our own DLL instead of the original one. Therefore, we can tell if APIs are
called by normal processes or ShellCodes. Our API hooking and monitoring system
does not connect to internet directly, so it’s hard to inject ShellCodes to API
Monitoring system.

Fig. 2. API Hooking Method. First, the executable calls an API, API2, described in its IAT
table. Then it links to the target Win32 DLL. However, we change the address of API2 in DLL
file. Therefore, the ShellCodes will get the wrong address about API2 since the address points
to our Hook DLL. But for normal processes, they can still call the API2 function as they wish.

166 H.-M. Sun, Y.-H. Lin, and M.-F. Wu

3.4 Rebasing Kernel32.dll

For the remaining two types of ShellCodes, our solution uses rebasing kernel32 DLL
to protect them. According to our study, every image file, DLL or executable, has an
“ImageBase.” This base is the preferred location where the file should be loaded into
memory by the loader in windows system. If the loader can give the preferred location
to image file then there is no need for relocating the image file. Rebasing is a process
of changing the ImageBase 3of an image file. By rebasing process the DLL/EXE file
is loaded into a biased location in the memory space, the ShellCodes would never be
success since rebasing changes the addresses of API calls. Changing the ImageBase
of a specific DLL/EXE file, we have to modify the optional header and relocation
field in the PE32 file [13-15].

After we finished rebasing kernel32 DLL, the last problem is the file protection
mechanism. We need to replace the new kernel32.dll with the old one, but file
protection will not allow users to do this. The solution is to use the API function
MoveFileEx() and specify the MOVEFILE_DELAY_UNTIL_REBOOT flag. By
doing this, a registry value, “PendingFileRenameOperations,” will be added to
HKLM\System\CurrentControlSet\Control\Session Manager\. From there, another
DWORD value “AllowProtectedRenames” has to be added and set to 1 before we
reboot the system. While rebooting, the new kernel32.dll along with its new image
bases will be loaded.

4 Security and Performance Analysis

In this section, we give the security analysis and performance evaluation of our
scheme. The test platform we selected is the Windows XP Professional Service Pack
1 since there were many exploits for our testing.

4.1 Security Analysis

In this section, we tested each part of our method by three types of ShellCode which
were mentioned in Section 2.2 and JMP ESP attack [17]. JMP ESP attack is a
technique to locate the ShellCode address in stack memory indirectly and execute it.
It can attack successfully the “Variations of Stack Memory Address” and “Change the
location of Software Process” schemes. However, it failed in out total solution and
rebasing method.

Table 1 illustrates the results of the testing. We can see our mechanism can stop all
types of ShellCode.

4.2 Performance Analysis

In this section we combined three parts: rebasing Kernel32.dll, our own PE loader and
Win32 API Hooking into our total solution. Generally, Rebasing Kernel32 DLL
method affects the performance only when the system startups. The PE loader method
affects the performance when the processes are loaded in to memory. Lastly, the
Win32 API Calls Hooking affects the performance when some interceptions occur.

3 ImageBase is the base address of a specific file when it has been mapped into the memory.

 API Monitoring System for Defeating Worms and Exploits 167

Table 1. Security Analysis Using Different Attacking

Method
Manual Input

Addresses of API
Calls

Scan Memory to
Find API Addresses

Obtained API
addresses from PEB

and TEB
JMP ESP Attack

CLSP Success Success Success Success
VSMA Failure-Can not

return to the location
of ShellCode

Failure-Can not
return to the location
of ShellCode

Failure-Can not
return to the location
of ShellCode

Success

Rebasing Failure-Input wrong
API addresses

Failure-Can not find
API addresses

Success Failure-Can not
return to
ShellCode

Modify TEB
and PEB by
API hooking

Success Success Failure-Can not find
API addresses

Success

Total Solution Failure-Input wrong
API addresses

Failure-Can not find
API addresses

Failure-Can not find
API addresses

Failure-Can not
return to
ShellCode

After experience, our total solution decreases 8%~9% performance compared to
original system when it applied. In addition, the windows system also delayed 0.5
second when it startups.

5 Related Works and Comparison

Methods of anti buffer overflow can be classified into two major categories, Misuse
Detection and Anomaly Detection. Most of antivirus and internet security software
focus on the first type. They detect the known virus or worms by identifying their
signatures. Conversely, anomaly detection methods detect malicious codes through
their behaviors that were extracted before.

Several anomaly detection techniques which use stack execution prevention have
been proposed to defeat malicious codes. “Microsoft Data Execution Prevention” [20]
is the most famous one. It marks the addresses above 0xbfffffff where the stacks are
non-executable. If malicious codes try to execute in stack, the operating system will
terminate the process. However, this method needs 64-bit processor to support it such
as AMD 64-bit processor.

DOME [4] and Behavior Modeling systems both use the system call monitoring
and as a result, they both require preprocess steps. Behavior Modeling systems do
system call tracing as their preprocess steps and create models of normal behaviors. In
stead of tracing system calls(such as Win32 APIs in Windows system), DOME use
IDA Pro [8] to disassemble Software executions as preprocess step and identify all
Win32 APIs that the process will use. And monitoring all Win32 APIs, see if there are
malicious codes which use APIs not belong to the original software process.

The limitation of system call tracing at runtime is that models created during its
learning phase would only learn the behavior that can be observed. Unlearned
behaviors could cause false-positive during anomaly detection. Unlike tracing system
calls at runtime, DOME uses static analysis (disassemble) of binary code to identify
Win32 APIs of the software processes. Nevertheless, the “IDA Pro” that DOME used

168 H.-M. Sun, Y.-H. Lin, and M.-F. Wu

as the dis-assembler also has its limitation. Not only it takes too much time to
disassemble executable files but it also cannot handle dynamic load library and
encrypted executable files. Some features might even cause false-positives to occur at
this step. The comparisons of other existing anomaly detection techniques on
Windows system with our mechanism is given in the table 2.

Our mechanism is an anomaly detection technique. It separates the behaviors of
ShellCodes from the normal software processes and stops them at the injection step or
runtime step. However, our mechanism does not need additional hardware support.
Moreover, we do not even modify the operating system or the underlying instruction
set in our mechanism [6]. The most important of all, our mechanism does not suffer
false positive or false negative problems since the main trick of our mechanism is
hiding or redirecting the original base addresses of APIs.

In table 2, Microsoft Data Execution Prevention has the best performance. But it
needs a CPU with special feature as support and it only works on Windows XP
Service Pack 2 (might work on Windows 2003 Server Service Pack 1 in the future).
Our method has similar or even better performance with behavior modeling
techniques which also need techniques like Win32 API Calls Hooking to monitor and
construct behavior model and better performance than DOME. In the steps of
preprocess, behavior modeling techniques have to run their modeling functions which
takes much longer time than running disassembly preprocess works of DOME.

Table 2. Total Comparisons with Other Schemes

Anti-Buffer-Overflow System DOME MDEP Our Method BMS
Hardware Support N 64bit-processor N N

Runtime Performance
5% slower

per API call
Highest

8%
slower of all

High

Source Code of Software N N N N
Working On Encrypted Binary
Executables

N Y Y Y

Working Platform XP/2000 XP SP2 XP/2000 XP/2000
Preprocess Step Y N N Y
Stop Unknown Malicious Code Y Y Y Y
Have False Positives Y N N Y
Stop attacks and intrusion
through heap overflow

Y N Y Y

This table shows the cons and pros with ours and the related research. MDEP is Microsoft Data
Execution Prevention system. BMS is Behavior Modeling System. MDEP can only apply on
Windows XP with Service Pack 2 system.

6 Conclusion

Here we present a scheme for defeating malicious codes that have been injected into
runtime software processes. The idea of our scheme is preventing ShellCodes from
being injected into right position in the memory and getting memory address of
Win32 API Calls. By replacing the rebased kernel32.dll and using Win32 API Calls
Hooking to runtime processes, we have successfully defeated the injected malicious

 API Monitoring System for Defeating Worms and Exploits 169

codes that were placed into runtime software processes by worms and exploits
through buffer overflow or heap overflow attacks.

Our solution is more efficient than others, and it does not need additional hardware
support. In the future, our mechanism will be more efficient by replacing the I/O
function by MAPI functions in the API hooking work. Furthermore, better
performance will be obtained by rewriting our mechanism as the system service.

Acknowledgements

The authors wish to acknowledge the anonymous reviewers for valuable comments.
This research was supported in part by the National Science Council, Taiwan, under
contract NSC-94-2213-E-007-039.

References

1. B.Anton, “Process-wide API spying - an ultimate hack,” CodeProject website. Available:
http://www.codeproject.com/system/api_spying_hack.asp , Feb 2005.

2. B.Anton, “Kernel-mode API spying - an ultimate hack,” CodeProject website. Available:
http://www.codeproject.com/system/kernelspying.asp , Feb 2005.

3. B.Michel, “Introduction to Shellcoding - How to exploit buffer overflows, “ Tigerteam’s
website. Available: http://tigerteam.se/dl/papers/intro_to_shellcoding.pdf , 2004.

4. C.Jesse, R.Rabek. I.Khazan, M.Scott, L.Robert and K.Cunningham, “Detection of
Injected, Dynamically Generated,and Obfuscated Malicious Code” In Proc. of 2003 ACM
workshop on Rapid Malcode October 2003.

5. C.Shannon and D.Moore. “The spread of the Witty worm , ” In Security & Privacy
Magazine, IEEE Volume 2, Issue 4, pp. 46 – 50 ,July-Aug. 2004.

6. E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi. “Randomized
instruction set emulation to disrupt binary code injection attacks,” In Proc. of 10th ACM
Conf. Comp. and Comm.Sec.—CCS 2003, pp. 281–289. ACM Press, Oct. 2003.

7. E.Levy. “Worm propagation and generic attacks, ” In Security & Privacy Magazine, IEEE
Volume 3, Issue 2, pp. 63 – 65, Mar-Apr 2005.

8. G.Hunt and D.Brubacher(1999), “Detours: Binary Interception of Win32 Functions, “
Microsoft corp research website. Available: ftp://ftp.research.microsoft.com/pub/tr/tr-98-
33.pdf

9. I.Ivo, “API hooking revealed,” CodeProject website, Available: http://
www.codeproject.com/system/hooksys.asp , Feb 2005.

10. J.Richter, “Programming Applications for Microsoft Windows 4th Edition,” 2001.
11. J.Riordan, A.Wespi and D.Zamboni, “How To Hook Worms, ” In Spectrum, IEEE

Volume 42, Issue 5, pp. 32 – 36, May 2005.
12. J.Pincus and R.Baker, “Beyond stack smashing: recent advances in exploiting buffer

overruns, ” In Security & Privacy Magazine, IEEE Volume 2, Issue 4, pp. 20 – 27, July-
Aug. 2004.

13. M.Pietrek, “Inside Windows: An In-Depth Look into the Win32 Portable Executable File
Format,” MSDN Website. Available: http://www.msdn.microsoft.co , 2002.

14. R.S.Sachin, “Need for Rebasing a DLL,” Code Project website. Available:
http://www.codeproject.com/dll/RebaseDll.asp, Mar 2005.

15. R.S.Sachin, “Need for Binding an Executable to DLLs,” Code Project website. Available:
http://www.thecodeproject.com/dll/NeedBind.asp , Mar 2005.

170 H.-M. Sun, Y.-H. Lin, and M.-F. Wu

16. Udo Payer, Peter Teufl and Mario Lamberger, “Hybrid Engine for Polymorphic Shellcode
Detection,” In Second Int. Conf. of 2005 Intrusion and Malware Detection and
Vulnerability Assessment, July, 2005.

17. Y.Kaplan, “API Spying Techniques for Windows 9x, NT and 2000,” From website of
teaching API Hooking and Monitoring. Available:http://www.internals.com/
articles/apispy/apispy.htm, June 2004.

18. The MetaSploit Project, “ShellCode Archive,” MetaSploit Project official website.
Available:http://www.metasploit.com/ShellCode.html, Nov 2004.

19. Microsoft Corp, “A detailed description of the Data Execution Prevention (DEP) feature in
Windows XP Service Pack 2 and Windows XP Tablet PC Edition 2005, ” Microsoft
Corp’s support website. Available: http://support.microsoft.com/kb/875352/en-us, Feb
2005.

20. The NTInternals.net team, (Nov 28 2004) “Undocumented Functions for Microsoft
Windows NT/2000,” NTInternals.net website. Available: http://undocumented.
ntinternals.net , Nov 2004.

21. Phrack Inc, “History and Advances in Windows ShellCode,“ In Phrack Magazine.
Available: http://www.phrack.org/phrack/62/p62-0x07_Advances_in_Windows_
ShellCode.tx , Nov 2004.

22. Smiler, “The Art of Writing ShellCode,” FreeGnu’s personal blog. Available:
http://blog.codelphi.com/freegnu/archive/2004/11/25/29682.aspx , June 2004.

23. The ShellCode.org, “The ShellCode Writing,” ShellCode.org website. Available:http://
ShellCode.org/, Nov 2004.

Hiding Circuit Topology from Unbounded
Reverse Engineers

Yu Yu, Jussipekka Leiwo, and Benjamin Premkumar

Nanyang Technological University, School of Computer Engineering, Singapore
yuyu@pmail.ntu.edu.sg, {ASJLeiwo, ASANNAMALAI}@ntu.edu.sg

Abstract. Circuit/program obfuscation, if possible, would have a num-
ber of applications to cryptography and software protection. Unfortu-
nately, negative results have been given by Barak et al. [1] that universal
obfuscators (for circuits or programs) do not exist. In other words, given
a circuit, an adversary might obtain more information (e.g. core algo-
rithm) other than its input-output behavior. In this paper, we discuss
the problem of circuit obfuscation under a weaker assumption where the
adversary knows only partial information regarding the circuit, namely,
the circuit topology (i.e., all information regarding the circuit except the
functionalities of its gates), then how can C be obfuscated such that
the circuit topology of the resulting circuit C′ (denoted by Topo(C′))
discloses nothing substantial? In practice, the scenario corresponds to
that a reverse engineer attempts to illegally copy a circuit by passively
analyzing how its gates are inter-wired. Our results are quite positive:
there exist efficient circuit topology obfuscation algorithms that trans-
form every circuit C with size s to circuit C′ with the same input-output
behavior, size s·log3 s and depth s·log(log s), where Topo(C′) reveals
nothing more than circuit size, input length and output length in an
information-theoretic sense.

1 Introduction

1.1 Background

Informally, obfuscation refers to an efficient transformation of software programs
or circuits aiming at disclosing nothing but their input-output behaviors (i.e. like
an oracle access). If such a universal obfuscation algorithm exists, it will have a
number of applications to software protection and cryptography. For example,
software can be obfuscated such that the core algorithm cannot be extracted
by reverse engineers; software developers can watermark (i.e. by obfuscating a
program that is embedded in an ownership code) each copy of their software
uniquely so as to trace unauthorized redistribution (e.g., [1, 2]); new public-key
encryption schemes can be obtained by obfuscating existing private-key encryp-
tion schemes with private keys embedded in [3]. Unfortunately, Barak et al. [4]
have proved that universal obfuscation algorithms for programs or circuits do
not exist, where by ”universal” they do not rule out the fact that some classes
of problems are obfuscable under cryptographic assumptions [5].

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 171–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

172 Y. Yu, J. Leiwo, and B. Premkumar

1.2 Motivation

In this paper, we seek to find a practical scenario where obfuscation is possi-
ble. We assume that a computationally unbounded adversary knows the circuit
topology (see the formal definition in Sect 2.1) of C and he attempts to recover
C. In practice, it is usually hard to hide 1 the skeleton of a circuit from a re-
verse engineer. Furthermore, circuit topology may carry non-trivial information
regarding the circuit due to the following reasons:

1. The basis (i.e., set of gate functionalities) of C usually has a small number
of elements, e.g., OR gate (∨), AND gate (∧) and NOT gate (¬), with each
element having a specific range of fan-in, e.g., given the topology of a circuit
with basis {∨, ¬}, it is a trivial task to recover the circuit by assigning gate
nodes of fan-in 1 with ¬ and the rest with ∨.

2. For the sake of efficiency, C is usually designed in a way such that all its
subcircuits computing fundamental functions (e.g., addition, multiplication,
matrix product) are in the minimized format and an adversary can easily
recognize them from their topology, e.g., we can easily identify the circuit of
a full-adder given only how the circuit is wired.

Thus, in some cases, an adversary could (partially) recover C given its circuit
topology. It is necessary for us to obfuscate C to make its topology reveal noth-
ing substantial. Circuit topology obfuscation can be considered as an efficient
algorithm that transforms C to C′ such that the following conditions hold:

1. (functionality): C′ has the same input-output behavior as C does, i.e., for
any valid input x, it holds that C(x)=C′(x).

2. (overhead): Compared with C, C′ is increased by only a reasonable factor
(e.g., poly-logarithmic) in circuit size.

3. (privacy): The circuit topology of C′ (denoted by Topo(C′)) reveals nothing
more than the input length, output length and circuit size.

We note that there is a trivial alternative for circuit topology obfuscation. That
is, we can construct a universal circuit U [9] such that for any valid input x, U(C,
x) = C (x). Due to the universal property of U , Topo(U) reveals nothing more
than the size of C and the length of x. Nevertheless, U is not an obfuscation
of C since it takes the encoding of C as an input (i.e., not satisfying condition
1) and hence the input of U may be significantly long. Furthermore, even if we
hardwire C in U , such an obfuscation is not efficient enough because to simulate
C with size s and depth d, U should have size O(d·s·logs).

1 The circuit topology is hard to hide even in case of secure computation protocols.
Consider a secure two-party computation [6], where a circuit is encrypted (refer to
[7, 8] for detailed encryption techniques) such that the encrypted circuit is computed
by a party without revealing the computation transcript (i.e. inputs, intermediate
results and outputs). However, the party can still know the circuit topology since it
is a necessary knowledge for evaluating the circuit.

Hiding Circuit Topology from Unbounded Reverse Engineers 173

1.3 Our Contribution and Related Works

In this paper, we propose an efficient circuit topology obfuscation algorithm that
transforms any circuit C with size s to a C′ with the same input-output behavior,
size s·log3s and depth s·log(log s). More importantly, we prove that Topo(C′)
reveals nothing more than its input length, output length and size. Therefore,
by replacing C with C′, we obtain the same functionality with only a poly-
logarithmic cost and C′ is unconditionally secure against adversaries analyzing
its topology.

2 Preliminaries to Boolean Circuits

2.1 Assumptions and Notations

A circuit C with m outputs can be viewed as m subcircuits (or Boolean functions)
C1, · · ·, Cm, where each Ci (1≤i≤m) has only 1 output that coincides with the
i-th output of C. Thus, for simplicity, we assume hereafter that C has n inputs,
Γ gates, 1 output and fan-in 2 and that the functionalities of gates are defined
over the basis

Ω2 = {g | g : {0, 1} × {0, 1} → {0, 1}} .

In other words, g can be either a basic gate (e.g. g(a,b)=a∨b), a non-trivial gate
(e.g. g(a,b)=a∧b̄) or even a degenerate gate (e.g. g(a,b)=a), where a degenerate
gate takes as inputs two wires and outputs one of their results or a Boolean
constant (i.e. neither of the inputs), and a non-trivial gate is internally made of
several basic gates. We note that NOT gate (gate of fan-in 1) is not necessary
as it can be integrated into its adjacent gate, e.g., g(a,b) followed by a NOT
gate can be simplified to g′(a,b)= g(a, b)⊕1. Therefore, the encoding of C can
be written as follows:

v1, · · · , vn

vn+1 = gn+1(va1
, vb1)

...
vn+Γ = gn+Γ (vaΓ , vbΓ)

where v1, · · ·, vn are inputs, vn+1, · · ·, vn+Γ−1 are intermediate results and vn+Γ

is the final output, and ai < bi < n + i for all 1 ≤ i ≤ Γ . The circuit topology
of C, Topo(C), is defined as

(n, Γ, 1), (a1, b1), (a2, b2), · · · , (aΓ , bΓ)

2.2 Oblivious Permutation Circuits

Before presenting the circuit obfuscation algorithm, we introduce how to con-
struct a subcircuit Cπ capable of permuting the results of a list of nodes oblivi-
ously. As shown in Fig. 1.(A), we suppose that the inputs of the n1 gates num-
bered 2n1+1, · · ·, 3n1 come from the outputs of the 2n1 nodes numbered 1, · · ·,

174 Y. Yu, J. Leiwo, and B. Premkumar

12 1n

12n

1

2

3

4

12 1n +

12 2n +

13n 12 1n

12n

1

2

3

4

12 1n +

12 2n +

13n

C

(A) (B)

Fig. 1. (A) The outputs of nodes numbered 1, · · ·, 2n1 are permuted according to
permutation function π:{1, · · ·, 2n1}→{1, · · ·, 2n1} before they are used by gates
numbered 2n1+1, · · ·, 3n1. (B) A subcircuit Cπ that is functionally equivalent to π
while Topo(Cπ) is independent of π.

2n1. At this point, we also assume that there is a one-to-one correspondence be-
tween the inputs and outputs, namely, each result of node i (1≤i≤2n1) is used
exactly once. It is trivial for anyone observing the circuit topology to tell which
nodes contribute to the inputs of gate node j (2n1<j≤3n1). Thus, we need to
find an efficient subcircuit construction algorithm such that:

– Given a permutation π:{1,· · ·,2n1}→{1,· · ·,2n1}, it efficiently outputs a 2n1-
input-2n1-output subcircuit Cπ , where the π(i)-th output carries the result
of the i-th input for all i∈{1,· · ·,2n1}.

– Topo(Cπ) is uniform regardless of π (i.e. only depends on the value of 2n1).

After we obtain Cπ, we insert it in between the circuit as shown in Fig. 1.(B),
then the topology of the resulting circuit reveals nothing about the inputs of
each gate j (2n1<j≤3n1).

We reduce the problem of generating Cπ to a sorting network problem: There
are 2n1 variables, x1, x2, · · ·, x2n1

, which are initialized to π(1), π(2), · · ·, π(2n1)
respectively. Each xi (1≤i≤2n1) is attached to node li with li initialized to i. A
comparison between xi and xj involves the following actions:

1. Suppose that the current maximum node number is L, then we generate two
gates gL+1(vli ,vlj) and gL+2(vli ,vlj), where vli and vlj denote the outputs of
node li and node lj respectively and

gL+1(vli , vlj) =
{

vli , if xi < xj

vlj , otherwise gL+2(vli , vlj) =
{

vlj , if xi < xj

vli , otherwise

2. Swap the values of xi and xj if xi>xj . Re-attach xi and xj to node L+1
and node L+2 respectively (i.e. li ← L+1 and lj ← L+2) and increment L
by 2.

Hiding Circuit Topology from Unbounded Reverse Engineers 175

How can the list x1, x2, · · ·, x2n1
be sorted to an ascending order by performing

comparisons in a predetermined manner (i.e. data independent)? When the list
is sorted, Cπ is produced as well: the input nodes of Cπ are node 1, · · ·, node 2n1,
gates of Cπ are generated during comparisons and output nodes are numbered
l1, · · ·, l2n1

with vlπ(i)
=vi (1≤i≤2n1).

It is easy to verify that the above reduction is correct. Firstly, during each com-
parison, vli and vlj are swapped (by generating gL+1(vli ,vlj)=vlj , gL+2(vli ,vlj)
= vli and letting li=L+1 and lj=L+2) if and only if xi and xj are swapped.
Initially, it holds that xi=π(i) and vli=vi. By the time x1, · · ·, x2n1

are sorted,
it will hold that xπ(i)=π(i) and hence the π(i)-th output of the permutation
subcircuit vlπ(i)

is equal to vi. Secondly, no matter xi < xj or not, two gates are
generated in the same way in terms of circuit topology. Finally, the comparisons
are performed in an order regardless of π and hence the resulting circuit topology
is uniform for all 2n1-to-2n1 permutations.

A satisfactory 2 solution for the reduced problem is given by Batcher [11],
who uses O(n·log2n) comparisons with a depth of O(log2n) to sort n elements
in a data-independent way. Since each comparison generates two gates, we can
construct an n1-input-O(n1·log2n1)-gate-n1-output permutation subcircuit Cπ

with depth O(log2n) using a uniform topology.
In some cases, we also hope to produce an n1-input-n2-output subcircuit

with n1<n2 and the input-output mapping is an injection, namely, there is a
bijection π1:{1, · · ·, n1} → {a1, · · ·, an1

} with {a1, · · ·, an1
} ⊂ {1, · · ·, n2}

and the π1(i)-th output equal to the i-th input. In this case, we construct an-
other arbitrary bijection π2: {n1+1, · · ·, n2} → ({1, · · ·, n2}−{a1, · · ·, an1

})
and let permutation π= π1 ∪ π2. We append n1−n2 constant inputs (e.g. 0)
to the end of the input list and proceed to generating Cπ using according
to π. During the comparison, if a resulting gate has one or two constant in-
puts (i.e. a degenerate gate), e.g., gk(vi,0) or gk(0,0), write it as gk(vi,v∗) or
gk(v∗,v#), where ∗ and # can be arbitrarily chosen. Thus, by padding (n2−n1)
constant inputs, we obtain Cπ capable of permuting n1 inputs into n2 outputs
obliviously.

2.3 Oblivious Multiplexer Circuits

Another useful subcircuit for obfuscation is the multiplexer circuitCmux that takes
as input the results of several nodes (i.e., v1, · · ·, vn3

) and only selects one of them as
output (i.e., vs). As shown in Fig. 2, the topology of Cmux is a balanced binary tree,
where leaf nodes take as inputs v1 through vn3

, root node outputs vs, and each level
holds the maximal number of nodes except that the highest level keeps its nodes
aligned to the left. There will be a connected path (e.g., see the highlighted path in
Fig. 2) from wire vs (at the leaf node level) to the output wire of the root node. We
assign assign degenerate functionalities to those on-path gates (e.g., nodes num-
bered 1, 2, 4, 9, 18 in Fig. 2) such that the output is equal to the on-path incoming
2 There is an asymptotically better result (also the lower bound), namely, the AKS

network [10] with O(n·logn) comparisons and depth O(logn), but it is impractical
as the constant factor hidden by the big-oh notation is extremely large.

176 Y. Yu, J. Leiwo, and B. Premkumar

1

2 3

4 5 6 7

98

1 2 3 4 5 6 7 8 9 16, , , , , , , , , ,v v v v v v v v v v

21 22,v v 23 24,v v 25 26,v v

5outv v=

10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

Level 1

Level 2

Level 3

Level 4

Level 5

17 20, ,v v

Fig. 2. An example of multiplexer sub-circuit Cmux with n3=26 and selection decision
s=5

wire (e.g., the output of gate node 1 is equal to its left child), and assign arbitrary
functionalities to the rest gates. As Topo(Cmux) is a balanced binary tree and is
fully determined (recall that we require the nodes on the highest level to be aligned
to the left) by the number of inputs n3, Topo(Cmux) is independent of s, and Cmux

has (n3−1) gates and depth log2n3�. We note that the multiplexer circuit Cmux

introduced here differs to the one in logic design in that the selection s is hardwired
in Cmux instead of being an input.

3 Circuit Topology Obfuscation

3.1 Obfuscation Algorithm

We start with an overview of the circuit obfuscation algorithmO. On input of an
n-input-Γ -gate-1-output circuit C, O obfuscates it gate by gate (i.e. from n+1
to n+Γ). As depicted in Fig. 3, O maintains up to d permutation subcircuits
C1

π, · · ·, Cd
π and they are updated before each gate is obfuscated. For each gate

gn+j(vaj , vbj), we obfuscate it by replacing it with g′n+j(v
′
aj

,v′bj
) where g′n+j has

the same functionality as gn+j does, and v′aj
and v′bj

are the outputs of two

multiplexer circuits C
aj
mux and C

bj
mux respectively. If we denote by ci,k the k-th

output of Ci
π, then the set of inputs of C

aj
mux and that of C

bj
mux are

{ci,k, where 1 ≤ i ≤ d, ti = 1 (switched on) and k = ((2j−2) mod 2i)+1} (1)

and

{ci,k, where 1 ≤ i ≤ d, ti = 1 (switched on) and k = ((2j−2) mod 2i)+2} (2)

respectively, where (2j−2)mod 2i means that (2j−2) wraps around after it
reaches 2i−1, namely, only the first 2i outputs are used by multiplexer circuits.

Hiding Circuit Topology from Unbounded Reverse Engineers 177

Level 1

Level 2

Level 3

Level d

muxC

1 with 2 2 outputsd d dC +

3t

2t

1t

dt

denotes an output that will never be used by muxC

3 with 8 4 outputsC +

2 with 4 2 outputsC +

1 with 2 1 outputsC +

Fig. 3. An obfuscation network that consists of a d-input multiplexer Cmux and d
permutation subcircuits C1

π, · · ·, Cd
π, where each Ci

π (1≤i≤d) has 2i+2i−1 outputs and
one of the first 2i outputs of each Ci

π contributes to the an input of Cmux provided
that switch ti is on

Multiplexer subcircuits C
aj
mux and C

bj
mux are non-reusable, namely, O generates

a distinctive pair of (Caj
mux, C

bj
mux) for each gate gn+j(vaj , vbj). In contrast, the

d permutation subcircuits C1
π through Cd

π are lasting and they will be updated
before and after obfuscating each gate. That is, each Ci

π should be viewed as a
pointer to a 3·2i−1-input-3·2i−1-output permutation subcircuit instead of a fixed
subcircuit because it will refer to different subcircuits as ti varies, e.g., Ci

π will
no longer refer to a subcircuit when ti is changed from 1 to 0 and it will point
to a new one later when ti is reset to 1.

Now we introduce the update of the permutation subcircuits. Initially, d =
log2(n)� (i.e. 2d−1<n≤2d) and O produces an n-input-3·2d−1-output permu-
tation subcircuit Cd

π that takes as inputs v1 through vn (the n inputs of C).
Since only level d is occupied, O sets tdtd−1· · ·t1 (which also serves as a counter
with t1 the least significant bit) to 10· · ·0. Then, O starts to obfuscate each gate
sequentially by replacing gn+j(vaj , vbj) with g′n+j(v

′
aj

,v′bj
). After each gate gn+j

is obfuscated, the d permutation subcircuits are updated as follows:

– If t1 = 0, then O generates a 3-input-3-output C1
π taking as inputs v′aj

, v′bj

and v′n+j=g′n+j(v
′
aj

,v′bj
), increments the counter tdtd−1· · ·t1 by 1 (i.e. set t1

to 1).
– If t1=1 and there is a b such that 1<b<d and tbtb−1· · ·t1=01· · ·1, then O

generates a 3·2b−1-input-3·2b−1-output Cb
π taking as inputs v′aj

, v′bj
, v′n+j

and all the outputs of C1
π through Cb−1

π , increments the counter tdtd−1· · ·t1
by 1 (i.e. set tb to 1 and set tb−1· · ·t1 to 0· · ·0).

– Otherwise, it holds that td· · ·t1=1· · ·1, O generates a 3·2d-input-3·2d-output
Cd+1

π taking as inputs v′aj
, v′bj

, v′n+j and all the outputs of C1
π through Cd

π ,
increments the counter by 1 (i.e. d is incremented by 1 and tdtd−1· · ·t1 is set
to 10· · ·0).

O moves on to the next gate (i.e. increments j by 1) and repeats the above op-
erations until the last gate gn+Γ is obfuscated. We can see that each of the first

178 Y. Yu, J. Leiwo, and B. Premkumar

2i outputs of Ci
π is used (by multiplexer subcircuits) exactly once (i.e. titi−1· · ·t1

counts from 10· · ·0 to 11· · ·1) before Ci
π is pulled out from level i (i.e. ti is set to

0) and its outputs are re-shuffled (together with those in lower levels) to a higher
level. The counter tdtd−1· · ·t1 is incremented by 1 after each gate obfuscation.

We have described how to generate the circuit topology of obfuscated circuit
C′=O(C). Obviously, Topo(C′) only depends on (n, Γ , 1) since all the inter-
mediately generated Cmux’s and Cπ ’s are uniform in terms of topology. It only
remains to be shown how to determine the functionalities of the gates in C′,
which fall into two categories : g′n+j that corresponds to gn+j and gates that
reside in Cmux and Cπ . As we have discussed, g′n+j is assigned the same func-
tionality as gn+j, and Cπ (resp., Cmux) is fully determined by n1 and π (resp.,

2 74*6315 ** **

2 74*6315 ** **

85 2

2 74*6315 ** **

5592 88

1092

2 74*6315 ** **
5592 88

4 8877655 99 * ** **5 43221211 10

5 12 11

5212 13 11

4 8877655 99 * ** **5 43221211 10

12

4 8877655 99 * ** **5 43221211 10

1

1

3,1 3,1

3,2 3,2

1

{input : , output: }

{input : , output: }

a
mux

b
mux

j

C c c

C c c

=

2

2

1,1 3,3 1,1

1,2 3,4 1,2

2

{inputs : , , output: }

{inputs : , , output: }

a
mux

b
mux

j

C c c c

C c c c

=

3

3

2,1 3,5 2,1

2,2 3,6 2,2

3

{inputs : , , output: }

{inputs : , , output: }

a
mux

b
mux

j

C c c c

C c c c

=

4

4

1,1 2,3 3,7 3,7

1,2 2,4 3,8 3,8

4

{inputs : , , , output: }

{inputs : , , , output: }

a
mux

b
mux

j

C c c c c

C c c c c

=

5

5

4,1 4,1

4,2 4,2

5

{inputs : , output: }

{inputs : , output: }

a
mux

b
mux

j

C c c

C c c

=

6

6

1,1 4,3 4,3

1,2 4,4 1,2

6

{inputs : , , output: }

{inputs : , , output: }

a
mux

b
mux

j

C c c c

C c c c

=

7

7

2,1 4,5 2,1

2,2 4,6 2,2

7

{inputs : , , output: }

{inputs : , , output: }

a
mux

b
mux

j

C c c c

C c c c

=

 denotes padding

 denotes that the
 output is equal to xv

 denotes that the
 selection tag is set
 to TRUE

x

1 7

8 8 2 5

9 9 5 8

10 10 2 9

11 11 4 7

12 12 5 11

13 13 2 12

14 14 12 13

Circuit

, ,

(,)

(,)

(,)

(,)

(,)

(,)

(,)

C

v v

v g v v

v g v v

v g v v

v g v v

v g v v

v g v v

v g v v

=

=

=

=

=

=

=

*

Fig. 4. An example of how to determine permutation function π and selection s in
each step

Hiding Circuit Topology from Unbounded Reverse Engineers 179

n3 and s). It suffices to explain how to determine the permutation function π
and the selection s of each Cπ and Cmux such that for each j ∈ {1, · · ·, Γ},
it holds that v′aj

=vaj and v′bj
=vbj . We illustrate how to determine π and s us-

ing a simple example in Fig. 4. We suppose that the current (to be obfuscated
next) gate number is j and that Ci

π is to permute a set of inputs that corre-
spond to vL1

, vL2
, · · · vL

3·2i−1
. The cardinality of the set is less than 3·2i−1

since there may be padded constants and overlapping values in the set. We list
out the node numbers of inputs to the next 2i−1 gates (gn+j(vaj ,vbj) through
gn+j+2i−1−1(va

j+2i−1−1
,vb

j+2i−1−1
)):

aj , bj , aj+1, bj+1, · · · , aj+2i−1−1, bj+2i−1−1 (3)

and construct a bijection π1: S1 → π1(S1), where S1 = {L1, · · ·, L3·2i−1} ∩ {aj ,
bj, · · ·, aj+2i−1−1, bj+2i−1−1 } and π1(x) is the position number of the leftmost
x that appears in the list (3) (x may appear more than once). We also define an
arbitrary bijection π2:

{1, · · · , 3 · 2i−1} − S1 → {1, · · · , 3 · 2i−1} − π1(S1) .

Finally, we get permutation π=π1∪π2 and mark the selection tags of the outputs
(of Ci

π) whose positions are given by π1(S1) as TRUE. The selection s of C
aj
mux

(resp., C
bj
mux) is determined by choosing a ci,k from set Eq. 1 (resp., set Eq. 2)

whose selection tag is TRUE and letting s = i. For example, in Fig. 4, when
j=1, S1={1, · · ·, 7}∩{2,5,5,8,2,9,4,7}={2,4,5,7} and hence π(2), π(4), π(5) and
π(7) is set to 1, 7, 2 and 8 respectively. It follows that the 1st, 2nd, 7th and 8th
outputs of C3

π are all tagged as TRUE. Thus, the outputs of Ca1

mux and Cb1
mux

are c3,1 and c3,2 respectively and the selections of Ca1

mux and Cb1
mux are both 3.

Correctness. Now we discuss that each C
aj
mux (resp., C

bj
mux) can always ensure

its output v′aj
=vaj (resp., v′bj

=vbj) by identifying the tagged (as TRUE) input
out of its input candidates given in Eq. 1 (resp., Eq. 2). Since aj<bj, vaj and vbj

always refer to outputs of different nodes. During each round when the counter
tdtd−1· · ·t1 counts from 10· · ·0 (i.e. at initialization or when d is incremented by
1) to 11· · ·1, O will obfuscate 2d−1 gates (unless there are less than 2d−1 gates
left) before entering the next round. The node numbers of inputs to these 2d−1

gates are
aj , bj, aj+1, bj+1, · · · , aj+2d−1−1, bj+2d−1−1

Without loss of generality, we consider an arbitrary aw in the above list.

– If vaw is found is the inputs of Cd
π (i.e. aw < j).

• If aw appears only once in the list or it is the leftmost one among those
values that appear in the list and are equal to aw, then π(aw) is equal to
its position number and it is hit in the d-th level (i.e. the corresponding
selection s of Caw

mux is d).
• Otherwise, there is at least a au (or bu) that is equal to aw and u<w.

Again without loss of generality, we assume that it is au. Thus, after au

180 Y. Yu, J. Leiwo, and B. Premkumar

is hit on level d and gate gn+u(vau ,vbu) is obfuscated, vau (vau=vaw) will
be copied and permutated to a lower level i′. If on level i′, aw is the first
among those node numbers (in the corresponding list of level i′) whose
values are equal to aw, it is hit on level i′. Otherwise, the operation is
repeated recursively until all gn+u(au,bu)’s satisfying u<w and (au or
bu)=aw are obfuscated.

– Otherwise, it holds that aw ≥ j and gate gaw has not been obfuscated yet. We
wait until gaw is obfuscated and vaw is copied to a lower level i′. Analogously,
if in the corresponding list of level i′ there is no such au or bu that is equal
to aw and u<w, aw will be hit on level i′, otherwise, the recursion continues
until aw is hit.

3.2 Information Disclosure of Topo(C′) and Obfuscation Overhead

We have finished the description of algorithm O as well as its correctness (i.e. C
is functionally equivalent to O(C)). We find that the topology of the obfuscated
circuit is generated in a way depending on only n, Γ and 1. We stress that
the permutation function π and selection s have no effect on Topo(Cπ) and
Topo(Cmux). In addition, the two inputs of gate g′n+j are also fully determined
by n, td· · ·t1 and the current gate index j (see Eq.(1) and Eq.(2)), where j is
incremented sequentially and j−(td· · ·t1) is a constant. Thus, Topo(O(C)) is
independent of the values of

(a1, b1), (a2, b2), · · · , (aΓ , bΓ)

and the following theorem holds.

Theorem 1. (Information disclosure of Topo(C′)): Let O be as in Sect. 3.1
and let C be an n-input-Γ -gate-1-output bounded fan-in Boolean circuit, then on
input C, O outputs a bounded fan-in circuit C′=O(C) with Topo(C′) revealing
nothing more than n, Γ and 1.

Proof. We give the proof by showing how to obtain Topo(C′) efficient using n, Γ
and 1. We construct an arbitrary n-input-Γ -gate-1-output circuit C1. Then we
obfuscate C1 using O to produce C1′=O(C1). As we have discussed, Topo(C1′)
should be identical to Topo(C′) and it follows that Topo(C′) discloses no more
than n, Γ and 1. �	

Theorem 2. (Obfuscation overhead): Let O be as in Sect. 3.1 and let C be an
n-input-Γ -gate bounded fan-in circuit, then on input C, O outputs a bounded
fan-in circuit C′ with size Γ ·O(log3Γ) and depth Γ ·O(loglogΓ).

Proof. As we have discussed, the obfuscation process can be considered as work-
ing in rounds. d is initialized to log2(n)� and each round starts with tdtd−1· · ·t1
= 10· · ·0 and ends when it reaches 11· · ·1 and d is incremented by 1. During
each round, O obfuscates 2d−1 gates (unless it reaches the last gate) and gen-
erates 1 instance of Cd

π, 20 instance of Cd−1
π , 21 instances of Cd−2

π , · · ·, 2d−1−i

Hiding Circuit Topology from Unbounded Reverse Engineers 181

instances of Ci
π , · · ·, 2d−2 instances of C1

π and 2
(

d− 1
0

)
instances of 1-input

Cmux, 2
(

d− 1
1

)
instances of 2-input Cmux, · · ·, 2

(
d− 1
d− 1

)
instances of d-input

Cmux and g′n+j , · · ·, g′n+j+2d−1−1. Thus, the total number of gates generated
during this round is

O(3 · 2d−1 · (log2 3 · 2d−1)2) + O(1)
d−1∑
i=1

2d−1−i · 3 · 2i−1 · (log2(3 · 2i−1))2

+2
d−1∑
k=0

k

(
d− 1

k

)
+ 2d−1

= O(d22d) + O(2d)
d−1∑
i=1

i2 + (d− 1)2d−1 + 2d−1

= O(d32d)

and the circuit depth accumulated in this round is

O((log2 3 · 2d−1)2) +
d−1∑
i=1

2d−1−iO((log2 3 · 2i−1)2) +
d∑

k=1

(
d− 1
k − 1

)
log2 k + 2d−1

= O(d2) + O(1)
d−1∑
i=1

i22d−i + O(1)
d∑

k=1

(
d− 1
k − 1

)
log2 k + 2d−1

= O(2d) + O(2d log2 d)
= O(2d log2 d)

Suppose that there are R rounds (i.e. d ∈ {log2(n)�, · · ·, log2(n)�+R−1}), then
it holds that

�log
2

n	+R−1∑
d=�log

2
n	

2d−1 ≤ Γ

namely, these R rounds are sufficient to obfuscate Γ gates. It follows that
R=O(1)·log2(Γ

n) and the number of gates in C′ is

�log
2

n	+R−1∑
d=�log

2
n	

O(d32d) < (log2 n�+ R)3
�log

2
n	+R−1∑

d=�log
2

n	
O(2d) ≤ O(log3

2 Γ) · Γ

and the depth of C′ is

�log
2

n	+R−1∑
d=�log

2
n	

O(2d log2 d) < log2(log2 n+R)
�log

2
n	+R−1∑

d=�log
2

n	
O(2d) = O(log2 log2 Γ)·Γ

�	

Note that the depth of C′ is independent of that of C since Topo(C′) is uniform
for all C that have the same input length, output length and circuit size.

182 Y. Yu, J. Leiwo, and B. Premkumar

4 Concluding Remarks

We have shown that a circuit C can be transformed to an obfuscated one C′ with
the same input-output behavior by paying a poly-logarithmic price in circuit size.
In the meantime, Topo(C′) reveals nothing more than the input length, output
length and circuit size in an information-theoretic sense.

References

1. Grover, D.: Program identification. In: The protection of computer software—its
technology and applications. Cambridge University Press (1989) 119–150

2. Naccache, D., Shamir, A., Stern, J.P.: How to copyright a function? In: Proc.
2nd International Workshop on Practice and Theory in Public Key Cryptography
(PKC 99), Springer-Verlag (1999) 188–196

3. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6) (1976) 644–654

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Advances in Cryp-
tology - CRYPTO 2001, Springer-Verlag (2001) 1–18

5. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfus-
cation. In: Advances in Cryptology - EUROCRYPT 2004. (2004) 20–39

6. Yao, A.C.C.: How to generate and exchange secrets. In: Proc. 27rd Annual Sym-
posium on Foundations of Computer Science (FOCS 1986). (1986) 162–167

7. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Proc. 19th Annual
ACM Symposium on Theory of Computing (STOC 1987). (1987) 218–229

8. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC 1990).
(1990) 503–513

9. Valiant, L.G.: Universal circuits (preliminary report). In: Proc. 8th Annual ACM
Symposium on Theory of Computing (STOC 1976). (1976) 196–203

10. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: Proc.
15th Annual ACM Symposium on Theory of Computing (STOC 1983). (1983) 1–9

11. Batcher, K.E.: Sorting networks and their applications. In: Proc. AFIPS Spring
Joint Computing Conference. (1968) 307–314

The Role of the Self-Defending Object Concept
in Developing Distributed Security-Aware

Applications

John W. Holford and William J. Caelli

Information Security Institute
Queensland University of Technology,

Brisbane, Queensland 4001
j.holford, w.caelli@qut.edu.au

Abstract. The Self-Defending Object (SDO) concept extends the cur-
rent object-oriented programming paradigm to specifically target the pe-
culiar requirements of Security Aware Application (SAA) development.
This paper discusses the SDO Distribution Architecture (SDODA) that
enables the use of the SDO concept in development of distributed SAAs.
Specifically the architecture overcomes the apparent incompatibility be-
tween the two programming models considered and the SDO concept that
prevented the transfer of SDOs between SAA hosts. To demonstrate the
applicability of both the architecture and the SDO concept itself, two
versions of a distributed (Java) SAA were developed using orthogonal
distributed programming models, the Web services and the Java RMI
models. This paper deals with the implementation of the SDODA and
the SDO concept in a Web services environment.

The successful use of the architecture demonstrated that the SDO
concept can be used to simplify the implementation of application level
mandatory access control in distributed SAAs.

Keywords: Computer Security, Access Control, Distributed Comput-
ing, Object Oriented Systems.

1 Introduction

The last decade has seen a profound shift in how industry and government
agencies manage their information systems. Information systems are now almost
universally interconnected via the Internet. In an attempt to gain a strategic
advantage over their competitors and to reduce the costs associated with doing
business, many organisations are moving beyond the mere interconnection of
information systems to the full integration of critical components of their own
information system with those of their trading partners to form what is becoming
identified as a “global information grid”. Such integration is being facilitated by
the unique ability of the Standards based Web services model to support the
integration of information systems irrespective of their underlying hardware,
operating system or middleware structures.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 183–194, 2006.
© Springer-Verlag Berlin Heidelberg 2006

184 J.W. Holford and W.J. Caelli

Major security concerns arise because the system components being exposed
to the Internet are often legacy systems that were not designed to operate in
such a hostile environment or are, at the end-user level insecure commodity
personal computer systems. Further they are being hosted within computing
environments that rely on protection provided by commercially available oper-
ating systems that are known to be insecure. Commercial operating systems and
their associated system tools were not designed with security in mind and the
vulnerabilities that are regularly identified in such software, undermine what
security they propose to provide1. Associated with this insecurity is a prolifera-
tion of viruses, and related malware, that take advantage of these system level
vulnerabilities.

The USA’s Department of Homeland Security (DHS) has emphasized the
urgent need to ‘build security in’ in relation to software systems[2]. The home-
page of their website simply states; “Build Security In is a project of the Strate-
gic Initiatives Branch of the National Cyber Security Division (NCSD) of the
Department of Homeland Security (DHS). The Software Engineering Institute
(SEI) was engaged by the NCSD to provide support in the Process and Technol-
ogy focus areas of this initiative. The SEI team will develop and collect software
assurance and software security information that will help software developers,
architects, and security practitioners to create secure systems”[2]. The emphasis
is on security analysis and integration in the overall definition and development
cycle for software and systems development.

New security paradigms, that reflect the new information security reality, are
desperately needed. Given the dominance of the object-oriented programming
paradigm in current application development, any attempt to provide increased
the security within security aware applications (SAAs), should be applied in
that context. The Self-Defending Object (SDO) philosophy defines such a new
programming paradigm that aims to address part of that need; by providing a
framework for the provision of mandatory access control (MAC) structures and
facilities within SAAs that must operate in this new world.

This paper firstly introduces the SDO concept and then discusses the SDO
Distribution Architecture (SDODA) that overcomes an major hurdle to the
adoption of the SDO concept namely, its apparent incompatibility with some
distributed programming models e.g. those used to develop a prototype used to
support research into the SDO concept. The problem that needed to be solved
was that neither the Web services nor the Java RMI models supported the pass-
ing of this special type of object to a remote procedure.

2 The SDO Concept

There is a major deficiency in the current object-oriented paradigm when applied
to the development of SAAs. When an object receives a message requesting that
1 In January 2002, Bill Gates (Microsoft) sent an email to all full time employees[1]

in which he announced the company’s commitment to ‘trustworthy computing’ and
contrasted it to the current situation.

The Role of the Self-Defending Object Concept 185

an operation be performed, the object will always attempt to satisfy that request.
Whether that action should be permitted, is not considered2. Within the object-
oriented paradigm, an object is unaware of the sensitivity of its encapsulated
resources (data and/or functionality), so does not mediate requests to access
those resources. Although such an approach may be appropriate for a majority
of programs, it is not necessarily appropriate for SAAs. By their very nature,
SAAs take security considerations into account when performing their tasks.

The SDO concept is an extension to the object-oriented paradigm that specif-
ically targets that lack of support for the development of SAAs[3]. Specifically,
that extension targets two requirements of SAAs: (1) the need to ensure that ac-
cess to protected data and functionality, is in accordance with the application’s
security policy, and (2) all attempted accesses to those protected resources are
recorded in accordance with the application’s audit policy. The SDO approach
aims at defining new concepts related to the growing requirement for information
assurance in information systems.

An SDO is an object that encapsulates sensitive resources and has been made
aware of, and assumes responsibility for its protection. Such protection is afforded
through the provision of mandatory access control facilities, most likely in the
form of role based access control (RBAC) structures pointing into broadly cate-
gorised permission tables or structures that implement the MAC requirements.
In non-distributed SAAs, the introduction of the SDO concept has been shown
to both simplify the development of SAAs and to ensure the completeness of
their access control and audit measures [4].

A distinguishing characteristic of SDO methods that access protected re-
sources, is the presence of an additional parameter, by convention the first
parameter, which is an authorisation token used both as the basis of the au-
thorisation decision (to determine whether that user is permitted to invoke
that method) and to provide whatever user information is required for audit
purposes.

Rather than merely acting as containers and dispensers of data and func-
tionality, relevant software objects actively defend their sensitive resources from
unauthorised access. Since in well written object-oriented programs, encapsu-
lating objects provide the only means to access their encapsulated resources
(from within the application), the enforcement of access control by those objects
ensures that such measures are consistently applied and cannot be bypassed.

2.1 Limitations of the SDO Concept

The SDO concept does not, in itself, attempt to provide absolute security guar-
antees. It is primarily concerned with ensuring that an SAA will mediate all
accesses to its protected resources, and that all such access attempts are logged.
2 This statement is not strictly true. In Java, for example, security managers restrict

access to resources that the Java runtime considers security sensitive. Mechanisms
are also provided that allow access to user defined resources to be restricted. The
SDO approach however, provides a framework for utilising these mechanisms to
enforce the access control requirements of SAAs, in a coordinated manner.

186 J.W. Holford and W.J. Caelli

To provide absolutely guaranteed and reliable levels of security, the major re-
quirements that must be satisfied are: the provision of a secure computing envi-
ronment (based on trusted hardware and operating system); a trusted execution
environment in which application programs and any required middleware such
as windowing/GUI sub-systems, network communications sub-systems and the
like, will reside; and finally an application that provides complete access control.

Even in the current relatively insecure computing environments, the SDO
concept has a significant role to play. By ensuring the access control measures
of an SAA are systematically enforced, the rigorous application of the SDO
concept will ensure that the access control requirements of the application are
met. Further, by encapsulating protected resources within an SDO, rather than
in a normal object, access control continues to be enforced even if the SDO is
transferred between host computers. Protected information can potentially still
be obtained by an attacker, if either a programming flaw exists in the SDO/ SAA
code or mechanisms other than those provided by the application are employed,
e.g. directly accessing the database in which sensitive information is stored.

The SDO concept, in conjunction with security mechanisms such as encryp-
tion, can provide reasonably dependable security guarantees.

Having introduced the SDO concept, the remainder of this paper will concen-
trate on the application of the SDO concept in distributed SAAs and the role of
the SDO Distribution Architecture.

3 The HRIS Prototype

The following simplified ‘Human Resources’ (HR) scenario will be used to high-
light aspects of the application of the SDO concept in a distributed SAA. The
Human Resources Information System (HRIS) prototype stores the personnel
records of a small fictitious organisation and permits transactions on that collec-
tion. The graphical user interface provides the following functionality: displaying
and editing an existing personnel record, adding and deleting personnel records,
and displaying all the personnel records in a tabular format.

Employees are considered to form a three level hierarchy namely; employees,
managers and executives. The information kept for each employee type is:

– employee – employee number, name, work phone number, position, salary
and home phone number

– manager – the above fields plus details of their supplied company car
– executive – the above fields plus details of their performance bonus.

Access to all employee information is restricted to authorised users of the
HRIS. Naturally different access rules apply to different fields in an employee
record and depend on the employee’s position within the organisational hierar-
chy, e.g. access to an employee’s salary is more restricted than to their phone
number, and an executive’s salary is more confidential than a manager’s salary.

The staff of the HR department (and other authorised users) are associ-
ated with one or more of the following user RBAC roles: hruser, hradmin and

The Role of the Self-Defending Object Concept 187

hrmanager3. The ‘user’ roles are listed in order of increasing privilege, with each
role encompassing the privileges of the preceding role.

In this paper most access control decisions relate to the ability of the cur-
rent user to perform a requested task so for simplicity the term ‘user’ will be
used rather than the correct term ‘principal’ (that encompasses both users and
processes).

3.1 HRIS Overview

As illustrated in Figure 1, HR staff normally access the information system that
is located on their local area network (LAN) using the Java RMI interface, while
other system users gain access across the Internet via the Web services inter-
face4. Both access mechanisms provide their users with identical functionality
and user interfaces. The HRIS design is based on the classic client-server archi-
tecture with each access mechanism being implemented as a separate distributed
application composed of two parts, viz. a server and one or more clients. For clar-
ity, the security-related aspects of the prototype that support authentication and
authorisation have been omitted from Figure 1.

3.1.1 SDOs and Other Important HRIS Objects
The more significant SDO and object classes used within the HRIS are:

– the employee objects that encapsulate individual personnel records, a hier-
archy of the classes Employee, Manager and Executive;

– the datastore objects that provide restricted access to the personnel
database, class DataStore;

– the RMI server object that provides restricted access to ‘the server’ via the
RMI interface, class EmployeeServerImpl ;

– the Web services server that provides restricted access to ‘the server’ via the
Web services interface, class EmployeeWebServerImpl ;

– the class used to convert between the SDOs and their non-SDO equivalents,
class SDOClassConverter5;

– the employee list object that encapsulates a list of personnel records, class
StringArrayList ; and

– The authorisation credential that encapsulates the user’s unique identifier
and current role, (non SDO) class UserID.

3 There are additional administrative roles associated with system administrators or
for internal use by the system.

4 Two modes of access to the HRIS were investigated to ensure that any success in
applying the SDO approach was not dependent on the programming model chosen.
The RMI interface was chosen to represent the traditional, proprietary-based dis-
tributed computing approach because it is commonly used and fully integrated into
the Java API. The Web services model was chosen as it is becoming the distributed
programming model of choice and is supported by the majority hardware vendors
and software tool developers.

5 The need to perform such class conversions is identified in Section 5.1.1.

188 J.W. Holford and W.J. Caelli

W
eb

 S
er

vi
ce

s
A

pp
lic

at
io

n
R

M
I

A
pp

lic
at

io
n

User Client
Non−HR

Non−HR
User ClientUser Client

Non−HR

User Client
Non−HRNon−HR

User Client

User Client
Non−HR

Web Services Interface Server

DataStore

DataStore
Database
Personnel

RMI Interface

Client
HR staff

HR staff
ClientClient

HR staff
HR staff

Client

Fig. 1. HRIS Overview

To achieve separation of application and authorisation logic, an SDO will
typically delegate responsibility for making authorisation decisions to a separate
authorisation object (AO). In the HRIS, each SDO encapsulates a dedicated
AO. That model was chosen because it was believed to be the most difficult to
implement. When using this model, whenever an SDO was transferred between
the client and server both the SDO and its encapsulated AO need to be trans-
ferred. Thus any problems that might prevent the use of the SDO concept in
a distributed environment should be identified. Alternative approaches involve
some degree of sharing of AO instances e.g. all SDOs belonging to the same in-
heritance hierarchy share the same AO. If such models were used, only the SDO
would need to be transferred between machines. Upon arrival at its destination,
the SDO would be associated with the relevant shared AO at its destination.

4 The Web Services Programming Model

The Web services model is becoming popular as it is Standards based and em-
ploys XML-based messaging that provides implementation independence. Like
other Web services toolkits, the Java Web Services Developer Pack (JWSDP)
that was used to develop the HRIS, was created to enable the easy integration
of a Web service into a distributed application. From the WSDL description of
the service, all the classes needed to support remote procedure call semantics,
are automatically generated. The details of the remote method call being made
(including the identification of the method being invoked and its parameters)
are encoded in XML within a SOAP message.

The Simple Object Access Protocol (SOAP) is a standards-based protocol
for invoking Web services through the exchange of XML messages, i.e. enables

The Role of the Self-Defending Object Concept 189

remote procedure calls over the Internet. Roy[5] summarised the SOAP specifica-
tion as: “The SOAP specification defines an envelope for transmitting messages,
offers guidelines for encoding data, and provides rules for representing remote-
procedure calls”. The specification of standards, including WS-Security [6, 7] has
resulted in toolkit support for the securing SOAP messages at both the transport
and application layers.

The JWSDP toolkit does not employ any system level mechanisms (such as
serialization which is employed by the Java RMI). Instead when an object is
passed as a parameter to a remote method, the SOAP message is constructed
by ‘reading’ the value of each of the object’s data members using the relevant
accessor method. Similarly, at its destination, the object is reconstructed by
instantiating a new object and then initialising it by invoking each of its mutator
methods in turn (using data from the SOAP message).

4.1 The Apparent Incompatibility of SDOs and Web Services Tools

As specified in the JWSDP documentation, any object which is to be passed as a
parameter to, or is returned by, a remote call must have the following properties:

1. the class must provide an appropriately named accessor and mutator method
for every data member, and

2. the class must provide a default (i.e. zero parameter) constructor.

These requirements are met by most classes that are likely to be passed to re-
mote methods so the remote method invocation requirements of non-SDO based
applications are supported by the JWSDP. However SDOs cannot be transferred.
The Web services infrastructure uses accessor and mutator calls of the object
being transferred to disassemble and later ‘reconstruct’ the object at its destina-
tion. The accessor and mutator methods of SDOs perform authorisation and have
a different signature, so do not conform to the JWSDP requirements. In fact the
design of SDOs is orthogonal to such requirements as the defining characteristic
of an SDO is that it performs access control on its sensitive resources. The pres-
ence of SDO accessor and mutator methods that access protected data without
performing authorisation, would circumvent the SDO’s protection mechanism.

4.2 The SDO Distribution Architecture (SDODA) Provides a
Solution

The introduction of the SDO Distribution Architecture (SDODA) overcomes
this incompatibility between the Web services model and the use of SDOs. The
problem is that the Web services infrastructure is unable to use accessor and
mutator methods of SDOs, so the solution is to raise the level of abstraction
provided to the application, hence the SDO-based application interacts with the
SDODA’s middleware rather than directly with the Web services infrastructure.
The SDODA’s trusted middleware creates a ‘nonSDO’ object6 from any SDO
6 The term ‘nonSDO’ is used to denote an object that only provides constructors, stan-

dard accessor and mutator methods, and encapsulates exactly the same information
as its corresponding SDO.

190 J.W. Holford and W.J. Caelli

that needs to be passed between the Web services client and server. The nonSDO
parameters, along with the other (unmodified) parameters, are then passed to
the corresponding Web services infrastructure method. At its destination, an
SDO is recreated from the transferred nonSDO by the middleware. Thus, the
SDODA enables SDOs, as well as normal objects and primitive types, to be used
as parameters or the return value of remote method invocations.

It might appear that the proposed architecture will cause a loss in security
because at both the client and server, the security sensitive content is now en-
capsulated within nonSDOs (as well as SDOs). However, even though nonS-
DOs would divulge their sensitive content should one of their accessor methods
be invoked, access to their references is controlled. All references to nonSDOs
are kept private within the middleware layer (except for being passed to the
necessarily trusted Java runtime) so any nonSDOs become non-reachable as
soon as the middleware call completes. At the server, the situation is similar.
Hence the possibility that an attacker will obtain a reference to a nonSDO is
minimal. Thus the SDOSA increases the level of abstraction available to the
application thus enabling the Web services infrastructure to support the pass-
ing of SDOs between the client and server components of the application while
ensuring that the SDO’s content continues to be protected from unauthorised
access.

In the next section, the realisation of the proposed architecture in a Web
services environment will be discussed. Although not discussed in this paper,
SDOs also experience a non-related incompatibility problem with Java RMI,
which is also overcome using the SDODA mechanisms.

5 Implementing the SDO Distribution Architecture

The essence of the architecture is the introduction of a middleware layer that sits
between the distributed programming model infrastructure and the SDO-based
distributed SAA and mirrors the services provided by the underlying infras-
tructure. Those methods only differ in the types of their parameters with the
middleware accepting SDOs while the underlying infrastructure only accepts the
equivalent nonSDO.

Whenever a SDO needs to be passed as a parameter to a remotely invoked
method (or returned from such an invocation), the SDO-based SAA invokes the
relevant method of the middleware potentially passing one or more SDOs as
parameters. That method creates the corresponding nonSDO object from each
SDO parameter and passes them, along with the other parameters, to the cor-
responding server method of the programming model infrastructure.

At the destination, the relevant middleware method is invoked by the underly-
ing programming model infrastructure. The middleware performs the necessary
nonSDO to SDO parameter conversion, and then invokes the SDO-based server
method. Should an SDO need to be returned, the middleware is responsible for
enabling the return of that value by effectively the reverse process.

The Role of the Self-Defending Object Concept 191

5.1 The Web Services Version of the HRIS Prototype

An overview of the Web services version of the HRIS that shows the implemen-
tation of the SDODA, is presented in Figure 2.

SOAP messages

EmployeeWebServerImpl

NonSDOStringArrayList
Objects NonSDOEmployee

Objects

Employee
ObjectsObjects

StringArrayList
UserID
Objects

SD
O

C
la

ss
C

on
ve

rt
er

SD
O

C
la

ss
C

on
ve

rt
er

Personnel
Database

Objects
UserIDsuperClass

Objects
StringArrayList Objects

EmployeeObjects
UserID

Server

Client

DataStore

WebClient

HRWebServicesConnection

Fig. 2. Transferring SDOs in a Web Services Environment

5.1.1 The Client Solution
On the client side, the middleware is implemented as the HRWebServicesConnec-
tion class. To access a remote service, the client application invokes a HRWebSer-
vicesConnection method, rather than a method of the ‘real’ server. Developers
of the client application are able to pass SDOs as parameters to those methods
and/or receive SDOs as return values, e.g, the method get returns the requested
Employee SDO.

The HRWebServicesConnection methods mirror those provided by the server,
differing only in the type of the parameters being passed and return values
when an SDO is involved. The methods of the middleware (class HRWebSer-
vicesConnection) exhibit common behaviour that can be summarised as follows:
for each SDO passed as a parameter, instantiate an instance of the corresponding
nonSDO using the information content of the SDO, then invoke the correspond-
ing server method. Normal objects and primitive type parameters are forwarded
unchanged. Return values are handled by reversing the process. In the proto-
type, the task of performing the required type conversions between SDOs and
nonSDOs is delegated to a separate SDOClassConverter object.

The methods of the SDOClassConverter class need to invoke the constructors
together with the accessor and mutator methods of all of the SDO classes that
they convert. Consequently, that middleware object requires sufficient privileges
to invoke those SDO methods. In the prototype, those privileges are associated
with an administrative role SU and the administrator who executes the client
program (and similarly the server program) is required to authenticate into that

192 J.W. Holford and W.J. Caelli

role. The authorisation token generated is passed to and used exclusively by
the middleware software7. To execute a client (in the prototype at least), the
administrator must authenticate into the role creator (to acquire the privileges
required to instantiate the SDOs needed to initialise the client side application)
and then authenticate into the role SU (to provide the credential needed by the
system). Then, the administrator or another user must authenticate into the
relevant user role to gain the privileges needed to use the application.

In the HRIS, both the HRWebServicesConnection and the SDOClassCon-
verter classes were ‘hand coded’. In an SDO production environment, the SDO
Support Environment would be expected to include a software tool that would
automatically generate these classes and their server-side equivalents.

5.1.2 The Server Solution
On the server side, a analogous approach is used to that employed on the client
side. In HRIS, the class EmployeeWebServerImpl provides both an implemen-
tation of the server interface is responsible for interfacing the non-SDO aware
Web services infrastructure with the SDO-aware server application. Employ-
eeWebServerImpl is an SDO as it provides protected functionality, namely the
ability to invoke server methods8. Once the required parameter translations are
performed, the appropriate DataStoreImpl method is invoked to perform the
requested operation on the personnel database (after performing another autho-
risation check as it too is an SDO). As shown in Figure 2, the conversion of
parameters at the server is delegated to an instance of the same SDOClassCon-
verter class used by the client.

5.2 Special Classes for the Web Services Prototype

The applications running on both the client and server machines are based on
the SDO paradigm, i.e. they know about and use SDOs of types Employee and
StringArrayList, and also use UserID objects (see Section 3.1.1). Since the Web
services infrastructure is unable to handle SDOs, objects of the corresponding
WSDP compliant classes; NonSDOEmployee, NonSDOArrayList and UserIDsu-
perClass9 are passed between the server and its clients. The SDODA middleware
provides the interconnection of these otherwise incompatible subsystems.

5.2.1 SDO and ‘NonSDO’ Classes
Even though SDOs and their nonSDO equivalents are both effectively holders
for the same information, an SDO such as a Manager object, is fundamentally
different to its non-SDO equivalent, a NonSDOEmployee object. A Manager
7 The alternative approach would involve the system generating the required autho-

risation credential using a mechanism that bypasses the authentication subsystem.
8 It is assumed that the resources expended in performing the authorisation check

is significantly less than those expended by the server in processing unauthorised
requests.

9 Those WSDP compliant classes are automatically generated from the WSDL de-
scription of the Web service which includes a description of those classes.

The Role of the Self-Defending Object Concept 193

SDO enforces access control on its encapsulated protected content by restrict-
ing access to sensitive methods. It is also a member of a class hierarchy and
it attempts to monitor the integrity of its protected content10. In contrast, a
NonSDOEmployee object only provides constructors and accessor and mutator
methods for each of its data members.

The small linear SDO class hierarchy used in the HRIS allowed the use of a
single NonSDOEmployee class to act as the nonSDO equivalent for all of the Em-
ployee classes. That class encapsulates all of the data members that are declared
anywhere in the Employee hierarchy plus an additional data member which spec-
ifies the type of the Employee object that it represents. A static method SDO-
ClassConverter.convertToSDOEmployee is used to convert a NonSDOEmployee
object to the appropriate type of Employee object. That conversion involves
obtaining the value of each data member from the nonSDO object and then us-
ing those values to instantiate the Employee object. The other class conversions
are performed in a similar manner. The systematic nature of the method’s code
supports the previously expressed view that a software tool could be developed
to generate the class (or set of classes) needed to perform the type conversions
required to support the operation of a particular server.

By introducing a level of abstraction above that provided by the standard
Web services infrastructure, the middleware software facilitates the transfer of
SDOs between the individual systems on which a distributed SDO-based SAA
resides.

5.2.2 Authorisation Credentials
Authorisation credentials (UserID objects) are also passed as parameters to the
remote methods, and also require a Web services compliant counterpart, namely
UserIDsuperClass objects. Both classes contain identical information namely:
the role of the user, the userName of the user (a unique system wide identifier
for a user that is needed for audit purposes), the expiryDate of the token, and a
signature generated by the authentication service.

In this case, the problem is not that the UserID is an SDO, but rather that
UserID objects provide additional functionality. Not being an SDO, the class
UserID can extend the UserIDsuperClass class to provide the required integrity
checking. This approach is needed as the class UserIDsuperClass is automatically
generated so cannot perform custom functionality.

6 Conclusions

The applicability of the SDO concept to the development of non-distributed
SAAs has been previously demonstrated[4]. Consequently the SDO concept can
also be applied to the development of the applications that run on the client
and server machines. However to be truly applicable to the development of dis-
tributed SAAs, the passing of SDOs as parameters to remote procedure calls
10 The use of cryptography to provide integrity guarantees within the Employee and

UserID classes is not considered in this paper.

194 J.W. Holford and W.J. Caelli

must also be supported. The proposed SDODA overcomes the apparent incom-
patibilities between SDOs and the Web services and Java RMI distributed pro-
gramming models.

As described in Section 5.1, the development of the Web services version of the
HRIS prototype demonstrated that SDODA could be used to support distributed
SAAs that employ the Web services model. The provision of trusted middleware
that converts between SDOs and normal objects, allowed the remote method
invocation support provided by Java’s JWSDP to be harnessed, to allow SDOs
to be passed to and from a Web services server. A second HRIS application
based on the Java RMI model, has also been successfully developed using the
proposed architecture.

It is believed that since the trusted middleware is sandwiched between the Web
services (or Java RMI) infrastructure layer and the SDO-based application, and
essentially provides a parameter translation service, the proposed architecture
should support distributed SDO-based SAAs based on other distributed pro-
gramming models. Further, since the implementation of the distributed SDO-
based prototype is not believed to be dependent on any Java specific language
constructs or API support, the SDO concept and the SDODA should be more
generally applicable. Further research is needed to validate our belief that the
SDO concept is applicable to the development of distributed SAAs using other
platforms such as .Net, and other distributed paradigms such as CORBA.

References

1. Gates, B.: Bill Gates: Trustworthy Computing. Wired News (2002) http://
www.wired.com/news/print/0,1294,49826,00.html .

2. Department of Homeland Security: ‘Build Security In’ home page. (2006)
http://buildsecurityin.us-cert.gov.

3. Holford, J.W., Caelli, W.J., Rhodes, A.W.: The concept of self-defending objects
in the development of security aware applications. In: 4th Australian Information
Warfare and IT Security Conference, Adelaide, Australia (2003)

4. Holford, J.W., Caelli, W.J., Rhodes, A.W.: Using self-defending objects to develop
security aware applications in Java. In Estivill-Castro, V., ed.: 27th Australasian
Computer Science Conference. Volume 26 of Conferences in Research and Practice
in Information Technology., Dunedin, New Zealand, Australian Computer Society
(2004) 341–349

5. Roy, J., Ramanujan, A.: Understanding web services. IT Pro (2001) 69–73
6. IBM, Microsoft: Security in a web services world: A proposed architecture and

roadmap, version 1.0. Technical report, IBM and Microsoft (2002)
7. Nadalin, A., Kaler, C., Hallam-Baker, P., Monszillo, R.: Web Services Secu-

rity: SOAP Message Security 1.0 (WS-Security 2004). Technical report, OA-
SIS, http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0 (2004)

Efficient and Provably Secure Multi-receiver
Identity-Based Signcryption�

Shanshan Duan and Zhenfu Cao

TDT Laboratory, Shanghai Jiao Tong University,
200240, Shanghai, P.R. China

dss@sjtu.edu.cn, zfcao@cs.sjtu.edu.cn

Abstract. In this paper, we propose an efficient multi-receiver identity
based signcryption scheme which only needs one pairing computation to
signcrypt a message for n receivers and can provide confidentiality and
authenticity simultaneously in the multi-receiver setting. We compare
our scheme with several multi-receiver constructions from the security
and efficiency points of view and argue that our provably secure scheme
is more efficient than other known constructions. To address the security
issues, we formulate security models and define strong security notions for
multi-receiver identity based signcryption schemes. We also prove that
our scheme satisfies these strong security requirements in the random
oracle model.

1 Introduction

The multi-receiver setting for public key encryption is that there are n receivers,
numbered 1, ..., n, and each of them generates for itself a private and public key
pair denoted by (ski, pki). A sender encrypts a message Mi using pki to obtain
Ci for i = 1, ..., n and then sends (C1, ..., Cn) as a ciphertext. Upon receiving
the ciphertext, receiver i extracts Ci and decrypts it using iski. The concept of
this multi-receiver setting was formalized by Bellare et al. [1]. They proved that
in the sense of indistinguishability, public key encryption in the multi-receiver
setting is secure if it is secure in the single-receiver setting. Baudron et al. [2] also
proved the same result independently. To save the bandwidth and minimize the
computation cost, Kurosawa [3] showed one could design multi-receiver encryp-
tion schemes using a technique called “randomness re-use”. Bellare [4] broadened
Kuraosawa’s investigation. He specified an appropriate security model and pro-
vided a test to determine whether a public key encryption scheme permits secure
randomness re-use to build up a multi-receiver encryption scheme.

Identity based cryptosystem was introduced by Shamir in 1984 [5]. Its main
idea is that public keys can be derived from arbitrary strings while private keys

� This work is supported in part by the National Natural Science Foundation of China
for Distinguished Young Scholars under Grant No. 60225007 and 60572155, the Sci-
ence and Technology Research Project of Shanghai under Grant Nos. 04JC14055
and 04DZ07067, and the Special Research Funds of Huawei.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 195–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

196 S. Duan and Z. Cao

can be generated by the trusted Private Key Generator(PKG). In such systems,
there is no need to bind a public key to its owner’s identity. So trust problems en-
countered in the certificate based public key infrastructures do not exist. Baek et
al. [6] incorporated identity based encryption to the above multi-receiver setting
and called the interesting result “multi-receiver identity based encryption”.

In this multi-receiver identity based setting, we are interested in the situa-
tion where there are not only multiple receivers but also multiple senders. As
an example, consider that there are several managers, each of whom wants to
securely broadcast an e-mail to the employees of the company independently.
Once an employee receives several ciphertexts from different managers, an issue
of message authentication will arise. In such cases, it is desirable to achieve con-
fidentiality and authenticity simultaneously, so each manager’s e-mail should be
encrypted and authenticated. One might argue that by adding sender authenti-
cation to Baek’s scheme these security requirements can be satisfied at the same
time. However, such combinations may suffer from hidden security weakness
and we will discuss them in Section 6. Recall that in the single-receiver setting,
signcryption [7], whose idea is to perform signature and encryption in a single
logical step, is an efficient way to obtain confidentiality, authenticity, integrity
and non-repudiation. Therefore in the multi-receiver identity based setting, we
might also introduce signcryption to achieve these security goals.

In the course of constructing multi-receiver identity based signcryption
scheme, special attention must be paid to efficiency. So far, there are two generic
methods to build multi-receive schemes, one is to simply process a message for
each receiver, and the other is to use the technique of randomness re-use [3]. Con-
sidering that almost all the ID-based signcryption schemes are based on bilinear
pairings, no matter which method is used, n bilinear pairing computations are
required to signcrypt a message for n receivers. This is far from efficient. Besides,
these two methods are both applied to the standard single-receiver schemes and
a scheme’s security in the single-receiver setting is different from that in the
multi-receiver setting. So given a single-receiver scheme, we can not make sure
whether it admits secure use of the above two methods. To meaningfully ad-
dress the security issues of MIBSC schemes, we need appropriate models and
definitions of security.

Our contributions. Following the above discussion, a natural question is how
to design a multi-receiver identity-based signcryption(MIBSC) scheme with a
high-level of computational efficiency while achieving authenticity and confiden-
tiality simultaneously. In this paper, we answer this question by making the
following contributions:

1. We present an efficient multi-receiver IBSC scheme that only requires one
pairing computation to signcrypt a single message for multiple receivers.

2. We specify a security model based on the selective multi-identity attack
model in which the adversary commits ahead of time to multiple identities which
it intends to attack and formalize two security notions for MIBSC schemes.
The notions are confidentiality against chosen ciphertext attacks and strong

Efficient and Provably Secure Multi-receiver Identity-Based Signcryption 197

existential unforgeability against chosen message attacks respectively. The latter
also supports ciphertext authentication so it can be viewed as a strengthening
of Boyen’s signature non-repudiation [8].

3. We prove that our scheme satisfies the above security notions in the random
oracle model [9]. To be specific, its chosen ciphertext security is shown to be
related to the hardness of BDH problem while its unforgeability is related to the
hardness of CDH problem.

4. We present certain possible MIBSC constructions and compare our scheme
with them from security and efficiency points of view respectively. We conclude
that our provably secure scheme has better performance.

2 Preliminary

2.1 Pairings

We briefly review the necessary facts about bilinear maps. Let us consider groups
G1 and G2 of the same prime order q, writing the group action multiplicatively.
A bilinear map is a map e : G1 ×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀P, Q ∈ G1, ∀a, b ∈ Zq, e(P a, Qb) = e(P, Q)ab.
2. Non-degeneracy: for any point P ∈ G1, e(P, Q) = 1 for all Q ∈ G1 iff P = O.
3. Computability: ∀P, Q ∈ G1, e(P, Q) can be efficiently computed.

Now recall some candidate hard problems that provide underlying assump-
tions from pairings that will be used later.

Definition 1. (Bilinear Diffie-Hellman(BDH) problem)The BDH problem is,
given P , P a, P b, P c ∈ G1, for unknown a, b, c ∈ Z∗

q , to compute e(P, Q)abc.
The advantage of any probabilistic polynomial time(PPT) algorithm G in solv-

ing BDH problem in G1 is defined to be:
AdvBDH

G = Pr[G(P, P a, P b, P c) = P abc : a, b, c ∈ Z∗
q].

BDH assumption: For every PPT algorithm G, AdvBDH
G is negligible.

Definition 2. (Computational Diffie-Hellman(CDH) problem)The CDH prob-
lem is, given P , P a, P b ∈ G1 for unknown a, b ∈ Z∗

q , to compute P ab.
The advantage of any probabilistic polynomial time(PPT) algorithm G in solv-

ing CDH problem in G1 is defined to be:
AdvCDH

G,G1
= Pr[G(P, P a, P b) = P ab : a, b ∈ Z∗

q].
CDH assumption: For every PPT algorithm G, AdvCDH

G,G1
is negligible.

2.2 Identity-Based Signcryption

Malone-Lee [10] proposed the first ID-based signcryption scheme along with a
security model. This model dealt with notions of privacy and unforgeability.
However, his scheme is not semantically secure. To overcome this weakness,
Quisquater [11] proposed a new ID-based signcryption scheme that achieves

198 S. Duan and Z. Cao

both public verifiability and semantic security against chosen ciphertext attacks.
Boyen [8] developed the security model of [10] by adding several new security
notions. Recently, Chen and Malone-Lee [12] present an ID-based signcrpytion
which claimed to be the most efficient, provably-secure scheme of its type pro-
posed to date.

Generally, an ID-based signcryption scheme consists of four basic algorithms:
Setup, Extract, Signcrypt, De-signcrypt. Setup generates common public pa-
rameters and the master key; Extract generates the private key for each user
according to its identity; Signcrypt produces a ciphertext from a sender to a
designated receiver; De-signcrypt checks the integrity of received ciphertext and
recovers the original message.

3 Definitions of Multi-receiver Identity-Based
Signcryption

3.1 Syntax

In the setting of multi-receiver identity based signcryption, either a single mes-
sage or multiple messages can be signcrypted. In our context, we assume that a
single message is signcrypted to multiple receivers.

Definition 3. A generic multi-receiver identity based signcryption(MIBSC)
scheme consists of the following algorithms.

Setup: Given a security parameter, the private key generator(PKG) generates
a master key mkPKG and a common parameter cpPKG. cpPKG is given to
all interested parties while mkPKG is kept secret.

Extract(private key extraction): Providing an identity ID received from a
user and its master key mkPKG as input, the PKG runs this algorithm to
generate a private key associated with ID, denoted by SID.

Signcrypt: To send a message m to multiple receivers whose identities are
ID1, ..., IDn respectively, the sender runs this algorithm to generates a
signcrypted ciphertext C = Signcrypt(M, SIDS , ID1, ..., IDn).

De-signcrypt: Upon receiving a ciphertext C, the receiver IDi computes De−
signcrypt(C, SIDi , IDS) and obtains m ∈ M ∪ {⊥}, where ⊥ indicates that
the message was not encrypted or signed properly.

In our approach, a multi-receiver signcrypted ciphertext is a combination of
two parts. The first part is same to all the receivers and the second part can
be viewed as an n-tuple where the i-th component is specific to receiver IDi.
When decrypting a ciphertext, receiver IDi extracts the first part and the i-th
component from the second part and then runs the De-signcryption algorithm.
We refer to the former as receiver information part and the latter as text part.
We adopt this approach because it simplifies the security model and allows for
a clear explanation of the security notions.

Efficient and Provably Secure Multi-receiver Identity-Based Signcryption 199

3.2 Security Notions

Now we present security notions for multi-receiver IBSC schemes. Recall that
the selective identity attack, which was first proposed by Canetti et al. [13],
means that an adversary commits ahead of time to the identity on which it
will be challenged. We extend this notion to the multi-receiver setting and refer
to it as selective multi-identity attack. Thus in our models, the adversary is
assumed to output ahead of time multiple identities that it wishes to attack.
Besides, due to the identity based nature, we should assume that the adversary
may obtain any private key other than those of the multiple target identities.
Note that in the description of the models, we often equate a user with its
identity.

Message Confidentiality. With respect to confidentiality, the widely accepted
notion is indistinguishability of ciphertexts under chosen ciphertext attacks.
We adapt it to the multi-receiver setting and refer to it as indistinguishability
of ciphertexts under selective multi-ID, chosen ciphertext attack(IND-sMIBSC-
CCA). Generally, a ciphertext in the multi-receiver setting can be viewed as a
combination of text part and receiver information part. In the game defined for
confidentiality, if an adversary simply modifies some components in the receiver
information part of the challenge ciphertext and submits the changed ciphertext
to the de-signcryption oracle on an identity whose corresponding component in
the receiver information part is not modified, then it can obtain the message
and win the game. The intuition is that the original challenge and the modified
challenge look the same to the queried identity. To avoid this trivial attack, we
do not allow the adversary to issue such de-signcryption queries after the chal-
lenge phase of the game. The notion of IND-sMIBSC-CCA, more restrictive but
still reasonable, is defined as follows:

Definition 4. We say that a multi-receiver ID-based signcryption scheme is
secure against chosen ciphertext attacks(IND-sMIBSC-CCA) if no probabilis-
tic polynomial time adversary has a non-negligible advantage in the following
game:

Setup: The challenger B runs the Setup algorithm to generate a master key
and a common parameter (mkPKG, cpPKG). B gives cpPKG to A while he
keeps mkPKG secret from A. After receiving the system parameters, the
adversary A outputs multiple target identities, denoted by ID∗

1 , ..., ID∗
n re-

spectively.
Phase 1: A issues a first series of queries of the following kinds adaptively:

– Private key extraction queries: A produces an identity ID and requires
its private key, the challenger runs the private key extraction algorithm
to get SID = Extract(mkPKG, ID). A restriction here is that ID �= ID∗

i

for i = 1, ..., n.
– Signcryption queries:A produces a message m ∈M, n receivers’ identity

IDR1
, ..., IDRn and requires the result of Signcrypt(m, ID∗

j , IDR1
, ...,

IDRn) for some attacked user’s private key SID∗
j
(j ∈ [1, n]).

200 S. Duan and Z. Cao

– De-signcryption queries: A produces a ciphertext σ and requires the re-
sult of De − signcrypt(σ, SID∗

i
) for some i ∈ [1, n]. This result is made

of a signed plaintext and a sender’s public key if the obtained signed
plaintext is valid for the recovered sender’s public key. Otherwise, the
⊥ symbol is returned as result(indicating that the ciphertext was not
properly formed).

Challenge: A produces two equal length plaintexts m0, m1 ∈ M and an ar-
bitrary private key SIDS . B flips a coin b ← {0, 1} to compute a signcryp-
tion σ = Signcrypt(mb, SIDS , ID∗

1 , ..., ID∗
n) with the sender’s private key

SIDS under the attacked public keys ID∗
1 , ..., ID∗

n. σ is sent to A as a chal-
lenge.

Phase 2: A issues new queries as in Phase 1. It can not ask the de-signcryption
of the challenge σ with the private key SID∗

i
for any i ∈ [1, n] nor query

the de-signcryption oracle on an identity and a ciphertext σ′ which is only
different from σ in the receiver information part.

Guess: At the end of the game, A outputs a bit b′ and wins if b′ = b.

A′s advantage is defined to be AdvIND−sMIBSC−CCA(A) := 2 Pr[b′ = b]− 1.

Strong Existential Unforgeability. Usually, the second notion for signcryp-
tion is unforgeability which can only provide signature non-repudiation. In our
security model, we add support for authenticated encryption and call the re-
sulting notion strong existential unforgeability. This security requirement makes
sure that the sender can not deny having signcrypted a message to the receivers
and so the sender and the encryptor are guaranteed to be the same person. Con-
sidering that in our context an adversary is a selective multi-identity one, we
allow it to forge a ciphertext on behalf of any of the multiple target identities
while knowing all the multiple receivers’ private keys. This notion, called strong
existential unforgeability under selective multi-ID, chosen message attack(SUF-
sMIBSC-CMA), is defined as follows.

Definition 5. We say that a multi-receiver ID-based signcryption scheme is said
to be strongly existentially unforgeable against chosen-message attacks (SUF-
sMIBSC-CMA) if no PPT forger has a non-negligible advantage against a chal-
lenger B in the following game:

Setup: The challenger B runs the Setup algorithm to generate a master key and
a common parameter (mkPKG, cpPKG). B gives cpPKG to F while he keeps
mkPKG secret from the forger F . After receiving the system parameters, F
outputs multiple target identities, denoted by ID∗

1 , ..., ID∗
n respectively.

Attack: F issues queries to the same oracles as those in Definition 4.
Forgery: F eventually produces a ciphertext σ and n arbitrary receivers’ key

pairs (IDR1
, SIDR1

),...,(IDRn , SIDRn
). F wins if σ decrypts under any pri-

vate key of these receivers, to be a signed message (m, s, ID∗
j) for some j ∈

[1, n] that satisfies the pair (m, s) is valid for the public key ID∗
j and σ was

not the output of a signcryption query Signcrypt(m, ID∗
j , IDR1

, ..., IDRn
).

Efficient and Provably Secure Multi-receiver Identity-Based Signcryption 201

4 Our Construction

In this section, we present our construction from pairings.

Setup: On inputting a security parameter k ∈ N , the PKG chooses the system
parameters that include two groups G1, G2 of prime order q ≥ 2k, a bilinear
map e : G1 × G1 → G2, a generator P ∈ G1 and a random s ∈ Zq as a
master key. Then it sets PTA = P s ∈ G1 as the system public key. The
PKG also chooses cryptographic hash functions H0 : {0, 1}t → G1, H1 :
{0, 1}t × G1 × {0, 1}t → Zq, H2 : G2 → {0, 1}2t, H3 : G2 × {0, 1}t → G1.
The system parameters are 〈q, G1, G2, e, P, PTA, H0, H1, H2, H3〉.

Extract: Given a user identity string ID ∈ {0, 1}∗, his public key is QID =
H0(ID). His private key is SID = (QID)s which is calculated by the PKG.

Signcrypt: Suppose Alice whose identity is IDA wants to signcrypt a message
m to n different receivers ID1, ..., IDn.
– Sign:

Alice chooses r ∈ Z∗
q , QR ∈ G1 randomly and computes:

X = P r, h = H1(m, X, QR), QA = H0(IDA) and W = Sh
AQr

A where
SA = Qs

A is Alice’s private key.
– Encrypt:

Then Alice computes V = e(P r
TA, QR), Y = H3(V, IDA) · W , Z =

H2(V) ⊕ (IDA ‖ m), Ui = (QRQIDi)r(i = 1, . . . , n) where QIDi =
H0(IDi).

The ciphertext is σ = (X, Y, Z, QR, U1, ..., Un).
De-signcrypt: Each receiver IDi uses his private key to decrypts σ.

– Decrypt:
Assume the private key of IDi is SIDi . IDi computes:
V ′ = e(PTA, Ui) · e(X, SIDi)

−1, (IDA ‖ m) = H2(V ′)⊕ Z.
Then output (IDA, m) together with 〈X, Y, V ′, QR〉 to verify.

– Verify:
IDi computes W ′ = Y ·H3(V ′, IDA)−1.
Compare if: e(P, W ′) = e(XP h

TA, QA) where h = H1(m, X, QR) and
QA = H0(IDA).

Output m if the above verification is true, or output ⊥ if false.

Correctness: It is easy to see that the above De-signcrypt algorithm is consis-
tent. If σ is a valid ciphertext, since

V ′ = e(PTA, Ui) · e(X, SIDi)
−1

= e(PTA, (QRQIDi)
r) · e(X, SIDi)

−1

= e(PTA, Qr
R) · e(PTA, Qr

IDi
) · e(P r, Qs

IDi
)−1

= e(P r
TA, QR),

then receiver IDi can decrypt the ciphertext and obtain the signed message.
From the description of algorithm De-signcrypt we know that for receiver

IDi, it only needs to extract the i-th component Ui from (U1, ..., Un) and then
uses Ui and its private key to obtain the sender’s signature from (X, Y, Z, QR).
So for a ciphertext (X, Y, Z, QR, U1, ..., Un), (X, Y, Z, QR) is the text part while
(U1, ..., Un) is the receiver information part.

202 S. Duan and Z. Cao

5 Proof of Security

Theorem 1. In the random oracle, if an adversary A has non-negligible advan-
tage ε against the IND-sMIBSC-CCA security of our scheme when running in
time t and performing qSC signcryption queries, qDSC de-signcryption queries
and qHi queries to oracles Hi(for i = 0, 1, 2, 3), then there is an algorithm B that
solves the BDH problem with probability ε′ ≥ 1

qH2

(
ε− qH2

qDSC/22k
)

and within
running time t′ < t + (2qDSC + qSC) te where te denotes the time required for
one pairing evaluation.

Proof. We show how to build an algorithm B that solves the BDH problem
by running the adversary A as a subroutine. On input (P, Pα, P β , Q = P γ),
B’s goal is to compute e(P, P)αβγ = e(P, Q)αβ . W.l.o.g., we assume that for
any ID, A queries H0 and private key extraction oracle at most once, and A
queries H0(ID) before ID is used as an input of any other queries. To handle A’s
queries, B maintains lists Li to keep track of the answers given to oracle queries
on Hi(i = 0, 1, 2, 3). B plays the role of A’s challenger and works by interacting
with A in a game defined as follows:

Setup: B sends the system parameter to A with PTA = P β. Then A outputs
multiple target identities, denoted by (ID∗

1 , ..., ID∗
n).

Phase 1: A performs a first series of queries of the following kinds that are
handled by B as explained below:

[Query on H0 for identity IDj]: If there exists (IDj , λj , Ej) in L0 list, return
Ej . Otherwise, do the following:
– If IDj = ID∗

i for some i ∈ [1, n], choose λ∗
i ∈ Z∗

q uniformly at random
and compute Ej = Pλ∗

i Q−1, else choose λj ∈ Z∗
q uniformly at random

and compute Ej = Pλj .
– Put (IDj , λj , Ej) into L0 and return Ej as the answer.

[Queries on Hi(i = 1, 2, 3)]: Produce a random element from the appropriate
range, and add both query and answer to the corresponding list.

[Private key extraction query on IDj]: Note that in our defined model IDj �=
ID∗

i for some i ∈ [1, n]. B recovers (IDj , λj , Ej) from the list L0, compute
SIDj = (P β)λj and retuen SIDj as the answer.

[Signcryption query on a plaintext m, a sender ID∗
i , and n arbitrary receivers

IDRi(i = 1, ..., n)]: Note that QID∗
i

has been set to Pλ∗
i Q−1 for some λ∗

i ∈
Z∗

p . B first chooses r′, h1, λR ∈ Z∗
p at random, computes X = P r′

(P β)−h1 ,
W = (Pλ∗

i Q−1)r′
, QR = PλR and checks if L1 already contains a

tuple (m, X, QR, h′
1) with h′

1 �= h1. In this case, B repeats the process with
another (r′, h1, λR) until finding a tuple (m, X, QR, h1) whose first three
elements do not figure in a tuple of L1. Then B adds the admissible tu-
ple into L1, retrieves (IDRi , λRi) from L0 and computes Ui = X(λR+λRi

)

for i = 1, ..., n. B also computes V = e(X, (P β)λR). Finally, B proceeds
as in the normal signcryption process to produce the desired
ciphertext σ.

Efficient and Provably Secure Multi-receiver Identity-Based Signcryption 203

[De-signcryption query]: when A submits a ciphertext C = (X, Y, Z, QR,
U1, ..., Un) and ID∗

i for some i ∈ [1, n], B searches all combinations
(IDS,i, mi, X, Wi) such that (mi, X, QR, h1,i) ∈ L1, (Vi, h2,i) ∈ L2,
(Vi, IDS,i, h3,i) ∈ L3, for some h1,i, h2,i, h3,i, Vi under the constraints that
Y · h−1

3,i = Wi, h2,i ⊕ Z = IDS,i||mi. If no such combination exists, the ⊥
symbol is returned to signal that the ciphertext is invalid. Otherwise, all the
tuples (IDS,i, mi, X, Wi, h1,i) which satisfy the above constraints are kept for

future examination. If one of them satisfies e (P, Wi) = e
(
XP

h1,i

TA , QIDs,i

)
,

then (IDS,i, mi) is returned.
Challenge: A outputs two messages m0, m1 together with an arbitrary sender’s

private key SIDS on which he wishes to be challenged. B searches the list
L0 to get λ∗

i that corresponds to ID∗
i for i = 1, ..., n. Then B responds with

challenge ciphertext c′ = (X ′, Y ′, Z ′, U ′
1, ..., U

′
n, Q′

R) built under the n target
identities, where X ′ = Pα, Q′

R = Q, U ′
i = Xλ∗

i for i = 1, ..., n, Y ′ and Z ′

are random strings of appropriate size.
Phase 2: A performs new queries as in Phase 1. However, it can not ask

the de-signcryption query of the challenge c′ with the private key of any
target identity nor query the de-signcryption oracle on an identity and
a ciphertext c which is only different from c′ in the receiver information
part.

At the end of the game, A returns its guess. B ignores the answer, randomly
picks an entry (V, h2) in L2, and returns V as the solution to the BDH problem.

Analysis : For a signcryption query on a plaintext m and a sender ID∗
i , X

is set to P r′
(P β)−h1 = P r′−βh1 , so r is implicitly defined to r′ − βh1. Since

W = (Pλ∗
i Q−1)r′

= (Pλ∗
i Q−1)r′−βh1(Pλ∗

i Q−1)βh1 = (QID∗
i
)r′−βh1(QID∗

i
)βh1 =

(QID∗
i
)r(SID∗

i
)h1 and Ui = X(λR+λRi

) = (P r)(λR+λRi
) = (PλRPλRi)r =

(QRQIDRi
)r for i = 1, ..., n, the distribution of the simulated target ciphertext

is identical to that of the target ciphertext in the real attack.
For the challenge, we set X ′ = Pα, Q′

R = Q and U ′
i = X ′λ∗

i for i =
1, ..., n. Given QID∗

i
= H0(ID∗

i) = Pλ∗
i Q−1, we have U ′

i = X ′λ∗
i = Pαλ∗

i =
(Pλ∗

i Q−1Q)α = (QID∗
i
Q′

R)α. Thus c′ is identically distributed as that in the
real attack. If A guesses correctly, it needs to query the random oracle H2 with
V ′ = e(P r

TA, Q′
R) = e((P β)α, Q) = e(P, Q)αβ. Then an entry (V ′, h2) will be left

in L2, from which B can extract e(P, Q)αβ .
Following the above discussion we know that, as long as the simulation of the

attacker’s environment is perfect, the probability that A asks the hash value of
e(P, Q)αβ is the same as in a real attack. Now, we assess the probability that
the simulation is not perfect. The only case where it can happen is when a valid
ciphertext is rejected in a de-signcryption query. It is easy to see that for every
(Vi, h2,i) of L2, there is exactly one pair (h1,i, h3,i) of elements in the range of
oracles H1 and H3 providing a valid ciphertext. Thus the probability to reject
a valid ciphertext is not greater than qH2

/22k. Since A makes total qDSC de-
signcryption queries during the attack and B randomly chooses V from list L2 as
a solution of the BDH problem, we have ε′ ≥ 1

qH2

(
ε− qH2

qDSC/22k
)
. Moreover,

204 S. Duan and Z. Cao

the bound on B’s computation time derives from the fact that every signcryption
query requires one pairing evaluation and every de-signcryption query requires
two pairing evaluations.

Theorem 2. In the random oracle, if a forger F has non-negligible advantage
ε ≥ 10n(qSC + 1)(qSC + qH1

)/q+ qH2
qDSC/22k against the SUF-sMIBSC-CMA

security of our scheme when running in time t and performing qSC signcryp-
tion queries, qDSC de-signcryption queries and qHi queries to oracles Hi(for
i=0,1,2,3), then there is an algorithm B that solves the CDH problem with
probability εB ≥ 1/9 and within running time tB ≤ 23nqH1

(t + qSCte)/(ε −
qH2

qDSC/22k) where te denotes the time required for one pairing evaluation.

We show how to build an algorithm B that solves the CDH problem. On input
(P, P β , Q = P γ), B’s goal is to compute P βγ or Qβ. Since it is difficult for B to
directly make use of F , we consider the following game, which is a variant of the
game defined in Definition 5:

Considering that the most general known attack to signature schemes is chosen
message attack, in this game the forger is not allowed to access de-signcryption
oracle. However, he can still query all the other oracles: private key extraction
oracle, signcryption oracle and hash oracles. In the beginning of the game, the
forger is still assumed to output multiple target identities but he must commit
to one of them. And in step ”Forgery”, the forger can not win the game if the
outputted ciphertext is not a valid forged ciphertext for which the sender is the
committed one. The first step of our proof is to reduce the problem to this new
game.

Lemma 1. If there is a forger F that has non-negligible advantage ε and running
time t against the SUF-sMIBSC-CMA security of our scheme, then there exists a
forger F ′ that wins the above game within running time t′ ≤ t and with probability
ε′ ≤ 1

n (ε−qH2
qDSC/22k) where qDSC and qH2

are the numbers of de-signcryption
queries and queries to H2 issued by F respectively.

Here we remark that the forger F ′ can be viewed as an adversary to the non-
ID-based scheme obtained by fixing the identities of the sender and multiple
receivers in our multi-receiver ID-based signcryption sheme. Assuming the exis-
tence of F ′, we can construct an algorithm which solves the CDH problem by
rewinding F ′.

Lemma 2. If there is a forger F ′ that wins the above variant game with ad-
vantage ε′ ≥ 10(qSC + 1)(qSC + qH1

)/q when running in time t′ and performing
qSC eigncryption queries, qHi queries to oracles Hi(for i = 0, 1, 2, 3), then there
exists an algorithm B that solves the CDH problem with probability εB ≥ 1/9 and
within running time tB ≤ 23qH1

(t′+qSCte)/ε′ where te denotes the time required
for one pairing evaluation.

From the above two lemmas, it is easy to verify that Theorem 2 holds.

Efficient and Provably Secure Multi-receiver Identity-Based Signcryption 205

6 Comparison and Efficiency Discussion

First we present a possible multi-receiver ID based signcryption construction
and discuss its security. Recall that in 2005, Baek et al. present an efficient
multi-receiver identity based encryption scheme for which each encryption to
n receivers also only requires one pairing computation. By adding sender au-
thentication to Baek’s scheme, we can construct a multi-receiver scheme which
still maintains the efficiency feature. However, it may not be a secure one. For
example, considering that Baek’s scheme is a multi-receiver variant of IBE [14],
we can use the similar method as Malone-Lee whose ID based signcryption
scheme [10] is a result of a combination of IBE with a signature scheme to
construct a MIBSC scheme. However, the combined scheme can not achieve
the semantical security. As pointed put in [15], as soon as the signature on the
plaintext is visible in the ciphertext, any attacker can simply verify the signa-
ture on plaintexts m0 and m1 produced during the game which is defined for
the confidentiality and then find out which one matches to the challenge ci-
phertext. Similarly, other combination methods also suffer from certain security
weakness.

Now we compare the efficiency of our method with that of several established
ID based signcryption schemes. Since computation time and ciphertext size are
two important factors affecting the efficiency, we present the comparison with
respect to them. For comparison on computation time, we only consider the
numbers of pairing computation as they are the most expensive. For comparison
on ciphertext size, we use ||G1||, ||m||, ||ID|| to denote the size of an element in
G1, the length of message m and the length of identity ID respectively.

To make the comparison convincing, we consider two typical schemes. The
first one is proposed by Boyen [8]. As the author pointed out, his scheme sup-
ports multi-recipient encryption with signature sharing for maximum scalabil-
ity. This goal is achieved by carrying out the Sign operation of the scheme
once, and then performing the Encrypt operation independently for each re-
ceiver, based on the output from Sign. However, as described in [8], each En-
crypt operation requires one pairing computation, so n pairing computations
are needed to send a message to n receivers. Besides, the ciphertext is in the
form of c = (〈x1, y1〉 , ..., 〈xn, yn〉 , z) where 〈xi, yi〉 ∈ G1 × G1 and the bit
length of z is equal to the sum of ||ID|| and ||m||. So the ciphertext size is
2n||G1||+ ||ID||+ ||m||.

The second scheme was presented by Chen and Malone-Lee [12] and was
believed to be the most efficient of its type proposed to date. Because this scheme
is in the standard single-receiver setting, we apply the technique of randomness
re-use to obtain the corresponding multi-receive scheme. And for the space limit,
we do not provide the detail of the resulting scheme which will be available in
the full version. But we mention that the total number of paring computations
is equal to that of the receivers. In addition, the ciphertext is in the form of
(X, y1, . . . , yn), where X ∈ G1 and the bitlength of yi is equal to the sum of
||G1||, ||ID|| and ||m||. So the ciphertext size is ||G1||+n(||G1||+ ||ID||+ ||m||).

The comparisons are summarized in the following table.

206 S. Duan and Z. Cao

Scheme Ciphertext Size Signcrypt Time
Our scheme (n + 2)||G1||+ ||m||+ ||ID|| 1

Boyen’s scheme 2n||G1||+ ||m||+ ||ID|| n
Chen’s scheme (n + 1)||G1||+ n||ID||+ n||m|| n

References

[1] M. Bellare, A. Boldyreva, S. Micali, Public-key encryption in a multi-user setting:
Security proofs and improvements, in: B. Preneel (Ed.), Advances in Cryptology –
EUROCRYPT ’ 2000, Vol. 1807 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin Germany, Brugge, Belgium, 2000, pp. 259–274.

[2] O. Baudron, D. Pointcheval, J. Stern, Extended notions of security for multicast
public key cryptosystems, in: U. Montanari, J. D. P. Rolim, E. Welzl (Eds.),
Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, ICALP’2000 (Geneva, Switzerland, July 9-15, 2000), Vol. 1853 of
LNCS, Springer-Verlag, 2000, pp. 499–511.

[3] K. Kurosawa, Multi-recipient public-key encryption with shortened ciphertext, in:
Public Key Cryptography, 2002, pp. 48–63.

[4] M. Bellare, A. Boldyreva, J. Staddon, Randomness re-use in multi-recipient en-
cryption scheme, in: Public Key Cryptography, 2003, pp. 85–99.

[5] A. Shamir, Identity-based cryptosystem and signature scheme, in: G. R. Blakley,
D. Chaum (Eds.), Advances in Cryptology – CRYPTO ’ 84, Vol. 196 of Lecture
Notes in Computer Science, International Association for Cryptologic Research,
Springer-Verlag, Berlin Germany, 1985, pp. 120–126.

[6] J. Baek, R. Safavi-Naini, W. Susilo, Efficient multi-receiver identity-based encryp-
tion and its application to broadcast encryption, in: Public Key Cryptography,
2005, pp. 380–397.

[7] Y. Zheng, Digital signcryption or how to achieve cost(signature & encryption)
<< cost(signature) + cost(encryption), in: CRYPTO, 1997, pp. 165–179.

[8] X. Boyen, Multipurpose identity-based signcryption (A swiss army knife for
identity-based cryptography), in: CRYPTO, 2003, pp. 383–399.

[9] M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for design-
ing efficient protocols, in: ACM Conference on Computer and Communications
Security, 1993, pp. 62–73.

[10] J. Malone-lee, Identity-based signcryption (Jul. 19 2002).
URL http://eprint.iacr.org/2002/098.ps.gz

[11] J. jacques Quisquater, New identity based signcryption schemes from pairings
(Feb. 24 2003).
URL http://eprint.iacr.org/2003/023.ps.gz

[12] L. Chen, J. Malone-Lee, Improved identity-based signcryption, in: Public Key
Cryptography, 2005, pp. 362–379.

[13] R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme,
in: EUROCRYPT, 2003, pp. 255–271.

[14] D. Boneh, M. K. Franklin, Identity-based encryption from the weil pairing, SIAM
J. Comput 32 (3) (2003) 586–615.

[15] J.-B. Shin, K. Lee, K. Shim, New DSA-verifiable signcryption schemes, in: ICISC,
2002, pp. 35–47.

Efficient Identity-Based Signatures Secure
in the Standard Model�

Kenneth G. Paterson and Jacob C.N. Schuldt

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK
{kenny.paterson, jacob.schuldt}@rhul.ac.uk

Abstract. The only known construction of identity-based signatures
that can be proven secure in the standard model is based on the ap-
proach of attaching certificates to non-identity-based signatures. This
folklore construction method leads to schemes that are somewhat in-
efficient and leaves open the problem of finding more efficient direct
constructions. We present the first such construction. Our scheme is ob-
tained from a modification of Waters’ recently proposed identity-based
encryption scheme. It is computationally efficient and the signatures are
short. The scheme’s security is proven in the standard model and rests
on the hardness of the computational Diffie-Hellman problem in groups
equipped with a pairing.

1 Introduction

Identity based encryption (IBE), introduced by Shamir [Sha84], enables the com-
putation of a public key for an entity, given only some general scheme parameters
and a string identifying the entity (e.g. an e-mail address, a telephone number,
etc.). A private key generator (PKG) computes private keys from a master secret
and distributes these to the entities participating in the scheme. This eliminates
the need for certificates as used in a traditional public key infrastructure. Al-
though Shamir proposed the idea of an IBE scheme in 1984, no construction
that was both efficient and secure was found until recently, when the work of
Boneh and Franklin [BF01] and Cocks [Coc01] was published. Since then, a large
number of papers have been published in this area (see [Bar] for a list of some
of these), including several containing direct constructions of identity-based sig-
nature (IBS) schemes [Pat02, Hes02, CC03, Yi03, BLMQ05].

Most of these IBS schemes are provably secure in the random oracle model
[BR93]. However, it has been shown that when random oracles are instanti-
ated with concrete hash functions, the resulting scheme may not be secure
[CGH98, BBP04]. Recently, efforts have been made to construct IBE schemes
that are provably secure in the standard model to overcome this problem. Boneh
� An extended version of this paper is available at http://eprint.iacr.org/2006/
080.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 207–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 K.G. Paterson and J.C.N. Schuldt

and Boyen initially proposed an IBE scheme [BB04a] which could be proven se-
cure using a “Selective ID” security model that is slightly weaker than the model
original proposed by Boneh and Franklin. The same authors later proposed an
IBE scheme [BB04b] that is secure in the full Boneh-Franklin security model
and in the standard model, but which is inefficient. Finally, Waters [Wat05] suc-
ceeded in constructing a fairly efficient IBE scheme which meets both require-
ments. Naccache [Nac05] and Chatterjee-Sarkar [SC05] independently proposed
a technique for reducing the size requirements of Waters’ scheme, making it more
suitable for practical use.

A generic approach to the construction of IBS schemes is to use an ordinary
(i.e. non-identity-based) signature scheme and simply attach a certificate con-
taining the public key of the signer to the signature. This certification-based
approach is apparently folklore, and variants of it are mentioned in passing in
several recent papers [GS02, DKXY03, BNN04, KMPR05]. The simplicity of
this technique shows that, in some sense, IBS schemes are much easier to obtain
than IBE schemes. Moreover, using an ordinary signature scheme that is secure
in the standard model as a component in the construction, one can obtain an
IBS scheme that is also secure in the standard model. However, this construction
does have its disadvantages. One is that the resulting identity-based signature
will need to include both a public key (that of the signer) and two ordinary
signatures (one from the signer and one from the certifier). This impacts on
the length of the signatures. Another is that each signature verification in the
identity-based scheme will involve verification of two ordinary signatures. These
drawbacks lead to somewhat inefficient schemes and raise the question of whether
it is possible to do better in the standard model with a direct construction.

An interesting observation, attributed to Naor by Boneh and Franklin, is
that any IBE scheme can be used to construct an ordinary signature scheme.
This is done by keeping the master secret of the IBE scheme as the private key
and publishing the scheme parameters of the IBE scheme as the public key. A
signature on a message m is then the private key of the identity um = m and
verification can be performed by selecting a random message mr, encrypting
mr with the public key of um, and verifying that decryption is possible using
the given signature as a decryption key. If the used IBE scheme is IND-ID-
CPA secure, the resulting signature scheme is existentially unforgeable under an
adaptive chosen message attack. This technique was used by Boneh, Lynn and
Shacham [BLS04] to construct short signatures from the IBE scheme of Boneh
and Franklin [BF01], and likewise by Boneh and Boyen to obtain another short
signature scheme [BB04c] from an IBE scheme due to the same authors [BB04a].
As noted by Gentry and Silverberg [GS02], IBS schemes can be constructed in
a very similar way if a hierarchical IBE (HIBE) scheme is used in place of an
IBE scheme. This will, in fact, lead to a hierarchical IBS scheme where signing
identities are part of a hierarchy having one level less than the used HIBE scheme.
When an identity (u1, . . . , ut) signs a message m, the identity um = m is inserted
as a child of (u1, . . . , ut) in the hierarchy. As above, a signature is the private
key of um and a verifier checks that decryption of a random message, encrypted

Efficient Identity-Based Signatures Secure in the Standard Model 209

with the public key for identity (u1, . . . , ut, um), is possible. Limiting the used
HIBE to a 2-level scheme leads to an ordinary IBS.

Our contribution. As a natural extension of the efforts to provide secure schemes
without the use of random oracles, we give the first direct construction for an
IBS scheme that is provably secure in the standard model. Our scheme is based
on a hierarchical extension of Waters’ scheme, and we use the above-described
technique of converting a 2-level HIBE scheme into a IBS scheme for our con-
struction. We prove our signature scheme to be secure under the computational
Diffie-Hellman assumption. This assumption seems more natural than many of
the hardness assumptions recently introduced to pairing based cryptography.

In terms of signature size and computational cost, our new scheme is com-
petitive with existing identity-based signature schemes (that are provably secure
only in the random oracle model). Our signatures consist of 3 group elements,
while signing is pairing-free and verification needs 3 pairing computations. Our
scheme is more efficient in terms of computation and signature size than the IBS
scheme that results from applying the certification-based construction to Waters’
signature scheme. In comparison to the IBS scheme that can be obtained from
the signature scheme of Boneh and Boyen [BB04c], our signatures are roughly
half the size, but verification takes one more pairing computation. However,
security for the Boneh-Boyen-derived scheme depends on the q-SDH assump-
tion, whereas the security of our scheme rests on the arguably more appealing
computational Diffie-Hellman assumption.

The only drawback of our scheme is the relatively large size of its public
parameters. However, we show how the technique of Naccache and Chatterjee-
Sarkar can be applied to our scheme to reduce the size of the public parameters,
at the cost of a looser security reduction.

2 Identity-Based Signatures

An identity-based signatures scheme can be described as a collection of the
following four algorithms:

Setup. This algorithm is run by the master entity on input a security parameter,
and generates the public parameters params of the scheme and a master
secret. The master entity publishes params and keeps the master secret to
itself.

Extract. Given an identity u, the master secret and params, this algorithm
generates the private key du of u. The master entity will use this algorithm
to generate private keys for all entities participating in the scheme and dis-
tribute the private keys to their respective owners through a secure channel.

Sign. Given a message m, an identity u, a private key du and params, this
algorithm generates the signature σ of u on m. The entity with identity u
will use this algorithm for signing.

Verify. Given a signature σ, a message m, an identity u and params, this al-
gorithm outputs accept if σ is a valid signature on m for identity u, and
outputs reject otherwise.

210 K.G. Paterson and J.C.N. Schuldt

2.1 Existential Unforgeability

The security model of existential unforgeability under an adaptive chosen mes-
sage attack, defined by Goldwasser, Micali and Rivest [GMR88], can be ex-
tended to the identity-based scenario in a natural way. We will define security
for identity-based signature schemes by the following game between a challenger
and an adversary:

Setup. The challenger runs the algorithm Setup of the signature scheme and
obtains both the public parameters params and the master secret. The ad-
versary is given params but the master secret is kept by the challenger.

Queries. The adversary adaptively makes a number of different queries to the
challenger. Each query can be one of the following.

– Extract query. The adversary can ask for the private key of any identity
u. The challenger responds by running Extract(params, u) and forwards
the private key du to the adversary.

– Sign query. The adversary can ask for the signature of any identity u
on any message m. The challenger responds by first running Extract
(params, u) to obtain the private key du of u, and then running Sign
(params, du, u, m) to obtain a signature, which is forwarded to the
adversary.

Forgery. The adversary outputs a message m∗, an identity u∗ and a string σ∗.
The adversary succeeds if the following hold true:

1. Verify(params, u∗, m∗, σ∗) = accept
2. The adversary has not made an extract query on u∗.
3. The adversary has not made a sign query on (u∗, m∗).

The advantage of an adversary A in the above game is defined to be

AdvA = Pr[A succeeds]

where the probability is taken over all coin tosses made by the challenger
and the adversary.

Definition 1. An adversary A is said to be an (ε, t, qe, qs)-forger of an identity-
based signature scheme if A has advantage at least ε in the above game, runs
in time at most t, and makes at most qe and qs extract and sign queries,
respectively. A scheme is said to be (ε, t, qe, qs)-secure if no (ε, t, qe, qs)-forger
exists.

The above game can easily be extended to cover strong unforgeability [ADR02]
by changing the third requirement in the forgery stage to “σ∗ was not output
as a response to a sign query”. However, our concrete scheme does not enjoy
security in this stronger sense, as an adversary can easily modify an existing
signature on a message into a new signature on the same message.

Efficient Identity-Based Signatures Secure in the Standard Model 211

3 Complexity Assumptions

The security of our signature scheme will be reduced to the hardness of the com-
putational Diffie-Hellman (CDH) problem in the group in which the signature
is constructed. We briefly review the definition of the CDH problem:

Definition 2. Given a group G of prime order p with generator g and elements
ga, gb ∈ G where a, b are selected uniformly at random from Z

∗
p, the CDH problem

in G is to compute gab.

Definition 3. We say that the (ε, t)-CDH assumption holds in a group G if
no algorithm running in time at most t can solve the CDH problem in G with
probability at least ε.

4 Construction

Our new identity-based signature scheme is based on an hierarchical extension
of the identity-based encryption scheme presented by Waters [Wat05]. However,
as shown in Section 5, the security of our scheme can be reduced to the hardness
of the CDH problem, whereas Waters’ scheme relies on the stronger Bilinear
Diffie-Hellman assumption. Our construction is based on bilinear maps and we
now briefly review some of the basic properties of such maps.

Let G and GT be groups of prime order p and let g be a generator of G. The
map e : G × G → GT is said to be an admissible map if the following three
conditions hold true:

– e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ Zp.
– e is non-degenerate, i.e. e(g, g) �= 1.
– e is efficiently computable.

See [Gal05] for more details on the construction of such maps. In Section 7, we
will sketch the modifications necessary to allow our scheme to operate in the
more general setting where e : G1 ×G2 → GT with G1 �= G2.

In the following all identities and messages will be assumed to be bit strings of
length nu and nm, respectively. To construct a more flexible scheme which allows
identities and messages of arbitrary lengths, collision-resistant hash functions,
Hu : {0, 1}∗ → {0, 1}nu and Hm : {0, 1}∗ → {0, 1}nm, can be defined and used
to create identities and messages of the desired length. We will use the notation
v ←R S as a short hand for choosing a value v uniformly at random from the
set S. Our new signature scheme is defined by the following algorithms:

Setup. Choose groups G and GT of prime order p such that an admissible
pairing e : G×G → GT can be constructed and pick a generator g of G.
Now, pick a secret α ←R Zp, compute g1 = gα and pick g2 ←R G. Fur-
thermore, pick elements u′, m′ ←R G and vectors U = (ui), M = (mi) of
length nu and nm, respectively, whose entries are random elements from G.
The public parameters are params = (G, GT , e, g, g1, g2, u

′, U , m′, M) and
the master secret is gα

2 .

212 K.G. Paterson and J.C.N. Schuldt

Extract. Let u be a bit string of length nu representing an identity and let u[i]
be the ith bit of u. Define U ⊂ {1, . . . , nu} to be the set of indicies i such
that u[i] = 1.
To construct the private key, du, of the identity u, pick ru ←R Zp and
compute:

du =
(

gα
2

(
u′∏

i∈U
ui

)ru

, gru

)
.

Note that a user can easily re-randomize his private key after he has received
it from the master entity.

Sign. Let u be the bit string of length nu representing a signing identity and let
m be a bit string representing a message. As in the Extract algorithm, let U
be the set of indicies i such that u[i] = 1, and likewise, let M⊂ {1, . . . , nm}
be the set of indicies j such that m[j] = 1, where m[j] is the jth bit of m.
A signature of u on m is constructed by picking rm ←R Zp and computing

σ =

(
gα
2

(
u′∏

i∈U
ui

)ru
(

m′ ∏
j∈M

mj

)rm

, gru, grm

)
∈ G

3.

Verify. Given a purported signature σ = (V, Ru, Rm) ∈ G3 of an identity u on
a message m, a verifier accepts σ if the following equality holds:

e(V, g) = e(g2, g1)e
(

u′∏
i∈U

ui, Ru

)
e

(
m′ ∏

j∈M
mj , Rm

)
.

It is easy to see that a signature constructed with the Sign algorithm will be
accepted by a verifier. Thus the scheme is correct.

4.1 Efficiency

Our scheme has a private key size and a signature size of two and three group
elements, respectively. Note, however, that the second value of a signature tuple,
gru , will remain the same for all signatures made by a given user. Hence, if many
messages are signed by a single user and verified by a single verifier, the value
gru will only need to be included in one of the signatures. The public parameters
of our scheme will consist of a description of the groups G, GT and the pairing
e, and nu + nm + 5 group elements of G. In a practical scheme, the size of the
public parameters will be a performance concern and in Section 6 we will discuss
how the number of group elements needed in params can be reduced.

To construct a signature, a signer will need to compute at most nm + 1 mul-
tiplications in G (nm/2 + 1 on average) and perform two exponentiations in
G. Verification requires at most nu + nm multiplications in G ((nu + nm)/2 on
average) and four pairing computations. However, the value e(g1, g2) can be pre-
computed and cached, reducing the verification cost by one pairing. A further
pairing can be eliminated if a verifier checks multiple signatures from a single
signer.

Efficient Identity-Based Signatures Secure in the Standard Model 213

Thus, our scheme is only slightly more expensive than existing IBS schemes
(see for example the table in [Hes02]). However, these schemes are only proven
secure in the random oracle model while our scheme, as the next section will
show, can be proven secure in the standard model. We have already compared
our scheme to IBS schemes that result from the certification-based construction
applied to standard-model-secure schemes in the introduction.

5 Proof of Security

We will prove that our identity-based signature scheme is existentially unforge-
able under a chosen message attack, in the standard model, given that the com-
putational Diffie-Hellman problem is hard.

Theorem 1. The identity-based signature scheme of Section 4 is (ε, t, qe, qs)-
secure, assuming that the (ε′, t′)-CDH assumption holds in G, where:

ε′ =
ε

16(qe + qs)qs(nu + 1)(nm + 1)
,

t′ = t + O
(
(qenu + qs(nu + nm))ρ + (qe + qs)τ

)
,

and ρ and τ are the time for a multiplication and an exponentiation in G,
respectively.
Proof. We will assume that an (ε, t, qe, qs)-forger A for our scheme exists. From
this forger, we will construct an algorithm B that solves CDH with probability
at least ε′ and in time at most t′, contradicting the (ε′, t′)-CDH assumption. Our
approach is based on that of [Wat05].

The algorithm B will be given a group G, a generator g and the elements
ga and gb. To be able to use A to compute gab, B must be able to simulate a
challenger for A. Such a simulation can be created in the following way:

Setup. B sets lu = 2(qe + qs) and lm = 2qs, and randomly chooses two integers
ku and km, with 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. We will assume that
lu(nu +1) < p and lm(nm +1) < p for the given values of qe, qs, nu and nm.
The simulator then chooses an integer x′ ←R Zlu and a vector X = (xi) of
length nu, with xi ←R Zlu for all i. Likewise, it randomly chooses another
integer z′ ←R Zlm and a vector Z = (zj) of length nm, with zj ←R Zlm for
all j. Lastly, B chooses two integers y′, w′ ←R Zp and two vectors, Y = (yi)
and W = (wj), of length nu and nm, respectively, with yi, wj ←R Zp for all
i and j.

To make the notation easier to follow, the following two pairs of functions
are defined for an identity u and a message m respectively:

F (u) = x′ +
∑
i∈U

xi − luku and J(u) = y′ +
∑
i∈U

yi,

K(m) = z′ +
∑
j∈M

zj − lmkm and L(m) = w′ +
∑
j∈M

wj

214 K.G. Paterson and J.C.N. Schuldt

Now, B constructs a set of public parameters for the IBE scheme by making
the following assignments:

g1 = ga, g2 = gb

u′ = g−luku+x′
2 gy′

, ui = gxi
2 gyi 1 ≤ i ≤ nu

m′ = g−lmkm+z′
2 gw′

, mj = g
zj

2 gwj 1 ≤ j ≤ nm

Note that these public parameters will have the same distribution as in the
game between the challenger and A. Furthermore, this assignment means
that the master secret will be gα

2 = ga
2 = gab and that for any identity u and

message m, the equations

u′∏
i∈U

ui = g
F (u)
2 gJ(u) and m′ ∏

j∈M
mj = g

K(m)
2 gL(m)

hold. All public parameters are passed to A.
Queries. When running the adversary, both extract and sign queries can occur.

B answers these in the following way:
– Extract queries. Consider a query for the private key of an identity u. B

does not know the master secret, but assuming F (u) �= 0 mod p, it can
construct a private key by choosing ru ←R Zp and computing:

du = (d0, d1) =

(
g
−J(u)/F (u)
1

(
u′∏

i∈U
ui

)ru

, g
−1/F (u)
1 gru

)

Writing r̃u = ru − a/F (v), it can be verified that defining du in this
manner yields a valid private key of u, since:

d0 = g
−J(u)/F (u)
1

(
u′∏

i∈U
ui

)ru

= ga
2 (gF (u)

2 gJ(u))−a/F (u)(gF (u)
2 gJ(u))ru

= ga
2 (gF (u)

2 gJ(u))ru−a/F (u)

= ga
2

(
u′∏

i∈U
ui

)r̃u

and

d1 = g
−1/F (u)
1 gru = gru−a/F (u) = gr̃u .

Hence, to the adversary, all private keys computed by B will be indistin-
guishable from the keys generated by a true challenger.

If, on the other hand, F (u) = 0 mod p, the above computation can-
not be performed and the simulator will abort. To make the analysis
of the simulation easier, we will force the simulator to abort whenever
F (u) = 0 mod lu. Given the assumption lu(nu + 1) < p which implies

Efficient Identity-Based Signatures Secure in the Standard Model 215

0 ≤ luku < p and 0 ≤ x′ +
∑

i∈U xi < p, it is easy to see that F (u) = 0
mod p implies that F (u) = 0 mod lu. Hence, F (u) �= 0 mod lu implies
F (u) �= 0 mod p, so the former condition will be a sufficient requirement
to ensure that a private key for u can be constructed.

– Sign queries. Consider a query for a signature of u on m (it can be
assumed, without loss of generality, that A has not made an extraction
query on u). If F (u) �= 0 mod lu, B can just construct a private key for
u as in an extract query, and then use the Sign algorithm to create a
signature on m.

If F (u) = 0 mod lu, B will try to construct a signature in a similar
way to the construction of a private key in an extract query. Assume
K(m) �= 0 mod lm. Arguing as above, this implies K(m) �= 0 mod p,
given the assumption lm(nm + 1) < p. The signature of u on m can now
be constructed by picking ru, rm ←R Zp and computing

σ =

((
u′∏

i∈U
ui

)ru

g
−L(m)/K(m)
1

(
m′ ∏

j∈M
mi

)rm

, gru , g
−1/K(m)
1 grm

)

=

(
ga
2

(
u′∏

i∈U
ui

)ru
(

m′ ∏
j∈M

mj

)r̃m

, gru , gr̃m

)
,

where r̃m = rm − a/K(m). This last equation shows that B’s replies to
A’s sign queries are distributed as they would be in an interaction with
a real challenger.

If K(m) = 0 mod lm, the simulator will simply abort.

Forgery. If B does not abort as a consequence of one of the queries above,A will,
with probability at least ε, return an identity u∗, a message m∗, and a valid
forgery σ∗ = (V, Ru, Rm) of a signature of u∗ on m∗. If F (u∗) �= 0 mod p
or K(m∗) �= 0 mod p then B will abort. If, on the other hand, F (u∗) = 0
mod p and K(m∗) = 0 mod p, B computes and outputs

V

R
J(u∗)
u R

L(m∗)
m

=
ga
2
(
u′∏

i∈U ui

)ru
(
m′∏

j∈M mj

)rm

gJ(u∗)rugL(m∗)rm
= gab

which is the solution to the given CDH problem.

This completes the description of the simulation. It remains to analyse the
probability of B not aborting. For the simulation to complete without aborting,
we require that all extraction queries on an identity u have F (u) �= 0 mod lu,
that all sign queries (u, m) will either have F (u) �= 0 mod lu or K(m) �= 0
mod lm, and that F (u∗) = 0 mod lu and K(m∗) = 0 mod lm. However, to
make the analysis simpler, we will bound the probability of a subcase of this
event. More specifically, we will divide the sign queries into two groups – queries
involving u∗ and queries involving identities u �= u∗ – and then consider the event
that all identities u have F (u) �= 0 mod lu, ignoring that sign queries (u, m) can

216 K.G. Paterson and J.C.N. Schuldt

be answered if F (u) = 0 mod lu and K(m) �= 0 mod lm. Thus we will provide
a lower bound on the probability that B aborts.

Let u1, . . . , uqI be the identities appearing in either extract queries or in sign
queries not involving the challenge identity and let m1, . . . ,mqM be the messages
in the sign queries involving the challenge identity u∗. Clearly, we will have
qI ≤ qe + qs and qM ≤ qs. Define the events Ai, A∗, Bj and B∗ as

Ai : F (ui) �= 0 mod lu

A∗ : F (u∗) = 0 mod p

Bj : K(mj) �= 0 mod lm

B∗ : K(m∗) = 0 mod p

From the analysis above, the probability of B not aborting is

Pr[¬abort] ≥ Pr[
qI∧

i=1

Ai ∧A∗ ∧
qM∧
j=1

Bj ∧B∗].

It is easy to see that the events (
∧qI

i=1 Ai ∧ A∗) and (
∧qM

j=1 Bj ∧ B∗) are inde-
pendent. Essentially, this is because the functions F and K which define these
events are selected independently and are hidden from the adversary’s view of
the simulation.

As seen above, the assumption lu(nu+1) < p leads to the implication F (u) = 0
mod p ⇒ F (u) = 0 mod lu. Furthermore, this assumption gives that if F (u) =
0 mod lu, there will be an unique choice of ku with 0 ≤ ku ≤ nu such that
F (u) = 0 mod p. Since ku and x′, X are randomly chosen, we have

Pr[A∗] = Pr[F (u∗) = 0 mod p ∧ F (u∗) = 0 mod lu]
= Pr[F (u∗) = 0 mod lu] Pr[F (u∗) = 0 mod p|F (u∗) = 0 mod lu]

=
1
lu

1
nu + 1

We also have that

Pr[
qI∧

i=1

Ai|A∗] = 1− Pr[
qI∨

i=1

¬Ai|A∗]

≥ 1−
qI∑

i=1

Pr[¬Ai|A∗]

If F is evaluated on two different identities, u1 and u2, then the sums appearing in
F (u1) and F (u2) will differ in at least one randomly chosen value, and the events
F (u1) = 0 mod lu and F (u1) = 0 mod lu will be independent. As a special case,
the events Ai and A∗ are independent for any i, and Pr[¬Ai|A∗] = 1/lu. Hence,
we have

Pr[
qI∧

i=1

Ai ∧A∗] = Pr[A∗] Pr[
qI∧

i=1

Ai|A∗]

≥ 1
lu(nu + 1)

(
1− qe + qs

lu

)

Efficient Identity-Based Signatures Secure in the Standard Model 217

and setting lu = 2(qe + qs) as in the simulation gives

Pr[
qI∧

i=1

Ai ∧A∗] ≥ 1
4(qe + qs)(nu + 1)

.

A similar analysis for the sign queries gives the result

Pr[
qM∧
j=1

Bj ∧B∗] ≥ 1
4qs(nm + 1)

and we get that

Pr[¬abort] ≥ Pr[
qI∧

i=1

Ai ∧A∗] Pr[
qM∧
j=1

Bj ∧B∗]

≥ 1
16(qe + qs)qs(nu + 1)(nm + 1)

If the simulation does not abort, A will create a valid forgery with probability at
least ε. The algorithm B can then compute gab from the forgery as shown above.

The time complexity of the algorithm B is dominated by the exponentiations
and, for larger values of nu and nm, multiplications performed in the extract and
sign queries. Since there are O(nu) and O(nu + nm) multiplications and O(1)
and O(1) exponentiations in the extract and sign stage respectively, the time
complexity of B is t+O

(
(qenu + qs(nu +nm))ρ+(qe + qs)τ

)
. Thus, the theorem

follows. �

6 Trading Security for Efficiency

In a practical scheme, the nu-bit identities and the nm-bit messages will most
likely be outputs from collision resistant hash functions. This suggests that nu

and nm should be at least 160, which means that the public parameters of our
scheme will contain at least 325 group elements of G. When G is chosen such
that the CDH problem in G is considered to be hard, the public parameters will
grow to a size which is not suitable for environments with limited storage ca-
pacity. However, Naccache [Nac05] and Chatterjee-Sarkar [SC05] independently
suggested a modification to Waters’ scheme to reduce the size of the public
parameters. This modification is also applicable to our signature scheme.

6.1 The Technique of Naccache and Chatterjee-Sarkar

In our signature scheme, when an entity signs a message m ⊂ {0, 1}nm, he
computes the product

m′ ∏
j∈M

mj

where M ⊂ {1, . . . , nm} is the set of indicies j such that the jth bit of m is 1.
The idea is to consider the message as a set of concatenated t-bit integers instead

218 K.G. Paterson and J.C.N. Schuldt

of a set of concatenated bits, i.e. m = m[1]|| · · · ||m[n′
m] where n′

m = nm/t and
m[j] ∈ Z2t , and then replace the above product with

m′
n′

m∏
j=1

m
m[j]
j .

This will reduce the size of M by a factor of nm/n′
m = t and the number of

group elements included in the public parameters params will be reduced to
nu + nm/t + 5.

Likewise, an identity u ⊂ {0, 1}nu can be considered as a concatenation of
n′

u s-bit integers and by replacing the product of elements from U in a similar
way as above, the size of U can be reduced by a factor of nu/n′

u = s. Applying
both modifications, the number of group elements in params can be reduced to
nu/s + nm/t + 5.

6.2 Security of Our Modified Scheme

The security analysis of our scheme, when using the above idea, is very similar
to the analysis presented in Section 5. However, a few modifications to the con-
struction of F , J , K, and L are required to ensure that these functions continue
to have the properties needed in Section 5. We will assume that the same setup
as in Section 5 is given and only focus on the changes needed to make the secu-
rity analysis valid for our modified scheme. As in the above, we will assume that
identities and messages consist of n′

u s-bit and n′
m t-bit integers respectively.

The first change is that the ranges within which the values ku and km are
chosen in the setup stage of the simulation, are expanded to 0 ≤ ku ≤ 2s−1n′

u and
0 ≤ km ≤ 2t−1n′

m. All other chosen values and assignments are the same as in
the original setup stage of the simulation. We will assume that lu(2s−1n′

u+1) < p
and lm(2t−1n′

m + 1) < p. The functions F , J , K and L are then redefined as

F (u) = x′ +
n′

u∑
i=1

u[i]xi − luku and J(u) = y′ +
n′

u∑
i=1

u[i]yi,

K(m) = z′ +
n′

m∑
j=1

m[j]zj − lmkm and L(m) = w′ +
n′

m∑
j=1

m[j]wj

where u[i] and m[j] denote the s- and t-bit integers making up u and m respectively.
It is easy to see that these modifications ensure that the following hold:

– u′∏n′
u

i=1 u
u[i]
i = g

F (u)
2 gJ(u) and m′∏n′

m

j=1 m
m[j]
j = g

K(m)
2 gL(m)

– F (u) = 0 mod p implies F (u) = 0 mod lu and K(m) = 0 mod p implies
K(m) = 0 mod lm

– If F (u) = 0 mod lu then there is a unique choice of ku with 0 ≤ ku ≤ 2s−1n′
u

such that F (u) = 0 mod p. Similarly, if K(m) = 0 mod lm then there is a
unique choice of km with 0 ≤ km ≤ 2t−1n′

m such that K(m) = 0 mod p.

With these properties, the other stages of the simulation for the modified scheme
can be carried out just as described in the original simulation in Section 5.

Efficient Identity-Based Signatures Secure in the Standard Model 219

The analysis of the success probability of the simulation is almost identical to
the analysis in Section 5, since only the increased range of the values ku and km

(i.e. the last property listed above) affects the treated probabilities. This changes
the probability of the events A∗ and B∗ when defined with the modified F and
K functions and we get

Pr[A∗] =
1

lu(2s−1n′
u + 1)

and Pr[B∗] =
1

lm(2t−1n′
m + 1)

.

Since the probabilities of the events (
∧qI

i=1 Ai|A∗) and (
∧qM

j=1 Bj |B∗) do not
change with the modifications to F and K, the success probability of the simu-
lation is

Pr[¬abort] ≥ 1
16(qe + qs)qs(2s−1n′

u + 1)(2t−1n′
m + 1)

.

This is approximately a factor of 2s−12t−1/(st) lower than the success probability
of the simulation in Section 5.

The time complexity of the simulation remain as t+O
(
(qen

′
u+qs(n′

u+n′
m))ρ+

(qe + qs)τ
)

where t is the time taken by the adversary, ρ is the time for a
multiplication in G and τ is the time for an exponentiation in G.

6.3 Tradeoffs Between Size, Computation and Security

The above result means that we can reduce the number of elements in the public
parameters to nu/s + nm/t + 5, but this will be at the cost of a loss in security
of s+ t−2− log2(st) bits compared to the original scheme. For small values of s
and t, it may be acceptable simply to trade the loss of security for the increased
efficiency, which is the approach suggested by Naccache.

However, it is possible to avoid the loss of security by increasing the computa-
tional cost of the scheme. The idea, which was suggested by Chatterjee-Sarkar,
is to increase the size of G to increase the security level provided by the CDH
problem in G to compensate for the loss of security in the security proof caused
by a given choice of s and t values. By choosing |G| carefully, it is possible to
maintain a given security level for any choice of s and t. However, there are
several factors to take into account when this approach is taken.

First of all, the level of security provided by the CDH problem in G will need
to be estimated. Currently, the best known way of solving the CDH problem is
by solving the discrete logarithm problem (DLP). The DLP in G can easily be
reduced to the DLP in GT and hence, the best known algorithms for solving the
DLP in both G and GT will need to be considered when choosing these groups.
Secondly, the availability of a suitable class of elliptic curves that enables the
construction of a pairing e : G × G → GT with G and GT satisfying the above
requirements, will need to be considered. We note that the authors of [SC05] do
not consider this issue in their analysis. Finally, the increase in size of G and
GT will lead to larger space requirements for a single group element and will
increase the complexity of the arithmetic in these groups.

220 K.G. Paterson and J.C.N. Schuldt

All of these issues are important for evaluating the efficiency and security of
the scheme when the size of the public parameters is reduced. However, we do
not include the detailed analysis here.

7 Scheme Construction Using General Curves

Currently, the only known way of constructing a bilinear map e : G1×G2 → GT

is by using a Weil or Tate pairing on an elliptic curve. Furthermore, if G1 = G2,
as we assume in our construction, we will be limited to using supersingular
elliptic curves, a very limited class of curves. However, our scheme can easily be
generalized to work with a bilinear map of the form e : G1×G2 → GT , allowing
the use of wider classes of elliptic curves [Gal05]. This flexibility is important for
implementation and for the selection of parameters meeting a particular concrete
security level.

For our security proof to work for the generalised scheme, we require that an
efficiently computable isomorphism ψ : G2 → G1 exists and that ψ maps the
generator of G2 to the generator of G1. This isomorphism will only be needed
in the security proof and will not be a part of the scheme itself. Furthermore,
the security of the scheme will be reduced to the co-Diffie-Hellman problem on
(G1, G2) [BLS04]. Full details can be found in [PS02].

8 Conclusion

We have presented the first direct construction of an identity-based signature
scheme that is provably secure in the standard model. Our basic scheme is com-
putationally efficient, and we have presented a variety of techniques to improve
its space requirements and to increase the range of parameter choices. It is easy
to see that our construction can be generalised to produce a hierarchical IBS
(HIBS) scheme. However, it is still an open problem to construct an efficient
HIBS scheme that is secure in the standard model and has a tight security
reduction.

Acknowledgment

We thank Jonathan Katz, Eike Kiltz and an anonymous reviewer for pointing
out the folklore certification-based construction for identity-based signatures.

References

[ADR02] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature
and encryption. In L. R. Knudsen, editor, EUROCRYPT, volume 2332 of
LNCS, pages 83–107. Springer, 2002.

[Bar] P. S. L. M. Barreto. The pairing-based crypto lounge.
http://paginas.terra.com.br/informatica/paulobarreto/
pblounge.html.

Efficient Identity-Based Signatures Secure in the Standard Model 221

[BB04a] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based en-
cryption without random oracles. In Cachin and Camenisch [CC04], pages
223–238.

[BB04b] D. Boneh and X. Boyen. Secure identity based encryption without random
oracles. In M. K. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 443–459. Springer, 2004.

[BB04c] D. Boneh and X. Boyen. Short signatures without random oracles. In
Cachin and Camenisch [CC04], pages 56–73.

[BBP04] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-
oracle-model scheme for a hybrid-encryption problem. In Cachin and
Camenisch [CC04], pages 171–188.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil
pairing. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
213–229. Springer, 2001.

[BLMQ05] P. S. L. M. Barreto, B. Libert, N. McCullagh, and J. Quisquater. Effi-
cient and provably-secure identity-based signatures and signcryption from
bilinear maps. In B. Roy, editor, ASIACRYPT, volume 3788 of LNCS,
pages 515–532. Springer, 2005.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. J. Cryptology, 17(4):297–319, 2004.

[BNN04] M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-
based identification and signature schemes. In Cachin and Camenisch
[CC04], pages 268–286.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In Proc. of CCS 1993, pages 62–73. ACM
Press 1993.

[CC03] J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-
Hellman groups. In Desmedt [Des02], pages 18–30.

[CC04] C. Cachin and J. Camenisch, editors. Proc. of EUROCRYPT 2004, volume
3027 of LNCS. Springer, 2004.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited (preliminary version). In STOC, pages 209–218, 1998.

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic
residues. In B. Honary, editor, IMA Int. Conf., volume 2260 of LNCS,
pages 360–363. Springer, 2001.

[Des02] Y. Desmedt, editor. Proc. of PKC 2003, volume 2567 of LNCS. Springer,
2003.

[DKXY03] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature
schemes. In Desmedt [Des02], pages 130–144.

[Gal05] S. D. Galbraith. Pairings. In G. Seroussi I.F. Blake and N.P. Smart, edi-
tors, Advances in Elliptic Curve Cryptography, pages 183–212. Cambridge
University Press, 2005.

[GMR88] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[GS02] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y.
Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566.
Springer, 2002.

[Hes02] F. Hess. Efficient identity based signature schemes based on pairings.
In K. Nyberg and H. M. Heys, editors, Selected Areas in Cryptography,
volume 2595 of LNCS, pages 310–324. Springer, 2002.

222 K.G. Paterson and J.C.N. Schuldt

[KMPR05] E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only sig-
natures. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M.
Yung, editors, ICALP, volume 3580 of LNCS, pages 434–445. Springer,
2005.

[Nac05] D. Naccache. Secure and practical identity-based encryption. Cryptology
ePrint Archive, Report 2005/369, 2005. http://eprint.iacr.org/.

[Pat02] K. G. Paterson. ID-based signatures from pairings on elliptic curves. IEE
Electronics Letters, 38(18):1025–1026, 2002.

[PS02] K. G. Paterson and J. C. N. Schuldt. Efficient identity-based signatures se-
cure in the standard model. Cryptology ePrint Archive, Report 2006/080,
2006. http://eprint.iacr.org/.

[SC05] S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient
IBE scheme with short(er) public parameters in the standard model. Pro-
ceedings of ICISC, 2005. To appear.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO 84, pages 47–53, 1984.

[Wat05] B. Waters. Efficient identity-based encryption without random oracles.
In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
114–127. Springer, 2005.

[Yi03] X. Yi. An identity-based signature scheme from the Weil pairing. IEEE
Communications Letters, 7(2), 2003.

Event-Oriented k-Times Revocable-iff-Linked
Group Signatures

Man Ho Au1, Willy Susilo1, and Siu-Ming Yiu2

1 Center for Information Security Research
School of Information Technology and Computer Science
University of Wollongong, Wollongong 2522, Australia

{mhaa456, wsusilo}@uow.edu.au
2 Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

smyiu@cs.hku.hk

Abstract. In this paper, we introduce the notion of event-oriented k-
times revocable if and only if linked group signatures (k-EoRiffL group
signatures). In k-EoRiffL group signatures, signers can sign on behalf
of a group anonymously and unlinkably up to a permitted number of
times (k) per event. No party, even the group manager, can revoke the
anonymity of the signer. On the other hand, everyone can identify the
signer if he signs more than k times for a particular event. We then
show that k-EoRiffL group signatures can be used for k-times anonymous
authentication(k-TAA), compact e-cash, e-voting, etc.

We formally define security model for the new notion and propose
constant-size construction, that is, size of our construction is indepen-
dent of the size of the group and the number of permitted usage k. Our
construction is secure based on the q-strong Diffie-Hellman assumption
and the y-DDHI assumption.

Keywords: event-oriented, revocable anonymity, group signature,
k-TAA.

1 Introduction

In the age of information technology, number of applications over the Internet
continues to grow. These include messaging, voting, payments, commerce, etc.
At the same time, people are concerned with their personal privacy and are
aware of the protection of privacy.

Anonymity is an important form of privacy protection. This is especially true
in case of group-oriented cryptography, where a group of users are involved. In
schemes where participation of one or a proper subset of members is required
to complete a process, anonymity refers to whether participants are distinguish-
able from non-participants. Users may prefer perfect anonymity, meaning that it
is not possible to distinguish participants from non-participants so as to main-
tains their privacy in participating the process. In [3], anonymity can be divided

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 223–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 M.H. Au, W. Susilo, and S.-M. Yiu

into 4 different levels, namely, No Anonymity, Revocable Anonymity, Linkable
Anonymity and Full Anonymity accordingly. Extending their ideas, we further
refine levels of anonymity for group-oriented cryptography as follow, from highest
level to lowest level (no anonymity).

1.1 Levels of Anonymity for Group–Oriented Cryptography

Full Anonymity. It means that identity of the participating user is indistin-
guishable from the non-participating users by any party. A prominent example
is ring signature, formalized in [19]. Many ring signatures are then proposed sub-
sequently and the constant-size construction (meaning the size of the signature
is independent of the size of the group) first appeared in [10], followed by [16].

Linkable Anonymity. Users can participate in the process anonymously but
their participation are linked, that is, everybody can tell if the underlying par-
ticipant in two separate processes are the same. An example is linkable ring
signature[13, 25, 24], where everybody can tell if two signatures are generated
from the same signer. However, no one can tell who the actual signer is. A gen-
eralized notion is k-times linkable anonymity, meaning that suppose the user
participate for k times or less, he enjoys full anonymity while if he participate
for more than k times, at least two of his participations are linked.

Revocable-iff-linked Anonymity. Similar to linkable anonymity, users enjoy
full anonymity if they only participate once. However, if they participate twice,
everybody can reveal their identity. Some e-cash scheme [7, 2], tracing-by-linking
(TbL) group signature scheme[26] are examples of this type. In [7, 2], no one
(even the bank) could revoke the anonymity of the spender of the e-cash while
in case someone spends twice, his identity is revealed. A more general notion is
k-times Revocable-iff-Linked anonymity, in which user identity is revealed if he
participate for more than k times. Examples include compact e-cash scheme[8],
k-times anonymous identification (k-TAA)[21, 17].

Revocable Anonymity. Basically it means anonymity to everybody except
an Open Authority(OA). From user’s standpoint, it can be regarded as a lower
anonymity level than Revocable-iff-Linked anonymity since in the user must
trust the OA not to abuse his power in comparison with Revocable-iff-Linked
anonymity where users are anonymous unless they break the condition them-
selves. Group signature[1] is a famous example.

Linkable and Revocable Anonymity. As its name suggest, users enjoy link-
able anonymity towards everybody except OA, where OA can always revoke the
anonymity of the user. Systems where users are identified by pseudonym[12] with
an authority knowing the corresponding identity of the user for each pseudonym
belongs to this category. Many e-cash schemes[9, 23] in fact belongs to this cate-
gory too. Should a user double-spends, everybody can detect it and the OA can
then reveal the identity of the cheater.

Revocable-iff-Linked and Revocable Anonymity. Similarly, users enjoy
revocable-iff-linked anonymity to everybody except OA. In fact, Linkable (resp.

Event-Oriented k-Times Revocable-iff-Linked Group Signatures 225

Anonymity Level Examples Size Event-Oriented Ad-hoc
Full Ring Sign[19] O(n) N/A �

Anon Ident[10, 16] O(1) N/A �
Linkable Linkable Ring[13] O(n) × �

Eo-Linkable Ring[25] O(n) � �
Revocable-iff-Linked

2-times E-Cash[7, 2],TbL[26] O(1) × ×
k-times Compact E-Cash[8] O(1) × ×

k-TAA[21] O(k) � ×
dynamic k-TAA[17] O(k) � �

constant-size K-TAA[22] O(1) � ×
this paper O(1) � ×

Full+OA Group Signatures O(1) × ×
Link+OA Fair E-Cash[9, 23] O(1) × ×

Fig. 1. Examples of group-oriented cryptographic schemes with different levels of
anonymity

Revocable-iff-Linked) and Revocable Anonymity can be achieved by adding an
identity escrow to the schemes with linkable anonymity (resp. Revocable-iff-
Linked anonymity).

No Anonymity. Identity-based signature[20] is an example of group-oriented
cryptography with no anonymity. Multi-signatures[14] is another example if we
assume that each user is in possession of one public key only.

As stated in [3], our goal is to decide schemes with carefully adjusted level
of anonymity suitable for the application. For example, ring signature is perfect
for secret leaking. In an e-voting scheme, linkable anonymity or revocable-iff-
linked anonymity is essential for detection of double-vote. In e-voting, linkable
anonymity may be acceptable since in the vote-counting stage, the party can
disregard those who double-vote. People who double-vote thus would not gain
any real benefit. On the other hand, in e-cash scheme, double-spender must be
caught and thus revocable-iff-linked anonymity is a must. A work around is to
use scheme with linkable and revocable anonymity so that when double-spender
is caught, the OA could find out who the cheater is. The problem of this work
around is that anonymity of honest spender is no longer assured and trust is
placed on OA not to abuse its power.

1.2 Concept of Event in Linkable Anonymity

The concept of event-oriented linkability is introduced in [25]. Event-oriented
linkable group/ring signatures means that one can tell if two signatures are
linked if and only if they are signed for the same event, despite the fact that
they may be signed on behalf of different groups. This considerably add flexibility
to schemes with linkable (resp. revocable-iff-linked) anonymity since user needs
not obtain new secret key for different events.

In group-oriented cryptography, other concerns include whether the group
can be formed in an ad-hoc manner or users must register with some group

226 M.H. Au, W. Susilo, and S.-M. Yiu

manager first. Ring signature and group signature are example of each type
respectively. Order of computation and space complexity are other concerns.
Figure 1.2 categorizes some of the schemes in existing literature according to
their level of anonymity.

1.3 Related Works

Very recently and independently, Teranishi and Sako [22] proposed an k-TAA
scheme with constant proving cost. Their construction is very similar to ours and
is of similar performance. Our scheme can be thought of as the non-interactive
version of theirs.
Our Contributions. We introduce a new notion, event-oriented k-times
revocable-iff-linked group signatures, which belongs to the Revocable-iff-Linked
Anonymity category. With the event-oriented feature, this new notion is flexi-
ble for many applications such as compact e-cash, e-voting, k-times anonymous
identification, to name a few. Our notion is closely related to k-TAA if we treat
each content provider in k-TAA as event. Specifically, we make the following
contributions

– We introduce the notion of event-oriented k-times revocable-iff-linked group
signatures.

– We propose constant-size construction.
– We show how to turn k-EoRiffL group signatures into compact e-cash and k-

TAA. Our scheme can be used to construct k-TAA whose size is independent
of the group and also independent of k.

– We formalize the security model for k-EoRiffL group signatures and present
security arguments for our scheme.

Organization. We discuss related works and technical preliminary in the next
section. Security model is shown in section 3. The construction of k-EoRiffL
Group Signatures is shown in section 4, accompanied by security analysis. Finally
we conclude the paper with applications and some discussions in section 5.

2 Preliminaries

2.1 Notations

Let ê be a bilinear map such that ê : G1 ×G2 → GT .

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and GT has unique binary representation.
– g0, h0 are generators of G1 and G2 respectively.
– ψ : G2 → G1 is a computable isomorphism from G2 to G1, with ψ(h0) = g0.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g0, h0) �= 1.

G1 and G2 can be same or different groups. We say that two groups (G1, G2)
are a bilinear group pair if the group action in G1, G2, the isomorphism ψ and
the bilinear mapping ê are all efficiently computable.

Event-Oriented k-Times Revocable-iff-Linked Group Signatures 227

2.2 Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follow: On input a quadruple (g, ga, gb, gc) ∈
G4, output 1 if c = ab and 0 otherwise. We say that the (t, ε)-DDH assumption
holds in G if no t-time algorithm has advantage at least ε over random guessing
in solving the DDH problem in G.

Definition 2 (q-Strong Diffie-Hellman[5]). The q-Strong Diffie-Hellman (q-
SDH) problem in (G1, G2) is defined as follow: On input a (q + 2)-tuple (g0, h0,

hx
0 , hx2

0 , · · · , hxq

0) ∈ G1 ×G
q+1
2 , output a pair (A, c) such that A(x+c) = g0 where

c ∈ Z∗
p. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no t-time

algorithm has advantage at least ε in solving the q-SDH problem in (G1, G2).

Definition 3. y-Decisional Diffie-Hellman Inversion Assumption[11, 8].
The y-DecisionalDiffie-Hellman Inversion problem (y-DDHI) in primeorder group
G is defined as follow:On input a (y+2)-tuple g, gx, gx2

, · · · , gxy

, gc ∈ Gy+2, output
1 if c = 1/x and 0 otherwise. We say that the (y, t, ε)-DDHI assumption holds in G

if no t-time algorithm has advantage at least ε over random guessing in solving the
y-DDHI problem in G.

2.3 Building Blocks

Verifiable Random Function. One of the building blocks of our k-ERiffL
group signatures is the verifiable random function (VRF) from [11]. The notion
VRF was introduced by Micali, Rabin and Vadhan in [15]. Roughly speaking,
an VRF is a pseudo-random function with non-interactive proof of correctness
of its output. The VRF defined in [11] is described as follow. The function f is
defined by a tuple (Gp, p, g, s), where GT is a cyclic group of prime order p, g a
generator of Gp and s is a seed in Zp. On input x, fGp,p,g,s(x) = g

1

s+x+1 . Efficient
proof such that the output is correctly formed (with respect to s and x in some
commitment scheme such as Pedersen Commitment [18]) exists and the output
of f is indistinguishable from random elements in Gp if the y-DDHI assumption
in Gp holds.

3 Security Model

3.1 Syntax

An event-oriented k-times revocalbe-iff-linked group signature is a tuple
(GMSetup, UserSetup, Join, Sign, Verify, Link, Revoke) of seven polynomial time
algorithms. The following enumerates the syntax.

– GMSetup On input an unary string 1λ, where λ is a security parameter,
the algorithm outputs GM secret key gsk and group public key gpk. All
algorithms below have implicitly gpk as one of their inputs.

228 M.H. Au, W. Susilo, and S.-M. Yiu

– UserSetup On input 1λ, randomly outputs a key pair (pk, sk).
– Join Protocol. User with input (pk,sk) engage with GM with input (gsk).

Finally the user obtain a cert which allow it to sign on behalf of the group.
– Sign User with input message m ∈ {0, 1}∗, an event identifier evt ∈ {0, 1}∗,

pk, sk, cert output a signature σ.
– Verify Verifier with input message m ∈ {0, 1}∗, event identifier evt ∈ {0, 1}∗,

signature σ output accept or reject.
– Link On input two signatures σ1, σ2, output link or unlink.
– Revoke On input two signatures σ1, σ2 such that link ← Link(σ1, σ2),

output pk∗.

A event-oriented k-times revocable-iff-linked group signature must satisfy

1. Verification Correctness. Signatures signed according to specification are ac-
cepted during verification, with overwhelming probability;

2. Linking Correctness. If two signatures are linked, they must be generated
from the same signer. In addition, the output of Revoke of this two sig-
nature must be the actual signer if they two signatures are on different
messages.

3.2 Security Notions

We first gives an informal description of the security requirement. A secure k-
EoRiffL Group Signatures scheme should possess linkability, anonymity and non-
slanderability, introduce as follows.

– Linkability. Roughly speaking, linkability means that a user cannot sign, per
event, more than the allowable times without being linked. More precisely,
we required that collusion of n users cannot produce more than nk valid
signatures or in case they do produce nk+1 signature for a particular event,
at least one of the colluder must be identified. A related notion is revocability,
which means that from the linked signatures, identity of the actual signer
must be revealed. It is straight forward to see that revocability is implied by
the definition of linkability.

– Anonymity. It is required that no collusion of users and GM can ever guess
who the actual signer is in a group signature with probability better than
random guessing.

– Non-slanderability. It is required that an honest user cannot be accused of
having sign more than k times, even with the help of GM.

In revocable-iff-linked group signatures, the standard notion of unforgeability
is implied by linkability and non-slanderability. For if someone can forge a signa-
ture, either he can generate the signature without being linked or he successfully
slander an honest user.

The capability of an adversary A is modeled as oracles.

– Join Oracle: A present a public key pk and engages in the join protocol as
user and obtains a certificate. The oracle stores pk in a set XA.

Event-Oriented k-Times Revocable-iff-Linked Group Signatures 229

– Signing Oracle: On input a message m, and event evt, the oracle return a
signature σ on m and evt.

– Hash Oracle: A can ask for the values of the hash functions for any input.

We require that the answers from the oracles are indistinguishable from the
view as perceived by an adversary in real world attack.

Definition 4 (Game Linkability)

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs GMSetup to generate gpk and also a master secret key
gsk. C keeps gsk to itself and sends gpk to A.

– (Probing Phase.) The adversary A can perform a polynomially bounded num-
ber of queries to the oracles in an adaptive manner.

– (End Game Phase.) Let qj be the number of queries to the Join Oracle. A sub-
mits an event evt∗, signatures σi on message mi and evt∗, i = 1, · · · , kqj +1
to C.

A wins the game if all the following holds:

1. all σi are valid
2. none of the σi are the output of the Signing Oracle
3. None of the σi are linked or they are linked but Revoke cannot pointed to any

of the users during the join protocol query.
4. mi �= mj if i �= j.

The advantage of A is defined as the probability that A wins.

In the above game, if the condition such that each mi are different is replaced
by each σi are different, then we refer to the game as Game Strong Linkability.

Definition 5 (Game Anonymity)

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs GMSetup to generate gpk and also the master secret
key gsk. C gives both gpk and gsk to the user. Since A is in possession of
gsk, only Hash oracle query is allowed in Game Anonymity.

– (Challenge Phase.) C runs the Join protocol with A acting as GM to obtain
a certificate cert0. C generate another certificate cert1 by himself. A is then
allowed to issue the following special signature query by submitting event
evti, message mi, bit bi = 0 or 1 for the i-th special signature query. C
return a signature on evti, mi using certbi . The only restriction is that for a
particular event, the number of signature query for cert0 or cert1 does not
exceed k. Finally, A gives evt∗, m∗ to C, C uses certb, where b ∈ {0, 1} is
the output of a fair coin, to sign on evt∗, m∗ and return the signature to A.

– (End Game Phase.) The adversary A decides b = 0 or 1.

A wins the above game if it guesses correctly. The advantage of A is defined
as the probability that A wins minus 1

2 .

230 M.H. Au, W. Susilo, and S.-M. Yiu

Definition 6 (Game Non-Slanderability)

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs GMSetup to generate gpk and also the master secret
key gsk. C gives both gpk and gsk to the user. Since A is in possession of
gsk, only Hash oracle query is allowed in Game Non-Slanderabiliy.

– (Challenge Phase.) C runs the Join protocol for qj times with A acting as GM
to obtain a certificate certj. A is then allowed to issue the following special
signature query by submitting event evti, message mi, bi = 1, · · · , qj for the
i-th special signature query. C return a signature on evti, mi using certbi .
The only restriction is that for a particular event, the number of signature
query for any of the cert does not exceed k. A is also allowed to corrupt the
user corresponding to certj.

– (End Game Phase.) A submits an event evt∗, two signatures σ∗
0 , σ∗

1 on
message m0, m1 and evt∗. A wins the game if σ∗

0 , σ∗
1 is linked and Revoke

on the two linked signature is a user in one of the join query and is not
corrupted.

The advantage of A is defined as the probability that A wins.

A k-EoRiffL Group signature is secure if no PPT adversary can win in Game
Linkability, Game Anonymity and Game Non-Slanderability with non-negligible
advantage. It is strongly secure if it is secure and no PPT adversary can win in
Game Strong Linkability.

4 Our Construction

4.1 Our k-EoRiffL Group Signature

GMSetup. Let λ be the security parameter. Let (G1, G2) be a bilinear group
pair with computable isomorphism ψ as discussed such that |G1| = |G2| = p
for some prime p of λ bits. Also assume Gp be a group of order p where DDH
is intractable. Let H : {0, 1}∗ → Zp, Hevt{0, 1}∗ → Gp be cryptographic hash
functions. Let g0, g1, g2, g3 be generators of G1, h0, h1, h2, h3 be generators of
group G2 such that ψ(hi) = gi and u0, u1, u2, u3 be generators of Gp such that
relative discrete logarithm of the generators are unknown. This can be done by
setting the generators to be output of a hash function of some publicly known
seed. The group manager (GM) also randomly selects γ ∈R Z∗

p and compute
w = h0

γ . The group public key is gpk = (g0, g1, g2, g3, h0, w, u0, u1, u2, u3, k) and
the GM secret key is gsk = γ. k has to be much smaller than 2λ.

UserSetup. We assume PKI, that is, each user is equipped with a discrete loga-
rithm type public and private key pairs (u0

x, x) ∈ Gp × Z∗
p.

Join Protocol. Idea: User with public key y = u0
x joins the group by obtaining

a cert in the form of (A, e) such that Ae+γ = g0g
s
1g

t
2g

x
3 for some random number

s, t unknown to GM.

Event-Oriented k-Times Revocable-iff-Linked Group Signatures 231

Actual Protocol
1. User randomly selects s′ ∈R Z∗

p and sends C′ = gs′
1 gt

2g
x
3 , along with the proof

Π0 = SPK{(s′, t, x) : C′ = gs′
1 gt

2g
x
3 ∧ y = ux

0} to GM.
2. GM verifies that Π0 is valid and randomly selects s′′ ∈R Z∗

p. It computes
C = C′gs′′

1 and selects e ∈R Z∗
p. It then computes A = (g0C)

1

e+γ and sends
(A, e, s′′) to the user.

3. User computes s = s′ + s′′and checks if ê(A, whe
0) = ê(g0g

s
1g

t
2g

x
3 , h0). It then

stores (A, e, s, t).

Sign. Idea: For each event evt ∈ {0, 1}∗, the user manages a counter Jevt which
is the number of signatures he has generated. When the counter reaches k, user
can no longer signs anonymously.

For a particular event evt∗ and message m such that R = H(evt∗, m) and
uevt∗ = Hevt(evt∗), user with (A, e, s, t) from GM and counter Jevt∗ ≤ k produces

a signature of knowledge by submitting S = u
1

Jevt∗ +s+1

evt∗ , T = ux
0u

R
Jevt∗ +t+1

evt∗ and
proves, in zero-knowledge manner, (1) - (4).

1. Ae+γ = g0g
s
1g

t
2g

x
3 (This shows that the user possess a certificate from GM.)

2. S = u
1

Jevt∗ +s+1

evt∗ . (S is called a linkability tag or simply tag. For each certificate
(A, e, s, t) and event evt∗, user can generate k valid tag. Suppose a user
generate more than k tags from the same certificate, duplicate tags must be
used and can thus be detected.)

3. 0 ≤ Jevt∗ ≤ k (The number of signings does not exceed k.)

4. T = ux
0u

R
Jevt∗ +t+1

evt∗ (Component for revealing identity of user using duplicated
tags.)

Should a user attempt to sign more than the permitted number of times k for
a particular event, he must have used duplicated tag and can thus be detected.
Then two transcripts with the same tag together with different T reveals identity
of user. Details are shown in the revoke algorithm. On the other hand, anonymity
of honest signer is guaranteed. In short, the above can be represented by

Π1 = SPK{(A, e, s, t, x, Jevt∗) : Ae+γ = g0g
s
1g

t
2g

x
3 ∧ S = u

1

Jevt∗ +s+1

evt∗

∧ T = ux
0u

R
Jevt∗ +t+1

evt∗ ∧ 0 ≤ Jevt∗ ≤ k}(M)

Remarks: Two signature for the same event can be falsely ’linked’ if Jevt∗ + s =
J ′

evt∗ + s′. However, the probability is negligible if k << 2λ.
Details of Sign (instantiation of SPK Π1) is shown in Appendix A.

Verify. The verifier verifies the SPK.

Link. For the same event evt∗, two signatures are from the same user (linked)
if they share the same tag S.

Revoke. Given two signatures with same tag for the same event evt∗ and different
messages m, anyone can compute ux

o = (T R′

T ′R)((R
′−R)−1).

232 M.H. Au, W. Susilo, and S.-M. Yiu

4.2 Security Analysis

Regarding our construction, we have the following theorem, whose proof can be
found in the full version of the paper [4].

Theorem 1. Our k-RiffL group signature is secure under the q-SDH assump-
tion and the y-DDHI assumption in the random oracle model.

We remark that our scheme does not possess strong linkability, meaning that
two linked signatures of the same message from the same signer is not revocable.
Thus, our scheme maybe best suit to be used in interactive protocols where (part
of) the message maybe provided by another party to ensure its uniqueness.
Examples include transaction information provided by the merchant in e-cash
or a random seed provided by the content provider in k-TAA.

5 Applications and Discussions

5.1 Constant-Size k-TAA

If the verifier’s identity is appended to the event evt, then we have a event-
oriented k-times revocable-iff-linked group signatures which is verifier-specific,
that is, the signatures for different verifiers will not be linked with one another.
It is straight forward to show that k-TAA can be constructed from k-EoRiffL
group signature by setting the event to be the identity of the verifier(content
provider). Our k-EoRiffL group signature is the first k-TAA scheme which is of
size O(1) (independent of group size and k).

On the other hand, if we treat the tags published by the content provider in
k-TAA as event then any k-TAA can be turned into k-EoRiffL group signatures
if the underlying k-TAA can be done in an non-interactive manner.

5.2 Compact E-Cash

In fact, compact E-Cash can be viewed as a k-times revocable-iff-linked group sig-
nature. To use the k-RiffL group signature as a compact e-cash scheme, the bank
plays the role of GM in the scheme while the join protocol can be treated as users
obtain a wallet from the bank (i.e. withdrawing k coins). Spending is done by us-
ing the certificate to sign. Since each certificate can be used to sign k-times, each
wallet possesses k coins. When the wallet is used up, user need to obtain another
certificate from the bank. Note that the concept of event is not used.

References

1. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In CRYPTO, pages
255–270, 2000.

2. Man Ho Au, Sherman S. M. Chow, and Willy Susilo. Short e-cash. In IN-
DOCRYPT, pages 332–346, 2005.

Event-Oriented k-Times Revocable-iff-Linked Group Signatures 233

3. Man Ho Au, Joseph K. Liu, Patrick P. Tsang, and Duncan S. Wong. A Suite of
ID-Based Threshold Ring Signature Schemes with Different Levels of Anonymity.
Cryptology ePrint Archive, Report 2005/326, 2005. http://eprint.iacr.org/.

4. Man Ho Au, Willy Susilo, and Siu-Ming Yiu. Event-Oriented k-times Revocable-
iff-Linked Group Signatures, 2006. Full version.

5. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EU-
ROCRYPT, pages 56–73, 2004.

6. Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT, pages 431–444, 2000.

7. Stefan Brands. Untraceable off-line cash in wallets with observers (extended ab-
stract). In CRYPTO, pages 302–318, 1993.

8. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In
EUROCRYPT, pages 302–321, 2005.

9. Sébastien Canard and Jacques Traoré. On fair e-cash systems based on group
signature schemes. In ACISP, pages 237–248, 2003.

10. Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In EUROCRYPT, pages 609–626, 2004.

11. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with
short proofs and keys. In PKC 2005, volume 3386 of LNCS, pages 416 – 431, 2005.

12. Wei-Bin Lee and Chang-Kuo Yeh. A new delegation-based authentication protocol
for use in portable communication systems. IEEE Trans. Wireless Commun.,
4(1):57–64, January 2005.

13. Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable Spontaneous Anony-
mous Group Signature for Ad Hoc Groups (Extended Abstract). In ACISP 2004,
volume 3108 of LNCS, pages 325–335. Springer-Verlag, 2004.

14. Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisigna-
tures: extended abstract. In ACM Conference on Computer and Communications
Security, pages 245–254, 2001.

15. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In FOCS, pages 120–130, 1999.

16. Lan Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA
2005, volume 3376 of LNCS, pages 275–292, 2005.

17. Lan Nguyen and Rei Safavi-Naini. Dynamic k-Times Anonymous Authentication.
Cryptology ePrint Archive, Report 2005/168, 2005. http://eprint.iacr.org/.

18. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO, pages 129–140, 1991.

19. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASI-
ACRYPT, pages 552–565, 2001.

20. Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO
1984, volume 196 of LNCS, pages 47–53, 1984.

21. Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-Times Anonymous Authenti-
cation (Extended Abstract). In ASIACRYPT 2004, volume 3329 of LNCS, pages
308–322. Springer-Verlag, 2004.

22. Isamu Teranishi and Kazue Sako. k-times anonymous authentication with a con-
stant proving cost. In Public Key Cryptography, pages 525–542, 2006.

23. Mårten Trolin. A universally composable scheme for electronic cash. In IN-
DOCRYPT, pages 347–360, 2005.

24. Patrick P. Tsang and Victor K. Wei. Short linkable ring signatures for e-voting,
e-cash and attestation. In ISPEC, pages 48–60, 2005.

234 M.H. Au, W. Susilo, and S.-M. Yiu

25. Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au, Joseph K. Liu, and
Duncan S. Wong. Separable Linkable Threshold Ring Signatures. In INDOCRYPT
2004, volume 3348 of LNCS, pages 384–398. Springer-Verlag, 2004.

26. Victor K. Wei. Tracing-by-linking group signatures. In ISC, pages 149–163, 2005.

A Detail of Sign Algorithm (Instantiation of Π1)

Suppose uevt∗ = Hevt(evt∗) and Jevt∗ < k, R = H(evt∗, m), the signer first
computes the following quantities A1 = gr1

1 gr2

2 , A2 = Agr1

2 , A3 = gJevt∗
1 gt

2g
r3

3 ,

for r1, r2, r3 ∈R Z∗
p, in G1. Compute tag S = u

1

Jevt∗ +s+1

evt∗ , T = ux
0u

R
Jevt∗ +t+1

evt∗ . The
signer then computes a signature of knowledge (instantiation of Π1) as follows.

Π2 = SPK{(r1, r2, r3, δ1, δ2, δ3, δJ , δt, e, s, t, x, Jevt∗) : A1 = gr1

1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧

e(A2,w)
e(g0,h0) = e(g1, h0)se(g2, h0)te(g3, h0)xe(g3, h0)δ1e(g2, w)r1e(A2, h0)−e ∧ uevt∗

S
=

SJevt∗ Ss ∧ A3 = g
Jevt∗
1 gt

2g
r3

3 ∧ Ax
3 = gδJ

1 gδt
2 gδ3

3 ∧ uR
evt∗
T

= T Jevt∗ T tu−δJ
0 u−δt

0 ux
0 ∧ 1 ≤

Jevt∗ ≤ k}(M) where δ1 = r1e, δ2 = r2e, δJ = Jevt∗x, δt = tx, δ3 = r3x.

The range part 1 ≤ Jevt∗ ≤ k require some attention. Secure and efficient exact
proof of range is possible in groups of unknown order under factorization assump-
tion [6]. Here, we make use of the fact that if we set k = 2t for some integer t,
efficient range check, of order O(logk), for Jevt∗ could be achieved as follows.

Let g, h be two generators of a cyclic group G of order p whose relative discrete
logarithm is unknown. To prove knowledge of a number J such that 0 < J ≤ k
in a commitment CJ = gJhr, let Ji be the i-th bit of J for i = 1, · · · t. Compute
Ci = gJihri for some ri ∈R Z∗

p for i = 1, · · · , t. Compute the following SPK
Πrange.

Πrange = SPK{(J, a, b, r, ri) : CJ = gJhr ∧ CJ/g = gahr ∧
∏t

j=1 (Cj)2
j

=
gJhb ∧ [Ci = hri ∨Ci/g = hri]i=t

i=1}(M) where a = J − 1, b =
∏t

j=1 rj2j.

On the other hand, constant-size range proof is made possible as outlined in
[22]. The GM has to publish k signatures Sig(1), · · · , Sig(k). In the proof, instead
of proving 1 ≤ Jevt∗ ≤ k (which has complexity O(logk)), the signer proves
possession of signature on Jevt∗ (which has complexity O(1)). This indirectly
proves that Jevt∗ is within the range. However, public key size of the GM is now
linear in k, and user colluding with GM can be untraceable (since the malicious
GM can issue several Sig(Jevt∗) for the user.

Key Replacement Attack Against a Generic
Construction of Certificateless Signature�

Bessie C. Hu1, Duncan S. Wong1, Zhenfeng Zhang2, and Xiaotie Deng1

1 Department of Computer Science
City University of Hong Kong

Hong Kong, China
{bessiehu, duncan, deng}@cs.cityu.edu.hk

2 State Key Laboratory of Information Security, Institute of Software
Chinese Academy of Sciences

Beijing 100080, China
zfzhang@is.iscas.ac.cn

Abstract. Certificateless cryptography involves a Key Generation Cen-
ter (KGC) which issues a partial key to a user and the user also inde-
pendently generates an additional public/secret key pair in such a way
that the KGC who knows only the partial key but not the additional
secret key is not able to do any cryptographic operation on behalf of
the user; and a third party who replaces the public/secret key pair but
does not know the partial key cannot do any cryptographic operation
as the user either. We call this attack launched by the third party as
the key replacement attack. In ACISP 2004, Yum and Lee proposed a
generic construction of digital signature schemes under the framework
of certificateless cryptography. In this paper, we show that their generic
construction is insecure against key replacement attack. In particular,
we show that the security requirements of their generic building blocks
are insufficient to support some security claim stated in their paper. We
then propose a modification of their scheme and show its security in a
new and simplified security model. We show that our simplified definition
and adversarial model not only capture all the distinct features of cer-
tificateless signature but are also more versatile when compared with all
the comparable ones. We believe that the model itself is of independent
interest.

1 Introduction

Certificateless cryptography, introduced by Al-Riyami and Paterson in 2003 [1],
is intended to solve the key escrow issue which is inherent in identity-based
cryptography [10, 5], while at the same time, eliminate the use of certificates as in

� The second author was supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China (Project No. 9040904 (RGC
Ref. No. CityU 1161/04E)), and the third author was supported by National Natural
Science Foundation of China (No.60373039, 90604018).

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 235–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

236 B.C. Hu et al.

the conventional Public Key Infrastructure (PKI), which is generally considered
to be costly to use and manage.

In a certificateless cryptosystem, a Key Generation Center (KGC) is involved
to issue a user partial key to a user with respect to the user’s identity ID, which
is assumed to be unique in the system. The user also independently generates an
additional public/secret key pair and performs some cryptographic operations in
such a way that they can only be carried out when both the user partial key
and the user secret key are known. Knowing only one of them should not be
able to impersonate the user and carry out any of the cryptographic operations
as the user. We summarize the two types of attacks against a certificateless
cryptosystem as follows.

KGC Attack. The KGC who knows only the partial key but not the additional secret
key of the user is not able to do any cryptographic operation as the user; and

Key Replacement Attack. A third party who can replace the user’s public/secret
key pair but does not know the user’s partial key issued by the KGC cannot do
any cryptographic operation as the user either.

In an identity-based cryptosystem [10, 5], the only secret of a user is generated by
the KGC. Therefore, there is an inherent key escrow issue in such a cryptosystem.
In a certificateless cryptosystem, on the other hand, the defense against KGC
Attack is to solve this key escrow issue so that even if the KGC is an eavesdropper
[1] who cannot replace the user’s public/secret key pair, the KGC is not able to
perform any cryptographic operation as the user.

In a conventional Public Key Infrastructure (PKI), certificates are used to
‘bind’ the public key of a user to the user’s identity. Although key escrow is not
an issue in PKI as the Certification Authority (CA) is not supposed to know the
user’s private key, PKI is commonly considered to be expensive to implement,
use and maintain. However, if certificates are not used, a user’s public key can
easily be replaced by a third party. In a certificateless cryptosystem, the defense
against Key Replacement Attack is to solve this problem. It requires that even if
the public key is replaced, the third party should still not be able to perform any
cryptographic operation as the user as long as the third party cannot compromise
the user’s partial key. Of course, if the third party colludes with the KGC, they
may still be able to impersonate the user. But also notice that the CA can
do similar damage in PKI when the CA is no longer honest. We believe that
certificateless cryptography has nice features borrowed from both identity-based
cryptography and conventional public key cryptography. In this paper, we focus
on signature schemes in the setting of certificateless cryptography. From now on,
we refer to these schemes as certificateless signature schemes.

The first certificateless signature scheme was proposed by Al-Riyami and Pa-
terson [1]. However, it was recently found vulnerable to the key replacement
attack by Huang et al. [8]. In [11], Yum and Lee proposed a generic construction
of certificateless signature. The generic construction is built upon two prim-
itives: a conventional digital signature scheme and an identity-based signature
scheme. On the security of the generic construction, the authors claimed that the
generic construction is secure against KGC attack and key replacement attack
if the digital signature scheme is existential unforgeable against chosen message

Key Replacement Attack 237

attack (euf-cma) as defined in [7] and the identity-based signature scheme is ex-
istential unforgeable against chosen message and identity attack (euf-cma-ida)
under a model similar to the one defined in [2]. However, we find that the se-
curity requirements above are insufficient to support their security claim. Below
are the main results of our paper.

Our Results. We show that the generic construction of certificateless signature
proposed by Yum and Lee in [11] is insecure against key replacement attack if
the underlying euf-cma secure digital signature scheme is vulnerable to an attack
called “message-and-key-replacement attack”. We show by examples that some
specific euf-cma secure signature schemes are vulnerable to this “message-and-
key-replacement attack” (note that a digital signature scheme, which is insecure
against the “message-and-key-replacement attack” can still be euf-cma secure).
In our key replacement attack against the generic construction of [11], a third
party who does not know a user’s partial key can existentially forge a message-
signature pair by replacing the user’s public key. In addition, the message of
the forgery can be chosen arbitrarily by the third party. This shows that their
security claim ([11, Theorem 1]) cannot be correct.

We then propose a modification of their scheme and show its security in a new
and simplified security model. The simplified definition and adversarial model
not only capture all the distinct features of certificateless signature but are also
more versatile when compared with all the comparable ones [1, 11, 8]. In partic-
ular, all the comparable ones have seven algorithms defined for a certificateless
signature scheme. We show that five are enough and actually are more versatile
to include new constructions which are not possible to be captured by the old
definition. The security model we propose in this paper is also simplified when
compared with previously proposed models. In particular, our model reduces the
number of restrictions for the adversaries to win the games, and also captures
some new attacks that cannot be captured in old models. We believe that the
model itself is of independent interest.

Paper Organization. In Sec. 2, a new and simplified definition and adversarial
model for certificateless signature are proposed. In Sec. 3, the generic construc-
tion of [11] is reviewed and shown to be insecure against key replacement attack.
“Message-and-key-replacement-attack” on some concrete signature schemes are
also described. In Sec. 4, an improved generic construction is proposed.

2 Security Model

A certificateless signature scheme is a tuple of polynomial-time algorithms de-
noted by (MasterKeyGen, PartialKeyGen, UserKeyGen, CL-Sign, CL-Ver). The first
four algorithms may be randomized but the last one is not.

1. MasterKeyGen (Master Key Generation): On input 1k where k ∈ N is a
security parameter, it generates a master public/secret key pair (mpk, msk).

2. PartialKeyGen (User Partial Key Generation): On input msk and user iden-
tity ID ∈ {0, 1}∗, it generates a key partial key called user partial key.

238 B.C. Hu et al.

3. UserKeyGen (User Key Generation): On input mpk and user identity ID, it
generates a user public/secret key pair (upk, usk).

4. CL-Sign (Certificateless Signature Generation): On input user secret key
usk, user partial key partial key and message m ∈ {0, 1}∗, it generates a
signature σ.

5. CL-Ver (Certificateless Signature Verification): On input mpk, user identity
ID, user public key upk, message m and signature σ, it returns accept or
reject.

For correctness, we require that for all k ∈ N, m ∈ {0, 1}∗, ID ∈ {0, 1}∗,
if (mpk, msk) ← MasterKeyGen(1k), partial key ← PartialKeyGen(msk, ID),
(upk, usk) ← UserKeyGen(mpk, ID), and σ ← CL-Sign(usk, partial key, m),
then CL-Ver(mpk, ID, upk, m, σ) = 1.

Case of Invalid Input : For each of the algorithms above, we implicitly assume
that there is a domain for each of its inputs. An input is said to be valid if it
falls in its corresponding domain. For example, the domain of msk is defined by
the set of all possible output values of master secret key of MasterKeyGen for
each given security parameter k ∈ N. Hence if any of the inputs of an algorithm
above is invalid, then the algorithm will output a symbol ⊥ indicating that the
execution of the algorithm is halted with failure.

In practice, the KGC (Key Generation Center) could be the one who per-
forms MasterKeyGen and PartialKeyGen. The master public key mpk will then
be published and assumed that everyone in the system has got a legitimate copy
of it. The partial key is also assumed to be issued securely to the intended user
so that no one except the intended user can get the partial key. For each user
in the system, the user is supposed to be able to carry out UserKeyGen, CL-Sign
and CL-Ver. It is the user’s responsibility to forward the user public key upk to
the intended receiver(s) and announces the identity ID.

In the rest of the paper, we sometimes denote the user partial key of a
user with identity ID as partial keyID and the user public/secret key pair as
(upkID, uskID). The subscript of ID in the notations is simply for helping the
presentation of the paper.

2.1 Differences from the Old Definition

There are several differences between the new definition above and the previously
adopted definition, which was first introduced in [1], later adopted by [11, 8]. In
the old definition, there are seven algorithms defined. However, we notice that
in the old definition, besides the signature verification algorithm, there are two
more deterministic algorithms defined solely for generating the user public key
upk and combining the partial key partial key with the user secret key usk. In
the following, we show that the functions of these two algorithms can simply be
included in other algorithms without loss of functionality.

The old definition has a user private key generated deterministically from
partial key and usk. This user private key is then used solely in signature
generation. By including the function of user private key generation into the

Key Replacement Attack 239

signature generation algorithm, we eliminate the user private key generation
algorithm. The signature generation algorithm is now taking both partial key
and usk as inputs. To see that this new approach captures the original def-
inition, we can consider the new signature generation algorithm to have two
phases. In the first phase, the original user private key generation algorithm is
executed and a user private key is generated. In the second phase, the origi-
nal signature generation algorithm is executed by taking the user private key
as one of its inputs. This new definition is more versatile as it is possible that
partial key and usk are ‘mixed’ together in some randomized way during sig-
nature generation.

Another difference is that in the original definition, there is an additional al-
gorithm to deterministically generate the user public key upk from mpk, user
identity ID and user secret key usk. In the definition above, we combine the
function of this algorithm with UserKeyGen. We can see that this new definition
is more versatile as it also includes schemes which may have multiple possible
values for upk with respect to the same value of usk. It also retains the impor-
tant feature of certificateless cryptography, that is, user partial key generation
and user key generation can be done independently by the KGC and the user,
respectively. In particular, a user with identity ID can generate upkID even
before the KGC generates partial keyID for the user.

In [11], PartialKeyGen is restricted to be deterministic. This implies that for
each user identity ID, there is exactly one partial key corresponding to ID.
Although, to our knowledge, all previously proposed certificateless signature
schemes [1, 8] use deterministic algorithms for PartialKeyGen, it is too restrictive
to require that a generic construction of certificateless signature should also
use a deterministic PartialKeyGen. When comparing with its counterpart, the
identity-based signature, there are schemes [2] where the key generation server
uses randomized algorithm to generate keys for its users, we propose to relax the
restriction by allowing the algorithm to be randomized, that is, different values
of partial key may be obtained by running PartialKeyGen for multiple times, each
time with fresh random coins.

2.2 Adversarial Model

There are two types of adversaries, AI and AII . Adversary AI simulates attacks
when the adversary (or signature forger) compromises the user secret key usk
or replaces the user public key upk. However, AI is not given the master secret
key msk nor getting access to the user partial key partial key. Adversary AII

simulates attacks when the adversary knows msk and partial key. But AII can
no longer get access to usk nor replace upk.

Informally, AI represents a third party who may compromise the target user’s
usk or replace upk, but does not get access to the user’s partial key nor msk
of the KGC. AII models an eavesdropping KGC or a colluder of the KGC,
who knows msk and can derive the value of any user’s partial key, but cannot
obtain usk or replace upk. As remarked in [1], AII models an eavesdropping
KGC who does not replace user public keys. We adopt their notion in our paper

240 B.C. Hu et al.

but also emphasize that the KGC should also be assumed to have generated msk
according to the scheme specification. Below are the details.

There are five oracles which can be accessed by the adversaries according to
the game specifications which will be given shortly. The five oracles are:

1. CreateUser: On input an identity ID ∈ {0, 1}∗, if ID has already been
created, nothing is to be carried out by the oracle. Otherwise, the oracle
generates partial keyID ← PartialKeyGen(msk, ID) and (upkID, uskID) ←
UserKeyGen(mpk, ID). In this case, ID is said to be created. In both cases,
upkID is returned.

2. RevealPartialKey: On input an identity ID, it returns partial keyID if ID
has been created. Otherwise, a symbol ⊥ is returned.

3. RevealSecretKey: On input an identity ID, it returns the corresponding user
secret key uskID if ID has been created. Otherwise, a symbol ⊥ is returned.

4. ReplaceKey: On input an identity ID and a user public/secret key pair
(upk∗, usk∗), the original user public/secret key pair of ID is replaced with
(upk∗, usk∗) if ID has been created. Otherwise, no action will be taken.

5. Sign: On input an identity ID and a message m ∈ {0, 1}∗, the signing ora-
cle returns a valid signature σ if ID has been created but the user pub-
lic/secret key pair (upkID, uskID) has not been replaced. The signature
σ is valid if CL-Ver(mpk, ID, upkID, m, σ) = 1. If ID has not been cre-
ated, a symbol ⊥ is returned. If the user public/secret key pair of ID has
been replaced with, say (upk∗, usk∗), then the oracle returns the result of
CL-Sign(usk∗, partial keyID, m).

Remark: When querying the oracle ReplaceKey, usk∗ can be an empty string. In
this case, it means that the user secret key is not provided. If usk∗ is an empty
string and the original user secret key of an identity ID is replaced with usk∗,
then the empty string will be returned if the RevealSecretKey oracle is queried
on ID. Also note that even if usk∗ is not an empty string, it does not mean that
usk∗ is the corresponding secret key of upk∗. Hence as mentioned, the signature
generated by the signing oracle Sign will be an execution of CL-Sign using the
replaced user secret key usk∗ regardless of the value of upk∗. In other words,
the signature may not be valid. Also check page 238, “Case of Invalid Input”,
for the handling of invalid usk∗.

We define two games, one for AI and the other one for AII .

Game I: Let SI be the game simulator/challenger and k ∈ N be a security
parameter.
1. SI executes MasterKeyGen(1k) to get (mpk, msk).
2. SI runs AI on 1k and mpk. During the simulation, A can make queries

onto CreateUser, RevealPartialKey, RevealSecretKey, ReplaceKey and Sign.
3. AI is to output (ID∗, m∗, σ∗).
AI wins if CL-Ver(mpk, ID∗, upkID∗ , m∗, σ∗) = 1 for some created ID∗ and
the oracle Sign has never been queried with (ID∗, m∗). One additional
restriction is that AI has never queried RevealPartialKey(ID∗) to get the
user partial key partial keyID∗ .

Key Replacement Attack 241

A certificateless signature scheme is secure in Game I if for all probabilistic
polynomial-time (PPT) algorithm AI , it is negligible for AI to win the game.
Note that AI may have queried RevealSecretKey(ID∗) and got the user secret
key uskID∗ or queried ReplaceKey(ID∗, ·, ·) and replaced the user public key
upkID∗ before generating a forgery (ID∗, m∗, σ∗).

Game II: In this game, the simulator SII , similar to SI in Game I above,
interacts with the other adversary AII in almost the same way, except the
following differences.

– When start running AII , besides giving mpk to AII , SII also gives msk
to AII .

– The additional restriction is changed by requiring that AII has never
queried RevealSecretKey(ID∗) to get the user secret key uskID∗ nor
queried ReplaceKey(ID∗, ·, ·) to replace the user public key upkID∗ .

A certificateless signature scheme is secure in Game II if for all PPT algorithm
AII , it is negligible for AII to win the game.

2.3 Discussions

Comparing with previously proposed adversarial models [1, 11, 8]1, one signifi-
cant difference is that all previous models do not allow AII to query ReplaceKey
(in Game II) at any point. Of course, we have to assume that AII does not
mount an attack against a user with identity ID when the user public key
upkID is also replaced by AII because AII can always get the user partial key
partial keyID. However, allowing AII to query ReplaceKey with identities other
than ID does not boost AII ’s attacking capability either. This is because AII

can always obtain all the secrets corresponding to identities other than ID.
Hence to ease peer-to-peer comparison between the attacking powers of AI and
AII , we choose to provide the same set of oracles to both of the adversaries.

Another difference is that in all the previous models, the additional restriction
mentioned in Game I above is that either

– AI has never queried RevealPartialKey(ID∗) to get the user partial key
partial keyID∗ ; or

– AI has never queried RevealSecretKey(ID∗) to get the user secret key uskID∗

nor queried ReplaceKey(ID∗, ·, ·) to replace the user public key upkID∗ .

This modeling approach provides a direct association between AI and the third
party (also known as an outsider) in the “real world”, because the third party
may manage to either replace the user public key or compromise the user partial
key. In our model, instead of focusing on providing the direct association between
AI and the type of attackers in the real world, we focus on simplifying the model
so that it may lead to simpler proofs of security. In particular, in our model
1 Al-Riyami and Paterson did not really develop a full security model for certificateless

signature in [1]. It was later in [11, 8] that more formalized and complete models were
specified.

242 B.C. Hu et al.

instead, the additional restriction above is simplified to just requiring that AI

has never queried RevealPartialKey(ID∗). We do not consider the case that AI

reveals partial keyID∗ but focus on the case that AI compromises uskID∗ or
replaces upkID∗ .

This simplification does not weaken our model because attacks concerning
revealed partial keyID∗ have already been captured in Game II of our model.
To see this, consider that AII does not use msk in the entire simulation but
has launched RevealPartialKey(ID∗) at some point before generating a forgery.
In this way, AII can simulate all the attacks captured in Game I of all previous
models for the case that RevealPartialKey(ID∗) is queried.

To move one more step forward, we can see that our simplified model is even
stronger than all the previous models. In Game I of all the previous models, AI

is not allowed to just compromise uskID∗ without compromising partial keyID∗ .
In fact, there is no dedicated oracle in any of the previous models that allows
AI to compromise just the user secret key. Instead, they only have one oracle
which returns both the user partial key and the user secret key at the same time
once queried. Obviously, the oracle should not be queried on ID∗ by AI . Hence,
it is impossible for previous models to capture attacks when uskID∗ is compro-
mised while partial keyID∗ is not. In our simplified model above, we allow AI

to compromise a user secret key via RevealSecretKey. Note that a certificateless
signature scheme should still be secure even if uskID∗ is compromised provided
that partial keyID∗ is not. This is one of the major attacking scenarios that our
Game I can capture while all the previous models cannot.

3 Cryptanalysis of Yum-Lee Generic Construction

In [11], Yum and Lee proposed a generic construction of certificateless signature.
The generic construction is based on two building blocks: a conventional signature
scheme and an identity-based signature (IBS) scheme [10, 2]. The conventional sig-
nature scheme is assumed to be existential unforgeable against chosen message at-
tack (euf-cma) in the sense of [7] and the IBS scheme is assumed to be existential
unforgeable against chosen message attack and ID attacks (euf-cma-ida) [2]. Below
is the review of Yum-Lee generic certificateless signature scheme.

Let ΠPK = (GenPK , SignPK , V erPK) be an euf-cma secure signature scheme,
where GenPK takes a security parameter and generates a public/secret key pair
denoted by (pkPK , skPK); SignPK takes a private signing key and a message
and generates a signature denoted by σPK ; and V erPK is the corresponding
signature verification algorithm.

Let ΠIBS = (GenIBS , UKGenIBS, SignIBS, V erIBS) be an euf-cma-ida se-
cure IBS scheme, where GenIBS takes a security parameter and generates an
identity-based master public/secret key pair denoted by (mpkIBS , mskIBS);
UKGenIBS is the user-key generation algorithm which takes mskIBS and an
identity ID and generates a secret key denoted by skIBS [ID]; SignIBS takes
skIBS [ID] and a message and generates a signature denoted by σIBS ; and
V erIBS is the corresponding signature verification algorithm.

Key Replacement Attack 243

As mentioned in Sec. 2.1, there are seven algorithms for a certificateless signa-
ture scheme. This is also the case for Yum-Lee generic construction. By following
the discussions in Sec. 2.1, we can easily convert them into the following five al-
gorithms which conform to the simplified definition given in Sec. 2.

(mpk,msk) ← MasterKeyGen(1k)
Run (mpkIBS , mskIBS) ← GenIBS(1k); and
set mpk := mpkIBS and msk := mskIBS.

partial keyID ← PartialKeyGen(msk, ID)
Run skIBS [ID] ← UKGenIBS(msk, ID); and
set partial keyID := 〈 skIBS [ID] ‖ ID 〉.

(upkID, uskID) ← UserKeyGen(mpk, ID)
Run (pkPK , skPK) ← GenPK(1k); and
set upkID := pkPK and uskID := skPK .

σ ← CL-Sign(uskID, partial keyID, m)
Run σPK ← SignPK(uskID, m);
set m′ := 〈 σPK ‖ ID 〉;
run σIBS ← SignIBS(skIBS[ID], m′); and
set σ := 〈 σPK ‖ σIBS 〉.

1/0 ← CL-Ver(mpk, ID, upkID, m, σ)
Parse σ into 〈 σPK ‖ σIBS 〉;
run b1 ← V erIBS(mpk, ID, 〈σPK‖ID〉, σIBS);
run b2 ← V erPK(upkID, m, σPK); and
set output to b1 ∧ b2.

In the description above, 〈X〉 represents some encoding of X for binary repre-
sentation; the symbol ‖ represents binary string concatenation; and ∧ represents
bitwise AND operation.

3.1 Key Replacement Attack

In [11, Sec. 3.2, Theorem 1], the authors claimed that the scheme above is secure
in Game I and Game II againstAI and AII , respectively, under the conditions
that ΠPK is euf-cma secure and ΠIBS is euf-cma-ida secure.

However, we find that these two conditions are insufficient to secure their
certificateless signature scheme reviewed above. In particular, we will show below
that their scheme is insecure in Game I againstAI . By replacing the user public
key of the target user, AI is able to forge successfully. Below are the details.

Idea of Attack: For a conventional signature scheme ΠPK , if it is euf-cma,
it means that an adversary who knows only the public key pkPK but not the
corresponding secret key skPK is not able to forge a message-signature pair
(m, σ) such that V erPK(pkPK , m, σ) = 1, even if the adversary is allowed to
adaptively query a signing oracle with respect to (pkPK , skPK). However, euf-
cma security does not guarantee that given a valid message-signature pair (m, σ)

244 B.C. Hu et al.

with respect to (pkPK , skPK), the adversary is not able to come up with a triple
(σ, m′, pk′) such that m′ �= m, pk′ �= pkPK but V erPK(pk′, m′, σ) = 1. On
the contrary, this ‘Message-And-Key-Replacement Attack’ is not unusual
in proven euf-cma secure signature schemes. Two concrete examples are to be
shown in the next section.

Attack Details: We now show that in Game I, the adversary AI can win the
game by making use of the message-and-key-replacement attack.

1. AI arbitrarily picks an identity ID ∈ {0, 1}∗ and queries CreateUser(ID)
to ‘create’ the corresponding user. Suppose the returned user public key is
pkPK ;

2. AI then arbitrarily picks a message m ∈ {0, 1}∗ and queries Sign(ID, m).
Suppose the signature returned by the oracle is σ = 〈 σPK ‖ σIBS 〉;

3. AI generates a triple (σ, m′, pk′) such that m′ �= m, pk′ �= pkPK , and
V erPK(pk′, m′, σPK) = 1.

4. AI queries ReplaceKey(ID, pk′, λ) to change the public key of ID, where λ
denotes an empty string which corresponds to the replacing user secret key.

5. Finally, AI outputs (ID, m′, σ).

Note that the signing oracle Sign has never been queried with (ID, m′) and
obviously σ is a valid signature for message m′ of ID as the user public key is
now equal to pk′. The additional restriction stated in Game I is also satisfied.

3.2 Examples of Message-And-Key-Replacement Attack Against
EUF-CMA Secure Signature Schemes

The first example is the hash-based ElGamal signature scheme [6, 9]. The hash-
based version [9] has been shown to be euf-cma under the random oracle model
[3]. The second example is a pairing-based signature scheme due to Zhang et al.
[12] which has been shown to be euf-cma also under the random oracle model.
However, due to page limitation, the description of the second example has to
be omitted. Please refer to the full version of this paper for details.

Example 1: Hash-Based ElGamal Signature Scheme. Let p and q be two
large prime such that q|p − 1. Let g be an element of Z

∗
p of order q. Suppose

(pk, sk) be a public/secret key pair where pk = (p, q, g, y), sk ∈R Zq and y =
gsk mod p. To sign a message m ∈ {0, 1}∗, the following steps are carried out.

1. Randomly pick ∈R Zq and compute r = g� mod p;
2. Set e ← H(m, r) where H : {0, 1}∗ → Z∗

p is a hash function;
3. Compute s = −1(e− sk · r) mod q; and
4. Set the signature σ = (r, s).

To verify, check if r ∈ Z∗
p and whether yrrs ?≡ gH(m,r) (mod p). If all of them

are correct, output 1 for accepting the signature; otherwise, output 0.
Message-And-Key-Replacement Attack : Given message m, signature σ = (r, s)
and public key pk = (p, q, g, y), the attack can be launched as follows.

Key Replacement Attack 245

1. Randomly pick a message m′ ∈ {0, 1}∗ such that m′ �= m;
2. Compute y′ = yg(H(m′,r)−H(m,r))/r mod p and set a new public key pk′ =

(p, q, g, y′); and
3. Output a triple (σ, m′, pk′).

The attack is said to be successful if the signature verification algorithm returns
1. We can see that the verification will pass because

y′rrs ≡ (yg(H(m′,r)−H(m,r))/r)rrs

≡ yrgH(m′,r)−H(m,r)gH(m,r)−sk·r

≡ gH(m′,r) (mod p).

Discussions. We should emphasize that the possession of message-and-key-
replacement property does not constitute a weakness of a signature scheme. The
security goal of a signature scheme we are dealing with is still the existential
unforgeability against chosen message attack (euf-cma) [7]. Message-and-key-
replacement attack is also reminiscent of the duplicate-signature key selection
attack [4]: Given a valid message-signature pair (m, σ) under a public key pk,
the attack is to find another public/secret key pair (pk′, sk′) such that (m, σ)
is also a valid pair under pk′. Note that in the duplicate-signature key selection
attack, it is required to derive a new secret key sk′, while in the message-and-
key-replacement attack, this is not a requirement. Also, it is not necessary for
a duplicate-signature key selection attacker to alter the message m, while in its
counterpart, this is a requirement. An interesting observation is that some of
the techniques for launching duplicate-signature key selection attack described
in [4] can actually be extended for launching the message-and-key-replacement
attack, for example, against a hash-based RSA signature scheme.

4 An Improved Generic Construction

Our modification changes the signature generation algorithm as follows.

σ ← CL-Sign(uskID, partial keyID, m)
Set m′ := 〈 m ‖ mpk ‖ ID ‖ upkID 〉;
run σPK ← SignPK(uskID, m′);
set m′′ := 〈 m ‖ mpk ‖ ID ‖ upkID ‖ σPK 〉;
run σIBS ← SignIBS(skIBS [ID], m′′); and
set σ := 〈 σPK ‖ σIBS 〉.

The signature verification algorithm is then changed accordingly by checking
that both the identity-based signature verification algorithm V erIBS and the
conventional signature verification algorithm V erPK will return 1 on the corre-
sponding messages m′′ and m′, respectively.

Theorem 1. The modified generic construction is secure in Game I (as defined
in Sec. 2.2) if the IBS scheme ΠIBS = (GenIBS , UKGenIBS, SignIBS, V erIBS)
is euf-cma-ida secure [2].

246 B.C. Hu et al.

Due to page limitation, the proof has to be omitted. Please refer to the full
version of this paper for details.

Theorem 2. The modified generic construction is secure in Game II if the sig-
nature scheme ΠPK = (GenPK , UKGenPK , SignPK, V erPK) is euf-cma
secure [7].

Due to page limitation, the proof has to be omitted. Please refer to the full
version of this paper for details.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments and suggestions.

References

1. S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In
Proc. ASIACRYPT 2003, pages 452–473. Springer-Verlag, 2003. LNCS 2894.

2. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based
identification and signature schemes. In Proc. EUROCRYPT 2004, pages 268–286.
Springer-Verlag, 2004. LNCS 3027 (Full paper is available at Bellare’s homepage
URL: http://www-cse.ucsd.edu/users/mihir).

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In First ACM Conference on Computer and Communications
Security, pages 62–73, Fairfax, 1993. ACM.

4. S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the station-to-
station (STS) protocol. In Public Key Cryptography, Second International Work-
shop on Practice and Theory in Public Key Cryptography, PKC ’99, pages 154–170.
Springer-Verlag, 1999. LNCS 1560.

5. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Proc. CRYPTO 2001, pages 213–229. Springer-Verlag, 2001. LNCS 2139.

6. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31(4):469–472, 1985.

7. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attack. SIAM J. Computing, 17(2):281–308, April 1988.

8. X.Huang,W. Susilo, Y.Mu, and F. Zhang. On the security of certificateless signature
schemes from Asiacrypt 2003. In Cryptology and Network Security, 4th International
Conference, CANS 2005, pages 13–25. Springer-Verlag, 2005. LNCS 3810.

9. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Proc.
EUROCRYPT 96, pages 387–398, 1996. LNCS 1070.

10. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc.
CRYPTO 84, pages 47–53. Springer, 1984. LNCS 196.

11. D. H. Yum and P. J. Lee. Generic construction of certificateless signature. In In-
formation Security and Privacy: 9th Australasian Conference, ACISP 2004, pages
200–211. Springer-Verlag, 2004. LNCS 3108.

12. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from
bilinear pairings and its applications. In 7th International Workshop on Theory
and Practice in Public Key Cryptography (PKC 2004), pages 277–290. Springer,
2004. LNCS 2947.

A Novel Range Test

Kun Peng1, Colin Boyd1, Ed Dawson1, and Eiji Okamoto2

1 Information Security Institute
Queensland University of Technology

{k.peng, c.boyd, e.dawson}@qut.edu.au
http://www.isrc.qut.edu.au

2 University of Tsukuba, Japan

Abstract. In a range test, one party holds a ciphertext and needs to
test whether the message encrypted in the ciphertext is within a certain
interval range. In this paper, a range test protocol is proposed, where
the party holding the ciphertext asks another party holding the private
key of the encryption algorithm to help him. These two parties run the
protocol to implement the test. The test returns TRUE if and only if the
encrypted message is within the certain interval range. If the two parties
do not conspire, no information about the encrypted message is revealed
from the test except what can be deduced from the test result. Advan-
tages of the new protocol over the existing related techniques are that
it achieves correctness, soundness, flexibility, high efficiency and privacy
simultaneously.

Keywords: interval range, range test, specialized zero test, correctness,
soundness.

1 Introduction

In a range test, one party (the tester) holds a ciphertext and needs to test
whether the message encrypted in the ciphertext is within a certain interval
range. This test is frequently required in cryptographic applications like e-auction
[8], electronic voting [11], electronic finance [4], group signature [3], publicly ver-
ifiable secret sharing [7] and verifiable encryption [1]. Four properties are desired
in a range test. Correctness: If the encrypted message is in the interval range,
the test outputs TRUE. Soundness: If the test outputs TRUE, the encrypted
message is in the interval range. Privacy: No information about the encrypted
message is revealed except what can be deduced from the test result. Flexibility:
The limitation on the range size, encryption format and participants should be
as little as possible.

The simplest way to implement a range test is using multiple equality tests
linked by “OR” logic without revealing which number in the range equals the
encrypted message. Currently, there are two methods (called naive range test
in this paper) to implement this idea: zero knowledge proof of “OR” logic by
Cramer et al [5] or the verification technique called zero test [10]. These two
methods can be flexibly employed so that various ranges (e.g. ranges with very

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 247–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

248 K. Peng et al.

large size), participant models (with or without prover) and encryption formats
(even commitment formats) can be used. Although naive range test can be flex-
ible, correct, sound and private, it is very inefficient as its cost is linear in the
size of the range. If the ciphertext to test is encrypted in some special encryp-
tion format (e.g. encrypted bit by bit), cost of naive range test can be reduced
to be linear in the logarithm of the range size. However, ciphertext in practical
cryptographic applications (especially when secure computation of ciphertext
is needed) cannot be often encrypted in special encryption format. So for the
sake of flexibility, naive range test generally needs a cost linear in the size of
the range. Even if the special encryption format can be employed to improve
efficiency, naive range test is still too inefficient.

Some cryptographic techniques [1, 2, 7, 4] are related to range test. They prove
that a committed message is within a certain interval range and are called RPC
(range proof of commitment) schemes in this paper. In RPC schemes, a prover
with the knowledge of the committed message is needed to give a zero knowledge
proof that the message is in the certain interval range. Although RPC schemes
are efficient as their cost is independent of the size of the range, they have some
drawbacks. Firstly, in many applications like e-auction and e-voting, encrypted
messages instead of committed messages are required to be tested. So RPC
schemes (especially [2], which requires a certain commitment format) cannot be
employed in these applications. Secondly, the message to be tested may be gen-
erated by multiple parties and unknown to anybody. For example, in the kth-bid
auction [8], the seller has to test whether the number of bids at a price is less
than k without revealing the bids. As no single bidder knows the sum, nobody
can provide any proof to implement the test. In another example, e-banking, it
is required to test whether a sum of money is below a threshold without reveal-
ing it while nobody knows the sum as it accumulates multiple dealings. So a
prover is not always available. Thirdly, most RPC schemes [1, 7, 4] cannot guar-
antee correctness and soundness at the same time. The only correct and sound
scheme among them is Boudot [2], which is only asymptotically (instead of abso-
lutely) sound. Finally, all the known RPC schemes can work only when the range
to test is many magnitudes smaller than the size of the message space of the
commitment algorithm. In theory, solution to the millionaire problem and solu-
tion to range test can be reduced to each other. However, the existing solution
to the millionaire problem [12, 10] are either inefficient [10] or not completely
private [12].

As the drawbacks of RPC schemes and millionaire problem schemes limit
their application, a range test protocol is proposed in this paper, which is much
more efficient than naive range test and overcomes the drawbacks of the RPC
schemes. In the new range test protocol, two parties are involved: a tester and a
(decryption) authority, who can be acted by multiple entities through a thresh-
old key sharing mechanism. The tester holds the ciphertext to test. The private
key to decrypt the ciphertext is held by the authority. So the tester asks the
authority for help and they run the protocol to implement the test. If the en-
crypted message is in the certain interval range, the protocol outputs TRUE.

A Novel Range Test 249

If the encrypted message is not in the certain interval range, the protocol out-
puts FALSE. Namely, the new test protocol is correct and sound. If the two
parties do not conspire, no information about the encrypted message is revealed
from the test except what can be deduced from the test result. The new pro-
tocol is flexible as it accepts ranges of the same magnitude as the size of the
message space of the encryption algorithm and does not need any prover with
knowledge of the encrypted message. The new protocol is efficient as its com-
putational cost is independent of the range size. This new protocol can over-
come the drawbacks of RPC schemes. In the example of kth-bid auction, the
seller acts as the tester while an auctioneer acts as the authority to help the
seller to determine whether the number of bids at a price is over k without
revealing the bids or the number. In the example of e-banking, two servers
(neither knowing the sum of the money) act as the tester and authority to
test the range of the sum. If the two servers do not conspire, the sum is not
revealed.

In this paper secuirty is analysed in the negatively-malicious model: the ad-
versary does not deviate from the protocol in his attack. The structure of this
paper is as follows. Parameters and symbols to be used in the paper are defined
in Section 2. In Section 3, a building block, specialized zero test, is designed.
In Section 4, two range test protocols are proposed. They are not independent.
Instead, the second protocol is an optimization of the first one.

2 Preliminary Work

Parameters, symbols and encryption systems to be used later are described in
this section. Two additive homomorphic semantically-secure encryption systems1

(e.g. modified ElGamal encryption [6]) are needed in this paper. They are called
the first encryption system and the second encryption system respectively later
in this paper. The ciphertext to test is encrypted in the first encryption system,
while the tester holds the ciphertext and the authority holds the private key of
the first encryption system. To implement the range test, a second encryption
system is set up and its private key is also held by the authority. The public
keys of both encryption systems are public, so that both the authority and the
tester can use both encryption systems for encryption. The message spaces of
the two encryption systems are Zp1

and Zp2
respectively. It is required in this

paper that p2 ≥ 3p1 and p2 is a prime.
Although any additive homomorphic semantically-secure encryption

algorithm like Paillier encryption [9] can be employed, for simplicity the modified
ElGamal encryption [6] is employed in both encryption systems in this paper.

1 An encryption algorithm with message space Zp and decryption function D() is
additive homomorphic if D(c1) + D(c2) = D(c1c2) mod p for any ciphertexts c1

and c2. An encryption algorithm is semantically-secure if given a ciphertext c, two
messages m1, m2 and querry to the encryption function, such that c = E(mi) where
i = 1 or 2, there is no polynomial algorithm to find out i.

250 K. Peng et al.

In this manner, p1 and p2 are both large prime numbers. Details about the two
(modified ElGamal) encryption systems are as follows.

– Multiplication in the two encryption systems are computed with modulus p′1
and p′2 respectively.

– < g1 > and < g2 > are cyclic subgroups of Z∗
p′
1

and Z∗
p′
2

respectively with
generator g1 and g2, which have prime order p1 and p2 respectively.

– The message space in the two encryption systems are Zp1
and Zp2

respec-
tively.

– x1 ∈ Zp1
and x2 ∈ Zp2

are private keys of the two encryption systems re-
spectively. (g1, y1) and (g2, y2) are public keys of the two encryption systems
respectively where y1 = gx1

1 mod p′1 and y2 = gx2

2 mod p′2.
– E1(m) and E2(m) stand for encryption of message m in the two encryption

systems respectively: (gr
1 mod p′1, g

m
1 yr

1 mod p′1) or (gr
2 mod p′2, g

m
2 yr

2 mod p′2)
where r is randomly chosen from Zp1

or Zp2
.

– The product of two ciphertexts c1 = (a1, b1) and c2 = (a2, b2) in the two
encryption systems is (a1a2, b1b2). Inversion of a ciphertext c = (a, b) is
(a−1, b−1). With multiplication and inversion defined, definition of exponen-
tiation and division is automatically obtained.

– D1(c) and D2(c), decryption function of ciphertext c = (a, b) in the two
encryption systems respectively, is logg1

b/ax1 and logg1
b/ax1 respectively.

Although normally decryption in the modified ElGamal encryption algo-
rithm needs a search of logarithm and is not efficient, it is only required
to test whether the message is zero or not in any decryption in this paper,
which does not need any logarithm search and is very efficient.

Later in this paper, encryption, decryption, ciphertext multiplication, ciphertext
inversion and ciphertext exponentiations are computed as described here in this
section. The other symbols to be used in this paper are listed in Table 1.

Table 1. Symbols

a%b outputs an integer c smaller than b such that a = c mod b
|a| the absolute value of an integer a
[S] the size of a set S(

a
b

)
the number of possible choices of b elements from a candidate elements

3 A Building Block — Specialized Zero Test

Zero test is a technique to test whether there is at least one null ciphertext
(encryption of zero) among multiple ciphertexts. A zero test must be private,
namely nothing about the messages encrypted in the ciphertexts can be deduced
from the test except whether there is at least one null ciphertext among them.
The existing zero test technique (e.g. the so-called complex zero test in [10])
cannot obtain complete privacy as it may reveal some information about the
number of null ciphertexts. Fortunately, in this paper it is only desired to test

A Novel Range Test 251

whether there is one null ciphertext among multiple ciphertexts where there is at
most one null ciphertext among them. This will be accomplished by modifying
the zero test technique from [10] into a new cryptographic primitive: specialized
zero test, which can achieve complete privacy in the application in this paper.
A specialized zero test examines whether there is one null ciphertext among
multiple ciphertexts encrypted using the second encryption system described in
Section 2 where there is at most one null ciphertext among them. While the
zero test technique in [10] is a multiparty protocol, only two parties are involved
in the specialized zero test in this paper: a tester A1 and an authority A2. A1
holds ciphertexts c1, c2, . . . , cn in the second encryption system where there is
at most one null ciphertext among them. A2 holds the private key of the second
encryption system. In the specialized zero test A2 assists A1 to test whether
there is one null ciphertext among c1, c2, . . . , cn. Three properties are desired in
specialized zero test.

– Correctness: if there is one null ciphertext in c1, c2, . . . , cn, the test result is
TRUE.

– Soundness: if the test result is TRUE, there is one null ciphertext in c1, c2, . . . ,
cn.

– Privacy: after the test, each party learns only the test result and what can
be deduced from it, as long as the authority and the tester do not collude.

The test protocol is denoted as ZM(A1, A2 | c1, c2, . . . , cn) and described in
Figure 1.

1. A1 chooses π(), a permutation on {1, 2, . . . , n}, and random integers ri from
Zp2

− {0} for i = 1, 2, . . . , n. Then he calculates c′
i = cri

π(i) for i = 1, 2, . . . , n. He
sends c′

1, c
′
2, . . . , c

′
n to A2.

2. A2 calculates di = D2(c′
i) for i = 1, 2, . . . , n one by one until one di is found to

be zero or all the n ciphertexts are decrypted. A2 publishes the output of the
zero test as follows.

ZM(A1, A2 | c1, c2, . . . , cn) =
{

TRUE if zero found in di

FALSE if no zero in di
(1)

Fig. 1. Specialized zero test

Theorem 1. The specialized zero test is correct in the negatively-malicious
model. More precisely, if nobody deviates from the protocol and there is one
zero encrypted in c1, c2, . . . , cn, then ZM(A1, A2 | c1, c2, . . . , cn) = TRUE.

Proof: As c′i = cri

π(i) for i = 1, 2, . . . , n and the encryption algorithm is addi-
tive homomorphic, D2(c′i) = D2(cri

π(i)) = riD2(cπ(i)) mod p2 for i = 1, 2, . . . , n.
Suppose D2(cj) = 0 where 1 ≤ j ≤ n, then D2(c′π−1(j)) = rπ−1(j) × D2(cj) =
rπ−1(j)×0 mod p2 = 0. So there is at least one zero in D2(c′1), D2(c′2), . . . , D2(c′n).
Therefore, ZM(A1, A2 | c1, c2, . . . , cn) = TRUE. �

252 K. Peng et al.

Theorem 2. The specialized zero test is sound in the negatively-malicious
model. More precisely, if nobody deviates from the protocol and ZM(A1, A2 |
c1, c2, . . . , cn) = TRUE, then there is at least one null ciphertext in c1, c2, . . . , cn.

Proof: As c′i = cri

π(i) for i = 1, 2, . . . , n and the encryption algorithm is additive
homomorphic, D2(c′i) = D2(cri

π(i)) = riD2(cπ(i)) mod p2 for i = 1, 2, . . . , n. As
ZM(A1, A2 | c1, c2, . . . , cm) = TRUE, there is at least one zero encrypted in
c′1, c′2, . . . , c′n. Suppose D2(c′j) = 0 and 1 ≤ j ≤ n. Then rjD2(cπ(j)) = 0 mod p2.
As p2 is a prime and rj is chosen from Zp2

−{0}, D2(cπ(j)) = 0. Therefore, there
is at least one null ciphertext in c1, c2, . . . , cn. �

Theorem 3. The specialized zero test is private. More precisely, if A1 and A2
do not collude, the only knowledge of either of them about D2(c1), D2(c2), . . . ,
D2(cn) is the test result.

Proof: As A1 has no knowledge of the private key and the encryption algo-
rithm is semantically-secure, nothing about D2(c1), D2(c2), . . . , D2(cn) is re-
vealed to him if A2 does not help to decrypt any message. As A2 does not
collude with A1, A2 only tells A1 the test result, which is A1’s only knowledge
about D2(c1), D2(c2), . . . , D2(cn).

Although A2 has the private key, his knowledge is limited by the ciphertexts
sent to him. As A1 does not collude with him, only c′1, c

′
2, . . . , c

′
n are sent to

A2. So his only knowledge from the test is D2(c′1)||D2(c′2)|| . . . ||D2(c′n), which
is called his knowledge transcript. Suppose T1 and T2 are two knowledge tran-
scripts from two inputs with the same test result. Note that c′i = cri

π(i), p2 is a
prime and ri is randomly chosen from Zp2

−{0} as A1 does not collude with A2.
So D2(c′i) is distributed uniformly in Zp2

− {0} if D2(cπ(i)) �= 0 or D2(c′i) = 0 if
D2(cπ(i)) = 0. So if A1 does not collude with A2, when the test result is TRUE,
both T1 and T2 are uniformly distributed in { T | T ∈ {Zp2

}n, T contains one 0};
when the test result is FALSE, both T1 and T2 are uniformly distributed in
(Zp2

−{0})n. As A2’s knowledge transcripts from any two inputs with the same
test result are indistinguishable from each other without A1’s collusion, no infor-
mation about the input is revealed to A2 except for the test result without A1’s
collusion. �

4 The New Range Test Protocol

In the new range test protocol, given a ciphertext c encrypted in the first en-
cryption system described in Section 2, the tester runs a two-party protocol with
the authority to examine whether D1(c) is in a certain interval range without
knowing or revealing D1(c). In this protocol there is a limitation about the range
size: no more than p1/5, which is of the same magnitude as the size of the mes-
sage space. As p1 is very large (e.g. 1024 bits long) in any practical encryption
algorithm, the range is large enough for normal applications. For simplicity, it is
assumed that the range involved in the test is Zq where 5q ≤ p1. Note that range
test in any consecutive integer range in the message space with a size no more

A Novel Range Test 253

than p1/5 can be easily reduced to a range test in a same-size range starting from
zero due to homomorphism of the encryption algorithm. Two range test protocols
are designed in this section based on a principle: m ∈ Zq if and only if m%q = m,
which can be tested by reducing it to multiple simpler tests and repeatedly ex-
ploiting homomorphism of the employed encryption algorithms. Firstly, a correct
but only partially sound test protocol in the negatively-malicious model — ba-
sic range test — is described. Then a correct and sound test protocol in the
negatively-malicious model, called precise range test, is designed based on two
basic range tests.

4.1 Basic Range Test

The basic range test is an interactive protocol between two parties: the tester
and the authority. The tester is denoted as A1, who possesses a ciphertext c in
the first encryption system. The authority is denoted as A2, who possesses the
private keys of the two encryption systems. The basic range test protocol includes
three steps. In the first step, m, the message encrypted in c is randomly shared
between A1 and A2. Namely, A1 holds random integer m1, A2 holds random
integer m2 such that m = m1 + m2 mod p1. In the second step, A2 transmits
E2(m2) and E2(m2%q) to A1. In the third step, A1 and A2 perform a specialized
zero test, during which A1 provides some randomised and shuffled ciphertexts
and A2 decrypts them. The basic range test is denoted as BR (A1, A2 | c) and
described in Figure 2, such that

BR (A1, A2 | c) =
{

TRUE if (3) = TRUE
FALSE if (3) = FALSE

Theorem 4. The basic range test is correct in the negatively-malicious model.
More precisely, if nobody deviates from the protocol and 0 ≤ D1(c) < q, the
specialized zero test in Formula (3) outputs TRUE.

Proof: Suppose D1(c) = m. As 0 ≤ D1(c) < q, m%q = m. There are two
important facts.

– As c = c1c2, m = m1 + m2 mod p1. So, either (1): m = m1 + m2 or (2):
m = m1 + m2 − p1.

– It is always true that either (a): (m1 + m2)%q = m1%q + m2%q or (b):
(m1 + m2)%q = m1%q + m2%q − q.

So the proof is given in four different cases by combining the two possibilities in
the first fact, (1) and (2), with the two possibilities in the second fact, (a) and
(b): (1a), (1b), (2a) and (2b).

– (1a): According to additive homomorphism of the encryption algorithm

D2(e1e2/(c′1c
′
2)) = D2(e1e2/(E2(m1)E2(m2))) = D2(e1) + D2(e2)−

(D2(E2(m1)) + D2(E2(m2)) mod p2 = m1%q + m2%q − (m1 + m2) mod p2

254 K. Peng et al.

1. A1 randomly chooses m1 from Zp1
. He calculates c1 = E1(m1) and sends c2 =

c/c1 to A2.
2. (a) A2 calculates m2 = D1(c2).

(b) A2 calculates c′
2 = E2(m2) and e2 = E2(m2%q) and sends them to A1.

3. (a) A1 calculates c′
1 = E2(m1) and e1 = E2(m1%q).

(b) A1 needs to perform the following logic test with the help of A2:

D2(e1e2/(c′
1c

′
2)) = 0 ∨ D2(e1e2/(c′

1c
′
2E2(q))) = 0 ∨ (2)

D2(e1e2/(c′
1c

′
2E2(p1%q))) = 0 ∨ D2(e1e2/(c′

1c
′
2E2(p1%q − q))) = 0 ∨

D2(e1e2/(c′
1c

′
2E2(p1%q + q))) = 0

In logic expression (2), either all the five clauses are false or only one of them
is true. So the logic test of (2) can be implemented through a specialized zero
test:

ZM(A1, A2 | e1e2/(c′
1c

′
2), e1e2/(c′

1c
′
2E2(q)), e1e2/(c′

1c
′
2E2(p1%q)),

e1e2/(c′
1c

′
2E2(p1%q − q)), e1e2/(c′

1c
′
2E2(p1%q + q))) (3)

Fig. 2. Basic range test

According to Condition (1) and Condition (a),

D2(e1e2/(c′1c
′
2)) = (m1 + m2)%q −m mod p2 = m%q −m mod p2 = 0

– similarly to the cases of (1a), in the cases of (1b), (2a) and (2b),
D2(e1e2/(c′1c

′
2E2(p1%q))) = 0 or D2(e1e2/(c′1c

′
2E2(p1%q − q))) = 0 or

D2(e1e2/(c′1c
′
2E2(p1%q + q))) = 0

In summary, it is always true that

D2(e1e2/(c′1c′2)) = 0 ∨ D2(e1e2/(c′1c′2E2(q))) = 0 ∨
D2(e1e2/(c′1c

′
2E2(p1%q))) = 0 ∨ D2(e1e2/(c′1c

′
2E2(p1%q − q))) = 0

∨ D2(e1e2/(c′1c′2E2(p1%q + q))) = 0

As ZM() is correct according to Theorem 1,

ZM(A1, A2 | e1e2/(c′1c
′
2), e1e2/(c′1c

′
2E2(q)), e1e2/(c′1c

′
2E2(p1%q)),

e1e2/(c′1c
′
2E2(p1%q − q)), e1e2/(c′1c

′
2E2(p1%q + q))) = TRUE

�

Lemma 1. If
∑n

i=1(−1)mixi = 0 mod p and
∑n

i=1 |xi| < p where mi = 0 or 1
for i = 1, 2, . . . , n, then

∑n
i=1(−1)mixi = 0.

Proof of Lemma 1 is very simple and is not presented due to space limitation.

Theorem 5. The basic range test is partially sound in the negatively-malicious
model. More precisely, if nobody deviates from the protocol and the specialized
zero test in Formula (3) outputs TRUE, then 0 ≤ D1(c) < 3q.

A Novel Range Test 255

Proof: As ZM() is sound according to Theorem 2

D2(e1e2/(c′1c′2)) = 0 ∨ D2(e1e2/(c′1c′2E2(q))) = 0 ∨
D2(e1e2/(c′1c

′
2E2(p1%q))) = 0 ∨ D2(e1e2/(c′1c

′
2E2(p1%q − q))) = 0

∨ D2(e1e2/(c′1c′2E2(p1%q + q))) = 0

when

ZM(e1e2/(c′1c
′
2), e1e2/(c′1c

′
2E2(q)), e1e2/(c′1c

′
2E2(p1%q)),

e1e2/(c′1c
′
2E2(p1%q − q)), e1e2/(c′1c

′
2E2(p1%q + q))) = TRUE

In the following proof m1%q+m2%q is calculated with the help of homomorphic
property m1%q + m2%q = D2(e1) + D2(e2) = D2(e1e2) mod p2 and under the
condition of every clause in Equation (4). Each clause corresponds to a case in
the proof, while each case is divided into two sub-cases: either m = m1 + m2 or
m = m1 + m2 − p1.

– If D2(e1e2/(c′1c
′
2)) = 0, then D2(e1e2) = D2(c′1c

′
2) = D2(E2(m1)E2(m2)) =

m1 + m2 mod p2.
• If m = m1 + m2, then

m1%q + m2%q = D2(e1e2) mod p2 = m1 + m2 mod p2 = m mod p2

Note that |m1%q|+|m2%q|+|m| < 2q+p1 < p2 as 5q ≤ p1 and p2 ≥ 3p1.
So according to Lemma 1, m1%q + m2%q = m. Therefore, m < 2q.

• If m = m1 + m2 − p1, then

m1%q + m2%q = D2(e1e2) mod p2 = m1 + m2 mod p2 = m + p1 mod p2

Note that |m1%q|+ |m2%q|+ |m|+ |p1| < 2q + 2p1 < p2 as 5q ≤ p1 and
p2 ≥ 3p1. So according to Lemma 1, m1%q + m2%q = m + p1, which
is impossible as m1%q + m2%q < 2q < p1 < m + p1. Therefore, it is
impossible that m = m1 + m2 − p1 when D2(e1e2/(c′1c

′
2)) = 0.

So, m < 2q.
– If D2(e1e2/(c′1c

′
2E2(q))) = 0, it can be similarly proved that m < q.

– If D2(e1e2/(c′1c
′
2E2(p1%q))) = 0, it can be similarly proved that m < 2q.

– If D2(e1e2/(c′1c′2E2(p1%q− q))) = 0, it can be similarly proved that m < 3q.
– If D2(e1e2/(c′1c′2E2(p1%q + q))) = 0, it can be similarly proved that m < q.

In summary, it is always true that m < 3q. �

Theorem 6. The basic range test is private. More precisely, if A1 and A2 do
not collude, the only knowledge of either of them about D1(c) is the test result.

Proof: A1’s total knowledge from the basic range test about D1(c) is the test
result as the employed encryption algorithms are semantically secure and only
A2 knows the private key. So A1’s only knowledge about D1(c) in the basic range
test is the test result if A2 does not collude with him.

256 K. Peng et al.

Without A1’s collusion, A2’s total knowledge about D1(c) is m2 and T , which
is his knowledge transcript in the special zero test. So A2’s knowledge transcript
in the basic range test is m2||T . Theorem 3 illustrates that T reveals no infor-
mation except for the test result if A1 does not collude with A2. If A1 does not
collude with A2, m2 is uniformly distributed in Zp1

and independent of D1(c) or
T . So A2’s knowledge transcript in the basic range test reveals no information
about D1(c) except for the range test result if A1 does not collude with him.
Therefore, without A1’s collusion, A2’s only knowledge about D1(c) in the basic
range test is the test result. �

The largest size of the range in the basic range test, q, is of the same magnitude
as p1. The basic range test is efficient and has a constant cost independent of
the range size.

4.2 Precise Range Test

As partial soundness limits the application of the basic range test, it is upgraded
to precise range test, which is absolutely sound. More precisely, precise range
test outputs TRUE if and only if the encrypted message is in the range. The
precise range test of a ciphertext c in the first encryption system is denoted as
PR (A1, A2 | c), such that PR (A1, A2 | c) = TRUE ⇐⇒ 0 ≤ D1(c) < q. The
precise range test of c is described in Figure 3, in which PR (A1, A2 | c) = TRUE
guarantees 0 ≤ D1(c) < 3q while BR (A1, A2 | E1(q−1)/c) = TRUE guarantees
D1(c) ∈ {0, 1, . . . , q − 1} ∪ {p1 − 2q + 1, p1 − 2q + 2, . . . , p1}. The intersection of
the two ranges is Zq.

1. A1 prepares two basic range tests BR (A1, A2 | c) and BR (A1, A2 | E1(q −
1)/c).

2. A1 presents the two basic range tests to A2 in a random order.
3. A2 finishes the two basic range tests and tells A1 whether both basic range tests

output TRUE and no more information.
4.

PR (A1, A2 | c) =

⎧⎨⎩
TRUE if BR (A1, A2 | c) = TRUE and

BR (A1, A2 | E1(q − 1)/c) = TRUE
FALSE otherwise

(4)

Fig. 3. Precise range test

Theorem 7. The precise range test is correct in the negatively-malicious model.
More precisely, if nobody deviates from the protocol and 0 ≤ D1(c) < q, then
PR (A1, A2 | c) = TRUE.

Proof: As 0 ≤ D1(c) < q, according to Theorem 4, BR (A1, A2 | c) = TRUE. As
0 ≤ D1(c) < q and the encryption algorithm is additive homomorphic, D1(E1(q−
1)/c) = q − 1 − D1(c) < q. So according to Theorem 4, BR (A1, A2 | (E1(q −
1)/c) = TRUE. Therefore, PR (A1, A2 | c) = TRUE. �

A Novel Range Test 257

Theorem 8. The precise range test is absolutely sound in the negatively-
malicious model. More precisely, if nobody deviates from the protocol and
PR (A1, A2 | c) = TRUE, then 0 ≤ D1(c) < q.

Proof: BR (A1, A2 | c) = TRUE and BR (A1, A2 | (E1(q − 1)/c) =
TRUE as PR (A1, A2 | c) = TRUE. So, according to Theorem 5 and additive
homomorphism of the encryption algorithm, 0 ≤ D1(c) < 3q and (q − 1 −
D1(c))%p1 = D1(E1(q − 1)/c) < 3q. The fact (q − 1 −D1(c))%p1 < 3q implies
0 ≤ D1(c) < q or D1(c) > p1 − 2q. As 5q ≤ p1, the fact D1(c) > p1 − 2q implies
D1(c) ≥ 3q. Therefore, D1(c) < 3q ∧ (D1(c) < q ∨ D1(c) ≥ 3q). Namely,
0 ≤ D1(c) < q. �

As the employed encryption algorithms are semantically secure and A1 knows
no private key, his total knowledge about D1(c) is the test result if A2 does
not collude with him. So the precise range test is private to A1. More precisely,
if A2 does not collude with A1, A1’s only knowledge about D1(c) is the test
result. Note that the precise range test only employs two basic range tests, so
it is not completely private to A2. According to Theorem 6, A2’s only knowl-
edge in the precise range test are the results of the two basic range tests if
A1 does not collude with him. When the precise range test outputs TRUE,
A2’s only knowledge is the result of the precise range test without A1’s col-
lusion as the precise range test outputs TRUE if and only if both basic range
tests output TRUE. However, when the precise range test outputs FALSE, A2
knows whether −2q < D1(c) < 3q. If one basic range test outputs FALSE
and the other outputs TRUE, A2 knows that −2q < D1(c) < 3q. Otherwise,
A2 knows that 3q ≤ D1(c) ≤ p1 − 2q. So, complete privacy is sacrificed in
the precise range test to achieve absolute soundness in the negatively-malicious
model.

The largest size of the range in the precise range test, q, is of the same magni-
tude as p1. The precise range test is efficient and has a constant cost independent
of the range size.

5 Conclusion

A range test protocol is proposed, which can correctly and soundly test whether
a ciphertext contains a message in a certain interval range without revealing
the message. If the tester wants, he can get the correct test result with an
overwhelmingly large probability. Unlike the existing related techniques, the new
protocol is efficient, accepts large enough range size and does not need a prover
with knowledge of the message. If privacy is desired in the actively-malicious
model, cut-and-choose mechanism can be employed to satisfy it.

Acknowledgement

The research in this paper was supported by a research grant from NICT, Japan.

258 K. Peng et al.

References

1. Feng Bao. An efficient verifiable encryption scheme for encryption of discrete
logarithms. In the Smart Card Research Conference, CARDIS’98, volume 1820 of
Lecture Notes in Computer Science, pages 213–220, Berlin, 1998. Springer-Verlag.

2. Fabrice Boudot. Efficient proofs that a committed number lies in an interval.
In EUROCRYPT ’00, volume 1807 of Lecture Notes in Computer Science, pages
431–444, Berlin, 2000. Springer-Verlag.

3. J Camenisch and M Michels. Separability and efficiency for generic group signa-
ture schemes. In CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 413–430, Berlin, 1999. Springer-Verlag.

4. A Chan, Y Frankel, and Y Tsiounis. Easy come - easy go divisible cash. 1998.
Available as http://www.ccs.neu.edu/home/yiannis/.

5. R. Cramer, I. B. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO ’94, volume 839 of
Lecture Notes in Computer Science, pages 174–187, Berlin, 1994. Springer-Verlag.

6. Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting scheme with a
tamper-resistant randomizer. In ICISC 2002, pages 389–406, 2002.

7. Wenbo Mao. Guaranteed correct sharing of integer factorization with off-line share-
holders. In PKC 1998, volume 1431 of Lecture Notes in Computer Science, pages
27–42, Berlin, 1998. Springer.

8. Kazumasa Omote and Atsuko Miyaji. A second-price sealed-bid auction with the
discriminant of the p-th root. In Financial Cryptography 2002, volume 2357 of
Lecture Notes in Computer Science, pages 57–71, Berlin, 2002. Springer.

9. P Paillier. Public key cryptosystem based on composite degree residuosity classes.
In EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238, Berlin, 1999. Springer-Verlag.

10. Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon Lee. An efficient and veri-
fiable solution to the millionaire problem. In ICISC 2004, volume 3506 of Lecture
Notes in Computer Science, pages 315–330, Berlin, 2004. Springer-Verlag.

11. Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon Lee. Multiplicative ho-
momorphic e-voting. In INDOCRYPT 2004, volume 3348 of Lecture Notes in
Computer Science, pages 61–72, Berlin, 2004. Springer-Verlag.

12. Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon Lee. Ciphertext comparison,
a new solution to the millionaire problem. In ICICS 2005, volume 3783 of Lecture
Notes in Computer Science, pages 84–96, Berlin, 2005. Springer-Verlag.

Efficient Primitives from Exponentiation in Zp

Shaoquan Jiang

Department of Computer Science,
University of Electronic Science and Technology of China,

ChengDu, China 610054
jiangshq@calliope.uwaterloo.ca

Abstract. Since Diffie-Hellman [12], many secure systems, based on dis-
crete logarithm or Diffie-Hellman assumption in Zp, were introduced in
the literature. In this work, we investigate the possibility to construct ef-
ficient primitives from exponentiation techniques over Zp. Consequently,
we propose a new pseudorandom generator, where its security is proven
under the decisional Diffie-Hellman assumption. Our generator is the
most efficient among all generators from Z

∗
p that are provably secure un-

der standard assumptions. If an appropriate precomputation is allowed,
our generator can produce O(log log p) bits per modular multiplication.
This is the best possible result in the literature (even improved by such
a precomputation as well). Interestingly, our generator is the first prov-
ably secure under a decisional assumption and might be instructive for
discovering potentially more efficient generators in the future. Our sec-
ond result is a new family of universally collision resistant hash family
(CRHF). Our CRHF is provably secure under the discrete log assumption
and is more efficient than all previous CRHFs that are provably secure
under standard assumptions (especially without a random oracle). This
result is important, especially when the unproven hash functions (e.g.,
MD4, MD5, SHA-1) were broken by Wang et al. [37, 38, 39].

1 Introduction

Diffie-Hellman protocol [12] is an exponentiation based key exchange procedure.
It is provably secure (against a passive attack) [8] under a now called deci-
sional Diffie-Hellman (DDH) assumption. Since then, Diffie-Hellman techniques
in Z∗

p have been largely employed to construct secure systems, see a very par-
tial list of random examples: key exchange [24, 8], encryption [14, 10], key escow
[3]. As provable security is always related to a mathematically hard problem,
the systems above are usually proven secure under an assumption of either dis-
crete log, computational Diffie-Hellman, or the decisional Diffie-Hellman. These
assumptions, throughout more than twenty years’ tests [1, 7, 28, 34, 35], have be-
come widely accepted standard assumptions. Naturally, exponentiation in Z

∗
p has

served as the main technique in embedding a hard problem into such a system.
In this work, we investigate the possibility to construct efficient and secure prim-
itives from exponentiations in Z

∗
p. Consequently, we obtain a new pseudorandom

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 259–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 S. Jiang

generator and an efficient family of collision resistant hash function. Before going
on, we first review the research status in these two topics.

Pseudorandom Generator. A key stream generator is a polynomial time
algorithm, which upon a short secret outputs a poly-length binary stream. En-
cryption of a message is to bit-wise XOR it with the underlying key stream.
Decryption works in the obvious way. Key stream generators are widely used in
the real world, from ancient military communications to today’s cell phone appli-
cations. The notion of pseudorandom generator (or cryptographically secure key
stream generator) was formally defined by Blum and Micali [6] and Yao [40]. In
these (different but equivalent) definitions, a generator is said to be secure if no
probabilistic polynomial time algorithm can distinguish the generator’s output
from a uniformly random stream. Blum and Micali [6] constructively showed
that a one-way permutation suffices to construct a pseudorandom generator.
Then, they showed that a generator that iterates gx (mod p) for a large prime
p and extracts the most significant bit of x, is secure. This is improved by Long
and Wigderson [27] for extracting the most O(log log p) significant bits in each
iteration. Blum, Blum and Shub [5] showed that the parity sequence with an
iteration function x2 (mod N) is secure, where N is a RSA composite [32]. Yao
[40] and Goldwasser et al [16] constructed more pseudorandom generators from
the intractability of factoring. Alex et al. [2] showed that inverting a RSA func-
tion is equivalent to guessing the least significant bit of the input significantly
better than 1/2. They further showed that the least significant O(log log N) bits
of RSA function xe (mod N) are simultaneously secure. This results was also
obtained by Vazirani and Vazirani [36]. This implies a pseudorandom generator
with each iteration extracting O(log log N) bits. Hastad et al. [21] showed that
generally a secure pseudorandom generator exists if and only if a one-way func-
tion exists. Hastad et al. [22] showed that the most (or least) significant n

2 �
bits of exponentiation function modulus a RSA composite N are simultaneously
secure, where |N | = n. This results in a HSS generator that extracts half of the
RSA input in each iteration. Goldreich and Rosen [20] improved the HSS gener-
ator with more efficient computation in each iteration. These generators [22, 20]
are further improved by Dedic et al. [13] by removing the requirement of an
extra extractor or hash. Recently, Patel et al [29] and Gennaro [15] constructed
a very efficient generator that output almost n bits for each iteration, while
his construction assumes a non-standard Discrete Logarithm Short Exponent
Assumption.

Collision Resistant Hash Function. Roughly speaking, collision resistant
hash function (CRHF) is a function for which it is hard to find two inputs with
an identical function value. CRHF was first proposed by Damgard [11] from
claw-free permutations. Their construction requires O(1/ log r) time (r is a fixed
integer) to process one bit while none of the concrete schemes in his paper can
achieve O(1/ log k) time per bit, where k is the security parameter. CRHF in
Pointcheval [31] and Shamir and Tauman [33] require 1.5 modular multiplication
per bit. Goldwasser et al. [17] requires one modular squaring per bit. Bellare et

Efficient Primitives from Exponentiation in Zp 261

al. [4] proposed a very efficient CRHF but it assumes random oracle. Efficient
CRHF from non-standard assumptions are proposed in Peikert and Rosen [30]
and Contini et al. [9]. To our knowledge, no construction, provably secure under
a standard assumption, has achieved O(1/ log k) time per bit.

1.1 Contribution

In this work, through manipulating an exponentiation technique in Z∗
p (p a

prime), we construct a new pseudorandom generator and a new family of collision
resistant hash function.

Our generator can output one bit per one modular multiplication and more
efficient than the previous generators from Z∗

p (i.e., [6, 27]) that are proba-
bly secure under a standard assumption. Our generator is the first one prov-
ably secure under a decisional assumption and might be instructive for dis-
covering potentially more efficient generators. But we point out that, com-
paring with factoring based construction, our generator is asymptotically the
same efficient as HSS generator [22] and BBS generator [5] but less efficient
than GR generator [20], ACGS generator [2] generator and DRV generator [13].
We stress that here the comparison assumes |p| = |N |, where N is the RSA
modulus used in factoring based construction. This is justified by the follow-
ing: (1) in the current start of art results, factoring and discrete log problems
have the same heuristic cryptanalytic result [34, 25]; (2) no known cryptan-
alytic result can separate the decisional Diffie-Hellman and the discrete log
problem in Z

∗
p, when p is a safe prime. If an appropriate precomputation is

allowed, our generator can output O(log log p) bits per modular multiplica-
tion, which achieves the current best result as GR generaor, DRV generator
and ACGS generator (although DR generator and DRV generator requires less
precomputation than ours and ACGS generator needs no precomputation
at all).

Our CRHF is provably secure under the discrete log assumption. It requires
only O(1

log log p) time per bit and is more efficient than all previous construc-
tions that are provably secure under standard assumptions (especially without
a random oracle). This result is very important, especially when unproven hash
constructions (e.g., MD4, MD5, SHA-1) were broken recently [37, 38, 39].

2 Notions

In this section, we introduce some notions that will be used in this paper. Denote
Z the set of integers, R the set of real numbers. We say a function ν : Z → R is
negligible, if for any positive polynomial p(n), limn→∞ ν(n)p(n) = 0.

Definition 1. We say two ensembles {Xn}n and {Yn}n are computationally
indistinguishable, if for any probabilistic polynomial time (PPT) algorithm A
and any polynomial p(n), when n large enough,

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| < 1/p(n).

262 S. Jiang

Definition 2. Let Ul be a random variable uniformly distributed over {0, 1}l.
We say an efficiently computable function G : {0, 1}κ × Z → {0, 1}∗ is a pseu-
dorandom generator, if for any polynomially bounded integer l ∈ Z, G(Uκ, l)
is computationally indistinguishable from Ul.

In the above, we only consider the case of a binary generator. We can also
generalize it to the setting where the generator output is from an arbitrary
domain D (instead of {0, 1} only). In this case, the above definition is modified
such that Ut is uniformly random in Dt and G is a function from D′ × Z to
D∗ for some domain D′. We call a generator satisfying the modified definition a
pseudorandom number sequence generator.

A pseudorandom function is a cryptographic approximation of a random func-
tion. Loosely speaking, pseudorandom functions are functions that are indistin-
guishable from random functions.

Definition 3. Let {Fn} be an ensemble of functions, where Fn : {0, 1}∗ →
{0, 1}l(n) is a random variable uniformly distributed over some set of functions
Ωn, where l is a fixed integer. If Ωn consists of all possible functions from {0, 1}∗
to {0, 1}l(n), then {Fn} is called a random function ensemble.

We use Mf to denote the algorithm M with oracle access to the function f
(i.e., he can adaptively issue a query x, and in return he will receive the function
value f(x)). We call such an algorithm M an oracle machine.

Definition 4. Let {Hn}n with Hn : {0, 1}∗ → {0, 1}l(n) be a random func-
tion ensemble. Assume {Fn}n with Fn : {0, 1}∗ → {0, 1}l(n) is an efficiently
sampleable and efficiently computable function ensemble. {Fn}n is said to be
pseudorandom if for any PPT oracle machine M,

|Pr[MFn(1n) = 1]− Pr[MHn(1n) = 1]| (1)

is negligible.

Definition 5. A family of efficiently computable functions {Hs}s∈{0,1}∗ from
{0, 1}∗ to {0, 1}l(|s|) is said to be Collision Resistant if for any PPT algorithm
A,

Pr[(x′, x) ← A(s) for s ← I(1n) s.t. Hs(x′) = Hs(x) & x′ �= x] (2)

is negligible, where I(1n) is the index generation for the function family {Hs},
and the probability is taken over internal coin flips in both I(1n) and A.

3 Our New Pseudorandom Generator

In this section, we will introduce our new pseudorandom generator. Our gener-
ator is provably secure under the decisional Diffie-Hellman assumption.

Let p = 2q + 1 and q be two large primes. Assume Gq is the subgroup of Z∗
p

of order q and g is a generator of Gq. Let function | · |p : Gq → Zq be defined as
follows:

Efficient Primitives from Exponentiation in Zp 263

|x|p =

⎧⎨⎩
x if 1 ≤ x < q,
p− x if q + 2 ≤ x < p,
0 otherwise.

Note that Gq is exactly the set of quadratic residues in Z∗
p. In addition,(

q(q+1)
p

)
=
(

1+q−1

p

)
=
(

−1
p

)
= −1 as p ≡ 3 (mod 4). It follows that ei-

ther q ∈ Gq or q + 1 ∈ Gq but not both. More precisely, by Law of Quadratic
Reciprocity [23], we have that q ∈ Gq if q ≡ 1 (mod 4) and q + 1 ∈ Gq if q ≡ 3

(mod 4). Further notice that
(

p−x
p

)
= −1, ∀x ∈ Gq. Therefore, we have that

| · |p is a 1-1 and onto mapping from Gq to Zq.

Construction 1. We define a number sequence generator NSG as follows. Let
(A0, A1) ∈ Gq × Gq is the initial secret. Starting from t = 2, iteratively define
At = g|At−1|p|At−2|p . Let A′

t = g|At|p . The output sequence is A′
0, A

′
1, A

′
2, · · · .

Now we show that our number sequence generator is secure under the decisional
Diffie-Hellman (DDH) assumption.

Theorem 1. Under the decisional Diffie-Hellman assumption, NSG is a pseu-
dorandom number sequence generator.

Proof. We need to show that St = A′
0, A

′
1, . . . , A

′
t is indistinguishable from

Ut+1 ← Gt+1
q for any polynomially bounded t. We use a hybrid argument.

Let S
(v)
t be St, except A′

0, . . . , A
′
v being taken uniformly random from Gq.

Thus, S
(t)
t is uniformly random in Gt+1

q . If there exists an adversary M dis-

tinguishing St from Ut+1, then M can distinguish S
(w)
t , S

(w+1)
t for some w ≥ 1

(Note the distributions of S
(0)
t and S

(1)
t are identical). Without loss of gen-

erality, assume w is known (otherwise, one can guess it correctly with proba-
bility 1/t). We construct a PPT adversary D to break the DDH assumption.
Upon receiving input (α, β, γ), D takes A′

0 ← Gq, . . . , A
′
w−2 ← Gq, and defines

A′
w−1 = α, A′

w = β, A′
w+1 = g|γ|p. For v = w + 2, . . . , t, iteratively and normally

computes Av = g|Av−1|p|Av−2|p and A′
v = g|Av|p . Note here Aw+2 = β|γ|p . Fi-

nally, D feeds A′
0, . . . , A

′
t to machine M, and outputs whatever he does. When

(α, β, γ) is a DH tuple, then the input to M is distributed exactly as S
(w)
t ; if

(α, β, γ) is a random tuple, then the input to M is distributed exactly as S
(w+1)
t .

Thus, D has a non-negligible advantage, contradiction. �

We have showed that Construction 1 is a pseudorandom number sequence gen-
erator. But in real applications, we are more interested in a binary generator.
A naive idea is to encode the output of NSG into a binary form. However, one
can easily show that it does not work. In the following, we construct a simple
function to convert an NSG sequence into a binary pseudorandom sequence.

Construction 2. Let A′
0, A

′
1, . . . be the output sequence of NSG in Construction

1. Let Lk(x) be the k least significant bits of x, where k is a positive integer.

264 S. Jiang

Define Bi = Lk(|A′
i|p) for all i ≥ 0. Then the output stream of the new generator

is set to B0, B1, · · · . Denote this binary generator by PSG2.

Theorem 2. If k = |q| − ω(log |q|), then PSG2 is a pseudorandom generator,
where ω(x) means limx→∞ x

ω(x) = 0.

Proof. Denote Zt = B0, B1, . . . , Bt. Let Ut be a random variable uniform in
{0, 1}kt. We need to show that Zt is indistinguishable from Ut+1 for any poly-
nomially bounded t. Consider a random variable Z̃t = B̃0, B̃1, . . . , B̃t, where
B̃i = Lk(|Ci|p) and Ci ← Gq for all i = 0, 1, . . . , t. To prove the theorem, it
suffices to show that (1) Zt and Z̃t are indistinguishable, and that (2) Z̃t and
Ut+1 are indistinguishable.

- Zt and Z̃t are indistinguishable. If this is not true, there exists a PPT al-
gorithm D1 to distinguish them. Then, one can constructs an algorithm D′

1
to distinguish St (in Construction 1) from Vt+1 ← Gt+1

q as follows. D′
1 first

applies operator Lk() to the received sequence, then feeds the produced se-
quence to D1 and outputs whatever he does. When the input to D′

1 is St, then
the input to D1 is distributed exactly as Zt; otherwise, it is distributed as Z̃t.
Thus, a non-negligible advantage of D1 implies a non-negligible advantage
of D′

1, contradicting Theorem 1.
- Z̃t and Ut+1 are indistinguishable. Note that | · |p is 1-1 and onto mapping

from Gq to Zq. Thus, if Ci is uniform in Gq, |Ci|p is uniform in Zq. Let
C̃i = |Ci|p. Thus, defining B̃i = Lk(|Ci|p) with Ci ← Gq is equivalent to
defining B̃i = Lk(C̃i) with C̃i ← Zq. We consider the latter when defining
Z̃t. Consider equation X ≡ w (mod 2k) with an unknown X over Zq,
where w ∈ {0, 1, . . . , 2k − 1}. For any w ∈ {0, 1, . . . , 2k − 1}, there are either⌊

q
2k

⌋
or
⌊

q
2k

⌋
+ 1 solutions in Zq for X. Thus, B̃i = w with probability

2−k + δw

q for some δw ∈ [−1, 1]. Thus, the statistic distance between Z̃t and

Ut+1 (denoted by dist[Z̃t, Ut+1]) is at most
∑t

i=0 dist[B̃i, U
(i)
t+1] ≤

(t+1)2k

q ≤
t+1

2ω(log |q|) , negligible, where U
(i)
t+1 is the ith k-bit component of Ut+1. For any

distinguisher D2, we have

|Pr[D2(Z̃t) = 1]− Pr[D2(Ut+1) = 1]|
=
∑

w∈Z
t+1
q

|Pr[Z̃t = w] Pr[D2(w) = 1]− Pr[D2(w) = 1] Pr[Ut+1 = w]|
=
∑

w∈Z
t+1
q

Pr[D2(w) = 1]|Pr[Z̃t = w]− Pr[Ut+1 = w]|
≤
∑

w∈Z
t+1
q

|Pr[Z̃t = w]− Pr[Ut+1 = w]|
= dist[Z̃t, Ut+1],

negligible. �

From Theorem 2, we immediately have the following corollary.

Corollary 1. When k = |q| −
⌊
|q|
c

⌋
for a constant c > 1, the resulting PSG2 is

a cryptographically secure pseudorandom generator.

Efficient Primitives from Exponentiation in Zp 265

Corollary 2. When k = |p| − log2 |p|, then the resulting PSG2 is a pseudoran-
dom generator.

Remark 1. In each iteration, our generator involves two modular exponentia-
tions. By Lim and Lee [26], one modular exponentiation can be done in |p|/2
modular multiplications, assuming pre-computation of g2i

, i = 0, . . . , |p| and
g2j+2j+[|p|/2]

, j = 0, . . . , [|p|/2]. So our generator can asymptotically output one
bit for each multiplication modular a prime p. This result is better than other
generators from Z∗

p [6, 27] that are provably secure under a standard assumption.
More interestingly, in each iteration, our generator can output bits of length
almost |p|, while no previous generator (including factoring based generator)
proven secure in the standard assumption, has achieved this. Thus, the con-
struction here might be interesting for motivating more efficient generators in
the future. Note if a more complex version of pre-computation in [26] is adopted,
then our generator can output O(log log p) bits per modular multiplication. This
is the best result in the literature. Specifically, it has been achieved by GR gener-
ator and DRV generator with even less precomputation than ours, and by ACGS
generator [2] with no precomputation at all.

4 A New Family of Collision Resistant Hash Function

In this section, we construct a family of collision resistant hash function. We start
with the following construction. This construction is essentially a realization of
the framework [11] but waived of the extra requirement of making the input
prefix-free. Later we will show how to obtain more efficient constructions.

Construction 3. Let p = 2q+1 and q be two large primes, Gq be the subgroup
of order q in Z∗

p. Our hash family H1 is indexed by (g0, g1, s), where g0, g1, s ←
Gq. Let H be a hash function in H1 with index (g0, g1, s). Upon input x =
x1x2 · · ·xt ∈ {0, 1}∗, H(x) is computed as follows. First set Yt+1 = s. For i =
t, t− 1, . . . , 1, iteratively compute Yi = g

|Yi+1|p
xi . Finally, define H(x) = Y1.

Theorem 3. Assuming discrete log problem in Gq is hard, H1 is a collision
resistant hash family. In addition, if the input is r bits, then assuming a pre-
computation, one hash requires a cost of at most r|p|/2 modular multiplications.

Proof. The second argument follows from the precomputation of

g2i

j , g2i+� |q|
2

�
j , g2i+2i+� |q|

2
�

j , j = 0, 1, i = 1, · · · ,
⌈
|q|
2

⌉
.

We thus concentrate on the first argument. Assume H(x) = H(x′) for some
binary string x = x1x2 · · ·xt and x′ = x′

1x
′
2 · · ·x′

l s.t. x �= x′, for some integer
l, l′. Without loss of generality, assume l ≥ t. Then, there must exist a unique
index j with 0 ≤ j ≤ t such that x1 = x′

1, . . . , xj = x′
j but x′

j+1 �= x′
j+1, where

by default xt+1 = λ (meaning empty). Let Yi and Y ′
i be the intermediate term

with index i when computing H(x) and H(x′), respectively. Since | · |p is a 1-1
and onto mapping, we have the following result.

266 S. Jiang

- Case j < t : We immediately have Yj+1 = Y ′
j+1. However, xj+1 �= x′

j+1

and j + 1 ≤ t, g
|Yj+2|p
xj+1

= g
|Y ′

j+2
|p

x′
j+1

. Thus, the discrete logg0
g1 is obtained.

If this event happens with non-negligible probability, we can transform the
adversary to break the discrete log assumption, contradiction!

- Case j = t: In this case, since x �= x′, it follows that l > t. Thus, s =
g
|Y ′

t+2
|p

x′
t+1

. Therefore, we can obtain the discrete log either logg1
s or logg0

s.

If this happens with non-negligible probability, we can easily transform the
adversary to break the discrete log assumption. �

In the following, we present a more efficient construction of collision resistant
hash family.

Construction 4. Let p = 2q + 1 and q be two large primes, Gq be the
subgroup of order q in Z∗

p. |q| = k + 1. Our hash family H2 is indexed by
(g00, g01, g10, g11, . . . , g(k−1)0, g(k−1)1), where gij ← Gq, i = 0, . . . , k− 1, j = 0, 1.
Let H be the hash function in H2 with index {gij : 0 ≤ i ≤ k − 1, j = 0, 1}.
Upon input x = x1x2 · · ·xt for xi ∈ {0, 1}k (i < t) and |xt| ≤ k, H(x) is com-
puted as follows. Let xj = xj0xj1 · · ·xj(k−1) for xjl ∈ {0, 1}. For a l-bit string
z = z0z1 · · · zl−1 (l ≤ k), denote gz =

∏l−1
j=0 gjzj . Yt+1 = s. For i = t, t− 1, . . . , 1,

iteratively compute Yi = g
|Yi+1|p
xi . Finally, define H(x) = Y1.

Theorem 4. Under the discrete log assumption, H2 is a collision resistant hash
family. In addition, if the input is r bits, one function evaluation costs no more
than 3r modular multiplications.

Proof. The second argument follows from the facts: an r-bit input is uniformly
divided into t = r/k segments; for each segment xi, gxi is computed in k modular
multiplications; each exponentiation in Z∗

p costs at most 2|p| modular multipli-
cations. We thus focus on the first argument. We show that if the conclusion
is wrong, we construct an algorithm S to solve the discrete log problem over
Gq. Assume H2 is broken by an adversary A. Then S is constructed as fol-
lows. Upon input g, h ∈ Gq, take w0

ij , w
1
ij ← Zq, and define gij = gw0

ij hw1

ij , for
i = 0, 1, . . . , k − 1, j = 0, 1. S provides p, (g10, g11, . . . , g(k−1)0, g(k−1)1) to A and
in turn receives a collision pair x, x′ (x �= x′) from A. Assume x = x1x2 · · ·xt

and x′ = x′
1x

′
2 · · ·x′

t′ for some t, t′ > 0. W.L.O.G, assume t ≤ t′. Let J be
the smallest index such that xJ �= x′

J . Let Yt+1 = Y ′
t′+1 = s, iteratively define

Yi = g
|Yi+1|p
xi and Y ′

j = g
|Y ′

j+1
|p

x′
j

. Thus, we have YJ = Y ′
J . So

g|YJ+1|p
∑

i:xJi=1
w0

Jih|YJ+1|p
∑

i:xJi=1
w1

Ji

= g
|Y ′

J+1
|p
∑

i:x′
Ji

=1
w0

Jih
|Y ′

J+1
|p
∑

i:x′
Ji

=1
w1

Ji

If |Y ′
J+1|p

∑
i:x′

Ji=1 w1
Ji �= |YJ+1|p

∑
i:xJi=1 w1

Ji (mod q), then discrete log
logg h can be efficiently obtained from the above relation. On the other hand,
we show the probability that this condition is violated for some J is negligible.

Efficient Primitives from Exponentiation in Zp 267

Indeed, let v = logg h, zij = logg gij . Then given zij = w0
ij +vw1

ij , i = 0, 1, . . . , k−
1, j = 0, 1. Thus, given {gij : i = 0, 1, . . . , k − 1, j = 0, 1}, {w1

ij : i = 0, . . . , k −
1, j = 0, 1} is independent of the view of A. Thus, |Y ′

J+1|p
∑

i:x′
Ji=1 w1

Ji =
|YJ+1|p

∑
i:xJi=1 w1

Ji (mod q) holds for a particular J with probability 1/q.
So the probability that there exists a J violating the condition is no more
than k/q. �

Now we further improve Construction 4 to reduce the computation cost by factor
log k but increase the storage by a factor k.

Construction 5. Denote the new hash family by H3. The construction is
similar to H2. But H3 is indexed by (g00, g01, g0(k−1), g10, g11, . . . , g(k−1)(k−1)),
where gij ← Gq, i = 0, . . . , k− 1, j = 0, . . . , k− 1. Let H be the hash function in
H3 with index {gij : 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1}. Upon input x = x1x2 · · ·xt

for xi ∈ {0, . . . , k − 1}k (i < t) and |xt| ≤ k, H(x) is computed as follows. Let
xj = xj0xj1 · · ·xj(k−1) for xjl ∈ {0, . . . , k−1}. For a k-ary string z = z0z1 · · · zl−1

(l ≤ k), denote gz =
∏l−1

j=0 gjzj . Yt+1 = s. For i = t, t − 1, . . . , 1, iteratively

compute Yi = g
|Yi+1|p
xi . Finally, define H(x) = Y1.

Theorem 5. Under the discrete log assumption, H3 is a collision resistant hash
family. In addition, if the input is r bits, one function costs no more than
3r/ log k modular multiplications.

The proof of the theorem is almost identical to Theorem 4. Construction 5 is
computationally more efficient than Construction 4 but it requires more storage.
Thus, these two constructions have their own merit of existence.

Remark 2. Our CRHF H3 is the first construction provably secure in the stan-
dard assumption and only requires O(1/ log k) time for each bit. Bellare et al. [4]
proposed a notion of incrementality for CRHF, which means one can evaluate
H(x|y) from H(x)|y instead of from the scratch. Our constructions satisfy this
property too.

5 Application to Pseudorandom Function

In this section, we unite our pseudorandom generator and collision resistant hash
function into a construction of (universal) pseudorandom functions. To do this,
we first show that a collision resistant hash function can be used to extend an
input-restricted pseudorandom function to a universal pseudorandom function.
To be specific, we just state this result in term of an input-restricted GGM con-
struction [19].

Construction 6. Let G : D → D2 be a pseudorandom generator. Assume
G(x) = G0(x)|G1(x), where Gi(x) ∈ D, i = 0, 1. H is a collision resistant hash
function. A family of function F : K×{0, 1}∗ ← D is defined as follows. Given a

268 S. Jiang

private index k ∈ K and input x ∈ {0, 1}∗, compute u0u1 · · ·ut−1 = H(x), Fk(x)
is defined to be Gut−1

◦Gut−2
◦ · · · ◦Gu0

(k).

Theorem 6. Let H be a collision resistant hash function, G is a pseudorandom
generator. Then F is a family of pseudorandom function.

Proof. Let X be the input queried by adversary. If a collision in X under H()
(i.e., ∃x1, x2 ∈ X with H(x1) = H(x2)) happens with non-negligible probability,
then H() is not collision resistant. Otherwise, the proof is identical to the proof
of Theorem 3.6.6 in [18]. The details are omitted. �

Corollary 3. Let H be the collision resistant hash family in Construction 5,
and G be the pseudorandom generator in Construction 2. Then for l-bit input
x, our pseudorandom function can be computed in roughly (3l

log k + 2k2) modular
multiplications.

Remark 3. If we do not apply H to the input first, then the underlying pseudo-
random function (by using construction 3.6.13 in [18]) requires more than 2lk
modular multiplications, inefficient!

6 Conclusion

In this paper, we proposed a new pseudorandom generator and collision resis-
tant hash function by manipulating exponentiation techniques over Zp. Our hash
function is more efficient than all previous constructions that are provably se-
cure under a standard assumption. Our pseudorandom generator is more efficient
than those over Zp that are provable under a standard assumption. When an
appropriate pre-computation is allowed, it achieves the best possible result in
the literature (even improved by such a pre-computation as well). Even though,
our constructions are not efficient enough for practical applications. Thus, an
interesting open problem is to construct practically efficient and provably se-
cure pseudorandom generators and collision resistant hash functions, where the
provable security should be obtained under a widely acknowledged hardness as-
sumption (e.g., NP-completeness).

References

1. L. M. Adleman, A Subexponential Algorithm for the Discrete Logarithm Problem
with Applications to Cryptography (Abstract), FOCS 1979, pp. 55-60, 1979.

2. W. Alexi, B. Chor, O. Goldreich, and C. Schnorr, RSA/Rabin Bits are 1/2 +
1/poly(log N) Secure, FOCS 1984: 449-457.

3. M. Bellare and S. Goldwasser, Verifiable Partial Key Escrow, ACM CCS’97, pp.
78-91, 1997.

4. M. Bellare, D. Micciancio, A New Paradigm for Collision-Free Hashing: Incremen-
tality at Reduced Cost, Advances in Cryptology-EUROCRYPT 1997, pp. 163-192,
1997.

Efficient Primitives from Exponentiation in Zp 269

5. L. Blum, M. Blum, M. Shub, A Simple Unpredictable Pseudo-Random Number
Generator, SIAM J. Comput. 15(2): 364-383 (1986).

6. M. Blum, S. Micali, How to Generate Cryptographically Strong Sequences of
Pseudo Random Bits, FOCS 1982: 112-117.

7. D. Coppersmith, A. M. Odlyzko, and R. Schroeppel, Discrete Logarithms in GF(p),
Algorithmica 1(1): 1-15 (1986).

8. R. Canetti and H. Krawczyk, analysis of key-exchange protocols and their use for
building secure channels, Advances in Cryptology-EUROCRYPT 2001, B. Pfitz-
mann (Ed.), LNCS 2045, Springer-Verlag, pp. 453-474, 2001.
of key exchange and secure channels, Advances in Cryptology-EUROCRYPT 2002,
L. R. Knudsen (Ed.), LNCS 2332, Springer-Verlag, pp. 337-351, 2002.
signature-based key-exchange protocol, Advances in Cryptology-CRYPTO 2002,
M. Yung (Ed.), LNCS 2442, Springer-Verlag, pp. 143-161, 2002.

9. S. Contini and A.K. Lenstra and R. Steinfeld, VSH: an Efficient and Provable Col-
lision Resistant Hash Function, NIST Cryptographic Hash Workshop 2005, Mary-
land, USA, 2005.

10. R. Cramer and V. Shoup, a practical public-key cryptosystem provably secure
against adaptive chosen ciphertext attack, Advances in Cryptology-CRYPTO 1998,
H. Krawczyk (Ed.), LNCS 1462, Springer-Verlag, pp. 13-25, 1998.

11. I. Damgard, Collision Free Hash Functions and Public Key Signature Schemes,
EUROCRYPT 1987: 203-216.

12. W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions
on Information Theory, vol. IT-22, Nov. 1976, pp: 644-654.

13. N. Dedic, L. Reyzin and S. Vadhan, An Improved Pseudorandom Generator Based
on Hardness of Factoring, Security in Communication Networks 2002, S. Cimato
et al. (Eds.), LNCS 2576, Springer-Verlag, pp. 55-73, 2003.

14. T. El Gamal, a public-key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory, Vol. 31, No. 4, pp. 469-472,
1985.

15. R. Gennaro, An Improved Pseudo-random Generator Based on the Discrete Loga-
rithm Problem , Journal of Cryptology, 18(2), pp.91-110, Spring 2005. Early version
appeared in CRYPTO’2000.

16. S. Goldwasser, S. Micali and P. Tong, Why and how to establish a private code on
a public network, FOCS’82, pp. 134-144.

17. S. Goldwasser, S. Micali, and R. L. Rivest, A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks, SIAM J. Comput., 17(2): 281-308
(1988).

18. O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University
Press, 2001.

19. O. Goldreich, S. Goldwasser amd S. Micali, How to Construct Random Functions,
Journal of the ACM, Vol 33, No. 4, pp. 792-807, 1986.

20. O. Goldreich, V. Rosen, On the Security of Modular Exponentiation with Applica-
tion to the Construction of Pseudorandom Generators, J. Cryptology, 16(2): 71-93
(2003).

21. J. Hastad, R. Impagliazzo, L. A. Levin, Michael Luby, A Pseudorandom Generator
from any One-way Function, SIAM J. Comput. 28(4): 1364-1396 (1999). Early
verision is in STOC’89.

22. J. Hastad, A. Schrift and A. Shamir, The Discrete Logarithm Modulo a Composite
Hides O(n) Bits, JCSS, 47: 376-404, 1993.

23. L. Hua, Introduction to Number Theory, Berlin: Springer-verlag, 1982.

270 S. Jiang

24. J. Katz, R. Ostrovsky and M. Yung, efficient password-authenticated key exchange
using human-memorable passwords, Advances in Cryptology-EUROCRYPT 2001,
B. Pfitzmann (Ed.), LNCS 2045, Springer-Verlag, pp. 475-494, 2001.

25. A. K. Lenstra and H. W. Lenstra, Jr. (Eds.), the Developement of the Number
Field Sieve, LNM 1554, Springer-Verlag, 1993.

26. C. Lim, P. Lee, More Flexible Exponentiation with Precomputation, Advances in
Cryptology-CRYPTO 1994, Y. Desmedt (Ed.), LNCS 839, Springer-Verlag, pp.
95-107, 1994.

27. D. L. Long, A. Wigderson, How Discreet is the Discrete Log, STOC 1983, pp.
413-420, 1983.

28. A. M. Odlyzko, Discrete Logarithms: The Past and the Future, Des. Codes Cryp-
tography 19(2/3): 129-145 (2000).

29. S. Patel and G. S. Sundaram, An Efficient Discrete Log Pseudo Random Generator,
Advances in Cryptology-CRYPTO 1998, H. Krawczyk (Ed.), LNCS 1462, Springer-
Verlag, pp. 304-317, 1998.

30. C. Peikert and A. Rosen, Efficient Collision-Resistant Hashing From Worst-Case
Assumptions on Cyclic Lattices, TCC 2006.

31. D. Pointcheval, The Composite Discrete Logarithm and Secure Authentication,
Public Key Cryptography 2000, H. Imai and Y. Zheng (Eds.), LNCS 1751, Springer-
Verlag, pp. 113-128, 2000.

32. R. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signa-
tures and Public-key Cryptosystems, Communications of ACM, Vol. 2, pp. 120-126,
February 1978.

33. A. Shamir and Y. Tauman, Improved Online/Offline Signature Schemes, Advances
in Cryptology-CRYPTO 2001, J. Kilian (Ed.), LNCS 2139, Springer-Verlag, pp.
355-367, 2001.

34. O. Schirokauer, Discrete Logarithm and Local Units, Philosophical Transactions:
Physical Science and Engineering, Vol. 345, No. 1676, pp. 409-423, 1993.

35. Victor Shoup: Lower Bounds for Discrete Logarithms and Related Problems, Ad-
vances in Cryptology-EUROCRYPT 1997, W. Fumy (Ed.), LNCS 1233, Springer-
Verlag, pp. 256-266, 1997.

36. U. Vazirani and V. Vazirani, Efficient and Secure Pseudo-random number genera-
tion, FOCS’84, pp. 458-463.

37. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, Cryptanalysis of the Hash Func-
tions MD4 and RIPEMD, Advances in Cryptology-EUROCRYPT 2005, R. Cramer
(Ed.), LNCS 3494, Springer-Verlag, pp. 1-18, 2005.

38. X. Wang and H. Yu, How to Break MD5 and Other Hash Functions, Advances
in Cryptology-EUROCRYPT 2005, R. Cramer (Ed.), LNCS 3494, Springer-Verlag,
pp. 19-35, 2005.

39. X. Wang, Y. L. Yin and H. Yu, Finding Collisions in Full SHA-1, Advances in
Cryptology-CRYPTO 2005, V. Shoup (Ed.), LNCS 3621, Springer-Verlag, pp. 17-
36, 2005.

40. A. Yao, Theory and Applications of Trapdoor Functions (Extended Abstract),
FOCS 1982: 80-91.

PA in the Two-Key Setting and a Generic
Conversion for Encryption with Anonymity

Ryotaro Hayashi and Keisuke Tanaka

Dept. of Mathematical and Computing Sciences,
Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku,

Tokyo 152-8552, Japan
{hayashi9, keisuke}@is.titech.ac.jp

Abstract. We propose the notion of plaintext awareness in the two-
key setting, called PATK. We also prove that if a public-key encryption
scheme is secure in the sense of PATK, then it is also secure in the sense
of IK-CCA. Since it looks much easier to prove that a public-key encryp-
tion scheme is secure in the sense of PATK than to prove directly that it
is secure in the sense of IK-CCA, the notion of PATK is useful to prove
the anonymity property of public-key encryption schemes.

We also propose the first generic conversion for the anonymity, that
is, we prove that the public-key encryption scheme derived from the
Fujisaki-Okamoto conversion scheme, where the basic public-key encryp-
tion scheme is secure in the sense of IK-CPA, is secure in the sense of
IK-CCA in the random oracle model.

Keywords: anonymity, key-privacy, encryption, plaintext awareness in
the two-key setting.

1 Introduction

1.1 Background

The classical security requirement of public-key encryption schemes is that it
provides privacy of the encrypted data. Popular formalizations such as indistin-
guishability (IND) or non-malleability (NM), under either the chosen plaintext
attack (CPA) or the adaptive chosen ciphertext attack (CCA) are directed at
capturing various data-privacy requirements.

The widely admitted appropriate security level for public-key encryption is the
indistinguishability against the adaptive chosen ciphertext attack (IND-CCA).
A promising way to construct such a public-key encryption scheme is to convert
it from primitives which are secure in a weaker sense such as one-wayness (OW),
IND-CPA, etc.

Bellare and Rogaway [1] proposed a generic and simple conversion scheme
from a one-way trapdoor permutation into a public-key encryption scheme. The
scheme created in this way is called OAEP. Fujisaki, Okamoto, Pointcheval, and

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 271–282, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

272 R. Hayashi and K. Tanaka

Stern [2] proved that OAEP with a partial one-way trapdoor permutation is
secure in the sense of IND-CCA. The OAEP conversion has several variants,
such as SAEP, OAEP+, etc.

Fujisaki and Okamoto [3] proposed a simple conversion scheme from weak
public-key and symmetric-key encryption schemes into a public-key encryption
scheme which is secure in the sense of IND-CCA. This scheme was used to con-
struct the identity-based encryption scheme proposed by Boneh and Franklin [4].

Recently, many conversion schemes which depend on Gap problem, such as
REACT and GEM, were proposed.

The public-key encryption schemes derived from the conversion schemes de-
scribed above meet not only IND-CCA, but also the notion of plaintext awareness
(PA). The notion of PA is first proposed by Bellare and Rogaway [1] and refined
by Bellare, Desai, Pointcheval, and Rogaway [5] which is, roughly speaking, that
nobody can produce a new ciphertext without knowing the plaintext. We say
that a public-key encryption scheme is secure in the sense of PA if it is secure
in the sense of IND-CPA and there exists a knowledge extractor which is a for-
malization of the above property. In [5], they proved that PA implies IND-CCA.
Since it looks much easier to prove that a public-key encryption scheme is secure
in the sense of PA than to prove directly it is secure in the sense of IND-CCA,
the notion of PA is useful to prove the security of public-key encryption schemes.

Recently, Bellare and Palacio [6] discussed the problem of defining the no-
tion of plaintext-awareness without random oracles and of achieving its concrete
schemes.

On the other hand, the notion of PA might be too strong. The schemes de-
scribed above get a redundant construction. In [7, 8], the conversion schemes
without redundancy were proposed. They are secure in the sense of IND-CCA,
but does not meet PA. Fujisaki [9] introduced another security notion, called
plaintext simulatability (PS). It implies IND-CCA, similar to PA, however, it is
a properly weaker notion than PA.

In 2001, Bellare, Boldyreva, Desai, and Pointcheval [10] proposed a new secu-
rity requirement of encryption schemes called “key-privacy” or “anonymity.” It
asks that an encryption scheme provides (in addition to privacy of the data being
encrypted) privacy of the key under which the encryption was performed. That
is, if an encryption scheme provides the key-privacy, then the receiver is anony-
mous from the point of view of the adversary. They formalized the property of
anonymity. This can be considered under either the chosen plaintext attack or
the adaptive chosen ciphertext attack, yielding two notions of security, IK-CPA
and IK-CCA. (IK means “indistinguishability of keys.”).

In addition to the notion of key-privacy, they provided the RSA-based anony-
mous encryption scheme, RSA-RAEP, which is a variant of RSA-OAEP (Bel-
lare and Rogaway [1], Fujisaki, Okamoto, Pointcheval, and Stern [2]). Recently,
Hayashi, Okamoto, and Tanaka [11] proposed the RSA-based anonymous en-
cryption scheme by using the RSACD function. Hayashi and Tanaka [12] con-
structed the RSA-based anonymous encryption scheme by using the sampling
twice technique.

PA in the Two-Key Setting and a Generic Conversion 273

1.2 Our Contribution

In this paper, we propose the notion of plaintext awareness in the two-key setting,
called PATK. We say that the public-key encryption scheme Π is secure in
the sense of PATK if Π is secure in the sense of IK-CPA and there exists a
knowledge extractor for PATK. There are some differences between the definition
of a knowledge extractor for PA in [5] and that for PATK (See Section 4). We can
see that if there exists a knowledge extractor K for PATK of Π , then we can use
K as a knowledge extractor for PA of Π . That is, if the public-key encryption
scheme Π is secure in the sense of PATK and IND-CPA, then Π is secure in the
sense of PA. However, it is not clear that we can use the knowledge extractor
for PA of Π as that for PATK of Π .

We also prove that if a public-key encryption scheme is secure in the sense of
PATK, then it is also secure in the sense of IK-CCA. Since it looks much easier
to prove that a public-key encryption scheme is secure in the sense of PATK than
to prove directly that it is secure in the sense of IK-CCA, the notion of PATK
is useful to prove the anonymity property of public-key encryption schemes.

We also propose the first generic conversion scheme for the anonymity from
IK-CPA to IK-CCA. We employ the Fujisaki-Okamoto conversion scheme [3].
The public-key encryption scheme derived from their conversion scheme is se-
cure in the sense of IND-CCA in the random oracle model when it consists of
a public-key encryption scheme Πpub and a symmetric-key encryption scheme
Πsym where

– Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and
– Πsym is secure in the sense of find-guess (FG).

We prove that the scheme derived from the Fujisaki-Okamoto conversion scheme
with the above two and the following two assumptions is secure in the sense of
IK-CCA in the random oracle model.

– In Πpub, the message space and the randomness space are common to each
user (each public-key).

– Πpub is secure in the sense of IK-CPA.

We can get the public-key encryption scheme which is secure in the sense of
IND-CCA and IK-CCA if we assume the above four conditions.

The organization of this paper is as follows. In Section 2, we review the def-
initions of public-key encryption and symmetric-key encryption. In Section 3
we review the security definitions for public-key encryption and symmetric-
key encryption. In Section 4, we propose the notion of plaintext awareness in
the two-key setting (PATK), and prove that PATK implies IK-CCA. In Sec-
tion 5, we review the conversion scheme to IND-CCA proposed by Fujisaki
and Okamoto [3]. In Section 6, we propose a generic conversion scheme for the
anonymity. More precisely, we prove that the public-key encryption scheme de-
rived from the Fujisaki-Okamoto conversion scheme, where the basic public-key
encryption scheme is secure in the sense of IK-CPA, is secure in the sense of
IK-CCA in the random oracle model. We conclude in Section 7.

274 R. Hayashi and K. Tanaka

Due to lack of space, we omit proofs in Section 6. See the full version [13] of
this paper.

2 Preliminaries

2.1 Public-Key Encryption

In this section, we review the definition of public-key encryption schemes.
In this paper, we mainly consider the anonymity property of encryption

schemes proposed in [10]. It asks that the encryption provide (in addition to
privacy of the data being encrypted) privacy of the key under which the encryp-
tion was performed. In a heterogeneous public-key environment, encryption will
probably fail to be anonymous for trivial reasons. For example, different users
might be using different cryptosystems, or, if the same cryptosystem, have keys
of different lengths. To avoid this problem, we employ some common parame-
ter called common key in the definition of encryption schemes, similar to that
in [10]. Then, the public key pk includes the corresponding common key I and
other information for each user.

Definition 1. A public-key encryption scheme with common-key generation
Π = (G,K, E ,D) consists of four algorithms.

– The common-key generation algorithm G(1k) takes as input a security pa-
rameter 1k and returns some common key I.

– The key generation algorithm K(I) is a randomized algorithm that takes as
input a common key I and returns a pair (pk, sk) of keys, a public key and
a matching secret key. For given pk, the message space MSPC(pk) and the
randomness space COINS(pk) of Π are uniquely determined.

– The encryption algorithm Epk(m; r) is a randomized algorithm that takes a
public key pk and a plaintext m ∈ MSPC(pk), and returns a ciphertext c, using
random coin r ∈ COINS(pk).

– The decryption algorithm Dsk(c) is a deterministic algorithm that takes a
secret key sk and a ciphertext c, and returns the corresponding plaintext m
or a special symbol ⊥ to indicate that the ciphertext c is invalid.

We require that, for any k ∈ N, if I ← G(1k), (pk, sk) ← K(I), m ∈ MSPC(pk),
and c ← Epk(m), then m = Dsk(c).

2.2 Symmetric-Key Encryption

In this section, we review the definition of symmetric-key encryption schemes.

Definition 2. A symmetric-key encryption scheme Π = (E ,D) consists of two
algorithms.

– The encryption algorithm Ex(m) is a deterministic algorithm that takes a
symmetric-key x ∈ KSPC(k) and a message m ∈ MSPC(k), and returns a
ciphertext c. Note that KSPC(k) and MSPC(k) are the key space and the mes-
sage space for k, respectively. They are uniquely determined by a security
parameter 1k.

PA in the Two-Key Setting and a Generic Conversion 275

– The decryption algorithm Dx(c) is a deterministic algorithm that takes a
symmetric key x and a ciphertext c, and returns the corresponding
plaintext m.

We require that, for any k ∈ N, if x ∈ KSPC(k), m ∈ MSPC(k), and c ← Ex(m),
then m = Dx(c).

3 Security Definitions

In this section, we review the security definitions for public-key encryption and
symmetric-key encryption schemes.

3.1 Public-Key Encryption

γ-uniformity. We review a property of public-key encryption, called γ-
uniformity, following [3].

Definition 3 (γ-uniformity). Let Π = (G,K, E ,D) be a public-key encryption
scheme. We say that Π is γ-uniform, if, for any I ← G(1k), (pk, sk) ← K(I),
m ∈ MSPC(pk), and y ∈ {0, 1}∗, Pr[r R← COINS(pk) : y = Epk(x; r)] < γ.

One-Wayness. We review a weak security notion for public-key encryption,
called one-wayness, following [3].

Definition 4 (OW). Let Π = (G,K, E ,D) be a public-key encryption scheme.
Let A be an adversary. We define the advantage of A via Advow

Π,A(k) =

Pr[I ← G(1k); (pk, sk) ← K(I); m
R← MSPC(pk); c ← Epk(m) : A(c, pk) = m].

We say that A is a (t, ε)-adversary for Π in the sense of OW if A runs in at
most time t and archives Advow

Π,A(k) ≥ ε. We say that Π is (t, ε)-secure in the
sense of OW if there is no (t, ε)-adversary for Π in that sense.

Anonymity. In [10], Bellare, Boldyreva, Desai, and Pointcheval formalized the
property of “anonymity.” This can be considered under either the chosen plain-
text attack or the adaptive chosen ciphertext attack, yielding two notions of
security, IK-CPA and IK-CCA. (IK means “indistinguishability of keys.”) We
describe the definition of the anonymity, following [10].

Definition 5 (IK-CPA, IK-CCA [10]). Let Π = (G,K, E ,D) be a public-key
encryption scheme. Let Acpa and Acca be adversaries that run in two stages, find
and guess. The adversaries Acpa and Acca have access to some oracles Ocpa and
Occa, respectively. For atk ∈ {cpa, cca}, we define the advantages of Aatk via

Advik-atk
Π,Aatk

(k) = 2 · Pr[I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I);

(m, si) ← AOatk

atk (find, pk0, pk1); b
R← {0, 1}; c ← Epkb

(m)
: AOatk

atk (guess, c, si) = b]− 1

276 R. Hayashi and K. Tanaka

where Ocpa = ε and Occa = (Dsk0
,Dsk1

). Note that si is the state information.
It contains the public keys pk0, pk1, the message m, and so on. We require that
m ∈ MSPC(pk0)∩MSPC(pk1). We also require that Acca never queries the challenge
c to either Dsk0

or Dsk1
in the guess stage.

We say that Acpa is a (t, ε)-adversary for Π in the sense of IK-CPA if Acpa

runs in at most time t and achieves Advik-cpa
Π,Acpa

(k) ≥ ε.
Similarly, we say that Acca is a (t, qd, ε)-adversary for Π in the sense of IK-

CCA if Acca runs in at most time t, makes a total number of qd queries to
decryption oracles Dsk0

and Dsk1
, and achieves Advik-cca

Π,Acca
(k) ≥ ε.

We say that Π is (t, ε)-secure (respectively (t, qd, ε)-secure) in the sense of IK-
CPA (resp. IK-CCA) if there is no (t, ε)-adversary (resp. (t, qd, ε)-adversary) for
Π in the corresponding sense.

Anonymity in the Random Oracle Model. We can consider the definition of the
anonymity in the random oracle model in a similar way as that in the standard
model described above.

We define Ω as the map family from an appropriate range. The domain and
range depend on the underlying encryption scheme. Even if we choose two ran-
dom functions that have distinct domains and distinct ranges respectively, we
just write the experiment, for convenience, as G, H ← Ω, instead of preparing
two map families.

In the random oracle model, we begin the experiment of Aatk described above
(which defines advantage) by H ← Ω. Then, we add the random oracle H to
both Ocpa and Occa, and allow that for i ∈ {0, 1}, Epki and Dski may depend on
H (which we write EH

pki
and DH

ski
, respectively).

We define the adversaries in a similar way as those in the standard model,
that is, we define a (t, qh, ε)-adversary in the sense of IK-CPA in the random
oracle model and a (t, qh, qd, ε)-adversary in the sense of IK-CCA in the random
oracle model where the adversary makes at most qh queries to H .

We say that Π is (t, qh, ε)-secure (respectively (t, qh, qd, ε)-secure) in the sense
of IK-CPA (resp. IK-CCA) in the random oracle model if there is no (t, qh, ε)-
adversary (resp. (t, qh, qd, ε)-adversary) for Π in the corresponding sense in the
random oracle model.

3.2 Symmetric-Key Encryption

Find-Guess. We review a security notion for symmetric-key encryption, called
find-guess (FG), following [3].

Definition 6 (FG). Let Π = (E ,D) be a symmetric-key encryption scheme.
Let A be an adversary that runs in two stages, find and guess. We define the
advantage of A via

Advfg
Π(k) = 2 · Pr[x R← KSPC(k); (m0, m1, si) ← A(find, k);

b
R← {0, 1}; c ← Ex(mb) : A(guess, c, si) = b]− 1.

We require that m0 �= m1 and m0, m1 ∈ MSPC(k).

PA in the Two-Key Setting and a Generic Conversion 277

We say that A is a (t, ε)-adversary for Π in the sense of FG if A runs in at
most time t and achieves Advfg

Π,A(k) ≥ ε.
We say that Π is (t, ε)-secure in the sense of FG if there is no (t, ε)-adversary

for Π in the sense of FG.

4 Plaintext Awareness in the Two-Key Setting

In this section, we propose the notion of plaintext awareness in the two-key
setting (PATK), and prove that PATK implies IK-CCA.

We describe the definition of plaintext awareness in the two-key setting.

Definition 7 (Plaintext Awareness in the two-key setting and Knowl-
edge Extractor for PATK). Let Π = (G,K, E ,D) be a public-key encryption
scheme. Let B and K be algorithms, called an adversary for PATK and a knowl-
edge extractor for PATK, respectively. They work in the random oracle model as
follows:

– B is a (qh, qe)-adversary for PATK that takes two public-keys pk0, pk1 and
an index i ∈ {0, 1}, and makes at most qh queries to H and qe queries to
the encryption oracles, EH

pk0
and EH

pk1
. B finally outputs c �∈ C, where

• TH denotes the set of all pairs of a B’s query and the corresponding
answer from H, and

• C denotes the set of all answers from EH
pk0

and EH
pk1

. (Note that C does
not contain an information of which encryption oracle responded.)

We write this experiment as (TH , C, c, pki) ← run BH,EH
pk0

,EH
pk1 (pk0, pk1, i).

– Knowledge extractor K for PATK takes (TH , C, c, pki) and outputs a
string m.

For any k ∈ N and i ∈ {0, 1}, we define

Succpatk
K,B,Π,i(k) = Pr[H ← Ω; I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I);

(TH , C, c, pki) ← run BH,EH
pk0

,EH
pk1 (pk0, pk1, i) : K(TH , C, c, pki) = DH

ski
(c)].

We say that K is a (tKETK, λ, qh, qe)-knowledge extractor for PATK of Π if
for any (qh, qe)-adversary Band i ∈ {0, 1}, K runs in at most time tKETK and
achieves Succpatk

K,B,Π,i(k) ≥ λ.
We say that Π is (tcpa, tKETK, qh, qe, ε, λ)-secure in the sense of PATK if Π is

(tcpa, qh, ε)-secure in the sense of IK-CPA, and there exists a (tKETK, λ, qh, qe)-
knowledge extractor K for PATK of Π.

There are some differences between the definition of PA in [5] and that of PATK.
First, the adversary B in our definition receives two public keys and two encryp-
tion oracles, while the adversary in the definition of PA receives one public key
and one encryption oracle. Second, we define the success probability of B for
any index i ∈ {0, 1}. This indicates under which key, pk0 or pk1, the knowl-
edge extractor K for PATK should decrypt c. Third, in the definition of PA,

278 R. Hayashi and K. Tanaka

the list C contains the answers (ciphertexts) from only one encryption oracle
EH

pk. When we prove that PA implies IND-CCA, C plays an important role, that
is, C contains the challenge ciphertext of IND-CCA game to give it to the ad-
versary B for PA. In our definition, if we use C to prove that PATK implies
IK-CCA, C has to contain the challenge ciphertext of IK-CCA game and the
challenge ciphertext is encrypted by either pk0 or pk1. Therefore, in our defini-
tion, we define that the list C consists of the answers (ciphertexts) from both EH

pk0

and EH
pk1

.
It is easy to see that if there exists a knowledge extractor K for PATK of

Π , then we can use K as a knowledge extractor for PA of Π . That is, if the
public-key encryption scheme Π is secure in the sense of PATK and IND-CPA,
then Π is secure in the sense of PA. However, it is not clear that we can use
the knowledge extractor for PA of Π as that for PATK of Π . The difficulty of
proving this seems to depend on the third difference described above.

We prove the following theorem.

Theorem 1. If the public encryption scheme Π is (tcpa, tKETK, qh, 1, ε, λ)-
secure in the sense of PATK, then Π is (tcca, qh, qd, ε

′)-secure in the sense of
IK-CCA where

tcca = tcpa − qd · tKETK and ε′ = ε + 2qd · (1 − λ).

Proof. In [5], Bellare, Desai, Pointcheval, and Rogaway proved that PA implies
IND-CCA. We prove Theorem 1 in a similar way.

Let Acca be an (tcca, qh, qd, ε)-adversary of Π in the sense of IK-CCA. We
construct an adversary Acpa of Π in the sense of IK-CPA by using Acca.

We construct the algorithm Acpa as follows. Note that Acpa simulates Acca’s
oracles H , Dsk0

, and Dsk1
as described below.

1. Acpa initializes two lists, TH and C to empty.
2. Acpa(find, pk0, pk1) runs Acca as (m, si) ← Acca(find, pk0, pk1) and outputs

(m, si).

3. Acpa receives a challenge ciphertext ĉ = EH
pkb

(m) where b
R← {0, 1}.

4. Acpa(guess, ĉ) runs Acca as d ← Acca(guess, ĉ) and outputs d.

Acpa simulates Acca’s oracle as follows:

– When Acca makes a query h to H , Acpa makes a query h to its oracle H
and obtains an answer H(h). Then, Acpa returns H(h) to Acca and puts
(h, H(h)) into the list TH .

– When Acca makes a decryption query c to DH
ski

, Acpa runs the knowledge
extractor K as follows.
• In the find stage, Acpa runs K as m ← K(TH , ε, c, pki) and returns m to

Acca.
• In the guess stage, Acpa runs K as m ← K(TH , ĉ, c, pki) and returns m

to Acca.

PA in the Two-Key Setting and a Generic Conversion 279

To guarantee that the knowledge extractor K for PATK outputs a correct answer
(a corresponding plaintext m or an invalid symbol ⊥), for j ∈ {1, 2, · · · , qd} we
construct the adversary Bj for PATK as follows. Note that Bj simulates Acca’s
oracles H , Dsk0

, and Dsk1
as described below. Note that Bj(pk0, pk1, i) returns

some value and halts when Acca makes its j-th decryption query.

1. Bj initializes two lists, TH and C to empty.
2. Bj runs Acca as (m, si) ← Acca(find, pk0, pk1).

3. Bj picks a random bit b
R← {0, 1} and makes an oracle query as ĉ ← EH

pkb
(m).

4. Bj runs Acca(guess, ĉ). (Note that Bj is sure to halt before Acca outputs d.
See below.).

Bj(pk0, pk1, i) simulates Acca’s oracle as follows:

– When Acca makes a query h to H , Acpa makes a query h to its oracle H
and obtains an answer H(h). Then, Acpa returns H(h) to Acca and puts
(h, H(h)) into the list TH .

– When Acca makes a j′-th decryption query c toDH
ski

, Acpa runs the knowledge
extractor K as follows.

• In the find stage, if j′ = j then Bj returns c and halts; otherwise, Acpa
runs K as m ← K(TH , ε, c, pki) and returns m to Acca.

• In the guess stage, if j′ = j then Bj returns c and halts; otherwise, Acpa
runs K as m ← K(TH , ĉ, c, pki) and returns m to Acca.

Since j ≤ qd and Acca makes at most qd queries to the decryption oracles, Bj is
sure to output c and halt before Acca outputs d in the guess stage.

We analyze the success probability of Acpa. We have that for any j ∈ {1, 2, · · · ,

qd} the distribution of (TH , C, c, pki) ← run B
H,EH

pk0
,EH

pk1

j (pk0, pk1, i) where

H ← Ω; I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I)

and the distribution of the j-th input for K in the above adversary Acpa is
identical. Therefore,

Pr[Acpa(find, pk0, pk1) = Acca(find, pk0, pk1)] ≥ 1− qfind
d · (1 − λ)

and

Pr[Acpa(guess, c, (si, TH)) = Acca(guess, c, si)
|Acpa(find, pk0, pk1) = Acca(find, pk0, pk1)] ≥ 1− (qd − qfind

d) · (1− λ)

where qfind
d is a number of decryption queries of Acca in the find stage. Hence,

ε′ ≥ ε− 2qd(1− λ).
It is easy to see that the running time of Acpa is less than tcca + qd · tKETK.

280 R. Hayashi and K. Tanaka

5 Fujisaki–Okamoto Conversion

In this section, we review the conversion proposed by Fujisaki and Okamoto [3].
Let Πpub = (Gpub,Kpub, Epub,Dpub) be a public-key encryption scheme and

let Πsym = (Esym,Dsym) be a symmetric-key encryption scheme. Let G :
MSPCpub → KSPCsym and H : MSPCpub × MSPCsym → COINSpub be hash functions.

A public-key encryption scheme Πhy = (Ghy,Khy, Ehy,Dhy) derived from the
Fujisaki-Okamoto conversion is as follows:

– Common key generation and key generation: Ghy and Khy are the same as
Gpub and Kpub, respectively.

– Encryption:
Ehy

pk (m; σ) = Epub
pk (σ; H(σ, m)) || Esym

G(σ)(m)

where COINShy = MSPCpub and MSPChy = MSPCsym.
– Decryption:

Dhy
sk (c1||c2) =

{
m̂ if c1 = Epub

pk (σ̂; H(σ̂, m̂))
⊥ otherwise

where σ̂ ← Dpub
sk (c1) and m̂ ← Dsym

G(σ̂)(c2).

Fujisaki and Okamoto showed that the public-key encryption scheme Πhy is
secure in the sense of IND-CCA in the random oracle model when

– Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and
– Πsym is secure in the sense of FG.

6 Generic Conversion for the Anonymity

In this section, we propose the generic conversion for the anonymity, that is,
we can prove that the public-key encryption scheme derived from the Fujisaki-
Okamoto conversion with the following assumptions is secure in the sense of
IK-CCA in the random oracle model.

– Πpub use the common message space MSPCpub(I) and the common random-
ness space COINSpub(I) as the message space MSPCpub(pk) and the random-
ness space COINSpub(pk), respectively, for any public key pk outputted by
K(I),

– Πpub is secure in the sense of IK-CPA,
– Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and
– Πsym is secure in the sense of FG.

Since these conditions are sufficient that Πhy meets IND-CCA, we can get a
public-key encryption scheme which is secure in the sense of IND-CCA and IK-
CCA in the random oracle model when we assume the above four conditions.

PA in the Two-Key Setting and a Generic Conversion 281

IK-CPA Security. We can prove the following lemma with respect to the
anonymity property. See the full version [13] of this paper.

Lemma 1. Let Πpub be a public-key encryption scheme where Πpub uses the com-
mon message space MSPCpub(I) and the common randomness space COINSpub(I) as
the message space MSPCpub(pk) and the randomness space COINSpub(pk), respec-
tively, for any public key pk outputted by K(I).

Suppose that Πpub is (t1, ε1)-secure in the sense of IK-CPA, and (t2, ε2)-secure
in the sense of OW. Let 2 be the size of MSPCsym. Then, Πhy is (t, qg, qh, ε)-secure
in the sense of IK-CPA in the random oracle model, where t = min{t1, t2} −
poly(2) and ε = ε1 + 2(qg + qh) · ε2.

Knowledge Extractor for PATK. We can show the existence of the knowledge
extractor for PATK of our scheme.

Though we mentioned that we could not use the knowledge extractor for PA
directly as that for PATK, fortunately, we can use the knowledge extractor for
PA as that for PATK in the case of the Fujisaki-Okamoto conversion.

We can prove the following lemma. See the full version [13] of this paper.

Lemma 2. Suppose that Πpub is γ-uniform and (t2, ε2)-secure in the sense of
OW. Suppose that Πsym is (t3, ε3)-secure in the sense of FG. Let 1 and 2 be the
sizes of MSPCpub and MSPCsym, respectively. Then, there exist a (t, λ, qg, qh, qe)-
knowledge extractor K for PATK of Πhy such that t = (qg + qh) · poly(1 + 2)
and λ = 1− 2qe · ε2 − 2ε3 − γ − 2−�2 .

From Theorem 1 and Lemmas 1 and 2, we have the following theorem.

Theorem 2. Let Πpub be a public-key encryption scheme where Πpub uses the
commonmessage spaceMSPCpub(I)and the common randomness spaceCOINSpub(I)
as the message space MSPCpub(pk) and the randomness space COINSpub(pk) for any
public key pk outputted by K(I), respectively.

Suppose that Πpub is γ-uniform, (t1, ε1)-secure in the sense of IK-CPA, and
(t2, ε2)-secure in the sense of OW. Suppose that Πsym is (t3, ε3)-secure in the
sense of FG. Let 1 and 2 be the sizes of MSPCpub and MSPCsym, respectively.
Then, Πhy is (t, qg, qh, qd, ε)-secure in the sense of IK-CCA in the random oracle
model where t = min{t1, t2}− (qg + qh) ·poly(1 + 2). and ε = ε1 +2(qg + qh)ε2 +
2qd(2ε2 + 2ε3 + γ + 2−�2).

7 Concluding Remarks

The previously proposed public-key encryption schemes in [10, 11, 12] which are
based on RSA-OAEP and secure in the sense of IK-CCA seem to meet PAKE.

It might be interesting to consider the definition of the plaintext awareness
in the two-key setting without random oracles and the schemes in the standard
model which meet the plaintext awareness in the two-key setting.

282 R. Hayashi and K. Tanaka

References

1. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to Encrypt with
RSA. In De Santis, A., ed.: Advances in Cryptology – EUROCRYPT ’94. Volume
950 of LNCS., Perugia, Italy, Springer-Verlag (1994) 92–111

2. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is Secure under
the RSA Assumption. [14] 260–274

3. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In Wiener, M., ed.: Advances in Cryptology – CRYPTO ’99.
Volume 1666 of LNCS., Santa Barbara, California, USA, Springer-Verlag (1999)
537–554

4. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. [14]
213–229

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of
Security for Public-Key Encryption Schemes. In Krawczyk, H., ed.: Advances in
Cryptology – CRYPTO ’98. Volume 1462 of LNCS., Santa Barbara, California,
USA, Springer-Verlag (1998) 26–45

6. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption without
Random Oracles. In Lee, P.J., ed.: Advances in Cryptology – ASIACRYPT 2004.
Volume 3329 of LNCS., Jeju Island, Korea, Springer-Verlag (2004) 48–62

7. Phan, D.H., Pointcheval, D.: Chosen-Ciphertext Security without Redundancy.
In Laih, C.S., ed.: Advances in Cryptology – ASIACRYPT 2003. Volume 2894 of
LNCS., Taipei, Taiwan, Springer-Verlag (2003) 1–18

8. Cui, Y., Kobara, K., Imai, H.: A Generic Conversion with Optimal Redundancy.
In Menezes, A., ed.: Topics in Cryptology – CT-RSA 2005. Volume 3376 of LNCS.,
San Francisco, CA, USA, Springer-Verlag (2005) 104–117

9. Fujisaki, E.: Plaintext-Simulatability. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, Special Section on Cryptog-
raphy and Information Security E89-A (2006) 55–65

10. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-
Key Encryption. In Boyd, C., ed.: Advances in Cryptology – ASIACRYPT 2001.
Volume 2248 of LNCS., Gold Coast, Australia, Springer-Verlag (2001) 566–582 Full
version of this paper, available via http://www-cse.ucsd.edu/users/mihir/.

11. Hayashi, R., Okamoto, T., Tanaka, K.: An RSA Family of Trap-door Permutations
with a Common Domain and its Applications. In Bao, F., Deng, R.H., Zhou, J.,
eds.: Public Key Cryptography – PKC 2004, 7th International Workshop on The-
ory and Practice in Public Key Cryptography. Volume 2947 of LNCS., Singapore,
Springer-Verlag (2004) 291–304

12. Hayashi, R., Tanaka, K.: The Sampling Twice Technique for the RSA-based Cryp-
tosystems with Anonymity. In Vaudenay, S., ed.: Public Key Cryptography – PKC
2005, 8th International Workshop on Theory and Practice in Public Key Cryptog-
raphy. Volume 3386 of LNCS., Les Diablerets, Switzerland, Springer-Verlag (2005)
216–233

13. Hayashi, R., Tanaka, K.: PA in the Two-Key Setting and a Generic Con-
version for Encryption with Anonymity. Research Report C-224, Dept.
of Mathematical and Computing Sciences, Tokyo Institute of Technology,
http://www.is.titech.ac.jp/research/research-report/ (2006)

14. Kilian, J., ed.: Advances in Cryptology – CRYPTO 2001. Volume 2139 of LNCS.,
Santa Barbara, California, USA, Springer-Verlag (2001)

Statistical Decoding Revisited

R. Overbeck

GK Electronic Commerce,
TU-Darmstadt,

Department of Computer Science,
Cryptography and Computer Algebra Group
overbeck@cdc.informatik.tu-darmstadt.de

Abstract. In this paper we look at the statistical decoding attack on
the McEliece cryptosystem from [4]. The statistical decoding algorithm
is a probabilistic algorithm for correcting errors in random codes. It
uses precomptuations to provide faster error correction than the classi-
cal general decoding algorithms. We analyze the success probability of
the algorithm and show how to improve it. Further, we show that the
algorithm may not be used to attack the McEliece cryptosystem, due to
the large amount of precomputation needed.

Keywords: McEliece Cryptosystem, general decoding, coding theory,
public key cryptography, code based cryptography.

1 Introduction

The security of cryptosystems based on error correcting codes is connected to
the hardness of the general decoding problem. The first cryptosystem, which is
based on that technique is the one presented by McEliece in 1978. McEliece’s
cryptosystem is very effective in en- and decryption, has a good information
rate and we can even build a signature scheme from it. Furthermore, despite all
effort, it remains unbroken for large public key sizes.

The statistical decoding attack on the McEliece PKC is a general decoding
attack. It uses a precomputed alternative description of the public key, which
has exponential space complexity. The author of [4] claims, that this alternative
description can be computed in reasonable time. We show, that this is not pos-
sible employing the method proposed by Al Jabri. As a consequence, the attack
fails even for the original parameter set of the McEliece cryptosystem, which is
insecure against general decoding attacks [2].

However, statistical decoding can be used to correct errors in short random
codes. After some precomputation, statistical decoding corrects errors more ef-
ficiently than the standard general decoding algorithms. Its mayor disadvantage
is, that the algorithm is probabilistic and fails in some cases. We show how to
improve the probability of correct decoding in that case.

The paper is structured as follows: In this section we give an introduction
into the basic concepts of coding theory and the McEliece cryptosystem. In the

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 283–294, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

284 R. Overbeck

second and third section we present the statistical decoding algorithm and show,
how to improve it. In the fourth sections we analyze the precomputation phase
of the statistical decoding algorithm.

1.1 Coding Theory and Problems

The security of the McEliece cryptosystem is based on the difficulty of some
classical problems of coding theory. Here we give a short introduction into the
topic of coding theory.

Definition 1.1. An (n, k)-code C over a finite field F is a k-dimensional sub-
vectorspace of the vector space Fn. We call C an (n, k, d)-code if the minimum
distance is d = minx,y∈C dist (x,y), where “dist” denotes the Hamming distance.
The distance of an element x ∈ Fn to the null-vector wt (x) := dist (0,x) is called
weight of x.

Definition 1.2. The matrix C ∈ Fk×n is a generator matrix for the (n, k) code
C over F, if the rows of C span C over F. The matrix H ∈ F(n−k)×n is called
check matrix for the code C if H is the right kernel of C. The code generated by
H is called dual code of C and denoted by C⊥.

With these definitions, we are able to define the problems of coding theory on
which the security of the McEliece cryptosystem rely. The NP-hardness of these
problems is proven e.g. in [1].

Definition 1.3. The general decoding problem for linear codes is defined as fol-
lows: For a given (n, k) linear code C over F and a vector y ∈ Fn find x ∈ C,
where dist (y,x) is minimal.

Let e be a vector of weight ≤ t :=
⌊

d−1
2

⌋
and x ∈ C. Then there is a unique

solution to the general decoding problem for y = x + e. The code C is said to
be an t-error correcting code.

Definition 1.4. The problem of finding weights of a linear code is defined as
follows: For a given linear code C over F and w ∈ N find a vector x ∈ C with
weight w.

Throughout this paper, we will use the following notation. We write G = 〈G〉 if
the linear (n, k)-code G over F has the generator matrix G. We can write x ∈ G
as (x1, · · · , xn) ∈ Kn. For any (ordered) subset {j1, · · · jm} = J ⊆ {1, · · ·n} we
denote the vector (xj1 , · · · , xjm) ∈ Km with xJ . Similarly we denote by M·J the
submatrix of a k × n matrix M consisting of the columns corresponding to the
indices of J and MJ′· =

(
M)

·J′ for any (ordered) subset J ′ of {1, · · · , k}.

1.2 The McEliece PKC

This cryptosystem was proposed by McEliece [5] and is the first, which uses
error correcting codes as a trapdoor. It remains unbroken in its original version,
which uses irreducible binary Goppa codes. There exist efficient algorithms to
correct errors up to half of the designed minimum distance of the Goppa code.
We briefly describe the cryptosystem:

Statistical Decoding Revisited 285

– System Parameters: n = 2m, t ∈ N, where t � n.
– Key Generation: Given the parameters n, t generate the following matri-

ces:
G′ : k × n generator matrix of a binary irreducible

(n, k = 2m −mt, 2t + 1) Goppa code G
S : k × k random binary non-singular matrix
P : n× n random permutation matrix

Then, compute the k × n matrix G = SG′P .
– Public Key: (G, t)
– Private Key: (S, DG , P), where DG is an efficient decoding algorithm for G

.
– Encryption: To encrypt a plaintext m ∈ {0, 1}k choose a vector z ∈ {0, 1}n

of weight t randomly and compute the ciphertext c as follows:

c = mG⊕ z .

– Decryption: To decrypt a ciphertext c calculate

cP−1 = (mS)G′ ⊕ zP−1

first, and apply the decoding algorithm DG for G to it. Since cP−1 has a
hamming distance of t to the Goppa code we obtain the codeword

mSG′ = DG
(
cP−1) .

Let J ⊆ {1, · · · , n} be a set, such that G·J is invertible, then we can compute
the plaintext m = (mSG′)J (G′

·J)−1
S−1

In its initial version from 1978, McEliece proposed to choose m = 10 and t =
50, i.e. using a (1024, 524, 101) Goppa code. After the proposal of several general
decoding attacks the parameters had to be modified. The fastest of these attacks
was proposed in [2], compare section 4 and 5. Today parameter sets with m = 11
and 40 ≤ t ≤ 93 are considered to be secure. There exists also a signature scheme
based on the McEliece PKC (CFS, see [3]), which is as secure as the McEliece PKC
with the same parameters. For CFS it is proposed to choose e.g. m = 16 and t = 9.

2 Statistical Decoding

This general decoding algorithm was presented by A Kh. Al Jabri in [4]. The
idea of statistical decoding may be described as follows: Given an (n, k, d) code
G, we first compute a sufficiently large set Hw of dual vectors of weight w (i.e.
an alternative description of G = H⊥

w). In the following we assume that w < n/2.
However all observations are analogous for w > n/2. Given a word y = x + e,
where x ∈ G and wt(e) is small, we take a vector h ∈ Hw, where yh �= 0. As
xh = 0, the non-zero positions of h reveals some information about e. (Let e.g.
wt(e) = 4, then either one or three non-zero entries of e correspond to non-zero
entries of h). Collecting the information each of the different vectors h ∈ Hw

reveals, we are able to find e in some cases.

286 R. Overbeck

There are three major questions regarding this technique, which we will ad-
dress in the following sections: “How to compute the set Hw?” (section 4), “How
to combine the information the vectors of Hw reveal about e ?” (this section)
and “What is the probability of identifying e?” (section 3). In section 3.2 we
show how to improve the success probability of correct decoding.

Let Hw be a set of vectors of weight w of the dual space of the (n, k, 2t + 1)
linear binary code G with generator Matrix G. Let y be the sum of a code-
word uG ∈ G and a error vector e with weight at most t. A Kh. Al Jabri
points out, that for randomly generated codes the probability that a value of
1 appears in the i-th position of h ∈ Hw with yhT = 1 depends on i be-
ing a erroneous position in the vector y. We have an odd error detection in
i if yhT = 1 and hi = 1. Assume that we have an odd error detection in i,
then let p+

w be the probability that i is a erroneous position and q+
w be the

probability that i is a non-erroneous position. We can compute these probab-
ilities as

p+
w =

∑m≤t
m odd

(
n−t

w−m

)(
t−1
m−1

)∑m≤t
m odd

(
t
m

)(
n−t

w−m

) , q+
w =

∑m≤t
m odd

(
n−t−1

w−m−1

)(
t
m

)∑m≤t
m odd

(
t
m

)(
n−t

w−m

) .

Since w < n/2 the inequation p+
w > q+

w holds, although for large w the difference
is small. We define v+

y,w :=
∑

h∈Hw

(
yhT mod 2

)
. Then, for i ∈ {1, · · · , n} an

(non-)error position the random variable
1

v+
y,w

∑
h∈Hw

(
yhT mod 2

)
hi

is the relative frequency estimate for p+
w (q+

w respectively). Its variance is (σ+
w)2 =

p+
w(p+

w − 1)/v+
y,w. Thus, we can recover u using algorithm 2.1 if Hw is chosen in

a way so that we can distinguish between p+
w and q+

w .

Algorithm 2.1. StatDec
Input: Hw, y.
Output: u, the information vector.

v =
∑

h∈Hw

(
yh� mod 2

)
h ∈ Z

n.

choose I = {positions of the k smallest entries of v} s.t. G·I is invertible.

u = yIG−1
·I

Al Jabri claims, that precomputing a set Hw with

|Hw| = 625 · 10−6 · p+
w

(
1− p+

w

)
ε−2 (1)

vectors is sufficient for correct decoding [4]. The work factor for algorithm 2.1 is

O
(
n · |Hw|+ 2k3 + kn

)

Statistical Decoding Revisited 287

binary operations having computed the set Hw in advance. The author of [4]
claims that the latter can be done e.g. by the methods of [2]. However, com-
puting the set Hw is solving problem 1.4, which is a NP-hard problem in
general. In addition, a set Hw of the desired size will not even exist if w is
chosen too small. Goppa codes, as BCH codes and GRS codes have a weight
distribution “close” to the expected weight distribution of random code, which
is the binomial distribution [4]. Consequently, we get the following condition
for Hw:

|Hw| ≤
(

n

w

)
2−k, (2)

if we want to decode e.g. a random code or a Goppa code. We come back to
this problem in section 4, but first we want to analyze the success probability of
StatDec.

3 The Success Probability of Statistical Decoding

The first point of critique on the statistical decoding is its success probability.
In our experiments for small parameter sets we had difficulties, to correct errors
with a set Hw of size given in equation (1). It seems, that the set has to be about
213 times larger than claimed by Al Jabri to allow correct decoding in most cases.
We give a brief example: For a (26, 40, 9) Goppa code (or a (26, 40, 9) random
code), Al Jabri’s bound for |H17| is 1 ≤ |H17| ≤

(64
17

)
2−40 ≈ 210. However,

one vector of the dual code can not be sufficient for correct decoding in most
cases. Therefore we want to take a closer look at the success probability of
statistical decoding. Later we show how to improve StatDec and give a small
example.

In the following, we assume, that every set Hw consists of random vectors of
weight w. If the vectors in Hw are somehow related, the probability for finding
the correct error vector decreases.

3.1 The Initial Algorithm

We return to the notations of the previous section. On inputHw and y StatDec
does only return the correct error vector if for some δ with p+

w − 1 < δ < p+
w the

following two conditions hold:

(i) For every error position i:

vi > (p+
w − δ)v+

y,w.

(ii) There are at least k non-error positions j, such that

vj < (p+
w − δ)v+

y,w.

288 R. Overbeck

We may assume, that v+
y,w ≈ 1

2 |Hw|, and thus the probability, that a certain δ
fulfills the first condition is smaller than

P := Φ
(
δ/σ+

w

)t = Φ

⎛⎝δ

√
1
2 |Hw|

p+
w(p+

w − 1)

⎞⎠t

, (3)

where Φ refers to the distribution function of the standardized normal distribu-
tion. Thus, we have to choose

2
(
Φ−1

(
P1/t

))2
p+

w(1− p+
w)δ−2 ≤ |Hw| ≤

(
n

w

)
2−k. (4)

Assume k ≈ (n − t)/2, then it is probable, that half of the values vj for non
error positions j will be below their mean value p+

wv+
y,w. Thus, if there exists an

δ for a given ciphertext y, such that the two conditions above are fulfilled, then
it will probably be smaller than |p+

w − q+
w |. Since Φ−1(0.95) = 1.65 we conclude,

that with a set of size

|Hw| ≈ 5.4p+
w(1− p+

w)
1

(p+
w − q+

w)2
. (5)

we can correct errors with a probability about 0.95t. Note, that this number is
a factor 213 larger than the one given by Al Jabri. We expect that with a set of
size given in equation (1) we could correct errors with a probability about 1/2t,
only.

3.2 An Improved Version

To improve the probability of correct error correction, we want to include even
error detection. Let y be the sum of a codeword uG ∈ G and a error vector e with
weight at most t. We observe, that for randomly generated codes the probability
that a value of 1 appears in the i-th position of h ∈ Hw with yhT = 0 depends
on i being a erroneous position in the vector y. Thus, we have an even error
detection if yhT = 0 and hi = 1. Let p−w be the probability that i is a erroneous
position and q−w be the probability that i is a non-erroneous position in the case
of an even error detection. These probabilities can be computed as follows:

p−w =

∑m≤t
2≤m even

(
n−t

w−m

)(
t−1
m−1

)∑m≤t
m even

(
t
m

)(
n−t

w−m

) , q−w =

∑m≤t
m even

(
n−t−1

w−m−1

)(
t
m

)∑m≤t
m even

(
t
m

)(
n−t

w−m

) .

We define v−y,w :=
∑

h∈Hw

(
1− yhT mod 2

)
. Then, for an (non-)error position

i the value
1

v−y,w

∑
h∈Hw

(
1− yhT mod 2

)
hi

is the relative frequency estimate for p−w (q−w respectively). We observe, that if
p+

w > q+
w , then p−w < q−w .

Statistical Decoding Revisited 289

For all possible weights, the relative frequency estimates of p+
w and p−w are

approximately normal distributed if |Hw| is large enough. Therefore we can
use the standard transformation, s.t. all the relative frequency estimates are
N (0, 1) distributed. It follows, that one can sum the scaled relative frequency
estimates obtained by several sets containing dual vectors of different weights. As
a consequence, we consider H as the set of all dual vectors of weight w satisfying
b ≤ w ≤ B < n/2, i.e. H =

⋃B
w=bHw. All in all, we get the modified algorithm

3.1. With the notation of StatDec+: If i is an error position, then for all v,
(v)i has mean value 0. For an implementation one should omit the previous
computation of σ+

w and σ−
w . and compute these values while computing vw.

Algorithm 3.1. StatDec+
Input: H =

⋃B
w=b Hw, y.

Output: u, the information vector.

for w = b to B do(
σ+

w

)2 = p+
w · (1 − p+

w) · v+
y,w.(

σ−
w

)2 = p−
w · (1 − p−

w) · v−
y,w.

1 = (1, 1, · · · , 1) ∈ {0, 1}n.
for w = b to B do

vw =
∑

h∈Hw

(
yh� mod 2

)
(h − p+

w1)/σ+
w ∈ R

n.
vw+B = −

∑
h∈Hw

(
1 − yh� mod 2

)
(h − p−

w1)/σ−
w ∈ R

n.

for all binary combinations v of the different vl do
choose I = {positions of the k smalles entries of v} s.t. G·I is invertible.
u = yIG−1

·I
if weight(uG ⊕ y) ≤ t then

return u = u

Let us assume, that the different relative frequency estimates are independent.
We define v =

∑B
w=b ewvw +

∑B
w=b ew+Bvw+B, where each ei ∈ {0, 1}. Then for

an error position j, (v)j is normal distributed with mean value 0 and variance σ2

equal to the number of ew �= 0. If j is a non-error position, then (v)j is normal
distributed with mean value

E :=
B∑

w=b

ew

(
|q+

w − p+
w |

σ+
w

v+
y,w

)
+

B∑
w=b

ew+B

(
|q−w − p−w |

σ−
w

v−y,w

)
and variance

S2 =
B∑

w=b

ww

(
q+
w (1− q+

w)(
σ+

w

)2 v+
y,w

)
+

B∑
w=b

ww+B

(
q−w (1− q−w)(

σ−
w

)2 v−y,w

)

In most cases we will have 2v+
y,w ≈ 2v−y,w ≈ |Hw|. To distinguish between error

and non-error positions by v, we get the following conditions: There exists an

290 R. Overbeck

δ ∈ R such, that for every error position i the inequation |vi| < δ holds and there
are at least k non-error positions j, such that |vj | > δ. The probability, that a
certain δ fulfills this conditions is smaller than Φ (δ/σ)t. Again, we expect, that
the condition δ ≤ E has to be true in most cases, and thus we get

P ≈ Φ

⎛⎝ 1
σ

⎛⎝ B∑
w=b

ew

√∣∣q+
w − p+

w

∣∣2 |Hw|
2p+

w(1− p+
w)

+
B∑

w=b

ew+B

√∣∣q−w − p−w
∣∣2 |Hw|

2p−w(1− p−w)

⎞⎠⎞⎠t

as a suitable estimate for the probability of correct decoding with StatDec+.
However we are not able to prove, that the different relative frequency estimates
for p+

w and q+
w are independent. Nevertheless, for an implementation it seems

recommendable, to start with the vectors v where |{ei �= 0}| is large.

3.3 Experimental Results

We made several experiments with codes of small length. As expected, the pro-
posed variant StatDec+ of the initial algorithm allows error correction in a
significant larger number of cases than StatDec, especially when the size of
the sets Hw is small. Further, it seems recommendable to include sets Hw with
small w, even if their size is smaller than desired (e.g. up to a factor 4).

In the following we present three examples of our experiments. Note that for
all our examples the bound for |Hw| given by equation (1) is useless, as it is
smaller than 0. Further, the precomputation to find the sets Hw was quite time-
consuming and an exhaustive search in some cases. The time needed to perform
the precomputation for StatDec+ is the same as for StatDec.

In our first example we considered a (26, 40, 9) Goppa code. For this code
the relative frequency estimates and the desired sizes of each Hw are given by
table 3.1. We computed a set H = {H16,H17,H18}, where each of the sets Hw

Table 3.1. Correcting errors of weight 4 in a (64, 40) code

w p+
w q+

w p−
w q−

w |Hw|
16 0.295 0.248 0.210 0.263 1433
17 0.302 0.263 0.232 0.268 2160
18 0.311 0.280 0.254 0.284 3393

consisted of 100 random vectors. With StatDec+ we were able to correct errors
of weight 4 in 93.2% of the cases. With the original algorithm, called with each
set Hw, correct error correction was possible in 17.5% of the cases, only.

In the second example, we looked at the same code as in the first example, but
chose each Hw to be the set of all vectors of weight w. For our particular Goppa
code, we got: |H16| = 345, |H17| = 1234 and |H18| = 3149. In this case, error
correction was possible with StatDec and StatDec+ in all cases. An correct
error correction with StatDec would not have been possible in all cases, if only
one of the sets Hw would have been used.

Statistical Decoding Revisited 291

Table 3.2. Correcting errors of weight 6 in a (64, 22) code

w p+
w q+

w p−
w q−

w |Hw| StatDec success rate
8 0.183 0.119 0.082 0.129 562 95.0%
9 0.189 0.136 0.102 0.145 835 79.4%

10 0.196 0.152 0.122 0.160 1283 73.8%

In our last example, we looked at a (26, 22, 13) random code. The values for
the relative frequency estimates and the sizes of Hw resulting from equation
(5) are given by table 3.2. The expected success probability of StatDec is
≈ 0.956 = 73.5% for each set Hw. However, the experimented success probability
for StatDec is larger, compare table 3.2. In this case we were able to compute
the desired sets in reasonable time. Again, we made 1000 attempts to correct
errors of weight 6. With StatDec+ we were able to correct all errors, whereas
with StatDec we would have been able to correct them in 99.2% of the cases.

4 On the Problem of Finding Weights

Al Jabri proposes to use a variant of Sterns algorithm to solve the problem of
finding weights, i.e. to compute Hw. J. Stern designed his algorithm to find a
(unique) shortest codeword of a binary linear code. Such an algorithm can be
used to correct up to t := (d−1)/2 errors in a binary (n, k, d) code G: Let c be a
binary n-vector with distance t to G and G be the generator matrix of G. Then
the sum of c and the unique shortest codeword of the code generated by(

G
c

)
is the solution to the general decoding problem for G and c.

We recall the original algorithm of Stern [7], which tries to find a vector of low
weight w. Let H be the check matrix of the code G. Given the parameters p and
l, successively choose two disjoint sets of p < k/2 columns I1 and I2 at random.
Then choose a set J ⊆ {1, · · · , n} \ (I1 ∪ I2) of l rows at random. We may
assume without loss of generality, that I1 = {n− k + 1, · · · , n− k/2} and I1 =
{n− k/2 + 1, · · · , n}. If we can not transform the matrix H into a systematic
matrix, the algorithm fails at this point, and is started anew. Otherwise we
transform H into the desired form. Now we may assume, that J = {1, · · · , l}
and get a check matrix of the following form:

H =
(

Idn−k
Z1 Z2

B

)
,

where Z1 and Z2 are l × k/2 matrices, and B is a (k − l) × k matrix. For all
pairs of vectors (e1, e2) ∈ ({0, 1}k/2)2 where wt(e1) = wt(e2) = p we check
whether e1Z1 = e2Z2. If the condition is fulfilled for such a pair, then we compute
the unique vector e0 ∈ {0, 1}n−k, such that (e0, e1, e2)H = 0. The vector

292 R. Overbeck

e = (e0, e1, e2) is our candidate for a short codeword. One can observe, that the
fist l entries of e are zeros and thus the weight of e is smaller than n−k− l+2p.
If none of the constructed vectors e is of the desired weight, then the algorithm
fails. The success probability of one iteration of the algorithm is

Pp,l,w =

(
n−w

k/2−p

)(
w
p

)(n−w−k/2−p
k/2−p

)(
w−p

p

)(
n−k−(w−2p)

l

)(
n

k/2

)(
n−k/2

k/2

)(
n−k

l

)
in the case of a unique code word e′ of weight w.

To improve the performance of Sterns algorithm, one can view its dual variant
– depending on the ratio of k/n – and try to avoid the costly Gaussian elimi-
nation by choosing I1 and I2 iteratively and not at random. This method was
introduced and analyzed by Canteaut and Chabaud, compare [2]. The success
probability of the algorithm for finding the shortest codeword is to be modeled
by a Markov chain in that case. We omit details and just take the result, that
the work factor for one iteration becomes

Ωp,l =

(
1
2
n(n− k) + 2l

(
k/2
p

)
(p− 1) + (n− k − l)(2p− 1)

(
k/2
p

)2 1
2l

)
.

The work factor of the resulting algorithm may be approximated by

O(n3)2−t log
2
(1−k/n),

if t is small and k/n is not too close to 1 (compare [6]).
In the case of statistical decoding we use the algorithm from [2] not to find a

single lowest weight code word, but several code words of a certain weight w. If
there are several code words of weight w, the work factor decreases by a factor
equal to the number of such code words. As the expected number of vectors of
weight w is given by the binomial distribution, we get the expected workfactor
to compute a set Hw of vectors of weight w as

Wp,l,w =
2k(
n
w

) Ωp,l

Pp,l,w
·
|Hw|−1∑

i=0

(
1− i · 2k(

n
w

))−1

. (6)

If one wants to compute a set H, which serves as an input for the StatDec+,
we expect, that every execution of a single round of the algorithm returns

B∑
w=b

2k(
n
w

)P−1
p,l,w

vectors of weight w satisfying b ≤ w ≤ B. However, using the algorithm from [2]
might not always be the best choice to use, when trying to find multiple words
of any given weight, even if we did not find a better way to do so.

Unfortunately we were not able to find an example parameter set, where the
precomputation required for StatDec could be performed in less time than
the one needs for a single call of Canteaut’s and Chabaud’s general decoding
algorithm.

Statistical Decoding Revisited 293

5 Attacking the McEliece PKC with Statistical Decoding

To our knowledge, the best way to attack the McEliece PKC is the attack pro-
posed by Canteaut and Chabaud [2], see section 4. Since for the McEliece cryp-
tosystem n = 2m and k = n − tm, N. Sendrier concludes, that the maximum
degree of security for the McEliece cryptosystem against the general decoding
attack from [2] is obtained for an information rate k/n ≈ 1 − 1/ exp(1) [6].
This would lead e.g. to the choice of m = 11 and t ≈ 70 for the McEliece
cryptosystem.

To attack the McEliece PKC with parameters m = 10 and t = 50 with
statistical decoding, Al Jabri claims that computing a set Hw consisting of 238

vectors is sufficient. Unfortunately Al Jabri does not name w, but we are quite
sure, that he referred to the set H133. However, equation (3) implies, that the
probability of correct decoding is about 2−50 in that case. A decoding attempt
with StatDec takes 248 binary operations for this input. Consequently, one
would expect, that it would take approximately 298 binary operations, before an
attack on one of 250 given ciphertexts is successful.

We have shown, that an attacker would need a set H137 consisting of approx-
imately 251 vectors to attack ciphertext of the McEliece PKC with parameters
n = 10 and t = 50. Even storing a set of this size seems impossible nowadays
and the work factor for a single decoding attempt would be larger than 261,
which is not much faster than the general decoding algorithm of Canteaut and
Chabaud [2]. However, it takes at least 2152 binary operations to compute the
set H137 with the algorithm proposed by Canteaut and Chabaud. For this pa-
rameter set, one iteration for l = 19 and p = 2 of the algorithm requires about
224 binary operations. Most of the vectors returned by the algorithm will be of
weight 241. For each one of 2−17 iterations, we will get only one of those vectors.
Thus, after performing 280 Operations, one will still have computed less than
239 vectors of weight 241. Having a range of 114 ≤ w ≤ 241, we will have still
have not enough vectors of the dual space to attack the McEliece cryptosystem.
Thus, it is not possible to attack the McEliece cryptosystem with StatDec or
StatDec+.

Table 5.3. StatDec for example parameter sets

McEliece parameters w
∣∣p+

w − q+
w

∣∣ |Hw|
(

n
w

)
2−k Workfactor

(2m, k, d = 2t + 1) StatDec precomput.
(1024, 524, 101) 137 0.2 · 10−7 251 252.5 261 2152

(1024, 524, 101) 153 0.21 · 10−8 258 294 268 2138

(2048, 1278, 141) 363 0.41 · 10−14 296 296.9 2107 2609

(65536, 65392, 9) 32000 0.17 · 10−13 293 2109.7 2109 >> 2131

The situation for the signature scheme CFS is the same: Any set, that would
allow correct decoding in a non-negligible fraction of the cases is to big to be
stored efficiently and it is infeasible to perform the precomputation (compare
Table 5.3).

294 R. Overbeck

6 Conclusion

We have shown, how to improve the probability of correct error correction of the
statistical decoding algorithm. We have performed experiments and have shown,
that statistical decoding can be used for fast decoding of random linear codes
after some precomputation. Nevertheless, we needed several sets of vectors, each
about 213 times larger than claimed by Al Jabri. Additionally the problem how
to perform the precomputation efficiently remains unsolved. We conclude, that
it is not possible to attack the McEliece cryptosystem (or the CFS signature
scheme) with reasonable parameter sets by statistical decoding. However, there
might exist non-standard parameter sets for the McEliece cryptosystem, which
can be attacked by statistical decoding.

References

1. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory, 24(3):384–386,
1978.

2. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEETIT: IEEE Transactions on Information Theory, 44,
1998.

3. N. Courtois, M. Finiasz, and N.Sendrier. How to achieve a McEliece-based digital
signature scheme. In Advances in Cryptology - ASIACRYPT 2001, volume 2248,
pages 157–174. Springer-Verlag, 2001.

4. A. Al Jabri. A statistical decoding algorithm for general linear block codes. In
Cryptography and Coding 2001, volume 2260 of LNCS, pages 1–8. Springer Verlag,
2001.

5. R.J. McEliece. A public key cryptosystem based on algebraic coding theory. DSN
progress report, 42-44:114–116, 1978.

6. N. Sendrier. On the security of the McEliece public-key cryptosystem. In M. Blaum,
P.G. Farrell, and H. van Tilborg, editors, Proceedings of Workshop honoring Prof.
Bob McEliece on his 60th birthday, pages 141–163. Kluwer, 2002.

7. J. Stern. A method for finding codewords of small weight. Coding Theory and
Applications, 388:106–133, 1989.

Towards Provable Security for Ubiquitous
Applications

Mike Burmester�, Tri Van Le�, and Breno de Medeiros

Department of Computer Science, Florida State University
Tallahassee, Florida 32306-4530

{burmester, levan, breno}@cs.fsu.edu

Abstract. The emergence of computing environments where smart de-
vices are embedded pervasively in the physical world has made possible
many interesting applications andhas triggered several new research areas.
Mobile ad hoc networks (MANET), sensor networks and radio frequency
identification (RFID) systems are all examples of such pervasive systems.
Operating on an open medium and lacking a fixed infrastructure, these sys-
tems suffer from critical security vulnerabilities for which few satisfactory
current solutions exist, particularly with respect to availability and denial-
of-service. In addition, most of the extant knowledge in network security
and cryptography cannot be readily transferred to the newer settingswhich
involve weaker devices and less structured networks.

In this paper we investigate the security of pervasive systems and focus
on availability issues in malicious environments. We articulate a formal
security framework that is tuned for the analysis of protocols for con-
strained systems and show how this can be used with applications that
involve MANET and RFID systems. In our approach we shall use opti-
mistic protocols for which the overhead is minimal when the adversary is
passive. When the adversary is active, depending on the application, the
additional cost is either used to trace malicious behavior or born by non-
constrained components of the system. Our goal is to design mechanisms
that will support self-healing and promote a fault-free system state, or
a stable system state, in the presence of a Byzantine adversary.

Keywords: Ubiquitous applications, RFID, MANET, fault tolerance,
tracing malicious faults.

1 Introduction and Motivation

We investigate the security of pervasive systems with focus on availability issues
in the presence of Byzantine faults. Our goal is to specify formal simulation
frameworks for analyzing security objectives and more importantly to design
novel mechanisms and algorithms that achieve proven availability, uninterrupted
services, high efficiency and low overhead in such systems. With a large amount of
research already invested into other non-security issues, it is preferable whenever
� The author was partly supported by NSF grants DUE 0243117 and CNS 0209092.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 295–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

296 M. Burmester T. Van Le, and B. de Medeiros

possible to design mechanisms that integrate security into existing algorithms
that are well established in the literature.

The emergence of computing environments where smart devices are embedded
pervasively in the physical world has made possible many interesting applica-
tions and triggered several new research areas. These include pervasive systems
with constrained resources that intelligently configure and connect themselves,
in particular, mobile ad hoc networks (MANETs), sensor networks and RFID
systems. Nevertheless, the deployment of such systems in practice poses great
challenges concerning their security and robustness in the presence of malicious
faults. So far, research has focused on functionality, performance and services,
with security being given a lower priority and centered mainly on confidentiality
and integrity, but not availability (under malicious attacks). In particular, most
research on network security and cryptography involves highly powered, highly
structured redundant systems. For this reason the proposed security solutions are
often inappropriate for these networks. This is particularly true regarding Denial-
of-Service (DoS) attacks against power constrained systems. Furthermore, most
practical security patches are only for specific attacks, leaving an unjustified
belief that proven security and efficiency are conflicting goals.

Overview of our results. We investigate secure mechanisms and protocols for
ubiquitous systems. We consider two applications.

1. Secure Mobile Ad hoc Networks (MANET). In particular we:
– Develop a formal simulation framework for security that focuses on avail-

ability under DoS attacks, and that allows for concurrency and universal
composability.

– Investigate mechanisms that provably support availability in malicious
environments within the formal simulation security framework.

– Design protocols that provide message-delivery guarantees and that
provably support network self-healing from malicious attacks. In par-
ticular, protocols that enable migration of the network to a fault-free
state.

2. Secure Radio Frequency Identification (RFID). In particular we:
– Develop a formal simulation framework for security of RFID systems

that models availability, privacy, and authenticity services, and
– Design provably secure scalable anonymous authentication protocols for

RFIDs in the formal framework.

Our approach is holistic and promotes self-healing. It provides for novel opti-
mistic mechanisms that deal with security and availability issues in an efficient
manner with low overhead. We focus on systems that will tolerate, trace and
eliminate faults by reconfiguring. The threat model allows for a very powerful
Byzantine adversary: malicious nodes are not bounded by the system specifi-
cations and can use covert channels, more powerful transmitters/receivers, re-
sponders etc. Security will be proven using a well established cryptographic
framework. In contrast to traditional cryptographic solutions, our approach is
suitable for low power, low cost devices in a malicious environments with no
infrastructure.

Towards Provable Security for Ubiquitous Applications 297

A self-healing strategy for ubiquitous systems. Self-healing is achieved by
tracing malicious behavior. Whenever a component exhibits non-system faulty
behavior, a tracing mechanism is activated and the component isolated. As-
suming the number of potential non-system faults is bounded (the Byzantine
assumption), the system ultimately will be fault-free. By using low level (opti-
mistic) mechanisms, there is no extra cost when the adversary is passive. Even
when faults do occur, the overhead involved is small. This makes it possible to
achieve our security goal with practical systems that have constrained resources.

2 Securing MANET Applications

2.1 A Formal Simulation Framework for Security

There are several ways to capture the unpredictable nature of a mobile ad hoc
network. Whichever way is used, there are important mobility and medium as-
pects that must be reflected. In its simplest form, a mobile ad hoc network is a
stochastic process G = G1,G2, . . . , where Gt is a random graph with node set V ,
for which communication is: (i) synchronous, the time for a single transmission
to be received is bounded by a constant; (ii) promiscuous, a packet transmit-
ted by node will be received by all its neighbors. Links can be undirected (the
neighbor relationship is symmetric) or directed (the neighbor relationship is
asymmetric). We note that to the best of our knowledge, to date, all routing
algorithms proposed in the literature support only bidirectional or undirected
links.

The stochastic aspect of G is determined by the states of the nodes of G and
Nature. Nature’s contribution comes from the environment and the fact that the
communication is wireless. A wide variety of factors may affect the communica-
tion, ranging from weather to radio interference and physical obstacles.

Adversary structure. In our model for the adversary, malicious nodes are not
bounded by the constraints of the mobile ad hoc network. In particular, the ad-
versary can send packets to arbitrary nodes and eavesdrop on all communication
(not necessarily via nodes under his control). In this respect, our model differs
from other models.

Definition 1. Let Γ be a family of subsets V ′ of the node set V . We call Γ
an Adversary Structure [20]. The adversary A = AΓ selects a subset V ′ ∈ Γ
and can corrupt all its nodes during the lifetime of the system.1 Adv controls
the nodes of V ′ and may use them to undermine the security of the network.
We call these nodes corrupted or faulty and refer to Adv as a Γ -adversary. The

1 There are several generalizations of this model. One such generalization allows Γ to
be dynamic: at regular intervals Adv can replace V ′ by V ′′ ∈ Γ , that is, release the
nodes of V ′\V ′′ and replace them by the nodes of V ′′\V ′. Another generalization
involves hybrid faults: malicious faults and physical faults. We shall not consider
these models here.

298 M. Burmester T. Van Le, and B. de Medeiros

adversary may be passive or active. A passive adversary (also called honest-but-
curious) will only eavesdrop on the network communication. An active adversary
may use the corrupted nodes to prevent the normal functioning of the network
via snooping, dropping, modifying, and/or fabricating network messages. Nodes
that are actively involved in such attacks and the corresponding faults are called
malicious or Byzantine. Malicious nodes may use hidden (covert) channels or
“wormholes” through which they can communicate or tunnel packets.

A particular case of the Adversary Structure model is the Byzantine faults
model [36] for which Γ = {V ′ ⊂ V | |V ′| ≤ k}, for some threshold k. In this case
the adversary A = Ak can control up to k nodes. We call Ak a k-adversary.

Simulation framework. Our security simulation framework follows crypto-
graphic paradigm for the security of network protocols [3]. Mobile nodes are
probabilistic Turing machines with a special transceiver tape linked to a net-
work oracle OG . For concurrent executions of distributed algorithms, we use a
model with an infinite collection of oracles that emulate concurrent sessions of
the algorithm, with which the adversary can interact. The following definition
captures the basic security requirements of this approach for secure distributed
applications. For a more formal discussion of a simulation framework for security,
see Section 5.

Definition 2. Let G be a mobile ad hoc network and π a distributed algorithm
of G.

- Γ -availability holds for π if Prob[π fails in presence ofA] is negligible for all
Γ adversaries A.

- Γ -tolerance holds for π if |Prob[π fails in presence of A] − Prob[π
fails in the absence ofA]| is negligible for all Γ adversaries A.

The probabilities are taken over the adversary’s and honest parties’ coin tosses.

2.2 Security Issues for Routing Algorithms

Communication in an ad hoc network is achieved by forwarding packets via
paths. Depending on where most of the routing effort takes place, there are two
types of routing: network-centric and source-centric. With network-centric rout-
ing (such as DSDV [31], WR [6] and AODV [32]) the routing effort is distributed
within the network; with source-centric routing (such as DSR [26]) most of the
routing effort is done by the source node.

From a security point of view, network-centric routing requires substantial
cooperation between network nodes and strong trust relationships. These algo-
rithms are therefore more vulnerable to malicious faults. On the other hand,
with source-centric routing, the source is less dependent on intermediate node
cooperation and thus less vulnerable to malicious attacks.

Denial-of-Service attacks. A DoS can be triggered in several ways, as for
example by: (1) Flooding in dense networks; (2) Flooding irrelevant packets; (3)
Packet dropping, e.g., on routers; (4) Preventing route discovery.

Towards Provable Security for Ubiquitous Applications 299

Man-in-the-Middle attacks. In a MiM attack the adversary takes control
of the communication channel between the source and destination by interpos-
ing between them. Active MiM attacks include, for instance: (1) Wormhole at-
tacks [25]; (2) Rushing attacks [25]; and (3) Sybil attacks [17].

Security at the physical and data link layers. There are two types of
faults that may occur in a routing algorithm: faults whose effect is stochasti-
cally indistinguishable from ordinary link failures caused by the mobility of the
system, radio interference, power failure etc, and faults whose effect can be dis-
tinguished. Faults that do not deviate from ordinary failures are best dealt with
at the physical or data link layer of the protocol stack with Medium Access
Control protocols. At these layers one can also deal with jamming attacks (using
frequency-hopping spread spectrum techniques) and most isolated DoS attacks.

Faults of the second type, although by definition statistically detectable, can
be quite hard to trace or locate. They include malicious faults, which may occur
when they are least expected, and may not be traceable with statistical failure
analysis. The reason for this is that any analysis based on reported failures can
be manipulated by the adversary. Faults of this type have to be addressed at
higher levels.

Security issues of Ariadne, SEAD and SAODV. Several routing proto-
cols in the literature address security issues (see e.g., [30]). Examples that are
well established in the literature include: Ariadne [23], SEAD [24] and Secure
AODV [38]. These algorithms do not tolerate insider faults caused by packet
dropping or by colluding nodes (on paths). In particular they do not tolerate
wormhole attacks.

Tolerating DoS Attacks with cell grids and colored graphs. A cell-grid
approach –see Figure 1,is proposed in [8] in which only one node in each cell
is only needed to propagate a packet. This approach guarantees packet delivery
during DoS attacks including malicious DoS attacks. This result is based on
circular broadcast ranges. It is possible to remove this restriction and extend
the cell-grid approach to routing protocols (for example, by taking a succession
of adjacent cells as a virtual path).

2.3 An Optimistic Algorithm That Traces Malicious Faults

Here we describe an optimistic algorithm that will trace malicious faults [9]. For
this algorithm there is no additional cost when there are no faults. When faults
do occur, the cost to locate a fault is one tracing round and two digital signatures
(for a short probe and a short failreport). In either case, a packet is confirmed
successfully delivered, or a fault location is determined with only two digital
signatures. This is the most efficient routing algorithm that will trace malicious
behavior even when faulty nodes collude. It improves on the tracing algorithm
in [2] that requires at least log(n) communication rounds and signatures to locate
a malicious fault, and that does not consider collusions. In our algorithm faults
that can be dealt with at the data link layer by error correction and re-sending

300 M. Burmester T. Van Le, and B. de Medeiros

1 hop

Fig. 1. The cell-grid and a node with its broadcast range

packets are treated as non-malicious. The protocol is described in Figure 2 and
Figure 3. The following notation is used:

– pktsd = [[s, d, sn, seqs, data]]sd : a packet consisting of identifiers s, d, a ses-
sion number sn for tracing algorithm (unique to each session), the sequence
number seqs for pkts, and data, authenticated with the key shared by s, d.

– acksd = [[s, d, sn, seqs]]sd : an authenticated acknowledgment.
– probs = [s, d, sn, seqs, hash(pktsd), hash(acksd)]s : a digitally signed probing

request by s.
– failreporty = [s, d, y, succ(y), sn, seqs]y : adigitally signed failure report by y.
– timerxy : a bound on time taken for a round trip from x to y for pkts.
– prec(x), succ(x): the node that precedes, succeeds x on the path taken by

pkts.

In the protocol, the source s sends a packet pktsd to succ(s) to be delivered to
the destination d. If there are no faults then the packet reaches d and s will
receive an authenticated acknowledgment acksd. If there is a fault the source
s will send probs with details of pktsd and acksd requesting from intermediate
nodes to compare these values with their stored values. If a fault is detected by
an intermediate node x then a failreportx is issued and send upstream to s.
Each intermediate node x node sets timers timerxd and timerxs, to determine
if and when a failreportx should be issued. Thus if succ(x) is not faulty, x will

receive from succ(x) after x
pkts−→ succ(x) and x

probs−→ succ(x) and before timerxd

timeouts a valid failreporty.
Observe that when there are no faults s and d only check the validity of pktsd

and acksd, and intermediate nodes only forward pktsd and check the header of
acksd.

Theorem 1 ([9]). For any Γ -adversary, the tracing algorithm in Figures 2 and
3 either delivers pkts to the destination d or will trace at least one faulty node.

Tracing malicious behavior with AODV and DSR. Most of the routing
algorithms can easily be extended to incorporate our tracing mechanism in the
communication phase. For example, for distance vector based routings such as

Towards Provable Security for Ubiquitous Applications 301

Source s. Set seqs = 0. While a connection to d has not terminated do:

1. Set timersd and send pktsd to succ(s).
2. If a valid acksd for pktsd is received before timeout then set seqs = seqs + 1.
3. Else set timersd and send probs to succ(s).

(a) If a valid failreporty for pktsd is received before timeout then y or succ(y) is malicious;
(b) Else succ(s) is malicious.

Destination d. When a valid pkts is received:

1. Construct and send ackd to prec(d).

Fig. 2. An optimistic tracing algorithm, I

Intermediate node x. When pkt′
sd is received:

1. Set timerxs, and send pkt′
sd to succ(x).

2. If an ack′
sd is received then send it to prec(s).

(a) If a valid probes for pkt′
sd is received with acksd �= ack′

sd before timerxs times out,
set timerxd and send probes to succ(x).

i. If a valid failreporty for pkt′
sd is received before timerxd times out:

send failreporty to prec(x);
ii. Else construct and send failreportx to prec(x).

3. Else if a valid probes for pkt′
sd is received with pktsd = pkt′

sd before timerxs times out,
reset timerxd and send probes to succ(x).
(a) If a valid failreporty for pkt′

sd is received before timerxd timeouts:
send failreporty to prec(x);

(b) Else construct and send failreportx to prec(x).

Fig. 3. An optimistic tracing algorithm, II

DSDV, AODV, and DSR , malicious faults will be traced by using the optimistic
tracing algorithm for packet processing (the store-and-forward process). This
can be done at the network layer, i.e., after error checking at the data link layer
(MAC).

2.4 Adaptive Multipath Routing

In this section we propose to investigate secure distributed algorithms for find-
ing maximal vertex disjoint paths that allow us to design secure AODV-type
algorithms [32].

Multipath routing involves the establishment of multiple paths between source
and destination pairs. These paths may be used for redundant communication
to control malicious attacks. A major advantage in using multipaths is that,
by exploiting redundancy we can guarantee service continuity, even when the
adversary is active.

An Adaptive Multipath Routing algorithm. Finding routes with multiple
paths in networks that do not have a fixed infrastructure is a challenge and in
general requires a different approach to that used with fixed infrastructures. An

302 M. Burmester T. Van Le, and B. de Medeiros

adaptive multipath routing algorithm that combines in parallel a distributed
version of Ford-Fulkerson Max-Flow algorithm [18] (at the source) with a local
network discovery algorithm (for nearby nodes) to find vertex-disjoint paths that
link the source to the destination is proposed in [7]. This algorithm is proven
secure in [9]. It is shown that:

Theorem 2. The adaptive multipath routing algorithm in [9] tolerates any
k-adversary, provided that the network graph is (k + 1)-connected, k ≥ 1.

The novelty of this algorithm is that it is resistant to malicious DoS attacks which
are addressed adaptively. In particular, when there are no attacks a single route
is used. With each malicious attack, the multipath is adaptively reconstructed
to deal with the threat. Only the shortest route(s) is (are) actually used, while
the rest are kept alive. Furthermore, communication is activated as soon as a
path becomes available, so there are no unnecessary delays.

In general when faults in a t-multipath occur beyond a certain acceptable
threshold, the source s will use a (t+1)-multipath. Since the new set of paths is
already constructed in the background, the delay caused by faults is minimized.
Most of the time, there should be no delay. Furthermore, in our algorithm, the
set of vertex-disjoint paths of the multipath is constructed incrementally, so that
even when delays are unavoidable, they are minimal.

Observe that having local information available centrally is easier than having
it distributed. In particular, the procedure used in the adaptive routing algorithm
by the source allows more vertex-disjoint paths to be found than in most other
multipath routing protocols. As a consequence fewer communication rounds may
be needed when faults occur.

This algorithm can be can combined with the Dynamic Source Routing algo-
rithm [26] to get an adaptive multipath DSR algorithm for reliability and service
continuity in the presence of malicious adversary. Similarly, we may combine the
adaptive multipath routing algorithm with the tracing mechanism to get an
adaptive routing algorithm that will trace malicious behavior.

3 Securing RFID Applications

Radio Frequency Identification Devices (RFIDs) were initially developed as very
small electronic hardware components having as their main function to broadcast
a unique identifying number upon request. The simplest types of RFIDs are
passive tags, that do not contain a power source, and are incapable of autonomous
activity. These devices are powered by the reader’s radiowaves, and the antenna
doubles as a source of inductive power. Active tags, on the other hand, contain
a power source and transmitter, and are capable of autonomous communication.
Examples of such tags are toll passes. The low cost and high convenience value
of RFIDs give them a potential for massive deployment, and it is expected that
they will soon outnumber all other computing device types. Consequently, RFIDs
are increasingly used in applications that interface with information security
functions.

Towards Provable Security for Ubiquitous Applications 303

RFIDs are a challenging platform from an information assurance standpoint.
Their extremely limited computational capabilities imply that traditional tech-
niques for securing communication protocols cannot be used with such devices,
and instead that new, lightweight approaches must be considered. Yet the pri-
vacy and security requirements of RFID applications can be quite significant.
Herein we describe measures for the provision of security and privacy that are
feasible for RFID applications. Ultimately, this should be accomplished with as
rigorous a view of security as other types of applications.

It is our goal is to design protocols for RFID applications that:

1. are provably secure under formal simulation frameworks that capture the be-
havior of honest and adversarial parties, and that articulate a comprehensive
security view in terms of an ideal functionality.

2. explicitly consider the existence of side-channels, an issue often ignored in
modelling security of traditional applications, but which can be critically
important in the RFID context; and

3. are computationally lightweight, taking into consideration the hardware-
imposed constraints of the medium.

3.1 History of a Provably Secure RFID Authentication Protocol

In order to illustrate the need for comprehensive security models for RFID appli-
cations, we consider variants of the HB protocol which have been proposed as a
practical form of secure RFID authentication. Introduced in [22], the HB proto-
col was originally designed for use by humans—who, as RFID tags, have limited
ability to perform complex computations. In RFID tags, the HB protocol lever-
ages the fact that generation of reasonably strong random numbers can be done
cheaply by exploring physical properties—ultimately, exploiting the principle of
little separation between hardware and software in the RFID domain.

The HB protocol can be proven secure against passive adversaries in a non-
concurrent protocol execution setting by a simple reduction to the so-called
“Learning Parity with Noise” (LPN) problem. However, it is completely inse-
cure against an active adversary. To fix these problems, the HB protocol was
adapted to include challenges from both readers and tags, leading to the HB+
protocol. Protocol HB+ can be proven secure against active adversaries [27] in
a simplified model where the adversary is a malicious reader attacking a single
honest tag. The proof has been generalized to a parallel and concurrent setting
in [28] showing that rewinding techniques in the original security proof in [27] are
not truly necessary; once re-winding is eliminated, one may claim as in [28] that
multiple simulations can be executed simultaneously without exponential ampli-
fication of the probability of simulation failure, and therefore that the scheme is
secure in the concurrent setting.

Both of the above security results are established in a simple attack model,
which is not a multi-party model. They cannot be held as providing evidence
that the scheme is secure in practical applications, where the adversary may
communicate with both readers and tags simultaneously. Indeed, man-in-the-
middle attacks do exist [19] and result in a total protocol break, as we now

304 M. Burmester T. Van Le, and B. de Medeiros

describe. In what follows, we denote bit vectors in boldface, and if v is a bit
vector, by |v| we mean the Hamming weight (number of non-zero components)
of v. If a and b are two bit vectors of length k, denote by a · b the value
a1 ∧ b1 ⊕ · · · ⊕ ak ∧ bk, where ⊕ denotes the XOR bit operation. Legitimate
readers and tags share a pair of keys (x,y).

The attack works as follows: The attacker first chooses a k-bit string d at
random and XORs it against the Reader’s challenge a before forwarding it to
the tag. Since the same value d is used in all protocol rounds until an outcome
is produced by the Reader, it is easy to show that the authentication will be
successful with overwhelming probability when d · x = 0—for in that case the
responses by the Tag are the same as in the regular protocol. The opposite will be
true when d · x = 1, i.e., the Reader will reject with overwhelming probability.
The adversary has then learned one linear relation among the bits of x, and
by repeating the attack with different values of d, the full value of x can be
recovered. The adversary can also learn the key value y by performing a similar
attack, where the value d is xored into the blinding factor b instead of into the
challenge a.

The attack illustrates the fact that security proofs, when carried out in an
overly simplified attack model, fail to convey implications for the practical secu-
rity of protocols. The above example-cum-moral-lesson-tale is a compelling one
from the realm of recent RFID protocols, but the basic premise that protocol
analysis should ideally be carried out within a comprehensive attack model has
been well recognized—e.g., see [11] for general arguments in this regard.

There exist competing approaches for analyzing the security of protocols
against arbitrary adversarial configurations. Some of these have been success-
ful at other areas of computer science and adapted for the purposes of security
analysis, such as techniques based on model-checking, and formal methods. We
will take the approach of indistinguishability between real and ideal protocol sim-
ulations. This formalism is based on the premise that one should first define an
ideal functionality for the protocol—i.e., how to achieve security in an ideal world
where the honest parties have a secure communication channel to a trusted party.
Then, one constructs a reduction that maps real protocol runs to protocol runs in
the ideal world, and shows that honest parties cannot distinguish real and ideal
protocol executions. The above formulation was introduced by Beaver [5, 3, 4],
and extended by Canetti as the universal composability framework [10, 11, 12]. It
has also been ported to a modular, formal models-type approach called reactive
systems, which emphasizes independent analysis of cryptography and communi-
cation layers, by Pfitzmann and Waidner [33, 34].

Formal modelling of protocols and cryptographic primitives via real vs. ideal
simulations is an increasingly respected paradigm for the analysis of multi-party
protocols, including authentication and key-exchange [15, 21, 14], zero-knowledge
proofs [13, 16], and the universe of cryptographic primitives [29]. More recently,
an RFID privacy-oriented protocol has been proven secure in a strong real/ideal
setting [1]. In Section 5, we introduce a first attempt at a comprehensive security
model for RFID applications. We demonstrate that the man-in-the-middle attack

Towards Provable Security for Ubiquitous Applications 305

to the HB+ protocol is captured in our model and therefore, that HB+ cannot
be proven secure in that model. We also argue that the model is a reasonable
framework to study the real-world security of RFID applications.

4 Towards Practical Secure Anonymous RFID
Authentication

An RFID authentication system has three components: tags T , readers R, and
a trusted server S. Tags are wireless transponders: they have no power of their
own and respond only when they are in an electromagnetic field. Readers are
transceivers and generate such fields, which they use to transmit challenges to
tags (via wireless broadcast). There are two types of challenges: multicast and
unicast. Multicast challenges are addressed to all tags in the range of a reader,
whereas unicast challenges are addressed to specific tags. In our protocols below
we consider both types of challenges. However, our multicast challenges are just
random strings, and all tags in the range of a reader R are challenged with the
same random string. This kind of action is not usually counted as a communi-
cation pass in an authentication protocol.

We shall assume that all honest tags T adhere to the system specifications
and the requirements of the authentication protocol. The same applies to the
honest readers R, and to the trusted server S. Tags are issued with individual
private keys K which they share only with the trusted server S. These keys are
used by the tags for authentication. We denote by K the set of all authorized
keys (issued by S).

In our RFID authentication protocols we shall assume that honest readers R
and the server S are linked by a secure communication channel (reliable and
authenticated).

4.1 A Provably Secure 1-Pass Optimistic Anonymous RFID
Authentication Protocol

In Figure 4 we describe a one-pass protocol that authenticates RFID tags anony-
mously, and that is optimistic, in the sense that when the adversary is not active
the cost to both the tag and the server is minimized. In this protocol, each reader
R broadcasts a random string rsys obtained from the server S, and updated at
regular intervals. All the tags in the range of R use the same rsys, but will com-
bine it with a locally generated string rtag, and send (broadcast) to the reader R
the MAC: h = HK(rsys, rtag). Here HK(·) is a keyed hash H(K, ·). T computes
the value of local string rtag by taking the MAC of its previous value, stored lo-
cally. The server also updates the value rK in a local key look-table –see Figure 5.
From this table, and the value rtag sent by T , the server can find a corresponding
key K ′ and check that the value h is that same as HK′(rsys, rtag). If the tag T
has not been challenged by an unauthorised reader, the value h will be correct.
In this case the cost for both the tag and the server is two MACs. However, if
the tag has recently interacted with a malicious reader, the stored values will be

306 M. Burmester T. Van Le, and B. de Medeiros

R broadcasts rsys

1. T → R → S : rtag, h = HK(rsys, rtag)

T updates rtag = HK(rtag)

S accepts T if:

– ∃ (rtag, K) ∈ L s.t. h = HK(rsys, rtag), or

– ∃ K ∈ K s.t. h = HK(rsys, rtag).

S updates rK = HK(rtag) in the look-up table L.

Fig. 4. A one-pass anonymous RFID authentication protocol. Figure 5 shows the
lookup table L.

strings rK1
rK2

· · · rKn

keys K1 K2 · · · Kn

Fig. 5. The key look-up table L

out-of-sync. Then the server will have to exhaustively search through all keys
k ∈ K to find the correct value and resynchronize. Note that in the dishonest
case the extra computational cost is borne out by the server and not by the tag.
By exploiting the higher computational capabilities of the trusted server, we
have designed a strong authentication protocol that provably hides the identity
of tags from eavesdroppers and malicious readers without requiring the tag to
ever perform expensive public-key operations. In all cases, the tag only needs
to compute two MACs to authenticate itself. In the honest case, this is also the
protocol cost for the central server.

Theorem 3 ([9]). The 1-pass optimistic anonymous protocol is available,
anonymous and secure in the security framework defined below (Section 5).

To the best of our knowledge, this is the only anonymous, strong RFID au-
thentication protocol that is also amenable to being proven secure within a
comprehensive adversarial model, which we describe in the next section.

In the following section we formalize the security definitions for RFID proto-
cols. The model largely follows existing paradigms for security of general-purpose
network protocols, but becomes specific to the context of RFID applications in
two aspects. First, we consider availability explicitly, capturing security against
unauthorized disabling of tags directly within the model.

Secondly, we restrict concurrency by prohibiting tags from executing more
than one session at a time. Note that this is a restriction only on individual, hon-
est tags—many honest tags can be executing concurrently. In addition, readers
(whether honest or corrupt), the central server, and dishonest tags can execute
multiple sessions simultaneously. Yet, the requirement that a single honest tag
can participate only in one session at a time facilitates the design of concurrently
secure protocols. As the restriction is a mild one, and in accordance with the

Towards Provable Security for Ubiquitous Applications 307

capabilities of RFID technology, it is beneficial in that it enables designers of
security protocols to concentrate on the crucial security aspects and on how to
balance competing interests, such as requirements of low computational cost and
low memory utilization.

Proof structure. The proof (omitted here) consists of two stages. First, security
is shown in an idealized protocol model, wherein honest parties have access to
a trusted party (ideal functionality). Security in this ideal world can be readily
seen to follow from the behavior of the ideal functionality in simulations. It
is then shown that the environment cannot distinguish between real and ideal
world simulations. The adversary is allowed to schedule the actions of honest
parties, eavesdrop in communications, and interact with the environment in an
arbitrary manner (Byzantine adversary).

5 Security Simulation

Initialization of honest parties. Honest parties are initialized as follows. The
trusted server—symbolized by oracle OS—creates a database of keys Ki, i =
1, . . . , n—choosing keys at random from {0, 1}τ , where τ is a security parameter
(provided as input to the initialization step). For simplicity, we do not consider
dynamic corruption of tags here. Instead, the adversary is initialized with a
subset of the valid keys K�+1, . . . , Kn, and so the first � keys correspond to
honest tags. During real-world simulations, the adversary interacts with honest
tag Ti by accessing oracle Oi, which emulates the behavior of the honest tag
with corresponding key Ki.

The initialization also requires, for each ordered pair (i, j), 1 ≤ i < j ≤ �,
that one chooses two bits b1

i,j and b2
i,j , independently at random. For each triple

(i, j, c), with c ∈ {1, 2}, an ambivalent oracle Oc
i∨j will use key Ki or Kj in the

simulation, respectively, if bc
i,j = 0 or bc

i,j = 1. The role of the ambivalent oracles
will soon be made clear.

As the simulation starts, each tag oracle or ambivalent oracle is marked as
available. Each tag oracle or ambivalent oracle independently initializes values
ri, rc

i∨j at random. The server OS generates a random value r0
sys which will

be broadcast by readers as challenge to tags during the first server period, or
simply period. Subsequently, the adversary may cause new periods to commence
by telling OS to refresh the value rt

sys with a new random value, where t counts
how many periods have completed before the current one.

Real simulation model. Let A be the adversary. A can internally represent
many adversarial tags T ′ (with compromised valid keys or invalid keys) and
dishonest readers R′, but we represent it as a single party A.

At the beginning of the simulation, the total number of tags n is provided to
the adversary. The adversary interacts in an arbitrary manner with the simu-
lation environment Z. Consider a single communication session between A and
some honest party. Z maintains a notion of time—we do not require synchro-
nized clocks, Z only needs to discern which adversarial actions precede other

308 M. Burmester T. Van Le, and B. de Medeiros

adversarial actions. We now describe what types of messages can be under-
stood by honest parties in the real protocol simulation. We note that, since
individual tags execute sequentially, they are not always available to initiate
new communication sessions with A, for instance if already communicating
with A.

REFRESH(): Called by A to cause the beginning of a new server period. OS

increments the period counter (t ← t + 1) and generates a new random
value rt

sys. This value will be broadcast by honest readers as challenge to
tags, until the beginning of the next server period—i.e., until another call to
REFRESH() occurs.

START(i): If Oi is not available, this call is ignored. Otherwise Oi changes
status to communicatingwith A, and all oracles of the type Oc

i∨? are marked
as unavailable.

START(i ∨ j, c): If Oc
i,j is not available, this call is ignored. Otherwise Oc

i,j

changes status to communicatingwith A, and Oi, Oj become unavailable,
as well as all other oracles of the type Oc′

i∨?, Oc′
j∨?, with c′ ∈ {1, 2}.

SEND(i, m): If Oi is not communicating with A this call is ignored. Otherwise,
Oi responds with the pair ri, h = HKi(m, ri), and updates ri ← HKi(ri).

SEND(i ∨ j, c, m): If Oc
i∨j is not communicating with A this call is ignored.

Otherwise, let ι be either i or j, corresponding to whetherOc
i∨j was initialized

with key Ki or Kj , respectively. Then Oc
i∨j responds with the pair rc

i∨j , h =
HKι(m, rc

i∨j), and updates rc
i∨j ← HKι(rc

i∨j).
SEND(T S, m): OS parses m as a string r||h. It then consults its lookup table

for an entry of the type (r, Ki). If such an entry is found, OS further checks
if h = HKi(rt

sys||r), replying to A with 1 (indicating authentication success)
if the equality holds. If either a match is not found or the check fails, OS

searches its key database K for any Ki such that h = HKi(rt
sys||r). If such

Ki is found, it replies to A with 1, or 0 otherwise. OS outputs the identity i
if the authentication is successful with key Ki, else it outputs nothing. This
output is not observed by the environment Z.

END(i): If Oi is not communicating, the call is ignored. Otherwise, Oi becomes
available, as well as any Oc

i∨j such that Oj is also available.
END(i ∨ j, c): If Oc

i∨j is not communicating, the call is ignored. Otherwise, Oc
i∨j

becomes available, as well as Oi, Oj , and any Oc′
i∨?, Oc′

j∨?, for c′ ∈ {1, 2}.

The role of the identity-ambivalent oracles. The ambivalent oracles Oc
i∨j enable

A to interact with parties whose identity is one of two possible choices. This
enables attacks against anonymity, where A’s objective is to determine if O1

i∨j

and O2
i∨j represent the same or different identities. Note that the concurrency-

prevention rules (enforced via the tags maintaining a status among available,
communicating, and unavailable) are designed to prevent that A may dis-
ambiguate the ambivalent oracles simply on the basis of availability conflicts,
while at the same time preventing that a single tag executes two sessions con-
currently.

Towards Provable Security for Ubiquitous Applications 309

5.1 Security Definitions

We now formally define the security goals of anonymous authentication proto-
cols. We define a session ses with honest tag Ti as a time-interval between the
first call to START(i) after either the beginning of the simulation or the most
recent call to END(i), and the first subsequent call to END(i).

Availability: holds when there is no efficient adversary A that during the course
of the simulation, has non-negligible probability in preventing a tag Ti from au-
thenticating itself to a reader Rj during a session ses, without changing Ti’s
interaction with Rj in session ses. This should remain true even if A has inter-
acted with Ti or T S arbitrarily in the past, perhaps attempting to force either
or both into an inconsistent state. Note that A is still allowed to interact with all
other honesty parties, including reader Rj , during ses. The advantage advA,Ti

AV LB

of A in this game against Ti is the maximum probability that T S rejects Ti in
any session.

advA,Ti
AV LB:=Prob [T S rejects Ti in ses | A only relays between Oi and Rj during ses] ,

and advAAV LB is defined as the maximum of the advA,Ti

AV LB, over all honest tags
Ti in any session.

An important concern in regard to the management of RFIDs is to have a
kill process, in which a reader can instruct an RFID tag to disable its function-
ality permanently. Current methods for disabling EPC tags have been recently
shown ([35]) to allow an attacker to perform a power-analysis based recovery of
the kill-key. Such attacks violate the above definition of availability. Our proto-
cols can be adapted to support a kill-key while still guaranteeing availability.

Authentication: holds when there is no efficient adversary that, during the sim-
ulation, succeeds with non-negligible probability in authenticating itself to an
honest reader Rj during some session ses, and moreover: (a) The server T S
believes A to have authenticated itself as tag Ti in ses; and (b) the duration
interval [start-time, end-time] for session ses is disjoint from the duration inter-
vals of all of A’s sessions with oracle Oi as well as with any ambivalent oracle
Oc

i,j that was initialized as Oi. We note that in this definition, A is not re-
quired to know under which identity Ti it has succeeded in authenticating itself.
Furthermore, it accommodates man-in-the-middle attacks, as long as the attack
leads to A’s acquiring knowledge (such as keys) that can be used for subsequent
authentication attempts, while ruling out scenarios in which the adversary sim-
ply relays messages between honest parties as successful attacks. The advantage
advA,Ti

AUTH of the adversary against authentication is simply the probability that
it succeeds.

advA,Ti

AUTH := Prob [A authenticates as Ti in ses; ses ∩ Sessions(A,Oi) = ∅] ,

where i is the index of an honest user. The advantage advAAUTH it the maximum
of the advA,Ti

AUTH over all tags Ti.

310 M. Burmester T. Van Le, and B. de Medeiros

Anonymity holds when no efficient adversaries have non-negligibly better-than-
even chances of, at any time in the simulation, outputting a triple (i, j, b), where
1 ≤ i < j ≤ n, and either (1) b = 0 and O1

i∨j �= O2
i∨j , or (2) b = 1 and O1

i∨j =
O2

i∨j . The advantage of the adversary in distinguishing Ti and Tj, AdvA,i∨j
ANON,

is defined as the difference between winning and losing probabilities when the
adversarial guess bit equals 1:

advA,i∨j

ANON :=Prob
[
(i, j, 1) ← A | O1

i∨j = O2
i∨j

]
− Prob

[
(i, j, 1) ← A | O1

i∨j �= O2
i∨j

]
,

and the adversarial advantage against anonymity, advAANON is the maximum of
the advA,i∨j

ANON over all pairs (i, j), with i < j.
This is a unified framework because the adversary does not need to identify,

at any particular point in the simulation, which security property it seeks to
defeat. Instead, it may weigh its knowledge and adjust its strategy during the
simulation to maximize its success in violating any of the security requirements.

References

1. G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable RFID tags via insub-
vertible encryption. In Proc. of the ACM Conf. on Computer and Communication
Security (ACM CCS 2005), pp. 92–101, ACM Press, 2005.

2. B. Awerbuch, D. Holmer, C. Nita-Rotaru and H. Rubens, An On-Demand Secure
Routing Protocol Resilient to Byzantine Failures, ACM Workshop on Wireless Se-
curity – WiSe’02 2002.

3. D. Beaver, Foundations of secure interactive computing, Proc. CRYPTO ’91,
Springer Verlag LNCS, vol. 576, pp. 377-391, 1991.

4. D. Beaver. Secure multi-party protocols and zero-knowledge proof systems toler-
ating a faulty minority. In Journal of Cryptology, vol. 4, no. 2, pp. 75122, 1991.

5. D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In
Proc. of Advances in Cryptology (CRYPTO 89), LNCS Vol. 435, pp. 589–590,
Springer-Verlag, 1989.

6. E.M. Belding-Royer and C.-K. Toh. A review of current routing protocols for ad-
hoc mobile wireless networks. In IEEE Personal Communications Magazine, pp.
46-55, 1991.

7. M. Burmester and T. van Le. Secure Multipath Communication in Mobile Ad hoc
Networks. In Proc. International Conference on Information Technology Coding
and Computing, pp. 405–409, 2004.

8. M. Burmester, T. Van Le, and A. Yasinsac. Adaptive gossip protocols: managing
security and redundancy in dense ad hoc networks. In Journal of Ad hoc Networks,
vol. 4, no. 3, pp. 504–515, Elsevier, 2006.

9. C. Chatmon, T. Le Van, and M. Burmester. Anonymous authentication
with RFID devices. FSU Technical Report: TR-060112. Available at url
http://www.sait.fsu.edu/research/rfid/index.shtml.

10. R. Canetti. Studies in Secure Multiparty Computation and Applications. Ph. D.
thesis, Weizmann Institute of Science, Rehovot 76100, Israel, June 1995.

11. R. Canetti. Security and composition of multi-party cryptographic protocols. In
Journal of Cryptology, vol. 13, no. 1, pp. 143–202, 2000.

Towards Provable Security for Ubiquitous Applications 311

12. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. of Foundations of Comp. Sci. (FOCS 2001), pp. 136–145, 2001.

13. R. Canetti and M. Fischlin. Universally Composable Commitments. In Proc. of
Advances in Cryptology (CRYPTO 2001), LNCS 2139, pp. 19-ff., Springer-Verlag,
2001.

14. R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Crypto-
graphic Protocols (The case of encryption-based mutual authentication and key
exchange). In E-print Technical Report # 2004/334, International Association for
Cryptological Research, 2004. Available at url http://eprint.iacr.org/2004/334

15. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels (Extended Abstract). In Proc. of Advances in Cryptology
(EUROCRYPT 2002), LNCS 2332, pp. 337–ff., Springer-Verlag, 2002.

16. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. In Proc. of the ACM Symposim on
Theory of Computing, vol. 34, pp. 494–503, ACM Press, 2002.

17. J. R. Douceur. The Sybil attack. In Proc. 1st International Workshop on Peer-to-
Peer Systems – IPTPS ’02, 2002.

18. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

19. H. Gilbert, M. Rodshaw, and H. Sibert. An Active Attack Against HB+ – A Prov-
ably Secure Lightweight Authentication Protocol. PerSec ’04, March 2004. Full
paper available in E-print Technical Report # 2005/237, International Association
for Cryptological Research, Available at url http://eprint.iacr.org/2005/237.pdf

20. M. Hirt and U. Maurer. Player Simulation and General Adversary Structures in
Perfect Multiparty Computation. In Journal of Cryptology, Vol. 13, No. 1, pp. 31–
60, 2000.

21. D. Hofheinz, J. Müller-Quade, and R. Steinwandt. Initiator-Resilient Universally
Composable Key Exchange. In Proc. of the European Symp. on Research in Com-
puter Security (ESORICS 2003), LNCS 2808, pp. 61–84, Springer-Verlag, 2003.

22. N. J. Hopper and M. Blum. Secure Human Identification Protocols. In Proc. of
Advances in Crypotology (ASIACRYPT 2001), LNCS, Springer-Verlag, 2001.

23. Y-C Hu, D.B. Johnson and A. Perrig. Ariadne: A Secure On-Demand Routing
protocol for Ad Hoc Networks. In Proc. of the ACM Annual Intern. Conf. on
Mobile Computing and Networking (MobiCom 2002), ACM Press, 2002.

24. Y-C Hu, D.B. Johnson and A. Perrig. SEAD: Secure Efficient Distance Vector
Routing for Mobile Wireless Ad Hoc Networks. In Proc. 4th IEEE Workshop on
Mobile Computing Systems & Applications (WMCSA 2002), IEEE, Calicoon, NY,
2002.

25. Y-C. Hu, A. Perrig and D.B. Johnson. Rushing attacks and defense in wireless ad
hoc network routing protocols. In Proc. of WiSe2003, pp. 30–40, 2003.

26. D.B. Johnson and D.A. Maltz. Dynamic Source Routing in Ad-Hoc Wireless Net-
works. In ed. T. Imielinski and H. Korth, Mobile Computing, Kluwer Academic
Publisher, pp. 152–181, 1996.

27. A. Juels and S. A. Weiss. Authenticating Pervasive Devices with Human Protocols.
In Proc. of Advances in Cryptology—CRYPTO 2005, LNCS vol. 3621, pp. 293–ff,
Springer-Verlag, 2005.

28. J. Katz and J. S. Shin. Parallel and Concurrent Security of the HB and HB+
Protocols. To appear in Proc. of Advances in Cryptology (EUROCRYPT 2006),
Springer, 2006.

312 M. Burmester T. Van Le, and B. de Medeiros

29. P. Laud. Formal analysis of crypto protocols: Secrecy types for a simulatable
cryptographic library. In Proc. of the 12th ACM Conf. on Computer and Commu-
nications Security (ACM CCS 2005), pp. 26–35, ACM Press, 2005.

30. P. Papadimitratos and Z.H. Haas. Secure Routing for Mobile Ad hoc Networks.
In Mobile Computing and Communications Review, Vol 6, No 4, 2002.

31. C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-
Vector Routing for Mobile Computers. In Computer Communications Review, pp.
224-244, 1994.

32. C.E. Perkins and E.M. Royer. Ad hoc on-demand distance vector routing. In Proc.
of the IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–
100, 1999.

33. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In Proc. of the ACM Conf. on Computer and Communications
Security (ACM CCS 2000, pp. 245–254, ACM Press, 2000.

34. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and
its application to secure message transmission. In Proc. of the IEEE Security and
Privacy Symposium (S & P 2001), pp. 184–200, 2001.

35. Y. Oren and A. Shamir. Power Analysis of RFID Tags. Invited talk, RSA
Conference, Cryptographer’s Track (RSA-CT 2006). Available at http://
www.wisdom.weizmann.ac.il/∼yossio/rfid

36. A.J. Menezes, P.C. van Oorschot and S.A. Vanscott. Handbook of Applied Cryp-
tography, CRC Press, 1996.

37. G. Tsudik. YA-TRAP: Yet another trivial rfid authentication protocol. Interna-
tional Conference on Pervasive Computing and Communications, 2006.

38. M. G. Zapata. Secure Ad hoc On-Demand Vector (SAODV) Routing. IETF In-
ternet Draft. Available at url http://www.potaroo.net/ietf/all-ids/draft-guerrero-
manet-saodv-00.txt (Work in Progress).

Oblivious Scalar-Product Protocols

Huafei Zhu and Feng Bao

Institute for Infocomm Research, A-star, Singapore
{huafei, baofeng}@i2r.a-star.edu.sg

Abstract. In this paper, a new notion which we call oblivious scalar-
product protocols is introduced and formalized. We then propose an
efficient implementation of oblivious scalar-product protocols based on
homomorphic cryptographic primitives (e.g., homomorphic encryptions
and homomorphic commitments). Finally we show that our implementa-
tion is provably secure assuming that the underlying Fujisaki-Okamoto’s
commitment scheme is statistically hiding and computationally binding,
and Paillier’s encryption scheme is semantically secure in the common
reference string model.

Keywords: Oblivious scalar-product protocol, homomorphic commit-
ment scheme, homomorphic public key encryption.

1 Introduction

Suppose that Alice who has an input vector inpA = (1, x1, · · · , xl) (xi ∈ F , 1 ≤
i ≤ l, F is a finite field) and Bob who has an input vector inpB = (y0, y1, · · · , yl)
(yi ∈ F , 0 ≤ i ≤ l), wish to compute scalar-product obliviously so that at the
end of the protocol, Alice learns

∑l
i=0 xiyi while Bob learns nothing. We call

this an oblivious scalar-product protocol.
The structure of oblivious scalar-product protocols informally defined above is

asymmetric (Alice’s first input is always 1 while Bob’s first input is an arbitrary
element y0 ∈ F). If we assume that y0 ≡ 0, then the structure of oblivious
scalar-product protocols is reduced to the symmetric form where Alice’s input
vector inpA is (x1, · · · , xl) while Bob’s input vector inpB is (y1, · · · , yl) and the
output of Alice is

∑l
i=1 xiyi − a standard output of a scalar-product protocol.

This paper however, insists on efficient implementations of asymmetric forms
since such asymmetric scalar-product protocols are certainly welcome in certain
cryptographic scenarios (see section 1.3 for more details).

We stress that the notion of oblivious scalar-product protocols is different
from the notion of shared-scalar-product protocols. In the later case (say [18]),
there are two participants Alice who holds her input vector (x1, · · · , xl) (xi ∈ F ,
1 ≤ i ≤ l, where F is a finite field) and Bob who holds his input vector (y1, · · · , yl)
(yi ∈ F , 1 ≤ i ≤ l)). They wish to compute random shares of scalar product
sa ∈ F and sb ∈ F such that

∑l
i=1 xiyi = sa + sb. At the end of the protocol,

Alice holds the value sa while Bob holds sb.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 313–323, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

314 H. Zhu and F. Bao

1.1 Related Work

The notion of oblivious scalar-product protocols is closely related to the notion
of oblivious polynomial evaluation (OPE). The later was first introduced and
formalized by Naor and Pinkas at STOC’99 [13]. Informally, an oblivious poly-
nomial evaluation involves two parties (say, Alice and Bob). Alice’s input is an
element α ∈ F , and Bob’s input is a polynomial f(x) of degree l (l ≥ 1, i.e.,
f(α)=a0 + a1α + · · · + alα

l ∈ F). At the end of execution of the protocol the
Alice learns f(α) and Bob learns nothing.

Now, we if rewrite a polynomial f(x) = a0 + a1x + · · · + alx
l in the context of

oblivious polynomial evaluation as a scalar-product (a0, a1, · · · , al) · (x0, x1,· · · ,xl)
(= f(x), in the context of oblivious scalar-product).Clearly, an input of Alice in an
oblivious scalar-product protocol is a vector (x0, x1, · · · , xl), where xi ∈ F while
an input of Alice in an oblivious polynomial evaluation protocol is a value x ∈
F from which an input vector of the special form (x0, x1, · · · , xl) can be induced.
It follows that an input vector (x0, x1, · · · , xl) is a special form of a general input
(x0, x1, · · · , xl). As a result, the notion of oblivious scalar-product protocols is a
general case of the notion of oblivious polynomial evaluation protocols.

1.2 This Work

In this paper, a new notion called oblivious scalar-product protocols is introduced
and formalized and then an efficient implementation of oblivious scalar-product
protocols is proposed. The security definition of oblivious scalar-product proto-
cols is defined in terms of the general ideal-vs-real framework. We stress that the
rewinding of the malicious party is allowed in our model since a malicious party is
not allowed to communicate with distinguisher D, i.e., the distinguisher D only
gets to see the transcript to protocol execution which is significant difference
from the argument of the universally composable property [4] where the rewind-
ing of a malicious party is strictly forbidden in Canetti’s model [4]. However, we
do not deal with the security of our protocol in Canetti’s model throughout the
paper.

The development of the techniques for general secure multiparty computa-
tion showed that any two-party function can be computed securely[1, 3, 6, 10, 16].
Thus, Alice and Bob can perform oblivious scalar-product protocol even with-
out help from a third party. However, even for relatively simple functions, this
may be prohibitively expensive since the number of cryptographic operations
performed is proportional to the size of the circuit computing f(x). Therefore
it is interesting to implement oblivious scalar-product protocol that does not
emulate the circuit for the function. With this goal in mind, we propose an ef-
ficient implementation of oblivious scalar-product protocols from homomorphic
cryptographic primitives. Finally, we are able to show that our implementation
is provably secure in the common reference model. That is,

Claim 1: For any malicious Alice A, there exists a simulator simA that plays
the role of A in the ideal world such that for any polynomial time distin-
guisher D, the view of D when it interacts with A in real conversation is

Oblivious Scalar-Product Protocols 315

computationally indistinguishable from that when it interacts with simA in
the ideal world.

Claim 2: For any malicious Bob B, there exists a simulator simB that plays the
role of B in the ideal world such that for any probabilistic polynomial time
distinguisher D, the view of D when it interacts with B in real conversation
is computationally indistinguishable from that when it interacts with simB

in the ideal world.

It follows that our implementation is secure against static adversary who
corrupts Alice or Bob in the common reference string model assuming that
the underlying Fujisaki-Okamoto’s commitment scheme is statistically hiding
and computationally binding, and Paillier’s encryption scheme is semantically
secure.

1.3 Applications

Like its sibling notion − oblivious polynomial evaluation, the potential areas
of applications of our primitive are numerous (e.g., secret-key zero-knowledge,
secure computation of scar-product protocols, and so on....). We thus provide
the following two illustrative applications of the primitive.

Secret-key zero-knowledge setup protocols. It is easy to see that when
l = 1, an implementation of our oblivious scalar-product protocols implies an
implementation of key-setup protocols for secret-key zero-knowledge proof sys-
tems [5]. Thus our notion can be viewed as a general extension of key-setup
protocols for secret-key zero-knowledge proof systems as well.

Scalar-product protocols and shared-scalar-product protocols. Privacy
preserving data mining is a new and rapidly emerging research area, where data
mining algorithms are analyzed for the side-effects they incur in data privacy.
Secure shared scalar product protocols are the fundamental cryptographic build
blocks for building secure data mining protocols. Recall that a shared scalar
product protocol is the following thing: there are two participants Alice whose
input is a vector (x1, · · · , xl) (xi ∈ F)and Bob whose input is a vector (y1, · · · , yl)
(yi ∈ F). They wish to compute random shares of scalar product sa ∈ F and
sb ∈ F such that

∑l
i=1 xiyi = sa + sb. At the end of the protocol, Alice holds

the value sa while Bob holds sb.
Several private shared scalar-product protocols have been proposed in the

context of privacy-preserving data ming. In [11], Goethals et al have already
shown that several shared scalar product protocols (e.g., those presented in [8]
and [15]) are insecure even in the semi-honest model. Goethals et al further
proposed an interesting solution to the shared-scalar-product protocols based
on the homomorphic encryption scheme (vic., Paillier’s encryption scheme [14])
and showed that their construction is provably secure in the semi-honest model.
Very recently, Zhu et al [18] proposed an efficient implementation of shared-
scalar-protocols based on the homomorphic cryptographic primitives which is
provably secure assuming that the underling homomorphic encryption scheme

316 H. Zhu and F. Bao

is semantically secure and the homomorphic commitment scheme is statistically
hiding and computationally binding in the public reference string model.

It is not hard to see that an efficient implementation of oblivious scalar-
product protocols implies an efficient implementation of shared scalar product
protocols. That is, given an implementation of oblivious scalar-product proto-
col, we can evaluate an shared-scalar-product protocol trivially by setting sb ←
(−a0 ∈ F), and sa ← f(x) = a0 + a1x + · · · + alx

l. This can be verified as
follows: (a1, · · · , al) · (x, · · · , xl) = a1x + · · · + alx

l = (−a0) + a0 + a1x + · · ·
+ alx

l =(−a0) + f(x).

Comparison. At FC’05, Kiayias and Mitrofanova presented three protocols for
secure computation of scalar-product evaluation [12]. To the best of our knowl-
edge, this is first construction of scalar-product protocols in the malicious model
from homomorphic cryptographic primitives. We stress that all three schemes
presented in [12] are constructed from ElGamal-like homomorphic encryptions,
where the underlying homomorphic encryption scheme used in their construc-
tion is of special form (i.e., (gr, hrfm)), where g is an element of order q in Z∗

p ,
p = 2q + 1, h, f ∈< g >). It follows that Kiayias and Mitrofanova’s homomor-
phic encryption allows one to encrypt a short message (e.g., a bit b ∈ {0, 1}).
Thus, the inputs of scalar-product protocols proposed in [12] are restricted to
any finite field of small sizes. This restriction is crucial for their implementation,
and thus it cannot be removed from their constructions. Our scalar-product pro-
tocols can work over general finite fields. This is the most significant feature of
our protocols different from that of Kiayias and Mitrofanova’s.

Road map. The rest of paper is organized as follows: In Section 2, syntax,
functionality, and security definition for oblivious scalar-product protocols are
presented. In Section 3, building blocks that will be used to implement oblivious
scalar-product protocols are sketched and an implementation and the proof of
security are proposed. We conclude our work in Section 4.

2 Syntax, Functionality, and Security Definition

2.1 Syntax

An oblivious scalar-product protocol consists of the following two probabilistic
polynomial time (PPT) Turing machines:
– On input system parameter l, a PPT Turing machine A (say, Alice), chooses

l elements x1, · · · , xl ∈ F uniformly at random (throughout the paper, we
assume that F =Z∗

m, where m is a large prime number). The input vector
of Alice is denoted by inpA=(1, x1, · · · , xl);

– On input system parameter and l, a PPT Turing machine B (say, Bob),
chooses (l + 1) elements y0, y1, · · · , yl ∈ Zm uniformly at random. The input
vector of Bob is denoted by inpB=(y0, · · · , yl);

– On inputs inpA and inpB, Alice and Bob jointly compute the value
∑l

i=0 xiyi

mod m;
– The output of Alice is

∑l
i=0 xiyi mod m while the output of Bob is ⊥.

Oblivious Scalar-Product Protocols 317

2.2 Functionality

The functionality FOSP of oblivious scalar-product protocol (OSP) can be ab-
stracted as follows:

– A player (say Alice) has her input vector inpA=(1, x1, · · · , xl); Another
player (say Bob) has his input vector inpB=(y0, y1, · · · , yl); Each partici-
pant sends the corresponding input set to FOSP − an imaginary trusted
third party in the ideal world via a secure and private channel.

– Upon receiving inpA and inpB, FOSP checks whether xi ∈ Zm and yi ∈ Zm

(1 ≤ i ≤ l).
If the conditions are satisfied, then FOSP computes

∑l
i=0 xiyi mod m;

If there exists a subset s̃A ⊂ inpA such that each xi ∈ s̃A but xi /∈ Zm, then
FOSP chooses an element x′

i ∈r Zm and substitutes xi with x′
i. Similarly,

if there exists a subset s̃B ⊂ inpB such that each yi ∈ s̃B but yi /∈ Zm,
then FOSP chooses an element y′

i ∈r Zm and substitutes yi with y′
i. By

inpA=(x1, · · · , xl) (using the same notation of the input vector of Alice) we
denote the valid input set of Alice which may be modified by FOSP and
by inpB=(y1, · · · , yl) (again using the same notation of the input vector of
Bob), we denote the valid input set of Bob which may be modified of the
original input values by FOSP . Once given the valid input sets inpA and
inpB, FOSP computes

∑l
i=0 xiyi mod m.

Finally, FOSP sends
∑l

i=0 xiyi mod m to Alice via the secure and private
channel while Bob learns nothing.

– The output of Alice is
∑l

i=0 xiyi mod m which is sent by FOSP via the
secure and private channel between them. The output of Bob is ⊥.

2.3 Security Definition

The security definition of oblivious scalar-product protocols is defined in terms
of the general ideal-vs-real framework. In this framework, we first consider an
ideal model in which two real participants are joined by a third trusted party,
and the performance is via this trusted party. Next, we consider the real model
in which a real two-party protocol is executed. A protocol in the real model is
said to be secure with respect to certain adversarial behavior if the possible real
execution with such an adversary can be simulated in the ideal model. That
is, we want to show that there exists a polynomial time computable transform
of adversarial behavior in the real conversation into corresponding adversarial
behavior in the ideal model.

Definition 1. An oblivious scalar-product protocol is secure for Alice A if for
any malicious Bob B, there exists a simulator simB that plays the role of B
in the ideal world such that for any probabilistic polynomial time distinguisher
D, the view of D when it interacts with B in real conversation is computa-
tionally indistinguishable from that when it interacts with simB in the ideal
world.

318 H. Zhu and F. Bao

Definition 2. An oblivious scalar-product protocol is secure for Bob B if for
any malicious Alice A, there exists a simulator simA that plays the role of A in
the ideal world such that for any probabilistic polynomial time distinguisher D,
the view of D when it interacts with A in real conversation is computationally
indistinguishable from that when it interacts with simA in the ideal world.

Definition 3. An oblivious scalar-product protocol is secure for any static prob-
abilistic polynomial time (PPT) adversary if it is secure for any PPT Alice and
any PPT Bob.

3 The Construction and Proof of Security

We propose an efficient implementation of OSP protocols based on the homo-
morphic primitives. We then show that our construction is provably secure in
the common reference string model assuming that Paillier’s encryption scheme is
semantically secure and Fujisaki-Okamoto’s commitment scheme is statistically
hiding and computationally binding.

3.1 Homomorphic Cryptosystem

The implementation of oblivious scalar-product protocols is based on the homo-
morphic cryptographic primitives (homomorphic encryption scheme, and homo-
morphic commitment scheme), we therefore briefly review these building blocks
below:

Paillier’s public key encryption scheme. Paillier investigated a novel com-
putational problem called the composite residuosity class problem (CRS), and
its applications to public key cryptography in [14] sketched below.

The public key is a k1-bit RSA modulus n = pq, where p, q are two large safe
primes. The plain-text space is Zn and the cipher-text space is Z∗

n2 . To encrypt
a ∈ Zn, one chooses r ∈ Z∗

n uniformly at random and computes the cipher-text
as EPK(a, r) = garn mod n2, where g = (1+n) has order n in Z∗

n2 . The private
key is (p, q). Given a cipher-text c:=garn mod n2, the decryption algorithm
computes a ∈ Zn from the following equation L(cλmodn2)

L((1+n)λmodn2)modn. Paillier’s
public key encryption scheme is homomorphic, i.e., EPK(a1, r1) × EPK(a2, r2)
mod n2 = EPK(a1 + a2 mod n, r1 × r2 mod n).

Fujisaki-Okamoto commitment scheme. Let s be a security parameter. The
public key is a k2-bit RSA modulus, where P , Q are two large safe primes. We
assume that neither the committer C nor the receiver R knows factorization N .
Let g1 be a generator of QRN and g2 be an element of large order of the group
generated by g1 such that both discrete logarithm of g1 in base g2 and the discrete
logarithm of g2 in base g1 are unknown by C and R. We denote C(a, ra) = ga

1gra
2

mod N a commitment to x in base (g1, g2), where ra is randomly selected over
{0, 2sN}. This commitment scheme first appeared in [9] and reconsidered by
Damg̊ard and Fujisaki [7] is statistically secure commitment scheme, i.e., 1) C is

Oblivious Scalar-Product Protocols 319

unable to commit itself to two values a1, a2 such that a1 �= a2 in Z by the same
commitment unless R can factor N or solves the discrete logarithm of g1 in base
g2 or the the discrete logarithm of g2 in base g1; and 2) C(a, ra) statistically
reveals no information to R, i.e., there is a simulator which outputs simulated
commitments to a which are statistically indistinguishable from true ones.

Notice that this commitment is homomorphic, i.e., C(a+b, ra +rb) = C(a, ra)
× C(b, rb). This property is useful when R wants to prove that the committed
value a ∈ [x, y].

3.2 Our Implementation

The technique used to implement our primitive is closely related to what have
been proposed in [17, 18]. We stress that the proof of security presented in pa-
per however is significant difference from that presented in [18] where Bob is
allowed to choose and commit salts for his final output of shared scalar-product
protocols but Bob is not allowed to obtain anything in the oblivious scalar-
product protocols. The implementation of oblivious scalar-product protocols
consists of two stages: pre-processing stage and secure two-party computation
stage.

Pre-processing stage. In the pre-processing stage, the following required com-
putation are proceeded: a public key of the commitment scheme is a k2-bit
RSA modulus, where P , Q are two large safe primes (|P | =|Q| =k2/2). We
assume that neither A nor B knows factorization N (N =P Q). Let g1 be a
generator of QRN and g2 be an element of large order of the group generated
by g1 such that both discrete logarithm of g1 in base g2 and the discrete log-
arithm of g2 in base g1 are unknown by A and B. The public reference string
σ contains (g1, g2, N) as well as other related strings for description of group
structure. We assume that σ is provided by an oracle (thus our model for
implementation of oblivious scalar-product protocols is within the common
reference string model, we however remark that the use of Fujisaki-Okamoto
commitment scheme is not essential, it can be replaced by any homomorphic
commitment scheme).

Secure computation stage. In the secure computation stage, Alice and Bob
involve the following performances:
Step 1. On input inpA=(1, x1, · · · , xl), Alice commits each element xi ∈

inpA using Fujisaki-Okamoto commitment scheme. By C(xi, rxi)=gxi
1 g

rxi

2
mod N , we denote the commitment of xi with the random string rxi .
On input a security parameter k1, Alice generates a pair of public key
pkA and security key skA for Paillier public key encryption scheme and
the RSA modulus n = pq is of size k1 which is sufficiently large so that
all computations can be taken over Z.
Alice encrypts xi by means of the Paillier’s encryption scheme. By EA

(xi), we denote the cipher-text of xi under Alice’s public key pkA.
Alice sends EA(xi) and C(xi, rxi) (1 ≤ i ≤ l) to Bob and proves to
Bob that the encryption EA(xi) and the commitment C(xi, rxi) hide
the same value.

320 H. Zhu and F. Bao

Also Alice proves to Bob that the corresponding committed value xi lies
in the correct interval Zm (=[1, m]) using Boudot’s protocol [2];

Step 2. On input inpB=(y0, y1, · · · , yl),Bob commits each element yi ∈ inpB

using Fujisaki-Okamoto commitment scheme. By C(yi, ryi) =gyi

1 g
ryi
2 mod

N , we denote the commitment of yi with the random string ryi .
Bob also chooses ỹ0, ỹ1, · · · , ỹl ∈r I uniformly at random (where I =
{0, 1}|m|+k′

, e.g., k′=160 bit), and performs the following computations:

C(ỹ0, rỹ0
), C(ỹ1, rỹ1

), · · · , C(ỹl, rỹl
)

EA(z) = EA(1)y0EA(x1)y1 · · ·EA(xl)yl

EA(z̃) = EA(1)ỹ0EA(x1)ỹ1 · · ·EA(xl)ỹl

Finally, Bob sends EA(z), EA(z̃), together with the proof that he knows
how to open the commitments C(yi, ryi), C(ỹi, rỹi) and yi ∈ Zm and
ỹi ∈ I are in the correct interval (0 ≤ i ≤ l).

Step 3. Alice verifies the correctness of the proof. If it is incorrect, then she
stops the execution of the protocol; otherwise, she performs the following
computations:

z = DA(EA(z)), z̃ = DA(EA(z̃))

Finally, Alice chooses a random string f ∈ {0, 1}k4 (e.g., k4 =160-bit)
uniformly at random and sends it to Bob;

Step 4. Both parties perform the following computations:

C(z0) ← C(y0, ry0
)fC(ỹ0, rỹ0

)

C(z1) ← C(y1, ry1
)fC(ỹ1, rỹ1

)

· · ·

C(zl) ← C(yl, ryl
)fC(ỹl, rỹl

)

Step 5. Bob opens C(z0), · · ·, C(zl) to Alice;
Step 6. Alice checks correctness of the opening of commitments, and also

checks the validity of equation below:

z̃ + fz = (z0, z1, · · · , zl) · (1, x1, · · · , xl)

Step 7. If all are correct, Alice outputs z; otherwise outputs ⊥.

3.3 The Proof of Security

Lemma 1. For any malicious Alice A, there exists a simulator simA that plays
the role of A in the ideal world such that for any polynomial time distinguisher
D, the view of D when it interacts with A in real conversation is computationally
indistinguishable from that when it interacts with simA in the ideal world.

Oblivious Scalar-Product Protocols 321

Proof: simA first generates system parameters − the public key of the under-
lying commitment scheme is (N, g1, g2), the secret key (trapdoor of the com-
mitment scheme) is (P, Q, w), where N = PQ, g2 = gw

1 , g1 ∈ QRN is a public
reference string. Unlike the real protocol, simA is allowed to hold the auxiliary
information of the underlying commitment scheme.

simA first rewinds A to extract xi ∈ Zm from the zero-knowledge proof of
knowledge in Step 1 and gives the input vector inpA =(1, x1, · · · , xl) to FOSP .
FOSP returns z to simA.
simA chooses z′0, z1, · · ·, zl uniformly at random, and then computes the

corresponding commitment for z′0 and zi (1 ≤ i ≤ l).
For the fixed string f , simA then chooses z̃ uniformly at random, and then

computes z0 from the equation

z̃ + fz = (z0, z1, · · · , zl) · (1, x1, · · · , xl)

Notice that the commitment of each zi is correct except for the commitment
of z′0. Thus, simA must compute a valid commitment of z0 from the equation

g
z′
0

1 g
rz′

0

2 = gz0

1 g
rz0

2

This is possible since the simulator simA knows the auxiliary information of
the commitment scheme. It follows that for any polynomial time distinguisher
D, the view of D when it interacts with A in real conversation is computa-
tionally indistinguishable from that when it interacts with simA in the ideal
world.

Lemma 2. For any malicious Bob B, there exists a simulator simB that plays
the role of B in the ideal world such that for any probabilistic polynomial time
distinguisher D, the view of D when it interacts with B in real conversation is
computationally indistinguishable from that when it interacts with simB in the
ideal world.

Proof: simB rewinds Bob to extract the input vector (y0, y1, · · · , yl) and the
associated commitment vector (ỹ0, ỹ1, · · · , ỹl).

simB then gives the input vector inpB =(y0, y1, · · · , yl) to FOSP .
FOSP returns z to simB.
Notice that in the following steps, Bob learns no new information. The simu-

lator can just play the game following Alice’s part of the protocol. The remaining
question is whether the protocol ensures z =

∑l
i=0 xiyi. By rewinding Bob, simB

obtains two commitment vectors (z0, z1, · · · , zl) and (z′0, z
′
1, · · · , z′l) such that

z̃ + fz = (z0, z1, · · · , zl) · (1, x1, · · · , xl)

z̃ + f ′z = (z′0, z
′
1, · · · , z′l) · (1, x1, · · · , xl)

Consequently, we have the following equation by applying the binding property
of the underlying commitment scheme

(f ′ − f)z = (z′0 − z0) + (z′1 − z1)x1 + · · ·+ (z′l − zl)xl

322 H. Zhu and F. Bao

i.e.,
(f ′ − f)z = (f ′ − f)(y0 + y1x1 + · · ·+ ylxl)

It follows that
z = y0 + x1y1 + · · ·+ xlyl

Combining Lemma 1 and Lemma 2, we have the main statement below:

Theorem 1. Our implementation described above is secure against static ad-
versary who corrupts Alice or Bob in the common reference string model assum-
ing that the underlying Fujisaki-Okamoto’s commitment scheme is statistically
hiding and computationally binding, and Paillier’s encryption scheme is seman-
tically secure.

4 Conclusion

In this paper, we have introduced and formalized a new notion called oblivious
scalar-product protocols. We also have proposed an efficient implementation of
oblivious scalar-product evaluation protocols that does not emulate the circuit
for the functions and shown that our implementation is provably secure assum-
ing that the underlying Fujisaki-Okamoto’s commitment scheme is statistically
hiding and computationally binding, and Paillier’s encryption scheme is seman-
tically secure in the common reference string model. Finally, several immediate
applications of this new primitive have been proposed.

References

1. M.Abadi, J.Feigenbaum. Secure circuit evaluation: A protocol based on hiding
information from an oracle. Journal of Cryptology 2 (1990), 1-12.

2. F.Boudot: Efficient Proofs that a Committed Number Lies in an Interval. Proc. of
EUROCRYPT 2000: 431-444, Springer Verlag.

3. M.Ben-or, S.Golawasser, A.Wigderson. Completeness theorems for non-
cryptographic faulttolerant distributed computation. In Proc. 20th Annual
A CM Symposium on Theory off Computing (STOC) (1988), pp. 1-10.

4. R.Canetti: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. FOCS 2001: 136-145.

5. R.Cramer, I.Damg̊ard: Secret-Key Zero-Knowlegde and Non-interactive Verifiable
Exponentiation. TCC 2004: 223 - 237.

6. D.Chaum, C.Crépeau, and I.Damg̊ard. Multiparty unconditionally secure proto-
cols. In Proc. 20th Annual ACM Symposium on Theory off Computing (STOC)
(1988), pp. 11-19.

7. I.Damg̊ard, E.Fujisaki: A Statistically-Hiding Integer Commitment Scheme Based
on Groups with Hidden Order. Proc. of ASIACRYPT 2002: 125-142, Springer
Verlag.

8. W.Du, Z.Zhan, Building decision tree classifier on private data, In Proceedings of
the IEEE ICDM Workshop on Privacy, Security and Data Mining (2002).

9. E.Fujisaki, T.Okamoto. Statistically zero knowledge protocols to prove modular
polynomial relations. Crypto’97. 16-30, 1997.

Oblivious Scalar-Product Protocols 323

10. O.Goldreich, S.Micali, A.Wigderson. How to play any mental game or a complete-
ness theorem for protocols with honest majority. In Proc. 19th Annual A CM
Symposium on Theory of Computing (STOC) (1987), pp. 218-229.

11. B.Goethals, S.Laur, H.Lipmaa, T.Mielikäinen: On Private Scalar Product Compu-
tation for Privacy-Preserving Data Mining. ICISC 2004: 104-120.

12. A.Kiayias, A. Mitrofanova: Testing Disjointness of Private Datasets. Financial
Cryptography 2005: 109-124

13. M.Naor and B.Pinkas: Oblivious Transfer and Polynomial Evaluation. STOC 1999:
245-254.

14. P.Paillier: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. Proc. of EUROCRYPT 1999: 223-238, Springer Verlag.

15. J.Vaidya, C.Clifton, Privacy preserving association rule mining in vertically par-
titioned data, In the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2002), 639 -644.

16. A.C.Yao: How to Generate and Exchange Secrets (Extended Abstract) FOCS 1986:
162 - 167.

17. H.Zhu, F.Bao: Augmented Oblivious Polynomial Evaluation Protocol and Its Ap-
plications. ESORICS’05: 222 -230.

18. H.Zhu, F.Bao, T.Li, Y.Qiu: More on Shared-Scalar-Product Protocols. ISPEC’06:
142 -152.

On Optimizing the k-Ward Micro-aggregation
Technique for Secure Statistical Databases

Ebaa Fayyoumi1 and B. John Oommen2

1 School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6
efayyoum@scs.carleton.ca

2 Professor and Fellow of the IEEE, School of Computer Science, Carleton
University, Ottawa, Canada K1S 5B6

oommen@scs.carleton.ca

Abstract. We consider the problem of securing a statistical database
by utilizing the well-known micro-aggregation strategy, and in particu-
lar, the k-Ward strategy introduced in [1] and utilized in [2]. The latter
scheme, which represents the state-of-the-art, coalesces the sorted data
attribute values into groups, and on being queried, reports the means
of the corresponding groups. We demonstrate that such a scheme can
be optimized on two fronts. First of all, we minimize the computations
done in evaluating the between-class distance matrix, to require only a
constant number of updating distance computations. Secondly, and more
importantly, we propose that the data set be partitioned recursively be-
fore a k-Ward strategy is invoked, and that the latter be invoked on the
“primitive” sub-groups which terminate the recursion. Our experimen-
tal results, done on two benchmark data sets, demonstrate a marked
improvement. While the information loss is comparable to the k-Ward
micro-aggregation technique proposed by Domingo-Ferrer1 et.al. [2], the
computations required to achieve this loss is a fraction of the computa-
tions required in the latter - providing a computational advantage which
sometimes exceeds 80% if one method is used by itself, and more than
90% if both enhancements are invoked simultaneously.

1 Introduction

A lot of attention has been recently dedicated to the problem of maintaining the
confidentiality of statistical databases through the application of statistical tools,
so as to limit the identification of information on individuals and enterprises.
The objective in statistical databases is to guarantee the confidentiality of the
information provided, and also to provide useful statistical summaries of the data
to the user. Thus, Disclosure Risk and Information Loss are the most important
criteria for secure statistical databases. Minimizing the disclosure risk would
result in minimizing the risk to the confidentiality of the entities involved in the
released data. Additionally, the utility of the data should be maximized, which
implies increasing the value and validity of the released data to a legitimate data
1 The authors are extremely grateful to Dr. Domingo-Ferrer for his assistance.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 324–335, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Optimizing the k-Ward Micro-aggregation Technique 325

user. The goal of the exercise is to optimize these potentially conflicting criteria
by reaching an equilibrium point between them. Several methods, presented in
[3], have been proposed for limiting the disclosure risk.

One of the recent techniques involves the strategy called “Micro-aggregation”.
The latter comprises a family of statistical disclosure limitation techniques used
to protect micro-data files containing records on individual data subjects. These
belong to the family of substitution/perturbation approaches [2, 4, 5, 6], where
individual values are replaced by values computed on small aggregates prior to
publication. The confidentiality of the individual data subjects is protected by
ensuring that each group has at least a minimum number of observations, k.
The objective of this technique is to group similar records together, so that the
replacement of actual values by the means of their associated groups will result
in minimizing the information loss [7, 8].

The micro-aggregation problem as formulated in [2, 6, 7, 8], can be stated as
follows: A micro-data set U = {U1, U2, . . . , Un} is specified in terms of the n
“individuals”, namely the U ′

is, each representing a data vector whose com-
ponents are p continuous variables. Each data vector can be viewed as Ui =
[ui1, ui2, . . . , uip]T , where uij specify the value of the jth variable in the ith data
vector. Associated with the problem is a positive integer, k, referred to as the
security parameter. Micro-aggregation involves partitioning the n data vectors
into m groups so as to obtain a k-partition Pk = {Gi | 1 ≤ i ≤ m}, such that
each group, Gi, of size ni, contains between k and 2k− 1 data vectors, and each
data vector is contained in exactly one group, implying that U =

⋃m
i=1 Gi and

Gi

⋂
Gj = ∅. The jth data vector in the ith group is denoted by Xij (where

each Xij is an element of U), while X̄i is the average of the data vectors over
the ith group, and X̄ is the average of the data vectors over the entire set of all
the n elements of U . Thus, X̄i = 1

ni

∑ni

j=1 Xij , and X̄ = 1
m

∑m
i=1 X̄i.

The optimal k-partition P
∗
k is defined to be the one that maximizes the within-

group homogeneity, since a large value of this index implies a smaller information
loss. The within-group similarity is defined as the Sum of Squares Error (SSE)
computed on the basis of the Euclidean distances of each individual data vec-
tor Xij to the centroid X̄i of the group to which it belongs, and is given by:
SSE =

∑m
i=1
∑ni

j=1(Xij − X̄i)T (Xij − X̄i). Analogously, the between-groups
similarity is defined as the Sum of Squares Among the groups (SSA), which
is the squared deviations of the means from the total mean, and is given as:
SSA =

∑m
i=1 ni(X̄i − X̄)T (X̄i − X̄). The Total Sum of Squares is denoted by

SST = SSA + SSE. The Information Loss is quantified as: L = SSE
SST .

1.1 Contribution of the Paper

The main contribution of this paper is to demonstrate that the speed of data
Micro-Aggregation Techniques (MAT s) can be increased by two considerations,
namely that of invoking recursive computations (which is crucial in large-sized
data sets), and by utilizing only the values that lie on the diagonal above the
main diagonal of the so-called distance matrix. This, in turn, is achieved by two
enhancements to the k-Ward algorithm: namely Recursive k-Ward (kWR) and

326 E. Fayyoumi and B.J. Oommen

k-Ward Diagonal (kWD), respectively. This paper demonstrates the power of
these modifications in increasing the speed of the strategy while preserving the
information loss.

It should be mentioned that by using our philosophy, a recursive method can
actually be applied to any known MAT . We believe that the power of such a
method will be clearly evident for the multivariate data sets, and more specif-
ically in the implementation of the Multivariate Fixed Size method (MFS),
and the Multivariate Data-Oriented micro-aggregation (MDO) that invoke a
k-Ward’s philosophy [9], and that the gleaned advantage will be marked es-
pecially for “large” data sets. Since the distance matrix involving the set of
data vectors cannot be computed and stored a priori2 , these distances and the
resulting matrix must be computed “on demand”- i.e., as and when they are
needed. This, of course, demands a considerable computational overhead [9],
which is significantly reduced by using the optimized version of the k-Ward’s
method.

The combination of invoking a recursive computation and requiring a small
subset of the distance computation are novel- we are not aware of any comparable
results. However, the remarkable reduction in computation (sometimes as much
as 80% if one method is used by itself, and more than 90% if both enhancements
are invoked simultaneously) renders the contribution of the paper significant.

2 The State-of-the-Art

The review of the state of art is fairly limited, and includes only those pieces
of literature that directly pertain to our work. A formal algorithm to find the
optimal solution for the k-partition problem which minimized the information
loss, L, was proposed by Defays and Nanopoulos in [11].

Practical heuristic-based MAT s have been proposed in [11, 12]. The parti-
tioning mechanism advocated (for uni-dimensional data) in all these papers is
the same: First of all, the elements are ranked in an ascending or descending
order, and subsequently, groups of k consecutive values assumed by the variable
in question are replaced by their average. If the total number of elements n is
not a multiple of k, the last group or the group containing the modal value will
contain more than k elements [2].

Initial research in the field proposed “fixed ” MAT s which required that the
size of each partition group was a fixed constant, k. These, in turn, led to the
Fixed-Size Micro-aggregation algorithms [11, 12]. Recent developments [2, 9] have
concentrated on further reducing the information loss by using variable-sized
data-dependent groups, leading to families of Data-Oriented Micro-aggregation
algorithms. The philosophy that is utilized underlies the fact that groups need
not consist of exactly k data vectors, but of at least k data vectors. They also
preserve the natural data aggregate by allowing the group size to be between
2 Agusti Solanas et.al. have recently investigated that the distance matrix can be

stored when the number of records is very large by applying the blocking technique
[10].

On Optimizing the k-Ward Micro-aggregation Technique 327

k and 2k − 1, depending on the structure of the data, so as to lead to more
homogeneous groups and to, thus, minimize the information loss [2, 5, 6, 13].

Two alternative heuristic approaches which incorporate variable-size micro-
aggregation have been presented in [2, 9, 15]. The authors of [2] presented a
genetic algorithm that appears as an alternative heuristic to offer a linear com-
plexity. It presents the k-partitions as a binary string (the “chromosomes”), and
combines directed and random search strategies to attempt to attain a global
optimum. A hierarchical classification method can be used to obtain building
blocks for the heuristic MAT s that yield variable-sized groups. Ward’s method,
proposed in [1], is attractive because it is stepwise optimal: Two groups or data
elements coalesced at each step are chosen so that the increase in the within-
groups index, the SSE, caused by their union is minimal. However, Ward’s
method had to be adapted into the so-called k-Ward’s method to render it ap-
plicable for micro-aggregation [9, 15]. Then the k-Ward scheme was extended
to a Secure-k Ward [14] in order to enhance the individual’s privacy. An effi-
cient polynomial algorithm which uses graph techniques to solve the univariate
micro-aggregation problem can be found in [7].

3 k-Ward Micro-Aggregation Technique

Ward’s agglomerative hierarchical clustering method described above [1, 17] has
been modified to provide an optimal k-partition solution by enforcing the group-
size constraint [2, 9, 15]. Such a k-Ward MAT can be applicable for quantitative
data, and for qualitative data when an appropriate distance is defined. The au-
thors of [2] proved that the k-Ward’s algorithm terminates after a finite number
of steps, and that the computational complexity is quadratic (i.e., O(n2)).

Based on the Ward algorithm, the authors of [2, 9] have developed the k-
Ward MAT algorithm for micro-aggregation. The essential qualifiers for this
are the facts that the distance criterion is the SSE, and that each group should
contain between k and 2k−1 elements. The k-Ward MAT algorithm is included
in [2, 6, 9, 16]. The experimental results related to k-Ward MAT are found in [2],
and also included in Section 5 of this paper.

4 Optimized k-Ward Micro-Aggregation Technique

The authors of [2] claim that the performance of MAT s depends on the distri-
bution of the variables. However, it has been observed that no single method
outperforms all other methods for all variables involving real life data. This
conclusion was made after testing all the competing methods for each variable,
and using the method which yielded the lowest information loss. In this paper,
we restrict our study to the k-Ward scheme, because it demonstrates a good
trade-off between the information loss and the data disclosure. In addition to
this, it also possesses the attractive feature that it permits a natural extension
to multivariate micro-aggregation. In this regard, we observe that there is much
room for improvement when it concerns the speed of micro-aggregation. Indeed,

328 E. Fayyoumi and B.J. Oommen

the current k-Ward’s method suffers from two major disadvantages, firstly, that
of the excessive computational burden encountered by processing all the data
elements, and additionally that of computing the “entire” distance matrix which
contains the distances between every single pair of groups. Therefore, we pro-
pose two modifications by which we can optimize this method, and reduce the
required time needed to micro-aggregate the data set.

4.1 Optimizing Distance-Based Computations

The first modification we achieve is in the Ward’s method itself [1], and more
specifically, in the phase which computes the distance matrix. The latter is an
m×m matrix, where m represents the number of groups included at each step.
It contains the distance values between the groups (recorded as Dij) which, in
turn, represents the SSE obtained by potentially merging Gi with Gj . This
matrix is symmetric, and has a zero diagonal.

The k-Ward’s method requires a number of basic steps, in order to generate
a (near) optimal k-partition, where the best-case number of steps is n(1− 1/k),
and the worst-case number is (n/k − 1)(n/2 + k − 2) [2]. At each basic step,
the number of groups is reduced by unity. Currently, there are two different
approaches to compute the value of the distance matrix, using either a stored
matrix approach, or by invoking a stored data approach. In the k-Ward’s method,
which uses a stored matrix approach3, (m2 −m)/2 values are computed at the
initialization step, and m − 1 values are recomputed at each basic step. But
using our newly introduced enhanced version of k-Ward MAT , the so-called k-
Ward Diagonal, (kWD), only m − 1 values are computed in the initial step,
and at most 2 values are recomputed during a basic step. On the other hand,
using a stored data approach4 for a k-Ward scheme, requires no initialization
step, and it computes (m2−m)/2 values at each basic step. As opposed to this,
kWD computes only m−1 values which lie on the diagonal above the main zero
diagonal.

In principle, kWD behaves just like k-Ward MAT , but the primary difference
involves the way Ward’s algorithm is invoked. While k-Ward MAT invokes the
Ward algorithm, kWD avoids computing all the values above the main diagonal
in order to find the nearest pair of distinct groups. Rather, it computes only
the SSE values that lie on the principal diagonal above the main zero diagonal.
This is clearly included in Step 2 of the algorithm shown below.

The rationale for optimizing the computation as in the kWD is based on the
mathematical results given presently.

Since we are grouping an ordinal data set, we present a result that states that
the distance value of merging Gi with Gi+j is less than the distance value of
merging Gi with Gi+k, when k > j with a very high probability. This is shown
in Theorem 1 which needs the result of Lemma 1 below. The proofs are included
in [16] and omitted here in the interest of brevity.

3 The distance matrix is computed, stored, and retrieved from storage as needed.
4 The distance matrix is computed when needed rather than retrieved from storage.

On Optimizing the k-Ward Micro-aggregation Technique 329

Algorithm 1. kWD

Input: A set of sorted data records
Output: The groups of micro-aggregated records
Method:
1: Form a group from the first (smallest) k elements of the data set, and another

group with the last (largest) k elements of the data set. Initialize the intermediate
elements so as to constitute single-element groups.

2: Use Ward’s method until all elements in the data set belong to a group containing
k or more data elements. In the process of forming groups by Ward’s method, the
criterion used is the SSE. However, rather than computing all the values above
the main diagonal of the inter-group distance matrix, we compute only the values
that lie on the diagonal above the main diagonal. Also, in the process, never merge
two groups both of which have a size greater than or equal to k.

3: for each group in the final partition that contains 2k or more data elements do
4: Apply this algorithm again to particular group containing 2k or more elements.
5: end for
6: return the set of groups and report the mean of the group (on being queried).
7: End Algorithm kWD

Lemma 1. Let P
∗
k = {G1, G2, G3, . . . , Gm} be an optimal partition. Then each

partition Gi = {Xi1, Xi2, . . . , Xini} satisfies this property Xini ≤ Xj1, where
i < j.

Theorem 1. Consider the quantity D(Gi, Gj), defined as ninj

ni+nj
(X̄i − X̄j)2.

Then, if the index k > j,and the size of the groups Gi+k and Gi+j satisfy
ni+k ≤ n and ni+j ≤ n respectively,⎧⎪⎪⎨⎪⎪⎩

D(Gi, Gi+k) ≥ D(Gi, Gi+j), Whenever ni+k ≥ ni+j

D(Gi, Gi+k) ≥ D(Gi, Gi+j), Whenever ni+k < ni+j and if the groups
Gi+j and Gi+k have different elements

D(Gi, Gi+k) < D(Gi, Gi+j), Otherwise.

Theorem 1 can be used to reduce the computational time required for determin-
ing the nearest pair of distinct groups. The condition D(Gi, Gi+k) ≥ D(Gi, Gi+j)
is almost always true, except in a single case where both groups Gi+j and Gi+k

have elements with a single repetitive entry - which is an event occurring with a
very small probability. Thus, if this event is ignored, it is obvious that computing
the distances between Gi and Gi+1 for all i ≤ n−1 is sufficient to determine the
minimum distance value in the distance matrix. The values of these distances
lie on the principal diagonal above the main diagonal due to the ordering of the
elements. This is what the kWD algorithm achieves, thus significantly reducing
the computational time.

4.2 Recursive k-Ward Optimization

Having discussed how the k-Ward computation can be optimized for a single
partitioning, we now propose a recursive and superior mechanism, referred to as

330 E. Fayyoumi and B.J. Oommen

Algorithm 2. kWR

Input: InSet: A set of sorted data set records; θ: The user-defined threshold;
J : A fixed constant.
Output: OutSet: The micro-aggregated records
Method:
1: Partition InSet into J mutually exclusive Sets InSet1, InSet2, . . . , InSetJ

2: if θ >
ΣJ

i=1
SST (InSeti)

SST (InSet) then
3: call k-Ward (InSet)
4: return OutSet
5: else
6: for i = 1 ← J do
7: call Recursive-k-Ward MAT (InSeti,OutSeti)
8: end for
9: end if

10: return OutSet = OutSet1
⋃

OutSet2 · · ·
⋃

OutSetJ

11: End Algorithm kWR

Recursive k-Ward Micro-aggregation (kWR) for further minimizing the compu-
tations for the entire data set. Our strategy is the following: Rather than process
all the data using a k-Ward method, we propose that the data be recursively sub-
divided into smaller subsets. We emphasize that the smaller subsets need not be
obtained as the result of invoking a k-Ward algorithm on the original data. This
philosophy leads to a sequence of so-called divide-k-Ward-coalesce steps which
are invoked recursively to ultimately yield the desired micro-aggregated records.
Furthermore, we propose that each subset be micro-aggregated independently.
Finally, the micro-aggregated records are combined in order to obtain the entire
set of records appropriately grouped. The algorithm is presented below.

The reader should observe that this philosophy is quite distinct from the
partitioning that uses prior clustering methods. Because the recursive method
is able to examine the spread of the data set, when there is a large gap in the
data, such a scheme will be able to force the gap to be between the groups rather
than within the groups. This is achieved by dividing the whole data set into a
number of disjoint subsets as dictated by the “gap” that exists.

Using a recursive strategy ensures that at least J subsets are obtained from
the entire data set, which leads to a noticeable saving on time. Further, by
this recursive method, we not only reduce the required time to micro-aggregate
the records, but also attempt to optimally preserve the minimization of the
information loss. This is achieved by invoking the base (terminating) step, where
the information loss is minimized for each atomic partition.

5 Experimental Results

In this Section, we describe our data sets, explain our experimental methods,
and present the results we have obtained by using kWD, kWR and kWDR for
micro-aggregation.

On Optimizing the k-Ward Micro-aggregation Technique 331

5.1 Data Sets

We tested the various versions of the k-Ward MAT using two real data sets that
have been used as benchmarks in previous studies [2, 18]: (i)Tarragona Data
Set [2], which involves 834 companies in the Tarragona area. Each company, has
13 associated quantitative variables referred to as V ar1 to V ar13. (ii)Census
Data Set [18], which was obtained on July 27, 2000 using the Data Extraction
System of the U.S. Bureau of the Census. It contains 1, 080 records obtained as
per the extraction procedure described in [19], and has 13 quantitative variables
referred to as V ar1 to V ar13.

5.2 Results

The run time characteristics of the Optimized k-Ward micro-aggregation algo-
rithms for both the real-life data sets are discussed in more detail in this Section.
We set the value of k =3 in all the experiments.

The sorted data approach was chosen to obtain the specific implementation of
kWD. Table 1 presents the result of executing kWD. From the Table we see that
kWD leads to a huge reduction in the time required to micro-aggregate all the
records in the data set compared to the original k-Ward MAT . For example, the
required time to micro-aggregate the values of V ar11 in the Tarragona data set
using k-Ward MAT was 19.86 seconds while it was only 3.95 seconds using kWD.
The percentage of time improvement reaches up to 80.11% on the Tarragona data
set. Similarly, the required time to micro-aggregateall values of V ar2 in the Census
data set was 42.41 seconds using k-Ward MAT , but the kWD required only 8.36
seconds. Again, the percentage of time improvement is as high as 80.29% on the
Census data set. Interestingly, both the k-Ward MAT and kWD obtain the same
value of the information loss for each variable in both the data sets.

In the case of kWR, the data set was partitioned into 2 subsets (J = 2)
whenever the base condition was not satisfied. It should be clarified that finding
the best threshold value, θ, is far from trivial. Indeed, the value of θ plays
an important role in determining the required computational time, and also in
determining the value of the information loss. Thus, if θ has a certain value (that
does not allow the base condition to be satisfied) it is clear that the recursion
will be invoked more often, leading to a huge reduction in the running time, but
to an increased value in the information loss. It is important to mention that the
number of recursions invoked differs from one variable to another, but for each
specific variable, the number of recursive calls seems to be the same regardless
of the value of k. This makes sense because the recursion divides the data set
into subsets as per the base condition before invoking the micro-aggregation
method. Besides, we also observe that the base terminating condition is generally
satisfied at the same positions for each specific variable regardless of the value
of k. Finally, we have observed that changing the value of k effects the value of
the information loss and the running time, but does not seem to effect the total
number of recursive invocations.

Tables 2 shows a comparison between the original k-Ward MAT and kWR
on the Tarragona data set. In the Table, the sequence of recursive calls is repre-

332 E. Fayyoumi and B.J. Oommen

Table 1. Comparison between the original k-Ward MAT and the optimized kWD on
the Tarragona and Census data sets

Tarragona Data Set Census Data Set
Var kW kWD Var kW kWD

Info. Time Info. Time Improv. Info. Time Info. Time Improv.
Loss Loss (%) Loss Loss (%)

Var1 7.176 19.89 7.176 5.41 72.80% Var1 0.131 42.44 0.131 9.48 77.66%
Var2 0.557 19.72 0.557 4.98 74.75% Var2 0.001 42.41 0.001 8.36 80.29%
Var3 0.775 19.77 0.775 4.99 74.76% Var3 0.008 42.58 0.008 8.42 80.23%
Var4 1.487 19.61 1.487 4.88 75.11% Var4 0.005 42.03 0.005 8.84 78.97%
Var5 2.018 49.03 2.018 12.78 73.93% Var5 0.024 41.92 0.024 8.91 78.75%
Var6 0.586 19.69 0.586 5.03 74.45% Var6 0.034 42.00 0.034 9.14 78.24%
Var7 1.921 19.81 1.921 5.03 74.61% Var7 0.002 42.06 0.002 8.36 80.12%
Var8 0.338 19.73 0.338 4.95 74.91% Var8 0.443 41.69 0.443 10.66 74.43%
Var9 1.287 20.02 1.287 5.47 72.68% Var9 0.732 44.84 0.732 10.05 77.59%
Var10 1.905 19.69 1.905 4.67 76.28% Var10 0.003 47.02 0.003 10.34 78.01%
Var11 2.966 19.86 2.966 3.95 80.11% Var11 0.008 47.11 0.008 10.28 78.18%
Var12 4.748 19.72 4.748 4.72 76.06% Var12 0.004 47.31 0.004 10.28 78.27%
Var13 4.958 19.84 4.958 4.83 75.66% Var13 0.005 48.34 0.005 10.59 78.09%

sented by an expression of well-matched parentheses. Thus, for example, there
are two recursive calls for the variable V ar2 in the Tarragona data set, and this
is represented by the parenthetic string “(()(()()))”. The first time the algorithm
is invoked, it divided the entire data set into two partitions, each recursively in-
voking the algorithm again. The first partition was continued with no further
divisions or recursions, while the second partition was divided into another two
sub-partitions and the algorithm was recursively invoked for each sub-partitions,
which ultimately terminated the process. It turns out that in this case the value
of θ = 0.8 is suitable for all the 13 variables of the Tarragona data set, and
the percentage of the time improvement reaches up to 93.65% on var12 after 8
recursive calls. But for the Census data set, we observe that we have to set θ
differently for each variable, and that values of θ which are respectively 0.4, 0.28,
0.31, 0.28, 0.31, 0.38, 0.29, 0.70, 0.80, 0.31, 0.27, 0.32, and 0.30 (respective to the
corresponding variables V ar1 to V ar13) lead to the best solution. kWR yielded
the same value of the information loss in most of these variables except for the
cases of var4, V ar5, V ar6, V ar11, and V ar12 where it gave a value close to the
value of information loss obtained by the original k-Ward MAT . We believe that
the reason for this minor deviation from the optimal is due to the nature of the
data. An examination of the values of data in the Tarragona data set shows that
since they are relatively close to each other, there are not many gaps between
the values. But in the case of the Census data set such gaps exist. Thus, there
are many divisions on the Census data set, which will marginally increase the
information loss. However, we still believe that such a small loss is worth the
significant computation gain. Additional results concerning the Census data set
are found in [16].

On Optimizing the k-Ward Micro-aggregation Technique 333

Table 2. Comparison between the original k-Ward MAT and the optimized kWR
using both a fixed threshold and dynamic threshold on the Tarragona data set

Var kW kWR - Fixed threshold kWR - Dynamic threshold
Info. Time Info. Time Improv Recursion Info. Time Improv Recursion
Loss Loss (%) Loss (%)

Var1 7.176 19.89 7.176 5.31 73.30% (()(()(()()))) 7.176 10.30 48.22% (()())
Var2 0.557 19.72 0.557 3.75 80.98% (()(()())) 0.557 5.78 70.69% (()())
Var3 0.775 19.77 0.775 5.91 70.11% (()()) 0.775 5.78 70.76% (()())
Var4 1.487 19.61 1.487 1.49 92.40% (((((()())())())())(()())) 1.487 5.66 71.14% (()())
Var5 2.018 49.03 2.018 22.36 54.40% (()(()())) 2.018 24.89 49.24% (()())
Var6 0.586 19.69 0.586 3.70 81.21% (()(()())) 0.586 5.70 71.05% (()())
Var7 1.921 19.81 1.922 3.75 81.07% (()(()())) 1.921 5.78 70.82% (()())
Var8 0.338 19.73 0.338 3.75 80.99% (()(()())) 0.338 5.72 71.01% (()())
Var9 1.287 20.02 1.287 3.83 80.87% (()(()())) 1.287 5.91 70.48% (()())
Var10 1.905 19.69 1.909 1.23 93.75% ((((()())())())(()(()()))) 1.905 5.76 70.75% (()())
Var11 2.966 19.86 2.967 1.99 89.98% ((()())(()())) 2.966 1.78 91.04% ((()())(()()))
Var12 4.748 19.72 4.748 1.19 93.97% ((((((()())())())())())(()(()()))) 4.748 3.88 80.32% ((()())())
Var13 4.958 19.84 4.958 1.26 93.65% ((((((()())())())())())(()(()()))) 4.958 3.73 81.20% ((()())())

Table 3. Comparison between the original k-Ward MAT and the optimized kWDR
which is a simultaneous combination of both kWD and kWR on the Tarragona (using a
fixed threshold) and Census (using a dynamic threshold) data sets

Tarragona Data Set Census Data Set
Var kW kWDR Var kW kWDR

Info. Time Info. Time Improv. Info. Time Info. Time Improv.
Loss Loss (%) Loss Loss (%)

Var1 7.176 19.89 7.176 3.08 84.51% Var1 0.131 42.44 0.131 13.39 68.45%
Var2 0.557 19.72 0.557 1.23 93.76% Var2 0.001 42.41 0.001 2.42 94.29%
Var3 0.775 19.77 0.775 2.16 89.07% Var3 0.008 42.58 0.008 2.03 95.23%
Var4 1.487 19.61 1.487 0.59 96.99% Var4 0.005 42.03 0.005 2.20 94.77%
Var5 2.018 49.03 2.018 5.70 88.37% Var5 0.024 41.92 0.024 2.52 93.99%
Var6 0.586 19.69 0.586 1.22 93.80% Var6 0.034 42.00 0.034 2.27 94.60%
Var7 1.921 19.81 1.921 1.22 93.84% Var7 0.002 42.06 0.002 4.28 89.82%
Var8 0.338 19.73 0.338 1.24 93.72% Var8 0.443 41.69 0.443 4.39 89.47%
Var9 1.287 20.02 1.287 1.31 93.46% Var9 0.732 44.84 0.732 5.67 87.36%
Var10 1.905 19.69 1.909 0.56 97.16% Var10 0.003 47.02 0.005 5.70 87.88%
Var11 2.966 19.86 2.967 0.81 95.92% Var11 0.008 47.11 0.011 4.59 90.26%
Var12 4.748 19.72 4.748 0.52 97.36% Var12 0.004 47.31 0.008 6.55 86.16%
Var13 4.958 19.84 4.958 0.56 97.18% Var13 0.005 48.34 0.009 6.92 85.68%

5.3 Dynamic Threshold

Sincewe are attempting to reduce the computational time and the information loss,
we have also experimented the schemes using a dynamic threshold, which varies at
each step. This threshold was computed as: θ = SST (InSet1)+SST (InSet2)

SST (InSet) .
At each step, the dynamic threshold was passed as a parameter to the invoked

recursion. Table 2 shows the power of the dynamic threshold scheme which yields

334 E. Fayyoumi and B.J. Oommen

the same value of the information loss obtained by original k-Ward MAT on the
Tarragona data set. The results concerning the Census data set are found in [16].
The computation time is also reduced significantly, and thus, for example, the
percentage of the time improvement reaches up to 91.04% on V ar 11 in the
Tarragona data set, while it is 45.44% on V ar 3 in the Census data set.

Since it is prudent to investigate the computational advantage obtained by
using a combination of the two modifications, kWD and kWR, we have also de-
vised an augmented modification, kWDR, which is the overall optimized version
of the original k-Ward MAT . Thus, kWDR computes the micro-aggregation by
recursive calls, and in each case computes only the distance values advocated
by Theorem 1. The results of kWDR are shown in Table 3. The reduction
of time reaches up to 97.36% on the Tarragona data set by using a combina-
tion of kWD and kWR with a fixed threshold, while a combination of kWD
and kWR with a dynamic threshold yields 95.23% advantage on the Census
data set.

6 Conclusions

In this paper, we have considered the problem of securing a statistical database.
We have resorted to the the well-known micro-aggregation philosophy, and in par-
ticular, considered the k-Ward strategy, which coalesces the sorted data attribute
values into groups, and on being queried, reports the means of the correspond-
ing groups. We have shown that such a scheme can be optimized by minimizing
the computations done in evaluating the between-class distance matrix, and by
recursively partitioning the data set before k-Ward strategy is invoked, and that
the latter be invoked on the “primitive” sub-groups which terminate the recur-
sion. Our experimental results, done on two benchmark data sets, report a marked
improvement. While the information loss is comparable to the k-Ward MAT pro-
posed by Domingo-Ferrer et.al. [2], the computations required to achieve this loss
is a fraction of the computations required in the latter - providing a computational
advantage which sometimes exceeds 80% if one method is used by itself, and more
than 90% if both enhancements are invoked simultaneously.

References

1. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. American
Statistical Association 58 (1963) 236–245

2. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation
for statistical disclosure control. IEEE Transactions on Knowledge and Data En-
gineering 14 (2002) 189–201

3. Adam, N.R., Wortmann, J.C.: Security-control methods for statistical databases:
A comparative study. ACM Computing Surveys 21 (1989) 515–556

4. Baeyens, Y., Defays, D.: Estimation of variance loss following microaggregation by
the individual ranking method. In: Proceedings of Statistical Data Protection’98,
Luxembourg: Office for Official Publications of the Eur. Comm. (1999) 101–108

On Optimizing the k-Ward Micro-aggregation Technique 335

5. Cuppen, M.: Sourec Data Perturbation in Statistical Disclosure Control. PhD
thesis, Statistics Netherlands (2000)

6. Mateo-Sanz, J.M., Domingo-Ferrer, J.: A method for data-oriented multivariate
microaggregation. In: Proceedings of Statistical Data Protection’98, Luxembourg:
Office for Official Publications of the European Communities (1999) 89–99

7. Hansen, S.L., Mukherjee, S.: A polynomial algorithm for univariate optimal mi-
croaggregation. IEEE Trans. on Know. and Data Eng. 15 (2003) 1043–1044

8. Laszlo, M., Mukherjee, S.: Minimum spanning tree partitioning algorithm for
microaggregation. IEEE Trans. on Know. and Data Eng. 17 (2005) 902–911

9. Mateo-Sanz, J.M., Domingo-Ferrer, J.: A comparative study of microaggregation
methods. Questiio 22 (1998) 511–526

10. Solanas, A., Mart́ınez-Ballesté, A., Domingo-Ferrer, J., Mateo-Sanz, J.: A 2d-tree-
based blocking method for microaggregating very large data sets. In: The First
International Conference on Availability, Reliability and Security. (2006)

11. Defays, D., Nanopoulos, P.: Panels of enterprises and confidentiality: the small
aggregates method. In: Proceedings of 92 Symposium on Design and Analysis of
Longitudinal Surveys, Ottawa: Statistics Canada (1993) 195–204

12. Defays, D., Anwar, N.: Micro-aggregation: A generic method. In: Proceedings
of the 2nd International Symposium on Statistical Confidentiality, Luxembourg:
Office for Official Publications of the European Communities (1995) 69–78

13. Solanas, A., Mart́ınez-Ballesté, A.: V-mdav: A multivariate microaggregation with
variable group size. In: 17th COMPSTAT Symposium of the IASC, Rome (2006)

14. Li, Y., Zhu, S., Wang, L., Jajodia, S.: A privacy-enhanced microaggregation
method. In: FoIKS ’02: Proceedings of the Second International Symposium on
Foundations of Info. and Know. Sys., London, UK, Springer-Verlag (2002) 148–159

15. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Resampling for statistical confidentiality
in contingency tables. Comp. and Math. with App. 38 (1999) 13–32

16. Fayyoumi, E., Oommen, B.J.: (Enhancing k-ward micro-aggregation for secure
statistical databases using distance-based and recursive optimizations) Unabridged
Version of This Paper.

17. Brucker, P.: On the complexity of clustering problems. In Hehn, R., Korte, B.,
Oettli, W., eds.: Optimization and Operations Research (1977) 45–54

18. Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure control
methods for microdata. In Confidentiality, Disclosure and Data Access: Theory
and Practical Applications for Statistical Agencies, Berlin: Springer-Verlag (2002)
113–134

19. Brand, R., Domingo-Ferrer, J., Mateo-Sanz, J.M.: Reference data sets to test and
compare SDC methods for protection of numerical microdata. Technical report,
CASC PROJECT, Computational Aspects of Statistical Confidentiality (2002)

Direct Chosen-Ciphertext Secure Identity-Based
Key Encapsulation Without Random Oracles

Eike Kiltz1 and David Galindo2

1 CWI Amsterdam
The Netherlands
kiltz@cwi.nl

2 Radboud University Nijmegen
The Netherlands

d.galindo@cs.ru.nl

Abstract. We describe a new and practical identity-based key encap-
sulation mechanism that is secure in the standard model against chosen-
ciphertext (CCA2) attacks. Since our construction is direct and not based
on generic transformations from hierarchical identity-based encryption,
it is more efficient than all previously proposed schemes.

1 Introduction

Identity-Based Encryption and Key Encapsulation. An Identity-Based
Encryption (IBE) scheme is a public-key encryption scheme where any string is
a valid public key. In particular, email addresses and dates can be public keys.
The ability to use identities as public keys avoids the need to distribute public
key certificates.

Instead of providing the full functionality of an IBE scheme, in many applica-
tions it is sufficient to let sender and receiver agree on a common random session
key. This can be accomplished with an identity-based key encapsulation mech-
anism (IB-KEM) as formalized in [5]. Any IB-KEM can be updated to a full
IBE scheme by adding a symmetric encryption scheme with appropriate security
properties.

After Shamir proposed the concept of IBE in 1984 [27] it remained an open
problem for almost two decades to come up with a satisfying construction for
it. In 2001, Boneh and Franklin [8] proposed formal security notions for IBE
systems and designed a fully functional secure IBE scheme using bilinear maps.
This scheme and the tools developed in its design have been successfully ap-
plied in numerous cryptographic settings, transcending by far the identity based
cryptography framework. IBE is currently in the process of getting standardized
— from February 2006 on the new IEEE P1363.3 standard for “Identity-Based
Cryptographic Techniques using Pairings” [19] accepts submissions.

An alternative but less efficient IBE construction was proposed by Cocks [14]
based on quadratic residues. Both IBE schemes (Cocks’ scheme only through
Fujisaki-Okamoto [15]) provide security against chosen-ciphertext attacks. In

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 336–347, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Direct Chosen-Ciphertext Secure IB-KEM Without Random Oracles 337

a chosen ciphertext attack, the adversary is given access to a decryption or-
acle that allows him to obtain the decryptions of ciphertexts of his choos-
ing. Intuitively, security in this setting means that an adversary obtains (ef-
fectively) no information about encrypted messages, provided the correspond-
ing ciphertexts are never submitted to the decryption oracle. For different rea-
sons, the notion of chosen-ciphertext security has emerged as the “right” no-
tion of security for encryption schemes. We stress that, in general, chosen-
ciphertext security is a much stronger security requirement than chosen-plaintext
attacks [3, 16], where in the latter an attacker is not given access to the decryp-
tion oracle.

The drawback of the IBE scheme from Boneh-Franklin and Cocks is that
security can only be guaranteed in the random oracle model [4], i.e. in an ide-
alized world where all parties magically get black-box access to a truly random
function. Unfortunately a proof in the random oracle model can only serve as
a heuristic argument and has proved to possibly lead to insecure schemes when
the random oracles are implemented in the standard model (see, e.g., [12]).

Waters’ IBE. To fill this gap Waters [29] presents the first efficient Identity-
Based Encryption scheme that is chosen-plaintext secure without random ora-
cles. The proof of his scheme makes use of an algebraic method first used by
Boneh and Boyen [6] and security of the scheme is based on the Bilinear Deci-
sional Diffie-Hellman (BDDH) assumption. However, Waters’ plain IBE scheme
only guarantees chosen-plaintext security.

From 2-level Hierarchical IBE to chosen-ciphertext secure IBE.
Hierarchical identity-based encryption (HIBE) [18, 17] is a generalization of IBE
allowing for hierarchical delegation of decryption keys.

Recent results from Canetti, Halevi, and Katz, further improved upon by
Boneh and Katz [10] show a generic and practical transformation from any
chosen-plaintext secure 2-level HIBE scheme to a chosen-ciphertext secure IBE
scheme. Since Waters’ IBE scheme can naturally be extended to a 2-level HIBE
this implies the first chosen-ciphertext secure IBE in the standard model. Key
size, as well as the security reduction of the resulting scheme are comparable to
the ones from Waters’ IBE. However, the transformation involves some symmet-
ric overhead to the ciphertext in form of a one-time signature or a MAC with
their respective keys.

1.1 Our Contributions

Our two main contributions can be summarized as follows.

A direct chosen-ciphertext secure IB-KEM based on Waters’ IBE.
Our main idea is to enhance (the IB-KEM version of) Waters chosen-plaintext
secure IBE by adding some redundant information to the ciphertext (consist-
ing of a single group element) to make it chosen-ciphertext secure. This in-
formation is used to check whether a given IB-KEM ciphertext was “properly

338 E. Kiltz and D. Galindo

generated” by the encryption algorithm or not; if so decryption is done as be-
fore, otherwise the ciphertext is simply rejected. Intuitively, this “consistency
check” is what gives us the necessary leverage to deal with the stronger chosen-
ciphertext attacks. Unfortunately implementing the consistency check is rela-
tively expensive and an equivalent “implicit rejection” method is used to im-
prove efficiency.

This provides the first direct construction of a chosen-ciphertext secure IB-
KEM that is not explicitly derived from hierarchical techniques.No exogenous con-
sistency test relying on a symmetric primitive like one-time signatures or MACs is
required. Our scheme can be proved secure under the Bilinear Decisional Diffie-
Hellman (BDDH) assumption in pairing groups. Chosen-ciphertext security is ob-
tained at sheer minimal cost. Compared to Waters’ IB-KEM our scheme comes
with a ciphertext overhead of only one single element whereas computational over-
head is one more exponentiation for encryption and one pairing plus two exponen-
tiations for decryption. The security reduction is comparable to the one for Waters’
scheme, i.e. it introduces only a small additive component.

Using a chosen-ciphertext secure symmetric encryption scheme (also called a
data-encapsulation mechanism DEM) our IB-KEM can be extended to a chosen-
ciphertext secure IBE scheme [5]. From a theoretical point of view IB-KEM and
IBE are equivalent. However, there are a numerous practical reasons to prefer
a IB-KEM over an IBE scheme. The biggest advantage is its flexibility, i.e. an
IB-KEM completely decouples the key encapsulation from the asymmetric part.
So when performing encryption one is free to pick whatever security parameter
necessary without changing the size of the message space. For (standard) public-
key encryption the same modular approach is incorporated in many standards
due to his simplicity and flexibility (see, e.g., [28, 2]). The same is expected to
happen in the new IEEE P1363.3 standard for “Identity-Based Cryptographic
Techniques using Pairings” [19].

Our IB-KEM scheme can be extended in a natural way to obtain a chosen-
ciphertext secure HIB-KEM with only one additional element in the ciphertext
compared to Waters’ chosen-plaintext secure HIB-KEM.

A rigorous game-based proof. The proof of Waters’ IBE is already quite
complex and has many technical parts that we found pretty hard to verify.
Additionally, many recent results [11, 13, 23] already use ingredients of Waters’
IBE, some more or less in a “black-box” manner which makes verification nearly
impossible without having completely understood the original work. This goes
along with a general movement in our field to produce proofs that are increasingly
hard to verifyour opinion this situation has been getting worse and worse. Our
additional components to make Waters IB-KEM chosen-ciphertext secure add
even more complexity to the proof.

Motivated by this we give a rigorous, games-based proof of our result that can
be easily understood and verified. As an immediate benefit our security reduction
achieves some slight improvements over Waters bounds [29]. Unfortunately our
proof extends by far the page limit of this extended abstract. The interested
reader is referred to [22] for the full details.

Direct Chosen-Ciphertext Secure IB-KEM Without Random Oracles 339

1.2 Related Work and Comparison

In this paper we extract the “IB-KEM part” of our pre-print [22] where we fur-
thermore show how our IB-KEM can be extended to the first chosen-ciphertext
secure threshold IB-KEM in the standard model. Our technique to obtain the
chosen-ciphertext secure IB-KEM is somewhat reminiscent of the method used
in [11, 21] to obtain chosen-ciphertext secure standard encryption. Interestingly
our scheme can be seen as a generalization of the standard public-key encryp-
tion scheme from [11], i.e. ignoring all “identity-based components” (and ap-
plying some optimizations in the decapsulation algorithm) our scheme can be
simplified to exactly their scheme.

In the same work [11] a technique is sketched how to avoid the CHK transfor-
mation to get a direct chosen-ciphertext secure IB-KEM construction based on
Waters’ 2-level HIB-KEM. Compared to our IB-KEM, however, this construc-
tion has a weaker (quadratic) security reduction and nearly doubles the public
key size. In [22] we carefully review all known chosen-ciphertext secure IB-KEM
constructions, including the above proposal, and make an extensive comparison
with our scheme.

It turns out that, to the best of our knowledge, our IB-KEM is the most
efficient chosen-ciphertext secure IB-KEM scheme in the standard model based
on a standard complexity-theoretic assumption.

2 Definitions

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes
its size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s

$← S
denotes the operation of picking an element s of S uniformly at random. We
write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and by
z

$← A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .)
and letting z be the output. We write AO1,O2,...(x, y, . . .) to indicate that A is
an algorithm with inputs x, y, . . . and access to oracles O1,O2, . . . and by z

$←
AO1,O2,...(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .)
and access to oracles O1,O2, . . ., and letting z be the output.

2.2 Identity Based Key Encapsulation

An identity-based key-encapsulation mechanism (IB-KEM) scheme IBKEM =
(IBKEMkg, IBKEMkeyder, IBKEMenc, IBKEMdec) consists of four polynomial-
time algorithms. Via (pk ,msk) $← IBKEMkg(1k) the randomized key-generation
algorithm produces master keys for security parameter k ∈ N; via sk [id] $←
IBKEMkeyder(msk , id) the master computes the secret key for identity id ; via
(C , K) $← IBKEMenc(pk , id) a sender creates a random session key K and a cor-
responding ciphertext C with respect to identity id ; via K ← IBKEMdec(sk ,C)

340 E. Kiltz and D. Galindo

the possessor of secret key sk decapsulates ciphertext C to get back a the session
key K. Associated to the scheme is a key space KeySp. For consistency, we re-
quire that for all k ∈ N, all identities id , and all (C , K) $← IBKEMenc(pk , id), we
have Pr[IBKEMdec(IBKEMkeyder(msk , id),C) = K] = 1, where the probability
is taken over the choice of (pk ,msk) $← IBKEMkg(1k), and the coins of all the
algorithms in the expression above.

Let IBKEM = (IBKEMkg, IBKEMkeyder, IBKEMenc, IBKEMdec) be an IB-
KEM with associated key space KeySp. To an adversary A we associate the
following experiment:

Experiment Expib−kem-cca
IBKEM ,A (k)

(pk ,msk) $← IBKEMkg(1k)
(id∗, st) $← AKeyDer(·),Dec(·,·)(find, pk)
K∗

0
$← KeySp ; (C ∗, K∗

1) $← IBKEMenc(pk , id)
γ

$← {0, 1} ; K∗ ← K∗
γ

γ′ $← AKeyDer,Dec(guess, K∗,C ∗, st)
If γ �= γ′ then return 0 else return 1

The oracle KeyDer(id) returns sk [id] $← KeyDer(msk , id) with the restriction
that A is not allowed to query oracle KeyDer(·) for the target identity id∗.
The oracle Dec(id ,C) first computes sk [id] $← KeyDer(msk , id) as above and
then returns K ← IBKEMdec(sk [id], id ,C) with the restriction that in the guess
stage A is not allowed to query oracle Dec(·, ·) for the tuple (id∗,C ∗). st is
some internal state information of adversary A and can be any (polynomially
bounded) string. We define the advantage of A in the IND-CCA experiment as

Advib−kem-cca
IBKEM ,A (k) =

∣∣∣∣Pr
[
Expib−kem-cca

IBKEM ,A (k) = 1
]
− 1

2

∣∣∣∣ .

An IB-KEM IBKEM is said to be secure against adaptively-chosen ciphertext
attacks if the advantage functions Advib−kem-cca

IBKEM ,A (k) is a negligible function in k

for all polynomial-time adversaries A.
We remark that our security definition is given with respect to “full-identity”

attacks, as opposed to the much weaker variant of “selective-identity” attacks
where the adversary has to commit to its target identity id∗ in advance, even
before seeing the public key.

2.3 Target Collision Resistant Hash Functions

Let F = (TCRs)s∈S be a family of hash functions for security parameter k and
with seed s ∈ S = S(k). F is said to be collision resistant if, for a hash function
TCR = TCRs (where the seed is chosen at random from S), it is infeasible for an
efficient adversary to find two distinct values x �= y such that TCR(x) = TCR(y).

A weaker notion is that of target collision resistant hash functions. Here it
should be infeasible for an efficient adversary to find, given a randomly chosen

Direct Chosen-Ciphertext Secure IB-KEM Without Random Oracles 341

element x and a randomly drawn hash function TCR = TCRs, a distinct element
y �= x such that TCR(x) = TCR(y). (In collision resistant hash functions the
value x may be chosen by the adversary.) Such hash functions are also called
universal one-way hash functions [24] and can be built from arbitrary one-way
functions [24, 25]. We define (slightly informal)

Advhash-tcr
TCR,H (k) = Pr[H finds a collision in TCR].

Hash function family TCR is said to be a target collision resistant if the advan-
tage function Advhash-tcr

TCR,H is a negligible function in k for all polynomial-time
adversaries H.

In practice, to build a target collision resistant hash function TCR, one can use
a dedicated cryptographic hash function, like SHA-1 [26]. For that reason and
to simplify our presentation, in what follows we will consider the hash function
TCR to be a fixed function.

3 Assumptions

3.1 Parameter Generation Algorithms for Bilinear Groups

All pairing based schemes will be parameterized by a pairing parameter genera-
tor. This is a PTA G that on input 1k returns the description of an multiplicative
cyclic group G1 of prime order p, where 2k < p < 2k+1, the description of a mul-
tiplicative cyclic group GT of the same order, and a non-degenerate bilinear
pairing ê: G1 × G1 → GT . See [9] for a description of the properties of such
pairings. We use G∗

1 to denote G1 \ {0}, i.e. the set of all group elements ex-
cept the neutral element. Throughout the paper we use PG = (G1, GT , p, ê) as
shorthand for the description of bilinear groups.

3.2 The BDDH Assumption

Let PG be the description of pairing groups. Consider the following problem
first considered by Joux [20] and later formalized by Boneh and Franklin [9]:
Given (g, ga, gb, gc, W) ∈ G4

1×GT as input, output yes if W = ê(g, g)abc and no
otherwise. More formally, to a parameter generation algorithm for pairing-groups
G and an adversary B we assotiate the following experiment.

Experiment Expbddh
G,B (k)

PG $← G(1k)
a, b, c, w

$← Z∗
p

β
$← {0, 1}

If β = 1 then W ← ê(g, g)abc else W ← ê(g, g)w

β′ $← B(1k, PG , g, ga, gb, gc, W)
If β �= β′ then return 0 else return 1

342 E. Kiltz and D. Galindo

We define the advantage of B in the above experiment as

Advbddh
G,B (k) =

∣∣∣∣Pr
[
Expbddh

G,B (k) = 1
]
− 1

2

∣∣∣∣ .

We say that the Bilinear Decision Diffie-Hellman (BDDH) assumption relative
to generator G holds if Advbddh

G,B is a negligible function in k for all PTAs B. The
BDDH assumption was shown to hold in the generic group model in [7].

4 A Chosen-Ciphertext Secure IB-KEM Based on BDDH

In this section we present our new chosen-ciphertext secure IB-KEM. From now
on let PG = (G1, GT , p, ê, g) be public system parameters obtained by running
the group parameter algorithm G(1k).

4.1 Waters’ Hash Function

We review the hash function H : {0, 1}n → G1 used in Waters’ identity based
encryption schemes [29]. On input of an integer n, the randomized hash key
generator HGen(G1) chooses n+1 random groups elements h0, . . . , hn ∈ G1 and
returns h = (h0, h1, . . . , hn) as the public description of the hash function. The
hash function H : {0, 1}n → G∗

1 is evaluated on a string id = (id1, . . . , idn) ∈
{0, 1}n as the product

H(id) = h0

n∏
i=1

hidi

i .

4.2 The IB-KEM Construction

Let TCR : G1 → Zp be a target collision-resistant hash function (which we as-
sume to be included in the system parameters). Our IB-KEM with identity space
IDSp = {0, 1}n (n = n(k)) and key space KeySp = GT is depicted in Fig. 1.

A tuple (g, c1, u
t
1u2, c3) is a Diffie-Hellman tuple1 if ê(g, c3) = ê(ut

1u2, c1).
Analogously, (g, c1, H(id), c2) is a Diffie-Hellman tuple if ê(g, c2) = ê(H(id), c1).
Therefore the check in the decapsulation algorithm IBKEMdec can be imple-
mented by evaluating the bilinear map four times.

We now show correctness of the scheme, i.e. that the session key K com-
puted in the encapsulation algorithm matches the K computed in the decap-
sulation algorithm. A correctly generated ciphertext for identity id has the
form C = (c1, c2, c3) = (gr, H(id)r, (ut

1u2)r) and therefore (g, c1, u
t
1u2, c3) =

(g, gr, ut
1u2, (ut

1u2)r) is always a DH tuple. A correctly generated secret key for
identity id has the form sk [id] = (d1, d2) = (α ·H(id)s, gs). Therefore the decap-
sulation algorithm computes the session key K as

1 A tuple (h, ha, hb, hc) ∈ G
4
1 is said to be a Diffie-Hellman tuple if ab = c mod p.

Direct Chosen-Ciphertext Secure IB-KEM Without Random Oracles 343

IBKEMkg(1k)
u1, u2, α

$← G
∗
1 ; z ← ê(g, α)

H $← HGen(G1)
mpk ← (u1, u2, z, H) ; msk ← α
Return (mpk ,msk)

IBKEMkeyder(msk , id)
s

$← Zp

sk [id] ← (α · H(id)s, gs)
Return sk [id]

IBKEMenc(mpk , id , M)
r

$← Z
∗
p

c1 ← gr

c2 ← H(id)r ; t ← TCR(c1)
c3 ← (ut

1u2)r

K ← zr ∈ GT

C ← (c1, c2, c3) ∈ G
3
1

Return (K,C)

IBKEMdec(sk [id], C)
Parse C as (c1, c2, c3)
Parse sk [id] as (d1, d2)
t ← TCR(c1)
If (g, c1, u

t
1u2, c3) is not a DH tuple

or (g, c1, H(id), c2) is not a DH tuple
then K

$← G
∗
T

else K ← ê(c1, d1)/ê(c2, d2)
Return K

Fig. 1. Our chosen-ciphertext secure IB-KEM

K = ê(c1, d1)/ê(c2, d2)

= ê(gr, αH(id)s)/ê(H(id)r, gs)

= ê(gr, α) · ê(gr, H(id)s)/ê(H(id)r, gs)

= zr · ê(gs, H(id)r)/ê(H(id)r, gs)

= zr,

as the key computed in the encapsulation algorithm. This shows correctness.
Let C = (c1, c2, c3) ∈ G3

1 be a (possibly malformed) ciphertext. Ciphertext
C is called consistent (w.r.t the public key pk and identity id) if (g, c1, u

t
1u2, c3)

and (g, c1, H(id), c2) are Diffie-Hellman tuples, where t = TCR(c1). Note that
any ciphertext properly generated by the encapsulation algorithm is always con-
sistent. The decapsulation algorithm tests for consistency of the ciphertext. Note
that this consistency test can be performed by anybody knowing the public-key.
We call this property “public verification” of the ciphertext. In the words of [1]
the IB-KEM ciphertext is not anonymous.

4.3 More Efficient Decapsulation

We now describe an alternative decapsulation algorithm which is more efficient
(but less intuitive). The idea is to make the Diffie-Hellman consistency check
implicit in the computation of the key K. This is done by choosing a random
values r1, r2 ∈ Z∗

p and computing the session key as

K ← ê(c1, d1 · (ut
1u2)r1 · H(id)r2)

ê(c2, d2 · gr2) · ê(gr1 , c3)
.

We claim that this is equivalent to first checking for consistency and then comput-
ing the key as K ← ê(c1, d1)/ê(c2, d2) as in the original decapsulation algorithm.

344 E. Kiltz and D. Galindo

To prove this claim we define the functions Δ1(C) = ê(c1, u
t
1u2)/ê(g, c3) and

Δ2(C) = ê(H(id), c1)/ê(g, c2). Then Δ1(C) = Δ2(C) = 1 if and only if C is con-
sistent. Consequently, for random r1, r2 ∈ Z∗

p, K = ê(c1, d1)/ê(c2, d2)·(Δ1(C))r1 ·
(Δ2(C))r2 ∈ G∗

T evaluates to ê(c1, d1)/ê(c2, d2) ∈ GT if C is consistent and to
a random group element otherwise. As in the original decapsulation algorithm.
The claim then follows by

K = ê(c1, d1)/ê(c2, d2) ·Δ1(C)r1 · (Δ2(C))r2

= ê(c1, d1)/ê(c2, d2) · (ê(c1, u
t
1u2)/ê(g, c3))r1 · (ê(H(id), c1)/ê(g, c2))r2

=
ê(c1, d1(ut

1u2)r1H(id)r2)
ê(c2, d2 · gr2) · ê(gr1 , c3)

.

We remark that the alternative decapsulation algorithm roughly saves two pair-
ing operation (for the cost of a couple of exponentiations).

4.4 Security

Theorem 1. Assume TCR is a target collision resistant hash function. Under
the Bilinear Decisional Diffie-Hellman (BDDH) assumption relative to generator
G, the IB-KEM from Section 4.2 is secure against chosen-ciphertext attacks. In
particular, we have

Advib−kem-cca
IBKEM ,A = O(nq · (ε + q/p) + Advhash-tcr

TCR,H (k)) ,

for any IBE adversary A running for time TimeA(k) = TimeB − Ω(ε−2 ·
ln(ε−1) + q), where ε = Advbddh

G,B (k) and q is an upper bound on the number
of key derivation/decapsulation queries made by adversary A.

A game-based proof of Theorem 1 can be found in [22]. The proof is mainly
based on the one given by Waters [29]. However, we have to do some important
modifications to be able to deal with chosen-ciphertext attacks. Furthermore,
compared to Waters proof we can achieve a slightly improved security reduction.

Intuitively, security can be best understood by observing that our scheme is a
generalization of Waters’ (chosen-plaintext secure) IBE scheme, as well as of the
chosen-ciphertext secure public-key encapsulation scheme from [11]. We remark
that unfortunately, there does not seem to be a way to derive security of our
IBE scheme directly from security of either of the two schemes and hence details
of the whole proof have to be worked out from scratch.

Relation to Waters’ IBE scheme. The ciphertext in our scheme is basically
identical to the ciphertext from Waters’ IBE scheme [29] plus one redundant el-
ement (the element c3) used to check for consistency of the ciphertext. Hence
Waters’ IBE scheme is obtained by ignoring the computation of c3 in encapsu-
lation as well as the consistency check in decapsulation.

Relation to the Encryption Scheme from BMW. Clearly, IB-KEM im-
plies (standard) public-key encapsulation by simply ignoring all operations re-
lated to the identity. We remark that viewed in this light (i.e. ignoring the

Direct Chosen-Ciphertext Secure IB-KEM Without Random Oracles 345

element c2 in encapsulation/decapsulation and ignoring the key derivation algo-
rithm) our IB-KEM can be simplified to the chosen-ciphertext secure encryption
scheme recently proposed by Boyen, Mei, and Waters [11].

5 Extensions

5.1 Chosen-Ciphertext Secure Hierarchical Identity-Based Key
Encapsulation

Hierarchical identity-based key encapsulation (HIB-KEM) is a generalization of
IB-KEM to identities supporting hierarchical structures [18, 17]. By the relation
to Waters IBE scheme it is easy to see that our technique can also be used
to make (the KEM variant of) Waters’ HIBE chosen-ciphertext secure. To be
more precise, we modify Waters’ HIB-KEM and add one more element hrt

1 hr
2

to the the ciphertext, where t was computed by applying a target-collision hash
function to gr (here r is the randomness used to create the ciphertext). The
additional element is used for a consistency check at decryption. The security
reduction is exponential in the depth d of the hierarchy, i.e. it introduces, roughly,
a multiplicative factor of (nq)d.

5.2 Identity-Based Encryption

Given a IB-KEM and a symmetric encryption scheme, a hybrid identity-based en-
cryption scheme can be obtained by using the IB-KEM to securely transport a ran-
dom session key that is fed into the symmetric encryption scheme to encrypt the
plaintext message. It was recently shown in [5] that if both the IB-KEM and the
symmetric encryption scheme are chosen-ciphertext secure, then the resulting hy-
brid encryption is also chosen-ciphertext secure. The security reduction is tight.

5.3 A Tradeoff Between Public Key Size and Security Reduction

As independently discovered in [13, 23], there exists an interesting trade-off be-
tween key-size of Waters’ hash H and the security reduction of the IBE scheme.

The construction modifies Waters hash H as follows: Let the integer l =
l(k) be a new parameter of the scheme. In particular, we represent an identity
id ∈ {0, 1}n as an n/l-dimensional vector id = (id1, . . . , idn/l), where each id i

is an l bit string. Waters hash is then redefined to H : {0, 1}n → G1, with
H(id) = h0

∏n/l
i=1 hidi

i for random public elements h0, h1, . . . , hn/l ∈ G1. Waters’
original hash function is obtained as the special case l = 1. It is easy to see that
using this modification in our IBE scheme (i) reduces the size of the public key
from n+4 to n/l+4 group elements, whereas (ii) it adds another multiplicative
factor of 2l to the security reduction of the IBE scheme (Theorem 1).

5.4 Selective-Identity Chosen-Ciphertext Secure IB-KEM

For the definition of a selective-identity chosen-ciphertext secure IB-KEM we
change the security experiment such that the adversary has to commit to the

346 E. Kiltz and D. Galindo

target idenity id∗ before seeing the public key. Clearly, this is a weaker security
requirement. We quickly note that (using an algebraic technique from [6]) by
replacing Waters’ hash H with H(id) = h0 ·hid

1 (for id ∈ Zp) we get a selective-id
chosen-ciphertext secure IB-KEM. Note that the size of the public-key of this
scheme drops to 3 elements.

5.5 Implementing the Collision Resistant Hash Function TCR

In practice, to build a target collision resistant hash function, one can use a
dedicated cryptographic hash function, like SHA-1 [26].

Every injective function TCR : G1 → Zp trivially also is (target) collision
resistant (with zero advantage). Boyen, Mei and Waters [11] note that for bilinear
maps defined on elliptic curves there exists a very efficient way to implement such
injective mappings. We refer to [11] for more details.

References

1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consis-
tency properties, relation to anonymous ibe, and extensions. In V. Shoup, editor,
CRYPTO 2005, LNCS. Springer-Verlag, Aug. 2005.

2. American National Standards Institute (ANSI) X9.F1 subcommittee. ANSI X9.63
Public key cryptography for the Financial Services Industry: Elliptic curve key
agreement and key transport schemes, July 5, 1998. Working draft version 2.0.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In H. Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 26–45. Springer-Verlag, Aug. 1998.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

5. K. Bentahar, P. Farshim, J. Malone-Lee, and N. Smart. Generic constructions
of identity-based and certificateless KEMs. Cryptology ePrint Archive, Report
2005/058, 2005. http://eprint.iacr.org/.

6. D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption with-
out random oracles. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 223–238. Springer-Verlag, May 2004.

7. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In R. Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 440–456. Springer-Verlag, May 2005.

8. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer-
Verlag, Aug. 2001.

9. D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

10. D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built
using identity-based encryption. In A. Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 87–103. Springer-Verlag, Feb. 2005.

Direct Chosen-Ciphertext Secure IB-KEM Without Random Oracles 347

11. X. Boyen, Q. Mei, and B. Waters. Simple and efficient CCA2 security
from IBE techniques. In ACM Conference on Computer and Communications
Security—CCS 2005, pages 320–329. New-York: ACM Press, 2005. Available at
http://eprint.iacr.org/2005/288/ , August 2005.

12. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

13. S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient ibe scheme
with short(er) public parameters in the standard model. Proceedings of ICISC, to
appear, 2005.

14. C. Cocks. An identity based encryption scheme based on quadratic residues. In
B. Honary, editor, Cryptography and Coding, 8th IMA International Conference,
volume 2260 of LNCS, pages 360–363, Cirencester, UK, Dec. 17–19, 2001. Springer-
Verlag.

15. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 537–554. Springer-Verlag, Aug. 1999.

16. D. Galindo and I. Hasuo. Security notions for identity based encryption. Cryptol-
ogy ePrint Archive, Report 2005/253, 2005. http://eprint.iacr.org/.

17. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng,
editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566. Springer-Verlag,
Dec. 2002.

18. J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In
L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 466–
481. Springer-Verlag, Apr. 2002.

19. IEEE P1363.3 Committee. IEEE 1363.3 / CfS — standard for identity-
based cryptographic techniques using pairings. http://grouper.ieee.org/
groups/1363/index.html/, Feb. 2006. Call for submissions.

20. A. Joux. A one round protocol for tripartite diffie-hellman. In Algorithmic Number
Theory – ANTS IV, volume 1838 of LNCS, pages 385–394. Springer-Verlag, 2000.

21. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and
T. Rabin, editors, TCC 2006, LNCS, pages 581–600. Springer-Verlag, Mar. 2006.

22. E. Kiltz and D. Galindo. Direct chosen-ciphertext secure identity-based
key encapsulation without random oracles, Jan. 2006. Available at
http://eprint.iacr.org/2006/034/ .

23. D. Naccache. Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369, 2005. http://eprint.iacr.org/.

24. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In 21st ACM STOC, pages 33–43. ACM Press, May 1989.

25. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM STOC, pages 387–394. ACM Press, May 1990.

26. Secure hash standard. National Institute of Standards and Technology, NIST FIPS
PUB 180-1, U.S. Department of Commerce, Apr. 1995.

27. A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and D. Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer-
Verlag, Aug. 1985.

28. V. Shoup. A proposal for an ISO standard for public key encryption (version 2.1).
manuscript, 2001. Available on http://shoup.net/papers/.

29. B. R. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127.
Springer-Verlag, May 2005.

Generic Transforms to Acquire CCA-Security
for Identity Based Encryption:

The Cases of FOpkc and REACT

Takashi Kitagawa1, Peng Yang2, Goichiro Hanaoka1, Rui Zhang1,
Hajime Watanabe1, Kanta Matsuura2, and Hideki Imai1

1 Research Centre for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST)

Akihabara-Daibiru Room 1102, 1-18-13 Sotokanda,
Chiyoda-ku, Tokyo, 101-0021, Japan

{t-kitagawa, hanaoka-goichiro, r-zhang, h-watanabe, h-imai}@aist.go.jp
2 Institute of Industrial Science, University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan

{pengyang, kanta}@iis.u-tokyo.ac.jp

Abstract. Fujisaki-Okamoto (FOpkc) conversion [13] and REACT[17]
are widely known to be able to generically convert a weak public key
encryption scheme to a strong encryption scheme. In this paper, we dis-
cuss applications of FOpkc conversion and REACT to Identity Based
Encryptions (IBE). It has not been formally verified yet that whether
these conversions are generic in the IBE setting.

Our results show that both conversions are effective in the IBE case:
plain REACT already achieves a good security reduction while the plain
FOpkc conversion results in bad running time of the simulator. We fur-
ther propose a simple modification to the plain FOpkc that solves this
problem. Finally, we choose some concrete parameters to explain (visu-
ally) the effect of how the modified FOpkc substantially improves reduc-
tion cost regarding the plain conversion.

1 Introduction

Identity based encryption (IBE) [18] is a public key encryption scheme where
the encryption key can be an arbitrary string, such as the recipient’s identity,
thus the distribution of public key certificates can be avoided. However, only
recently did the first practical full-functional IBE schemes [7, 9] came into birth,
which are proven secure in the random oracle model [10, 3]. Subsequent research
further extended to the standard model [8, 5, 4, 19].

It has been shown [1] that the strongest security notion for IBE is indistin-
guishability against adaptive chosen ID and adaptive chosen ciphertext attacks
(IND-ID-CCA). Nevertheless, in the random oracle model, many IND-ID-CCA IBE
schemes (like [7, 14]) are often built with the following strategy:Full Scheme =
Basic Scheme + Transform where the basic scheme is the one appeared in [6, 7]
and the transform may be those proposed previously for public key encryptions,

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 348–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Generic Transforms to Acquire CCA-Security for Identity Based Encryption 349

like FOcrypto [12], FOpkc [13] and REACT [17]. We have confirmed that the
FOcrypto conversion is generic for any CPA-secure IBE [20]. Here, we would
like to consider the FOpkc and REACT conversions.

Related Work. As mentioned already, Boneh and Franklin proposed the first
practical IBE scheme which became the base for many related researches. Their
proof was quite loose, however, nobody had considered how to improve the se-
curity reduction cost of their proof, even nobody had challenged the correctness
of their proof until recently, Galindo [14] noticed a small flawed step in the proof
of Boneh-Franklin’s paper, however, the reduction in Galindo’s corrected proof
was even looser. We also note that in fact, the proof given in [7, 14] did not
take account of applying generic FO transforms but has mainly considered how
to reduce the security of the “full” scheme to that of an IND-CCA public key
encryption scheme.

Another variant of Boneh-Franklin IBE scheme with tighter security reduction
was given by Libert and Quisquater [16], with a REACT-like appearance.

Our Results. We prove that these conversions (FOpkc and REACT) can be
applied to IBE generically with good reduction costs. More precisely, applying
the plain FOpkc to Boneh-Franklin’s basic scheme, one immediately acquires
the scheme proposed recently by Galindo [14], yet with a very loose security
reduction. Recall that in the public key setting, the FOpkc conversion can be
proven with a “tight” security reduction to its underlying primitives.

However, we can partially overcome this problem with a tiny modification to
the plain FOpkc. The modification is itself very simple and computationally
efficient: just hash the ID with other inputs to the random oracle. However, this
simple idea actually works! The modified FOpkc conversion admits exactly tight
reduction reduction as its public key counterpart. On the other hand, the plain
REACT already gives a good reduction cost, without any modification. Inter-
estingly, these results may indicate a separation between the chosen plaintext
attack (CPA) and plaintext checking attack (PCA) in the IBE setting.

We further choose some concrete parameters to explain how the modified
FOpkc improves the reduction cost, by estimating the average running time of
the simulator. For chosen parameters, using a single PC (or a single dedicated
hardware), an IND-ID-CCA adversary breaks the IND-ID-CCA security of “the
basic Boneh-Franklin scheme + the plain FOpkc conversion” with about 1024

years in addition to break the IND-ID-CPA security of the basic Boneh-Franklin
scheme. However, it needs only additional 108 or 109 years in the case of the mod-
ified FOpkc conversion. Consider possible paralleled computing, say 1 million
PCs, this becomes 102 ∼ 103 years.

Remark 1. Besides the IND-ID-CCA security, there is an another weaker secu-
rity notion for IBE, called security against selective ID (sID) attack [8]. This
security notion is also very useful and has applications in constructing CCA-
secure public key encryptions. However, with similar discussions of this paper,
one can reach similar results for sID secure IBE: the FOpkc (REACT) are also

350 T. Kitagawa et al.

feasible to upgrade weak sID secure IBE to acquire CCA security, and the reduc-
tion costs follow naturally the discussions above.

2 Preliminary

In this section we review the definition of IBE, several conventions and security
notions.

Identity Based Encryption. Formally, an IBE scheme Π = {S,X , E ,D}
consists of the four algorithms.

– S, the setup algorithm, takes as input security parameter k ∈ Z, and out-
puts system parameters params and the master-key master-key. params has
a description of a message space MSPC and a ciphertext space CSPC.

– X , the extraction algorithm, takes as input params, master-key and an arbi-
trary ID ∈ {0, 1}∗, and outputs a private key d. ID is an arbitrary string and
it is used as a public key. d is the corresponding private key.

– E , the encryption algorithm, takes as input params, ID and M ∈ MSPC, and
outputs a ciphertext C ∈ CSPC.

– D, the decryption algorithm takes as input params, a ciphertext C ∈ CSPC
and a private key d, and outputs the corresponding plaintext M ∈ MSPC.

IND-ID-CCA Security and IND-ID-CPA Security. Boneh and Franklin [7] de-
fined the indistinguishability (IND) for IBE schemes. An IBE which is indis-
tinguishable against adaptive chosen identity and adaptive chosen ciphertext
attack (IND-ID-CCA) has the strongest security and one which is indistinguish-
able against adaptive chosen identity and chosen plaintext attack (IND-ID-CPA)
has even weaker security.

In their model, the two security notions were defined in the following games.

Setup: The challenger takes a security parameter k and runs S. It gives the
adversary params and keeps the master-key to itself.

Phase 1: The adversary issues queries q1, · · · , qm adaptively, where query qi is
one of: Extraction query or Decryption query. For the detail of these queries,
please see [6].

Challenge: Once the adversary decides that Phase 1 is over it outputs a pair
of messages M0, M1 ∈ MSPC of equal length and an ID∗ on which it wishes
to be challenged. ID∗ must not have appeared in any Extraction query
in Phase 1. The challenger picks a random bit b ∈ {0, 1} and sets C∗ =
E(params, ID∗, Mb). It sends C∗ to the adversary.

Phase 2: The adversary issues more queries qm+1, · · · , qn, where query qi is as
in Phase 1. In Phase 2, the adversary cannot ask about neither ID∗ nor C∗.

Guess: Finally, the adversary outputs a result b′ ∈ {0, 1}.

We refer to such an adversary A as an IND-ID-CCA adversary. The advantage
of IND-ID-CCA adversary A is defined as follows: AdvA(k) = |Pr[b = b′]− 1/2|.
The probability is over the random bits used by the challenger and the adversary.

Generic Transforms to Acquire CCA-Security for Identity Based Encryption 351

Definition 1 (IND-ID-CCA). We say that an IBE scheme is secure in the sense
of IND-ID-CCA if AdvA is negligible for any polynomial time algorithm A.

IND-ID-CPA Game. This game is similar to but easier than IND-ID-CCA game
except that the adversary A is more limited. A cannot make decryption queries
to the challenger. The advantage of IND-ID-CPA adversary A is also defined as
follows: AdvA(k) = |Pr[b = b′] − 1/2|. The probability is over the random bits
used by the challenger and the adversary.

Definition 2 (IND-ID-CPA). We say that an IBE scheme is secure in the sense
of IND-ID-CPA if AdvA is negligible for any polynomial time algorithm A.

OW-ID-PCA Security. Roughly speaking, the security goal, onewayness (OW),
means that if given the ciphertext of a random plaintext the adversary cannot
produce the plaintext in its entirety. In the plaintext checking attack model, the
adversary can access to the PC(plaintext checking) oracle which takes as input
a public key ID, a plaintext M and a ciphertext C and outputs “yes” or “no”
whether C is the ciphertext of M . Formally, OW-ID-PCA security is defined by
OW-ID-PCA Game. Due to the space limitation, we omit the formal definition
of OW-ID-PCA game.

Definition 3 (OW-ID-PCA). We say that an IBE scheme is secure in the sense
of OW-ID-PCA AdvA is negligible for any polynomial time algorithm A.

3 The FOpkc Conversion for IBE

It is absorbing to find out an authentic way to enhance weak IBE schemes to
strongly secure ones. In the conventional public key cryptosystems, there exist
some such conversions, and the FOpkc [11, 13] is an example, besides, it is very
efficient and achieves a tight reduction cost. Since an IBE is a different primitive
from traditional public key encryption, one may think these conversions are not
immediately a solution for IBE.

In this section, we investigate the FOpkc for IBE. More interesting result is
that although a most significant merit of the FOpkc is its tight reduction cost
for conventional public key encryption schemes, however, this merit could not
hold if we apply the FOpkc straightforwardly into IBE case. In order to solve the
problem, we slightly revise the plain FOpkc. The modification is quite simple
in shape, but the right thing that we need.

3.1 The Plain FOpkc

Let Π = {S,X , E ,D} be an IND-ID-CPA IBE. Then, we can construct an another
IBE Π1 = {S1,X1, E1,D1} as follows: Let l1 be a bit length of a plaintext of Π ,
l2 be a bit length of a plaintext of Π1 and COIN(k) be Π ’s coin-flipping space.
The conversion is constructed in Table 1.

352 T. Kitagawa et al.

Table 1. The Plain FOpkc

The Plain FOpkc
Setup S1: It is as S . In addition, it picks a hash function H .
Extraction X1: It is as X .
Encryption E1:

It takes a system parameter params, an encryption key ID and a message M .
E1(params, ID, M ; σ) = E

(
params, ID, M‖σ; H(M,σ)

)
,

where σ is a randomly chosen l1 − l2 bit string.
Decryption D1:

Let C be a ciphertext to decrypt.
1. Computes D(params, d, C) = M ′ and let [M ′]l2 = M and [M ′]l1−l2 = σ

where [a]b and [a]b denote the first and the last b bits of a string a, respectively.
2. Tests that E

(
params, ID, M ||σ; H(M, σ)

)
= C. If not, outputs “reject”.

3. Outputs M as the decryption of C.

Theorem 1. Suppose the hash function H is the random oracle and Π is a
γ-uniform IBE encryption scheme. Let B be an IND-ID-CCA adversary which
has advantage ε(k) against Π1 and it runs in time at most t(k). Suppose B
makes at most qH H queries, qE Extraction queries and qD Decryption queries.
Suppose that executing E once needs at most time τ Then there is an IND-ID-
CPA adversary A which has advantage at least (ε(k) + (1/2)− qH/(2l1−l2))(1−
qDγ)− (1/2) against Π. Its running time is t(k) + qH · qD · τ .

Proof. We show how to construct adversaryA by using adversary B as an oracle.
The challenger starts an IND-ID-CPA game by executing S and generates params
and master-key.A works by interacting with B in an IND-ID-CCA game as follows:

Setup: A gives params to B.
Phase 1: Three sorts of queries are answered as follows:

H-queries: A maintains a list of tuples 〈Mi, σi, hi〉 as explained below. We
refer to this list as the H list. The list is initially empty. When B queries
H(Mi, σi), A responds as follows:
1. If the query Mi, σi already appears on the H list in a tuple 〈M, σi, hi〉

then A responds with H(Mi, σi) = hi.
2. Otherwise, A picks a random element hi from COIN(k) of Π .
3. A adds the tuple 〈Mi, σi, hi〉 to the H list and returns hi.

Extraction queries: Let 〈IDi〉 be an Extraction query issued by B. A re-
sponds the corresponding decryption key by using his extraction oracle.

Decryption queries: Let 〈IDi, Ci〉 be a Decryption query issued by B. A
responds as follows:
1. Find a pair of tuples 〈M, σ, h〉 from the H list, such that
E(params, IDi, M‖σ; h) = Ci.

2. Outputs M if there exists such a pair of tuples, or outputs “reject”
otherwise.

Challenge: Once B decides that Phase 1 is over it outputs a public key ID∗

(ID∗ �= IDi) and two messages M0, M1 on which it wishes to be challenged.

Generic Transforms to Acquire CCA-Security for Identity Based Encryption 353

A randomly chooses two l1 − l2 bit strings σ0 and σ1 and sends
〈ID∗, M0‖σ0, M1‖σ1〉 to the challenger.
The challenger picks a random bit b and sets C = E(params, ID∗, Mb||σb).
Then A gives C as the challenge to B.

Phase 2: Three sorts of queries are answered as the same as in Phase 1.
Guess: Once B decides that Phase 2 is over it outputs a guess b′.

After B outputs the guess b′, A outputs this bit b′ as his answer.
In order to calculate the reduction cost, we first define the five events as

follows:

– F: A fails to answer a decryption query at some point during the game.
– SA: A fails to answer a decryption query at some point during the game.
– SB: B wins the IND-ID-CCA game in the case that event F does not occur.
– A0: B queries H(Mb, σb).
– A1: B queries H(Mb̄, σb̄).

Then, we have, Pr[SB] = Pr[SB|A0] Pr[A0] + Pr[SB|¬A0 ∧ A1] Pr[¬A0 ∧A1] +
Pr[SB|¬A0 ∧ ¬A1] Pr[¬A0 ∧ ¬A1]
and Pr[SA] = Pr[SA|A0] Pr[A0] + Pr[SA|¬A0 ∧ A1] Pr[¬A0 ∧ A1] + Pr[SA|¬A0 ∧
¬A1] Pr[¬A0 ∧ ¬A1].

From the specification of A, the following equations holds: Pr[SA|A0] = 1,
Pr[SA|¬A0 ∧ A1] = 0 and Pr[SB|¬A0 ∧ ¬A1] = Pr[SA|¬A0 ∧ ¬A1].

Thus, we have, Pr[SA] − Pr[SB] = (1 − Pr[SB|A0]) Pr[A0] − Pr[SB|¬A0 ∧
¬A1] Pr[¬A0 ∧ ¬A1] ≥ −Pr[¬A0 ∧ A1].

Since Pr[¬A0 ∧ A1] ≤ qH/2l1−l2 , we have Pr[SA] ≥ ε + (1/2)− qH/2l1−l2 .
Next, we estimate Pr[¬F]. The event F occurs only when B submits a Decryp-

tion query 〈ID, C〉 such that C = E
(
params, ID, M‖σ; H(M, σ)

)
without asking

H(M, σ). This case happens with probability at most γ , and therefore, we have
that Pr[¬F] ≤ (1− γ)qD) 1− qDγ.

Hence, we have that AdvA(k) ≥ (ε + 1
2 −

qH

2l1−l2
)(1− qDγ)− 1/2.

Finally, we estimate A’s running time. Since in addition to B’s running time,
A has to run E for qH times for responding to each Decryption query,A’s running
time is estimated as t(k) + qH · qD · τ . �	

Discussion: Running Time of A. Bellare and Rogaway [3] proposed the
notion of exact security, which says, a reduction is meaningful, if given an adver-
sary B against Π , an adversary A can be constructed with essentially the same
amount of time and success probability against Π1. Now we focus on the run-
ning times of A and B. As shown in Theorem 1, there exists a polynomial time
reduction B to A: in the reduction given above A’s running time is estimated as
t(k) + qH · qD · τ where t(k) is B’s running time. Assuming that qH and qD are
estimated as 260 and 240 respectively, A has to run E for 2100 times, which are
computationally infeasible in practice. (Notice that a Decryption query requires
on-line computation, while a G-query only requires off-line hash computation.)

354 T. Kitagawa et al.

3.2 The Modified FOpkc

Since for the plain FOpkc, the adversary A cannot determine the ciphertext
when it is asked a hash query, it has to do re-encryption for all the hash queries
in the list to extract the plaintext. This is essentially why the reduction cost was
bad. Here we shall slightly modify the plain FOpkc: The idea is very simple:
just include the ID as part of a hash query. Though it is very simple, we shall
go on to show it actually solve the above problem.

Let Π = {S,X , E ,D} be an IBE scheme which is secure in the sense of IND-
ID-CPA. We denote the new encryption scheme as Π2 = {S2,X2, E2,D2}. The
modified conversion is almost same as plain conversion. Thus we omit to describe
the formal definition of the modified conversion. We will describe it in the full
paper version.

Theorem 2. Suppose that the hash function H is the random oracle and Π is
γ-uniform IBE encryption scheme. Let B be an IND-ID-CCA adversary which
has advantage ε(k) against Π2 and it runs in time at most t(k). Suppose B
makes at most qH H-queries, qE Extraction queries and qD Decryption queries.
Suppose that encrypting one message needs time τ . Then there is an IND-ID-CPA
adversary A which has advantage at least (ε(k)+(1/2)−qH/(2l1−l2))(1−qDγ)−
1/2 against Π.Its running time is t(k) + qH · τ

Proof. Similar strategy of the proof of Theorem 1 applies here, i.e., construct
IND-ID-CPA adversary A for Π by using IND-ID-CCA adversary B for Π2 as an
oracle. The construction of A is almost same in Theorem 1. The main difference
is how to answer Decryption queries. Due to space limitation, we denote only
how to answer Decryption queries.
A answers Decryption queries as follows: Let 〈IDi, Ci〉 be a decryption query

issued by B.

1. Finds a tuple 〈σj , Mj, IDj , gj , Cj〉 from the H list such that IDi = IDj and
Ci = Cj .

2. Outputs Mj if there exists such a tuple, or outputs “reject” otherwise.

The advantage of A can be evaluate in the same way as in Theorem 1, so we
omit to describe the detail of the evaluation here.

Finally, we estimate the running time of A. Since adding the running time of
B, A has to run E once when a new H-query is asked. Therefore, A’s running
time is estimated as t(k) + qH · τ .

3.3 Comparison: Running Time of A in the Plain FOpkc and the
Modified FOpkc

We compare the running times of simulators for Π1 and Π2. In this comparison,
we especially focus on times to run the encryption algorithm E which is required
for each simulation. It is believed that if a simulator has to run E for more than
280 times, then it does not properly work in a realistic time. Now, we have that

#E(Π1)(∼ 2100) � 280 � #E(Π2)(∼ 260)

Generic Transforms to Acquire CCA-Security for Identity Based Encryption 355

where #E(·) denotes the times to run E in the simulation. This implies that the
running time of the simulator for Π2 is considered realistic.

4 REACT for IBE

REACT[17] was originally designed for (OW-PCA secure) public key cryptosys-
tems, to have CCA security. Again, it was not known if REACT can be applied
to IBE generically. We investigate the fact in this section. Interestingly plain
REACT is not only effective for IBE, but also gives a tight reduction cost, as it
does for traditional public key cryptosystems.

4.1 The Plain REACT for IBE

Let Π = {S,X , E ,D} be an OW-ID-PCA IBE. Let MSPC be a message space
of Π and CSPC be a ciphertext space of Π . Then we can construct another
IBE Π3 = {S3,X3, E3,D3} which is secure against IND-ID-CCA. Let MSPC′

and CSPC′ be a message space and a ciphertext space of Π3. A ciphertext of
Π3 consists of three components c1, c2 and c3. We denote the bit length of
these components l1, l2 and l3 respectively. The definition of Π3 is as follows in
Table 2.

Table 2. The Plain REACT for IBE

The Plain REACT for IBE
Setup S3: It is as S . In addition it picks two hash functions:

G : MSPC → {0, 1}l2 , H : MSPC × MSPC′ × {0, 1}l1 × {0, 1}l2 → {0, 1}l3 .
Extraction X3: It is as X .
Encryption E3: For a massage M and random values R, it gets

c1 = E(paramas, ID, R; r), c2 = G(R) ⊕ M, c3 = H(R,M, c1, c2).
The ciphertext consists of the triple C = (c1, c2, c3).

Decryption D3: We assume that the ciphertext to decrypt is C = (c1, c2, c3).
First it decrypts c1 and gets R. Then it computes K = G(R) and M = c2 ⊕ K.
It returns M if c3 = H(R,M, c1, c2). Otherwise , it outputs “Reject”.

Theorem 3. Suppose the hash functions are random oracles. Let B be an IND-
ID-CCA adversary with advantage ε(k) against Π3 and its running time is t(k).
Suppose B makes at most qG G-queries, qH H-queries, qE extraction queries
and qD decryption queries. Then there is an OW-ID-PCA adversary A
which has advantage 2ε(k) − qD(1

2l2
+ 1

2l3
). Its running time is t(k) +

(qG + qH) ·O(1).

Proof. We show how to construct adversaryA by using adversary B as an oracle.
The challenger starts an OW-ID-PCA game by executing S. Then A works by
interacting with B in an IND-ID-CCA game as follows:

Setup: A gives params to B.

356 T. Kitagawa et al.

Phase 1: Four sorts of queries are answered as follows:
G-queries and H-queries: For each queries, A maintains Glist and H list

and responds queries.
Extraction queries: A responds by using his own extraction oracle.
Decryption queries: Let 〈IDi, c1, c2, c3〉 be a Decryption query issued by

B. A responds as follows:
1. A picks up a tuple 〈R′, M ′, c′1, c′2, c′3〉 from H list such that c3 = c′3.
2. A computes K ′ = G(R′).
3. Checks if c2 = M ′ ⊕K ′. If this holds, A queries 〈IDi, R

′, c1〉 to the
PC oracle.

4. If the PC oracle answers “yes”, A returns M ′ to B. Otherwise, A
outputs “reject”.

Challenge: Once B decides that Phase 1 is over it outputs a public key ID∗

(ID∗ �= IDi) and two message M0, M1 on which it wishes to be challenged.
A sends ID∗ to the challenger and receives a ciphertext C∗. A generates a l2
bit random string c2 and a l3 bit random string c3. A gives 〈C∗, c2, c3〉 to B
as a challenge ciphertext.

Phase 2: Four sorts of queries are answered as the same as in Phase 1.
Guess: Once B decides that Phase 2 is over it outputs a guess b′.

After B outputs a guess b′, A picks all Rs which appear in tuples on the Glist

and the H list. For each R, A queries 〈ID∗, R, C∗〉 to PC oracle. If PC oracle
returns “yes”, A outputs the R as the answer of OW-ID-PCA game.

To estimate the advantage of A, we define the following four events:

– SA: A wins the OW-ID-PCA game
– SB: B wins the IND-ID-CCA game
– AB: B asks a query for G(R∗) or H(R∗, Mb, c1, c2) at some point during the

game
– F: the simulation fails before the event AB occurs

Then we take the same discussion as in the proof of Theorem 1 and we have
that Pr[SB|¬F] Pr[¬F] ≥ ε(k) + (1/2)− Pr[F].

Since Pr[SB|¬F ∧ ¬AB] = 1/2, we also have Pr[SB|¬F] = Pr[SB|¬F ∧ AB]
Pr[AB]+(1/2)(1−Pr[AB]) ≤ (1/2)Pr[AB]+1/2. Hence, we have ((1/2)·Pr[AB]+
1/2)Pr[¬F] ≥ ε(k) + (1/2)− Pr[F], and therefore, Pr[AB] ≥ 2ε(k)− Pr[F].

Next, we estimate Pr[F]. The event F occurs only in either (1) B submits a
Decryption query 〈ID, c1, G(R) ⊕ M, c3〉 such that c1 = E(params, ID, R; r) and
c3 = H(R, M, c1, G(R)⊕M) without asking G(R), or (2)B submits a Decryption
query 〈ID, c1, c2, H(R, M, c1, c2)〉 without asking H(R, M, c1, c2).

The case (1) and (2) happen with probability at most 2−l2 and 2−l3, re-
spectively, and therefore, we have that Pr[F] ≤ 1 − (1 − (1/2l2) − (1/2l3))qD)
qD((1/2l2) + (1/2l3)).

If B wins the IND-ID-CCA game, then A also win the OW-ID-PCA game.
Therefore, Pr[SA] ≥ Pr[SB]. Hence, we have that AdvA(k) = Pr[SA] ≥ Pr[SB])
2ε(k)− qD((1/2l2) + (1/2l3)).

Generic Transforms to Acquire CCA-Security for Identity Based Encryption 357

Finally, we estimate a running time of A. Addition to the running time of B,
A has to answer the G and H queries. Thus A’s running time is t(k) + (qH +
qG) ·O(1).

The Reduction Efficiency of REACT for IBE. As shown in Section 3.2,
the reduction cost of the plain FOpkc is inefficient. Using our simple technique
which we put ID to a part of the hash function’s inputs, the reduction cost
could significantly decreases. Unlike the plain FOpkc, the plain REACT already
gives a tight reduction cost for IBE. We remark that this is mainly caused by
the PC oracle, which implicitly handles the ID by its definition. The significant
differences of reduction costs may indicate a separation between these two attack
models: CPA and PCA.

5 Numerical Explanation

In this section, we evaluate how much better on the cost of security reduction
the modified FOpkc is than the plain FOpkc by numerical explanation and
show what this result means in the real world. As shown in Theorem 1, the plain
FOpkc gives a polynomial time reduction and, looking at the coefficient of ε,
the reduction seems tight, which means that the adversary’s advantage against
the underlying scheme and that of transformed scheme are close. Therefore, at
a glance, merit of the modified FOpkc seems not considerable.

However, we notice that the other terms except for ε term have a significant
influence on the reduction cost in the plain FOpkc. So, here, we compare the
plain FO and our modified FOpkc by strictly estimating T ′ (= t′/ε′) where T ′

is intuitively the average time for an adversary to succeed in the attack for the
basic IBE scheme. We let Boneh and Franklin’s scheme (BF-IBE) [7] be the
underlying IBE scheme.

Parameter Setting. Let T ′ and T be t′/ε′ and t/ε, respectively, where T ′ and T
are the expected computational times to succeed in breaking the underlying IND-
ID-CPA IBE scheme and the transformed IND-ID-CCA IBE scheme, respectively,
assuming that a t′-time adversary can break the underlying IBE with advantage
ε′ and a t-time adversary can break the transformed IBE with advantage ε.

If the value T ′ is close to T , the reduction is said to be tight. On the other
hand, if T ′ is much larger than T , the reduction is not tight and the adversary
might not break the underlying IBE scheme in practical time. We derive the
relation between T ′ and T of both the plain and the modified FOpkc.

In our estimation, we let qH = 260, qD = 240 and γ = 2−160. We set that l1 −
l2 = 140 which is the bit length of the random coin of both FOpkc conversions.

In the evaluation, we consider the case of ε = 2−10. Encrypting one message
needs one pairing computation in BF-IBE scheme and this is the dominant part.
The running time of fastest pairing algorithms in software and hardware are
about 4.33 msec in software implementation (AthlonXP 2GHz)[2] and 0.85 msec
in hardware implementation (FPGA 15Mhz)[15]. Thus, the running time of the
encryption function τ is set to those values.

358 T. Kitagawa et al.

5.1 T ′ of the Plain and the Modified FOpkc

In the above setting, we evaluate T ′ of the plain FOpkc for BF-IBE:

T ′ ≤ t + qHqDτ

(ε + 1/2− qH/2(l1−l2))(1− qDγ)− 1/2
) T + 2110 × τ.

The additional costs to break BF-IBE scheme (T ′ − T) are 1.00 × 2102 sec
in software implementation and 0.85 × 2100 sec in hardware implementation,
respectively. Each of them needs too long time to break BF-IBE, of course, it is
impossible to calculate in the real world.

In the above setting, we evaluate T ′ of the modified FOpkc for BF-IBE: T ′ ≤
T+2110τ . The additional costs to break BF-IBE (T ′−T) are 1.00×262 in software
implementation and 0.85×260 in hardware implementation, respectively. In this
case, the additional cost is much smaller than that in the plain FOpkc case.

The additional cost is almost for pairing calculations in encryptions and these
operations are easily parallelized. Nowadays, it is not difficult to gather com-
puting resources like millions order PCs or to produce a number of specialized
IC chips. Thus, it can be said that this additional cost will be really feasible to
compute in the near future even in the software implementation case.

Due to the above discussion, we see that if there exists an adversary who
can break the modified FOpkc in a realistic time, then it is also possible to
break the underlying IBE scheme in almost the same computational time. On
the other hand, it is not clear whether the plain FOpkc provides the same level
of security or not. Consequently, we can say that the modified FOpkc achieves
exact security in a strict sense while the plain FOpkc does not.

References

1. N. Attrapadung, Y. Cui, D. Galindo, G. Hanaoka, I. Hasuo, H. Imai, K. Matsuura,
P. Yang, and R. Zhang. Relations among notions of security for identity based en-
cryption schemes. In Latin American Theoretical Informatics (LATIN ’06), volume
3887 of LNCS, pages 130–141. Springer, 2006.

2. P.S.L.M. Barreto. A note on effcient computation of cube roots in
characteristic 3. Cryptology ePrint Archive, Report 2004/305, 2004.
http://eprint.iacr.org/2004/305.

3. M. Bellare and P. Rogaway. The exact security of digital signatures - how to sign
with RSA and Rabin. In Advances in Cryptology - EUROCRYPT ’96, volume 1070
of LNCS, pages 399–416. Springer, 1996.

4. D. Boneh and X. Boyen. Efficient selective-ID identity based encryption without
random oracles. In Advances in Cryptology - EUROCRYPT ’04, volume 3027 of
LNCS, pages 223–238. Springer, 2004.

5. D. Boneh and X. Boyen. Secure identity based encryption without random oracles.
In Advances in Cryptology - CRYPTO ’04, volume 3152 of LNCS, pages 443–459.
Springer, 2004.

6. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology - CRYPTO ’01, volume 2139 of LNCS, pages 213–229.
Springer, 2001.

Generic Transforms to Acquire CCA-Security for Identity Based Encryption 359

7. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003. Full version of [6].

8. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In Advances in Cryptology - EUROCRYPT ’04, volume 3027 of LNCS,
pages 207–222. Springer, 2004.

9. C. Cocks. An identity based encryption scheme based on quadratic residues. In
Proc. of the 8th IMA international conference on cryptography and coding, volume
2260 of LNCS, pages 360–363. Springer, 2001.

10. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology - CRYPTO ’86, volume 263 of
LNCS, pages 186–194. Springer, 1987.

11. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption
at minimum cost. In Proc. of Public Key Cryptography 1999, volume 1560 of LNCS,
pages 53–68. Springer, 1999.

12. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Advances in Cryptology - CRYPTO ’99, volume 1666 of
LNCS, pages 537–554. Springer, 1999.

13. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption
at minimum cost. IEICE Transactions Fundamentals, E83-A(1):24–32, 2000. Full
version of [11].

14. D. Galindo. Boneh-Franklin Identity Based Encryption Revisited. In Proc. of 32nd
ICALP, volume 3580 of LNCS, pages 791–802. Springer, 2005.

15. T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. Barreto. Efficient
hardware for the Tate pairing calculation in characteristic three. In Cryp-
tographic Hardware and Embedded Systems - CHES 2005, volume 3659 of
LNCS, pages 412–426. Springer, 2005. Presentation file is available from
http://islab.oregonstate.edu/ches/ches2005/presentations/.

16. B. Libert and J.J. Quisquater. Identity based encryption without redundancy. In
Proc. of ACNS ’05, volume 3531 of LNCS, pages 285–300. Springer, 2005.

17. T. Okamoto and D. Pointcheval. REACT: rapid enhanced-security asymmetric
cryptosystem transform. In Topics in Cryptology – CT-RSA ’01, volume 2020 of
LNCS, pages 159–174. Springer, 2001.

18. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology - CRYPTO ’84, volume 196 of LNCS, pages 47–53. Springer, 1984.

19. B. Waters. Efficient identity-based encryption without random oracles. In Advances
in Cryptology - EUROCRYPT ’05, volume 3494 of LNCS, pages 114–127. Springer,
2005.

20. P. Yang, T. Kitagawa, G. Hanaoka, R. Zhang, K. Matsuura, and H. Imai. Apply-
ing Fujisaki-Okamoto to identity-based encryption. In Proc. of Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, volume 3857 of LNCS, pages
183–192. Springer, 2006.

Tag-KEM from Set Partial Domain One-Way
Permutations

Masayuki Abe1, Yang Cui2, Hideki Imai3, and Kaoru Kurosawa4

1 NTT Information Sharing Platform Laboratories, Japan
abe.masayuki@lab.ntt.co.jp
2 University of Tokyo, Japan

cuiyang@imailab.iis.u-tokyo.ac.jp
3 Chuo University, Japan

Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST), Japan

h-imai@aist.or.jp
4 Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp

Abstract. Recently a framework called Tag-KEM/DEM was introd-
uced to construct efficient hybrid encryption schemes. Although it is
known that generic encode-then-encrypt construction of chosen cipher-
text secure public-key encryption also applies to secure Tag-KEM con-
struction and some known encoding method like OAEP can be used for
this purpose, it is worth pursuing more efficient encoding method dedi-
cated for Tag-KEM construction.

This paper proposes an encoding method that yields efficient Tag-
KEM schemes when combined with set partial one-way functions such as
RSA and Rabin’s encryption scheme. We also present an efficient Tag-
KEM which is CCA-secure under general factoring assumption rather
than Blum factoring assumption.

Keywords: Tag-KEM, Hybrid Encryption, OAEP, SAEP.

1 Introduction

Hybrid encryption is a combination of public-key and symmetric-key encryption,
which naturally compensates the shortcomings of sole use of each encryption
scheme. The public-key encryption is used to convey one-time session key and the
symmetric encryption is used to encrypt the actual long messages with the session
key. While adaptive chosen-ciphertext security (CCA) [14] is the most desirable se-
curity for hybrid encryption, it has not been studied well what security is required
for each building block to achieve the desirable security in the resulting hybrid en-
cryption. The first general and formal treatment of hybrid encryption is done in
[7, 16]. In their so-called KEM/DEM framework, public-key encryption is gener-
alized to KEM (key encapsulation mechanism) and symmetric-key encryption is
generalized to DEM (data encapsulation mechanism). They show a composition

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 360–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tag-KEM from Set Partial Domain One-Way Permutations 361

theorem such that if both KEM and DEM is CCA-secure, then the resulting hy-
brid encryption is CCA-secure, too. While the KEM/DEM framework is useful in
several aspects, it does not necessarily capture existing efficient schemes such as
Kurosawa-Desmedt scheme [11], Fujisaki-Okamoto scheme [8], and etc.

In [1], another framework called Tag-KEM/DEM was introduced. It strength-
ens KEM to so-called Tag-KEM that takes an extra string as input and guar-
antees authenticity of the string just like a signature scheme does. On the other
hand, the requirement to the DEM part is drastically relaxed in the framework
so that it can only be one-time chosen-plaintext secure (CPA), which can be
satisfied even by simple one-time pad. It is shown in [1] that some KEM can
be transformed to Tag-KEM without increasing the ciphertext length. Further-
more, relatively simple CPA-secure DEMs often yield shorter ciphertexts than
CCA-secure ones. Hence the resulting hybrid encryption schemes from the Tag-
KEM/DEM framework tend to output shorter ciphertexts.

One approach for constructing a secure public-key encryption is to encode
the plaintext and then put it into a trapdoor one-way permutation. There are
many encoding schemes such as OAEP [4], OAEP+ [15], SAEP [5] and so on
that achieve various security and efficiency features. They use hash functions,
modeled as random oracles [3], to add redundancy for the plaintext so that
validity can be tested when the ciphertext is decrypted. [1] shows that some of
these encoding schemes can be used for constructing Tag-KEM just by including
a tag to one of the hash functions. It demonstrates that Tag-KEM can be easily
constructed with known technique but such constructions naturally inherit the
cost of the underlying encoding schemes. This motivates us to design a new
encoding scheme dedicated to Tag-KEM with better efficiency and security.

In this paper, we present a generic encoding method which yields efficient
and CCA-secure Tag-KEM schemes when combined with set partial one-way
permutation functions. It is known that set partial one-way can be implemented
under RSA assumption [9] or Blum integer factoring assumption [6]. Hence our
encoding method implies secure Tag-KEM schemes under these assumptions.
We show concrete implementation under these assumptions. Since these concrete
schemes have limitation to use Blum integers, we also show another scheme whose
security can be reduced to general factoring assumption. Note that one can also
obtain a general-factoring-based Tag-KEM by applying the generic conversion
of [1] to the CCA-secure encryption of [13]. The resulting scheme, however, will
be redundant and slower than our construction.

Compared to existing encoding methods such as OAEP or SAEP, our encoding
method have advantage in the hash computation cost. Roughly speaking, the
hash computation cost of our scheme is 1/3 as shown in Table 1. In particular,
recent progress of attacks against hash functions seem to encourage the use of
secure but more complicated and slower hash functions.

2 Definitions

We follow standard definition of public-key encryption and chosen ciphertext secu-
rity. Some other relevant definitions follow [1] and are shown in the full version [2].

362 M. Abe et al.

2.1 Tag-KEM

Tag-KEM is a set of algorithms (TKEM.Gen, TKEM.Key, TKEM.Enc, TKEM.Dec)
such that

(pk , sk) ← TKEM.Gen(1λ) A probabilistic algorithm that generates public-key
pk and private-key sk . The public-key defines all relative spaces, i.e., spaces
for tags and encapsulated keys denoted by T and KK .

(ω, dk) ← TKEM.Key(pk) A probabilistic algorithm that outputs one-time key
dk ∈ KD and internal state information ω. KD is the key-space of DEM.

ψ ← TKEM.Encpk (ω, τ) A probabilistic algorithm that encrypts dk (embedded
in ω) into ψ along with τ , where τ is called a tag.

dk ← TKEM.Decsk (ψ, τ) A decryption algorithm that recovers dk from ψ and
τ . For soundness,TKEM.Decsk (ψ, τ) = dk must hold for any sk , dk , ψ, and
τ , associated by the above three functions. The algorithm can also output
special symbol ⊥ �∈ KD to present abnormal termination.

Informally, the security of Tag-KEM requires the adversary to fail in distin-
guishing real session key embedded in a given ciphertext and a random string.
Chosen ciphertext attack allows the adversary to access to the decryption oracle.
Let O be the decryption oracle, TKEM.Decsk (·, ·). Let AT be a polynomial-time
adversary. We define the following game:

[GAME.TKEM]

Step 1. (pk , sk) ← TKEM.Gen(1λ)
Step 2. υ1 ← AT

O(pk)
Step 3. (ω, dk1) ← TKEM.Key(pk), dk0 ← KD, δ ← {0, 1}.
Step 4. (τ, υ2) ← AT

O(υ1, dkδ)
Step 5. ψ ← TKEM.Encpk (ω, τ)
Step 6. δ̃ ← AT

O(υ2, ψ)

In Step 6 , AT is restricted not to ask (ψ, τ) to decryption oracle O. Variable
υ1, υ2 are state information of the adversary. Variable dk δ is set to either dk0
or dk1 according to the value of δ ∈ {0, 1}. Such convention is used throughout
the paper unless otherwise noted.

We say that AT (εtkem, t)-breaks Tag-KEM if AT runs in time t and∣∣∣∣Pr[δ̃ = δ]− 1
2

∣∣∣∣ ≥ εtkem.

We say that Tag-KEM is (εtkem, t)-secure if there is no AT which can (εtkem, t)-
break Tag-KEM. We may simply say that Tag-KEM is CCA-secure if the above
holds for any negligible εtkem and any t bounded by polynomial in security
parameter λ. In the random oracle model, we may include maximum number
of oracle queries to the quantities. For instance (εtkem, t, qH) denotes that the
adversary makes up to qH queries to random oracle H . The number of queries
are supposedly bound by a polynomial of λ as well as other parameters.

Tag-KEM from Set Partial Domain One-Way Permutations 363

Observe Tag-KEM has two encryption functions – TKEM.Key for generat-
ing session key and TKEM.Enc for encrypting the session key with a tag. This
structure allows one to use the session key for DEM and then input the resulting
ciphertext as a tag to TKEM.Enc. [1] shows that such composition is secure. That
is, if Tag-KEM is CCA-secure and DEM is one-time secure, then the resulting
hybrid encryption scheme is CCA-secure. See [2] for formal treatment of DEM
and relevant results from [1].

2.2 Set Partial Domain (SPD) One-Wayness

The notion of set partial domain one-wayness was introduced in [9].
Informally, set partial domain one-wayness states that, given a trapdoor per-

mutation f and its output y = f(r||x), it is hard to find a set of S = {r1, · · · , rq}
such that r ∈ S.

Let Fn be a family of trapdoor permutations acting on strings in {0, 1}n. Let
q be a parameter bounded by polynomial in n. We then define set partial one-
wayness problem as follows. Given f ← Fn and y = f(x) for random x ∈ {0, 1}n,
output set S = {r1, . . . , rq} ⊆ {0, 1}s such that r ∈ S, where x = r||z for some
z ∈ {0, 1}n−s.

We say that a probabilistic algorithm Apow (q, t, ε)-breaks the set partial do-
main one-wayness problem on F with regard to s if A solves the above problem
with running time at most t and probability ε. The probability is taken over the
choice of f , x, and random coins of A.

We say that F is (q, t, ε)-set partial domain one-way with regard to s if there
is no probabilistic algorithm Apow which (q, t, ε)-breaks the set partial domain
one-wayness problem. We may simply say that F is q-set partial domain one-way
if any probabilistic poly-time machine A solves the problem only with negligible
probability. It is proven in [9] that RSA is q-set partial domain one-way for any
poly-bounded q.

3 Proposed Tag-KEM from SPD One-Wayness

Rough sketch of our scheme is as follows. We generate a random session-key from
random coin r by applying a cryptographic hash function, which is considered
as random oracle. Then, this random coin r and tag τ are encoded into x =
r||H(r, τ) where H is another random oracle. Then x is encapsulated by applying
a trapdoor permutation.

This section formally proves this simple and generic encode-then-encrypt con-
struction yields Tag-KEM scheme when the trapdoor permutation is set partial
one-way.

3.1 Proposed Tag-KEM

Let Fn be a family of trapdoor permutations acting on strings in {0, 1}n. Let
H : {0, 1}∗ → {0, 1}n−s be a hash function.

364 M. Abe et al.

TKEM.Gen(1λ). On the input of security parameter λ, generate a pair of
(fpk, fsk), where fpk is a public-key and fsk is the trapdoor of Fn.

TKEM.Key(pk). Choose random seed r ∈ {0, 1}s at random, and compute ses-
sion key K by key derivation function H ′

K = H ′(r) (1)

Then output (r, K).
TKEM.Encpk (r, τ). Given a tag τ , first compute

x = r||H(r, τ) (2)

where || denotes concatenation, then output is equal to

ψ = fpk (x) (3)

TKEM.Decsk (ψ, τ). Compute
x = fsk (ψ) (4)

parse the above result as x = r||h, if h = H(r, τ), then output K which is
given by eq.(1). Otherwise, output ⊥.

3.2 Security

Informally, if the underlying PKE f is set partial domain one-way secure, then
the proposed TKEM is CCA-secure. The following theorem formally states it.

Theorem 1. Suppose that the underlying Fn is (q, t′, ε′)-set partial domain one-
way with respect to s. Then for any adversary A that (ε, t, qD, qH , qH′)-breaks the
above Tag-KEM,

ε′ ≥ ε− qD

2n
− qD

2n−s
(5)

t′ ≤ t + O(qD + qH + qH′) (6)

where qD, qH , qH′ denote the number of queries from A to the decryption oracle
and random oracle H and H ′, respectively, and are bounded by qD+qH+qH′ ≤ q.
(in sense of section 2.2)

Proof. The outline of the proof follows the game-modifying method of [15]. We
begin with a TKEM adversary A playing GAME.TKEM. Then we gradually
modify the game so that we can use adversary A to solve a set partial one-way
problem when it wins the game.

On the way of modifying the game, we use the following lemma to bound the
probability transition. Proof of the lemma can be seen in [15].

Lemma 1. [[7], Lemma 6.2] Let P , Q and F be events defined on some proba-
bility space, such that Pr[P ∧ ¬F] = Pr[Q ∧ ¬F], then

|Pr[P]− Pr[Q]| ≤ Pr[F]

Tag-KEM from Set Partial Domain One-Way Permutations 365

Game G0: It is exactly the same as the original GAME.TKEM. Let E0 be the
event that b̃ = b in G0. Similarly, let Ei for i = 1, 2, 3, 4 denote the same event
in game Gi shown in the sequel.

Game G1: Let G1 be modified from G0, such that the following rejection rule
is added: if the target ciphertext ψ∗ was queried to decryption oracle before the
invocation of the encryption oracle, the simulation is stopped immediately. Let
F1 be the above event. Since the same ciphertext happens with probability 1/2n,
summing up to qD decryption queries, it is easy to see that Pr[F1] ≤ qD/2n. Note
that G1 and G0 proceed identically unless F1 occurs, by Lemma 1, we have

|Pr[E0]− Pr[E1]| ≤ Pr[F1] ≤
qD

2n

Game G2: It is the same as G1 except that an additional rejection rule is added
to the decryption oracle. That is, the decryption oracle rejects (ψ, τ) if the
corresponding (r, τ) has never been queried to H beforehand. Let F2 be the event
that the decryption oracle rejects an input in G2 but the input is accepted in G1.
F2 occurs only when H(r, τ) happens to match to the desired value defined by the
input ciphertext. Since H is a random oracle, it happens only with probability
1/2n−s. Summing up to qD decryption queries, we have Pr[F2] ≤ qD/2n−s.
Since G2 and G1 proceed identically unless F2 occurs, we have the following
from Lemma 1:

|Pr[E1]− Pr[E2]| ≤ Pr[F2] ≤
qD

2n−s

Game G3: Here, game G2 is modified so that it aborts immediately on happening
the event that H ′ oracle receives r∗ or H oracle receives (r∗, τ∗). Let F3 denote
this event. Clearly, G3 and G2 proceed identically unless F3 occurs. Hence from
Lemma 1, we have

|Pr[E2]− Pr[E3]| ≤ Pr[F3]

A crucial observation is that, if F3 does not happen, K† = H ′(r∗) and K† �=
H ′(r∗) could happen equally likely because H ′ is a random oracle and H ′(r∗)
is not defined. Therefore, the adversary has absolutely no advantage in distin-
guishing the cases and we can conclude Pr[E3] = 1/2.

Game G4: It is the same as G3 except that the encryption oracle computes
(K†, ψ∗) at the beginning of the game. Since that computation is done based
only on the choice of the random tape of the encryption oracle, it is indepen-
dent from any other part of the game and hence G4 and G3 proceed identically.
Accordingly, we have Pr[E4] = Pr[E3] = 1/2.

Upper bound of F3: We give a upper bound of Pr[F3] by showing a reduction
from adversary A that causes event F3 to an algorithm, say B that breaks the
set partial domain one-way assumption. On input f ∈ F and y∗ = f(r∗, h∗), B
works as follows.

366 M. Abe et al.

1. Set ψ∗ = y∗ and choose K† randomly.
2. Run A on input fpk = f and simulate random oracle H and H ′ and the

decryption oracle by maintaining corresponding input/output lists. These
lists, say H-list, H ′-list, and D-list, are initially empty and have entry of the
form (r, τ, h), (r, K), and (r, τ, y), respectively. (See below for notations.)
For ease of description, we assume that all inputs to these oracles are fresh.
Duplicated inputs are handled trivially by looking up the lists.
H ′-oracle: For every input r, simply select random K from the session-key

domain. Then store (r, K) to the H ′-list and return K.
H-oracle: For every input (r, τ), select a random value h ∈ {0, 1}n−s, store

(r, τ, h) to the H-list, and return h to A. Additionally, compute y =
fpk (r, h) and append entry (r, τ, y) to the D-list. (In this way, the H-list
contains (r, τ, h) whenever (r, τ, y) is in the D-list.)

Decryption oracle: For every query (y, τ), search the D-list for (∗, τ, y).
If there is no matching entry, reject the input due to the rejection rule
settled in Game 1. Otherwise, take the first item in the matching entry
as r. Then make a query r to the simulating H ′-oracle, which works as
described above, and return the given K.

3. Stop the simulation when A stops, or the running time of A comes to t, or
any of the oracle queries achieves to the maximum number.

4. Pick up all the entry of r from the H-list and H ′-list. Then output the
obtained sequence {r1, . . . , rt}.

First of all, observe that B simulates game G4 perfectly unless F3 occurs. (One
important observation is that K∗ = H(r∗) is random because H is a random
oracle. Therefore, K† is random from a view point of A regardless of the value
of b.) When F3 happens, the return value from H (or H ′) is inconsistent and the
simulation is no more correct. Nevertheless, since B cannot fetch the event F3, the
simulation continues until the adversary uses up one of its resources. However,
this is no problem since r∗ is already stored in either H-list or H ′-list at the
moment F3 happens. And that r∗ is included in the final output {r1, . . . , rt}.
Observe that the length t of the final answer does not exceed qD + qH + qH′ by
construction. Hence the list is a valid answer of the set partial domain one-way
problem. Accordingly, we have Pr[F3] ≤ ε′.

Summing Up: By combing the series of games and the boundary observed by
the simulation, we can compute the probability of A wins the GAME.TKEM.

ε
�
= |Pr[E0]− (1/2)|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2]

+ Pr[E2]− Pr[E3]|+ Pr[E3]− Pr[E4]
≤ |Pr[E0]− Pr[E1]|+ |Pr[E1]− Pr[E2]|

+|Pr[E2]− Pr[E3]|+ |Pr[E3]− Pr[E4]|
≤ Pr[F1] + Pr[F2] + Pr[F3]
≤ qD/2n + qD/2n−s + ε′

Tag-KEM from Set Partial Domain One-Way Permutations 367

Note that for emulating the oracles, the simulation should run in time O(qD +
qH + qH′) to keep and record the lists. Thus, total running time of simulation is
bounded by t + O(qD + qH + qH′). This completes the proof. �

4 Comparison

4.1 Previous Tag-KEM Based on SPD One-Wayness

A generic construction of CCA-secure Tag-KEM is shown in [1]. In this con-
struction, TKEM.Key chooses random dk and TKEM.Enc computes

ψ = PKE.Encpk (dk||H̃(τ)), (7)

where PKE.Enc is a CCA-secure encryption scheme and H̃ is a target collision-
free hash function. TKEM.Dec computes dk||τ ′ from ψ. If τ ′ = H̃(τ), it returns
dk. Otherwise it returns ⊥.

Proposition 1. [[1], Theorem 2.] Given that PKE is CCA-secure, and a hash
function H̃ is target collision-free, the Tag-KEM above is CCA-secure, such that,

εtkem ≤ εpke + εtch

where εtch denotes the probability of finding a collision in H̃ .
Furthermore, it is known that a CCA-secure encryption scheme is obtained

from a family of set partial domain one-way permutations F in two ways, based
on OAEP padding [4] and based on SAEP+ padding [5]. Accordingly, we can
construct Tag-KEM schemes based on OAEP padding [4] and based on SAEP+
padding [5] if we assume that there exists a a family of set partial domain one-
way permutations F . These Tag-KEM schemes are illustrated in [2], Tag-KEM
based in OAEP and Tag-KEM based on SAEP+.

In [1], another construction of Tag-KEM is shown which is based on OAEP+.
OAEP+, however, requires 3 random oracles.

4.2 Efficiency

In the encryption of Tag-KEM, the efficiency of TKEM.Enc is more important
than that of TKEM.Key because we can compute TKEM.Key in the preprocessing
phase. Now our TKEM.Enc computes one hash function only as shown in eq.(2).
On the other hand, each of OAEP padding and SAEP+ padding uses two ran-
dom oracles. In addition, the generic construction shown in eq.(7) requires a
target collision-free hash function H̃ . Hence TKEM.Enc of these Tag-KEM must
compute three hash functions. TKEM.Enc of Tag-KEM based on OAEP+ also
must compute three hash functions.

In the decryption of Tag-KEM, the efficiency to check the validity of the
ciphertext is important because no further computation is done if the ciphertext
is rejected at this point. Now in our scheme, TKEM.Dec computes only one hash
function for this purpose. On the other hand, TKEM.Dec of all the previous
schemes must compute three hash functions.

368 M. Abe et al.

Table 1. Number of hash computations

OAEP SAEP+ OAEP+ Proposed
TKEM.Enc 3 3 3 1

Validity check part of TKEM.Dec 3 3 3 1

Table 2. Number of pre-computation hash

OAEP SAEP+ OAEP+ Proposed
TKEM.Key 0 0 0 1

In the pre-processing phase, only one hash function needs to be computed,
which takes a load off the on-line computation.

Using less hash computations is an important practical issue as the hash func-
tions seem getting slower to circumvent the recent progress of attack methods.

5 Concrete Implementations

This section shows several concrete implementations of Tag-KEM based on the
result of the previous section. We focus on introducing the features of each
scheme and put detailed descriptions in the full version [2]. To show set partial
domain one-wayness, the following proposition [6, Corollary 1] given by Copper-
smith is used.

Proposition 2. Given N and a monic polynomial F (x) of degree d, one can
find all roots x0 such that |x0| ≤ N1/d and

F (x0) = 0 mod N

in polynomial time in (log2 N, 2d).

5.1 Based on RSA

It is known that RSA satisfies set partial domain one-wayness [9] under RSA
assumption. Therefore, we can use RSA as F in the proposed Tag-KEM. The
resulting Tag-KEM is CCA-secure under RSA assumption. However, this im-
plementation inherits expensive security reduction cost as well as RSA-OAEP
where the dominant factor is square of the number of hash queries.

5.2 Based on Rabin Function

Rabin encryption scheme is given by f(x) = x2 mod N , where N = pq with two
primes p and q. Since it is not a permutation, we consider a variant such that
p = q = 3 mod 4 and the message space is restricted to

{x | (x/N) = 1, 0 < x < N/2},

where (·/·) denotes Jacobi symbol.

Tag-KEM from Set Partial Domain One-Way Permutations 369

Let n = |N | and s = (n/2) + 1. Then we can show that f satisfies set partial
domain one-wayness with respect to s under Blum integer factoring assumption
based on Proposition 2 by using the same as [5, Proof of Corollary 1]. Intuitively,
this is explained as follows. First we can compute z from y = (r||z)2 mod N and
r ∈ {0, 1}s by using Proposition 2 because z < N1/2. Next it is well known that
computing a square root is equivalent to factoring. Therefore, if there exists
an algorithm which breaks the set partial domain one-wayness, then we can
construct an algorithm which can factor N .

Hencewe canuse this variant asF in the proposedTag-KEM.The resultingTag-
KEM is CCA-secure under Blum integer factoring assumption from theorem 1.

5.3 Based on General Factoring

We finally show this efficient Tag-KEM which is CCA-secure under general fac-
toring assumption. Kurosawa et al showed an encryption scheme [12] such that

f(x) = x +
α

x
mod N,

where N = pq with two primes p and q, and

(α/p) = (α/q) = −1

where (α/p) is Legendre symbol.
Given message encoded in Z∗

N : m ∈ Z∗
N . Let ciphertext C = (E, s, t) where,

E = m +
α

m
mod N

s =
{

0 if (m/N) = 1
1 if (m/N) = −1 t =

{
0 if (α/m mod N) > m
1 if (α/m mod N) < m

Note that N is not a Blum integer. Also, note that we can obtain a quadratic
equation on x from y = f(x) mod N . Then we can show that it satisfies the set
partial domain one-wayness under general integer factoring assumption similarly
to Sec.5.2. Hence we can use this variant as F in the proposed Tag-KEM. The
resulting Tag-KEM is CCA-secure under general integer factoring assumption.

References

1. M. Abe, R. Gennaro, K. Kurosawa and V. Shoup. Tag-KEM/DEM: A New Frame-
work for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM.
Eurocrypt 2005.

2. M. Abe, Y. Cui, H. Imai and K. Kurosawa. Tag-KEM from Set Partial Domain
One-Way Permutations. (full version) See http://eprint.iacr.org/.

3. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In First ACM Conference on Computer and Communication
Security, pages 62–73. Association for Computing Machinery, 1993.

370 M. Abe et al.

4. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption - How to Encrypt
with RSA. In Eurocrypt ’94, LNCS 950, pages 92-111. Springer-Verlag, 1995.

5. D. Boneh. Simplified OAEP for the RSA and Rabin functions. In Advances in
Cryptology – CRYPTO 2001, volume 2139 of LNCS, pages 275–291. Springer-
Verlag, 2001.

6. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerablities. Journal of Cryptology, vol. 10, pp. 233-260, 1997.

7. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

8. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. In M. Wiener, editor, Advances in Cryptology — CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer-
Verlag, 1999.

9. E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP Is Secure under
the RSA Assumption. J. Cryptology 17(2): 81-104. 2004

10. R. Gennaro and V. Shoup. A note on an encryption scheme of Kurosawa and
Desmedt. Technical Report 2004/194, IACR ePrint archive, 2004.

11. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In
Matt Franklin, editor, Advances in Cryptology — CRYPTO 2004, volume 3152 of
Lecture Notes in Computer Science, pages 426–442. Springer-Verlag, 2004.

12. K. Kurosawa, T. Itoh and M. Takeuchi. Public Key Cryptosystem using a Re-
ciprocal Number with the Same Intractability as Factoring a Large Number. In
CRYPTOLOGIA, XII, pp.225-233, 1988.

13. K. Kurosawa, W. Ogata, T. Matsuo, S. Makishima. IND-CCA Public Key Schemes
Equivalent to Factoring n=pq. In Public Key Cryptography 2001 (PKC’01), volume
1992 of Lecture Notes in Computer Science, pages 36–47. Springer-Verlag, 2001.

14. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology — CRYPTO ’91, volume 576
of Lecture Notes in Computer Science, pages 433–444. Springer-Verlag, 1992.

15. V. Shoup. OAEP reconsidered. In Advances in Cryptology – CRYPTO 2001,
volume 2139 of LNCS, pages 239–259. Springer-Verlag, 2001.

16. V. Shoup. ISO 18033-2: An emerging standard for public-key encryption (commit-
tee draft). Available at http://shoup.net/iso/, June 3 2004.

An Extension to Bellare and Rogaway (1993)
Model: Resetting Compromised Long-Term

Keys�

Colin Boyd1, Kim-Kwang Raymond Choo1, and Anish Mathuria2

1 Information Security Institute
Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia
2 Dhirubhai Ambani Institute of Information and Communication Technology

Gandhinagar, Gujarat, India
boyd@isrc.qut.edu.au, raymond.choo.au@gmail.com,

anish mathuria@da-iict.org

Abstract. A security proof in the Bellare–Rogaway model and the ran-
dom oracle model is provided for a protocol closely based on one origi-
nally proposed by Boyd (1996), which enjoys some remarkable efficiency
properties. The model is extended so that it can detect a known weak-
ness of the protocol that cannot be captured in the original model. An
alternative protocol is proposed, provably secure in the extended model
and the random oracle model, and offering the same efficiency features
as the original protocol. Moreover, our alternative protocol provides key
confirmation and forward secrecy. It also allows session keys to be re-
newed in subsequent sessions without the server’s further involvement
even in the event that the long-term key or the earlier session key have
been compromised.

1 Introduction

Protocols for key establishment are a foundational element in communications
security. There has been an enormous amount of research effort expended in
design and analysis of such protocols and yet there are still worthwhile contribu-
tions to be made even in the simple scenario of two users with an on-line server.
For example, it is worthwhile to improve upon the performance cost associated
with such protocols and ensure that the security goals can still be guaranteed.

Gong [9] has shown that protocols using timestamps require fewer messages and
rounds than protocols using nonce-based challenge-response. Boyd [4] proposed a
novel method of achieving key freshness which does not require both participants’
nonces to be passed to the server, thus reducing the number ofmessages and rounds
to the same as that required for timestamp-based protocols. However, a known
weakness of Boyd’s protocol class is that if a user’s long-term key is compromised,
then an attacker can masquerade as that user even after the compromised key is
� The full version of this paper appears in [5].

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 371–382, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

372 C. Boyd, K.-K.R. Choo, and A. Mathuria

replaced with a new one. Moreover, Boyd’s protocol class does not have a proof of
security; its purported security is based on heuristic arguments. The main problem
with the heuristic approach is that it does not provide a clear framework for defining
a “secure” protocol and what constitutes an “attack”. Since this approach does
not account for all possible attacks, the security guarantees are limited and often
insufficient. In contrast, the provable security paradigm for protocols provides a
formal foundation for defining a “secure” protocol and allows rigorous proofs of
security to be developed.

In this paper we prove the original protocol of Boyd secure in the widely
accepted model of Bellare and Rogaway (hereafter referred to as the BR93
model) [3]. In the BR93 model, there exists a powerful adversary who can inter-
act with all the participants, with an aim to learn some information about one
session key. Therefore, one tries to prove the indistinguishability of the session
key (from a random key) for the adversary. The BR93 model has been further
revised several times by several other researchers. However, like many other users
of these models, we find that they are insufficiently rich to capture all reason-
able actions of the adversary. In a practical system we may expect that once
the compromise of a user has been detected, that user will be reset with a new
long-term key and then allowed to continue working. In the type of protocols we
are concerned with this scenario will allow the adversary to masquerade as that
user. However, since there is no notion of resetting in the BR93 model there is
no way to observe such a possibility. Therefore we extend the model to allow
more capabilities for the adversary.

We then propose an alternative protocol, equally efficient in terms of messages
and rounds, that provides protection against the compromise of long-term keys
without taking recourse to revocation lists.

Contributions of Paper. The contributions of this paper are three-fold. (1) A
revised protocol of Boyd [4] is proven secure in the BR93 model and the random
oracle model (also known as the ideal hash model). (2) The BR93 model is ex-
tended to allow more realistic adversary capabilities, under which the proven se-
cure protocol of Boyd becomes insecure. Protocols proven secure in the extended
model will also be secure in the original model. (3) An alternative protocol that
is efficient in both messages and rounds is then shown to be secure in the ex-
tended BR93 model and the random oracle model. It provides key confirmation
and forward secrecy1 and allows session keys to be renewed in subsequent ses-
sions without the server’s further involvement (i.e., re-authentication) even in
the event that the long-term key or the earlier session key have been compro-
mised. We remark that there are very few server-based protocols that achieve
forward secrecy and allow re-authentication in the event that the long-term key
or the earlier session key have been compromised.

1 When the long-term key of an entity is compromised the adversary will be able to
masquerade as that entity in any future protocol runs. However, the situation will
be even worse if the adversary can also use the compromised long-term key to obtain
session keys that were accepted before the compromise. Protocols that prevent this
are said to provide forward secrecy.

An Extension to Bellare and Rogaway (1993) Model 373

Organization of Paper. Section 2 reviews the BR93 model and the mathemat-
ical preliminaries. Section 3 describes a protocol closely based on one originally
proposed by Boyd [4] and provides a proof of its security in the BR93 model.
Section 4 describes the limitation of the proof for the original protocol and ex-
tends the model so that there is capability to reset long-term keys. Section 5
describes an alternative protocol and provides a proof of its security in the ex-
tended model. A comparative summary is presented in Section 6. An extension to
this alternative protocol allows session keys to be renewed in subsequent sessions
without the server’s further involvement even in the event that the long-term
key or the earlier session key have been compromised is also described in this
section. Section 7 presents the conclusions.

2 Provable Security Paradigm for Protocols

Bellare and Rogaway provide the first formal definition for a model of adversary
capabilities with an associated definition of security (which we refer to as the
BR93 model in this paper) in their 1993 paper [3] where they provide mathe-
matical proofs for two-party entity authentication protocols. In the model, there
exist a powerful adversary who can interact with all the participants, with an
aim to learn some information about one session key. Therefore, one tries to
prove the indistinguishability of the session key (from a random key) for the
adversary.

2.1 The Adversarial Model

Informally the adversary, A, is allowed to fully control the communication net-
work by injecting, modifying, blocking, and deleting any messages at will. A can
also request for any session keys adaptively. The adversary interacts with a set of
oracles, each of which represents an instance of a principal in a specific protocol
run. Each principal has an identifier, U . An oracle, Πs

U , represents the actions of
principal U in the protocol run indexed by integer s. Formally, A can adaptively
query the following oracles, as follows:

Send(U, s, m). This query allows A to make U runs the protocol normally. Πs
U

will return to A the same next message that an honest principal, U , would
if sent message m according to the conversation so far. If Πs

U accepts the
session key or halts this is included in the response. A can also use this query
to initiate a new protocol instance by sending an empty message m.

Reveal(U, s). This query models A’s ability to find session keys. If a session key,
Ks, has previously been accepted by Πs

U , then it is returned to A. An oracle
can only accept a key once. An oracle is called unfresh if it has been the
object of a Reveal query.

Corrupt(U). This query returns the oracle’s long-term secret key. A principal is
called corrupted if it has been the object of a Corrupt query. Note that this
query does not return the session key since session keys can be learnt by the
Reveal query or the entire internal state.

374 C. Boyd, K.-K.R. Choo, and A. Mathuria

Test(U, s). Once Πs
U has accepted a session key, Ks,A can attempt to distinguish

it from a random key as the basis of determining security of the protocol. A
random bit b is chosen; if b = 0, then Ks is returned while if b = 1 a random
string is returned from the same distribution as session keys. This query is
only asked once by A.

2.2 Definition of Security

Definition of security in the BR93 model depends on the notion of the partner
oracles to any oracle being tested. The way of defining partner oracles has varied
in different papers using the model. Following recent trends, we define SIDs

U as
the concatenation of all messages that oracle Πs

U has sent and received.

Definition 1. Two oracles are partnered if (1) they have accepted a session
key with the same session identifier (SID), (2) each believes that the other is its
partner, and (3) they agree on the initiator of the protocol.

Definition 2 describes the freshness definition.

Definition 2. An oracle Πs
U is fresh at the end of its execution if (1) Πs

U has
accepted with partner Πt

V (if such a partner exists), (2) Πs
U and Πt

V are un-
opened, and (3) principals U and V are uncorrupted.

The security of the protocol is defined by the following game, G, played between
the adversary and an infinite collection of user oracles Πs

U for U ∈ {U1, . . . , UQ}
and s ∈ N and server oracles Πs

S . Firstly, long-lived keys are assigned to each user
by running the key distribution algorithm Kk on input of the security parameter
k. Then, the adversary, A(1k), is run. A will interact with the oracles through
the queries defined above. At some stage during the execution a Test query is
performed by the adversary to a fresh user oracle. Eventually the adversary
outputs a bit b′ and terminates. Success of the adversary, A, in this game is
measured in terms of its advantage in distinguishing the session key of the Test
query from a random key, i.e., its advantage in outputting b′ = b. This advantage
must be measured in terms of the security parameter k. If we define success to
be the event that A guesses correctly whether b = 0 or b = 1, then

AdvA(k) = |2 · Pr[success]− 1|.

To define validity of a protocol, we use the concept of a benign adversary as
an adversary that faithfully relays flows between participants [3].

Definition 3. A protocol P is a secure key establishment protocol if the follow-
ing two properties are satisfied:

Validity. In the presence of a benign adversary partner oracles conclude with
the same key except for a negligible probability.

Indistinguishability. For every probabilistic polynomial-time adversary, A,
the function AdvA(k) is negligible.

An Extension to Bellare and Rogaway (1993) Model 375

Security of a protocol is proved by finding a reduction to some well known
computational problem whose intractability is assumed (i.e., in this paper, the
Computational Diffie-Hellman (CDH) problem). In addition, we require the no-
tion of an authenticated encryption scheme, which forms the basis of our proof
for Protocol 2 described in Section 5.

2.3 The Computational Diffie-Hellman Assumption

Let G ∈ Z∗
p be a cyclic group of prime order q and g is assumed to be a generator

of G, where G is of prime order. The security parameters, p and q, are defined
as the fixed form q|p− 1 and ord(g) = q.

Computational Diffie-Hellman (CDH) Problem. Given an instance,
(g, gx, gy), output gxy.

A Computational Diffie-Hellman (CDH) attacker, FCDH , in a finite cyclic group
G of prime order q with g as a generator, is a probabilistic machine, *, run-
ning in time t such that the success probability of FCDH when given random
elements, gN1 ∈ G and gN2 ∈ G to output gN1N2 ∈ G, is less than ε, where the
probability is over the random choice of N1 and N2 in Z∗

q . In other words, the
CDH assumption states that the success probability of FCDH for any t

ε is not
too large.

2.4 Secure Authenticated Encryption Schemes

We now define the authenticated encryption scheme that will be employed in
the protocol that we shall prove secure in Section 3.

Let k denote the security parameter. A symmetric encryption scheme SE =
(K, E ,D) consists of three algorithms, namely: the key generation algorithm K,
the encryption algorithm E , and the decryption algorithm D as described below.

– K is a probabilistic algorithm which, on input 1k, outputs a key K.
– E is a probabilistic algorithm which takes a key K and a message M drawn

from a message space M associated to K and returns a ciphertext C. This
is denoted by C

R← EK(M).
– D is a deterministic algorithm which takes a key K and a ciphertext C

and returns the corresponding plaintext M or the symbol ⊥ which indi-
cates an illegal ciphertext. This is denoted as x ← DK(C). We require that
DK(EK(M)) = M for every K ← K(1k).

For security we use the definitions of Bellare & Namprempre [1]. We require that
the symmetric encryption scheme provides confidentiality in the sense of indis-
tinguishability under chosen plaintext attacks (IND-CPA security) and provides
integrity in the sense of preserving integrity of plaintexts (INT-PTXT security).
We note that each of these is the weakest of the properties defined by Bellare and
Namprempre and are provided by either encrypt-then-MAC or by MAC-then-
encrypt constructions. Therefore there are many practical ways of implementing

376 C. Boyd, K.-K.R. Choo, and A. Mathuria

our protocol which can reasonably be expected to satisfy these assumptions. We
now define these concepts more precisely.

For any efficient (probabilistic polynomial time) adversary, X , the confiden-
tiality security is defined in terms of the following game, which we call G1.

1. The challenger chooses a key K ← K(1k).
2. Given access to the encryption oracle, the adversary outputs two messages

of equal length M0, M1 ∈M of her choice.
3. The challenger computes Cb

R← EK(Mb) where b
R← {0, 1}. The bit b is kept

secret from the adversary.
4. The adversary is then given Cb and has to output a guess b′ for b.

We define the advantage of the adversary, X , playing the above game as

Advind−cpa
X (k) = |2 · Pr[b′ = b]− 1|.

Definition 4. The encryption scheme SE is IND-CPA secure if the advantage
of all efficient adversaries playing game G1 is negligible.

For any efficient adversary, F , the integrity security is defined in terms of the
following game, which we call G2.

1. Choose a key K ← K(1k).
2. The adversary, F is given access to the encryption oracle and also a veri-

fication oracle which on input a ciphertext C outputs 0 if DK(C) =⊥ and
outputs 1 if C is a legitimate ciphertext.

3. The adversary wins if it can find a legitimate ciphertext C∗ such that the
plaintext M = DK(C∗) was never used as a query to the encryption oracle.
In this case we say the event forgery has occurred.

We define the advantage of the adversary playing the above game as

Advint−ptxt
F (k) = |2 · Pr[forgery]− 1|.

Definition 5. The encryption scheme SE is INT-PTXT secure if the advantage
of all efficient adversaries playing game G2 is negligible.

3 A Provably-Secure Revised Protocol of Boyd

Protocol 1 is a server-based protocol in which users A and B as well as the
server S contribute to the key value. All parameter choices depend on a security
parameter k. In Protocol 1, the following notations are used: {m}K denotes
an authenticated encryption of some message m under symmetric key K; S
denotes a server who shares long-term symmetric keys KAS and KBS with A
and B, respectively; NA, NB, and KS denote nonces generated by A, B and S,
respectively; and H is modelled as a random oracle. The session key obtained
by A and B at the end of the protocol execution is denoted as KAB.

Protocol 1 is very similar to that proposed by Boyd [4]. Differences are as
follows.

An Extension to Bellare and Rogaway (1993) Model 377

A S B

NA ∈R {0, 1}k A, B, NA−−−−−−−→ KS ∈R {0, 1}k {A, B, KS}KAS , {A, B, KS}KBS , NA−−−−−−−−−−−−−−−−→
NB ∈R {0, 1}k

Decrypt {A, B, KS}KAS

{A, B, KS}KAS , NB←−−−−−−−−−−−−−−−− Decrypt {A, B, KS}KBS

SIDA = NA ‖ NB SIDB = NA ‖ NB

KAB = H(KS ‖ SIDA) KAB = H(KS ‖ SIDB)
Status: ACCEPTED Status: ACCEPTED

Protocol 1. A revised key agreement protocol of Boyd

1. In the earlier protocol of Boyd, the session key is determined by a MAC
function so that the session key is KAB = MAC KS(NA, NB).

2. There is no partnering mechanism (e.g., session identifiers) specified in the
earlier protocol of Boyd. Message exchanges in the real world are seldom
conducted over secure channels. Therefore, it is realistic to assume that
any adversary is able to modify messages at will, which is the case in the
Bellare–Rogaway style models. As Goldreich and Lindell [7, Section 1.3]
have pointed out, such an adversary capability means that the adversary
is able to conduct concurrent executions of the protocol (one with each
party). Therefore, without such partnering mechanism, communicating par-
ties will be unable to uniquely distinguish messages from different sessions.
Hence, in Protocol 1, we define partnership using the notion of session ident-
ifiers, SID2.

3. The key confirmation messages have been removed, which consist of a hand-
shake using the shared secret. These can easily be added in a standard
way [2]. The session key itself must not be used to authenticate the key
confirmation messages, otherwise the adversary can use them to easily dis-
tinguish the session key.

In the full version of this paper [5], we show that if the authenticated encryp-
tion algorithm used in Protocol 1 is secure, then Protocol 1 is also secure. We
then arrive at Theorem 1.

Theorem 1. Let A be any polynomial time adversary against the security of the
protocol and H is modelled as a random oracle. Then there is an integrity adver-
sary, F , and a confidentiality adversary, X against the encrypted authentication
algorithm such that

Pr(successA) ≤ Q · Pr(successF) + Q2 ·QS ·QH · Pr(successX).

2 The security proof of Protocol 1 does not hinge on the difficulty of predicting a valid
session identifier. In fact, we may assume that session identifiers are made publicly
available when the status of the principal becomes “ACCEPTED”.

378 C. Boyd, K.-K.R. Choo, and A. Mathuria

4 An Extension to the BR93 Model

Despite Protocol 1 being proven secure, it has a significant weakness in a realistic
setting (similar to the weakness acknowledged by Boyd in his protocol [4]). It is
inevitable that from time to time long-term keys of users will be compromised,
e.g., theft of a device containing the key. It seems natural that in such a case
the user should be re-issued with a new long-term private key and then allowed
to continue using the protocol. For many server-based protocols this procedure
will not influence the protocol security. However, for Protocol 1 this is not the
case. It is easy to see that an adversary who obtains a long-term key of a user
can continue to use it to masquerade as that user even after a new long-term
key has been issued. The reason that this attack is possible even though we
have proven the protocol secure, is that there is no notion of replacing a long-
term key in the BR93 model: once a party has been corrupted it must remain
so. In other words, once a party, say U1, is corrupted and its long-term key
revealed to the adversary, A, U1 is no longer considered fresh in the sense of
Definition 2.

One of the motivations for this work is to remove a known weakness of the
protocol of Boyd [4] under the effect of a compromise of a long-term key. That
is, even if the adversary, A, has corrupted some party, say U1, A should not be
able to impersonate U1 using the compromised long-term key (of U1) after a new
long-term key has been issued to U1. In order to take into account this sort of
attack we add a new query called Reset to the list of actions that an adversary
is allowed to perform and adjust the definition of freshness.

Reset Query. The Reset(Ui, KNew) query captures the notion of replacement for
a compromised long-term key of principal Ui with a new randomly distributed
key, KNew. When a corrupted Ui is being asked such a Reset query,

– player Ui is re-considered fresh in the sense of Definition 2,
– any oracle(s) ΠU1

i
, . . . , ΠUδ−1

i
that were activated before the Reset query are

unfresh in the sense of Definition 2, and
– subsequent oracles ΠUδ

i
, ΠUδ+1

i
, . . . are considered fresh in the sense of Defi-

nition 2 (unless U1 is corrupted again).

An adversary, A who has access to this new query can always defeat Protocol 1
as follows.

1. A uses Send queries to run the protocol between A and B.
2. Then A issues a Corrupt(A) query to obtain the long-term key of A. This

enables A to decrypt the ticket {A, B, KS}KAS sent to A during a previous
protocol run with B, and hence obtain the key KS contained in it.

3. A now resets A and masquerades as S, replaying the ticket originally sent to
B together with any random value for NA. This activates a fresh oracle Πs

B,
that will choose a nonce NB and accept the session key H(KS ‖ NA ‖ NB).

4. Consequently, A knows the value of this accepted key, in violation of Defi-
nition 3.

An Extension to Bellare and Rogaway (1993) Model 379

In order to avoid the problem, one method is to introduce a validity period
for tickets and to issue a blacklist for tickets that have been compromised. This
is the method suggested by Crispo, Popescu, and Tanenbaum [6] whereby they
show that a large number of users can be accommodated in a practical system. It
is easily checked that this prevents the above attack, since revoked tickets cannot
be replayed by the adversary. However, such an approach entails a considerable
infrastructure (not unlike a public key infrastructure) and might not scale well
to a more realistic environment with a large number of participating entitites.

5 An Efficient and Provably-Secure Protocol in the
Extended Model

Protocol 2 describes our proposed key agreement protocol. In Protocol 2, H0 and
H1 are modelled as random oracles, [·]MK denotes the computation of some MAC
digest using MAC key, MK, {·}KUS denotes the encryption of some message
using encryption key, KUS , that is being shared by some user and the server,
and || denotes the concatenation of messages. We assume that G, q, g, H0, H1
are fixed in advance and known to the entire network, and that each party Pi

has a long-term symmetric key, KPiS , shared with the server, S.

A S B

NA ∈R {0, 1}k {A, B, gNA}KAS−−−−−−−→
{A, B, gNA}KBS−−−−−−−→

NB ∈R {0, 1}k; SIDB =gNA ||gNB

MKAB =H1(A||B||SIDB ||(gNA)NB)
KAB =H0(A||B||SIDB ||(gNA)NB)

SIDA = gNA ||gNB
gNB , [“1”, B, A, SIDB]MKAB←−−−−−−−−−−−−−−−− Delete NB

MKAB = H1(A||B||SIDA||(gNB)NA)
Verify received MAC digest, [“1”, B, A,SIDB]MKAB

KAB = H0(A||B||SIDA||(gNB)NA)

Delete NA

[“2”, A, B, SIDA]MKAB−−−−−−−−−−−−−−−−→ Verify [“2”, A, B, SIDA]MKAB

Status: ACCEPTED Status: ACCEPTED

Protocol 2. A new key agreement protocol with key confirmation and forward secrecy

Informally, Protocol 2 removes the known weakness of Protocol 1, as described
below.

1. Upon completion of an execution of Protocol 2, A and B have accepted
session keys of the same value, KAB = H0(A||B||gNA ||gNB ||gNBNA).

2. Suppose the adversary, A, compromises the long-term key of A, KAS. With
knowledge ofKAS,A candecrypt {A, B, gNA}KAS and learn gNA.A also knows

380 C. Boyd, K.-K.R. Choo, and A. Mathuria

gNB from observing the Protocol 2’s execution. However, finding gNBNA is
equivalent to solving the CDH problem (recall that NA has been deleted from
the internal state of A upon completion of the execution of Protocol 2). More-
over, this implies that Protocol 2 provides forward secrecy since the knowledge
of the compromised long-term keys,KAS or KBS, does not allow the adversary
to find the session key, KAB = H0(A||B||gNA ||gNB ||gNBNA).

Theorem 2. Assuming the Computational Diffie-Hellman (CDH) assumption
is satisfied in G, Protocol 2 is a secure key agreement protocol providing key con-
firmation and forward secrecy when H0 and H1 are modeled as random oracles
and if the underlying message authentication scheme and encryption scheme are
secure in the sense of existential unforgeability under adaptive chosen-message
attack and indistinguishable under chosen-plaintext attack respectively.

The proof for Theorem 2 appears in [5].

6 Comparative Security and Efficiency

Similar to the work of Gong [9] and Boyd [4], our motivation is to design proto-
cols efficient in both messages and rounds. Therefore, we present a comparative
summary of Protocols 1 and 2 with other similar server-based key establish-
ment protocols of Gong [8,9] as described in Table 1. In particular, we compare
Protocols 1 and 2 with the protocol classes defined by Gong where both users
contribute to the session key.

In terms of both messages and rounds, we observe that

– Protocol 1 is as efficient as that obtained by Gong [9] for server-based pro-
tocols with similar goals using timestamps.

– Protocol 2, which provides key confirmation, breaks Gong’s lower bound
since an extra round is required for providing key confirmation in the first
three protocols described in described in Table 1.

Moreover, Protocol 2 removes the known weakness of Protocol 1 under the effect
of a compromise of a long-term key as described in Section 5 at the expense of
computational overhead (i.e., Protocol 2 is more computational expensive due
to the use of Diffie–Hellman exponentation).

We also remark that another attractive feature of Protocol 2 is the exten-
sion which allows session keys to be renewed in subsequent sessions without
the server’s further involvement. The extension to Protocol 2 that allows the
session key to be renewed is described in Protocol 3. This entails A and B
exchanging new nonces N ′

A and N ′
B and computing the new session key as

K ′
AB = H1(A||B||S||N ′

A||N ′
B||gNANB) = K ′

BA.

7 Conclusions

We proved the security of another protocol example, revised protocol of Boyd [4]
– Protocol 1, in the BR93 model. Although Protocol 1 is known to be insecure

An Extension to Bellare and Rogaway (1993) Model 381

Table 1. A comparative summary

Protocols Messages Security proof?
The following three protocols do not provide key confirmation (KC). However, key
confirmation can be provided at the cost of an extra message.
1. Protocol 1 3 (+1 for KC) Proven secure in the BR93

model.
2. Timestamp-

based proto-
col [9]

4 (+1 for KC) No.

3. Nonce-based
protocol [9]

5 (+1 for KC) No.

The following three protocols provide key confirmation.
4. Alternative

protocol using
uncertified
keys [9]

5 No.

5. Hybrid proto-
col [8]

5 No.

6. Protocol 2 4
Proven secure in the extended BR93 model. Protocols proven secure in the extended
BR93 model will also be secure in the BR93 model. Moreover, Protocol 2 provides
both key confirmation and forward secrecy.

A B

N ′
A ∈R {0, 1}k A, N ′

A−−−−−−−→ B, N ′
B←−−−−−−− N ′

B ∈R {0, 1}k

SIDA′ = (N ′
A||N ′

B) = SIDB′

K′
AB = H1(A||B||S||SIDA′ ||gNANB) = H1(A||B||S||SIDB′ ||gNANB) = K′

BA

Protocol 3. An extension to Protocol 2

under reasonable assumptions, this does not show up in the original BR93 model
because there is no capability for the adversary to reset corrupted principals.
We then extended the BR93 model so that it allows more realistic adversary
capabilities, which allows us to detect a known weakness of Protocol 1 that
cannot be captured in the original (BR93) model. We then presented another
protocol (i.e., Protocol 2) that is efficient in both messages and rounds, and then
proved Protocol 2 secure in the extended BR93 model and the random oracle
model.

Future Work. This work allows us to detect a known weakness of the Boyd
key agreement protocol [4] that cannot be captured in the original BR93 model.
It would be interesting to know what other (symmetric-key) protocols may also
have this property. Another possible extension is to investigate and propose a

382 C. Boyd, K.-K.R. Choo, and A. Mathuria

modular proof approach with a formal statement of security that allows server-
based three-party key establishment protocols like those introduced in Table 1
to renew session key(s) in subsequent sessions without the server’s further in-
volvement, even in the event that the long-term key or the earlier session key
are compromised.

References

1. M. Bellare and C. Namprempre. Authenticated Encryption: Relations Among No-
tions and Analysis of the Generic Composition Paradigm. In ASIACRYPT 2000,
volume 1976/2000 of LNCS, pages 531–545. Springer-Verlag, 2000.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. In EUROCRYPT 2000, volume 1807/2000 of LNCS,
pages 139 – 155. Springer-Verlag, 2000.

3. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In
CRYPTO 1993, volume 773/1993 of LNCS, pages 110–125. Springer-Verlag, 1993.

4. C. Boyd. A Class of Flexible and Efficient Key Management Protocols. In CSFW
1996, pages 2–8. IEEE Computer Society Press, 1996.

5. C. Boyd, K.-K. R. Choo, and A. Mathuria. An Extension to Bellare and Rogaway
(1993) Model: Resetting Compromised Long-Term Keys (Full version available from
http://sky.fit.qut.edu.au/~boydc/papers/). In ACISP 2006, LNCS. Springer-
Verlag, 2006.

6. B. Crispo, B. C. Popescu, and A. S. Tanenbaum. Symmetric Key Authentication
Services Revisited. In ACISP 2004, volume 3108/2004 of LNCS, pages 248–261.
Springer-Verlag, 2004.

7. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords
Only (Updated Version available from http://eprint.iacr.org/2000/057/). In
CRYPTO 2001, volume 2139/2001 of LNCS, pages 408–432. Springer-Verlag, 2001.

8. L. Gong. Using One-Way Functions for Authentication. ACM SIGCOMM Computer
Communications Review, 8(11):8–11, 1989.

9. L. Gong. Lower Bounds on Messages and Rounds for Network Authentication Pro-
tocols. In ACM CCS 1993, pages 26–37. ACM Press, 1993.

Graphical Representation of Authorization
Policies for Weighted Credentials

Isaac Agudo, Javier Lopez, and Jose A. Montenegro

Computer Science Department, E.T.S. Ingenieria Informatica
University of Malaga, Spain

{isaac, jlm, monte}@lcc.uma.es

Abstract. This paper elaborates on a solution to represent authoriza-
tion and delegation in a graphical way, allowing users to better interpret
delegation relationships. We make use of Weighted Trust Graph (WTG)
as an instrument to represent delegation and authorization, extending
it to cope with more complicated concepts, and providing a graphical
representation of the level of confidence that exists between two entities
regarding a resource or attribute. We represent the level of confidence for
each pair of entities as a point in an axis diagram, as a set of points, or as
a set of triangular regions depending on the accuracy we need. Then, we
use the same diagram to represent the set of acceptable confidence level,
that we call authorization policy set. In this way, a single diagram can
be used to decide about authorization, thus providing a powerful tool for
systems in which interaction of users is needed.

1 Introduction

Logic programming offers a nice mechanism to represent authorization and del-
egation statements and decisions (see [5, 6, 2] for a list of examples) Statements
are represented as predicates and decisions are based on formulae verification.
There are many logical solutions for formulae verification and it is not difficult
to implement them. However, one disadvantage of logical programming is that
it is not easy to understand and has an obscure transcription. Moreover, the
syntaxis of the different solutions are not homogeneous and, as a consequence,
the learning process of the syntax can be quite hard. When trying to use logic
directly, one has to deal with too many details that might be avoided if one
makes use of a more user-oriented solution. In some sense, logic could be useful
in a second stage, that is, not in the specification phase but in the analysis or
decision-making phase.

On the other hand, there are solutions that, though less powerful, are more
expressive and easier to understand. One of them is to use graphs, and in par-
ticular, directed graphs. Proposals that make use of directed graphs to model
authorization and delegation statements use to map each predicate to a directed
arc in a graph. Arcs go from the issuer of the authorization or delegation state-
ment to the subject who is granted privileges. Thus, the graph includes as many
different arcs as different authorization/delegation statements are considered.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 383–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

384 I. Agudo, J. Lopez, and J.A. Montenegro

The result is a tree where the root usually is the owner of the resource we are
reasoning about. That tree helps to understand the relations among entities in
the system in a graphical way.

Varadharajan et al. have proposed two solutions to represent authorization
and delegation using directed graphs. In [3] they presented a basic approach that
support graphical representation of positive authorization, negative authoriza-
tion and delegation. This solution follows the predecessor-take-precedence policy
to resolve conflicts between positive and negative authorization. In [4] they pre-
sented a more elaborated proposal that makes use of integer numbers to assign
a certainty level to each credential.

Weighted Trust Graphs (WTG), presented in [1] aims to generalize this pro-
posal, defining it in a more flexible way. In fact, that proposal is supported as
a particular case of WTG. WTG follows the predecessor-take-precedence pol-
icy with some refinements and a security level policy. Also, it proposes a new
conflict resolution method, strict-predecessor-take-precedence. It means that the
owner of the resource establishes a hierarchy of subjects and any of the further
delegations made for these subjects has to preserve this hierarchy. For instance,
if A gets from S the higher priority in the hierarchy, all his statements take
preference over the others ones.

The aim of this paper is to present a graphical representation of both au-
thorization policies and the trust on delegation and authorization credentials. It
also elaborates on the idea of acceptance levels for authorizations, defining new
indexes that take into account only a given percentage of credentials (but not
all of them). We give some guidelines for the definition of authorization policies
and provide, as mentioned, a graphical representation.

The rest of the paper has the following structure. In Section 2 we present
a revision of WTG, with some interesting changes with respect to the original
work. Section 3 offers new definitions that make WTG more suitable for certain
environments, providing alternatives to the original definitions. Section 4 focuses
on the concept of authorization policies and we provide an original graphical
representation of them. Section 5 ends with some conclusions.

2 Weighted Trust Graph

In this section we examine WTG, overviewing its main ideas, what will help to
understand better the concepts that will be explained in the following sections.

In WTG, credentials are represented using arcs in a graph, so both terms are
used likewise. A credential is a 4-tuple: (Issuer, Subject, T ype, Right), where
the first component is the issuer of the authorization or delegation statement;
the second one is whom the statement refers to; the third is the type of the
statement; and, finally, the fourth is the right together with the resource we are
reasoning about.

In fact, Right can be represented as a 2-tuple consisting of the resource and
the kind of access, thus Right = (Resource, Access). It must be noted that Type
can be expressed as a 3-tuple composed of the following parameters:

Graphical Representation of Authorization Policies 385

– Weight, which represents the level of trust in this authorization. It is a
number in the interval [0, 1]. A credential with weight zero is equivalent to
a null credential.

– Delegation, which represents whether it is a delegation statement or not.
– Sign, which represents the sign of the statement (either negative or positive).

Negative credentials may override positive ones and the other way around,
depending on the weight.

According to that presentation, WTG defines four types of credentials: posi-
tive delegation, positive authorization, negative delegation and negative autho-
rization, that are graphically represented in figure 1.

a) d)b) c)

Fig. 1. Representation of credentials

Suppose we are reasoning about an attribute a and we have two principals
involved: Alice, the grantor or issuer of the statement and also the owner of the
administrative right over attribute a, and Bob, the subject of the statement.

The simplest type of credential corresponds to the concept of Authorization.
In this situation Alice owns attribute a and she can issue statements regarding
attribute a and attribute ¬a. It is important to note that, even if a and ¬a are
different attributes, they are very related so that the authority about a should
imply the authority about ¬a. For instance, let’s think about the case of the
attributes Female and Male. They are complementary attributes, which means
that Male := ¬Female. In this case, positive authorization regarding Male is
equivalent to a negative authorization regarding Female = ¬Male.

As a result, although we can easily include both attributes a and ¬a in an
authorization chart using positive and negative authorizations, we can not do it
in a delegation chart because we would require six different arcs. This leads us
to the situation of having a more simple graphical representation with only the
four types of statements depicted in Figure 1, but with a meaning different to
the original WTG:

a) Positive delegation. A positive delegation about both a and ¬a.
b) Positive authorization. A positive authorization about a or a negative Au-

thorization about ¬a.
c) Negative delegation. A negative delegation about both a and ¬a.
d) Negative authorization. A negative authorization about a or a positive Au-

thorization about ¬a.

386 I. Agudo, J. Lopez, and J.A. Montenegro

When making decisions regarding authorization to perform certain operations
over a resource, it is necessary to consider all the chains or paths of credentials
from the owner of the resource to the specific subject. WTG defines paths of
credentials as sequences of consecutive credentials, distinguishing between dele-
gation paths (those in which there are only delegation credentials), and autho-
rization paths (delegation paths followed by a single authorization credential).
Only credentials regarding the same Right can be chained, otherwise the result-
ing path makes no sense.

WTG defines metrics over paths. Those metrics help us to measure the rel-
ative authorization power of different paths. It only uses monotone metrics (for
motivation, see [1]). Some examples of metrics are:

– |C|· = |m1||m2| · · · |mn|
– |C|min = min(|m1|, |m2|, . . . , |mn|)
– |C|+ = |m1|+ |m2|+ . . . + |mn|
– |C|max = max(|m1|, |m2|, . . . , |mn|)

where each mi represents an arc/credential in the path C and |mi| refers to the
weight of the arc/credential.

Depending on the domain of the possible values for Weight the metrics pre-
viously defined are increasing or decreasing functions. In particular, the metric
(|C|+, N) is that one used by Ruan et al. in [4]. Note that Ruan define the weight 0
as the higher certainty level, so a higher value for |C|+ represents a ”weaker” path.

However, WTG takes the opposite approach by using (|C|·, [0, 1]) as the met-
ric. In this case, a lower weight represents a ”weaker” path (”weak” means that
if the path C′ is weaker than C, then it should be overridden by C).

The definition of metrics is the key for conflict resolution and allows to mea-
sure the priority of each authorization, or at least to compare them. Although
there are a variety of orders that can be defined using metrics, others can not.
One example is the lexicographic or dictionary order, denoted by <l. In this
case, the lexicographic order refers to the weight of the arcs in a path. When
comparing two paths using the lexicographic order, we start by the closer arc
from the owner of the resource and compare them until we find two arcs with
different weights. At this stage, the path with the lower weight in this arc is
overridden by the other path.

Given a metric, | · |, over paths WTG defines HAB and LAB as the maximum
and minimum weight, respectively, over all the authorization paths from A to B
regarding the same Right. In other words,HAB is the weight of the ”better” path
and LAB is the weight of the ”worst” path. That will help us to define the autho-
rization policies. Note that all the indexes are meaningless without the definition
of an associated policy. Authorization policies will be defined in section 4.

2.1 Re-visiting the Mean Index Concept

WTG original work defined the average weight (Mean index),MAB, for softening
the differences between HAB and LAB . Although this index is very useful, it was
relegated to a second level in that work.

Graphical Representation of Authorization Policies 387

Now, we further elaborate on this concept, providing an algorithmic definition.
MAB will be considered as a graph exploration using a branch and bound alike
algorithm in which we incrementally calculate MAX for each node X that is in
a path from A to B.

We initializate MAX = 0 for all X �= A and MAA = 1, and associate those
values to the corresponding nodes. In order to calculate MAB, it is necessary
to inspect in the first step the principals connected from A with a single arc
(branch phase), and add the weight of the corresponding arc to the weight of
the node.

Then, the negatives nodes are marked as ”non useful” because they can not
further delegate, thus can not be part of any delegation path (bound phase). The
process is repeated until B is reached. The result is that all non-useful nodes are
marked. When reasoning about two principals A and B, the non useful nodes
are omitted and an effective graph containing only the useful nodes is obtained.
The resulting graph is easier to inspect, both visually and arithmetically. Each
time a new arc (credential) is added to the system, we have to update the
values calculated previously. As a consequence, valid nodes may be turned into
negative ones (see Figure 2 for example). A positive delegation arc may imply
a positive authorization arc, i.e. nodes which receive a delegation arc may issue
an authorization arc pointing to themselves. Then, a negative authorization arc
is in conflict with a positive delegation.

1

1

1

0.4

0.4

0.50.5

0.5 0.6

0.25

1

1

1

0.4

0.4
0.5−0.2

−0.9

0.5 0.6

0.2

Fig. 2. Update of Trust Graph

3 Improving Authorization Representation Through
Graphics

In this section we present important improvements to WTG that are of great
value to provide a general solution. That is, these improvements provide alter-
natives to organizations where traditional authorization systems do not fit well.
We also propose here a graphical representation of the authorization strength,
defined as the level of trust that the issuer of the statement gives to the sub-
ject. This graphical representation is specially useful for those organizations that
combine human and computer decisions.

388 I. Agudo, J. Lopez, and J.A. Montenegro

One of the problems that we faced in the initial WTG work is that the Mean
Index was affected negatively by low paths. Hence, adding a new path with a
very low index leaded to a very low Mean Index. The main reason is that the
weights of the credentials were not always normalized.

There is a basic relation among the idexes defined in WTG,

−1 ≤ LAB ≤MAB ≤ HAB ≤ 1

MAB is a index that offers us an average information about the authorization;
however, the computation involved is very hard. On the other hand, HAB and
LAB are less helpful but the computation involved is very simple. Thus, we have
to combine them to reach a balanced solution.

We now present some methods to represent graphically those indexes. Given
two principals A and B, we can represent LAB and HAB in the box [−1, 1] ×
[−1, 1] using the point (HAB,LAB). Moreover, as LAB ≤ HAB, the point should
be in the triangle of vertexes (−1,−1), (1,−1), (1, 1), as shown in Figure 3.a.

Then, the Mean can be represented as the point (MAB,MAB) in the region
HAB ≥ X ,Y ≥ LAB . Once we know how to represent the Mean in the axis, we
may think of making authorization decisions based only in this index. However,
the Mean is a more complex index regarding calculation, and there are cases in
which this means that is not a good representative of the set of path weights.
We could do it only when the Mean is a ”good” representative of the whole set
of path weights.

From the theory of statistics, we know that it is necessary to take a look at
the standard deviation, what informs us how tightly all the weights are clustered
around the Mean. Then, a low deviation informs us that the Mean is a ”good”
mean, while a high deviation represents that there are too many contradictory
statements, so in this case the mean can not be considered as a measure of the
trust strength between A and B and we should define a different mechanism.

In order to avoid computing the deviation, we could represent every path
weight with the point (w, w), where w is the weight of the path. In figure 3.a
we represent the weights as grey filled points and the mean as a bigger dark
point. The representation of these points allow us to know the density of the
path weights around the mean and the indexes LAB and HAB together in the
same axes diagram.

Although figure 3.a gives enough information regarding how good is the Mean
Index, we can simplify this chart in the following way. We define a function that
provides, for a given percentage x, the smallest interval centered in the Mean
Index which contains at least the x percentage of weights.

Definition 1. Let A, B be two entities and

rx := min{y ∈ R : [MAB − y,MAB + y] contains the x% of weights}

Then, we define the x-percentage interval as [Lx
AB,Hx

AB], where Lx
AB :=

max{LAB,MAB − rx} and Hx
AB := min{HAB,MAB + rx}

Graphical Representation of Authorization Policies 389

M AB
 M A

B

(

,

)

HAB L AB(,)

1

−1

1

L

H

(1,1)

(1,−1)(−1,−1)

−1

L

(−1,−1) (1,−1)

(1,1)

−1

1

−1

1 H

(a) Authorization indexes (b) Percentage intervals

Fig. 3. Graphical representation

As a particular case, H100%
AB = HAB and L100%

AB = LAB. We can now represent
those intervals for the cases of x equal to 50%, 75% and 100%, respectively, using
the triangle of vertexes (Lx

AB,Lx
AB), (Hx

AB ,Lx
AB), (Hx

AB ,Hx
AB). We fill them with

different grey color scales, considering that the darker is the color, the lower is
the percentage. We show a sample representation in figure 3.b. If the deviation
is low, then the darker triangles will become small and, on the contrary, if the
deviation is high then the darker triangles will become big.

4 Associated Policies

The owner of the resource or attribute should be able to define different au-
thorization requirements depending on the situation and on the resource or at-
tribute. Note that there could be some critical resources that require a more
restrictive authorization policy, but also other situations in which a non-critical
object become critical and the associated security policy has to be changed. By
separating the definition of the credential from the definition of the policies we
obtain a more flexible authorization system. In this sense, we mean by policies
the way of determining, according to the weights of each credential, if one entity
is authorized by another one to perform an operation.

What we propose in the previous paragraph would allow us to change the
policy according to the credentials defined, and the other way around. In this
section we propose different authorization policies that can be used separately,
or grouped.

One possible authorization policy would be to define an acceptance interval
for the Mean Index. However, we start defining simpler policies which only de-
pends on the simplest indexes HAB and LAB because they are more efficient in
computation time and complexity.

The simplest policy we can think about is to grant the operation if there is
any positive path between the owner of the resource and the subject. The major
drawback of this policy is that positive and negative paths can be in conflict
because we also use negative paths. The case there is a positive path from A to
B translates in our formalism to HAB > 0. This is a must for authorization,

390 I. Agudo, J. Lopez, and J.A. Montenegro

but we need more restrictive conditions. A high restrictive approach would be
to impose LAB > 0, that translates to there are no negative paths from A to B.

If we assign to each pair of entities A, B the bidimensional vector (HAB,LAB)
as done in the previous section, we can represent a policy in an axes diagram as
a subset of the triangle of vertexes (−1,−1), (1,−1) and (1, 1) that include all
the acceptable tuples (HAB,LAB) for that particular operation to be granted.

Once explained the concept of authorization policy, we examine how a policy
set P looks like. Suppose that we have a point inside P , i.e. let A, B be two
entities such that (HAB ,LAB) ∈ P . If A′, B′ are two entities with HA′B′ ≥ HAB

and L′A′B ≥ LAB , this means that the lower path from A′ to B′ is greater than
the lower path from A to B. It occurs similarly with the greater path. So we
conclude that the paths from A′ to B′ are ”better” than the ones from A to B.
As a consequence, the point (HA′B′ ,LA′B′) should be in P too.

Definition 2. We define a bound policy as a subset P of the triangle of vertexes
(−1,−1), (1,−1) and (1, 1) with the following property: (x, y) ∈ P implies that
(x′, y′) ∈ P for all x′ ≥ x, y′ ≥ y.

We say that B is granted authorization from A if (HAB,LAB) ∈ P.

The next authorization policy we include in our solution is based on Definition 2.
In this case, we relax the condition of (HAB,LAB) ∈ P by allowing a few number
of path weights to be out of P .

Definition 3. Given a policy set P , we say B is granted access from A according
to the x-Percent Policy for the set P , if the x percent of path weights are in P .

In particular, if (Hx
AB ,Lx

AB) ∈ P then B is granted by A at x percent.
Based on Definition 2, we define two example policies in which we always force

HAB > 0:

– Absolute bound policy: we choose a lower bound K for the lower path
between two nodes. Only entities with LAB > K will be authorized by this
policy. We may define the policy set formally as

P := {(H,L) : L > K}

– Mean bound policy: we choose a lower bound K for the mean of HAB

and LAB . In this policy, a positive path overrides a lower negative path. A
particular case is when K is equal to zero. Formally,

P := {(H,L) : H+ L > 2K}

In figure 4, we represent some policies in an axis diagram.
In a Mean bound policy, when K = 0, it could happend that HAB = −LAB.

Then, we use the lexicographic order to decide if we grant authorization or not
by using the following procedure: we authorize entities if any of the paths with
the highest weight is greater (using the dictionary order) than all the paths with
the lowest weight. In other words, if there exits a path C with HAB = |C| and
C >L C′ for all C′ with |C′| = LAB

Graphical Representation of Authorization Policies 391

Fig. 4. Different types of policies

We use the lexicographic order to solve the case in which HAB + LAB = 0
but we can use the lexicographic order alone to decide about authorization.
This is the reason why we define a lexicographic policy or hierarchical policy.
We order all the paths from A to B according to the dictionary order and, if
the maximal elements are all positives, then B is authorized. In case there are
maximal negative paths, authorization is denied.

We define a third kind of authorization policy that we name security level
policy. We define a real number K, as in the bound policy, but we use it to
discard credentials with weight lower than K. Thus, we refine the delegation
graph after computing the indexes, discarding all the credentials with a ”low”
weight. After this, we should apply some of the previous policies to decide about
the authorization. We say that a credential path is k-valid if all the arcs in the
path have weight greater or equal than k.

Dean 0.3

Student

1

1

0.5

0.2

Head

Prof 1

Prof 2

Fig. 5. Security level policy

Suppose that we have three different security levels in the system repre-
sented in figure 5. For each security level we choose a different K. In this
case, let K1 = 0.2 be the lower security level, K2 = 0.3 the second one and
K3 = 0.5 the highest level. In order to show how it works we use students
authorizations:

– Level 1 (0.2). In this security level, Student gets access to the resource,
because Professor 2 issued a 0.2-valid statement.

– Level 2 (0.3). In this security level, Student gets access to the resource, but
Professor 2 authorization is not enough because the path goes across himself
if not 0.3-valid. Student needs to use the statement issued by Professor 1.

392 I. Agudo, J. Lopez, and J.A. Montenegro

A C E

D

B
0.8

0.7

0.9 0.2

0.8

0.9

0.6

Fig. 6. Example of delegation/authorization graph

– Level 3 (0.5). In this security level, Student gets no access to the resource,
because there is no any path higher than 0.5 that allows him to access the
resource. The only one who can issue such a statement is the Dean.

4.1 Example of Usability

Consider the example of Figure 6 in which we have five entities {A, B, C, D, E}
and seven credentials. We focus on the relations between A and E.

In this case, HAE = 0.64, LAE = −0.18 and MAE = 0.4225 ∼ 0.42. Then we
calculate the 75% interval for the Mean. We first calculate r75%

r75% := min{y ∈ R : [0.42− y, 0.42 + y] contains the 75% of weights}

r75% = 0.64 − 0.42 = 0.22 so, L75%
AE := max{−0.18, 0.20} = 0.20 and H75%

AE :=
min{0.64, 0.64}= 0.64.

The graphical representation of those indexes is in Figure 7. The grey triangle
represent the 75% interval for the Mean. In this diagram we see that the area of
the grey triangle is more or less half the area of the big triangle, what indicates
that the weight of the paths are clustered around the mean. Hence, the Mean is
a good representative for all the weights.

If we remove the negative path we get a very small triangle. Then, the smaller
the triangle is, the better representative the Mean Index is. Looking at Figure 7.a
we conclude that the Mean Index really represents the overall weights. A com-
puter is also able to reach the same conclusion by inspecting r75% (the smaller
it is, the better representative the mean is).

H

L

(−1,−1) (1,−1)

(1,1)

−1

1

−1

1
(

 ,

)

 0
.4

2

(0.64 , −0.18)

0.
4275%

H

L

(−1,−1) (1,−1)

(1,1)

−1

1

−1

1 H

L

(−1,−1) (1,−1)

(1,1)

−1

1

−1

1

(a) Indexes and (b) Bound set (c) 75% interval
75% interval inside bound set

Fig. 7. Sample bound policy

Graphical Representation of Authorization Policies 393

The next step is to define different authorization policies for the previous
example.

With this information we propose different authorization policies. In the ex-
ample, if we propose a triangle P with their vertexes in the first quadrant (which
means that we do not allow negative credentials for granting authorization) of
the axes, the associated bound policy is that we will deny the authorization to
E because (0.64,−0.18) is not in the first quadrant. If we relax these conditions
and opt for a Percent Policy of 75%, we may define several sets P in the first
quadrant, what will lead us to grant the authorization (see Figure 7.b., 7.c.).

Therefore, we choose if the resource is so critical as to avoid negative credential
or if we allow them but in case the Mean is good enough. In case we decide
to use the lexicographic policy or hierarchical policy we will use the negative
path to decide about authorization because it has the higher weight over all the
first arcs in all paths. Choosing the lexicographic policy will lead to a denial of
authorization from A to E.

A C E

D

B
0.8

0.7

0.9

0.8

0.9

0.6

Fig. 8. Delegation graph after applying the security level policy

Let’s suppose that we apply a security level policy to discard non-relevant
credentials (those which has a ”small” weight). If we choose a bound lower than
0.2 then all credentials remain in the system. But if we choose 0.5 as a security
level bound, we will avoid the negative path (see Figure 8). After that we could
apply any of the previous policies to decide about authorization.

The application of the security level policy changes dramatically the situation.
If we calculate the indexes for the new graph represented in Figure 8 we get
HAE = 0.64, LAE = 0.6 and MAE = 0.623 . . . ∼ 0.62. In this case, the Mean
Index is very accurate (indeed rx ≤ 0.02 for all percentage intervals). We can
compare the two situations according to rx: in the original example, r100% = 0.6
and r75% = 0.22; now r100% = 0.02 and r75% = 0.016 Note that smaller
intervals represent more clustered values.

5 Conclusions

We have presented in this work a major extension for WTG which comprises
three main issues: definition of new indexes, graphical representation of indexes,
and graphical representation of authorization policies.

Because our goal was to integrate this work into a user-oriented application,
we provide a graphical representation of the indexes that is helpful for security
administrators in defining authorization policies.

394 I. Agudo, J. Lopez, and J.A. Montenegro

The graphical representation of indexes has opened the door to the definition
of a graphical representation of policies. Having a graphical representation of
authorization policies allows human decisions to be better included in the sys-
tem. With logic-based frameworks, human interaction in the decision phase is
impossible. However, in our framework, and because the representation of both
policies and authorization (delegation) credentials is graphical, humans can in-
teract based on this graphical information.

References

1. Isaac Agudo, Javier Lopez and Jose A. Montenegro. A representation model of trust
relationships with delegation extension. In 3rd International Conference on Trust
Management, iTrust 2005, volume 3477 of Lecture Notes in Computer Science, pages
116 – 130. Springer, 2005.

2. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A
logic-based approach to distributed authorization. ACM Trans. Inf. Syst. Secur.,
6(1):128–171, 2003.

3. Chun Ruan and Vijay Varadharajan. Resolving conflicts in authorization delega-
tions. In ACISP’02, volume 2384 of Lecture Notes in Computer Science, pages 271
– 285. Springer, 2002.

4. Chun Ruan and Vijay Varadharajan. A weighted graph approach to authorization
delegation and conflict resolution. In ACISP’04, volume 3108 of Lecture Notes in
Computer Science. Springer, 2004.

5. Chun Ruan, Vijay Varadharajan, and Yan Zhang. Logic-based reasoning on delegat-
able authorizations. In ISMIS ’02: Proceedings of the 13th International Symposium
on Foundations of Intelligent Systems, volume 2366 of Lecture Notes in Computer
Science, pages 185–193. Springer, 2002.

6. Chun Ruan, Vijay Varadharajan, and Yan Zhang. A logic model for temporal
authorization delegation with negation. In 6th International Information Security
Conference, ISC 2003, volume 2851 of Lecture Notes in Computer Science, pages
310 – 324. Springer, 2003.

Secure Cross-Realm C2C-PAKE Protocol

Yin Yin1 and Li Bao1,�

State Key Laboratory of Information Security
Graduate School of Chinese Academy of Sciences

Beijing 100049, China
yin@is.ac.cn, lb@is.ac.cn

Abstract. Client-to-client password authenticated key exchange (C2C-
PAKE) protocol deals with the authenticated key exchange process be-
tween two clients, who only share their passwords with their own servers.
Jin Wook Byun et al. first divided this scenario into two kinds called
single-server C2C-PAKE protocol and cross-realm C2C-PAKE protocol
respectively. Recently, Abdalla et al. proposed a generic construction
for single-server C2C-PAKE protocol and presented a concrete example
with security proof. But, no similar results about cross-realm C2C-PAKE
protocol exist. In fact, all existing cross-realm C2C-PAKE protocols are
found insecure. To counter flaws and provide a secure cross-realm C2C-
PAKE protocol, in this paper, we introduce a formal model and corre-
sponding security definitions. Then, a new cross-realm C2C-PAKE pro-
tocol is presented with security proof.

1 Introduction

Key exchange protocol is a sophisticated topic in cryptographical research com-
munity. From the seminal paper of Diffie and Hellman [12], many such proto-
cols have been proposed. The plain form of Diffie Hellman protocol, however,
lacks necessary authentication. To address this problem, some prior information
among participants is required to authenticate their identities, either a common
long term key or a shared short password.

Compared with long term key, password is more preferred because its short
length facilitates humans to remember it in minds. So a roaming user can au-
thenticate himself easily without any assistant devices and put the security only
on the password. But on the other hand password’s short length, which means
low entropy (usually 6-8 ASCII characters), is also the major drawback of the
password-based protocol. A secure password-based protocol must resist the so
called off-line dictionary attack, which enables the adversary to search the pass-
word in the dictionary off-line.

Now, most password-based authenticated key exchange protocols (PAKE)
only consider how to establish a session key between two participants who have
shared a common password in advance, such as PAK protocol suits [8, 14, 15]
� This research is supported by the National Natural Science Foundation of China

under Grant No.90304013.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 395–406, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

396 Y. Yin and L. Bao

and AuthA protocol suits [4, 9, 10, 1]. Following these protocols, if there are n
participants and we want to provide secure communication between every pair
of them, everyone has to remember n−1 different passwords, which is inefficient
and impractical. In order to reduce the number of passwords and improve effi-
ciency, some client-to-client password authenticated key exchange (C2C-PAKE)
protocols have been proposed, such as [11, 13, 17, 16, 2, 3].

To our knowledge, Jin Wook Byun et al. [11] firstly considered and divided
client-to-client password authenticated key exchange protocol into two types:
single-server C2C-PAKE protocol and cross-realm C2C-PAKE protocol.

Single-Server C2C-PAKE Protocol: In this setting, a single universal
trusted third party (TTP) is involved. All clients share their passwords with
the TTP rather than share a password between every pair of clients. So in the
single-server C2C-PAKE protocol, every client only need remember his own pass-
word which enables him to establish a session key with another client through
the TTP.

Recentlly, Abdalla et al. [2] formally addressed this setting and provided a
generic method to construct provably secure single-server C2C-PAKE protocol.
To reduce the generic construction’s complexity and provide a concrete pro-
tocol, the first provable secure single-server C2C-PAKE protocol is proposed
in [3].

Cross-Realm C2C-PAKE Protocol: Compared with normal PAKE protocol,
single-server C2C-PAKE protocol provides an efficient solution for peer commu-
nication in a large group. But due to the single universal TTP assumption, this
solution’s application is limited. When all clients belong to the same corpora-
tion or the same university, the single universal TTP may be available. However,
when clients come from different organizations, it is a natural desire not to put
the whole system’s security on a single TTP. In fact, every organization would
have their own trusted servers to manage members’ passwords and provide ser-
vice for them. If a client shares his password with a server, we say that the client
is in the realm of the server. So every server stores the passwords of all clients
belonging to his realm.

In the two-party password-based protocol, it only needs to ensure that any
outside adversary cannot gain information about the session key or run a suc-
cessful off-line dictionary attack on the password. But in the C2C-PAKE pro-
tocol, a legal client may also try to learn other client’s password after the
execution of the protocol. We call this attack as client’s inside attack. Fur-
thermore, for cross-realm C2C-PAKE protocol, a legal server may also try to
learn the password of the client not belonging to his realm. We call this attack
as server’s inside attack. So a secure cross-realm C2C-PAKE protocol means
that it does not reveal any information about the session key and the pass-
word under off-line dictionary attack, client’s inside attack and server’s inside
attack.

Secure Cross-Realm C2C-PAKE Protocol 397

1.1 Existing Cross-Realm C2C-PAKE Protocols

The first cross-realm C2C-PAKE protocol is proposed by Jin Wook Byun et al.
in [11], denoted as C2C-PAKE-BJLP. Later, in [17], Shuhong Wang et al. found
that a passive server could learn enough information to run an off-line dictionary
attack on a client who does not belong to his realm. As a result, C2C-PAKE-
BJLP is vulnerable to server’s inside attack. To eliminate this flaw, Shuhong
Wang et al. proposed a fix, denoted as C2C-PAKE-WWX.

But quickly in the same year, Jeeyeon Kim et al. [13] found a client’s inside at-
tack which could be applied to both C2C-PAKE-BJLP and C2C-PAKE-WWX.
With this attack, a malicious client could learn other client’s password in the
protocol. Again, to avoid attacks found by them, Jeeyeon Kim et al. proposed a
new cross-realm C2C-PAKE protocol, called C2C-PAKE-KKKW.

Unfortunately, this new protocol C2C-PAKE-KKKW is also insecure found
later by Raphael Chung-Wei Phan et al. in [16]. Chung-Wei Phan et al. pointed
out that C2C-PAKE-KKKW is vulnerable to off-line dictionary attack, client’s
inside attack and server’s inside attack. But they did not provide any fix.

Hitherto, there has been a long sequence of works proposing protocols for
cross-realm PAKE without any proof of security which are subsequently broken.
All existing protocols are summarized in the Table 1.

Table 1. The comparisons of existing cross-realm C2C-PAKE protocols. � denotes
secure, × denotes insecure.

off-line server’s client’s
dictionary attack inside attack inside attack

C2C-PAKE-BJLP [11] � × ×
C2C-PAKE-WWX [17] � � ×
C2C-PAKE-KKKW [13] × × ×

1.2 Organization

In Section 2, we describe our construction of the new cross-realm C2C-PAKE
protocol. To prove its security, we first describe our model and necessary basic
assumptions in Section 3. In Section 4, we discuss the security of our new protocol
and provide details of the proof. Finally, Section 5 concludes our paper.

2 Our Cross-Realm C2C-PAKE Protocol

In this section, we present our cross-realm C2C-PAKE protocol. Our protocol
could be viewed as an extension of the protocol proposed in [3], which is de-
signed for single-server C2C-PAKE. We extend the single server in [3] to two
separate servers and carefully define their inner communication. But for the
outside adversary or the client, all messages obtained in our new protocol and
those obtained in the protocol of [3] are exactly the same.

398 Y. Yin and L. Bao

S

A(pwA) S1(pwA) S2(pwB) B(pwB)

x ∈R Z∗
p , X ← gx y ∈R Z∗

p , Y ← gy

X∗ ← X × H1(pwA) Y ∗ ← Y × H1(pwB)

A, X∗
−−−−→ B, Y ∗

←−−−−
r ∈R Z∗

p r′ ∈R Z∗
p

R ∈R {0, 1}lr R′ ∈R {0, 1}lr

X ← X∗/H1(pwA) Y ← Y ∗/H1(pwB)

X1 ← Xr Y1 ← Y r′
S1, X1−−−−→
S2, Y1←−−−−

Y2 ← Y r
1

X2 ← Xr′
1

Y ∗
2

← Y2× X∗
2

← X2×
H2(R, pwA, X∗

) H2(R′, pwB, Y ∗
)

R, Y ∗
2←−−−−

R′, X∗
2−−−−→

Y 2 ← Y ∗
2

/H2(R, pwA, X∗
) X2 ← X∗

2
/H2(R′, pwB, Y ∗

)

P ← A, B, S1, S2 P ← A, B, S1, S2

T ← R, R′, X∗, Y ∗, X∗
2

, Y ∗
2

T ← R, R′, X∗, Y ∗, X∗
2

, Y ∗
2

α ← Y x
2

β ← X
y
2

sk ← H3(P, T, α) sk ← H3(P, T, β)

Fig. 1. New C2C-PAKE protocol

Four participants are involved in our protocol, denoted as A, S1, B, S2 respec-
tively, where A is a client in the realm of server S1, B is a client in the realm of
server S2, and there is an authenticated private communication channel between
S1 and S2. In practice, the authenticated private communication channel can be
implementedby the key sharedbetween servers in advance or their public keys.The
communication model and work flows are depicted in Figure 1, where H1, H2, H3
are three hash functions modeled as random oracles, lr is a security parameter.

Our construction consists three phases:

Phase 1. In this phase, client A and client B both choose their random input
x, y from Z∗

p . They compute X = gx, Y = gy and blind them as X∗ = X ×
H1(pwA), Y ∗ = Y × H1(pwB). At the end, A sends X∗ to S1 and B sends Y ∗

to S2.

Phase 2. Upon receiving X∗ and Y ∗ from clients, Servers reblind them and
exchange with each other. S1 computes X = X∗/H1(pwA) and reblinds it as
X1 = X

r
, where r is S1’s first random input from Z∗

p . S2 also chooses his
random input r′ from Z∗

p and computes Y1 similarly. Then S1 and S2 exchange
X1 and Y1. After that, S1 computes Y2 = Y r

1 and Y ∗
2 = Y2 × H2(R, pwA, X∗),

where R is S1’s second random input. S2 performs similar operations and gets
X∗

2 . Finally, S1 returns R, Y ∗
2 to client A and S2 returns R′, X∗

2 to client B.

Phase 3. In this phase, client A and client B compute their session key sk.
Client A first computes Y 2 = Y ∗

2 /H2(R, pwA, X∗) and the Diffie-Hellman key
α = Y

x

2 . Then the session key is computed from α and the transcript, sk =
H3(A, B, S1, S2, R, R′, X∗, Y ∗, X∗

2 , Y ∗
2 , α). Similar with the client A, client B also

computes X2 = X∗
2/H2(R′, pwB, Y ∗) and the Diffie-Hellman key β = X

y

2 . Then
he also computes the session key sk = H3(A, B, S1, S2, R, R′, X∗, Y ∗, X∗

2 , Y ∗
2 , β).

Note that the transcript of the protocol is public. So client A and the client B
could collect it by themselves or receive it from servers.

Secure Cross-Realm C2C-PAKE Protocol 399

3 Formal Model for Cross-Realm C2C-PAKE Protocol

The first security model about key exchange protocol is proposed by Bellare
and Rogaway in [6, 7]. And then in 2000, Bellare et al. extended their model
to password-based key exchange protocol [5]. Recently, Abdalla, Fouque and
Pointcheval introduced a formal model for single-server C2C-PAKE protocol in
[2]. Later, this model was used in [3] to prove a concrete single-server C2C-PAKE
protocol. In this section, we follow Abdalla et al.’s formal model to consider cross-
realm C2C-PAKE protocol and formally define the special security requirements
of cross-realm C2C-PAKE protocol.

3.1 Communication Model

We denote A, B as two clients belonging to two different realms. Client A shares
his password pwA with server S1, and client B shares his password pwB with
another server S2. Additionally, we assume there is an authenticated private
channel between server S1 and server S2. In practice, this can be implemented
by a pre-distributed common key shared between S1 and S2 or their public
keys. All clients’ passwords are chosen from the same small dictionary D whose
distribution is Dpw. Each participant may has several instances involved in the
execution of protocol. We denote participant U ’s (maybe a client or a server)
i-th instances as U i. We denote the set of all clients as U , and denote the set of
all servers as S.

The cross-realm PAKE protocol is an interactive protocol among four partici-
pants’ instances: Ai, Bj , Ss

1 , S
t
2. After the protocol, Ai and Bj establish a session

key sk. During the execution of protocol, an adversary A could interactive with
protocol participants via several oracle queries, which model adversary’s possible
attacks in the real execution. All possible oracle queries are listed in the following:

– Execute(Ai, Bj , Ss
1 , St

2): This oracle query is used to simulate eavesdropping
attack of the adversary. After querying the oracle, all messages interacted
between participants during an execution of the protocol are returned to
the adversary. But it should be noted that we assume the communication
channel between servers are private, so this oracle query does not reveal com-
munication messages between servers to the adversary unless the adversary
is a server.

– Reveal(U i): This oracle query is used to simulate the misuse of session keys.
After querying the oracle, the client instance U i’s session key is returned to
the adversary.

– SendClient(U i, m): This oracle query is used to simulate active attack
against the client. After querying the oracle, a message m is sent to the
client instance U i. At the end, client instance U i’s response is forwarded to
the adversary.

– SendServer(Si, m): This oracle query is used to simulate active attack against
the server. After querying the oracle, a message m is sent to the server instance
Si. At the end, server instance Si’s response is forwarded to the adversary.

400 Y. Yin and L. Bao

– Test(U i): This oracle query is not used to simulate adversary’s attack, but to
define session key’s semantic security. After querying the oracle, the session
key of U i or a random number will be returned according to a predefined
random bit b. If b = 1, the adversary would learn the session key of U i;
otherwise the adversary only learns a random number with the same length.
This query can be called only once.

Partnering: As other formal models [5, 2], the relationship of partnering is also
defined through the session identifications (sid). We say U i and U j are partners
if the following conditions are satisfied: (1) Both U i and U j accept; (2) Both
U i and U j own the same sid; (3) U i is U j ’s partner and vice-verse; and (4) No
instance other than U i and U j accepts with a partner identification equal to U i

or U j.

Freshness. We say an instance U i is fresh if it has accepted and no Reveal
queries have been made to it or its partner.

3.2 Assumptions

We briefly introduce some assumptions required by our cross-realm C2C-PAKE
protocol. Let G be a finite cyclic group of prime order p. Let g be a generate
element of G. Denote the tuple G = (G, g, p) as a represented group. Following,
DDH assumption is normal and has been heavily used in many works. PCDDH1
and PCDDH2 assumptions are introduced in [3]. We use them to consider in-
sider attack. More information about these two special assumptions and their
relationship with other assumptions can be found in [3].

Decisional Diffie-Hellman Assumption(DDH). Let G = (G, g, p) be a rep-
resented group. DDH assumption means that given (g, gx, gy), no probabilistic
polynomial time algorithm can distinguish gxy from a random element of G
with non-negligible probability. We define AdvDDH

G
(A) as the probability that

the adversary A could distinguish gxy from a random element of G, and de-
fine AdvDDH

G
(t) as the maximum value of AdvDDH

G
(A) over all A with time-

complexity at most t.

Password-Based Chosen-Basis Decisional Diffie-Hellman Assumption
1(PCDDH1[3]). In the cross-realm C2C-PAKE protocol, a malicious client or
a malicious server would try to learn others’ password. If the client B is malicious
and his goal is to learn client A’s password, we want to ensure that he cannot
distinguish Y ∗

2 = gyrr′ × H2(R, pwA, X∗) from a random number. Informally,
PCDDH1 assumption means that given (gx × H(pw), gxs, gy, gxys), any adver-
sary cannot distinguish gys from a random element of G with non-negligible
probability, where x, s are two private random number and the random number
y is chosen by the adversary. We define AdvPCDDH1

G,N (A) as the probability that
the adversary A could distinguish gys from a random element of G, where N is
the size of the dictionary of pw.

Secure Cross-Realm C2C-PAKE Protocol 401

Password-Based Chosen-Basis Decisional Diffie-Hellman Assumption
2(PCDDH2[3]). We use PCDDH1 assumption when the malicious client B
does not modify the client A’s input X∗. But if X∗ is modified, we need a
new assumption - PCDDH2 assumption. PCDDH2 assumption means that given
(gx, (gx/H(pw))s, gy), any adversary cannot distinguish gys from a random ele-
ment of G with non-negligible probability, where s is a private random number
and the other two random numbers x, y are both chosen by the adversary. We
define AdvPCDDH2

G,N (A) as the probability that the adversaryA could distinguish
gys from a random element of G, where N is the size of the dictionary of pw.

3.3 Security Definition

A secure cross-realm C2C-PAKE protocol should satisfy four security require-
ments: (1)the session key cannot be distinguished from a random number by an
outside malicious adversary; (2)the server does not know the session key between
clients; (3)the client does not know other client’s password; and (4)clients’ pass-
words are not revealed to other servers except for their own servers. Formally,
we define following four security notions:

Semantic Security Against Malicious Outside Adversary: In the Test
query, we require the adversary cannot tell whether the response received from
the Test oracle is the session key or a random number. In other words, the
adversary cannot guess the random bit b used in the Test query with non-
negligible probability larger than 1/2.

We say the adversary succeeds if he correctly guesses the value of b. Let
Succake denote the event that the malicious outside adversary succeeds. Let D
be user’s password dictionary. For any adversary A, we define his advantage
Advake

D (A) as

Advake
D (A) = 2 · Pr[Succake]− 1

Advake
D (t, R) = max

A
{Advake

D (A)}

where the maximum is over all adversaries with time-complexity at most t and
using at most R times oracle queries.

We say P is semantically secure against malicious outside adversary if the
advantage Advake

D is only negligibly larger than O(qs) · Dpw, where qs is the
number of all send queries, Dpw is the distribution of the password dictionary.

Key Privacy Against Passive Server: We require that no information about
the session key is revealed to the server. Note that the server knows all passwords
of his members. So a malicious server is always able to impersonate one of its
member and exchange a session key with another client by active attack. As a
result, we cannot require a malicious server cannot learn the session key.

The passive server S could query two oracles: Execute and Test. We say S
succeeds if he correctly guesses the value of the random bit b used in the Test
query. Let Succkp denote the event that the passive server succeeds. Let D be

402 Y. Yin and L. Bao

user’s password dictionary. For any passive server S, we define his advantage
Advkp

D (S) as

Advkp
D (S) = 2 · Pr[Succkp]− 1

Advkp
D (t, R) = max

S
{Advkp

D (S)}

where the maximum is over all adversaries with time-complexity at most t and
querying oracles at most R times.

We say the protocol P is key private against passive server if the advantage
Advkp

D is negligible.

Password Protection Against Malicious Client: Test oracle query is used
to define the session key’s security, which is not considered in current security
notion. So the malicious client does not have access to Test query. We say C
succeeds if he successfully learns another client’s password. Let Succpw−mc be
the event that the malicious client succeeds. Let D be user’s password dictionary.
For any malicious client C, we define his advantage Advpw−mc

D (C) as

Advpw−mc
D (C) = Pr[Succpw−mc]

Advpw−mc
D (t, R) = max

C
{Advpw−mc

D (C)}

where the maximum is over all adversaries with time-complexity at most t and
querying oracles at most R times.

We say P satisfies password protection against malicious client if the advan-
tage Advpw−mc is only negligibly larger than O(qs) ·Dpw , where qs is the number
of all send queries, Dpw is the distribution of password dictionary.

Password Protection Against Malicious Server: Like the notion of pass-
word protection against malicious client, for any malicious server S, we define
his advantage Advpw−ms

D (S) as

Advpw−ms
D (S) = Pr[Succpw−ms]

Advpw−ms
D (t, R) = max

S
{Advpw−ms

D (S)}

where the maximum is over all adversaries with time-complexity at most t and
querying oracles at most R times.

We say P satisfies password protection against malicious server if the advan-
tage Advpw−ms is only negligibly larger than O(qs) ·Dpw, where qs is the number
of all send queries, Dpw is the distribution of password dictionary.

4 Security Proof

In this section, we examine all security requirements proposed in the subsection
3.3 and show they are all met.

Secure Cross-Realm C2C-PAKE Protocol 403

Semantic Security Against Malicious Outside Adversary: Because of the
high complexity of proof about semantic security against malicious outside ad-
versary, we do not prove our protocol directly but compare it with the protocol
designed in [3]. In [3], Michel Abdalla and David Pointcheval designed a single-
server C2C-PAKE protocol and provided a proof about its semantic security.
It is important to note that the communication between servers is authenti-
cated and private. So for any malicious outside adversary, the communication
between servers is totally secure. From this viewpoint, when considering outside
adversary, we can treat S1 and S2 as a single server. Now it is easy to verify
that our protocol and the protocol in [3] are the same. From the proof pro-
posed in [3], our protocol is also semantically secure against malicious outside
adversary.

Key Privacy Against Passive Server: A passive server only has access to
Execute and Test oracles. Key privacy against passive server is ensured by the
following theorem.

Theorem 1. In our cross-realm C2C-PAKE protocol, a passive server cannot
learn the session key between clients as long as the DDH assumption holds in
the group G. Formally,

Advkp
D (t, qe) ≤ 2qe · AdvDDH

G (t + 8qeτe)

where qe represents the number of queries to the oracle Execute, τe denotes the
exponentiation computational time in G.

Proof. Let S1 be an adversary against the key privacy with time complexity
at most t, who queries Execute at most qe times. Following, we will construct
another adversaryA for DDH assumption using S1. It means that with the input
(g, ga, gb, z), A would guesses whether z = gab.

Firstly, A initializes all system parameters including all clients’ passwords and
the random bit b used in the Test query. Additionally, A chooses an integer t,
1 ≤ t ≤ qe, and supposes the adversary S1 would query the Test on the t-th
Execute query. Then A runs the adversary S1 in this environment and provides
answers for all oracle queries with A’s input and parameters.

Specially, for Execute(Ai, Bj , Ss
1 , St

2) query, A chooses all random inputs
x, y, r, r′, R, R′. Then A computes all communication messages and returns them
to the adversary S1.

But for the t-th Execute query, A computes communication messages based
on his input (g, ga, gb, z). A chooses the random input r, r′, R, R′ and com-
putes X∗ = ga × H1(pwA), Y ∗ = gb × H1(pwB), X1 = gar, Y1 = gbr′

, X∗
2 =

garr′ × H2(R′, pwB, Y ∗) and Y ∗
2 = gbrr′ × H2(R, pwA, X∗). Next A sets the

Diffie-Hellman key α = β = zrr′
and computes the session key as described in

the protocol.
For Test query, A first check whether this Test query is about the t-th

Execute query. If it is not in the case, the adversary A fails; otherwise, A re-
sponses the session key to S1 when b = 1, or responses a random number to S1
when b = 0.

404 Y. Yin and L. Bao

After all interaction, A sets his answer as the answer of the adversary S1. Now
we analyze A’s advantage. If z = gab, the simulation of A is perfect. Hence, the
probability that A outputs 1 is exactly 1/2 + 1/2 · Advkp

D (S1). If z is a random
number, the session key computed in the t-th Execute query is also a random
number. Hence, the probability that A outputs 1 is exactly 1/2. Further note
that with probability 1/qe, the Test query would be called on the t-th Execute
query. So

AdvDDH
G (A) =

1
qe
· (1

2
+

1
2
Advkp

D (S1)−
1
2
)

=
1

2qe
Advkp

D (S1)

The proof of Theorem 1 follows from the fact that A has time complexity at most
t + 8qeτe because of the additional time for the simulation of Execute queries. �

Password Protection Against Malicious Client: In the cross-realm C2C-
PAKE protocol, a malicious client may want to learn other client’s password. In
our protocol, we suppose client B is malicious and his goal is to learn client A’s
password pwA. This security notion is ensured by the following theorem.

Theorem 2. In our cross-realm C2C-PAKE protocol, the malicious client B
cannot learn the client A’s password as long as the PCDDH1 and PCDDH2
assumptions hold in the group G. Formally,

Advpw−mc
D (t, qs) ≤ qs ·max{AdvPCDDH1

G,N (t), AdvPCDDH2
G,N (t)}+ qs/N

where qs represents the number of queries to the oracle SendServer and
SendClient.

Proof. From the execution of the protocol, the malicious client B chooses the ran-
dom number y and learns X∗, gy, R, gyrr′ ×H2(R, pwA, X∗), (X∗/H1(pwA))rr′

.
We would show that gyrr′ × H2(R, pwA, X∗) could be replaced by a random
number. Furthermore, because rr′ is a private random number, X∗, gy and
(X∗/H1(pwA))rr′

are three independent random numbers from which no infor-
mation about pwA is revealed. As a result, the probability that client B correctly
guesses pwA is exactly qs/N after qs times send queries, where N is the size of
the dictionary.

We replace Y ∗
2 with a random number. Let BAD be the event that client B

can distinguish Y ∗
2 from a random number. So we have

Advpw−mc
D (B) ≤ Pr[BAD] + Pr[Succpw−mc|¬BAD]

≤ Pr[BAD] + qs/N

Next we consider the probability of the event BAD.

– If in the execution of the protocol, the client B does not modify X∗, then
the client B also could compute gxyrr′

. If we treat rr′ as a single random

Secure Cross-Realm C2C-PAKE Protocol 405

number s, then what B could learn from the protocol is exactly the previous
information given in PCDDH1 assumption. According to PCDDH1 assump-
tion, BAD’s probability in one execution of the protocol is equal to the
advance of client B in PCDDH1 assumption. Using standard hybrid proof
techniques, we have

Pr[BAD] = qs ·AdvPCDDH1
G,N (B)

– If in the execution of the protocol the client B modifies X∗, we would bound
BAD’s probability by the PCDDH2 assumption. Similarly we have

Pr[BAD] = qs ·AdvPCDDH2
G,N (B)

Hence,

Advpw−mc
D (B) = qs ·max{AdvPCDDH1

G,N (B), AdvPCDDH2
G,N (B)} + qs/N �

Password Protection Against Malicious Server: In our protocol, we sup-
pose S2 is malicious and his goal is to learn client A’s password pwA. We also
prove this security notion through PCDDH1 and PCDDH2 assumptions. But
now the random number s used in the assumptions is defined as r rather than
rr′. Following theorem’s proof is similar as that of Theorem 2.

Theorem 3. In our cross-realm C2C-PAKE protocol, the malicious server S2
cannot learn the client A’s password as long as the PCDDH1 and PCDDH2
assumptions hold in the group G. Formally,

Advpw−ms
D (t, qs) ≤ qs ·max{AdvPCDDH1

G,N (t), AdvPCDDH2
G,N (t)}+ qs/N

where qs represents the number of queries to SendServer and SendClient.

5 Conclusion

From the introduction of cross-realm C2C-PAKE protocol, many implements
have been proposed. But no formal consideration exists and no existing proto-
col could satisfy all security requirements. In fact, which security a cross-realm
C2C-PAKE protocol should provide is never defined clearly. In this paper, we
firstly consider security requirements about this special password-based authen-
ticated key exchange protocol according to different adversaries: outside adver-
sary, inside client and inside server. Formally, we define four security notions: (1)
semantic security against malicious outside adversary, (2) key privacy against
passive server, (3) password protection against malicious client, and (4) password
protection against malicious server.

We design a new cross-realm C2C-PAKE protocol which is the first such
protocol satisfying all four security notions. We also provide formal security
proof under our model and security notions.

406 Y. Yin and L. Bao

References

1. Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time verifier-based
encrypted key exchange. In PKC 2005, LNCS 3386, pages 47–64. Springer, 2005.

2. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based au-
thenticated key exchange in the three-party setting. In PKC 2005, LNCS 3386,
pages 65–84. Springer, 2005.

3. Michel Abdalla and David Pointcheval. Interactive diffie-hellman assumptions with
applications to password-based authentication. In FC 2005, LNCS 3570, pages
341–356. Springer, 2005.

4. M. Bellare and P. Rogaway. The autha protocol for password-based authenticated
key exchange. In Contribution to the IEEE P1363 study group, 2000.

5. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In EUROCRYPT 2000, LNCS 1807,
pages 139–155. Springer, 2000.

6. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO ’93, LNCS 773, pages 232–249. Springer, 1993.

7. Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: the
three party case. In STOC 1995, pages 57–66. ACM, 1995.

8. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using diffie-hellman. In EUROCRYPT 2000, LNCS
1807, pages 156–171. Springer, 2000.

9. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Security proofs for
an efficient password-based key exchange. In CCS 2003, pages 241–250. ACM,
2003.

10. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. New security results
on encrypted key exchange. In PKC 2004, LNCS 2947, pages 145–158. Springer,
2004.

11. Jin Wook Byun, Ik Rae Jeong, Dong Hoon Lee, and Chang-Seop Park. Password-
authenticated key exchange between clients with different passwords. In ICICS
2002, LNCS 2513, pages 134–146. Springer, 2002.

12. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

13. Jeeyeon Kim, Seungjoo Kim, Jin Kwak, and Dongho Won. Cryptanalysis and
improvement of password authenticated key exchange scheme between clients with
different passwords. In ICCSA 2004, Part I, LNCS 3043, pages 895–902. Springer,
2004.

14. Philip D. MacKenzie. More efficient password-authenticated key exchange. In
CT-RSA 2001, LNCS 2020, pages 361–377. Springer, 2001.

15. Philip D. MacKenzie. The pak suite: Protocols for password-authenticated key
exchange. In Submission to IEEE P1363.2, 2002.

16. Raphael Chung-Wei Phan and Bok-Min Goi. Cryptanalysis of an improved client-
to-client password-authenticated key exchange (c2c-pake) scheme. In ACNS 2005,
LNCS 3531, pages 33–39, 2005.

17. Shuhong Wang, Jie Wang, and Maozhi Xu. Weaknesses of a password-
authenticated key exchange protocol between clients with different passwords. In
ACNS 2004, LNCS 3089, pages 414–425. Springer, 2004.

Constructing Secure Hash Functions by
Enhancing Merkle-Damg̊ard Construction

Praveen Gauravaram1, William Millan1, Ed Dawson1,
and Kapali Viswanathan2

1 Information Security Institute (ISI)
Queensland University of Technology (QUT)

2 George Street, GPO Box 2434, Brisbane QLD 4001, Australia
p.gauravaram@isi.qut.edu.au, {b.millan, e.dawson}@qut.edu.au

2 Technology Development Department, ABB Corporate Research Centre
ABB Global Services Limited, 49, Race Course Road, Bangalore - 560 001, India

kapaleeswaran.v@in.abb.com

Abstract. Recently multi-block collision attacks (MBCA) were found
on the Merkle-Damg̊ard (MD)-structure based hash functions MD5,
SHA-0 and SHA-1. In this paper, we introduce a new cryptographic
construction called 3C devised by enhancing the MD construction. We
show that the 3C construction is at least as secure as the MD construc-
tion against single-block and multi-block collision attacks. This is the
first result of this kind showing a generic construction which is at least
as resistant as MD against MBCA. To further improve the resistance of
the design against MBCA, we propose the 3C+ design as an enhance-
ment of 3C. Both these constructions are very simple adjustments to
the MD construction and are immune to the straight forward extension
attacks that apply to the MD hash function. We also show that 3C
resists some known generic attacks that work on the MD construction.
Finally, we compare the security and efficiency features of 3C with other
MD based proposals.

Keywords: Merkle-Damg̊ard construction, MBCA, 3C, 3C+.

1 Introduction

In 1989, Damg̊ard [2] and Merkle [13] independently proposed a similar iter-
ative structure to construct a collision resistant cryptographic hash function
H : {0, 1}∗ → {0, 1}t using a fixed length input collision resistant compression
function f : {0, 1}b × {0, 1}t → {0, 1}t. Since then, this iterated design has
been called Merkle-Damg̊ard (MD) construction which influenced the designs
of popular dedicated hash functions such as MD5, SHA-0 and SHA-1. The de-
sign motivation of the MD construction is that if the compression function f is
collision resistant then so is the resultant iterated hash function H .

It is known that, a compression function f secure against the fixed initial value
(IV) collisions is necessary but not sufficient to generate a secure hash function

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 407–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

408 P. Gauravaram et al.

H [12, p.373]. The latest multi-block collision attacks (MBCA) on the hash
functions MD5, SHA-0 and SHA-1 [19, 1, 17, 18] prove this insufficiency. These
attacks clearly show that these iterated hash functions do not properly preserve
the collision resistance property of their respective compression functions with
the fixed IV. The MBCA on hash functions leave open the questions; Is it possible
to design collision resistant hash functions relying on the collision resistance of
the compression function with fixed IV?, Is it possible to design a simple and
efficient structures that offer more resistance to MBCA than the MD structure?

In this paper, we attempt to answer these questions. Our motivation is to show
that while consecutive iterations of the compression function is necessary for the
implementation efficiency of a hash function, the way the compression function
is iterated or used is quite important for the security of the hash function. In
this paper, we propose a new mode of operation for the MD construction called
3C. The 3C hash function processes the intermediate chaining values of the
MD construction by maintaining a second internal chaining variable. The 3C
construction is the simplest modification of the MD construction that one can
obtain to improve its security against MBCA.

We show that the 3C construction is at least as secure as MD construction
against collision attacks, in particular against MBCA. That is, if there exists an
adversary that finds a multi-block collision on 3C then that adversary would
have also found a multi-block collision on the MD hash function. In addition,
we show that if there exists an adversary that can perform an MBCA on a t-
bit MD hash function based on a given compression function then the security
of 3C against MBCA instantiated with the same compression function could
be as much as 2t times the security of MD against MBCA, depending on the
subtle properties of the compression function. We conjecture that this security
multiplier of 3C against MBCA is close to 2t for any compression function which
is secure against single-block collision attacks. We note that multiplier of at least
2t/2 is sufficient to provide immunity to MBCA. Next, extra memory is added
to the 3C construction and call this variant 3C+ and analyse the difficulty in
implementing an MBCA on it compared to 3C. Analysis for 3C against known
generic attacks [3, 8, 9] is given which applies to 3C+ as well. We found that
while Joux’s generic attacks [8] work on 3C, the known generic second preimage
attacks [3, 9] found on the MD hash function do not work.

In Section 2, we describe MD hashing and collision attacks on it. In Section 3,
new observations on the MBCA are discussed. In section 4, 3C is introduced
and its analysis against MBCA is covered in Section 5. In Section 6, analysis of
3C against generic attacks is given and 3C is compared with some other similar
hash function proposals in Section 7. In Section 8, 3C+ is introduced and is
analysed against MBCA. The paper is concluded in Section 9.

2 MD Hashing and Collision Attacks

A collision resistant cryptographic hash function H following MD structure is
a function that hashes a message M ∈ {0, 1}∗ to outputs of fixed length {0, 1}t.

Constructing Secure Hash Functions by Enhancing MD Construction 409

The specification of H includes the description of the compression function f ,
initial state value (IV) and a padding procedure [12, 14]. Every hash function
fixes the IV (fixed IV) with an upper bound on the size |M | of the input M . The
message M is split into blocks M1, . . . , ML−1 of equal length b where a block
ML containing the length |M | (MD strengthening) [12] is added. Each block
Mi is iterated using a fixed length input compression function f computing
Hi = f(Hi−1, Mi) where i = 1 to L and finally outputting HIV (M) = HL as
shown in Fig 1.

M1 M2 ML−1 ML

IV HIV (M) = HL
ff ff

Fig. 1. The Merkle-Damg̊ard (MD) construction

Collision Attacks on the Compression Functions
A hash function H is said to be collision resistant if it is hard to find any two
distinct inputs M and N such that H(M) = H(N). For a formal definition
see [15]. A hash function H is said to be near-collision resistant if it is hard to
find any two distinct inputs M and N such that H(M)⊕H(N) = Δ has some
small weight. Based on the IV used in finding collisions, collision attacks on the
compression functions are classified as follows [12, p.372]:

1. Collision attack: collisions using a fixed IV for two distinct messages
(e.g. [16]). We call them Type 1 collisions.

2. Semi-free-start collision attack: collisions using the same random (or arbi-
trary) IV for two distinct message inputs(e.g. [5]). We call them Type 2
collisions.

3. Pseudo-collision attack: free-start collision attack using two different IVs for
two distinct message inputs(e.g. [4]). We call them Type 3 collisions.

Multi-block Collision Attacks on Hash Functions
A multi-block collision attack (MBCA) technique on an iterated hash function
finds two colliding messages each of at least two blocks in length. The recent
collision attacks on MD5 [19], SHA-0 [1, 17] and SHA-1 [18] are multi-block
collision attacks where collisions were found by processing more than one message
block. Since, by far, most of the possible messages are more than a single block
and collisions are distributed randomly, it is fair to say that most collisions that
could exist are in fact multi-block collisions. Hence, any result improving the
resistance against MBCA is very significant.

3 New Observations on Multi-block Collision Attacks

This section aims at developing the understanding of the multi-block collision
attacks on hash functions by linking several parts of the literature. We observed

410 P. Gauravaram et al.

that multi-block collision attacks on hash functions can further be classified into
three categories based on the manner in which the compression functions are
attacked. This leads to choosing particular message block formats that result
in an MBCA. For example, 2-block collision attacks can be classified into three
types as shown in Table 1 based on the message formats chosen.

Table 1. Classification for 2-block collision attacks

MBCA Type Message formats
MBCA-1 (M1, M2) and (M1, N2)
MBCA-2 (M1, M2) and (N1, M2)
MBCA-3 (M1, M2) and (N1, N2)

While the 2-block collision attacks on MD5 [19] and SHA-1 [18] belong to
MBCA-3 category, the 2-block collision attack on SHA-0 [17] belongs to an
MBCA-1 category1. In an MBCA-3, near-collisions found after processing first
message blocks were converted to full collisions as was demonstrated on MD5
and SHA-1. The Type 1 collisions were (reportedly) hard to find for the sin-
gle compression functions of these hash algorithms. For example, the attacks
on MD5 and SHA-1 use near-collisions obtained after processing the first dis-
tinct message blocks (M1, N1) as a tool to find collisions for the second distinct
message blocks (M2, N2). This technique can be generalized to more than two
blocks as the 4-block collision attack on SHA-0 [1]. Similarly, 2-block MBCA-1
and MBCA-2 attack techniques can be generalized to more than two blocks.
For example, in an MBCA-1 technique [17], a few initial message blocks to be
processed can be chosen to be the same to satisfy certain conditions required in
the attack followed by the processing of two different message blocks that give
a collision.

We note that in a 2-block MBCA, collisions found on the second blocks are
basically a special case of Type-3 collisions for the compression function as these
collisions require processing of two equal (MBCA-1) or different blocks (MBCA-2
and MBCA-3) using the fixed IV of the hash function. That is, a 2-block MBCA-3
on the MD hash function is a combination of a near-collision and a special Type-3
on the compression function. The collision on the second compression function is
a special Type-3 as it requires a particular nearly collided value obtained based on
certain conditions essential for the attack as inputs for the second block messages.
In addition, near-collisions do not need to begin after processing message blocks
based on the fixed IV of the hash function. They can also be due to an arbitrary
chaining value when the attacker chooses the same blocks initially and starts an
MBCA-3 after processing those same initial blocks. Hence multi-block difference
collisions, whether they start from the fixed IV or arbitrary chaining values are
clearly a chain of special Type 3 collisions.

1 The first full 4-block collision attack on SHA-0 [1] also belongs to an MBCA-3
category except that differences in the message blocks span over more than two
blocks.

Constructing Secure Hash Functions by Enhancing MD Construction 411

Table 2. Resistances of some compression functions

Compression function Type-1 Type-2 Type-3 Special Type-3
MD4 NO [16] NO NO -
MD5 YES NO [5] NO [4] NO [19]
SHA-0 YES NO [19] YES NO [1]
SHA-1 YES YES YES NO [18]
RIPEMD NO [16] NO NO -
HAVAL-128 NO [16] NO NO -

From these observations on MBCA, it is clear that the designers of MD5,
SHA-0 and SHA-1 have not considered security of the compression functions of
these hash functions against special Type-3 collisions in their design criteria.
Preneel pointed out more than a decade back [14] that most hash functions
are not designed to meet this criteria. Note that SHA-1 did not exist then.
Even Damg̊ard’s [2] proof implicitly notes that the necessity of special Type-3
collision resistance for the compression functions. In addition, to attain Type-
3 collisions, the two IVs do not have to be significantly different as suggested
in [12, p.372]. For example, the two IVs in the Type-3 collision attack on the
compression function of MD5 [4] differ in only 6 bits. From the known attacks
on hash functions, we derived Table 2 assuming that if the compression function
is not Type-1 collision resistant then it is neither Type-2 nor Type-3 collision
resistant. The sign “-” in the Table 2 shows does not apply.

4 The 3C Construction: An Enhanced MD Construction

The 3C construction is shown in Fig. 2 and 3. This structure has an accumula-
tor XOR function iterated in the accumulation chain (whose chaining value is
denoted by ui in Fig. 3) and a compression function f (f , for example, is the
compression function of MD5 or SHA-1) iterated in the cascade chain (whose
chaining value is denoted by wi in Fig. 3) exactly as in the MD construction.
Clearly, 3C is a very simple and efficient modification to the MD construction.
One economic benefit of our proposal is that any software currently implement-
ing an MD-style hash function can be very simply altered to adopt the 3C
structure, without altering the underlying compression function.

3C hashing process: For i = 1 to L, let wi and ui be the chaining values in the
cascade chain and accumulation chain respectively. Then, as in the MD hash, for
i = 1 to L, wi = f(wi−1, Mi) where w0 = IV and u1 = w1. In the accumulation
chain, for i = 2 to L, ui = ui−1 ⊕ wi. The result uL in the accumulation chain is
denoted with Z. An extra compression function f , denoted by g, is added at the
end and the hash result of 3C is g(Z, wL). To process one block data, the com-
pression function is executed three times; first to process the data block, next to
process the padded block (MD strengthening) and finally the block Z formed in
the accumulation chain as shown in Fig 3. If the size of data is less than block size
b of f then zeros are appended to the data to make a b-bit data block.

412 P. Gauravaram et al.

f f f

P
A
D

f g

M1 M2 ML−1 ML

IV

Z
Z

Fig. 2. The 3C-hash function

5 Security Analysis of the 3C Hash Function

In this section, we investigate the security of 3C against single-block and multi-
block collision attacks. We conclude that the security of 3C against single-block
collision attacks is upper bounded by the collision security of the compression
function and its security against MBCA is not less than that on MD. Fig 3 is
used to explain the analysis.

f f

ui−2

wi−2 wi−1

Mi−1 Mi

ui−1
ui

wi

Δ = 0
Δ = 0

Δ = 0

Fig. 3. Creating an internal collision for 3C

Consider a 3C hash function H . Consider two distinct messages M �= N
of same length L (including padding) such that H(M) = H(N) is the re-
sult of a collision on 3C. The messages M and N are expanded to sequences
(M1, . . . , ML) �= (N1, . . . , NL) where the last data blocks are the padded blocks
containing the length L of the messages. We denote by (HM

i ,HN
i) and (ui,vi)

(for i = 1 to L), the internal hash values obtained on the cascade chain and
accumulation chain while computing H(M) and H(N) respectively. We denote
(uL,vL) by (ZM ,ZN) and ZM = PAD(ZM), ZN = PAD(ZN). All possible types
of collisions on H are given in Definition 1.

Definition 1. Every collision on H takes one of the following forms:

1. Terminal/Final collisions on H: They involve one of the following cases:
– HM

L �= HN
L and ZM �= ZN with g(HM

L , ZM) = g(HN
L , ZN)

– HM
L = HN

L and ZM �= ZN with g(HM
L , ZM) = g(HN

L , ZN)
– HM

L �= HN
L and ZM = ZN with g(HM

L , ZM) = g(HN
L , ZN)

2. Internal collisions on H: HM
L = HN

L and ZM = ZN implies g(HM
L , ZM) =

g(HN
L , ZN). �

Constructing Secure Hash Functions by Enhancing MD Construction 413

Definition 2. A compression function f : {0, 1}b → {0, 1}t is Type-1 (resp.Type-
2, Type-3) collision resistant if the best possible collision attack on it using fixed
IV (resp. arbitrary IV, different IVs) is the birthday attack which takes about 2t/2

operations of f . For sufficiently large t, it is computationally infeasible to perform
this attack.

Lemma 1. Against single block collision attacks, the security of 3C is exactly
equal to the security of MD when both the constructions are instantiated with
the same f .

Proof: By inspection of 3C structure in Fig 3, it is clear that it contains MD
construction in it. Hence, an adversary that is able to find a single block colli-
sion for the f -function is able to construct a collision for the hash function with
virtually no additional effort. It follows that the collision security of 3C is upper
bounded by the collision security of the f -function. �	

Apart from single block collision attacks, the only other approach to find col-
lisions for 3C is to use multi-block messages. This invites the opportunity to
use messages with different lengths. For two messages with the same length,
an internal collision for 3C gives an actual collision for 3C. However, for two
messages of different lengths, in general, this is not the case due to the different
padding strings used as a virtual message block in the second last iteration of
the compression function. Thus the security analysis of 3C can be restricted
to considering internal collisions generated by pairs of messages with the same
length. We now examine the nature of internal collisions for 3C.

Lemma 2. To get an internal collision on 3C at iteration i, it is required that
a collision in the accumulation chain exists at iteration i− 1.

Proof: An internal collision in 3C at iteration i is a simultaneous collision in
the accumulation chain and cascade chain at iteration i. For messages M and
N to collide on the cascade chain at iteration i, the condition that HM

i ⊕HN
i =

0 must be satisfied. Now for an internal collision on 3C, the condition that
(HM

i ⊕HN
i)⊕ (ui−1⊕vi−1) = 0 must be satisfied. This condition will occur only

when ui−1 ⊕ vi−1 = 0, which is basically a collision in the accumulation chain
at iteration i− 1. �	
Remark: A collision in the accumulation chain at iteration i− 1 is achieved by
creating a sequence of MD chain differences where the chaining difference in
the MD chain at iteration i− 1 is the XOR sum of all the previous differences
in the MD chain until the iteration i− 2.

Lemma 3. Assuming the existence of a collision in the accumulation chain at
iteration i − 1, it requires a single-block special Type-3 collision attack on f to
create an internal collision in 3C at iteration i.

Proof: By inspection of 3C structure in Fig 3, a special Type-3 collision attack
must be performed on the f -function at iteration i. It is a special Type-3 collision

414 P. Gauravaram et al.

attack as the attacker must use the internal chaining values of the cascade chain
at iteration i − 1 that created a collision in the accumulation chain as inputs
to get a collision at iteration i. This is equivalent to performing a single-block
special Type-3 collision attack on f at iteration i. �	
Now we can consider the above process in two ways: as two separate single block
collision attacks, or as a multi-block collision attack on the MD-chain with an extra
t-bit requirement. We ignore the first option as the single block collision security
of the f -function is already an upper bound for the collision security of 3C from
Lemma 1. The second case can be achieved in either of the following two ways:

1. Assume the existence of an MBCA on the MD-chain when it is instantiated
with some given compression function. Then the MBCA on the MD-chain
has to be repeated until the internal chaining differences on the MD-chain
happen to produce the required collision on both the accumulation and cas-
cade chains. This option requires repeating the attack at most 2t times
under an assumption that the internal chaining differences are uniformly
distributed.

2. Devise an entirely new MBCA for the 3C when instantiated with some given
compression function satisfying some conditions on the differences.

Now, the above two cases result in the following theorems:

Theorem 1. If there is an MBCA on the MD construction instantiated with a
given f then the security of 3C instantiated with the same f against an MBCA
is at most 2t times the security of MD against MBCA.

Proof: To obtain a collision in the accumulation chain required by Lemma 2,
an MBCA on the MD chain must be repeated, where each attempt succeeds
with probability 2−t. That is, the security of 3C against MBCA is some multiple
([1, 2t]) of the security against MBCA for the MD. �	
The difficulty of providing a tight quantitative analysis for 3C against MBCA
prevents a more precise formal proof for the practical collision security of 3C at
this stage leading to the following conjecture.

Conjecture: From the above analysis, we conjecture that the improvement in
the security of 3C against MBCA is close to 2t over the security of MD against
MBCA.

Theorem 2. The security of 3C against an MBCA is not less than the security
of MD against MBCA.

Proof: Every internal collision for 3C contains within it a collision for MD.
There exist collisions for MD that are not internal collisions for 3C. Thus the
security of 3C against MBCA is lower bounded by the security of MD against
MBCA. �	
Remarks: While at least two blocks must be processed to find a multi-block
collision on MD, at least three blocks must be processed to create a multi-block

Constructing Secure Hash Functions by Enhancing MD Construction 415

collision on 3C. For example, the difference pattern (0, Δ, Δ, 0) which creates a
collision on MD based on a given f , will also create a collision on 3C based on
the same f . But note that its reduced pattern (0, Δ) would create a collision for
MD but not for 3C. In Section 8, we propose a construction called 3C+ with
similar properties to 3C as an improvement of 3C for more protection against
MBCA.

6 Security Analysis of 3C Against Known Generic
Attacks

Analysis against Joux attacks
Joux [8] described a generic multicollision attack on the MD hash where con-
structing 2d-collisions costs d times as much as building ordinary 2-collisions.
This attack can be used as a tool to find multi (2nd) preimages very effectively
on the MD hash. We note that these attacks work on 3C as effectively as they
are on the MD hash. Following [10], our adversaries are probabilistic algorithms
and we focus on the expected running time. Running time is described asymp-
totically. We use the symbol O for the “expected running time is asymptotically
at most”.

In a multicollision attack on 3C, the attacker finds collisions on every function
f in the cascade chain (for example using the birthday attack) that would result
in a collision at the subsequent point of the XOR operation in the accumulation
chain. If the function f in the cascade chain of 3C is modeled as a random
oracle, as an upper bound, the total complexity to find 2d-collisions on 3C is
O(d ∗ 2t/2).

We note that the attack technique used to find D-way (2nd) preimages on
the MD hash for a given hash value works on 3C as well. For example on
3C, the attacker first finds D-collisions on d-block messages M1, . . . , M2d

with
Hd = H(M1) = . . . = H(M2d

) with a complexity of O(d ∗ 2t/2). Then she finds
the block Md+1 such that the execution of the last two compression functions
would result in the given digest Y . The later task takes time O(2t) as the last
two compression functions are treated as a single component. Hence the total
cost of finding D-preimages for 3C is O(d ∗ 2t/2 + 2t). To find D-2nd preim-
ages for a given message M , the attacker first computes the hash H(M) of the
message M and then finds D-preimages as explained above that all collide to
H(M).

Analysis against second-preimage attacks
Dean [3] has demonstrated that for hash functions with fixed point compression
functions, it would cost less than 2t effort to find second preimages. Kelsey
and Schneier [9] have expanded this result using Joux multicollision finding a
technique to find second preimages for hash functions based on any compression
function for an effort less than 2t. Both these attacks use the notion of expandable
messages- patterns of messages of different lengths that all process to internal
hash values without considering MD strengthening. Following [9], an (a, b)-
expandable message will take on any length between a and b message blocks.

416 P. Gauravaram et al.

For a compression function Hi = f(Hi−1, Mi), a fixed point is a pair (Hi−1, Mi)
such that Hi−1 = f(Hi−1, Mi). The compression functions of many hash func-
tions such as MD5 and SHA-1 are Davies-Meyer designs with a block cipher op-
erating in a feed-forward mode. For these compression functions, there exists one
and only one fixed point for every message block. For a t-bit hash function with
a maximum of 2d blocks in its messages, using fixed points it costs about 2t/2+1

compression function computations to find (1, 2d)-expandable messages [9]. In the
3C design, since the chaining state is twice as large as the hash value, a fixed point
is defined for both the chains and this is obtained for any message block Mi, only
when f(0, Mi) = 0 and this occurs with a probability of 2−t. Hence having fixed
points for the compression functions will not assist in finding second preimages for
less than 2t work on the 3C design.

It was demonstrated in [9] that finding a (d, d + 2d − 1) expandable message
for any compression function with t-bit state takes only d × 2t/2+1 effort. The
procedure involves first finding colliding pair of messages, one of one block and
the other of 2d−1 + 1 blocks starting from the initial state of the hash function.
Then using the collided state as the starting state, collision pair of length either 1
or 2d−2+1 is found and this process is continued until a collision pair of length 1
or 2 is reached. It was shown in [9] that applying this generic expandable message
finding algorithm to find the second preimage for a message of 2d + d + 1 -block
length message costs d × 2t/2+1 + 2n−d+1 compression function computations.
When this attack technique is applied on 3C, a collision at both the chains is
required and this costs an effort of 2t at every stage as the size of the internal
state is twice that of the hash size.But if different parts of the internal state of
3C are attacked separately, 3C might not resist the second preimage attack.

7 Comparison of 3C with Other Hash Function Proposals

Ferguson and Schneier [6] proposed double-hashing scheme HIV (HIV (x)) to pre-
vent straight-forward length extension attacks. It is obvious that multi block col-
lision attacks work on this nested construction as effectively as they are on MD.
As on the MD hash, 2d-collisions can be found on their scheme with a complex-
ity of O(d.2t/2) and finding 2d-(2nd) preimages would take time O(d.2t/2 + 2t).
Gauravaram et al. [7] proposed CRUSH hash function based on iterated length
halving technique as an alternative for MD hash function well before the inven-
tion of MBCA on MD5 anticipating the single point of failure of hash functions in
the MD family. CRUSH is immune against extension attacks and resists known
MBCA techniques.

Lucks [10] proposed wide-pipe and its special case double-pipe hash designs
as failure-tolerant designs showing that they provide more resistance against
generic attacks [8] than the MD hash. While wide-pipe hash maintains more
internal state than the hash size t using larger compression functions, double-pipe
hash maintains twice the hash size as the internal state size by employing one
single t-bit compression function used twice in parallel for each message block.
In contrast, one could see 3C structure as special cases of wide-pipe hash and

Constructing Secure Hash Functions by Enhancing MD Construction 417

is optimally efficient as no new large compression function needs to be designed
for its execution. The wide-pipe, 3C and double-hashing proposals resist the
straight-forward length extension attacks which is a well-known weakness of
the MD hash function. Informally, given the digest H of the message M , it
is straight forward to compute N and H ′ such that H ′ = H(M ||N) even for
unknown M but for known |M |. The attack uses H(M) as the internal hash
value to compute H(M ||N). All these hash functions provide t/2-bit level of
security against straight forward extension attacks as long as their design criteria
is satisfied; for example, wide-pipe hash requires processing of the compression
function with an internal state at least twice the size of the hash value, 3C
requires at least three calls to the compression function. Note that 3C prevents
extension attacks with out using large compression function as in the wide-pipe
hash.

While the wide-pipe and double-pipe hash functions are designed to provide
more resistance against generic attacks, 3C and 3C+ are enhancements of MD
resisting recent multi-block collision attacks on the MD based hash functions. In
addition, one can combine the wide-pipe hash and the 3C construction to attain
a hybrid construction called 3CWP (see Fig 4) attaining additional protection
against both the generic attacks and MBCA.

A
D

P
x1 x2 xn xn+1

IV
f ′

f ′f ′f ′f ′
f ′′

Z

Z g

Fig. 4. The 3CWP hybrid construction

From the performance point of view, 3C is slightly more expensive than MD
especially when it is used to process short messages as the former requires at
least three iterations of the compression function to process an arbitrary length
message. To process 1-block (resp. 2-block) message, the running time of the 3C
is twice (resp. 1.5 times) that of MD. On an Intel Pentium 4 3.2GHz processor,
3C based on the compression of MD5, incurs about 0.36% overhead and 3C
with the compression function of SHA-1 incurs about 0.27% overhead when these
functions are used to process long messages. 3C requires an extra iteration of
the compression function similar to the double hashing proposal [6] and is as
efficient as this scheme for the processing of long messages and unlike the double
hashing scheme, 3C is a single hashing scheme.

8 The 3C+ Construction: An Enhanced 3C Construction

Fig 5 shows the 3C+ construction where a third internal chain called final chain
has been added on top of the cascade and accumulation chains of 3C. In 3C+,

418 P. Gauravaram et al.

C

gIV

P

A

D

x1 x2 x3 x4 x5 xn+1

ffffff

Fig. 5. The 3C+ hash construction

we call accumulation chain as the middle chain. The final chain in 3C+ slightly
differs in the way it accumulates data from the accumulation chain of 3C as
it accumulates data from the cascade chain but the accumulation starts after
processing the second message block. The final compression function f (denoted
by g in Fig 5) takes as “message” the concatenation of the accumulated data
from the middle and final chains, appropriately padded.

To find a multi-block collision on 3C+ the attacker has to get collisions
simultaneously on all the three chains. To create a simultaneous collision on all
the three chains at iteration i, the chaining difference on the cascade chain at
iteration i− 1 (say Δi−1) must cancel the differences accumulated in the middle
and final chains till the iteration i − 2. That is, the middle and final chains
must maintain an equal difference Δi−1 until the iteration i− 2 of the function
f for a cancellation at iteration i − 1. This is impossible if middle and final
chains do not start with the same difference before iteration i − 2. That is, if
an attacker finds two colliding messages that have identical first message blocks,
then these two chains begin with a difference zero. This implies that a minimum
of four message blocks need to be processed to find an MBCA on 3C+. For
example, the pattern (0, 0, Δ, Δ, 0) creates a simultaneous collision on all the
chains after processing four blocks. From this discussion, it is clear that 3C+
structure demands crafting and maintaining the same difference in both the final
and middle chains until a multi-block collision is found.

Finally, we note that if the input to the final chain is taken from the mid-
dle chain rather than from the cascade chain, the difference pattern (0, Δ, Δ, 0)
that creates a collision on MD and 3C will also create a collision on this modi-
fied construction of 3C+ and the MBCA security of this construction is lower
bounded by 3C and MD. Note this pattern does not create a collision on 3C+.
This justifies our statement that the security of a hash function depends on the
way the compression function is used in constructing a hash function.

We note that one can construct many variants for our 3C and 3C+ designs
by replacing XOR functions with any function in such a way that the new con-
struction is at least as secure as MD. Here we provide two examples. If the XOR
function in 3C is replaced with the function f then this modified construction
resembles double pipe hash in some way and is less efficient than 3C against
MBCA. The chaining values on the cascade chain after the second iteration of
f will be used as data block (by appending 0’s to chaining values) inputs for the
compression functions in the accumulation chain. Clearly the amount of control
that an attacker can have on these blocks to create an MBCA is less than 3C.

Constructing Secure Hash Functions by Enhancing MD Construction 419

A slight variant of 3C+ whose cost relative to 3C bound to be nearly as small
as XOR can be designed by interpreting the t-bit chaining value in the final
chain as an element of GF(2t) and multiplying it by 2 at each step. If the final
chain accumulation process starts after the first iteration of f unlike in 3C+
then this structure results in a final chain accumulation equation that resembles
Galois-Carter-Wegman structure of GHASH in [11].

9 Conclusion

The recent cryptanalysis of hash functions MD5, SHA-0, SHA-1 exploited the
MD iterative structure of these hash functions using multi-block collision search
techniques. The proposed 3C and 3C+ variants to the MD construction are at
least as resistant as MD against MBCA. The constructions can be implemented
by simple adjustments to the existing MD-style implementations. This paper is
the first paper to introduce solutions to MBCA on MD based hash functions
since they were first identified by Wang et al on MD5 [16]. This paper will not
and should not be taken as the last step but should be regarded by the Crypto
community as the first step to improve the general design of hash functions.

Acknowledgments

Thanks to anonymous reviewers of ACISP 2006 for many useful comments on
several aspects of the paper and their valuable insights. Many thanks to Suganya
Annadurai, Paulo Barreto, Matt Henricksen, John Kelsey, Lars Knudsen, Adrian
McCullagh, David McGrew, Juanma González Nieto, Vincent Rijmen and Søren
Thomsen for their encouragement and comments on the analysis, design and
performance aspects presented in the earlier drafts.

References

1. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 36–57. Springer, 2005.

2. Ivan Damgard. A design principle for hash functions. In Gilles Brassard, editor,
Advances in Cryptology: CRYPTO 89, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer-Verlag, 1989.

3. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Prince-
ton University, 1999.

4. Bert denBoer and Antoon Bosselaers. Collisions for the compression function of
MD5. In T. Helleseth, editor, Advances in Cryptology — Eurocrypt ’93, volume
765 of Lecture Notes in Computer Science, pages 293–304, Berlin, 1994. Springer-
Verlag.

5. Hans Dobbertin. Cryptanalysis of MD5 compress. Presented at the rump session
of Euro Crypto’96 Rump Session, 1996.

420 P. Gauravaram et al.

6. Niels Ferguson and Bruce Schneier. Practical Cryptography, chapter Hash Func-
tions, pages 83–96. John Wiley & Sons, 2003.

7. Praveen Gauravaram, William Millan, and Lauren May. CRUSH: A New Cryp-
tographic Hash Function using Iterated Halving Technique. In Proceedings of the
workshop on Cryptographic Algorithms and their uses, pages 28–39, Goldcoast,
Australia, July 4–5 2004.

8. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Matt Franklin, editor, Advances in Cryptology-CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 306–316, Santa Barbara,
California, USA, August 15–19 2004. Springer.

9. John Kelsey and Bruce Schneier. Second Preimages on n-bit Hash Functions for
Much Less than 2n̂ Work. In Ronald Cramer, editor, Advances in Cryptology -
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
474–490. Springer, 2005.

10. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal
Roy, editor, Advances in Cryptology - ASIACRYPT 2005, volume 3788 of Lecture
Notes in Computer Science, pages 474–494. Springer-Verlag, 2005.

11. David McGrew and John Viega. The Galois/Counter Mode of Operation (gcm).
NIST special publication, National Institute for Standards and Technology.

12. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography, chapter Hash Functions and Data Integrity, pages 321–383.
The CRC Press series on discrete mathematics and its applications. CRC Press,
1997.

13. Ralph Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology: CRYPTO 89, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer-Verlag, 1989.

14. Bart Preneel. Analysis and design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

15. Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance, second-preimage
resistance, and collision resistance. In Bimal K. Roy and Willi Meier, editors, Fast
Software Encryption (FSE), volume 3017 of Lecture Notes in Computer Science,
pages 371–388. Springer-Verlag, 2004.

16. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive,
Report 2004/199, 2004. http://eprint.iacr.org/.

17. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Efficient collision search at-
tacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology—CRYPTO ’05,
volume 3621 of Lecture Notes in Computer Science, pages 1–16. Springer, 2005,
14–18 August 2005.

18. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Victor Shoup, editor, Advances in Cryptology—CRYPTO ’05, volume 3621
of Lecture Notes in Computer Science, pages 17–36. Springer, 2005, 14–18 August
2005.

19. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

Forgery and Key Recovery Attacks on PMAC
and Mitchell’s TMAC Variant

Changhoon Lee1, Jongsung Kim1,2, Jaechul Sung3,
Seokhie Hong1, and Sangjin Lee1

1 Center for Information Security Technologies(CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea
{crypto77, joshep, hsh, sangjin}@cist.korea.ac.kr

2 Katholieke Universiteit Leuven, ESAT/SCD-COSIC, Belgium
Kim.Jongsung@esat.kuleuven.be

3 Department of Mathematics, University of Seoul, 90
Cheonnong Dong, Dongdaemun Gu, Seoul, Korea

jcsung@uos.ac.kr

Abstract. In this paper we discuss the security of PMAC, a provably
secure and parallelizable MAC scheme proposed by Black and Rogaway,
and Michell’s TMAC variant, proposed to improve the security of TMAC.
We show how to devise forgery attacks on PMAC and compare the suc-
cess rate of our forgery attacks with their security bound. We also present
forgery attacks on TMAC variant and show the security of TMAC vari-
ant is not improved in the sense of the forgery attack. Furthermore, key
recovery attacks on PMAC and TMAC variant are presented in vari-
ous parameters. Our results imply they have no significant advantage in
comparison with other well-established MAC schemes.

Keywords: MAC (Message Authentication Code), Forgery Attacks, Key
Recovery Attacks, CBC-MAC, PMAC, TMAC Variant.

1 Introduction

A Message Authentication Code (MAC) scheme is a symmetric-key cryptosys-
tem that is extensively used to protect a message from unauthorized alteration
in internet security protocols and in banking applications. Generally, a MAC
scheme consists of a tag generation algorithm (for a sender) and a tag verifica-
tion algorithm (for a receiver). The tag generation algorithm takes as input a
message M , a secret key K and a nonce IV , and returns a tag T . The verification
algorithm takes as input M , T , K and IV , and returns a binary value indication
whether or not the message/tag/nonce tuple is valid.

In the standard model of evaluating MAC security, there are two main kinds
of practical attacks on MAC algorithms. One is a forgery attack in which an
attacker tries to produce a message with a valid MAC without the knowledge of
the secret key K. The other is a key recovery attack in which an attacker tries
to obtain the secret key used to generate MAC values. A successful key recovery
attack also enables the construction of arbitrary numbers of forgeries.

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 421–431, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

422 C. Lee et al.

PMAC [2], which uses a k-bit key and an arbitrary-bit length message, and
outputs a τ -bit tag, was proposed as a fully parallelizable alternative to CBC-
MAC. It is provably secure under the assumption that the underlying n-bit block
cipher is a pseudorandom permutation. More precisely, the upper bound on the
advantage of a forgery attacker for PMAC is (σ+1)2

2n−1 , where σ =
∑q

i=1�
|Mi|

n �
and Mi are message queries. However, there is no known cryptanalytic result on
PMAC, which quantifies the number of message queries with which the forgery
attacker can break PMAC.

TMAC [11], which requires two keys, a k-bit key and a n-bit key, was proposed
by Kurosawa and Iwata. It is a refinement of XCBC-MAC [4] with three different
keys and attains a provable security as the EMAC [19] does. Recently, some
researchers [21, 15, 8, 16] evaluated the security of TMAC. Among them, Mitchell
[15, 16] presented various attacks on TMAC and proposed a new TMAC variant
to improve the security of TMAC.

In this paper we discuss the security of PMAC and TMAC variant against the
forgery and the key recovery attacks. We first show forgery attacks on PMAC,
which provide a lower bound on the attacker’s advantage together with a required
number of message queries. Our attack on PMAC where truncation is performed
requires about 2

n
2
+1 known messages and 2n−τ MAC verifications where τ is the

bit-size of the MAC, and the attack on PMAC where no truncation is performed
requires about 2

n
2
+1 known messages. All these attacks work with a success rate

of 0.63. The latter attack shows that there exists a forgery attack on PMAC with
2

n
2
+1 message queries (all are one-block messages) such that the lower bound

on the advantage of the attacker for PMAC is Lb = (σ+1)2

2n+3 , since σ = 2
n
2
+1

implies Lb ≈ 0.5(< 0.63) (more details will be given in Sect. 3.1). Note that it
does not contradict the security proof of PMAC in [2] and Lb = 1

16 · Ub for the

upper bound Ub = (σ+1)2

2n−1 . We also give a forgery attack on the TMAC variant
whose complexity is equal to that of the forgery attack on TMAC, 2

n
2
+1 known

messages. This fact implies that the security of TMAC variant is not improved
in the sense of the forgery attack. Furthermore, key recovery attacks on PMAC
and TMAC variant are also presented in various parameters.

This paper is organized as follows: The descriptions of PMAC, TMAC variant
are presented in Sect. 2. In Sect. 3 and Sect. 4, forgery and key recovery attacks
on PMAC and TMAC variant are presented, respectively. Finally, we summarize
our attacks and compare them with previous attacks on other MAC schemes in
Sect. 5.

2 Descriptions of PMAC and TMAC Variant

The most common block-cipher based MAC is CBC-MAC [5]. This scheme op-
erates as follows: Suppose the underlying block cipher E has an n-bit block and
uses a k-bit key K. We write EK(x) for the encryption of x using key K, where x
is an n-bit block. A padded message M is first split into M [1], ..., M [r] where each
block M [i] is of size n-bit and then the CBC-MAC value of the M is computed
as CBC-MACK(M) = Hr, where H0 = 0, Hi = EK(Hi−1 ⊕M [i]), 1 ≤ i ≤ r.

Forgery and Key Recovery Attacks on PMAC and Mitchell’s TMAC Variant 423

2.1 PMAC (Parallelizable Message Authentication Code)

Unlike popular MAC algorithms such as CBC-MAC and Hashed MAC, PMAC
proposed by Black and Rogaway is not inherently sequential but parallelizable.
It also uses a key K and an additional key information L = EK(0n) which is
defined from K. Furthermore, it can handle messages which are not multiples of
the block length without the need for obligatory padding, which would increase
the number of block cipher calls. PMAC operates as follows (See Fig. 1):

Algorithm PMACK(M)
1. L ← EK(0n)
2. if |M | > n2n then return 0τ

3. Partition M into M [1] · · ·M [r]
4. for i ← 1 to r − 1 do
5. X [i] ← M [i]⊕ γi · L
6. Y [i] ← EK(X [i])
7. Σ ← Y [1]⊕ · · · ⊕ Y [r − 1]⊕ pad(M [r])
8. if |M [r]| = n then X [r] = Σ ⊕ L · x−1

else X [r] ← Σ
9. MAC = truncation of first τ bits of (EK(X [r]))
10. return MAC

PMAC: Constants γi are Gray codes which are polynomial multiplication op-
erators over GF (2n). The pad(A) means the string A||10n−|A|−1 in the case
|A| < n.

2.2 TMAC Variant

TMAC [11], which requires two keys, a k-bit K and an n-bit K ′, was proposed
by Kurosawa and Iwata. It is a refinement of XCBC [4] using (k + 2n)-bit keys,
that is, a key triple (K1, K2, K3) used in XCBC is replaced by (K, K ′ · u, K ′),
where u is a constant which is a multiplication operator over GF (2n) defined in
[11]. The usage of the (K, K ′ · u, K ′) depends on whether or not padding has
been necessary. If the length of the input message M is a multiple of n, then
TMAC operates exactly the same as CBC-MAC using the key K, except for
XORing an n-bit key K ′ · u before encrypting the last block. Otherwise, after
padding is applied, TMAC operates CBC-MAC using the key K, but this time
an n-bit key K ′ is XORed before the last block is encrypted.

Recently, several attacks on TMAC was presented in [21, 15, 8, 16]. In par-
ticular, Mitchell [15, 16] considered various attacks (including forgery attacks,
partial key attacks and key recovery attacks) against TMAC and proposed a
new TMAC variant to remove a simple algebraic relationship between K ′ ·u and
K ′ which is used as the basis of the key recovery attacks. The only difference be-
tween this variant and TMAC is to use a key triple, i.e., (K, EK′(S2), EK′(S3))
substitutes for (K, K ′ · u, K ′) in the TMAC variant, where S2 and S3 are dif-
ferent fixed n-bit strings. For convenience we call this scheme TMAC-V. Fig. 2
represents the TMAC-V scheme.

424 C. Lee et al.

EK

� �
EK

��

�

�
EK

first τ bits

γ1 · L

T

�

γ2 · L

�

M [r]

�

M [1] M [2]

��

�

EK

��γr−1 · L

M [r − 1]

pad
�

�

�

�

�

�τ

�0n if |M [r]| < n
L · x−1 if |M [r]| = n

}

X[1] X[2] X[r − 1]

Y [1] Y [2] Y [r − 1]

X[r]

Σ

Fig. 1. The PMAC scheme

E

�
� �

�
E

� � �

�
E

�

�

K�K � K�

EK′(S2)

T

M [r]

� �

�

M [1] M [2]

E
K�

M [r − 1]

� �

�
E

�

�

K�

EK′(S3)

T

M [r]||10...0

� �

�
EE

�
� �

�
E

�

K�

M [r − 1]

K�K �

M [1] M [2]

Fig. 2. The TMAC-V scheme

Forgery and Key Recovery Attacks on PMAC and Mitchell’s TMAC Variant 425

3 Forgery and Key Recovery Attacks on PMAC

In this section we present forgery and key recovery attacks on PMAC where
truncation is used or not.

3.1 Forgery Attacks on PMAC

For clarification we separately describe our forgery attacks on PMAC with no
truncation and on PMAC with truncation.

PMAC where no truncation is performed (τ = n): We first consider the
case where no truncation is performed. Assume that the attacker obtains the
corresponding MAC values for approximately 2n/2 different (q + 1)-block mes-
sages M(1)i = (M [1], ..., M [q], X i) where (M [1], ..., M [q]) is any fixed sequence
of n-bit blocks and the last blocks X i(1 ≤ i ≤ 2n/2) whose sizes are less than
n bits are pairwise-distinct, and q is an arbitrary positive integer. Note that all
these messages require padding. Assume that the attacker also obtains the cor-
responding MAC values for approximately 2n/2 different (q + 1)-block messages
M(2)j = (M [1], ..., M [q], Zj) where (M [1], ..., M [q]) is the same sequence as that
in M(1)i and the last blocks Zj(1 ≤ j ≤ 2n/2) whose sizes are equal to n bits
are pairwise-distinct.

Using the birthday paradox arguments [17] we can expect to find at least one
external collision with a probability of 0.63(≈ 1−e−1). In other words, one of the
MAC values from the first set of messages M(1)i will equal to one of the MAC
values from the second set of messages M(2)j with a probability of 0.63. Denote
by M(1)∗ = (M [1], ..., M [q], X∗) and M(2)∗ = (M [1], ..., M [q], Z∗) the pair of
messages which cause this collision. Since the n-bit blocks (M [1], ..., M [q]) are
the same for the two messages,

∑q
i=1(Y [i]) are also the same for the two messages

where each Y [i] means the output of the i-th E cipher (see Fig. 1). We then have
the following equation for a collision.

EK((X∗||padding)⊕
q∑

i=1

(Y [i])⊕ 0n) = EK(Z∗ ⊕
q∑

i=1

(Y [i])⊕ L · x−1). (1)

Since EK(·) is a permutation on the set of all n-bit blocks, we get

L · x−1 = (X∗||padding)⊕ Z∗. (2)

Thus, the attacker can compute the key information L from Eq. (2) with no
knowledge of K and can use it to forge the MAC of a new message. The attacker
chooses a message M(1)k = (M [1], ..., M [q], Xk) in the first set of messages
M(1)i which does not cause a collision and gets the corresponding MAC value
as follows.

EK((Xk||padding)⊕
q∑

i=1

(Y [i])⊕ 0n). (3)

426 C. Lee et al.

The attacker then also knows the corresponding MAC value for a message
(M [1], ..., M [q], U) is the same as the MAC value (Eq. (3)) of the M(1)k, where
U = (Xk||padding) ⊕L · x−1 and U is n-bit. That is, one can forge the MAC
of (M [1], ..., M [q], (Xk||padding) ⊕L · x−1) which does not belong to the sec-
ond set of messages by our assumption. The complexity of this attack is thus
[0, 0, 2n/2+1, 0]. Note that the tuple [a, b, c, d] introduced in [5] is used to quantify
the resources needed for an attack where a denotes the number of off-line block
cipher encipherments (or decipherments), b denotes the number of known mes-
sage string/MAC pairs, c denotes the number of chosen message string/MAC
pairs, and d denotes the number of on-line MAC verifications (i.e., to submit a
message string/MAC pair and receive an answer indicating whether or not the
MAC is valid than to obtain the genuine MAC value for a message).

Taking into account one-block message sets M(1)i = X i and M(2)j = Zj in the
above two message sets, i.e., q = 0, we can convert this chosen message attack into
a known message attack with a [0, 2n/2+1, 0, 0] complexity. It follows that we can
construct a forgery attack with 2n/2+1 message queries such that the lower bound
on the advantage of the forgery attacker forPMACisLb = (σ+1)2

2n+3 , sinceσ = 2n/2+1

implies Lb ≈ 0.5(< 0.63) where σ =
∑q

i=1
�|Mi|�

n and Mi are message queries.
Note that if we perform this attack with a random function instead of PMAC, the
probability of producing a forgery is 2−n, so this probability can be ignored in the
computation of the advantage of the forgery attacker. Since Lb = 1

16 · Ub for the

upper bound Ub = (σ+1)2

2n−1 in [2], our attack and [2] show that there exists a forgery
attacker A for PMAC such that 1

16 · Ub ≤ Adv(A) ≤ Ub, where Adv(A) is the
advantage of the A. This does not contradict the security bound shown by Black
and Rogaway [2], but shows the tightness of their security bound.

PMAC where truncation is performed (τ < n): Now we consider the
case where truncation is used in the PMAC algorithm. As like the foregoing
assumptions we suppose that the attacker obtains two sets which are composed
of 2n/2 message/MAC pairs each, denoted M(1)i = (M [1], ..., M [q], X i) and
M(2)j = (M [1], ..., M [q], Zj) where the last blocks X i and Zj have the same
conditions as those of the above attack.

Similarly, we can expect to find about 2n−τ external collisions (i.e., messages
between two message sets with matching MAC values). Let these messages which
cause external collisions denote respectively M(1)∗(l) = (M [1], ..., M [q], X∗(l))
and M(2)∗(l)=(M [1], ..., M [q], Z∗(l)) for 1 ≤ l ≤ 2n−τ . The problem remains to
find the internal collision from amongst the many external collisions. If M(1)∗(k) =
(M [1], ..., M [q], X∗(k)) and M(2)∗(k) = (M [1], ..., M [q], Z∗(k)) for some k (1 ≤
k ≤ 2n−τ) are the internal collision, as like the previous subsection, we get the
following equation.

EK((X∗(k)||padding)⊕
q∑

i=1

Y [i]⊕ 0n) = EK(Z∗(k)⊕
q∑

i=1

Y [i]⊕ L · x−1).

So we get

L · x−1 = (X∗(k)||padding)⊕ Z∗(k). (4)

Forgery and Key Recovery Attacks on PMAC and Mitchell’s TMAC Variant 427

In order to find the index k, i.e., the internal collision, the attacker can per-
form the following process: First, the attacker computes the candidates of L·x−1,
denoted L · x−1(l), where L · x−1(l) = (X∗(l)||padding) ⊕ Z∗(l), 1 ≤ l ≤ 2n−τ

(from the above M(1)∗(l) and M(2)∗(l)). Second, the attacker chooses a message
(M [1], ..., M [q], XS) in the first set of messages M(1)i. Third, the attacker re-
quires the MAC verifications for the 2n−τ messages (M [1], ..., M [q], U(l)) with
the MAC value of (M [1], ..., M [q], XS) where U(l) = (XS ||padding)⊕L ·x−1(l).
That is, the attacker checks whether or not the MAC values for (M [1], ..., M [q],
U(l)) are the same as the MAC value of (M [1], ..., M [q], XS) by the MAC ver-
ifications. If a message (M [1], ..., M [q],U(l)) passes the above test, L · x−1(l) is
a candidate of L · x−1. By this process, the attacker can reduce the 2n−τ can-
didates of internal collisions to 2n−2·τ . If the attacker repeats this process by
n/τ� times, then the attacker can find the desired internal collision and from
this collision the attacker can also obtain L ·x−1 with no knowledge of K. Thus,
the attacker can forge the MAC of a new message using the obtained value of
L ·x−1 as in the previous attack. This attack requires about 2n/2+1 chosen mes-
sages and 2n−τ + 2n−2·τ + · · ·+ 2n−�n/τ	·τ ≈ 2n−τ MAC verifications. That is,
the complexity of this attack is [0, 0, 2n/2+1, 2n−τ]. Similarly, this attack can be
converted into a known message attack with a [0, 2n/2+1, 0, 2n−τ] complexity (by
considering q = 0).

3.2 Key Recovery Attacks on PMAC

In order to devise key recovery attacks on PMAC, we ask for MAC values of k
τ �

one-block messages Mi whose bit-lengths are all less than n, i.e., with the known
message attack we obtain (M1, T1), (M2, T2), · · · , (M� k

τ 	, T� k
τ), where each Ti

is the first τ bits of EK(pad(Mi)). We use the obtained message/MAC pairs to
do an exhaustive search for the key. If τ is larger than k, it requires about 2k−1

block cipher E encryptions on average to recover the key. Otherwise, it requires
about 2k + 2k−τ + · · ·+ 2k−(� k

τ 	−1)τ ≈ 2k block cipher E encryptions to recover
the key since each message/MAC pair offers a τ -bit restriction. Hence, if τ > k
then the complexity of the attack is [2k−1, 1, 0, 0], otherwise, [2k, k

τ �, 0, 0].

4 Forgery and Key Recovery Attacks on TMAC-V

In this section we describe forgery and key recovery attacks on a CBC-MAC
variant, TMAC-V, with known or chosen message queries.

4.1 Forgery Attacks on TMAC-V

Our TMAC-V attacks also start from collecting enough message/MAC pairs to
get a collision. With the known message attack the attacker obtains the corre-
sponding MACs for approximately 2n/2 different one-block messages X i(1 ≤ i ≤
2n/2) where X i whose sizes are less than n bits are pairwise-distinct. Note that
all these messages require padding. The attacker also obtains the corresponding

428 C. Lee et al.

MACs for approximately 2n/2 different one-block messages Zj(1 ≤ j ≤ 2n/2)
where Zj whose sizes are equal to n bits are pairwise distinct.

Using the birthday paradox arguments [17], with a high probability, approxi-
mately 0.63, the attacker expects to find at least one external collision between
two message sets. Suppose the pair of messages which cause a collision are re-
spectively X∗ and Z∗ where |X∗| < n and |Z∗| = n. Then, by the definition of
TMAC-V, the attacker has the following equation.

EK((X∗||padding)⊕ EK′(S3)) = EK(Z∗ ⊕ EK′(S2)). (5)

Since EK(·) is a permutation,

(X∗||padding)⊕ Z∗ = EK′(S2)⊕ EK′(S3). (6)

The attacker can use Eq. (6) to forge the MAC of a new message as follows:
The attacker chooses a message XS in the first set of messages which does
not cause a collision. By the definition of TMAC-V, the MAC value of the
XS is EK((XS ||padding) ⊕ EK′(S3)). The attacker then also knows that the
corresponding MAC value for a message ((XS ||padding) ⊕ ((X∗||padding) ⊕
Z∗)) whose size is n bits is the same as the MAC value of XS . Thus, the at-
tacker can forge the MAC of a new message ((XS ||padding)⊕ ((X∗||padding)⊕
Z∗)) using 2n/2+1 known messages. Therefore, the complexity of this attack
is [0, 2n/2+1, 0, 0]. It is easy to see that we are able to use multi-block message
queries (as in the PMAC attacks) to devise a chosen message attack on TMAC-V
with a [0, 0, 2n/2+1, 0] complexity.

4.2 Key Recovery Attacks on TMAC-V

We present here two attacks to recover the whole key of TMAC-V; one uses Eq.
(5) and Eq. (6) derived from the above forgery attacks on TMAC-V and the
other uses the meet-in-the-middle technique.

As stated above, we use 2n/2+1 known messages to get a collision, i.e., Eq.
(5) and Eq. (6). If n > k, it requires about 2k block cipher E encryptions on
average to recover the key K ′ since Eq. (6) asks two encryptions of E for each
candidate of the key K ′. Once we recover the key K ′, we again use Eq. (5) to
recover the remaining key K. Since we know the input and output pair of EK , it
requires about 2k−1 block cipher E encryptions on average to recover the key K.
Hence, the complexity of this attack is [3 ·2k−1, 2n/2+1, 0, 0]. If n < k, in order to
recover the key K ′ from Eq. (6) we should require k/n� collisions satisfying Eq.
(6). So the data complexity of this attack is

√
k/n�� · 2n/2+1 known messages

from which we expect more than k/n� collisions (the cardinality of the first
message set is the same as that of the second message set,

√
k/n�� · 2n/2).

Similarly, we apply these collisions to Eq. (6) and Eq. (5) for finding K ′ and
K, respectively. Since it requires 2 · (2k + 2k−n + · · · + 2k−(�k/n	−1)·n) ≈ 2k+1

E encryptions to recover the key K ′ and 2k + 2k−n + · · · + 2k−(�k/n	−1)·n ≈
2k E encryptions to recover the key K, the complexity of this attack is [3 ·
2k,

√
k/n�� · 2n/2+1, 0, 0].

Forgery and Key Recovery Attacks on PMAC and Mitchell’s TMAC Variant 429

The meet-in-the-middle technique also allows to recover the key of TMAC-
V. First, we encrypt S2 through E using all candidates of K ′ and keep all
the encrypted values with respect to key candidates in a table, called S (this
step requires 2k n-bit blocks and 2k k-bit blocks of memory together with 2k

E encryptions). Second, we ask for MAC values of 2k/n� one-block messages
whose bit-lengths are all less than n, i.e., with the known message attack we
obtain message/MAC pairs (M1, T1), (M2, T2), · · · , (M�2k/n	, T�2k/n). Third,
we decrypt T1 through E using all candidates of K and keep all the decrypted
values with respect to key candidates in a table, called T (this step also requires
2k n-bit blocks and 2k k-bit blocks of memory together with 2k E decryptions)
and we update S by adding M1 with each of the stored values in S. In this step
we discard keys which do not match between S and T (this step can efficiently be
done by sorting the tables S and T). We expect about 22k−n keys to be remained
after this step. Fourth, we also decrypt T2 through E using the candidates of K
and update T with all the decrypted values with respect to key candidates K,
and we again update S by adding M1 ⊕M2 with each of the stored values in S.
We then expect 22k−2n keys to be remained after this step. We repeatedly do this
step for all the remaining message/MAC pairs one by one, then after all steps
we recover K and K ′ since the expectation of the number of remaining keys is
22k−�2k/n	·n < 1 (the right key is not discarded). The total time complexity is
less than (2k/n�+ 1) · 2k E encryptions and thus the complexity of this attack
is approximately [(2k/n�+ 1) · 2k, 2k/n�, 0, 0] with 2k+2 storage.

5 Conclusion

PMAC is a fully parallelizable alternative to the CBC-MAC, and Michell’s
TMAC variant, TMAC-V, is an improvement of TMAC. In this paper we have
studied the security of PMAC and TMAC-V against the forgery and the key
recovery attacks. Tables 1 and 2 summarize our attacks together with previous
attacks on other MAC algorithms. From the tables, we clearly know that, in
terms of security, PMAC (which is similar in functionality to the OMAC) and
TMAC-V do not offer significant advantages in comparison with XCBC, TMAC,
OMAC and EMAC. In particular, TMAC-V does not have a good advantage over
TMAC against the forgery and the full key recovery attacks although it removes
a simple algebraic relationship between two keys to improve TMAC, and our at-
tacks on PMAC do not contradict the security proof but establish the tightness
of the security bound.

Acknowledgments

We would like to thank the anonymous referees and C. Mitchell for helpful com-
ments about this work. This research was supported by the MIC(Ministry of
Information and Communication), Korea, under the ITRC(Information Technol-
ogy Research Center) support program supervised by the IITA(Institute of In-
formation Technology Assessment). The second author was financed by a Ph.D.

430 C. Lee et al.

Table 1. Forgery Attack Complexities

Scheme [a, b, c, d] Condition Paper
PMAC [0 ,2n/2+1,0, 0] no truncation This paper
PMAC [0 , 2n/2+1,0, 2n−τ] τ -bit trucation This paper
TMAC-V [0 , 2n/2+1, 0, 0] no truncation This paper
XCBC [0 , 2n/2+1, 0, 0] no truncation [15, 16]
TMAC [0 , 2n/2+1, 0, 0] no truncation [15, 16]
OMAC [0 , 2n/2+1, 0, 0] no truncation [15, 16]
EMAC [0 , 2n/2, 1, 0] no truncation [5]

Table 2. Key Recovery Attack Complexities

Scheme [a, b, c, d] Condition Paper
PMAC [2k−1, 1, 0, 0] τ > n This paper
PMAC [2k, � k

τ 	, 0, 0] τ ≤ n This paper

TMAC-V [3 · 2k−1, 2n/2+1, 0, 0] P-O attack(n > k) This paper

TMAC-V [3 · 2k, �
√

� k
n 		 · 2n/2+1, 0, 0] P-O attack(n ≤ k) This paper

TMAC-V [(� 2k
n 	 + 1) · 2k, � 2k

n 	, 0, 0] MIMA(2k+2 storage) This paper

XCBC [2k, 2n/2+1, 0, 0] P-O attack [15, 16]
XCBC [2k+1, � k+2n

n 	, 0, 0] MIMA(negligible storage) [15, 16]

TMAC [2k, 2n/2+1, 0, 0] P-O attack [15, 16]
TMAC [2k+1, � k+n

n 	, 0, 0] MIMA(negligible storage) [15, 16]

OMAC [2k , 2n/2+1, 0, 0] P-O attack [15, 16]
OMAC [2k+1 , � k

n 	, 0, 0] MIMA(negligible storage) [15, 16]

EMAC [2k+1 , 2n/2, 0, 0] P-O attack [5]
EMAC [s · 2k , � 2k

n 	, 0, 0] MIMA(O(2k) storage) [5]
1 MIMA: the meet-in-middle attack
2 P-O attack: the attack based on the Preneel-van Oorschot attack [20]

grant of the Katholieke Universiteit Leuven and by the Korea Research Foun-
dation Grant funded by the Korean Government(MOEHRD) (KRF-2005-213-
D00077) and supported by the Concerted Research Action (GOA) Ambiorics
2005/11 of the Flemish Government and by the European Commission through
the IST Programme under Contract IST2002507932 ECRYPT.

References

1. K. Brincat and C. Mitchell, New CBC-MAC Forgery Attack, ACISP 2001, LNCS
2119, pp. 3-14, Springer-Verlag, 2001.

2. J. Black and P. Rogaway, A Block-Cipher Mode of Operation for Parallelizable
Message Authentication, Advances in Cryptology – EUROCRYPT 2002 , LNCS
2332, pp. 384-397, Springer-Verlag, 2002.

3. M. Bellare, J. Kilian and P. Rogaway, The Security of the Cipher Block Chaining
Message Authentication Code, Advances in Cryptology – CRYPTO 1994, LNCS
839, pp. 341-358, Springer-Verlag, 1994.

Forgery and Key Recovery Attacks on PMAC and Mitchell’s TMAC Variant 431

4. J. Black and P. Rogaway, CBC-MACs for Arbitrary-Length Messages : The Three
Key Construction, Advances in Cryptology – CRYPTO 2000, LNCS 1880, pp.
197-215, Springer-Verlag, 2000.

5. ISO/IEC 9797-1, Information technology – Security techniques – Message Authen-
tication Codes (MACs)– Part 1 : Mechanisms using a block cipher, International
Organization for Standardization, Geneve, Swizerland, 1999.

6. T. Iwata and K. Kurosawa, OMAC: One-Key CBC MAC, FSE 2003, LNCS 2887,
pp. 137-162, Springer-Verlag, 2003.

7. T. Iwata and K. Kurosawa, On the Security of Two New Omac Variants, ICISC
2003, LNCS 2971, pp. 67-78, Springer-Verlag, 2004.

8. T. Iwata and K. Kurosawa, Strong security bounds for OMAC, TMAC, XCBC,
Indocrypt 2003, LNCS 2904, pp. 402-415, Springer-Verlag, 2003.

9. E. Jaulmes, A. Joux and F. Valette, On the Security of Randomized CBC-MAC
beyond the Birthday Limit: A New Construction, FSE 2002, LNCS 2365, pp. 237-
251, Springer-Verlag, 2002.

10. T. Kohno, Related-Key and Key-Collision Attacks against RMAC, Cryptol-
ogy ePrint Archive, 2002. Available at http://eprint.iacr.org. Also available at
http://csrc.nist.gov/CryptoToolkit/modes/comments.

11. K. Kurosawa and T. Iwata, TMAC: Two-Key CBC-MAC, Topics in Cryptology –
CT-RSA 2003, LNCS 2612, pp. 33-49, Springer-Verlag, 2003.

12. L. Knudsen and C. Mitchell, Analysis of 3GPP-MAC and two-key 3GPP-MAC,
Discrete Appiled Mathematics , pp. 181-191, Elsevier Science, 2003.

13. L. Knudsen and C. Mitchell, Partial key recovery attack against RMAC, Journal
of Cryptology, Vol. 18, No. 4, pp. 375-389, 2005.

14. L. Knudsen and T. Khono, Analysis of RMAC, FSE 2003, LNCS 2887, pp. 191-200,
Springer-Verlag, 2003.

15. C. Mitchell, On the security of XCBC, TMAC, and OMAC, Technical Report
RHCL-MA-2003-4, Aug. 2003. Available at http://www.rhul.ac.uk/mathematics
/techreports or http://csrc.nist.gov/CryptoToolkit/modes/comments.

16. C. Mitchell, Partial Key Recovery Attacks on XCBC, TMAC and OMAC, Cryptog-
raphy and Coding, 10th IMA International Conference – CCC 2005, LNCS 3796,
pp. 155-167, Springer-Verlag, 2005.

17. A. Menezes, P.C. van Oorschot and S. Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, Boer Raton, 1997.

18. National Institute of Standards and Technology (NIST), Gaithersburg, MD. NIST
Special Publication 800-38B, Draft Recommendation for Block Cipher Modes of
Operation: the RMAC Authentication, November, 2002.

19. E. Petrank and C. Rackoff, CBC MAC real-time data sources, Journal of Cryptol-
ogy, Vol. 13, No. 3, pp. 315-348, Springer-Verlag, 2000.

20. B. Preneel and P.C. van Oorschot, On the security of iterated Message Authentica-
tion Codes, IEEE Transactions on Information Theory, Vol. 45, No. 1, pp. 188-199,
1999.

21. J. Sung, D. Hong and S. Lee, Key Recovery Attacks on the RMAC, TMAC, and
IACBC, ACISP 2003, LNCS 2727, pp. 265-273, Springer-Verlag, 2003.

Side Channel Attacks Against HMACs Based
on Block-Cipher Based Hash Functions�

Katsuyuki Okeya

Hitachi, Ltd., Systems Development Laboratory,
1099, Ohzenji, Asao-ku, Kawasaki, 215-0013, Japan

ka-okeya@sdl.hitachi.co.jp

Abstract. HMAC is one of the most famous keyed hash functions, and
widely utilized. In order to design secure hash functions, we often use
PGV construction consisting of 64 schemes, each of which utilizes a block
cipher. If the underlying block cipher is ideal, 12 schemes are proven to
be secure. In this paper, we evaluate the security of these schemes in
view of side channel attacks. As it turns out, HMACs based on 11 out of
12 secure PGV schemes are vulnerable to side channel attacks, even if
the underlying block cipher is secure against side channel attacks. These
schemes are classified into two groups based on their vulnerabilities. For
the first group which contains 8 schemes, we show that the attacker can
reveal the whole key of HMAC, and selectively forge in consequence. For
the other group which contains 3 schemes, we specify the importance
of the execution sequence for the inner operations of the scheme, and
refine it. If wrong orders of operations are used, the attacker can reveal
a portion of the key of HMAC. Hence, the use of HMACs based on
such PGV schemes as they are is not recommended when the resistance
against side channel attacks is necessary.

Keywords: (keyed) hash function, HMAC, PGV construction, side
channel attacks, differential power analysis (DPA), reverse DPA.

1 Introduction

Nowadays, on mobile devices, digital communications such as electronic com-
merce are not special any more, or rather they are a part of our daily life. In
order to securely communicate between such mobile devices, the counterpart
is often authenticated. Thus, cryptographic algorithms are implemented on the
device. However, since the computational resources for cryptosystems on the de-
vice are normally scarce or limited, a lightweight implementation is preferable,
on the one hand. Under these situations, a keyed hash function such as HMAC
[BCK96] is often utilized for authentication.

� This work was partly supported by National Institute of Information and Commu-
nications Technology (NICT).

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 432–443, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Side Channel Attacks Against HMACs 433

On the other hand, whenever cryptographic algorithms are implemented on
the device, the resistance against side channel attacks should be taken into ac-
count, not only the mathematical security of the algorithms. Hence, it is impor-
tant to research the side channel attacks against HMAC.

Lemke et al. [LSP04] discussed a side channel attack against HMAC with
RIPEMD-160 [DBP96], and it may be applicable to HMAC with SHA-1 [SHA].
However, this approach was ad-hoc and tailored to specific hash functions,
and its extent is not clear. In view of the construction of a secure hash func-
tion against side channel attacks, the design principle of the hash functions
should be taken into account. Hence, in more general settings, the discussion
on side channel attacks against HMACs is needed, apart from specific hash
functions.

In this paper, we evaluate the resistance of HMACs based on block-cipher based
hash functions against side channel attacks, when PGV construction [PGV94] for
designing the hash functions is utilized. According to PGV construction, twelve
schemes are proven to have collision resistance and onewayness. We will show that
eleven out of twelve are vulnerable to side channel attacks, especially differential
power analysis (DPA), even if the underlying block cipher is secure against side
channel attacks. These schemes are classified into two groups based on their vul-
nerabilities. For the first group which contains eight schemes, we will show that the
attacker can reveal the whole key of HMAC, and selectively forge in consequence.
For the other group which contains three schemes, we specify the importance of
the execution sequence for the inner operations of the compression function, and
refine it. In addition, we will propose a DPA attack named reverse DPA. If wrong
orders of operations are used, the attacker can reveal a portion of the key of HMAC
under the reverse DPA. Hence, the use of HMACs based on such PGV schemes as
they are is not recommended when the resistance against side channel attacks is
necessary.

The rest of this paper is organized as follows. Section 2 recalls hash functions
and PGV construction. Section 3 recalls side channel attacks and DPA, and
describes DPA model. Section 4 applies DPA attacks against HMACs based on
PGV construction. Section 5 concludes this paper.

2 Hash Functions

For a given data with arbitrary length, hash functions1 computes a fixed length
data, namely hashed value. As the security of hash functions, onewayness and
collision resistance are required. It is said that a hash function hash has oneway-
ness if for any value y in the set of all the outputs, it is hard to find out an input
x with hash(x) = y. It is said that a hash function hash has collision resistance
if it is hard to find out a pair of values x, y in the set of all the inputs such that
the relation hash(x) = hash(y) is hold.
1 Whereas “hash function” stands for a oneway hash function in some cryptographic

contexts, the onewayness is not included in the definition of a hash function in this
paper for the simplicity of the terminologies.

434 K. Okeya

h0 �

m1

�

f
h1

� · · ·
hn−2

�

mn−1

�

f
hn−1

�

mn

�

f hn
�

Fig. 1. An iterated hash function

hi−1 �

mi

�

f
x

�

k �
��
�� E

y
�

z

�

��
	

� hi

Fig. 2. A compression function based on a block cipher

In order to construct secure hash functions, compression functions are often
used. A compression function converts a given data with a fixed length to a data
with a shorter length. Hash functions repeatedly utilize compression functions
for converting a given arbitrary-length data to a fixed-length data. An iterated
hash function utilizes a compression function sequentially for computing the
hashed value. Figure 1 shows an iterated hash function, where f stands for a
compression function, m1, · · · , mn−1, mn for fixed length portions of the input
message m, h0 for initial value, h1, · · · , hn−1 for intermediate values, hn for the
output of the hash function hash(m). In the case of the iterated hash function,
if the underlying compression function has collision resistance, the hash function
also has collision resistance [Dam89, Mer89].

In several approaches to design compression functions, we often utilize a con-
struction method based on block ciphers. The combinations with input (hi−1, mi)
and output hi(= f(hi−1, mi)) of the compression function f , and input (x, key
k) and output y(= Ek(x)) of the underlying block cipher E provide us with
various compression functions.2

Preneel-Govaerts-Vandewalle (PGV) construction [PGV94] utilizes x, k, z ∈
{hi−1, mi, hi−1⊕mi, 0}. Thus, there are 64 schemes in total. In these schemes, 12
schemes have collision resistance and onewayness if the underlying block cipher
is ideal [BRS02]. These schemes are listed at Figure 8 in appendix.

2 In this paper, we assume the size of mi is equal to that of hi. However, in general,
this is not the case. Actually, in many hash functions such as SHA-1 [SHA], these
sizes are different, and they do not use XOR operations for these values such as
mi ⊕ y.

Side Channel Attacks Against HMACs 435

Some applications of hash functions are keyed hash functions such as HMAC
[BCK96]. In a keyed hash function, a part of its input is secret.

3 Side Channel Attacks

Side channel attacks (SCA) are a serious menace to embedded devices with cryp-
tographic applications. Because while such devices perform cryptographic opera-
tions, execution timing, power consumption and suchlike, namely side channel in-
formation, are observable for an attacker, and he/she can utilize the observed in-
formation for detecting the secret stored in the device. Examples of side channel at-
tacks are timing attack [Koc96], simple power analysis (SPA) [KJJ99], differential
power analysis (DPA) [KJJ99]. In this paper, we focus on power analysis, especially
DPA, for the evaluation of keyed hash functions. The same applies to timing attack
or electro-magnetic analysis. In that case, different kind of side channel information
is only utilized, and the analysis method is not so different. Since the way of observ-
ing the side channel information is independent from implemented cryptographic
algorithms, it is not necessary to discuss it with focusing on hash functions.

In a differential power analysis (DPA), the attacker observes power consump-
tion as side channel information, and tries to reveal the secret using statistical
tools such as the average of power consumption for eliminating the noise [KJJ99].
Because of the use of statistical tools, the attacker observes power consumption
several time.

Y1
secret

constant
�

M
public

changeable

�

��
	

� Y2

Fig. 3. DPA model

DPA Model. Since hash functions as they are do not have any secret informa-
tion, the application of side channel attacks against hash functions requires us
to combine hash functions and secret, namely keyed hash function. In fact, even
if the same underlying hash function is utilized, the existence and the role of the
secret for the hash function depend on the way to apply to the upper schemes.
Thus, we consider how to apply side channel attacks on a target operation in
the hash function.

We explain the way to apply DPA on a target operation using the following
setting [OI05]. In this setting, while we assume that the target operation is XOR,
the same applies to other operations such as arithmetic addition.

Figure 3 shows a target XOR operation in a keyed hash function. The XOR
operation has two inputs Y1 and M ; Y1 is secret and constant which the attacker
tries to reveal, and M is public and the attacker can control this value. Y2 is the
output of the XOR, and the attacker does not know this value.

436 K. Okeya

The first step of the attack is to guess a certain bit b of Y1, and he/she
sorts the input M depending on the target bit of Y2 is 0 or 1 when the change-
able input M is inputted; Mb = {M |(the i-th bit of M) ⊕ b = 0} and Mb̄ =
{M |(the i-th bit of M)⊕ b = 1} for b, the guessed i-th bit of Y1.

Then, the attacker observes the power consumption for the XOR operation
with several3 inputs M ; power consumption PM for M ∈Mu, the set of utilized
M for observations.

The third step is to compute the average power consumption for each group;
APb = 1

#Mu
b

∑
M∈Mu

b
PM and APb̄ = 1

#Mu
b̄

∑
M∈Mu

b̄

PM , where Mu
b = Mb ∩

Mu and Mu
b̄

= Mb̄ ∩ Mu. Under the Hamming weight model [MDS99], the
power consumption depends on the Hamming weight of manipulated data. Hence
a large power consumption, that is APb̄(t) � APb(t) for time t when the XOR
operation is performed, implies that the target bit of Y2 is 1 since the other bits
behave as random and the averaging eliminates their effect. This provides the
attacker with the information whether the original guess b for the target bit of
the secret Y1 is correct or not.

Repeating this procedure, the attacker can reveal the whole bits of the secret
Y1. Note that once the attacker observes sufficient number of the power con-
sumptions, he/she does not have to re-observe them for another target bit. The
only thing he/she has to do is to re-classify M and compute the average power
consumption for the new groups.

4 Side Channel Attacks on Compression Functions

In this section, we consider side channel attacks on HMACs based on block-
cipher based hash functions. Section 4.1 discusses target compression functions
of HMAC. Section 4.2 applies the DPA attack on twelve secure PGV schemes. We
assume that the underlying block cipher is resistant against side channel attacks.
Because the resistance against side channel attacks on the block ciphers can be
discussed independently from the hash functions. Besides, lots of researches have
been done [MDS99, Mes00a, Mes00b]. Section 4.3 proposes the reverse DPA,
which is another model of DPA. Section 4.4 discusses forgery and key recovery
of HMACs using the DPA attacks.

4.1 Target Compression Functions in HMAC

First, we discuss the target compression functions of the DPA attack in the case
of the message authentication code HMAC, one of the keyed hash functions.

In HMAC, for a given message m, using the key K, the message authentication
code is computed as follows:

HMAC(m)= hash(K ⊕ opad||hash(K ⊕ ipad||m)),

3 The required number of samples is determined by the signal-to-noise (S/N) ratio of
the power consumption on the target device.

Side Channel Attacks Against HMACs 437

where ipad and opad are constant values. We denote by IV the initial vector of
the hash function hash. Using the compression function f , two values Kin and
Kout are defined as follows:

Kin = f(IV, K ⊕ ipad), Kout = f(IV, K ⊕ opad).

Roughly speaking, HMAC computes the message authentication code using two
related keys Kin and Kout.

IV �

K ⊕ ipad

�

f
Kin

�

m1

�

f
h1

� · · ·
hn−2

�

mn−1

�

f
hn−1

�

mn

�

f

IV �

K ⊕ opad

�

f
Kout

�

hn

�

f HMAC(m)�

Fig. 4. HMAC

Figure 4 shows the algorithm of HMAC. The message m is divided into the
fixed-length blocks m1, · · · , mn. Then HMAC performs the compression function
f n + 3 times. m1, · · · , mn are inputted as a part of message input of the first
application of the hash function hash. The output hn(= hash(K ⊕ ipad||m)) of
the first application of the hash function hash is inputted as a part of message
input of the second application of the hash function hash. The output hash(K⊕
opad||hn) of the second application of the hash function hash is the output
HMAC(m) of HMAC for the message m.

In HMAC, Kin and Kout are secret and constant values. The message m is
public for the attacker, and we may assume he/she can freely change this value.
When m1, · · · , mi−1 are fixed, the output hi−1 of the i-th compression function
f(hi−2, mi−1) in the first application of the hash function hash is constant.
Note that the value hi−1 is secret for the attacker, and he/she can forge a
message authentication code by using this value if the compression function
is insecure. Besides, hi−1 is equal to the key Kin if i = 1. On the other hand, mi

is public for the attacker, and he/she can change this value independent from
m1, · · · , mi−1.

Thus, we assume the following setting: In the compression function f(hi−1, mi),
hi−1 is secret and fixed, and mi is public and changeable. The goal of the attacker
is to reveal hi−1 using DPA attack with the help of the power consumption relating
the output hi.

438 K. Okeya

4.2 DPA Against PGV Compression Functions

Based on PGV construction, there are 64 schemes, that is, all the combinations
of input/output of a compression function and input/output of the underlying
block cipher of the compression function. There are 12 out of 64 schemes which
have collision resistance and onewayness, and the list is at Figure 8 in appendix.

We discuss side channel attacks against these twelve compression functions.
Note that, it is assumed that the underlying block cipher is secure against side
channel attacks. Thus, side channel attacks on the block cipher are not con-
sidered. The DPA attack discussed in Section 3 is applied to the above twelve
schemes.

We consider the following situation: The attacker feeds m1, m2, · · · , mi−1 as
fixed inputs and mi as a changeable input to the target hash function. In this
case, mi is public and changeable and hi−1 is secret and fixed for him/her, as
discussed in the previous section.

If there exists an XOR operation mi ⊕ hi−1 in the compression function, the
attacker applies the DPA attack to this operation, and he/she can reveal the
secret hi−1.

In the above twelve schemes, eight schemes have the XOR operation mi⊕hi−1;
f2, f4, f6, f8, f9, f10, f11, f12. If these schemes are utilized for designing a hash
function, the hash function is vulnerable to the DPA attack. In order to evaluate
the remaining four schemes f1, f3, f5, f7, we will enhance the DPA attack in the
next section.

4.3 Reverse DPA

In Section 3, we discussed the way to mount the DPA attack against the XOR
operation. In this section, we will enhance it on the following setting.

Y1
secret

constant
�

M

�

��
	

� Y2
public

variable

Fig. 5. Reverse DPA

Figure 5 shows a target XOR operation4 in a keyed hash function. The XOR
operation has two inputs Y1 and M ; Y1 is secret and constant which the attacker
tries to reveal, and M is also secret, but he/she does not care. Y2 is the output
of the XOR, and is public and variable, but it is not assumed that he/she can
control.
4 In this paper, we mainly discuss a side channel attack on the XOR operation. But it

is applicable to some other operations such as the arithmetic addition, which is uti-
lized in many hash functions such as SHA-1 [SHA] and MD5 [MD5]. In the case of the
arithmetic addition, the target bit is given from the least significant bit in turn.

Side Channel Attacks Against HMACs 439

In what follows, we propose a DPA attack on the above XOR, and it is referred
to as reverse DPA. In the reverse DPA, time goes back. That is, for detecting
the secret Y1, instead of using the input M , the attacker uses the output Y2 and
guesses the backward value M and observes the power consumption.

An example of such an XOR operation is that in the case of HMAC with the
compression function f5, the XOR operation of the final compression function
in it. (See Figures 4 and 8.) The output Y2 corresponds to the output of HMAC,
which is public and variable. The input Y1 corresponds to the secret Kout, which
is constant as long as the initial vector IV and the key K are constant. The
other input M corresponds to hn, which is secret.

The first step of the reverse DPA is to guess a certain bit of Y1, and he/she
sorts the output Y2 depending on the target bit of the input M is 0 or 1 according
to the variable output Y2. Then, the attacker observes the power consumption
for the XOR operation with several outputs Y2. The third step is to compute
the average power consumption for each group, and confirms the correctness of
the original guess using the averages.

In fact, the attacker cannot perform in the above order, since at the time
he/she gets the output Y2, the XOR operation was over. In reality, first, he/she
observes the power consumption for some input M , and gets the output Y2. Based
on the obtained Y2, he/she selects one of two groups for the output Y2. He/she
repeats this, and gets enough samples. Then, he/she computes the average power
consumption for each group.

We experimented the reverse DPA on some IC chip. A toy program that
performs the XOR operation was implemented on it, and the power consumption
was observed 10, 000 times. Figure 6 shows the differences between the average
power consumptions. The upper half is the case that the target bit is 1, and the
lower half is the case that it is 0. We can confirm the clear spikes. The leftmost
spikes are the target one, and these signs are different. It means that the attacker
can retrieve the target bit of the secret. The next three spikes correspond to the
save of registers, since some registers store the manipulated data that are related
with the secret.5 Hence, the reverse DPA is realistic.

4.4 DPA Against HMAC

This section shows forgery and key recovery of HMACs using the DPA attacks
discussed in Sections 4.2 and 4.3 against the compression functions.

The case fj with j ∈ {2, 4, 6, 8, 9, 10, 11, 12}. We consider forgery of
HMAC with the compression function fj . The attacker selects m1 as a pub-
lic changeable value. Since m1 is public and changeable and Kin is secret and
constant for him/her, the DPA attack in Section 4.2 is applicable to the com-
pression function fj(Kin, m1). Then he/she reveals the key Kin.

The next target for him/her is to reveal the key Kout. For the revealed key
Kin, the attacker computes the output hn of the first application of the hash
5 The upper half has a thick spike in the rightmost side. We could not find out the

reason why it appears. It may be a ghost spike.

440 K. Okeya

Fig. 6. Experiment of the reverse DPA with 10, 000 samples

function for various messages m. While the output hn is public for the attacker,
it is hard for him/her to select a message m with a pre-determined hn, if the
hash function has onewayness. On the other hand, in the DPA model, inputs
are only classified depending on the target bit is 0 or 1. Thus, in the average
power consumption, the effects from the other bits are cancelled if the input
behaves as a random number. Hence, if we regard the output of the hash func-
tion as a random number, “the input M is changeable” in the DPA model
is not a problem when he/she computes sufficiently many hn. Therefore, the
DPA model is applicable to the compression function fj(Kout, hn) in the sec-
ond application of the hash function of HMAC, and the attacker can reveal the
key Kout.

Once he/she reveals the keys Kin and Kout, he/she can compute HMAC(m)
for any message m. In other words, the attacker can selectively forge if these
eight PGV schemes are utilized for HMAC.

The case fj with j ∈ {3, 5, 7}. We consider the reverse DPA against the
remaining four PGV schemes under the HMAC setting; the final compression
function in the second application of the hash function, that is, the output
hi(=HMAC(m)) is public and variable, one of the inputs hi−1(= Kout) is secret
and constant, and the other input mi(= hn) is secret.

First, in the case of the compression function f1, there is no target XOR
operation for the reverse DPA. Thus, f1 is secure. Next, in the case of the
compression function f5, the reverse DPA is applicable to the XOR operation.
Thus, the attacker can reveal the secret Kout. In the case of the compression

Side Channel Attacks Against HMACs 441

hi−1 �

�

mi

�
�

��
�� � �� �� hi

refined f3

hi−1 �

�

mi

�
����� � �� �� hi

refined f7

Fig. 7. Refined compression functions

functions f3 and f7, they have the XOR operation with three inputs, and the
order of the XOR operations is important;

(1) hi = (mi⊕hi−1)⊕y (2) hi = (y⊕mi)⊕hi−1 (3) hi = (y⊕hi−1)⊕mi.

In the case of (1), the DPA attack in Section 4.2 is applicable to the XOR
operation mi ⊕ hi−1. Thus it is vulnerable to the DPA. In the case of (2), the
reverse DPA attack is applicable to the XOR operation M⊕hi−1 = hi, where M
stands for y⊕mi. Thus, the attacker can reveal hi−1, that is the key Kout. In the
case of (3), neither normal nor reverse DPA attack is applicable. Thus, it still
survives under these attacks. Hence, we have refined the compression functions
f3 and f7 as specified at Figure 7.

As it turns out, except for f1, refined f3 and refined f7, the attacker can
recover the key Kout of the HMAC with fj with j ∈ {3, 5, 7}.

Remark 1. The compression function f5 is used for SHA-1/2 [SHA] and MD5
[MD5], and RIPEMD-160 [DBP96] uses a duplicated f5.

Remark 2. Whether or not forgery of HMAC is possible using the revealed key
Kout is an open problem.

5 Conclusion

In view of side channel attacks, we have evaluated the security of twelve PGV
schemes that have collision resistance and onewayness if the underlying block
cipher is ideal. As it turned out, HMACs based on eleven out of twelve shemes
are vulnerable to side channel attacks, even if the underlying block cipher is
secure against side channel attacks. For the compression functions fj with j ∈
{2, 4, 6, 8, 9, 10, 11, 12}, we have shown that the attacker can reveal the keys Kin

and Kout of HMAC, and selectively forge in consequence. For the compression
functions fj with j ∈ {3, 5, 7}, we have specified the importance of the execution
sequence for the inner XOR operations of the compression function, and refined
them as refined f3 and f7. If wrong orders of XOR operations are used, the
attacker can reveal the key Kout of HMAC under the reverse DPA. Therefore,
the use of HMACs based on such schemes as they are, even if they have collision
resistance and onewayness, is not recommended when the resistance against side
channel attacks is necessary.

442 K. Okeya

Acknowledgment

We would like to thank Mr. Hirotaka Yoshida, Dr. Tetsu Iwata, and Mr. Camille
Vuillaume for valuable comments on the previous version of this paper.

References

[BCK96] Bellare, M., Canetti, R., Krawczyk, H., Keying Hash Functions for Message
Authentication, Advances in Cryptology - CRYPTO ’96, LNCS1109, (1996),
1-15.

[BRS02] J. Black, P. Rogaway, and T. Shrimpton, Black-box analysis of the block
cipher-based hash-function constructions from PGV, Advances in Cryptol-
ogy - CRYPTO 2002, Springer-Verlag, LNCS 2442, (2002), 320-335.

[Dam89] Damg̊ard, I., A design priciple for hash functions, Advances in Cryptology
- CRYPTO ’89, LNCS435, (1990), 416-427.

[DBP96] Dobbertin, H., Bosselaers, A., Preneel, B., RIPEMD-160: A Strengthened
Version of RIPEMD, Fast Software Encryption (FSE ’96), LNCS 1039,
(1996), 71-82.

[Koc96] Kocher, C., Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems, Advances in Cryptology - CRYPTO ’96,
LNCS1109, (1996), 104-113.

[KJJ99] Kocher, C., Jaffe, J., Jun, B., Differential Power Analysis, Advances in
Cryptology - CRYPTO ’99, LNCS1666, (1999), 388-397.

[LSP04] Lemke, K., Schramm, K., Paar, C., DPA on n-Bit Sized Boolean and Arith-
metic Operations and Its Application to IDEA, RC6, and the HMAC-
Construction, Cryptographic Hardware and Embedded Systems (CHES
2004), LNCS3156, (2004), 205-219.

[MD5] RFC 1321, The MD5 Message-Digest Algorithm, (1992).
[MDS99] Messerges, T.S., Dabbish, E.A., Sloan, R.H., Investigations of Power Anal-

ysis Attacks on Smartcards, USENIX Workshop on Smartcard Technology,
(1999).

[Mer89] Merkle, R., One way hash functions and DES, Advances in Cryptology -
CRYPTO ’89, LNCS435, (1990), 428-446.

[Mes00a] Messerges, T.S., Securing the AES Finalists Against Power Analysis At-
tacks, Fast Software Encryption (FSE 2000), LNCS1978, (2000), 150-164.

[Mes00b] Messerges, T.S., Using Second-Order Power Analysis to Attack DPA Re-
sistant Software, Cryptographic Hardware and Embedded System (CHES
2000), LNCS1965, (2000), 238-251.

[OI05] K. Okeya, T. Iwata, Side Channel Attacks against Message Authentication
Codes, 2nd European Workshop on Security and Privacy in Ad Hoc and
Sensor Networks (ESAS 2005), LNCS3813, (2005), 205-217.

[PGV94] B. Preneel, R. Govaerts, and J. Vandewalle, Hash functions based on block
ciphers: A synthetic approach, Advanced in Cryptology, CRYPTO ’93,
Springer-Verlag, LNCS 773, (1994), 368-378.

[SHA] FIPS PUB 180-2, Secure Hash Standard (SHS), (2002).

A Compression Functions Based on PGV Construction

We list twelve schemes base on PGV construction which have collision resistance
and onewayness if the underlying block cipher is ideal.

Side Channel Attacks Against HMACs 443

hi−1 �

mi

� �
� � ��hi

f1

hi−1 �

�

mi

� ��
� ��hi

f7

hi−1 �

�

mi

��
� �

� � ��hi

f2

hi−1� ��

�

mi

�� �
� ��hi

f8

hi−1 �

�

mi

� �
� � ��hi

f3

hi−1� ��

mi

�� �
� � ��hi

f9

hi−1 �

�

mi

�

�

�
�

� � ��hi

f4

hi−1 �

�

�

mi

��
��

� ��hi

f10

hi−1 �

�

mi

��
� ��hi

f5

hi−1� ��

�

mi

��
� � ��hi

f11

hi−1� ��

�

mi

�� �
� ��hi

f6

hi−1 �

�

mi

�

�

�
��

� ��hi

f12

Fig. 8. Compression functions based on PGV construction

Author Index

Abe, Masayuki 360
Adelsbach, André 136
Agudo, Isaac 383
Al-Hinai, Sultan 1
Au, Man Ho 223

Bao, Feng 148, 313
Bao, Li 395
Batten, Lynn 1
Boyd, Colin 247, 371
Braeken, An 40
Burmester, Mike 295

Caelli, William J. 183
Cao, Zhenfu 195
Cho, Joo Yeon 29
Choo, Kim-Kwang Raymond 371
Colbert, Bernard 1
Courtois, Nicolas T. 76
Cui, Yang 360

Dawson, Ed 52, 247, 407
Debraize, Blandine 76
Deng, Xiaotie 235
Duan, Shanshan 195

Fayyoumi, Ebaa 324
Fournier, Jacques 17

Galindo, David 336
Garrido, Eric 76
Gauravaram, Praveen 407

Hanaoka, Goichiro 123, 348
Hayashi, Ryotaro 271
Henricksen, Matt 52, 64
Holford, John W. 183
Hong, Seokhie 421
Hu, Bessie C. 235
Huber, Ulrich 136

Imai, Hideki 123, 348, 360

Jiang, Shaoquan 259

Kiltz, Eike 336

Kim, Jongsung 421
Kitagawa, Takashi 348
Kurosawa, Kaoru 360

Lakshminarayanan, A. 87
Lano, Joseph 40
Le, Tri Van 295
Lee, Changhoon 421
Lee, Sangjin 421
Leiwo, Jussipekka 171
Lim, T.L. 87
Lin, Yue-Hsun 159
Lopez, Javier 383

Mathuria, Anish 371
Matsuura, Kanta 348
Medeiros, Breno de 295
Millan, William 407
Montenegro, Jose A. 383
Mu, Yi 99

Ogawa, Kazuto 123
Okamoto, Eiji 247
Okeya, Katsuyuki 432
Oommen, B. John 324
Overbeck, R. 283

Paterson, Kenneth G. 207
Peng, Kun 247
Pieprzyk, Josef 29
Premkumar, Benjamin 171
Preneel, Bart 40

Quynh, Nguyen Anh 111

Sadeghi, Ahmad-Reza 136
Schuldt, Jacob C.N. 207
Simpson, Leonie 64
Sun, Hung-Min 159
Sung, Jaechul 421
Susilo, Willy 99, 223

Takefuji, Yoshiyasu 111
Tanaka, Keisuke 271
Tunstall, Michael 17

446 Author Index

Viswanathan, Kapali 407

Watanabe, Hajime 348
Wong, Duncan S. 235
Wong, Kenneth 1
Wu, Ming-Fung 159

Xu, Shidi 99

Yang, Peng 348
Yin, Yin 395
Yiu, Siu-Ming 223
Yu, Yu 171

Zhang, Rui 348
Zhang, Zhenfeng 235
Zhu, Huafei 148, 313

	Frontmatter
	Stream Ciphers
	Algebraic Attacks on Clock-Controlled Stream Ciphers
	Cache Based Power Analysis Attacks on AES
	Distinguishing Attack on SOBER-128 with Linear Masking
	Evaluating the Resistance of Stream Ciphers with Linear Feedback Against Fast Algebraic Attacks

	Symmetric Key Ciphers
	Ensuring Fast Implementations of Symmetric Ciphers on the Intel Pentium 4 and Beyond
	Improved Cryptanalysis of MAG
	On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power Functions

	Network Security
	Augmented Certificate Revocation Lists
	Online/Offline Signatures and Multisignatures for AODV and DSR Routing Security
	Towards an Invisible Honeypot Monitoring System

	Cryptographic Applications
	Adaptively Secure Traitor Tracing Against Key Exposure and Its Application to Anywhere TV Service
	Fingercasting---Joint Fingerprinting and Decryption of Broadcast Messages
	More on Stand-Alone and Setup-Free Verifiably Committed Signatures

	Secure Implementation
	API Monitoring System for Defeating Worms and Exploits in MS-Windows System
	Hiding Circuit Topology from Unbounded Reverse Engineers
	The Role of the Self-Defending Object Concept in Developing Distributed Security-Aware Applications

	Signatures
	Efficient and Provably Secure Multi-receiver Identity-Based Signcryption
	Efficient Identity-Based Signatures Secure in the Standard Model
	Event-Oriented {\itshape k}-Times Revocable-iff-Linked Group Signatures
	Key Replacement Attack Against a Generic Construction of Certificateless Signature

	Theory
	A Novel Range Test
	Efficient Primitives from Exponentiation in \mathbb{Z}<Subscript>{\itshape p}</Subscript>
	PA in the Two-Key Setting and a Generic Conversion for Encryption with Anonymity
	Statistical Decoding Revisited

	Invited Talk
	Towards Provable Security for Ubiquitous Applications

	Security Applications
	Oblivious Scalar-Product Protocols
	On Optimizing the {\itshape k}-Ward Micro-aggregation Technique for Secure Statistical Databases

	Provable Security
	Direct Chosen-Ciphertext Secure Identity-Based Key Encapsulation Without Random Oracles
	Generic Transforms to Acquire CCA-Security for Identity Based Encryption: The Cases of FO{\sc pkc} and REACT
	Tag-KEM from Set Partial Domain One-Way Permutations

	Protocols
	An Extension to Bellare and Rogaway (1993) Model: Resetting Compromised Long-Term Keys
	Graphical Representation of Authorization Policies for Weighted Credentials
	Secure Cross-Realm C2C-PAKE Protocol

	Hashing and Message Authentication
	Constructing Secure Hash Functions by Enhancing Merkle-Damg{\aa}rd Construction
	Forgery and Key Recovery Attacks on PMAC and Mitchell's TMAC Variant
	Side Channel Attacks Against HMACs Based on Block-Cipher Based Hash Functions

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

