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Abstract. This paper revisits the problem of indexing a text S[1..n] to
support searching substrings in S that match a given pattern P [1..m]
with at most k errors. A naive solution either has a worst-case matching
time complexity of Ω(mk) or requires Ω(nk) space. Devising a solu-
tion with better performance has been a challenge until Cole et al. [5]
showed an O(n logk n)-space index that can support k-error matching in
O(m+occ+logk n log log n) time, where occ is the number of occurrences.
Motivated by the indexing of DNA, we investigate in this paper the fea-
sibility of devising a linear-size index that still has a time complexity
linear in m. In particular, we give an O(n)-space index that supports
k-error matching in O(m + occ + (log n)k(k+1) log log n) worst-case time.
Furthermore, the index can be compressed from O(n) words into O(n)
bits with a slight increase in the time complexity.

1 Introduction

In this paper, we consider the indexing problem for k-approximate matching:
given an integer k ≥ 0 and a text S[1..n] over a finite alphabet Σ, we want to
build an index for S such that for any query pattern P [1..m], we can report
efficiently all locations in S that match P with at most k errors. The number of
errors is measured in terms of either the Hamming distance (number of character
substitutions) or the edit distance (number of character substitutions, insertions
or deletions). The major concern is how to achieve efficient matching without
using a large amount of space for indexing. Typical applications include the
indexing of DNA or protein sequences for biological research.

To support exact matching (i.e., k = 0), suffix trees and suffix arrays are the
most well-known indexes. Suffix trees [15,12] occupy O(n) space and achieve the
optimal matching time, i.e., O(m+ occ), where occ is the number occurrences of
P in S.1 For suffix arrays [11], the space requirement is also O(n) space (but with
a smaller constant), and the matching time is O(m + occ + log n). Recently, two

1 Unless otherwise stated, the space complexity is measured in terms of the number
of words, where a word can store O(log n) bits.
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compressed solutions, namely, compressed suffix arrays [7] and FM-index [6],
have been proposed; they requires O(n) bits only and the matching time is
O(m + occ logε n), where ε > 0.

Indexing a string for approximate matching is a challenging problem. Even
the special case where only one error is allowed (i.e., k = 1) has attracted a
lot of attention. A simple solution is to use the suffix tree of S and repeatedly
search for every 1-error modification of the query pattern; this solution uses
O(n) space and the matching time is O(m2 + occ) [4]. With a bigger index of
size O(n log n), the matching time complexity has been improved tremendously
by a chain of results to O(m log n log log n+occ) [1], O(m log log n+occ) [2], and
finally O(m + occ + log n log log n) [5]. It is also known that indexes using O(n)
space takes O(m log n + occ) time [8] and O(m log log n + occ) time [9] for 1-
error matching. These two indexes can also be compressed to O(n) bits, and the
1-error matching time is O(m log2 n+occ log n) and O((m log log n+occ) logε n),
respectively, where ε < 1.

To cater for k = O(1) errors, one can perform a brute-force search on an one-
error index (i.e., repeatedly modify the pattern at different k − 1 positions and
search for one-error matches); the matching becomes very inefficient, involving a
factor of mk in the time complexity. Alternatively, one can improve the matching
time by including all possible erroneous substrings into the index; yet this seems
to require Ω(nk) space. It has been open whether there exists an index with
performance better than a navie solution. The breakthrough is due to Cole et
al. [5], who are able to avoid brute-force matching of a pattern with a moderate
increase in the index size. Precisely, their index occupies O(dk

k! n logk n) space and
supports k-error matching in O(m + occ + ck

k! logk n log log n) time for Hamming
distance, where d and c are some constants. The term occ is replaced with occ ·3k

for edit distance. This solution gives an obvious improvement to the matching
efficiency. The space requirement is acceptable for many applications, but it may
be too demanding for indexing DNA sequences or webpages. 2

In this paper, we focus on indexes that use only O(n) words or O(n) bits
for k-error matching, and we hope that the time complexity can be better than
O(mk). Prior to our work, indexes using O(n) words to answer a k-error query
takes O((cm)k log n + occ)) time [8] or takes O((cm)k log log n + occ)) time [9].
Indexes using O(n) bits have a slightly worse time complexity [8,9]. See Table 1
for a summary of results. The main results of this paper are as follows.

(i) We give an O(n)-word index that supports k-error matching in O(m + occ +
(c log n)k(k+1) log log n) time, where c is a constant. Furthermore, if the pattern
is known to be long (precisely, Ω(logk+1 n)), the matching time can be improved
to O(m + occ + (c log n)2k+1 log log n). The term occ becomes occ · k33k if edit
distance is in concern.

2 For example, consider k = 2, the index requires O(n log2 n) words, which means
tens of gigabytes of memory for a text of a few million characters. Indexing a human
chromosome or genome (typically a few hundred million to a few billion characters)
is not feasible.
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Table 1. Known results for k-error matching. Results given in this paper are marked
with †. c and ε are positive constants.

Space k = 1
O(n log2 n) words O(m log n log log n + occ) [1]
O(n log n) words O(m log log n + occ) [2]

O(m + occ + log n log log n) [5]
O(n) words O(min{n, m2} + occ) [4]

O(m log n + occ) [8]
O(m log log n + occ) [9]
O(m + occ + log3 n log log n) †

O(n) bits O(m log2 n + occ log n) [8]
O((m log log n + occ) logε n) [9]
O((m + occ + log4 n log log n) logε n) †

Space k ≥ 2
O(n logk n) words O(m + occ + 1

k! (c log n)k log log n) [5]
O(n) words O(min{n, mk+1} + occ) [4]

O((cm)k log n + occ) [8]
O((cm)k log log n + occ) [9]
O(m + occ + (c log n)k(k+1) log log n) †

O(n) bits O((cm)k log2 n + occ log n) [8]
O(((cm)k log log n + occ) logε n) [9]
O((m + occ + (c log n)k(k+2) log log n) logε n) †

This index also admits a simple tradeoffbetween space and time. I.e., the match-
ing can be speeded up if more space is used. Roughly speaking, for any h ≤ k, if
O(n logk−h+1 n) space is used, then a k-error query can be answered in O(m +
occ + ck2

logmax{kh,k+h} n log log n) time. For example, choosing h = 3 gives an
O(n logk−2 n)-word index with matching time O(m + occ + ck log3k n log log n).

(ii) The O(n)-word index can be compressed to occupy O(n) bits only, with k-
error matching time increasing to O((m + occ + (c log n)k(k+2) log log n) logε n),
where ε < 1. In particular, when k = 1, the O(n)-bit index achieves matching in
O((m + occ + log4 n log log n) logε n) time.

Other related results. Note that the above results concern worst-case perfor-
mance. The literature also contains several interesting results on average-case
performance (see, e.g., [13, 10, 3]).

2 An O(n)-Word Index for k-Error Matching

This section considers Hamming distance only and presents an O(n)-word index
for a text S[1..n]. Given any pattern P [1..m], the index finds all substrings of
S matching P within k errors, in O(m + occ + polylog n) time. We call these
substrings the k-error matches of P .
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The index handles long patterns and short patterns separately. Intuitively,
short patterns can be handled easily. For example, a pattern of length log n can
be handled in polylog n time even with the naive Ω(mk) time methods. The
main novelty of our index is a check-point technique for handling long patterns:
we define some locations of S to be check-points. Special indexing are done for
suffixes and prefixes of S terminating at these check-points. For long patterns,
their k-error matches in S will certainly contain some check-points, so the special
indexing at the check-points suffices for finding the matches efficiently.

We now describe how to handle long patterns. Consider a text S[1..n]. Let
β be a positive integer, which will be fixed later to k3k logk+1 n. Intuitively, a
pattern is long if its length is at least β. For each a = β, 2β, 3β, . . ., we call S[a]
a check-point.

Observation 1. Let P [1..m] be a pattern with m ≥ β. For any k-error match
S[j1..j2] of P , there exists an integer a, j1 ≤ a ≤ j2 such that S[a] is a check-
point and 0 ≤ a − j1 ≤ β − 1.

Furthermore, let i = a − j1 + 1. There exist integers k1, k2 ≥ 0, such that (1)
S[a..n] has a prefix matching P [i..m] with k1 errors, (2) S[1..a − 1] has a suffix
matching P [1..i − 1] with k2 errors, and (3) k1 + k2 ≤ k.

Let TAIL be the set of suffixes of S beginning at a check-point, i.e., TAIL
= {S[a..n] | a = β, 2β, . . .}. Similarly, let HEAD be the set of prefixes of S
ending just before a check-point, i.e., HEAD = {S[1..a − 1] | a = β, 2β, . . .}.
Observation 1 suggests finding the k-error matches of P as follows.

Algorithm 1. k-MATCH(P ): finds all k-error matches of P in S, for |P | ≥ β.
For each i = 1, . . . , β, cut P into P [1..i − 1] and P [i..m]. Try all possible
k1, k2 ≥ 0 such that k1 + k2 ≤ k, and perform the following.

Step 1. Find all S[a..n] ∈ TAIL that have a prefix matching P [i..m] with exactly
k1 errors. Let taili,k1 be the set of these suffixes.

Step 2. Find all S[1..b] ∈ HEAD that have a suffix matching P [1..i − 1] with
exactly k2 errors. Let headi,k2 be the set of these prefixes.

Step 3. For each S[a..n] ∈ taili,k1 and S[1..b] ∈ headi,k2 , we call them a con-
necting pair if a = b + 1. For each connecting pair, we report a k-error match
of P starting at S[a − i + 1].

We first prove the correctness of the algorithm. Details of the implementation
are given in the coming subsections.

Lemma 1. Let P [1..m] be a pattern with m ≥ β. k-MATCH(S, P ) finds all
k-error matches of P in S.

Proof. For each k-error match S[j1..j2] of P , Observation 1 states that there is
a check-point S[a] contained in S[j1..j2] and 0 ≤ a − j1 ≤ β − 1.

Consider aligning P [1..m] with S[j1..j2]. The suffix S[a..n] has a prefix match-
ing P [i′..m] with k′

1 errors, where i′ = a − j1 +1 and k′
1 is some integer between
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0 and k. Thus, S[a..n] will be included in taili′,k′
1
. Similarly, S[1..a − 1] will be

included in headi′,k′
2
, where k′

2 is some integer between 0 and k, and k′
1 +k′

2 ≤ k.
They form a connecting pair, so S[j1..j2] will be reported.

There are only n/β suffixes and prefixes in TAIL and HEAD, respectively, so we
can build more complicated data structures to support the above steps efficiently,
while maintaining a small space requirement. In the following subsections, we
present the actual data structures. Then, we will give analysis for the total space
and time complexity of the index.

2.1 Indexes for Finding Taili,k1 and Headi,k2

We want to find taili,k1 efficiently for any pattern P [1..m], i = 1, . . . , β and k1 =
0, . . . , k. We do it by storing an �-error-tree [5] for TAIL, for each � = 0, . . . , k.
The performance guarantee provided by an �-error tree is stated in the following
lemma.

Lemma 2. [5] Let Z be any collection of suffixes of a text S[1..n]. For any
integer � ≥ 0, an �-error-tree for Z has the following properties.

1. The �-error tree is a collection of trees with totally O(|Z|3� log� n) nodes.
Each leaf represents a suffix in Z and at most O(3� log� n) leaves represent
the same suffix.

2. The �-error tree takes O(|Z|3� log� n)-word space.
3. For any pattern Q[1..m′], there exist O(6� log� n) nodes in the �-error-tree,

such that each leaf under the nodes represents a distinct suffix in Z that has
a prefix matching Q with exactly � errors. It takes O(6� log� n log log n) time
to find these nodes, after preprocessing all suffixes of Q with the suffix tree
of S in totally O(m′) time.

For each � = 0, 1, . . . , k, We store an �-error tree for TAIL, calling them T-error-
tree0, T-error-tree1, . . ., T-error-treek. Furthermore, we store a suffix tree for S.

For any i and k1, the above lemma implies that there exist O(6k1 logk1 n)
nodes in T-error-treek1 such that the leaves under them represent the distinct
suffixes in taili,k1 . We called these nodes the covering nodes for taili,k1 . For time
efficiency, we will not find taili,k1 explicitly, instead we only find the covering
nodes to represent taili,k1 implicitly. Using the error-tree data structures, we
have the following performance on finding the covering nodes.

Lemma 3. We can build an O(n + n/β × 3k logk n)-word data structure for
TAIL. For any pattern P [1..m], we preprocess P in O(m) time. Then, for any
i = 1, . . . , β and k1 = 0, . . . , k, we can find O(6k1 logk1 n) covering nodes for
taili,k1 in T-error-treek1 in O(6k1 logk1 n log log n) time.

Proof. The suffix tree of S takes O(n) words and T-error-tree0, T-error-tree1,
. . . , T-error-treek take totally

∑k
�=0 O(n/β × 3� log� n) = O(n/β × 3k logk n)

words.
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Given any P [1..m], we preprocess all suffixes of P with the suffix tree of
S in totally O(m) time. It implies preprocessing all suffixes of P [i..m] with
the suffix tree. Thus, finding the covering nodes for taili,k1 can be done in
O(6k1 logk1 n log log n) time using T-error-treek1.

Note that there can be more than one set of covering nodes for taili,k1 , and any set
of covering nodes is sufficient for our algorithm to find the k-error matches of P .

The case for finding headi,k2 is symmetric. For each � = 0, 1, . . . , k, we store
an �-error-tree for HEAD, calling them H-error-tree0, . . ., H-error-treek. We also
store the suffix tree for the reverse of S. Finding covering nodes for headi,k2 , for
any i and k2 takes O(6k2 logk2 n log log n) time, after an O(m) time preprocessing
of P with the suffix tree for the reverse of S.

2.2 Indexes for Finding Connecting Pairs

Consider certain i, k1 and k2 where k1 + k2 ≤ k. Assume that taili,k1 is found
implicitly, represented by a set of covering nodes U in T-error-treek1. Similarly,
assume that headi,k2 is represented by a set of covering nodes W in H-error-
treek2 . To find the k-error matches of P , we want to find all suffixes S[a..n] ∈
taili,k1 and prefixes S[1..b] ∈ headi,k2 that are connecting pairs, i.e., a = b + 1.

We observe that this can be done as follows. We preprocess T-error-treek1 with
H-error-treek2. For each leaf in T-error-treek1 representing a suffix S[a..n] and for
each leaf in H-error-treek2 representing a prefix S[1..b], we draw an imaginary
edge between them if a = b + 1. Then, to find the connecting pairs between
taili,k1 and headi,k2 , we try each pair of u ∈ U and w ∈ W and perform the
following EdgeReport(u, w) query: Given u ∈ U and w ∈ W , find all leaf pairs
(x, y) such that x and y are descendents of u and w, respectively, and x, y are
connected by an imaginary edge.

While T-error-treek1 is a collection of trees, we can always convert it into a
single tree by linking all trees to a new root. Similarly, we convert H-error-treek2

into a single tree. Then, we store a tree-cross-product data structure [2] for T-
error-treek1 and H-error-treek2 to support the EdgeReport(u, w) query efficiently,
which has the following performance.

Lemma 4. [2] Let T1 = (V1, E1) and T2 = (V2, E2) be two trees. Let V = V1∪V2
and let I ⊆ V1 ×V2 be a set of imaginary edges connecting some nodes in V1 and
V2. We can build an O(|I| log |V |)-word index for T1 and T2 such that for any
u ∈ V1 and w ∈ V2, the EdgeReport(u, w) query takes O(log log |V | + occ′) time,
where occ′ is the number of imaginary edges reported.

For each pair of error-trees T-error-treek1 and H-error-treek2, where k1 +k2 ≤ k,
we create the imaginary edges and build the tree-cross-product data structure.
It allows us to find the connecting pairs efficiently. We assume that taili,k1 and
headi,k2 are represented by O(6k1 logk1 n) and O(6k2 logk2 n) covering nodes in
the corresponding error-trees, respectively, which is the case during the execution
of the Algorithm k-MATCH.
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Lemma 5. We can store an O(k×n/β×3k logk+1 n)-word data structure for the
error-trees. Then, for any i, k1 and k2 with k1+k2 ≤ k, we can find all connecting
pairs between taili,k1 and headi,k2 in O(6k1+k2 logk1+k2 n log log n + occ′) time,
where occ′ is the number of connecting pairs found.

Proof. Consider T-error-treek1 and H-error-treek2, where k1+k2 = c for some c ≤
k. There are O(n/β×3k1 logk1 n) leaves in T-error-treek1. For each leaf represent-
ing a suffix S[a..n], the prefix S[1..a−1] is represented by at most O(3k2 logk2 n)
leaves in H-error-treek2. So, the number of imaginary edges between the two
error-trees is O(n/β × 3k1+k2 logk1+k2 n), and the tree-cross-product data struc-
ture takes O(n/β × 3c logc+1 n) words. For any c, there are at most k + 1
pairs of possible (k1, k2), and we store tree-cross product data structures for
c = 0, 1, . . . , k, so the total space needed is

∑k
c=0 O(k × n/β × 3c logc+1 n) =

O(k × n/β × 3k logk+1 n) words.
For any taili,k1 and headi,k2 , where k1 + k2 ≤ k, let U and W be the cor-

responding set of covering nodes. Finding the connecting pairs is done by per-
forming an EdgeReport(u, v) query for each u ∈ U and w ∈ W . There are
O(6k1 logk1 n × 6k2 logk2 n) queries, and the total query time is O(6k1+k2 ×
logk1+k2 n log log n + occ′) time.

2.3 Total Time and Space Complexity

With Lemma 3 and 5, we can analyse the space and time complexity of our data
structure.

Theorem 1. We can build an O(n + k × n/β × 3k logk+1 n)-word index for
S[1..n]. For any pattern P [1..m], m ≥ β, we can find all k-error matches of
P in S in O(m + occ + βk6k logk n log log n) time, where occ is the number of
matches.

Proof. We only need to store the data structures specified in Lemma 3 and 5,
so the total space is O(n + k × n/β × 3k logk+1 n) words.

To find the k-error matches of P , we perform an O(m) time preprocess-
ing of P , as required by Lemma 3. Then, we iterate for i = 1, 2, . . . , β and
c = 0, 1, . . . , k. For each i and c, there are at most k + 1 pairs of k1, k2 ≥ 0
such that k1 + k2 = c. Finding the covering nodes for taili,k1 and headi,k2 takes
O(6k1 logk1 n log log n + 6k2 logk2 n log log n). Finding the connecting pairs be-
tween taili,k1 and headi,k2 takes O(6k1+k2 logk1+k2 n log log n+ occ′) time, where
occ′ is the number of connecting pairs found. Thus, for any fixed i and c, the
runtime is O(k × 6c logc n log log n + occ′) time.

We try i from 1 to β and c from 0 to k, so the total time complexity is
O(m + β ×

∑k
c=0 k × 6c logc n log log n + occ) O(m + βk6k logk n log log n + occ).

By putting β = k3k logk+1 n, we obtain an O(n)-word index for handling long
patterns. For short patterns, we can use the O(n)-word data structure of Lam et
al. [9] which find the k-error matches of a pattern P [1..m] in O(|Σ|kmk log log n+
occ) time, where |Σ| is the size of the alphabet.
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Corollary 1. For any constant k, we can build an O(n)-word index for S[1..n].
For any pattern P [1..m], finding the k-error matches of P in S takes O(m +
occ + (c log n)max{k(k+1),2k+1} log log n) time.

Proof. We put β = k3k logk+1 n to Theorem 1 to obtain an O(n)-word index.
We also store the O(n)-word data structure of Lam et al. [9].

For pattern of length at least k3k logk+1 n, finding the k-error matches takes
O(m + occ + k218k log2k+1 n log log n) time. For pattern of length less than
k3k logk+1 n, finding the k-error matches takes O(occ + |Σ|kmk log log n) =
O(occ + |Σ|kkk3k2

logk(k+1) n log log n) time.

Reducing the polylog n term in matching time. The polylog n term in the
matching time is biggest for patterns with length slightly less than k3k logk+1 n,
in which we use the brute-force method to obtain a runtime of O(occ+|Σ|kkk3k2×
logk2+k n log log n). We can reduce the polylog n term by a small trick. To ease
the discussion, we remove the constant factors |Σ| and k from the asymptotic
analysis.

We improve the matching time for patterns of length between O(logk n)
and O(logk+1 n) by choosing a smaller value of β. In particular, we choose
β to be O(logk n), but we only build an data structure for finding (k − 1)-
error matches. By Theorem 1, the index takes only O(n) words. To find the
k-error matches, we explicitly try different positions on the pattern and mod-
ify that position with a different character. Then, we search for (k − 1)-error
matches for each of the modified patterns, which will be the k-error matches of
the pattern. This gives a runtime of O(m × (m + β logk−1 n log log n + occ)) =
O(log2k+2 n + log3k n log log n + occ × logk+1 n). The multiplicative term for occ
can be removed by careful book-keeping to avoid reporting the same occurrence
for multiple times. It reduces the matching time from O(occ+logk2+k n log log n)
to O(occ + max{log2k+2 n, log3k n log log n}), for patterns of length O(logk n) to
O(logk+1 n).

We can continue to apply this technique for other range of pattern length,
and it can reduce the polylog n term in the matching time to logk2/2+O(1)k n in
the worst case.

3 Tradeoff Between Space and Time

Our data structure allows a tradeoff between space and time. We notice that
the value β controls the number of check-points in S, which is equivalent to the
number of suffixes of S on which special indexes are built. Choosing a smaller
β generates more check-points and increases the index size, but it allows pat-
terns of shorter length to be handled and reduces the matching time. On the
other hand, choosing a bigger β reduces the number of check-points such that
we can even obtain an O(n)-bit data structure for k-error matching, at the
cost of increasing the matching time. This section presents the results for this
tradeoff.
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3.1 Improved Searching with More Space

We choose β = k3k logh n, where h is any integer, 0 ≤ h ≤ k. Note that a
smaller h generates more check-points and bigger index size. By Theorem 1, it
gives an O(n logk−h+1 n)-word index, which finds the k-error matches of P [1..m],
m ≥ k3k logh n, in O(m + occ + k218k logh+k n log log n) time.

For patterns of length less than k3k logh n, we use the O(n)-word data structure
of Lam et al. [9], which gives a matching time of O(|Σ|kkk3k2

loghk n log log n +
occ).

Theorem 2. For any constant h and k such that 0 ≤ h ≤ k, we can build an
index for S[1..n] using O(n logk−h+1 n) space. For any pattern P [1..m], we can
find all k-error matches of P in S in O(m+occ+ck2

(log n)max{hk,h+k} log log n)
time where occ is the number of occurrences found and c is some constant.

3.2 Reducing to O(n)-Bit Space

We can choose β = k3k logk+2 n. Then, the error-trees and the tree-cross-product
data structures takes O(n)-bit space. We can replace the suffix tree of S by a
compressed suffix tree [14], which supports each of the suffix tree operations
in O(logε n) time. Thus, the preprocessing of P takes O(m logε n) time. The
matching time for pattern of length at least k3k logk+2 n is O(m logε n + occ +
k218k log2k+2 n log log n).

For patterns of length less than k3k logk+2 n, we use the O(n)-bit data struc-
ture of [9], which gives a matching time of O((|Σ|kkk3k2

logk2+2k n log log n +
occ) logε n).

Theorem 3. For any constant k, we can build an index for S[1..n] using O(n)-
bit space. For any pattern P [1..m], we can find all k-error matches of P in S

in O((m + occ + (c log n)max{k2+2k,2k+2} log log n) logε n) time where occ is the
number of occurrences reported, c is some constant, and ε > 0.

4 k-Error Matching in Edit Distance

This section considers edit distance, and an error is an insertion, deletion or
substitution. We give an O(n)-word data structure for S[1..n] which supports
finding the k-error matches of P in S. Precisely, given P [1..m], it finds all starting
positions j such that S[j..n] has a prefix matching P with at most k errors, in
O(m + k33kocc + polylog n) time, where occ is the number of starting positions
found.

Similar to the case of Hamming distance, we handle long patterns by the
check-point technique, while short patterns are handled by simple brute force
methods. We define S[a] to be a check-point for a = β, 2β, . . ., where β will be
set later to k5k logk+1 n.
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Observation 2. Let P [1..m] be a pattern with m ≥ β + k. For any k-error
match S[j1..j2] of P , there exists an integer a, j1 ≤ a ≤ j2 such that S[a] is a
check-point and 0 ≤ a − j1 ≤ β − 1.

Furthermore, there exist integers i, 1 ≤ i ≤ β + k and k1, k2 ≥ 0, such that
(1) S[a..n] has a prefix matching P [i..m] with k1 errors, (2) S[1..a − 1] has a
suffix matching P [1..i − 1] with k2 errors, and (3) k1 + k2 ≤ k.

Define HEAD and TAIL as before. Observation 2 suggests the following
algorithm.

Algorithm 2. k-EDIT(P ), find starting positions of k-error matches of P in S,
|P | ≥ β + k.

For each i = 1, . . . , β + k, cut P into P [1..i − 1] and P [i..m]. Try all possible
k1, k2 ≥ 0 such that k1 + k2 ≤ k, and perform the following.

Step 1. Find all S[a..n] ∈ TAIL that have a prefix matching P [i..m] with exactly
k1 errors. Let taili,k1 be the set of these suffixes.

Step 2. Find all S[1..b] ∈ HEAD that have a suffix matching P [1..i − 1] with
exactly k2 errors. Let headi,k2 be the set of these prefixes.

Step 3. For each S[a..n] ∈ taili,k1 and S[1..b] ∈ headi,k2 , we call them a con-
necting pair if a = b + 1. For each connecting pair, we find all j1 such that
S[j1..a − 1] matches P [1..i − 1] with exactly k2 errors, and we report each j1
as an answer.

To find taili,k1 and headi,k2 efficiently for different i, k1 and k2, we store
another type of error-trees by Cole et al. [5] for TAIL and HEAD, which work
for edit distance. We call them edit-trees to avoid confusion. Basically, an edit-
tree is similar to an error-trees, which is also built for a collection Z of suffixes
of S. Given a pattern Q[1..m′], an �-edit tree returns the nodes such that the
leaves under the nodes represent all suffixes in Z that has a prefix matching Q
with exactly � errors (edit distance). However, an edit-tree may give duplicated
answers, i.e., there may be different leaves under these nodes representing the
same suffix in Z.

We build T-edit-tree0, . . ., T-edit-treek for TAIL and H-edit-tree0, . . ., H-edit-
treek for HEAD. We also store the suffix trees for S and the reverse of S. Finally,
we build the tree-cross-product data structures for the pair T-edit-treek1 and H-
edit-treek2 , for every k1, k2. These data structures can support the Algorithm
k-EDIT efficiently.

We can analyse the space and time complexity of the data structures similar
to that in Section 2 and we obtain the following theorem. There is a k33k factor
for occ because when we find taili,k1 for some i, k1, the edit-trees may return the
same suffix for multiple times, leading to duplication in the output.

Theorem 4. We can build an O(n + k × n/β × 5k logk+1 n)-word index for
S[1..n]. For any pattern P [1..m], m ≥ β, we can find all j such that S[j..n] has
a prefix matching P with at most k errors (in edit distance), in O(m+k33kocc+
βk6k logk n log log n) time, where occ is the number of answers found.
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By putting β = k5k logk+1 n, and handling short patterns by Lam et al. [9] we
obtain an O(n)-word index which finds the k-error matches in O(m + k33kocc +
polylog n) time.
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