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Abstract. The Range-Minimum-Query-Problem is to preprocess an ar-
ray such that the position of the minimum element between two spec-
ified indices can be obtained efficiently. We present a direct algorithm
for the general RMQ-problem with linear preprocessing time and con-
stant query time, without making use of any dynamic data structure. It
consumes less than half of the space that is needed by the method by
Berkman and Vishkin. We use our new algorithm for RMQ to improve
on LCA-computation for binary trees, and further give a constant-time
LCE-algorithm solely based on arrays. Both LCA and LCE have impor-
tant applications, e.g., in computational biology. Experimental studies
show that our new method is almost twice as fast in practice as previ-
ous approaches, and asymptotically slower variants of the constant-time
algorithms perform even better for today’s common problem sizes.

1 Introduction

The problem of finding the lowest common ancestor (LCA) of a pair of nodes
in a tree has attracted much attention in the past three decades, starting with
Aho et al. [1]. It is not only algorithmically beautiful, but also has numerous
applications, most importantly in the area of string processing and computa-
tional biology, where LCA is often used in conjunction with suffix trees. There
are several variants of the problem (see [2]), the most prominent being the one
where the tree is static and known in advance, and there are several queries to be
answered on-line. In this case it makes sense to spend some time on preprocessing
the tree in order to answer future queries faster. In their seminal paper [2], Harel
and Tarjan showed that an intrinsic preprocessing in time linear in the size of the
tree is sufficient to answer LCA-queries in constant time. Their algorithm was
later simplified by Schieber and Vishkin [3], but remained rather complicated.

A major breakthrough in practicable constant-time LCA-computation was
made by Berkman and Vishkin [4], and again, in a simplified presentation, by
Bender et al. [5, 6]. The key idea for this algorithm is the connection between
LCA-queries on trees and range minimum queries on arrays (RMQs). Basically,
an RMQ asks for the position of the minimum element between two specified in-
dices, and this problem was shown to be linearly equivalent to the LCA-problem
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by Gabow et al. [7], in the sense that both problems can be transformed into each
other in time linear in the size of the input. The reduction from LCA to RMQ
is in fact a reduction to a restricted version of RMQ, where consecutive array
elements differ by exactly 1. The authors give an algorithm for this restricted
version of RMQ, which is then used to answer LCA-queries.

However, RMQs are not only of interest because they can be used to answer
LCA-queries, but have their own right to exist. A recent trend in text indexing
tries to substitute the powerful but rather space-consuming suffix tree by alter-
native array-based data structures, most prominently the suffix array, discovered
independently by Gonnet et al. [8] and by Manber and Myers [9]. While this data
structure supports string searches in time almost as good as suffix trees, Kasai et
al. [10] and Abouelhoda et al. [11] went one step further and showed that the ad-
dition of another array to the suffix array, namely the LCP-array, is sufficient to
simulate full tree traversals of the suffix tree. It is thus possible to change many
(but not all) algorithms based on suffix trees such that they operate on arrays
only. One important exception to this are algorithms that rely on constant-time
LCA-retrieval, such as computing longest common extensions of strings (LCEs),
and all algorithms based on constant-time LCE-computations.

It is well-known that LCA-queries on the leaves of a suffix tree correspond to
RMQs on the LCP-array. So an algorithm that solves the RMQ-problem would
make it possible to re-formulate many algorithms based on suffix trees and LCA-
retrieval such that they operate on arrays only. Unfortunately, the LCP-array
does not exhibit the nice property that subsequent elements differ by exactly
one, so the algorithm for the restricted RMQ-problem cannot immediately be
used for this purpose. Gabow et al. [7] give an algorithm to reduce the general
RMQ-problem to the LCA-problem by transforming the array into a special kind
of tree. Their method, explained in more detail in Sect. 2.2, has two major draw-
backs: First, it doubles the size of the input, and second, even more importantly,
it relies on dynamic structures (trees) during the preprocessing. This resembles
the suffix-tree/suffix-array duality: It is possible to infer the array from the tree;
nevertheless, direct construction algorithms for the array are well studied.

Our paper overcomes this very dilemma by presenting the first1 direct algo-
rithm for the general RMQ-problem with linear preprocessing time and constant
query time, without making use of any dynamic data structure (Sect. 3). It is also
less space-consuming than previous approaches, as it uses only 4n+O(

√
n log n)

words of extra space, a major improvement compared with the 9n+O(
√

n log2 n)
words plus the space for the tree used by the currently best algorithm. (Both O-
constants are small.) In Sect. 4, we stress the impact of our new method by show-
ing that it leads to improvements in the LCA-computation for binary trees, and
further to the first constant-time LCE-algorithm solely based on arrays. In Sect.
5, we show that our RMQ-method is faster in practice than previous constant-
time approaches (and therefore also the methods from Sect. 4). We will also see
that for today’s common problem sizes it makes more sense to use methods that
answer long queries in constant time, but short queries in time logarithmic in

1 By the time of writing we were unaware of another direct algorithm for RMQ [12].



38 J. Fischer and V. Heun

the query length. These asymptotically slower RMQ-algorithms are slightly less
space consuming than the constant-time approaches, and also faster in practice.

2 Definitions and Previous Results

The Range Minimum Query (RMQ) problem is defined as follows: given an
array A[1, n] of elements from a totally ordered set (with order relation “≤”),
rmqA(i, j) returns the index of a smallest element in A[i, j], i.e., rmqA(i, j) =
argmink∈{i,...,j}{A[k]}. (The subscript A will be omitted if the context is clear.)
The most naive algorithm for this problem searches the array from i to j each
time a query is presented, resulting in O(n) query time. As mentioned in the
introduction, we consider the variant where A is first preprocessed in order to
answer future queries faster. Following the notation from [6], we say that an
algorithm with preprocessing time p(n) and query time q(n) has complexity
〈p(n), q(n)〉. Thus, the naive method described above would be 〈O(1), O(n)〉,
because it requires no preprocessing.

The following definition [13] will be central for both our algorithm and that
of [4].

Definition 1. A Cartesian Tree of an array A[l, r] is a binary tree C(A) whose
root is a minimum element of A, labeled with the position i of this minimum.
The left child of the root is the Cartesian Tree of A[l, i − 1] if i > l, otherwise it
has no left child. The right child is defined similarly for A[i + 1, r].

Note that C(A) is not necessarily unique if A contains equal elements. To over-
come this problem, we impose a strong total order “≺” on A by defining A[i] ≺
A[j] iff A[i] < A[j], or A[i] = A[j] and i < j. The effect of this definition is just
to consider the ’first’ occurrence of equal elements in A as being the ’smallest’.
Defining a Cartesian Tree over A using the ≺-order gives a unique tree Ccan(A),
which we call the Canonical Cartesian Tree. Note also that this order results in
unique answers for the RMQ-problem, because the minimum is unique.

In [6] an algorithm for constructing Ccan(A) is given as follows. Let Ccan
i (A) be

the Canonical Cartesian Tree for A[1, i]. Then Ccan
i+1(A) is obtained by climbing up

from the rightmost leaf of Ccan
i (A) to the root, thereby finding the position where

A[i +1] belongs. To be precise, let v1, . . . , vk be the nodes of the rightmost path
in Ccan

i (A) with labels l1, . . . , lk, respectively, where v1 is the root and vk is the
rightmost leaf. Let m be defined such that A[lm] ≤ A[i+1] and A[lm′ ] > A[i+1]
for all m < m′ ≤ k. To build Ccan

i+1(A), create a new node w with label i+1 which
becomes the right child of vm, and the subtree rooted at vm+1 becomes the left
child of w. This process inserts each element to the rightmost path exactly once,
and each comparison removes one element from the rightmost path, resulting in
a total O(n) construction time to build Ccan(A).

2.1 An 〈O(n log n), O(1)〉-Algorithm for RMQ

We briefly present a simple method [6] to answer RMQs in constant time using
O(n log n) space. This algorithm will be used to answer ’long’ RMQs both in our
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algorithm and that of [4]2. The idea is to precompute all RMQs whose length
is a power of two. For every 1 ≤ i ≤ n and every 1 ≤ j ≤ �log n� compute
the position of the minimum in the sub-array A[i, i + 2j − 1] and store the
result in M [i][j]. Table M occupies O(n log n) space and can be filled in optimal
time by using the formula M [i][j] = arg mink∈{M [i][j−1],M [i+2j−1 ][j−1]}{A[k]}. To
answer rmq(i, j), select two overlapping blocks that exactly cover the interval
[i, j], and return the position where the overall minimum occurs. Precisely, let
l = �log(j − i)�. Then rmq(i, j) = argmink∈{M [i][l],M [j−2l+1][l]}{A[k]}.

2.2 The 〈O(n), O(1)〉-Algorithm for RMQ by Berkman and Vishkin

This section describes the solution to the general RMQ-problem as a combination
of the results obtained in [4] and [7]. We follow the presentation from [6].

±1RMQ is a special case of the RMQ-problem, where consecutive array ele-
ments differ by exactly 1. The solution to the general RMQ-problem given in [4]
(from now on called Berkman-Vishkin algorithm) starts by reducing RMQ to
±1RMQ as follows: given an array A[1, n] to be preprocessed for RMQ, build
Ccan(A) as shown above. Then perform a Euler Tour3 in this tree, storing the
labels of the visited nodes in an array E[1, 2n − 1], and their respective heights
in H [1, 2n − 1]. Further, store the position of the first occurrence of A[i] in the
Euler Tour in a representative array R[1, n]. The Cartesian Tree is not needed
anymore once the arrays E, H and R are filled, and can thus be deleted. The
paper then shows that rmqA(i, j) = E[±1rmqH(R[i], R[j])]. Note in particular
the doubling of the input when going from A to H ; i.e., H has size n′ := 2n− 1.
We now sketch the solution to the ±1RMQ-problem.

To solve ±1RMQ on H , partition H into blocks of size log n′

2 .4 Define two
arrays A′ and B of size 2n′

log n′ , where A′[i] stores the minimum of the ith block
in H , and B[i] stores the position of this minimum in H . Now A′ is prepro-
cessed using the algorithm from Sect. 2.1, occupying O( 2n′

log n′ log 2n′

log n′ ) = O(n)
space. This preprocessing enables out-of-block queries (i.e., queries that span
over several blocks) to be answered in O(1). It remains to show how in-block-
queries are handled. This is done with the so-called Four-Russians-Trick [15]
where one precomputes the answers to all possible queries when the number of
possible instances is sufficiently small. The authors of [6] noted that due to the
±1-property there are only O(

√
n′) blocks to be precomputed: we can virtually

subtract the initial value of a block from each element without changing the an-
swers to the RMQs; this enables us to describe a block by a ±1-vector of length
21/2 log n′−1 = O(

√
n′). For each such block precompute all 1

2
log n′

2 ( log n′

2 +1) pos-
sible RMQs and store them in a table P of total size O(

√
n′ log2 n′) = O(n). To

index table P , precompute the type of each block and store it in array T [1, 2n′

log n′ ].

2 The original description in [4] used a slightly more complicated algorithm, which is,
however, equivalent to the one presented here.

3 The name “Euler Tour” is derived from the Euler Tour-technique [14], and is not to
be confused with a Eulerian circuit.

4 For a simpler presentation we omit floors and ceilings from now on.
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The block type is simply the binary number obtained by comparing subsequent
elements in the block, writing a 0 at position i if H [i + 1] = H [i] + 1 and 1
otherwise. Table 1 summarizes the tables needed for the algorithm and their
sizes (ignore the last column for now).

Now, to answer rmq(i, j), if i and j occur in different blocks, compute (1) the
minimum from i to the end of i’s block using arrays T and P , (2) the minimum of
all blocks between i’s and j’s block using the precomputed queries on A′ stored in
table M , and (3) the minimum from the beginning of j’s block to j, again using
T and P . Finally, return the position where the overall minimum occurs, possibly
employing B. If i and j occur in the same block, just answer an in-block-query
from i to j. In both cases, the time needed for answering the query is constant.

3 An Improved 〈O(n), O(1)〉-Algorithm for RMQ

Our aim is to solve the general RMQ-problem without constructing the Carte-
sian Tree first; in fact, without employing any dynamic data structure such as
trees. We also wish to find a solution that does not double the input array, as
the Berkman-Vishkin algorithm does. The key to our solution is the following
theorem. (From now on, we assume that the ≺-relation is used for answering
RMQs, such that the answers become unique.)

Theorem 1. Let A and B be two arrays, both of size n. Then rmqA(i, j) =
rmqB(i, j) for all 1 ≤ i ≤ j ≤ n if and only if Ccan(A) = Ccan(B).

Proof. It is easy to see that rmqA(i, j) = rmqB(i, j) for all 1 ≤ i ≤ j ≤ n
iff the following three conditions are satisfied: (i) The minimum under “≺”
occurs at the same position m, i.e., argminA = arg min B = m. (ii) ∀1 ≤
i ≤ j < m : rmqA[1,m−1](i, j) = rmqB[1,m−1](i, j). (iii) ∀m < i ≤ j ≤ n :
rmqA[m+1,n](i, j) = rmqB[m+1,n](i, j). Due to the definition of the Canoni-
cal Cartesian Tree, points (i)–(iii) are true if and only if the root of Ccan(A)
equals the root of Ccan(B), and Ccan(A[1, m − 1]) = Ccan(B[1, m − 1]), and
Ccan(A[m + 1, n]) = Ccan(B[m + 1, n]). This is true iff Ccan(A) = Ccan(B). 
�

It is well known that the number of binary trees with n nodes is Cn, where
Cn = 1

n+1

(2n
n

)
= 4n/(

√
πn3/2)(1 + o(1)) is the nth Catalan Number.

Lemma 1. It is possible to precompute the answers to all possible range mini-
mum queries on arrays of size s in a table P of size O(4s

√
s).

Proof. Because the Cartesian Tree is a binary tree with s nodes, table P has
O( 4s

s3/2 ) rows for each possible type of block. For each type we need to precompute
rmq(i, j) for all 1 ≤ i ≤ j ≤ s, so the number of columns in P is O(s2). 
�

We now come to the description of our 〈O(n), O(1)〉-algorithm for the general
RMQ-problem. Like the ±1RMQ-algorithm presented in Sect. 2.2 it is an appli-
cation of the Four-Russians-Trick. However, Lemma 1 allows us to apply the trick
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Table 1. Additional space needed by the 〈O(n), O(1)〉-algorithms for RMQ (in words)

Array/Table Berkman-Vishkin our algorithm
E,H, R 2(2n−1)+n=5n−2 (arrays not needed)
A′, B, T 3 2n

log(2n)/2=12n/ log(2n) 3 n
log(n)/4=12n/ log n

M 4n+4n/log(2n)−4n log log(2n)/log(2n) 4n+8n/log n−4n log log n/log n

P
√

n log2 n/(8
√

2)(1+o(1))
√

n log1/2 n/(4
√

π)(1+o(1))
total (simpl.) 9n + O(

√
n log2 n) 4n + O(

√
n log n)

to any array (not only to those with the ±1-property), which leads to substan-
tial improvements. Start by partitioning the array A into blocks B1, . . . , Bn/s

of size s := log n
4 . Define two arrays A′ and B of size n/s = 4n

log n , where A′[i]
stores the minimum of block Bi, and B[i] stores the position of this minimum
in A. Now A′ is preprocessed using the algorithm from Sect. 2.1, occupying
O( 4n

log n log 4n
log n ) = O(n) space. Then precompute the answers to all possible

queries on arrays of size s and store the results in a table P . According to
Lemma 1, this table occupies O(4(log n)/4( log n

4 )1/2) = O(n) space. Finally, com-
pute the type of each block in A and store these values in array T [1, 4n

log n ]. As
this is not as obvious as in Sect. 2.2, it is explained in detail in the following
subsection. A query rmq(i, j) is now answered exactly as explained in the last
paragraph of Sect. 2.2, namely by comparing at most three minima, depending
on the blocks where i and j occur. Again, the time for answering a query is
constant, leading to the 〈O(n), O(1)〉 time bounds stated before. See Table 1 for
a comparison of the two methods (space for C(A) not included).

3.1 Computing the Block Types

In order to index table P , it remains to show how to fill array T ; i.e., how to
compute the types of the blocks Bi occurring in A in linear time. Thm. 1 implies
that there are only Cs different types of arrays of size s, so we are looking for a
surjection

type: As→{0, . . . , Cs − 1}, and type(Bi)=type(Bj) iff Ccan(Bi)=Ccan(Bj), (1)

where As is the set of arrays of size s. The reason for requiring that Bi and
Bj have the same Canonical Cartesian Tree is given by Thm. 1 which tells us
that in such a case both blocks share the same RMQs. The most naive way to
calculate the type would be to actually construct the Cartesian Tree of each
block, and then use an inverse enumeration of binary trees [16] to compute its
type. This, however, would counteract our aim to avoid dynamic data structures.
The algorithm in Fig. 1 shows how to compute the block type directly. It makes
use of the so-called ballot numbers Cpq [16], defined by

C00 = 1, Cpq = Cp(q−1) +C(p−1)q, if 0 ≤ p ≤ q = 0, and Cpq = 0 otherwise. (2)

It can be proved that a closed formula for Cpq is given by q−p+1
q+1

(
p+q

p

)
[16], which

immediately implies that Css equals the s’th Catalan number Cs. If we look at
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Input: block Bj of size s
Output: type(Bj)

let rp be an array of size s + 11

rp[1] ← −∞2

q ← s, N ← 03

for i ← 1, . . . , s do4

while rp[q + i − s] > Bj [i] do5

N ← N + C(s−i)q6

q ← q − 17

end8

rp[q + i + 1 − s] ← Bj [i]9

end10

return N11

Fig. 1. An algorithm to compute the
type of a block
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Fig. 2. The infinite graph arising from
the definition of the ballot numbers. Its
vertices are

�

�

�

�
p q for all 0 ≤ p ≤ q. There

is an edge from
�

�

�

�
p q to

�

�

�

�
(p − 1) q if p >

0 and to
�

�

�

�
p (q − 1) if q > p.

the infinite directed graph shown in Fig. 2 then Cpq is clearly the number of
paths from

�

�

�

	
p q to

�

�

�

	
0 0 , because of (2). This interpretation will be important

for the proof of the following

Theorem 2. The algorithm in Fig. 1 correctly computes the type of a block Bj

of size s in O(s) time, i.e., it computes a function satisfying the conditions given
in (1).

Proof. (Sketch.) Intuitively, the algorithm simulates the algorithm for construct-
ing Ccan(Bj) given in Sect. 2. First note that array rp[1, s+1] simulates the stack
containing the labels of the nodes on the rightmost path of the partial Canonical
Cartesian Tree Ccan

i (Bj), with q + i − s pointing to the top of the stack (i.e.,
the rightmost leaf), and rp[1] acting as a ’stopper’. Now let li be the number of
times the while-loop (lines 5–8) is executed during the ith iteration of the outer
for-loop. Note that li equals the number of elements that are removed from the
rightmost path when going from Ccan

i−1(Bj) to Ccan
i (Bj). Because one cannot re-

move more elements from the rightmost path than one has inserted, and each
element is removed at most once, we have

∑i
k=1 lk ≤ i for all 1 ≤ i ≤ s. Thus,

the sequence l1, . . . , ls corresponds to a path from
�

�

�

	
s s to

�

�

�

	
0 0 in Fig. 2 (and

vice versa): in step i, go li steps upwards and one step to the left, and after
step s go upwards until reaching

�

�

�

	
0 0 . The current position in the graph is

�

�

�

	
(s − i + 1) q , so every time one makes an upward step, N is incremented by

the number of paths that have been ’skipped’ by going upwards (line 6). This is
exactly C(s−i)q, the value of the cell to the left of the current one. The effect of
this incrementation is that paths going from the current position to the left are
assigned lower numbers than paths going upwards.
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The proof is completed by noting that a Canonical Cartesian Tree can be
uniquely described by l1, . . . , ls satisfying

∑i
k=1 lk ≤ i for all 1 ≤ i ≤ s. 
�

4 Applications

This section sketches two easy (but non-trivial) new results on LCA and LCE
that can be obtained with our RMQ-algorithm. Apart from yielding simpler and
less space-consuming methods, we will see in Sect. 5 that one can also expect
improvements in running times.

4.1 A Space Saving Algorithm for LCA on Binary Trees

The LCA-problem [1] is formally defined as follows: given a rooted tree T with
n nodes and two vertices v and w, find the deepest node lcaT (v, w) which is
an ancestor of both v and w. Again, we consider the variant where T is static
and the queries are posed on-line. As mentioned in the introduction, the RMQ-
and the LCA-problem are closely related. In [7], it has been shown that an LCA-
query on T basically corresponds to a ±1RMQ-query on the heights of the nodes
visited during an Euler-Tour in T . Because the size of an Euler-Tour is exactly
2n − 1, this leads to an input doubling. We show in this section that using the
algorithm presented in Sect. 3 overcomes this problem for binary trees.

Let T be a rooted binary tree with n nodes. First perform an inorder tree
walk in T and store it in an array I[1, n]. Further, store the heights of each
node in H [1, n], i.e., H [i] is the height of node I[i] in T . Finally, let R be the
inverse array of I, i.e., I[R[i]] = i. It is then easy to see that lcaT (v, w) =
I[rmqH(R[v], R[w])]: the elements in I between R[v] and R[w] are exactly the
nodes encountered between v to w during an inorder tree walk in T , so the range
minimum query returns the position k in H of the shallowest such nodes. As the
LCA of v and w must be encountered between v and w during the inorder tree
walk, lca(v, w) is given by I[k].

The extra space needed is 7n + O(
√

n log n) words: 4n + O(
√

n log n) words
from Table 1 for the RMQ-preprocessing, plus 3n words for the arrays I, H and
R. This is an improvement compared with the 9n + O(

√
n log2 n) words needed

if one were to use the LCA-algorithm presented in [4]. We note that our result
could also be generalized to arbitrary trees; the space reduction, however, is only
relevant if the number of internal nodes is relatively close to the number of leaves.

4.2 An Improved Algorithm for Longest Common Extensions

The problem of longest common extensions is defined for a static string t of
size n: given two indices i and j, lcet(i, j) returns in O(1) the length of the
longest common prefix of t’s suffixes starting at position i and j; i.e., lces(i, j) =
max{k : ti,...,k = tj,...,k}.5 The problem has numerous applications in string

5 LCE is often defined for two strings t′ and t′′ s.th. i is an index in t′ and j in t′′. This
can be transformed to our definition by setting t = t′#t′′, where # is a new symbol.
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matching, e.g., for tandem repeats [17, 18], approximate tandem repeats [19],
and inexact pattern matching [20, 21]. The easiest solution [22] to LCE com-
bines suffix trees with constant-time LCA-retrieval: build a suffix tree T for
t and preprocess it for LCA-queries. Then lce(i, j) is given by the height of
node lca(vi, vj), where vi and vj are the leaves corresponding to suffix i and j,
respectively.

The crucial point to observe is that the LCA-queries are only posed on the
leaves of the suffix tree T for t. It is well-known [22,11] that there is a one-to-one
correspondence between the leaves of T and the elements of the corresponding
suffix array [8,9] SA, and also between the heights of T ’s internal nodes and the
LCP-array LCP for SA. Basically, SA describes the order of the suffixes of t, and
LCP stores the lengths of the longest common prefixes of t that are consecutive
in SA. This gives us all the ingredients we need for our new LCE-algorithm:
compute SA and its inverse SA−1 for t.6 Further, compute the LCP-array for t
in linear time [10,24] and store it in LCP. (SA is not further needed at this point
and can thus be deleted.) Then prepare LCP for RMQs as presented in Sect. 3.
It is now easy to see that lce(i, j) = rmqLCP(SA−1[i] + 1, SA−1[j]).

Note that this is the first algorithm that solves the LCE-problem without
using trees of any form.7 Apart from SA−1 and LCP, the space needed is 4n +
O(

√
n log n) words. Compare this with 9n + O(

√
n log2 n) words plus the space

for the Cartesian Tree that would be needed if one were to preprocess LCP
for RMQ using the Berkman-Vishkin algorithm (not to talk about the solution
based on suffix trees).

5 Practical Considerations

We now wish to evaluate the practical performance of our new algorithm by
comparing it with the Berkman-Vishkin algorithm. We further include three
non-〈O(n), O(1)〉-algorithms in our evaluation:

1. An algorithm that divides the array into blocks of size log n
2 and prepro-

cesses the block-minima for the out-of-block queries (i.e., it creates table
A′, B, T and M). The in-block-queries are handled naively (i.e., table P is
not created). Call this method 〈O(n), O(log n)〉2.

2. The same as above with block size log n
4 . Call this method 〈O(n), O(log n)〉4.

3. The naive 〈O(1), O(n)〉-algorithm that requires no preprocessing.

We performed all tests on an Athlon XP3000 with 2GB of RAM under Linux. All
programs were written in C++ and compiled using the same compiler options.
All our figures are averages over 5 repetitions of each experiment.

6 There are fast algorithms that construct SA and its inverse with only o(n) extra
space, e.g., [23].

7 While this has the consequence that the algorithms [17,19,20,21] can be implemented
without trees, it is not immediately obvious how to do this for [18] because it uses
the tree structure also for representing the tandem repeats.
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Fig. 3 shows the time spent on preprocessing by all methods except the naive
one, because the latter does no preprocessing. As expected, the Berkman-Vishkin
method is the slowest, which is due to the explicit construction of the Carte-
sian Tree. The preprocessing times for the other three methods are within the
same order of magnitude, where our method is slightly slower than the two
〈O(n), O(log n)〉-algorithms, as expected.
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The next test was to evaluate the influence of the query length on the query
time. We took a random array of length n = 107 and posed 106 random RMQs
on this array. Fig. 4 shows the average query time for all five methods, and there
are several points to note.

– As expected, the 〈O(1), O(n)〉-algorithm behaves linearly in the query length
(note the logarithmic x-axis). It is very fast for short queries (up to length
100), but out of the questions for longer queries.

– Our 〈O(n), O(1)〉-algorithm is about twice as fast as the one by Berkman
and Vishkin.

– The two methods with O(log n) query time are even slightly faster than our
constant-time method. This is because quite some arithmetic is necessary to
answer the in-block-queries in constant time. With block size log 107

2 ≈ 11
the overhead for this is much too big.

– For all methods except the naive one the query time levels off for very long
queries. We can only speculate that this is due to caching phenomena.

In a last test we checked up on the influence of the array length n on the query
time. We performed separate tests for short and long random queries, where short
means to be of length log n/2 such that only in-block-queries are to be handled.
Long queries were of length n/100. The largest arrays that we were able to handle
on our computer were of length ≈ 6 × 107 for both tests. (Because of the input-
doubling, the largest array length for the Berkman-Vishkin method was ≈ 3×107

for both tests.) See Fig. 5(a)–(b) for the results. In (a), the naive method is the
best, for the same reasons as given before. The other four methods show the
same performance as in Fig. 4. For the long queries in (b), the naive method
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was excluded for obvious reasons. Again, the two 〈O(n), O(log n)〉-algorithms
perform better than the 〈O(n), O(1)〉-methods, but our method is about twice
as fast as the Berkman-Vishkin algorithm. It is interesting to see that both in
(a) and (b) all methods exhibit a significant increase in running time at some
point. This happens at roughly n = 105, whereas the Berkman-Vishkin method
has this increase earlier. The effect can most likely be explained by the second-
level-cache of the processor. Because of the input-doubling in the Berkman-
Vishkin algorithm the cache size is reached earlier for this method. In summary,
all our tests show that for practical applications with arrays up to length 108

or so it is advisable to use the 〈O(n), O(log n)〉2-algorithm. Unfortunately, our
computer is not large enough to test when our algorithm becomes faster than
the 〈O(n), O(log n)〉-algorithms.
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Fig. 5. The influence of different array lengths on the query time (w/o preprocessing)

6 Summary and Discussion

We have seen a new method to answer range minimum queries in constant time
after a linear preprocessing step. The key to our algorithm was the strong con-
nection between Cartesian Trees and RMQs, reflected in the employment of the
Catalan- and ballot numbers. This led to substantial improvements over previ-
ous RMQ-algorithms, namely a space reduction of more than 50%, the complete
absence of dynamic data structures, and a boost in query time. We have also
seen how our method leads to space reductions in the computation of lowest
common ancestors in binary trees, and to an improved algorithm for the compu-
tation of longest common extensions in strings. On the practical side, we have
seen that it is sometimes wiser to spend a little bit less effort in preprocessing,
because even for large problem sizes (arrays up to length 108) asymptotically
slower algorithms may perform faster in practice.

We finally note that our approach can be combined with the ideas from [25] to
give the first succinct data structure for constant time RMQ, in the sense that
the extra space needed is only O(n) bits. We will elaborate on this in future work.
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