
Approximate Matching in Weighted Sequences

Amihood Amir1, Costas Iliopoulos2, Oren Kapah3, and Ely Porat3

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
and College of Computing, Georgia Tech, Atlanta, GA 30332-0280

+972 3 531-8770
amir@cs.biu.ac.il

2 Department of Computer Science, King’s College London,
Strand, London WC2R 2LS, United Kingdom

(+44) 20 7848 2809
csi@dcs.kcl.ac.uk

3 Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel
(972-3)531-7620

{kapaho, porately}@cs.biu.ac.il

Abstract. Weighted sequences have been recently introduced as a tool
to handle a set of sequences that are not identical but have many local sim-
ilarities. The weighted sequence is a “statistical image” of this set, where
the probability of every symbol’s occurrence at every text location is given.

We address the problem of approximately matching a pattern in such
a weighted sequence. The pattern is a given string and we seek all loca-
tions in the set where the pattern occurs with a high enough probability.
We define the notion of Hamming distance and edit distance in weighted
sequences and give efficient algorithms for computing them. We compute
two versions of the Hamming distance in time O(n

√
m log m), where n

is the length of the weighted text and m is the pattern length. The edit
distance is computed in time O(nm) and O(nm2), depending on the edit
distance definition used. Unfortunately, due to space considerations, the
edit distance details are left to the journal version.

We also define the notion of weighted matching in infinite alpha-
bets and show that exact weighted matching can be computed in time
O(s log2 s), where s is the number of text symbols having non-zero prob-
ability. The weighted Hamming distance over infinite alphabets can be
computed in time min(O(kn

√
s + s3/2 log2 s), O(s4/3m1/3 log s)).

1 Introduction

Recently, a new pattern matching paradigm was introduced. Weighted sequences
was initially motivated by trying to reconcile the differences between the genomic
sequences of different individuals. The great effort of the genome project, that is
now winding down, has been to construct a “consensus sequence” of the human
genome. Individual human genomes are very similar therefore such a “generic”
consensus sequence can be achieved. Nevertheless, clearly no two individuals have
the same DNA sequence. Several methods have been proposed for dealing with
this polymorphism. One proposed idea is that of the Position Weight Matrix
(PWM for short) [14]. The PWM is a more precise encoding that takes into

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 365–376, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

366 A. Amir et al.

account the relative frequency of each nucleotide. The weighted sequence of length
m (the PWM of a set of strings of length m) is a |Σ| × m matrix that reports
the frequency of each symbol in finite alphabet Σ (nucleotide, in the genomic
setting) for every possible location.

Originally, PWM sequences were used for relatively short sequences, e.g. bind-
ing sites or sequences resulting of multiple alignments. Iliopoulos et al. [11, 9, 3, 10]
considered building very large Position Weight Matrices that correspond, for ex-
ample, to complete chromosome sequences that have been obtained using a whole-
genome shotgun strategy [15]. By keeping all the information the whole-genome
shotgun produces, it should be possible to ferret out information that has been
previously undetected after being faded during the consensus step. This concept
is true for other applications where local similarities are thus encoded. It is there-
fore necessary to develop adequate algorithms on weighted sequences, that can be
an aid to the application researchers for solving various problems they are liable
to encounter.

In this paper we develop algorithms for approximate search on weighted se-
quence. We handle the case of Hamming distance (edit distance is deleted from
this paper due to page limits). In approximate matching it is assumed that there
are errors in the data and matches with a small number of errors are sought. In
classical pattern matching it usually does not matter if the assumption is that the
text is error-free and the errors are all in the pattern or vice-versa, since there is
a symmetry in most edit operations. It turns out that in weighted matching (as
in, e.g., hypertext matching [2]) there is a distinction between cases. Assuming
mismatch errors in the weighted text, there is always an approximate match at
every location, depending on the number of errors. However, assuming a “clean”
text and mismatch errors in the pattern, there may be locations where a match
can not ever be found, no matter what the cost. We show efficient algorithms
for computing the Hamming distance at every location for both models.

The contributions of this paper are as follows.

1. We formalize two possible definitions for Hamming distance in weighted se-
quences. Since we are dealing with a new paradigm, this formalism is very
important. Special care should be given for a definition that captures natural
traits that will be useful in applications.

2. We provide the first efficient algorithms for computing the Hamming distance
on weighted sequences. Our algorithms run in time O(n

√
n log m), where

the length of the weighted text is |Σ|n and the length of the pattern is
m. This algorithm is achieved via a non-trivial bounded divide-and-conquer
algorithm, coupled with some insights we prove on weighted sequences.

3. We formalize two possible definitions for edit distance in weighted sequences,
and provide dynamic programming algorithms for the edit distance. One de-
finition leads to a O(nm), algorithm and the other has a O(nm2) algorithm.
This treatment is left for the journal version due to page limitations.

4. We define weighted matching over infinite alphabets and provide the first ef-
ficient algorithm to solve the problem. Our algorithm runs in time O(s log2 s)
and uses superimposed coding techniques.

Approximate Matching in Weighted Sequences 367

5. We provide the first known efficient algorithms for computing Hamming
distance of a pattern in a weighted text over infinite alphabet. Our algorithm
runs in time min(O(kn

√
s + s3/2 log2 s), O(s4/3m1/3 log s)).

2 Preliminaries

Definition 1. A weighted sequence T = t0, ..., tn over alphabet Σ is a sequence
of sets ti, i = 0, ..., n. Every ti is a set of pairs (sj , πi(sj)), where sj ∈ Σ and
πi(sj) is the probability of having symbol sj in location i. Formally,

ti = {(si, πi(sj)) | sj �= s� for j �= �, and
∑

j

πi(sj) = 1}.

For a finite alphabet Σ = {a1, ..., a|Σ|} we can view a weighted sequence as a
|Σ| × n matrix T of numbers in [0, 1], where T [j, i] = πi(aj). For the rest of this
paper we assume a finite fixed alphabet Σ.

Definition 2. P = p0, ..., pm is a solid sequence over alphabet Σ if pi ∈ Σ, i =
0, ..., m.

We say that solid pattern P (or simply pattern P) occurs in location i of
weighted text T with probability at least α if

∏m
j=0 πj(pj) ≥ α.

Definition 3. The exact weighted matching problem is defined as follows:

INPUT: Weighted text T over alphabet Σ, solid pattern P over alphabet Σ, and
probability α ∈ [0, 1].
OUTPUT: All locations i in T where pattern P occurs with probability at least α.

Using convolutions, as introduced by Fischer and Paterson [8], as well as the
observation that Solid pattern P occurs in location i of weighted text T with
probability at least α if

∑m
j=0 log πj(pj) ≥ log α. we can efficiently solve the exact

weighted matching problem in time O(|Σ|n log m) = O(n log m). The idea is to
use the Fast-Fourier-Transform (FFT) [6] to compute the sum of the log proba-
bilities for every pattern symbol separately. This can be done in time O(n log m),
in a computational model with word size O(log m).

We are now ready for the Hamming distance in weighted sequences problem.

3 Hamming Distance – Error in Text

Computing the Hamming distance between two (solid) strings assumes that a
number of symbols were replaced. The Hamming distance is the number of these
replaced symbols. In the case of weighted subsequences it makes a difference
where these symbols were replaced. The simpler case, which we consider in this
section, assumes replacement in the text. The assumption is that some text
symbols are erroneous and, in fact, there should have been a probability 1 for
the symbol that happens to match the pattern, rather than the probabilities
that appear in the text.

Note that by this definition, allowing enough mismatches can guarantee a
match at every location, no matter how close to 1 we choose α.

368 A. Amir et al.

Definition 4. The Weighted Hamming Distance with Mismatches in the Text
problem is the following:

INPUT: Weighted text T over alphabet Σ, solid pattern P over alphabet Σ, and
probability α ∈ [0, 1].
OUTPUT: For every location i in T , the minimum k such that if k text probabil-
ities were changed to 1 then pattern P would occur at location i with probability
at least α.

There does not seem to be a natural way to use the powerful constraint that the
numbers in the weighted text are probabilities. However, it seems like we can
solve the problem without it. We reduce the weighted Hamming distance with
mismatches in the text problem to the minimum ignored mask bits problem. The
idea is to consider a text whose elements are non-positive numbers, and a pattern
which is a mask, i.e. its symbols are 0’s and 1’s. Suppose we are interested in
finding out, for each text location i, the sum of the text numbers that are aligned
with 1’s in the pattern.

Clearly this is a simple convolution of the pattern and text. However, we add
a complication, we also have a non-positive integer α and for every text location
i we seek the smallest number of mask bits that, if set to 0, would make the sum
of text numbers that are aligned with (the remaining) 1’s in the pattern, be no
less than α.

We formally define the problem.

Definition 5. The Minimum Ignored Mask Bits problem is the following:
INPUT: Solid text T of length n + 1 whose elements are non-positive integers,
solid pattern P of length m + 1 over alphabet {0, 1}, and integer α ≤ 0.
OUTPUT: For every location i in T , the minimum k such that if k pattern bits
are changed from 1 to 0, and M ′ is the pattern resulting from those k changes,
then

∑m
j=0 T [i + j]M [j] ≥ α.

Claim. The weighted Hamming distance with mismatches in the text problem
is linearly reducible to the minimum ignored mask bits problem.

Proof: Given weighted text T in matrix format, where the value in T [i, j] is
log πj(si), let solid text T ′ be a linear listing of matrix T in column-major order,
i.e. T ′ = T [1, 0], T [2, 0], T [3, 0], ..., T [|Σ|, 0],
T [1, 1], T [2, 1], T [3, 1], ..., T [|Σ|, 1], ...,
T [1, n], T [2, n], T [3, n], ..., T [|Σ|, n]. Let M be a string of length |Σ|(m + 1) over
{0, 1} where M is the concatenation of strings B(p0), B(p1), ...B(pm). B(a) is
defines as follows. Let a = s�, where Σ = {s1, s2, ..., s|Σ|}. Then B(a) is a bit
string of length Σ, where the �-th element is 1 and all other elements are 0.

Example: If Σ ={A, B, C, D} and P = BBAD, then M = 0100 0100 1000 0001.

Clearly, the reduction is linear. It is also clear that turning a 1 bit in the mask M
to 0, is equivalent to changing the probability in the text position corresponding

Approximate Matching in Weighted Sequences 369

to it to 1. Thus a solution to the minimum ignored mask bits problem will
provide the solution to the weighted Hamming distance with mismatches in the
text problem. ��

Algorithm’s Idea
We consider two limited cases and show an easy efficient solution for each of
them. Subsequently, we use a bounded divide-and-conquer strategy, that splits a
general input into the two straightforward cases, and thus solves each separately.

The first special case is one where the domain of numbers appearing in the
text is bounded, i.e. there are only r different numbers that can appear as text
elements.

Since we are interested in finding the smallest number k of mask 1 bits that,
when turned to 0 will make the sum greater than α, and since all numbers are
non-positive, the following observation is crucial to the algorithm:

Observation 1. For any location i where
∑r

j=1 Si,j < α, the solution to the
minimum ignored mask bits problem can be found by sequentially adding num-
bers that participate in the sum starting from the ones that contribute least to
decreasing it, i.e. the largest (n1). Stop adding them when the remaining sum is
no longer less than α.

This elimination would normally require O(m) work per location. However, since
there are only r different values, and we know how many instances of each value
participate in the sum at location i (Si,j/nj), we can do this in time O(r) per
location.

Algorithm’s Time: O(rn log m)
A second special case we consider is when there is no bound on the number of
different text elements, but we do know that for every text substring of length
m there are at most r elements greater than α. This means that for location i,
there is no point in even considering all elements except those r.

Algorithm’s Time: O(nr)
We are now ready to present our divide-and-conquer algorithm. Assume first,
that the text length is at most 2m. This is a standard assumption and can be
made without loss of generality (see e.g. [1]). We now sort all text elements and
split them into r blocks of size at most 2|Σ|m

r each.
The idea is to use Algorithm Bounded Alphabet on the blocks, and Algorithm

Bounded Relevant Numbers to find the border of the numbers participating in
the sum within the block that tips under α. This can be done with a twist on
Abrahamson’s idea and produce the final algorithm.

Algorithm’s Time: The time for this algorithm is O(rf(m)) + O(mm
r), where

f(m) is the time it takes to compute the block information. We do it by convo-
lutions, as in Algorithm Bounded Alphabet so f(m) = m log m. The optimal r

is then the one where r =
√

m
log m .. Thus the algorithm’s time is O(n

√
m log m).

370 A. Amir et al.

4 Hamming Distance – Error in Pattern

The situation currently addressed is one where the weighted text is assumed
to be error-free. The pattern, however, may have replacemet errors, i.e. it is
possible that the “true” pattern symbol was replaced by another. This situation
is different in a number of ways from the one considered in section 3.

The first difference between the two Hamming distance definitions is the fol-
lowing. The errors in the text definition can guarantee a match at every location,
no matter how close to 1 we choose α. This is done simply by allowing enough
mismatches. At the worst case m + 1 mismatches give a probability of 1. This is
not the case if we assume errors in the pattern.

We formally define our problem.

Definition 6. The Weighted Hamming Distance with Mismatches in the Pat-
tern problem is the following:

INPUT: Weighted text T over alphabet Σ, solid pattern P over alphabet Σ, and
probability α ∈ [0, 1].

OUTPUT: For every location i in T , the minimum k such that if k pattern
symbols were replaced to create new pattern P ′ then pattern P ′ would occur at
location i with probability at least α.

The difficulty presented by this definition is that we put the weight of change on
the pattern, rather than the text. When a text is changed, by definition 4, that
change improves the product of every match that this text location participates
in. However, a pattern change may improve the probability in one occurrence
but actually make it worse in another.

One may be tempted to say that even when a match is defined on the pat-
tern, we can still tell which probability is always best for a given text location
- the maximum probability at that location. This maximum probability will ac-
tually improve (or at least will never hurt) the probability of any location that
it participates in. Perhaps, then, it is possible to sort the text by largest to
smallest product improvement. Then it may be possible that the algorithm in
section 4 could still be modified to find the largest possible sum of log proba-
bilities and check if it is good enough. The idea would be the following. First
make a replacement in the text location that introduces the largest unmatched
text probability. Use that replacement only if it is necessary. Proceed by intro-
ducing the next largest, etc. The problem is that replacing elements in sorted
order from largest to smallest does not guarantee the smallest number of re-
placements.

The following lemma does guarantee an order of replacement. Assume that
the weighted text is given in matrix format T where T [j, i] = πi(aj), where
Σ = {a1, ..., a|Σ|, and πi(aj) is the probability of having symbol aj at text
location i. Let max(T [∗, i]) denote the value max{T [j, i] | j = 1, ..., |Σ|}.

Approximate Matching in Weighted Sequences 371

Lemma 1. Consider text element T [j, i] where max(T [∗,i])
T [j,i] is the largest. Let P be

a pattern where aj ∈ P . Then the largest increase in the product of probabilities
as a result of a single symbol replacement occurs by replacing every aj in the
pattern that matches text location i by a�, where T [�, i] ≥ T [j, i], j = 1, ..., |Σ|.

Proof: Let q be the product of probabilities at location i. Assume that the
pattern has aj at location i + �, � ≤ m, but that symbol ah has the largest text
probability at location i + �. Then replacing aj by ah would cause the product
of the probabilities at location i to be (q/T [j, i + �])T [h, i + �]. This means that
the largest change will occur when T [j,i+�]

T [h,i+�] is largest. ��

Conclude: Let T [j, i] be such that max(T [∗,i])
T [j,i] is the largest. If we replace text

location [j, i] by the value max(T [∗, i]), the result will be equivalent to replacing
every aj in the pattern that matches text location i by a�, where T [�, i] ≥
T [j, i], j = 1, ..., |Σ|. This leads to the idea that if we replace text elements by
descending order of max(T [∗,i])

T [j,i] (where necessary) we will guarantee the minimum
number of replacements at every location.

Algorithm’s Idea: Sort all 2m|Σ| text elements in non-increasing order of
the ratio max(T [∗,i])

T [j,i] . As in section 3, split the text elements into O(m√
m log m

)
groups of size O(

√
m logm). For each text location i calculate the probabilities

O(m√
m log m

) times. In the first time calculate the probability of the pattern in
the text without replacements. In the second time calculate the probability of
the pattern with replacing every element in the group of highest ratios. In the
jth time, calculate the pattern probability with replacing every element in the
j − 1 highest ratio groups.

Each such calculation can be done by FFT in time O(n log m). In addition,
we can calculate by FFT the number of replacements done in each location for
the groups involved. Finally, in a manner similar to the one shown in section 3,
we can fine tune the exact number of replacements for each text location i in
time O(n

√
m log m).

A detailed description of the algorithm will appear in the journal version.

5 Weighted Matching over Infinite Alphabets

The original motivation of weighted sequence matching was from computational
biology, where the alphabets are quite small (size 4 for DNA and RNA, and
size 20 for amino acids). Nevertheless, from a conceptual point of view, nothing
prohibits the alphabet from being very large, or even infinite. The techniques
for weighted matching need to be completely different over infinite alphabets,
since we may no longer assume that all symbols appear as inputs. Rather, we
only input the symbols whose probability is non-zero.

Our formal definition of weighted matching (Definition 1) did not assume a fi-
nite alphabet. We now provide an efficient algorithm for exact weighted matching

372 A. Amir et al.

over infinite alphabets. The key observation for our efficient algorithm utilizes
subset matching. Subset matching was defined by Cole and Hariharan [4], as a
tool to solve the tree pattern matching problem [12, 7] but meanwhile has proven
to be an interesting problem in and of itself. The input of the problem is a text
array of n sets totaling s elements and a pattern array of m sets totaling s′

elements. There is a match of the pattern in a text location if every pattern set
is a subset of the corresponding text set. Formally,

Definition 7. The Subset Matching Problem is defined as follows.
INPUT: Text T = T1, T2, ..., Tn of sets Ti ⊆ Σ, i = 1, ..., n and pattern P =
P1, P2, ..., Pm of sets Pi ⊆ Σ, i = 1, ..., m, where Σ is a given alphabet.
OUTPUT: All locations i, 1 ≤ i ≤ n−m+1 where ∀� = 1, ..., m, P� ⊆ Ti+�−1.

Algorithm’s Idea: Observe that in every text location where the pattern ap-
pears with non-zero probability, there is a subset-matching of the pattern. The
algoritm’s main idea is, then, to first find the subset matching of the pattern
in the text and then calculate the probabilities of those locations. In order to
accomplish that all the non zero probabilities will be mapped to a vector with
size linear in the number of non-zeros. This mapping will be done using shifting
where each symbol is assigned a different shift. The same shifting will be used
in both the text and the pattern, thus wherever there is a singleton in the text
which aligned with a singleton in the pattern in the positions where a subset
matching was found it is guaranteed to be be the same character.

Algorithm Outline
1. Perform subset matching
2. Linearize the input to a vector of probabilities, and calculate the probability of
the pattern

appearing in each text location
end Algorithm Outline

Step 1: Ignore the probabilities and consider only the symbols that have a non
zero probability. This results in a set of symbols for each text location. Now run
Cole and Hariharan’s subset matching algorithm [5].

Time Complexity: O(s log s) where s is the total number of characters.

Step 2: Create a vector of probabilities from the text. This is done by assigning
for each alphabet symbol σ a number that sets the shift of this letter. This means
that for each location i where σ has a non zero probability, this probability will
appear at the new vector at location i + shift(σ). Each vector location where
more than one value is assigned is referred to as a multiple location and is
assigned a 0. Every position where only one value was assigned is referred to as
a singleton and is assigned the log-probability the symbol assigned to it.

Using the same shift values we create a vector of the same size from the
pattern. In the vector representing the pattern each symbol that appears as a

Approximate Matching in Weighted Sequences 373

singleton in the pattern is replaced by a 1. Multiples are replaced by a 0. After
a convolution of the text vector with the pattern vector each location holds the
sum of all the probabilities where a singleton in the text was aligned with a
singleton in the pattern.

Lemma 2. For the locations where a subset matching is found, each singleton
location in the text vector which is aligned with a singleton in the pattern vector,
contains the probability of the letter which appeared as singleton in the pattern
vector.

Proof: In a situation where a subset matching occurs, clearly the pattern symbol
is shifted to the same location as its equivalent text symbol. In a singleton text
matched with a singleton pattern, if there the subset match forces the fact that
the text symbol equals the pattern symbol and we do not need to verify it. For
the same reason, it is impossible for a pattern multiple to be matched with a
text singleton when there is a subset match, since all pattern elements should
be matched at least with the appropriate text symbols. ��

Corollary 1. After convolving the text vector with the pattern vector, all the non
zero probabilities which appeared as singletons are calculated for all locations.

As a result of the corollary we can now zero the calculated probabilities of the
text singletons and repeat the process using different shifts until all the non zero
probabilities become zero. Our solution is the sum of the results. At the end of
this process each location where there is a subset match holds the log of the
probability of the pattern appearing at this location.

The question we still need to address is how many such rounds are necessary
until all the non zeros probabilities appears as singletons at least once.

Lemma 3. O(log s) rounds are guaranteed to complete the process in the worst
case. The appropriate shift functions can be computed in time O(s log2 s), where
s is the number of text symbols with non-zero probabilities.

Proof: The lemma can be proven using superimposed coding as in Cole and
Hariharan [5]. A complete proof will be provided in the journal version. ��

Time Complexity: The shift functions can be computed in time O(s log2 s).
For each shift function we perform a convolution which takes O(s log s) time.
There are O(log s) such convolutions, thus the total time of this step is O(s log2s).

6 Hamming Distance in Weighted Matching over Infinite
Alphabets

We present an algorithm for the case of errors in the text. The case of errors in
the pattern is similar.

The main idea of the algorithm is to combine the algorithm devised for
the Hamming distance over finite alphabet with the algorithm devised for the

374 A. Amir et al.

weighted matching over infinite alphabet. The difficulty in applying the shift-
ing technique in the Hamming distance case is that now the property that two
aligned singletons must originat from the same character no longer applies. We
show two ways of overcoming this problem: one with running time dependent on
the number of errors and one with running time independent of the number of er-
rors. Both algorithms use the bounded divide-and-conquer technique. We divide
the sorted list of probabilities into blocks. For each text location we calculate the
sum of probabilities and the number of matches for each block. Subsequently we
add the log probabilities from the largest down until the probability is smaller
than the input. The number of errors (the Hamming distance) is the size of the
pattern minus the number of matches.

We combine the two algorithms to achieve the minimal running time of the
two solutions.

6.1 Algorithm 1

The first algorithm solves the problem in the shifting technique by checking for
each block separately if there was a match. This is done for each block by re-
placing each empty position in the shifted text with don’t care and matching the
shifted pattern with the new text. If a match exist then the sum of probabilities
for this block is correct. If there is no match then we need to use brute force. This
means checking each character in this block against the character appearing in
the aligned position in the pattern.

Algorithm Outline
1. Sort the probabilities in the weighted sequence
2. Divide the sorted list of probabilities into blocks of size

√
s

3. For each block calculate the sum of probabilities (using the shifting technique).
4. For each text position and each block: If there is a subset match use the result
calculated in the previous stage, else use brute force.
5. For each text position add blocks probabilities from the largest down until the
sum goes below the input threshold.
6. For each text position add probabilities within the last block until the sum
goes below the input threshold.
end Algorithm Outline

Time: O(kn
√

s + s3/2 log2 s)

Where k is the average number of blocks per text position, where a match does
not exist.

6.2 Algorithm 2

The second algorithm handles the problem in the shifting technique by dividing
the symbols into frequent and non-frequent characters and dealing with each type
of characters separately.

Approximate Matching in Weighted Sequences 375

Definition 8. Let P be a pattern of length m. A pattern symbols is frequent if
it occurs in the pattern at least m2/3 times, otherwise it is rare.

For each block and each frequent character, the sum of probabilities is calculated
using convolution. Also the number of matches is calculated using convolution
where we replace the probabilities in the text with ones. Since there are at most
m1/3 frequent characters and s1/3 blocks, the time complexity for the frequent
characters is O(s4/3m1/3 log s).
For the non-frequent characters, brute force is used to calculate the sum of
probabilities and the number of matches. Since each non-frequent character can
appear up to m2/3 times in the pattern the time complexity for the non-frequent
characters is O(sm2/3) < O(s4/3m1/3).

Algorithm Outline
1. Sort the probabilities in the weighted sequence
2. Divide the sorted list of probabilities into blocks of size s2/3

3. For each block calculate the sum of probabilities and count the number of
matches of the non-frequent characters using brute force.
4. For each block calculate the sum of probabilities and count the number of
matches of the frequent characters using convolution.
5. For each text position add blocks probabilities from the largest down until the
sum goes below the input threshold.
6. For each text position add probabilities within the last block until the sum
goes below the input threshold.
end Algorithm Outline

Time Complexity: O(s4/3m1/3 log s).

6.3 Combining the Algorithms

In order to obtain the minimal running time of both algorithm we start with
first algorithm without doing the brute force part and check the average number
of blocks per text location where a match was not found. If this number is not
too large then we will proceed with the first algorithm and use brute force to
calculate the sum of probabilities for these blocks and eventually the Hamming
distance. If the number is too large, then we will use the second algorithm.

7 Conclusion and Open Problems

This paper defined the concept of approximate weighted distances, both in terms
of Hamming distance and edit distance. We also presented efficient algorithms
for these definitions. The algorithms are efficient in the sense that there are
no known faster algorithms for edit distance in solid strings (by definition 1)
or for finding the masked Hamming distance for solid strings. Further research

376 A. Amir et al.

directions would be to find efficient algorithms for the k-mismatches or k-error
problems in weighted sequences.

Acknowledgments. The first author was partially supported by NSF grant
CCR-01-04494 and ISF grant 35/05. The last author was partially supported by
GIF Young Scientists Program grant 2055-1168.6/2002.

References

1. A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation, 118(1):1–11, April 1995.

2. A. Amir, N. Lewenstein, and M. Lewenstein. Pattern matching in hypertext. J. of
Algorithms, 35:82–99, 2000.

3. M. Christodoulakis, C. S. Iliopoulos, L. Mouchard, and K. Tsichlas. Pattern match-
nig on weighted sequences. In Proceedings of the Algorithms and Computational
Methods for Biochemical and Evolutionary Networks (CompBioNets). KCL Publi-
cations, 2004.

4. R. Cole and R. Hariharan. Tree pattern matching and subset matching in random-
ized o(n log3 m) time. Proc. 29th ACM STOC, pages 66–75, 1997.

5. R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proc. 34st Annual Symposium on the Theory of Computing (STOC),
pages 592–601, 2002.

6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press and McGraw-Hill, 1992.

7. M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching. J. ACM,
41(2):205–213, 1994.

8. M.J. Fischer and M.S. Paterson. String matching and other products. Complexity
of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.

9. C. S. Iliopoulos, L. Mouchard, K. Perdikuri, and A. Tsakalidis. Computing the
repetitions in a weighted sequence. In Proceeding of the Prague Stringology Con-
ference, pages 91–98, 2003.

10. C. S. Iliopoulos, K. Perdikuri, E. Theodoridis, A. Tsakalidis, and K. Tsichlas. Motif
extraction from weighted sequences. In A. Apostolico and M. Melucci, editors,
Proc. 11th Symposium on String Processing and Information Retrieval (SPIRE),
volume 3246 of LNCS, pages 286–297. Springer, 2004.

11. C.S. Iliopoulos, C. Makris, I. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsaka-
lidis. Computing the repetiotions in a weighted sequence using weighted suffix
trees. In European Conference on Computational Biology (ECCB), pages 539–540,
2003.

12. S. R. Kosaraju. Efficient tree pattern matching. Proc. 30th IEEE FOCS, pages
178–183, 1989.

13. V. I. Levenshtein. Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl., 10:707–710, 1966.

14. J.D. Thompson, D.G. Higgins, and T.J. Gibson. Clustal w: Improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22:4673–4680, 1994.

15. J.C. Venter and Celera Genomics Corporation. The sequence of the human genome.
Science, 291:1304–1351, 2001.

	Introduction
	Preliminaries
	Hamming Distance -- Error in Text
	Hamming Distance -- Error in Pattern
	Weighted Matching over Infinite Alphabets
	Hamming Distance in Weighted Matching over Infinite Alphabets
	Algorithm 1
	Algorithm 2
	Combining the Algorithms

	Conclusion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

