Sublinear Algorithms for Parameterized Matching

Leena Salmela and Jorma Tarhio*

Helsinki University of Technology
{l1salmela, tarhio}@cs.hut.fi

Abstract. Two strings parameterize match if there is a bijection that
transforms the first string character by character into the second string.
This problem has been studied in both one and two dimensions but the
research has been centered on developing algorithms with good worst-
case performance. We present algorithms that solve this problem in sub-
linear time on average for moderately repetitive patterns.

1 Introduction

In the parameterized matching problem a text and a pattern is given and the
task is to find all substrings of the text that can be transformed into the pat-
tern by using a bijection on the alphabet. This problem was first considered by
Baker [5] with an application to software maintenance. Another application of
parameterized matching is plagiarism detection [I1].

Later the parameterized matching problem has been investigated in two di-
mensions by Amir et al. [I] and Hazay et al. [14]. This two-dimensional problem
has a fairly obvious application in image searching. Parameterized matching can
find an image even if its color map has been changed. Other related work includes
parameterized matching of multiple patterns [16], parameterized matching with
mismatches [I3] and approximate parameterized search [7].

Previous research of parameterized matching has been centered in developing
algorithms with good worst-case performance. Some effort to develop an algo-
rithm fast on average was made by Baker [6] who developed an algorithm based
on the famous Boyer-Moore algorithm [§] but the average case complexity was
not analyzed. In fact the algorithm uses a linear preprocessing with respect to
the length of the text and thus loses the good average case complexity of the
Boyer-Moore algorithm.

In this paper we introduce new algorithms that are sublinear on average. We
present practical solutions for both the one-dimensional and two-dimensional
parameterized matching problems. We analyze the time complexities of the al-
gorithms for random texts and moderately repetitive patterns, and present ex-
perimental results for certain interesting classes of patterns.

2 Definitions

Let S and S’ be equal size strings of characters drawn from the alphabet X. S
and S’ parameterize match (or p-match for short) if there exists a bijection 7 such

* Work by Jorma Tarhio was supported by Academy of Finland.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 354-364] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Sublinear Algorithms for Parameterized Matching 355

that for each i S[i] = w(S'[]). So strings ’abac’ and ’bceba’ p-match because the
bijection m(a) = ¢, 7(b) = a,w(c) = b transforms "beba’ into ’abac’. On the other
hand strings ’aabb’ and ’acbb’ do not p-match because a bijection cannot map both
‘a’ and ’c’ to 'a’ and thus there is no bijection that can transform ’aabb’ to 'acbb’.

Let us now define the parameterized matching problem. In the one dimensional
case, we are given a text T'[1..n] and a pattern P[1..m] in alphabet X and the task
is to find all substrings of the text that p-match with the pattern. In the two-
dimensional case the input is a text T of size n x n and a pattern P of size m x m.
The task then is to find all those m x m substrings of the text that p-match to P.

Two disjoint alphabets were used in the original definition of the parameter-
ized matching problem by Baker. One of the alphabets was a fixed alphabet like
in the standard string matching problem and the other one was a parameterized
alphabet like our Y. Both the pattern and the text could contain characters
from both alphabets but characters from the fixed alphabet were required to
match exactly. We decided to use only the parameterized alphabet because that
is natural for the two dimensional problem of image search and we wished to
give a unified treatment to both the one dimensional and two dimensional cases.

Many of the algorithms make use of so called predecessor strings. A string S
is transformed into a predecessor string as follows. If a character in position
has occurred earlier in the string in position j the position 7 in the predecessor
string contains ¢ — j. Otherwise the predecessor string contains 0. For example
the string ’aabac’ is transformed into 0-1-0-2-0. Now it can be fairly easily seen
that if two strings p-match, their predecessor strings match exactly [5].

Another way to transform the two strings so that the transformed strings
will match exactly if the original strings p-matched, is to transform them into
restricted growth functions (RGF) [19]. A string is transformed into a RGF by
replacing all occurrences of the first occurring character with 1, the second one
with 2 and so on. We call the resulting string the RGF string. For example the
string ’aabac’ is transformed into 1-1-2-1-3. The properties of restricted growth
functions have been studied previously. In [19] it is shown that there are b,
different RGFs of length n where b,, is the n:th Bell number. Kreher and Stinson
[19] also give an algorithm for ranking RGFs.

To classify the repetitiveness of a pattern we introduce the concept of ¢-
repetitiveness. A pattern is ¢g-repetitive if for all substrings of length ¢ there is a
character that occurs at least twice in the substring. Thus the pattern “aaaa’” is
2-repetitive while the pattern “aabb” is 3-repetitive but not 2-repetitive because
the substring “ab” contains no repetition. Similarly a two-dimensional pattern is
g-repetitive if for all substrings of size g x ¢ there is a character that occurs at
least twice in the substring.

3 Earlier Solutions

3.1 One-Dimensional Algorithms

In her original paper Baker [5] gave a suffix tree based algorithm for finding
parameterized matches. The algorithm first preprocesses both the text and the

356 L. Salmela and J. Tarhio

pattern by transforming them into predecessor strings. After this preprocessing
the problem can almost be solved by conventional exact string matching algo-
rithms. The only remaining problem is that if we are considering a window on
the text, the predecessor pointers might point to positions outside the window.
Baker proposed modifications to the suffix tree construction algorithm that take
care of this problem. The construction of the suffix tree was further improved
by Kosaraju [I8] and Cole and Hariharan [9].

In addition Baker [6] has proposed a Boyer-Moore based algorithm. Also this
algorithm preprocesses both the text and the pattern into predecessor strings.
Baker then uses a modification of the TurboBM algorithm [I0] for finding the
p-matches. The algorithm has a good worst case performance but because of the
preprocessing the sublinearity of the Boyer-Moore type algorithms is lost unless
several searches are made with the same text.

Amir et al. [2] have proposed an algorithm for the p-matching problem based
on the Knuth-Morris-Pratt algorithm [I7] for standard string matching. They
also prove that their algorithm is optimal if the alphabet is unbounded.

3.2 Two-Dimensional Algorithms

The two-dimensional parameterized matching problem was first considered by
Amir et al. [I] in the context of function matching. They give an algorithm
that preprocesses the text into a predecessor representation suitable for two-
dimensional strings and then apply a conventional two-dimensional algorithm.
Hazay et al. [I4] give another algorithm for two-dimensional parameterized
matching that is based on the “duel-and-sweep” paradigm. Both of these al-
gorithms are quite complicated and neither one of them has been implemented
as far as we know.

4 Owur Algorithms

In this section we develop Boyer-Moore type algorithms that do not preprocess
the text and thus the preprocessing does not prevent average case sublinearity.
Our algorithms use g-grams to achieve longer shifts. The use of ¢g-grams is a well
known technique to improve the efficiency of the exact Boyer-Moore-Horspool
(BMH) algorithm [I5] in case of small alphabets, see e.g. [3].

In this section we first describe the one-dimensional algorithm with several
variations and then we discuss the two-dimensional algorithm.

4.1 Three One-Dimensional Algorithms

Our one-dimensional algorithms are derived from the Horspool variant of the
Boyer-Moore algorithm. In the BMH algorithm the text is processed in windows
of size m. The last character of the window is read first. If it does not match the
last character of the pattern the window is shifted based on it. Otherwise the
window is checked for a match after which a shift is made. In the parameterized
matching problem the last character alone never tells that there cannot be a

Sublinear Algorithms for Parameterized Matching 357

match and even the last two characters usually do not indicate that the window
cannot match the pattern. Therefore we form a g-gram of the last ¢ characters
of the window and make the shift based on it.

The preprocessing phase of the BMH algorithm constructs the shift table
which is consulted in the matching phase to find out the length of the shift
based on the last character of the text window. The shift is calculated so that
after the shift the last character of the previous window will be aligned with the
last occurrence of that character in the pattern.

In the parameterized matching problem the shifts are made based on the last
g-gram of the window and we wish to make a shift that aligns it with the last
g-gram of the pattern that p-matches it. As described in Section 2] two strings
p-match if their predecessor strings match or equally if their RGF strings match.
Thus we wish to index the table with the predecessor or RGF strings. An obvious
solution is using the rank of the RGF strings as indexes. We call this algorithm
Parameterized Boyer-Moore-Horspool with RGF or PBMH-RGF for short.

The problem with this approach is that calculating the rank of an RGF takes
quite a lot of time and this needs to be done for each inspected window. Another
alternative for calculating the indexes is to transform the g-grams into predeces-
sor strings and then reserving enough bits for each character of the predecessor
strings in the index. The first character of the predecessor string is always 0
so we need not reserve any space for it. The second character is either 0 or 1
because the character in the original string is either the same as the first or not.
The third character is 0, 1 or 2 with similar reasoning. This means that the last
bit of the index is reserved for the second character of the predecessor strings,
the next two bits are reserved for the third character, and so on. We call this
algorithm Fast Parameterized Boyer-Moore-Horspool or FPBMH for short. This
approach wastes some space but the indexes are much faster to calculate. The
RGF approach needs a table of size b, where b, is the g:th Bell number while
the FPBMH algorithms needs a table of size 2° where s = Y _7_, [log, 7]. Table[I]
shows the number of entries in the shift table for both approaches for different
values of q.

In a random text the distribution of the predecessor strings is very steep. The
most common predecessor string of length ¢, 09, has a high probability if the
alphabet is reasonably large while the least common predecessor string, 01971,
has a probability close to 0. This means that we might need to use quite large
g-grams which is a problem for FPBMH. On the other hand hashing the ¢-grams
cleverly might let us use even larger ¢g-grams than the PBMH-RGF algorithm can

Table 1. The number of entries in the shift table for PBMH-RGF, FPBMH and
PBMH-Hash for various values of ¢

Algorithm ¢=2q=3q=4q=5q=6 ¢q=7 ¢qg=38 q=09 q=10
PBMH-RGF 2 5 15 52 203 877 4,140 21,147 115,975
FPBMH 2 8 32 256 2,048 16,384 131,072 2,097,152 33,554,432
PBMH-Hash 2 4 7 11 16 22 29 37 46

358 L. Salmela and J. Tarhio

handle. We tried hashing the g-grams by transforming them first to predecessor
strings and then adding up all the positions of the predecessor string. With this
hashing scheme the most common g-gram is the only one hashed to 0 and thus
the hashing might even out the distribution of the g-grams. This modification
of the algorithm called PBMH-Hash needs a table of size q(¢ —1)/2+ 1. Table[ll
includes the space requirement for this approach also.

4.2 A Two-Dimensional Algorithm

The two-dimensional algorithm is based on the two-dimensional string matching
algorithm by Tarhio [20] which is an extension of the BMH algorithm. In the
algorithm by Tarhio the text is divided into [(n—m)/m]+1 strips each of which
has m columns. Each strip is then searched for an occurrence with a BMH like
algorithm and each potential match is verified with the trivial algorithm.

In each position the character at the lower righthand corner is investigated. If
this character occurs in the lowest row of the pattern, there is a potential match
which has to be verified. These are found with the help of two tables, M and N.
M][z] is the column where the character = occurs first in the lowest row of the
pattern and N links the occurrences of x in the lowest row of the pattern. The
pattern is shifted down the strip with another table D. D[z] is the occurrence
of x that is closest to the lowest row of the pattern but not in the last row. If
does not appear in the pattern, D[z] is m.

The algorithm can be modified to read several characters and calculate the
shifts based on all these characters. If we read ¢ x ¢ characters (a two-dimensional
g-gram), the text will then be divided into [(n —m)/(m — ¢+ 1)] + 1 strips each
containing m — ¢ + 1 columns.

This algorithm which uses g-grams can fairly easily be extended to parame-
terized matching in a similar fashion as the BMH algorithm was extended for
one-dimensional parameterized matching. The resulting algorithm proceeds ex-
actly like the algorithm by Tarhio but the read g-grams are transformed into
predecessor strings and these are then used to index the tables. As with the one-
dimensional case, there are several ways to transform the predecessor strings into
indexes. We implemented the transformation the same way as in the FPBMH
algorithm.

5 Analysis

We first analyze the worst and average case complexity of the one-dimensional
algorithms and then turn to the two-dimensional case. When analyzing the av-
erage case complexity we assume the standard random string model where each
character of the text is chosen independently and uniformly.

5.1 The One-Dimensional Algorithms

The preprocessing phase of the algorithms consists of initializing the shift table
which takes time proportional to the number of entries in the table. In addition

Sublinear Algorithms for Parameterized Matching 359

to preprocess the pattern we need to keep track of where the different symbols
of the alphabet occurred previously and thus the preprocessing of the g-grams
of the pattern takes O(c + mgq) time where o is the size of the alphabet. As
stated earlier the number of entries in the shift table is b, for PBMH-RGF, 2° for
FPBMH and ¢(¢—1)/2+1 for PBMH-Hash where b, is the g:th Bell number and
s =1 ,[log,i]. Therefore the preprocessing phases of PBMH-RGF, FPBMH
and PBMH-Hash have time complexities O(b, + 0 +mq), O(¢?~! + 0 +mq), and
O(q* + o + mq) respectively.

The matching phases of PBMH-RGF and FPBMH algorithms have the same
time complexities. The only difference in the algorithms is in handling of the
g-grams but both algorithms do this in O(g) time and thus the resulting com-
plexities will be the same. The hashing in the PBMH-Hash algorithm slightly
changes the time complexity of the algorithm but the difference is negligible.

In the worst case the one-dimensional algorithms find a match in each position.
This means that for each window the whole window is read and compared to
the pattern so the worst case complexity of the algorithms is O(nm).

Let us then analyze the average case complexity. In order to do that we
need to consider the probability distribution of the different predecessor strings
corresponding to random g¢-grams. Let o denote the size of the alphabet and
let z be the number of zeros in the given predecessor string. Each of the zeros
presents a different character in the original string and each non-zero element
of the predecessor string is defined by the zeros. Then the probability that the
given predecessor string matches a random string is:

o!
P(z.q) = ol (o — 2)!

The probability of a window to be checked is the probability that the last
g-gram of the window p-matches the last (or m — ¢:th) ¢-gram of the pattern.
Thus the expected number of checked windows is

C:(n—m+1)'P(2m—q7Q)

where z,,_q is the number of zeros in the last g-gram of the pattern. Now if we
can choose ¢ so that z,,_, < g the probability P(zm,—q,q) is low enough and
there are only a few checked windows so the scanning time will dominate.

Let us now turn to analyzing the scanning time. We estimate the expected
length of shift in the algorithm with

m—q
S>(m—qg+1) (1= P(2max,q)" ?+ Z i P(zm*qleQ) (11— P(zmamQ))Z_l
i=1

where zpy.x is the maximum number of zeros in the ¢g-grams of the pattern. Note
that this estimate for S is not quite accurate because the consecutive overlapping
g-grams of the pattern are not independent. However the difference from the
accurate value is insignificant.

If we now choose ¢ to be the smallest ¢ such that the pattern is g-repetitive,
the probability P(zmax,q) will be low enough. Then the expected length of shift

360 L. Salmela and J. Tarhio

approaches the value m — ¢ + 1 so on average O((gn)/(m — g + 1)) characters
are read. Furthermore if ¢ < (m 4 1)/2 the algorithm is sublinear on average.

Note that all patterns are not g-repetitive for any ¢ < (m+1)/2 and in these
cases we cannot guarantee the sublinearity of the algorithm. However parame-
terized matching is most often applied to searching for repetitive patterns so in
most practical cases the sublinearity can be guaranteed.

The above analysis holds also if we have both a fixed and a parameterized
alphabet. In fact the fixed alphabet makes the problem easier. In this case a
sufficient condition for sublinearity is that each g-gram of the pattern contains
repetition or at least one character from the fixed alphabet.

5.2 The Two-Dimensional Algorithm

Let us first consider the complexity of the preprocessing phase. The two-dimen-
sional algorithm uses the strategy of the FPBMH algorithm when calculating
the indexes of the shift table. Thus the number of entries in the shift table is 2°
where s = Y7, [log, 7]. As with the one-dimensional algorithms we also need to
keep track of the previous occurrences of the alphabet symbols and thus a table
of size o is needed for that. The time complexity of the preprocessing phase of
the two-dimensional algorithms is thus O((¢2)7 =1 + & + m2¢?).

The worst case for the two-dimensional algorithm occurs when all positions
of the text match. The worst case time complexity is then clearly O(n?m?).

For the average case complexity we will need to estimate the number of
checked windows. There are a total of (n —m + 1)? windows so on average

C=(n—-m+ 1)2 - P(zm—q,m—q q2)

of them are checked where 2, _q m—q is the number of zeros in the g-gram of the
pattern that starts at position (m—gq,m—q). If zp—g.m—q < ¢* , P(2m—g,m—q: ¢*)
is low enough and there will only be a few checked windows. Therefore the
scanning time will dominate.

Let us next consider the expected length of shift, S. The estimate is very
similar to the one-dimensional case:

S > (m—q+1)- (1 — P(zmax, ¢*)) "0 (m=at)

m—q
;- i Ca?) (1 — 2))(i—=1)-(m—q+1)
+ ; i P(_ min - zm—g—ia:) (1= Plzmax, q°))

where zpax is the maximum number of zeroes in the predecessor strings corre-
sponding to any of the g-grams of the pattern. As with the one-dimensional case,
if we now choose ¢ to be the smallest value such that the pattern is g-repetitive,
Zmax < @, P(2max, ¢°) is low enough and S approaches m — g+ 1. So on average
O((n—m)/(m—q+1)-¢*>n/(m—q+1)) = O(¢*n?/(m—q)?) characters are read.
Therefore if the pattern is g-repetitive for a suitable ¢ then the algorithm will
be sublinear on average. Again some patterns are not g-repetitive for a suitable
q and in these cases the sublinearity of the algorithm cannot be guaranteed.

Sublinear Algorithms for Parameterized Matching 361

6 Experimental Results

The analysis predicts that the value of ¢ should be chosen to be the smallest ¢
such that the pattern is g-repetitive. To validate this we ran our algorithms with
several patterns and a randomly generated text with alphabet size 256. Figures
[2 and [show the proportion of read characters and the runtime for some
patterns. The proportion of read characters is calculated as lookups divided by
the length of the text so for a sublinear algorithm this value is less than one.
All these tests were run on a computer with a 1.0 GHz AMD Athlon processor,
512 MB of memory and 256 kB on-chip cache. The computer was running Linux
2.4.22. The algorithms were written in C and compiled with gcc 3.2.2.

Figure [l shows that choosing a larger ¢ with a highly repetitive pattern does
not make the algorithms perform faster. Using 2-grams already guarantees long
enough shifts and thus assembling larger ¢g-grams just wastes time. Figure
presents a completely different scenario. Here the pattern is not g¢-repetitive
for any ¢ and as can be seen we cannot choose large enough ¢ to guarantee the
sublinearity of the algorithms. In Figure [3l the situation is something in between.
The pattern is 3-repetitive but not 2-repetitive. As can be seen the value ¢ = 3
is optimal in this situation and using larger ¢-grams only makes the algorithms
do more work.

Table 21 shows a runtime comparison of our one-dimensional algorithms and a
Boyer-Moore-Horspool algorithm (PBMH) which we use as a reference method.
The PBMH algorithm preprocesses the text into a predecessor string and then
matches the pattern against the text. The preprocessing of the text is included
in the figures but the preprocessing of the pattern is not. As can be seen our
algorithms are faster when the pattern contains a substantial amount of rep-
etition. However when the pattern contains no repetition the algorithm that
preprocesses the text is faster.

To demonstrate the performance of our algorithms in a more realistic scenario
we ran some tests with DNA data. The text was a chromosome from the fruit
fly genome (20 MB) and the patterns were chosen randomly from the text. Our
algorithms were fastest when using 6-grams. Figure [shows the averages over
50 runs. As can be seen our algorithms have characteristics typical to Boyer-
Moore based algorithms. With longer patterns the shifts get longer and thus the
algorithms are faster.

We ran also some tests with the two-dimensional algorithm. We used two
different texts. One was a randomly generated text where the characters were
drawn from an alphabet of 256 characters. The other one was a picture of a map
from the photo archive of Gimp-Savvy.com [12]. We examined the proportion of
read characters for three different patterns of size 8 x 8. The first one contained
repetitions of one character. The second pattern contained no repetitions and
the third contained a map symbol which contains some repetition. Table[3 shows
the results of the tests run with the two-dimensional algorithm using 3-grams.
As can be seen the algorithm performs well when the text or the pattern contains
repetitions.

362

L. Salmela and J. Tarhio

7k

—+— PBMH-RGF
-~ FPBMH
~~%-- PBMH-Hash

[
2
5
g
s :
s ®
2
S a4t
k]
s 3 .
s *
g p
S 2
o **
1| T
0 L L L L L
2 4 6 8 10 12 14

Fig.1. Proportion of read characters (a)
“aaaaaaaaaaaaaaaa’ in a random text

13.8 T T T T T
—+— PBMH-RGF

13.6 % ——>*-- FPBMH
---%--- PBMH-Hash

134

Fig. 2.

Proportion of read characters
©
©
T

(2)

“gwertyuiopsadfgh” in a random text

Proportion of read characters

Fig. 3.

—— PBMH-RGF
L - FPBMH
---%--- PBMH-Hash

in a random text

Runtime (s)

Runtime (s)

Runtime (s)

0.14

0.12

0.1

0.6

0.55

0.25

—— PBMH-RGF j j
-~ FPBMH k
L -~ PBMH-Hash a
x b
,%"
)))
2 4 8 10 12
q
(b)

the pattern

—— PBMH-RGF j j
FPBMH
*-- PBMH-Hash i
* KoK
ko =
%
.
RV Kol
.
.
L L L
4 8 10 12
q
(b)

Proportion of read characters (a) and runtime (b) for

the pattern

—— PBMH-RGF
~-%-- FPBMH
---%--- PBMH-Hash

(b)

Proportion of read characters (a) and runtime (b) for the pattern “aassddssaa”

Sublinear Algorithms for Parameterized Matching 363

Table 2. Runtime comparison of the one-dimensional algorithms in a random text

Algorithm P=aaaaaaaaaaaaaaaaaa P=qwertyuiopasdfgh P=aassddssaa

PBMH 0.08 s 0.29 s 0.08 s
PBMH-RGF 0.02 s 0.74 s 0.04 s
FPBMH 0.01 s 0.58 s 0.03 s
PBMH-Hash 0.02 s 0.70 s 0.03 s

25 T T T T T 1.6 T T T T
—— PBMH —— PBMH
——x-- PBMH-RGF -~ PBMH-RGF
—--%-- FPB 14 & _x-- FPBMH b

5+ PBMH-Hash

r
¥
o
)
@
=
+
I
m
&
o
L

o
T
1

Proportion of read characters
A
o
=
I
Runtime (s)
=

0.8 F m
06 [\ B

ARG
& e L Ny - PN ¥ k) XX Bogea

T
—
=
Ju}
1

BEgEePaonga.gdE 00,

0.4 | X X,
o5 x*x*) %*'x:\x"(\%% x
jon 02 TERK s o IR0 % 2]
KKK KKK KK KA KR KX RRERRXT YR
o Lu . . . | ’ o L |
10 20 30 40 50 60 10 20 30 40 50 60
m m

(a) (b)
Fig. 4. Proportion of read characters (a) and runtime (b) for a text of DNA data and
patterns of varying length. Our algorithms used 6-grams in these tests.

Table 3. Proportion of read characters for two different texts and several different
patterns. All the patterns are of size 8 x 8.

Text Single-character pattern Pattern with no repetitions Pattern with repetitions
Random 0.25 7.90 0.25
Map 1.14 0.25 0.33

7 Conclusions and Further Work

We have presented practical Boyer-Moore type algorithms for one and two-
dimensional parameterized matching. We have showed that these algorithms
are sublinear on average for g-repetitive patterns and confirmed this analysis
with experiments.

Parallel to our work and independently of us Fredriksson and Mozgovoy [11]
have also developed sublinear algorithms for one-dimensional parameterized
matching. Their algorithms are based on the shift-or [4] and backward DAWG
matching (BDM) [10] algorithms. As further work we need to compare our al-
gorithms also with these algorithms.

The analysis assumes the random string model which might not be applicable
especially with two-dimensional texts which are typically images. It is very char-
acteristic of such data that the probability of two nearby characters being the
same is very high. We need to further investigate these typical characteristics of
texts and analyze our algorithms in this context. We also need to make further
tests on real data to confirm the usefulness of our algorithms.

364 L. Salmela and J. Tarhio
References
1. Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

algorithms, applications and a lower bound. In: Proceedings of ICALP. (2003)
929-942

Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Information Processing Letters 49(3) (1994) 111-115

Baeza-Yates, R.: Improved string searching. Software — Practice and Experience
19(3) (1989) 257-271

. Baeza-Yates, R., Gonnet, G.: A new approach to text searching. Communications

of ACM 35(10) (1992) 74-82

Baker, B.S.: A theory of parameterized pattern matching: algorithms and applica-
tions. In: Proceedings of the 25th ACM Symposium on the Theory of Computation.
(1993) 71-80

Baker, B.S.: Parameterized pattern matching by Boyer-Moore-type algorithms. In:
Proceedings of the 6th Annual ACM Symposium on Theory of Computing. (1995)
541-550

Baker, B.S.: Parameterized diff. In: Proceedings of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms. (1999) 854-855

Boyer, R., Moore, J.: A fast string searching algorithm. Communications of the
ACM 20(10) (1977) 762-772

. Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links. In:

Proceedings of the 32nd ACM Symposium on the Theory of Computation (STOC).
(2000) 407-415

Crochemore, M., Lecroq, T., Czumaj, A., Gasieniec, L., Jarominek, S., Plandowski,
W.: Speeding up two string-matching algorithms. In: 9th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’92). Volume 577 of LNCS. (1992)
589-600

Fredriksson, K., Mozgovoy, M.: Sublinear parameterized single and multiple string
matching. Technical Report A-2006-2, Department of Computer Science, Univer-
sity of Joensuu (2006)

Gimp-Savvy.com: Copyright-free photo archive: Public domain photos and images.
http://gimp-savvy.com/PHOTO-ARCHIVE/ (2000)

Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. In:
Proceedings of the 12th European Symposium on Algorithms (ESA). (2004) 414-425
Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parameterized matching. In:
Proceedings of the 16th Annual Symposium on Combinatorial Pattern Matching
(CPM’05). Volume 3537 of LNCS. (2005) 266279

Horspool, N.: Practical fast searching in strings. Software — Practise and Experience
10 (1980) 501-506

Idury, R.M., Schaffer, A.A.: Multiple matching of parameterized patterns. Theo-
rethical Computer Science 154(2) (1996) 203-224

Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal of Computing 6 (1977) 323-350

Kosaraju, S.R.: Faster algorithms for the construction of parameterized suffix
trees. In: Proceedings of the 36th Symposium on Foundation of Computer Science
(FOCS). (1995) 631-637

Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration
and Search. CRC Press (1999)

Tarhio, J.: A sublinear algorithm for two dimensional string matching. Pattern
Recognition Letters 17 (1996) 833-838

	Introduction
	Definitions
	Earlier Solutions
	One-Dimensional Algorithms
	Two-Dimensional Algorithms

	Our Algorithms
	Three One-Dimensional Algorithms
	A Two-Dimensional Algorithm

	Analysis
	The One-Dimensional Algorithms
	The Two-Dimensional Algorithm

	Experimental Results
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

