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Abstract. A single logical entity can be referred to by several different
names over a large text corpus. We present our algorithm for finding
all such co-reference sets in a large corpus. Our algorithm involves three
steps: morphological similarity detection, contextual similarity analysis,
and clustering. Finally, we present experimental results on over large
corpus of real news text to analyze the performance our techniques.

1 Introduction

A single logical entity can be referred to by several different names over a large
text corpus. For example, George Bush is often referred to as Bush, Presi-
dent Bush, George W. Bush, or “W”, even among polite company. However,
morphologically-similar names like George H.W. Bush can refer to different en-
tities. Accurately identifying the members of the co-reference set for a given
entity is an important problem in text mining and natural language processing.

Our interest in identifying such co-reference sets arises in the context of our
system Lydia [1, 2, 3, 4], which seeks to build a relational model of people, places,
and things through natural language processing of news sources. Indeed, we
encourage the reader to visit our website (http://www.textmap.com) to study
our analysis of recent news obtained from over 500 daily online news sources. In
particular, we display the members of each of the 100,000 synsets we reconstruct
daily (on a single commodity computer) from the roughly 150,000 entity-names
we currently track.

Our algorithm for identifying co-referring name sets accurately and efficiently
on a large scale involves optimizing our algorithm’s three steps:

1. Morphological Similarity – The scale of our problem makes it infeasible to
explicitly compare each pair of names for possible co-reference. First, we
narrow our search space by identifying candidate pairs for analysis on a
strictly syntactic basis via morphologically-sound hashing techniques.

2. Contextual Similarity – Next, we determine how similar a pair of names is
based on the contexts in which they are used. The scale of our problem makes
it infeasible to explicitly analyze all text references associated with each pair
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of candidate names. Instead, we propose methods using co-occurrence analy-
sis to other entities to determine the probability that they are co-referent by
context.

3. Evidence Combination and Clustering – Finally, we combine our measures of
contextual and morphological similarity in order to cluster the names. The
problem of clustering names is complicated by the vast difference in the num-
ber of references between popular and infrequently-used names. The strength
of our contextual evidence is thus substantially weaker for unpopular names.
We propose and evaluate methods for dealing with this problem.

Our problem is different from traditional cross-document co-reference analysis
(see Section 2.1). In that problem, there is a set of documents that all mention
the same name and the difficulty is clustering the documents into sets that are
mentioning the same entity. In our problem, there is a set of documents that
mention the many entities each possibly with multiple names and we want to
cluster the names. This difference, combined with our need to manage the daily
flow and scale of the news presented challenges that separate us in the following
ways: (1) the use of entity co-occurrence lists as the sole feature for contextual
analysis, (2) our high-speed dimension reduction techniques (based on k-means
clustering and graph partitioning algorithms) to improve the quality of our con-
textual analysis and the efficiency of our algorithms, (3) our use of morphological
similarity hashing techniques to avoid the need for pairwise-similarity testing of
all name pairs, and (4) our use of variable precision phonetic hashing in order to
tune the performance of our morphological similarity phase.

The rest of this paper is organized as follows. Section 2 surveys previous
work on this and other problems. Section 3 discusses notions of morphological
similarity, while Section 4 shows how we compute the probability that two names
are co-referential from their respective co-occurrence lists. Section 5 discusses
issues that arise in clustering. Experimental results are given in Section 6. We
present our conclusions in Section 7.

2 Related Work

The problem of identifying co-reference sets has been widely studied in a variety
of different contexts. In this section, we survey related work.

We now describe work on three related problems in the subsections below,
namely, cross-document and in-document co-reference resolution in natural lan-
guage processing and record linkage in databases.

2.1 Cross Document Co-reference Resolution

The complementary problem of cross-document co-reference has been examined
fairly extensively.

Bagga and Baldwin [5] present an algorithm which extracts each sentence
in each document that contains an ambiguous name and forms a summary of
the document with respect to the entity. They then use the vector space model
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to compute the similarity of two such summaries. If the similarity of the two
documents is above a threshold, then they consider the two documents to be
referring the same person. They concluded that good results could be achieved by
looking at the context surrounding the occurrences of the name and comparing
documents using techniques from information retrieval.

Mann and Yarowsky [6] present a partially supervised algorithm for this prob-
lem. The algorithm takes as input either a small set of seed tuples for each of
a small set of personal attributes from which it generates extraction patterns
or a set of hand-crafted extractions for each of the personal attributes. Next, it
uses these values along with other contextual clues as the feature vector for each
document before using bottom-up centroid agglomerative clustering.

Gooi and Allan [7] study statistical techniques for cross-document co-reference
resolution. Like Bagga and Baldwin, they use snippets of text around each men-
tion of the ambiguous name. They compare agglomerative clustering, repeatedly
merging the closest pair of clusters, with incremental clustering, either adding
each point to an existing cluster or starting a new singleton cluster, and KL-
divergence as a distance function with cosine similarity. They conclude that
agglomerative clustering performs better than incremental clustering, however
incremental clustering is much more time efficient. They also conclude that co-
sine similarity performs better using KL-divergence.

2.2 Within Document Co-reference Resolution

The natural language processing community has extensively studied the problem
of within document co-reference resolution, finding chains of noun phrases that
refer to the same things. For example, in a news article, Dick Cheney may later
be referred to as Vice President, he, or Mr. Cheney.

Ng and Cardie [8] present a supervised machine learning-based algorithm for
within document co-reference resolution. They use a decision tree classifier to
classify each pair of noun phrases in a document as either co-referring or not
and a clustering algorithm to resolve conflicting classifications. They experiment
with different feature sets, clustering algorithms, and training set selection algo-
rithms. They conclude that linking a proper noun phrase to its most probable
previously occurring co-referring phrase is a better way of clustering, that a
training set selection algorithm that is designed for this clustering algorithm
is superior, and while adding features can be helpful, too many can degrade
performance.

Bean and Riloff [9] present an unsupervised approach to co-reference reso-
lution that uses contextual role knowledge to determine if two noun phrases
co-refer. First they identify easy-to-resolve co-referring pairs and use them as
training data. Information extraction patterns are then used to generate in-
formation about the role each noun phrase plays in the text. The information
extracted from the training data is used to help resolve the other pairs in the
corpus. They show that this phase increases recall substantially with just a slight
decrease in precision.
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2.3 Record Linkage

Our co-reference set identification problem is similar to the record linkage prob-
lem from data mining. The problem arises when there is no shared, error-free
key field to join on across databases. Consider two tables containing informa-
tion about people from two different databases. Even if both databases used
the person’s name and address as the primary key, conventions concerning ab-
breviations and word usage may differ, and typos and misspellings may appear
in either field. The goal is to identify which records correspond to the same
entities.

Hernandez and Stolfo [10] present two different techniques for large databases.
The first approach sorts the data on some key and only considers two records for
a merge if they are in a small neighborhood of each other. The second clusters
the records in such a way that two records will be in the same cluster if they
are potentially referring to the same entity. Finally, they propose taking the
transitive closure of independent runs of the above algorithms, with independent
key fields, as the final merge. They show that this multi-pass algorithm is superior
to all the other algorithms that they consider.

Cohen and Richman [11] consider two problems: (1) taking in a pair of lists
of names and determining which pairs of names in the different lists are the
same and (2) taking in a single list of names and partitioning them into clusters
that refer to the same entity. They propose adaptive learning-based matching
and clustering methods to solve either of these problems. Their feature vector
includes whether one string is a substring of the other and the edit distance
between the two strings.

3 Morphological Similarity

With hundreds of thousands of names occurring in a large corpus, it is intractable
to compare every pair as potentially co-referential. Further, most of these com-
parisons are clearly spurious, and thus would increase the possibility of false
positives. We propose that most pairs of co-referential names result from the
following set of morphological transformations:

– Subsequence Similarity – Taking a string subsequence of a name is one way
of generating aliases of that name. For example, Ford Motor Co. is often
referred to as Ford and George W. Bush is also called George Bush. To
identify these pairs, we examine all 2n possible string subsequences of each
n-word name, hashing the name on each of its subsequences. Note that n,
the number of words in a name, is bounded by about 10. Any subsequence
matching another name implies potential morphological compatibility.

– Pronunciation Similarity – The Metaphone [12] algorithm returns a hash
code of a word such that two words share the same hash code if they have sim-
ilar English pronunciations. Here we say that two names are morphologically-
compatible if they have the same metaphone hash code. Metaphone is
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useful in identifying different spellings of foreign language names (e.g. Vic-
tor Yanukovich and Viktor Yanukovych) as possibly co-referential. In Sec-
tion 3.1, we detail our methods for tuning the performance of this aspect of
morphological similarity using variable precision phonetic hashing.

– Stemming – We use a Porter stemmer [13] to stem each word of each name
and use the stem as a hash code for each name. A hash code collision means
that two names have morphologically-compatible names. Stemming can be
used to identify pairs like New York Yankee and New York Yankees.

– Abbreviations – If one name is an abbreviation of another, then we say that
they are morphologically compatible. For example JFK and John F. Kennedy
are both co-referential with John Fitzgerald Kennedy. To find all names that
are abbreviations of an name, we check if any of the 2n possible abbreviations
of the name’s n-words are also in our corpus.

We observe that there is a notion of degree of morphological similarity. For
example, George Bush is more likely to be co-referential with George W. Bush
than U.S. is with Assistant U.S. Attorney Richard Convertino. For each of our
notions of morphological similarity we have a different measure of the degree of
similarity. For example, for pronunciation similarity, we model the generation of
aliases as a stochastic “typing” process where the probability of a mis-type is a
constant. Then we compute the probability that one name was “typed-in” when
the other was intended.

3.1 Variable Precision Phonetic Hashing

Several (e.g. [12, 14, 15]) phonetic hashing schemes have been developed to work
well on a specific data set or for specific performance levels. No methods ex-
ist that allow the hashing scheme to be parameterized to give different preci-
sion/recall tradeoffs. In this section we investigate phonetic hashing schemes that
have an adjustable parameter giving a range of operating points with different
precision/recall tradeoffs.

Given a query string, we envision a sequence of transformations from the query
string to an empty or null string, where each transformation is a new version of
the string that has had some tokenization or weakening applied to it. We can
model the space of transformations on the universe of strings as a graph. For
example the name ’Wright’, is shown in Figure 1, with a possible transformation
sequence.

The weight of each change is determined by how drastic it is. So the distance
from ’Writ’ to ’Rit’ should be relatively small when compared with the distance
from ’Rt’ to ’R’. This tokenization path gives us different versions of the query
name to use in different tolerances of the hashing function. We also see that the
path for the name ’Rite’ eventually joins the path of ’Wright’. The name ’Reston’
similarly joins the path, but lower down; suggesting that ’Rite’ and ’Wright’ are
closer to each other then to ’Reston’.

A particular tokenizer in this scheme specifies a set of n-gram substitution
rules, along with weights for the rules. The rules are applied in a lowest cost rule
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Reston → Restn � Rst ↘
Wright → Writ → Rit → Rt → R →

Rite ↗

Fig. 1. Tokenization Path of the Name ’Wright’

first order. An example set of rules that could have generated Figure 1 is shown
below. This table says the cheapest rule is substituting a ’t’ for ’ght’. The next
cheapest is substituting an ’r’ for ’wr’ only if at the start of a query. Finally
there are three deletion rules. The vowel deletion is considered less destructive,
and is given a lower weight then the consonant deletion.

– ght → t;0.2
– wr → r;0.3
– (a|e|i|o|u) → ;1
– (t|r) → ;5

To complete the definition of the hash function we must specify how to select
the point on the tokenization path to operate at. Among the many candidates
for these scoring methods, our experimentation showed that selecting the code
that is a fixed distance from the null string works best.

Table 1 shows how we can vary the precision and recall of our hashing algo-
rithm to get different tradeoffs. For a hand-created set of names extracted from
our test set (see Section 6), we measured the precision and recall of our hashing
algorithm at a range of its operating points. For comparison, we also show the
precision and recall of three other phonetic hashing algorithms. It shows how
we can use our algorithm to dial in the precision and recall of our notion of
pronunciation similarity.

Table 1. Precision and Recall for our Variable Precision Phonetic Hashing and fixed
precision hashing

Code Weight Precision Recall
0 0.002 1
120 0.150 0.909
121 0.139 0.818
141 0.157 0.727
146 0.293 0.636
167 0.360 0.545
172 0.442 0.454
187 0.662 0.363
229 1.000 0.090
Metaphone 0.715 0.732
Soundex 0.468 0.797
NYSIIS 0.814 0.672
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4 Contextual Similarity

Our mental model of where an entity fits into the world depends largely upon
how it relates to other entities.

We predict that the co-occurrences associated with two co-referential names
(say Martin Luther King and MLK) would be far more similar than those of
morphologically-similar but not co-referential pairs (say Martin Luther King
and Martin Luther). Thus we use the vector of co-occurrence counts for each
name as our feature space for contextual similarity.

We identified two primary technical issues in determining contextual similarity
using this feature space: (1) dimension reduction and (2) functions for computing
the similarity of two co-occurrence lists. Each of these will be described in the
following subsections.

4.1 Dimension Reduction

In the experimental run of 88, 097 newspaper days of text we used throughout our
experiments (details in Section 6), we encountered 174, 191 different names that
occurred more than 5 times. This implies an extremely sparse, high-dimensional
feature space – large because each additional entity name represents a new di-
mension, and sparse because a typical entity only interacts with a few hundred
or so other entities even in a large text corpus.

Our experiments show that simple techniques which hunted for identical terms
among the 100 or so most significant entries on each co-occurrence list failed,
because the most significantly co-occurring terms for an name were highly unsta-
ble, particularly for low frequency names. Much more consistent were “themes”
of co-occurring terms. In other words, while the most significant associations of
George Bush and “W” might have relatively few names in common, both will be
strongly associated with “Republican” and “Texas” themes.

Dimension-reduction techniques provide a way to capture such themes, and
can improve both recognition accuracy and the computational efficiency of co-
reference set construction. We examined two different dimension-reduction tech-
niques based on creating crude clusters of names, then project our co-occurrence
lists onto this smaller space.

– K-means clustering – This widely-used clustering method is simple and per-
forms well in practice. Beginning with k randomly selected names as initial
cluster centroids, we assign each name to its closest centroid (using cosine
similarity of co-occurrence lists) and recompute centroids. After repeating
for a given number of iterations (5, in our case) we assign each name to its
closest centroid and take this as our final clustering.

– Graph partitioning – The problem of graph partitioning seeks to partition
the vertices of a graph into a small number of large components by cutting a
small number of edges. Such components in a graph of co-occurrences should
correspond to “themes”, subsets of terms which more strongly associate with
themselves than the world at large. Thus we propose graph partitioning as a
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potential dimension reduction technique for such relational data – the names
in each component will collapse to a single dimension.

Although graph partitioning is NP-complete [16], reasonable heuristics ex-
ist. In particular, we used METIS[17], a well-known program for efficiently
partitioning large weighted graphs into k high-weight subgraphs, with k be-
ing a user-specified parameter. Our graph contains a node for every name
and an edge between every pair of nodes (x, y) if they co-occur with each
other at least once. The weight assigned to each edge is the cosine similarity
between the co-occurrence lists of x and y.

4.2 Measuring Contextual Similarity

Given two names, with their co-occurrence lists projected onto our reduced di-
mensional space, we now want a measure of how similar they are. We consider
two different approaches: (1) they can be viewed as probability distributions and
be compared by KL-divergence or (2) they can be viewed as vectors and com-
pared by the cosine of the angle between the vectors. We detail each of these
potential measures here.

KL-Divergence. The KL-Divergence is an information theoretic measure of
the dissimilarity between two probability distributions. Given two distributions,
the KL-Divergence of them is defined by

KL(p, q) =
∑

x∈X

p(x) log
p(x)
q(x)

To use this measure, we turn each co-occurrence list into a probability distri-
bution for each name i,

p̂i(j) =
number of co-occurences between i and j

total number of co-occurrences for i

As a discounting method for probability-0 pairs, we do linear smoothing of all
probabilities with the background distribution setting

pi(j) = αp̂i(j) + (1 − α)bg(j)

where
bg(j) =

total occurrences of names in cluster j
total number of entity occurrences in corpus

Cosine Similarity. A standard way of comparing contexts views the two con-
texts as vectors in a high dimensional space and computes the cosine of the angle
between them. [5] proposed this technique for the similar problem of personal
name disambiguation. We use the term frequency-inverse document frequency
of each vector position, we weight each term in the vector by the inverse of the
number of occurrences it has in the corpus. Letting N be the number of sentences
in the corpus, our score is
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d(x, y) =
k∑

i=0

jp∗x(i) · jp∗y(i)

where jpx(i) the number of co-occurrences between i and x, weighted by log(N/
number of occurrences of i), and

jp∗x(i) =
jpx(i)
‖jpx‖

5 Issues in Clustering

Now that we know which pairs of names are morphologically-similar and their
degrees of morphological and contextual similarity, we need: (1) a way of com-
bining morphological and contextual similarities into a single probability that
two names are co-referential and (2) a method to cluster names into co-reference
sets. We discuss each problem below.

5.1 Combining Notions of Similarity

For each pair of morphologically-related names, we have measures of their mor-
phological and contextual similarities. We need a way to combine them into a
meaningful probability that the two names are co-referential.

For each measure of contextual similarity and for edit distance, we computed
the precision curve on our experimental corpus (see Section 6). Since the preci-
sion at a measure of similarity is the probability that a pair from the test set with
this amount of similarity were co-referential, we use these curves to turn each of
our notions of similarity into a probability. Assuming that these two probabili-
ties are independent, we now can compute the probability that these two names
are co-referential by multiplying the probabilities given by their morphological
and contextual similarities.

5.2 Clustering Algorithms

Once we have probabilities associated with each pair of morphologically related
names, we need to group them into co-reference sets. Because our system must
be able to handle large numbers of names, we must be careful of what kind of
clustering algorithm we choose. We experimented with two algorithms:

– Single link – Here we merge the clusters that two names are in if the proba-
bility that they are co-referential is above a threshold.

– Average link – Our algorithm merges two clusters if the weighted average
probability between names in each of the clusters is above a threshold.

6 Experimental Results

In order to optimize various parameters, decide which methods work best, and
verify our techniques, we ran a set of experiments against the same test set that
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was used to produce the precision curves described in section 5.1. Each of these
experiments is described below.

All of the experiments in this paper where conducted on a test set of 88, 097
newspaper-days worth of text, partitioned among 604 distinct publications.
These were taken from spidering that was performed between April 11, 2005
and November 5, 2005. We used a hand-crafted set of roughly 320 co-reference
sets from the entities in this corpus.

In Section 6.1, precision is given by tp
tp+fp , recall by tp

tp+fn , and f-score by
1

α 1
P +(1−α) 1

R

where tp = true positives, fp = false positives, and fn =
false negatives.

In Section 6.2 these measures are given by the B-cubed algorithm introduced
in [5]. For each name

Precision =
‖intersection of propsed set and true set‖

‖proposed set‖

Recall =
‖intersection of proposed set and true set‖

‖true set‖
and overall precision and recall are the averages of these values.

6.1 Optimizing Contextual Similarity Measure

Optimizing our contextual similarity phase involves the proper choice of (1) di-
mension reduction algorithm, (2) number of dimensions, and (3) contextual simi-
larity measure. For both of the dimension reduction algorithms(k-means, METIS)
and both of the distance measures(KL-Divergence,Cosine similarity), we recorded
the peak F-score as a function of number of dimensions from 10 to 290.

Figures 2 shows this plot. It shows that while the peak performance of all
four combinations is to be comparable, KL-Divergence with METIS dimension
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Fig. 3. Threshold vs. Precision, Recall, and F-score for our clustering algorithms

reduction is to be the most robust to changes in k. For the rest of the analysis
in this paper, we used KL-divergence, METIS dimension reduction, and 150
dimensions.

6.2 Clustering Methods

The first clustering algorithm that we tried was simple single link clustering.
Figure 3(a) shows that it has decent peak performance, but is not very robust
to the setting of the threshold. Further, manual evaluation of the clusters that
are produced shows that it tends to create very long clusters, putting many
things into the same cluster that should not even be considered. For example,
the sequence George Bush → Bush → Bush-Cheney → Cheney → Dick Cheney
leads to George Bush and Dick Cheney being called co-referential.

The next clustering algorithm that we tried was weighted-average link.
Figure 3(b) shows that this has slightly better peak performance than single-link
clustering, but is much more robust in the setting of the threshold.

7 Conclusion

In this paper we present an algorithm to find sets of co-referential names. We
introduce the idea of morphological similarity, the notion that two names are
potentially co-referential based on the text that comprises the name. Then we
discuss the issues surrounding computing the contextual similarity of two names
and give two different measures. Clustering names given their morphological and
contextual similarities was discussed and we presented experimental results for
our system.
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