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Abstract. In the motif finding problem one seeks a set of mutually
similar subsequences within a collection of biological sequences. This
is an important and widely-studied problem, as such shared motifs in
DNA often correspond to regulatory elements. We study a combinatorial
framework where the goal is to find subsequences of a given length such
that the sum of their pairwise distances is minimized. We describe a
novel integer linear program for the problem, which uses the fact that
distances between subsequences come from a limited set of possibilities.
We show how to tighten its linear programming relaxation by adding an
exponential set of constraints and give an efficient separation algorithm
that can find violated constraints, thereby showing that the tightened
linear program can still be solved in polynomial time. We apply our
approach to find optimal solutions for the motif finding problem and
show that it is effective in practice in uncovering known transcription
factor binding sites.

1 Introduction

A central challenge in post-genomic biology is to reconstruct the regulatory net-
work of an organism. A key step in this process is the discovery of regulatory
elements. A common approach finds novel sites by searching for a set of mutually
similar subsequences within DNA sequences. These subsequences, when aligned,
form motifs, and are putative binding sites for a shared transcription factor. The
effectiveness of identifying regulatory elements in this manner has been demon-
strated when considering sets of sequences identified via shared co-expression,
orthology and genome-wide location analysis (e.g., [19, 8, 11]).

Numerous problem formalizations and computational approaches have been
developed for motif finding (see [21], and references therein). Probabilistic ap-
proaches typically maximize the information content of the chosen motif instances
(e.g., [10, 3, 7]). Combinatorial methods either enumerate all allowed motifs or at-
tempt to optimize some measure based on sequence similarity (e.g., [13, 12]). Here,
we take a combinatorial approach and model the motif finding problem as that of
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finding the gapless local multiple sequence alignment of fixed length that mini-
mizes a sum-of-pairs (SP) distance measure. Such a formulation provides a rea-
sonable scheme for assessing motif conservation [15, 18]. The problem is equivalent
to that of finding a minimum weight clique of size p in a p-partite graph (e.g., [16]).
For general notions of distance, this problem is NP-hard to approximate within
any reasonable factor [4]. The problem and its variants remain NP-hard in the
context of biological sequences [1, 22], though in the motif finding setting, where
the distances obey the triangle inequality, constant-factor approximation algo-
rithms exist [2]. Nevertheless, the ability to find the optimal solution in practice is
preferable.

We introduce and extensively explore a mathematical programming approach
to motif finding. We propose a novel integer linear programming (ILP) formu-
lation of the motif finding problem that uses the discrete nature of the distance
metric imposed on pairs of subsequences. Considering its linear programming
(LP) relaxation, we show that while it is weaker than an alternative LP for-
mulation for motif finding [23], an exponentially-sized class of constraints can
be added to make the two formulations equivalent. We then show that it is not
necessary to explicitly add all these constraints by giving a separation algorithm,
based on identifying minimum cuts in a graph constructed to model the ILP,
that identifies violated constraints and thus permits a polynomial-time solution
to the tightened LP.

We test the effectiveness of our approach in identifying DNA binding sites
of E. coli transcription factors. We demonstrate that our new ILP framework
is able to find optimal solutions often an order of magnitude faster than the
previously known mathematical programming formulation, and that its per-
formance in identifying motifs is competitive with a widely-used probabilistic
Gibbs-sampling approach [20]. Finally, we note that in practice the LP relax-
ations often have integral optimal solutions, making solving the LP sufficient in
many cases for solving the original ILP.

2 Formal Problem Specification

We are given p sequences, which are assumed without loss of generality to each
have length N ′, and a motif length �. In our formulation, the goal is to find a sub-
sequence si of length l in each sequence i so as to minimize the sum of the pairwise
distances between the subsequences. Here, the distance between two substrings
si and sj is computed as the Hamming distance between them (HD(si, sj)),
and thus our goal is to choose the substrings such that

∑
i<j HD(si, sj) is

minimized.
The problem can be reformulated in graph-theoretic terms. For p input se-

quences, we define a complete, weighted p-partite graph, with a part Vi for each
sequence. In Vi, there is a node for every window of length � in sequence i. Thus
there are N := N ′ − � + 1 nodes in each Vi, and the vertex set V = V1 ∪ · · · ∪ Vp

has size Np. For every pair u and v in different parts there is an edge (u, v) ∈ E .
Letting seq(u) denote the subsequence corresponding to node u, the weight wuv
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on edge (u, v) equals HD(seq(u), seq(v)). The goal is to choose a node from
each part so as to minimize the weight of the induced subgraph.

3 Integer Programming Formulations

Original integer linear programming formulation. We first give the integer
linear programming formulation presented in [23] for solving the motif finding
problem. In this ILP formulation, there is a variable Xu for each node u in the
graph described above. The variable Xu is set to 1 if node u is chosen, and 0
otherwise. Additionally, there is one variable Xuv for each edge in the graph
(Xuv is the same as Xvu). These edge variables are set to 1 if both end points of
the edge are chosen. In the integer program, all variables are constrained to take
values from {0, 1}. The following ILP is easily seen to model the above graph
problem:

Minimize
∑

{u,v}∈E wuv · Xuv

subject to∑
u∈Vi

Xu = 1 for i = 1, . . . , p∑
u∈Vi

Xuv = Xv for i = 1, . . . , p and v ∈ V \ Vi

Xu, Xuv ∈ {0, 1}

(IP1)

The first set of constraints ensures that one node is chosen from each part, and
the second set requires that an edge is chosen if its end points are. This ILP is
the same as the ILP formulation for side-chain positioning presented in [9].

Fig. 1. Schematic of IP2. Adjacent to a
node u ∈ Vi there are at most |D| cost
bins for each position j > i, each as-
sociated with a variable Yujc. For each
cost c there are the nodes v ∈ Vj for
which wuv = c (stars).

More compact integer linear pro-
gram. We now introduce an alternative
ILP that better exploits the structure of
the combinatorial problem. In particu-
lar, we use the fact that there are typ-
ically only a small number of possible
pairwise distances. For example, in the
case of Hamming distances, edge weights
can only take on � + 1 different values.
We can take advantage of the small num-
ber of possible weights and the fact that
the edge variables of IP1 are only used
to ensure that if two nodes u and v are
chosen in the optimal solution then wuv

is added to the cost of the clique. In our
new ILP formulation, we no longer have
edge variables Xuv. Instead, in addition
to the node variables Xu, we have a vari-
able Yujc for each node u, each position j such that u /∈ Vj , and each edge
weight c. These Y variables model groupings of the edges by cost into cost bins,
as shown in Fig. 1. The intuition is that Yujc is 1 if node u and some node v ∈ Vj

are chosen such that wuv = c.
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Formally, let D be the set of possible edge weights and let W = {(u, j, c) :
c ∈ D, u ∈ V, j ∈ 1, . . . p and u �∈ Vj} be the set of triples over which the Yujc

variables are indexed, and let part(u) = i if u ∈ Vi. Then the following ILP
models the motif-finding graph problem:

Minimize
∑

(u,j,c)∈W :part(u)<j c · Yujc

subject to∑
u∈Vi

Xu = 1 for i = 1, . . . , p (IP2a)∑
c∈D Yujc = Xu for j ∈ 1, . . . , p and u ∈ V \ Vj (IP2b)∑
v∈Vj :wuv=c Yvic ≥ Yujc for (u, j, c) ∈ W s.t. u ∈ Vi and i < j (IP2c)

Xu, Yujc ∈ {0, 1} (IP2)

As in IP1, the first set of constraints forces a single node to be chosen in each
part. The second set of constraints makes certain that if a node u is chosen, for
each j, one of its “adjacent” cost bins must also be chosen (Fig. 1). The third set
of constraints ensures that Yujc can be selected only if some node v ∈ Vj , such
that wuv = c, is also selected. We discard variables Yujc if there is no v ∈ Vj

such that wuv = c. Fig. 1 gives a schematic drawing of these constraints.

Lemma 1. IP2 correctly models the sum-of-pairs motif finding problem.

Proof. For any choice of p-clique {u1, . . . , up} of weight γ =
∑

i<j wuiuj , a
solution of cost γ to IP2 can be found by taking Xui = 1 for i = 1 . . . , p, and
taking Yuijc = 1 for all 1 ≤ j ≤ p such that wuiuj = c. This solution is feasible,
and between any pair of positions i, j it contributes cost wuiuj ; therefore, the
total cost is γ. On the other hand, consider any solution (X, Y ) to IP2 of objective
value γ. Consider the clique formed by the nodes u such that Xu = 1. Between
every two positions i < j, the constraints (IP2a) and (IP2b) imply that exactly
one Yujc and one Yvic′ are set to 1 for some u ∈ Vi and v ∈ Vj and costs c, c′.
Constraint (IP2c) corresponding to (u, j, c) with Yujc on its right-hand side can
only be satisfied if the sum on its left-hand side is 1, which implies c = c′ = wuv.
Thus, a clique of weight γ exists in the motif-finding graph problem. �

Advantages of IP2. In practice, IP2 has many fewer variables than IP1.
Letting d = |D|, the number of kinds of weights, IP2 has Np((p − 1)d + 1)
variables in the case that a Yujc variable exists for every allowed choice of (u, j, c),
while IP1 has Np(N(p− 1)/2+1) variables. If d < N/2, the second IP will have
fewer variables. In general, d is expected to be much smaller than N : while
N could reasonably be expected to grow large as longer and longer sequences
are considered, d is constrained by the geometry of transcription factor binding
and will remain small. Also, in practice, it is likely that many Yujc variables
are removed because seq(u) does not have matches of every possible weight in
each of the other sequences. On the other hand, IP2, will have O(d) times more
constraints than IP1, with the number of constraints being p+Np(p−1)(d/2+1)
for IP2, and p+Np(p−1) for IP1. However, the decrease in variables of IP2 tends
to be more dramatic than the increase in the number of constraints, resulting in
faster execution times (see Computational Results and Fig. 3).
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4 Linear Programming Relaxations

The typical approach to solving an ILP is to solve as a subproblem the linear
program relaxation derived from the ILP by dropping the requirement that the
variables be in {0, 1}, and instead requiring only that the variables lie in the
continuous range [0, 1]. While finding a solution to the ILP is computationally
difficult, its relaxed LP can be solved in polynomial-time. If the solution to
the relaxed LP is integral, then we have found a solution to the original ILP.
Alternatively, if the solution to the LP is fractional, then branch and bound or
other techniques can be used to obtain optimal solutions to the ILP.

The LP relaxation of IP1, which we refer to as LP1, is stronger than the LP re-
laxation of IP2. Because tighter LP relaxations are often more useful subroutines
for finding optimal integer solutions, we first present a natural (though exponen-
tial) class of constraints that, if added to the LP relaxation of IP2, makes the
two formulations equivalent. We refer to this fully constrained relaxation of IP2
as LP2. Later we give a separation algorithm for finding violated constraints,
and thereby show that LP2 can still be solved in polynomial-time.

Additional constraints. Focus on a pair of positions i and j. In IP1 the edge
variables between Vi and Vj explicitly model the bipartite graph between those
two positions. In IP2, however, the bipartite graph is only implicitly modeled
by an understanding of which Y variables are compatible to be chosen together.
We study this implicit representation by considering the bipartite compatibility
graph Cij between two positions i and j. Intuitively, we have a node in this
compatibility graph for each Yujc and Yvic, and there is an edge between the
nodes corresponding to Yujc and Yvic if wuv = c. These two Y variables are
compatible in that they can both be set to 1 in IP2. More formally, Cij =
(Aij , Aji, F ), where Aij = {(u, j, c) : u ∈ Vi, c ∈ D} is the set of indices of
Y variables adjacent to nodes in Vi, going to position j, and Aji is defined
analogously, going in the opposite direction. The edge set F is defined in terms
of the neighbors of a triple (u, j, c). Let N (u, j, c) = {(v, i, c) : u ∈ Vi, (v, i, c) ∈
Aji and wuv = c} be the neighbors of (u, j, c). They are the indices of the Yvic

variables adjacent to position j going to position i so that the edge {u, v} has
weight c. There is an edge in F going between (u, j, c) and each of its neighbors.
We call c the cost of triple (u, j, c). All this notation is summarized in Fig. 2(a).

In any feasible integral solution, if Yujc = 1, then some Yvic for which (v, i, c) ∈
N (u, j, c) must also be 1. Extending this insight to subsets of the Yujc variables
yields a class of constraints that will ensure that the resulting LP formulation
is as tight as LP1. That is, choose any set of Yujc variables adjacent to position
i. Their sum must be less than or equal to the sum of the Y variables for their
neighbors. Formally, if Qij ⊆ Aij , then let N (Qij) =

⋃
(u,j,c)∈Qij

N (u, j, c) be
the set of indices that are neighbors to any vertex in Qij . If Qij ⊆ Aij then
N (Qij) ⊆ Aji. The following constraint is true in IP2 for any such Qij :

∑

(u,j,c)∈Qij

Yujc ≤
∑

(v,i,c)∈N (Qij)

Yvic . (1)
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(a) (b)

Fig. 2. (a) Mapping for the compatibility graph Cij . The two columns of circles repre-
sent nodes in Vi and Vj . Solid lines adjacent to each circle represent the Yujc or Yvic

variables associated with the node. Aij and Aji (dotted boxes) are the sets of these
variables associated with the pair of graph parts i and j. The function N (u, j, c) maps
a variable Yujc to a set of compatible Yvic variables (squiggly lines). N (u, j, c) is shown
assuming that v and w are the only nodes in Vj that have cost c with u. (b) Flow
network Cc

ij between positions i and j. Nodes r and s are a source and sink. Each
solid node corresponds to a Y variable. The edges between Aji and Aij have infinite
capacity, while those entering s or leaving r have capacity equal to the value of the Y
variable to which they are adjacent. The shading gives an r – s cut.

Notice that the set of constraints (IP2c) is of the form (1), taking Qij to be the
singleton set {(u, j, c)}.

Theorem 1. If for every pair i < j, constraints of the form (1) are added
to IP2 for each Q ⊆ Aij s.t. all triples in Q are of the same cost, the resulting
LP relaxation LP2 has the same optimal solution as that of the relaxation LP1
of IP1.

Proof. It is clear that the LP relaxation LP2 described in Theorem 1 is no
stronger than LP1 as any solution to LP1 can be converted to a solution of LP2
by making the node variable weights the same and putting the weight of edge
variables Xuv onto Yujc and Yvic, where wuv = c. This solution to LP2 will
satisfy all the constraints in the theorem, and be of the same objective value.

The rest of the proof will involve showing that for any feasible solution for
LP2, there is a feasible solution for LP1 with the same objective value, thereby
demonstrating that the optimal solution to LP2 is not weaker than the optimal
solution to LP1. In particular, fix a solution (X, Y ) to LP2 with objective value γ.
We need to show that for any feasible distribution of weights on the Y variables
a solution to LP1 can be found with objective value γ.

In order to reconstruct a solution X̂ for LP1 of objective value γ, we will set
X̂u = Xu, using the values of the node variables Xu in the optimal solution
to LP2. We must assign values to X̂uv to complete the solution. Recall the
compatibility graph Cij . Because all edges in Cij are between nodes of the same
cost, Cij is really |D| disjoint bipartite graphs Cc

ij , one for each cost. Let Ac
ij ∪Ac

ji
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be the node set for the subgraph Cc
ij for cost c. Each edge in a subgraph Cc

ij

corresponds to one edge in the graph G underlying LP1. Conversely, each edge
in G corresponds to exactly one edge in one of the Cc

ij graphs (if edge {u, v}
has cost c1, it corresponds to an edge in Cc1

ij ). We will thus proceed by assigning
values to the edges in the various Cc

ij , and this will yield values for the X̂uv.
If y(A) :=

∑
(u,j,c)∈A Yujc, by the sets of constraints (IP2a) and (IP2b),

y(Aij) = y(Aji) = 1. Since the constraints (1) are included with Q = Ac
ij

for each cost c, by the pigeonhole principle, y(Ac
ij) = y(Ac

ji) for every cost c.
Thus, for each subgraph Cc

ij , the weight placed on the left half equals the weight
placed on the right half. We will consider each induced subgraph Cc

ij separately.
We modify Cc

ij as follows to make it a capacitated flow network. Direct the
edges of Cc

ij so that they go from Ac
ij to Ac

ji, and set the capacities of these edges
to be infinite. Add source and sink nodes {r, s} and edges directed from r to
each node in Ac

ij and edges from each node in Ac
ji to s. Every edge adjacent to

r and s is also adjacent to some node representing a Y variable; put capacities
on these edges equal to the value of the adjacent Y variable (see Fig. 2(b)).

The desired solution to LP1 can be found if the weight of the nodes (Y
variables) in each compatibility subgraph can be spread over the edges. That is,
a solution to LP1 of weight γ can be found if, for each pair (i, j) and each c,
there is a flow of weight y(Ac

ij) from r to s in the flow network. The assignment
to X̂uv will be the flow crossing the corresponding edge in the Cc

ij of appropriate
cost. In the following lemma, we show that the set of constraints described in
the theorem ensure that the minimum cut in the flow network is ≥ y(Ac

ij), and
thus there is a flow of the required weight. The proof of this fact is quite similar
to those of other flow feasibility problems found in [5], and we omit it here.
Together with the lemma we have shown LP1 and LP2 to be equivalent. �

Lemma 2. The minimum cut of the flow network described in the proof of The-
orem 1 (and shown in Fig. 2(b)) is y(Ac

ij).

4.1 Separation Algorithm

Despite the exponential number of constraints, it is possible to solve LP2 in
polynomial time by the ellipsoid algorithm [6] provided that there exists a sep-
aration algorithm that finds a violated constraint, if one exists, in polynomial
time or reports that no constraints are violated. The next lemma gives such an
algorithm, formalizing the intuition in the proof of Theorem 1, by which all con-
straints are satisfied in a compatibility graph only if a large enough maximum
flow exists. Otherwise, the minimum cut identifies a violated constraint.

Theorem 2. There is a polynomial-time algorithm that can find a violated con-
straint in LP2 or report that none exists.

Proof. Because each constraint in (1) involves variables of a single cost, if (1) is
violated for some set Q, then Q is a subset of an Ac

ij for some i, j, c, and so we
can consider each subgraph Cc

ij independently. The proof of Theorem 1 shows
that there is a violated constraint of the form (1) between i, j involving variables
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of cost c if and only if the maximum flow in Cc
ij is less than y(Ac

ij). Thus, the
minimum cut can be found for each triple i, j, c, and, if a triple i, j, c is found
where the minimum cut is less than y(Ac

ij), one knows that a violated constraint
exists between positions i and j with Q ⊂ Ac

ij .
The minimum cut can then be examined to determine the violated constraint

explicitly. Let {r} ∪ A ∪ B be the minimum r – s cut in Cc
ij , with A ⊆ Ac

ij and
B ⊆ Ac

ji. Such a cut is shaded in Fig. 2(b). Let m be the capacity of this cut, and
assume, because we are considering a triple i, j, c that was identified as having
a violated constraint, that y(Ac

ij) > m. For ease of notation let Ā = Ac
ij \ A

and B̄ = Ac
ji \ B. Because m < ∞ there are no edges going from A to B̄, and

hence two things hold: (1) m = y(B) + y(Ā) and (2) N (A) ⊆ B, and therefore
y(N (A)) ≤ y(B). Chaining these facts together, we have

y(A) = y(Ac
ij) − y(Ā) > m − y(Ā) = y(B) ≥ y(N(A)) ,

Thus, the set A is a set for which the constraint of the form (1) is violated. �

5 Computational Results

We apply our LP formulation to find binding sites for E. coli transcription fac-
tors, and we show that in practice our LP formulation results in significantly
faster running times than the previous simpler linear program. Moreover, in or-
der to demonstrate that our formulation of the motif finding problem results
in biologically relevant solutions, we show that our approach identifies binding
sites as well as a widely-used probabilistic technique [20].

Test Sets. We present results on identifying the binding sites of 39 E. coli
transcription factors (see Table 1). We construct our data set from the data
of [17, 14] in a fashion similar to [15]. In short, we remove all sites for sigma-
factors, duplicate sites, as well as those that could not be unambiguously located
in the genome. Data sets for all factors with only two sites remaining were
discarded as uninteresting for motif finding; datasets for ihf and crp are omitted

Table 1. Sizes for the 39 problems considered: number of sequences (p), motif length
(�), and total number of nodes in the underlying graph (n)

TF � p n TF � p n TF � p n TF � p n TF � p n

ada 31 3 810 dnaA 15 8 2381 galR 16 7 2188 metJ 16 15 5754 phoB 22 14 4618
araC 48 6 1715 fadR 17 7 2122 gcvA 20 4 1234 metR 15 8 3312 purR 26 20 5856
arcA 15 13 4790 farR 10 3 873 glpR 20 11 3829 modE 24 3 934 soxS 35 13 4004
argR 18 17 5960 fis 35 18 5371 hipB 30 4 1084 nagC 23 6 1870 torR 10 4 2198
cpxR 15 9 2614 flhCD 31 3 810 hns 11 5 1485 narL 16 10 3301 trpR 24 4 1108
cspA 20 4 1410 fnr 22 12 3705 lexA 20 19 5554 ntrC 17 5 1516 tus 23 5 1390
cysB 40 3 783 fruR 16 11 4082 lrp 25 14 4090 ompR 20 9 3057 tyrR 22 17 5258
cytR 18 5 1695 fur 18 9 3182 malT 10 10 3410 oxyR 39 4 1048
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due to size considerations. For each transcription factor considered, we gather
at least 300 base pairs of genomic sequence upstream of the transcription start
sites of the regulated genes. In the cases where the binding site is located further
upstream, we extend the sequence to include the binding site. This results in
graphs with up to 20 parts and 5, 960 nodes. The motif length for each dataset
was chosen based on the length of the consensus binding site, determined from
other biological studies and ranging between 11 and 48. The transcription factors,
the length of their binding site, and the number of DNA sequences considered
are shown in Table 1.

Methodology. We first solve the LP relaxation of IP2. If the solution is not
integral, we find and add violated constraints and re-solve. We have observed
that certain classes of constraints of the form (1) are powerful in practice, and
so we consider these first:

1. Qij = Ac
ij for every i < j, c.

2. Qij = {(u, j, c) : c ∈ D} for every i < j, u ∈ Vi.

In addition, we consider the above constraints with i > j. We iterate, adding all
violated constraints of the above types and re-solving, until all such constraints
are satisfied. While in theory this heuristic approach may lead to a solution that
is not as tight as that of LP1, in all cases considered, we find that adding this
particular set of constraints is sufficient for making LP2 as tight as LP1. More-
over, in practice, this heuristic approach will be faster than using the ellipsoid
method [6] with our separation algorithm and, we show below, is usually faster
than solving LP1.

LP1 was solved using two different simplex variants. In the first (primal
dualopt), the primal problem was solved using the dual simplex algorithm.
In the second (dual primalopt), the dual problem was solved using the primal
simplex algorithm. LP2 was always solved using the dual simplex method applied
to the primal problem so that we could use the optimal basis of the previous
iteration as a starting point for the next, setting the dual variables for the added
constraints to be basic. This strategy eliminates the need to re-solve using an
arbitrary starting solution and provides a significant speedup.

The linear and integer programs were specified with Ampl and solved using
CPLEX 7.1. All experiments were run on a public 1.2 GHz SPARC workstation
using a single processor. All the timings reported are in CPU seconds. Any
problem taking longer than five hours was aborted. Interestingly, only 3 of the
34 problems solvable in less than five hours were not integral. Since the problem
is NP-complete, this is somewhat surprising. This suggests that handling non-
integral cases may not be as pressing as one would think.

Performance of the LP relaxations. We solved LP1 and LP2 relaxations
for the transcription factors listed in Table 1. Fig. 3 plots the running times, ma-
trix sizes, defined as the number of constraints times the number of variables,
and speed-up factors of LP2 over LP1. For five problems, each LP failed to find
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Fig. 3. (a) Speed-up factor of LP2 over LP1. A triangle indicates problems for which
LP1 did not finish in less than five hours. An asterisk (far right) marks the problem
for which LP2 did not finish in less than five hours, but LP1 did. (b) Running times
in seconds for LP2 (log scale). (c) Ratio of matrix sizes for LP2 to LP1.

a solution in the allotted five hours; these are omitted from the figure. In most
cases, the initial set of constraints was sufficient to get a solution at least as good
as that obtained by LP1. Six problems required additional constraints to LP2 to
make their solutions as tight. The problems flhCD, torR, and hu required two iter-
ations of adding violated constraints, ompR required three, oxyR four, and nagC
five. Running times reported in Fig. 3(b) are the sum of the initial solve times and
of all the iterations. Fig. 3(c) plots (size of LP2)/(size of LP1). As expected, the
size of the constraint matrix is typically smaller for LP2. While in four cases the
matrix for LP2 is larger, often it is < 50% the size of the matrix for LP1.

When comparing the running times of LP2 with those of LP1, the speed-up
factor is computed as min{primal dualopt LP1, dual primalopt LP1}/LP2,
that is, using the better running time for LP1. For all but one of the datasets,
a significant speed-up when using LP2 is observed, and an order of magnitude
speed-up is common, as shown in Fig. 3(a). For nine problems, while LP2 was
solved, neither simplex variant completed in < 5 hours when solving LP1. For
these problems, the timing for LP1 was set at five hours, giving a lower bound
on the speed up. For one problem, cytR, the reverse was true and LP2 did
not finish within five hours, while LP1 successfully solved the problem. For
this dataset, the timing for LP2 was taken to be five hours, giving an upper
bound.
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Fig. 4. Difference between nPC values ob-
tained using the ILP approach and Gibbs
Motif Sampler [20]; data sets with identical
motifs are omitted. Bars above zero indi-
cate that ILP performs better.

We also compared the perfor-
mance of our approach, measured
by the nucleotide performance coef-
ficient (nPC ) [21], in identifying ex-
isting transcriptionfactor binding sites
to that of Gibbs Motif Sampler [20].
The nPC measures the degree of over-
lap between known and predicted mo-
tifs, and is defined as nTP/(nTP +
nFN +nFP ), where nTP, nFP, nTN,
nFN refer to nucleotide level true
positives, false positives, true nega-
tives and false negatives respectively.
We compare the nPC values for the
two methods in Fig. 4. Each bar in
the chart measures the difference in
nPC between the ILP approach and
Gibbs Motif Sampler, omitting those transcription factor datasets for which
the found motifs are identical. Of the 30 problems for which the integral
optimal was found using LP2, the sum-of-pairwise hamming distances measure
more accurately identifies the biologically known motif in seven cases, with nPC
0.11 better on average. In 20 cases, the two methods find equally good solu-
tions. In the remaining 3 cases, Gibbs sampling does better, with nPC 0.08
better on average. Since the Gibbs sampling approaches have comparable per-
formance to other stochastic motif finding methods [21] and most combinatorial
methods are restricted by the lengths of the motifs considered, our ILP frame-
work provides an effective alternative approach for identifying DNA sequence
motifs.

6 Conclusions

We introduced a novel ILP for the motif finding problem that works well in
practice. There are many interesting avenues for future work. While the under-
lying graph problem is similar to that of [4, 9], one central difference is that
the edge weights satisfy the triangle inequality. In addition, edge weights in
the graph are not independent, as each node represents a subsequence from a
sliding window. Incorporating these features into the ILP may lead to further
advances in computational methods for motif finding. It would also be useful
to extend the basic formulation presented here to find multiple co-occurring
or repeated motifs (as supported by many widely-used packages). Finally, we
note that graph pruning and decomposition techniques (e.g., [16, 23]) may al-
low mathematical programming formulations to tackle problems of considerably
larger size.
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