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Abstract. Pattern Matching with Properties (Property Matching, for
short), involves a string matching between the pattern and the text, and
the requirement that the text part satisfies some property.

It is straightforward to do sequential matching in a text with prop-
erties. However, indexing in a text with properties becomes difficult if
we desire the time to be output dependent. We present an algorithm
for indexing a text with properties in O(n log |Σ| + n log log n) time for
preprocessing and O(|P | log |Σ|+ toccπ) per query, where n is the length
of the text, P is the sought pattern, Σ is the alphabet, and toccπ is the
number of occurrences of the pattern that satisfy some property π.

As a practical use of Property Matching we show how to solve Weighted
Matching problems using techniques from Property Matching. Weighted
sequences have been introduced as a tool to handle a set of sequences that
are not identical but have many local similarities. The weighted sequence is
a “statistical image” of this set, where we are given the probability of every
symbol’s occurrence at every text location. Weighted matching problems
are pattern matching problems where the given text is weighted.

We present a reduction from Weighted Matching to Property Match-
ing that allows off-the-shelf solutions to numerous weighted matching
problems including indexing, swapped matching, parameterized match-
ing, approximate matching, and many more. Assuming that one seeks the
occurrence of pattern P with probability ε in weighted text T of length
n, we reduce the problem to a property matching problem of pattern P
in text T ′ of length O(n( 1

ε
)2 log 1

ε
).

1 Introduction

One of the technical problems that pattern matching has had to deal with is
that of matching a pattern in a text with properties. The idea is that the pattern
matching itself is insufficient, but the particular text substring that is matched
also needs to satisfy a desired property. Some examples come from molecular
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biology, where it has long been a practice to consider special genome areas by
their structure.

It is straightforward (as we show later) to solve sequential pattern matching
with properties since the intersection of the properties and matching can be done
in linear time. However, the problem becomes more complex when it is required
to index a text with properties. The classical pattern matching problem is that
of finding all occurrences of pattern P = p1p2 · · · pm in text T = t1t2 · · · tn, where
T and P are strings over alphabet Σ. In the indexing problem we are given a
large text that we want to preprocess in a manner that allows fast solution of
the following queries: ”Given a (relatively short) pattern P find all occurrences
of P in T in time proportional to |P | and the number of occurrences”.

The indexing problem and its many variants have been central in pattern
matching and information retrieval. However, when it comes to indexing a text
with properties, intersecting the pattern with the properties may give a worst
case that is not output-dependent.

In this paper we give a precise definition of pattern matching with proper-
ties and provide a data structure that preprocesses the text in O(n log |Σ| +
n log log n) time and supports queries in O(|P | log |Σ| + toccπ) time per query,
where n is the text length, P is the sought pattern, |Σ| is the alphabet, and
toccπ is the number of occurrences of P that satisfy some property π. These are
almost the same bounds that exist in the literature for ordinary indexing.

We now turn to an apparently unrelated problem. Among the challenges that
the pattern matching field is currently grappling with are those of motif dis-
covery, and local alignment. Recently, the concept of weighted sequences was
introduced as a suggested method of satisfying the above needs. A weighted se-
quence is essentially what is also called in the biology literature Position Weight
Matrix (PWM for short) [5]. The weighted sequence of length m is a |Σ|×m ma-
trix that reports the frequency of each symbol in finite alphabet Σ (nucleotide,
in the genomic setting) for every possible location.

Iliopoulos et al. [4] considered building very large Position Weight Matrices
that correspond, for example, to complete chromosome sequences that have been
obtained using a whole-genome shotgun strategy. By keeping all the information
the whole-genome shotgun produces, it should be possible to identify information
that was previously undetected after being faded during the consensus step. This
concept is true for other applications where local similarities are thus encoded.
It is therefore necessary to develop adequate algorithms on weighted sequences,
that can be an aid to the application researchers for solving various problems
they are liable to encounter.

It turns out that handling weighted sequences is algorithmically challeng-
ing [4] even for simple tasks such as exact matching. It is certainly desirable to
be able to answer more ambitious questions, such as scaled weighted matching,
swapped weighted matching, parameterized weighted matching as well as to index
a weighted sequence.

We develop a general framework that allows solving all the problems men-
tioned above. In particular this presents the first known algorithms for
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problems such as scaled matching, swapped matching and parameterized match-
ing in weighted sequences. Since most current methods for handling weighted
matching use techniques that are not conductive to indexing (e.g., convolutions),
it is surprising that our framework also enables indexing weighted sequences with
the same query time as in the non-weighted case.

These results are all enabled by a reduction of weighted matching to property
matching. This reduction creates an ordinary text of length O(n(1

ε )2 log 1
ε ) for

the weighted matching problem of length n text and desired probability ε. Since
the outcome of the reduction is an ordinary text with a property, then all pattern
matching problems that can be solved in ordinary text and pattern can have their
weighted versions solved with the time degradation of the reduction.

The indexing problem for weighted text becomes a problem of indexing an
ordinary (longer) text with properties. We can now use the indexing text with
properties result to solve weighted indexing as well.

2 Property Matching – Definitions

For a string T = t1 · · · tn, we denote by Ti···j the substring ti · · · tj . The suffix
Ti···n is denoted by T i, and the suffix tree of T is denoted by ST (T ). The leaf
corresponding to T i in ST (T ) is denoted by leaf(T i). The label of an edge e in
ST (T ) is denoted by label(e).

For a node u in the suffix tree of a string T , we denote by STu the subtree of
the suffix tree rooted by u. The label of u is the concatenation of the labels of
the edges on the path from the root of the suffix tree to u, in the order they are
encountered, and is denoted by label(u).

We are now ready to define a property for a string.

Definition 1. A property π of a string T = t1 · · · tn is a set of intervals π =
{(s1, f1), . . . , (st, ft)} where for each 1 ≤ i ≤ t it holds that: (1) si, fi ∈ {1, . . . , n},
and (2) si ≤ fi. The size of property π, denoted by |π|, is the number of intervals
in the property (or in other words - t).

We assume that the properties are given in standard form as defined below.

Definition 2. A property π for a string of length n is said to be in standard
form if: (1) it is in explicit form, (2) for any 1 ≤ i ≤ n, there is at most one
(sk, fk) ∈ π such that sk = i, and (3) s1 < s2 < · · · < s|π|.

3 General Pattern Matching with Properties

This section defines the notion of general pattern matching with properties.
following definition.

Definition 3. Given a text T = t1 · · · tn with property π, pattern P = p1 · · · pm,
and a definition of a matching α, we say that P α-matches Ti···j under property
π if P α-matches Ti···j, and there exists (sk, fk) ∈ π such that sk ≤ i and j ≤ fk.
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The following definition will assist us in solving property matching problems.

Definition 4. For a property π of a string T = t1 · · · tn, the end location of 1 ≤
i ≤ n, denoted by end(i), is defined to be the maximal fk such that (sk, fk) ∈ π
and sk ≤ i ≤ fk. If no such fk exists, we say that end(i) = NIL.

Note that end(i) can easily be calculated for all locations i in T in time O(n)
(recall that π is given in standard form). Now, given a text T = t1 · · · tn and a
pattern P = p1 · · · pm, if there exists an algorithm for an α-matching problem
that runs in time O(gα(n, m)), then given a text T with property π, and pattern
P , we can find all Ti···j that α-match P in time O(gα(n, m)+n) = O(gα(n, m)).

However, the above reduction does not suffice for the property indexing prob-
lem (defined below). Before explaining why, we first provide a formal definition
of the property indexing problem.

Definition 5. Property Indexing Problem (PIP) Given a text string T =
t1 · · · tn with property π, preprocess T such that on-line queries of the form ”find
all locations where a pattern string P occurs in T under π” can be answered in
time proportional to the size of the pattern (rather than the text) and the output.

The problem with the PIP is that known indexing data-structures do not suffice.
For example, given a suffix tree for T , we can find all of the occurrences of P
in T in time O(P log |Σ| + tocc) where tocc is the number of the occurrences.
However, tocc is not the number of occurrences of P in T under π; it includes
also the occurrences of P in T that are not occurrences under π. We could solve
this problem by also preprocessing end(i) for all locations i in T as we did before.
However, this would require scanning all of the occurrences of P in T (taking
O(tocc) time), and we would like to answer indexing queries in time dependent
on toccπ, where toccπ is the number of occurrences of P in T under π, which
might be much smaller than tocc. Also, keep in mind that we want a solution
that takes minimal preprocessing time, and requires only linear space. This is
the problem addressed by our new data-structure.

In the next sections we will define our data-structure, show how it is con-
structed in time O(n log |Σ| + n log log n), and finally, show how an indexing
query can be answered in time O(m log |Σ| + toccπ).

4 The Property Suffix Tree

We now define the data-structure used for solving the PIP. The data-structure
we present is based on the suffix tree - thus, we name it the Property Suffix Tree,
or PST for short. The construction is for a text T = t1 · · · tn with property π.
The idea is based on a lemma that we provide following the next definition.

Definition 6. For a string T with property π and a node u in the suffix tree
of T , we denote by Sπ

u the maximal set of locations {i1, · · · , i�} ⊆ {1, · · · , n}
such that for every ij ∈ Sπ

u we have that: (1) leaf(T ij) is in STu, and (2) if
end(ij) �= NIL then end(ij) − ij > |label(u)|.
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Lemma 1. Let T be a string with property π, and let u and v be two nodes in
the suffix tree of T such that v is u’s parent, then Sπ

u ⊆ Sπ
v .

Proof. The proof follows from definition 6. For any location ij ∈ Sπ
u we know

leaf(T ij) is in STu, thus it is also in STv. We also know that end(ij) − ij >
|label(u)|. Being that |label(u)| > |label(v)|, we have that end(ij)−ij > |label(u)|
> |label(v)|. Due to the maximality of Sπ

v , it must be that ij ∈ Sπ
v . ��

Corollary 1. For a string T with property π, the path from the root of ST (T )
to leaf(T i) can be split into the following two paths: (1) the path consisting of
all nodes u such that i ∈ Sπ

u , and (2) the path consisting of all nodes u such that
i /∈ Sπ

u .

Definition 7. Consider the two paths from Corollary 1, and the ith suffix of T .
Let v be the deepest node on the first path. The location of i in the PST of T is
defined as follows. If end(i)− i = |label(v)|−1 then loc(i) = v. Otherwise, loc(i)
is the edge connecting the two paths.

The idea behind the PST is to move each suffix T i in ST (T ) up to loc(i). We will
later show why this solves the PIP. We now define the PST using an overview
construction. First, we construct ST (T ) using, for example, [6]. Then, for every
suffix T i find loc(i), and maintain a list of locations for each edge e consisting
of all i such that e = loc(i) and for each node u consisting of all i such that
u = loc(i). We denote these lists by suf(e) and suf(u) respectively. Next, we
mark each node u in ST (T ) such that either suf(u) is not an empty list, or u is
connected to some edge e where suf(e) is not an empty list, or u is an ancestor
of a marked node. Now, we delete all of the nodes that are not marked, and
compress non branching paths in the remaining tree to one edge (like we do in
suffix trees). Of course, during the compression of a path into an edge, we must
concatenate all of the suf(u) and suf(e) for all nodes u and edges e on the path,
except for the last node. The concatenation of all of those lists forms the list of
locations loc(e′) for the new edge e′ that will replace the non-branching path.
Finally, we will be interested in ordering suf(e) for the remaining edges in order
to allow efficient querying. This will be explained later.

Note that except for the stage in which we construct suf(e) and suf(u) for
the edges e and nodes u in ST (T ) and the ordering of the lists of locations, the
rest of the algorithm can be easily implemented to take O(n log |Σ|) by building
a suffix tree and using a constant number of depth-first searches (DFS). Also
note that the size of the data structure is clearly linear in the size of T . Thus, it
remains to show how to construct suf(e) and suf(u) for the edges e and nodes u
in ST (T ), and how to order them while allowing us to answer queries efficiently.
This is explained in the next two subsections.

4.1 Constructing Lists of Locations

We now show how to construct suf(e) and suf(u) for every edge e and every
node u in ST (T ). In the following subsection we show how to order suf(e) in a
way that will allow efficient querying.
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In order to find loc(i) for every suffix T i, we use the weighted ancestor queries
that were presented in [3], and improved upon in [1]. The weighted ancestor
problem is defined as follows:

Definition 8. Let T be a rooted tree where each node u has an associated value
value(u) from an ordered universe U such that if v is the parent of u then
value(v) < value(u). The weighted ancestor problem is given a query of the
form WA(u, i) where u is a node in T and i ∈ U , return the node v that is the
lowest ancestor of u such that value(v) < i.

Clearly, if we set the value of a node u to be |label(u)|, then given a leaf leaf(T i),
the answer to the query WA(leaf(T i), end(i)− i) will either give us a node that
is loc(i), or a node that is connected to the edge that is loc(i). In the later case,
we can easily find loc(i) in O(log |Σ|) time. In [1] the weighted ancestor prob-
lem was solved for suffix trees taking O(n) preprocessing time, and O(log log n)
query time. Thus, we can find loc(i) for all T i’s in O(n(log log n+log |Σ|)) time.
However, the suffixes on the edges are not ordered in a way that would allow
efficient indexing queries. We cannot simply order the suffixes by descending
loc(i) − i because this would require sorting, and would take too much time
(we would need to sort the locations on every edge in the tree according to the
appropriate values). To solve this problem, we show in Subsection 4.2 how to
preprocess a set of n′ elements in O(n′) time such that given a value whose
rank1 in the set is k, we can find all of the elements less than or equal to that
value in O(k) time. In Subsection 4.3 we will show how this helps us answer
indexing queries efficiently. Thus, we will run this algorithm on every edge in
the tree, taking a total of linear time. Finally, the time required for constructing
the PST is O(n log |Σ| + n log log n). Note that for constant size alphabets we
are dominated by the n log log n factor.

4.2 Ordering the Suffixes on an Edge

As we previously mentioned, we require a scheme such that given a set of n′

elements we can preprocess those elements in O(n′) time such that given a value
whose rank in the set is k, we can find all of the elements less than or equal
to that value in O(k) time. To solve this algorithm we use the fact that finding
the median of a set of numbers can be done in linear time (e.g., by [2]). The
preprocessing is as follows. First find the median of the set, and separate the
set to the set of values smaller than the median, and the set of the values that
greater than the median (for simplicity, we assume all values are distinct). For
the set of items with value greater than the median, we put them in an array
of size n′, in the second part of the array. We recursively do the same for the
elements less than the median, each time putting the items greater than the
median in the left most part of the unfilled array, until we reach a set of size
one, and we put the remaining element in the first location in the array. Note
that the time required is O(

∑log n′

i=0
n′

2i ) = O(n′).
1 The rank of a value in a set is the number of elements in the set less than or equal

to the value.
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Now, given a query value t with rank k, we proceed as follows. We begin by
comparing t with the first location. If t is smaller, than we output an empty
set. If t is larger, we output the first element as part of the output and continue
on to scan the next two elements in the array. If they are both less than or
equal to t, we output them both, and continue on to the next four elements.
We continue on such that at the ith iteration, if all of the 2i−1 elements are less
than or equal to t, we output them all, and continue to the next 2i items. This
continues until we reach some item whose value is less than t. Say this happens
at iteration number i′. In such a case, we continue to scan all of the 2i′−1 items
of the iteration, outputting only those items with value less than or equal to t,
and then we are done.

Clearly, we output all elements that are less than or equal to t, as once we find
an element that is greater than t in the i′ iteration, we know that all the rest of the
elements in the array (located after the 2i′−1 elements of the current iteration)
have value greater than t (this follows directly from the way we arranged the
array, dividing it around the median). Moreover, the running time is O(k) as
if we stop at iteration i′, this means we output at least

∑i′−1
i=1 2i−1 = Ω(2i′

),
and the running time is at most

∑i′

i=1 2i−1 = O(2i′
). Finally, note that the same

type of technique can be used if we are interested in finding all the elements that
have value larger or equal to t. We will actually be interested in this version of
the problem for ordering the suffixes on the edges.

4.3 Answering Indexing Queries

In this section we describe how to answer indexing queries in O(m log |Σ| +
toccπ). But first, for a node u in the PST we denote by PSTu the subtree of the
PST rooted by u. The indexing query is answered as follows. We first begin by
searching the PST like we search a suffix tree, until we reach a node or an edge.
If we reach a node u, we run a DFS on PSTu, outputting suf(w) and suf(e′)
for every node w and every edge e′ in PSTu. If when searching we reach an edge
e = (u, v) where we match the first � characters of label(e), then we first output
suf(w) and suf(e′) for every node w and every edge e′ in PSTv using a DFS,
and we also output every location i in suf(e) such that end(i)−i > |label(u)|+�.
In order to accomplish the second part, we use the scheme from Subsection 4.2.
it remains to show that the additional amount of time spent (i.e. except for
the search part that takes O(m log |Σ|)) is linear in the size of the output. This
follows from the following lemma.

Lemma 2. Let PST (T ) be the PST of a string T under property π. Then in the
subtree of any node in PST (T ), the size of the subtree is linear in the number of
locations in the union of suf(w) and suf(e′) for every node w and every edge
e′ in the subtree.

Theorem 1. The PIP can be solved in O(n log |Σ| + nlog log n) preprocessing
time, using linear space, where the query time is O(m log |Σ| + toccπ).



Property Matching and Weighted Matching 195

In the following sections we consider weighted matching problems and show
a general framework for solving weighted matching problems using property
matching.

5 Weighted Matching – Definitions

Definition 9. A weighted sequence T = t1 · · · tn over alphabet Σ is a sequence
of sets ti, i = 1, · · · , n. Every ti is a set of pairs (sj , πi(sj)), where sj ∈ Σ and
πi(sj) is the probability of having symbol sj at location i. Formally,

ti =

⎧
⎨

⎩
(sj , πi(sj)) | sj �= sl for j �= l, and

∑

j

πi(sj) = 1

⎫
⎬

⎭
.

Definition 10. Given a pattern P = p1 · · · pm over alphabet Σ, we say that the
solid pattern P (or simply pattern P) occurs at location i of a weighted text T
with probability of at least ε if

∏m
j=1 πi+j−1(pj) ≥ ε, where ε is a given parameter

which we call the threshold probability.

Notice that all characters having probability of appearance less than ε are not of
interest to us, since any pattern using such a character will also have probability
of appearance less than ε, which is below the threshold probability. Therefore,
we are only interested in characters having probability of appearance of at least
ε. We call such characters heavy characters.

Definition 11. Given 0 < ε ≤ 1, we classify each location i, 1 ≤ i ≤ n, in
the text into the following three categories: (1) Solid positions where there is
one (and only one) character at location i with probability of appearance exactly
1, (2) Leading positions where there is at least one character at location i with
probability of appearance greater than 1− ε (and less than 1), and (3) Branching
positions where all characters at location i have probability of appearance at most
1 − ε.

Notice that if ε ≤ 1
2 , then at every solid and leading position there is only one

heavy character since only one character can have probability of appearance
greater than 1 − ε ≥ 1

2 , whereas in a branching position there maybe several
heavy characters. However, if ε > 1

2 there are no heavy characters in a branching
position since all characters have probability of appearance of at most 1− ε < ε.

In the following section we define the notions of Maximal Factors and Ex-
tended Maximal Factors and show how they are used in the reduction from
weighted matching to property matching.

6 Maximal Factors and Extended Maximal Factors

A weighted pattern matching problem is a pattern matching problem where the
text is weighted. The idea behind our framework is to create a regular text from
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the weighted text in a way that we can run regular pattern matching algorithms
on the regular text while ensuring that the occurrences appear with probability
of at least ε. In order to do so, we first define the notion of maximal factor.

Definition 12. Let T = t1 · · · tn be a weighted text and let X = x1 · · ·xl be a
string. We denote πi(X) = πi(x1) × · · · × πi+l−1(xl). Given 0 < ε ≤ 1, we say
that a string, X, is a maximal factor of T starting at location i if the following
conditions hold: (1) πi(X) ≥ ε, (2) if i > 1, then πi−1(sj) × πi(X) < ε for all
sj ∈ Σ, and (3) if i + l ≤ n, then πi(X) × πi+l(sj) < ε for all sj ∈ Σ.

In other words, a maximal factor starting at location i is a string that when
aligned to location i has probability of appearance at least ε. However, if we
extend the string by even one character to the right and align it to location i or
if we extend the string by even one character to the left and align it to location
i − 1, then the probability appearance of the string drops below ε.

A straightforward approach for transforming the weighted text T to a regular
text would be to simply find all the maximal factors of the text and concatenate
them to a new regular text T’ (of course we will need some kind of a delimiter
character to separate between the factors). The advantage of this approach is
that every pattern that appears in T’ appears also in T with probability of at
least ε, since a maximal factor has probability of appearance at least ε and so
have all of its substrings. Unfortunately, this approach does not suffice. It can
be shown (due to lack of space details are omitted) that the total length of all
maximal factors of a weighted text T = t1 · · · tn could be at least Ω(n2), which
is rather large. Therefore, we define the notion of extended maximal factor, and
show a better upper bound on the total length of all extended maximal factors.
In order to define the extended maximal factor we use the Leading to Solid
Transformation.

Definition 13. The Leading to Solid Transformation of a weighted sequence
T = t1 · · · tn denoted LST(T), is a weighted sequence T ′ = t′1 · · · t′n such that:

t′i =

⎧
⎨

⎩

ti if i is a solid or a branching position
{(σ, 1)} if i is a leading position and σ is a heavy character
φ if i is a leading position and there are no heavy characters

In essence, LST (T ) is the same as T, where all leading positions become solid.
The only exception is when all characters in a leading position are not heavy,
thus, we ignore that location (set to by φ) and treat each part of LST (T ) divided
by φ separately. For the rest of this paper, we assume LST (T ) has no φ’s.

Notice that this transformation is uniquely defined, since either ε ≤ 1
2 in which

case there is one (and only one) character with probability > 1 − ε, thus, it is
also the only heavy character at that location or ε > 1

2 in which case at every
location there is at most one heavy character.

Another important observation is that the size of LST (T ) is linear in the size
of T and can easily be built in linear time. The LST transformation leads us to
the following definition.
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Definition 14. Given 0 < ε ≤ 1 and a weighted text T , we say that a string
X is an extended maximal factor of T starting at location i if X is a maximal
factor of LST (T ) starting at location i.

We now prove a few properties on maximal factors and extended maximal fac-
tors, that will help us in bounding the total length of all extended maximal
factors of a weighted text.

Lemma 3. Given 0 < ε ≤ 1 and a weighted text T , there are at most 	 1
ε 
 heavy

characters at a branching position.

Definition 15. Given 0 < ε ≤ 1 and a weighted text T , we say that a maximal
factor X = x1 · · ·xl passes by location i of T , if X starts at location i′ such that
i′ ∈ [i − l + 1, i].

Lemma 4. Given 0 < ε ≤ 1 and a weighted text T , a maximal factor of T
passes by at most O(1

ε log 1
ε ) branching positions.

Definition 16. Given 0 < ε ≤ 1 and a weighted text T , we say that location i is
a starting location of T , if either i = 1 or i > 1 and ti−1 is not a solid position.

Observe that a maximal factor of T always starts at a starting location, otherwise
it could be extended to the left with solid positions without decreasing the
probability of appearance, which contradicts the maximality of the factor.

The following lemma bounds the number of maximal factors starting from
a starting location in a weighted text T , such that T has no leading positions.
The fact that T has no leading positions implies that this is true for LST (T ) of
any weighted text T , and thus actually bounds the number of extended maximal
factors starting from any location in T .

Lemma 5. Given 0 < ε ≤ 1 and a weighted text T such that T has no leading
positions, there are at most 	 1

ε 
 maximal factors starting at a starting location.

Lemma 6. Given 0 < ε ≤ 1 and a weighted text T such that T has no leading
positions, the number of maximal factors passing by each location i in the text
is at most O((1

ε )2 log 1
ε ).

The following theorem bounds the total length of all extended maximal
factors.

Theorem 2. Given 0 < ε ≤ 1 and a weighted text T , the total length of all
extended maximal factors of T is at most O(n(1

ε )2 log 1
ε ).

Proof. This follows immediately from Lemma 6. ��
The following lemma shows that this analysis is tight up to a logarithmic factor.

Lemma 7. Given 0 < ε ≤ 1 and a weighted text T , the total length of all
extended maximal factors of T is Ω(n(1

ε )2).

In the next section we show how to efficiently find all extended maximal factors
of a weighted sequence.
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7 Finding All Extended Maximal Factors in a Weighted
Sequence

Let T = t1 · · · tn be a weighted sequence such that {s1
i , s

2
i , · · · , ski

i } is the set of
characters appearing at location i with positive probability, and {α1

i , α
2
i , · · · , αki

i }
is the matching set of probabilities of the sj

i ’s.
We present a simple brute-force algorithm that given a weighted text T and

a threshold probability ε, outputs all extended maximal factors in T . The algo-
rithm first calculates T ′ ← LST (T ) in linear time (as mentioned above). Then,
starting from each starting location i in T ′, we begin by extending all possible
substrings from location i that appear with probability of at least ε. Each time
we check if some string that we have extended so far can be extended even more
to the right. Once we cannot extend a string, it is outputted (of course, using
delimiters between consecutive outputs of substrings).

Noting that finding LST (T ) from T can be done in linear time, it is easy to
see that the running time of this algorithm is linear in the size of the output,
i.e. linear in the total length of all extended maximal factors. By combining this
result with theorem 1, the corollary follows.

Corollary 2. Given a constant threshold 0 < ε ≤ 1 and a weighted text T , the
total length of all extended maximal factors of T is linear in the length of T ,
and can be found in linear time.

In the following section we show how to solve weighted matching problems by
reducing weighted matching problems to property matching problems.

8 Solving Weighted Matching Problems

Weighted matching problems are regular pattern matching problems where the
text is weighted, and an we say that a pattern appears in the text if the prob-
ability of appearance of the pattern is above some threshold probability ε. We
now show how to reduce this problem to the Property Matching Problem.

Given a weighted string T , we find the string of the extended maximal factors
of T as was described in section 7. Denote this string by T̂ . T̂ is a regular string,
but each location has an associated probability that comes from the original
location of that letter in T (the delimiters are said to have probability 0). Thus,
we can define a property as the set of all intervals (sk, fk) where the product of
the probabilities from location sk to location fk is at least ε, and the product
of the probabilities from location sk − 1 to location fk and from location sk to
location fk + 1 is less than ε. Clearly, if a pattern matches T̂ at some location
under the defined property, then the pattern weight matches T at some location.
Note that this location can be found simply by saving for each location in T̂ the
original location in T that it came from (that will be the match location).
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This reduction immediately gives us the following.
Corollary 3. Weighted matching problems can be solved in the same running
times as property matching except for an O((1

ε )2 log 1
ε ) degradation, where ε is

the threshold probability.
Finally, we can also solve the indexing problem for weighted strings using the
reduction above in O(n(1

ε )2 log 1
ε log |Σ| + n(1

ε )2 log 1
ε (log log 1

ε + log log n)) pre-
processing time, and O(|P | log |Σ|+toccπ) query time, where toccπ is the number
of occurrences of P in T with probability at least ε.

9 Concluding Remarks

We remark that our framework for solving weighted matching problems yields
solutions to hitherto unsolved problems in weighted matching, such as scaled
matching, swapped matching, parameterized matching and indexing, as well as
efficient solutions to others such as exact matching and approximate matching.

Furthermore, we note that in practice, when dealing with weighted matching
problems, ε is usually considered as a constant. Thus, solving problems such as
exact matching, scaled matching, swapped matching, parameterized matching,
approximate matching and many more on weighted sequences can be done, using
our framework, in the same running times as the best known algorithms for the
non-weighted versions, while weighted indexing can be done in O(n(log |Σ| +
log log n)) preprocessing time and O(|P | log |Σ| + toccπ) query time for text of
length n, where toccπ is the number of occurrences of pattern P in T with
probability of at least ε.
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