
Subsequence Combinatorics and Applications
to Microarray Production, DNA Sequencing

and Chaining Algorithms

Sven Rahmann

Algorithms and Statistics for Systems Biology Group,
Genome Informatics, Faculty of Technology, Bielefeld University,

D-33594 Bielefeld, Germany
Sven.Rahmann@cebitec.uni-bielefeld.de

Abstract. We investigate combinatorial enumeration problems related
to subsequences of strings; in contrast to substrings, subsequences need
not be contiguous. For a finite alphabet Σ, the following three problems
are solved. (1) Number of distinct subsequences: Given a sequence
s ∈ Σn and a nonnegative integer k ≤ n, how many distinct subse-
quences of length k does s contain? A previous result by Chase states
that this number is maximized by choosing s as a repeated permutation
of the alphabet. This has applications in DNA microarray production.
(2) Number of ρ-restricted ρ-generated sequences: Given s ∈ Σn

and integers k ≥ 1 and ρ ≥ 1, how many distinct sequences in Σk contain
no single nucleotide repeat longer than ρ and can be written as sr1

1 . . . srn
n

with 0 ≤ ri ≤ ρ for all i? For ρ = ∞, the question becomes how many
length-k sequences match the regular expression s1*s2* . . . sn*. These
considerations allow a detailed analysis of a new DNA sequencing tech-
nology (“454 sequencing”). (3) Exact length distribution of the
longest increasing subsequence: Given Σ = {1, . . . , K} and an in-
teger n ≥ 1, determine the number of sequences in Σn whose longest
strictly increasing subsequence has length k, where 0 ≤ k ≤ K. This has
applications to significance computations for chaining algorithms.

1 Introduction

In contrast to substrings, subsequences have received less attention as objects in
pattern matching; yet certain aspects of recent technologies emerging in the life
sciences, such as short oligonucleotide microarrays or massive short range DNA
sequencing by the so-called 454 approach, directly lead to subsequence enu-
meration problems. The present paper studies a selection of them and presents
applications in molecular biology.

A string of length n over a finite alphabet Σ contains (n + 1)n/2 = Θ(n2)
(nonempty) substrings, but 2n subsequences (including the empty string), mak-
ing enumerative combinatorics on subsequences potentially more difficult. For a
fixed length 1 ≤ k ≤ n, there are n − k + 1 substrings and

(
n
k

)
subsequences of

length k. Note that not all of these need to be different.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 153–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

154 S. Rahmann

In Section 2 we present an algorithm that needs O(k(n + |Σ|)) arithmetic
operations to count the number Ck(s) of distinct length-k subsequences in s.
When we compute Ck(s) exactly, the size of these numbers is O(k log |Σ|) bits,
so arithmetic operations cannot be assumed to take constant time in the RAM
model of computation; however, if we are satisfied with computing them with
constant precision, we can make this assumption. Therefore we specify running
times in numbers of arithmetic operations. The ability to count the number of
distinct subsequences contained in a sequence has applications to DNA microar-
ray production, which we outline also in Section 2.

For the next problem, we generalize the notion of subsequence and say that t
is generated by s if it consists of a concatenation of runs (repetitions) of selected
characters from s. This allows, for example, to determine the number of length-k
sequences that match the regular expression s1*s2* . . . sn*, where a* matches
an arbitrary number of (including zero) occurrences of a ∈ Σ. If we additionally
restrict the run lengths to be bounded by a constant ρ ≥ 1, the question of
determining how many length-k strings are generated by a given string s is
of interest for evaluating a new massively parallel DNA sequencing technology
(“454 sequencing”, [1]). Section 3 presents an efficient counting algorithm and
computational results. The results of Sections 2 and 3 can be summarized as

Theorem 1. The number of distinct subsequences and the number of ρ-restricted
ρ-generated length-k sequences from a sequence of length n over an alphabet Σ can
be computed with O(k(n + |Σ|)) arithmetic operations.

Finally, we are interested in the distribution of the longest (strictly) increasing
subsequence of s ∈ Σn over an ordered alphabet Σ := {1, . . . , K}. We say
that t is an increasing subsequence of s of there exists an integer 1 ≤ k ≤ n
and indices 1 ≤ j1 < j2 < · · · < jk ≤ n such that t = sj1sj2 . . . sjk

and
sj1 < sj2 < · · · < sjk

. Let I(s) be the set of all increasing subsequences of s, and
let LIS(s) := maxt∈I(s) |t| be the length of the longest increasing subsequence.

Our goal is to determine the distribution of Ln := LIS(S), where S is a ran-
dom length-n sequence. Recently, the analogous problem has been completely
solved on uniform random permutations; there are exact results for finite n and
asymptotic results for n → ∞ provided by the Baik-Deift-Johansson Theorem,
e.g., the expected length is 2

√
n + Θ(n1/6), the standard deviation is Θ(n1/6),

and the limiting distribution of (Ln − 2
√

n)/n1/6 is completely known. A review
of these results on permutations and additional results on weakly increasing
subsequences on words appears in [2]. So far there seem to exist no exact nor
asymptotic results on strictly increasing subsequences in words. Our contribu-
tion is a method that needs O(nK2K) arithmetic operations on O(n log K)-bit
numbers to compute the exact distribution (in terms of absolute numbers). We
thus have the following fixed-parameter tractability (FPT) result (see [3] for an
introduction to the terminology).

Theorem 2. For given string length n and parameter alphabet size K, the de-
cision problem whether there are at least T ≥ 0 sequences in s ∈ {1, . . . , K}n

with L(s) = k for any 1 ≤ k ≤ K is FPT.

Subsequence Combinatorics and Applications 155

2 The Number of Distinct Subsequences

Let Σ be a finite alphabet of size σ; w.l.o.g. we assume Σ = {1, . . . , σ}. Further,
let s ∈ Σn and an integer 1 ≤ k ≤ n be given. We write t � s to indicate
that t is a subsequence of s, i.e., there exist indices 1 ≤ i1 < i2 < i|t| ≤ n
such that si1si2 . . . si|t| = t. Our goal is to determine the cardinality Ck(s) of
Sk(s) := {t ∈ Σk : t � s }, i.e., the number of distinct length-k subsequences in
s. To compute Ck(s) efficiently, we derive a recurrence on the number of distinct
subsequences of given length in a given prefix of s that end with a specified
character. We drop the dependence on Σ and s in the notation and define

Sm,j := {t ∈ Σm : t � s1 . . . sj}, Cm,j := |Sm,j |.

We refine this definition by conditioning on the last character a ∈ Σ:

Sm,j [a] := {t ∈ Σm : t � s1 . . . sj and tm = a}, Cm,j [a] := |Sm,j [a]|.

Note that S0,j = {ε} (the set consisting of the empty string) for all j, but
S0,j [a] = {} for all a ∈ Σ, so 1 = C0,j �=

∑
a∈Σ C0,j [a] = 0. However, for m > 0,

we do have Cm,j =
∑

a∈Σ Cm,j [a] for all j.
For two sets S and T of strings over Σ, let S ◦ T := {st : s ∈ S, t ∈ T }.
The goal is thus to compute Ck(s) = Ck,n =

∑
a∈Σ Ck,n[a]. The following

lemma presents a structural equation for Sm,j [a], which leads to a recurrence on
Cm,j [a] in Lemma 2.

Lemma 1. Let 1 ≤ m ≤ j. Then

Sm,j[a] =

{
Sm,j−1[a] if sj �= a,

Sm−1,j−1 ◦ {a} if sj = a.

Proof. Assume first that sj �= a. The inclusion Sm,j−1[a] ⊂ Sm,j [a] is trivial. We
prove that Sm,j [a] ⊂ Sm,j−1[a]: Take t ∈ Sm,j[a]. Since sj �= a, it follows that t
is already a subsequence of a shorter prefix of s, i.e., t ∈ Sm,j−1[a].

Now assume that sj = a. By appending an a to each t ∈ Sm−1,j−1 (regardless
of its last character), we obtain a distinct string ta ∈ Sm,j [a], thus Sm−1,j−1 ◦
{a} ⊂ Sm,j [a]. Conversely, every string in Sm,j [a] can be written as ta with some
t ∈ Sm−1,j−1. ��

Lemma 2. We have C0,0 = 1 and C0,0[a] = 0 for all a ∈ Σ. Further, Cm,j = 0
if m > j. For 1 ≤ m ≤ j, we have

Cm,j [a] =

{
Cm,j−1[a] if sj �= a,

Cm−1,j−1 if sj = a.

Proof. Immediate by taking cardinalities in Lemma 1 and noting that concate-
nation translates to multiplication of set cardinalities. ��

156 S. Rahmann

Bernoulli String Model. The fraction of length-k sequences contained in s (or
covered by s) is thus Ck,n/σk. We can generalize Lemma 2 to a Bernoulli or i.i.d.
random string model, where the probability or weight of each length-k string is
equal to the product of its (possibly unequal) character frequencies. Hence, let
π := (πa)a∈Σ be a non-degenerate probability distribution on Σ, i.e., πa > 0 for
all a ∈ Σ and

∑
a∈Σ πa = 1. Let Pk(t1 . . . tk) :=

∏k
j=1 πtj be the probability of

generating t1 . . . tk in k steps. It follows that
∑

t∈Σk Pk(t) = 1 for all k ≥ 1 and
Pk+1(ta) = Pk(t) · πa for t ∈ Σk and a ∈ Σ.

Let us define Wk(s) := Pk(Sk(s)) as the weighted fraction of length-k sequence
space covered by s. For m ≤ k and j ≤ |s| = n, define

Wm,j := Pm(Sm,j) =
∑

t∈Sm,j[a]

Pm(t), Wm,j [a] := Pm(Sm,j [a]).

Lemma 3. W0,0 = 1 and W0,0[a] = 0 for all a ∈ Σ. Further, Wm,j = 0 if
m > j. For 1 ≤ m ≤ j, we have

Wm,j [a] =

{
Wm,j−1[a] if sj �= a,

Wm−1,j−1 · πa if sj = a.

Proof. Immediate by applying Pm(·) resp. Pm−1(·) to Lemma 1. ��

A straightforward implementation of the recurrence would need O(nk|Σ|) arith-
metic operations. It is possible to remove the factor |Σ| in a careful imple-
mentation: Figure 1 presents an algorithm to compute Wk(s) in O(k(n + |Σ|))
operations. The memory requirements are O(k|Σ|) if only Wk(s) is desired or
O(k(n+ |Σ|)) if the whole array Wm(s1 . . . sj), 1 ≤ m ≤ k, 1 ≤ j ≤ n, is desired.

Application to DNA microarray production. DNA oligonucleotide microarrays
(“DNA chips”) are a tool to monitor the activity level of many genes in cells of
living organisms. A DNA chip is a plastic or glass slide containing many spots,
each consisting of many copies of a known oligomer (a 25-mer for Affymetrix
GeneChips R©, which we consider here), also called probe, attached to the chip.
During production, the probes are synthesized on the chip in parallel on a
nucleotide-by-nucleotide-basis. In each synthesis step, the same nucleotide is
appended to all probes that have been selectively activated to receive it. Activa-
tion occurs by exposure to light, enabling the chemical synthesis reaction. Thus
each synthesis step is specified by (1) a nucleotide (a character from the DNA
alphabet {A,C,G,T}) and (2) a mask, i.e., an index set of the probes to which the
nucleotide is appended. The sequence of nucleotides used in the synthesis process
is called the deposition sequence. Each probe is a subsequence of the deposition
sequence, so the deposition sequence is a common supersequence of all probes.

Given a set of probe sequences (in practice up to 106 probes can fit on a
single chip), one can try to find the shortest deposition sequence, i.e., the short-
est common supersequence of all probes (see [4] for bounds on its length and
heuristic algorithms). In practice, good deposition sequences can be found but

Subsequence Combinatorics and Applications 157

Input: Alphabet Σ with probability distribution π, string s ∈ Σn, integer 1 ≤ k ≤ n
Output: Wk(s) or the whole array Wm(s1 . . . sj) for m = 1, . . . , k, j = 1, . . . , n

// Initialize arrays W, V and Vsum
W[m, j] ← 0 for m ← 1, . . . , k, j ← 1, . . . , n // optional: stores Wm,j

V[m, a] ← 0 for m ← 1, . . . , k, a ∈ Σ // stores Wm,j [a] for current value of j
Vsum[m] ← 0 for m ← 1, . . . , k // stores Wm,j for current value of j

for j ← 1, . . . , n
c ← sj // the current character
for m ← min{j, k}, . . . , 3, 2

// Update V and Vsum s.th. V[m, a] = Wm,j [a] (a ∈ Σ); Vsum[m] = Wm,j :
// (only the c-entry needs to be updated, saving a factor of |Σ|)
Vsum[m] ← Vsum[m] − V[m, c]
V[m, c] ← Vsum[m − 1] · πc

Vsum[m] ← Vsum[m] + V[m, c]
end for m
// Finally, treat the case m = 1 specially:
if V[1, c] = 0 then V[1, c] ← πc; Vsum[1] ← Vsum[1] + πc; end if
// Invariant: Here Vsum[m] = Wm(s1 . . . sj) = Wm,j for m = 1, . . . , k
W[m, j] ← Vsum[m] for m ← 1, . . . , k // optional: set j-th column of W:

end for j
return Vsum[k] // optional: return array W

Fig. 1. An algorithm with O(k(n+|Σ|)) operations to compute the π-weighted fraction
Wk(s) of length-k strings that are subsequences of s. The array W is not needed when
only Wk(s) is required: after step j, the j-th column of W is equal to Vsum.

not proved optimal in a reasonable amount of time. Therefore one can approach
the question differently and ask for a deposition sequence that is as “universal”
as possible, i.e., that contains the largest number of distinct subsequences. We
thus ask for

C∗
k(n, |Σ|) = max

s∈Σn
Ck(s) and Best∗k(n, |Σ|) = {s ∈ Σn : Ck(s) = C∗

k (n, Σ)}.

A result due to P.J. Chase [5] from 1976 (long before the invention of microar-
rays) states that precisely the repeated permutations of the alphabet form the
set Best∗k(n, |Σ|) with the consequence that this set does not depend on k.

Definition 1. For a finite alphabet Σ of size σ, a string s of length n is called
a repeated permutation of Σ if there exists a permutation π = π1 . . . πσ of the
characters in Σ such that s = πcπ1 . . . πm, where the number of full cycles is
c := n/σ� and the number of remaining characters m := n mod σ satisfies
0 ≤ m < σ.

In fact, any sequence that is not a repeated permutation contains strictly fewer
subsequences of (some) smaller length. Even though this result appears intuitive,
it is nontrivial to prove and apparently does not follow directly from the recur-
rence in Lemma 2; Chase used induction on the longest sequence prefix that is
a repeated permutation to prove optimality.

158 S. Rahmann

30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Covered Fraction of 25−mers

Length of repeated DNA permutation s

 W
25

 (
s)

30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Covered Fraction per Cost

Length of repeated DNA permutation s

 1
00

 W
25

 (
s)

 /
|s

|

Fig. 2. Left: Fraction of 25-mers covered by a repeated permutation of varying length
from 25 to 100: From the deposition sequence s∗ of length 74 used for GeneChipR©

production, 98.45% of all 25-mers can be synthesized. Right: Assuming that each syn-
thesis step costs 1/100 (such that using 100 steps implies a cost of 1), the graph shows
the covered fraction per cost. The “best value” is obtained for a repeated permutation
s$ with 72 steps or 18 full cycles (W25(s$) = 96.34%, 100 W25(s$)/72 = 1.338), but s∗

is almost as cost-effective (100 W25(s∗)/74 = 1.3304) and has higher coverage 98.45%.

The Affymetrix GeneChip R© technology uses a repeated permutation of length
74, such as s∗ := (ACGT)18AC, to synthesize 25-mers. Figure 2 (left) shows the
fraction of 25-mers contained in repeated permutations of increasing length: s∗

covers a fraction of 98.45% of all 25-mers. Elongating s∗ further quickly results in
diminishing returns; for example, adding one additional nucleotide would result
in 99.04% of the 25-mers being covered. It is unknown to the author why the
length of 74 was chosen, but we offer the following hypotheses: The sequences
not covered by s∗ have somewhat extremal properties. For example, many of
them contain runs of a repeated nucleotide. We may assume that such oligos are
rarely used on microarrays because of undesirable thermodynamic properties,
so s∗ may cover in fact all oligos that are ever chosen to be placed on a chip.
For another argument consider Figure 2 (right): In practice, each synthesis step
has a certain cost (mask production, chemicals, time, etc.). Assuming that the
production cost of a chip is proportional to the number of synthesis steps, we
see that using a deposition sequence of length 74 offers both high coverage in
absolute terms and close to optimal coverage per money.

3 The Number of ρ-Restricted ρ-Generated Sequences

We consider a variation of the previous problem, where we modify the notion of
subsequence: We allow that each character from s, which we call the generating
sequence, may produce a whole run (up to a specified length ρ) of this character.
Thus we write t �ρ s if there exist n numbers 0 ≤ ri ≤ ρ for i = 1, . . . , n, with
|t| =

∑
i ri, such that t = sr1

1 sr2
2 . . . srn

n . We say that t is ρ-generated by s. For
ρ = 1, we get the usual notion of subsequence. Note that t�ρ s implies |t| ≤ ρ|s|.

Subsequence Combinatorics and Applications 159

Motivated by the 454 DNA sequencing technology (see below), we are only
interested in counting sequences that do not contain a single character run longer
than ρ; so we define Σk

ρ as the set of all length-k strings over Σ that do not
contain aρ+1 as a substring for any a ∈ Σ and call them the ρ-restricted strings.

The set of ρ-restricted length-k strings ρ-generated by s is denoted by

Sk(s; ρ) := {t ∈ Σk
ρ : t �ρ s}.

It is important to note that a2ρ �ρ aba, but a2ρ /∈ Σ2ρ
ρ , so a2ρ /∈ S2ρ(aba; ρ).

Therefore Sk(s; 1) is different from Sk(s) as defined in the previous section.
For the generating sequence s = (s1, . . . , sn), we may assume that si �= si+1

for all i = 1, . . . , n − 1, i.e., s ∈ Σn
1 , since repetitions in the generating sequence

do not allow to generate additional ρ-restricted sequences.
We set Ck(s; ρ) := |Sk(s; ρ)| and Wk(s; ρ) := Pk(Sk(s; ρ)). Assuming s and ρ

fixed, we define for 1 ≤ m ≤ k, 0 ≤ j ≤ n and a ∈ Σ the auxiliary quantities

Sm,j[a] := {t ∈ Σm
ρ : t �ρ s1 . . . sj and tm = a}, Sm,j [a] :=

⋃

b�=a
Sm,j[b],

Cm,j[a] := |Sm,j [a]|, Cm,j [a] := |Sm,j[a]|,
Wm,j [a] := Pm(Sm,j [a]), Wm,j [a] := Pm(Sm,j [a]),

with the boundary cases S0,j [a] = {} and S0,j[a] = {ε}. The structural recurrence
for Sm,j[a] is slightly more complicated than in the previous section, since we
need to express Sm,j [a] as a disjoint union to determine its cardinality.

Lemma 4. Let 1 ≤ m ≤ j. Then

Sm,j[a] =

{
Sm,j−1[a] if sj �= a,
⋃min{ρ,m}

r=1 (Sm−r,j−1[a] ◦ {ar}) if sj = a,

where the union is disjoint.

Proof. The case sj �= a is proved as in Lemma 1.
For sj = a, appending ar to any t ∈ Sm−r,j−1[a] for any “run length” 1 ≤ r ≤

min{ρ, m} clearly results in a distinct string in Sm,j [a]. Note that any run length
in t is bounded by r by assumption, and in tar by construction since t does not
end with a. This shows ∪min{ρ,m}

r=1 Sm−r,j−1[a]◦{ar} ⊂ Sm,j [a]. Conversely, every
string in Sm,j [a] can be written uniquely as tar, where r ≤ ρ and r ≤ m and
t ∈ Sm−r,j−1[a] (possibly the empty string). Because of the uniqueness of the
above decomposition, the union is disjoint. ��
Lemma 4 immediately allows us to count Ck(s; ρ) and to determine Wk(s; ρ).
We only give the Bernoulli string model version for Wk(s; ρ) here.

Lemma 5. We have W0,j [a] = 1 and W0,j [a] = 0 for all a ∈ Σ, j ≥ 0. For
m ≥ 1 and j ≥ 1, we have

Wm,j [a] =

{
Wm,j−1[a] if sj �= a,
∑min{m,ρ}

r=1 Wm−r,j−1[a] · πr
a if sj = a.

The desired result is Wk(s) = Wk,n[a] + Wk,n[a] for any a ∈ Σ.

160 S. Rahmann

Remarks:
1. The recurrence in Lemma 5 can be implemented to run in O(k(n + |Σ|))

arithmetic operations by remembering appropriate partial sums.
2. Using ρ = ∞ answers the question how many strings of length k match

the regular expression s1*s2* . . . sn*, where a* matches zero or an arbitrary
number of occurrences of a ∈ Σ. In Section 2, we effectively determined how
many strings of length k match the regular expression s1?s2? . . . sn?, where
a? matches zero or one occurrence(s) of a ∈ Σ.

3. It is reasonable to conjecture that again a repeated permutation s∗ maxi-
mizes Ck(s; ρ) over all s ∈ Σn, but this is so far not rigorously proved.

4. Even for arbitrarily large n and optimal s∗ ∈ Σn, we have Ck(s; ρ)/|Σk| ≤
|Σk

ρ |/|Σk| → 0 as k → ∞, because the probability that a length-k sequence
contains a run longer than ρ approaches 1 as k → ∞.

Analysis of 454 Sequencing. Recently, the company “454 Life Sciences” has
developed a massively parallel DNA sequencing technology (simply called “454
sequencing”). We refer the reader to [1] and www.454.com for more detailed
information. Several copies of an organism’s genome are randomly cut into DNA
fragments; a part of the sequence of each fragment is determined in parallel,
and finally the fragment sequences can assembled to retrieve the whole genomic
sequence if each position of the genome is covered by enough fragments. Many
copies of one single fragment type are attached to a microscopic bead; each bead
is held in place in a different well of the reaction carrier (70 mm × 75 mm).
A typical reaction carrier has 1.6 million wells, from which typically 200, 000
different high-quality fragment reads can be obtained.

The fragments are sequenced by synthesizing the complementary (A ↔ T,
C ↔ G) DNA strand to each fragment in several steps. Initially, the complemen-
tary strand of each fragment is empty but ready for extension at its starting
point. Then, e.g., in an A-step, T-nucleotides are flooded over the reaction car-
rier, and Ts are incorporated into complementary strands in those wells where
the next character in the fragment sequence is A. Successful elongation of the
complementary strand results in a flash of light from the corresponding wells.
The light emission pattern is detected with a CCD camera for all wells in par-
allel. If a fragment contains a consecutive run (homopolymer) of As, all of their
counterpart Ts are incorporated in a single step and the light intensity is propor-
tional to the run length. This works reliably only up to a certain length ρ = 8,
which was the reason for introducing ρ-restricted strings above. Sequences that
contain longer homopolymers cannot be reliably sequenced.

Sequencing steps for different nucleotides are repeated in a cyclic pattern
for c cycles, e.g., (ACGT)c. This process cannot go on forever because the sig-
nal/noise ratio deteriorated over time. Public information (as of February 2005)
at www.454.com states that high-quality sequencing of on average 100-base reads
is achieved in 42 cycles of TACG. It has also been attempted to use 84 and 168
cycles for high-quality reads of 200 and 400 bases, respectively.

The key issue is that the fraction of length-k DNA sequences that can be
reliably sequenced by this technology in n steps is precisely given by Wk(s; ρ),

www.454.com
www.454.com

Subsequence Combinatorics and Applications 161

0 50 100 150 200 250 300 350 400 450 500 550
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Fraction of reliably 454−sequenceable DNA sequences of length k for varying cycle number

Sequence read length k

 W
k (

(A
C

G
T

)#c
yc

le
s ; 8

)

21 cycles
42 cycles
84 cycles
168 cycles

0 50 100 150 200 250 300 350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Distribution of reliable sequence read length for varying cycle number

Sequence read length k

P
ro

ba
bi

lit
y

th
at

 r
el

ia
bl

e
se

qu
en

ce
 e

nd
s

af
te

r
ex

ac
tly

 k
 n

uc
le

ot
id

es

21 cycles
42 cycles
84 cycles
168 cycles

Fig. 3. Left: Fraction Wk of 454-sequenceable length-k DNA sequences by using a
repeated permutation of the alphabet for c ∈ {21, 42, 84, 168} cycles, ρ = 8. Right:
Length distribution of the reliably sequenceable initial fragment of a random DNA
sequence, for c and ρ as before. Vertical lines mark the expected lengths.

where ρ = 8 and s is a repeated permutation of the DNA alphabet. Assuming a
uniform distribution πa = 1/4 for each a ∈ Σ, we thus determine which fraction
Wk((ACGT)c; 8) of length-k DNA sequences for 1 ≤ k ≤ 550 can be reliably
sequenced in c ∈ {21, 42, 84, 168} full cycles.

The results are visualized in Figure 3 (left). The longest sequence lengths for
which the sequenceable fraction exceeds 99% are kmax = 48, 101, 209, and 427
for c = 21, 42, 84, and 168 cycles. 85.8% of length-50 sequences are sequenceable
in 21 cycles, 94.0% of length-100 sequences in 42 cycles, 98.55% of length-200
sequences in 84 cycles, and 99.48% of length-400 sequences in 168 cycles.

A different perspective is shown in Figure 3 (right): If T is any (potentially
infinite) random sequence according to the uniform distribution, a certain finite
prefix will be reliably sequenced by the generating sequence s = (ACGT)c. Let
Lc(T) denote the length of this prefix for c cycles. The figure shows the distribu-
tion of Lc for c ∈ {21, 42, 84, 168} cycles, which is obtained as follows. The proba-
bility that sequencing ends after k steps or later is Wk ≡ Wk(s; ρ). Therefore, the
probability that the read ends exactly after k steps is P(Lc = k) = Wk − Wk+1.
The figure also shows that the expected sequence read length E[Lc] for 21 (42, 84,
168) cycles is 55.4 (111.4, 223.1, 446.3), which exceeds the company-guaranteed
values of 50 (100, 200, 400) by more than 10%. To guarantee these expected read
lengths, only 19 (37.75, 75.5, 150.75) cycles, i.e., 76 (151, 302, 603) steps would
in fact be necessary on random sequences.

4 Longest Increasing Subsequence Length Distribution

We consider an ordered alphabet Σ := {1, . . . , K} and a string s ∈ Σn, and
equip Σn with a Bernoulli probability measure Pn given by a probability vector
π = (π1, . . . , πK), such that Pn(s) =

∏n
j=1 πsj . Several algorithms (e.g., [6, 2])

compute the length LIS(s) of the longest increasing subsequence in s.

162 S. Rahmann

Our counting method is based on the patience sorting algorithm, which scans
s from left to right and keeps track of a subset κ ⊂ [K] := {1, . . . , K} whose
cardinality after j steps is equal to LIS(s1 . . . sj). We write 2[K] for the power
set of {1, . . . , K}. Initially, we set κ0 = {} and in step j = 1, . . . , n, κj is
computed in O(log K) operations as κj := u(κj−1, sj) from the update function
u : 2[K] × [K] → 2[K]; (κ, c) �→ κ+, defined as follows:

– If c ∈ κ, do nothing, i.e., set κ+ := κ.
– If c /∈ κ and κ contains no element > c, add c, i.e., set κ+ := κ ∪ {c}.
– If c /∈ κ and there exists k ∈ κ with k > c, find the smallest such k and

decrease it to c, i.e., set κ+ := κ \ {k} ∪ {c}.

A proof that |κj | = LIS(s1, . . . , sj) and an explanation in terms of stacks of
cards is found in [2]. The running time is seen to be O(n log K). To avoid running
patience sorting for all Kn sequences separately, we condition on κ: Let κj(t) be
the final set κj in patience sorting when it is applied to t ∈ Σj . We set
Sj(κ) := {t ∈ Σj : κj(t) = κ}, Cj(κ) := |Sj(κ)|, Wj(κ) := Pj(Sj(κ)).

It follows that for 0 ≤ k ≤ K,
Sn(k) :=

⋃

κ⊂[K],
|κ|=k

Sj(κ), Cn(k) :=
∑

κ⊂[K],
|κ|=k

Cj(κ), Wj(k) :=
∑

κ⊂[K],
|κ|=k

Wj(κ)

are the set, number, and weighted fraction of length-n sequences with LIS = k,
respectively. The following lemma presents a structural equation between Sj(κ)
and Sj−1(κ′), where κ′ is an update-preimage under u.

Lemma 6. For j = 0, we have S0({}) = {ε}, C0({}) = 1, W0({}) = 1, and for
κ ∈ 2[K], κ �= {}, we have S0(κ) = {}, C0(κ) = 0, W0(κ) = 0. For 1 ≤ j ≤ n
and κ ∈ 2[K],

Sj(κ) =
⋃

(κ′,c)∈u−1(κ)

Sj−1(κ′) ◦ {c},

Cj(κ) =
∑

(κ′,c)∈u−1(κ) Cj−1(κ′), and Wj(κ) =
∑

(κ′,c)∈u−1(κ) Wj−1(κ′) · πc.

Proof. The equations for Cj and Wj follow immediately from the one for Sj

(obviously the union is disjoint), which in turn is a trivial consequence of the
correctness of the patience sorting algorithm (i.e., of the update function). ��

Lemma 6 implies a “pull”-type dynamic programming algorithm for computing
Wn(k), which has the disadvantage that the update rules must be read “back-
wards”, i.e., for given κ, we need to determine the pairs (κ′, c) with κ = u(κ′, c).
It is easier to implement a “push”-type algorithm that pushes the information for
all (κ, c) forward to the corresponding κ+ = u(κ, c). This is shown in Figure 4.

Application: Significance Computations for Chaining Algorithms. In biological
sequence analysis, the following problem arises in several situations (e.g., when
attempting to classify proteins or to detect cis-regulatory modules): Certain
biological sequences (the family members) are characterized by the appearance

Subsequence Combinatorics and Applications 163

Input: Alphabet size K, distribution π = (π1, . . . , πK), sequence length n
Output: Wn(k) for 0 ≤ k ≤ K as array w[0..K]
W’[{}] ← 1 and W’[κ] ← 0 for κ ∈ 2[K] with |κ| ≥ 1 // Initialize array W’[κ] to W0(κ)
for j ← 1, . . . , n

W[κ] ← 0 for κ ∈ 2[K] // reset array W to zero
// Invariant here: W’[κ] = Wj−1(κ) and W[κ] ≡ 0
for κ ∈ 2[K]; for c ∈ Σ

κ+ ← u(κ, c)
W[κ+] ← W[κ+] + W’[κ] · πc

end for c; end for κ
W’ ← W // Invariant: W[κ] = W’[κ] = Wj(κ)

end for j
w[k] ← 0 for k ← 0, . . . , K

w[|κ|] ← w[|κ|] + W[κ] for all κ ∈ 2[K]

return w

Fig. 4. Push-type dynamic programming algorithm to compute the length distribution
of the longest increasing subsequence for alphabet size K with character distribution
π = (π1, . . . , πK) and sequence length n. Subsets κ can be encoded as bit-vectors and
represented as integers in the range from 0 to 2K − 1.

of sequence motifs (e.g., substrings, regular expressions, or sequence profiles)
in a certain order. Let there be K distinct motifs and assume that true family
members usually contain all of them in the correct order 1, . . . , K. However, in
some family members some motifs may not be present or detected. To decide
whether a sequence should be classified as a family member, in a first step, all
motif occurrences are tabulated. Then the best chain of motifs is found in a
second “chaining” step. We assume that the quality of a chain is its length, so
we classify a sequence as a family member if the longest increasing sequence of
motif indices reaches a threshold t. To find a statistically significant value of t,
we determine the frequency pt of length-t chains in random sequences.

We assume that the motifs are chosen in such a way that each one occurs
with low frequency 0 < fk � 1 in random sequences. If also f :=

∑K
k=1 fi � 1,

motif occurrences can be treated as a Poisson process along a random sequence
of length m: If N is the total number of motif occurrences, then E[N] = λ :=
m · f , and the distribution of N can be well approximated as Poisson(λ) with
P(N = n) = exp(−λ) · λn/n!. Given that a motif occurs at some position, it is
motif k with probability πk := fk/f .

It follows that the probability of observing an increasing motif sequence of
length k in such a random sequence is given by WPoisson(λ)(k) :=

∑∞
n=0 exp(−λ)·

λn/n! · Wn(k). The p-value associated to a threshold length t is then pt =∑K
k=t WPoisson(λ)(k). Now t can be chosen such that pt is reasonably small.
For example, for K = 6 distinct motifs that each appear once in 100 positions

on average and sequence length m = 100, we have λ = 6 motif occurrences on av-
erage. The Poisson mixture distribution WPoisson(λ)(k) :=

∑∞
n=0 exp(−λ)λn/n! ·

Wn(k) is shown on the left side of Figure 5, the pt-values on the right side:
Thresholds of 5 and 6 imply p5 = 0.0165 and p6 = 0.0006, respectively.

164 S. Rahmann

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distribution of L
n
 for K=6 and n~Poisson(6)

Increasing subsequence length k

 P
(L

n =
 k

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P−values p
t
 for K=6 and n~Poisson(6)

Increasing subsequence length threshold t

 p
t =

 P
(L

n >
=

 t)

Fig. 5. Left: Length distribution of longest increasing subsequences for alphabet size
K = 6 and random sequence length N ∼ Poisson(6). Right: Associated p-values.

Concluding Remarks. There is considerable literature about subsequence com-
binatorics (exact and asymptotic counting) on permutations, but there are few
results on words, despite the fact that these have interesting practical conse-
quences, as we have shown. Subsequence combinatorics contains a number of
interesting problems., e.g., it remains open to prove that indeed the repeated per-
mutations maximize the number of distinct ρ-restricted ρ-generated sequences.

Acknowledgments. I thank Marc Rehmsmeier, Sergio A. de Carvalho Jr., Michael
Beckstette, Robert Homann, Jens Stoye, and Dirk Evers for stimulating discus-
sions, and especially Lea Sasaki for her support.

Terms marked R© are registered trademarks of their respective owners. The
author is not affiliated with Affymetrix or 454 Life Sciences and has no financial
interests competing with this research.

References

1. Margulies, M., et al.: Genome sequencing in microfabricated high-density picol-
itre reactors. Nature 437(7057) (2005) 376380 / Corrigendum in Nature 439(7075)
(2006) p.502.

2. Aldous, D., Diaconis, P.: Longest increasing subsequences: From patience sorting to
the Baik-Deift-Johansson theorem. Bulletin of the American Mathematical Society
36(4) (1999) 413432

3. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press
(2006)

4. Rahmann, S.: The shortest common supersequence problem in a microarray pro-
duction setting. In: Proceedings of the 2nd European Conference in Computational
Biology (ECCB 2003). Volume 19 Suppl. 2 of Bioinformatics. (2003) ii156ii161

5. Chase, P.: Subsequence numbers and logarithmic concavity. Discrete Math. 16
(1976) 123140

6. Skiena, S.S.: The Algorithm Design Manual. Springer (1997)

	Introduction
	The Number of Distinct Subsequences
	The Number of ρ-Restricted ρ-Generated Sequences
	Longest Increasing Subsequence Length Distribution

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

