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Abstract. In computational biology, an important problem is to iden-
tify a word of length k present in each of a given set of sequences. Here,
we investigate the problem of calculating the probability that such a
word exists in a set of r random strings. Existing methods to approxi-
mate this probability are either inaccurate when r > 2 or are restricted
to Bernoulli models. We introduce two new methods for computing this
probability under Bernoulli and Markov models. We present generaliza-
tions of the methods to compute the probability of finding a word of
length k shared among q of r sequences, and to allow mismatches. We
show through simulations that our approximations are significantly more
accurate than methods previously published.

1 Introduction

Many algorithms in biological sequence analysis are based on the identification of
words that are present as substrings of a given set of DNA or protein sequences.
Variants on this problem are used for identifying regulatory motifs in a set of co-
regulated genes [20, 22], and for selecting seeds for sequence alignment [1, 2, 13].
These applications rely on the ability to estimate the statistical significance of
the length of the common substring found: how surprising is it that a set of r
strings of length n contain a common substring of length k?

The problem we consider in this paper is the following:

Common Substring in Random Strings (CSRS)
Given: A random process P generating r independent strings S1, . . . , Sr

of length n over the alphabet Σ, and a substring length k,
Find: The probability that the r random strings S1, . . . , Sr contain a
common substring w of length k.

Various authors have studied his problem or its equivalent formulation as
the longest common substring problem (see Section 2), but available methods
are not accurate for finite length random sequences generated by a non-uniform
Bernoulli or Markov process. In this article, we present a new approximation
to the Common Substring in Random Strings (CSRS) problem and show that
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this new approximation is more accurate than previously published methods for
the same problem. Moreover, we generalize our approach to solve the problems
where matches are required in only q of the r strings, and where inexact matches
are allowed.

The article is organized as follows. We review related work in Section 2. In
Section 3, we present a model for solving the CSRS problem approximately using
an assumption of independence between words. In Section 4, we present a second
simplifying assumption of independence and show how the model obtained by
combining both simplifying assumptions can compute approximations to CSRS
in polynomial time (relative to k) for strings generated by Bernoulli and Markov
processes. In Section 5, we present important generalizations for biological prob-
lems. Finally, in Section 6, we show through a set of Monte-Carlo simulations
that our approach is quite accurate under all models considered.

2 Related Work

The probability that r strings contain a common aligned substring of length
k can be determined by characterizing the length of the longest head run in
a sequence of biased coin flips. This problem was examined by Feller [8] who
provides a method for computing this probability with generating functions.
The same problem was later studied by Erdős and Rényi [6] and Erdős and
Révész [7] who provide tight asymptotic bounds on the distribution of the longest
head run.

Arratia and Waterman [3, 4] generalize the results of Erdős and Rényi to
examine the distribution of the longest common (unaligned) substring in two
random strings. Karlin and Ost [12] provide further improvements on the bounds
for the asymptotic behaviour of the longest common word in multiple random
strings for a wide range of random processes.

Naus and Sheng [14] show that while the Karlin and Ost asymptotic equa-
tions provide very accurate approximations to CSRS on two random strings, the
quality of the same equations deteriorates as the number of strings increases.
They also provide refinements to the Karlin and Ost equations for the special
case where the random strings are generated by a Bernoulli process, and show
that those refinements offer very good approximations to the CSRS problem
when the strings are generated by a uniform Bernoulli process. As we will show
in Section 6, the quality of those approximations is not as good for strings gen-
erated by non-uniform Bernoulli processes, and their methods do not generalize
to strings generated by Markov processes.

In a parallel effort, Guibas and Odlyzko [10] and many others since provide
approximations and exact results for the distribution of the number of occur-
rences of a given word in a random text (see for instance [15, 18, 19] and the
references therein). Those results allow us to compute the probability that a
given word is a common substring to random strings. In the next section, we
show how to apply these results to the computationi of the probability that a
set of random strings contain any word as a common substring.
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3 The Independent Words Model

Let ξw represent the event that the word w occurs in a random string S generated
by a Bernoulli or Markov process. The value of P (ξw) can be computed with the
help of generating functions:

Theorem 1 (Régnier [18]). The probability P (ξw) that a string w of length
k is found as a substring of the random string S of length n generated by a
Bernoulli process or a stationary Markov process is

P (ξw) = [sn]
(

1
1 − s

· P (w)sk

P (w)sk + Aw(s)(1 − s)

)
, (1)

where Aw(s) is the autocorrelation polynomial of w (see [18]) and P (w) is the
stationary probability of observing w at a given position in S.

There are various methods to implement numerical computations of P (ξw).
Régnier proposes a method to compute the value of P (ξw) in O(log n) time [18].
The partial fractions method of Feller can also compute highly accurate approx-
imations to P (ξw) in O(k) time [8].

The computation of P (ζ), where ζ represents the event that some word of
length k occurs in all r random strings S1, . . . , Sr, is more problematic. Since the
strings S1, . . . , Sr are generated independently, we have P (ζ) = P (∪w∈Σkξ r

w ).
To compute P (ζ) exactly, we would need to account for the dependence between
all the events ξw. However, as we will show in Section 6, we can get a very good
approximation to P (ζ) even when we assume the independence of the events ξw.
We therefore present the single assumption for the Independent Words Model:

Assumption 1. For every words w �= w′, we assume that the events ξw and
ξw′ are independent.

With this assumption, computing the value of P (ζ) is now straightforward.

Proposition 1. When Assumption 1 holds, the probability P (ζ) of observing a
substring of length k in each of the r random strings S1, . . . , Sr generated by a
Bernoulli or Markov process is

P (ζ) = 1 −
∏

w∈Σk

(
1 − P (ξw)r

)
. (2)

Equation (2) can be implemented directly to provide an accurate approximation
to P (ζ). However, since it requires the enumeration of every word w of length k
in the alphabet Σ of size σ, its running time is exponential in k, taking Ω(σk)
time even when a constant-time approximation algorithm is used to compute
P (ξw). In the next section, we present alternative algorithms for computing the
approximation to P (ζ) in time polynomial in k.
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4 The Double Independence Model

To develop efficient approximations to P (ζ), we want to reduce the number of
terms that need to be enumerated during the computation. Already, we may
note that some words have the same probability P (ξw) of occurring in a random
string. In fact, we can significantly augment the number of words that share the
same probability P (ξw) with a second simplifying assumption.

Assumption 2. For every position i �= j in S, we assume that the probability
that the events representing occurrences of the word w at position i and j are
independent.

The Assumption 2 gives the following approximation for P (ξw):

Proposition 2. When Assumption 2 is valid, the probability P (ξw) of observing
a word w of length k in a random string S of length n is

P̃ (ξw) = 1 −
(
1 − P (w)

)n−k+1
, (3)

where P (w) is the stationary probability of observing the word w at a given
position in S.

The approximation P̃ (ξw) has two advantages: it is the same for many different
words, and can be computed in O(1) time. However, we should be aware that
it is not an accurate approximation to P (ξw) for many words. Specifically, the
probability P (ξw) for words that have high self-overlap (e.g. AAAAAA or CTCTCT)
is very poorly approximated by Proposition 2 [22]. Nevertheless, we will show in
Section 4.3 that it is easy to correct this error in polynomial time.

We refer to the modified CSRS problem in which Assumptions 1 and 2 are
valid as the Double Independence Model. In Sections 4.1 and 4.2, we show how
the Double Independence Model can be used to obtain polynomial time algo-
rithms for the computation of P (ζ) when the random string S is generated by
a Bernoulli process or a Markov process, respectively.

4.1 Bernoulli Process

When the random string S is generated by a Bernoulli process, each character
of S is generated independently and takes the value x ∈ Σ with probability px.
Under the double independence model, words that share the same composition,
as defined below, will have the same probability P̃ (ξw) of occurring in S.

Definition 1. The Bernoulli composition of a string w is the multiset γ of
characters in w.

Example 1. The Bernoulli composition of the string w = ACCATA is the multiset
γ = {A, A, A, C, C, T}.

We define Pγ to be equal to the probability P̃ (ξw) for any word w with composi-
tion γ. We also define Nγ(x) as the number of copies of the character x in γ. We



Common Substrings in Random Strings 133

let Ω(γ) represent the number of words w with composition γ, and we represent
the set of all possible Bernoulli compositions for words of length k with Ck. We
then obtain the following theorem.

Theorem 2. Let S1, . . . , Sr represent r random strings of length n generated
independently by a Bernoulli process over the alphabet Σ. When Assumptions
1 and 2 hold, the probabilty P (ζ) that the strings S1, . . . , Sr share a common
substring of length k is defined by

P (ζ) = 1 −
∏

γ∈Ck

(
1 − P r

γ

)Ω(γ)
, (4)

where the probability that a word w with composition γ is found in a random
string Si is Pγ = 1 − (1 −

∏
α∈Σ p

Nγ(α)
α )n−k+1 and the number of words that

have the composition γ is

Ω(γ) =
k!∏

α∈Σ Nγ(α)!
. (5)

Proof. The equation for Pγ follows directly from Proposition 2, by noting that
the probability P (w) of observing a word w with composition γ in a given posi-
tion in S is P (w) =

∏
α∈Σ p

Nγ(α)
α . The number Ω(γ) of words with composition

γ is equal to the number of distinct strings that can be formed from the symbols
in γ, i.e. the multinomial coefficient in (5) [8]. The final result in (4) follows from
Proposition 1 and the observation that every word w of length k is represented
in exactly one composition γ in Ck. ��

To implement the result from Theorem 2 in an efficient algorithm, we need an
efficient method to enumerate all the Bernoulli compositions in Ck. This can be
done through a simple recursive algorithm or by using the iterative algorithm of
Nijenhuis and Wilf [16]. Either of these approaches uses a constant amount of
computation to generate each composition. Assuming a constant alphabet size,
the values of Pγ and Ω(γ) can both be computed in O(1) time, and the total
running time of a simple algorithm that implements Theorem 2 is O(|Ck|). Since
the number of Bernoulli compositions in Ck is equal to the number of different
compositions of the integer k into a maximum of σ parts, we get |Ck| =

(
k+σ−1

σ−1

)
∈

O(kσ−1) and the computation of P (ζ) can be done in O(kσ−1) time.

Uniform Bernoulli Process. In the special case where the random strings
S1, . . . , Sr are generated by a uniform Bernoulli process, the value P̃ (ξw) is
identical for every word w ∈ Σk. In this case, the probability P (ζ) can be
computed in constant time with

P (ζ) = 1 −
(
1 −

(
1 −

(
1 − 1/σk

)n−k+1
)r)σk

. (6)

This result is equivalent to the derivation obtained by Naus and Sheng [14] in
their Equation (10) under the same special case of uniform Bernoulli processes.
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4.2 Markov Process

Biological sequences rarely follow a Bernoulli model, but have been shown to
be accurately modeled by low-order Markov models [20, 22]. To be applicable
in a biological context, our probability calculations have to be accurate and
tractable under such models. In this section, we present an algorithmic approach
to approximate P (ζ) in polynomial time for 1st order Markov models. With
minor changes, the approach described below can also be extended to mth order
Markov models, for any fixed m ≥ 1 [5].

Let S represent a random string generated by a stationary 1st order Markov
process. For x, y ∈ Σ, the probability that the ith character of S takes the value
y is px→y, where x is the value of the (i − 1)th character in S. The stationary
probability of observing the value y at the position i in S if we do not know the
values of any other character in S is pΛ→y, where Λ is a special start character.
We now define the concept of Markov composition of a word to identify words
that will share the same probability P̃ (ξw) of occurring in S.

Definition 2. The 1st order Markov composition of a string w is the multiset γ
of transitions between consecutive characters in w, along with a transition from
the start state Λ to the first character in w.

Example 2. The 1st order Markov composition of the strings AACAT and ACAAT
is γ = {(Λ → A), (A → A), (A → C), (A → T), (C → A)}.

We let Pγ be equal to P̃ (ξw) for any word w with the Markov composition γ, we
let Nγ(x, y) represent the multiplicity of the transition (x → y) in the multiset γ,
and we let Ω(γ) represent the number of words with the composition γ. Defining
C1

k to be the set of all 1st order Markov compositions for words of length k, we
get the following result for P (ζ).

Theorem 3. Let S1, . . . , Sr represent r random strings of length n generated
independently by a 1st order Markov process over the alphabet Σ. When As-
sumptions 1 and 2 hold, the probabilty P (ζ) that the strings S1, . . . , Sr share a
common substring of length k is defined by

P (ζ) = 1 −
∏

γ∈C1
k

(
1 − P r

γ

)Ω(γ)
, (7)

where the probability that a word w with composition γ is found in a random

string Si is Pγ = 1 −
(
1 −

∏
(x,y)∈{Σ,Λ}×Σ p

Nγ(x,y)
x→y

)n−k+1
and the number

Ω(γ) of words that have the composition γ is defined below in Theorem 4.

Proof. The result again follows directly from Propositions 1 and 2. ��

To compute an approximation of P (ζ) with Theorem 3, we still need to define a
method for determining Ω(γ) and for iterating efficiently through the different
Markov compositions in C1

k. We first turn to the problem of evaluating Ω(γ),
and introduce a new structure that will help us in this task.
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Fig. 1. (A) The 1st order Markov graph for the composition of the words AACAT and
ACAAT, and (B) two distinct Eulerian trails that both represent the word GTGT

Definition 3. The 1st order Markov composition graph Gγ for the Markov
composition γ is the directed multigraph Gγ = {Vγ , Eγ}, where Vγ contains one
vertex for every character in Σ ∪ {Λ} and Eγ contains one edge for every tran-
sition in γ.

Example 3. The 1st order Markov composition graph for the composition of the
strings AACAT and ACAAT is shown in Fig. 1A.

An Eulerian trail on the graph Gγ is a walk through the graph where we traverse
each edge in Eγ exactly once. Each Eulerian trail on Gγ corresponds to a word
w with composition γ, so we use some results on the enumeration of Eulerian
trails on a directed multigraph to compute the number Ω(γ) of words with the
composition γ.

Theorem 4. The number of words with the Markov composition γ is

Ω(γ) =
cγ ·

∏
v∈Vγ

(d(v) − 1)!∏
(u,v)∈V 2

γ
M(u, v)!

, (8)

where Gγ = {Vγ , Eγ} is the Markov composition graph of γ, cγ is the cofactor of
Gγ (see [11]), d(v) is the out-degree of the vertex v, and M(u, v) is the number
of edges going from u to v in Eγ .

Proof. By the BEST theorem [21], the total number of Eulerian trails in the
graph Gγ is cγ ·

∏
v∈Vγ

(d(v) − 1)! (see [11]). This number overestimates the
number of distinct words with composition γ since two trails that represent the
same word are counted separately if the edges between two vertices u, v ∈ Vγ

are taken in different order (see Fig. 1 for an example). The result in (8) follows
from the fact that there are

∏
(u,v)∈V 2

γ
M(u, v)! different ways to order the edges

in a Eulerian trail without affecting the sequence of vertices in the trail. ��

We now turn to the problem of efficiently enumerating all the different Markov
compositions in C1

k. To do this, we first present the definition of canonical words.

Definition 4. A word w with Markov composition γ is canonical if and only if
no other word with composition γ is lexicographically inferior to w.
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Example 4. As we saw in Example 2, the words AACAT and ACAAT share the same
1st order Markov composition. Since AACAT <lex ACAAT and there are no other
words with the same composition, the word AACAT is canonical while the word
ACAAT is not.

We can enumerate the canonical word for each Markov composition using the
following proposition.

Proposition 3. The word w of length k with the 1st order Markov composition
γ and ending with the character z is canonical if and only if its prefix of length
k−1 is canonical and all the transitions in γ that go from z to another character
are present in lexicographic order in w.

We can enumerate all the canonical words of length k with a recursive algorithm
by enumerating every canonical word of length k − 1 and using Proposition 3
to determine which characters can be appended to these words. There are at
most |C1

k | canonical words for each length l ≤ k, and the test for each potential
character to append can be accomplished in O(k) time, so the entire recursive
enumeration algorithm runs in O(k2|C1

k |) time, assuming a constant alphabet
size. The complexity of computation for Pγ and Ω(γ) also depends only on the
alphabet size, so they can both be computed in O(1) time when the alphabet size
is constant. There are (σ+1)·σ different transitions possible in 1st order Markov
models, so the size of |C1

k | ∈ O(kσ2
), and the running time of an algorithm that

implements Theorem 3 is O(k2|C1
k |) ∈ O(kσ2+2).

4.3 Correcting for Auto-correlation

The basic period of a word w is the smallest positive integer i such that the word
w overlaps with a copy of itself shifted by i positions to the right. Words with a
small basic period are also the ones for which P̃ (ξw) gives a poor approximation.
Let Wk,c represent the set of all words of length k with a basic period of at most
c. A simple method for improving the approximation of P (ζ) obtained with (4)
or (7) is to enumerate all the words w in Wk,c and to replace the inaccurate
approximation P̃ (ξw) with the better approximations P (ξw) for these words.
Specifically, we let

P (ζ) = 1 −
∏

γ∈Cm
k

(
1 − P r

γ

)Ω(γ) ·
∏

w∈Wk,c

(
1 − P (ξw)r

1 − P̃ (ξw)r

)
. (9)

There are O(σc) words over the alphabet Σ of size σ, and the computation of
P (ξw), as we saw in Section 3, can be accomplished in O(k). Therefore, the
correction for the auto-correlation presented in (9) adds a factor of O(kσc) to
the running time of the algorithm. In practice, c does not need to be large to
provide significant improvements to the estimates obtained with (4) or (7). In
Section 6, we show that even a correction with c = 1 is enough to provide a
significant improvement in accuracy.
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5 Generalizations

The approach for solving the CSRS problem presented in this article can be
generalized to handle many variations on the CSRS problem. For instance, we
can immediately see that the above framework can be modified to handle random
strings S1, . . . , Sr that are generated by different random processes and have
different lengths n1, . . . , nr. We present two other useful generalizations below.

Common Substrings in q of r Random Strings. A common modification
to the CSRS problem is to ask for the probability P (ζq,r) that q of the r random
strings S1, . . . , Sr share a common substring. The equation for P (ζq,r) can be
obtained with the following straightforward modification of (2):

P (ζr,s) = 1 −
∏

w∈Σk

(
1 −

r∑
j=q

(
r

j

)
P (ξw)j(1 − P (ξw))r−j

)
. (10)

A similar modification can also be applied to (4) and (7) for Bernoulli and
Markov processes, respectively, with the running time of their corresponding
algorithms increasing only by a factor of r.

Allowing Imperfect Matches. In many biologically realistic situation, one
may want to allow a small number δ of mismatches in each occurrence of a word
w in the random strings S1, . . . , Sr [17]. Let Δ(w, δ) represent the set of words
that have at most δ mismatches to w. The probability that a word w occurs with
at most δ mismatches in each of the strings S1, . . . , Sr is

P (ξw,δ) = 1 −
∏

w′∈Δ(w,δ)

(
1 − P (ξw′)

)
. (11)

This result can again be incorporated in (2), (4) and (7). The number of words
in Δ(w, δ) is

∑
i=0...δ

(
k
i

)
(σ −1)i ∈ O(kδ) when the size σ of the alphabet is con-

stant, so the running time of algorithms that incorporate (11) is exponential in k.
However, δ is generally quite small in practice so the algorithm remains practical.

6 Results

We tested the accuracy of our approximations for P (ζ) against a set of hit-or-
miss Monte-Carlo simulations. For each configuration of parameters tested, we
generated 1,500,000 independent sets of r random strings of length n and counted
what fraction of the sets contained a common substring of length k. The number
of trials was selected to give a maximum error of the true probability P (ζ) of
±0.0005, 99 times out of 100, according to the normal error bounds [9].

In Table 1, we compare different approximations to P (ζ) under a non-uniform
Bernoulli model that simulates the distribution of nucleotides in the human
genome (pA, pT ≈ 0.30, and pC , pG ≈ 0.20). For the different values of r we
selected the string lengths n that give P (ζ) ≈ 0.05 and P (ζ) ≈ 0.01 to observe
the quality of the approximations over the most significant range for statistical
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Table 1. Approximations for the probability of observing a common substring of length
k = 6 in r random strings of length n generated by the Bernoulli model representing
the human genome (pA = 0.2962, pC = 0.2037, pG = 0.2035, pT = 0.2966)

r n (2) (4) (9) K.O. N.S.(a) N.S.(b) Simulation

2 18 0.0490 0.0491 0.0490 0.0368 0.0367 0.0600 0.0386
4 197 0.0497 0.0500 0.0497 0.0585 0.0322 0.0521 0.0477
6 467 0.0499 0.0508 0.0502 0.1041 0.0164 0.0543 0.0490
8 727 0.0500 0.0514 0.0505 0.2458 0.0075 0.0576 0.0493

10 958 0.0501 0.0519 0.0509 0.6065 0.0034 0.0609 0.0495

2 11 0.0107 0.0107 0.0107 0.0080 0.0079 0.0126 0.0088
4 131 0.0100 0.0101 0.0100 0.0111 0.0062 0.0104 0.0096
6 346 0.0099 0.0101 0.0100 0.0176 0.0029 0.0107 0.0098
8 569 0.0100 0.0103 0.0101 0.0384 0.0012 0.0113 0.0099

10 774 0.0100 0.0104 0.0102 0.1034 0.0005 0.0119 0.0100

Table 2. (A) Approximations for P (ζ) in the 1st order Markov model representing
the human genome, when k = 6. (B) Approximation for P (ζ) when allowing imperfect
matches (k = 8, δ = 1) in the human Bernoulli model.

r n (2) (7) (9) Simulation

2 17 0.0496 0.0497 0.0495 0.0388
4 175 0.0495 0.0522 0.0493 0.0474
6 410 0.0497 0.0549 0.0493 0.0486
8 633 0.0500 0.0607 0.0494 0.0493

10 828 0.0502 0.0674 0.0494 0.0493

2 10 0.0088 0.0088 0.0088 0.0073
4 117 0.0101 0.0105 0.0101 0.0098
6 304 0.0100 0.0113 0.0099 0.0099
8 494 0.0100 0.0128 0.0099 0.0099

10 666 0.0100 0.0148 0.0098 0.0099

A

r n (2), (11) Simulation

2 9 0.0451 0.0176
4 68 0.0502 0.0417
6 187 0.0502 0.0452
8 315 0.0496 0.0446

10 436 0.0504 0.0443

2 8 0.0115 0.0050
4 47 0.0098 0.0085
6 141 0.0098 0.0091
8 251 0.0099 0.0090

10 358 0.0100 0.0088

B

analysis. As the results in Table 1 show, the approximation (2) obtained with
the Independent Words Model is very accurate when r > 2 and converges to the
true value of P (ζ) as the number of strings increases. The approximation (4)
obtained with the Double Independence Model also offers a good approximation
to P (ζ), although the correction of P (ξw) for words with a basic period of 1
provided by (9) improves the approximation significantly. The table also shows
that the approximation of Karlin and Ost (K.O.: (2.12) in [12]) and the first ap-
proximation of Naus and Sheng (N.S.(a): (8) in [14]) diverge significantly from
the true value of P (ζ) when there are r > 2 strings. The alternative approxi-
mation of Naus and Sheng that incorporates exact results (N.S.(b): (14) in [14])
diverges more slowly from the value of P (ζ) as the number of strings increases,
but is still not as accurate as our approximations.
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We also tested our approximations on a 1st order Markov model that approx-
imates the human genome. As we see in Table 2A, the Independent Model again
offers an accurate approximation to P (ζ). However, in this case the approxima-
tion of the Double Independence Model diverges from the true value of P (ζ) as
the number of strings increases and highlights the importance of the correction
of Section 4.3. With the correction of P (ξw) for words with a basic period of 1,
we see a significant improvement in the approximation accuracy.

In Table 2B, we show the results of the approximation for P (ζ) for words of
length k = 8 when a mismatch is allowed (δ = 1) for each occurrence of a word
in a string, under the Bernoulli model of the human genome described above. We
see that the approach described in (11) provides an acceptable approximation
to the true value of P (ζ) in this model, although the values diverge slowly as
the number of strings increases.

7 Discussion and Future Work

We propose two new methods for approximating the probability P (ζ) that r
random strings contain a common substring of length k. The approximation
obtained under the Independent Words Model offers an accurate estimate for
P (ζ) when r > 2 and works well on both the Bernoulli and Markov models.
The approximations obtained under the Double Independence Model are also
quite accurate when the correction for auto-correlation proposed in Section 4.3
is applied, and can be computed in polynomial time (relative to k). Both methods
are shown to be more accurate than previously published approaches on random
strings generated by a non-uniform Bernoulli model.

Over all the configurations of parameters tested, we find that our approxima-
tions are always slightly conservative. This is to be expected, since the most im-
portant dependency that is ignored with Assumption 1 is the positive correlation
between the events ξw and ξw′ for words w and w′ that overlap each other. Impor-
tantly, the fact that our estimates are always conservative means that a user who
applies our approximation to assess the significance of a common substring will
never be mislead into thinking that a result is more significant than it actually is.

The approach presented in this article lends itself to a number of biologically
important generalizations, in particular those allowing for the substrings to be
found in only a subset of the strings and allowing for imperfect matches.

There are many areas in which the research presented in this article could
be further developed. Significantly, theoretical bounds on the error induced by
the assumptions in our models would be very useful. Development of new meth-
ods that weaken the assumptions presented in this article could also lead to
interesting and more accurate approximation algorithms.
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18. M. Régnier. A unified approach to word occurrence probabilities. Discrete Applied

Mathematics, 104:259-280, 2000.
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