-
-
=
=
e
./
-
ol

17th Annual Symposium,
Barcelena, Spain, July 2004
Proceedings

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4009

Moshe Lewenstein Gabriel Valiente (Eds.)

Combinatorial
Pattern Matching

17th Annual Symposium, CPM 2006
Barcelona, Spain, July 5-7, 2006
Proceedings

@ Springer

Volume Editors

Moshe Lewenstein

Bar-Ilan University

Department of Computer Science
Ramat Gan 52900, Israel

E-mail: moshe @cs.biu.ac.il

Gabriel Valiente

Technical University of Catalonia
Department of Software

08034 Barcelona, Spain

E-mail: valiente @lsi.upc.edu

Library of Congress Control Number: 2006927372

CR Subject Classification (1998): F.2.2,1.5.4,1.5.0,1.7.3, H.3.3,J.3,E4, G.2.1,E.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-35455-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35455-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11780441 06/3142 543210

Preface

This volume contains the papers presented at the 17th Annual Symposium on
Combinatorial Pattern Matching (CPM 2006) held at the Technical University
of Catalonia in Barcelona, Spain, on July 5-7, 2006. They were selected from
88 submissions. Each submission was reviewed by at least three Programme
Committee members. The committee decided to accept 33 papers. The pro-
gramme also included three invited talks, by Amihood Amir (Asynchronous
pattern matching), Eran Halperin (SNP and haplotype analysis: Algorithms and
applications), and Steven Skiena (News and blog analysis with Lydia).

All papers presented at the conference are original research contributions
on combinatorial pattern matching algorithms, indexing data structures, data
compression, and applications in molecular biology such as phylogenetic recon-
struction, motif search, and RNA and DNA structural analysis and prediction.

The meeting was preceded by a Summer School on Combinatorial Pattern
Matching on July 4, 2006, with tutorials by Ricardo Baeza-Yates (Web search-
ing), Moshe Lewenstein (Pattern matching with mismatches), and Alfonso Va-
lencia (Introduction to computational biology).

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in
Paris, London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus,
Piscataway, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, and Jeju
Island. Selected papers from the first meeting appeared in volume 92 of Theoret-
ical Computer Science, from the 11th meeting in volume 2 of Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathemat-
ics, and from the 14th meeting in volume 3 of Journal of Discrete Algorithms.
Starting with the 3rd meeting, proceedings of all meetings were published in the
LNCS series, volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645, 1848, 2089,
2373, 2676, 3109, 3537, and 4009.

The whole submission and review process, as well as production of this vol-
ume, was carried out with the help of the EasyChair system. The conference was
sponsored by the Technical University of Catalonia and by the Spanish Ministry
of Education and Science.

April 2006 Moshe Lewenstein
Gabriel Valiente

Conference Organization

Programme Chairs

Moshe Lewenstein
Gabriel Valiente

Programme Committee

Ricardo Baeza-Yates
Paolo Ferragina
Leszek Gasieniec
Raffaele Giancarlo
Roberto Grossi
Dan Gusfield

Tao Jiang

Gad M. Landau
Thierry Lecroq
Ming Li

Stefano Lonardi
Laxmi Parida
Ayumi Shinohara
Jens Stoye

Esko Ukkonen
Kaizhong Zhang
Michal Ziv-Ukelson

Local Organization

Gemma Casas

Liliana Félix

David Garcia

Xavier Messeguer
Marta Moreno

Roman Roset

Romina Royo

Gabriel Valiente (Chair)

VIII Organization

External Reviewers

Said Abdeddaim
Gabriela Alexe
José Augusto Amgarten Quitzau
Hideo Bannai
Saugata Basu
Omer Berkman
Paola Bonizzoni
Brona Brejova
Gerth Stglting Brodal
Dan Brown
Jeremy Buhler
Pascal Caron

Xin Chen
Shihyen Chen
Matteo Comin
Maxime Crochemore
Yoan Diekmann
Zihong Ding

Shiri Dori

Alon Efrat
Kimmo Fredriksson
Arie Freund
Zheng Fu

Nicola Galesi
Lilia Greenenko
Antonio Gulli
Eran Halperin
Angele Hamel
Miki Hermann
Danny Hermelin
Jan Holub

Peter Husemann
Shunsuke Inenaga
Wojciech Jawor
Carmel Kent
Shahar Keret
Marcos Kiwi
Stefan Kurtz
Juha Kéarkkiinen
Arnaud Lefebvre
Liat Leventhal
Guojun Li

Yu Lin

Chaim Linhart
Lan Liu

Mercé Llabrés
Alex Lopez-Ortiz
Antoni Lozano
Veli Mékinen
Giovanni Manzini
Julia Mixtacki
Gonzalo Navarro
Mia Persson
Gemma Piella
Nadia Pisanti
Hendrik Purwins
Mathieu Raffinot
Sven Rahmann
Jairo Rocha

Oleg Rokhlenko
Francesc Rosselld
Kunihiko Sadakane
Paul Sant
Klaus-Bernd Schiirmann
Marinella Sciortino
Nira Shafrir
Baozhen Shan
Yun Song

Kristian Stevens
Dimitrios M. Thilikos
Héléne Touzet
Lars Ulveland
Vladimir Vacic
Balaji Venkatachalam
Lusheng Wang
Ydo Wexler
Prudence Wong
Yonghui Wu
Yufeng Wu

Jing Xiao

Lei Xin

Sheng Yu

Jie Zheng

Table of Contents

Asynchronous Pattern Matching
Amihood AMar

SNP and Haplotype Analysis — Algorithms and Applications
Eran Halperin

Identifying Co-referential Names Across Large Corpora
Levon Lloyd, Andrew Mehler, Steven Skiena

Session 1. Data Structures

Adaptive Searching in Succinctly Encoded Binary Relations
and Tree-Structured Documents
Jérémy Barbay, Alexander Golynski, J. Ian Munro,
S. Srindvasa Rao

Theoretical and Practical Improvements on the RMQ-Problem,
with Applications to LCA and LCE
Johannes Fischer, Volker Heun oo,

Session 2. Indexing Data Structures

A Linear Size Index for Approximate Pattern Matching
Ho-Leung Chan, Tak-Wah Lam, Wing-Kin Sung, Siu-Lung Tam,
Swee-Seong WOong

On-Line Linear-Time Construction of Word Suffix Trees
Shunsuke Inenaga, Masayuki Takeda

Obtaining Provably Good Performance from Suffix Trees in Secondary
Storage
Pang Ko, Srinivas Aluru o

Geometric Suffix Tree: A New Index Structure for Protein
3-D Structures
Tetsuo Shibuyao

X Table of Contents

Session 3. Probabilistic and Algebraic Techniques

New Bounds for Motif Finding in Strong Instances
Bronia Brejovd, Daniel G. Brown, Ian M. Harrower, Tomds Vinar ... 94

Fingerprint Clustering with Bounded Number of Missing Values
Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi,
Giancarlo MauTio 106

Tiling an Interval of the Discrete Line
Olivier Bodini, Eric Rivals 117

Common Substrings in Random Strings
Eric Blais, Mathieu Blanchette 129

Session 4. Applications in Molecular Biology I

On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem
Firas Swidan, Michal Ziv-Ukelson, Ron Y. Pinter 141

Subsequence Combinatorics and Applications to Microarray
Production, DNA Sequencing and Chaining Algorithms
Sven Rahmann 153

Solving the Maximum Agreement SubTree and the Maximum
Compatible Tree Problems on Many Bounded Degree Trees
Sylvain Guillemot, Francois Nicolas 165

An Improved Algorithm for the Macro-evolutionary Phylogeny Problem
Behshad Behzadi, Martin Vingron 177

Session 5. String Matching 1
Property Matching and Weighted Matching
Amihood Amir, Eran Chencinski, Costas Iliopoulos,

Tsvi Kopelowitz, Hui Zhang 188

Faster Two Dimensional Scaled Matching
Amihood Amir, Eran Chencinskiuiiiiinannn... 200

Session 6. Applications in Molecular Biology 11

Approximation of RNA Multiple Structural Alignment
Marcin Kubica, Romeo Rizzi, Stéphane Vialette, Tomasz Walerni 211

Table of Contents XI

Finding Common RNA Pseudoknot Structures in Polynomial Time
Patricia A. BUans.o 223

A Compact Mathematical Programming Formulation for DNA Motif
Finding
Carl Kingsford, Elena Zaslavsky, Mona Singh 233

Local Alignment of RNA Sequences with Arbitrary Scoring Schemes
Rolf Backofen, Danny Hermelin, Gad M. Landau, Oren Weimann ... 246

Session 7. Applications in Molecular Biology III

An O(n%/2,/log(n)) Algorithm for Sorting by Reciprocal Translocations
Michal Ozery-Flato, Ron Shamir........ 258

Longest Common Subsequences in Permutations and Maximum Cliques

in Circle Graphs
Alexzander Tiskin e 270

Session 8. Data Compression

A Simpler Analysis of Burrows-Wheeler Based Compression
Haim Kaplan, Shir Landau, Elad Verbin 282

Statistical Encoding of Succinct Data Structures
Rodrigo Gonzdlez, Gonzalo Navarro i, 294

Dynamic Entropy-Compressed Sequences and Full-Text Indexes
Veli Makinen, Gonzalo Navarro i, 306

Reducing the Space Requirement of LZ-Index
Diego Arroyuelo, Gonzalo Navarro, Kunihiko Sadakane 318

Session 9. String Matching II

Faster Algorithms for Computing Longest Common Increasing
Subsequences
Gerth Stglting Brodal, Kanela Kaligosi, Irit Katriel, Martin Kutz 330

New Algorithms for Text Fingerprinting
Roman Kolpakov, Mathieu Raffinot 342

Sublinear Algorithms for Parameterized Matching
Leena Salmela, Jorma Tarhio 354

XII Table of Contents

Approximate Matching in Weighted Sequences
Amihood Amir, Costas Iliopoulos, Oren Kapah, Ely Porat 365

Session 10. Dynamic Programming

Algorithms for Finding a Most Similar Subforest
Jesper Jansson, Zeshan Peng i 377

Efficient Algorithms for Regular Expression Constrained Sequence
Alignment
Yun-Sheng Chung, Chin Lung Lu, Chuan Yi Tang 389

Large Scale Matching for Position Weight Matrices
Aude Liefooghe, Héléne Touzet, Jean-Stéphane Varré 401

Author Index 413

Asynchronous Pattern Matching

Amihood Amir

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
and College of Computing, Georgia Tech, Atlanta, GA 30332-0280
+972 3 531-8770

amir@cs.biu.ac.il

Abstract. This paper introduces a new pattern matching model that
has been gaining importance recently, that of Asynchronous Pattern
Matching. Traditional pattern matching has assumed the possibility of
errors in the data content. We present motivation from text editing,
computational biology, and computer architecture, that points to a new
paradigm — where the errors occur in the address. It turns out that there
are differences in techniques, complexities, and tools between the two
different models, making it important to recognize their differences.

We motivate and define the new model and present some problems
that are worth pursuing.

1 Motivation

Historically, approximate pattern matching grappled with the challenge of coping
with errors in the data. The traditional Hamming distance problem assumes that
some elements in the pattern are erroneous, and one seeks the text locations
where this number of errors is small enough [23, 18, 7], or efficiently calculating
the Hamming distance at every text location [1,21, 7]. The edit distance problem
adds to the assumption that some elemnts of the text are deleted, or that noise
is added at some text locations [24, 15]. Indexing and dictionary matching under
these errors has also been considered [19, 16, 26, 14].

Implicit in all these problems is the assumption that there may indeed be
errors in the content of the data, but the order of the data is inviolate. Data
may be lost or noise may appear, but the relative position of the symbols is un-
changed. Data does not move around. Even when don’t cares were added [17],
when non-standard models were consideredbak:93,muthu-ramesh:iac95,aaclp:03
the order of the data was assumed to be ironclad.

Nevertheless, some non-conforming problems have been gnawing at the walls of
this assumption. Below we introduce some examples for this different phinomenom.

Text Editing: Even in the traditional core of pattern matching motivation -
text editing - there crop up some problems dealing with address, rather than
content, error. The swap error, motivated by the common typing error where
two adjacent symbols are exchanged [25, 4], does not assume error in the content
of the data, but rather, in the order. The data content is, in fact, assumed to
be correct. The swap error seemed initially to be akin to the other Levenshtein

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 1-10, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 A. Amir

errors, in that it could be added to the other edit operations and solved with
the same dynamic programming [25]. However, when isolated, it turned out to
be surprisingly simple to handle. Indeed, the minimum swap distance between
a given pattern of length m and every substring of length m in a given text of
length n, can be found in time O(n polylog m) [6]. This scarcely seems to be
the case for indels or mismatch errors.

Computational Biology: Recently, the advent of computational biology has
added more problems of order error to our repertoire. In evolution, one envisions
a whole piece of genome to “detach” and “reconnect” in a different location,
or two pieces of genome to “exchange” places. These phenomena, of course,
are assumed to take place simultaneously with traditional data content errors,
however, their nature is rearrangement of the data, rather than corruption of
its contents.

It turns out that the overall problem of adding these new rearrangement
operators to the content changing operators is extremely difficult. Thus more
simplified problems were considered in the literature. The rearrangement opera-
tors were isolated and handled separately. Reversals [11], transpositions [8], and
block interchanges [13] were explored. The edit distance problem under these
new operations is still too difficult, therefore the sorting permutation version of
these problems was researched.

This research direction led to interesting paths. First, the tools and techniques
used were different from the traditional pattern matching tools. The results
also seem more varied. The sorting by reversal problem is N'P-hard [12]. Tt is
still open whether the sorting by transposition problem can be efficiently solved
deterministically. Christie [13] gives an O(n?) algorithm for the sorting by block
interchange problem.

Computer Architecture: In computer architecture, address errors are of no
less concern that content errors [20]. It is by no means taken for granted that
when seeking a word from a given address, no errors will occurr in the address
bits. This causes the concern with redundancy bits, checksum bits, error detec-
tion and correction codes, and communication protocols.

From a purely theoretical point of view, it would be interesting to consider
searching where address errors are not corrected at all (say because of applica-
tions with an extremely high cost of transmission, e.g. because of transmission
in deep space). What are the types of uncorrected address errors that can still
be reasonable handled by a search application?

In a recent paper [3], for the first time, this different pattern matching
paradigm, that of errors in the order rather than error in the content of the
data, was explicitely identified and formalized. The advantages in formalizing
this paradigm are:

1. Identifying the types of problems and techniques required, rather than than

re-inventing ad-hoc solutions.

Understanding the theoretical underpinnings of the problem.

3. Generalizing to other possible rearrangements and possibly providing more
general solutions.

[\

Asynchronous Pattern Matching 3

Two different general directions of research are possible. The first is the need
to consider appropriate distance measures. The error in content measures are
not necessarily meaningful in these circumstances. We will consider some generic
error distances, such as minimum L; and Lo distance on the address of the data.
We also illustrate the fact that more specific distance measures are necessary for
specific applications.

Another possible direction is considering different address bit errors and effi-
cient methods of approximate pattern matching under address errors.

It is exciting to point out that budding research in this area required some
techniques that are totally new to pattern matching. This reinforces the real-
ization that this new model is needed, as well as gives hopes to new research
directions and paths in the field of pattern matching.

2 Problem Types

The pattern matching community usually handles problems in the following
form:

INPUT: Text T of length n and pattern P of length m over alphabet Y. Matching
relation R or distance metric metric d.

OUTPUT: Denote the suffix of T starting at location ¢ as T;. Denote the appro-
priate prefix of T; (appropriate in the sense that its length matches the length
of P) as T'"".

Output all text locations ¢ where T}"® matches P under R, or where d(T7"°, P)
is sufficiently small.

In the classic exact matching problem, R is equality and the length of T7"*
is m. In the case of Hamming distance, d(4, B) is the number of mismatches
between A and B, with A and B being equal-length strings. Again, the length
of TP is m.

It should be noted that many pattern matching problems become trivial if
the text and pattern are of equal length. Both exact matching and Hamming
distance can be immediately solved in linear time for n = m. It is also clear that
any problem that can be solved for n = m in time O(f(m)) can be solved for
n # m in time O(nf(m)).

Another interesting simplification could be to assume that every alphabet
symbol occurrs only once in the pattern. This means that every two pattern
locations have different symbols. This is equivalent to assuming that the pattern
is1,2,3,...,m.

Even if we take n # m, both the exact matching problem and the Hamming
distance problem can be immediately solved in time O(n) if this condition is
assumed.

As we will see, some of the asynchronous matching problems are NP-hard
even under the limiting assumptions above. In order to differentiate between the
different assumptions, let us agree on a common nomenclature.

4 A. Amir

Notation

— Denote a problem where the pattern is of the form where every symbol
appears exactly once, a permutation problem. We will refer to the case where
a symbol may appear more than once as a symbol repetition problem.

— Denote a problem where the text and pattern sizes are equal, an equal length
problem. We will refer to the case where n > m as the string matching problem.

Of course, we may combine the conditions, i.e. we may consider the permu-
tation version of a string matching problem, or the equal length version of a
symbol repetition problem.

3 Metrics

Even a general purpose metric must be based on some assumptions of what
causes the errors. Thus, the Hamming distance assumes that the only error are
changes to the data, but no new elements can be introduced nor any data lost.
The Levenshtein distance assumes that data may be inserted and deleted.

Similarly, when it comes to address errors, the application is the driving force
behind the general metric. The transposition operation leads to a metric that
counts the number of pairs that interchange. Another option is to count the dis-
tance that symbols need to travel in order to arrive at their destination. Finally,
it is possible to combine the two, i.e. assume that the rearrangement operation is
indeed an exchenge, yet count the distance needed to effect the transition.

We follow [3] in the definition of rearrangement systems, and the introduction
of the metrics that were considered.

3.1 Rearrangement Distances

Consider a set A and let x and y be two m-tuples over A. We wish to formally
define the process of converting = to y through a sequence of rearrangement
operations. A rearrangement operator 7 is a function 7 : [0..m — 1] — [0.m — 1],
with the intuitive meaning being that for each i, m moves the element currently
at location 7 to location 7 (). Let s = (w1, me, ..., 7) be a sequence of rearrange-
ment operators, and let 7, = m om0 -+ o7, be the composition of the 7;’s.
We say that s converts x into y if for any i € [0.n — 1], ; = yn ;). That is, y
is obtained from x by moving elements according to the designated sequence of
rearrangement operations.

Let IT be a set of rearrangement operators, we say that II can convert x
to y, if there exists a sequence s of operators from II that converts x to y.
Given a set IT of rearrangement operators, we associate a non-negative cost with
each sequence from IT, w : I[T* — RT. We call the pair (II, w) a rearrangement
system. Consider two vectors z,y € A™ and a rearrangement system R = (IT, w),
we define the distance from « to y under R to be:

dr(z,y) = min{w(s)|s from R converts = to y }

If there is no sequence that converts = to y then the distance is oc.

Asynchronous Pattern Matching 5

The String Matching Problem. Let R be a rearrangement system and let dg
be the induced distance function. Consider a text T' = T'[0],...,T[n — 1] and
pattern P = P[0],..., P[m — 1] (m < n). For 0 < i < n —m denote by T® the
m-long substring of T starting at location 7. Given a text T and pattern P, we
wish to find the i such that dg (P, 7)) is minimal.

The £; and > Rearrangement Distances. The simplest set of rearrange-
ment operations allows any element to be inserted at any other location. Under
the ¢1 Rearrangement System, the cost of such a rearrangement is the sum of
the distances the individual elements have been moved. We call the resulting
distance the ¢1 Rearrangement Distance. In the ¢ Rearrangement System we use
the same set of operators, with the cost being the sum of squares of the dis-
tances the individual elements have moved.! We call the resulting distance the
{s Rearrangement Distance.

In [3] it was proven that:

Theorem 1. For T and P of sizes n and m respectively (m < n), the {1 Rear-
rangement Distance can be computed in time O(m(n —m + 1)). For the permu-
tation version, the distance can be computed in time O(n).

Interestingly, the /o distance can be computed much more efficiently:

Theorem 2. [3]/ For T and P of sizes n and m respectively (m < n) the ls
Rearrangement Distance can be computed in time O(nlogm).

The Interchange Distances. Consider the set of rearrangement operators
were in each operation the location of exactly two entries can be interchanged.
The cost of a sequence is the total number of interchanges. We call the resulting
distance the interchanges distance. Again in [3] it was shown:

Theorem 3. For T and P of sizes n and m, respectively (m < n), the per-

mutation version of the interchanges distance problem can be computed in time
O(m(n —m+1)).

This situation is one where the permutation requirement is extremely necessary.
In [5] it was shown that:

Theorem 4. For T and P of sizes n and m, respectively (m < n), the symbol
repetition version of the interchanges distance problem is N'P-hard.

Next consider the case were multiple pairs can be interchanged in parallel, i.e.
in any given step an element can participate in at most one interchange. The
cost of a sequence is the number of parallel steps. Call the resulting distance
the parallel interchanges distance, denoted by dp—interchange('7 -). The following
surprising result was shown in [3]:

! For simplicity of exposition we omit the square root usually used in the ¢» distance.
This does not change the complexity, since the square root operation is monotone,
and can be computed at the end.

6 A. Amir

Theorem 5. For any two tuples © and y, either d (z,y) = o0 or

d <2.

p-interchange
p—interchange(x’ y)

This means that if it is altogether possible to convert x to y, then it is possible
to do so in at most two parallel steps of interchange operations!
With regards to computing the distance the following was proven [3]:

Theorem 6. For T and P of sizes n and m respectively (m < n), if there are
k distinct entries in P, then the parallel interchanges distance can be computed
deterministically in time O(k?>nlogm).

Theorem 7. For T and P of sizes m and n respectively (m < n), the parallel
interchanges distance can be computed randomly in expected time O(nlogm).

In [5] the following hybrid metric was introduced: In this rearrangement system
the operation is still an interchange, but the cost is not the number of operations.
Instead, each interchange has a weight, and the cost of a sequence of interchanges
is the sum of these interchanges weights. We define the weight of an interchange
of elements at positions ¢ and j to be |i — j|. This definition of the weight reflects
that interchanges of close elements are preferred. Given a text T and a pattern P
of sizes n and m, respectively, (m < n) the weighted-interchange distance problem
is to find the text location closest to the pattern under the weighted-interchange
distance.
The following was proven in [5]:

Theorem 8. There exist an O(m(n—m+1)) algorithm that solves the weighted-
interchange distance problem for the symbol repetition version in the string
matching paradigm.

Length-weighted genome rearrangements were recently claimed to be biological
meaningful and preferred over the traditional assumption giving each operation
a unit cost (see [10], [9]). The weighted-interchange defined above was inspired
by these claims. Actually, even in the regular sorting situation the unit-cost
model is not completely defensible. On the contrary, it makes sense to assume
that interchanging far elements costs more than interchanging close elements. It
is interesting to point out that, similar to [9], [5] found out that the weighted
version of the problem is polynomial in contrast with the non-weighted version.
In fact, these results together with [9] might indicate a general phenomenon
about length-weighted distances that should be further studied.

4 Address Errors

In this section we suggest another broad class of location errors wherein the
names of the locations have been altered. We call this type of errors renaming
errors, defined as follows. A string x € A™ can be viewed as a set of pairs
(address, value). A renaming m gives “new names” to the addresses. Formally,
a renaming is a function 7 : [1..m] — [1..m]. Under the renaming =, the string

Asynchronous Pattern Matching 7

x is converted into a new set of pairs, where the pair (a,v) is converted into
the pair (7(a),v). A renaming scheme is a set II of renamings. Formally, any
set of functions on [1..m] can constitute a renaming scheme. In [2] the renaming
schemes studied were such that the renamings all have some well-defined struc-
ture, transforming one naming convention to another. Specifically, they consider
renaming schemes which arise from a process of flipping some or all of the bits
in the binary representation of [1..m].

In practice, renaming errors may arise in situations where the text and the
pattern are generated by two different systems, which may use different naming
conventions. Alternatively, renaming errors may result from failures in the wires
of the address bus (the wires connecting the CPU and the memory which are
used to transmit the address of operands). Finally, renaming errors may actually
not constitute an error, but rather represent different legitimate ways to order
the given set of elements.

4.1 Address Bit Flips Errors

In this section we focus on renaming schemes resulting from address bit er-
rors. The conventional addressing model assumes the user puts an address in
the address register. From there the address follows an address bus to the de-
sired location. We are assuming no redundacy bits, and no checksums nor error
detection and correction codes.

Various types of faults may be considered:

1. A faulty bit consistently flips the value put there. If the in value is 0 the out
value is 1 and vice versa.

2. A faulty bit may flip the value put there or may not. The non-faulty bits
always output the value put in. This is a common phenomenon, caused by
a loose connection.

3. No bits are faulty. However, due to outside transient conditions, such as
noise, the value on any wire may flip.

In our model we read the pattern from memory and search for it in the text. How-
ever, our address register is faulty thus the pattern we get is a scrambled version of
the “real” pattern. We seek, for every text location, the smallest number of incon-
sistent faulty bits, in the sense of error type 2 above, that would enable the pattern
to match the text at that location (if such a matching exists). We call this prob-
lem the faulty bits distance problem. A naive check of each possible set of faulty
bits yields an O(nm?) time algorithm. [2] provide an O(nm!°823) time algorithm
for patterns with a bounded alphabet, and a randomized O(nm!°823logm) time
algorithm for patterns with an unbounded alphabet.

The case of error type 1 above is called in [2] the consistent bit flip renaming.
In this renaming scheme full consistency is assumed, i.e., that some of the bits,
in all the addresses, may have been flipped. For example, suppose that m = 64.
Then, six bits are used in the binary representation of the addresses. In a bit-flip
renaming, some or all of these bits may be inverted in a consistent manner. For
example, bits 2,3 and 5 may be always inverted, resulting in 000000 becoming

8 A. Amir

011010, and 010101 becoming 001111. Given two strings x,y € A™, we wish
to know if there is a way to consistently flip some or all of the address bits in
order to convert x into y, and if so, what are these bits? Note that there are
2log™m — pm different possible renamings in this scheme. Naively checking each of
these possibilities would necessitate O(m?) work. [2] obtain an algorithm that
works in time O(mlogm).

Different type of address schemes may also be considered. In various parallel
architectures, as well as some attempts to try to even the address wire lengths,
various tree structures are used (e.g. the pyramid architecture). Consider a sim-
plified address scheme where the m processors in a network architecture, or
memory elements, are leaves of a full binary tree of height logm. Thus, reaching
the value in a certain address means following the path from the root down. At
every level we take a left turn if the next address bit is 0 and a right turn if the
address bit is 1. See Figure 1 for a schematic.

@) O O
Q/ % O/ % O/ % Q/ \Q
4 5

2 3 6 7

)
—

Fig.1. An 8 element memory. The binary representation of 3 is 011. From the root,
taking a left turn, then two right turns, brings us to location 3. If a node is consistently
faulty, then we make a wrong turn every time we pass through that node.

Note that in this case the number of possible renamings is exponential, so a
naive solution would be infeasible. Using a combination of methods borrowed
from tree isomorphism algorithms and the Karp-Miller-Rosenberg string match-
ing algorithm [22], [2] obtain an algorithm that solves the problem in O(nlogm)
steps, for a pattern of length m and text of length n.

Acknowledgement. The author was partially supported by NSF grant CCR-
01-04494 and ISF grant 35/05. The author is indebted to the following friends
who have all contributed to the formulation and development of this exciting new
model: Yonatan Aumann, Gary Benson, Tzvika Hartman, Oren Kapah, Avivit
Levy, Gadi Landau, Ohad Lipsky, Ely Porat, and Steven Skiena.

References

1. K. Abrahamson. Generalized string matching. SIAM J. Comp., 16(6):1039-1051,
1987.

2. A. Amir, A. Aumann, and A. Levy. Pattern matching with address bit errors.
Submitted for publication, 2006.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Asynchronous Pattern Matching 9

A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena,
and U. Vishne. Pattern matching with address errors: rearrangement distances.
In Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1221-1229, 2006.

A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching.
Information and Computation, 181(1):57-74, 2003.

A. Amir, T. Hartman, O. Kapah, and A. Levy. Interchange and weighted-
interchange rearrangement distances in strings. submitted for publication, 2006.
A. Amir, M. Lewenstein, and E. Porat. Approximate swapped matching. Infor-
mation Processing Letters, 83(1):33-39, 2002.

A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with
k mismatches. J. Algorithms, 2004.

V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM J. on Discrete
Mathematics, 11:221-240, 1998.

M. A. Bender, D. Ge, S. He, H. Hu, R. Y. Pinter, S. Skiena, and F. Swidan.
Improved bounds on sorting with length-weighted reversals. In Proc. 15th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 912-921, 2004.

M. A. Bender, D. Ge, S. He, H. Hu, R. Y. Pinter, and F. Swidan. Sorting by
length-weighted reversals: Dealing with signs and circularity. In Proc. 15th Annual
Symposium on Combinatorial Pattern Matching (CPM), volume 3109 of LNCS,
pages 32—46. Springer, 2004.

P. Berman and S. Hannenhalli. Fast sorting by reversal. In D.S. Hirschberg
and E.W. Myers, editors, Proc. 8th Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 1075 of LNCS, pages 168-185. Springer, 1996.

A. Carpara. Sorting by reversals is difficult. In Proc. 1st Annual Intl. Conf. on
Research in Computational Biology (RECOMB), pages 75-83. ACM Press, 1997.
D. A. Christie. Sorting by block-interchanges. Information Processing Letters,
60:165-169, 1996.

R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with
errors and don’t cares. In Proc. 36th annual ACM Symposium on the Theory of
Computing (STOC), pages 91-100. ACM Press, 2004.

R. Cole and R. Hariharan. Approximate string matching: A faster simpler al-
gorithm. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 463-472, 1998.

P. Ferragina and R. Grossi. Fast incremental text editing. Proc. 7th ACM-SIAM
Symposium on Discrete Algorithms, pages 531-540, 1995.

M.J. Fischer and M.S. Paterson. String matching and other products. Complezity
of Computation, R.M. Karp (editor), STAM-AMS Proceedings, 7:113-125, 1974.
Z. Galil and R. Giancarlo. Improved string matching with k mismatches. SIGACT
News, 17(4):52-54, 1986.

M. Gu, M. Farach, and R. Beigel. An efficient algorithm for dynamic text indexing.
Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 697—-704,
1994.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kauffmann, 3rd edition, 2002.

H. Karloff. Fast algorithms for approximately counting mismatches. Information
Processing Letters, 48(2):53-60, 1993.

10

22

23.

24.

25.

26.

A. Amir

. R. Karp, R. Miller, and A. Rosenberg. Rapid identification of repeated patterns
in strings, arrays and trees. Symposium on the Theory of Computing, 4:125-136,
1972.

G. M. Landau and U. Vishkin. Efficient string matching with & mismatches. The-
oretical Computer Science, 43:239-249, 1986.

V. 1. Levenshtein. Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl., 10:707-710, 1966.

R. Lowrance and R. A. Wagner. An extension of the string-to-string correction
problem. J. of the ACM, pages 177-183, 1975.

S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm. Proc. 37th FOCS, pages 320-328, 1996.

SNP and Haplotype Analysis — Algorithms and
Applications

Eran Halperin

International Computer Science Institute, Berkeley, CA, 94709
heran@icsi.berkeley.edu

Abstract. The recent release of the Haplotype Mapping project (Na-
ture, Oct. 26, 2005 - see also, e.g., NY Times, Oct. 27), and the rapid
reduction in genotyping costs open new directions and opportunities in
the study of complex genetic disease such as cancer or Alzheimer’s dis-
ease. The datasets collected for these studies are DNA sequences, with
some noise and ambiguous information.

In this talk T will discuss some of the algorithmic issues of disam-
biguating these DNA sequences, and the current and potential impact of
these algorithms on genetics and medicine. In particular, I will discuss
some of the problems in the field, such as genotype phasing, tag SNP
selection (e.g. feature selection), and population stratification issues (e.g.
clustering).

The talk will be self contained, although some introductory material
for the biological terminology and the HapMap project can be found at
http://www.hapmap.org/whatishapmap.html.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, p. 11, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Identifying Co-referential Names Across Large
Corpora

Levon Lloyd, Andrew Mehler, and Steven Skiena

Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794-4400
{1loyd, mehler, skiena}@cs.sunysb.edu

Abstract. A single logical entity can be referred to by several different
names over a large text corpus. We present our algorithm for finding
all such co-reference sets in a large corpus. Our algorithm involves three
steps: morphological similarity detection, contextual similarity analysis,
and clustering. Finally, we present experimental results on over large
corpus of real news text to analyze the performance our techniques.

1 Introduction

A single logical entity can be referred to by several different names over a large
text corpus. For example, George Bush is often referred to as Bush, Presi-
dent Bush, George W. Bush, or “W” even among polite company. However,
morphologically-similar names like George H.W. Bush can refer to different en-
tities. Accurately identifying the members of the co-reference set for a given
entity is an important problem in text mining and natural language processing.

Our interest in identifying such co-reference sets arises in the context of our
system Lydia [1,2,3, 4], which seeks to build a relational model of people, places,
and things through natural language processing of news sources. Indeed, we
encourage the reader to visit our website (http://www.textmap.com) to study
our analysis of recent news obtained from over 500 daily online news sources. In
particular, we display the members of each of the 100,000 synsets we reconstruct
daily (on a single commodity computer) from the roughly 150,000 entity-names
we currently track.

Our algorithm for identifying co-referring name sets accurately and efficiently
on a large scale involves optimizing our algorithm’s three steps:

1. Morphological Similarity — The scale of our problem makes it infeasible to
explicitly compare each pair of names for possible co-reference. First, we
narrow our search space by identifying candidate pairs for analysis on a
strictly syntactic basis via morphologically-sound hashing techniques.

2. Contextual Similarity — Next, we determine how similar a pair of names is
based on the contexts in which they are used. The scale of our problem makes
it infeasible to explicitly analyze all text references associated with each pair

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 12-23, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Identifying Co-referential Names Across Large Corpora 13

of candidate names. Instead, we propose methods using co-occurrence analy-
sis to other entities to determine the probability that they are co-referent by
context.

3. FEwidence Combination and Clustering — Finally, we combine our measures of
contextual and morphological similarity in order to cluster the names. The
problem of clustering names is complicated by the vast difference in the num-
ber of references between popular and infrequently-used names. The strength
of our contextual evidence is thus substantially weaker for unpopular names.
We propose and evaluate methods for dealing with this problem.

Our problem is different from traditional cross-document co-reference analysis
(see Section 2.1). In that problem, there is a set of documents that all mention
the same name and the difficulty is clustering the documents into sets that are
mentioning the same entity. In our problem, there is a set of documents that
mention the many entities each possibly with multiple names and we want to
cluster the names. This difference, combined with our need to manage the daily
flow and scale of the news presented challenges that separate us in the following
ways: (1) the use of entity co-occurrence lists as the sole feature for contextual
analysis, (2) our high-speed dimension reduction techniques (based on k-means
clustering and graph partitioning algorithms) to improve the quality of our con-
textual analysis and the efficiency of our algorithms, (3) our use of morphological
similarity hashing techniques to avoid the need for pairwise-similarity testing of
all name pairs, and (4) our use of variable precision phonetic hashing in order to
tune the performance of our morphological similarity phase.

The rest of this paper is organized as follows. Section 2 surveys previous
work on this and other problems. Section 3 discusses notions of morphological
similarity, while Section 4 shows how we compute the probability that two names
are co-referential from their respective co-occurrence lists. Section 5 discusses
issues that arise in clustering. Experimental results are given in Section 6. We
present our conclusions in Section 7.

2 Related Work

The problem of identifying co-reference sets has been widely studied in a variety
of different contexts. In this section, we survey related work.

We now describe work on three related problems in the subsections below,
namely, cross-document and in-document co-reference resolution in natural lan-
guage processing and record linkage in databases.

2.1 Cross Document Co-reference Resolution

The complementary problem of cross-document co-reference has been examined
fairly extensively.

Bagga and Baldwin [5] present an algorithm which extracts each sentence
in each document that contains an ambiguous name and forms a summary of
the document with respect to the entity. They then use the vector space model

14 L. Lloyd, A. Mehler, and S. Skiena

to compute the similarity of two such summaries. If the similarity of the two
documents is above a threshold, then they consider the two documents to be
referring the same person. They concluded that good results could be achieved by
looking at the context surrounding the occurrences of the name and comparing
documents using techniques from information retrieval.

Mann and Yarowsky [6] present a partially supervised algorithm for this prob-
lem. The algorithm takes as input either a small set of seed tuples for each of
a small set of personal attributes from which it generates extraction patterns
or a set of hand-crafted extractions for each of the personal attributes. Next, it
uses these values along with other contextual clues as the feature vector for each
document before using bottom-up centroid agglomerative clustering.

Gooi and Allan [7] study statistical techniques for cross-document co-reference
resolution. Like Bagga and Baldwin, they use snippets of text around each men-
tion of the ambiguous name. They compare agglomerative clustering, repeatedly
merging the closest pair of clusters, with incremental clustering, either adding
each point to an existing cluster or starting a new singleton cluster, and KL-
divergence as a distance function with cosine similarity. They conclude that
agglomerative clustering performs better than incremental clustering, however
incremental clustering is much more time efficient. They also conclude that co-
sine similarity performs better using KL-divergence.

2.2 Within Document Co-reference Resolution

The natural language processing community has extensively studied the problem
of within document co-reference resolution, finding chains of noun phrases that
refer to the same things. For example, in a news article, Dick Cheney may later
be referred to as Vice President, he, or Mr. Cheney.

Ng and Cardie [8] present a supervised machine learning-based algorithm for
within document co-reference resolution. They use a decision tree classifier to
classify each pair of noun phrases in a document as either co-referring or not
and a clustering algorithm to resolve conflicting classifications. They experiment
with different feature sets, clustering algorithms, and training set selection algo-
rithms. They conclude that linking a proper noun phrase to its most probable
previously occurring co-referring phrase is a better way of clustering, that a
training set selection algorithm that is designed for this clustering algorithm
is superior, and while adding features can be helpful, too many can degrade
performance.

Bean and Riloff [9] present an unsupervised approach to co-reference reso-
lution that uses contextual role knowledge to determine if two noun phrases
co-refer. First they identify easy-to-resolve co-referring pairs and use them as
training data. Information extraction patterns are then used to generate in-
formation about the role each noun phrase plays in the text. The information
extracted from the training data is used to help resolve the other pairs in the
corpus. They show that this phase increases recall substantially with just a slight
decrease in precision.

Identifying Co-referential Names Across Large Corpora 15

2.3 Record Linkage

Our co-reference set identification problem is similar to the record linkage prob-
lem from data mining. The problem arises when there is no shared, error-free
key field to join on across databases. Consider two tables containing informa-
tion about people from two different databases. Even if both databases used
the person’s name and address as the primary key, conventions concerning ab-
breviations and word usage may differ, and typos and misspellings may appear
in either field. The goal is to identify which records correspond to the same
entities.

Hernandez and Stolfo [10] present two different techniques for large databases.
The first approach sorts the data on some key and only considers two records for
a merge if they are in a small neighborhood of each other. The second clusters
the records in such a way that two records will be in the same cluster if they
are potentially referring to the same entity. Finally, they propose taking the
transitive closure of independent runs of the above algorithms, with independent
key fields, as the final merge. They show that this multi-pass algorithm is superior
to all the other algorithms that they consider.

Cohen and Richman [11] consider two problems: (1) taking in a pair of lists
of names and determining which pairs of names in the different lists are the
same and (2) taking in a single list of names and partitioning them into clusters
that refer to the same entity. They propose adaptive learning-based matching
and clustering methods to solve either of these problems. Their feature vector
includes whether one string is a substring of the other and the edit distance
between the two strings.

3 Morphological Similarity

With hundreds of thousands of names occurring in a large corpus, it is intractable
to compare every pair as potentially co-referential. Further, most of these com-
parisons are clearly spurious, and thus would increase the possibility of false
positives. We propose that most pairs of co-referential names result from the
following set of morphological transformations:

— Subsequence Similarity — Taking a string subsequence of a name is one way
of generating aliases of that name. For example, Ford Motor Co. is often
referred to as Ford and George W. Bush is also called George Bush. To
identify these pairs, we examine all 2™ possible string subsequences of each
n-word name, hashing the name on each of its subsequences. Note that n,
the number of words in a name, is bounded by about 10. Any subsequence
matching another name implies potential morphological compatibility.

— Pronunciation Similarity — The Metaphone [12] algorithm returns a hash
code of a word such that two words share the same hash code if they have sim-
ilar English pronunciations. Here we say that two names are morphologically-
compatible if they have the same metaphone hash code. Metaphone is

16 L. Lloyd, A. Mehler, and S. Skiena

useful in identifying different spellings of foreign language names (e.g. Vic-
tor Yanukovich and Viktor Yanukovych) as possibly co-referential. In Sec-
tion 3.1, we detail our methods for tuning the performance of this aspect of
morphological similarity using variable precision phonetic hashing.

— Stemming — We use a Porter stemmer [13] to stem each word of each name
and use the stem as a hash code for each name. A hash code collision means
that two names have morphologically-compatible names. Stemming can be
used to identify pairs like New York Yankee and New York Yankees.

— Abbreviations — If one name is an abbreviation of another, then we say that
they are morphologically compatible. For example JFK and John F. Kennedy
are both co-referential with John Fitzgerald Kennedy. To find all names that
are abbreviations of an name, we check if any of the 2™ possible abbreviations
of the name’s n-words are also in our corpus.

We observe that there is a notion of degree of morphological similarity. For
example, George Bush is more likely to be co-referential with George W. Bush
than U.S. is with Assistant U.S. Attorney Richard Convertino. For each of our
notions of morphological similarity we have a different measure of the degree of
similarity. For example, for pronunciation similarity, we model the generation of
aliases as a stochastic “typing” process where the probability of a mis-type is a
constant. Then we compute the probability that one name was “typed-in” when
the other was intended.

3.1 Variable Precision Phonetic Hashing

Several (e.g. [12,14,15]) phonetic hashing schemes have been developed to work
well on a specific data set or for specific performance levels. No methods ex-
ist that allow the hashing scheme to be parameterized to give different preci-
sion/recall tradeoffs. In this section we investigate phonetic hashing schemes that
have an adjustable parameter giving a range of operating points with different
precision/recall tradeoffs.

Given a query string, we envision a sequence of transformations from the query
string to an empty or null string, where each transformation is a new version of
the string that has had some tokenization or weakening applied to it. We can
model the space of transformations on the universe of strings as a graph. For
example the name "Wright’, is shown in Figure 1, with a possible transformation
sequence.

The weight of each change is determined by how drastic it is. So the distance
from "Writ’ to 'Rit’ should be relatively small when compared with the distance
from ’Rt’ to 'R’. This tokenization path gives us different versions of the query
name to use in different tolerances of the hashing function. We also see that the
path for the name ’Rite’ eventually joins the path of "Wright’. The name "Reston’
similarly joins the path, but lower down; suggesting that 'Rite’ and "Wright’ are
closer to each other then to 'Reston’.

A particular tokenizer in this scheme specifies a set of n-gram substitution
rules, along with weights for the rules. The rules are applied in a lowest cost rule

Identifying Co-referential Names Across Large Corpora 17

Reston — Restn ~ Rst Y\,
Wright — Writ — Rit - Rt - R —
Rite

Fig. 1. Tokenization Path of the Name "Wright’

first order. An example set of rules that could have generated Figure 1 is shown
below. This table says the cheapest rule is substituting a ’t’ for ’ght’. The next
cheapest is substituting an 'r’ for 'wr’ only if at the start of a query. Finally
there are three deletion rules. The vowel deletion is considered less destructive,
and is given a lower weight then the consonant deletion.

— ght — t;0.2

— wr — 1;0.3
(alefilofu) — ;1
— (tlr) =35

To complete the definition of the hash function we must specify how to select
the point on the tokenization path to operate at. Among the many candidates
for these scoring methods, our experimentation showed that selecting the code
that is a fixed distance from the null string works best.

Table 1 shows how we can vary the precision and recall of our hashing algo-
rithm to get different tradeoffs. For a hand-created set of names extracted from
our test set (see Section 6), we measured the precision and recall of our hashing
algorithm at a range of its operating points. For comparison, we also show the
precision and recall of three other phonetic hashing algorithms. It shows how
we can use our algorithm to dial in the precision and recall of our notion of
pronunciation similarity.

Table 1. Precision and Recall for our Variable Precision Phonetic Hashing and fixed
precision hashing

Code Weight Precision Recall

0 0.002 1

120 0.150 0.909
121 0.139 0.818
141 0.157 0.727
146 0.293 0.636
167 0.360 0.545
172 0.442 0.454
187 0.662 0.363
229 1.000 0.090

Metaphone 0.715 0.732
Soundex 0.468 0.797
NYSIIS 0.814 0.672

18 L. Lloyd, A. Mehler, and S. Skiena

4 Contextual Similarity

Our mental model of where an entity fits into the world depends largely upon
how it relates to other entities.

We predict that the co-occurrences associated with two co-referential names
(say Martin Luther King and MLK) would be far more similar than those of
morphologically-similar but not co-referential pairs (say Martin Luther King
and Martin Luther). Thus we use the vector of co-occurrence counts for each
name as our feature space for contextual similarity.

We identified two primary technical issues in determining contextual similarity
using this feature space: (1) dimension reduction and (2) functions for computing
the similarity of two co-occurrence lists. Each of these will be described in the
following subsections.

4.1 Dimension Reduction

In the experimental run of 88, 097 newspaper days of text we used throughout our
experiments (details in Section 6), we encountered 174, 191 different names that
occurred more than 5 times. This implies an extremely sparse, high-dimensional
feature space — large because each additional entity name represents a new di-
mension, and sparse because a typical entity only interacts with a few hundred
or so other entities even in a large text corpus.

Our experiments show that simple techniques which hunted for identical terms
among the 100 or so most significant entries on each co-occurrence list failed,
because the most significantly co-occurring terms for an name were highly unsta-
ble, particularly for low frequency names. Much more consistent were “themes”
of co-occurring terms. In other words, while the most significant associations of
George Bush and “W” might have relatively few names in common, both will be
strongly associated with “Republican” and “Texas” themes.

Dimension-reduction techniques provide a way to capture such themes, and
can improve both recognition accuracy and the computational efficiency of co-
reference set construction. We examined two different dimension-reduction tech-
niques based on creating crude clusters of names, then project our co-occurrence
lists onto this smaller space.

— K-means clustering — This widely-used clustering method is simple and per-
forms well in practice. Beginning with k randomly selected names as initial
cluster centroids, we assign each name to its closest centroid (using cosine
similarity of co-occurrence lists) and recompute centroids. After repeating
for a given number of iterations (5, in our case) we assign each name to its
closest centroid and take this as our final clustering.

— Graph partitioning — The problem of graph partitioning seeks to partition
the vertices of a graph into a small number of large components by cutting a
small number of edges. Such components in a graph of co-occurrences should
correspond to “themes”, subsets of terms which more strongly associate with
themselves than the world at large. Thus we propose graph partitioning as a

Identifying Co-referential Names Across Large Corpora 19

potential dimension reduction technique for such relational data — the names
in each component will collapse to a single dimension.

Although graph partitioning is NP-complete [16], reasonable heuristics ex-
ist. In particular, we used METIS[17], a well-known program for efficiently
partitioning large weighted graphs into k£ high-weight subgraphs, with k be-
ing a user-specified parameter. Our graph contains a node for every name
and an edge between every pair of nodes (z,y) if they co-occur with each
other at least once. The weight assigned to each edge is the cosine similarity
between the co-occurrence lists of z and y.

4.2 Measuring Contextual Similarity

Given two names, with their co-occurrence lists projected onto our reduced di-
mensional space, we now want a measure of how similar they are. We consider
two different approaches: (1) they can be viewed as probability distributions and
be compared by KL-divergence or (2) they can be viewed as vectors and com-
pared by the cosine of the angle between the vectors. We detail each of these
potential measures here.

KL-Divergence. The KL-Divergence is an information theoretic measure of
the dissimilarity between two probability distributions. Given two distributions,
the KL-Divergence of them is defined by

B o p(z)
KL(p,q) —;{p(Nog.)

To use this measure, we turn each co-occurrence list into a probability distri-
bution for each name 7,

number of co-occurences between i and j

pi(j) =

As a discounting method for probability-0 pairs, we do linear smoothing of all
probabilities with the background distribution setting

total number of co-occurrences for i

pi(4) = api(4) + (1 —)bg(j)

where .)
total occurrences of names in cluster j

bg(j) =
9(7) total number of entity occurrences in corpus

Cosine Similarity. A standard way of comparing contexts views the two con-
texts as vectors in a high dimensional space and computes the cosine of the angle
between them. [5] proposed this technique for the similar problem of personal
name disambiguation. We use the term frequency-inverse document frequency
of each vector position, we weight each term in the vector by the inverse of the
number of occurrences it has in the corpus. Letting N be the number of sentences
in the corpus, our score is

20 L. Lloyd, A. Mehler, and S. Skiena

k
d(z,y) =Y jps(i) - jpy(i)
=0

where jp, (i) the number of co-occurrences between i and x, weighted by log(NN/
number of occurrences of i), and

s JD2(1)
IPLt) = .
@ = ipal

5 Issues in Clustering

Now that we know which pairs of names are morphologically-similar and their
degrees of morphological and contextual similarity, we need: (1) a way of com-
bining morphological and contextual similarities into a single probability that
two names are co-referential and (2) a method to cluster names into co-reference
sets. We discuss each problem below.

5.1 Combining Notions of Similarity

For each pair of morphologically-related names, we have measures of their mor-
phological and contextual similarities. We need a way to combine them into a
meaningful probability that the two names are co-referential.

For each measure of contextual similarity and for edit distance, we computed
the precision curve on our experimental corpus (see Section 6). Since the preci-
sion at a measure of similarity is the probability that a pair from the test set with
this amount of similarity were co-referential, we use these curves to turn each of
our notions of similarity into a probability. Assuming that these two probabili-
ties are independent, we now can compute the probability that these two names
are co-referential by multiplying the probabilities given by their morphological
and contextual similarities.

5.2 Clustering Algorithms

Once we have probabilities associated with each pair of morphologically related
names, we need to group them into co-reference sets. Because our system must
be able to handle large numbers of names, we must be careful of what kind of
clustering algorithm we choose. We experimented with two algorithms:

— Single link — Here we merge the clusters that two names are in if the proba-
bility that they are co-referential is above a threshold.

— Awerage link — Our algorithm merges two clusters if the weighted average
probability between names in each of the clusters is above a threshold.

6 Experimental Results

In order to optimize various parameters, decide which methods work best, and
verify our techniques, we ran a set of experiments against the same test set that

Identifying Co-referential Names Across Large Corpora 21

was used to produce the precision curves described in section 5.1. Each of these
experiments is described below.

All of the experiments in this paper where conducted on a test set of 88,097
newspaper-days worth of text, partitioned among 604 distinct publications.
These were taken from spidering that was performed between April 11, 2005
and November 5, 2005. We used a hand-crafted set of roughly 320 co-reference
sets from the entities in this corpus.

In Section 6.1, precision is given by tpffp, recall by tpfffn, and f-score by

Lt . where tp = true positives, fp = false positives, and fn =
apt+(l-a)y
false negatives.

In Section 6.2 these measures are given by the B-cubed algorithm introduced
in [5]. For each name

. intersection of propsed set and true set

Precisio
recision =

|Iproposed set||

Recall — |lintersection of proposed set and true set||
B |[true set]]

and overall precision and recall are the averages of these values.

6.1 Optimizing Contextual Similarity Measure

Optimizing our contextual similarity phase involves the proper choice of (1) di-
mension reduction algorithm, (2) number of dimensions, and (3) contextual simi-
larity measure. For both of the dimension reduction algorithms(k-means, METIS)
and both of the distance measures(KL-Divergence, Cosine similarity), we recorded
the peak F-score as a function of number of dimensions from 10 to 290.

Figures 2 shows this plot. It shows that while the peak performance of all
four combinations is to be comparable, KL-Divergence with METIS dimension

Peak F-score

Cosine, K-means b
Cosine, METIS -------
KL-Divergence, K-means --------

K‘L»Dlvergence, ME‘TIS

L L
50 100 150 200 250
Number of Dimensions

Fig. 2. Number of Clusters vs. Peak F-score for our dimension reduction algorithms
and distance measures

22 L. Lloyd, A. Mehler, and S. Skiena

Precision/Recall/F-score

03 04 05 06 07 08 09 1 03 04 05 06 07 08 09 1
Probability Threshold Probability Threshold

(a) Single-link clustering (b) Average-link clustering

Fig. 3. Threshold vs. Precision, Recall, and F-score for our clustering algorithms

reduction is to be the most robust to changes in k. For the rest of the analysis
in this paper, we used KL-divergence, METIS dimension reduction, and 150
dimensions.

6.2 Clustering Methods

The first clustering algorithm that we tried was simple single link clustering.
Figure 3(a) shows that it has decent peak performance, but is not very robust
to the setting of the threshold. Further, manual evaluation of the clusters that
are produced shows that it tends to create very long clusters, putting many
things into the same cluster that should not even be considered. For example,
the sequence George Bush — Bush — Bush-Cheney — Cheney — Dick Cheney
leads to George Bush and Dick Cheney being called co-referential.

The next clustering algorithm that we tried was weighted-average link.
Figure 3(b) shows that this has slightly better peak performance than single-link
clustering, but is much more robust in the setting of the threshold.

7 Conclusion

In this paper we present an algorithm to find sets of co-referential names. We
introduce the idea of morphological similarity, the notion that two names are
potentially co-referential based on the text that comprises the name. Then we
discuss the issues surrounding computing the contextual similarity of two names
and give two different measures. Clustering names given their morphological and
contextual similarities was discussed and we presented experimental results for
our system.

References
1. Lloyd, L., Kechagias, D., Skiena, S.: Lydia: A system for large-scale news analysis.

In: String Processing and Information Retrieval (SPIRE 2005). Volume Lecture
Notes in Computer Science, 3772. (2005) 161-166

10.

11.

12.

13.

14.

15.

16.

17.

Identifying Co-referential Names Across Large Corpora 23

Lloyd, L., Kaulgud, P., Skiena, S.: Newspapers vs. blogs: Who gets the scoop? In:
Computational Approaches to Analyzing Weblogs (AAAI-CAAW 2006). Volume
AAAT Press, Technical Report SS-06-03. (2006) 117-124

Kil, J., Lloyd, L., Skiena, S.: Question answering with lydia. 14th Text REtrieval
Conference (TREC 2005) (2005)

. Mehler, A., Bao, Y., Li, X., Wang, Y., Skiena, S.: Spatial analysis of news sources.

submitted for publication (2006)

Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vec-
tor space model. In Boitet, C., Whitelock, P., eds.: Proceedings of the Thirty-Sixth
Annual Meeting of the Association for Computational Linguistics and Seventeenth
International Conference on Computational Linguistics, San Francisco, California,
Morgan Kaufmann Publishers (1998) 79-85

Mann, G., D.Yarowsky: Unsupervised personal name disambiguation. In: CoNLL,
Edmonton, Alberta, Canada (2003) 33-40

Gooi, C., Allan, J.: Cross-document coreference on a large scale corpus. In: Human
Language Technology Conf. North American Chapter Association for Computa-
tional Linguistics, Boston, Massachusetts, USA (2004) 9-16

Ng, V., Cardie, C.: Improving machine learning approaches to coreference resolu-
tion. In: 40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA (2002) 104-111

Bean, D., Riloff, E.: Unsupervised learning of contextual role knowledge for corefer-
ence resolution. In: Human Language Technology Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, Boston, Massa-
chusetts, USA (2004) 297-304

Hernandez, M., Stolfo, S.: The merge/purge problem for large databases. In: Pro-
ceedings of the 1995 ACM SIGMOD International Conference on the Management
of Data, San Jose, California, USA (1995) 127-138

Cohen, W., Richman, J.: Learning to match and cluster large high-dimensional data
sets for data integration. In: Eighth ACM SIGKDD Conf. Knowledge Discovery
and Data Mining. (2002) 475-480

Philips, L.: Hanging on the Metaphone. Computer Language 7(12) (1990) 39-43
Porter, M.: An algorithm for suffix stripping. http://www.tartarus.org/~martin/
PorterStemmer/def.txt (1980)

Taft, R.: Name search techniques. New York State Identification and Intelligence
Systems, Special Report No. 1, Albany, New York. (1970)

Borgman, C., Siegfried, S.: Getty’s synoname and its cousins: A survey of appli-
cations of personal name-matching algorithms. JASIS 43(7) (1992) 459-476
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the theory
of NP-completeness. W. H. Freeman, San Francisco (1979)

Karypis, G., Kumar, V.: METIS: A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices. http://www-users.cs.umn.edu/ karypis/metis (2003)

Adaptive Searching in Succinctly Encoded
Binary Relations and Tree-Structured
Documents

Jérémy Barbay', Alexander Golynski!, J. Tan Munro!, and S. Srinivasa Rao?

! David R. Cheriton School of Computer Science
University of Waterloo, Canada
2 Computational Logic and Algorithms group
IT University of Copenhagen, Denmark

Abstract. The most heavily used methods to answer conjunctive
queries on binary relations (such as the one associating keywords with
web pages) are based on inverted lists stored in sorted arrays and use
variants of binary search. We show that a succinct representation of the
binary relation permits much better results, while using space within a
lower order term of the optimal. We apply our results not only to conjunc-
tive queries on binary relations, but also to queries on semi-structured
documents such as XML documents or file-system indexes, using a vari-
ant of an adaptive algorithm used to solve conjunctive queries on binary
relations.

Keywords: conjunctive queries, intersection problem, succinct data
structures, labeled trees, multi-labeled trees.

1 Introduction

Consider the task of a search engine answering conjunctive queries: given a set
of keywords, it must return a list of references to the objects relevant to all
those keywords. These objects can be web-pages as in the case of a web search
engine like Google, or documents as in a search engine on a file system, or any
kind of data searched by keywords in general. Rather than roam the set of all
objects (which is usually huge — think about the set of web-pages indexed by
Google), a good search engine uses a precomputed index, which represents the
binary relation between the space of objects {1,...,n} = [n] and the space of
admissible keywords {1,...,0} = [o], so that it can be easily searched.

Usually, such an index is coded as a set of sorted arrays, so that the answer
to conjunctive queries is the intersection of those arrays. This intersection can
then be computed in time linear in the sum of the sizes of the array, but several
adaptive algorithms have been studied for the easier case where a small num-
ber of comparisons permits to check the result, with much better results than
linear [2,3,5,6]. These intersection algorithms are all based on variants of the
binary search algorithm: as the cost of a search is logarithmic in the size of the

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 24-35, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adaptive Searching in Succinctly Encoded Binary Relations 25

array, this impacts on their complexity, in particular on “easy” instances where
the intersection is empty or where only a few comparisons are sufficient to check
the result of the intersection.

Our results are threefold:

— First, observing that the use of inverted lists in sorted arrays is far from
being a mandatory step to compute the intersection, we consider instead
succinct data structures to encode the binary relation, which also permits
much faster searches. We give two representations (Theorem 1) for binary
relations associating n objects with o labels in ¢ pairs from [n]x[o]. Each
of these representations uses t(lgo + o(lg J)) bits, and supports queries in
time O(lglgo) or better (depending on the operator and on the encoding),
thus generalizing the results from Golynski et al. [9] on strings on large
alphabets. These results can be directly applied to the intersection problem
(Theorem 3), to improve the time complexity of the algorithm from Barbay
and Kenyon [3], and thus to reduce the time required to answer a conjunctive
query.

— Second, observing that a labeled tree is simply a tree in which each node is
associated with a label through a binary relation, we give a representation
for labeled trees (Theorem 2). This uses n(lgo + o(lg o)) bits and supports
both structure-based navigation operators in constant time and label-based
search operators in time O(lglgo) or better, improving on the space used
by the solutions from both Geary et al. [8] and Ferragina et al. [7] on labeled
trees. These results can be immediately generalized to multi-labeled trees
(such as XML documents or file-system indexes) where nodes are associated
with zero or more labels in ¢ pairs (rather than only n pairs in labeled trees),
giving a representation (Corollary 1) which uses ¢(lgo + o(lg o)) bits and
supports the same operators in the same time.

— Third, observing the similarity between conjunctive queries and unordered
path-subset queries on labeled and multi-labeled trees, we prove tight up-
per (Theorem 4) and lower (Theorem 5) bounds on the complexity of any
randomized algorithm solving these queries, hence extending the results of
Barbay and Kenyon on the intersection problem [3] to unordered path-subset
queries on multi-labeled trees.

All our results concerning the running time of operators and algorithms are
expressed in the RAM model, where words of size O(lg(max{n,o})) can be
accessed and processed in constant time.

The paper is organized as follows. In Section 2, we present our succinct data
structures for the three objects considered: binary relations in Section 2.1, la-
beled trees in Section 2.2, and multi-labeled trees in Section 2.3. The encoding
of binary relations and the encoding of labeled trees are combined to encode
multi-labeled trees. We describe in Section 3 the algorithms that search the
objects efficiently using those data structures: the adaptive algorithm for the
intersection using our encoding of binary relations in Section 3.1, and our new
adaptive algorithm for searching multi-labeled trees in Section 3.2. We conclude
in Section 4 with some perspectives on future work.

26 J. Barbay et al.

2 Succinct Indexes

2.1 Binary Relations

Consider a binary relation R between an ordered set of n objects and an ordered
set of o labels. Let ¢ denote the cardinality of R, i.e. the number of pairs (object,
label) that are in R. In the context in which objects are references to web-pages,
and labels are keywords associated with the web-pages, such relations are used
to answer conjunctive queries, i.e. for a given set of keywords, to return all pages
that are associated with all the keywords in the set. Typically, such a relation is
encoded as a collection of postings lists, in which each list associates a sorted list
of web pages (objects) to a keyword (label), which can be intersected [2, 3,5, 6]
to answer conjunctive queries.

Let « be a label from [o], © be an object from [n], and r be an integer. We
propose a succinct encoding of the relation R that takes asymptotically minimal
space and supports the following operators:

— label rank(a,x), the number of objects labeled « preceding ;

— label select(a,r), the r-th object labeled «, if any, or co otherwise;

— label nb(a), the number of objects labeled «;

— object rank(z, @), the number of labels associated with object = preceding
label «;

— object select(x,r), the r-th label associated with object x, if any, or co
otherwise;

— object nb(z), the number of labels associated with object x;

— table access(z, a), checks whether object x is associated with label a.

The naive encoding of such lists as sorted arrays uses tlgn + olgt bits of
space and supports label select(a,r) in constant time, but label rank(a, x)
requires time logarithmic in the number of objects associated with label . It is
not clear how to support object rank(z,) and object select(x,r) with such
an encoding. Each posting list can also be represented by a binary string of length
n, and encoded using Clark and Munro’s [4] encoding to support the operators
label rank and label select in constant time. However, this representation
uses a total of on + o(on) bits, which is too much in practice, especially when
the number of pairs ¢ is much smaller than on.

The operators label rank and label select are extensions of the operators
string rank and string select defined by Golynski et al. [9], who only con-
sidered the case of strings, or in other words, the case where each object (i.e.
position in a string) is associated with exactly one label (i.e. a character from
an alphabet of size o, that occurs at the given position in the string). We sup-
port the label rank and label select operators in the same time as theirs.
The operators object rank, object select are extensions of string access:
string access(z) gives the label associated with x (i.e., the character at posi-
tion), the operators object rank and object select are used to navigate in
the set of labels that are associated with a given object. The techniques from
Golynski et al. are not directly applicable to the case of binary relations, however

Adaptive Searching in Succinctly Encoded Binary Relations 27

we use similar ideas and obtain an efficient implementation of the new operators
object rank, object select, label nb, object nb and table access. In what
follows, we use two encodings described by Golynski et al.: select encoding and
access encoding, and extend them to binary relations.

Theorem 1. Consider a binary relation on [n] x [o] of cardinality t. Assume
that each object is associated with at least one label and each label is associated
with at last one object. Then there are two encodings (named label encoding
and object encoding), each using t(lgo +o(lg U)) bits, that support the defined
operators with the following run-times:

label object
label rank(w,x) O(lglgo) O(lglgolglglgo)
label select(a,r) o) O(lglgo)
label nb(«) 0) o(1)
object rank(z,a) O((Iglgo)?) O(lglgo)
object select(x,r) O(lglgo) o(1)
object nb(x) o) o)
table access(a,z) O(lglgo) O(lglgo)

where x € [n], « € [o], and r is a positive integer.

Proof (sketch). Without loss of generality, we assume that o <n: the construction
is similar in the symmetric case. We reduce the problem of encoding a binary
matrix of size oxn to the encoding of n/c matrices of size oxo each, using
the same technique as Golynski et al [9]: we call this step a domain reduction.
Let tj; denote the number of ones in one of the smaller matrix M, and let
the operators row rank, row select, column rank and column select have the
same functionalities as the operators label rank, label select,object rank
and object select respectively, but restricted to the smaller matrices, e.g.
row rank(i,) is defined only for j < o¢. This reduction allows the implemen-
tation of the operators label rank, label select,object rank, object select
using the operators row rank, row select, column rank, column select with an
acceptable space and time overhead.

We represent a boolean matrix M of size o xo by two strings: COLUMNS, on
alphabet [o] and of length ¢/, such that the k-th symbol of COLUMNS corresponds
to the column index of the k-th pair in the row-major order! traversal of M; and
ROWS, a binary string of length ta; + o, such that the number of zeros between
the i-th and the ¢ + 1-st one indicates how many ones are in the ¢-th row of M.
We say that COLUMNS is divided into o parts by ROWS. See the following example:

0100
M= 133? COLUMNS=2, 1,2,3, 1,4, 2
ROWS =0,1,0,0,0,1,0,0,1,0,1
0100

! Row-magjor order lists the elements from the first row, then from the second row,
and so on.

28 J. Barbay et al.

We encode COLUMNS using one of the two encodings from Golynski et al [9]
depending on the preferred time tradeoffs between different operators as men-
tioned in the statement of the theorem. These encodings use tyr(lgo + o(lg o))
bits of space with the following time tradeoffs:

select encoding access encoding

string access O(lglgo) o)
string select o) O(lglgo)
string rank O(lglg o) O(lglgolglglgo)

The vector ROWS can be encoded using any succinct fully indexable dictio-
nary that supports in constant time the operators bin rank and bin select,
the rank and select operators on binary strings introduced by Jacobson [10]
and improved by Clark and Munro [4]. The operators column select(s,j) and
column rank(i, j) are based on searching for occurrences of symbol j in the string
COLUMNS, which is done through the string rank and string select operators
on COLUMNS and bin rank and bin select operators on ROWS. The operator
row select(i,j) corresponds to a call to the string select operator on the
i-th part of COLUMNS.

A naive implementation of the operator row rank(i, j) using a binary search
on the i-th part of COLUMNS takes O(lgx - complexity of string access) time,
where < o is the length of the i-th part of COLUMNS, which is not good enough.
We use a sparsification idea similar to the one introduced by Golynski et al [9],
fixing the parameter z = lg o and encoding every z-th character of the i-th part of
COLUMNS using a y-fast trie (as defined by Willard [13]). This structure supports
the rank operator in the “sparsified” string Y in time O(lglg o) using O(x/z0) =
O(x) bits (which is O(t) for all values of i together). Note that row rank(i, j) €
[z ranky (j), z (ranky (j) + 1)], where ranky is the set rank, which denotes how
many elements in Y are smaller than j. The result of row rank(i,j) can be
computed using a binary search in an interval of size lgo in time O(lglgo -
complexity of string access).

The operator label nb(a) can be done in constant time using ROWS. The
operator object nb(z) can also be done in constant time by maintaining an
additional bit vector similar to ROWS that counts the numbers of occurrences for
each column. The operator table access(i,j) can be computed either as the
difference between row rank(i,j + 1) and row rank(i, j), or equivalently as the
difference between column rank(i + 1,5) and column rank(s,j).

The encoding of COLUMNS uses t(lg o + o(lg o)) bits (summed over all M). The
encodings of y-fast tries and ROWS vectors use O(t + n) bits in total, hence the
total space of t(lgo +o(lg U)) bits for each encoding. O

Note, that the operators described above are “symmetrical” with respect to
interchanging roles of objects and labels, so that we can assume that n > o.
The space used by the above data structure is almost optimal (equal to the
information-theoretical minimum plus a lower order term) under the assumption
that the average number of ones per column is small, namely if ¢/n = oM In
this case the lower bound suggested by information theory, equal to lg ("t”), is

Adaptive Searching in Succinctly Encoded Binary Relations 29

roughly t(lg(no) —lgt + O(1)) = t(lgo — o(lgo)), which is close to the space
used by our encodings, t(lgo + o(lg0)).

2.2 Labeled Trees

An ordinal tree is a rooted tree in which the children of a node are ordered
and specified by their rank. Geary et al. [8] proposed an encoding for ordinal
trees which supports in constant time the following operators, called navigation
operators:

— tree ancestor(z, i), the i-th ancestor of node z for ¢ > 0;

— tree rank,./post(Z), the position of node x in the pre or post order traversal
of the tree;

— tree select, ¢ /post(r), the r-th node in the pre or post order traversal of
the tree;

— tree child(z,1), the i-th child of node z for ¢ > 1;

— tree child rank(x), the number of left siblings of node x;

— tree depth(x), the depth of x (number of edges in the path from root to z);

— tree nbdesc(z), the number of descendants of x;

— tree deg(x), the degree of z, i.e. its number of children.

Consider a set of o labels, and an ordinal tree of n nodes such that each node
is assigned a label: this is a labeled tree [7,8]. Let o be a label from [o] and z
be a node from [n]. We define the following operators on labeled trees, for the
pre-order traversal of the tree:

— labeltree desc(aq, z), the first descendant of = which is labeled a, or oo if
there is none;

— labeltree nbdesc(a, x), the number of descendants of = that are labeled «;

— labeltree anc(a,), the ancestor of x which is labeled a and closest to the
root, or oo if there is none;

In a manner similar to Ferragina et al. [7], we encode the structure of the
tree separately from the labels, but we encode it as the trace of the pre-order
traversal of the tree, and we encode the structure of the tree using Geary et
al.’s [8] encoding for unlabeled trees.

Theorem 2. Consider a labeled tree of n nodes and o labels. There is an en-
coding using n(lgo + o(lg U)) bits that supports in constant time the naviga-
tion operators on the structure of the tree and in time O(lglgo) the operators
labeltree anc, labeltree desc and labeltree nbdesc along with the opera-
tors string rank, string select and string access on the pre-order traversal
of the labels of the tree.

Proof (sketch). Represent the structure of the tree as an ordinal tree encoded
using the encoding for unlabeled ordinal trees defined by Geary et al. [8]: this
takes 2n+ o(n) bits, and supports the navigation operators on the tree structure
in constant time.

30 J. Barbay et al.

The labels are extended by one bit (i.e. to an alphabet of size 20) such that
any node z originally labeled « is now labeled:

— a, if x has no ancestor labeled « (but eventually some descendants);
— af if x has at least one ancestor labeled a.

The sequence of extended labels is encoded in pre-order, using the representa-
tion of Golynski et al. [9] which uses n(lg(20)+0(1g(20))) = n(lgo+o(lg o)) bits
and supports the operators string access, string select and string rank on
the pre-order traversal of the labels of the tree in the times claimed.

The operator labeltree anc(a, x) is supported by checking for the last node
y labeled «, in pre-order before x, which takes time O(lglgo), and checking
that y is an ancestor of x, which takes constant time. The symmetric operator
labeltree desc(a,) is supported by checking for the first node y labeled .. or
af in pre-order after z, which takes time O(lglg o), and checking that y is a de-
scendant of z, which takes constant time. The operator labeltree nbdesc(a, x)
is easily supported via a combination of calls to the navigation operators, and
two calls to the operator string rank. Overall, the encoding uses 2n + o(n) +
n(lgo + o(lgo)) = n(lgo + o(lg o)) bits. O

The information-theoretic lower bound for storing a labeled tree on n nodes
with o labels is asymptotically n(lg o —o(lg)). Hence our encoding, which uses
n(lgo+o(lg o)) bits, differ from this bound by a lower order term in o. Note that
other encodings with similar results can be obtained using the other encodings
proposed by Golynski et al.; we developed here only the most appropriate for
our specific application.

2.3 Multi-labeled Trees

XML documents and file systems can be seen as tree-structured documents,
but the labeled tree model described in the previous section is too restrictive to
represent them, as several labels are associated with each leaf in XML documents,
and several labels are associated with each internal node (folder) or leaf (file)
in a file system. We consider an extension of labeled trees where any number of
labels can be associated with each node.

Definition 1. A multi-labeled tree is an ordinal tree on n nodes together
with a set of o labels, and a set of t pairs from [n] x [o]. The operators are the
same as those on labeled trees: structure-based navigation operators (as defined
by Geary et al. [8]) and label-based operators (as defined in Theorem 2).

The results on binary relations from Section 2.1 combine very easily with the
results on labeled trees from Section 2.2 to give an encoding supporting efficiently
the operators on multi-labeled trees:

Corollary 1. Consider a multi-labeled tree on n nodes and o labels, associated
i t pairs. There is an encoding using t(lgo + o(lg U)) bits and supporting the
same operators as the encoding of Theorem 2 and in the same time.

Adaptive Searching in Succinctly Encoded Binary Relations 31

Proof. The operators supported on labeled trees are extended to multi-labeled
trees by replacing each operator defined on strings [9] by its equivalent on binary
relations as defined in Theorem 1, in the first encoding (named label), which

supports all operators in time O(lglg o) or better. g
1=Music, 2=Class,
Music” 3=Pop, 4=Jazz, 5=Rock. P
(e
“Class” “Pop Jazz” “Pop Rock” {2} {34} {35} 1 2 ---34 ---35

0101---001---001---

Fig. 1. A simplistic exam- Fig.2. The correspond- Fig.3. The correspond-
ple of File System ing Multi-Labeled Tree ing succinct encoding

Figure 1 represents a simplistic view of a personal file system organizing music
files. Figure 2 shows its representation as a multi-labeled tree, where the text
associated with each node is replaced by numbers from the range [1, o|. Figure 3
shows the succinct encoding of this multi-labeled tree: the structure of the ordinal
tree, the string representing the labels in pre-order, and a binary string where
ones separate sequences of zeroes encoding the number of labels associated to
a node. As in Section 2.1, the space used by our structure is optimal under the

assumption that t/n = o°(),

3 Applications

3.1 Efficient Posting Lists

Several algorithms have been proposed for computing the answer to conjunctive
queries on a binary relation, through the intersection of inverted lists in sorted
arrays. The intersection of sorted arrays has been studied from several points of
view, all of which are based on various search methods in sorted arrays: Several
people have studied the intersection of a pair of sorted arrays, Baeza-Yates [1]
being the most recent. Other efforts have been considering the intersection of
a larger number of sorted arrays [2,3,5, 6], measuring the performance of the
algorithms relative to the complexity of the description of a certificate of the
intersection, such as the set of comparisons performed by a non-deterministic
algorithm to check the result of the instance. We refer the reader to Figure 4 for
a simple example, and to the cited papers for more details.

These search methods are limited to a complexity logarithmic in the size of the
array. But the use of inverted lists in sorted arrays is far from being a mandatory
step to computing the intersection. Our implementation for binary relations
described in Section 2.1 permits us to search faster in the list of references

32 J. Barbay et al.

Music — A; 181012151719 — 1 8§ 10 12 15 17 19
Jazz — A4246 9 111320 — 2 4 6 9 11 13 20
Rock — A535 7 14161821 — 3 6 7 14 16 18 21

Fig.4. An example of how a conjunctive query corresponds to the intersection of
sets. A non-deterministic algorithm can check that the intersection is empty in § = 4
comparisons (1 < 2,7 < 8,13 < 14,19 < 20). Barbay and Kenyon'’s algorithm performs
8 < bk searches (1 < 2 <3 <8< 9 < 14 < 15 < 20 < 21). Most intersection
algorithms use variants of binary search in the sorted array. We propose to use the
rank operator on a succinct encoding of the binary relation.

associated with an object, and hence improves the performance of intersection
algorithms.

Theorem 3. Consider a set of objects [n] and a set of labels [o], associated in
t pairs from [n] X [o], and a conjunctive query Q composed of k labels from [o].
There is a deterministic algorithm solving Q in time O(6k1glg o), where § is the
minimum number of operations performed by any non-deterministic algorithm
to check the result of Q.

Proof (sketch). Barbay and Kenyon [3, Theorem 3.3] proposed a deterministic
algorithm for the conjunctive query that uses O(6k) doubling searches. We re-
place the doubling search by a combination of label rank, label select and
label access operators, and the result follows. Suppose that x is initialized as
the first object of [n], and « as the first label of the query. If we introduce the
bogus object oo, which matches all labels and is a successor to all objects, the
algorithm now goes as follows:

1. If x = oo, exit;

2. If k labels are matched, output x, set it to the next object matching «, and
go to 1;
Otherwise, set a to the next label from @), in cyclic order;

3. If z has matches «, go to 2;
Otherwise, set x to the next object matching «, and go to 1. O

3.2 File System Search

We introduce a new type of query to search in labeled and multi-labeled trees,
that corresponds to one of the most natural search query that one can perform
in a file-system.

Definition 2 (Unordered Path-Subset Query). Given a multi-labeled tree
and a set Q of k labels, find the set of nodes x, such that:

1. the rooted path to x contains nodes matching all the labels from Q; and,
2. this path contains no node satisfying (1) other than x.

Adaptive Searching in Succinctly Encoded Binary Relations 33

Such queries are motivated by the search in file systems, where the result cor-
responds to folders or files whose path matches the set of keywords. Multi-labeled
trees associate several keywords with each folder or file (such as the words and
extension composing its name) in an index of the file-system. Using techniques
similar to those used for the intersection problem, we prove the following result:

Theorem 4. Consider a Multi-Labeled Tree of n nodes and o labels, associated
by t pairs. Given an unordered path-subset query composed of k labels, there is an
algorithm solving it which performs O(6k) operator calls in time O(6klglgo),
where 6 is the minimum number of operation performed by a non-deterministic
algorithm to solve the query.

Proof (sketch). Suppose that z is initialized to the root of the tree and that o
is initialized to the first label of the query. If we consider the nodes in pre-order,
and introduce the bogus node oo that matches all labels and is a successor to
all nodes, our algorithm proceeds as follow:

1. If x = oo, exit;

2. If k labels are matched, output z, set it to the next node matching «, and
go to 1; Otherwise, set a to the next label from @ in cyclic order;

3. If z has an ancestor labeled «, go to 2;

4. If x has a descendant labeled «, set it to the first such descendant, and
go to 2; Otherwise, set x to the next node matching «, and go to 1.

This algorithm cycles through the labels in the query set, maintains in z the
lowest node of the current potential match, counts how many labels are currently
matched, and eventually outputs the nodes matching the query.

The pre-order rank of successive nodes pointed to by x is strictly increasing
at each update, so that at any time, all pre-order predecessors of x have been
considered and have been output when adequate. Every k iterations of the loop
the algorithm considered at least as many nodes as a non-deterministic algorithm
would have in a single operation: it takes at most k steps to eliminate as many
potential result nodes as a non-deterministic algorithm, which can “guess” which
operation to perform to eliminate the largest number of potential result nodes.

When the pre-order rank of = reaches its final value, all nodes have been con-
sidered (hence the correctness), and the algorithm has performed 26k operator
calls where a non-deterministic algorithm would have performed at least § (hence
the complexity result). O

We now prove that the number of operator calls performed by the above algo-
rithm is optimal for deterministic algorithms:

Lemma 1. Consider any deterministic algorithm Alg solving unordered path-
subset queries, and 6 > 1, k > 2, n > 6§2k+1)+1, 0 > 2k+1, and t > n.
There is a random distribution D on multi-labeled trees of O(n) objects and O(o)
labels, associated with O(t) pairs, and an unordered path-subset query composed
of k labels which can be solved by a non-deterministic algorithm in at most O(6)
operations on any multi-labeled trees from D, such that Alg performs 2(6k)
operator calls on average to solve instances from D.

34 J. Barbay et al.

Proof (sketch). We define a distribution D on multi-labeled trees with ¢ branches
of 2k + 1 nodes such that any non-deterministic algorithm can show that the
unordered path-subset query composed of labels {1, ..., k} has no match in é op-
erations. We prove the lower bound by showing that no deterministic algorithm
can check that this query has no match in less than 6k operations on average. O

The result on deterministic algorithms from Lemma 1 combines trivially with the
Yao-von Neumann principle [11, 12, 14] to prove a lower bound on the complexity
of any randomized algorithm:

Theorem 5. Consider any randomized algorithm RandAlg solving unordered
path-subset queries, and 6 > 1, n > 6(2k+1)+ 1,k >2,0 >2k+1, and t > n.
There is a Multi-Labeled tree of O(n) nodes and O(c) labels, associated in O(t)
pairs, and an unordered path-subset query composed of k labels which can be
solved by a non-deterministic algorithm in at most O(8) operations, such that
RandAlg performs on average £2(6k) operator calls to answer the query.

The proofs of these results is similar to their counterparts on the intersection
problem [3]. In particular, Theorems 4 and 5 show that a deterministic algorithm
performs as well as any randomized algorithm for unordered path-subset queries,
in terms of the number of operator calls.

4 Conclusion

We considered succinct data structures for binary relations, labeled trees and
multi-labeled trees, and their application to search algorithms in those struc-
tures. Our results are threefold:

— first, we give two succinct encodings for binary relations using asymptotically
optimal space and efficiently supporting in different time trade-offs the rank
and select operators on the rows and columns of the relation;

— second, we give a new representation for labeled trees, that we combine with
binary relations to represent multi-labeled trees;

— Third, we show that those encodings have applications to conjunctive queries
in binary relations and unordered path-subset queries in multi-labeled trees,
such as XML documents or file-system indexes.

Obvious research prospects are to extend the range of operators supported (e.g.
labeled child queries), and to apply similar encodings to other types of queries
(e.g. ordered sub-path, Twig Pattern and XPath queries).

References

1. R. A. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In
Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching
(CPM), volume 3109 of LNCS, pages 400-408. Springer, 2004.

2. J. Barbay. Optimality of randomized algorithms for the intersection problem.
In A. Albrecht, editor, Proceedings of the Symposium on Stochastic Algorithms,
Foundations and Applications (SAGA), volume 2827 / 2003, pages 26—38. Springer-
Verlag Heidelberg, 2003.

10.

11.

12.

13.

14.

Adaptive Searching in Succinctly Encoded Binary Relations 35

J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In
Proceedings of the 13th ACM-SIAM Symposium On Discrete Algorithms (SODA),
pages 390-399, 2002.

D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proceed-
ings of the 7th annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 383-391, Philadelphia, PA, USA, 1996.

E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro. Adaptive set intersections, unions,
and differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 743-752, 2000.

E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro. Experiments on adaptive set
intersections for text retrieval systems. In Proceedings of the 3rd Workshop on
Algorithm Engineering and Experiments, Lecture Notes in Computer Science, pages
5-6, Washington DC, January 2001.

P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled
trees for optimal succinctness, and beyond. In Proc. 46th IEEE Symposium on
Foundations of Computer Science (FOCS ’05), pages 184-196, 2005.

R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor
queries. In Proceedings of the 15th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1-10. Society for Industrial and Applied Mathematics,
2004.

A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets:
a tool for text indexing. In Proceedings of the 17th annual ACM-SIAM symposium
on Discrete algorithm (SODA), pages 368-373, 2006.

G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th
annual Symposium on Foundations of Computer Science (FOCS’89), pages 549—
554, 1989.

J. V. Neumann and O. Morgenstern. Theory of games and economic behavior. 1st
ed. Princeton University Press, 1944.

M. Sion. On general minimax theorems. Pacific Journal of Mathematics, pages
171-176, 1958.

D. E. Willard. Log-logarithmic worst-case range queries are possible in space O(N).
Information Processing Letters, 17(2):81-84, Aug. 1983.

A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In
Proc. 18th IEEE Symposium on Foundations of Computer Science (FOCS), pages
222-227, 1977.

Theoretical and Practical Improvements on the
RMQ-Problem, with Applications to
LCA and LCE

Johannes Fischer and Volker Heun

Institut fiir Informatik der Ludwig-Maximilians-Universitdt Miinchen
Amalienstr. 17, D-80333 Miinchen, Germany
{Johannes.Fischer, Volker.Heun}@bio.ifi.lmu.de

Abstract. The Range-Minimum-Query-Problem is to preprocess an ar-
ray such that the position of the minimum element between two spec-
ified indices can be obtained efficiently. We present a direct algorithm
for the general RMQ-problem with linear preprocessing time and con-
stant query time, without making use of any dynamic data structure. It
consumes less than half of the space that is needed by the method by
Berkman and Vishkin. We use our new algorithm for RMQ to improve
on LCA-computation for binary trees, and further give a constant-time
LCE-algorithm solely based on arrays. Both LCA and LCE have impor-
tant applications, e.g., in computational biology. Experimental studies
show that our new method is almost twice as fast in practice as previ-
ous approaches, and asymptotically slower variants of the constant-time
algorithms perform even better for today’s common problem sizes.

1 Introduction

The problem of finding the lowest common ancestor (LCA) of a pair of nodes
in a tree has attracted much attention in the past three decades, starting with
Aho et al. [1]. It is not only algorithmically beautiful, but also has numerous
applications, most importantly in the area of string processing and computa-
tional biology, where LCA is often used in conjunction with suffix trees. There
are several variants of the problem (see [2]), the most prominent being the one
where the tree is static and known in advance, and there are several queries to be
answered on-line. In this case it makes sense to spend some time on preprocessing
the tree in order to answer future queries faster. In their seminal paper [2], Harel
and Tarjan showed that an intrinsic preprocessing in time linear in the size of the
tree is sufficient to answer LCA-queries in constant time. Their algorithm was
later simplified by Schieber and Vishkin [3], but remained rather complicated.
A major breakthrough in practicable constant-time LCA-computation was
made by Berkman and Vishkin [4], and again, in a simplified presentation, by
Bender et al. [5,6]. The key idea for this algorithm is the connection between
LCA-queries on trees and range minimum queries on arrays (RMQs). Basically,
an RMQ asks for the position of the minimum element between two specified in-
dices, and this problem was shown to be linearly equivalent to the LCA-problem

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 36-48, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Theoretical and Practical Improvements on the RMQ-Problem 37

by Gabow et al. [7], in the sense that both problems can be transformed into each
other in time linear in the size of the input. The reduction from LCA to RMQ
is in fact a reduction to a restricted version of RMQ, where consecutive array
elements differ by exactly 1. The authors give an algorithm for this restricted
version of RMQ, which is then used to answer LCA-queries.

However, RMQs are not only of interest because they can be used to answer
LCA-queries, but have their own right to exist. A recent trend in text indexing
tries to substitute the powerful but rather space-consuming suffiz tree by alter-
native array-based data structures, most prominently the suffix array, discovered
independently by Gonnet et al. [8] and by Manber and Myers [9]. While this data
structure supports string searches in time almost as good as suffix trees, Kasai et
al. [10] and Abouelhoda et al. [11] went one step further and showed that the ad-
dition of another array to the suffix array, namely the LCP-array, is sufficient to
simulate full tree traversals of the suffix tree. It is thus possible to change many
(but not all) algorithms based on suffix trees such that they operate on arrays
only. One important exception to this are algorithms that rely on constant-time
LCA-retrieval, such as computing longest common extensions of strings (LCEs),
and all algorithms based on constant-time LCE-computations.

It is well-known that LCA-queries on the leaves of a suffix tree correspond to
RMQs on the LCP-array. So an algorithm that solves the RMQ-problem would
make it possible to re-formulate many algorithms based on suffix trees and LCA-
retrieval such that they operate on arrays only. Unfortunately, the LCP-array
does not exhibit the nice property that subsequent elements differ by exactly
one, so the algorithm for the restricted RMQ-problem cannot immediately be
used for this purpose. Gabow et al. [7] give an algorithm to reduce the general
RMQ-problem to the LCA-problem by transforming the array into a special kind
of tree. Their method, explained in more detail in Sect. 2.2, has two major draw-
backs: First, it doubles the size of the input, and second, even more importantly,
it relies on dynamic structures (trees) during the preprocessing. This resembles
the suffix-tree/suffix-array duality: It is possible to infer the array from the tree;
nevertheless, direct construction algorithms for the array are well studied.

Our paper overcomes this very dilemma by presenting the first! direct algo-
rithm for the general RMQ-problem with linear preprocessing time and constant
query time, without making use of any dynamic data structure (Sect. 3). It is also
less space-consuming than previous approaches, as it uses only 4n+ O(y/n logn)
words of extra space, a major improvement compared with the 9n+O(y/n log? n)
words plus the space for the tree used by the currently best algorithm. (Both O-
constants are small.) In Sect. 4, we stress the impact of our new method by show-
ing that it leads to improvements in the LCA-computation for binary trees, and
further to the first constant-time LCE-algorithm solely based on arrays. In Sect.
5, we show that our RMQ-method is faster in practice than previous constant-
time approaches (and therefore also the methods from Sect. 4). We will also see
that for today’s common problem sizes it makes more sense to use methods that
answer long queries in constant time, but short queries in time logarithmic in

! By the time of writing we were unaware of another direct algorithm for RMQ [12].

38 J. Fischer and V. Heun

the query length. These asymptotically slower RMQ-algorithms are slightly less
space consuming than the constant-time approaches, and also faster in practice.

2 Definitions and Previous Results

The Range Minimum Query (RMQ) problem is defined as follows: given an
array A[l,n| of elements from a totally ordered set (with order relation “<”),
RMQ (i, j) returns the index of a smallest element in A, j], i.e., RMQ4(¢,7) =
argmingeg;, . ;31 A[k]}. (The subscript A will be omitted if the context is clear.)
The most naive algorithm for this problem searches the array from 7 to j each
time a query is presented, resulting in O(n) query time. As mentioned in the
introduction, we consider the variant where A is first preprocessed in order to
answer future queries faster. Following the notation from [6], we say that an
algorithm with preprocessing time p(n) and query time ¢(n) has complexity
(p(n),q(n)). Thus, the naive method described above would be (O(1),0(n)),
because it requires no preprocessing.

The following definition [13] will be central for both our algorithm and that
of [4].

Definition 1. A Cartesian Tree of an array A[l,r] is a binary tree C(A) whose
root is a minimum element of A, labeled with the position i of this minimum.
The left child of the root is the Cartesian Tree of All,i— 1] if i > I, otherwise it
has no left child. The right child is defined similarly for Ali + 1,7].

Note that C(A) is not necessarily unique if A contains equal elements. To over-
come this problem, we impose a strong total order “<” on A by defining A[i] <
Alj] iff Afi] < A[j], or A[i] = A[j] and i < j. The effect of this definition is just
to consider the ’first” occurrence of equal elements in A as being the ’smallest’.
Defining a Cartesian Tree over A using the <-order gives a unique tree C**(A),
which we call the Canonical Cartesian Tree. Note also that this order results in
unique answers for the RMQ-problem, because the minimum is unique.

In [6] an algorithm for constructing C*"(A) is given as follows. Let C{*"(A) be
the Canonical Cartesian Tree for A[1,i]. Then C{] (A) is obtained by climbing up
from the rightmost leaf of C{*"(A) to the root, thereby finding the position where
Ali 4+ 1] belongs. To be precise, let vy, ..., v be the nodes of the rightmost path
in C{#"(A) with labels I1,. .., [, respectively, where v; is the root and vy, is the
rightmost leaf. Let m be defined such that A[l,,,] < A[i+1] and A[l,,/] > Afi +1]
for all m < m/ < k. To build C{*} (A), create a new node w with label 7+ 1 which
becomes the right child of v,,, and the subtree rooted at v,,+1 becomes the left
child of w. This process inserts each element to the rightmost path exactly once,
and each comparison removes one element from the rightmost path, resulting in
a total O(n) construction time to build C°*"(A).

2.1 An (O(nlogn),O0(1))-Algorithm for RMQ

We briefly present a simple method [6] to answer RMQs in constant time using
O(nlogn) space. This algorithm will be used to answer "long’ RMQs both in our

Theoretical and Practical Improvements on the RMQ-Problem 39

algorithm and that of [4]2. The idea is to precompute all RMQs whose length
is a power of two. For every 1 < i < mn and every 1 < j < |logn| compute
the position of the minimum in the sub-array A[i,i + 2/ — 1] and store the
result in M ¢][j]. Table M occupies O(nlogn) space and can be filled in optimal
time by using the formula M[i][j] = arg minge (as(j—1), mpit-25-1) 1]} LALF] }. To
answer RMQ(1, j), select two overlapping blocks that exactly cover the interval
[i, 7], and return the position where the overall minimum occurs. Precisely, let

= I_lOg(] — Z)J Then RMQ(Z,]) = arg minke{M[Z-][l])M[j,21+1][l]}{A[k]}.
2.2 The (O(n),0(1))-Algorithm for RMQ by Berkman and Vishkin

This section describes the solution to the general RMQ-problem as a combination
of the results obtained in [4] and [7]. We follow the presentation from [6].

+1RMQ is a special case of the RMQ-problem, where consecutive array ele-
ments differ by exactly 1. The solution to the general RMQ-problem given in [4]
(from now on called Berkman-Vishkin algorithm) starts by reducing RMQ to
+1RMQ as follows: given an array A[l,n] to be preprocessed for RMQ, build
C°@(A) as shown above. Then perform a Euler Tour® in this tree, storing the
labels of the visited nodes in an array E[1,2n — 1], and their respective heights
in H[1,2n — 1]. Further, store the position of the first occurrence of A[7] in the
Euler Tour in a representative array R[1,n]. The Cartesian Tree is not needed
anymore once the arrays F, H and R are filled, and can thus be deleted. The
paper then shows that RMQ4 (7, j) = E[£1rRMQg (R][i], R[j])]- Note in particular
the doubling of the input when going from A to H; i.e., H has size n’ := 2n—1.
We now sketch the solution to the +1RMQ-problem.

To solve £1RMQ on H, partition H into blocks of size logQ"/ .4 Define two

arrays A’ and B of size 102;;,, where A’[7] stores the minimum of the ith block

in H, and Bli] stores the position of this minimum in H. Now A’ is prepro-
cessed using the algorithm from Sect. 2.1, occupying O(lf;;, log 102;;,) = O(n)
space. This preprocessing enables out-of-block queries (i.e., queries that span
over several blocks) to be answered in O(1). It remains to show how in-block-
queries are handled. This is done with the so-called Four-Russians-Trick [15]
where one precomputes the answers to all possible queries when the number of
possible instances is sufficiently small. The authors of [6] noted that due to the
+1-property there are only O(\/ n') blocks to be precomputed: we can virtually
subtract the initial value of a block from each element without changing the an-
swers to the RMQs; this enables us to describe a block by a £1-vector of length
21/2logn’ =1 — ((y/n!). For each such block precompute all 5 logQ"' (logQ"l +1) pos-
sible RMQs and store them in a table P of total size O(v/n’ log> n’) = O(n). To

index table P, precompute the type of each block and store it in array T'[1, 102;;,].

2 The original description in [4] used a slightly more complicated algorithm, which is,
however, equivalent to the one presented here.

3 The name “Euler Tour” is derived from the Euler Tour-technique [14], and is not to
be confused with a Eulerian circuit.

4 For a simpler presentation we omit floors and ceilings from now on.

40 J. Fischer and V. Heun

The block type is simply the binary number obtained by comparing subsequent
elements in the block, writing a 0 at position ¢ if H[i +1] = H[i] + 1 and 1
otherwise. Table 1 summarizes the tables needed for the algorithm and their
sizes (ignore the last column for now).

Now, to answer RMQ(4, j), if ¢ and j occur in different blocks, compute (1) the
minimum from ¢ to the end of ’s block using arrays 7" and P, (2) the minimum of
all blocks between i’s and j’s block using the precomputed queries on A’ stored in
table M, and (3) the minimum from the beginning of j’s block to j, again using
T and P. Finally, return the position where the overall minimum occurs, possibly
employing B. If 4 and j occur in the same block, just answer an in-block-query
from 4 to j. In both cases, the time needed for answering the query is constant.

3 An Improved (O(n),O(1))-Algorithm for RMQ

Our aim is to solve the general RMQ-problem without constructing the Carte-
sian Tree first; in fact, without employing any dynamic data structure such as
trees. We also wish to find a solution that does not double the input array, as
the Berkman-Vishkin algorithm does. The key to our solution is the following
theorem. (From now on, we assume that the <-relation is used for answering
RMQs, such that the answers become unique.)

Theorem 1. Let A and B be two arrays, both of size n. Then RMQ4(i,7) =
RMQp(i,7) for all 1 <i < j <n if and only if C*"(A) = C**"(B).

Proof. 1t is easy to see that RMQyu(i,j) = RMQp(i,j) foralll < i < j < n
iff the following three conditions are satisfied: (i) The minimum under “<”
occurs at the same position m, ie., argmin A = argmin B = m. (ii)) V1 <
1 < .] <m: RMQA[l,m—l](i7j) = RMQB[l,m—l](i7j)' (111) Vm < i < .7 <n:
RMQA[m41,n](5,J) = RMQB[m+41,n)(7, 7). Due to the definition of the Canoni-
cal Cartesian Tree, points (i)—(iii) are true if and only if the root of C"(A)
equals the root of C®®*(B), and C®®"(A[l,m — 1]) = C***(B[1,m — 1]), and
C(A[m + 1,n]) = C**(B[m + 1,n]). This is true iff C®**(A4) = C**"(B). |

It is well known that the number of binary trees with n nodes is C),, where
Cn= 1 (") =4"/(y/mn®?)(1 + o(1)) is the nth Catalan Number.

T n+1l\n

Lemma 1. It is possible to precompute the answers to all possible range mini-
mum queries on arrays of size s in a table P of size O(4%4/s).

Proof. Because the Cartesian Tree is a binary tree with s nodes, table P has
O(;31 /2) rows for each possible type of block. For each type we need to precompute
RMQ(4, j) for all 1 <i < j < s, so the number of columns in P is O(s?). O

We now come to the description of our (O(n), O(1))-algorithm for the general
RMQ-problem. Like the £1RMQ-algorithm presented in Sect. 2.2 it is an appli-
cation of the Four-Russians-Trick. However, Lemma 1 allows us to apply the trick

Theoretical and Practical Improvements on the RMQ-Problem 41

Table 1. Additional space needed by the (O(n), O(1))-algorithms for RMQ (in words)

Array/Table Berkman-Vishkin our algorithm

E.H,R 2(2n—1)4+n=5n—2 (arrays not needed)

A,B,T 3 oo /2 =121/ log(2n) 3 10a(ny/a=12n/logn

M 4dn+4n/log(2n)—4nloglog(2n)/log(2n) 4n+8n/log n—4nloglogn/logn
P Vnlog? n/(8v/2)(140(1)) Vnlog'? n/(4y/m)(140(1))
total (simpl.) 9n 4 O(y/nlog?n) 4n 4+ O(v/nlogn)

to any array (not only to those with the +1-property), which leads to substan-
tial improvements. Start by partitioning the array A into blocks B, ..., B,/

of size s := kﬁ". Define two arrays A’ and B of size n/s = kfg"n, where A'[i]
stores the minimum of block B;, and BJi] stores the position of this minimum
in A. Now A’ is preprocessed using the algorithm from Sect. 2.1, occupying
O(lfg”n log lfg"n) = O(n) space. Then precompute the answers to all possible
queries on arrays of size s and store the results in a table P. According to
Lemma 1, this table occupies O(4(°8 ")/4(105")1/2) = O(n) space. Finally, com-
pute the type of each block in A and store these values in array T[1, 104;“]. As
this is not as obvious as in Sect. 2.2, it is explained in detail in the following
subsection. A query RMQ(i, j) is now answered exactly as explained in the last
paragraph of Sect. 2.2, namely by comparing at most three minima, depending
on the blocks where i and j occur. Again, the time for answering a query is
constant, leading to the (O(n), O(1)) time bounds stated before. See Table 1 for

a comparison of the two methods (space for C(A) not included).

3.1 Computing the Block Types

In order to index table P, it remains to show how to fill array T’; i.e., how to
compute the types of the blocks B; occurring in A in linear time. Thm. 1 implies
that there are only Cs different types of arrays of size s, so we are looking for a
surjection

type: As—A{0, ..., Cs — 1}, and type(B;)=type(B;) iff C***(B;)=C*"(B;), (1)

where A, is the set of arrays of size s. The reason for requiring that B; and
B; have the same Canonical Cartesian Tree is given by Thm. 1 which tells us
that in such a case both blocks share the same RMQs. The most naive way to
calculate the type would be to actually construct the Cartesian Tree of each
block, and then use an inverse enumeration of binary trees [16] to compute its
type. This, however, would counteract our aim to avoid dynamic data structures.
The algorithm in Fig. 1 shows how to compute the block type directly. It makes
use of the so-called ballot numbers Cpq [16], defined by

Coo = 1,Cpq = Cpig—1) +Cp—1)q, if 0 < p < ¢ # 0, and Cpy = 0 otherwise. (2)

It can be proved that a closed formula for Cy, is given by q;ﬂ'l (p;q) [16], which

immediately implies that Css equals the s’th Catalan number Cy. If we look at

42 J. Fischer and V. Heun

Input: block B; of size s
Output: type(B;)

1 let rp be an array of size s + 1
2 rp[l] «— —oo

3 q+—s,N+—0

4 fori—1,...,sdo

5 while rplg + i — s] > B;[i] do
6 N «— N+ C(s—i)q

7 qg—q—1

8 end

9 rplg+i+1— s] — Bji]
10 end

11 return N

Fig.1. An algorithm to compute the Fig.2. The infinite graph arising from
type of a block the definition of the ballot numbers. Its
vertices are Cp q) for all 0 < p < q. There
. N N
is an edge fromkquto\(p— 1) q,ifp>
Oandton(q—l))ifq>p.

the infinite directed graph shown in Fig. 2 then C, is clearly the number of
paths from Cp q) to @ O), because of (2). This interpretation will be important
for the proof of the following

Theorem 2. The algorithm in Fig. 1 correctly computes the type of a block B;
of size s in O(s) time, i.e., it computes a function satisfying the conditions given
in (1).

Proof. (Sketch.) Intuitively, the algorithm simulates the algorithm for construct-
ing C°"(By) given in Sect. 2. First note that array rp[1, s+1] simulates the stack
containing the labels of the nodes on the rightmost path of the partial Canonical
Cartesian Tree C{*"(B;), with ¢ + i — s pointing to the top of the stack (i.e.,
the rightmost leaf), and rp[1] acting as a ’stopper’. Now let [; be the number of
times the while-loop (lines 5-8) is executed during the ith iteration of the outer
for-loop. Note that [; equals the number of elements that are removed from the
rightmost path when going from C{*}(B;) to C{*"(B;). Because one cannot re-
move more elements from the rightmost path than one has inserted, and each
element is removed at most once, we have 22:1 Iy <iforalll <i<s. Thus,
the sequence [1,...,[ls corresponds to a path from Cs s) to CO O) in Fig. 2 (and
vice versa): in step ¢, go l; steps upwards and one step to the left, and after
step s go upwards until reaching @ 0) The current position in the graph is

C(s —i+1) q), so every time one makes an upward step, N is incremented by
the number of paths that have been ’skipped’ by going upwards (line 6). This is
exactly C(s_j)q, the value of the cell to the left of the current one. The effect of
this incrementation is that paths going from the current position to the left are
assigned lower numbers than paths going upwards.

Theoretical and Practical Improvements on the RMQ-Problem 43

The proof is completed by noting that a Canonical Cartesian Tree can be
uniquely described by [1,.. ., s satisfying >, _; Iy <iforall 1 <i <s. ad

4 Applications

This section sketches two easy (but non-trivial) new results on LCA and LCE
that can be obtained with our RMQ-algorithm. Apart from yielding simpler and
less space-consuming methods, we will see in Sect. 5 that one can also expect
improvements in running times.

4.1 A Space Saving Algorithm for LCA on Binary Trees

The LCA-problem [1] is formally defined as follows: given a rooted tree T with
n nodes and two vertices v and w, find the deepest node LCAr (v, w) which is
an ancestor of both v and w. Again, we consider the variant where T is static
and the queries are posed on-line. As mentioned in the introduction, the RMQ-
and the LCA-problem are closely related. In [7], it has been shown that an LCA-
query on T basically corresponds to a 21RMQ-query on the heights of the nodes
visited during an Euler-Tour in T'. Because the size of an Euler-Tour is exactly
2n — 1, this leads to an input doubling. We show in this section that using the
algorithm presented in Sect. 3 overcomes this problem for binary trees.

Let T be a rooted binary tree with n nodes. First perform an inorder tree
walk in T and store it in an array I[1,n]|. Further, store the heights of each
node in H[1,n], i.e., H[i] is the height of node I[¢] in T. Finally, let R be the
inverse array of I, i.e., I[R[i]] = 4. It is then easy to see that LCAp(v,w) =
I[RMQy (R[v], R[w])]: the elements in I between R[v] and R[w] are exactly the
nodes encountered between v to w during an inorder tree walk in T, so the range
minimum query returns the position k in H of the shallowest such nodes. As the
LCA of v and w must be encountered between v and w during the inorder tree
walk, LCA(v, w) is given by I[k].

The extra space needed is 7n + O(y/nlogn) words: 4n + O(y/nlogn) words
from Table 1 for the RMQ-preprocessing, plus 3n words for the arrays I, H and
R. This 4s an improvement compared with the 9n 4+ O(y/n log? n) words needed
if one were to use the LCA-algorithm presented in [4]. We note that our result
could also be generalized to arbitrary trees; the space reduction, however, is only
relevant if the number of internal nodes is relatively close to the number of leaves.

4.2 An Improved Algorithm for Longest Common Extensions

The problem of longest common extensions is defined for a static string t of
size n: given two indices ¢ and j, LCE(7,j) returns in O(1) the length of the
longest common prefix of ¢’s suffixes starting at position ¢ and j; i.e., LCE4(Z, j) =
max{k : t; . = t; _x}.> The problem has numerous applications in string

5 LCE is often defined for two strings ¢t and ¢ s.th. ¢ is an index in ¢ and j in ¢ . This
can be transformed to our definition by setting ¢t = t #t , where # is a new symbol.

44 J. Fischer and V. Heun

matching, e.g., for tandem repeats [17, 18], approximate tandem repeats [19],
and inexact pattern matching [20,21]. The easiest solution [22] to LCE com-
bines suffix trees with constant-time LCA-retrieval: build a suffix tree T' for
t and preprocess it for LCA-queries. Then LCE(i,j) is given by the height of
node LCA(v;, v;), where v; and v; are the leaves corresponding to suffix ¢ and j,
respectively.

The crucial point to observe is that the LCA-queries are only posed on the
leaves of the suffix tree T for ¢. It is well-known [22,11] that there is a one-to-one
correspondence between the leaves of T' and the elements of the corresponding
suffix array [8,9] SA, and also between the heights of T’s internal nodes and the
LCP-array LCP for SA. Basically, SA describes the order of the suffixes of ¢, and
LCP stores the lengths of the longest common prefixes of ¢ that are consecutive
in SA. This gives us all the ingredients we need for our new LCE-algorithm:
compute SA and its inverse SA™! for ¢.6 Further, compute the LCP-array for ¢
in linear time [10,24] and store it in LCP. (SA is not further needed at this point
and can thus be deleted.) Then prepare LCP for RMQs as presented in Sect. 3.
It is now easy to see that LCE(, j) = RMQcp(SA™ [i] + 1, SA™'[4]).

Note that this is the first algorithm that solves the LCE-problem without
using trees of any form.” Apart from SA™! and LCP, the space needed is 4n +
O(y/nlogn) words. Compare this with 9n + O(y/nlog® n) words plus the space
for the Cartesian Tree that would be needed if one were to preprocess LCP
for RMQ using the Berkman-Vishkin algorithm (not to talk about the solution
based on suffix trees).

5 Practical Considerations

We now wish to evaluate the practical performance of our new algorithm by
comparing it with the Berkman-Vishkin algorithm. We further include three
non-(O(n), O(1))-algorithms in our evaluation:

1. An algorithm that divides the array into blocks of size 10%" and prepro-

cesses the block-minima for the out-of-block queries (i.e., it creates table
A’ B,T and M). The in-block-queries are handled naively (i.e., table P is
not created). Call this method (O(n), O(logn))s.
2. The same as above with block size lo’j". Call this method (O(n), O(logn))4.
3. The naive (O(1), O(n))-algorithm that requires no preprocessing.

We performed all tests on an Athlon XP3000 with 2GB of RAM under Linux. All
programs were written in C++ and compiled using the same compiler options.
All our figures are averages over 5 repetitions of each experiment.

5 There are fast algorithms that construct SA and its inverse with only o(n) extra
space, e.g., [23].

" While this has the consequence that the algorithms [17,19,20,21] can be implemented
without trees, it is not immediately obvious how to do this for [18] because it uses
the tree structure also for representing the tandem repeats.

Theoretical and Practical Improvements on the RMQ-Problem 45

Fig. 3 shows the time spent on preprocessing by all methods except the naive
one, because the latter does no preprocessing. As expected, the Berkman-Vishkin
method is the slowest, which is due to the explicit construction of the Carte-
sian Tree. The preprocessing times for the other three methods are within the
same order of magnitude, where our method is slightly slower than the two
(O(n), O(log n))-algorithms, as expected.

120

- - - - - - 3e-05 - -
our method —+— x ! our method ——
Berkman-Vishkin ------ H Berkman-Vishkin ------
<O(n),Oflog(n);> i <0(n),Oflog(n)>p -
100 | <O(n),0(log(n))g> —& 1 2.5¢-05 N oo <O(M).0(l0OG())>4 -
e LO(1),0(0)> -
80 -] L ;" e

2e-05

1.5e-05 -
*

2
3
seconds per query

1e-05 |

preprocessing time (seconds)
x

- X
20 | 4 56-06 | g%
g -

*

0 2e+07 v4e‘+07 66;07 86;07 1e‘+08 1.2é+03 1.4e+08 1 1‘0 1‘00 10‘00 ‘0‘000 10(;000 \e‘+06 1e+07
length of array length of query

Fig. 3. Preprocessing times for varying Fig.4. The influence of different query

array lengths lengths on the query time (w/o preproc.)

The next test was to evaluate the influence of the query length on the query
time. We took a random array of length n = 107 and posed 10 random RMQs
on this array. Fig. 4 shows the average query time for all five methods, and there
are several points to note.

— As expected, the (O(1), O(n))-algorithm behaves linearly in the query length
(note the logarithmic x-axis). It is very fast for short queries (up to length
100), but out of the questions for longer queries.

— Our (O(n),O(1))-algorithm is about twice as fast as the one by Berkman
and Vishkin.

— The two methods with O(logn) query time are even slightly faster than our
constant-time method. This is because quite some arithmetic is necessary to
answer the in-block-queries in constant time. With block size 1°g2107 ~ 11
the overhead for this is much too big.

— For all methods except the naive one the query time levels off for very long
queries. We can only speculate that this is due to caching phenomena.

In alast test we checked up on the influence of the array length n on the query
time. We performed separate tests for short and long random queries, where short
means to be of length logn/2 such that only in-block-queries are to be handled.
Long queries were of length n/100. The largest arrays that we were able to handle
on our computer were of length ~ 6 x 107 for both tests. (Because of the input-
doubling, the largest array length for the Berkman-Vishkin method was ~ 3x 107
for both tests.) See Fig. 5(a)—(b) for the results. In (a), the naive method is the
best, for the same reasons as given before. The other four methods show the
same performance as in Fig. 4. For the long queries in (b), the naive method

46 J. Fischer and V. Heun

was excluded for obvious reasons. Again, the two (O(n), O(logn))-algorithms
perform better than the (O(n), O(1))-methods, but our method is about twice
as fast as the Berkman-Vishkin algorithm. It is interesting to see that both in
(a) and (b) all methods exhibit a significant increase in running time at some
point. This happens at roughly n = 10°, whereas the Berkman-Vishkin method
has this increase earlier. The effect can most likely be explained by the second-
level-cache of the processor. Because of the input-doubling in the Berkman-
Vishkin algorithm the cache size is reached earlier for this method. In summary,
all our tests show that for practical applications with arrays up to length 10%
or so it is advisable to use the (O(n), O(log n))2-algorithm. Unfortunately, our
computer is not large enough to test when our algorithm becomes faster than
the (O(n), O(log n))-algorithms.

1e-05

T T 1e-05 T T

our method —— our method ——

Berkman-Vishkin ---x--- Berkman-Vishkin ---x---

<0(n),O(log(n)),> ---* <0(n),O(log(n))y> ~--x

<0(n),0(log(n))y> & <0(n),0(log(n))g> &
<0(1),0(n)> ~-#--

10-06 - e

1e-06

seconds per query
seconds per query

1607 F

16-08 L L L L 16-07 L L L L
1000 10000 100000 1e+06 1e+07 1e+08 1000 10000 100000 1e+06 1e+07 1e+08

length of array length of array

(a) Short queries of length 0.5 log n. (b) Long queries of length n/100.

Fig.5. The influence of different array lengths on the query time (w/o preprocessing)

6 Summary and Discussion

We have seen a new method to answer range minimum queries in constant time
after a linear preprocessing step. The key to our algorithm was the strong con-
nection between Cartesian Trees and RMQs, reflected in the employment of the
Catalan- and ballot numbers. This led to substantial improvements over previ-
ous RMQ-algorithms, namely a space reduction of more than 50%, the complete
absence of dynamic data structures, and a boost in query time. We have also
seen how our method leads to space reductions in the computation of lowest
common ancestors in binary trees, and to an improved algorithm for the compu-
tation of longest common extensions in strings. On the practical side, we have
seen that it is sometimes wiser to spend a little bit less effort in preprocessing,
because even for large problem sizes (arrays up to length 10%) asymptotically
slower algorithms may perform faster in practice.

We finally note that our approach can be combined with the ideas from [25] to
give the first succinct data structure for constant time RMQ, in the sense that
the extra space needed is only O(n) bits. We will elaborate on this in future work.

Theoretical and Practical Improvements on the RMQ-Problem 47

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: On finding lowest common ancestors in

trees. STAM J. Comput. 5 (1976) 115-132

. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.

STAM J. Comput. 13 (1984) 338355
Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. STAM J. Comput. 17 (1988) 1253-1262

. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J.

Comput. 22 (1993)
Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proc. LATIN,
LNCS 1776, Springer (2000) 88-94

. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest

common ancestors in trees and directed acyclic graphs. J. Algorithms 57 (2005)
75-94

Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proc. of the ACM STOC, ACM Press (1984) 135-143
Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: PAT trees and
PAT arrays. In Frakes, W.B., Baeza-Yates, R.A., eds.: Information Retrieval: Data
Structures and Algorithms. Prentice-Hall (1992) 66-82

Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22 (1993) 935-948

Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Proc. CPM,
LNCS 2089, Springer (2001) 181-192

Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2 (2004) 53-86

Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: A
survey and a new distributed algorithm. In: Proc. SPAA, ACM Press (2002)
258-264

Vuillemin, J.: A unifying look at data structures. Comm. ACM 23 (1980) 229-239
Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. STAM J.
Comput. 14 (1985) 862-874

Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic con-
struction of the transitive closure of a directed graph. Dokl. Acad. Nauk. SSSR
194 (1970, in Russian) 487-488, Engl. transl. in Soviet Math. Dokl., 11 1209-1210,
1975

Knuth, D.E.: The Art of Computer Programming Vol. 4, Fasc. 4: Generating All
Trees; History of Combinatorial Generation. Addison-Wesley (2006)

Main, M.G., Lorentz, R.J.: An O(nlogn) algorithm for finding all repetitions in a
string. J. Algorithms 5 (1984) 422-432

Gusfield, D., Stoye, J.: Linear time algorithm for finding and representing all
tandem repeats in a string. J. Comput. Syst. Sci. 69 (2004) 525-546

Landau, G., Schmidt, J.P., Sokol, D.: An algorithm for approximate tandem re-
peats. J. Comput. Biol. 8 (2001) 1-18

Myers, EEW.: An O(nd) difference algorithm and its variations. Algorithmica 1
(1986) 251-266

48

21.

22.

23.

24.

25.

J. Fischer and V. Heun

Landau, G., Vishkin, U.: Introducing efficient parallelism into approximate string
matching and a new serial algorithm. In: Proc. STOC, ACM Press (1986) 220230
Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

Schiirmann, K.B., Stoye, J.: An incomplex algorithm for fast suffix array construc-
tion. In: Proc, ALENEX/ANALCO, SIAM Press (2005) 77-85.

Manzini, G.: Two space saving tricks for linear time lcp array computation. In:
Proc. SWAT. LNCS 3111, Springer (2004) 372-383

Sadakane, K.: Succinct representations of lcp information and improvements in
the compressed suffix arrays. In: Proc. SODA, ACM/SIAM (2002) 225-237

A Linear Size Index for
Approximate Pattern Matching

Ho-Leung Chan', Tak-Wah Lam', Wing-Kin Sung?,
Siu-Lung Tam!, and Swee-Seong Wong?

! Department of Computer Science, University of Hong Kong
{hlchan, twlam, sltam}@cs.hku.hk
2 Department of Computer Science, National University of Singapore
{ksung, wongss}@comp.nus.edu.sg

Abstract. This paper revisits the problem of indexing a text S[1..n] to
support searching substrings in S that match a given pattern P[l..m)]
with at most k errors. A naive solution either has a worst-case matching
time complexity of £2(m”) or requires £2(n*) space. Devising a solu-
tion with better performance has been a challenge until Cole et al. [5]
showed an O(nlog® n)-space index that can support k-error matching in
O(m+occ+log" nloglog n) time, where occ is the number of occurrences.
Motivated by the indexing of DNA, we investigate in this paper the fea-
sibility of devising a linear-size index that still has a time complexity
linear in m. In particular, we give an O(n)-space index that supports
k-error matching in O(m + occ + (log n)***+ log log n) worst-case time.
Furthermore, the index can be compressed from O(n) words into O(n)
bits with a slight increase in the time complexity.

1 Introduction

In this paper, we consider the indexing problem for k-approximate matching:
given an integer k > 0 and a text S[1..n] over a finite alphabet X, we want to
build an index for S such that for any query pattern P[l..m], we can report
efficiently all locations in S that match P with at most & errors. The number of
errors is measured in terms of either the Hamming distance (number of character
substitutions) or the edit distance (number of character substitutions, insertions
or deletions). The major concern is how to achieve efficient matching without
using a large amount of space for indexing. Typical applications include the
indexing of DNA or protein sequences for biological research.

To support exact matching (i.e., k = 0), suffix trees and suffix arrays are the
most well-known indexes. Suffix trees [15,12] occupy O(n) space and achieve the
optimal matching time, i.e., O(m + occ), where occ is the number occurrences of
P in S.! For suffix arrays [11], the space requirement is also O(n) space (but with
a smaller constant), and the matching time is O(m + occ + log n). Recently, two

! Unless otherwise stated, the space complexity is measured in terms of the number
of words, where a word can store O(log n) bits.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 49-59, 2006.
© Springer-Verlag Berlin Heidelberg 2006

50 H.-L. Chan et al.

compressed solutions, namely, compressed suffix arrays [7] and FM-index [6],
have been proposed; they requires O(n) bits only and the matching time is
O(m + occlog® n), where € > 0.

Indexing a string for approximate matching is a challenging problem. Even
the special case where only one error is allowed (i.e., k = 1) has attracted a
lot of attention. A simple solution is to use the suffix tree of S and repeatedly
search for every l-error modification of the query pattern; this solution uses
O(n) space and the matching time is O(m? + occ) [4]. With a bigger index of
size O(nlogn), the matching time complexity has been improved tremendously
by a chain of results to O(m lognloglogn+ occ) [1], O(mloglogn+ occ) [2], and
finally O(m + occ + lognloglogn) [5]. It is also known that indexes using O(n)
space takes O(mlogn + occ) time [8] and O(mloglogn + occ) time [9] for 1-
error matching. These two indexes can also be compressed to O(n) bits, and the
1-error matching time is O(m log® n+ occlogn) and O((mloglog n+ occ) log® n),
respectively, where € < 1.

To cater for k = O(1) errors, one can perform a brute-force search on an one-
error index (i.e., repeatedly modify the pattern at different k£ — 1 positions and
search for one-error matches); the matching becomes very inefficient, involving a
factor of m* in the time complexity. Alternatively, one can improve the matching
time by including all possible erroneous substrings into the index; yet this seems
to require §2(n*) space. It has been open whether there exists an index with
performance better than a navie solution. The breakthrough is due to Cole et
al. [5], who are able to avoid brute-force matching of a pattern with a moderate

. k
increase in the index size. Precisely, their index occupies O(‘,i, nlog® n) space and

supports k-error matching in O(m + occ + fj logk nloglogn) time for Hamming
distance, where d and c are some constants. The term occ is replaced with occ-3*
for edit distance. This solution gives an obvious improvement to the matching
efficiency. The space requirement is acceptable for many applications, but it may
be too demanding for indexing DNA sequences or webpages. 2

In this paper, we focus on indexes that use only O(n) words or O(n) bits
for k-error matching, and we hope that the time complexity can be better than
O(mF). Prior to our work, indexes using O(n) words to answer a k-error query
takes O((cm)* logn + occ)) time [8] or takes O((em)* loglogn + occ)) time [9].
Indexes using O(n) bits have a slightly worse time complexity [8,9]. See Table 1
for a summary of results. The main results of this paper are as follows.

(i) We give an O(n)-word index that supports k-error matching in O(m + occ +
(clogn)** 1) loglogn) time, where c¢ is a constant. Furthermore, if the pattern
is known to be long (precisely, h(Z(log’H'1 n)), the matching time can be improved
to O(m + occ + (clogn)?*1loglogn). The term occ becomes occ - k33 if edit
distance is in concern.

2 For example, consider k = 2, the index requires O(n log? n) words, which means
tens of gigabytes of memory for a text of a few million characters. Indexing a human
chromosome or genome (typically a few hundred million to a few billion characters)
is not feasible.

A Linear Size Index for Approximate Pattern Matching 51

Table 1. Known results for k-error matching. Results given in this paper are marked
with {. ¢ and € are positive constants.

Space k=1
O(nlog? n) words O(mlognloglogn + occ) 1]
O(nlogn) words O(mloglogn + occ) 2]
O(m + occ + log nloglog n) [5]
O(n) words O(min{n, m*} + occ) [4]
O(mlogn + occ) 8]
O(mloglogn + occ) [9]
O(m + occ + log® nloglogn) T
O(n) bits O(mlog®n + occlogn) 8]
O((mloglogn + occ) log®n) [9]
O((m + occ + log® nloglogn)log®n) 1
Space k>2
O(nlog"® n) words O(m + occ + |, (clogn)* log logn) [5]
O(n) words O(mln{n mFt1} 4 oce) [4]
O((em)¥ logn + oce) 8]
O((em)¥ loglog n + occ) [9]
O(m + occ + (clogn)**+1) log log n) i
O(n) bits O((cm)* log n + occlogn) 8]
O(((em)* loglog n + occ) log® n) [9]
O((m + occ + (clogn)*# D loglogn) log®n) 1

This index also admits a simple tradeoff between space and time. I.e., the match-
ing can be speeded up if more space is used. Roughly speaking, for any h < k, if
O(n logh—h+1 n) space is used, then a k-error query can be answered in O(m +
occ + & logm@Fhkth} p1oe0g n) time. For example, choosing h = 3 gives an
O(nlog" 2 n)-word index with matching time O(m + occ + ¢* log®* nloglogn).

(ii) The O(n)-word index can be compressed to occupy O(n) bits only, with k-
error matching time increasing to O((m + occ + (clogn)**+2) loglogn) log® n),
where € < 1. In particular, when k = 1, the O(n)-bit index achieves matching in
O((m + occ + log* nloglogn) log n) time.

Other related results. Note that the above results concern worst-case perfor-
mance. The literature also contains several interesting results on average-case
performance (see, e.g., [13,10,3]).

2 An O(n)-Word Index for k-Error Matching

This section considers Hamming distance only and presents an O(n)-word index
for a text S[1..n]. Given any pattern P[l..m], the index finds all substrings of
S matching P within & errors, in O(m + occ + polylog n) time. We call these
substrings the k-error matches of P.

52 H.-L. Chan et al.

The index handles long patterns and short patterns separately. Intuitively,
short patterns can be handled easily. For example, a pattern of length logn can
be handled in polylog n time even with the naive 2(m*) time methods. The
main novelty of our index is a check-point technique for handling long patterns:
we define some locations of S to be check-points. Special indexing are done for
suffixes and prefixes of S terminating at these check-points. For long patterns,
their k-error matches in S will certainly contain some check-points, so the special
indexing at the check-points suffices for finding the matches efficiently.

We now describe how to handle long patterns. Consider a text S[1..n]. Let
B be a positive integer, which will be fixed later to k3* log"*! n. Intuitively, a
pattern is long if its length is at least (. For each a = 3,20, 30, ..., we call S|a]
a check-point.

Observation 1. Let P[1..m] be a pattern with m > 3. For any k-error match
S[j1.-J2) of P, there exists an integer a, j1 < a < jo such that Sla] is a check-
point and 0 <a—j; < (B —1.

Furthermore, let i = a — j1 + 1. There exist integers ki, ko > 0, such that (1)
Sla..n] has a prefix matching P[i..m] with k1 errors, (2) S[l..a — 1] has a suffix
matching P[1..i — 1] with ko errors, and (3) k1 + k2 < k.

Let TAIL be the set of suffixes of S beginning at a check-point, i.e., TAIL
= {S[a..n] | a = B,26,...}. Similarly, let HEAD be the set of prefixes of S
ending just before a check-point, i.e., HEAD = {S[l..a — 1] | a = 3,20,...}.
Observation 1 suggests finding the k-error matches of P as follows.

Algorithm 1. k--MATCH(P): finds all k-error matches of P in S, for |P| > .
For each ¢ = 1,...,8, cut P into P[l.: — 1] and P[i.m]. Try all possible
ki1, ke > 0 such that k1 + k2 < k, and perform the following.

Step 1. Find all S[a..n] € TAIL that have a prefix matching P[i..m] with exactly
k1 errors. Let tail; , be the set of these suffixes.

Step 2. Find all S[1..b] € HEAD that have a suffix matching P[1..i — 1] with
exactly ka2 errors. Let head; r, be the set of these prefixes.

Step 3. For each S[a..n| € tail; s, and S[1..b] € head;,, we call them a con-
necting pair if a = b+ 1. For each connecting pair, we report a k-error match
of P starting at S[a — i+ 1].

We first prove the correctness of the algorithm. Details of the implementation
are given in the coming subsections.

Lemma 1. Let P[l..m] be a pattern with m > 3. k-MATCH(S, P) finds all
k-error matches of P in S.

Proof. For each k-error match S[ji..j2] of P, Observation 1 states that there is
a check-point S[a] contained in S[j;..J2) and 0 < a—j; < f—1.

Consider aligning P[1..m] with S[j1..j2]. The suffix S[a..n] has a prefix match-
ing P[i’..m] with k] errors, where i = a — j; + 1 and k] is some integer between

A Linear Size Index for Approximate Pattern Matching 53

0 and k. Thus, S[a..n] will be included in tailys x;. Similarly, S[l..a — 1] will be
included in head;s x;, where ks is some integer between 0 and k, and k + k5 < k.
They form a connecting pair, so S[ji..j2] will be reported.

There are only n/f suffixes and prefixes in TAIL and HEAD, respectively, so we
can build more complicated data structures to support the above steps efficiently,
while maintaining a small space requirement. In the following subsections, we
present the actual data structures. Then, we will give analysis for the total space
and time complexity of the index.

2.1 Indexes for Finding Tail; ;, and Head; g,

We want to find tail; 5, efficiently for any pattern P[1..m],i=1,...,8 and k1 =
0,...,k. We do it by storing an ¢-error-tree [5] for TAIL, for each £ = 0,... k.
The performance guarantee provided by an f-error tree is stated in the following
lemma.

Lemma 2. [5] Let Z be any collection of suffixes of a text S[l..n]. For any
integer £ > 0, an f-error-tree for Z has the following properties.

1. The f-error tree is a collection of trees with totally O(]Z|3log’ n) nodes.
Each leaf represents a suffix in Z and at most O(3¢log’ n) leaves represent
the same suffix.

2. The (-error tree takes O(]Z|3 log’ n)-word space.

3. For any pattern Q[1..m’], there exist O(6¢log’ n) nodes in the (-error-tree,
such that each leaf under the nodes represents a distinct suffix in Z that has
a prefix matching @ with exactly £ errors. It takes O(6° log’ nloglog n) time
to find these nodes, after preprocessing all suffixes of @ with the suffix tree
of S in totally O(m') time.

For each £ =0,1,...,k, We store an {-error tree for TAIL, calling them T-error-
treeg, T-error-treey, ..., T-error-tree;. Furthermore, we store a suffix tree for S.

For any i and ki, the above lemma implies that there exist O(6* logk1 n)
nodes in T-error-treey, such that the leaves under them represent the distinct
suffixes in tail; », . We called these nodes the covering nodes for tail; j, . For time
efficiency, we will not find tail; », explicitly, instead we only find the covering
nodes to represent tail; , implicitly. Using the error-tree data structures, we
have the following performance on finding the covering nodes.

Lemma 3. We can build an O(n + n/B3 x 3¥log® n)-word data structure for
TAIL. For any pattern P[l..m], we preprocess P in O(m) time. Then, for any
i=1,....,8 and ky = 0,...,k, we can find O(6* log" n) covering nodes for
tail; y, in T-error-treey,, in O(6 log™ nloglogn) time.

Proof. The suffix tree of S takes O(n) words and T-error-treeg, T-error-treey,
..., T-error-tree, take totally Z’Z:O O(n/B x 3'log"n) = O(n/B x 3*log"n)
words.

54 H.-L. Chan et al.

Given any P[l..m], we preprocess all suffixes of P with the suffix tree of
S in totally O(m) time. It implies preprocessing all suffixes of P[i..m] with
the suffix tree. Thus, finding the covering nodes for tail; , can be done in
O(6" log™ nloglog n) time using T-error-treeg, .

Note that there can be more than one set of covering nodes for tail; , , and any set
of covering nodes is sufficient for our algorithm to find the k-error matches of P.

The case for finding head, x, is symmetric. For each £ = 0,1, ..., k, we store
an f-error-tree for HEAD, calling them H-error-treey, . .., H-error-tree;. We also
store the suffix tree for the reverse of S. Finding covering nodes for head; 1, , for
any 7 and ko takes O(6%2 log"? nloglogn) time, after an O(m) time preprocessing
of P with the suffix tree for the reverse of S.

2.2 Indexes for Finding Connecting Pairs

Consider certain ¢, k1 and ko where k; + ko < k. Assume that tail; 5, is found
implicitly, represented by a set of covering nodes U in T-error-treeg,. Similarly,
assume that head; j, is represented by a set of covering nodes W in H-error-
treeg,. To find the k-error matches of P, we want to find all suffixes Sla..n] €
tail; x, and prefixes S[1..b] € head, i, that are connecting pairs, i.e., a = b+ 1.

We observe that this can be done as follows. We preprocess T-error-treeg, with
H-error-treeg,. For each leaf in T-error-tree, representing a suffix S[a..n| and for
each leaf in H-error-treeg, representing a prefix S[1..b], we draw an imaginary
edge between them if @ = b+ 1. Then, to find the connecting pairs between
tail; x, and head;,, we try each pair of v € U and w € W and perform the
following EdgeReport(u,w) query: Given v € U and w € W, find all leaf pairs
(z,y) such that = and y are descendents of u and w, respectively, and z,y are
connected by an imaginary edge.

While T-error-treey, is a collection of trees, we can always convert it into a
single tree by linking all trees to a new root. Similarly, we convert H-error-treeg,
into a single tree. Then, we store a tree-cross-product data structure [2] for T-
error-tree,, and H-error-treey, to support the EdgeReport(u, w) query efficiently,
which has the following performance.

Lemma 4. [2] LetTy = (V1, E1) and Ta = (Va, E2) be two trees. Let V. = V1UV;
and let I C V x V5 be a set of imaginary edges connecting some nodes in Vi and
Va. We can build an O(|I|log|V|)-word index for Ty and Ty such that for any
u € Vy and w € Va, the EdgeReport(u,w) query takes O(loglog|V| + occ’) time,
where occ’ is the number of imaginary edges reported.

For each pair of error-trees T-error-treeg, and H-error-treey,, where k1 + ko < k,
we create the imaginary edges and build the tree-cross-product data structure.
It allows us to find the connecting pairs efficiently. We assume that tail; , and
head; 1, are represented by O(6* log" n) and O(6*2 log*? n) covering nodes in
the corresponding error-trees, respectively, which is the case during the execution
of the Algorithm k-MATCH.

A Linear Size Index for Approximate Pattern Matching 55

Lemma 5. We can store an O(kxn/3x 3% log"*t n)-word data structure for the
error-trees. Then, for any i, k1 and ko with k1+ko < k, we can find all connecting
pairs between tail; , and head; , in O(6F+Fz logkﬁkz nloglogn + occ’) time,
where occ’ is the number of connecting pairs found.

Proof. Consider T-error-treey, and H-error-treey,, where k1 +ko = ¢ for some ¢ <
k. There are O(n/ 3 x 3¥* log"* n) leaves in T-error-treey, . For each leaf represent-
ing a suffix S[a..n], the prefix S[1..a — 1] is represented by at most O(3*2 log"? n)
leaves in H-error-treeg,. So, the number of imaginary edges between the two
error-trees is O(n/ 3 x k1 thz logh1 Tz n), and the tree-cross-product data struc-
ture takes O(n/B x 3°log"'n) words. For any ¢, there are at most k + 1
pairs of possible (k1,k2), and we store tree-cross product data structures for
c=0,1,...,k, so the total space needed is lezo O(k x n/B x 3°log®ttn) =
O(k x n/B3 x 3¥log"™ n) words.

For any tail; , and head; y,, where ki + ko < k, let U and W be the cor-
responding set of covering nodes. Finding the connecting pairs is done by per-
forming an EdgeReport(u,v) query for each v € U and w € W. There are
O(6% log" n x 6%21og"? n) queries, and the total query time is O(6F1FF2 x
log® ™2 nloglogn + occ’) time.

2.3 Total Time and Space Complexity

With Lemma 3 and 5, we can analyse the space and time complexity of our data
structure.

Theorem 1. We can build an O(n + k x n/B x 3¥log"™' n)-word index for
S[1..n]. For any pattern P[l..m], m > (3, we can find all k-error matches of
P in S in O(m + occ + Bk6* log® nloglogn) time, where occ is the number of
matches.

Proof. We only need to store the data structures specified in Lemma 3 and 5,
so the total space is O(n + k x n/3 x 3*log"™ n) words.

To find the k-error matches of P, we perform an O(m) time preprocess-
ing of P, as required by Lemma 3. Then, we iterate for i = 1,2,...,3 and
¢ =0,1,...,k For each i and ¢, there are at most k + 1 pairs of ky,ko > 0
such that ky + k2 = c. Finding the covering nodes for tail; , and head; r, takes
O(6" log" nloglogn + 6*21log" nloglogn). Finding the connecting pairs be-
tween tail; x, and head; x, takes O(6*1+*2 log*1 ™2 nlog logn + occ’) time, where
occ’ is the number of connecting pairs found. Thus, for any fixed ¢ and ¢, the
runtime is O(k x 6¢log® nloglogn + occ’) time.

We try ¢ from 1 to 8 and c¢ from 0 to k, so the total time complexity is
O(m+ 8 x Y F_ k x 6°log® nloglogn + occ) O(m + Bk6* log" nloglogn + occ).

By putting 8 = k3% log"*! n, we obtain an O(n)-word index for handling long
patterns. For short patterns, we can use the O(n)-word data structure of Lam et
al. [9] which find the k-error matches of a pattern P[1..m] in O(|X|*m* loglog n+
occ) time, where |X| is the size of the alphabet.

56 H.-L. Chan et al.

Corollary 1. For any constant k, we can build an O(n)-word indez for S[1..n].
For any pattern P[1..m], finding the k-error matches of P in S takes O(m +
occ + (clog n)max{k(k+1).2k+1} 160 1og 1) time.

Proof. We put 8 = k3*log"™ n to Theorem 1 to obtain an O(n)-word index.
We also store the O(n)-word data structure of Lam et al. [9].

For pattern of length at least k3" log’H'1 n, finding the k-error matches takes
O(m + occ + k218klog2k+1nlog logn) time. For pattern of length less than
k3¥log"™! n, finding the k-error matches takes O(occ + |X|*mFloglogn) =
O(occ + \E|kl~c’“3k2 log"**Y) nloglogn) time.

Reducing the polylog n term in matching time. The polylog n term in the
matching time is biggest for patterns with length slightly less than k3% log®** n,
in which we use the brute-force method to obtain a runtime of O(occ+| E\kkk3k2><
logkulC nloglogn). We can reduce the polylog n term by a small trick. To ease
the discussion, we remove the constant factors | Y| and k from the asymptotic
analysis.

We improve the matching time for patterns of length between O(log® n)
and O(log"* n) by choosing a smaller value of 3. In particular, we choose
B to be O(log"n), but we only build an data structure for finding (k — 1)-
error matches. By Theorem 1, the index takes only O(n) words. To find the
k-error matches, we explicitly try different positions on the pattern and mod-
ify that position with a different character. Then, we search for (k — 1)-error
matches for each of the modified patterns, which will be the k-error matches of
the pattern. This gives a runtime of O(m x (m + Blog* I nloglogn + oce)) =
O(log2k+2 n+ logglC nloglogn + occ x logk+1 n). The multiplicative term for occ
can be removed by careful book-keeping to avoid reporting the same occurrence

for multiple times. It reduces the matching time from O(occ+logk2+k nloglogn)
to O(oce + max{log?**? n, log® nloglogn}), for patterns of length O(log" n) to
O(log"** n).

We can continue to apply this technique for other range of pattern length,
k*/2+0(1)k

and it can reduce the polylog n term in the matching time to log n in

the worst case.

3 Tradeoff Between Space and Time

Our data structure allows a tradeoff between space and time. We notice that
the value 3 controls the number of check-points in S, which is equivalent to the
number of suffixes of S on which special indexes are built. Choosing a smaller
0B generates more check-points and increases the index size, but it allows pat-
terns of shorter length to be handled and reduces the matching time. On the
other hand, choosing a bigger § reduces the number of check-points such that
we can even obtain an O(n)-bit data structure for k-error matching, at the
cost of increasing the matching time. This section presents the results for this
tradeoft.

A Linear Size Index for Approximate Pattern Matching 57

3.1 Improved Searching with More Space

We choose 3 = k3F logh n, where h is any integer, 0 < h < k. Note that a
smaller h generates more check-points and bigger index size. By Theorem 1, it
gives an O(n log""*! n)-word index, which finds the k-error matches of P[1..m],
m > k3*log" n, in O(m + occ + k*18F log""* nloglog n) time.

For patterns of length less than k3% log" n, we use the O(n)-word data structure
of Lam et al. [9], which gives a matching time of O(\E|kkh3k2 log"* nloglogn +
occe).

Theorem 2. For any constant h and k such that 0 < h < k, we can build an
index for S[1..n] using O(nlog® "™ n) space. For any pattern P[1..m], we can
find all k-error matches of P in S in O(m+occ+ck2 (log n)max{hk.h+k} o0 log n)
time where occ is the number of occurrences found and c is some constant.

3.2 Reducing to O(n)-Bit Space

We can choose 3 = k3* logl~ch2 n. Then, the error-trees and the tree-cross-product
data structures takes O(n)-bit space. We can replace the suffix tree of S by a
compressed suffix tree [14], which supports each of the suffix tree operations
in O(log®n) time. Thus, the preprocessing of P takes O(mlog®n) time. The
matching time for pattern of length at least k3% log""%n is O(mlog® n + occ +
k218%10g?**2 nloglogn).

For patterns of length less than k3% log"™% n, we use the O(n)-bit data struc-
ture of [9], which gives a matching time of O((|E|kk}“3k2 logk2+2knlog logn +
occ) log® n).

Theorem 3. For any constant k, we can build an index for S[1..n] using O(n)-
bit space. For any pattern P[1..m], we can find all k-error matches of P in S
in O((m + occ + (clogn)max{k*+2k.2k+2} 160160) log n) time where occ is the
number of occurrences reported, c is some constant, and € > 0.

4 k-Error Matching in Edit Distance

This section considers edit distance, and an error is an insertion, deletion or
substitution. We give an O(n)-word data structure for S[1..n] which supports
finding the k-error matches of P in S. Precisely, given P[1..m], it finds all starting
positions j such that S[j..n] has a prefix matching P with at most k errors, in
O(m + k33%occ + polylog n) time, where occ is the number of starting positions
found.

Similar to the case of Hamming distance, we handle long patterns by the
check-point technique, while short patterns are handled by simple brute force
methods. We define S[a] to be a check-point for a = 3,20, ..., where 8 will be
set later to k5F logh*1 n.

58 H.-L. Chan et al.

Observation 2. Let P[l..m] be a pattern with m > [+ k. For any k-error
match S[j1..j2) of P, there exists an integer a, j1 < a < jo such that Sla] is a
check-point and 0 < a —j; < 5 —1.

Furthermore, there exist integers i, 1 < i < 8+ k and k1,ks > 0, such that
(1) S[a..n] has a prefix matching Pli..m] with k1 errors, (2) S[l..a — 1] has a
suffiz matching P[1..i — 1] with ko errors, and (3) k1 + k2 < k.

Define HEAD and TAIL as before. Observation 2 suggests the following
algorithm.

Algorithm 2. k-EDIT(P), find starting positions of k-error matches of P in S,

|P| > B +k.

For each ¢ = 1,...,8 + k, cut P into P[l..i — 1] and P[i..m]. Try all possible
ki,k2 > 0 such that k1 + k2 < k, and perform the following.

Step 1. Find all S[a..n] € TAIL that have a prefix matching P[i..m] with exactly
k1 errors. Let tail; ;, be the set of these suffixes.

Step 2. Find all S[1..b] € HEAD that have a suffix matching P[l..i — 1] with
exactly k2 errors. Let head; x, be the set of these prefixes.

Step 3. For each S[a..n] € tail;r, and S[1..b] € head;,, we call them a con-
necting pair if a = b + 1. For each connecting pair, we find all j; such that
S[j1..a — 1] matches P[l..i — 1] with exactly ko errors, and we report each j;
as an answer.

To find tail; x, and head;r, efficiently for different ¢, ki and ko, we store
another type of error-trees by Cole et al. [5] for TAIL and HEAD, which work
for edit distance. We call them edit-trees to avoid confusion. Basically, an edit-
tree is similar to an error-trees, which is also built for a collection Z of suffixes
of S. Given a pattern Q[1..m/], an f-edit tree returns the nodes such that the
leaves under the nodes represent all suffixes in Z that has a prefix matching Q
with exactly ¢ errors (edit distance). However, an edit-tree may give duplicated
answers, i.e., there may be different leaves under these nodes representing the
same suffix in Z.

We build T-edit-treeg, ..., T-edit-tree; for TAIL and H-edit-treeg, . . ., H-edit-
treey, for HEAD. We also store the suffix trees for S and the reverse of S. Finally,
we build the tree-cross-product data structures for the pair T-edit-tree;, and H-
edit-treey,, for every ki, ko. These data structures can support the Algorithm
k-EDIT efficiently.

We can analyse the space and time complexity of the data structures similar
to that in Section 2 and we obtain the following theorem. There is a k3% factor
for occ because when we find tail; i, for some 4, k1, the edit-trees may return the
same suffix for multiple times, leading to duplication in the output.

Theorem 4. We can build an O(n + k x n/B x 5%log"™ n)-word index for
S[1..n]. For any pattern P[1..m], m > 3, we can find all j such that S[j..n] has
a prefiz matching P with at most k errors (in edit distance), in O(m+ k33Focc+
Bk6F logk nloglogn) time, where occ is the number of answers found.

A Linear Size Index for Approximate Pattern Matching 59

By putting § = k5% log"™! n, and handling short patterns by Lam et al. [9] we
obtain an O(n)-word index which finds the k-error matches in O(m + k33Focc +
polylog n) time.

References

1.

10.

11.

12.

13.

14.

15.

A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and M.
Rodeh. Indexing and dictionary matching with one error. In Proceedings of Work-
shop on Algorithms and Data Structures, 1999, pages 181-192.

A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. Range searching over
tree cross products. In Proceedings of European Symposium on Algorithms, 2000,
pages 120-131.

E. Chavez and G. Navarro. A metric index for approximate string matching. In
Proceedings of Latin American Theoretical Informatics, 2002, pages 181-195.

. A. Cobbs. Fast approximate matching using suffix trees. In Proceedings of Sym-

posium on Combinatorial Pattern Matching, 1995, pages 41-54.

R. Cole, L. A. Gottlieb, and M. Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proceedings of Symposium on Theory of Computing,
2004, pages 91-100.

P. Ferragina and G. Manzini. Opportunistic Data Structures with Applications.
In Proceedings of Symposium on Foundations of Computer Science, pages 390-398,
2000.

R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Ap-
plications to Text Indexing and String Matching. In Proceedings of Symposium on
Theory of Computing, pages 397-406, 2000.

T. N. D. Huynh, W. K. Hon, T. W. Lam, and W. K. Sung. Approximate string
matching using compressed suffix arrays. In Proceedings of Symposium on Combi-
natorial Pattern Matching, 2004, pages 434—-444.

T. W. Lam, W. K. Sung, S. S. Wong. Improved approximate string matching using
compressed suffix data structures. In Proceedings of International Symposium on
Algorithms and Computation, 2005, pages 339-348.

M. G. Maaf} and J. Nowak. Text indexing with errors. Technical Report TUM-
10503, Fakultét fiir Informatik, TU Miinchen, Mar. 2005.

U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935-948, 1993.

E. M. McCreight. A Space-economical Suffix Tree Construction Algorithm. Journal
of the ACM, 23(2):262-272, 1976.

G. Navarro and R. Baeza-Yates. A Hybrid Indexing Method for Approximate
String Matching. J. Discrete Algorithms, 1(1):205-209, 2000. Special issue on
Matching Patterns.

K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, accepted.

P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of Symposium on
Switching and Automata Theory, 1973, pages 1-11.

On-Line Linear-Time Construction of
Word Suffix Trees

Shunsuke Inenaga''? and Masayuki Takeda?>

! Japan Society for the Promotion of Science
2 Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan
{shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp
3 SORST, Japan Science and Technology Agency (JST)

Abstract. Suffix trees are the key data structure for text string match-
ing, and are used in wide application areas such as bioinformatics and
data compression. Sparse suffix trees are kind of suffix trees that repre-
sent only a subset of suffixes of the input string. In this paper we study
word suffiz trees, which are one variation of sparse suffix trees. Let D
be a dictionary of words and w be a string in DT, namely, w is a se-
quence wi - - - wy of k words in D. The word suffix tree of w w.r.t. D is
a path-compressed trie that represents only the k suffixes in the form
of w;---wg. A typical example of its application is word- and phrase-
level search on natural language documents. Andersson et al. proposed
an algorithm to build word suffix trees in O(n) expected time with O(k)
space. In this paper we present a new word suffix tree construction algo-
rithm with O(n) running time and O(k) space in the worst cases. Our
algorithm is on-line, which means that it can sequentially process the
characters in the input, each by each, from left to right.

1 Introduction

Suffiz trees have played a very central role in combinatorial pattern matching
as they enable us to solve a multitude of important problems efficiently [3, 8].
To give some examples of applications, suffix trees are utilized in data com-
pression [13,16,10] and in bioinformatics such as motif finding [14], regulatory
elements discovery [5], and fast protein classification [7]. Suffix trees are fairly
useful since they can be constructed in linear time and space with respect to the
input string length [19, 15, 18].

On the other hand, there have been great demands to deal with a common
case where only certain suffixes of the input string are relevant. Suffix trees that
contain only a subset of all suffixes are called sparse suffix trees.

The ‘sparsity’ of the suffix tree varies with the application: In [12] Karkk&inen
and Ukkonen proposed the evenly spaced sparse suffix tree which contains every
i-th suffix for some fixed positive integer i. Their contribution is an algorithm
which allows the original full text to be searched, by using the evenly spaced
sparse suffix tree. Clifford and Sergot [6] introduced distributed suffix trees whose
idea is to partition the original suffix tree into a constant number of subtrees
and construct each of them in linear time, in parallel. Their suffix tree is thus

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 60-71, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On-Line Linear-Time Construction of Word Suffix Trees 61

helpful to index huge genome sequence databases. Also, sparse suffix trees for
a set of arbitrary suffixes are used in the core of pattern discovery algorithms
from biological sequences [11,9].

Another type of sparse suffix trees is word suffiz trees [4]. Let D be a dictionary
of words and w be a string in DT, namely, w is a sequence wy - - - wy, of k words
in D. The word suffix tree of w w.r.t. D is a tree structure which represents only
the k suffixes in the form of w; - - - wg. One typical application of word suffix trees
is a word- and phrase-level index for documents written in a natural language.
Note that normal suffix trees report any occurrences of a keyword in the text
string, which may cause unwanted matchings (e.g., an occurrence of “other” in
“mother” is possibly retrieved).

This paper investigates word suffix tree construction. The most intuitive so-
lution is to build a normal suffix tree using O(n) time and space, then to prune
it so that only the leaves corresponding to the k suffixes remain. However, this
approach apparently wastes extra space, as the size of the resulting tree is only
O(k). To index large text strings efficiently, we need to handle a restricted sit-
uation where only O(k) computational space is available. Still, this is a rather
challenging task, as traditional linear suffix tree construction algorithms heavily
rely on the fact that all suffixes are to be inserted in the tree. On the other hand,
it is no more true for word suffix trees.

In [2] Andersson et al. took a first step in this problem: they presented an
algorithm to build word suffix trees with O(k) working space in O(n) ezpected
running time. This present paper takes a further step and puts a period to this
problem - our algorithm constructs word suffix trees with O(k) working space
in O(n) running time in the worst cases. Remark that this is optimal, since
the resulting tree requires O(k) space, and we have to read the whole input
string at least once and it takes O(n) time. Our algorithm is based on, and is a
generalization of, Ukkonen’s on-line suffix tree construction algorithm introduced
in [18]. In addition, our algorithm can be seen as a practical solution to efficient
construction of general sparse suffix trees.

The rest of the paper is organized as follows. In Section 2 we introduce some
definitions and notations. In Section 3 we define word suffix tries and propose
an on-line construction algorithm for them. Section 4 presents a word suffix
tree construction algorithm, which is the main subject of this paper. Finally,
conclusions and further discussions are given in Section 5.

2 Preliminaries

Let X be a finite set of symbols, called an alphabet. A finite sequence of symbols
is called a string. We denote the length of a string u by |u|. The empty string
is denoted by e, that is, |¢|] = 0. Let X* be the set of strings over X', and let
X+ = ¥*\{e}. Strings z, y, and z are said to be a prefiz, substring, and suffiz
of the string u = zyz, respectively. A prefix, substring, and suffix of a string u
are said to be proper if they are not u. Let Prefiz(u) and Suffiz(u) be the set of
prefixes and suffixes of string u, respectively. Let Prefiz(S) = {J,cg Prefiz(u) for

62 S. Inenaga and M. Takeda

a set S of strings. The i-th symbol of a string u is denoted by w]i] for 1 < ¢ < |ul,
and the substring of a string u that begins at position ¢ and ends at position j
is denoted by wu[i..j] for 1 < i < j < ul.

Definition 1 (Prefix property). A set L of strings is said to have the prefix
property if no string in L is a proper prefiz of another string in L.

Let D = X* - 4. Then D is a set of strings each followed by #, and D is
called a dictionary. We assume that any string w is an element of DT. This is a
very natural assumption, since for example in the European languages the blank
character can be regarded as the special character #, and any text is an element
of DT.

A factorization of string w € DT w.rt. D is a list wy,...,wy of strings in
D such that w = wy - - - wg. Note that this factorization is always unique, since
D = X*.-# clearly satisfies the prefix property because of # not being in X. Now,
let Suffixp(w) = {w;---wi | 1 <i<k+1}. Remark that Suffizp(w) is a subset
of Suffiz(w) which consists only of the original string w and the suffixes which
immediately follow # in w (including the empty suffix ¢ intended by w1 wg).

3 Word Suffix Trie

In this section, we present our word suffix trie construction algorithm which will
be a basis of our word suffix tree construction algorithm to be given later as the
main topic of this paper.

3.1 Definition

Definition 2 (Word suffix trie). The word suffix trie of a string w € DT
w.r.t. D, denoted by WSTriep(w), is a trie which represents Suffix p(w).

Fig. 1 compares the normal suffix trie and the word suffix trie for string w, where
Y ={a,b}, D= X" #, and w = ab#ab#a#.

It is easy to see that there is a natural one-to-one correspondence between
the nodes of WSTriep(w) and the strings in Prefix(Suffiz (w)). Any string u
in Prefiz(Suffiz p(w)) can be written as v = xy such that x € D* and y is a
proper prefix of some string in D. It should be stated that the choice of z and
y is unique for each u. Hereafter, we represent a node of WSTriep(w) with an
ordered pair (z,y), as mentioned above.

3.2 Word Suffix Trie Construction Algorithm

Suffix Link. Ukkonen [18] used suffix links for on-line construction of normal
suffix tries. Here we give a new definition of suffix links that is suitable for on-line
word suffix trie construction.

For dictionary D = X* - #, we consider the smallest DFA Mp which accepts
D. Clearly it has a unique final state with no outgoing edges (see the left of

On-Line Linear-Time Construction of Word Suffix Trees 63

Fig. 1. The normal suffix trie of w = ab#ab#a# on the upper, and the word suf-
fix trie of w w.r.t. D = {a,b} - # on the lower. Note that the normal suffix tree
represents all the suffixes of w, while the word suffix tree represents only the suffixes

ab#ab#aft, ab#a#, a#, e € Suffizp(w).

Fig. 2. To the left is the smallest DFA Mp accepting D = {a,b} -#, and to the right
is WSTriep(w) for w = ab#ab#a#, with Mp and its suffix links (broken arrows)
attached. Nodes 4, 5, 6, 7, 8, 9, 10, and 11 are those in Group 1 of Definition 3, and
nodes 1, 2, and 3 are those in Group 2.

Fig. 2). Then we attach Mp to the word suffix trie, replacing the unique final
state of Mp by the root of the word suffix trie. Now we define the suffix links of
word suffix tries as follows:

Definition 3 (Suffix links of word suffix trie). Let D = X* - # and Mp be
the smallest DFA that accepts D. For each node s = (x,y) of WSTriep(w),

1. if x € DT, the suffiz link from s goes to node (x',y) such that ' € D* and
x = ha' for some h € D;
2. otherwise (if x = €), the suffiz link from s goes to the initial state of Mp.

Fig. 2 shows the smallest DFA Mp which accepts D = {a,b}* - #, and
WSTriep(w) for w = ab#ab#a# with its suffix links.

64 S. Inenaga and M. Takeda

Algorithm. Fig. 3 shows a pseudo code of our on-line algorithm to build word
suffix tries, with the help of DFA Mp and suffix links of Definition 3. Observe
that procedure Update is identical to that of Ukkonen’s on-line normal suffix trie
construction algorithm of [18]. The only change is the initialization steps of the
main routine where we set the root of the trie to the final state of Mp and the
suffix link of the root to the initial state of Mp. This simple modifications make
a difference in the resulting data structures. A snapshot of on-line construction
of WSTriep(w) with the running example is shown in Fig. 4.

Input: w = w[l..n] € D' and auxiliary DFA Mp.
Output: Word suffix trie of w w.r.t. D.
{

root = the final state of Mp;

slink(root) = the initial state of Mp;

top = root;

for (i =1; i <n; i+ +) top = Update(top, w(i]);

}

node Update(top,c) {

newtop = CreateNewNode();

create a new edge top —— newtop;

prev = newtop;

for (t = slink(top); no c-edge from t; t = slink(t)) {
new = CreateNewNode();
create a new edge t — new;
slink(prev) = new;
prev = new;

slink(prev) = the initial node of the c-edge from ¢;
return newtop;

Fig. 3. Word suffix trie construction algorithm. For any node v, slink(v) represents the
node to which the suffix link of v goes. Remark that function Update is identical to
that of Ukkonen’s normal suffix trie construction algorithm [18]. The initialization step
using the auxiliary DFA Mp changes the algorithm so that it builds word suffix tries.

For the correctness of the algorithm of Fig. 3, it suffices to show the following
lemma:

Lemma 1. Let w € DV, wy,...,wy be a unique factorization of w w.r.t. D.
Let j be an integer with 0 < j < |w|, and u be the prefix of length j of w. Let
u=wy ---wev such that v is a proper prefix of wey1. After the j-th call of the
Update operation, we have a trie representing the strings

{wi-—we |1 <i <41} 0.

On-Line Linear-Time Construction of Word Suffix Trees 65

Fig. 4. A snapshot of on-line construction of WSTriep(w) with w = ab#ab#a# and
D = {a,b}-#. The update with the last # is shown in three steps, where we get three
new nodes and edges.

The suffiz link of the node (w; - - - wg, v) goes to the node (wit1 -« we,v), ifi < L;
and otherwise, goes to the state 6(qo,v) of Mp, where 6 and qo are, respectively,
the state-transition function and the initial state of Mp.

Proof. By induction on j = |u|. When |u| = 0, the lemma trivially holds. We
now consider |u| > 0. When v # ¢, let v = v'b with v' € X* and b € X¥. By
the induction hypothesis, after the (j — 1)-th call of Update, we have a trie
representing

{w; wp | 1<i<l+1}-0,

and the suffix link of node (w; - - - wg, v') goes to node (w;y1 - we,v'), if i < ¢;
and otherwise, goes to the state §(qo,v’) of Mp. At the j-th call, the variable top
is set to the node (w; - - - wy, v’) and the node (wy - - - wy, v'd) is created (variable
newtop). In the iteration of the for loop, we traverse the suffix links starting at
the node (wy - - - wg, v’). For each i = 2, ... ¢, the node (w; - - - wy, v'b) is created,
if it does not exist. Note that the iteration is guaranteed to halt since the suffix
links lead us to the state 6(qo,v’). During the iteration, the suffix links of the
newly created nodes (w; - - - wy, v'b) are set to the nodes (w;41 - - we, v'), if 1 < ¢
and to the state 6(qo, v'b), otherwise. Thus the lemma holds for the case v # e.
Similarly, we can prove the case v = €. O

Remark 1. Our word suffix trie construction algorithm of Fig. 3 generalizes
Ukkonen’s normal suffix trie construction algorithm [18]. Assume just for now
D = X and consider a DFA which accepts X~ with only two states that are a
single initial state and a single final state. Then this DFA plays the same role
as the auxiliary ‘L’ node used in Ukkonen’s algorithm, and thus our algorithm

66 S. Inenaga and M. Takeda

builds normal suffix tries. The same discussion applies to the word suffix tree
construction algorithm to be given in the next section.

4 Word Suffix Tree

In the previous section, we presented our on-line algorithm that constructs word
suffix tries. The drawback is, however, that the size of a word suffix trie can be
quadratic in the input string length. In this section, we consider the word suffiz
tree whose size is bounded by O(k), where k is the number of words in string w
w.r.t. dictionary D. We then propose a new algorithm to build a word suffix tree
in O(n) time with O(k) space, where n = |w| and w = wy - - - wy,. The advantage of
our algorithm to the one by Andersson et al. [2] is that our algorithm runs in O(n)
time in the worst cases, while their algorithm runs in O(n) time on the average.

4.1 Definitions

Definition 4 (Word suffix tree). The word suffix tree of a string w € DT
w.r.t. D, denoted by WSTreep(w), is a path-compressed trie which represents

Suffiz p(w).

For any strings x,y, let lcp(x,y) denote the longest common prefix of = and y.
Let

I={lep(w; - wp,wj---wg) |1 <i#j<k+1} and,
E={w; - wi | w;---wi ¢ Prefiz(wj---wy) for any 1 < j <i < k}.

Then, there is a one-to-one correspondence between the strings in I and the
internal nodes (including the root) of WSTreep(w), and there is a one-to-one
correspondence between the strings in E and the leaves of WSTreep(w). Here-
after, we sometimes refer to any node s of WSTreep(w) as the corresponding
string in T U F.

Fig. 5 compares the normal suffix tree and the word suffix tree for string
w = ab#ab#a#, where X = {a,b} and D = X* - #.

4.2 Word Suffix Tree Construction Algorithm

Note that |I| + |E| = O(k), which means that the size of WSTreep(w) is also
O(k). Since WSTreep(w) is path compressed, the edges of WSTreep(w) are
labeled by substrings of w rather than single characters. By implementing these
substring labels with pointers to w, WSTreep(w) can be finally implemented
in O(k) space. The time cost for word suffix tree construction is £2(n) due to
the need of scanning the whole string w. Thus, the final goal is to construct
WSTreep(w) in O(n) time with O(k) space.

On-Line Linear-Time Construction of Word Suffix Trees 67

Fig. 5. The normal suffix tree of w = ab#ab#a# on the upper, and the word suffix
tree of w w.r.t. D = {a,b} - # on the lower.

Suffix Link. The suffix links of WSTreep(w) are a key to achieve the above
goal. Recall that any node s of WSTriep(w) is regarded as a unique ordered
pair {(x,y), such that © € D* and y is a proper prefix of some string in D. We
apply the same notion to the nodes of WSTreep(w). Also, we use the auxiliary
DFA Mp that accepts D in the same way.

Definition 5 (Suffix links of word suffix tree). Let D = X* - # and Mp be
the smallest DFA that accepts D. For each node s = (x,y) of WSTreep(w),

1. if s € I and x € D%, the suffix link from s goes to mode (x',y) such that
z' € D* and x = ha' for some h € D;

2. if s € I and x = ¢, the suffix link from s goes to the initial state of Mp;

3. otherwise (if s € E), the suffiz link from s is undefined.

The suffix links of those in Group 3 in the above definition remain undefined, as
they are never used in our construction algorithm to be shown later. See Fig. 6

o e b # a4
(5)
.

Fig. 6. The word suffix tree with auxiliary DFA Mp and suffix links (broken arrows),
where w = ab#ab#a# and D = {a,b} -#. Note that the suffix links of nodes 9, 10,
and 11, which are those in Group 3 of Definition 5, are missing, as they are never used
in the construction algorithm.

b # a

®

a 5 ¢
#

68

S. Inenaga and M. Takeda

Input: w = w[l..n] € D" and auxiliary DFA Mp.
Output: Word suffix tree of w[l..n] w.r.t. D.
{
root = the final state of Mp; slink(root) = the initial state of Mp;
(s, k) = (root, 1);
for i=1;i<mji++) {
oldr = nil;
while (CheckEndPoint(s, (k,i — 1), w[i]) == false) {
if (k<i—1) r = SplitEdge(s, (k,i—1));
else r=gy;
t = CreateNewNode();

(i,00) .
create a new edge r ———— t;
if (oldr # nil) slink(oldr) = r;
oldr = r;

(s, k) = Canonize(slink(s), (k,i — 1));
}
if (oldr # nil) slink(oldr) = s;
(s, k) = Canonize(s, (k,1));

}

boolean CheckEndPoint(s, (k,p),c) {
if(k<p){ /*(s,(k,p)) isimplicit. */

let s =) s be the wlk]-edge from s;

return (c == wlk +p—k+1]);
} else return (there is a c-edge from s);

}

(node,integer)-pair Canonize(s, (k,p)) {
if (k> p) return (s,k); /* (s, (k,p)) is explicit. */

find the w(k]-edge s EP) s from S;

while (p —k <p—k) {
k+=p —k +1;s=s;

if (k <p) find the w[k]-edge s) L ¢ from 8;

}

return (s, k);

}

node SplitEdge(s, (k,p)) {
let s —=P) ., s be the w[k]-edge from s;
r = CreateNewNode();

(k' k' +p—k) (k' +p—k+1,p) s
_— _—

replace this edge by edges s rand r

return 7;

Fig. 7. Word suffix tree construction algorithm

)

On-Line Linear-Time Construction of Word Suffix Trees 69

for the word suffix tree with the auxiliary DFA Mp and suffix links, using the
running example.

Algorithm. A pseudo-code of our algorithm to build word suffix trees is sum-
marized in Fig. 7. It simulates construction of word suffix tries in O(n) time and
with O(k) space. Fig. 8 shows a snapshot of on-line construction of WSTreep (w)
with the running example.

29_#‘@ a,b#a 029_#‘@ aby,#ab OZQ_#'G) abtyabk ®

#® abtaybta ® @L@ abbaypiat 5

x z
ok e bk as ° 9_‘*. a‘kuz s 5 bi ok .

Fig. 8. A snapshot of on-line construction of WSTreep(w) with w = ab#ab#a# and
D = {a,b} -#. The update with the last # is shown in three steps. The star mark
denotes the location represented by (s, (k,i— 1)) in the algorithm of Fig. 7, from which
a new edge is possibly created.

The main result of this paper follows:

Theorem 1. The algorithm of Fig. 7 builds word suffix trees in linear time (on
a fized alphabet).

Proof. Since the algorithm is a time and space economical simulation of the
word suffix trie construction algorithm of Fig. 3, the correctness follows from
Lemma 1.

We now prove the linearity of the algorithm. Consider the location, referred
to as (s, (k,7 — 1)), which represents the substring w[k — £..i — 1] where ¢ is the
length of the string represented by the node s. One iteration of the while loop
in the main routine alters s into slink(s) and therefore decreases the length of
the substring by at least one. We note that Canonize never alters the substring
represented by (s, (k,p)) although it might update s and k. On the other hand,
the length of the substring is increased by at most one at each iteration of the for
loop in the main routine. Thus, the total number of iterations of the while loop
in the main routine is linearly proportional to the input string length. We have
only to estimate the total cost of all executions of Canonize. We note that the

70 S. Inenaga and M. Takeda

value of variable k£ changes only by an execution of Canonize, and monotonically
increases. The cost of one execution of Canonize is proportional to the number
of iterations of the while loop in it plus one, which is linear with respect to the
number of times the variable k is increased during the iterations. The total cost
of all executions of Canonize is therefore proportional to the number of times
k is increased in the execution of the algorithm. Since the length of the string
wlk..i — 1] is increased by at most one at each iteration of the for loop in the
main routine, the number of times k is increased is linear with respect to the
input string length. a

5 Conclusions and Further Discussions

We have presented a new on-line algorithm for constructing word suffix trees.
The algorithm is very simple and runs in linear time even in the worst cases,
whereas the one proposed by Anderson et al. runs in linear time on the average.

The simplicity of our algorithm is due to the use of DFA Mp accepting a dic-
tionary D. The idea comes from the synchronization technique introduced in [17]
in which similar DFA are embedded onto the Aho-Corasick pattern matching
machines [1] so that they process multi-byte character texts in a byte-by-byte
manner without extra work for avoiding false matches.

Lastly, our algorithm can be seen as a practical solution to efficient construc-
tion of general sparse suffix trees. Let w € X* and Pos be a set of positions of
suffixes we want to store in the sparse suffix tree. Let |w| = n and |Pos| = k.
For any position ¢ in Pos, we insert the special character # at position ¢ — 1 of
the original string w. Note that the length of the modified string w’ is at most
twice as that of the original string w, and therefore the word suffix tree for w’
can be constructed with O(k) space in O(n) time. To search for pattern p € X*
of length m, we skip any # in the word suffix tree of w’. This way the matching
can be done correctly, and in O(m) time.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333-340, 1975.

2. A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words. Algorithmica,
23(3):246-260, 1999.

3. A. Apostolico. The myriad virtues of subword trees. Combinatorial Algorithms on
Words, F12:85-96, 1985.

4. R. Baeza-Yates and G. H. Gonnet. Efficient text searching of regular expressions.
In Proc. 16th International Colloguium on Automata, Languages and Program-
ming (ICALP’89), volume 372 of Lecture Notes in Computer Science, pages 46-62.
Springer-Verlag, 1989.

5. H. Bannai, S. Inenaga, A. Shinohara, M. Takeda, and S. Miyano. Efficiently finding
regulatory elements using correlation with gene expression. Journal of Bioinfor-
matics and Computational Biology, 2(2):273-288, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

On-Line Linear-Time Construction of Word Suffix Trees 71

R. Clifford and M. Sergot. Distributed and paged suffix trees for large ge-
netic databases. In Proc. 14th Ann. Symp. on Combinatorial Pattern Match-
ing (CPM’03), volume 2676 of Lecture Notes in Computer Science, pages 70-82.
Springer-Verlag, 2003.

B. Dorohonceanu and C. G. Nevill-Manning. Accelerating protein classification
using suffix trees. In Proc. 8th International Conference on Intelligent Systems for
Molecular Biology (ISMB’00), pages 128-133. AAAI Press, 2000.

D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

S. Inenaga, H. Bannai, H. Hyyro, A. Shinohara, M. Takeda, K. Nakai, and
S. Miyano. Finding optimal pairs of cooperative and competing patterns with
bounded distance. In Proc. 7th International Conference on Discovery Science
(DS’04), volume 3245 of Lecture Notes in Artificial Intelligence, pages 32-46.
Springer-Verlag, 2004.

S. Inenaga, T. Funamoto, M. Takeda, and A. Shinohara. Linear-time off-line text
compression by longest-first substitution. In Proc. 10th International Symp. on
String Processing and Information Retrieval (SPIRE’03), volume 2857 of Lecture
Notes in Computer Science, pages 137—-152. Springer-Verlag, 2003.

S. Inenaga, T. Kivioja, and V. Mékinen. Finding missing patterns. In Proc. 4th
Workshop on Algorithms in Bioinformatics (WABI’04), volume 3240 of Lecture
Notes in Bioinformatics, pages 463-474. Springer-Verlag, 2004.

J. Kérkkanen and E. Ukkonen. Sparse suffix trees. In Proc. 2nd International
Computing and Combinatorics Conference (COCOON’96), volume 1090 of Lecture
Notes in Computer Science, pages 219-230. Springer-Verlag, 1996.

N. J. Larsson. Extended application of suffix trees to data compression. In Proc.
Data Compression Conference 96 (DCC’96), pages 190-199. IEEE Computer So-
ciety, 1996.

L. Marsan and M.-F. Sagot. Extracting structured motifs using a suffix tree - algo-
rithms and application to promoter consensus identification. In Proc. 4th Annual
International Conference on Computational Molecular Biology (RECOMB’00),
pages 210-219. ACM, 2000.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of ACM, 23(2):262-272, 1976.

J. C. Na, A. Apostolico, C. S. Tliopoulos, and K. Park. Truncated suffix trees and
their application to data compression. Theoretical Computer Science, 304(1-3):87—
101, 2003.

M. Takeda, S. Miyamoto, T. Kida, A. Shinohara, S. Fukamachi, T. Shinohara, and
S. Arikawa. Processing text files as is: Pattern matching over compressed texts,
multi-byte character texts, and semi-structured texts. In Proc. 9th International
Symp. on String Processing and Information Retrieval (SPIRE’02), volume 2476
of Lecture Notes in Computer Science, pages 170-186. Springer-Verlag, 2002.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

P. Weiner. Linear pattern-matching algorithms. In Proc. of 14th IEEE Ann. Symp.
on Switching and Automata Theory, pages 1-11, 1973.

Obtaining Provably Good Performance from
Suffix Trees in Secondary Storage*

Pang Ko'! and Srinivas Aluru?

! Department of Electrical and Computer Engineering
2 Laurence H. Baker Center for Bioinformatics and Biological Statistics
Towa State University
{kopang, aluru}@iastate.edu

Abstract. Designing external memory data structures for string data-
bases is of significant recent interest due to the proliferation of biological
sequence data. The suffix tree is an important indexing structure that
provides optimal algorithms for memory bound data. However, string
B-trees provide the best known asymptotic performance in external mem-
ory for substring search and update operations. Work on external mem-
ory variants of suffix trees has largely focused on constructing suffix trees
in external memory or layout schemes for suffix trees that preserve link
locality. In this paper, we present a new suffix tree layout scheme for
secondary storage and present construction, substring search, insertion
and deletion algorithms that are competitive with the string B-tree. For
a set of strings of total length n, a pattern p and disk blocks of size B,
we provide a substring search algorithm that uses O(|p|/B +1log g n) disk
accesses. We present algorithms for insertion and deletion of all suffixes
of a string of length m that take O(mloggz(n + m)) and O(mloggn)
disk accesses, respectively. Our results demonstrate that suffix trees can
be directly used as efficient secondary storage data structures for string
and sequence data.

1 Introduction

The suffix tree data structure is widely used in text processing, information
retrieval, and computational biology. It is especially useful when there are no
word or sentence structures, such as in biological sequences, for which the suffix
tree is uniquely suited for indexing and querying. With the continued explosion
in the size of biological sequence databases, there is growing interest in string
indexing schemes in general, and disk-based suffix trees in particular.

The suffix tree of a set of strings is a compacted trie of all suffixes of all the
strings. Since the introduction of this data structure by Weiner [15], several linear
time algorithms for in-memory construction of suffix trees have been designed:
notable ones include McCreight’s linear space algorithm [11], Ukkonen’s on-line
algorithm [13], and Farach’s algorithm for integer alphabets [4]. To extend the
scale of data that can be handled in-memory, Grossi and Vitter [9] developed

* Research supported by the National Science Foundation under I1S-0430853.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 72-83, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Obtaining Provably Good Performance from Suffix Trees 73

compressed suffix trees and suffix arrays. In the last few years, there has been
significant research on disk-based storage of suffix trees for exploiting their util-
ity on ever growing sequence databases. Many algorithms and strategies have
been proposed to reduce the number of disk accesses during the construction of
suffix trees [1,2,5,10,12]. Of these, only Farach et al. provided a construction
algorithm for secondary storage that achieves the optimal worst case bound of

e (g log u g) disk accesses (where M is the size of main memory).

While these algorithms and techniques focused on suffix tree construction in
secondary storage, the problems of searching and updating suffix trees (inser-
tion/deletion of all suffixes of a string) on disks have not received as much atten-
tion. An interesting solution is provided by Clark and Munro [3] that achieves
efficient space utilization. This is used to obtain a bound on disk accesses for sub-
string search as a function of the height of the tree. In the worst case, the height
of a suffix tree can be proportional to the length of the text indexed, although it
is rarely the case and Clark and Munro’s approach provides good experimental
performance. To date, algorithms with provably good worst-case performance
for substring searches and updates for suffix trees in secondary storage are not
known. To overcome these theoretical limitations, Ferragina and Grossi have
proposed the string B-tree data structure [6, 7]. String B-trees provide the best
known bounds for the worst-case number of disk access required for queries and
updates. It is not known if the same performance bounds can be achieved with
suffix trees. The unbalanced nature of suffix trees appears to be a major obstacle
to designing efficient disk-based algorithms.

In this paper, we propose a new suffix tree layout scheme, and present al-
gorithms with provably good worst-case bounds on disk accesses required for
search and update operations, while maintaining our layout. Let n denote the
number of leaves in the suffix tree, and B denote the size of a disk block. We
provide algorithms that

— search for a pattern p in O(|p|/B + logg n) disk accesses,

— insert (all suffixes of) a string of length m in O(mlogz(n+m)) disk accesses,
and

— delete (all suffixes of) a string of length m in O(mlogzn) disk accesses.

Since suffix tree construction can be achieved by starting from an empty tree
and inserting strings one after another, the number of disk accesses needed for
suffix tree construction is O(nlogg n). Our results provide the same worst-case
performance as string B-trees, thus showing that suffix trees can be stored on
disk and searched as efficiently as string B-trees.

The rest of the paper is organized as follows: In Section 2 we present our layout
scheme. The scheme partitions the suffix tree such that the number of partitions
encountered on any root to leaf path is bounded by logz n. This is a crucial fea-
ture that helps in overcoming problems caused by the unbalanced nature of suffix
trees. Section 3 contains our algorithm for substring search using the proposed
layout. Algorithms for inserting and deleting a new string are discussed in Sec-
tion 4. Section 5 contains further discussion and Section 6 concludes the paper.

74 P. Ko and S. Aluru

Fig. 1. The suffix tree of the string AABBAABBABABS. The number in an internal
node is the number of leaves in its subtree. A partitioning is shown with C' = 3. Two
example partitions of rank zero are circled with dashed lines, and two of rank one
with dotted lines.

2 Suffix Tree Disk Layout

Consider a set S of strings of total length n and a fixed size alphabet Y. Without
loss of generality, we assume that the last character of each string is a special
character $§ ¢ X, and the remaining characters are drawn from X. Let s € S
be a string of length m. We use s[i] to denote the i-th character of s. Let s[i..j]
denote the substring s[i]s[i + 1]...s[j]. The i-th suffix of s, s[i..m], is denoted
by s;. The suffix tree of the set of strings .S, abbreviated ST, is a compacted trie
of all suffixes of all strings in S. Another commonly used notation is to use the
term generalized suffix tree when dealing with multiple strings and reserve the
term suffiz tree when dealing with a single string. For convenience, we use the
term suffix tree to denote either case.

For a node v in ST, the string depth of v is the total length of all edge labels
on the path from the root to v. The number of leaves in the subtree under v is
referred to as size(v). If v is a leaf node then size(v) = 1. The rank of node
v, denoted rank(v), is 4 if and only if C* < size(v) < C*F1, for some integer
constant C' of choice. Nodes u and v belong to the same partition if all nodes
on the undirected path between v and v have the same rank. It is easy to see
that the entire suffix tree is partitioned into disjoint parts. Figure 1 shows an
example of a suffix tree, and some of its partitions.

The rank of a partition P is the same as the rank of the nodes in P, i.e.
rank(P) = rank(v) for any v in P. Node v in P is a leaf in P if and only if none

Obtaining Provably Good Performance from Suffix Trees 75

T

(s 4
(b) The skeleton partition
tree of the partition on
the left. The number next
to each node denotes the
total length of the labels
between the nodes in 7p.
Only the first character of
the first label between two
(a) An example parti- nodes is used in the labels.
tion with all character of

the edge labels shown.

Nodes u,v,w are branch-

ing nodes.

Fig. 2. Illustration of partitions and skeleton partition trees

of v’s children in ST belong to P. Node u is termed the root of P if and only if
u’s parent is not a node in P. Figure 2(a) shows an example of a partition.

Lemma 1. There are at most C — 1 leaves in a partition.

Proof. Let P be a partition that has C’ > C leaves, and node u be its root. Since
size(u) > C*- C" > C*- C = C*™Y, rank(u) > rank(P), a contradiction. O

Node v in P is a branching node if two or more of its children are in P. All other
nodes are referred to as non-branching nodes. From Figure 2(a) we see that a
partition P need not be a compacted trie. For each partition P, a compacted
trie is constructed containing the root node of P, all branching nodes and all the
leaves. Furthermore, only the first character of each edge label is stored. This
resulting compacted trie is referred to as the skeleton partition tree of P, or 7p.
Figure 2(b) shows the skeleton partition tree of the partition in Figure 2(a).

Lemma 2. For a partition P, the number of nodes in Tp is at most 2C — 2.

Proof. By Lemma 1 there are at most C' — 1 leaf nodes in a skeleton partition
tree. Therefore, there can be at most C' — 2 branching nodes. In addition, the
root node may or may not be a branching node. So the total number of nodes
in a skeleton partition tree is at most 2C — 2 = O(C). O

76 P. Ko and S. Aluru

While Lemma 2 shows that the size of 7p is bounded by O(C), it gives no
bound on the size of P. The worst case number of nodes in partition P of rank
iis C't! — O corresponding to a chain of C*t! — C* nodes in ST where the
bottom node has a subtree with C? leaves and all other nodes have an additional
leaf child each. Note that 7p in this case has only two nodes, the top and bottom
nodes of the chain. So 7p can be viewed as an additional data structure built
on top of P in order to traverse P effectively. A node u in ST appearing in a
partition P is described as up; similarly, its appearance in 7p is described as
u7. The information stored in u7 and up are different, because uz’s function is
to help navigate 7p to locate a part of P, while up is used to navigate from one
partition to another in ST'. Any disk block can contain either skeleton partition
trees, part of a partition, or some of the input strings, but not a mixture of them.

Let w7 and v7 be nodes in 7p such that uz is the parent of vz. All the
non-branching nodes between up and vp (including up, vp) form a linked list.
Since up is a branching node, it will be the head of multiple such linked lists.
Also, up will be the tail of another linked list. For storage efficiency, we require
each node in P to be stored in exactly one linked list. So up is not stored as
the head (first node) of the linked list from up to vp, but rather as the tail (last
node) in the linked list that ends at up. Note if up is the root of a partition, it
is stored by itself. Since the linked list between up and vp does not contain up
we refer to this linked list as LL(up, vp].

To summarize, our layout scheme first divides the suffix tree into partitions.
All the nodes in a partition are further divided into linked lists. The skeleton
partition tree allows us to find any of the linked lists in a partition efficiently. All
links in our data structure are bidirectional for navigation. We will now describe
the augmenting information needed to efficiently perform the search operation.

The function of a skeleton partition tree 7p is to allow the identification
of a LL(up,vp] in P, such that one of the nodes in LL(up,vp| has a child
pointer to the next partition we need to load for our search. Let vy be a child of
uT in T’p.

— Store in v the first character of the first edge label on the path from uz to
vy in ST, and refer to this character as first char(vr).

— Store in vz a pointer ptr LL(vr) to the tail (last node) of LL(up, vp].

— Store in ug a pointer ptr LL(u,) to the head (first node) of LL(up,vp).

— Store in uz the string depth of uz in ST, denoted as string depth(ur).

— Store in uz (s,rep suff(ur)), such that s,c, sy, is a suffix represented
by one of the leaves in ST under ur.

For each node up we store the following information:

— String depth of up, also denoted as string depth(up).

— For each child w of u in the suffix tree, store in up a pointer to wz. Note
that this pointer is stored irrespective of if w is in the same partition as u.
Also store the first character of the edge label from up to wz in the suffix
tree. We call this character LL first char(uy).

Obtaining Provably Good Performance from Suffix Trees 7

3 Substring Search

Given a pattern p and the suffix tree for a set of strings 5, the substring matching
problem is to locate a position ¢ and a string s € S such that s[i..i+ [p| —1] =p
where [p| is the length of p, or conclude that it is impossible to find such a
match. In a suffix tree we match p character by character with edge labels of
the suffix tree until we can proceed no longer, or until all p’s characters have
been exhausted in which case a match is found. To search for a pattern p in
a suffix tree with our proposed layout, we will traverse the tree partition by
partition. The search begins with the partition containing the root node of ST
Let ¢ be a counter that is initialized to zero. The following steps are performed
and repeated for each partition P we encounter.

1. Load 7p into the main memory.

2. Start from the root r of 7p and travel down 7p as follows. Suppose we are at
node ur, and let vz be a child of uz. If first char(vy)=p[string depth(ur)+
1] then travel to vz and repeat this process. Stop if no such vz can be found,
or when u7 is a leaf node in 7p, or p is exhausted.

3. Suppose the previous step stopped at node vy. Compare the substring
slrep suff(vr) + £..rep suff(vr) + min {string depth(vr),|p|}] with the sub-
string p[¢.. min {string depth(vr),|p|}]. Let lep be the number of characters
matched, set £ = ¢ + lcp.

4. Repeat Steps 2 and 3 until the first node wy such that string depth(wz) > £
is located. Let uz be the parent of wr in 7p, and load LL(up, wp] by using
the pointer at uz. Start from the first node u% of LL(up,wp], locate the
first node u% in LL(up,wp] such that string depth(u) > £. So far the
process is similar to the search of PAT-tree proposed by Gonnet et al [8].

5. Suppose we stopped at node up, there are three cases:

(a) If string depth(up) = £ and £ = |p|, then a match is found at node u
and the search is stopped.

(b) Else if string depth(up) = £ but £ # |p|, i.e. the mismatch occurred
immediately after that up. Find LL first char(u,) = p[¢ + 1] and use
the pointer to wz to find the next partition. If no match is found we
terminate the search and report no match for p in s.

(¢) Otherwise if string depth(up) > ¢, then we also terminate the search
and report no match for p in S.

Using the two-level memory structure proposed by Vitter and Shriver [14], we
assume the size of a disk block is B. Since each node requires constant amount
of space, the number of nodes a disk block can hold is ©(B).

Lemma 3. Given a string s of length n, and a pattern p of length |p|. The
number of disk accesses needed to locate p in the suffix tree of s is O(|p|/B +

logB n).

Proof. We choose C' such that the skeleton partition tree can fit in one disk
block. Since the number of nodes in a skeleton partition tree is at most 2C —2 by

78 P. Ko and S. Aluru

Lemma 2 and each node requires constant space C' = @(B). For each partition
P its 7p is stored in one disk block, so Steps 1 and 2 can be done with one
disk access for each partition. Since the search goes through at most O(loggz n)
partitions, the total disk accesses for these steps is O(logg n). Over the course
of the entire search process, Step 3 makes at most O(|p|) character comparisons,
and requires O(|p|/B + logg n) disk accesses because both p and the substring
being compared are stored contiguously on disk. By similar reasoning Step 4
requires O(|p|/B +logg n) disk accesses because the number of nodes loaded for
all linked lists combined is less than |p|. Finally all the information needed for
Step 5 is stored with the node, and no additional disk access is needed. Therefore,
the total number of disk accesses is O(|p|/B + logg n). |

Note that one occurrence of the pattern in the given set of strings can be found
by identifying the first node u7 at or below the position after matching all char-
acters of p, and retrieving the representative suffix (s, rep suff(uz)). The algo-
rithm can be extended to return all occurrences of the pattern p using O(|p|/B+

logp n + %) disk accesses where occ denotes the number of occurrences.

4 Updating the Suffix Tree

A dynamic suffix tree must support insertion, deletion, and modification of
strings. Since a modification operation can be viewed as a deletion followed
by an insertion, we concentrate our discussion on the insertion and deletion op-
erations. During insertion and deletion the size of a node may be changed. In
order to facilitate the calculation of size, we choose C' = 2. By Lemma 1, if
C' = 2 then each partition only has one leaf, and is now a path. The skeleton
partition tree contains only two nodes, the root and the leaf, denoted R and L,
respectively. With C' = 2, it can be easily verified that all the leaves of ST are
in a partition of their own.

Note that the bound of asymptotic number of disk accesses for substring
search in Lemma 3 is obtained using C' = ©(B). This result can be achieved
even when C' = 2 by packing multiple skeletal partition trees into the same disk
block as outlined in Lemma 5.

4.1 Insertion

In order to insert a string s into an existing suffix tree with O(n) nodes, the suf-
fixes of s are inserted into the suffix tree one by one. Therefore we first introduce
the procedure to insert a suffix of s into the suffix tree. When a suffix is inserted
into the suffix tree a leaf is added, and an internal node may also be added. For
every node u in the suffix tree on the path from the root of the suffix tree to the
newly inserted leaf node v, size(u) is increased by one. Because of this change,
rank(u) may also increase by one, which will change the partition P. However,
the number of nodes that have to be moved to another partition is limited.

Obtaining Provably Good Performance from Suffix Trees 79

Lemma 4. The insertion of a new suffix into the suffix tree may increase the
rank of a node by 1 only if it is an ancestor of the new leaf and is the root node
of its partition. The ranks of all other nodes are unaffected.

Proof. If a node is not an ancestor of the new leaf, its size and hence its rank
does not change. The size of each node that is an ancestor of the newly inserted
leaf will increase by one. Consider a node v that is an ancestor of the new leaf.
Suppose v is not the root of a partition and let r denote the root of the partition
containing v. If rank(v) were to increase, then size(v) = C* — 1 just before the
insertion. Since 7 is an ancestor of v, then size(r) > size(v) = size(r) > C?, so
r could not have been in the same partition as v, a contradiction. a

While Lemma 4 applies for any choice of C', we choose C' = 2 as described in
the beginning of the section. While the size of many nodes will change after an
insertion, it is not necessary to keep track of the correct size of all nodes at all
times. It is enough to only have the correct size for the root R of all partitions.
Since we have chosen C' = 2 and as stated before each partition P is now a path
in ST, i.e. P has no branching nodes. So the linked list between Rp and Lp can
now contain the node Rp as its head, without fear of duplication. The linked
list under the new definition is referred to as LL[Rp, Lp]. We alter slightly the
information stored with Rs and L7 to facilitate the insertion operation.

— In Ry, size(R7) contains the number of leaves in the suffix tree under Rp.

— Since Rt has only one child, the pointer to the head of LL[Rr, L] is now
ptr LL(R 7). The pointer ptr LL(L7) still points to the tail of LL[R 7, L7].

— The definition for string depth(v), first char(v) and (s,rep suff(v)), where
v is either Ry or L7, remain unchanged from before.

The insertion algorithm is applied iteratively to each partition it encounters.
Each iteration is divided into two stages. In the first stage we find the appropriate
place to insert the new leaf and add a new internal node if necessary. In the
second stage we update the partition if the root needs to be moved to another
partition. Assume that the size parameters are correct for R of each partition.
Suppose we are at partition P, perform Steps 1 to 4 of the search algorithm
described in Section 3. Assume after Step 4, the search algorithm stops at a
node up. One of the following three scenarios will apply.

1. An internal node w needs to be inserted between R and its parent v in parti-
tion P’, and the new leaf attached to wp. In this case size(w) = size(Rr)+1
and its rank can be calculated accordingly. Based on its rank one of the fol-
lowing cases is true.

(a) The new node w has the same rank as Ry, so it is the new root of P.
Put wp as the head of LL[wp, Lp], set pointer ptr LL(wp) to wp.

(b) The new node w is in a partition by itself, then a new partition is made
containing only w. Pointers in vps and Rp are updated accordingly.

(¢) The new node wp is in the same partition P’ as vp. Node w is inserted
after vps in LL[Rp:, Lp/] and update the tail pointer stored in L.

80 P. Ko and S. Aluru

2. Else if string depth(up) =1 but I # |p|, i.e., the mismatch occurred imme-
diately after that up. Find LL first char(u,) = p[l+ 1] and use the pointer
to w7 to find the next partition. If no match is found then node up is where
the new leaf should be attached. In either case increment size(Rp) by one.

3. Otherwise if string depth(up) > [, then a new internal node wp is inserted
between up and its parent vp € LL[Rp, Lp], the new leaf is attached to wp
and size(Rp) is incremented by one.

It is easy to verify that the size parameter is correctly set at the end of this
stage. From Lemma 4 we know that for each partition P encountered during the
insertion, only the root may need to be moved. If so first remove the first node of
LL[Rp, Lp] by changing ptr LL(Rp) to point at the next node in LL[Rp, Lp].
The next node becomes the new root of P, so update the values we stored for
Rp. All these values can be found except for the new size(Rp). Let r be the
old root of P, then size(Rp) = size(r) — Zle size(v;), where v; is a child of r.
The sizes of v;’s are known because they are roots of different partitions. The
old root r will either become a partition on its own or become a part of the
partition of its parent. In the former case, carry out the procedures in 1b), and
the procedure in 1c) should be followed in the latter case.

For a partition P, LL[Rp, Lp]| may not be able to fit in one disk block. When
a disk block becomes full, a new disk block is opened. The second half of the
linked list on the current block is copied to the new block. The nodes of the
second half of the linked list could be scattered across the disk block.

Lemma 5. The number of disk accesses needed for the insertion of a suffix is
O(m/B +logg n), where m is the length of the suffiz.

Proof. Assume the number of nodes that can be contained in a block is O(B)
and B = 2F. Under the new scheme each skeleton partition tree contains only
two nodes. For a partition P with rank rank(P), we calculate a block rank(P) =
|rank(P)/k]. For partitions P’ and P”, without lost of generality assume Rp~
is a child of v € P’. If block rank(P’) = block rank(P") we put Tp, and Tp» on
the same disk block. So each time a new disk block containing skeleton partition
trees is loaded the block rank decreases by one, so O(loggn) disk accesses are
sufficient for loading all blocks containing the skeleton partition trees needed by
the algorithm.

Let Rp: be a child of Rp in ST such that block rank(P’) = block rank(P).
We store in Ry of P a pointer to Rt of partition P’, and the first character
of the edge label. Therefore, we can find a partition P” in the same disk block
as P, using Step 2 of the substring search algorithm. Then use rep suff at P”
to decided how to navigate through all the skeleton partition trees on the same
disk block. Thus the complexity is the same as search. O

To speed up insertion of all suffixes of a string, suffix links are used. For nodes
u,v € ST there is a suffix link from u to v, denoted SL(u) = v, if the concatena-
tion of the edge labels from the root to u and v are a8 and [, respectively. We

Obtaining Provably Good Performance from Suffix Trees 81

first briefly introduce McCreight’s suffix tree construction algorithm [11], then
show how these ideas can be used in our layout scheme.

To insert a string s of length m into a suffix tree of size n, the suffixes of s
are inserted into the suffix tree one by one. Suppose we have just inserted suffix
s; as a leaf, if a new internal node w is created to attach the leaf representing
si, then go to w’s parent and let [be the length of the edge label between w
and its parent. Otherwise go to the parent of the leaf and let [= 0. Assume
we are at node u now, take the suffix link from node u to v. Compare only the
first character of each edge label with the appropriate characters of s and skip
down, repeat this until [characters have been skipped. If we are inside an edge
label, insert a new internal node w’, attach the leaf representing s;11 to w’ and
set SL(w) = w'. Otherwise suppose we are at a node w’. Set SL(w) = w' and
continue down from w’ by comparing appropriate characters of s with the edge
labels, until a place to insert s;+1 is found.

If we maintain a suffix link for each node up to vp, then we can follow the
above algorithm to insert suffixes one by one in our layout. To skip the [charac-
ters takes at most O(l/B+logg(n+m)) disk accesses. After the insertion of each
suffix, for each partition P encountered on the path from the root of ST to the
new leaf, the size of Rp is incremented by one, and Rp is moved to another par-
tition if necessary. Updating all of these partitions takes at most O(logg(n+m))
number of disk accesses. Therefore the total number of disk accesses required
for inserting all suffixes of a string of length m is O(mlogg(n 4+ m)).

4.2 Maintaining Suffix Links

In our string insertion and deletion algorithms, suffix links need to be maintained
for each node up. This can be accomplished by maintaining bidirectional suffix
links such that when wup is moved, all nodes vpr with SL(vp/) = up can be
identified and updated. We note that the string depth of a node in ST never
changes. So for nodes up,vp in LL[Rp, Lp] such that up is the parent of vp,
we can leave enough space between up and vp for future insertions. The amount
of space is proportional to the length of the edge label between up and vp. This
way the suffix links will only change when a node is moved to another partition.
The complexity of searching, insertion and deletion is not affected. Ferragina
and Grossi [7] have proposed three approaches to maintain their succ pointers,
which can also be applied to maintain the suffix links in our approach.

4.3 Deletion

The deletion process is analogous to the insertion process. Similar to Lemma 4
only the leaf of a partition may need to be moved to another partition for each of
the partitions encountered during the deletion process. In places where size(u)
is incremented by one in the insertion process, size(u) should be decremented
by one. Since some of the strings will be deleted, the (s, rep suff(ur)) entries
may no longer be valid for u7 that is an ancestor of a deleted leaf. In this case
after the deletion of a leaf we traverse upwards in the tree, and replace the

82 P. Ko and S. Aluru

(s,rep suff(ur)) entries with the suffixes represented by a sibling of the deleted
leaf, or (s,rep suff(vr)) where vy is a sibling of the deleted leaf.

5 Discussion

In our layout scheme, it is possible that many skeletal partition trees may be
small and not occupy a full disk block. Even though a skeletal partition tree
can have as many as C' — 2 nodes, it can also have as few as just two nodes.
For example, the suffix tree of the string A™$ has ©(n) number of disk blocks
with only one node. Note that this is true even if a large value of C such as
O(B) is chosen. Choosing C' = O(B) ensures optimal number of disk accesses
for substring search, even if many disk blocks are sparsely occupied. This is an
interesting contrast with the suffix tree layout of Clark and Munro [3] where the
focus is on succinct representation of suffix trees to conserve secondary storage,
but this scheme does not provide optimal worst case bound for substring search.
Our scheme provides such guarantees despite not trying to minimize the number
of disk blocks for suffix tree storage.

While not needed for ensuring asymptotic performance when C = O(B), we
can and should pack as many skeletal partition trees into a single disk block
for efficient storage. This packing is always beneficial and has no harmful side
effects. If C' is chosen to be small, such packing is necessary to obtain optimal
disk accesses as outlined in the proof of Lemma 5.

The main advantage of our approach is that it provides the same performance
guarantees as string B-trees without sacrificing the structure of suffix trees. This
will make it easier to co-exist with the large number of applications that already
use suffix trees as the underlying data structure. One limitation of our approach
is that it is applicable only to constant sized alphabets while string B-trees do
not have this limitation. Traversing any root to leaf path in string B-tree incurs
the same number of disk accesses. This number is potentially different for each
path in our layout with the worst-case asymptotic performance same as for string
B-trees. Each disk access in our algorithm increases the number of characters
matched with p, and this may not be true for string B-tree. Thus, searching for
a pattern p takes O(min{p, p/ B+ logg n}) number of disk access, where n is the
number of characters indexed.

6 Conclusions

In this paper, we present a new suffix tree layout scheme for secondary storage
and provide algorithms with provably good worst-case performance for search
and update operations. The performance of our algorithms matches what can be
obtained by the use of string B-trees, a data structure specifically designed to
efficiently support string operations on secondary storage. Suffix trees are exten-
sively used in biological applications. As our scheme provides how to efficiently
store and operate on them in secondary storage that is competitive with the

Obtaining Provably Good Performance from Suffix Trees 83

best available alternatives, the research presented provides justification for us-
ing suffix trees in secondary storage as well. It is important to compare how the
presented algorithms compare in practice with other storage schemes developed
so far (those with and without provable bounds on disk accesses), and such work
remains to be carried out.

References

1.

10.

11.

12.

13.
14.

15.

S.J. Bedathur and J.R. Haritsa. Engineering a fast online persistent suffix tree
construction. In Proc. 20th International Conference on Data Engineering, pages
720-731, 2004.

. S.J. Bedathur and J.R. Haritsa. Search-optimized suffix-tree storage for biological

applications. In Proc. 12th IEEE International Conference on High Performance
Computing, pages 29-39, 2005.

. D.R. Clark and J.I. Munro. Efficient suffix trees on secondary storage. In Proc.

7th ACM-SIAM Symposium on Discrete Algorithms, pages 383-391, 1996.

. M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th

Annual Symposium on Foundations of Computer Science, pages 137-143, 1997.

. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity

of suffix tree construction. Journal of the ACM, 47(6):987-1011, 2000.

. P. Ferragina and R. Grossi. Fast string searching in secondary storage: theoretical

developments and experimental results. In Proc. 7th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 373-382, 1996.

. P. Ferragina and R. Grossi. The string B-tree: A new data structure for string

search in external memory and its applications. Journal of the ACM, 46(2):236—
280, 1999.

. G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. Information Retrieval: Data Struc-

tures € Algorithms, chapter 5:“New indices for text: PAT trees and PAT arrays”,
pages 66-82. 1992.

. R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applica-

tions to text indexing and string matching. In Proc. 32nd Annual ACM Symposium
on Theory of Computing, pages 397-406, 2000.

E. Hunt, M.P. Atkinson, and R.W. Irving. Database indexing for large DNA and
protein sequence collections. The VLDB Journal, 11(3):256-271, 2002.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23:262-272, 1976.

S. Tata, R.A. Hankins, and J.M. Patel. Practical suffix tree construction. In Proc.
13th International Conference on Very Large Data Bases, pages 36—47, 2004.

E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249-260, 1995.
J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory I: Two-level mem-
ories. Algorithmica, 12(2/3):110-147, 1994.

P. Weiner. Linear pattern matching algorithms. In Proc. 14th Symposium on
Switching and Automata Theory, pages 1-11, 1973.

Geometric Suffix Tree: A New Index Structure
for Protein 3-D Structures

Tetsuo Shibuya

Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
tshibuya@hgc. jp

Abstract. Protein structure analysis is one of the most important re-
search issues in the post-genomic era, and faster and more accurate query
data structures for such 3-D structures are highly desired for research on
proteins. This paper proposes a new data structure for indexing protein
3-D structures. For strings, there are many efficient indexing structures
such as suffix trees, but it has been considered very difficult to design such
sophisticated data structures against 3-D structures like proteins. Our in-
dex structure is based on the suffix trees and is called the geometric suffix
tree. By using the geometric suffix tree for a set of protein structures, we
can search for all of their substructures whose RMSDs (root mean square
deviations) or URMSDs (unit-vector root mean square deviations) to a
given query 3-D structure are not larger than a given bound. Though
there are O(N?) substructures, our data structure requires only O(N)
space where N is the sum of lengths of the set of proteins. We propose
an O(N 2) construction algorithm for it, while a naive algorithm would
require O(N 3) time to construct it. Moreover we propose an efficient
search algorithm. We also show computational experiments to demon-
strate the practicality of our data structure. The experiments show that
the construction time of the geometric suffix tree is practically almost
linear to the size of the database, when applied to a protein structure
database.

1 Introduction

Analyzing 3-D structures of proteins is very important in molecular biology and
more and more protein structures are solved today with the aid of state-of-the-
art technologies such as nuclear magnetic resonance (NMR) techniques, as seen
in the increasing number of PDB [4] entries: 35,813 on March 28, 2006. It is said
that structurally similar proteins tend to have similar functions even if their
amino acid sequences are not similar to each other. Thus it is very important to
find proteins with similar structures (even in part) from the growing database
to analyze protein functions.

Structure similarity search methods for protein structure databases can be
classified into two types. One is by comparing each database entry with the
query. There are many comparison algorithms for protein structures [10], and
the results could be very accurate, but it will require enormous amount of time

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 84-93, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 85

to apply against very large databases. The other approach is by indexing with
some important features of structures [1,3,6,5,8,12]. In ordinary, these meth-
ods can search queries more efficiently, but with less accuracy than the pair-
wise comparison-based methods. The accuracy of comparison of two protein
structures is often measured by RMSD (root mean square deviation) [2,9,17]
or sometimes by URSMD (unit-vector root mean square deviation) [7,15]; see
section 2.1 for more details. But it has been considered too difficult to design
indexing structures that strictly consider the RMSD or the URMSD.

In this paper, we propose a new data structure called the geometric suffix
tree that succeeds in finding all the substructures whose RMSD or URMSD to
a query is not larger than some given bound. As the name implies, our data
structure is very similar to the famous suffix tree for character strings: The
edges in the ordinary suffix tree represent substrings of texts, while the edges in
the geometric suffix tree represent 3-D substructures of protein 3-D structures.
The geometric suffix tree can be stored in O(N) space where N is the sum of
the lengths of the proteins in the database. We propose an O(N?) construction
algorithm for it, though it takes O(N?) time if we construct the data structure
naively. Furthermore, the experiments will show that the construction time of
the geometric suffix tree is almost linear to the size of the database in practice,
when applied to a protein structure database. Moreover, we propose an efficient
search algorithm for substructure queries. This data structure is also useful for
finding structural motifs, clustering substructures, and so on.

Organization of this paper is as follows. In section 2, we explain related work
as preliminaries. In section 3, we describe definitions of two data structures:
the geometric trie and the geometric suffix tree, where the geometric trie is the
basis for the geometric suffix tree. In sections 4 and 5, we explain algorithms for
constructing the data structure and algorithms for searching queries. In section 6,
we demonstrate experimental results. In section 7, we conclude our results.

2 Related Work

2.1 RMSD and URMSD

A protein is a chain of amino acids. Each amino acid has one unique carbon atom
named C,,, and we often use the coordinates of the C,, atom as the representative
position of the amino acid. The set of C,, atom positions of all the amino acids in
a protein is called the backbone of the protein, and is often used to ease protein
structure analysis in previous work. The backbone is topologically linear, but it
forms a geometrically very complex structure in the 3-D space. In this paper, we
consider the backbone as the target to index.

The most popular and basic measure to determine geometric similarity be-
tween two sets of points like the positions of backbone atoms is the RMSD
(root mean square deviation) [2,9,17], if we know which atom in one structure
corresponds to which atom in the other. The measure describes the similarity
of two structures when one of the point sets is rotated and translated reason-
ably. Let the two sets of points to be compared be P = {p1,po,...,pn} and

86 T. Shibuya

Q =1{4q1,92,...,49,}, where p; and g, are coordinates in the 3-D space, and we
consider p; corresponds to q; for each . The RMSD is the minimum value of
{20, Ipi — (R-g; +v)|?)/n}'/? over possible rotation matrices R and trans-
lation vectors v, where | - || denotes the norm. Let R(P,Q) and #(P,Q) be R
and v that minimizes the value. We call 37 ||p; — (R(P,Q) - ¢; + %(P,Q))||?
the MSSD (minimum sum squared distance) of P and Q.

It is known that o(P,Q) = > I, (pi — R(P,Q) -qi)/n, i.e., the distance is
minimized when the centroids of the two point sets are translated to the same
point. Hence, if both of the point sets are translated so that their centroids
are located at the origin of the coordinates, the RMSD/MSSD problem is re-
duced to a problem of finding R that minimizes f(R) = >, |pi — R - q;*
We can find R(P,Q) in linear time by using singular value decomposition
(SVD) [2,17] as follows. Let H = >_"" ; p; - g%. Then f(R) can be described as
S (pipi + qlq;) —trace(R-H), and trace(RH) is maximized when R = VU7,
where UAV is the SVD of H. Hence R(P,Q) can be obtained in constant time
from H (see [13] for SVD algorithms). Note that there are rare degenerate
cases where det(VUT) = —1, which means that VU is a reflection matrix.
We ignore the degenerate cases in this paper. In this way, we can compute the
RMSD/MSSD values in O(n) time.

The URMSD (unit-vector root mean square deviation) [7,15] is a variation of
the RMSD. The RMSD is sometimes influenced badly by very distant pairs of
points, and the URMSD is designed to avoid such influence. It is the minimum

n—1

value of {(327°, ||p: — R - @}||?)/(n — 1)}'/2 over possible rotation matrices R,
where p; = (pi+1 — pi)/llpi+1 — pil| and q; = (gi+1 — qi)/||gi+1 — gil|- Let
R(P,Q) be R that minimizes the value. We call 7" |p} — R(P,Q) - ¢||? the
UMSSD (unit-vector minimum sum squared distance). The URMSD/UMSSD
can be computed with the same strategy in O(n) time, i.e., by computing the
SVD of H' =371, pj - (q))"-

2.2 Suffix Trees

The suffix tree [11,14,16,19,20] of a string S € X" is the compacted trie of
all the suffixes of ST = S$ where $ is a character such that $ ¢ . This data
structure can be stored in O(n) space and moreover is known to be buildable
in O(n) time. Each leaf represents a suffix of the string ST, and each node
represents some substring. This data structure is very useful for various problems
in sequence pattern matching. Using it, we can query a substring of length m in
O(m) time, we can find frequently appearing substrings in a given sequence in
linear time, we can find a common substring of many sequences in linear time,
and so on [14].

Not much work has been done for applying this data structure to biomolecular
structures. The PSIST [12] is the only index data structure for protein structures
based on the suffix trees as far as we know. It converts local features of the amino
acid chain (i.e., some feature vectors computed from only several adjacent atoms)
into some alphabets and constructs suffix trees over the converted alphabet se-
quences, without considering global similarity measures like the RMSD or the

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 87

URMSD at all. For RNA (secondary) structures, the s-suffix tree [18], a general-
ization of the suffix tree, can be used for mining some interesting RNA structures
from sequence databases, but it cannot be applied to protein 3-D structures.

3 Geometric Suffix Tree Data Structure

In this section, we describe the definition of the geometric suffix tree. Before
defining the geometric suffix tree, we define a data structure called the geometric
trie for a set of protein structures.

Consider a set of n protein structures represented by the sequence of their C,,
atom coordinates. Let W; be the i-th structure, where the 3-D coordinates of the

j-th C,, atom is denoted as w§i)7 and let ¢; be the length of W; (i.e., number of

C,, atoms). Let W;[j..k] denote {wy), wﬁl, ..., w{"}, which means a structure
formed by the (k —j+ 1) atoms from the j-th atom to the k-th atom in W;. We
call it a substructure of W;. Moreover, we call W;[1..j] a prefix substructure of
W;. Conversely, W;[j..¢;] is called a suffix substructure. From now on, we define
two versions of the geometric trie: one based on the RMSD/MSSD (which we call
the RMSD Geometric trie (RGT)) and the other based on the URMSD/UMSSD
(which we call the URMSD geometric trie (UGT)). The geometric trie for the set
of protein structures is defined as a rooted tree data structure that has following
features:

1. All the internal nodes (nodes other than the leaves) except for the root have
more than one child, while the root has only one child. (It corresponds to
the fact that a structure with only one atom is always the same structure.)
The trie has n leaves, each of which corresponds to one protein structure,
and no two leaves correspond to the same structure. Let leaf (i) denote the
leaf that corresponds to W;.

2. All the internal edges (i.e., edges that end at internal nodes) and some
external edges (i.e., edges that end at leaves) correspond to a substructure of
some protein. If the corresponding substructure of edge e is P(e) = W;[j..k],
we represent it with only three values: ¢, j, and length(e) = k — j + 1. Let
length(e) = 0 if e is an external edge without a corresponding substructure.
We call the value length(e) the edge length of e. Let the depth(v) be the
sum of all the edge lengths on the path from the root to v, which we call the
depth of v.

3. Add to the three values that represent its corresponding substructure, each
edge with a corresponding substructure has information of a rotation matrix
R(e) and a translation vector v(e). R(e) and v(e) must satisfy the condition
in the items 4 and 5.

4. Let S(e) be a 3-D structure obtained by rotating P(e) with R(e) and trans-
lating it with v(e) after that. We call S(e) the ‘edge structure’ of e. Note
that S(e) (not P(e)) corresponds to the substring represented by an edge in
an ordinary suffix tree for alphabet strings. The ‘node structure’ S(z) for a
node zx is defined as a structure that can be obtained by concatenating ‘edge

88 T. Shibuya

structures’ of the edges on the path from the root to the node z. For any
leaf v = leaf (i) and its node structure S(v), the MSSD (in case of RGTs, or
the UMSSD in case of UGTSs) between any prefix substructure of S(v) and
the prefix substructure of W; of the same length must not be larger than
some given fixed bound b. (Note that b is unrelated to the RMSD/URMSD
bound d used in the next section for searching structures.)

5. For an edge e = (v,w) with some corresponding substructure P(e), the
‘branching structure’ str(e) is defined as a structure that is obtained by
adding the coordinates of the first atom of S(e) (i.e., S(e)[l]) after the
coordinates sequence S(v). For any internal node v with more than one
outgoing edge with corresponding substructures, the MSSD (for RGTs, or
the UMSSD for UGTS) between str(e;) and str(ez) must be larger than b,
where e; and ey are arbitrary two of the edges.

O

P17,
Ry, vy
|:> Pl8.11], O18..11],
R.v Ry v,
11 (___/ kj

Fig. 1. A geometric trie for two protein 3-D structures

As there are only O(n) nodes/edges in the trie and we need only O(1) mem-
ory for each edge/node, the total memory space to store the geometric trie is
only O(n). Note that the data structure is not unique for a fixed set of protein
structures. Figure 1 shows an example of the geometric trie constructed for two
structures P and @. In the figure, we consider the MSSD of P[1..7] and Q[1..7] is
not larger than b, while the MSSD between P[1..8] and Q[1..8] is larger than b.

Now we can define the geometric suffix tree: The geometric suffix tree for a set
of proteins is the geometric trie for all the suffix substructures of all the proteins
in the set. It is easy to see that we need O(N) space to store the geometric suffix
tree, where N is the sum of the lengths of the proteins.

4 Constructing Geometric Suffix Trees

In this section, we describe how to construct the geometric tries and the geo-
metric suffix trees. Given a set of n protein structures W; and some given MSSD
(for RGTs or UMSSD for UGTSs) bound b, we can construct the geometric trie
by adding structures one by one as follows:

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 89

Algorithm 1. At first, construct a tree with only the root node. For each protein
structure W;, set the root node to v and do the following.

1. From among a set of v’s outgoing edges with some corresponding substruc-
tures, find an edge e such that the MSSD (for RGTs, or the UMSSD for
UGTSs) between W;[1..depth(v) + 1] and str(e) is smaller than b. If there
is more than one such edge, choose an arbitrary one (or preferably the one
with the smallest MSSD (or UMSSD)). If no such edge exists, go to step 2.
Otherwise go to step 3.

2. Add a new outgoing edge ¢’ = (v, w) to v, and let the new leaf w correspond
to W;. Let P(e’) be Wi[depth(v) + 1..4;]. If v is the root, let R(e’) be the
identity matrix and let v(e’) be a zero vector. Otherwise, in case of RGTs, let
R(¢') be R(S(v), W;[1..depth(v)]), and let v(e') be &(S(v), Wi[1..depth(v)]).
In case of UGTs, let R(e/) be R(S(v), W;[1..depth(v)]), and let v(e’) be
(S(v)[depth(v)] — R(e") - W;[depth(v)]). Notice that, in both cases, R(e’) and
v(e') represents alignment between S(v) and W;[1..depth(v)]. Then stop.

3. Let w be the node where the edge e ends. Find the longest prefix substruc-
tures of S(w) and W; whose MSSD (for RGTs, or UMSSD for UGTs) is
not larger than b, and let the length be ¢. If ¢ < depth(w) go to step 4. If
¢ = depth(w) and £ < ¢;, set w to v and go to step 1. Otherwise, add a new
outgoing edge (w,u) with no corresponding substructure, and let the new
leaf u correspond to the structure W;. Then stop.

4. Insert a new node u between v and w. Let e; = (v, u) and let ea = (u, w). Let
P(eq) be the prefix substructure of P(e) of length ({—depth(v)), and P(ez) be
the suffix substructure of P(e) of length (depth(w)—£). Let R(e1) and R(e2)
be the same matrix as R(e), and v(e1) and v(ez2) be the same vector as v(e).
Add a new outgoing edge " = (u, z) to u, and let the new leaf x correspond
to the structure W;. If £ = /¢;, let ¢’ have no corresponding substructure.
Otherwise, let the corresponding substructure P(e”) be W; [+ 1..4;]. In case
of RGTs, let R(e”) be R(S(u), W;[1..£]) and let v(e”) be &(S(u), W;[1..4]).
In case of UGTs, let R(e”) be R(S(u), W;[1..£]) and let v(e”) be (S(u)[{] —
R(e") - W;[£]). Then stop.

With the same algorithm, we can construct the geometric suffix tree: Just
consider that W; is the i-th suffix substructure.

Recall that it takes O(¥) time to compute the MSSD or the UMSSD (and the
rotation matrix and the translation vector related to it) between two structures
of size £. Thus, if we execute the algorithm naively, we would need O((¢; +n)-£;)
time to add W; to the tree, because there are at most n branches on the path
from the root node to some leaf. Accordingly, we need O(Y ;' {(¢; +n)-¢;}) time
for constructing the geometric trie. It means that the above algorithm requires
O(N?) time to construct the geometric suffix tree, where IV is the sum of all the
structure lengths. From now on we present how to reduce it to O(N?).

We reduce the computation time by proposing an incremental MSSD /UMSSD
computation technique. Recall that the MSSD of two protein structures
P[1..j] and Q[1..j] can be obtained by computing the SVD of H =

90 T. Shibuya

521 (pi - CP) : (Qi - CQ)

can be computed in constant time if we are given fp(j) = > 7 pi, fo(j) = .7 qis
and g(j) = 27 pi- a, as H = g(j) — {fr(4) - (fo(4))"}/J. Add to these values,
we need hp(j) = >.7_, pip; and hg(j) = Y.7_, gig; to compute the MSSD or
RMSD values in constant time. Notice that all of these can be computed incre-
mentally in constant time from fp(j — 1), fo(j — 1), g(j — 1), hp(j — 1), and
hg(j—1). It means that we can add the structure Wj to the tree in O(¢;+n) time,
and accordingly we can construct the RGT in O(N + n?) time. In conclusion,
we can construct the RMSD-based geometric suffix tree in O(N?) time.
Similarly, we can compute the UMSSD of two protein structures P[l..j]
and Q[1..j] in constant time if we are given ¢'(j) = >.7_, pi- (@), hp(j) =

! where ¢p and ¢ are the centroids of P and Q. H

1 (P)'P, and hiy(5) = Y°1; (q})'q}. We can easily see that these can also
be computed from ¢'(j — 1), h'p(j — 1) and hg(j — 1) in constant time. There-
fore we conclude that the UGTs and the URMSD-based geometric suffix trees
can be constructed in the same time bound as the RGTs and the RMSD-based
geometric suffix trees: We can construct the UGTSs in O(N + n?) time, and the
URMSD-based geometric suffix trees in O(N?) time.

5 Geometric Suffix Tree Applications

There are two important features on the RMSD/MSSD (or URMSD/UMSSD)
measures. One is that the MSSD (or UMSSD) of two structures P and @ (of
the same length) is always larger than or equal to that of P’ and @Q’, where P’
and Q' are any same-length prefix substructures of P and Q. The other is that
there is a triangle inequality ¢ < a + b where a is the RMSD (URMSD) between
P and @, b is that between) and R, and c is that between R and P, for any
set of three structures P, @), and R of same lengths.

Using these features, all maximal substructures whose RMSD (or URMSD)
to a query Q[1..m] is within some bound d can be computed efficiently as fol-
lows. Let ‘representative structure’ mean any prefix substructure of the ‘node
structure’ of any node in the geometric suffix tree. First, we find all the maximal
representative substructures whose RMSD (or URMSD) to the query @ is within
\/ b/m+d by just doing a depth-first or breadth-first search from the root, where
b is the MSSD (or UMSSD) bound used for constructing the geometric suffix
tree. Let E be the set of edges to which the collected representative substruc-
tures correspond. After that, find all the leaves that are descendants of the edges
in E. As the suffixes that correspond to the collected leaves are candidates of
the answer substructures (and there are no candidates elsewhere), check their
RMSDs (or URMSDs) one by one.

Ordinary suffix trees have tremendous number of applications in string pattern
matching [14]. Like them, applications of the geometric suffix trees are not lim-
ited to the database search. A long representative structure whose corresponding
edge has many descendants is a repeated structure in a protein structure, which
could have some meaning. By constructing the geometric suffix tree for several
functionally-related protein structures, we could find structural motifs. We could

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 91

further use this fundamental data structure for designing more complicated com-
binatorial pattern matching algorithms on protein structures, such as structural
alignment algorithms, clustering/classification algorithms and functional predic-
tion algorithms.

6 Experimental Results

In this section, we demonstrate the performance of the geometric suffix trees
through experiments on a Sun Fire 15K super computer with 288 GB memory
and 96 UltraSPARC III Cu CPUs running at 1.2GHz. Note that we used only
one CPU for each experiment. As a data for experiments, we used a set of 228
myoglobin or myoglobin-related PDB data files containing 275 protein structures.
The total number of amino acids in the protein set is 41,719.

Table 1 shows the computation time for constructing the RMSD-based geo-
metric suffix trees against databases of different sizes, setting 400A2 to the MSSD
bound. In the experiment (1), we used all the 275 proteins to index. In the ex-
periments (2)-(5), we used different subsets of them. The ‘#sequence(#a.a.)’
column shows the numbers of sequences and amino acids contained in the pro-
tein sets. The ‘Time’ column shows the computation time, while the ‘GST Size’
column shows the numbers of nodes in the constructed geometric suffix trees.
According to the table, the computation time is almost linear to the size of the
databases, though the theoretical time bound is O(N?). It is reasonable as there
should be some reasonable upper bound on protein lengths.

Next, we examined the query speed on the RMSD-based geometric suffix
trees with different MSSD bounds. Table 2 shows the results, where ‘b6 = ...
denotes the MSSD bound in A2. We used two protein substructures of the same
length as queries: In experiment (a), we used as a query a substructure from

Table 1. Time for constructing the geometric suffix trees (b = 400A?)

Database #sequence (#a.a.) Time (sec) GST Size
(1) Entire database 275 (41,719) 53.15 57,241
(2) Subset A 198 (30,061) 36.37 41778
(3) Subset B 111 (16,983) 17.68 25,042
(4) Subset C 54 (8,267) 7.91 13,050
(5) Subset D 20 (3,060) 2.89 4,855

Table 2. Query time (sec) on the geometric suffix trees with various MSSD bounds

Queries b=1b=100b=400b =900 b= 1600 b = 2500 #found
(a) d=1.0A 163 0.56 0.39 0.43 0.60 0.87 19
d=5.0A 11.70 5.08 5.66 6.55 6.63 6.63 217
(b) d=1.0A 163 0.73 0.48 0.33 0.19 0.21 0
d=50A 16.13 7.83 7.93 8.00 7.58 7.20 0

92 T. Shibuya

the 20th amino acid to the 69th amino acid of a myoglobin’s structure obtained
from the PDB entry named 103M. In experiment (b), we used a protein that
is unrelated to myoglobins: A substructure from the 20th amino acid to the
69th amino acid of a rhodopsin’s structure obtained from the PDB entry named
1F88. In both experiments, we examined query time by setting two different
RMSD bounds: d = 1.0A and d = 5.0A. In the table, the ‘#found’ column
shows the numbers of found substructures similar to the query. According to the
experiments, the query is very fast when the RMSD bound for the query is small
in both experiments. Note that we can observe similar phenomenon on ordinary
suffix trees: It is known that the inexact matching on suffix trees is (not) efficient
when there is (not) a small edit distance limit.

7 Concluding Remarks

We proposed a new data structure called the geometric suffix tree for indexing
the protein 3-D structures. The data structure can be stored in O(N) space where
N is the database size, and we presented an O(N?) construction algorithm for it.
Moreover, we showed through experiments that we can build the data structure
in quasi-linear time in practice. We also showed that we can search for queries
very efficiently with the geometric suffix tree.

It is an open problem whether we can improve the theoretical time bound
for building the geometric suffix tree. We are now working on utilizing this data
structure for further combinatorial matching problems and machine learning
problems on protein structures. We suppose this work is just the beginning.

Acknowledgements

The author would like to thank Prof. Tatsuya Akutsu for fruitful discussions
on protein comparison algorithms. All the computational experiments in this
research were done on the Super Computer System, Human Genome Center,
Institute of Medical Science, University of Tokyo.

References

1. T. Akutsu, K. Onizuka, and M. Ishikawa. New hashing techniques and their ap-
plication to a protein database system. Proc. Hawaii Int. Conf. System Sciences
(HICSS-28), Vol. 5, pp. 197-206, 1995.

2. K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point
sets. IEEE Trans Pattern Anal. Machine Intell., Vol. 9, pp. 698-700, 1987.

3. Z. Aung, W. Fu and K. Tan. An efficient index-based protein structure database
searching method. Proc. Intl. Conf. on Database Systems for Advanced Applica-
tions, pp. 311-318, 2003.

4. H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucl. Acids
Res., Vol. 28, pp. 235-242, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures 93

. O. Gamoglu, T. Kahveci and A. Singh. Towards index-based similarity search for

protein structure databases. IEEE Computer Society Bioinformatics Conference,
pp. 148-158, 2003.

. T. Can and Y. Wang. CTSS: a robust and efficient method for protein structure

alignment based on local geometrical and biological features. IEEE Computer So-
ciety Bioinformatics Conference, pp. 169-179, 2003.

. L. P. Chew, D. Huttenlocher, K. Kedem and J. Kleinberg. Fast detection of common

geometric substructure in proteins. J. Comput. Biol., Vol. 6, No. 3, pp. 313-325,
1999.

. I. Choi, J. Kwon and S. Kim. Local feature frequency profile: A method to measure

structural similarity in proteins. Proc. Natl. Acad. Sci., Vol. 101, No. 11, pp. 3797-
3802, 2004.

. D. W. Eggert, A. Lorusso and R. B. Fisher. Estimating 3-D rigid body transforma-

tions: a comparison of four major algorithms. Machine Vision and Applications,
Vol. 9, pp. 272-290, 1997.

I. Eidhammer, I. Jonassen, and W. R. Taylor. Structure Comparison and Structure
Patterns. J. Computational Biology, Vol. 7, No. 5, pp. 685-716, 2000.

M. Farach. Optimal suffix tree construction with large alphabets. Proc. 38th IEEE
Symp. Foundations of Computer Science, pp. 137-143, 1997.

F. Gao and M. J. Zaki. PSIST: Indexing Protein Structures using Suffix Trees.
Proc. IEEE Computational Systems Bioinformatics Conference (CSB), pp. 212-
222, 2005.

G. H. Golub and C. F. Van Loan. Matriz Computation. 3rd eds., John Hopkins
University Press, 1996.

D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology, Cambridge University Press, 1997.

K. Kedem, P. Chew and R. Elber. Unit-vector RMS (URMS) as a tool to analyze
molecular dynamics trajectories. Proteins: Struct. Funct. Genet., Vol. 38, pp. 1-12,
1999.

E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM.,
Vol. 23, pp. 262-272, 1976.

J. T. Schwartz and M. Sharir. Identification of partially obscured objects in two
and three dimensions by matching noisy characteristic curves. Intl. J. of Robotics
Res., Vol. 6, pp. 29-44, 1987.

T. Shibuya. Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica, Vol. 39, No. 1, pp. 1-19, 2004.

E. Ukkonen. On-line construction of suffix-trees. Algorithmica, Vol. 14, pp. 249-260,
1995.

P. Weiner. Linear pattern matching algorithms. Proc. 14th Symposium on Switch-
ing and Automata Theory, pp. 1-11, 1973.

New Bounds for Motif Finding in Strong
Instances

Brona Brejové, Daniel G. Brown, Ian M. Harrower, and Tom&s Vinaf

David R. Cheriton School of Computer Science, University of Waterloo
{bbrejova, browndg, imharrow, tvinar}@cs.uwaterloo.ca

Abstract. Many algorithms for motif finding that are commonly used
in bioinformatics start by sampling r potential motif occurrences from n
input sequences. The motif is derived from these samples and evaluated
on all sequences. This approach works extremely well in practice, and is
implemented by several programs. Li, Ma and Wang have shown that a
simple algorithm of this sort is a polynomial-time approximation scheme.
However, in 2005, we showed specific instances of the motif finding prob-
lem for which the approximation ratio of a slight variation of this scheme
converges to one very slowly as a function of the sample size r, which
seemingly contradicts the high performance of sample-based algorithms.
Here, we account for the difference by showing that, for a variety of dif-
ferent definitions of “strong” binary motifs, the approximation ratio of
sample-based algorithms converges to one exponentially fast in r. We
also describe “very strong” motifs, for which the simple sample-based
approach always identifies the correct motif, even for modest values of 7.

1 Introduction

Motif finding is a combinatorial abstraction of the very important problem of reg-
ulatory sequence detection in bioinformatics. In motif finding, n discrete input se-
quences, each of length m, are given, as is a parameter L, called the motif length.
The most common goal is to find a contiguous substring of length L in each input
sequence, minimizing some function of these substrings (called the motif occur-
rences). One objective function is found in the CONSENSUS-PATTERN problem:

Definition 1 (CONSENSUS-PATTERN). Given are n sequences, i, ..., Sn, each
of length m, over a finite alphabet X, and a parameter L. Find a contiguous
subsequence x; of length L from each sequence, and a consensus sequence T of
these subsequences, minimizing » dy(x;, x), where dg(x,y) is the Ham-
ming distance between two strings.

=1...n

While this problem is NP-hard, there is a simple sample-based polynomial-time
approximation scheme for it. For a given value of r, the algorithm considers
all samples of r substrings of length L from the n sequences. A motif derived
from each such sample is then evaluated on all sequences, and the best motif is
chosen. This algorithm was shown by Li et al. [4] to have approximation ratio of
1+ O(1//r) for constant-size alphabets. The algorithm also has O(L(nm) 1)
runtime, which is polynomial if r is a constant.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 94-105, 2006.
© Springer-Verlag Berlin Heidelberg 2006

New Bounds for Motif Finding in Strong Instances 95

This bound is not especially useful, since the approximation ratio converges
to one only very slowly with increasing r. Yet, sample-based algorithms with
small values of r are very successful in practice for both motif finding in the
abstract and for regulatory sequence detection [2,5,6,9]. One might imagine
that the bounds shown by Li et al. are weak, and the simple PTAS actually has
a much stronger guarantee. However, in 2005 we showed [1] that this is very
likely not the case. For a simple variation of the Li et al. PTAS (where the only
difference is whether the sampling is without replacement or with replacement),
we identified a collection of instances of the problem for which the approximation
ratio is 1+ ©(1/4/r), suggesting that in order to achieve an approximation ratio
of 1+ ¢, one needs a sample size of 7 = ©(1/¢?), which is highly impractical.

Still, the instances of CONSENSUS-PATTERN for which we proved our previ-
ous bounds are very weak motifs. They are binary instances of CONSENSUS-
PATTERN; in each position of the motif instances, just over half of the entries
are the symbol zero, and just under half are the symbol one. Such motifs are
likely uninteresting, as they are no stronger than what we might expect to find
if we considered random binary noise.

We might prefer to consider motifs bounded away from uniform noise. For
such “strong” motifs, we can do much better: we show here that for various
definitions of strong motifs, the approximation ratio of the algorithm approaches
one exponentially fast as a function of r. In particular, for strong motifs, the
approximation ratio is at most 1 4+ O(f~"), for a function f that depends only
on the strength of the motif, instead of the approximation ratio of 1+ ©(1//r)
shown for the general case.

Here, we show such theorems for a variety of different definitions of “strong”
motifs. First, we consider binary motifs where at least a é + ¢ fraction of all
positions in the motif occurrences matches a given consensus of length L. While
occasionally, the sampling PTAS can have bad performance on such an instance,
we prove that for randomly chosen instances, the expected approximation ratio
converges to one exponentially fast as a function of the sample size r. If we
instead require consistently strong binary motifs, where each position of the
motif has at least (é + ¢)n matches in the motif occurrences, we can prove that
the PTAS performs well even in the worst case. In fact, for very strong consistent
motifs, the PTAS will always find the correct answer, even for small 7.

Our results document that while for arbitrary instances of motif finding, the
simple sample-based PTAS may have poor convergence properties, for the kinds
of motifs that people care about, the approximation ratio converges exponen-
tially fast to the correct answer.

2 Background

The CONSENSUS-PATTERN problem, for an alphabet X can be answered by
enumerating all | X|* possible choices of the consensus pattern, and finding the
best matches to each possible pattern, but such an enumeration is not effi-
cient. Instead, one type of efficient heuristic for this problem first enumerates a

96 B. Brejova et al.

polynomial number of candidate consensus patterns, and then finds the best
match to each candidate in each of the n sequences, in O(nmlL) time per
candidate.

One set of candidates is all L-letter substrings of the input strings; there are
(m— L+1)n of them, yielding an algorithm with O(L(nm)?) runtime. Or, we can
expand this idea to consider the result of looking at a sample of r substrings of
the input. For each such sample, we compute a candidate motif as a consensus of
the sample by identifying the most common letter at each position of the motif,
breaking ties arbitrarily.

In this paper, we consider two algorithms based on this idea. The first uses
samples with replacement, implying that a single substring can occur in the
sample multiple times. There are ((m — L + 1)n)" such samples; if we try all of
them, this yields an algorithm with O(L(nm)"1) runtime. We will refer to this
as the PTAS algorithm. Li et al. [4] have shown that this simple algorithm is
indeed a polynomial-time approximation scheme (a PTAS): the approximation
ratio of the algorithm converges to one as the sample size r grows. Unfortunately,
the convergence rate they could prove is very slow: they show the approximation

o 41¥[-4
ratio is at most 1 4 Ve(Vart1-3)"

We will also study a slight modification of the PTAS, in which we consider
only samples without replacement. We will refer to it as the SWOR algorithm,
for “sampling without replacement”. In our previous work [1], we gave specific
instances of the problem for which the approximation ratio of the SWOR algo-
rithm is 1 + ©(1/4/r) as a function of r. We conjectured that the same lower
bound also holds for PTAS, which asymptotically matches the upper bound of
Li et al.

2.1 Notation and Observations

To simplify our analysis, we will always assume that the input sequences s1, ...,
sp, consist solely of the optimal motif occurrences, that is, m = L. While
CONSENSUS-PATTERN is trivial in these cases, since the optimal motif is the
consensus string of the input sequences, both PTAS and SWOR are still well-
defined and may not always optimize the objective function. In fact, we showed
in our earlier work [1] that if one of these algorithms is run on just the motif oc-
currences themselves, it will do no better than if run on longer sequences. Upper
and lower bounds on the approximation ratio that we show for such instances
are still applicable to longer sequences.

We will assume that the sequence alphabet X is the set {0, 1}; all of our results
here are for binary motifs. If m = L, we can always transform the instance of
the problem so that the optimal motif is the string 0%, by relabelling characters
in each column that has more ones than zeros. We will use this transformation
in some of our results.

Finally, we note that since PTAS always explores more samples than SWOR,
its approximation ratio is always at least as good as that of SWOR. There-
fore, any upper bound for the approximation ratio of SWOR also applies to
PTAS.

New Bounds for Motif Finding in Strong Instances 97

2.2 Concentration Bounds

Most of our bounds are obtained by applying the Hoeffding bound [3], which
gives concentration bounds on the sum of independent random variables, and
an extension of it to certain classes of dependent variables due to Panconesi and
Srinivasan [8]. In this section, we summarize the probabilistic bounds we use.
We begin with the following variant of the Hoeffding bound from McDiarmid’s
survey [7, p. 199]; a similar bound can be found in [3, Theorem 1].

Theorem 1 (Hoeffding’s bound [7]). Let X1, ..., X,, be independent random
variables, with 0 < Xy <1 for each k. Let X =Y X, let p = E[X], let p = pu/n
and let g =1—p. Then for any 0 <t < q,

Pr[X —pu>nt] < <<pit>p+t <qzt>q—t>”.

Panconesi and Srinivasan [8] have extended the Hoeffding bound to sums of
dependent variables that satisfy certain conditions.

Theorem 2. Let X1,...,X,, be (not necessarily independent) binary random
variables with Pr[Xy, = 1] = p for each k. If for every subset A of {1,...,n} and
for every k ¢ A,

Pr|X,=1|\(X;=1)| <Pr[X,=1], (1)
JjEA

then Hoeffding’s bound from Theorem 1 also holds for X =Y Xj.

Proof. This is an application of Panconesi and Srinivasan’s framework [8] for
Chernoff-Hoeffding bounds of sums of dependent variables. Binary variables sat-
isfying equation (1) are 1-correlated in the notation of Panconesi and Srinivasan.
For such variables, we can apply the Hoeffding bounds directly, as though the
variables were independent.

In particular, let X Tyeons ,Xn be independent random variables with Pr[X} =
1] = p. The variables X =}, X}, and X = ok X}, have the same expectation,
o = np, and equation (1) implies that Pr[Ajea(X; =1)] < [[;ca Pr(X; = 1).
Thus, these random variables satisfy the conditions of Theorem 3.2 in [8], and

we obtain .
E[th]
PriX —p=ep] < eh(1+e)u”
where ¢ and h are positive real numbers. As in the proof of Hoeffding’s bound
in McDiarmid [7, p. 199], we can prove E[e"*] < (1 —p+ pe)™. By substituting
€ = t/p, we obtain

Pr[X — p > tn] < (e—h(pm(l —p +peh)) ;

(p+t)(1-p)

V0 we obtain the desired result. a
p(1—p—t)

setting e” to

98 B. Brejova et al.

Note that independent variables satisfy equation (1) with equality, so Theorem 1
is a special case of Theorem 2.

We will consider dependent binary random variables that are zero with some
probability p > 0.5 and we will be interested in the probability that fewer than
yn of the random variables are zero for some 0.5 < y < p. Theorem 1 can be
easily applied to this case, as is shown in the following lemma.

Lemma 1. Let X1,..., X, be binary random variables with Pr[X, = 0] = p for
each k, where p > 0.5. If these variables satisfy the condition of Theorem 2, and

1—y Yy
1—-p<y<pthen Pr[}", Xi > (1 —y)n] < pB,", where 3, = (}:5) (5))

Proof. The expectation of the variable X =) , Xj is 4 = (1 — p)n. By
Theorem 2, we easily obtain desired inequality:

Pr[X > (1 —y)n] = Pr[X — p > (p - y)n]

: ((1 - p1+_(i -y) > o (p - (i -y))p(py)> n
=By". O

Note that in the previous lemma, 8, < 1 for all p and y such that 0 < y <
p < 1. Therefore the probability that fewer than yn out of n variables are zeroes
decreases exponentially as a function of n. For y = 0.5 we obtain the following
special case.

Lemma 2. Let X1,...,X, be binary random variables with Pr[X = 0] = p for
each k, where p > 0.5+ ¢. If these variables satisfy the condition of Theorem 2
then P[>, X >n/2] < a”, where o = \/4p(1 — p).

3 Strong Motifs

We begin our analysis by considering motifs for which we know the number of
zeros and ones in the motif instance. We do not necessarily fix the optimal motif
to be 0F.

Definition 2 (Strong motifs of fixed content). A strong motif of fixed
content p is a binary motif embedded into n sequences, where the total number
of zeros in all n occurrences is pnL.

Theorem 3. For any value of r and p > 0.5, the worst-case approzimation ratio
of both PTAS and SWOR on strong motifs of fized content at least p is the same
as on arbitrary motifs.

Proof. Consider the worst-case motif for a particular algorithm and value of 7.
Let p’ be the number of zeros in this motif. If p > p’, we pad such an instance with
enough columns, filled entirely with zeros, to make an instance of CONSENSUS-
PATTERN that has at least pnL zeros. We have simply expanded the value of L.

New Bounds for Motif Finding in Strong Instances 99

The overall score of both the motif found by the algorithm and of the optimal
motif is exactly the same as if we had not padded the instance with the extra
columns. O

We have previously shown [1] that for any value of r, we can produce an instance
of CONSENSUS-PATTERN for which SWOR has approximation ratio at least 1+
©(1/+/r). This bound therefore transfers also to strong motifs of fixed content.

Thus, this definition of strong motifs does not give any better upper bound on
the approximation ratio of the PTAS for motif finding than we had previously.
The reason is that we allow many columns that are intensely weak and many
columns that are very strong. In Section 4, we study motifs with more consistency
among columns.

In the remainder of this section, we show that despite this negative result
there are few bad instances of strong motifs, and if we choose a random strong
motif of fixed content, the expected approximation ratio is much lower than in
the worst case.

3.1 Randomly Chosen Strong Motifs

A random motif of fixed content p is an instance of the problem chosen uniformly
from all (p’;LL) instances of the problem with exactly pnL zeros and (1 — p)nL
ones. In such motifs, the zeros and ones may not be distributed uniformly, so
some columns may contain more ones than zeroes. We call such columns bad
columns; all other columns are good columns.

To analyze the expected approximation ratio of PTAS or SWOR on such ran-
domly chosen motif, we divide all instances into bad instances and good instances.
Bad instances have more than La’/? bad columns, where a = \/4p(1 - D).
Lemma 3 shows that such instances are exponentially rare, and do not influence
the expected approximation ratio much. Good instances have at most La’/2 bad
columns. In Lemma 4, we will show that for such instances, the approximation
ratio is low.

Lemma 3. The probability that a random binary motif of fixed content p is a
bad instance is at most a'/?.

Proof. Let X; ; be a binary random variable representing the symbol in row ¢
and column j of the motif instance. For a given column j, let the number of ones
be X; =3". X; ;. Column j is bad if X is more than n/2. Each one in a column
reduces the probability of others, so the variables corresponding to this column
satisfy the conditions of Lemma 2, so Pr[X; > n/2] < a™. Since n > r, this
probability is also at most . By linearity of expectation, the expected number
of bad columns is at most La".

Since a bad motif contains more than La’/“ bad columns, we are bounding
the probability that the number of bad columns is more than a~"/? times its
mean. This can be no greater than 1/044/27 by the Markov inequality. a

r/2

Lemma 4. The expected cost of a motif returned by PTAS (or SWOR) on a

1—p+2pa’”)

randomly chosen good instance is less than nL (s
—

100 B. Brejova et al.

Proof. Let X; be a random variable representing the number of ones in column j.
Consider a random sample without replacement of r rows. Let Y; be the number
of ones in column j of this sample. The consensus of the sample is one when
Y; > r/2. Finally, let A; be the score of the consensus character of this random
sample in column j.

We want to bound E[A;|G], where G is the event that the motif instance is
good. Since A; is always non-negative, this conditional expectation is at most
E[A;]/ Pr[G]. In Lemma 3 we have shown that Pr[G] > 1 — o’/2.

Consider the event Z; that column j is good and the random sample has
consensus zero. As for Lemma 3, Lemma 2 gives that Pr[X; > n/2] < o”, and
Pr[Y; > r/2] < a". Therefore the probability of Z; is at least 1 — 2a".

In the case of the event Z;, we are skewed towards having more zeroes than
expected, and therefore

E[A;|Z;] = E[X;]Z;] < E[X;] =n(1 - p).

If we are not in Zj, the cost of the column is at most n. Therefore, the expected
cost of a single column is

Pr(Z;] - E[A;|Z;] + Pr[Z;] - E[A;|Z;]

E[4;|G]) <
[J|]— PI‘[G]
(I =2a")n(l —p)+2a"n 1—p+2pa”
< =n-
- 1—ar/2 1—aqr/2

By linearity of expectation, the expected cost over all columns is at most
L - E[A;|G], and at least one sample in the SWOR algorithm must give us a
motif which has at most this cost. O

With this in mind, we can bound the performance of the PTAS for random
motifs of fixed content p.

Theorem 4. When applied to a random motif of fixed content p > 0.5+ ¢, both
/2, 18—16p+2p?

PTAS and SWOR have expected approzimation ratio at most 14+« 1op?

for sufficiently large v, where o = \/4;0(1 - D).
Proof. For sufficiently large r, a’/? is at most (1 — p)/2. For good instances,
the number of ones in good columns is at least Ln(l —p — aT/Q), which gives
a non-negative lower bound on the optimal motif cost. Therefore, according

to Lemma 4, the approximation ratio for such instances can be bounded by
1—p+2pa”
(1-ar/2)(1-p—ar/2)"
We have previously shown [1] that any sampling algorithm has approximation
ratio no more than 2 on all instances. We will use this upper bound for bad

ina . ‘e gives 1—p+2pa”
instances. This gives an overall bound of no greater than (1—am/2)(1—p—ar/?) +

r/2 . 473p75ar/2+4ar/2p+2ar
(1-ar/2)(1-p-ar/?)

For sufficiently large r, o//? < (1 — p)/2, and we obtain the desired bound. O

202, Rearranging, we obtain the upper bound 1+«

New Bounds for Motif Finding in Strong Instances 101

This theorem shows that if either PTAS or SWOR is applied to a random strong
motif of fixed content p > 0.5, the expected approximation ratio is 1 + O(a’”/ 2).
This bound converges exponentially quickly to one as a function of 7.

As a function of p, the bound on the approximation ratio is decreasing, as
long as p > 0.5 and r > 4. This property will be important in the next section.

3.2 Strong Motifs of Fixed Expected Content

Perhaps more natural as a model of random motifs is the case where each of
the L positions in all n sequences is chosen independently of all others, with
probability p.

Definition 3 (Strong motif of fixed expected content). A strong motif
of fixed expected content p is a random motif where each position is zero with
probability p, and one with probability 1 — p independently of other positions.

This stochastic model can generate bad instances of the problem again, but it
is very rare that such instances occur, and we can again always bound their
approximation ratio by 2, so their contribution to the expected approximation
ratio is small.

Theorem 5. For strong binary motifs of expected content p > 0.5, where p is a
fized constant, the expected approximation ratio of the PTAS and SWOR is at
most 1 + O(y"), for some constant v < 1 that depends on p, but not r.

Proof. Let ¢ = 1/4+ p/2. According to Lemma 1, for a strong motif of expected
content p > 1/2, the probability that the actual motif generated has fewer than
gnL zeros is less than ﬂq"L , where (3, is less than one. This is certainly less than
B4", since nL > r. For these weak motifs, we use the upper bound of 2 on the
approximation ratio.

The remaining instances are strong motifs of content at least g. We can treat
the process as first picking the motif content @ > ¢, then picking a random
motif of that fixed content. For a fixed content m, we can apply the bound
given in Theorem 4. Since this bound decreases with increased strength of the
motif, we can use the upper bound obtained with Theorem 4 for content ¢ for
all values of w. Therefore the overall approximation ratio of the algorithm is at
most 1 + a,"/? - 18711%;{2‘12 + Qﬁqr/Q, aq = \/4q(1 — q), for sufficiently large 7,

and by setting v = y/max{ag, 3,}, we obtain the desired bound. O

3.3 Many Motifs Are Weak

We finish this section by noting that for any value of r, we can pick an instance
size n for which in fact most motifs are weak, and for which we conjecture
that the PTAS has poor convergence. If we let p = 0.5, and sample from the
distribution of all binary motifs with expected content p, then all motif instances
are equiprobable, so theorizing about the common behaviour of the algorithm
also applies to common motif instances. A random motif of this content with

102 B. Brejova et al.

n = r2 sequences is expected to have a constant fraction of columns in which the
fraction of zeros in the column is between 1/2 + 1//r and 1/2 + 2/4/r; that is,
a significant fraction of the columns will be weak to the point where a random
sample without replacement of r motif instances has a constant probability of
picking the incorrect symbol for that column. Further, the expected cost of a
random motif will be of the order of (1/2+ ©(1//r))nL.

A random sample (without replacement) will incorrectly assign the symbols
in a constant fraction of the motif’s columns, giving an expected cost increase on
the order of ©(1/+/r)nL over the optimum, and an overall approximation ratio
of 1+ 2(1/4/r). We conjecture that this bound applies to all samples, and that
the overall performance of the best sample is also 1+ 2(1/+/7).

4 Consistently Strong Motifs

In the previous section, we were not able to guarantee a good performance of the
PTAS in the worst case. This was because some instances of strong motifs may
have contained many columns with approximately the same number of zeros and
ones. Here, we study the performance of the PTAS on consistently strong motifs,
where each motif column has a large number of zeros in it.

Definition 4 (Consistently strong motif). A consistently strong motif of
content p > 0.5 is a binary motif embedded into n sequences, where each column
of the motif has at least pn zeros.

We first note the performance of the algorithms PTAS and SWOR on a single
column of a consistently strong binary motif.

Lemma 5. Suppose that we choose a random sample of r rows (with or without
replacement) from a motif instance in which a particular column has pn zeros
and (1—p)n ones, for p > 0.5. The expected cost of the consensus character of the
sample in this column is at most n((1—p)(1—a”)+a”), where a = \/4p(1 — p).

Proof. First, we want to bound the probability that the random sample without
replacement has fewer zeroes than ones in this column, in which case the con-
sensus character will be one. This situation satisfies conditions of Lemma 2 and
the probability that at least half of the sample will be ones is at most a”.

Note that for any constant p > 0.5 4 ¢, for some positive ¢, this bound on the
probability of erring in a single column converges to zero exponentially fast in r.
Therefore, such samples will not have much influence on the expected cost, and
we can bound their cost from above by n. The cost of a sample with consensus
zero is exactly n(1 — p). Therefore, the expected cost is at most n[(1 — p)(1 —
a’) +a’l. O

Theorem 6. For sufficiently large r, both PTAS and SWOR, applied to a con-
sistently strong motif of content p > 0.5, have approrimation ratio at most
l+a"- P, where o= V4p(1 - p).

New Bounds for Motif Finding in Strong Instances 103

Proof. Let p; be the content of zeros of the i-th column of the motif. According
to Lemma 5, the expected cost e(p;) of the i-th column is at most n((1—p;)(1—
ap.")+ap,"), where oy, = /4p;i(1 — p;). The optimal cost of the same column is
o(pi;) = n(1—p;). From the linearity of expectation, the expected approximation
ratio of a consensus of a random sample of r rows over all columns of the motif
L .
is R = Zit e
i=1 i
Note, that for sufficiently large r (in particular, r > 2/(2p — 1)), the function
e(p’)/o(p’) is decreasing with increasing value of p’ for p’ > p. Therefore, e(p;) <
e(p)o(pi)/o(p), and thus
1 _ 1 _ ' _|_ '
W-p)(—an)+ar) _
n(l—p) l—p
At least one sample must achieve this bound, by the first moment principle.

Since SWOR, examines all samples without replacement, the sample found by
SWOR achieves the bound. O

R <e(p)/o(p) <

If p > 0.5 4 ¢ for some constant € > 0, then this ratio converges exponentially
quickly to one.

4.1 Very Strong Consistent Motifs

We finish by noting that some motifs are so strong that the PTAS is guaranteed
to find them exactly.

We saw in the proof of Lemma 5 that we can bound the probability of making
an error for any column, when we sample r motif instances of that column. If
the column has frequency p; of zeros, the error probability was at most a,,”,
where ay,, = /4p;i(1 — p;).

If we have a motif whose columns are strong enough so that the sum of the
ay,," is at most one, the standard union bound gives that the probability that
at least one sample column has more ones than zeros is less than 1. Thus, there
must exist a sample of r motif instances whose consensus is exactly the correct
L-letter-long motif. Since the PTAS is exhaustive, we will examine this sample,
and it will be found by the algorithm.

In particular, a motif strong enough that the value of «;,,” is always less than
1/L will always be found by the PTAS.

Theorem 7. The PTAS always finds the correct motif when its input is a con-
sistently strong binary motif of length L with probability p > % + \/172L_2ﬁ.

. . 1, V1L, :
Proof. This is shown by noting that ; + 9 is the root in the range (0.5, 1]

of (4p(1—p))™/? = 1/ L, corresponding to the value where v, goes below 1/L. O

This value quickly shrinks for values of r that are not especially large: for a
length 10 binary motif, if all columns are at least 80% zeroes, examining all
samples of size 11 is certain to find the true motif, while samples of size 5 are

104 B. Brejova et al.

all that is needed for motifs of that length where p = 0.9. Indeed, for a fixed
value of L, if the motif is consistently strong with probability at least 0.5+ f(r),
where f(r) is a specific function that is only O(1/4/r), the PTAS will find the
optimal motif.

For random motifs, the situation is not as good; obviously, a random motif
with probability p might turn out not to be strong. But, for p large enough,
the probability of producing a motif that is weak enough that the algorithm
has positive probability of failing can easily be estimated, and again converges
exponentially rapidly to zero as a function of p or of r, for a fixed motif length L.

5 Conclusion and Open Problems

We have shown a variety of characterizations of “strong” binary instances of
CONSENSUS-PATTERN for which the simple sampling-based polynomial-time ap-
proximation scheme of Li et al [4] has an approximation ratio guarantee that
converges to one exponentially fast as a function of r, the sample size. This
result is in contrast with our previous work, which showed specific instances
of CONSENSUS-PATTERN for which a variation of the Li et al. PTAS can only
achieve 1 + ©(1//r) approximation ratio.

The difference is quite significant; to achieve 1 4 ¢ approximation ratio us-
ing the general bound requires samples of size £2(1/¢2), giving runtimes of
O(L(nm)?(1/=") whereas for strong motifs we show that a sample size of
O(log(1/e)) is sufficient.

Our bounds apply to random binary motifs of specific strength, or to those for
which the probability that any specific position is a zero is fixed to be a constant
bounded above 0.5. While it is possible to obtain a difficult-to-solve instance of
the problem by chance, such instances are exponentially rare, and as such, do
not affect the algorithm’s behaviour significantly.

Finally, we show that for strong instances, small samples can guarantee that
the motif found is optimal. While the bounds achieved are not practical, this
again suggests that motif finding is an easy problem when applied to strong
instances, and only hard when applied to irrelevant, weak problem instances.

Open problems. How tight are the bounds for very strong consistent motifs given
in Section 4.17 Can we find specific strong instances of CONSENSUS-PATTERN
for which the sample-based PTAS finds a wrong motif and for which the value
of r is close to the one shown in the theorem, or is the bound very loose?

In all our theorems, we have considered only binary alphabet. Our results ex-
tend to non-binary alphabets; however, we still require that one of the alphabet
symbols has frequency more than 0.5. The problem of regulatory sequence detec-
tion is most commonly applied to DNA and protein sequences, and it makes sense
to consider instances in which the most common letter in each column is signifi-
cantly more common than other letters, but still does not achieve frequency more
than 0.5. To prove exponential convergence for such instances likely requires a
variation on the Chernoff-Hoeffding bounds for multi-outcome variables.

New Bounds for Motif Finding in Strong Instances 105

Acknowledgements

All authors are supported by the Natural Science and Engineering Research
Council of Canada. We would like to thank Nick Wormald for a helpful conver-
sation and for pointing us to the paper of McDiarmid [7].

References

1. B. Brejova, D.G. Brown, .M. Harrower, A. Lopez-Ortiz, and T. Vinar. Sharper
upper and lower bounds for an approximation scheme for Consensus-Pattern. In
A. Apostolico, M. Crochemore, and K. Park, editors, Combinatorial Pattern Match-
ing, 16th Annual Symposium (CPM 2005), pages 1-10, 2005.

2. G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with statisti-
cally significant alignments of multiple sequences. Bioinformatics, 15(7-8):563-577,
1999.

3. W.J. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:713-721, 1963.

4. M. Li, B. Ma, and L. Wang. Finding similar regions in many strings. Journal of
Computer and System Sciences, 65(1):73-96, 2002.

5. C. Liang. COPIA: a new software for finding consensus patterns in unaligned protein
sequences. Master’s thesis, University of Waterloo, October 2001.

6. J. Liu. A combinatorial approach for motif discovery in unaligned DNA sequences.
Master’s thesis, University of Waterloo, March 2004.

7. C. McDiarmid. Concentration. In M. Habib, editor, Probabilistic methods for algo-
rithmic discrete mathematics, pages 195-248. Springer, 1998.

8. A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an exten-
sion of the Chernoff-Hoeffding bounds. SIAM Journal on Computing, 26:350-368,
1997.

9. P.A. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in
DNA sequences. In Proceedings of the 8th International Conference on Intelligent
Systems for Molecular Biology (ISMB 2000), pages 269278, 2000.

Fingerprint Clustering with Bounded Number of
Missing Values

Paola Bonizzoni!, Gianluca Della Vedova?,
Riccardo Dondi?, and Giancarlo Mauri'

! DISCo, Universita degli Studi di Milano-Bicocca, Milano - Italy
2 Dip. Statistica, Universita degli Studi di Milano-Bicocca, Milano - Italy
3 Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali,
Universita degli Studi di Bergamo, Bergamo - Italy
bonizzoni@disco.unimib.it, gianluca.dellavedova@unimib.it,
riccardo.dondi@unibg.it, mauri@disco.unimib.it

Abstract. The problem of clustering fingerprint vectors with missing
values is an interesting problem in Computational Biology that has been
proposed in [6]. In this paper we show some improvements in closing
the gaps between the known lower bounds and upper bounds on the
approximability of variants of the biological problem. Moreover, we have
studied two additional variants of the original problem. We prove that
all such problems are APX-hard even when each fingerprint contains
only two unknown positions and we present a greedy algorithm that has
constant approximation factors for these variants. Despite the hardness
of these restricted versions of the problem, we show that the general
clustering problem on an unbounded number of missing values such that
they occur for every fixed position of an input vector in at most one
fingerprint is polynomial time solvable.

1 Introduction

High-throughput approaches for the examination of microbial communities are
becoming increasingly important, especially after the oligonucleotide fingerprint-
ing strategy has found wide application, allowing the identification of thousands
of cDNA clones [3,4,5,8,9]. After the rDNA clone libraries are constructed, the
clones are classified by individual hybridization experiments on DNA microar-
rays with a series of short DNA oligonucleotides into clone types or operational
taxonomic units (OTUs), where an OTU is a set of DNA clones sharing the same
set of oligonucleotides that have successfully hybridized. Once classified, the nu-
cleotide sequence of representative clones from each OTU can then be obtained
by DNA sequencing to provide phylogenetic descriptions of the microorganisms.
One of the key features of this strategy is that after a comprehensive database
correlating hybridization patterns with nucleotide sequence data has been com-
piled, little additional rDNA clone sequencing will be required, resulting in sig-
nificant reduction of cost and effort. The effectiveness of this general strategy
has been demonstrated in the biotechnology arena, where it is currently being
used to screen and identify millions of cDNA clones [3].

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 106-116, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Fingerprint Clustering with Bounded Number of Missing Values 107

The oligonucleotide fingerprinting method is commonly used to study DNA
clone libraries. Such method naturally leads to a combinatorial problem where
for each oligonucleotide we are given a fingerprint over the alphabet {0,1, N},
where the values 0 or 1 represent respectively that a hybridization has happened
or not with a certain clone, while the value N stands for the fact that we are
unable to determine if the hybridization has happened or not (typically this is
due to the fact that there are two control signals, and the values between those
two control signals suggest that both of the two possible outcomes are equally
likely to have happened).

Some combinatorial problems naturally arise, most notably the CLUSTER-
ING WITH MISSING VALUES (CMV) problem. An instance of CMV (and of all
problems studied in this paper) is a set F' of n vectors with values in {0,1, N},
called fingerprint vectors (in short fingerprint); in all instances of the problems
that we will study, all fingerprints have the same length [, that is they all con-
tain exactly [elements. Two fingerprint vectors f1 = (f1[1], f1[2], ..., f1[]]) and
fo = {(f2[1],..., f2[l]) are compatible if for any position i where they differ, one of
f1[i] and f5[i] is equal to N. A resolved vector r = (r[1],...,r[l]) of a fingerprint
vector f = (f[1],..., f[l]) is a vector over alphabet {0,1} such that for each
1 <i <, if f[i] # N then f[i] = r[i]. If a resolved vector r and a fingerprint f
are compatible, r is said to be a resolution of f or to resolve f, this means that
r is obtained by replacing each occurrence of N in f with 0 or 1. The expected
output is a partition P of F;, P = {P,..., Py}, such that in each set P; of P
there are only pairwise compatible fingerprints.

We will also analyze the effect of a parameter, the maximum number of Ns
allowed in a fingerprint, and we will denote by p such parameter. As already
stated above, an instance of CMV consists of a set F' of fingerprints, and we
would like to find a minimum-size partition of F' where each pair of fingerprints
in a set are compatible. Equivalently we want to find a minimum-size set R
of resolved fingerprints such that each input fingerprint is resolved by some
fingerprint in R.

Unfortunately the problem is NP-hard [6], therefore it is important to find
some restrictions under which the problem becomes tractable. For instance it is
possible to restrict the problem to instances where each input fingerprint contains
at most p Ns, and we will call such problem CMV(p). It is already known that
CMV (2) is NP-hard[7], while CMV(1) can be solved in polynomial-time[6], so for
all interesting values of p we have to concentrate on developing approximation al-
gorithms. CMV(p) is known to be approximable within factor 27 [6] and min(1+
Inn, 2+pIni)[7]. In this paper we strengthen the NP-hardness result proving that
CMV(2) is APX-hard, that is it cannot be approximated within an arbitrarily
small (1 + €)-approximation polynomial-time algorithm unless P=NP [2].

Moreover, we will study two related optimization problems introduced in [7],
namely: INSIDE CLUSTERING WITH p MISSING VALUES (IEC(p)), where we want
to find a partition P maximizing the sum Zle (“;il); OuTsIDE CLUSTERING
WITH p MISSING VALUES (OEC(p)), where we want to find a partition P minimiz-
ing the number of compatible pairs of fingerprints belonging to different sets of P.

108 P. Bonizzoni et al.

Notice that, as observed in [7], an exact solution to IEC(p) is also an exact
solution to OEC(p) and vice versa. For these two problems, we will present a
fixed-parameter approximation algorithm whose running time is O(2Pn31), where
p is the maximum number of Ns in a fingerprint and show that our algorithm
achieves 2 and é—approximation factors for IEC and OEC respectively.

On the other side, we prove lower bounds on the approximability of both
IEC(p) and OEC(p), showing that such problems are APX-hard. Finally, we
show that the restriction of CMV to instances where, for each given position,
missing values occur in at most one fingerprint vector, leads to a polynomial
time solution.

2 A Fixed-Parameter Approximation Algorithm for TEC
and OEC

In this section we present a fixed-parameter approximation algorithm for both
IEC and OEC problems, where the parameter is the maximum number p of
Ns appearing in a fingerprint. The algorithm we present has a time complexity
O(2Pn31). We are able to provide two different analyses, one for each problem,
showing that we achieve a 2-approximation ratio for IEC and a %—approximation
ratio for OEC; the analysis for OEC is omitted due to space constraints.

Given a set F' of fingerprints, in O(2Pnl) time we are able to compute the set
R = {ry,...,7 g} of all possible resolved vectors that are compatible with at
least one fingerprint in F. (Note that |R| < 2Pn.) Given a resolved vector r, we
denote by s(r, F') the set of fingerprints in F' that are resolved by r. The degree
of a resolved vector r, denoted by d(r), is defined as |s(r, F')|. Since each resolved
fingerprint is compatible with at most n fingerprints in F', computing all such
sets s(r, F) can be done in O(|R|nl) = O(2Pn?]) time.

The algorithm constructs a partition IT of F' greedily as follows: initially let IT
be an empty partition and let U be equal to F'. At each iteration the algorithm
computes the sets R of resolved vectors of U and s(r;,U) for all r;, € R. Then
it finds the resolved vector r of maximum degree, adds s(r,U) as a set of the
solution IT and removes all fingerprints in s(r,U) from U. The algorithm iterates
until U is empty.

Notice that the algorithm computes a sequence (ri,...,r;) of maximum de-
gree resolved vectors, one at each iteration. At the i-th iteration the algorithm
builds a set S; of the solution II containing all fingerprints that are compatible
with r; and that have not been assigned to a set of the solution during one of
the previous iterations. For ease of analysis, we will denote by U; the set of fin-
gerprints that have not been assigned to a set of IT at the beginning of the i-th
iteration. Consequently, U; = F, U;y1 = U; \ S, for 1 < i < k, where k is the
number of sets in the final solution. Then, the algorithm computes the partition
IT = {S1,...,Sk}. The optimal partition for both IEC and OEC is denoted by
Opt = {01, ...,04}, where h can be different from k.

The analysis of the time complexity of the algorithm is simple, the running
time at each iteration is dominated by the O(2Pn?l) time required to compute

Fingerprint Clustering with Bounded Number of Missing Values 109

the sets R and s(r;) for all r; € R, moreover at each iteration at least one
fingerprint is removed from U, therefore at most n iterations are required, for
an overall O(2Pn3]) time complexity.

The walue of the approximate solution II is the number of pairs of compat-
ible fingerprints co-clustered by II and is denoted by V(IT). More precisely,
V(II) = Z'ﬂ |P(S;:)|, where P(S;) is the set of distinct pairs of fingerprints
in S;. Generalizing such notion, we denote by P(IT) the set of all the pairs co-
clustered in the partition IT, that is P(IT) = UlgllP(SZ) Let W C U be a subset
of fingerprints, we denote by P(II, W) the set of pairs (x,y) in P(IT) such that
at least one of z, y is in W.

By definition, the value of the optimal solution is | P(Opt)|; our goal will be to
show that |P(Opt)| < 2|P(II)|. We introduce some sets as follows: P(Opt,1) =
P(Opt, 51), and P(Opt,i + 1) = P(Opt, Sit1) \ U <;<; P(Opt, j) for 1 < i <
k. A fundamental property is that {P(Opt,i) : 1 < i < k} is a partition of
P(Opt). Indeed, since IT = {Si,...,Sk} is a partition of F', then P(Opt) =
U P(Opt, S;). Let (x,y) be a pair of P(Opt). W.l.o.g. we can assume that = € S;,
y € S;, with ¢ < j. Then (z,y) € P(Opt,S;) and (z,y) does not belong to
any P(Opt,z) with z > i, therefore (z,y) € P(Opt,:). Consequently the sets
P(Opt,i) form a partition of P(Opt), and the value of the optimal solution is
equal to >, |P(Opt,i)|.

In order to prove that |[P(Opt)| < 2| P(IT)|, it suffices to show that | P(Opt, i)| <
2|P(S;)| for 1 < i < k. In fact all pairs in P(Opt, i) must belong to U; x U;, by
definition of P(Opt,7). Each fingerprint = in U; is in the same set of the optimal
solution with at most |S;| — 1 other fingerprints of U;, otherwise the algorithm
would not have chosen S; at the i-th iteration as a maximum set of compatible
fingerprints. By definition of P(Opt,i), there are at most |S;|(|S;] — 1) pairs of
compatible fingerprints in P(Opt, i), which completes the proof, since in S; there
are exactly |.S;|(|S;| — 1)/2 pairs of compatible fingerprints.

3 APX-Hardness of CMV (2)

In this section we will prove that CMV(2) is APX-hard via an L-reduction from
minimum vertex cover on cubic graphs (MVCC) (for details on L-reduction see
[2]), which is known to be APX-hard [1]. In particular, we will combine two
L-reductions: (1) from minimum vertex cover on a graph G to minimum vertex

cover on a graph gadget CG; (2) from minimum vertex cover on a graph gadget
CG to CMV(2).

First Reduction. Let G = (V, E) be a cubic graph, the MVCC problem asks
for the subset V' C V of minimum cardinality, such that for each edge (i,5) € E
at least one of 7, j belongs to V'. Let |V| = n and |E| = m. We reduce MVCC to
minimum vertex cover on graph gadgets. Next we define the graph gadget asso-
ciated with G. For each vertex v; € V we define a vertex gadget VG, consisting
of 5 vertices ¢;,, ¢i,, Cis, Ciy, Ci; as in Fig. 1. Three vertices, ¢;,, ¢;,, ¢;; are called
docking vertices. Observe that the minimum vertex cover of a vertex gadget

110 P. Bonizzoni et al.

C.
Ja

G,
Fig. 1. Vertex gadgets VG; and VGj, edge gadget EG;

consists of 2 vertices, ¢;,, ¢;,, and we denote this vertex cover as type 1. Observe
that there is a vertex cover of VG, consisting of the 3 docking vertices ¢;,, ¢i,,
¢is, and we denote this cover as type 2. For each edge (v;,v;) we define an edge
gadget E'G; ; joining vertex gadgets VG, VG; in two of their docking vertices,
such that each docking vertex is associated with exactly one edge of G. An im-
portant observation is that if C'is a vertex cover of the graph gadget, then we can
compute in polynomial time a vertex cover C’ that is not larger than C, and such
that C” consists only of vertex covers of type 1 and type 2 and more precisely, for
each pair of adjacent vertex gadgets at least one has a vertex cover in C” of type 2.

Indeed, if a vertex gadget does not have a cover of type 1, then we can sub-
stitute this cover with one of type 2, obtaining a solution not larger than the
original one.

Theorem 1. There is a cover C of G of size k if and only if there is a cover
Cq of the graph gadget of size 3k + 2(n — k) + 2m.

Second Reduction. Now we reduce minimum vertex cover on graph gadgets
to CMV(2). The idea in our reduction is that it is possible to assign a resolved
vector to each vertex and a fingerprint to each edge of a graph gadget C'G. The
instance of CMV(2) consists of the set of fingerprints Fo associated with the
graph gadget C'G, and all interesting solutions will pick their resolved vectors
from those assigned to the vertices. More precisely, we construct the set Fog in
such a way that each fingerprint assigned to an edge (x,y) will be resolved by
one of the resolved vectors assigned to = or y.

Recall that n denote the number of vertex gadgets. Each fingerprint in Fgg
consists of n blocks of 7 positions, and each resolved vector associated with a
vertex in V' G; consists only of Os block, except for the i-th block. Given vertex c,,
then r, denotes the resolved vector associated with ¢, while 7, (i) denotes the -
th block of r,.. Given the resolved vectors associated with the vertices of VG;, we
define the i-th block of each of such vectors as follows: r;, (i) = 1110000, r;, (i) =
1111100, r4, (i) = 1110011, r;, (i) = 1001100, 7, (i) = 1000011. For example, the
resolved vector 7, of the i-th vertex gadget ¢;, is 0711001100079,

The vertices belonging exclusively to an edge gadget will have two blocks
that are not completely made of 0s. More precisely, let VG; and VG be two
adjacent vertex gadgets, then only the i-th and the j-th blocks of the resolved
vectors r(e; j1), r(eij2), r(eijs), r(eija) associated with the vertices of the
edge gadgets EG;; do not completely consist of Os.

Fingerprint Clustering with Bounded Number of Missing Values 111

Assume that e; ; 1, e; ;3 are adjacent to a docking vertex of VGj, ¢;,, and that
€i,j,2, € j,4 are adjacent to a docking vertex of VGjy, ¢;,. Moreover, observe that
each resolved vector associated with a docking vertex has exactly 3 positions
set to 1. Let 1, z1, 2 be the positions in the i-th block of ¢;, set to 1, where
1 <z <y < 7. Let 1, y1, y2 be the positions in the j-th block of ¢;, set to
1, where 1 < y1 < yo < 7. The 4-th and j-th block of r(e; ;1), r(ei;2), r(€:j,3),
r(e;,5,4) are defined as follows: r(e; ;,1(¢)) has value 1 in positions 1 and z1, while
r(es,5,1(j)) has value 1 in position y1; 7(e; j,3(¢)) has value 1 in positions 1 and
x2, while r(e; ; 3(j)) has value 1 in position yo; r(e; 5,2(i)) has value 1 in position
x1, while r(e; j2(j)) has value 1 in positions 1 and yi; r(e; ;,4(¢)) has value 1 in
position 2, while 7(e; j 4(j)) has value 1 in positions 1 and y»; any other position
of i-th and j-th block is set to zero for r(e; 1), r(ei 2), r(eij3) and r(e;;4).
For any other position not in the -th or j-th block, the resolved vectors r(e; ;.1),
r(eij2), r(eij3) and r(e; ;4), are set to 0. Denote with R the set of resolved
vectors associated with vertices of the gadget graph.

Now we define the instance of the problem, that is the set of fingerprints Fog
associated with the edges of the graph gadget. Given e = (z,y) an edge of the
graph gadget and v, v, the resolved vectors associated with vertices x and y,
we associate with e the fingerprint f. by using the following rule:

felt] := wy[t] for each position t such that vy[t] = v,[t], and fe[t] == N
otherwise.

For example, let r;, , 7, be two resolved vectors associated with VG, and recall
that the i-th block of these vectors is r;, (i) = 1110000, r;, (i) = 1111100. Let e
be the edge having ¢;, and ¢;, as endpoints, it follows that f., the fingerprint
associated with e, has i-th block equal to 111N N00, and all other blocks set to
0. Since two resolved vectors associated with an edge of the gadget graph have
Hamming distance 2, each fingerprint in Fog has exactly two positions with
value N. A fundamental property of Feg is the following:

Lemma 1. Two fingerprints f;, f; in Foa have a common resolution if and only
if the edges of the gadget graph associated to such fingerprints share a common
vertex v. The resolved vector associated to v is the only common resolution of

fis fj-

Proof. Let us prove the only if part of the Lemma, as the other direction is
immediate. Let f; be a fingerprint encoding edge e; = (i1,%2) and let f; be
a fingerprint encoding edge e; = (j1,72). There is at least one pair of resolved
vectors in R associated with the endpoints of e; and e; having Hamming distance
at least 4; assume w.l.o.g. those vectors are r(i1) and r(j1). Note that none of
r(¢1) and 7(j1) can be a common resolution for both f; and f;. Any resolution
ri of f; different from 7(i;) and r(i2), has Hamming distance 1 from r (1), hence
r} has Hamming distance at least 3 from r(j1), thus it can not be a resolution
of f;. Similarly, any resolution r} of f; different from r(j1) and r(j2) can not be
a resolution of f;. Hence f; and f; have a common resolution only if r(i2) and
r(j2) are the same vector, that is they encode the same vertex. O

112 P. Bonizzoni et al.

As a consequence of Lemma 1, if C' is a vertex cover of the graph gadget, then
we can define a solution S of CMV(2) over Fog as the sets s, of fingerprints
resolved by a vector r(v) associated with a vertex v in the cover, that is such a
solution is of size |C].

To prove the converse, let us consider a solution S for CMV(2) over instance
Foe. If a fingerprint is resolved by a vector v not associated with a vertex of the
gadget graph, then this resolution is not shared by any other fingerprint of the
instance. Thus, we can replace v with a resolved vector associated with a vertex
of the graph, obtaining a solution S’ for CMV(2) that has at most the same size
of the solution S. Consequently, we can assume that the solution of CMV(2)
consists only of sets associated with resolved vectors in R. By Lemma 1, it is
immediate that the set of vertices associated to resolved vectors taken in the
solution S’ of CMV(2) over Foq is a vertex cover of the gadget graph. By the
above two observations, it follows that the graph gadget CG has a vertex cover of
size k if and only if the instance Fog of CMV(2) has a solution of size k. It is im-
mediate to notice that both reductions in this section are actually L-reductions.

4 APX-Hardness of IEC(2)

In the following section we prove that IEC(2) is APX-hard via an L-reduction
from Maximum Independent Set on Cubic Graphs (MIS), which is known to be
APX-hard [1]. Let G = (V, E) be a cubic graph, the MIS problem asks for the
subset V’ C V of maximum cardinality, such that vertices in V' are not adjacent.
Let G = (V, E) be an instance of MIS, the reduction builds an instance Fg of
TEC(2) associating with each vertex v; € V a set of fingerprints F; and with each
e = (v;,v;) € E a fingerprint f; ;.

More precisely, a set F; of 9 fingerprints is associated with each vertex v; € V.
Such fingerprints are constructed, similarly as in the reduction of Section 3,
from a set of resolved vectors. Indeed, we define a set of 8 resolved vectors,
R; = {ry;|1 < j <8}, that are the possible resolutions of the fingerprints in Fj.
We will show that all interesting solutions of IEC(2) over instance F; will pick
their resolved vectors from R;. We introduce a graph, called compatibility graph
and denoted as C'G; (see Fig. 2), such that vertices of CG; are the resolved
vectors in R;, while each edge (r;,,r:,) of CG; is associated to a fingerprint in
F;, that is compatible with the resolved vectors r;, and r;, .

Fig. 2. Compatibility graphs CG; and CG;

Fingerprint Clustering with Bounded Number of Missing Values 113

Three vertices of CGY, r;,, 7, and ry, are called docking vertices and are the
resolved vectors that are compatible with fingerprints associated with edges of
the instance graph G of MIS. More precisely, given edge (v;, v;) of G, a fingerprint
denoted by f; ; is associated with (v;,v;) and it is represented by an edge E; ;
incident on a docking vertex r;, of CG; and docking vertex r; of CG; (see
Fig. 2), respectively. The fingerprint f; ; is constructed as being compatible with
ri, and rj .

The graph consisting of all compatibility graphs C'G; and the edges E; ; is
denoted as CG.

Given G = (V, E) the instance of MIS, with |[V| = n and |E| = m, then set
R; is defined as follows. Each resolved vector consists of n blocks of 5 positions,
where the t-th block of resolved vector r, is denoted by r,(t). Then, r;, (i) =
11000, r;, (3) = 11010, r;, (¢) = 10010, r;, (¢) = 11100, r;, (i) = 10110, 7, (i) =
11110, r;, (i) = 11011, r;(z) = 10100. Assume w.l.o.g. that the vertex v; is
adjacent to vj, v, vk. Then each of the docking vertices of CGy, ri,, 73, and
Tis, is adjacent to a docking vertex of CG;, CG) and CGj. More precisely, we
assume w.l.o.g. that r;, is adjacent to a docking vertex of CGj, r;, is adjacent
to a docking vertex of C'Gp, iy is adjacent to a docking vertex of CGy. Thus,
ri, (j) = 10000, 7, (k) = 10000, 7, (k) = 10000; for any other position not in -th
block, the resolved vectors in R; have value 0.

Given the set R of all resolved vectors of graph C'G, then we construct the set
F¢ of fingerprints instance of IEC(2) as in the second reduction of Section 3 by
applying the same rule. More precisely, given f, . the fingerprint associated to
(ru,mv), then for each position t, fi, ,[t] := ryu[t] if 7, [t] = ru[t], and fo, ,[t] = N
otherwise.

By construction, two resolved vectors associated with adjacent vertices in CG
have at most Hamming distance 2, thus each fingerprint in F has at most
2 positions with value N. Moreover, observe that fingerprints fi,,, fi;, and
fis.s associated with edges (r4,,7i,), (Tig,73,) and (rig,7i;) respectively, have
exactly one position with value IV, since the resolved vectors associated with the
endpoints of such edges have Hamming distance 1. The set of fingerprints Fg
has the following nice properties.

x

Lemma 2. Let S be a solution of IEC(2) over instance Fg, then there is a
solution S’ having at most the same cost and such that each resolved vector of
the solution is a resolved vector in R.

Lemma 3. Two fingerprints [z, fy € Fg are compatible if and only if they are
associated with two edges of graph CG incident on a common vertex v. The
resolved vector associated to v is the only common resolution of f., fy in R.

By the above results, we can restrict to a solution where each set s, (where
v is a vertex of the gadget) contains fingerprints that are resolved by a vector
r, € R and we say that fingerprints in s, are assigned to r,. A solution of
IEC(2) is computed assigning the fingerprints in F; to the resolved vectors in
R. A fingerprint associated with edge (r,7,) of CG; is assigned to exactly one
of r5 and ry. Hence a solution of IEC(2) corresponds to assign each edge of CG

114 P. Bonizzoni et al.

(a fingerprint f,) to one of its endpoints in CG (resolved vectors compatible
with f,). Two edges are co-clustered if they are assigned to the same vertex.
Hence the measure of a solution is the number of pairs of co-clustered edges.

In the following, to simplify the notation, we denote each edge of graph C'G with
the fingerprint associated with it. In particular, note that f;; will denote edge E;;.

By using Lemma 3, we will show that for a solution of IEC(2) over fingerprints
F; associated with a compatibility graph C'G;, we can restrict to two possible
cases. In Solution A all the edges are assigned to r;,, r;, and r;,. Three edges
are assigned to each of these vertices, thus 9 pairs of compatible fingerprints
are co-clustered by solution A. In Solution B all the edges except for edge fi,,
(that is edge (ri,,ri,)) are assigned to 7y, , Ty, Tis and r4,. One pair of edges is
assigned to each of these vertices, while f;,, is assigned to either r;, or r;, and
it is not co-clustered with other edges. Thus 4 pairs of compatible fingerprints
are co-clustered by solution B.

The following lemma is easily proved using Lemma 3.

Lemma 4. A solution A of IEC(2) over F; has the same cost of every solution
Z over Fy U f; ;U fin U fik that extends solution A over Fj.

Next we show that the optimal solution for F; U f; ; U fin U fi 1 corresponds
to have solution B for F; and assign each edge in {f; ;, fin, fix} to a distinct
docking vertex of CG;. For each edge f, in { f ;, fin, fi,x}, 2 pairs of co-clustered
edges in F; U f, are gained in solution B assigning the edge to a docking vertex
of C'G;. Hence 10 pairs of edges are co-clustered in the extended solution B. We
denote such a solution by B*. By Lemma 4, the following result holds.

Lemma 5. The optimal solution of IEC(2) over instance F; U f; ; U fin U fik
is B*.

By Lemma 5, it follows that any solution over instance F;U f; ;U f; nU f; 1 different
from B* is not better than every solution extending solution A. Moreover, since
each edge f;; can be assigned to either r;, or r; , two adjacent compatibility
graphs cannot both have a solution B*. Hence the problem of maximizing the
number of co-clustered pairs of fingerprints consists of building an independent
set I of compatibility graphs, as stated in the following result.

Theorem 2. Let G be an instance of MIS. Then, there exists an independent
set V' of size k in G if and only if exists a solution S of IEC(2) over instance
Fg that co-clusters at least 10k 4+ 9(n — k) pairs of compatible fingerprints.

For each cubic graph |E| = 3|V| and there exists an independent set of size at
least |V|/4, hence the above reduction is an L-reduction.

4.1 APX-Hardness of OEC(2)

Observe that the L-reduction described above implies the APX-hardness also of
OEC(2). Indeed considering the set of fingerprints associated with a component
graph CG; and with edges EG; ;, EG;n, EG;, we can have 19 compatible
pairs of fingerprints. The best solution for this set of fingerprints is solution B*,

Fingerprint Clustering with Bounded Number of Missing Values 115

which co-clusters 10 pairs of compatible fingerprint vectors and thus it does not
co-cluster 19 — 10 = 9 pairs of compatible fingerprints. Solution A does not
co-cluster 19 — 9 = 10 pairs of compatible fingerprints and no other solution
different from solution B* is better than solution A. Hence the L-reduction for
OEC(2) follows directly from the L-reduction for IEC(2).

5 A Polynomial Time Algorithm for Restricted CMV

In this section we will present a polynomial-time algorithm for solving the CMV
problem in the case where for each position of a fingerprint vector, there is at
most one fingerprint in F' with a N symbol in such position (notice that the
number of Ns in each fingerprint is unbounded).

Let F be an instance of CMV, in [6] it has been shown that the CMV problem
is equivalent to MINIMUM CLIQUES PARTITION on a graph G = (F, E) whose
vertices are the input fingerprints and where the pair (f;, f;) is an edge of G if
and only if f; and f; are compatible (that is they can be resolved by a same
fingerprint). Since in each position there is only one fingerprint with N in such
position, we are able to prove some properties of the graph G, namely: (i) any
cycle in G induces a clique, (ii) any two maximal cliques share at most one
vertex, (iii) given two maximal cliques K7, Ko sharing the vertex vy, all paths
connecting a vertex in Ky — {v } with a vertex in Ky —{v;} pass through v;. Due
to space constraints we will prove only (i) since the other two properties follow
from (i). Assume to the contrary that Cy = {fi,, fi ... fi,} is a cycle of G that
does not induce a clique (notice that t > 4), w.l.o.g. we can assume that (f;,, fi,)
(with 2 < u < t) is not an edge of G. Then f;; and f;, are not compatible, that
is for a certain position z, f;,[2] = 0 and f;,[z] = 1. Moreover in G there are two
vertex-disjoint paths from f;, to f;,, where each edge in the paths consisting of
pair of compatible fingerprints and thus in both paths there must be a fingerprint
with an IV in position z. Since the paths are vertex disjoint, there must be two
distinct fingerprints with an N in position z, contradicting the assumption that
for each position only one fingerprint contains an N in that position.

Exploiting property (i) we are able to prove that there exists a vertex v of G
belonging to exactly one maximal clique K of G (let us call such a vertex private).
Assume to the contrary that such vertex does not exists, then consider two maxi-
mal cliques adjacent if they share a common element. Starting from any maximal
cliques, visit all maximal cliques of G in a depth-first-like search (picking one
of the not visited maximal cliques adjacent to the current one). If the currently
visited maximal clique contains a private vertex, the search halts. By hypothesis
the procedure visits all maximal cliques in a connected component of G, with-
out finding a private vertex. Let Kj,s be the last maximal clique visited by the
procedure, it is immediate to note that the procedure visited at least another
maximal clique before K., let Kjq5:—1 be the parent of K, in the search tree.

Since K44 is maximal, then it contains at least two vertices, and since the
procedure halts all vertices in Kj,st — Kjqst—1 belong to maximal cliques that
have been already visited. This implies that in the depth-first search tree there

116 P. Bonizzoni et al.

is a back edge, and consequently there is a cycle of G including vertices of both
Kiost — Kiast—1 and Kjgsi—1 — Kjast- By property (i), there is a clique including
Kigst U Kjgst—1, contradicting the maximality of Kjqst, Kigst—1-

The algorithm simply finds such a maximal clique K containing a private
vertex, adds K to the current clique cover, and removes all vertices of K from G
updating G. The algorithm iterates until G contains no vertex. The correctness
of the algorithm follows from a simple observation: each vertex must be covered
in some solution, therefore each private vertex must be covered by one clique.
Clearly covering all private vertices of K with K is an optimal choice, therefore
let us consider a non-private vertex w € K. If in an optimal solution w is covered
by a clique different from K, then w can be covered by K without increasing
the total number of cliques in the solution, hence K is an optimal solution.

The polynomial time complexity of the algorithm is a consequence of the fol-
lowing two observations. Two compatible fingerprints have exactly one common
resolved vector (which is trivially computable), hence a maximal clique of graph
G consists of all fingerprints sharing the same common resolved vector. Secondly,
by a simple counting argument there are at most (g) maximal cliques.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theo-
retical Computer Science, 237(1-2):123-134, 2000.

2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complezity and Approximation: Combinatorial optimization problems
and their approzimability properties. Springer-Verlag, 1999.

3. R. Drmanac. cDNA screening by array hybridization. Meth. in Enzym., 303:165—
178, 1999.

4. S. Drmanac and R. Drmanac. Processing of cDNA and genomic kilobase-size clones
for massive screening mapping and sequencing by hybridization. Biotechn., 17:328—
336, 1994.

5. S. Drmanac, N. Stavropoulos, I. Labat, J. Vonau, B. Hauser, M. Soares, and R. Dr-
manac. Gene-representation cDNA clusters defined by hybridization of 57 419 clones
from infant brain libraries with short oligonucleotide probes. Genomics, 37:29-40,
1996.

6. A. Figueroa, J. Borneman, and T. Jiang. Clustering binary fingerprint vectors with
missing values for DNA array data analysis. Journal of Computational Biology,
11(5):887-901, 2004.

7. A. Figueroa, A. Goldstein, T. Jiang, M. Kurowski, A. Lingas, and M. Persson.
Approximate clustering of fingerprint vectors with missing values. In Proc. 11th
Computing: The Australasian Theory Symposium (CATS), volume 41 of CRPIT,
pages 57-60, 2005.

8. L. Valinsky, G. Della Vedova, T. Jiang, and J. Borneman. Oligonucleotide finger-
printing of rRNA genes for analysis of fungal community composition Applied and
Environmental Microbiology, 68(12): 5999-6004, 2002.

9. L. Valinsky, G. Della Vedova, A. Scupham, S. Alvey, A. Figueroa, B. Yin, R. Hartin,
M. Chrobak, D. Crowley, T. Jiang, and J. Borneman. Analysis of bacterial microbial
community composition by oligonucleotide fingerprinting of rfRNA genes. Applied
and Environmental Microbiology, 68(7): 3243-3250, 2002.

Tiling an Interval of the Discrete Line

Olivier Bodini and Eric Rivals

L.IR.M.M.
Université de Montpellier II, CNRS U.M.R. 5506
161 rue Ada, F-34392 Montpellier Cedex 5, France
{rivals, bodini}@lirmm.fr

Abstract. We consider the problem of tiling a segment {0,...,n} of
the discrete line. More precisely, we ought to characterize the structure
of the patterns that tile a segment and their number. A pattern is a
subset of N. A tiling pattern or tile for {0,...,n} is a subset A € P(N)
such that there exists B € P(N) and such that the direct sum of A
and B equals {0, ...,n}. This problem is related to the difficult question
of the decomposition in direct sums of the torus Z/nZ (proposed by
Minkowski). Using combinatorial and algebraic techniques, we give a new
elementary proof of Krasner factorizations. We combinatorially prove
that the tiles are direct sums of some arithmetic sequences of specific
lengths. Besides, we show there are as many tiles whose smallest tilable
segment is {0, ..., n} as tiles whose smallest tilable segment is {0, ..., d},
for all strict divisors d of n. This enables us to exhibit an optimal linear
time algorithm to compute for a given pattern the smallest segment that
it tiles if any, as well as a recurrence formula for counting the tiles of a
segment.

1 Introduction

Tilings are intriguing in many regards. Their structure, ¢.e., the way in which the
tiles are assembled, may be remarkably complex. As a matter of fact, a theorem
from Berger [3] states that, given a set of patterns, determining whether this set
tiles the plane by translation is undecidable. This result lets us think there exist
sets of tiles that tile the plane only in complex ways. Indeed, Penrose and others
[15,5] demonstrated there exist aperiodic sets of tiles (aperiodic means that it
tiles the plane, but that none of its tilings admits an invariant by translation).
However, some related questions remain open. The smallest known aperiodic
set of tiles contains 13 tiles and it is unknown whether there is one with only
one non necessarily connected tile. Over and above that, it is undetermined
whether the tiling of the plane with one non connected pattern is decidable.
Nevertheless, an interesting result from Beauquier-Nivat [1] states that if the
pattern is connected the problem is decidable, and if there exists a tiling, there
is also a (doubly)-periodic tiling (i.e., one that is invariant by two non-collinear
vectors).

Even when restricted to bounded regions of the plane, tiling problems remain
difficult combinatoric questions on which little is known. Numerous articles re-
port on specific cases. Among others, the problem of tiling a connected region

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 117-128, 2006.
© Springer-Verlag Berlin Heidelberg 2006

118 O. Bodini and E. Rivals

(respectively, a simply connected region) by dominos is polynomial [19] (resp.,
linear [20]). But, if generalized to a region that is non necessarily simply con-
nected, the problem of tiling by rectangles of size 1 x 3 and 3 x 1 becomes
NP-complete [2].

Regarding these difficulties, it is natural to focus on tiling problems for the
discrete line Z. These problems are related to additive number theory, which
studies the decompositions of sets of numbers in sums of sets of numbers. A
major theorem in this field is the decomposition of integers in sums of 4 squares
(Lagrange’s theorem), which is written 4C' = N where C := {n2 in € N}. Let
us also mention Golbach’s conjecture (in a letter to L. Euler, 1742), which asks
whether any even integer is the sum of two primes (2N = P+ P where P designs
the set of primes).

Indeed in additive number theory, tiling the discrete line with a tile is equiv-
alent, given a set A (representing the tile), to finding a set B (representing the
positions of the tile’s translations) such that the function f(a,b) := a+b is one-
to-one from A x B into Z. In this case, we denote it A® B = Z. A classical result
[12] states that in this case, there always exists a positions set B that is periodic
(i.e., for which there is an integer k such that B + k = B). As an immediate
corollary, one obtains the decidability of the tiling of the discrete line by a single
pattern. Despite that, its algorithmic complexity remains open although a lot of
efforts have been dedicated to study bases for the integers [6, 21]. Moreover, the
periodicity of the positions set B raises the question of the characterization of
sets A and B such that A@® B = Z/nZ. This problem formulated by Minkowski
more than hundred years ago is still mainly unsolved despite the last progresses
made by Hajos [9, 10,17, 18].

In this work, we focus on the characterization of sets A and B satisfying
A® B = [n]], where [[n]] denotes the interval {0, ...,n — 1}. This question has
been addressed in the literature as the Krasner factorization [11]. Two differ-
ent constructions of Krasner factorizations have been described in the literature
as special cases of Hajés factorizations and used in code theory [13,7]. In a
first part (Sections 2 and 3), we demonstrate using techniques from word the-
ory that if A& B = [n]] then either A or B tiles [[d]L for d a proper divisor
of n. For any n € N, let us say a tile is n-specific if its smallest tilable seg-
ment is [n]. More precisely, we exhibit a bijection between n-specific tiles and
d-specific tiles for all strict divisors d of n. This result yields a simple formula
to count the tilings of [n]] The obtained sequence that for each n gives the
number of tilings of [n]] is described in the Encyclopedia of Integer Sequences
[16] (http://www.research.att.com/ njas/sequences/) by Zumkeller without re-
lationship neither to tilings theory, nor to word combinatorics. Besides, we prove
a theorem on the size of the smallest tilable segment in function of the tile’s diam-
eter. This solves in a specific case a conjecture of Nivat stating that the smallest
torus Z/nZ that can be tiled by a pattern of diameter d satisfies n < 2d. More-
over, we exhibit a linear time algorithm to decide whether a pattern tiles at least
one interval of Z (Section 4).

Tiling an Interval of the Discrete Line 119

In a second part (Section 4), using more algebraic techniques, we demonstrate
that any tile of [n] can be decomposed in irreducible tiles (i.e., tiles that are
not sums of smaller tiles), which we characterize explicitly. This is in fact a new
proof of Krasner factorizations. This combinatorial proof may help developping
the theory in the general framework. Furthermore, we know for any n how many
irreducible tiles there are. Note that to fit in the page limit, all proofs have been
removed from this extended abstract.

1.1 Definitions and Notation

Subsets of N and Polynomials. Let N, resp. Z, be the set of non-negative
integers, resp. of integers, and P(N) the set of finite subsets of N. We denote
the set of polynomials with coefficients in {0,1} by {0,1}[X]. We define the
mapping p that to a finite subset of N associates a polynomial of {0, 1} [X] by:

p:P(N)— {0,1}[X]
A —>PA(X) ::ZaeAXa

Clearly, p is one-to-one. For all A € P(N), we denote by c(A) its minimal
element, by d (A) its maximal element, and by # (A) its cardinality. d (A) is also
the degree of Pj.

Let A, B € P(N) and k € N. The following operations on sets have correspon-
dents for polynomials:

union: P4, = P4 + Pp if and only if AN B =0,
difference: P4\ p = P4 — Pp if and only if B C A,
translation: if one denotes A+k := {a+k:a € A}, then Pa(X) = X* . P4.

We introduce a notation for the direct sum. Let us denote by AW B the union
with repetition for all b € B of the translates A 4+ b. In general, this union is
a multi-set on N, i.e., Paup := Py,cpatb =) _pep Pate is a polynomial with
integral coefficients that are eventually strictly greater than 1. If there exists
C € P(N) such that C = AW B, then we denote it by C = A ® B. In this
case, Payp := Pagp = PaPp and it belongs to {0,1}[X]. In other words, we
investigate the case where the sum is stable in P(N), or where the product of
polynomials is stable in {0,1}[X]. One says that a polynomial is irreducible in
{0,1} [X] if it cannot be factorized in {0, 1} [X]. When transposed to subsets of
N, A is irreducible means it is impossible to decompose A in a non trivial direct
sum (é.e., other than {0} & A).

Besides, we say A is a prefix of B if and only if A C B and Vi € B, i <
d(A)=1i€ A (ie., BN[[d(A)]] = A). By convention, one admits that 0 is prefix
of any other subset of N. We denote by [k] the finite interval of N of length &
whose minimal element is 0, i.e., the interval [0, k — 1]. We use the word segment
as an alternate for interval.

In the sequel, for any finite subset A of N, we assume that ¢ (4) = 0 (this is
always true up to a translation). We call A a pattern or motif. For a pattern A,
d (A) is also termed diameter.

120 O. Bodini and E. Rivals

2 Properties of the Direct Sum

In this section, we investigate the properties of the direct sum that are useful to
study the tilings of an interval. Note that the propositions hereunder are true
for subsets of N, but not necessarily for multi-sets on N.

Proposition 1 (Sums of prefixes). Let A, B, B’,C,C’ be subsets of N such
that A # 0 and C is prefix of C'. Then, together A® B=C and A® B =C'
imply that B 1is prefix of B'.

Proposition 2 (Sum of a partition). Let A, B, D be subsets of N such that
D C A and A® B be a subset of N. Let us denote by CoD the complement of D
in A. Then (D & B) and (CAD @ B) partition A® B.

This proposition is not verified when A @ B is multi-set on N that is not a
subset of N. For multi-sets, we have the following property: Let C, D be such
that A= C ¢ D, then (C® B) (D @ B) = A® B. In general it is not true that
(CeB)N(D®B)=0,evenif CND =1.

We state two propositions of simplification.

Proposition 3 (Difference of intervals). Let A, B,C be subsets of N and

m,n € N. f A@ B = [m]] and A® C = [n]l with n > m, then there exists
D C N such that A® D = |[n—m]| and D :=CcB — m.

Example 1. Set A := {0,2}, B := {0,1,4,5} and B’ := {0,1,4,5,8,9}. One
has A® B = [[8]] and A® B’ = [[12]], ie., m := 8 and n := 12. Let D :=
CoB —m ={8,9} — 8 ={0,1}, one obtains A® D = [4] = [n—m].

Proposition 4 (gcd of intervals). Let A, B be subsets of N and m,n € N. If
Mo A= [n]] and M & B = [m]], then there exists C € N such that M @& C =

[[gcd(n, m)]]

Proposition 5 (Multiple of an interval). Let A, B be subsets of N andn € N
such that A@® B = [n]] Then, for alll e N, A&® (692;(1)(3 + m)) = |[ln]|

Note that if # (A) is prime, then A can be decomposed only in the direct sum
of the neutral element and itself. We close with an elementary property.

Proposition 6. For any A € P(N), one has # (A) < d(A) + 1 and both mem-
bers are equal if and only if A = [d (A)]l

3 Tiling an Interval of the Discrete Line

In this section, let n € N be an integer and f be a finite subset of N such that
d(f) < n. We use the following notation:

~ for any z < y, we denote f 1 [z,3] by flz,y], and £ 1 [z,y[by flz yl
— for any 0 <z < d(f), let us denote by f[z] the subset {i € f:i < x}.

Tiling an Interval of the Discrete Line 121

Definition 1 (Tiling, dual). Let n > 0 and f be a pattern such that d (f) < n.
We say that f tiles [n]l if and only if there exists fn, a subset of N, such that
fe fn = |[n]| We call fn the dual of f for n. The element of fn are also called
the translation positions for f.

For a given n, the dual is unique. The notion of dual is idempotent: the dual
of the dual of f is f itself, and fn also tiles [[n]] We say that a pattern f that
tiles [n] is trivial if f := [0,n—1] = [n] or f := {0}. We define a notion of
self-period for a pattern. Without loss of generality, we assume that 0 belongs
to £ N fn (which is true up to a translation).

Definition 2 (Self-period of a pattern). Let n € N, f be a pattern such
that d(f) < n and p be an integer such that 0 < p < d(f). We say that p is a
self-period of f for length n if and only if for any i € [0,n — p[one has

iefe(i+p ef.

In other words, f[0,n-p[+ p = f[p,n[. For length n, we denote by II,(f) the set
of self-periods of f, and by m,(f) its smallest non null self-period.

Definition 3 (Completely self-periodic). We say that a pattern is com-
pletely self-periodic for length n if and only if it is an arithmetic sequence. lL.e.,
if and only if one has j € f < (i € [0, |n/c]] : j = ic), where ¢ denotes the
common difference.

Note that if a pattern f is completely self-periodic then its common difference
is its smallest non-null period, 7, (f). We choose the word ”self-period” to avoid
confusion with the notion of a tiling’s period mentioned in the introduction.
However, for the sake of simplicity, we use the word period instead of self-period
in the sequel, since the context prevents ambiguity. Furthermore, let us point
out the connection between the notions of a pattern self-periodicity and of word
periodicity.

Example 2. Consider n := 12. The pattern f := {0,1,4,5,8,9} has periods
0, 4, and 8. So, m2(f) = 4 and II12(f) = {0,4,8}. It can be decomposed in
{0,1,4,5,8,9} = {0,1} @ {0,4,8}. These patterns, {0,1} and {0,4,8} are com-
pletely periodic for lengths 2 and 12 resp., with smallest period 1 and 4 resp.
Pattern [tiles |[12]] cits dual for n =12 is fip := {0,2}, it tiles |[4]], |[8]| and

[12]. It is true that # (f) x # (f12) =6x2=12.

3.1 Properties of Patterns That Tile an Interval

Let f be a pattern. In the sequel, we assume that f tiles [n]] First, we list some
elementary properties of f.

Proposition 7. Let f be a pattern that tiles |[n]] First, # (f) x # (fn> =n,
and second, d(f) + d(fn> = n — 1. Thus, we have either d(f) > d (fn>, or

d(f)<d(fn).

122 O. Bodini and E. Rivals

Now, let us state a simple and useful property. It follows from the positivity of
the pattern’s elements and from the properties of the direct sum.

Proposition 8. For any « € [n], one has [0,2] C f[0,z] ® .

In a tile, let us call a block a maximal set of consecutive positions. E.g., in
f:=1{0,1,4,5,8,9} the blocks are {0,1}, {4,5}, and {8,9}. A block contains at
least an element and may be a singleton.

Now observe the following simple fact: the gap between the first and second
block can only be tiled by translations of the first block (and of course of the
whole tile). We show below that this implies first, that all blocks have the same
length, and second that the first block tiles periodically the interval between 0
and the start position of the second block.

Proposition 9. Let f be a pattern that tiles [[n] Assume f comprises k > 1
blocks; then f is completely specified by the length and starting positions of its k
blocks denoted respectively, (b;)1<i<k and (I;)1<i<k. W.lo.g. b1 =0, and for all
1 one has l; > 0. Then:

1. the block length divides by, i.e., Iy divides by, and fu[bs] = U5 {ji1}.
2. all blocks have the same length, i.e., for all 1 <i <k, l; =1;.

A corollary of the previous proposition is that the distance between any consec-
utive block is a multiple of the block length and is larger than bs. We can now
state a theorem showing that a tile f admits a non null smallest self period.

Theorem 1. A tile f admits a smallest non-null period m,(f).

Let us show that the smallest non null period of a non trivial tile is smaller than
|n/2|. Next proposition demonstrates that this period divides n.

Proposition 10. Let f be a pattern that tiles [n] and such that d (f) > d (fn>
Then: m,(f) < |n/2] .

Lemma 1. Let [be a pattern that tiles |[n]] and satisfies d (f) > d (fn> Thus,
mn(f) divides n and flm,(f)] & fo = [mn(f)].

The next corollary follows from the patterns’ properties and from Lemma 1.
Corollary 2. If f tiles [n]] and d(f) > d (fn> then d (fn> < mn(f).

By Proposition 5, we have that any tile of [n] also tiles [In] for any integer
I > 0. We deduce the next corollary from Lemma 1 and Proposition 5.

Corollary 3. Let f be a pattern and d be the smallest integer such that f tiles
[[d]]. If d > 0, then the [[ld]] , for 1 € N, are all the intervals f can tile.

Tiling an Interval of the Discrete Line 123

Theorem 4. Let n be an integer. Among the patterns f that tile |[n]], it exists
a one-to-one mapping that, to any pattern f such that d(f) < n/2, associates
a pattern that tiles |[d]| for d a divisor of n. This bijection associates to such a

pattern f its dual fn

One obtains a canonical decomposition of patterns tiling [n] in irreducible pat-
terns. Indeed, Theorem 4 allows us to write any tile f of [n] as the direct sum of
i/ a completely periodic pattern for length n (with period a divisor strict of n)
and ii/ one or more patterns that tiles [d]], with d a strict divisor of n, and are
completely periodic for length d. This decomposition result is also a corollary of
Theorem 7 (section 4).

3.2 Numbers of Tiles of an Interval

Let n € N such that n > 0. We denote by =, the set of tiles of [[n]] Let A,, be
the subset of patterns in =), whose diameter is smaller than or equal to Ln/ 2J
(i.e., those who tile |[d]] for d a strict divisor of n), and let ¥, be the complement
of A, in =), (i.e., those patterns with diameter strictly greater than Ln/2J) By
definition, one has =, = A,, U¥,,. We denote the cardinalities of these sets by
&n, O, and v, respectively.

Theorem 5. Let n € N be an integer such that n > 1. One has & =1 and

gn = 1+ Z gd- (1)

deN : d|n, d#n

Corollary 6. If n > 1 is prime then A, = ¥, ¥,, = {[n]}, =, = {{0}, [n]},
on=vp =1 and &, = 2.

The values of &, for n > 0 are those of Sequence entry A067824 in [16], and (1)
corresponds to the recurrence relation given for this sequence by Zumkeller.
Let us denote by p(n) the Moebius function. This function satisfies p(n) =
(—1)" if n = pipa...p, for distinct primes p; and p(n) = 0 whenever n is di-
visible by a square. The Moebius inversion states that f(n) = > ,,9(d) <
g(n) = > g, 1(;7)f(d). Using this property, we can easily obtain the following

new induction for &, : & =1 =35, g, 1(7)(28a — 1).

4 Algebraic Approach

4.1 Polynomials Decomposition

Let us denote by C the set of super-composite integers, i.e., all integers whose
prime factorization contains at least two different primes. It is known that X" —1
admits a unique decomposition (up to the order of its factors) in irreducible el-
ements of Z[X]. Indeed, Z[X] is a factorial ring (unique factorization domain).
This decomposition is X" — 1 = Hd|n @4, where @ is the d-th cyclotomic poly-
nomial [14]. We use the following properties of cyclotomic polynomials.

124 O. Bodini and E. Rivals

Proposition 11

e The degree of @4 is ¢(d), where ¢ is Euler’s function.
e &,(1) =p if d is a power of a prime p and P4(1) = 1 otherwise.
e The polynomial P4 belongs to {0,1}[X] if and only if d ¢ C.

As p is a bijection, it induces a one-to-one correspondence between the pairs
(A, B) € P(N)xP(N) such that A®B = [n], and the pairs (P, Q) € ({0,1} [X]x
{0,1} [X]) such that P(X)Q(X)=1+---+ X"~ 1. Moreover,as 1 +--- + X"~}
is factorizable in [];,, 4.; Pa(X), there exists a partition of {d|n,d # 1} in D,
and Dy such that P(X) = [[;cp, Pa(X) and Q(X) = [[4ep, Pa(X). Finally,
We can notice that if P is in {0,1}[X] and P(X)Q(X) =1+---+ X" ! then
the polynomial @) is not necessarily in {0, 1} [X]. We have the following counter-
example : (1 + X2+ X2+ X5)(1+X - X3+ X5+ X6) =1+...+ X1

4.2 Results

Lemma 2. Let Py, ..., Py be polynomials of {0,1} [X] such that Hle P; belongs
to {0,1} [X]. For each subsequence Ps,, ..., Ps,, with1 < s1,...,s, <k, one has

[Ti—: Ps € {0,1} [X].

For all n € N, we call total valuation of n, denoted by v,, the sum of the
powers in the prime factorization of n. We call factorial sequence of n, a sequence
Ug, U1, - - ., Ug such that ug := 1, us := n, and u;41/u; is a prime number. Observe
that all factorial sequences of n have v, + 1 terms. From a factorial sequence
of n, we can build a sequence of decomposition (D, , u;)1<i<s With Dy, | 4, =
{d|u; : d{u;—1}. For conciseness, for all D € P(N) we write @p := [[,cp Pa-

Lemma 3. Let n,p € N with p prime. $p, . belongs to {0,1} [X] and is irre-
ducible in {0,1} [X].

Theorem 7 (Krasner Factorizations). Each factorization of 1 + -+ + X"~}
in drreducible elements in {0,1}[X] has the following form [],c;<,®Pp., | .,
where (Dy; , u,;)1<i<s 5 a sequence of decomposition of m, and reciprocally.
Moreover, for all1 <i<s, &p, (1) is a prime factor of n.

Note that the factorization may not be unique.

Example 3. For n:=12, the factorial sequences are: (1,2,4,12), (1,2,6,12),
and (1,3,6,12). The associated sequences of decomposition are ({2}, {4}, {3,6,
12}), ({2},{3,6},{4,12}), ({3},{2,6},{4,12}). We obtain that the irreducible
factors Of 1+ 4+ Xn_l m {O, 1} [X] are 432, 433, @4, ¢3¢67 ¢2¢67 ¢3¢6¢12;
DyPD1o.

Theorem 8. The number v, of irreducible factors of 1 + -+ X"~ 1 in{0,1} [X]
equals de #{prime factors of d} .

Tiling an Interval of the Discrete Line 125

The pattern associated with the polynomial @p, , is the arithmetic sequence
starting in 0, of common difference d, and having p terms. This gives the precise
structure of all tiles of a segment.

A reciprocal polynomial is a polynomial such that P(X) = X" P(1/X), where
n is the degree of P.

Corollary 9. Let f be a pattern which tiles an interval. The associated polyno-
mial, Py, is reciprocal.

Theorem 10. Let f be a pattern which tiles an interval. Then, the length of the
smallest nonempty interval it tiles is smaller than twice the diameter of f, i.e.,
than 2d (f).

Theorem 10 shows that Nivat’s conjecture on the upper bound of the tiling
periodicity (also mentioned in [4]) is true for the special cases considered here.

Theorem 11. Let f be a pattern. Algorithm 1 decides in O(d (f)) time whether
there isn € N such that f tiles |[n]| and gives the decomposition of f in completely
self-periodic tiles.

In Algorithm 1, we use a procedure call CompNextBlock (or CNB for short) that
computes all information needed about the next block in the tile. This procedure
uses a global variable to scan blocks from left to right in the tile. It stores in a
block object the following information: length (lg), distance to previous block or
0 for the first block (dist). Note that the distance is the length of the space that
separates two successive blocks. At the last block, dist is set to —1.

In fact, the algorithm computes the decomposition of the tile in completely
self-periodic tiles. It scans the blocks, checks their length, and deduce the level
of periodicity they belong to. The information on each level is stored in a Level
object: characteristic distance between the last block of previous level and the
first block of this level, period, number of repeats, overall length (this is the
product of the number of repeats time the period). Other variables are: Lev:
table of levels; ilev: index of the current level; pdist: previous distance between
two consecutive blocks; fB: first block; nB: current block;

Two cases arise with the distance. Either the distance between the current
consecutive blocks is the same as the previous one, then the periodicity remains
the same and we have to scan a new copy (repeat) of the current level. Or the
distance increases, then the current blocks marks the beginning of a new level of
periodicity. Once a periodicity level has been scanned, the variable Lev stores its
complete description. A level of periodicity corresponds to a prefix of f. To any
given level corresponds a prefix of fn such that it sums with that level tiles the
whole level length. Let us denote that by Lev[i] & p;(f), where p;(f,) denotes
the prefix of fn that tiles Levl[i].lg. The start of a higher level is detected when
the inter-block distance increases strictly. The additional space left since the end
of the last periodicity level has to be a multiple of Lev[i].lg, such that it can
be filled with translates of Lev[i] ® pi(fn). The higher level, say i + 1 starts
necessarily with replicates of all previous periodicity levels. The line "read all
previous level” scans these replicates with the descriptions stored in Lewv.

126 O. Bodini and E. Rivals

Algorithm 1. Computes the least interval tiled by f if any and returns —1
otherwise. If f is a tile, the levels of periodicity computed by the algorithm gives
the decomposition of f in completely self-periodic tiles.
Data: a pattern f
Result: the minimal n € N such that f tiles [[n]l if it exists, and —1 otherwise
if (d(f)+1=+(f)) then return # (f);if (# (f) = 2) then return 2d (f);
fB := CNB(f); // compute the first block;
if (fB.lgt # (f)) then return (—1); // check if 1st block length divides # (f);
nB := CNB(f); ilev := 0; pdist := 0; // compute next Block; init ilev and pdist;
while (nB.dist > 0) do
// check the block length and that the distance increases;
if (nB.lg 1 fB.lg) or (nB.dist < pdist) then return (—1);
// if current distance is larger than previous one: start of a new level;
if (nB.dist > pdist) then
ilev + +;
if (ilev = 1) then
// First level,
// check if the block length divides the distance between blocks;
if (fB.lg t nB.dist) then return (—1);
// init current level: period = space length + block length;
Levlilev].dist := nB.dist;
Levlilev].period := nB.dist + {B.lg;
Levlilev].nbrep := 1;
else
// Higher level,
// update the nbrep of prev level and compute its length;
Levl[ilev — 1].nbrep + +; Lev[ilev — 1].ComputeLg();
// check if previous level period divides the distance difference between the 2
levels;
if (Lev[ilev].period { (nB.dist — Lev[ilev — 1].dist)) then return (—1);
// init current level: period = previous level’s length + distances’ difference;
Levlilev].dist := nB.dist;
Levlilev].period := Levlilev — 1].lg + (nB.dist — Lev[ilev — 1].dist);
Levl[ilev].nbrep := 1;
pdist ;= nB.dist;
Read all lower levels until nB.dist > Lev[ilev — 1].dist; if it fails return (—1);

else
// update currently scanned level;
Levlilev].nbrep + +;
if (ilev # 1) then Read all lower levels until nB.dist > Lev[ilev — 1].dist; if it
fails return (—1);
if (ilev = 1) then
// only in case of 1st level: compute new block and update variables;
pdist := nB.dist; nB := CNB(f);

// increment nb of repeats of current level and compute its length;
Levlilev].nbrep + +; Lev[ilev].ComputeLg();
return Lev[ilev].lg; // the interval tiled by f is Lev[ilev].lg;

Tiling an Interval of the Discrete Line 127

Ezample 1. Let f:=[0,6]U[21,27]U[42,48]U[126,132]U[147,153]U[168,174]U
[504, 510]U[525, 531]U[546, 552]U[630, 636]U[651, 657]U[672, 678], with # (f) = 84
and d (f) = 678. Then Algorithm 1 will find out that the smallest n such that f
tiles [[n]] is n = 1008 and will decompose f as follows:

f=[7] ®{0,21,42,126, 147,168, 504, 525, 546, 630, 651, 672}
= [7] @ {0,21,42} & {0, 126,504, 630}
= [7] ® {0,21,42} @ {0,126} ® {0,504} .

The algorithm infers 4 levels of periodicity: the first block [7]]7 which has period
1 and is not explicitely store in Lev, and then the following three levels:

Lev[l].dist = 14 Lev[l].period = 21 Lev[l].nbrep = 3 Lev[l].lg = 63
Lev[2].dist = 77 Lev[2].period = 126 Lev[2].nbrep = 1 Lev[2].lg = 252
Lev[3].dist = 329 Lev[3].period = 504 Lev[3].nbrep = 1 Lev[3].lg = 1008.

The dual of f for n = 1008 is f,, = {0,7,14} & {0, 63} @ {0, 252}, which can also
be infered from the length and number of repeats of the periodicity levels.

5 Conclusion

This work characterizes the tilings of an interval as direct sums of arithmetic
sequences. Counting results obtained also show that, surprisingly, the number
of patterns that tile a segment of length n depends, not on the prime factors
of n, but only on the list of their powers. F.g., segments of respective lengths
ny =5 x 7% x 2% and ny := 13 x 32 x 11* (n; and ny have both (1,2,4) as list
of powers), have the same number of tiles. Moreover, for any positive integer
n we show that the number of polynomials p with coefficients in {0,1} that
divide 2™ — 1 and such that (2™ —1)/p(z — 1) has all coefficients in {0, 1} equals
the number of tiles of [[n]] This invalidates the conjecture mentioned in the
Encyclopedia of Integer Sequences [16] that these two sequences, A107736 and
A067824, are different. Finally, we exhibit a linear time algorithm to recognize
a tile and find the smallest n for which it tiles |[n]] This complexity is otpimal.

The regular structure of the tiles of a segment contrasts sharply with the
singular structure of those tiling the torus Z/nZ. Indeed for this problem, there
exists irregular sets A and B such that A@® B = Z/nZ [8]. However, our results
exhibit a relation between tilings, words and polynomials that opens promising
directions for the tiling by a single pattern of the discrete plane or of special cases
of the torus. Let us mention that Theorem 7 can easily be extended to higher
dimensions. As a matter of fact, one can characterize a pattern that tiles a d-
dimensional rectangle nq X ... X ng as the cartesian product of d one-dimensional
patterns, each tiling a segment of length n; respectively (with 1 <4 < d). This
work also shed light on the complementarity of combinatorial and algebraic
approaches for tiling problems.

Acknowledgments. We are grateful to O. Gandouet for reading the manuscript
and to F. Philippe for constructive comments.

128

O. Bodini and E. Rivals

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Beauquier and M. Nivat. Tiling the plane with one tile. In Proc. 6th Annual
Symposium on Computational Geometry (SGC’90), pages 128-138, Berkeley, CA,
1990. ACM Press.

. D. Beauquier, M. Nivat, E. Remila, and J.M. Robson. Tiling figures of the plane

with two bars. Computational Geometry: Theory and Applications, 5, 1996.

. R. Berger. The undecidability of the domino problem. Mem. Amer. Math Soc.,

66:1-72, 1966.

. E. M. Coven and A. D. Meyerowitz. Tiling the integers with translates of one finite

set. Journal of Algebra, 212:161-174, 1999.

. K. Culik IT and J. Kari. On Aperiodic Sets of Wang Tiles. Lecture Notes in

Computer Science, 1337:153-162, 1997.

. N.G. de Bruijn. On bases for the set of intergers. Publ. Math. Debrecen, 1:232-242,

1950.

. C. De Felice. An application of Hajés factorizations to variable-length codes. The-

oretical Computer Science, 164(1-2):223-252, 1996.

. L. Fuchs. Abelian Groups. Oxford Univ. Press, 1960.
. G. Hajés. Sur la factorisation des groupes abéliens. Cas. Mat. Fys., 74(3):157-162,

1950.

G. Hajés. Sur le probleme de factorisation des groupes cycliques. Acta Math. Acad.
Sci. Hung., 1:189-195, 1950.

M. Krasner and B. Ranulak. Sur une propriété des polyndémes de la division du
cercle. Comptes rendus de I’Académie des Sciences Paris, 240:397-399, 1937.

J.C. Lagarias and Y. Wang. Tiling the line with translates of one tile. Inventiones
Mathematicae, 124(1-3):341-365, 1996.

N. H. Lam. Hajds factorizations and completion of codes. Theoretical Computer
Science, 182(1-2):245-256, 15 August 1997.

S. Lang. Algebraic Number Theory, volume 110 of Graduate Texts in Mathematics.
Addison-Wesley Publishing Company, 2nd edition, 2000.

R. Penrose. Pentaplexy. Bulletin of the Institute of Mathematics and its Applica-
tions, 10:266-271, 1974.

N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2004. Available
at http://www.research.att.com/ njas/sequences/ .

S.K. Stein and S. Szabo. Algebra and Tiling: Homomorphisms in the Service of
Geometry. Carus Mathematical Monograph 25, MAA, 1994.

S. Szabo. Topics in factorization of abelian groups. Birkhauser, 2004.

N. Thiant. An O(nlogn)-algorithm for finding a domino tiling of a plane picture
whose number of holes is bounded. Theorical Computer Sciences, 303(2-3):353-374,
2003.

W. P. Thurston. Conway’s tiling groups. Am. Math. Monthly, pages 757-773,
October 1990.

R. Tijdeman. Decomposition of the integers as a direct sum of two subsets. In
S. David, editor, Number Theory, pages 261-276. Oxford Univ. Press, 1995.

Common Substrings in Random Strings

Eric Blais* and Mathieu Blanchette**

McGill Centre for Bioinformatics and School of Computer Science
McGill University, Montréal, Québec, Canada
{eblais, blanchem}@mcb.mcgill.ca

Abstract. In computational biology, an important problem is to iden-
tify a word of length k present in each of a given set of sequences. Here,
we investigate the problem of calculating the probability that such a
word exists in a set of r random strings. Existing methods to approxi-
mate this probability are either inaccurate when r > 2 or are restricted
to Bernoulli models. We introduce two new methods for computing this
probability under Bernoulli and Markov models. We present generaliza-
tions of the methods to compute the probability of finding a word of
length k£ shared among g of r sequences, and to allow mismatches. We
show through simulations that our approximations are significantly more
accurate than methods previously published.

1 Introduction

Many algorithms in biological sequence analysis are based on the identification of
words that are present as substrings of a given set of DNA or protein sequences.
Variants on this problem are used for identifying regulatory motifs in a set of co-
regulated genes [20, 22], and for selecting seeds for sequence alignment [1, 2, 13].
These applications rely on the ability to estimate the statistical significance of
the length of the common substring found: how surprising is it that a set of r
strings of length n contain a common substring of length k7
The problem we consider in this paper is the following:

Common Substring in Random Strings (CSRS)

Given: A random process P generating r independent strings Sy, ..., S,
of length n over the alphabet X', and a substring length k&,

Find: The probability that the r random strings Si,...,S, contain a
common substring w of length k.

Various authors have studied his problem or its equivalent formulation as
the longest common substring problem (see Section 2), but available methods
are not accurate for finite length random sequences generated by a non-uniform
Bernoulli or Markov process. In this article, we present a new approximation
to the Common Substring in Random Strings (CSRS) problem and show that

* Partially supported by the André Courtemanche Fellowship in Bioinformatics.
** Partially supported by the National Science and Eng. Research Council of Canada.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 129-140, 2006.
© Springer-Verlag Berlin Heidelberg 2006

130 E. Blais and M. Blanchette

this new approximation is more accurate than previously published methods for
the same problem. Moreover, we generalize our approach to solve the problems
where matches are required in only ¢ of the r strings, and where inexact matches
are allowed.

The article is organized as follows. We review related work in Section 2. In
Section 3, we present a model for solving the CSRS problem approximately using
an assumption of independence between words. In Section 4, we present a second
simplifying assumption of independence and show how the model obtained by
combining both simplifying assumptions can compute approximations to CSRS
in polynomial time (relative to k) for strings generated by Bernoulli and Markov
processes. In Section 5, we present important generalizations for biological prob-
lems. Finally, in Section 6, we show through a set of Monte-Carlo simulations
that our approach is quite accurate under all models considered.

2 Related Work

The probability that r strings contain a common aligned substring of length
k can be determined by characterizing the length of the longest head run in
a sequence of biased coin flips. This problem was examined by Feller [8] who
provides a method for computing this probability with generating functions.
The same problem was later studied by Erd8s and Rényi [6] and Erdds and
Révész [7] who provide tight asymptotic bounds on the distribution of the longest
head run.

Arratia and Waterman [3,4] generalize the results of Erdés and Rényi to
examine the distribution of the longest common (unaligned) substring in two
random strings. Karlin and Ost [12] provide further improvements on the bounds
for the asymptotic behaviour of the longest common word in multiple random
strings for a wide range of random processes.

Naus and Sheng [14] show that while the Karlin and Ost asymptotic equa-
tions provide very accurate approximations to CSRS on two random strings, the
quality of the same equations deteriorates as the number of strings increases.
They also provide refinements to the Karlin and Ost equations for the special
case where the random strings are generated by a Bernoulli process, and show
that those refinements offer very good approximations to the CSRS problem
when the strings are generated by a uniform Bernoulli process. As we will show
in Section 6, the quality of those approximations is not as good for strings gen-
erated by non-uniform Bernoulli processes, and their methods do not generalize
to strings generated by Markov processes.

In a parallel effort, Guibas and Odlyzko [10] and many others since provide
approximations and exact results for the distribution of the number of occur-
rences of a given word in a random text (see for instance [15,18,19] and the
references therein). Those results allow us to compute the probability that a
given word is a common substring to random strings. In the next section, we
show how to apply these results to the computationi of the probability that a
set of random strings contain any word as a common substring.

Common Substrings in Random Strings 131

3 The Independent Words Model

Let &, represent the event that the word w occurs in a random string S generated
by a Bernoulli or Markov process. The value of P(§,) can be computed with the
help of generating functions:

Theorem 1 (Régnier [18]). The probability P(&y) that a string w of length
k is found as a substring of the random string S of length n generated by a
Bernoulli process or a stationary Markov process is

1 P(w)s*
P(&y) = [s" : , 1
(€w) = s]<1—s P(w)sk+Aw(s)(1—s)) (1)
where Ay (s) is the autocorrelation polynomial of w (see [18]) and P(w) is the
stationary probability of observing w at a given position in S.

There are various methods to implement numerical computations of P(&,).
Régnier proposes a method to compute the value of P(&,) in O(logn) time [18].
The partial fractions method of Feller can also compute highly accurate approx-
imations to P(&,) in O(k) time [8].

The computation of P((), where (represents the event that some word of
length k occurs in all » random strings 51, . .., .S,, is more problematic. Since the
strings Si,...,S, are generated independently, we have P({) = P(U,esr&,)).
To compute P(¢) exactly, we would need to account for the dependence between
all the events &,,. However, as we will show in Section 6, we can get a very good
approximation to P({) even when we assume the independence of the events &,,.
We therefore present the single assumption for the Independent Words Model:

Assumption 1. For every words w # w’', we assume that the events &, and
&w are independent.

With this assumption, computing the value of P({) is now straightforward.

Proposition 1. When Assumption 1 holds, the probability P({) of observing a
substring of length k in each of the r random strings Si,...,S, generated by a
Bernoulli or Markov process is

P(C) =1- H (1 - P(gw)r) . (2)

weXk

Equation (2) can be implemented directly to provide an accurate approximation
to P({). However, since it requires the enumeration of every word w of length k
in the alphabet X of size o, its running time is exponential in k, taking £2(c")
time even when a constant-time approximation algorithm is used to compute
P(&y). In the next section, we present alternative algorithms for computing the
approximation to P(¢) in time polynomial in k.

132 E. Blais and M. Blanchette

4 The Double Independence Model

To develop efficient approximations to P({), we want to reduce the number of
terms that need to be enumerated during the computation. Already, we may
note that some words have the same probability P(&,) of occurring in a random
string. In fact, we can significantly augment the number of words that share the
same probability P(&,,) with a second simplifying assumption.

Assumption 2. For every position i # j in S, we assume that the probability
that the events representing occurrences of the word w at position i and j are
independent.

The Assumption 2 gives the following approximation for P(&,):

Proposition 2. When Assumption 2 is valid, the probability P(&,) of observing
a word w of length k in a random string S of length n is

P(¢w) =1— (1—P(w)" ", (3)

where P(w) is the stationary probability of observing the word w at a given
position in S.

The approximation P(ﬁw) has two advantages: it is the same for many different
words, and can be computed in O(1) time. However, we should be aware that
it is not an accurate approximation to P(&,) for many words. Specifically, the
probability P(&,,) for words that have high self-overlap (e.g. AAAAAA or CTCTCT)
is very poorly approximated by Proposition 2 [22]. Nevertheless, we will show in
Section 4.3 that it is easy to correct this error in polynomial time.

We refer to the modified CSRS problem in which Assumptions 1 and 2 are
valid as the Double Independence Model. In Sections 4.1 and 4.2, we show how
the Double Independence Model can be used to obtain polynomial time algo-
rithms for the computation of P(¢) when the random string S is generated by
a Bernoulli process or a Markov process, respectively.

4.1 Bernoulli Process

When the random string S is generated by a Bernoulli process, each character
of S is generated independently and takes the value x € X' with probability p,..
Under the double independence model, words that share the same composition,
as defined below, will have the same probability P(gw) of occurring in S.

Definition 1. The Bernoulli composition of a string w is the multiset v of
characters in w.

Ezample 1. The Bernoulli composition of the string w = ACCATA is the multiset
v ={A,A,A,C,C,T}

We define P, to be equal to the probability P(&w) for any word w with composi-
tion . We also define N, (x) as the number of copies of the character x in v. We

Common Substrings in Random Strings 133

let £2() represent the number of words w with composition v, and we represent
the set of all possible Bernoulli compositions for words of length k& with Ci. We
then obtain the following theorem.

Theorem 2. Let Sy,...,S, represent r random strings of length n generated
independently by a Bernoulli process over the alphabet . When Assumptions
1 and 2 hold, the probabilty P(C) that the strings Si,...,S, share a common
substring of length k is defined by

PO=1-J[@-p")"", (4)

YECK

where the probability that a word w with composition 7y is found in a random
string S; is Py = 1 — (1 — HOUEZ;1905\7”(("))’“’“”rl and the number of words that

have the composition v is
k!
HaEE N’Y (O()' ’

Proof. The equation for P, follows directly from Proposition 2, by noting that
the probability P(w) of observing a word w with composition v in a given posi-

2(y) = ()

tion in S is P(w) = HaeEpOéN”(a). The number 2(v) of words with composition
v is equal to the number of distinct strings that can be formed from the symbols
in v, i.e. the multinomial coefficient in (5) [8]. The final result in (4) follows from
Proposition 1 and the observation that every word w of length k is represented
in exactly one composition v in Cg. O

To implement the result from Theorem 2 in an efficient algorithm, we need an
efficient method to enumerate all the Bernoulli compositions in Cy. This can be
done through a simple recursive algorithm or by using the iterative algorithm of
Nijenhuis and Wilf [16]. Either of these approaches uses a constant amount of
computation to generate each composition. Assuming a constant alphabet size,
the values of P, and {2(7y) can both be computed in O(1) time, and the total
running time of a simple algorithm that implements Theorem 2 is O(|Cy|). Since
the number of Bernoulli compositions in Ci is equal to the number of different
compositions of the integer & into a maximum of o parts, we get |C| = (kif;l) €
O(k°~1) and the computation of P({) can be done in O(k°~1) time.

Uniform Bernoulli Process. In the special case where the random strings
Si,...,S, are generated by a uniform Bernoulli process, the value P(&,) is
identical for every word w € X*. In this case, the probability P({) can be
computed in constant time with

P)=1- (1 - (1 —(1- 1/0’“)"”““)T)Uk . (6)

This result is equivalent to the derivation obtained by Naus and Sheng [14] in
their Equation (10) under the same special case of uniform Bernoulli processes.

134 E. Blais and M. Blanchette

4.2 Markov Process

Biological sequences rarely follow a Bernoulli model, but have been shown to
be accurately modeled by low-order Markov models [20,22]. To be applicable
in a biological context, our probability calculations have to be accurate and
tractable under such models. In this section, we present an algorithmic approach
to approximate P(¢) in polynomial time for 1st order Markov models. With
minor changes, the approach described below can also be extended to mth order
Markov models, for any fixed m > 1 [5].

Let S represent a random string generated by a stationary 1st order Markov
process. For z,y € X' the probability that the ith character of S takes the value
Y 1S Py—y, where z is the value of the (¢ — 1)th character in S. The stationary
probability of observing the value y at the position i in S if we do not know the
values of any other character in S is pa—.,, where A is a special start character.
We now define the concept of Markov composition of a word to identify words
that will share the same probability P({w) of occurring in S.

Definition 2. The 1st order Markov composition of a string w is the multiset ~y
of transitions between consecutive characters in w, along with a transition from
the start state A to the first character in w.

Ezxample 2. The 1st order Markov composition of the strings AACAT and ACAAT
isy={(A—A),(A—A),(A—>C),(A—T),(C— A}

We let P, be equal to P({w) for any word w with the Markov composition v, we
let N, (z,y) represent the multiplicity of the transition (z — y) in the multiset ~,
and we let £2(7) represent the number of words with the composition . Defining
Ci to be the set of all 1st order Markov compositions for words of length k, we
get the following result for P(().

Theorem 3. Let S1,...,S, represent r random strings of length n generated
independently by a 1st order Markov process over the alphabet X. When As-
sumptions 1 and 2 hold, the probabilty P(() that the strings Si,...,S, share a
common substring of length k is defined by

P)=1-[[a-p")"", (7)

~ec;

where the probability that a word w with composition 7y is found in a random

—k+1
Noy(zy))"

string S; is Py =1 — (1 — Il yye(say x5 Po—y and the number

Q2(v) of words that have the composition v is defined below in Theorem 4.
Proof. The result again follows directly from Propositions 1 and 2. O

To compute an approximation of P(¢) with Theorem 3, we still need to define a
method for determining {2(y) and for iterating efficiently through the different
Markov compositions in Ci. We first turn to the problem of evaluating 2(7y),
and introduce a new structure that will help us in this task.

Common Substrings in Random Strings 135

CLr) ()

A

Fig.1. (A) The 1st order Markov graph for the composition of the words AACAT and
ACAAT, and (B) two distinct Eulerian trails that both represent the word GTGT

Definition 3. The 1st order Markov composition graph G for the Markov
composition v is the directed multigraph G, = {V,, E,}, where V., contains one
vertex for every character in ¥ U{A} and E. contains one edge for every tran-
sition in y.

Example 3. The 1st order Markov composition graph for the composition of the
strings AACAT and ACAAT is shown in Fig. 1A.

An Eulerian trail on the graph G, is a walk through the graph where we traverse
each edge in E, exactly once. Each Eulerian trail on G corresponds to a word
w with composition 7, so we use some results on the enumeration of Eulerian
trails on a directed multigraph to compute the number 2(v) of words with the
composition 7.

Theorem 4. The number of words with the Markov composition -y is

26y) = ¢y - [loey, (d(v) = 1)! (8)

H(U,U)EV,\? M(U,’U)' ’
where G = {V,, E,} is the Markov composition graph of v, ¢, is the cofactor of
G, (see [11]), d(v) is the out-degree of the vertex v, and M (u,v) is the number
of edges going from u to v in E,.

Proof. By the BEST theorem [21], the total number of Eulerian trails in the
graph Gy is ¢y - [, ey, (d(v) — 1)! (sce [11]). This number overestimates the
number of distinct words with composition 7 since two trails that represent the
same word are counted separately if the edges between two vertices u,v € V,
are taken in different order (see Fig. 1 for an example). The result in (8) follows
from the fact that there are [, ., v M (u,v)! different ways to order the edges

in a Eulerian trail without affecting the sequence of vertices in the trail. a

We now turn to the problem of efficiently enumerating all the different Markov
compositions in C}. To do this, we first present the definition of canonical words.

Definition 4. A word w with Markov composition +y is canonical if and only if
no other word with composition v is lexicographically inferior to w.

136 E. Blais and M. Blanchette

Example 4. As we saw in Example 2, the words AACAT and ACAAT share the same
1st order Markov composition. Since AACAT <., ACAAT and there are no other
words with the same composition, the word AACAT is canonical while the word
ACAAT is not.

We can enumerate the canonical word for each Markov composition using the
following proposition.

Proposition 3. The word w of length k with the 1st order Markov composition
v and ending with the character z is canonical if and only if its prefiz of length
k—1 is canonical and all the transitions in 7y that go from z to another character
are present in lexicographic order in w.

We can enumerate all the canonical words of length k with a recursive algorithm
by enumerating every canonical word of length k£ — 1 and using Proposition 3
to determine which characters can be appended to these words. There are at
most |C}| canonical words for each length [< k, and the test for each potential
character to append can be accomplished in O(k) time, so the entire recursive
enumeration algorithm runs in O(k?|C}|) time, assuming a constant alphabet
size. The complexity of computation for P, and {2(v) also depends only on the
alphabet size, so they can both be computed in O(1) time when the alphabet size
is constant. There are (c+1)-o different transitions possible in 1st order Markov
models, so the size of |C}| € O(k°”), and the running time of an algorithm that
implements Theorem 3 is O(k?|C}|) € Ok +2).

4.3 Correcting for Auto-correlation

The basic period of a word w is the smallest positive integer ¢ such that the word
w overlaps with a copy of itself shifted by ¢ positions to the right. Words with a
small basic period are also the ones for which P(ﬁw) gives a poor approximation.
Let Wy . represent the set of all words of length £ with a basic period of at most
c. A simple method for improving the approximation of P({) obtained with (4)
or (7) is to enumerate all the words w in Wy . and to replace the inaccurate
approximation P(,) with the better approximations P(&,) for these words.
Specifically, we let

PO=1-T[a-r)" I (" pe))

yeCT wWEWy ¢ 1- P(&”)r

There are O(c¢) words over the alphabet X' of size ¢, and the computation of
P(&y), as we saw in Section 3, can be accomplished in O(k). Therefore, the
correction for the auto-correlation presented in (9) adds a factor of O(ko®) to
the running time of the algorithm. In practice, ¢ does not need to be large to
provide significant improvements to the estimates obtained with (4) or (7). In
Section 6, we show that even a correction with ¢ = 1 is enough to provide a
significant improvement in accuracy.

Common Substrings in Random Strings 137

5 Generalizations

The approach for solving the CSRS problem presented in this article can be
generalized to handle many variations on the CSRS problem. For instance, we
can immediately see that the above framework can be modified to handle random
strings Sy, ...,S, that are generated by different random processes and have
different lengths nq,...,n,.. We present two other useful generalizations below.

Common Substrings in g of » Random Strings. A common modification
to the CSRS problem is to ask for the probability P((,.») that ¢ of the r random
strings St,..., S, share a common substring. The equation for P((,) can be
obtained with the following straightforward modification of (2):

PG =1-] (1—23(;T)P@w)f(l—P(sw))“j) S o)

we Xk Jj=q

A similar modification can also be applied to (4) and (7) for Bernoulli and
Markov processes, respectively, with the running time of their corresponding
algorithms increasing only by a factor of r.

Allowing Imperfect Matches. In many biologically realistic situation, one
may want to allow a small number ¢ of mismatches in each occurrence of a word
w in the random strings S1,...,S, [17]. Let A(w, §) represent the set of words
that have at most 6 mismatches to w. The probability that a word w occurs with

at most 6 mismatches in each of the strings S1,...,S, is
Plws)=1—][I (1-Pw)) - (11)
w’' € A(w,é)

This result can again be incorporated in (2), (4) and (7). The number of words
in A(w,8) is 3",y s (%) (o —1)" € O(k?) when the size o of the alphabet is con-
stant, so the running time of algorithms that incorporate (11) is exponential in k.
However, 6 is generally quite small in practice so the algorithm remains practical.

6 Results

We tested the accuracy of our approximations for P(¢) against a set of hit-or-
miss Monte-Carlo simulations. For each configuration of parameters tested, we
generated 1,500,000 independent sets of r random strings of length n and counted
what fraction of the sets contained a common substring of length k. The number
of trials was selected to give a maximum error of the true probability P(¢) of
+0.0005, 99 times out of 100, according to the normal error bounds [9].

In Table 1, we compare different approximations to P(¢) under a non-uniform
Bernoulli model that simulates the distribution of nucleotides in the human
genome (pa,pr =~ 0.30, and pc,pe =~ 0.20). For the different values of r we
selected the string lengths n that give P({) =~ 0.05 and P({) =~ 0.01 to observe
the quality of the approximations over the most significant range for statistical

138 E. Blais and M. Blanchette

Table 1. Approximations for the probability of observing a common substring of length
k = 6 in r random strings of length n generated by the Bernoulli model representing
the human genome (pa = 0.2962, pc = 0.2037, pc = 0.2035, pr = 0.2966)

<

n (2) (4) 9) K.O. N.S.(a) N.S.(b) Simulation

18 0.0490 0.0491 0.0490 0.0368 0.0367 0.0600 0.0386
197 0.0497 0.0500 0.0497 0.0585 0.0322 0.0521 0.0477
467 0.0499 0.0508 0.0502 0.1041 0.0164 0.0543 0.0490
27 0.0500 0.0514 0.0505 0.2458 0.0075 0.0576 0.0493
958 0.0501 0.0519 0.0509 0.6065 0.0034 0.0609 0.0495

11 0.0107 0.0107 0.0107 0.0080 0.0079 0.0126 0.0088
131 0.0100 0.0101 0.0100 0.0111 0.0062 0.0104 0.0096
346 0.0099 0.0101 0.0100 0.0176 0.0029 0.0107 0.0098
569 0.0100 0.0103 0.0101 0.0384 0.0012 0.0113 0.0099
774 0.0100 0.0104 0.0102 0.1034 0.0005 0.0119 0.0100

—
S 0O N O 00N

[y

Table 2. (A) Approximations for P(¢) in the 1st order Markov model representing
the human genome, when k& = 6. (B) Approximation for P({) when allowing imperfect
matches (k =8, 6 = 1) in the human Bernoulli model.

<

n (2) (7) (9) Simulation

<

n (2), (11) Simulation

17 0.0496 0.0497 0.0495 0.0388
175 0.0495 0.0522 0.0493 0.0474
410 0.0497 0.0549 0.0493 0.0486
633 0.0500 0.0607 0.0494 0.0493
828 0.0502 0.0674 0.0494 0.0493

9 0.0451 0.0176

68 0.0502 0.0417
187 0.0502 0.0452
315 0.0496 0.0446
436 0.0504 0.0443

—_

10 0.0088 0.0088 0.0088 0.0073
117 0.0101 0.0105 0.0101 0.0098
304 0.0100 0.0113 0.0099 0.0099
494 0.0100 0.0128 0.0099 0.0099 251 0.0099 0.0090
666 0.0100 0.0148 0.0098 0.0099 358 0.0100 0.0088

A B

0.0115 0.0050
47 0.0098 0.0085
141 0.0098 0.0091

O 0O N O 00O N
O 0O N O 0O N
o

—_

analysis. As the results in Table 1 show, the approximation (2) obtained with
the Independent Words Model is very accurate when r > 2 and converges to the
true value of P({) as the number of strings increases. The approximation (4)
obtained with the Double Independence Model also offers a good approximation
to P(¢), although the correction of P(§,,) for words with a basic period of 1
provided by (9) improves the approximation significantly. The table also shows
that the approximation of Karlin and Ost (K.O.: (2.12) in [12]) and the first ap-
proximation of Naus and Sheng (N.S.(a): (8) in [14]) diverge significantly from
the true value of P(¢) when there are r > 2 strings. The alternative approxi-
mation of Naus and Sheng that incorporates exact results (N.S.(b): (14) in [14])
diverges more slowly from the value of P(¢) as the number of strings increases,
but is still not as accurate as our approximations.

Common Substrings in Random Strings 139

We also tested our approximations on a 1st order Markov model that approx-
imates the human genome. As we see in Table 2A, the Independent Model again
offers an accurate approximation to P({). However, in this case the approxima-
tion of the Double Independence Model diverges from the true value of P({) as
the number of strings increases and highlights the importance of the correction
of Section 4.3. With the correction of P(§,,) for words with a basic period of 1,
we see a significant improvement in the approximation accuracy.

In Table 2B, we show the results of the approximation for P(¢) for words of
length k£ = 8 when a mismatch is allowed (6§ = 1) for each occurrence of a word
in a string, under the Bernoulli model of the human genome described above. We
see that the approach described in (11) provides an acceptable approximation
to the true value of P(¢) in this model, although the values diverge slowly as
the number of strings increases.

7 Discussion and Future Work

We propose two new methods for approximating the probability P({) that r
random strings contain a common substring of length k. The approximation
obtained under the Independent Words Model offers an accurate estimate for
P(¢) when r > 2 and works well on both the Bernoulli and Markov models.
The approximations obtained under the Double Independence Model are also
quite accurate when the correction for auto-correlation proposed in Section 4.3
is applied, and can be computed in polynomial time (relative to k). Both methods
are shown to be more accurate than previously published approaches on random
strings generated by a non-uniform Bernoulli model.

Over all the configurations of parameters tested, we find that our approxima-
tions are always slightly conservative. This is to be expected, since the most im-
portant dependency that is ignored with Assumption 1 is the positive correlation
between the events £, and &, for words w and w’ that overlap each other. Impor-
tantly, the fact that our estimates are always conservative means that a user who
applies our approximation to assess the significance of a common substring will
never be mislead into thinking that a result is more significant than it actually is.

The approach presented in this article lends itself to a number of biologically
important generalizations, in particular those allowing for the substrings to be
found in only a subset of the strings and allowing for imperfect matches.

There are many areas in which the research presented in this article could
be further developed. Significantly, theoretical bounds on the error induced by
the assumptions in our models would be very useful. Development of new meth-
ods that weaken the assumptions presented in this article could also lead to
interesting and more accurate approximation algorithms.

Acknowledgments

The authors wish to thank Uri Keich for helpful discussions, and the anonymous
referees for many insightful and valuable comments.

140

E. Blais and M. Blanchette

References

1.

2.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S.F. Altschul, W. Gish, W. Miller, E. W. Myers and D.J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403-410, 1990.

S.F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J.
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25:3389-3402, 1997.

. R. Arratia and M.S. Waterman. An Erdds-Rényi law with shifts. Advances in

Mathematics, 55:13-23, 1985.

. R. Arratia and M.S. Waterman. Critical Phenomena in sequence matching. The

Annals of Probability, 13:1236-1249, 1985.

. E. Blais. Computing Probabilities for Common Substrings in Random Strings.

M. Sc. Thesis, McGill University, 2006.

. P. Erd6és and A. Rényi. On a new law of large numbers. Journal d’Analyse

Mathématique, 22:103-111, 1970.

. P. Erdés and P. Révész. On the length of the longest head run. Topics in Infor-

mation Theory, Coll. Math. Soc. Jdnos Bolyai No. 16, 219-228, 1975.

. W. Feller. An Introduction to Probability Theory and its Applications, Volume 1

(3rd Edition), John Wiley & Sons, 1968.

. G.S. Fishman. Monte Carlo: Concepts, Algorithms, and Apps., Springer, 1996.
. L.J. Guibas and A.M. Odlyzko. String overlaps, pattern matching, and nontran-

sitive games. Journal of Combinatorial Theory, Series A, 30:183-208, 1981.

F. Harary. Graphical Enumeration, Academic Press, 1973.

S. Karlin and F. Ost. Maximal length of common words among random letter
sequences. The Annals of Probability, 16:535-563, 1988.

B. Morgenstern, K. Frech, A. Dress and T. Werner. DIALIGN: Finding local sim-
ilarities by multiple sequence alignment. Bioinformatics 14:290-294, 1998.

J. Naus and K.-N. Sheng. Matching among multiple random sequences. Bulletin
of Mathematical Biology, 59:483-496, 1997.

P. Nicodéme, B. Salvy and P. Flajolet. Motif statistics. Theoretical Computer Sci-
ence, 287:593-617, 2002.

A. Nijenhuis and H. Wilf Combinatorial Algorithms for Computers and Calculators,
Academic Press, 1978.

P. A. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in
DNA sequences. Proc. 8th Inter. Conf. on Int. Sys. for Mol. Biol., 269-278, 2000.
M. Régnier. A unified approach to word occurrence probabilities. Discrete Applied
Mathematics, 104:259-280, 2000.

M. Régnier and W. Szpankowski. On pattern frequency occurrences in a Markovian
sequence. Algorithmica, 22:631-649, 1998.

S. Sinha and M. Tompa. Discovery of novel transcription factor binding sites by
statistical overrepresentation. Nucleic Acids Research, 30:5549-5560, 2002.

T. van Aardenne-Ehrenfest and N.G. de Bruijn. Circuits and trees in oriented
linear graphs. Simon Stevin, 28:203-217, 1951.

J. van Helden, B. André and J. Collado-Vides. Extracting regulatory sites from
the upstream region of yeast genes by computational analysis of oligonucleotide
frequencies. Journal of Molecular Biology, 281:827-842, 1998.

On the Repeat-Annotated Phylogenetic Tree
Reconstruction Problem

Firas Swidan'-2:* Michal Ziv-Ukelson!+3**, and Ron Y. Pinter!

! Department of Computer Science, Technion — Israel Institute of Technology,
Haifa 32000, Israel
{firas, michalz, pinter}@cs.technion.ac.il
2 Janelia Farm, Howard Hughes Medical Institute, VA 20147, USA
swidanf@jfrc.hhmi.org
3 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
michaluz@post.tau.ac.il

Abstract. A new problem in phylogenetic inference is presented, based
on recent biological findings indicating a strong association between
reversals (aka inversions) and repeats. These biological findings are for-
malized here in a new mathematical model, called repeat-annotated phy-
logenetic trees (RAPT). We show that, under RAPT, the evolutionary
process — including both the tree-topology as well as internal node
genome orders — is uniquely determined, a property that is of major
significance both in theory and in practice. Furthermore, the repeats are
employed to provide linear-time algorithms for reconstructing both the
genomic orders and the phylogeny, which are NP-hard problems under
the classical model of sorting by reversals (SBR).

1 Introduction

Phylogenetic inference and ancestral genome order reconstruction are important
problems in evolutionary, genetic, and bioinformatic studies. In these problems
one seeks to reconstruct the phylogeny of a given set of organisms as well as the
genomic order (i.e., the order of the genomic segments) of their ancestors; see
for example Figures la and lc. Here, a one-to-one mapping of the orthologous
segments of the two strains Xanthomonas campestris pathovar campestris ATCC
33913 (X. campestris) and 8004 (X. campestris 8004) is presented schematically.
These bacteria cause black rot disease in crucifers such as Brassica (cabbage) and
Arabidopsis (mustard), which results in severe losses in agricultural yield world-
wide. This figure suggests that 3 reversals have affected the two bacteria since
their divergence. However, during the speciation of which of the two bacteria
have these reversals occurred and what is the ancestral genomic order?

Using current methods, reconstructing ancestral genomic order involves solv-
ing a multiple sorting by reversals (SBR) problem. In SBR, which has been

* Was supported in part by a fellowship from the Planning and Budgeting Committee
of the Council for Higher Education in Israel.
** Was supported in part by the Aly Kaufman Post Doctoral Fellowship.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 141-152, 2006.
© Springer-Verlag Berlin Heidelberg 2006

142 F. Swidan, M. Ziv-Ukelson, and R.Y. Pinter

5406
I

46406
I

40106
3e+06
I

36106
2e+06
I

10406

X. campestris 8004

1e106

X. campestris 8004

06400
0e+00
I

T T T T T T
T T T T T 0e+00 10406 20406 3e+06 46406 5e+06
00400 10406 20408 30406 4006 50406

X. campestris X. campestris

(a) (b)

Ancestor
177776 Ancestor
123456

{c} {a.b}
123456 1-54-326 (123¢c4—c56) (1-b—-54-3a2—ab6)

X. campestris 8004 X. campestris X. campestris 8004

(©) (d)

X. campestris

Fig. 1. Inferring the order of genomic segments in the ancestor of the bacteria X.
campestris and X. campestris 8004. (a) The comparative mapping is the result of
applying MAGIC [1] to the considered organisms. MAGIC was run with its default
parameters, except for discarding segments of length smaller than 10000bp. The lines
in the figure represent corresponding rearrangement-free segments (i.e., segments that
did not undergo rearrangements) in the two bacteria (since the genomes are circular,
the square drawing should be wrapped into a torus). The mapping suggests that 3
reversals have occurred since the divergence of the two bacteria, in agreement with the
observations made by Qian et al. [2]. (b) Incorporating the repeats that were obtained
by applying Repseek [3] to each genome. The repeats are represented by dashed lines
and marked by —a, a, —b, b, and —c, c. All the segments +a, +b, and +c have a
high translated sequence similarity (at the amino acid level) to the insertion sequence
1S1478. (c) The phylogeny and the permutations corresponding to the mapping in (a).
The permutation of X. campestris 8004 is chosen to be the identity permutation. One
cannot infer the ancestral genomic order or decide during the speciation of which of the
bacteria the reversals have occurred. (d) Applying the new approach which consists of
including the repeats in the permutations and using them to annotate the edges in the
phylogeny.

thoroughly examined over the last two decades [5,6,7,8,9,10,11,12], one rep-
resents the one-to-one orthologous mappings as permutations and the inversion
mutations as reversal operations. The goal of the SBR optimization problem
is to find a phylogeny and corresponding reversal scenarios along its branches
with the minimum number of reversals. In SBR, however, the ancestral genomic

On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem 143

order cannot be implied based solely on the comparison of a pair of genomes,
as is needed for the bacteria pair in Figure la. Moreover, adding one more or-
ganism to enable the deduction of the ancestral order makes this task NP-hard
[13]. Nonetheless, this problem was addressed by both exhaustive search and
heuristic techniques [14, 15].

The ancestral genome order reconstruction problem described above extends
to reconstructing large phylogenetic trees over multiple input leaves (including
or excluding the recovery of genomic order in internal nodes). Current phylo-
genetic inference methods, based on different biological evidence ranging from
phenotypic morphologies to various genotypic mutations — including point mu-
tations (distance-based, maximumd-likelihood, and parsimony approaches), gene
insertions and deletions (the Dollo parsimony approach), and genome rearrange-
ments (distance-based and parsimony approaches) — are computationally hard.
Moreover, current approaches often yield many alternative solutions; choosing
the most sound phylogeny among them has very important biological conse-
quences, but is yet a very challenging task.

In this paper we investigate a new approach to phylogenetic inference and
ancestral genome order reconstruction. The new approach is inspired by a recent
biological discovery regarding the role of repeats, i.e., short genomic sequences
that are highly similar to each other, in inducing reversals (or recombinations
in general). Several studies indicate a strong association between repeats and
recombination events. As reviewed in [4] , repeats cause rearrangements, either
by a mechanism of illegitimate recombination, or by a mechanism of homologous
recombination. Moreover, these findings demonstrate that most of the repeats
engaged in reversals correspond to mobile DNA elements, i.e., regions of DNA
that selfishly duplicate and move into new sites. Hence, these repeats are usually
found only in the organism affected by the reversals; see, e.g., [2] . This new and
important information regarding the repeats became accessible recently with the
availability of many sequenced genomes and its automatic generation is made
possible by the development of accurate comparative genome mapping methods,
see, e.g., [1,2]. The new data motivates the enhancement of previous phylogenetic
models with additional information in the form of repeat “footprints”, in order to
make their predictions more realistic and increase their potential for producing
biologically relevant insights.

Qian et al. [2] demonstrate an initial utilization of repeats in the task of ances-
tral genome order reconstruction of the Xanthomonas campestris bacteria. They
have identified two identical IS1478-related insertion sequences (corresponding to
the repeat pair —b, b in Figure 1b) spanning a putative recombination site. More-
over, they predicted a rearrangement scenario for transforming one genome to
the other — see http://www.genome.org/content/vol0/issue2005/images/
data/gr.3378705/DC1/SI Fig 2.gif for a detailed (and vivid) animation of
their prediction. We continue their analysis by applying our approach to the
very same data: in Figures 1b and 1d we incorporate the information regarding
the repeats into the mapping. In addition to the repeat pair reported by Qian
et al., we identify two more pairs spanning two putative recombination sites.

144 F. Swidan, M. Ziv-Ukelson, and R.Y. Pinter

According to the repeats, one inversion occurred during the speciation of X.
campestris, while two inversions occurred during the speciation of X. campestris
8004. Given this information, deducing the ancestral genomic order is straight-
forward, as shown in Figure 1d.

The above example demonstrates how repeats can be utilized to uniquely de-
termine the order of the ancestral genomic segments — based solely on pairwise
genomic comparisons. Furthermore, it shows that the “repeat footprints” aid in
the efficient computation of ancestral genomic orders. To generalize these obser-
vations, in Section 2 we formalize the biological assumptions introduced above
into a theoretical evolutionary model. In Section 3 we study the pairwise case
and present two important results: uniqueness of the solutions and simplification
of the computation. In Section 4 we show that these two results scale up to the
more general case of multiple genomes. For a formal overview of the combinato-
rial results of this paper we refer the reader to Section 2.1. Due to space limi-
tations, this extended abstract contains only a high-level overview of our results.
The full version of this manuscript, including all lemmas and their proofs as well
as additional figures can be found at http://magicmapping.sourceforge.net/
download/repeatPhylos.pdf.

2 A Formal Model Based on Repeats

The model described in this paper is based on the following biological
assumptions:

1. Reversals are usually induced by inverted repeat pairs, i.e., repeats having
opposite orientations [4] .

2. Repeats engaged in reversals — corresponding mostly to mobile DNA ele-
ments — are easily identified on the borders of reversed genomic segments,
and are present only in the affected organism [2].

3. The information mapping each repeat to its pair-mate is part of the input!.

4. Each repeat has a very low probability for causing a reversal that remains
fixed in the population [1]. Therefore, in our model we assume that each
repeat causes up to one reversal.

Note that though the above assumptions may not capture the great variety found
in real biological problems, it is easy to check if a given set of input genomes
follows these assumptions. Furthermore, as demonstrated by the theoretical re-
sults listed in Section 2.1, the assumptions above offer a solid basis for potential
future extensions and enhancements.

Based on Assumption 3, the input to our problem comprises sequences, re-
ferred to as repmaps, of both permutation elements, belonging to a set N, and
paired repeats, belonging to a set R. Each permutation element appears exactly
once in the repmap, while each repeat appears exactly twice. In addition to the

! This information can be obtained using techniques similar to those standardly used
for preparing permutations.

On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem 145

s= ¢gl0 —a —=b gl12 b —c g3 ¢ —-d —gb d a

ss= 1 —a -8 —-b 7 b —6 —c 5 c -4 —d 3 d -2 a 9
(a)

S':l—a2—d/3d4—c506—b7b8a9

S= gl0 —a —d —g5 d —c g3~ ¢ —b gl12°b a
(b)

s =1—a -b[4b—-c3 c—d?2 da
l—a —-b—-4b—-—c[3]c—d 2 da
l—a —-b—-4b—-c—-3c—-d[2] da
1—a[-b—-4b—-c-3c—d—2da S | 71[_23_3213

S =l-a-d2d-c3c-bdba N

d
(©) (d)

slv=11[4 3 2
1 -3 [-42]

Fig. 2. Calculating the ancestor assignment (a-b) and comparing a legal scenario to an
SBR scenario (c-d). (a) Example of transforming a repmap s to a normalized repmap
s . The correspondence between the permutation elements of s and those of s is drawn
as edges connecting between the respective elements. The permutation elements in s
are given over a different alphabet. (b) Determining the ancestor in normalized format
S and in input format S from s. In both (c¢) and (d) we assume that the ancestor
S is known. We rename s and S to s and S to enable running SBR on them and
we compare a legal scenario (c) to an SBR scenario (d). The reversals are denoted
by brackets. Note that the reconstructed scenarios are different, since one of them is
guided by fulfilling the constraints imposed by the repeats, while the other aims to
minimize the number of reversals. If s is a normalized repmap then a scenario is legal
iff it is SBR.

permutation elements (represented by numbers) and based on Assumption 1,
the repeats (represented by lowercase characters) are also signed.

Given a repmap s, two repeat elements s;,s; € R are considered a pair if
|si| = |s;| (i.e., their absolute values are equal). If they have opposite signs
(s; = —s;) we refer to them as an inverted repeat pair; otherwise they are called
a direct repeat pair. The set of repeats appearing in s is denoted by R(s) =
{Isi], si € R} and referred to as the repeat set. We denote the restriction of s to
the permutation elements in IV by s|y and refer to it as the induced permutation.
The restriction of s to the repeat elements is denoted by s|g and is referred to
as the repeat subsequence.

Example. Consider the repmap s =1a —4 —a —b 3 2 —b 5. Here, +a, —a is an
inverted repeat pair, while —b, —b is a direct repeat pair. Moreover, we have
R(s) = {a,b}. The induced permutation is s|y =1 —4 3 25, and the repeat
subsequence is given by s|g =a —a —b —b.

The next three definitions are intended to formalize the biological assumptions
(1-4) into a mathematical model of an evolutionary process. The first definition
is based on Assumption 1, as follows.

146 F. Swidan, M. Ziv-Ukelson, and R.Y. Pinter

Definition 1 (Legal Reversal). Let s = s1,...,8, be a repmap and let p =
p(i,j) for 1 < i < j < n be a reversal affecting the subsequence s;,...,s; in
s. The reversal p is called legal if it is bordered by an inverted repeat pair, i.e.,
if sic1 = —sjq1 (see Figure 2c). We say then that p fulfills the repeat pair
Si—1,Sj+1-

The next two definitions are both based on Assumptions 2 and 4.

Definition 2 (Legal Scenario). Given a reversal sequence 0 = pi,...,pPm
affecting s, we say that o is a legal scenario relative to a subset of repeat pairs
Z C R(s) if Vi € {1,...,m}, p; is a legal reversal when acting on s - p1---pi—1
and if o fulfills each repeat in Z exactly once (see Figure 2¢). If # = R(s), we
refer to o simply as a legal scenario. If #Z # R(s) is obvious from the context,
we refer to o as a partially legal scenario.

Definition 3 (RAPT). Given arepmap S (ancestor), a Repeat-Annotated Phy-
logenetic Tree originating in S (see Figure 8) is a triplet (T, f, g), whereT = (V, E)
is a directed tree with root v, € V' such that all the inner nodes (except perhaps the
root) are of degree > 3, f : V. — (R U N)* maps assignments (i.e., repmaps) to
the nodes, and g : E — 27(5) maps labels to the edges, such that:

1. The edge labels are a partition of R(S), i.e., for every two edges e,e¢’ € E :

g(e) N g(e') = 0 and Uy g(e) = R(S).

2. The assignments to the nodes fulfill the following two requirements:

(a) The assignment to the root v, equals S, that is f(v.) = S.

(b) Assuming u € V is the immediate parent of v € V and that e € E
is the edge connecting them, we require that g(e) C R(f(w)) and that
there exists a legal scenario pi,...,pm with respect to g(e) such that
(F(u)- 1+ pu)ln = F@)lx (Definition 2).

3. The repeat set R(s) of a leaf repmap s contains only repeats that engaged in

reversals at some point during the history of s, i.e., R(s) = g(path(v,, s)).

2.1 The Main Results of This Paper

In this paper we study the following problems: Can one reconstruct an unknown
RAPT (T, f, g) given, as input, a set L of the corresponding leaf repmaps? More
specifically, does L uniquely determine the RAPT? Are the legal scenarios linking
the assignments in the RAPT nodes unique? Furthermore, can one efficiently
reconstruct the unknown RAPT and the corresponding scenarios? Herein we
summarize the answers to these questions.

First, in Section 3, we consider the basic case in which the tree T of the RAPT
contains a single leaf and a single ancestor. Since in this case both the tree T
and the labels g are trivially determined, our results pertain to both the scenario
and the ancestral assignment reconstructions, as follows:

Uniqueness: We show that the ancestral assignment is uniquely determined
(Section 3.1). This result is surprising given the ambiguity of the scenarios.

Complezity: We give a linear-time algorithm for reconstructing the ancestor
(Section 3.2). Contrary to the classical SBR problem, our algorithm utilizes

On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem 147

[1—a—d2d—c3c—b4ba]

{a) !
(T—a—b—4b—c—B3c—d—2da) ta)
{c, d/ \b} {c,d} {b}
(1—@—4—c3c—d2da] (1—a—b4b—3—2a} {a,c,d} {a,b}
(a) (b)

Fig. 3. An example of a RAPT (a) and the corresponding set-trie (b). The set-trie is
obtained from the RAPT by preserving both the tree topology as well as the edge labels
of the RAPT, while discarding the node assignments. The virtual node assignments of
the set-trie are determined from the edge labels — see Definition 5.

the constraints introduced by the repeats to calculate the unique ancestor. This
algorithm is then employed to solve the problem of reconstructing a plausible
legal scenario, by a reduction to SBR (Section 3.2).

Next, in Section 4, the multiple leaf RAPT is studied. Based on the results
obtained for the single leaf case, it is straightforward to show that, in the multiple
leaf case, the tree topology T', the edge labels g, and the leaf repmaps L both
uniquely determine the induced permutations in the inner node assignments
and also enable their reconstruction in linear-time. Hence, the complexity and
uniqueness issues are reduced to the pair (T,g). To investigate the latter, we
introduce a new data structure, which is an abstraction of such (T, g) pairs,
called set-tries (see Figure 3), which are trie-like structures over sets instead of
words (Section 4.1). In terms of this abstraction, our results can be formulated
as follows:

Uniqueness: We show that the leaf set collection uniquely determines the under-
lying set-trie.

Complezity: We give a linear-time algorithm to efficiently reconstruct set-tries
from an input leaf set collection.

3 The Single Leaf RAPT

Throughout this section, we assume without loss of generality that the repmaps
are given in an easy to handle format, as follows. Consider a repmap (ancestor)
S to which a legal scenario ¢ was applied and denote the result by s = 5 - o
(the notation of S denoting the ancestor and s denoting the descendant is used
consistently throughout this section). We assume that S (and hence s) starts and
ends with a permutation element (otherwise it can be padded). In addition, we
assume that S (and hence s) does not contain successive permutation elements
(or otherwise they can be united to form a single new permutation element).

148 F. Swidan, M. Ziv-Ukelson, and R.Y. Pinter

Whereas uniting successive permutation
elements into a single element is straightfor-
ward, dealing with successive repeat elements
/ / in the input sequence is more challenging.

For instance, having successive repeats im-
calculate plies that the corresponding breakpoints may
- ¢ have been reused (the issue of breakpoint
reuse has been repeatedly debated in the lit-
erature and is currently controversial). From
sorted normalization of S, and s = & modelin'g Poin§ of view, however, successive
S - p: Proving that a legal sce- repeats distinguish the RAPT problem from
nario o acting on s is also an SBR the SBR problem: when they are present in
scenario implies the uniqueness of @ repmap, its set of legal scenarios (see Defi-
the ancestor. Calculating s directly nition 2) and the set of SBR scenarios [5] of
from s enables the reconstruction of its induced permutation are not necessarily
S in linear-time. Finally, finding an the same, as demonstrated in Figure 2. This
SBR scenario sorting s [y gives a s due to the fact that SBR aims to minimize
legal scenario on s. the number of reversals, whereas RAPT is
driven by the objective of fulfilling the con-
straints imposed by the repeats. Still, for a subset of the repmaps, both sets of
legal and SBR scenarios are equal. We refer to these special repmaps as “nor-
malized” and define them below. Normalized repmaps serve as stepping stones
for our study; see Figures 2 and 4.

S normalize S/

Fig.4. Given that s = S - p, it
is convenient to consider S, the

Definition 4 (Normalized Repmap). A repmap S is a normalized repmap
if between every two repeats in it there is a permutation element from N.

3.1 Asserting Uniqueness of Ancestor

In this section we prove that all legal scenarios lead to the same ancestral repmap.
This result is surprising, given the richness of the set of all legal scenarios . We
first consider the special subclass of normalized repmaps. In this subclass, the
proof of uniqueness involves a breakpoint counting argument, showing that all
legal scenarios are optimal sorting scenarios (namely SBR scenarios). Next, we
extend the uniqueness claim from the subset of normalized repmaps to the gen-
eral repmap case. The proof here is achieved by transforming any given repmap
to a corresponding normalized one and by asserting that this transformation
indeed preserves the uniqueness property.

Theorem 1 (Uniqueness). Let S be a repmap, ¢ a legal scenario, and s = S- .
Then, all legal scenarios affecting s result in the same correct ancestor S.

3.2 Algorithms for Ancestor and Scenarios Reconstruction

Given a repmap s = S - g, where S and p are unknown, we present a linear-time
algorithm for reconstructing S and a sub-quadratic algorithm for reconstructing

On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem 149

a possible legal scenario ¢, where, by Theorem 1, S = s - ¢/. The reconstruc-
tion of the ancestor in linear-time is made possible by utilizing the constraints
introduced by the repeats and the strong connection established between the re-
peats and their surroundings in normalized repmaps. In fact, we first show how
to transform s to a normalized repmap s’ for which the ancestor S’ is sorted?
based only on the repeat subsequence s|g (see Figure 4). Then we simply rename
the matching elements from S’ to obtain S (see Figure 2b). The transformation
to a normalized format is done based on the repeats in s and without knowing
the ancestor repmap S.

After computing the ancestor S, we solve the problem of finding a legal sce-
nario transforming s to S in sub-quadratic time by a reduction to SBR. In the
general case, as exemplified in Figures 2¢ and 2d, applying SBR to s|ny may yield
illegal scenarios. This is due to the fact that SBR aims to minimize the number
of reversals, while RAPT is driven by the objective of fulfilling the constraints
imposed by the repeats. However, this barrier is overcome here by transform-
ing a repmap to its normalized format, which intuitively uses O(|s|) additional
“virtual” permutation elements to simulate the constraints imposed by the re-
peats (see Figures 2a and 2b). Thus, to reconstruct a legal scenario, we apply
SBR algorithms to the permutation elements of s’ and S’ and show that the
resulting scenario is legal on s. Note that whereas reconstructing the ancestor in
linear-time is made possible thanks to the constraints introduced separately by
each repeat pair, calculating a legal scenario is complicated by the interaction
between the constraints introduced by the different repeat pairs.

Reconstructing the Unique Ancestral Repmap S. Reconstructing the an-
cestral repmap S can be naively achieved by applying some of the techniques
demonstrated in [6,12] to the overlap graph constructed over the repeat pairs.
This approach, however, yields a quadratic-time algorithm for both reconstruct-
ing the ancestor and finding a legal scenario.

Here, we present a different approach (with lower complexity) for tackling
the problem. Let S be an ancestral repmap, g a legal scenario affecting S, and
s = 5 - p. Consider a transformation of S yielding a normalized sorted repmap
S’, and let ' = S’ - p. According to the above and since all the transforma-
tions are reversible, calculating s’ from s can be done by the following series of
transformations: s — S — S’ — s’. However, since S is unknown, this path
is intractable. Yet, surprisingly, calculating s’ from s can alternatively be done
based on the repeat sequence s|g and without knowing S. Intuitively, this can
be explained as follows. Since s’ is normalized, the locations of the permutation
elements are constrained by the locations of the repeats. Moreover, each permu-
tation element is constrained by the repeat next to it. Thus, the position of a
permutation element can be determined from local information (the position of
a single repeat) in constant time, and the whole repmap can be reconstructed in
linear-time. Note that the above transformation implies that the diagram having
S, S’ s, and ¢ as its vertices is commutative (Figure 4).

2 Note that, unlike the previous section, here we can no longer assume without loss
of generality that S is sorted.

150 F. Swidan, M. Ziv-Ukelson, and R.Y. Pinter

Example. Consider the sequence s and the corresponding sequence s’ in Fig-
ure 2a and suppose that we wish to recover s’ based on s|gr. The first and second
elements in s’ are easily fixed, since s’ must always start with 1 and the second
element in s’ always equals to the repeat appearing in the second position of
s. Fixing the third element in s’ is more challenging. For that, we consider the
second element in both s and §’, i.e., the repeat —a, and its corresponding pair-
mate — the repeat a. Since S’ is sorted and normalized, once the repeat pair
{—a, a} got fulfilled while transforming S’ to s’, the surroundings of both repeats
remain contiguous. In particular, the permutation element 2, which appears di-
rectly after the repeat —a in S’ (see Figure 2b) must appear in the surrounding
of the repeat a in s'; its exact position (i.e., before or after the repeat) is deter-
mined based on two factors: whether the repeat pair is inverted or direct, and
whether the preceding permutation element 1 appears before the repeat —a or
after it. In this example, since the repeat pair is inverted and since the preceding
permutation element 1 appears before the repeat —a, the permutation element
2 must precede the repeat a in s’. The sign of the permutation element 2 is
determined via a similar consideration.

Theorem 2 (Time Complexity). Given a repmap s = S - o, one can recon-
struct the ancestor S in linear time (O(|s])).

Reconstructing a Legal Scenario. Unlike the ancestor repmap reconstruc-
tion, the scenario reconstruction involves look-ahead to avoid conflicts between
repeat pairs. This problem is best demonstrated by an example.

Example. Consider the following repmap: 1 @ —b —2 —a —c —4 b 3 ¢ . Suppose
we were first to fulfill the inverted repeat pair b and —b. Such a choice would
turn the other two repeat pairs (a and ¢) into direct-repeat pairs. Thus, we reach
a deadlock without getting a legal scenario.

As demonstrated in the above example, choosing a legal reversal sequence that
avoids deadlocks is a delicate matter. We address this problem by utilizing the
fact that we can calculate the normalized repmaps s’ and S’ in linear-time (Sec-
tion 3.2). When both repmaps are known, we show that an SBR reversal se-
quence sorting s'|y (to S’|n) corresponds to a legal scenario transforming s to
S. Currently, the best algorithm for solving SBR works in sub-quadratic time
[9]. Hence, we get a sub-quadratic algorithm for reconstructing a legal scenario.

Theorem 3 (Time Complexity). Given a repmap s = S - o, where both the
repmap S and the legal scenario o are unknown, one can reconstruct a legal
scenario transforming s to S in O(ny/nlogn) time, where n = |s|.

4 The Multiple Leaf RAPT and Set-Tries

In this section we show that the leaf assignments L = {s!,...,s?} uniquely
determine the underlying RAPT (T, f,g) up to (and not including) repeats in
the inner nodes, i.e., they dictate the tree topology, the induced permutations

On the Repeat-Annotated Phylogenetic Tree Reconstruction Problem 151

in inner node assignments, and the edge labels. We then describe a linear-time
algorithm for reconstructing this information from the given input.

The proof of uniqueness is developed in two stages: first, the RAPT is re-
duced to a new auxiliary data structure called a set-trie (see Section 4.1 and
Figure 3), which encodes partial information (tree topology and edge labels).
Using this reduction, we show that both the tree topology and the edge labels
are uniquely determined and can be reconstructed in linear-time based on the
repeat sets {R(s) : s € L} of the leaf assignments. Finally, the application of
Theorems 1 and 2 to the above findings leads to the conclusion that the induced
permutations in the inner node assignments are uniquely determined and can
be reconstructed in linear-time based on the tree topology, the edge labels, and
the leaf assignments.

4.1 Set-Tries and Monotonic Collections

Word-tries are well-known data structures, commonly used in text compression
and database search [16]. They are used to store the information about the
contents of each node in the path from the root to the node rather than in the
node itself, thus grouping words with a common prefix along similar paths. Here
we introduce a new data structure which, similarly to word-tries, is also based on
a tree topology and path-encoding, however, the leaves of the new data structure
correspond to sets instead of words (or sequences), as defined below.

Definition 5 (Set-tries). Let o = {A;,..., Ay} be a collection of finite sub-
sets of N. A set-trie st over & is a pair st = (T,g), where T = (V,E) is a
directed tree with a root v, such that all the inner nodes (except perhaps the
root) are of degree > 3 and g : E — 2" are labels to the edges. In the follow-
ing discussion we assume that assignments to the nodes f : V. — 2N are also
giwven. The labels g and the “virtual” assignments f need to fulfill the following
requirements:

1. f(v,) =0 and f is 1 : 1 from the leafs of T to <. Given that uw € V is an
ancestor of v € V, we require that f(v) = f(u)Ug(path(u,v)). In particular,
this requirement implies Yv € V. — {v,} : f(v) = g(path(v,,v)).

2. Ve,e' € E;e # ¢ : gle)ng(e') = 0. Thus, the node assignments are deter-
mined by the edge labels and vice versa.

Figure 3 gives an example of a set-trie and its derivation from a RAPT. We
observe the following monotonicity property of set collections corresponding to
leafs of set-tries.

Definition 6 (Monotonic Set Collection). A set collection </ is monotonic
if, for any three sets A, B,C € o, either ANBCANC or ANC C AN B.

Theorem 4 (Time Complexity). Given a monotonic collection o7, a set-trie
over & can be constructed in linear-time (©(|</|)).

152 F. Swidan, M. Ziv-Ukelson, and R.Y. Pinter
References
1. Swidan, F., Rocha, E.P.C., Shmoish, M., Pinter, R.: An integrative method for

10.

11.

12.

13.

14.

15.

16.

accurate comparative genome mapping. submitted (2005)

. Qian, W., Jia, Y., Ren, S.X., He, Y.Q., Feng, J.X., Lu, L.F., Sun, Q., Ying, G.,

et al.: Comparative and functional genomic analyses of the pathogenicity of phy-
topathogen Xanthomonas campestris pv. campestris. Genome Res. 15(6) (2005)
757767

Achaz, G., Boyer, F., Rocha, E.P.C., Viari, A., Coissac, E.: Extracting approximate
repeats from large DNA sequences. (2004)

Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D., Rehrauer,
W.M.: Biochemistry of homologous recombination in Fscherichia coli. Microbiol.
Rev. 58 (1994) 401-65

Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for the inversion
distance between two permutations. In: Proc. of 4th Ann. Symp. on Combinatorial
Pattern Matching. (1993) 87-105

Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting
signed permutations by reversals. In: Proc. 8th Ann. Symp. on Discrete Algorithms.
(1997) 344-351

Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. J. ACM 46 (1999) 1-27
Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and
fortresses. In: 15th Ann. Symp. on Combinatorial Pattern Matching. (2004) 388
399

Tannier, E., Sagot, M.F.: Sorting by reversals in subquadratic time. In: Proc. of
the 15th Ann. Sym. on Combinatorial Pattern Matching. (2004) 1-13

Bender, M., Ge, D., He, S., Hu, H., Pinter, R., Skiena, S., Swidan, F.: Improved
bounds on sorting with length-weighted reversals. In: Proc. 15th ACM-SIAM Sym-
posium on Discrete Algorithms. (2004) 912-921

Swidan, F., Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y.: Sorting by length-
weighted reversals: Dealing with signs and circularity. In: Proc. 15th Annual Com-
binatorial Pattern Matching Symposium. (2004) 32-46

Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory.
Discrete Applied Mathematics 146(2) (2005) 134-145

Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc
3th Ann. Int. Conf. on Computational Molecular Biology, New York, NY, USA,
ACM Press (1999) 84-93

Moret, B., Wang, L., Warnow, T., Wyman, S.: New approaches for reconstructing
phylogenies from gene order data. In: Proc. 9th Int. Conf. Intell. Syst. Mol. Biol.
(2001) 165-173

Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders
in the ancestral species. Genome Res. 12(1) (2002) 26-36

Gonnet, G.: Handbook of Algorithms and Data Structures. International Computer
Science Services (1983)

Subsequence Combinatorics and Applications
to Microarray Production, DNA Sequencing
and Chaining Algorithms

Sven Rahmann

Algorithms and Statistics for Systems Biology Group,
Genome Informatics, Faculty of Technology, Bielefeld University,
D-33594 Bielefeld, Germany
Sven.Rahmann@cebitec.uni-bielefeld.de

Abstract. We investigate combinatorial enumeration problems related
to subsequences of strings; in contrast to substrings, subsequences need
not be contiguous. For a finite alphabet Y, the following three problems
are solved. (1) Number of distinct subsequences: Given a sequence
s € X" and a nonnegative integer k& < m, how many distinct subse-
quences of length k does s contain? A previous result by Chase states
that this number is maximized by choosing s as a repeated permutation
of the alphabet. This has applications in DNA microarray production.
(2) Number of p-restricted p-generated sequences: Given s € X"
and integers k > 1 and p > 1, how many distinct sequences in ¥ contain
no single nucleotide repeat longer than p and can be written as si' ... sp"
with 0 < r; < p for all i? For p = oo, the question becomes how many
length-k sequences match the regular expression si*so*...s,*. These
considerations allow a detailed analysis of a new DNA sequencing tech-
nology (“454 sequencing”). (3) Exact length distribution of the
longest increasing subsequence: Given ¥ = {1,..., K} and an in-
teger n > 1, determine the number of sequences in X" whose longest
strictly increasing subsequence has length k, where 0 < k < K. This has
applications to significance computations for chaining algorithms.

1 Introduction

In contrast to substrings, subsequences have received less attention as objects in
pattern matching; yet certain aspects of recent technologies emerging in the life
sciences, such as short oligonucleotide microarrays or massive short range DNA
sequencing by the so-called 454 approach, directly lead to subsequence enu-
meration problems. The present paper studies a selection of them and presents
applications in molecular biology.

A string of length n over a finite alphabet X contains (n + 1)n/2 = O(n?)
(nonempty) substrings, but 2" subsequences (including the empty string), mak-
ing enumerative combinatorics on subsequences potentially more difficult. For a
fixed length 1 < k < n, there are n — k + 1 substrings and (Z) subsequences of
length k. Note that not all of these need to be different.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 153-164, 2006.
© Springer-Verlag Berlin Heidelberg 2006

154 S. Rahmann

In Section 2 we present an algorithm that needs O(k(n + |X|)) arithmetic
operations to count the number Cj(s) of distinct length-k subsequences in s.
When we compute Ci(s) exactly, the size of these numbers is O(klog|X|) bits,
so arithmetic operations cannot be assumed to take constant time in the RAM
model of computation; however, if we are satisfied with computing them with
constant precision, we can make this assumption. Therefore we specify running
times in numbers of arithmetic operations. The ability to count the number of
distinct subsequences contained in a sequence has applications to DNA microar-
ray production, which we outline also in Section 2.

For the next problem, we generalize the notion of subsequence and say that ¢
is generated by s if it consists of a concatenation of runs (repetitions) of selected
characters from s. This allows, for example, to determine the number of length-k
sequences that match the regular expression sy*so* ... s,*, where a*x matches
an arbitrary number of (including zero) occurrences of a € X. If we additionally
restrict the run lengths to be bounded by a constant p > 1, the question of
determining how many length-k strings are generated by a given string s is
of interest for evaluating a new massively parallel DNA sequencing technology
(“454 sequencing”, [1]). Section 3 presents an efficient counting algorithm and
computational results. The results of Sections 2 and 3 can be summarized as

Theorem 1. The number of distinct subsequences and the number of p-restricted
p-generated length-k sequences from a sequence of length n over an alphabet X can
be computed with O(k(n + |X|)) arithmetic operations.

Finally, we are interested in the distribution of the longest (strictly) increasing
subsequence of s € X™ over an ordered alphabet X := {1,..., K}. We say
that ¢ is an increasing subsequence of s of there exists an integer 1 < k < n
and indices 1 < j1 < j2 < --- < jr < n such that ¢ = s;85,...55, and
85, < 8j, <---<sj,.Let I(s) be the set of all increasing subsequences of s, and
let LIS(s) := maxcy(s) |t| be the length of the longest increasing subsequence.

Our goal is to determine the distribution of L,, := LIS(S), where S is a ran-
dom length-n sequence. Recently, the analogous problem has been completely
solved on uniform random permutations; there are exact results for finite n and
asymptotic results for n — oo provided by the Baik-Deift-Johansson Theorem,
e.g., the expected length is 2/n + O(n'/%), the standard deviation is O(n'/®),
and the limiting distribution of (L,, — 2y/n)/n'/% is completely known. A review
of these results on permutations and additional results on weakly increasing
subsequences on words appears in [2]. So far there seem to exist no exact nor
asymptotic results on strictly increasing subsequences in words. Our contribu-
tion is a method that needs O(nK2X) arithmetic operations on O(nlog K)-bit
numbers to compute the exact distribution (in terms of absolute numbers). We
thus have the following fixed-parameter tractability (FPT) result (see [3] for an
introduction to the terminology).

Theorem 2. For given string length n and parameter alphabet size K, the de-
cision problem whether there are at least T > 0 sequences in s € {1,...,K}"
with L(s) =k for any 1 <k < K is FPT.

Subsequence Combinatorics and Applications 155
2 The Number of Distinct Subsequences

Let X be a finite alphabet of size o; w.l.o.g. we assume X = {1,...,o}. Further,
let s € XY™ and an integer 1 < k < n be given. We write ¢ <1 s to indicate
that ¢ is a subsequence of s, i.e., there exist indices 1 < i1 < ig < iy < n
such that s, si,...s;, = t. Our goal is to determine the cardinality Ci(s) of
Si(s) :={t € ¥* :t <5}, i.e., the number of distinct length-k subsequences in
s. To compute Ck(s) efficiently, we derive a recurrence on the number of distinct
subsequences of given length in a given prefix of s that end with a specified
character. We drop the dependence on X' and s in the notation and define

Sm’j = {teEm 215<181...Sj}7 Cm)j = ‘Sm)j

We refine this definition by conditioning on the last character a € X
Smjla] ={te X" :t<s1...s; and t,,, = a}, Crm,jla] == |Sm, ;la]l.

Note that So; = {e} (the set consisting of the empty string) for all j, but
Sojla] ={} foralla € ¥,s0 1= Cy; # > ,cx Cojla] = 0. However, for m > 0,
we do have Cp, j = > .5, Cp jla] for all j.

For two sets S and T of strings over X, let SoT :={st:se€ S, t € T}.

The goal is thus to compute Cx(s) = Crn = > ,c5; Ckonla]. The following
lemma presents a structural equation for S, ;[a], which leads to a recurrence on
Chn jla) in Lemma 2.

Lemma 1. Let 1 <m < j. Then

Sm.sla] = {S””“M i s #a,

Sm—l,j—l o {a} Zf S5 = Q.

Proof. Assume first that s; # a. The inclusion Sy, j—1[a] C S, j[a] is trivial. We
prove that Sy, j[a] C Sy, j—1[a]: Take t € S, j[a]. Since s; # a, it follows that ¢
is already a subsequence of a shorter prefix of s, i.e., t € Sy, j—1]al.

Now assume that s; = a. By appending an a to each t € Sy,,—1 ;1 (regardless
of its last character), we obtain a distinct string ta € S, j[a], thus Sy,—1 -1 ©
{a} C Sp, j[a]. Conversely, every string in Sy, ;[a] can be written as ta with some
te Smfl)jfy O

Lemma 2. We have Cyo =1 and Cola] =0 for all a € X. Further, Cy, ; =0
ifm>j. For 1 <m < j, we have

Cm—l,j—l iij = a.

Cm,j [a] _ {Cm’jl[a] if S5 # a,

Proof. Immediate by taking cardinalities in Lemma 1 and noting that concate-
nation translates to multiplication of set cardinalities. a

156 S. Rahmann

Bernoulli String Model. The fraction of length-k sequences contained in s (or
covered by s) is thus Cy,, /o*. We can generalize Lemma 2 to a Bernoulli or i.i.d.
random string model, where the probability or weight of each length-% string is
equal to the product of its (possibly unequal) character frequencies. Hence, let
7 := (T4)aex be a non-degenerate probability distribution on X i.e., m, > 0 for
alla € ¥ and) .y mo = 1. Let Pr(ty ... 1) := Hle 7, be the probability of
generating ¢y ...t in k steps. It follows that), v« Px(t) = 1 for all k> 1 and
Pii1(ta) = Py(t) - 7, for t € X% and a € X.

Let us define Wy (s) := P (Sk(s)) as the weighted fraction of length-k sequence
space covered by s. For m < k and j < |s| = n, define

Winj i=Pr(Sm) = Z P, (1), Wonjla] := Py (S jla]).

tESm,; [a]

Lemma 3. Wy o = 1 and Wypla] = 0 for all a € X. Further, Wy, ; = 0 if
m > j. For 1 <m < j, we have

Win,j-1la] if s; # a,
Wm—l,j—l cTq Zf S5 = a.

Wi jla] = {

Proof. Immediate by applying Py, (-) resp. P,,—1(-) to Lemma 1. O

A straightforward implementation of the recurrence would need O(nk|X|) arith-
metic operations. It is possible to remove the factor |X| in a careful imple-
mentation: Figure 1 presents an algorithm to compute Wx(s) in O(k(n + |X]))
operations. The memory requirements are O(k|X|) if only Wi(s) is desired or
O(k(n+1X])) if the whole array Wy, (s1...s;5), 1 <m <k, 1 < j <n, is desired.

Application to DNA microarray production. DNA oligonucleotide microarrays
(“DNA chips”) are a tool to monitor the activity level of many genes in cells of
living organisms. A DNA chip is a plastic or glass slide containing many spots,
each consisting of many copies of a known oligomer (a 25-mer for Affymetrix
GeneChips®, which we consider here), also called probe, attached to the chip.
During production, the probes are synthesized on the chip in parallel on a
nucleotide-by-nucleotide-basis. In each synthesis step, the same nucleotide is
appended to all probes that have been selectively activated to receive it. Activa-
tion occurs by exposure to light, enabling the chemical synthesis reaction. Thus
each synthesis step is specified by (1) a nucleotide (a character from the DNA
alphabet {A,C,G,T}) and (2) a mask, i.e., an index set of the probes to which the
nucleotide is appended. The sequence of nucleotides used in the synthesis process
is called the deposition sequence. Each probe is a subsequence of the deposition
sequence, so the deposition sequence is a common supersequence of all probes.
Given a set of probe sequences (in practice up to 10% probes can fit on a
single chip), one can try to find the shortest deposition sequence, i.e., the short-
est common supersequence of all probes (see [4] for bounds on its length and
heuristic algorithms). In practice, good deposition sequences can be found but

Subsequence Combinatorics and Applications 157

Input: Alphabet ¥ with probability distribution 7, string s € X", integer 1 < k <n
Output: Wy(s) or the whole array Wi, (s1...s;) for m=1,....k, j=1,...,n
// Initialize arrays W, V and Vsum

Wm,jl—O0form«—1,....,k j<—1,...,n // optional: stores W, ;

Vim,a] <0 for m «1,...,k, a € ¥ // stores Wi, jla] for current value of j
Vsum[m| < 0 for m «— 1,...,k // stores Wy, ; for current value of j
forj«—1,...,n

¢« s; // the current character

for m «— min{j, k},...,3,2
// Update V and Vsum s.th. V[m, a] = Wy, j[a] (a € X); Vsum[m] = W, ;:
// (only the c-entry needs to be updated, saving a factor of |X|)
Vsum[m| < Vsum[m] — V[m, (]
Vim, c] < Vsum[m — 1] - ¢
Vsum[m| < Vsum[m] + V[m, (]

end for m

// Finally, treat the case m = 1 specially:

if V[1, ¢] = 0 then V[1, ¢] « mc; Vsum[1] « Vsum[1] + 7.; end if

// Invariant: Here Vsum[m] = Wy, (s1...85) = Wi form=1,...,k
W[m, j] < Vsum[m| for m < 1,...,k // optional: set j-th column of W:
end for j

return Vsum[k] // optional: return array W

Fig. 1. An algorithm with O(k(n+|X|)) operations to compute the w-weighted fraction
Wi(s) of length-k strings that are subsequences of s. The array W is not needed when
only Wy (s) is required: after step j, the j-th column of W is equal to Vsum.

not proved optimal in a reasonable amount of time. Therefore one can approach
the question differently and ask for a deposition sequence that is as “universal”
as possible, i.e., that contains the largest number of distinct subsequences. We
thus ask for

Ci(n, | X)) = max Ci(s) and Besty(n,|X|) ={s€ X" : Ck(s) = Cj(n, X)}.

A result due to P.J. Chase [5] from 1976 (long before the invention of microar-
rays) states that precisely the repeated permutations of the alphabet form the
set Besti(n,|X]) with the consequence that this set does not depend on k.

Definition 1. For a finite alphabet X of size o, a string s of length n is called
a repeated permutation of X if there exists a permutation m = w1 ... 7, of the
characters in X such that s = 7y ... 7T, where the number of full cycles is
¢ := |n/o] and the number of remaining characters m := n mod o satisfies
0<m<o.

In fact, any sequence that is not a repeated permutation contains strictly fewer
subsequences of (some) smaller length. Even though this result appears intuitive,
it is nontrivial to prove and apparently does not follow directly from the recur-
rence in Lemma 2; Chase used induction on the longest sequence prefix that is
a repeated permutation to prove optimality.

158 S. Rahmann

Covered Fraction of 25-mers Covered Fraction per Cost
T T T T T

W, (s)
100 Wy, (s) /Isl

30 40 50 60 70 E) 100 30 40 50 60 70 80 E) 100
Length of repeated DNA permutation s Length of repeated DNA permutation s

Fig. 2. Left: Fraction of 25-mers covered by a repeated permutation of varying length
from 25 to 100: From the deposition sequence s of length 74 used for GeneChip™
production, 98.45% of all 25-mers can be synthesized. Right: Assuming that each syn-
thesis step costs 1/100 (such that using 100 steps implies a cost of 1), the graph shows
the covered fraction per cost. The “best value” is obtained for a repeated permutation
5% with 72 steps or 18 full cycles (Was(s*) = 96.34%, 100 Was(s*) /72 = 1.338), but s

is almost as cost-effective (100 Was(s)/74 = 1.3304) and has higher coverage 98.45%.

The Affymetrix GeneChip® technology uses a repeated permutation of length
74, such as s* := (ACGT)'8AC, to synthesize 25-mers. Figure 2 (left) shows the
fraction of 25-mers contained in repeated permutations of increasing length: s*
covers a fraction of 98.45% of all 25-mers. Elongating s* further quickly results in
diminishing returns; for example, adding one additional nucleotide would result
in 99.04% of the 25-mers being covered. It is unknown to the author why the
length of 74 was chosen, but we offer the following hypotheses: The sequences
not covered by s* have somewhat extremal properties. For example, many of
them contain runs of a repeated nucleotide. We may assume that such oligos are
rarely used on microarrays because of undesirable thermodynamic properties,
so s* may cover in fact all oligos that are ever chosen to be placed on a chip.
For another argument consider Figure 2 (right): In practice, each synthesis step
has a certain cost (mask production, chemicals, time, etc.). Assuming that the
production cost of a chip is proportional to the number of synthesis steps, we
see that using a deposition sequence of length 74 offers both high coverage in
absolute terms and close to optimal coverage per money.

3 The Number of p-Restricted p-Generated Sequences

We consider a variation of the previous problem, where we modify the notion of
subsequence: We allow that each character from s, which we call the generating
sequence, may produce a whole run (up to a specified length p) of this character.
Thus we write ¢ <, s if there exist n numbers 0 < r; < p for i =1,...,n, with
|t| = >, ri, such that t = s]'sy?...s)». We say that ¢ is p-generated by s. For
p = 1, we get the usual notion of subsequence. Note that t <, s implies [t| < p|s|.

Subsequence Combinatorics and Applications 159

Motivated by the 454 DNA sequencing technology (see below), we are only
interested in counting sequences that do not contain a single character run longer
than p; so we define ES as the set of all length-k strings over X' that do not
contain a”*! as a substring for any a € X and call them the p-restricted strings.

The set of p-restricted length-k strings p-generated by s is denoted by

Sk(s;p):i={t e Zﬁ 1t <, s}

It is important to note that a* <, aba, but a* ¢ 527, so a* ¢ Sy,(aba; p).
Therefore Sk (s;1) is different from Si(s) as defined in the previous section.

For the generating sequence s = (s1,...,S,), we may assume that s; # s;41
foralli=1,...,n—1,1ie., s € X7, since repetitions in the generating sequence
do not allow to generate additional p-restricted sequences.

We set Ci(s; p) := |Sk(s; p)| and Wi(s; p) := Pr(Sk(s; p)). Assuming s and p
fixed, we define for 1 <m <k, 0 < j <n and a € X the auxiliary quantities

Smjlal :=={t € X" :t <, s1...s5 and t,, = a}, Spjla] = Ub;ﬁ S5 101,
Cmjlal == |Sm ;[dll, Cm.jla] := |Sm.;lall,

s

Wi jla] := P (Sm,slal), Wn,jla] := P (Sm,slal),

with the boundary cases Sy j[a] = {} and Sy j[a] = {€}. The structural recurrence
for Sy ;la] is slightly more complicated than in the previous section, since we
need to express Sp, j[a] as a disjoint union to determine its cardinality.

Lemma 4. Let 1 <m < j. Then

| - Sm7j_1[a] Zf Sj 7é a,
Sma [a] = {U;n_lri{p,m} (Sm—r,jfl[a’] o {aﬂ‘}) Zf 85 = a,

where the union is disjoint.

Proof. The case s; # a is proved as in Lemma 1.

For s; = a, appending a” to any ¢t € S,,_, j_1]a] for any “run length” 1 <r <
min{p, m} clearly results in a distinct string in S, ;[a]. Note that any run length
in ¢ is bounded by r by assumption, and in ta” by construction since ¢ does not
end with a. This shows UZ ™ s, 1la]o{a"} C S jlal. Conversely, every
string in Sy, j[a] can be written uniquely as ta”, where r < p and r < m and
t € Spm_rj—1la] (possibly the empty string). Because of the uniqueness of the
above decomposition, the union is disjoint. a

Lemma 4 immediately allows us to count Ck(s;p) and to determine W(s; p).
We only give the Bernoulli string model version for Wi (s; p) here.

Lemma 5. We have Wy jla| = 1 and Wy jla] = 0 for all a € X, j > 0. For
m >1 and j > 1, we have

1% [a] _ szj—l[a] if s # a,
e Z;n:lri{m,p} Wm,m,ﬂa} . 7T£ Zf S; = a.

The desired result is Wi(s) = Wi nla] + Wi la] for any a € X.

160 S. Rahmann

Remarks:

1. The recurrence in Lemma 5 can be implemented to run in O(k(n + X))
arithmetic operations by remembering appropriate partial sums.

2. Using p = oo answers the question how many strings of length k match
the regular expression sij*so* ... s,*, where a* matches zero or an arbitrary
number of occurrences of a € Y. In Section 2, we effectively determined how
many strings of length k£ match the regular expression s17s27...5s,7, where
a? matches zero or one occurrence(s) of a € X.

3. It is reasonable to conjecture that again a repeated permutation s* maxi-
mizes Ck(s; p) over all s € X" but this is so far not rigorously proved.

4. Even for arbitrarily large n and optimal s* € X", we have Cx(s;p)/|X*| <
|Z¥/|2%] — 0 as k — oo, because the probability that a length-k sequence
contains a run longer than p approaches 1 as k — oc.

Analysis of 454 Sequencing. Recently, the company “454 Life Sciences” has
developed a massively parallel DNA sequencing technology (simply called “454
sequencing”). We refer the reader to [1] and www.454.com for more detailed
information. Several copies of an organism’s genome are randomly cut into DNA
fragments; a part of the sequence of each fragment is determined in parallel,
and finally the fragment sequences can assembled to retrieve the whole genomic
sequence if each position of the genome is covered by enough fragments. Many
copies of one single fragment type are attached to a microscopic bead; each bead
is held in place in a different well of the reaction carrier (70 mm x 75 mm).
A typical reaction carrier has 1.6 million wells, from which typically 200,000
different high-quality fragment reads can be obtained.

The fragments are sequenced by synthesizing the complementary (A < T,
C « G) DNA strand to each fragment in several steps. Initially, the complemen-
tary strand of each fragment is empty but ready for extension at its starting
point. Then, e.g., in an A-step, T-nucleotides are flooded over the reaction car-
rier, and Ts are incorporated into complementary strands in those wells where
the next character in the fragment sequence is A. Successful elongation of the
complementary strand results in a flash of light from the corresponding wells.
The light emission pattern is detected with a CCD camera for all wells in par-
allel. If a fragment contains a consecutive run (homopolymer) of As, all of their
counterpart Ts are incorporated in a single step and the light intensity is propor-
tional to the run length. This works reliably only up to a certain length p = 8,
which was the reason for introducing p-restricted strings above. Sequences that
contain longer homopolymers cannot be reliably sequenced.

Sequencing steps for different nucleotides are repeated in a cyclic pattern
for ¢ cycles, e.g., (ACGT)¢. This process cannot go on forever because the sig-
nal/noise ratio deteriorated over time. Public information (as of February 2005)
at www.454. com states that high-quality sequencing of on average 100-base reads
is achieved in 42 cycles of TACG. It has also been attempted to use 84 and 168
cycles for high-quality reads of 200 and 400 bases, respectively.

The key issue is that the fraction of length-k DNA sequences that can be
reliably sequenced by this technology in n steps is precisely given by Wiy(s; p),

1
T

Fraction of reliably 454-sequenceable DNA sequences of length k for varying cycle number

Subsequence Combinatorics and Applications

i

W, (ACGT)'™*%;)

|
'

2 cycles

— — —84 cycles
— — 168 cycles

Probability that reliable sequence ends after exactly k nucleotides

161

°
g
K

°
8

°
&

°
2

°
3
8

°
8

°
2

Distribution of reliable sequence read length for varying cycle number
T T T T T T T T

T
— =21 cycles | 1
42 cycles
- — —84cycles
— — 168cycles

J
L L L L L L L L L o L
50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450

o
500 550
‘Sequence read length k Sequence read length k

Fig. 3. Left: Fraction Wy of 454-sequenceable length-k DNA sequences by using a
repeated permutation of the alphabet for ¢ € {21,42,84,168} cycles, p = 8. Right:
Length distribution of the reliably sequenceable initial fragment of a random DNA
sequence, for ¢ and p as before. Vertical lines mark the expected lengths.

where p = 8 and s is a repeated permutation of the DNA alphabet. Assuming a
uniform distribution 7, = 1/4 for each a € X, we thus determine which fraction
Wi ((ACGT)%; 8) of length-k DNA sequences for 1 < k < 550 can be reliably
sequenced in ¢ € {21,42,84,168} full cycles.

The results are visualized in Figure 3 (left). The longest sequence lengths for
which the sequenceable fraction exceeds 99% are kg = 48, 101, 209, and 427
for ¢ = 21, 42, 84, and 168 cycles. 85.8% of length-50 sequences are sequenceable
in 21 cycles, 94.0% of length-100 sequences in 42 cycles, 98.55% of length-200
sequences in 84 cycles, and 99.48% of length-400 sequences in 168 cycles.

A different perspective is shown in Figure 3 (right): If T is any (potentially
infinite) random sequence according to the uniform distribution, a certain finite
prefix will be reliably sequenced by the generating sequence s = (ACGT)¢. Let
L.(T) denote the length of this prefix for ¢ cycles. The figure shows the distribu-
tion of L, for ¢ € {21,42, 84,168} cycles, which is obtained as follows. The proba-
bility that sequencing ends after k steps or later is Wy, = Wi(s; p). Therefore, the
probability that the read ends ezactly after k steps is P(L. = k) = Wi, — Wiy
The figure also shows that the expected sequence read length E[L.] for 21 (42, 84,
168) cycles is 55.4 (111.4, 223.1, 446.3), which exceeds the company-guaranteed
values of 50 (100, 200, 400) by more than 10%. To guarantee these expected read
lengths, only 19 (37.75, 75.5, 150.75) cycles, i.e., 76 (151, 302, 603) steps would
in fact be necessary on random sequences.

4 Longest Increasing Subsequence Length Distribution

We consider an ordered alphabet X' := {1,..., K} and a string s € X", and
equip X" with a Bernoulli probability measure P,, given by a probability vector
m = (m,...,mk), such that P, (s) = [[j_, 7. Several algorithms (e.g., [6,2])
compute the length LIS(s) of the longest increasing subsequence in s.

162 S. Rahmann

Our counting method is based on the patience sorting algorithm, which scans
s from left to right and keeps track of a subset x C [K] := {1,..., K} whose
cardinality after j steps is equal to LIS(sy ...s;). We write 2[%] for the power
set of {1,...,K}. Initially, we set ko = {} and in step j = 1,...,n, k; is
computed in O(log K) operations as k; := u(kj—1, s;) from the update function
w: 2K % [K] — 2K (k,¢) — kT, defined as follows:

— If ¢ € K, do nothing, i.e., set k¥ := &.

— If ¢ ¢ k and k contains no element > ¢, add ¢, i.e., set KT := kU {c}.

— If ¢ ¢ K and there exists k € k with k& > ¢, find the smallest such £ and
decrease it to ¢, i.e., set KT =k \ {k} U{c}.

A proof that |k;| = LIS(s1,...,s;) and an explanation in terms of stacks of
cards is found in [2]. The running time is seen to be O(nlog K). To avoid running
patience sorting for all K™ sequences separately, we condition on : Let x;(t) be
the final set x; in patience sorting when it is applied to t € X7, We set

Si(k)={te & k() =x}, Cj(r):=|S;(R)|, Wjk) =P;(S;(x)).

It follows that for 0 < k <K,

= U s = 2 Gl = 2. Wil
“ﬁ 5 “ﬁ 5 “ﬁ 5

are the set, number, and weighted fraction of length-n sequences with LIS = k,
respectively. The following lemma presents a structural equation between S; (k)
and S;_1(x’), where £’ is an update-preimage under w.

Lemma 6. For j =0, we have Sy({}) = {€}, C’o({}) =1, Wo({}) =1, and for
k€ 2 Kk £ {}, we have So(k) = {}, Co(k) = 0, Wo(k) =0. For1<j<mn
and k € 2K

Sim) = U Simi(s) o {e},

(k’,c)eu—1(k)
Cj(ﬁl) = Z(n’,c)eu_l(n) Cj_l(l‘i/), and Wj(lﬁl) = Z(n’,c)eu_l(n) Wj—l(”i/) *Te.

Proof. The equations for C; and W; follow immediately from the one for §;
(obviously the union is disjoint), which in turn is a trivial consequence of the
correctness of the patience sorting algorithm (i.e., of the update function). O

Lemma 6 implies a “pull”’-type dynamic programming algorithm for computing
W, (k), which has the disadvantage that the update rules must be read “back-
wards”, i.e., for given x, we need to determine the pairs (k', ¢) with k = u(x’, ¢).
It is easier to implement a “push”-type algorithm that pushes the information for
all (s, c) forward to the corresponding x* = u(k, ¢). This is shown in Figure 4.

Application: Significance Computations for Chaining Algorithms. In biological
sequence analysis, the following problem arises in several situations (e.g., when
attempting to classify proteins or to detect cis-regulatory modules): Certain
biological sequences (the family members) are characterized by the appearance

Subsequence Combinatorics and Applications 163

Input: Alphabet size K, distribution = = (1,...,7k), sequence length n
Output: W, (k) for 0 < k < K as array w[0..K]
W[{}] — 1 and W’ [k] < 0 for x € 251 with |x| > 1 // Initialize array W’ [x] to Wo(k)
forj«—1,...,n
W[k] — 0 for k € 2 // reset array W to zero
// Invariant here: W’[k] = W;—1(k) and W[k] =0
for k € 2%l for c € X
Kkt — u(k,c)
WKT] — Wk + W [k] -
end for ¢; end for k
W —W // Invariant: Wk] = W’ [k] = W;(k)
end for j
wlk] —0fork—0,...,K
w[|s|] — w[|k|] + W[s] for all x € 25
return w

(K]

Fig. 4. Push-type dynamic programming algorithm to compute the length distribution
of the longest increasing subsequence for alphabet size K with character distribution
w = (m,...,7K) and sequence length n. Subsets k can be encoded as bit-vectors and
represented as integers in the range from 0 to 2% — 1.

of sequence motifs (e.g., substrings, regular expressions, or sequence profiles)
in a certain order. Let there be K distinct motifs and assume that true family
members usually contain all of them in the correct order 1,..., K. However, in
some family members some motifs may not be present or detected. To decide
whether a sequence should be classified as a family member, in a first step, all
motif occurrences are tabulated. Then the best chain of motifs is found in a
second “chaining” step. We assume that the quality of a chain is its length, so
we classify a sequence as a family member if the longest increasing sequence of
motif indices reaches a threshold ¢. To find a statistically significant value of ¢,
we determine the frequency p; of length-¢ chains in random sequences.

We assume that the motifs are chosen in such a way that each one occurs
with low frequency 0 < fx < 1 in random sequences. If also f := Zszl fi <1,
motif occurrences can be treated as a Poisson process along a random sequence
of length m: If N is the total number of motif occurrences, then E[N] = A :=
m - f, and the distribution of N can be well approximated as Poisson(\) with
P(N = n) = exp(—A) - A”/nl. Given that a motif occurs at some position, it is
motif k& with probability 7y := fi/f.

It follows that the probability of observing an increasing motif sequence of
length k in such a random sequence is given by Wpgisson(r) (k) := S0 o exp(—A)-
A" /n! - W, (k). The p-value associated to a threshold length ¢ is then p, =
Zf:t Whroisson(x) (k). Now ¢ can be chosen such that p; is reasonably small.

For example, for K = 6 distinct motifs that each appear once in 100 positions
on average and sequence length m = 100, we have A = 6 motif occurrences on av-
erage. The Poisson mixture distribution Wegisson(r) (k) := oo o exp(—=A)A"/nl-
W, (k) is shown on the left side of Figure 5, the p;-values on the right side:
Thresholds of 5 and 6 imply ps = 0.0165 and pg = 0.0006, respectively.

164 S. Rahmann

Distribution of L, for K=6 and n~Poisson(6) P-values p, for K=6 and n~Poisson(6)

p, =PL,>=1)

L
1 5 0 1

2 3 4 2 3 4
Increasing subsequence length k Increasing subsequence length threshold t

Fig. 5. Left: Length distribution of longest increasing subsequences for alphabet size
K = 6 and random sequence length N ~ Poisson(6). Right: Associated p-values.

Concluding Remarks. There is considerable literature about subsequence com-
binatorics (exact and asymptotic counting) on permutations, but there are few
results on words, despite the fact that these have interesting practical conse-
quences, as we have shown. Subsequence combinatorics contains a number of
interesting problems., e.g., it remains open to prove that indeed the repeated per-
mutations maximize the number of distinct p-restricted p-generated sequences.

Acknowledgments. 1thank Marc Rehmsmeier, Sergio A. de Carvalho Jr., Michael
Beckstette, Robert Homann, Jens Stoye, and Dirk Evers for stimulating discus-
sions, and especially Lea Sasaki for her support.

Terms marked ® are registered trademarks of their respective owners. The
author is not affiliated with Affymetrix or 454 Life Sciences and has no financial
interests competing with this research.

References

1. Margulies, M., et al.: Genome sequencing in microfabricated high-density picol-
itre reactors. Nature 437(7057) (2005) 376380 / Corrigendum in Nature 439(7075)
(2006) p.502.

2. Aldous, D., Diaconis, P.: Longest increasing subsequences: From patience sorting to
the Baik-Deift-Johansson theorem. Bulletin of the American Mathematical Society
36(4) (1999) 413432

3. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press
(2006)

4. Rahmann, S.: The shortest common supersequence problem in a microarray pro-
duction setting. In: Proceedings of the 2nd European Conference in Computational
Biology (ECCB 2003). Volume 19 Suppl. 2 of Bioinformatics. (2003) iil156ii161

5. Chase, P.: Subsequence numbers and logarithmic concavity. Discrete Math. 16
(1976) 123140

6. Skiena, S.S.: The Algorithm Design Manual. Springer (1997)

Solving the Maximum Agreement SubTree
and the Maximum Compatible Tree Problems
on Many Bounded Degree Trees

Sylvain Guillemot and Francois Nicolas

LIRMM - 161, rue Ada — 34392 Montpellier Cedex 5 — France
{sguillem, nicolas}@lirmm.fr

Abstract. Given a set of leaf-labeled trees with identical leaf sets, the
well-known MAXIMUM AGREEMENT SUBTREE problem (MAST) consists
of finding a subtree homeomorphically included in all input trees and
with the largest number of leaves. Its variant called MAxiMuM CoOM-
PATIBLE TREE (MCT) is less stringent, as it allows the input trees to
be refined. Both problems are of particular interest in computational
biology, where trees encountered have often small degrees.

In this paper, we study the parameterized complexity of MAST and
MCT with respect to the maximum degree, denoted D, of the input trees.
While MAST is polynomial for bounded D [1, 6, 3], we show that MAST
is W[1]-hard with respect to parameter D. Moreover, relying on recent ad-
vances in parameterized complexity we obtain a tight lower bound: while
MAST can be solved in O(NO(D>) time where N denotes the input length,
we show that an O(N°P)) bound is not achievable, unless SNP C SE. We
also show that MCT is W[1]-hard with respect to D, and that MCT cannot

be solved in O(N"(QD/Z)) time, unless SNP C SE.

1 Introduction

Throughout this paper, IN denotes the set of non-negative integers and, for all
n € IN, the set {1,2,...,n} is denoted [1, n].

1.1 Agreement Subtree and Compatible Tree

Trees. All trees considered in this paper are rooted evolutionary trees, i.e. trees
representing the evolutionary history of a set of species. Such trees are unordered,
bijectively leaf-labeled and their internal nodes have at least two children each.
Labels are species under study and the branching pattern of the tree describes
the way in which speciation events lead from ancestral species to more recent
ones.

Leaf labels. For convenience, we will identify the leaves with their labels when
the tree is understood. Let T be a (rooted evolutionary) tree. The leaf label set
of T' is denoted L(T"). We say that T is a tree on L(T'). The size of a tree is the
cardinality of its leaf set.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 165-176, 2006.
© Springer-Verlag Berlin Heidelberg 2006

166 S. Guillemot and F. Nicolas

Degree. The (outer) degree of a node in T is the number of its children. The
maximum degree of T, denoted A(T), is the largest degree over all nodes of T'.

Parenthetical notation. Parenthetical notation is a convenient way to represent
evolutionary trees. Given d non-empty trees 11, Ts, . . ., T4 with pairwise disjoint
leaf sets, (11,75, ...,Tq) denotes the tree whose root has degree d and admits
as child subtrees T, T3, ..., Ty.

Restriction. For each subset X C L(T), the (topological) restriction of T to
X is denoted T'|X. Informally, T'|X is the tree on X displaying the branching
information of T" relevant to X.

Restriction is formally defined by induction as follows. On the one hand, for
each leaf tree ¢, £|{¢} = £ and /|0 is the empty tree. On the other hand, a tree
T of size at least two can be written as T = (T1,Ts,...,Ty) with d > 2: if X
is a subset of L(T;) for some i € [1,d] then T'|X = T;|X; otherwise, T'|X is the
tree on X whose root admits as child subtrees all non empty trees of the form
T;(L(T;) N X) with ¢ € [1,d].

MAST and MCT. Let 7 be a collection of trees on a common leaf set.

Agreement subtree. An agreement subtree of T is a tree T such that, VT; € T,T =
T;|L(T). The MAXIMUM AGREEMENT SUBTREE problem (MAST) consists of
finding an agreement subtree of 7 of largest size. In phylogenetics, the maximum
size of an agreement subtree of 7 is a useful measure of the similarity of the trees
in 7 [7]. From the point of view of the MAST problem, a node v of degree d in
an input evolutionary tree represents the simultaneous creation of d descendant
from the ancestral species represented by v. As such events are rare if d > 2,
the trees that people want to calculate maximum agreement subtree for have
usually small maximum degrees.

Compatible tree. Let T and T’ be two trees on a common leaf set. We say that
T refines T' if T' can be obtained by collapsing a selection of edges of T'. A tree
compatible with T is a tree T such that, VI; € T, T refines T;|L(T). Obviously,
agreement implies compatibility. The converse is usually false for collections
including at least a non-binary tree. The MAXIMUM COMPATIBLE TREE problem
(MCT) consists of finding a tree of largest size compatible with 7. The MCT
problem is more relevant than the MAST problem when comparing reconstructed
evolutionary trees [9,8]. From the point of view of MCT, a non-binary node is
usually interpreted as a lack of decision with respect to the relative grouping
of its children rather than as a multi-speciation event. As data sequences are
getting longer and phylogenetic methods more accurate, the maximum degree
of indecision in reconstructed trees is expected to decrease to a small constant.

Previous Results. MAST is polynomial on two trees (see [12] for the latest
algorithm) but becomes NP-hard on three input trees [1]. MCT is NP-hard on
two trees even if one of them is of maximum degree three [10] (see also [9]).

Solving the MAST and the MCT Problems 167

Consider now the general setting of an arbitrary number, denoted k, of input
trees. Let 7 = {T1,T%,... T} be the input collection. Let n be the cardinality of
the common leaf set of the T}’s, let d := min}_, A(T;) and let D := max®_, A(T}).
Above, we argued about the relevance of solving MAST and MCT on bounded
maximum degree trees. Three different algorithms were proposed to solve MAST
in polynomial time for bounded d [1, 6, 3]. The fastest of these algorithms [6, 3]
run in O(n? + kn?) time.

Besides, MCT can be solved in O(4*Pnk) time [8]. Hence, for bounded k,
MCT is FPT in D. The same result holds for MAST. Let p be a bound on the
number of leaves to be removed from the input set of leaves so that the input
trees agree, resp. are compatible. Then MAST, resp. MCT, can be solved in
O(min{3Pkn, a? + kn3}) time, where o a constant less than 3 [2]. Thus, both
problems are FPT with respect to p.

Our Contribution. We prove that both MAST and MCT are W[1]-hard with
respect to D. Furthermore, let ¢ : IN — IN be an arbitrary recursive function.
Note that the input 7 is of size O(kn). We prove the following.

(R1). MAST cannot be solved in w(D)(lm)o(D) time, unless SNP C SE.
D/2
(R2). MCT cannot be solved in a,o(D)(lm)o(2) time, unless SNP C SE.

Recall that SE [11] is the class of problems solvable in subexponential time and
that SNP [13] contains many NP-hard problems. Hence, the inclusion SNP C SE
is unlikely. According to result (R1), the O(n?+kn?) time algorithms for MAST
[6, 3] are somehow optimum. Results (R1) and (R2) are proved in sections 2 and 3
respectively.

1.2 Parameterized Complexity

In order to clearly prove our intractability results, we recall the main concepts of
parameterized complexity [5], together with some recent results. We also intro-
duce the notions of linear FPT-reduction and weak fixed-parameter tractability.

Let X be a finite alphabet. The set of all finite words over X' is denoted L™
and, for each word x € X*, |z| denotes the length of x. A parameterized (decision)
problem is a subset P C IN x X*. For each instance (k,z) € IN x X*, k represents
the parameter. A yes-instance of P is an element of P and a no-instance of P is
an element of (IN x X*) — P.

Fixed-Parameter Tractability and Weak Fixed-Parameter Tractability.
An algorithm A solves the parameterized problem P if, for each input (k,x) €
IN x X*, A can decide whether (k,x) is a yes-instance of P. The parameterized
problem P is fized-parameter tractable (FPT) if there exists an algorithm solving
P, and whose running time is bounded by go(k)|m|o(1) on each input (k,z) €
IN x X*, where ¢ : N — IN is recursive. The parameterized problem P is weakly

fized-parameter tractable (WFPT) if there exists an algorithm solving P, and

whose running time is bounded by go(k)\ac\o(k) on each input (k,z) € IN x X*,
where ¢ : IN — IN is recursive.

168 S. Guillemot and F. Nicolas

FPT-Reduction and Linear FPT-Reduction. Let P, Q C IN x X* be two
parameterized problems and let f: IN x X* — IN x X*.

We say that f is a (many-to-one, strongly uniform) FPT-reduction from P
to @ if there exist recursive functions g : N x X* — Y* and ¢, v: N - IN
satisfying, for all (k,z) € IN x X*:

1. f(k,z) is computable in o(k)|z|°? time,

2. f(k,x) € Qiff (k,x) € P, and

3. f(k,z) = (v(k), g(k, z)).
Moreover, if v is at most linearly increasing (i.e. if v(k) = O(k) as k — o0) then
we say that f is a linear FPT-reduction from P to Q.

FPT-reductions compose, and preserve fixed-parameter tractability. Linear
FPT-reductions compose, and preserve weak fixed-parameter tractability. Note
that our notion of linear FPT-reduction is slightly different from the one given
by Chen, Huang, Kanj and Xia [4].

Independent Set. Formally, an (undirected) graph is an ordered pair G =
(V,E) where V is a finite set of vertices and where E a set of 2-subsets of
V. The elements of E are the edges of G. The elements of an edge are called
its endpoints. An independent set of G is a subset I C V such that, for each
edge e € E, at least one of its endpoint is not in I. The problem of finding an
independent set of maximum cardinality in a given input graph plays a central
role in computational complexity theory, as well as its decision version:

Name: INDEPENDENT SET (IS)
Instance: A positive integer k and a graph G = (V, E).
Question: Is there an independent set of G of cardinality k?

The version of IS parameterized by k is denoted IS[k]. This problem is not
believed to be FPT as it is complete under FPT-reductions for the class W][1]
[5]. Moreover, IS[k] is not WEPT either, unless SNP C SE [4].

2 Parameterized Complexity of MAST

The decision version of MAST is called AGREEMENT SUBTREE (AST). The AST
problem is: given an integer ¢ > 1 and a finite collection 7 of trees on a common
leaf set, decide whether there is an agreement subtree of 7 of size q. We denote
by AST[D] the version of AST parameterized by D := maxrer A(T). In this
section we prove: that AST[D] is W[1]-hard, and Result (R1) stated at the end
of Section 1.1. According to Section 1.2, it is sufficient to linearly FPT-reduce
AST[D] to IS[k] (Theorem 1 below).
For each integer p > 1, we introduce the following problem:

Name: PARTITIONED INDEPENDENT SET WITH MULTIPLICITY p (PIS,)
Instance: An integer k > 1, a graph G = (V, E), and k independent sets
Vi, Vo, ..., Vi of G of equal cardinality partitioning V.

Question: Is there an independent set I of G such that TNV, has cardinality
p for all ¢ € [1,k]?

Solving the MAST and the MCT Problems 169

The version of PIS, parameterized by k is denoted PIS,[k]. IS[k] is reduced to
AST[D] going through PIS; [£]. In the next section, the decision version of MCT
is reduced to IS going through PIS,.

Lemma 1. IS[k] linearly FPT-reduces to PIS;[k].

Proof. Reduce IS[k] to PIS;[k] in the same way as Pietrzak reduces CLIQUE to
PARTITIONED CLIQUE [14]. Each instance (k,G) of IS is transformed into an
instance (k, G, Vi, Va, ..., Vi) of PIS; where G and the V;’s are as follows.

Let V be the vertex set of G. G is the graph on V x [1, k] whose edge set is
given by: for all (u,i), (v,j) € V x [1,k], {(u,i), (v,7)} is an edge of G iff i is
distinct from j, and either {u,v} is an edge of G or u = v. For each i € [1, k],
let Vi := V x {i}.

Validity of our reduction. Each~‘~/i is an independent set of G with the
same cardinality as V, and the V;’s partition the vertex set V' x [1,k] of G.
Hence, (k,G, V1, Va,..., Vi) is an instance of PIS; [k]. Moreover, it is clear that
(k, G Vi, Va,..., ‘N/k) is computable in polynomial time from (k, G). It remains to
check that (k, Q) is a yes-instance of IS iff (k, G Vi, Va,..., ‘71@) is a yes-instance
of PISl

e Assume there exists an independent set I of G such that 1N ‘71 is a singleton
for all ¢ € [1,k]. For each i € [1,k], let v; € V; such that (v;,%) is the unique
element of N V. The set I := {v1,v2,...,v;} is an independent set of G of
cardinality k.

e Conversely, assume that there exists an independent set I of G of cardinality

k. Arbitrarily number the elements of I, i.e. write I as I = {v1,va,...,vx}.
The set I := {(v1,1), (v2,2),...,(vk, k)} is an independent set of G and
INV; ={(v;,i)} is a singleton for all i € [1, k]. |

In order to clearly prove Theorem 1, we first introduce some useful vocabulary.

Definition 1. Let T and T’ be two trees and let L be a subset of L(T) N L(T").
We say that T and T disagree on L if T|L and T'|L are distinct.

Assume that L(T) C L(T"). If there exists a subset L C L(T") such that T and T”
disagree on L then T is not a restriction of 7. Conversely, if T' is a not restriction
of T” then T and T” disagree on some 3-subset of L(T') [3]. This explains the
central role played by 3-leaf sets of disagreement in the proofs of lemmas 2 and 3
below. Note that given three distinct leaf labels a, b and ¢, there are exactly four
distinct trees on {a, b, c}: the non-binary tree (a, b, ¢}, and the three binary trees

((b,c),a), {{a,c),b) and ({(a,c),b).
Theorem 1. IS[k| linearly FPT-reduces to AST[D].

Proof. According to Lemma 1, it suffices to linearly FPT-reduce PIS;[k] to
AST[D]. Each instance (k,G,Vi,Va,..., V%) of PIS; is transformed into an

170 S. Guillemot and F. Nicolas

instance (g, 7) of AST where ¢ := k and where 7 is a collection of trees de-
scribed below. Without loss of generality, we can assume that all V;’s (i € [1, k])
have cardinality at least 3 and that k is at least 3.

The collection T. We construct a collection 7 of gadget trees whose leaf set is
the vertex set V.=V, UV, U... UV, of G.

For each i € [1,k], compute an arbitrary binary tree B; on V;. The tree on
V' whose root admits By, B, ..., By as child subtrees is denoted by C: C' =
(B1, Ba,...,By). Every tree of 7 defined below can be obtained by modifying
the positions of exactly two leaves of C.

For all a, b € V with a # b, C, denotes the tree on V' obtained from C,
by first removing its leaves a and b, and then re-grafting both of them as new
children of the root. Formally, C, ; is the tree

(B1|(Vi —{a,b}), B2|(Va — {a,b}), ..., Bg|(Vk — {a,b}),a,b) .
We set C :={C}U{Cqp:a,b € V,a+#b}.

Remark 1. There exist at most two indices i such that B;|(V; —{a, b}) is distinct
from B;, and since V; has cardinality at least 3, B;|(V; — {a,b}) is a non-empty
tree for all 1.

Let E be the edge set of G: G = (V, E). For each edge e = {a,b} € E, S, denotes
the tree on V obtained from C, by first removing its leaves a and b, and then
re-grafting (a, b) as a new child of the root. Formally, S, is the tree

(B1|(Vi —e),Ba|(Va —e€),...,Bg|(Vi —e),{a,b)) .

The collection of trees T is defined as T := CU{S; : e € E} (see Figure 1): C is the
control component of our gadget and the S.’s (e € F) are its selection components.

Lemma 2 (Control). Let T be a tree with leaf labels in V. Statements (i) and
(it) below are equivalent.

(i). T is an agreement subtree of C of size k.

(ii). T ={c1,ca,...,ck) for some (c1,ca,...,ck) € VI X Vo X -+ X V.
Proof. Let (c1,¢2,...,c;) € Vi X Vo x -+ x Vj,. Distinct ¢;’s appear in distinct
child subtrees of the root of C, resp. of Cy . Hence, (c1, c2, ..., ck) is a restriction

of C, resp. of Cy . This proves that (i7) implies (7). It remains to show that (¢)
implies (i1).
Assume (7): T is an agreement subtree of C of size k.

e We first prove that T has height 1. By contradiction, suppose that T has
height at least 2. Then, one can find three distinct leaves a, b, ¢ € L(T') such
that T|{a,b,c} = {{a,b),c). (Indeed, there exists an internal node v of T
which is not the root of T'. Pick a leaf ¢ which is not a descendant of v and
two descendant leaves a and b of v.) However, Cy|{a,b,c} = (a,b,c), and
thus T and C,, disagree on {a, b, c}: contradiction.

Solving the MAST and the MCT Problems 171

abcd e f gh ij k1 abcdefghiijkl
B Bo Bs C
abcdefghijlik abdeghijk11cf
Cix Ste.t)

Fig. 1. Some of the gadget trees encoding an instance (k, G, V1, Va, ..., Vi) of PIS;[k]
where k = 3, Vi = {a,b,c,d}, Vo = {e, f,g,h}, V3 = {i, j,k, 1} and {c,f} is an edge
of G

Since T has height 1, there exist k distinct leaf labels ¢1, co, ..., ¢x € V such
that T'= {(c1,ca,. .., Cp).

e We now show that distinct c;’s belong to distinct V;’s. By contradiction,
assume there exist ¢, ji, jo € [1,k] with ji # j2, and such that ¢;, and
¢j, both belong to V;. Since k is at least 3, one can find j € [1, k] distinct
from j; and jo. If ¢; € V; then Cl{c¢;,,¢j,, ¢} = Bil{cj,, ¢j,,¢5} and if ¢; ¢
Vi then Cl{cj,,¢j,, ¢} = ((¢j,,¢4,),¢;). In both cases, C|{cj,,cj,,c;} is a
binary tree unlike to T'|{c;,,¢;,,¢;}. Thus, C' and T' disagree on {c;, , ¢;,, ¢ }:

contradiction.
Up to a permutation of the ¢;’s, one has (c1,¢o,...,¢cx) € Vi X Vo X -+ X V.
This proves (i¢) and concludes the proof of Lemma 2. O

Lemma 3 (Selection). Let e € E be an edge of G and let (¢1,¢a,...,¢k) €
Vi x Vo x -+ x Vi. The tree (c1,ca,...,cr) s a restriction of S, iff at least an
endpoint of e is not in {c1,co,...,Cr}.

Proof. The “if part” is easy. Let us now show the “only if” part.

Assume that (c1, ¢, ..., cg) is a restriction of S, and that e C {c1,¢2,...,ck}.
Let ¢;, and ¢;, be the two endpoints of e: e = {¢;,, ¢, }. Since k is at least 3,
there exists ¢ € [1, k] such that ¢; is distinct from ¢;, and ¢;,. Sel|{ci;, iy, i} =
({€iy, Ciy) , i), and thus S, disagrees with (c1,ca,. .., cx) on {¢;,, ¢y, ¢; }: contra-
diction. This concludes the proof of Lemma 3. O

Validity of our reduction. It is clear that (¢, 7) is computable in polynomial time
from (k, G, Vi, Vs, ..., V). Moreover, the root of C' has degree k, the root of Cy s
has degree k + 2, the root of S, has degree k + 1, and any non-root internal
node of a tree in 7 has degree 2. Hence, the maximum degree D of all trees in

172 S. Guillemot and F. Nicolas

T is equal to k+ 2: D = O(k). Eventually, it follows from lemmas 2 and 3 that:
(k,G,V1,Va, ..., Vi) is a yes-instance of PIS; iff (¢, 7T) is a yes-instance of AST.

e Indeed, assume there exists an agreement subtree T of 7 of size ¢ = k.
The tree T is of the form T = (c1,c¢a,...,cx) for some (c1,ca,...,cx) €
Vi x Vo x -+ X Vi by Lemma 2. Furthermore, the set I := {c1,¢2,...,cx} is
an independent set of G by Lemma 3, and for every i € [1,k], INV; = {¢;}
is a singleton.

e Conversely, assume that there exists an independent set I of G such that
I NV, is a singleton for all ¢ € [1,k]. Hence, there exists (¢1,co,...,c,) €
Vi X Vo x -+ x Vi such that T = {e1,c¢a,...,c,}. The tree (c1,ca,...,ck) is
both:

— an agreement subtree of C (Lemma 2), and
— an agreement subtree of {S. : e € F} (Lemma 3).

Therefore, {(c1,ca,...,ck) is an agreement subtree of 7 of size q. O

3 Parameterized Complexity of MCT

The decision version of MCT is called COMPATIBLE TREE (CT). The CT
problem is: given an integer ¢ > 1 and a finite collection 7 of trees on a
common leaf set, decide whether there is a tree of size ¢ compatible with 7.
We denote by CT[2LP/2]] the version of CT parameterized by 2LP/2] where
D := maxpe7 A(T). In this section, IS[k] is linearly FPT-reduced to CT[2LP/2]]
in order to obtain: the W[1]-hardness of the version of CT parameterized by D,
and Result (R2) stated at the end of Section 1.1. PIS; is used as an intermediate
problem.

Lemma 4. IS[k] linearly FPT-reduces to PISa[k].

Proof. According to Lemma 1, it suffices to linearly FPT-reduce PIS;[k] to
PISy[k]. We rely on a padding argument. Each instance (k G, Vi, Vo, ... Vk)
of PIS; is transformed into an instance (k, G VhVQ7 ..., Vi) of PISy where G
and the VZ s are as follows.

Let V:= V1 UV U... UV} be the vertex set of G and let E be its edge set:
G = (V, E). Informally, G is obtained by adding k isolated vertices to G, and
each V; is obtained by adding a single one of these new vertices to V;. More
formally, let a1, ag, ..., ax be k pairwise distinct elements not belonging to
V. We construct G := (V U {a1,az,...,ax}, E), and V; := V; U {a;} for each

€ [1,k].

Validity of our reduction. It is clear that (k, é, 171, ‘72, ceey ‘N/;c) is an instance of
PIS; computable in polynomial time from (k, G, Vi, Va,.. Vk) It remains to
check that (k, G, V1, Va,..., Vi) is a yes-instance of PIS; iff (k G V1, V27 .. Vk)
is a yes-instance of PISs.

Solving the MAST and the MCT Problems 173

e Assume that there exists an independent set I of G such that I NV, is a
singleton for every ¢ € [1, k]. Then I:=1U {a1,a2,...,ax} is an independent
set of G, and I NV is a doubleton for all i € [1, k].

e Conversely, assume that there exists an independent set I of G such that
1INV, is a doubleton for every i € [1,k]. For each i € [1, k], pick an element
v; in I NV; distinct from a;. The set I := {v1,v2,...,v;} is an independent
set of G, and I NV; = {v;} is a singleton for all 7 € [1, k]. O

Remark 2. Tt is easy to see that the mapping (k,G,Vi,Vo,..., Vi) +——
(k, G Vi, Va,..., ‘N/k), defined in the proof of Lemma 4 is a linear FPT-reduction
from PIS, [k] to PIS,1[k] for any integer p > 1. Since IS[k] linearly FPT-reduces
to PIS; [k] (Lemma 1), an induction on p ensures that IS[k] linearly FPT-reduces
to PIS,[k] for any integer p > 1.

In order to linearly FPT-reduce IS to CT, we introduce some useful notations
in definitions 2, 3 and 4.

Definition 2. Let T be a tree on [1,n], and let Ty, Ts, ..., T, be non-empty
trees with pairwise disjoint leaf sets. The tree on L(Ty) U L(T2) U...U L(T},),
obtained by replacing each leaf i in T by T;, is denoted T[Ty, Ts, ..., Ty).

For instance, let T := ((1,2),(3,(4,5)),6) and let Ty, To, T3, Ty, T5, Ts
be non-empty trees with pairwise disjoint leaf sets: T[Ty, T, T3, Ty, Ts, Ts] =
(11, Ta) , (T3, (T4, T5)) , Ts)-

Definition 3. For each integer n > 1, R, denotes the binary tree on [1,n],
defined recursively as follows: Ry = 1, and if n is at least 2, then R, = (Rp_1,n).

According to Definition 3, one has Ry = (1,2), Rz = ((1,2),3), Ry =
<<<1a2>v3> ’4>7 Rs = <<<<1v2>’3> ’4> 75>v R4[avbvcad] = <<<a7b>’c>’d>7 s

Property 1. Let v', v2, ..., v™ be n pairwise distinct labels. A tree with leaf la-
bels in {v!,v?, ..., 0"} is compatible with { R, [v!, 02, ..., v"], Ry[o", ..., v%, 0]}
iff it is of size at most two.

Definition 4. Let k be a positive integer. Hy, denotes a binary tree on [1,k] of
manimum height [logk]. For each i, j € [1,k|, H,” denotes the tree on [1,k]
obtained from Hy by collapsing all internal edges on the path connecting i and
j. The least common ancestor of i and j in H; is denoted A}’ .

Property 2. All internal nodes in H ,’CJ are of degree 2, except maybe A;;’j whose
degree is at most 2 [log k].

Theorem 2. IS[k| linearly FPT-reduces to CT[2LP/2]].

Proof. According to Lemma 4, it suffices to linearly FPT-reduce PIS;[k] to
CT[2LP/2)]. Each instance (k,G,Vi,Va,..., Vi) of PISy[k] is transformed into
an instance (¢,7) of CT where ¢ := 2k and where 7 is a collection of trees
described below.

174 S. Guillemot and F. Nicolas

The collection T. We construct a collection 7 of gadget trees on the vertex set
V=V UWaU...UV; of G. Let n be such that V; has cardinality n for every i €

[1, k]. For eachz € [1, k], arbitrarily order V;, i.e. write V; as V; = {vl, v .ot hs
B, := R,[v},v2,...,v"] and B; := R, [v" -+ 07, v]] encode V;.

Let C := Hk[BhBQ, ..., B;] and let = Hy[By, By, ..., By (see Figure 2):
C and C are the control components of our gadget.

1,2 4 01 .2 4 1,2 4
v U1 U% U1 V2 U2 Ug) U% U?% Ug U§ Vg Uy vi’ Vg U% Ug ’Ug Ué

C

v 2 1 4 2 1 4 2 1 4 1
VU1 U? U1 U1 Vg Ug Uy U3 v§ Ug Ug U:% Vg UZ’ Vg Vg Vs Ug Ug Us

C

Fig. 2. The trees C and C in the case of k=5 and n = 4

Let E be the edge set of G: G = (V, E). For each edge e = {v],vj} € FE,
compute the tree S. obtained from Hj, 6J [B1, Bz, ..., Bg] by first removmg its
leaves v;” and vj, and then re- grafting <vl ,]> as a new child subtree of)\Z (see
Figure 3) The S¢’s (e € E) are the selection components of our gadget.

The collection of trees T is defined as 7 := {C,C}U{S, : e € E}.
Property 3 below is easily deduced from Property 1.

Property 3 (Control). Let T be a tree with leaf labels in V. Statements (¢) and
(it) below are equivalent.

(7). T is a tree of size ¢, compatible with {C, é}
(#). T is of the form T = Hy[(a1,b1),{a2,b2),..., {ak,bk)] where, for each
€ [1,k], a; and b; are two distinct elements of V;.

Property 4 (Selection). Let e € E be an edge of G and let T be a tree of size g
compatible with {C, C}. Then, T refines S.|L(T) iff at least an endpoint of e is
not in L(T).

Solving the MAST and the MCT Problems 175

1 4 1 2 4 1,2 4 2
vl o vl vz v3 v vy vy vl 05 v vp i wi of v g v i ug

4

S{u2 03

Fig. 3. The tree S{vf,vg} in the case of k =5 and n =4

It is clear that (¢,7) is computable in polynomial time from (k,G,Vq,
Va,..., V). Moreover, both C' and C are binary, and all internal nodes in S,
have degree 2, except maybe Ay’ whose degree is at most 2 [log k] +1 (see Prop-
erty 2). Hence, the maximum degree D of all trees in 7 is at most 2 [log k]+1, and
thus 2LP/2] = O(k). Eventually, it remains to show that: (k,G, Vi, Va, ..., Vi) is
a yes-instance of PISs iff (¢,7) is a yes-instance of AST.

e Assume that there exists a tree T' of size ¢ compatible with 7. Let I :=
L(T): for every i € [1,k], I NV is a doubleton by Property 3, and I is an
independent set of G by Property 4.

e Conversely, assume that there exists an independent set I of G such that
INYV;is a doubleton for all i € [1,k]. For each i € [1,k], let a; and b; be
the two elements of INV;. The tree T := Hy[{a1,b1), (az,b2) ..., (ak, bg)] is
compatible with {C, 5} according to Property 3. Furthermore, 7T is also com-
patible with {S. : e € E} according to Property 4. We have thus exhibited
a tree T' of size q compatible with 7.

Remark 3. 2LP/2) = O(k) is enough to obtain Result (R2). But, our construction
does not ensure that 21°/2] is a function of k only. Hence, our reduction is not
exactly an FPT-reduction yet. Anyway, this can be easily repaired. Collapse
2 [logk] — 1 consecutive internal edges in B; to obtain a tree Bj of maximum
degree 2 [logk] + 1 and add to 7 the tree C' := Hy[B}, Ba, ..., B]. O

References

1. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary
trees: metrics and efficient algorithm. SIAM Journal on Computing, 26(6):1656—
1669, 1997.

2. V. Berry and F. Nicolas. Maximum agreement and compatible supertrees. In S. C.
Sahinalp, S. Muthukrishnan, and U. Dogrusoz, editors, Proceedings of The 15th
Annual Symposium on Combinatorial Pattern Matching (CPM’04), volume 3109
of Lecture Notes in Computer Science, pages 205-219. Springer-Verlag, 2004.

176

3.

10.

11.

12.

13.

14.

S. Guillemot and F. Nicolas

D. Bryant. Building trees, hunting for trees and comparing trees: theory and method
in phylogenetic analysis. PhD thesis, University of Canterbury, Department of
Mathemathics, 1997.

. J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT reductions and compu-

tational lower bounds. In L. Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC’04), pages 212-221. ACM Press, 2004.

. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in

Computer Science. Springer, 1999.

. M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees.

Information Processing Letters, 55(6):297-301, 1995.

. C. R. Finden and A. D. Gordon. Obtaining common pruned trees. Journal of

Classification, 2:255-276, 1985.

. G. Ganapathysaravanabavan and T. J. Warnow. Finding a maximum compatible

tree for a bounded number of trees with bounded degree is solvable in polynomial
time. In O. Gascuel and B. M. E. Moret, editors, Proceedings of the 1st Inter-
national Workshop on Algorithms in Bioinformatics (WABI’01), volume 2149 of
Lecture Notes in Computer Science, pages 156—-163. Springer-Verlag, 2001.

. A. M. Hamel and M. A. Steel. Finding a maximum compatible tree is NP-hard for

sequences and trees. Applied Mathematics Letters, 9(2):55-59, 1996.

J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing
evolutionary trees. Discrete Applied Mathematics, 71(1-3):153-169, 1996.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.
M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. An even faster and more
unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal
of Algorithms, 40(2):212-233, 2001.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425-440, 1991.
K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. Journal of Com-
puter and System Sciences, 67(4):757-771, 2003.

An Improved Algorithm for the
Macro-evolutionary Phylogeny Problem

Behshad Behzadi and Martin Vingron

Computational Molecular Biology Department,
Max Planck Institute for Molecular Genetics,
Thnestrasse 73, 14195 Berlin, Germany
{behshad.behzadi, martin.vingron}@molgen.mpg.de

Abstract. Macro-evolutionary processes (e.g., gene duplication and
loss) have rarely been incorporated into gene phylogeny reconstruction
methods. Durand et al. [5] have proposed a polynomial time dynamic
programming algorithm to find the gene family tree that optimizes a
macro-evolutionary criterion which is the weighted sum of the number of
gene duplications and losses. The complexity of this algorithm is O(nm2)
where n is the number of species and m is the maximum number of copies
of the gene in a species. In this paper, we propose an improved algorithm
with time complexity of O(nm) for solving this problem. We also show,
that the problem can be solved in O(n) if unit costs are considered for
both loss and duplication.

1 Introduction

One of the main goals of evolutionary biology is the reconstruction of the evo-
lutionary history of the current species. Based on the assumption of common
ancestors, this history can be represented as a tree, called a phylogenetic tree.
The internal nodes correspond to ancestral species and the leaves are the cur-
rent species. With the rise of molecular biology, DNA sequences of genes have
been available. These sequences can be treated as characters from which one can
estimate phylogenetic trees (see, for example, [7,8,15]). However determining
which genes are comparable can be a problematic. There exists a large number
of related genes that have evolved through the process of gene duplication. Once
a gene has been duplicated, each copy can evolve distinct variations. Distinct
copies of the same gene are called paralogues. As a result, a single species may
contain none, one, or several copies of what was a single gene in an ancestor. In
order to build a tree which reflects the evolution of species containing a given
gene, it is essential to know which copies of the gene are the comparable ones.
The tree explaining the evolution of a set of genes is called gene tree and the tree
describing the evolution of species is the species tree. The gene trees and species
tree may be different in topology because they present evolutionary relations of
different entities. This is mainly due to the gene duplications and losses which
are known also as the main macro-evolutionary events.

A combination of two types of events should be considered in the determi-
nation of the evolutionary history of a gene family: micro-evolutionary events

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 177-187, 2006.
© Springer-Verlag Berlin Heidelberg 2006

178 B. Behzadi and M. Vingron

(sequence evolution) and macro-evolutionary events (e.g., gene duplication and
loss). A good review of the past models considering both micro- and macro-
evolutionary operations can be found in [5]. The term tree reconciliation was
introduced by Goodman et al. [9] for mapping a gene tree to a species tree.
Algorithms and combinatorial properties of the reconciliated trees have been ex-
tensively studied (see for example [2,6,10,11,12,13,14,16]). Arvestad et al. [1]
have proposed a Bayesian approach for consideration of both macro- and micro-
evolutionary events in a unified model. A good estimation of the parameters in
the Bayesian approach needs large datasets. The expensive computation time is
another problem of the Bayesian approach. On the other hand, as stated in [5]
a unified Bayesian model is a strength when both sequence evolution and gene
duplication and loss can be modeled by neutral stochastic process which is not
the case for the data under strong selective pressure.

In a recent work on unified models, Durand et al. in [5] have developed a hybrid
(two-phase) approach to gene tree reconstruction that incorporates sequence evo-
lution, gene duplication and gene loss for the reconstruction of phylogenies. This
unified approach is mainly based on a dynamic programming algorithm they
propose to find all most parsimonious phlyogenies w.r.t a macro-evolutionary
model of gene duplication and loss. The number of members of the gene family
in each species is given in the input; the output is a tree (or trees) with fewest
duplications and losses required to explain the data. Note that the existence of
a polynomial time algorithm for this problem is interesting because most of the
problems in phylogeny reconstruction are NP-Hard [3,4]. In the first phase of
the hybrid approach, only the micro-evolutionary events are considered and a
tree is constructed using the sequence evolution operations. The regions of the
tree which are not strongly supported by the sequence data are refined with
respect to a macro-evolutionary parsimony model in the second phase of the
approach. The parts of the tree with strong support are left intact. The macro-
evolutionary events are used only for explaining the areas where the sequence
data cannot resolve the topology, so the total search space is reduced. As a
result, this method considers both types of events with modest computational
requirements.

In this paper, we suggest a faster algorithm for the macro-evolutionary phy-
logeny problem defined in [5] which improves the overall time of reconstruction
of the tree considering micro- and macro-evolutionary events. The worst case
running time of our algorithm is a factor of m smaller than the previous worst
case, where m is the maximum number of the gene copies in a species. Note that
an improvement of O(m) is important because a gene family (like, e.g. kinases)
can have a large number of duplicates. We will focus on the combinatorial prop-
erties of the structure of optimal histories of the macro-evolutionary phylogeny
problem. Using these properties, we propose an improved algorithm for solving
this problem.

The paper is organized as follows: in Section 2, we describe the model and
present the formal definition of the problem. In Section 3, we present some
combinatorial properties of the optimal answers which will be useful for our

An Improved Algorithm for the Macro-evolutionary Phylogeny Problem 179

algorithm design. In Section 4, we propose an improved algorithm for solving
the macro-evolutionary phylogeny problem. We show that our improvement can
be even more in the case of the unit cost duplication and loss events. Finally
Section 5, goes to the conclusions.

2 Problem Description

As stated in the introduction, a single current species may have zero, one, or
several copies of what was a single gene in an ancestor. The macro-evolutionary
phylogeny problem tries to explain these different multiplicities of the genes in
the current species by duplications and losses. Note that as the sequence infor-
mation (sequence evolution) is not considered in this model, only the number
of present genes of each species and the species tree is enough for the compu-
tations. There are infinitely many different histories which can be considered to
generate the given numbers of copies of a gene in the current species. But here
we will be interested by the histories which use the fewest number of losses and
duplications for explaining the data.

The optimization criterion is based on the cost of duplication and loss. Let
the cost of a duplication be denoted by c¢s and the cost of a loss be denoted by
¢x- The D/L score of a gene tree is ¢y L + ¢s D, the weighted sum of the number
of duplications, D, and the number of of losses, L, in the tree.

Each history can be represented as a species tree, where each node is annotated
with its multiplicity; that is the number of gene copies extant in the species
associated with that node. The multiplicity of the root must be one, while the
multiplicity of the leaves, denoted my,...,ms are specified in the input. One
should note that each duplication operation, increases the number of gene copies
in the species by one. Similarly, each loss decreases the number of gene copies of
the species associated to a node. Another way to see the problem is to consider
for each node the number of gene copies which it has received from its parent
node and the number of genes it passes to its children. Suppose that i gene
copies exist in species x and it passes j copies to each of its children. If j > 4,
j — 1 duplications are needed to explain this change. When j < ¢, ¢ — j losses are
needed to explain this part of the tree. Finally, if ¢ = j, the minimal cost event
can be a speciation (without any loss or duplication).

In Figure 1(a), a species tree together with multiplicities of a given gene in
the current species is given. In Figure 1.b and 1.c, two macro-evolutionary histo-
ries are considered for this species tree. The tree (1.b) explains the data by one
duplication and one loss while the tree (1.c) uses two duplications. If ¢y > ¢
then tree (1.c) is the optimal history. If ¢y < ¢s then tree (1.b) is the opti-
mal history. Finally if ¢y = c¢s both trees are optimal histories of this species
tree.

The formal definition of the macro-evolutionary phylogeny problem as defined
in [5] is as follows:

180 B. Behzadi and M. Vingron

a) b)

Mouse Human
m=1 m=2

1 2

Fig. 1. a) A species tree with three species and multiplicities for each species; b) an
annotation of the species tree with the number of gene copies: one duplication at root
and one loss in mouse; ¢) another alternative of annotation (history): two duplications
in human and in frog. Depending on the costs of duplication and loss, the optimal
history for tree (a) may be tree (b) or (c) or both of them.

Macro-evolutionary Phylogeny Problem

Input: A rooted species tree, T's with s leaves; a list of multiplicities myq, ..., ms,
where m; is the number of gene family members found in species [; weights c)
and cs.

Output: The set of all rooted gene trees {T¢} with X7 ;m; leaves such that
D/L Score of T¢ is minimal.

As mentioned above, the output can be represented only by annotation of the
species tree by the number of gene copies in different nodes and number of genes
a node passes to its children. Through this paper we use the entering number of
genes for a given subtree rooted at v to denote the number of genes that node v
has received from its parent. The entering number of genes for root in a history
should be one.

In [5] the authors propose a dynamic programming approach for solving the
macro-evolutionary phylogeny problem. The idea is to consider all possible mul-
tiplicities for each internal node. The algorithm fills a table Cost[v, i, j] for this
aim which is the minimum D/L score for the subtree rooted at v where v has ¢
entering copies and it passes j gene copies to each of its children. The table en-
tries are computed for any node v of the tree and any two numbers 1 <i,j < m
where m is the maximum multiplicity for a leaf of the tree. Once this table is
filled recursively, reconstructing the gene trees using this table is immediate.
The complexity of the dynamic programming part (and the whole algorithm)
is O(nm?) for giving one optimal history and O(nm? + nmk) for reporting k
optimal histories.

In this work we show that one can compute faster the optimal histories with-
out filling the dynamic programming table Cost[v, i, j]. In Section 3, we study
the properties the minimal generating cost function for the optimal histories.
This leads us to an algorithm which runs O(m) times faster than the previ-
ous algorithm. Then we show that this complexity can still be improved by an
additional factor of O(m) for the unit duplication/loss function (cx = ¢s = 1).

An Improved Algorithm for the Macro-evolutionary Phylogeny Problem 181

3 Properties of Optimal Histories

In this Section, we study the properties of function g(x,7) defined as follows:

Definition 1. For a given tree T and a given list of multiplicities for its leaves,
g(z,T) is defined to be the minimum D/L score for duplication/loss history of
tree T where the root of the tree T has x entering copies of genes.

In an optimal history, in a given node there either is no event or a first duplication
(or loss) event is followed by an optimal history. If we denote the left and the
right subtree of tree 7 by 71, and 7g respectively, then we have:

gz +1,T)+cs (1)
gz, T) =ming g(xz —1,7T) 4 cx (2) (1)
9(x, T1) + 9(z, Tr) (3)

Note that as the costs are positive (cs,cx > 0), for a sufficiently large N,
g(x, T)+g(x, Tg) is smaller than g(x+ N, T)+ Ncs and g(x— N, T)+ Ncy. This
shows that the recurrences are finite for any tree 7 and integer x because 77,
and 7g are smaller than 7. The following inequalities are the immediate result
of this Equation (1):
9@, 7)< glx+kT)+ ks @)
g(z,T) < glx —k,T)+ k.cy

Let us define the optimal generating set of entering genes number for a tree as
follows:

Definition 2. For a given tree T and a given list of multiplicities for its leaves,
OPT(T) is defined as the set of all integers x such that for any integer x,
g(x,T) < g(2',T). This optimal cost itself is denoted by opt(T).

The following inequality relates the optimal cost of a tree with the optimal costs
of its children.

Lemma 1. Let T be a binary tree and Ty, (resp. Tr) be its left (resp. right)
subtree. We have opt(T) > opt(7Tr) + opt(Tr).

This is due to the fact that the optimal history of 7 includes a generation of 77,
and a generation of 7r as a part of it. The proof is easy and is omitted.

We will prove that OPT(T) is an integer interval (a set of consecutive integer
numbers) for any tree 7. We denote the integer interval {z,z+1,...,y} by [z, 9]
for any = < y.

Proposition 1. For any tree T with given input multiplicities for the leaves,
OPT(T) is an integer interval.

Proposition 1, states that the function g(x,7) is minimum in an integer interval
[1, z2] which is denoted by OPT(T). We show that the function g(z,7), is
strictly decreasing for x < z1 and strictly increasing for = > xo.

182 B. Behzadi and M. Vingron

Proposition 2. Let T be a binary tree with given multiplicities for leaves and let
OPT(T) be [x1,x2]. The function g(x,T) is strictly decreasing for all x smaller
than x1 and strictly increasing for all x larger than xs.

We will also show that g(x,7) is a convex function, which is Ag(z,7) = g(x +
1,7) — g(x,7T) is an increasing function.

Proposition 3. Let 7 be a binary tree with given multiplicities for leaves.
g(x,T) is a convex function.

These three propositions together show that the general structure of function
g(z,T) is like the function given in Figure 2.

8(xT)

-e
i
I
“e B " Strictly increasing
| -
leo0eeeee

Optimal Interval

x

Fig. 2. The general structure of g(x,T'). In range (—o0, +00), g(z,7) is firstly strictly
decreasing then it takes its minimum on an interval (which may be just one point) and
then it is strictly increasing. The function is convex; Ag(x,7T) is increasing. For large
values of x, we have Ag(z,7) = cx. For sufficiently small values of z, Ag(z,7) = —cs.

We also show that for sufficiently large values of z, we have Ag(z,7) = c.
If would be convenient to extend the definition of function g(z,7") for negative
values of = ; then for sufficiently small values of z, we have Ag(x,T) = —cs.

Rather than proving the above three propositions separately, we prove them
all together by induction on the size of the tree.

Proof: The proof is done by induction on the size of the tree. As the base
step, let us consider a tree 7 which has one leaf with multiplicity p. In this case
it is easy to verify that
0 if z=p
gz, T)=¢ (p—x)cs if z<p
(x—p)ex if z>p

All the three propositions are true for this function. Now suppose that the three
propositions are true for any tree with strictly less than k leaves (k > 1), and

! This is obviously only a theoretical extension because the number of genes cannot
be negative.

An Improved Algorithm for the Macro-evolutionary Phylogeny Problem 183

consider a tree 7 with k leaves. Both left and right subtrees of 7 which are
denoted by 77, and 7 have less than k leaves so the three propositions are true
for them by induction hypothesis.

Consider an interval Z of integers where g¢(z,77) is non-decreasing and
g(z,7TR) is non-increasing. The main part of the proof is that we show:

Vrel: g(z,T) = g(z,7T1.) + g(x, Tr) (3)

We prove this by contradiction. Suppose (3) is not true: there exists = in Z, such
that g(z,7) < g(z,71) + g(x,7g). By (1), without loss of generality we sup-
pose that g(x,7) = g(x + 1,7) + ¢s. Remember that the number of consecutive
duplications in a node in optimal generation is finite; there exists u such that
gz, T)=g(x+u,T)+ucs and g(x+u,T) = g(x +u,7) + g(x +u, Tr). So we
have:

g(@+u, T) +ucs < g(x,71) + g(x, Tr)
= gz +u,Tr) + g(x +u, Tr) + ucs < g(z,71,) + g(z, Tr)
= ucs < g($771) _g(l‘+u77}1)+g($7TR> —g($+U,TR)

~ e ~ -
<0 <u.cs
= ucs < ucCs

In the case that g(z,7) = gz — 1,7) + cx < g(z,71) + g(z, Tr), similar
contradiction can be obtained and this completes the proof of (3). Symmetrically
if g(x,71) is decreasing and g(x,7g) is increasing in an interval equality (3) is
correct. As a consequent of this equality, g(x,7) is convex in the interval T
(because the sum of two convex functions is convex). Note that if the optimal
generating interval for 77, and g are [I1,12] and [rq, 2] respectively, then in the
interval Z = [min{ly, 71 }, max{lz, r2 }|, the equality (3) is correct (see Fig. 3).

Now let us consider the interval Z+ = [max{l2, 72} + 1, +00). In this interval
both g(x,7;) and g(xz,7gr) are strictly increasing by the induction hypothesis.
Tt is easy to verify that the function ¢g(z,7) < g(x+1,7) + ¢s and so g(x,7) is
equal to the minimum of g(x —1,7)+ ¢y and g(x, 7))+ g(z, 7r). If for all values
of x in this interval we have g(z,T) = g(z,71,) + g(x, 7r) then g(z,7) becomes
strictly increasing and convex as the sum of two strictly increasing and convex
functions. Otherwise, consider the first value of xy in the interval ZT such that
9(x0,T) = g(xo — 1,7) + e < g(x0,7L) + g(x0,7r). By the way we defined
xo, we have g(zg — 1,7) = g(xo — 1,71) + g(xo — 1, 7g). Consequently, we have
Ag(xo — 1,71) + Ag(xo — 1,Tr) > cx. On the other hand g(z,7) and g(z, Tr)
are convex and so Ag(x,7;) and Ag(x,7,) are increasing. So,

Vo > xg : g(x,T)=g(x —1,7) +cx (4)

The function g(z,7) is strictly increasing and convex for any x > xg, so
g(x,T) is convex and strictly increasing for any z in ZT. Similarly, we can show
in an interval Z~ where both g(z, 77,) and g(z, 7g) are strictly decreasing, g(z,7)
is strictly decreasing and convex.

184 B. Behzadi and M. Vingron

In order to complete the proof we need to consider the different possible config-
urations of g(x,77,) and g(x, Tr). Figure 3 shows the three possible arrangements
of the optimal intervals of the two functions.

2) b)
AN\

Fig. 3. Different possible configurations of g(z,7.) and g(z, 7r)

In all three cases intervals 1 and 5 refer to the Z~ and Z7 in the proof. Interval
2 and interval (3,4) refer to the interval Z in the proof. The proof of the convexity
in the exchange points of these intervals is easy and is omitted. It is also easy to
show (by Lemma 1) that in cases (a) and (b) the optimal interval of 7 is inteval 3.
In case (c) the optimal interval is an interval which is included in interval 3. O

4 Algorithm

In this section we present an algorithm for computation of the optimal D/L score
histories for a given tree with multiplicities for the leaves. Algorithm 1, fills the
table g[x, T] (corresponding to function g(z,7)) for any 1 < 2 < m and for all
subtrees of 7. g(x,7) is not computed for non positive values of x because it
is not biologically meaningful. On the other hand an optimal solution has never
more than m genes present in a species so there is no need to compute g(z,7)
for x > m.

Algorithm 1. GenCost(tree T)
1. if T is a leaf then
1.1 for i+ 1to mdo
1.1.1if i > label(T) then g[i, T] « (i — label(T)) X c
1.1.2 if i < label(T) then g[i, T] «— (label(T) — i) X cs
1.2 exit
2. GenCost(Ty); GenCost(Tr);
3. [ll,lz] — OPT(TL); [rl,rg] — OPT(TR)
4. t1 — min{l1,7m1}; t2 — max{l2,r2}
5. for i« t1 to ta do g[i,T] « g[i,TL) + gli, Tr]
6. for i —ta+1to mdo g[i,T] < min{g[i — 1,T] + cx, g[i, TL] + g[i, Tr]}
7. for i+ t; —1 downto 1 do g[i,T] — min{g[i + 1,T] + ¢s,9[¢,T0] + g[i, Tr]}

Fig. 4. Algorithm 1 fills table g[z,T] from leaves to the root

The correctness of the algorithm is a result of the proof of the propositions
given in Section 3. The complexity of the algorithm is O(mn) where n is the
number of species and m is maximum number of gene copies in a species.

An Improved Algorithm for the Macro-evolutionary Phylogeny Problem 185

Once table g has been determined by Algorithm 1, finding one (or all) optimal
D/L score history is easy. Starting with g[1,7T] at each step one checks how g
is minimized (i.e. which of the lines in recurrences 1 is minimizing g(x,T)); if
minimization is done by the first (or second) line, a duplication (or loss) will be
reported at this node and recursively the computation of the optimal answer for
glx+1,T) (or g(z —1,T)) is continued. In the case g(z,7) is minimized by the
recurrence 1.3, without giving any more events for the node 7', one adds to the
output an optimal history of g(x,71) and g(x, 7TR).

The total complexity of our algorithm will be O(mn) for computing one op-
timal answer and O(mn + nk) for computing k optimal answers if the number
of optimal answers is not smaller than k. Note that multiple optimal histories
correspond to the nodes and values of x such that g is minimized by two lines
of recurrences 1.

In practice depending on the values of ¢s and ¢y this complexity can be im-
proved. Let ¢s and ¢ be two positive integers such that ged(cy, ¢s) = 1. The func-
tion g(z,7) is convex and the Ag(x,7) is an increasing function; on the other
hand —cs < Ag(z,7) < cx. This suggests to store and update the function g just
by computing the points that (Ag) changes its value from z to = + 1. This will
reduce the complexity of the algorithm to O(cn) where ¢ = ¢s+c¢y. The total com-
plexity of the algorithm for generating k optimal histories is O(n(min{m, c}+k)).
A special case when ¢s = ¢y is commented below:

Unit Loss/Duplication Costs. When ¢s = ¢y = 1, function g(x,7) becomes
very simple. If OPT(T) = [ku1, k2], g(x, T) is constant in [k1, ko], increasing with
step 1 for x > ko and decreasing with step -1 for x < k;. As stated above
the complexity of the algorithm will become O(nk) for finding k optimal trees.
The optimal intervals can be computed easily in this case. Let us define the ®
operation on integer intervals as follows:

Definition 3. For any two integer intervals [a1,as] and [b1,bs] where a; < by,
the ® intersection of these integer intervals is denoted by [a1,as] ® [b1,bs] and
1s defined as follows:

1) if by < as then [a1, ag} X [bl, bg} = [b]., b2]
2) if by < ag < by then a1, as] @ [by, be] := [b1, a2]
3) if ag < by then [a1, ag} (39 [bl, bg} = [a2, b].]

The following proposition which is a result of Propositions 1 to 3 can be used as
a basis of an algorithm for the unit costs macro-evolutionary problem.

Proposition 4. Let 7 be a binary tree , with more than one leaf, let 71, and TR
denote the left and the right subtrees of the root of the tree T; OPT(T) can be

computed as follows:

OPT(T) := OPT(T,) ® OPT(Tx).

186 B. Behzadi and M. Vingron

5 Conclusion

In this paper, we have studied some combinatorial properties of the optimal
D/ L histories for a given species tree and the number of gene copies found in
each species. Based on these properties we proposed an improved algorithm for
finding the optimal histories in O(m) order faster than the previous algorithm.
We also showed that the improvement of the algorithm is O(m?) for the case of
unit cost duplication/loss function. For a gene family like kinases with hundreds
of duplicates, this improvement is important.

The macro-evolutionary phylogeny problem has been shown to be useful
and interesting in order to build phylogenies based on both macro and micro-
evolutionary processes (see [5]). The current work, improves the running time of
such unified models which is essential for making large phylogenies.

Acknowledgement

We wish to thank Dannie Durand, Bjarni V. Halldérsson and Benjamin Vernot
for their useful discussions and comments on the problem.

References

1. L. Arvestad, A. C. Berglund, J. Lagergren and B. Sennblad: Gene tree recon-
struction and orthology analysis based on an integrated model for duplication and
sequence evolution. In Proc. RECOMB 2004, pp 326-335, ACM Press, 2004.

2. L. Arvestad, A. C. Berglund, J. Lagergren and B. Sennblad: Bayesian gene/species
tree reconciliation and orthology analysis using MCMC. Bioinformatics, 19 Suppl.
1, pp 7-15, 2003.

3. B. Chor and T. Tuller: Maximum likelihood of evolutionary trees is hard. in Proc.
RECOMB 2005, LNCS 3500, pp 296-310, Springer 2005.

4. W. H. Day: Computational complexity of inferring phylogenies from dissimilarity
matrices. Bull. Math. Biol., 49(4):461-7, 1987.

5. D. Durand, B. V. Halldérsson and B. Vernot: A Hybrid Micro-Macroevolutionary
Approach to Gene Tree Reconstruction. in Proc. RECOMB 2005, LNCS 3500, pp
250-264, Springer 2005.

6. O. Eulenstein, B. Mikrin, and M. Vingron: Duplication-based measures of difference
between gene and species trees. Journal of Computational Biology. 5:135-148, 1998.

7. J. Felsenstein: Phylogenies from molecular sequences: Inference and reliability,
Annu. Rev. Genet. 22 pp 521-565, 1988.

8. W. Fitch and E. Margoliash: Construction of phylogenetic trees. Science. 155 pp
279-284, 1967.

9. M. Goodman, J. Czelusniak, G.W. Moore, A.E. Romero-Herrera and G Matsuda:
Fitting the gene lineage into its species lineage, a parsimony strategy illustrated
by cladograms constructed from globin sequences. Syst Zool, 28, pp 138-163, 1979.

10. R. Guigo, I. Muchnik, and T.F. Smith: Reconstruction of ancient phylogenies.
Molecular Phylogenetics and Evolution, 6, pp 189-213, 1996.

11. M. T. Hallett and J. Lagergren: New algorithms for the duplication-loss model. in
Proc. RECOMB 2000.

12

13.

14.

15.
16.

An Improved Algorithm for the Macro-evolutionary Phylogeny Problem 187

. B. Ma, M. Li, and L. Zhang: From gene trees to species trees. SIAM J. on comput.,
2000.

B. Mirkin, I Muchnik, T. F. Smith: A biologically consistent model for comparing
molecular phylogenies. Journal of Computational Biology, 2, pp 493-507, 1995.

R. D. M. Page: Maps between trees and cladistic analysis of historical associations
among genes, organisms and areas. Syst Zool., 43, pp 58-77, 1994.

M. Nei: Molecular Evolution Genetics, Columbia University Press, New York, 1987.
C.M. Zmasek and S. R. Eddy: A simple algorithm to infer gene duplication and
speciation events on a gene tree. Bioinformatics, 17(9), pp 821-828, Sep. 2001.

Property Matching and Weighted Matching

Amihood Amir!, Eran Chencinski?, Costas Iliopoulos?®,
Tsvi Kopelowitz?, and Hui Zhang®

! Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
and College of Computing, Georgia Tech, Atlanta, GA 30332-0280
+972 3 531-8770
amir@cs.biu.ac.il
2 Dept. of Computer Science, Bar-Ilan U., 52900 Ramat-Gan, Israel
(972-3)531-8408
{chenche, kopelot}@cs.biu.ac.il
3 Department of Computer Science, King’s College London, Strand,
London WC2R 2LS, United Kingdom
{csi, hui}@dcs.kcl.ac.uk

Abstract. Pattern Matching with Properties (Property Matching, for
short), involves a string matching between the pattern and the text, and
the requirement that the text part satisfies some property.

It is straightforward to do sequential matching in a text with prop-
erties. However, indexing in a text with properties becomes difficult if
we desire the time to be output dependent. We present an algorithm
for indexing a text with properties in O(nlog|X| + nloglogn) time for
preprocessing and O(|P|log | X| + tocer) per query, where n is the length
of the text, P is the sought pattern, X' is the alphabet, and tocc, is the
number of occurrences of the pattern that satisfy some property .

As apractical use of Property Matching we show how to solve Weighted
Matching problems using techniques from Property Matching. Weighted
sequences have been introduced as a tool to handle a set of sequences that
are not identical but have many local similarities. The weighted sequence is
a “statistical image” of this set, where we are given the probability of every
symbol’s occurrence at every text location. Weighted matching problems
are pattern matching problems where the given text is weighted.

We present a reduction from Weighted Matching to Property Match-
ing that allows off-the-shelf solutions to numerous weighted matching
problems including indexing, swapped matching, parameterized match-
ing, approximate matching, and many more. Assuming that one seeks the
occurrence of pattern P with probability € in weighted text T' of length
n, we reduce the problem to a property matching problem of pattern P
in text T' of length O(n(})?log !).

1 Introduction

One of the technical problems that pattern matching has had to deal with is
that of matching a pattern in a text with properties. The idea is that the pattern
matching itself is insufficient, but the particular text substring that is matched
also needs to satisfy a desired property. Some examples come from molecular

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 188-199, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Property Matching and Weighted Matching 189

biology, where it has long been a practice to consider special genome areas by
their structure.

Tt is straightforward (as we show later) to solve sequential pattern matching
with properties since the intersection of the properties and matching can be done
in linear time. However, the problem becomes more complex when it is required
to inder a text with properties. The classical pattern matching problem is that
of finding all occurrences of pattern P = p1ps - - - pm, in text T = t1to - - - t,,, where
T and P are strings over alphabet Y. In the indezing problem we are given a
large text that we want to preprocess in a manner that allows fast solution of
the following queries: " Given a (relatively short) pattern P find all occurrences
of P in T in time proportional to |P| and the number of occurrences”.

The indexing problem and its many variants have been central in pattern
matching and information retrieval. However, when it comes to indexing a text
with properties, intersecting the pattern with the properties may give a worst
case that is not output-dependent.

In this paper we give a precise definition of pattern matching with proper-
ties and provide a data structure that preprocesses the text in O(nlog|X| +
nloglogn) time and supports queries in O(|P|log|X| 4 tocc,) time per query,
where n is the text length, P is the sought pattern, |X| is the alphabet, and
tocc, is the number of occurrences of P that satisfy some property 7. These are
almost the same bounds that exist in the literature for ordinary indexing.

We now turn to an apparently unrelated problem. Among the challenges that
the pattern matching field is currently grappling with are those of motif dis-
covery, and local alignment. Recently, the concept of weighted sequences was
introduced as a suggested method of satisfying the above needs. A weighted se-
quence is essentially what is also called in the biology literature Position Weight
Matriz (PWM for short) [5]. The weighted sequence of length m is a | Y| x m ma-
trix that reports the frequency of each symbol in finite alphabet X~ (nucleotide,
in the genomic setting) for every possible location.

Tliopoulos et al. [4] considered building very large Position Weight Matrices
that correspond, for example, to complete chromosome sequences that have been
obtained using a whole-genome shotgun strategy. By keeping all the information
the whole-genome shotgun produces, it should be possible to identify information
that was previously undetected after being faded during the consensus step. This
concept is true for other applications where local similarities are thus encoded.
It is therefore necessary to develop adequate algorithms on weighted sequences,
that can be an aid to the application researchers for solving various problems
they are liable to encounter.

It turns out that handling weighted sequences is algorithmically challeng-
ing [4] even for simple tasks such as exact matching. It is certainly desirable to
be able to answer more ambitious questions, such as scaled weighted matching,
swapped weighted matching, parameterized weighted matching as well as to index
a weighted sequence.

We develop a general framework that allows solving all the problems men-
tioned above. In particular this presents the first known algorithms for

190 A. Amir et al.

problems such as scaled matching, swapped matching and parameterized match-
ing in weighted sequences. Since most current methods for handling weighted
matching use techniques that are not conductive to indexing (e.g., convolutions),
it is surprising that our framework also enables indexing weighted sequences with
the same query time as in the non-weighted case.

These results are all enabled by a reduction of weighted matching to property
matching. This reduction creates an ordinary text of length O(n(!)?log !) for
the weighted matching problem of length n text and desired probability €. Since
the outcome of the reduction is an ordinary text with a property, then all pattern
matching problems that can be solved in ordinary text and pattern can have their
weighted versions solved with the time degradation of the reduction.

The indexing problem for weighted text becomes a problem of indexing an
ordinary (longer) text with properties. We can now use the indexing text with
properties result to solve weighted indexing as well.

2 Property Matching — Definitions

For a string T = t; - - - t,, we denote by Tj;...; the substring ¢; - - - ¢;. The suffix
T;..., is denoted by T, and the suffix tree of T' is denoted by ST(T'). The leaf
corresponding to T in ST(T) is denoted by leaf(T?). The label of an edge e in
ST(T) is denoted by label(e).

For a node u in the suffix tree of a string 7', we denote by ST, the subtree of
the suffix tree rooted by u. The label of u is the concatenation of the labels of
the edges on the path from the root of the suffix tree to u, in the order they are
encountered, and is denoted by label(u).

We are now ready to define a property for a string.

Definition 1. A property m of a string T = ty1---t, is a set of intervals m =
{(s1, f1)s .-, (81, ft)} where for each 1 < i < ¢ it holds that: (1) s;, f; € {1,...,n},
and (2) s; < f;. The size of property w, denoted by |r|, is the number of intervals
in the property (or in other words - t).

We assume that the properties are given in standard form as defined below.

Definition 2. A property m for a string of length n is said to be in standard
form if: (1) it is in explicit form, (2) for any 1 < i < n, there is at most one
(s, fx) € T such that sp =i, and (3) 51 < 53 < -+ < 8|5/

3 General Pattern Matching with Properties

This section defines the notion of general pattern matching with properties.
following definition.

Definition 3. Given a text T =ty - - - t, with property 7, pattern P = pi1 - - D,
and a definition of a matching o, we say that P a-matches Tj...; under property
7 if P a-matches T;...;, and there exists (sy, fr) € m such that s, <1 and j < fp.

Property Matching and Weighted Matching 191

The following definition will assist us in solving property matching problems.

Definition 4. For a property w of a string T =ty - - - t,, the end location of 1 <
i <n, denoted by end(i), is defined to be the mazimal fy, such that (sg, fr) € 7
and sy, <1 < fr. If no such fi exists, we say that end(i) = NIL.

Note that end(i) can easily be calculated for all locations ¢ in T in time O(n)
(recall that 7 is given in standard form). Now, given a text T'=1t¢; --- ¢, and a
pattern P = p; - - - py,, if there exists an algorithm for an a-matching problem
that runs in time O(gq(n,m)), then given a text T" with property 7, and pattern
P, we can find all T;...; that a-match P in time O(gq(n,m) +n) = O(ga(n,m)).

However, the above reduction does not suffice for the property indexing prob-
lem (defined below). Before explaining why, we first provide a formal definition
of the property indexing problem.

Definition 5. Property Indexing Problem (PIP) Given a text string T =
ty - - -ty with property m, preprocess T such that on-line queries of the form ”find
all locations where a pattern string P occurs in T under w7 can be answered in
time proportional to the size of the pattern (rather than the text) and the output.

The problem with the PIP is that known indexing data-structures do not suffice.
For example, given a suffix tree for T, we can find all of the occurrences of P
in T in time O(Plog|X| + tocc) where tocc is the number of the occurrences.
However, tocc is not the number of occurrences of P in T under 7; it includes
also the occurrences of P in T that are not occurrences under 7. We could solve
this problem by also preprocessing end(i) for all locations i in T as we did before.
However, this would require scanning all of the occurrences of P in T (taking
O(tocc) time), and we would like to answer indexing queries in time dependent
on tocc,, where tocc, is the number of occurrences of P in T under 7, which
might be much smaller than tocc. Also, keep in mind that we want a solution
that takes minimal preprocessing time, and requires only linear space. This is
the problem addressed by our new data-structure.

In the next sections we will define our data-structure, show how it is con-
structed in time O(nlog|X| 4+ nloglogn), and finally, show how an indexing
query can be answered in time O(mlog|X| + toccr).

4 The Property Suffix Tree

We now define the data-structure used for solving the PIP. The data-structure
we present is based on the suffix tree - thus, we name it the Property Suffix Tree,
or PST for short. The construction is for a text T' = t; - - - t,, with property .
The idea is based on a lemma that we provide following the next definition.

Definition 6. For a string T with property m and a node w in the suffix tree
of T, we denote by ST the mazimal set of locations {i1,---,i¢} C {1,---,n}
such that for every i; € ST we have that: (1) leaf(T%) is in STy, and (2) if
end(ij) # NIL then end(i;) —i; > |label(u)|.

192 A. Amir et al.

Lemma 1. Let T be a string with property w, and let w and v be two nodes in
the suffix tree of T' such that v is u’s parent, then S}, C ST.

Proof. The proof follows from definition 6. For any location ¢; € S we know
leaf(T%) is in ST, thus it is also in ST,. We also know that end(i;) —i; >
|label(uw)|. Being that |label(u)| > |label(v)|, we have that end(i;)—i; > |label(u)|
> |label(v)|. Due to the maximality of S7, it must be that i; € SJ. O

Corollary 1. For a string T with property =, the path from the root of ST(T)
to leaf(T?) can be split into the following two paths: (1) the path consisting of
all nodes u such that i € ST, and (2) the path consisting of all nodes u such that
i¢ ST

Definition 7. Consider the two paths from Corollary 1, and the i*" suffiz of T.
Let v be the deepest node on the first path. The location of i in the PST of T is

defined as follows. If end(i) —i = |label(v)| —1 then loc(i) = v. Otherwise, loc(i)
is the edge connecting the two paths.

The idea behind the PST is to move each suffix 7% in ST(T') up to loc(i). We will
later show why this solves the PIP. We now define the PST using an overview
construction. First, we construct ST(T') using, for example, [6]. Then, for every
suffix T* find loc(i), and maintain a list of locations for each edge e consisting
of all 4 such that e = loc(i) and for each node u consisting of all ¢ such that
u = loc(i). We denote these lists by suf(e) and suf(u) respectively. Next, we
mark each node u in ST(T') such that either suf(u) is not an empty list, or w is
connected to some edge e where suf(e) is not an empty list, or u is an ancestor
of a marked node. Now, we delete all of the nodes that are not marked, and
compress non branching paths in the remaining tree to one edge (like we do in
suffix trees). Of course, during the compression of a path into an edge, we must
concatenate all of the suf(u) and suf(e) for all nodes u and edges e on the path,
except for the last node. The concatenation of all of those lists forms the list of
locations loc(e’) for the new edge ¢’ that will replace the non-branching path.
Finally, we will be interested in ordering suf(e) for the remaining edges in order
to allow efficient querying. This will be explained later.

Note that except for the stage in which we construct suf(e) and suf(u) for
the edges e and nodes u in ST(T') and the ordering of the lists of locations, the
rest of the algorithm can be easily implemented to take O(nlog |X|) by building
a suffix tree and using a constant number of depth-first searches (DFS). Also
note that the size of the data structure is clearly linear in the size of T'. Thus, it
remains to show how to construct suf(e) and suf(u) for the edges e and nodes u
in ST(T), and how to order them while allowing us to answer queries efficiently.
This is explained in the next two subsections.

4.1 Constructing Lists of Locations

We now show how to construct suf(e) and suf(u) for every edge e and every
node w in ST(T'). In the following subsection we show how to order suf(e) in a
way that will allow efficient querying.

Property Matching and Weighted Matching 193

In order to find loc(i) for every suffix T, we use the weighted ancestor queries
that were presented in [3], and improved upon in [1]. The weighted ancestor
problem is defined as follows:

Definition 8. Let T be a rooted tree where each node u has an associated value
value(u) from an ordered universe U such that if v is the parent of u then
value(v) < wvalue(u). The weighted ancestor problem is given a query of the
form W A(u,i) where u is a node in T and i € U, return the node v that is the
lowest ancestor of u such that value(v) < i.

Clearly, if we set the value of a node u to be |label(u)|, then given a leaf lea f(T*),
the answer to the query W A(leaf(T?), end(i) — i) will either give us a node that
is loc(i), or a node that is connected to the edge that is loc(i). In the later case,
we can easily find loc(i) in O(log|X]) time. In [1] the weighted ancestor prob-
lem was solved for suffix trees taking O(n) preprocessing time, and O(loglogn)
query time. Thus, we can find loc(i) for all T%’s in O(n(loglogn +log|X|)) time.
However, the suffixes on the edges are not ordered in a way that would allow
efficient indexing queries. We cannot simply order the suffixes by descending
loc(i) — i because this would require sorting, and would take too much time
(we would need to sort the locations on every edge in the tree according to the
appropriate values). To solve this problem, we show in Subsection 4.2 how to
preprocess a set of n’ elements in O(n’) time such that given a value whose
rank! in the set is k, we can find all of the elements less than or equal to that
value in O(k) time. In Subsection 4.3 we will show how this helps us answer
indexing queries efficiently. Thus, we will run this algorithm on every edge in
the tree, taking a total of linear time. Finally, the time required for constructing
the PST is O(nlog |X| 4+ nloglogn). Note that for constant size alphabets we
are dominated by the nloglogn factor.

4.2 Ordering the Suffixes on an Edge

As we previously mentioned, we require a scheme such that given a set of n’
elements we can preprocess those elements in O(n’) time such that given a value
whose rank in the set is k, we can find all of the elements less than or equal
to that value in O(k) time. To solve this algorithm we use the fact that finding
the median of a set of numbers can be done in linear time (e.g., by [2]). The
preprocessing is as follows. First find the median of the set, and separate the
set to the set of values smaller than the median, and the set of the values that
greater than the median (for simplicity, we assume all values are distinct). For
the set of items with value greater than the median, we put them in an array
of size n’, in the second part of the array. We recursively do the same for the
elements less than the median, each time putting the items greater than the
median in the left most part of the unfilled array, until we reach a set of size
one, and we put the remaining element in the first location in the array. Note

that the time required is O(Zio:gonl g:) =0(n).

! The rank of a value in a set is the number of elements in the set less than or equal
to the value.

194 A. Amir et al.

Now, given a query value ¢ with rank k, we proceed as follows. We begin by
comparing ¢ with the first location. If ¢ is smaller, than we output an empty
set. If ¢ is larger, we output the first element as part of the output and continue
on to scan the next two elements in the array. If they are both less than or
equal to t, we output them both, and continue on to the next four elements.
We continue on such that at the i iteration, if all of the 2'~! elements are less
than or equal to t, we output them all, and continue to the next 2° items. This
continues until we reach some item whose value is less than ¢. Say this happens
at iteration number 7’. In such a case, we continue to scan all of the 2¢'~1 jtems
of the iteration, outputting only those items with value less than or equal to t,
and then we are done.

Clearly, we output all elements that are less than or equal to ¢, as once we find
an element that is greater than ¢ in the ¢’ iteration, we know that all the rest of the
elements in the array (located after the 27 ~! elements of the current iteration)
have value greater than ¢ (this follows directly from the way we arranged the
array, dividing it around the median). Moreover, the running time is O(k) as
if we stop at iteration ¢/, this means we output at least ZZ/:_Il 201 = (21,
and the running time is at most Zz/:l 2i=1 = O(2"). Finally, note that the same
type of technique can be used if we are interested in finding all the elements that
have value larger or equal to ¢t. We will actually be interested in this version of
the problem for ordering the suffixes on the edges.

4.3 Answering Indexing Queries

In this section we describe how to answer indexing queries in O(mlog|X| +
tocer). But first, for a node u in the PST we denote by PST,, the subtree of the
PST rooted by u. The indexing query is answered as follows. We first begin by
searching the PST like we search a suffix tree, until we reach a node or an edge.
If we reach a node u, we run a DFS on PST,, outputting suf(w) and suf(e’)
for every node w and every edge ¢’ in PST,. If when searching we reach an edge
e = (u,v) where we match the first ¢ characters of label(e), then we first output
suf(w) and suf(e’) for every node w and every edge ¢’ in PST, using a DFS,
and we also output every location 7 in suf(e) such that end(i) —i > |label(u)|+£.
In order to accomplish the second part, we use the scheme from Subsection 4.2.
it remains to show that the additional amount of time spent (i.e. except for
the search part that takes O(mlog|X|)) is linear in the size of the output. This
follows from the following lemma.

Lemma 2. Let PST(T) be the PST of a string T under property w. Then in the
subtree of any node in PST(T), the size of the subtree is linear in the number of
locations in the union of suf(w) and suf(e’) for every node w and every edge
e’ in the subtree.

Theorem 1. The PIP can be solved in O(nlog|X|+ nloglogn) preprocessing
time, using linear space, where the query time is O(mlog|X| + tocey).

Property Matching and Weighted Matching 195

In the following sections we consider weighted matching problems and show
a general framework for solving weighted matching problems using property
matching.

5 Weighted Matching — Definitions

Definition 9. A weighted sequence T =ty ---t, over alphabet X is a sequence
of setst;, i =1,---,n. Every t; is a set of pairs (sj, m(s;)), where s; € X' and
mi(s;) is the probability of having symbol s; at location i. Formally,

ti =1 (55, mi(s;)) [85 # s for j#1, andd_mi(s;) =1

J

Definition 10. Given a pattern P = py - - - p,, over alphabet X, we say that the
solid pattern P (or simply pattern P) occurs at location i of a weighted text T
with probability of at least € if H;n:l Titj—1(p;j) > €, where € is a given parameter
which we call the threshold probability.

Notice that all characters having probability of appearance less than e are not of
interest to us, since any pattern using such a character will also have probability
of appearance less than e, which is below the threshold probability. Therefore,
we are only interested in characters having probability of appearance of at least
€. We call such characters heavy characters.

Definition 11. Given 0 < ¢ < 1, we classify each location i, 1 < i < n, in
the text into the following three categories: (1) Solid positions where there is
one (and only one) character at location © with probability of appearance exactly
1, (2) Leading positions where there is at least one character at location i with
probability of appearance greater than 1 — e (and less than 1), and (3) Branching
positions where all characters at location i have probability of appearance at most
1—e.

Notice that if € < é, then at every solid and leading position there is only one
heavy character since only one character can have probability of appearance
greater than 1 — e > %, whereas in a branching position there maybe several
heavy characters. However, if € > ; there are no heavy characters in a branching
position since all characters have probability of appearance of at most 1 —e < e.

In the following section we define the notions of Maximal Factors and Ex-
tended Maximal Factors and show how they are used in the reduction from

weighted matching to property matching.

6 Maximal Factors and Extended Maximal Factors

A weighted pattern matching problem is a pattern matching problem where the
text is weighted. The idea behind our framework is to create a regular text from

196 A. Amir et al.

the weighted text in a way that we can run regular pattern matching algorithms
on the regular text while ensuring that the occurrences appear with probability
of at least €. In order to do so, we first define the notion of maximal factor.

Definition 12. Let T =ty ---t,, be a weighted text and let X = x1---x; be a
string. We denote 7;(X) = mi(x1) X -+ X mipi—1(x;). Given 0 < e < 1, we say
that a string, X, is a mazimal factor of T starting at location i if the following
conditions hold: (1) m;(X) > €, (2) if i > 1, then mi_1(s;) x m(X) < € for all
sj € X, and (3) if i+1< n, then m;j(X) X miqi(s;) < € for all s; € X.

In other words, a maximal factor starting at location 4 is a string that when
aligned to location ¢ has probability of appearance at least e. However, if we
extend the string by even one character to the right and align it to location ¢ or
if we extend the string by even one character to the left and align it to location
t — 1, then the probability appearance of the string drops below e.

A straightforward approach for transforming the weighted text T to a regular
text would be to simply find all the maximal factors of the text and concatenate
them to a new regular text T’ (of course we will need some kind of a delimiter
character to separate between the factors). The advantage of this approach is
that every pattern that appears in T’ appears also in T with probability of at
least €, since a maximal factor has probability of appearance at least € and so
have all of its substrings. Unfortunately, this approach does not suffice. It can
be shown (due to lack of space details are omitted) that the total length of all
maximal factors of a weighted text T = t; - - - t,, could be at least £2(n?), which
is rather large. Therefore, we define the notion of extended maximal factor, and
show a better upper bound on the total length of all extended maximal factors.
In order to define the extended maximal factor we use the Leading to Solid
Transformation.

Definition 13. The Leading to Solid Transformation of a weighted sequence
T =ty--t, denoted LST(T), is a weighted sequence T' =t} -- -t such that:

t; if 1 s a solid or a branching position
t: =14 {(o,1)} if i is a leading position and o is a heavy character
10} if 1 s a leading position and there are no heavy characters

In essence, LST(T) is the same as T, where all leading positions become solid.
The only exception is when all characters in a leading position are not heavy,
thus, we ignore that location (set to by ¢) and treat each part of LST(T) divided
by ¢ separately. For the rest of this paper, we assume LST(T) has no ¢’s.

Notice that this transformation is uniquely defined, since either € < % in which
case there is one (and only one) character with probability > 1 — ¢, thus, it is
also the only heavy character at that location or e > é in which case at every
location there is at most one heavy character.

Another important observation is that the size of LST(T') is linear in the size
of T and can easily be built in linear time. The LST transformation leads us to
the following definition.

Property Matching and Weighted Matching 197

Definition 14. Given 0 < € < 1 and a weighted text T, we say that a string
X is an extended maximal factor of T starting at location i if X is a maximal
factor of LST(T) starting at location i.

We now prove a few properties on maximal factors and extended maximal fac-
tors, that will help us in bounding the total length of all extended maximal
factors of a weighted text.

Lemma 3. Given 0 < e <1 and a weighted text T, there are at most Lij heavy
characters at a branching position.

Definition 15. Given 0 < € <1 and a weighted text T, we say that a mazimal
factor X = w1 -+ - x; passes by location i of T, if X starts at location i such that
i’ eli—141,1.

Lemma 4. Given 0 < ¢ < 1 and a weighted text T, a maximal factor of T
passes by at most 0(1 log i) branching positions.

Definition 16. Given 0 < € <1 and a weighted text T', we say that location i is
a starting location of T, if either i =1 ori > 1 and t;—1 is not a solid position.

Observe that a maximal factor of T always starts at a starting location, otherwise
it could be extended to the left with solid positions without decreasing the
probability of appearance, which contradicts the maximality of the factor.

The following lemma bounds the number of maximal factors starting from
a starting location in a weighted text T', such that T has no leading positions.
The fact that T has no leading positions implies that this is true for LST(T) of
any weighted text 7', and thus actually bounds the number of extended maximal
factors starting from any location in 7.

Lemma 5. Given 0 < € < 1 and a weighted text T such that T has no leading
positions, there are at most Lij mazimal factors starting at a starting location.

Lemma 6. Given 0 < € < 1 and a weighted text T such that T has no leading
positions, the number of mazimal factors passing by each location i in the text
is at most O((})*log !).

The following theorem bounds the total length of all extended maximal
factors.

Theorem 2. Given 0 < ¢ < 1 and a weighted text T, the total length of all
extended mazimal factors of T is at most O(n(!)?logl).

Proof. This follows immediately from Lemma 6. O
The following lemma shows that this analysis is tight up to a logarithmic factor.

Lemma 7. Given 0 < ¢ < 1 and a weighted text T, the total length of all
extended mazimal factors of T is 2(n(1)?).

In the next section we show how to efficiently find all extended maximal factors
of a weighted sequence.

198 A