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Preface

This volume contains the papers presented at the 17th Annual Symposium on
Combinatorial Pattern Matching (CPM 2006) held at the Technical University
of Catalonia in Barcelona, Spain, on July 5–7, 2006. They were selected from
88 submissions. Each submission was reviewed by at least three Programme
Committee members. The committee decided to accept 33 papers. The pro-
gramme also included three invited talks, by Amihood Amir (Asynchronous
pattern matching), Eran Halperin (SNP and haplotype analysis: Algorithms and
applications), and Steven Skiena (News and blog analysis with Lydia).

All papers presented at the conference are original research contributions
on combinatorial pattern matching algorithms, indexing data structures, data
compression, and applications in molecular biology such as phylogenetic recon-
struction, motif search, and RNA and DNA structural analysis and prediction.

The meeting was preceded by a Summer School on Combinatorial Pattern
Matching on July 4, 2006, with tutorials by Ricardo Baeza-Yates (Web search-
ing), Moshe Lewenstein (Pattern matching with mismatches), and Alfonso Va-
lencia (Introduction to computational biology).

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in
Paris, London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus,
Piscataway, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, and Jeju
Island. Selected papers from the first meeting appeared in volume 92 of Theoret-
ical Computer Science, from the 11th meeting in volume 2 of Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathemat-
ics, and from the 14th meeting in volume 3 of Journal of Discrete Algorithms.
Starting with the 3rd meeting, proceedings of all meetings were published in the
LNCS series, volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645, 1848, 2089,
2373, 2676, 3109, 3537, and 4009.

The whole submission and review process, as well as production of this vol-
ume, was carried out with the help of the EasyChair system. The conference was
sponsored by the Technical University of Catalonia and by the Spanish Ministry
of Education and Science.

April 2006 Moshe Lewenstein
Gabriel Valiente
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Asynchronous Pattern Matching

Amihood Amir

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
and College of Computing, Georgia Tech, Atlanta, GA 30332-0280

+972 3 531-8770
amir@cs.biu.ac.il

Abstract. This paper introduces a new pattern matching model that
has been gaining importance recently, that of Asynchronous Pattern
Matching. Traditional pattern matching has assumed the possibility of
errors in the data content. We present motivation from text editing,
computational biology, and computer architecture, that points to a new
paradigm – where the errors occur in the address. It turns out that there
are differences in techniques, complexities, and tools between the two
different models, making it important to recognize their differences.

We motivate and define the new model and present some problems
that are worth pursuing.

1 Motivation

Historically, approximate pattern matching grappled with the challenge of coping
with errors in the data. The traditional Hamming distance problem assumes that
some elements in the pattern are erroneous, and one seeks the text locations
where this number of errors is small enough [23, 18, 7], or efficiently calculating
the Hamming distance at every text location [1, 21, 7]. The edit distance problem
adds to the assumption that some elemnts of the text are deleted, or that noise
is added at some text locations [24, 15]. Indexing and dictionary matching under
these errors has also been considered [19, 16, 26, 14].

Implicit in all these problems is the assumption that there may indeed be
errors in the content of the data, but the order of the data is inviolate. Data
may be lost or noise may appear, but the relative position of the symbols is un-
changed. Data does not move around. Even when don’t cares were added [17],
when non-standard models were consideredbak:93,muthu-ramesh:iac95,aaclp:03
the order of the data was assumed to be ironclad.

Nevertheless, some non-conforming problems have been gnawing at the walls of
this assumption.Belowwe introduce some examples for this different phinomenom.

Text Editing: Even in the traditional core of pattern matching motivation -
text editing - there crop up some problems dealing with address, rather than
content, error. The swap error, motivated by the common typing error where
two adjacent symbols are exchanged [25, 4], does not assume error in the content
of the data, but rather, in the order. The data content is, in fact, assumed to
be correct. The swap error seemed initially to be akin to the other Levenshtein

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Amir

errors, in that it could be added to the other edit operations and solved with
the same dynamic programming [25]. However, when isolated, it turned out to
be surprisingly simple to handle. Indeed, the minimum swap distance between
a given pattern of length m and every substring of length m in a given text of
length n, can be found in time O(n polylog m) [6]. This scarcely seems to be
the case for indels or mismatch errors.

Computational Biology: Recently, the advent of computational biology has
added more problems of order error to our repertoire. In evolution, one envisions
a whole piece of genome to “detach” and “reconnect” in a different location,
or two pieces of genome to “exchange” places. These phenomena, of course,
are assumed to take place simultaneously with traditional data content errors,
however, their nature is rearrangement of the data, rather than corruption of
its contents.

It turns out that the overall problem of adding these new rearrangement
operators to the content changing operators is extremely difficult. Thus more
simplified problems were considered in the literature. The rearrangement opera-
tors were isolated and handled separately. Reversals [11], transpositions [8], and
block interchanges [13] were explored. The edit distance problem under these
new operations is still too difficult, therefore the sorting permutation version of
these problems was researched.

This research direction led to interesting paths. First, the tools and techniques
used were different from the traditional pattern matching tools. The results
also seem more varied. The sorting by reversal problem is NP-hard [12]. It is
still open whether the sorting by transposition problem can be efficiently solved
deterministically. Christie [13] gives an O(n2) algorithm for the sorting by block
interchange problem.

Computer Architecture: In computer architecture, address errors are of no
less concern that content errors [20]. It is by no means taken for granted that
when seeking a word from a given address, no errors will occurr in the address
bits. This causes the concern with redundancy bits, checksum bits, error detec-
tion and correction codes, and communication protocols.

From a purely theoretical point of view, it would be interesting to consider
searching where address errors are not corrected at all (say because of applica-
tions with an extremely high cost of transmission, e.g. because of transmission
in deep space). What are the types of uncorrected address errors that can still
be reasonable handled by a search application?

In a recent paper [3], for the first time, this different pattern matching
paradigm, that of errors in the order rather than error in the content of the
data, was explicitely identified and formalized. The advantages in formalizing
this paradigm are:
1. Identifying the types of problems and techniques required, rather than than

re-inventing ad-hoc solutions.
2. Understanding the theoretical underpinnings of the problem.
3. Generalizing to other possible rearrangements and possibly providing more

general solutions.
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Two different general directions of research are possible. The first is the need
to consider appropriate distance measures. The error in content measures are
not necessarily meaningful in these circumstances. We will consider some generic
error distances, such as minimum L1 and L2 distance on the address of the data.
We also illustrate the fact that more specific distance measures are necessary for
specific applications.

Another possible direction is considering different address bit errors and effi-
cient methods of approximate pattern matching under address errors.

It is exciting to point out that budding research in this area required some
techniques that are totally new to pattern matching. This reinforces the real-
ization that this new model is needed, as well as gives hopes to new research
directions and paths in the field of pattern matching.

2 Problem Types

The pattern matching community usually handles problems in the following
form:

INPUT: Text T of length n and pattern P of length m over alphabet Σ. Matching
relation R or distance metric metric d.

OUTPUT: Denote the suffix of T starting at location i as Ti. Denote the appro-
priate prefix of Ti (appropriate in the sense that its length matches the length
of P ) as T pre

i .

Output all text locations i where T pre
i matches P under R, or where d(T pre

i , P )
is sufficiently small.

In the classic exact matching problem, R is equality and the length of T pre
i

is m. In the case of Hamming distance, d(A,B) is the number of mismatches
between A and B, with A and B being equal-length strings. Again, the length
of T pre

i is m.
It should be noted that many pattern matching problems become trivial if

the text and pattern are of equal length. Both exact matching and Hamming
distance can be immediately solved in linear time for n = m. It is also clear that
any problem that can be solved for n = m in time O(f(m)) can be solved for
n �= m in time O(nf(m)).

Another interesting simplification could be to assume that every alphabet
symbol occurrs only once in the pattern. This means that every two pattern
locations have different symbols. This is equivalent to assuming that the pattern
is 1, 2, 3, ...,m.

Even if we take n �= m, both the exact matching problem and the Hamming
distance problem can be immediately solved in time O(n) if this condition is
assumed.

As we will see, some of the asynchronous matching problems are NP-hard
even under the limiting assumptions above. In order to differentiate between the
different assumptions, let us agree on a common nomenclature.
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Notation

– Denote a problem where the pattern is of the form where every symbol
appears exactly once, a permutation problem. We will refer to the case where
a symbol may appear more than once as a symbol repetition problem.

– Denote a problem where the text and pattern sizes are equal, an equal length
problem. We will refer to the case where n > m as the string matching problem.

Of course, we may combine the conditions, i.e. we may consider the permu-
tation version of a string matching problem, or the equal length version of a
symbol repetition problem.

3 Metrics

Even a general purpose metric must be based on some assumptions of what
causes the errors. Thus, the Hamming distance assumes that the only error are
changes to the data, but no new elements can be introduced nor any data lost.
The Levenshtein distance assumes that data may be inserted and deleted.

Similarly, when it comes to address errors, the application is the driving force
behind the general metric. The transposition operation leads to a metric that
counts the number of pairs that interchange. Another option is to count the dis-
tance that symbols need to travel in order to arrive at their destination. Finally,
it is possible to combine the two, i.e. assume that the rearrangement operation is
indeed an exchenge, yet count the distance needed to effect the transition.

We follow [3] in the definition of rearrangement systems, and the introduction
of the metrics that were considered.

3.1 Rearrangement Distances

Consider a set A and let x and y be two m-tuples over A. We wish to formally
define the process of converting x to y through a sequence of rearrangement
operations. A rearrangement operator π is a function π : [0..m− 1]→ [0..m− 1],
with the intuitive meaning being that for each i, π moves the element currently
at location i to location π(i). Let s = (π1, π2, . . . , πk) be a sequence of rearrange-
ment operators, and let πs = π1 ◦ π2 ◦ · · · ◦ πk be the composition of the πj ’s.
We say that s converts x into y if for any i ∈ [0..n− 1], xi = yπs(i). That is, y
is obtained from x by moving elements according to the designated sequence of
rearrangement operations.

Let Π be a set of rearrangement operators, we say that Π can convert x
to y, if there exists a sequence s of operators from Π that converts x to y.
Given a set Π of rearrangement operators, we associate a non-negative cost with
each sequence from Π , w : Π∗ → R+. We call the pair (Π,w) a rearrangement
system. Consider two vectors x, y ∈ An and a rearrangement system R = (Π,w),
we define the distance from x to y under R to be:

dR(x, y) = min{w(s)|s from R converts x to y }

If there is no sequence that converts x to y then the distance is ∞.
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The String Matching Problem. Let R be a rearrangement system and let dR
be the induced distance function. Consider a text T = T [0], . . . , T [n − 1] and
pattern P = P [0], . . . , P [m− 1] (m ≤ n). For 0 ≤ i ≤ n−m denote by T (i) the
m-long substring of T starting at location i. Given a text T and pattern P , we
wish to find the i such that dR(P, T (i)) is minimal.

The �1 and �2 Rearrangement Distances. The simplest set of rearrange-
ment operations allows any element to be inserted at any other location. Under
the �1 Rearrangement System, the cost of such a rearrangement is the sum of
the distances the individual elements have been moved. We call the resulting
distance the �1Rearrangement Distance. In the �2 Rearrangement System we use
the same set of operators, with the cost being the sum of squares of the dis-
tances the individual elements have moved.1 We call the resulting distance the
�2Rearrangement Distance.

In [3] it was proven that:

Theorem 1. For T and P of sizes n and m respectively (m ≤ n), the �1 Rear-
rangement Distance can be computed in time O(m(n−m+ 1)). For the permu-
tation version, the distance can be computed in time O(n).

Interestingly, the �2 distance can be computed much more efficiently:

Theorem 2. [3] For T and P of sizes n and m respectively (m ≤ n) the �2
Rearrangement Distance can be computed in time O(n logm).

The Interchange Distances. Consider the set of rearrangement operators
were in each operation the location of exactly two entries can be interchanged.
The cost of a sequence is the total number of interchanges. We call the resulting
distance the interchanges distance. Again in [3] it was shown:

Theorem 3. For T and P of sizes n and m, respectively (m ≤ n), the per-
mutation version of the interchanges distance problem can be computed in time
O(m(n−m + 1)).

This situation is one where the permutation requirement is extremely necessary.
In [5] it was shown that:

Theorem 4. For T and P of sizes n and m, respectively (m ≤ n), the symbol
repetition version of the interchanges distance problem is NP-hard.

Next consider the case were multiple pairs can be interchanged in parallel, i.e.
in any given step an element can participate in at most one interchange. The
cost of a sequence is the number of parallel steps. Call the resulting distance
the parallel interchanges distance, denoted by dp-interchange(·, ·). The following
surprising result was shown in [3]:
1 For simplicity of exposition we omit the square root usually used in the �2 distance.

This does not change the complexity, since the square root operation is monotone,
and can be computed at the end.
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Theorem 5. For any two tuples x and y, either dp-interchange(x, y) = ∞ or
dp-interchange(x, y) ≤ 2.

This means that if it is altogether possible to convert x to y, then it is possible
to do so in at most two parallel steps of interchange operations!

With regards to computing the distance the following was proven [3]:

Theorem 6. For T and P of sizes n and m respectively (m ≤ n), if there are
k distinct entries in P , then the parallel interchanges distance can be computed
deterministically in time O(k2n logm).

Theorem 7. For T and P of sizes m and n respectively (m ≤ n), the parallel
interchanges distance can be computed randomly in expected time O(n logm).

In [5] the following hybrid metric was introduced: In this rearrangement system
the operation is still an interchange, but the cost is not the number of operations.
Instead, each interchange has a weight, and the cost of a sequence of interchanges
is the sum of these interchanges weights. We define the weight of an interchange
of elements at positions i and j to be |i− j|. This definition of the weight reflects
that interchanges of close elements are preferred. Given a text T and a pattern P
of sizes n and m, respectively, (m ≤ n) the weighted-interchange distance problem
is to find the text location closest to the pattern under the weighted-interchange
distance.

The following was proven in [5]:

Theorem 8. There exist an O(m(n−m+1)) algorithm that solves the weighted-
interchange distance problem for the symbol repetition version in the string
matching paradigm.

Length-weighted genome rearrangements were recently claimed to be biological
meaningful and preferred over the traditional assumption giving each operation
a unit cost (see [10], [9]). The weighted-interchange defined above was inspired
by these claims. Actually, even in the regular sorting situation the unit-cost
model is not completely defensible. On the contrary, it makes sense to assume
that interchanging far elements costs more than interchanging close elements. It
is interesting to point out that, similar to [9], [5] found out that the weighted
version of the problem is polynomial in contrast with the non-weighted version.
In fact, these results together with [9] might indicate a general phenomenon
about length-weighted distances that should be further studied.

4 Address Errors

In this section we suggest another broad class of location errors wherein the
names of the locations have been altered. We call this type of errors renaming
errors, defined as follows. A string x ∈ Am can be viewed as a set of pairs
(address, value). A renaming π gives “new names” to the addresses. Formally,
a renaming is a function π : [1..m] → [1..m]. Under the renaming π, the string
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x is converted into a new set of pairs, where the pair (a, v) is converted into
the pair (π(a), v). A renaming scheme is a set Π of renamings. Formally, any
set of functions on [1..m] can constitute a renaming scheme. In [2] the renaming
schemes studied were such that the renamings all have some well-defined struc-
ture, transforming one naming convention to another. Specifically, they consider
renaming schemes which arise from a process of flipping some or all of the bits
in the binary representation of [1..m].

In practice, renaming errors may arise in situations where the text and the
pattern are generated by two different systems, which may use different naming
conventions. Alternatively, renaming errors may result from failures in the wires
of the address bus (the wires connecting the CPU and the memory which are
used to transmit the address of operands). Finally, renaming errors may actually
not constitute an error, but rather represent different legitimate ways to order
the given set of elements.

4.1 Address Bit Flips Errors

In this section we focus on renaming schemes resulting from address bit er-
rors. The conventional addressing model assumes the user puts an address in
the address register. From there the address follows an address bus to the de-
sired location. We are assuming no redundacy bits, and no checksums nor error
detection and correction codes.

Various types of faults may be considered:

1. A faulty bit consistently flips the value put there. If the in value is 0 the out
value is 1 and vice versa.

2. A faulty bit may flip the value put there or may not. The non-faulty bits
always output the value put in. This is a common phenomenon, caused by
a loose connection.

3. No bits are faulty. However, due to outside transient conditions, such as
noise, the value on any wire may flip.

In our model we read the pattern from memory and search for it in the text. How-
ever, our address register is faulty thus the pattern we get is a scrambled version of
the “real” pattern. We seek, for every text location, the smallest number of incon-
sistent faulty bits, in the sense of error type 2 above, that would enable the pattern
to match the text at that location (if such a matching exists). We call this prob-
lem the faulty bits distance problem. A naive check of each possible set of faulty
bits yields an O(nm2) time algorithm. [2] provide an O(nmlog2 3) time algorithm
for patterns with a bounded alphabet, and a randomized O(nmlog2 3 logm) time
algorithm for patterns with an unbounded alphabet.

The case of error type 1 above is called in [2] the consistent bit flip renaming.
In this renaming scheme full consistency is assumed, i.e., that some of the bits,
in all the addresses, may have been flipped. For example, suppose that m = 64.
Then, six bits are used in the binary representation of the addresses. In a bit-flip
renaming, some or all of these bits may be inverted in a consistent manner. For
example, bits 2, 3 and 5 may be always inverted, resulting in 000000 becoming
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011010, and 010101 becoming 001111. Given two strings x, y ∈ Am, we wish
to know if there is a way to consistently flip some or all of the address bits in
order to convert x into y, and if so, what are these bits? Note that there are
2log m = m different possible renamings in this scheme. Naively checking each of
these possibilities would necessitate O(m2) work. [2] obtain an algorithm that
works in time O(m logm).

Different type of address schemes may also be considered. In various parallel
architectures, as well as some attempts to try to even the address wire lengths,
various tree structures are used (e.g. the pyramid architecture). Consider a sim-
plified address scheme where the m processors in a network architecture, or
memory elements, are leaves of a full binary tree of height logm. Thus, reaching
the value in a certain address means following the path from the root down. At
every level we take a left turn if the next address bit is 0 and a right turn if the
address bit is 1. See Figure 1 for a schematic.

0 1 2 3 4 5 6 7

0

1

1

Fig. 1. An 8 element memory. The binary representation of 3 is 011. From the root,
taking a left turn, then two right turns, brings us to location 3. If a node is consistently
faulty, then we make a wrong turn every time we pass through that node.

Note that in this case the number of possible renamings is exponential, so a
naive solution would be infeasible. Using a combination of methods borrowed
from tree isomorphism algorithms and the Karp-Miller-Rosenberg string match-
ing algorithm [22], [2] obtain an algorithm that solves the problem in O(n logm)
steps, for a pattern of length m and text of length n.
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In this talk I will discuss some of the algorithmic issues of disam-
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Abstract. A single logical entity can be referred to by several different
names over a large text corpus. We present our algorithm for finding
all such co-reference sets in a large corpus. Our algorithm involves three
steps: morphological similarity detection, contextual similarity analysis,
and clustering. Finally, we present experimental results on over large
corpus of real news text to analyze the performance our techniques.

1 Introduction

A single logical entity can be referred to by several different names over a large
text corpus. For example, George Bush is often referred to as Bush, Presi-
dent Bush, George W. Bush, or “W”, even among polite company. However,
morphologically-similar names like George H.W. Bush can refer to different en-
tities. Accurately identifying the members of the co-reference set for a given
entity is an important problem in text mining and natural language processing.

Our interest in identifying such co-reference sets arises in the context of our
system Lydia [1, 2, 3, 4], which seeks to build a relational model of people, places,
and things through natural language processing of news sources. Indeed, we
encourage the reader to visit our website (http://www.textmap.com) to study
our analysis of recent news obtained from over 500 daily online news sources. In
particular, we display the members of each of the 100,000 synsets we reconstruct
daily (on a single commodity computer) from the roughly 150,000 entity-names
we currently track.

Our algorithm for identifying co-referring name sets accurately and efficiently
on a large scale involves optimizing our algorithm’s three steps:

1. Morphological Similarity – The scale of our problem makes it infeasible to
explicitly compare each pair of names for possible co-reference. First, we
narrow our search space by identifying candidate pairs for analysis on a
strictly syntactic basis via morphologically-sound hashing techniques.

2. Contextual Similarity – Next, we determine how similar a pair of names is
based on the contexts in which they are used. The scale of our problem makes
it infeasible to explicitly analyze all text references associated with each pair

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 12–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of candidate names. Instead, we propose methods using co-occurrence analy-
sis to other entities to determine the probability that they are co-referent by
context.

3. Evidence Combination and Clustering – Finally, we combine our measures of
contextual and morphological similarity in order to cluster the names. The
problem of clustering names is complicated by the vast difference in the num-
ber of references between popular and infrequently-used names. The strength
of our contextual evidence is thus substantially weaker for unpopular names.
We propose and evaluate methods for dealing with this problem.

Our problem is different from traditional cross-document co-reference analysis
(see Section 2.1). In that problem, there is a set of documents that all mention
the same name and the difficulty is clustering the documents into sets that are
mentioning the same entity. In our problem, there is a set of documents that
mention the many entities each possibly with multiple names and we want to
cluster the names. This difference, combined with our need to manage the daily
flow and scale of the news presented challenges that separate us in the following
ways: (1) the use of entity co-occurrence lists as the sole feature for contextual
analysis, (2) our high-speed dimension reduction techniques (based on k-means
clustering and graph partitioning algorithms) to improve the quality of our con-
textual analysis and the efficiency of our algorithms, (3) our use of morphological
similarity hashing techniques to avoid the need for pairwise-similarity testing of
all name pairs, and (4) our use of variable precision phonetic hashing in order to
tune the performance of our morphological similarity phase.

The rest of this paper is organized as follows. Section 2 surveys previous
work on this and other problems. Section 3 discusses notions of morphological
similarity, while Section 4 shows how we compute the probability that two names
are co-referential from their respective co-occurrence lists. Section 5 discusses
issues that arise in clustering. Experimental results are given in Section 6. We
present our conclusions in Section 7.

2 Related Work

The problem of identifying co-reference sets has been widely studied in a variety
of different contexts. In this section, we survey related work.

We now describe work on three related problems in the subsections below,
namely, cross-document and in-document co-reference resolution in natural lan-
guage processing and record linkage in databases.

2.1 Cross Document Co-reference Resolution

The complementary problem of cross-document co-reference has been examined
fairly extensively.

Bagga and Baldwin [5] present an algorithm which extracts each sentence
in each document that contains an ambiguous name and forms a summary of
the document with respect to the entity. They then use the vector space model
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to compute the similarity of two such summaries. If the similarity of the two
documents is above a threshold, then they consider the two documents to be
referring the same person. They concluded that good results could be achieved by
looking at the context surrounding the occurrences of the name and comparing
documents using techniques from information retrieval.

Mann and Yarowsky [6] present a partially supervised algorithm for this prob-
lem. The algorithm takes as input either a small set of seed tuples for each of
a small set of personal attributes from which it generates extraction patterns
or a set of hand-crafted extractions for each of the personal attributes. Next, it
uses these values along with other contextual clues as the feature vector for each
document before using bottom-up centroid agglomerative clustering.

Gooi and Allan [7] study statistical techniques for cross-document co-reference
resolution. Like Bagga and Baldwin, they use snippets of text around each men-
tion of the ambiguous name. They compare agglomerative clustering, repeatedly
merging the closest pair of clusters, with incremental clustering, either adding
each point to an existing cluster or starting a new singleton cluster, and KL-
divergence as a distance function with cosine similarity. They conclude that
agglomerative clustering performs better than incremental clustering, however
incremental clustering is much more time efficient. They also conclude that co-
sine similarity performs better using KL-divergence.

2.2 Within Document Co-reference Resolution

The natural language processing community has extensively studied the problem
of within document co-reference resolution, finding chains of noun phrases that
refer to the same things. For example, in a news article, Dick Cheney may later
be referred to as Vice President, he, or Mr. Cheney.

Ng and Cardie [8] present a supervised machine learning-based algorithm for
within document co-reference resolution. They use a decision tree classifier to
classify each pair of noun phrases in a document as either co-referring or not
and a clustering algorithm to resolve conflicting classifications. They experiment
with different feature sets, clustering algorithms, and training set selection algo-
rithms. They conclude that linking a proper noun phrase to its most probable
previously occurring co-referring phrase is a better way of clustering, that a
training set selection algorithm that is designed for this clustering algorithm
is superior, and while adding features can be helpful, too many can degrade
performance.

Bean and Riloff [9] present an unsupervised approach to co-reference reso-
lution that uses contextual role knowledge to determine if two noun phrases
co-refer. First they identify easy-to-resolve co-referring pairs and use them as
training data. Information extraction patterns are then used to generate in-
formation about the role each noun phrase plays in the text. The information
extracted from the training data is used to help resolve the other pairs in the
corpus. They show that this phase increases recall substantially with just a slight
decrease in precision.
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2.3 Record Linkage

Our co-reference set identification problem is similar to the record linkage prob-
lem from data mining. The problem arises when there is no shared, error-free
key field to join on across databases. Consider two tables containing informa-
tion about people from two different databases. Even if both databases used
the person’s name and address as the primary key, conventions concerning ab-
breviations and word usage may differ, and typos and misspellings may appear
in either field. The goal is to identify which records correspond to the same
entities.

Hernandez and Stolfo [10] present two different techniques for large databases.
The first approach sorts the data on some key and only considers two records for
a merge if they are in a small neighborhood of each other. The second clusters
the records in such a way that two records will be in the same cluster if they
are potentially referring to the same entity. Finally, they propose taking the
transitive closure of independent runs of the above algorithms, with independent
key fields, as the final merge. They show that this multi-pass algorithm is superior
to all the other algorithms that they consider.

Cohen and Richman [11] consider two problems: (1) taking in a pair of lists
of names and determining which pairs of names in the different lists are the
same and (2) taking in a single list of names and partitioning them into clusters
that refer to the same entity. They propose adaptive learning-based matching
and clustering methods to solve either of these problems. Their feature vector
includes whether one string is a substring of the other and the edit distance
between the two strings.

3 Morphological Similarity

With hundreds of thousands of names occurring in a large corpus, it is intractable
to compare every pair as potentially co-referential. Further, most of these com-
parisons are clearly spurious, and thus would increase the possibility of false
positives. We propose that most pairs of co-referential names result from the
following set of morphological transformations:

– Subsequence Similarity – Taking a string subsequence of a name is one way
of generating aliases of that name. For example, Ford Motor Co. is often
referred to as Ford and George W. Bush is also called George Bush. To
identify these pairs, we examine all 2n possible string subsequences of each
n-word name, hashing the name on each of its subsequences. Note that n,
the number of words in a name, is bounded by about 10. Any subsequence
matching another name implies potential morphological compatibility.

– Pronunciation Similarity – The Metaphone [12] algorithm returns a hash
code of a word such that two words share the same hash code if they have sim-
ilar English pronunciations. Here we say that two names are morphologically-
compatible if they have the same metaphone hash code. Metaphone is
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useful in identifying different spellings of foreign language names (e.g. Vic-
tor Yanukovich and Viktor Yanukovych) as possibly co-referential. In Sec-
tion 3.1, we detail our methods for tuning the performance of this aspect of
morphological similarity using variable precision phonetic hashing.

– Stemming – We use a Porter stemmer [13] to stem each word of each name
and use the stem as a hash code for each name. A hash code collision means
that two names have morphologically-compatible names. Stemming can be
used to identify pairs like New York Yankee and New York Yankees.

– Abbreviations – If one name is an abbreviation of another, then we say that
they are morphologically compatible. For example JFK and John F. Kennedy
are both co-referential with John Fitzgerald Kennedy. To find all names that
are abbreviations of an name, we check if any of the 2n possible abbreviations
of the name’s n-words are also in our corpus.

We observe that there is a notion of degree of morphological similarity. For
example, George Bush is more likely to be co-referential with George W. Bush
than U.S. is with Assistant U.S. Attorney Richard Convertino. For each of our
notions of morphological similarity we have a different measure of the degree of
similarity. For example, for pronunciation similarity, we model the generation of
aliases as a stochastic “typing” process where the probability of a mis-type is a
constant. Then we compute the probability that one name was “typed-in” when
the other was intended.

3.1 Variable Precision Phonetic Hashing

Several (e.g. [12, 14, 15]) phonetic hashing schemes have been developed to work
well on a specific data set or for specific performance levels. No methods ex-
ist that allow the hashing scheme to be parameterized to give different preci-
sion/recall tradeoffs. In this section we investigate phonetic hashing schemes that
have an adjustable parameter giving a range of operating points with different
precision/recall tradeoffs.

Given a query string, we envision a sequence of transformations from the query
string to an empty or null string, where each transformation is a new version of
the string that has had some tokenization or weakening applied to it. We can
model the space of transformations on the universe of strings as a graph. For
example the name ’Wright’, is shown in Figure 1, with a possible transformation
sequence.

The weight of each change is determined by how drastic it is. So the distance
from ’Writ’ to ’Rit’ should be relatively small when compared with the distance
from ’Rt’ to ’R’. This tokenization path gives us different versions of the query
name to use in different tolerances of the hashing function. We also see that the
path for the name ’Rite’ eventually joins the path of ’Wright’. The name ’Reston’
similarly joins the path, but lower down; suggesting that ’Rite’ and ’Wright’ are
closer to each other then to ’Reston’.

A particular tokenizer in this scheme specifies a set of n-gram substitution
rules, along with weights for the rules. The rules are applied in a lowest cost rule
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Reston → Restn � Rst ↘
Wright → Writ → Rit → Rt → R →

Rite ↗

Fig. 1. Tokenization Path of the Name ’Wright’

first order. An example set of rules that could have generated Figure 1 is shown
below. This table says the cheapest rule is substituting a ’t’ for ’ght’. The next
cheapest is substituting an ’r’ for ’wr’ only if at the start of a query. Finally
there are three deletion rules. The vowel deletion is considered less destructive,
and is given a lower weight then the consonant deletion.

– ght → t;0.2
– wr → r;0.3
– (a|e|i|o|u) → ;1
– (t|r) → ;5

To complete the definition of the hash function we must specify how to select
the point on the tokenization path to operate at. Among the many candidates
for these scoring methods, our experimentation showed that selecting the code
that is a fixed distance from the null string works best.

Table 1 shows how we can vary the precision and recall of our hashing algo-
rithm to get different tradeoffs. For a hand-created set of names extracted from
our test set (see Section 6), we measured the precision and recall of our hashing
algorithm at a range of its operating points. For comparison, we also show the
precision and recall of three other phonetic hashing algorithms. It shows how
we can use our algorithm to dial in the precision and recall of our notion of
pronunciation similarity.

Table 1. Precision and Recall for our Variable Precision Phonetic Hashing and fixed
precision hashing

Code Weight Precision Recall
0 0.002 1
120 0.150 0.909
121 0.139 0.818
141 0.157 0.727
146 0.293 0.636
167 0.360 0.545
172 0.442 0.454
187 0.662 0.363
229 1.000 0.090
Metaphone 0.715 0.732
Soundex 0.468 0.797
NYSIIS 0.814 0.672



18 L. Lloyd, A. Mehler, and S. Skiena

4 Contextual Similarity

Our mental model of where an entity fits into the world depends largely upon
how it relates to other entities.

We predict that the co-occurrences associated with two co-referential names
(say Martin Luther King and MLK) would be far more similar than those of
morphologically-similar but not co-referential pairs (say Martin Luther King
and Martin Luther). Thus we use the vector of co-occurrence counts for each
name as our feature space for contextual similarity.

We identified two primary technical issues in determining contextual similarity
using this feature space: (1) dimension reduction and (2) functions for computing
the similarity of two co-occurrence lists. Each of these will be described in the
following subsections.

4.1 Dimension Reduction

In the experimental run of 88, 097 newspaper days of text we used throughout our
experiments (details in Section 6), we encountered 174, 191 different names that
occurred more than 5 times. This implies an extremely sparse, high-dimensional
feature space – large because each additional entity name represents a new di-
mension, and sparse because a typical entity only interacts with a few hundred
or so other entities even in a large text corpus.

Our experiments show that simple techniques which hunted for identical terms
among the 100 or so most significant entries on each co-occurrence list failed,
because the most significantly co-occurring terms for an name were highly unsta-
ble, particularly for low frequency names. Much more consistent were “themes”
of co-occurring terms. In other words, while the most significant associations of
George Bush and “W” might have relatively few names in common, both will be
strongly associated with “Republican” and “Texas” themes.

Dimension-reduction techniques provide a way to capture such themes, and
can improve both recognition accuracy and the computational efficiency of co-
reference set construction. We examined two different dimension-reduction tech-
niques based on creating crude clusters of names, then project our co-occurrence
lists onto this smaller space.

– K-means clustering – This widely-used clustering method is simple and per-
forms well in practice. Beginning with k randomly selected names as initial
cluster centroids, we assign each name to its closest centroid (using cosine
similarity of co-occurrence lists) and recompute centroids. After repeating
for a given number of iterations (5, in our case) we assign each name to its
closest centroid and take this as our final clustering.

– Graph partitioning – The problem of graph partitioning seeks to partition
the vertices of a graph into a small number of large components by cutting a
small number of edges. Such components in a graph of co-occurrences should
correspond to “themes”, subsets of terms which more strongly associate with
themselves than the world at large. Thus we propose graph partitioning as a
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potential dimension reduction technique for such relational data – the names
in each component will collapse to a single dimension.

Although graph partitioning is NP-complete [16], reasonable heuristics ex-
ist. In particular, we used METIS[17], a well-known program for efficiently
partitioning large weighted graphs into k high-weight subgraphs, with k be-
ing a user-specified parameter. Our graph contains a node for every name
and an edge between every pair of nodes (x, y) if they co-occur with each
other at least once. The weight assigned to each edge is the cosine similarity
between the co-occurrence lists of x and y.

4.2 Measuring Contextual Similarity

Given two names, with their co-occurrence lists projected onto our reduced di-
mensional space, we now want a measure of how similar they are. We consider
two different approaches: (1) they can be viewed as probability distributions and
be compared by KL-divergence or (2) they can be viewed as vectors and com-
pared by the cosine of the angle between the vectors. We detail each of these
potential measures here.

KL-Divergence. The KL-Divergence is an information theoretic measure of
the dissimilarity between two probability distributions. Given two distributions,
the KL-Divergence of them is defined by

KL(p, q) =
∑
x∈X

p(x) log
p(x)
q(x)

To use this measure, we turn each co-occurrence list into a probability distri-
bution for each name i,

p̂i(j) =
number of co-occurences between i and j

total number of co-occurrences for i

As a discounting method for probability-0 pairs, we do linear smoothing of all
probabilities with the background distribution setting

pi(j) = αp̂i(j) + (1− α)bg(j)

where
bg(j) =

total occurrences of names in cluster j
total number of entity occurrences in corpus

Cosine Similarity. A standard way of comparing contexts views the two con-
texts as vectors in a high dimensional space and computes the cosine of the angle
between them. [5] proposed this technique for the similar problem of personal
name disambiguation. We use the term frequency-inverse document frequency
of each vector position, we weight each term in the vector by the inverse of the
number of occurrences it has in the corpus. Letting N be the number of sentences
in the corpus, our score is
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d(x, y) =
k∑

i=0

jp∗x(i) · jp∗y(i)

where jpx(i) the number of co-occurrences between i and x, weighted by log(N/
number of occurrences of i), and

jp∗x(i) =
jpx(i)
‖jpx‖

5 Issues in Clustering

Now that we know which pairs of names are morphologically-similar and their
degrees of morphological and contextual similarity, we need: (1) a way of com-
bining morphological and contextual similarities into a single probability that
two names are co-referential and (2) a method to cluster names into co-reference
sets. We discuss each problem below.

5.1 Combining Notions of Similarity

For each pair of morphologically-related names, we have measures of their mor-
phological and contextual similarities. We need a way to combine them into a
meaningful probability that the two names are co-referential.

For each measure of contextual similarity and for edit distance, we computed
the precision curve on our experimental corpus (see Section 6). Since the preci-
sion at a measure of similarity is the probability that a pair from the test set with
this amount of similarity were co-referential, we use these curves to turn each of
our notions of similarity into a probability. Assuming that these two probabili-
ties are independent, we now can compute the probability that these two names
are co-referential by multiplying the probabilities given by their morphological
and contextual similarities.

5.2 Clustering Algorithms

Once we have probabilities associated with each pair of morphologically related
names, we need to group them into co-reference sets. Because our system must
be able to handle large numbers of names, we must be careful of what kind of
clustering algorithm we choose. We experimented with two algorithms:

– Single link – Here we merge the clusters that two names are in if the proba-
bility that they are co-referential is above a threshold.

– Average link – Our algorithm merges two clusters if the weighted average
probability between names in each of the clusters is above a threshold.

6 Experimental Results

In order to optimize various parameters, decide which methods work best, and
verify our techniques, we ran a set of experiments against the same test set that
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was used to produce the precision curves described in section 5.1. Each of these
experiments is described below.

All of the experiments in this paper where conducted on a test set of 88, 097
newspaper-days worth of text, partitioned among 604 distinct publications.
These were taken from spidering that was performed between April 11, 2005
and November 5, 2005. We used a hand-crafted set of roughly 320 co-reference
sets from the entities in this corpus.

In Section 6.1, precision is given by tp
tp+fp , recall by tp

tp+fn , and f-score by
1

α 1
P +(1−α) 1

R

where tp = true positives, fp = false positives, and fn =
false negatives.

In Section 6.2 these measures are given by the B-cubed algorithm introduced
in [5]. For each name

Precision =
‖intersection of propsed set and true set‖

‖proposed set‖

Recall =
‖intersection of proposed set and true set‖

‖true set‖
and overall precision and recall are the averages of these values.

6.1 Optimizing Contextual Similarity Measure

Optimizing our contextual similarity phase involves the proper choice of (1) di-
mension reduction algorithm, (2) number of dimensions, and (3) contextual simi-
larity measure. For both of the dimension reduction algorithms(k-means, METIS)
and both of the distance measures(KL-Divergence,Cosine similarity), we recorded
the peak F-score as a function of number of dimensions from 10 to 290.

Figures 2 shows this plot. It shows that while the peak performance of all
four combinations is to be comparable, KL-Divergence with METIS dimension
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Fig. 3. Threshold vs. Precision, Recall, and F-score for our clustering algorithms

reduction is to be the most robust to changes in k. For the rest of the analysis
in this paper, we used KL-divergence, METIS dimension reduction, and 150
dimensions.

6.2 Clustering Methods

The first clustering algorithm that we tried was simple single link clustering.
Figure 3(a) shows that it has decent peak performance, but is not very robust
to the setting of the threshold. Further, manual evaluation of the clusters that
are produced shows that it tends to create very long clusters, putting many
things into the same cluster that should not even be considered. For example,
the sequence George Bush → Bush → Bush-Cheney → Cheney → Dick Cheney
leads to George Bush and Dick Cheney being called co-referential.

The next clustering algorithm that we tried was weighted-average link.
Figure 3(b) shows that this has slightly better peak performance than single-link
clustering, but is much more robust in the setting of the threshold.

7 Conclusion

In this paper we present an algorithm to find sets of co-referential names. We
introduce the idea of morphological similarity, the notion that two names are
potentially co-referential based on the text that comprises the name. Then we
discuss the issues surrounding computing the contextual similarity of two names
and give two different measures. Clustering names given their morphological and
contextual similarities was discussed and we presented experimental results for
our system.
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Abstract. The most heavily used methods to answer conjunctive
queries on binary relations (such as the one associating keywords with
web pages) are based on inverted lists stored in sorted arrays and use
variants of binary search. We show that a succinct representation of the
binary relation permits much better results, while using space within a
lower order term of the optimal. We apply our results not only to conjunc-
tive queries on binary relations, but also to queries on semi-structured
documents such as XML documents or file-system indexes, using a vari-
ant of an adaptive algorithm used to solve conjunctive queries on binary
relations.

Keywords: conjunctive queries, intersection problem, succinct data
structures, labeled trees, multi-labeled trees.

1 Introduction

Consider the task of a search engine answering conjunctive queries: given a set
of keywords, it must return a list of references to the objects relevant to all
those keywords. These objects can be web-pages as in the case of a web search
engine like Google, or documents as in a search engine on a file system, or any
kind of data searched by keywords in general. Rather than roam the set of all
objects (which is usually huge — think about the set of web-pages indexed by
Google), a good search engine uses a precomputed index, which represents the
binary relation between the space of objects {1, . . . , n} = [n] and the space of
admissible keywords {1, . . . , σ} = [σ], so that it can be easily searched.

Usually, such an index is coded as a set of sorted arrays, so that the answer
to conjunctive queries is the intersection of those arrays. This intersection can
then be computed in time linear in the sum of the sizes of the array, but several
adaptive algorithms have been studied for the easier case where a small num-
ber of comparisons permits to check the result, with much better results than
linear [2, 3, 5, 6]. These intersection algorithms are all based on variants of the
binary search algorithm: as the cost of a search is logarithmic in the size of the
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array, this impacts on their complexity, in particular on “easy” instances where
the intersection is empty or where only a few comparisons are sufficient to check
the result of the intersection.

Our results are threefold:

– First, observing that the use of inverted lists in sorted arrays is far from
being a mandatory step to compute the intersection, we consider instead
succinct data structures to encode the binary relation, which also permits
much faster searches. We give two representations (Theorem 1) for binary
relations associating n objects with σ labels in t pairs from [n]×[σ]. Each
of these representations uses t

(
lg σ + o(lg σ)

)
bits, and supports queries in

time O(lg lg σ) or better (depending on the operator and on the encoding),
thus generalizing the results from Golynski et al. [9] on strings on large
alphabets. These results can be directly applied to the intersection problem
(Theorem 3), to improve the time complexity of the algorithm from Barbay
and Kenyon [3], and thus to reduce the time required to answer a conjunctive
query.

– Second, observing that a labeled tree is simply a tree in which each node is
associated with a label through a binary relation, we give a representation
for labeled trees (Theorem 2). This uses n

(
lg σ + o(lg σ)

)
bits and supports

both structure-based navigation operators in constant time and label-based
search operators in time O(lg lg σ) or better, improving on the space used
by the solutions from both Geary et al. [8] and Ferragina et al. [7] on labeled
trees. These results can be immediately generalized to multi-labeled trees
(such as XML documents or file-system indexes) where nodes are associated
with zero or more labels in t pairs (rather than only n pairs in labeled trees),
giving a representation (Corollary 1) which uses t

(
lg σ + o(lg σ)

)
bits and

supports the same operators in the same time.
– Third, observing the similarity between conjunctive queries and unordered

path-subset queries on labeled and multi-labeled trees, we prove tight up-
per (Theorem 4) and lower (Theorem 5) bounds on the complexity of any
randomized algorithm solving these queries, hence extending the results of
Barbay and Kenyon on the intersection problem [3] to unordered path-subset
queries on multi-labeled trees.

All our results concerning the running time of operators and algorithms are
expressed in the RAM model, where words of size Θ(lg(max{n, σ})) can be
accessed and processed in constant time.

The paper is organized as follows. In Section 2, we present our succinct data
structures for the three objects considered: binary relations in Section 2.1, la-
beled trees in Section 2.2, and multi-labeled trees in Section 2.3. The encoding
of binary relations and the encoding of labeled trees are combined to encode
multi-labeled trees. We describe in Section 3 the algorithms that search the
objects efficiently using those data structures: the adaptive algorithm for the
intersection using our encoding of binary relations in Section 3.1, and our new
adaptive algorithm for searching multi-labeled trees in Section 3.2. We conclude
in Section 4 with some perspectives on future work.
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2 Succinct Indexes

2.1 Binary Relations

Consider a binary relation R between an ordered set of n objects and an ordered
set of σ labels. Let t denote the cardinality of R, i.e. the number of pairs (object,
label) that are in R. In the context in which objects are references to web-pages,
and labels are keywords associated with the web-pages, such relations are used
to answer conjunctive queries, i.e. for a given set of keywords, to return all pages
that are associated with all the keywords in the set. Typically, such a relation is
encoded as a collection of postings lists, in which each list associates a sorted list
of web pages (objects) to a keyword (label), which can be intersected [2, 3, 5, 6]
to answer conjunctive queries.

Let α be a label from [σ], x be an object from [n], and r be an integer. We
propose a succinct encoding of the relation R that takes asymptotically minimal
space and supports the following operators:

– label rank(α, x), the number of objects labeled α preceding x;
– label select(α, r), the r-th object labeled α, if any, or ∞ otherwise;
– label nb(α), the number of objects labeled α;
– object rank(x, α), the number of labels associated with object x preceding

label α;
– object select(x, r), the r-th label associated with object x, if any, or ∞

otherwise;
– object nb(x), the number of labels associated with object x;
– table access(x, α), checks whether object x is associated with label α.

The naive encoding of such lists as sorted arrays uses t lgn + σ lg t bits of
space and supports label select(α, r) in constant time, but label rank(α, x)
requires time logarithmic in the number of objects associated with label α. It is
not clear how to support object rank(x, α) and object select(x, r) with such
an encoding. Each posting list can also be represented by a binary string of length
n, and encoded using Clark and Munro’s [4] encoding to support the operators
label rank and label select in constant time. However, this representation
uses a total of σn + o(σn) bits, which is too much in practice, especially when
the number of pairs t is much smaller than σn.

The operators label rank and label select are extensions of the operators
string rank and string select defined by Golynski et al. [9], who only con-
sidered the case of strings, or in other words, the case where each object (i.e.
position in a string) is associated with exactly one label (i.e. a character from
an alphabet of size σ, that occurs at the given position in the string). We sup-
port the label rank and label select operators in the same time as theirs.
The operators object rank, object select are extensions of string access:
string access(x) gives the label associated with x (i.e., the character at posi-
tion x), the operators object rank and object select are used to navigate in
the set of labels that are associated with a given object. The techniques from
Golynski et al. are not directly applicable to the case of binary relations, however
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we use similar ideas and obtain an efficient implementation of the new operators
object rank, object select, label nb, object nb and table access. In what
follows, we use two encodings described by Golynski et al.: select encoding and
access encoding, and extend them to binary relations.

Theorem 1. Consider a binary relation on [n] × [σ] of cardinality t. Assume
that each object is associated with at least one label and each label is associated
with at last one object. Then there are two encodings (named label encoding
and object encoding), each using t

(
lg σ + o(lg σ)

)
bits, that support the defined

operators with the following run-times:

label object
label rank(α, x) O(lg lg σ) O(lg lg σ lg lg lg σ)
label select(α, r) O(1) O(lg lg σ)
label nb(α) O(1) O(1)
object rank(x, α) O

(
(lg lg σ)2

)
O(lg lg σ)

object select(x, r) O(lg lg σ) O(1)
object nb(x) O(1) O(1)
table access(α, x) O(lg lg σ) O(lg lg σ)

where x ∈ [n], α ∈ [σ], and r is a positive integer.

Proof (sketch). Without loss of generality, we assume that σ≤n: the construction
is similar in the symmetric case. We reduce the problem of encoding a binary
matrix of size σ×n to the encoding of n/σ matrices of size σ×σ each, using
the same technique as Golynski et al [9]: we call this step a domain reduction.
Let tM denote the number of ones in one of the smaller matrix M , and let
the operators row rank, row select, column rank and column select have the
same functionalities as the operators label rank, label select, object rank
and object select respectively, but restricted to the smaller matrices, e.g.
row rank(i, j) is defined only for j ≤ σ. This reduction allows the implemen-
tation of the operators label rank, label select, object rank, object select
using the operators row rank, row select, column rank, column selectwith an
acceptable space and time overhead.

We represent a boolean matrix M of size σ×σ by two strings: COLUMNS, on
alphabet [σ] and of length tM , such that the k-th symbol of COLUMNS corresponds
to the column index of the k-th pair in the row-major order1 traversal of M ; and
ROWS, a binary string of length tM + σ, such that the number of zeros between
the i-th and the i + 1-st one indicates how many ones are in the i-th row of M .
We say that COLUMNS is divided into σ parts by ROWS. See the following example:

M =

⎛⎜⎜⎝
0 1 0 0
1 1 1 0
1 0 0 1
0 1 0 0

⎞⎟⎟⎠ COLUMNS=2, 1, 2, 3, 1, 4, 2
ROWS =0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1

1 Row-major order lists the elements from the first row, then from the second row,
and so on.
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We encode COLUMNS using one of the two encodings from Golynski et al [9]
depending on the preferred time tradeoffs between different operators as men-
tioned in the statement of the theorem. These encodings use tM (lg σ + o(lg σ))
bits of space with the following time tradeoffs:

select encoding access encoding
string access O(lg lg σ) O(1)
string select O(1) O(lg lg σ)
string rank O(lg lg σ) O(lg lg σ lg lg lg σ)

The vector ROWS can be encoded using any succinct fully indexable dictio-
nary that supports in constant time the operators bin rank and bin select,
the rank and select operators on binary strings introduced by Jacobson [10]
and improved by Clark and Munro [4]. The operators column select(i, j) and
column rank(i, j) are based on searching for occurrences of symbol j in the string
COLUMNS, which is done through the string rank and string select operators
on COLUMNS and bin rank and bin select operators on ROWS. The operator
row select(i, j) corresponds to a call to the string select operator on the
i-th part of COLUMNS.

A naive implementation of the operator row rank(i, j) using a binary search
on the i-th part of COLUMNS takes O(lg x · complexity of string access) time,
where x ≤ σ is the length of the i-th part of COLUMNS, which is not good enough.
We use a sparsification idea similar to the one introduced by Golynski et al [9],
fixing the parameter z = lg σ and encoding every z-th character of the i-th part of
COLUMNS using a y-fast trie (as defined by Willard [13]). This structure supports
the rank operator in the “sparsified” string Y in time O(lg lg σ) using O(x/zσ) =
O(x) bits (which is O(t) for all values of i together). Note that row rank(i, j) ∈
[z rankY (j), z (rankY (j) + 1)], where rankY is the set rank, which denotes how
many elements in Y are smaller than j. The result of row rank(i, j) can be
computed using a binary search in an interval of size lgσ in time O(lg lg σ ·
complexity of string access).

The operator label nb(α) can be done in constant time using ROWS. The
operator object nb(x) can also be done in constant time by maintaining an
additional bit vector similar to ROWS that counts the numbers of occurrences for
each column. The operator table access(i, j) can be computed either as the
difference between row rank(i, j + 1) and row rank(i, j), or equivalently as the
difference between column rank(i + 1, j) and column rank(i, j).

The encoding of COLUMNS uses t(lg σ+o(lg σ)) bits (summed over all M). The
encodings of y-fast tries and ROWS vectors use O(t + n) bits in total, hence the
total space of t

(
lg σ + o(lg σ)

)
bits for each encoding. 	


Note, that the operators described above are “symmetrical” with respect to
interchanging roles of objects and labels, so that we can assume that n ≥ σ.
The space used by the above data structure is almost optimal (equal to the
information-theoretical minimum plus a lower order term) under the assumption
that the average number of ones per column is small, namely if t/n = σo(1). In
this case the lower bound suggested by information theory, equal to lg

(
nσ
t

)
, is
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roughly t
(
lg(nσ) − lg t + O(1)

)
= t

(
lg σ − o(lg σ)

)
, which is close to the space

used by our encodings, t(lg σ + o(lg σ)).

2.2 Labeled Trees

An ordinal tree is a rooted tree in which the children of a node are ordered
and specified by their rank. Geary et al. [8] proposed an encoding for ordinal
trees which supports in constant time the following operators, called navigation
operators:

– tree ancestor(x, i), the i-th ancestor of node x for i ≥ 0;
– tree rankpre/post(x), the position of node x in the pre or post order traversal

of the tree;
– tree selectpre/post(r), the r-th node in the pre or post order traversal of

the tree;
– tree child(x, i), the i-th child of node x for i ≥ 1;
– tree child rank(x), the number of left siblings of node x;
– tree depth(x), the depth of x (number of edges in the path from root to x);
– tree nbdesc(x), the number of descendants of x;
– tree deg(x), the degree of x, i.e. its number of children.

Consider a set of σ labels, and an ordinal tree of n nodes such that each node
is assigned a label: this is a labeled tree [7, 8]. Let α be a label from [σ] and x
be a node from [n]. We define the following operators on labeled trees, for the
pre-order traversal of the tree:

– labeltree desc(α, x), the first descendant of x which is labeled α, or ∞ if
there is none;

– labeltree nbdesc(α, x), the number of descendants of x that are labeled α;
– labeltree anc(α, x), the ancestor of x which is labeled α and closest to the

root, or ∞ if there is none;

In a manner similar to Ferragina et al. [7], we encode the structure of the
tree separately from the labels, but we encode it as the trace of the pre-order
traversal of the tree, and we encode the structure of the tree using Geary et
al.’s [8] encoding for unlabeled trees.

Theorem 2. Consider a labeled tree of n nodes and σ labels. There is an en-
coding using n

(
lg σ + o(lg σ)

)
bits that supports in constant time the naviga-

tion operators on the structure of the tree and in time O(lg lg σ) the operators
labeltree anc, labeltree desc and labeltree nbdesc along with the opera-
tors string rank, string select and string access on the pre-order traversal
of the labels of the tree.

Proof (sketch). Represent the structure of the tree as an ordinal tree encoded
using the encoding for unlabeled ordinal trees defined by Geary et al. [8]: this
takes 2n+o(n) bits, and supports the navigation operators on the tree structure
in constant time.
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The labels are extended by one bit (i.e. to an alphabet of size 2σ) such that
any node x originally labeled α is now labeled:

– α∗ if x has no ancestor labeled α (but eventually some descendants);
– α+

∗ if x has at least one ancestor labeled α.

The sequence of extended labels is encoded in pre-order, using the representa-
tion of Golynski et al. [9] which uses n(lg(2σ)+o(lg(2σ))) = n(lg σ+o(lg σ)) bits
and supports the operators string access, string select and string rank on
the pre-order traversal of the labels of the tree in the times claimed.

The operator labeltree anc(α, x) is supported by checking for the last node
y labeled α∗ in pre-order before x, which takes time O(lg lg σ), and checking
that y is an ancestor of x, which takes constant time. The symmetric operator
labeltree desc(α, x) is supported by checking for the first node y labeled α∗ or
α+
∗ in pre-order after x, which takes time O(lg lg σ), and checking that y is a de-

scendant of x, which takes constant time. The operator labeltree nbdesc(α, x)
is easily supported via a combination of calls to the navigation operators, and
two calls to the operator string rank. Overall, the encoding uses 2n + o(n) +
n(lg σ + o(lg σ)) = n

(
lg σ + o(lg σ)

)
bits. 	


The information-theoretic lower bound for storing a labeled tree on n nodes
with σ labels is asymptotically n

(
lg σ−o(lg σ)

)
. Hence our encoding, which uses

n
(
lg σ+o(lg σ)

)
bits, differ from this bound by a lower order term in σ. Note that

other encodings with similar results can be obtained using the other encodings
proposed by Golynski et al.; we developed here only the most appropriate for
our specific application.

2.3 Multi-labeled Trees

XML documents and file systems can be seen as tree-structured documents,
but the labeled tree model described in the previous section is too restrictive to
represent them, as several labels are associated with each leaf in XML documents,
and several labels are associated with each internal node (folder) or leaf (file)
in a file system. We consider an extension of labeled trees where any number of
labels can be associated with each node.

Definition 1. A multi-labeled tree is an ordinal tree on n nodes together
with a set of σ labels, and a set of t pairs from [n] × [σ]. The operators are the
same as those on labeled trees: structure-based navigation operators (as defined
by Geary et al. [8]) and label-based operators (as defined in Theorem 2).

The results on binary relations from Section 2.1 combine very easily with the
results on labeled trees from Section 2.2 to give an encoding supporting efficiently
the operators on multi-labeled trees:

Corollary 1. Consider a multi-labeled tree on n nodes and σ labels, associated
in t pairs. There is an encoding using t

(
lg σ + o(lg σ)

)
bits and supporting the

same operators as the encoding of Theorem 2 and in the same time.
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Proof. The operators supported on labeled trees are extended to multi-labeled
trees by replacing each operator defined on strings [9] by its equivalent on binary
relations as defined in Theorem 1, in the first encoding (named label), which
supports all operators in time O(lg lg σ) or better. 	


“Music”

“Class”

· · ·

“Pop Jazz”

· · ·

“Pop Rock”

· · ·

Fig. 1. A simplistic exam-
ple of File System

1=Music, 2=Class,
3=Pop, 4=Jazz, 5=Rock.

{1}

{2}

· · ·

{3,4}

· · ·

{3,5}

· · ·

Fig. 2. The correspond-
ing Multi-Labeled Tree

· · · · · · · · ·

1 2 · · · 3 4 · · · 3 5 · · ·
0 1 0 1 · · · 0 0 1 · · · 0 0 1 · · ·

Fig. 3. The correspond-
ing succinct encoding

Figure 1 represents a simplistic view of a personal file system organizing music
files. Figure 2 shows its representation as a multi-labeled tree, where the text
associated with each node is replaced by numbers from the range [1, σ]. Figure 3
shows the succinct encoding of this multi-labeled tree: the structure of the ordinal
tree, the string representing the labels in pre-order, and a binary string where
ones separate sequences of zeroes encoding the number of labels associated to
a node. As in Section 2.1, the space used by our structure is optimal under the
assumption that t/n = σo(1).

3 Applications

3.1 Efficient Posting Lists

Several algorithms have been proposed for computing the answer to conjunctive
queries on a binary relation, through the intersection of inverted lists in sorted
arrays. The intersection of sorted arrays has been studied from several points of
view, all of which are based on various search methods in sorted arrays: Several
people have studied the intersection of a pair of sorted arrays, Baeza-Yates [1]
being the most recent. Other efforts have been considering the intersection of
a larger number of sorted arrays [2, 3, 5, 6], measuring the performance of the
algorithms relative to the complexity of the description of a certificate of the
intersection, such as the set of comparisons performed by a non-deterministic
algorithm to check the result of the instance. We refer the reader to Figure 4 for
a simple example, and to the cited papers for more details.

These search methods are limited to a complexity logarithmic in the size of the
array. But the use of inverted lists in sorted arrays is far from being a mandatory
step to computing the intersection. Our implementation for binary relations
described in Section 2.1 permits us to search faster in the list of references
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Music → A1 1 8 10 12 15 17 19 → 1 8 10 12 15 17 19
Jazz → A4 2 4 6 9 11 13 20 → 2 4 6 9 11 13 20
Rock → A5 3 5 7 14 16 18 21 → 3 5 7 14 16 18 21

Fig. 4. An example of how a conjunctive query corresponds to the intersection of
sets. A non-deterministic algorithm can check that the intersection is empty in δ = 4
comparisons (1 < 2, 7 < 8, 13 < 14, 19 < 20). Barbay and Kenyon’s algorithm performs
8 < δk searches (1 < 2 < 3 < 8 < 9 < 14 < 15 < 20 < 21). Most intersection
algorithms use variants of binary search in the sorted array. We propose to use the
rank operator on a succinct encoding of the binary relation.

associated with an object, and hence improves the performance of intersection
algorithms.

Theorem 3. Consider a set of objects [n] and a set of labels [σ], associated in
t pairs from [n]× [σ], and a conjunctive query Q composed of k labels from [σ].
There is a deterministic algorithm solving Q in time O(δk lg lg σ), where δ is the
minimum number of operations performed by any non-deterministic algorithm
to check the result of Q.

Proof (sketch). Barbay and Kenyon [3, Theorem 3.3] proposed a deterministic
algorithm for the conjunctive query that uses O(δk) doubling searches. We re-
place the doubling search by a combination of label rank, label select and
label access operators, and the result follows. Suppose that x is initialized as
the first object of [n], and α as the first label of the query. If we introduce the
bogus object ∞, which matches all labels and is a successor to all objects, the
algorithm now goes as follows:

1. If x =∞, exit;
2. If k labels are matched, output x, set it to the next object matching α, and

go to 1;
Otherwise, set α to the next label from Q, in cyclic order;

3. If x has matches α, go to 2;
Otherwise, set x to the next object matching α, and go to 1. 	


3.2 File System Search

We introduce a new type of query to search in labeled and multi-labeled trees,
that corresponds to one of the most natural search query that one can perform
in a file-system.

Definition 2 (Unordered Path-Subset Query). Given a multi-labeled tree
and a set Q of k labels, find the set of nodes x, such that:

1. the rooted path to x contains nodes matching all the labels from Q; and,
2. this path contains no node satisfying (1) other than x.
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Such queries are motivated by the search in file systems, where the result cor-
responds to folders or files whose path matches the set of keywords. Multi-labeled
trees associate several keywords with each folder or file (such as the words and
extension composing its name) in an index of the file-system. Using techniques
similar to those used for the intersection problem, we prove the following result:

Theorem 4. Consider a Multi-Labeled Tree of n nodes and σ labels, associated
by t pairs. Given an unordered path-subset query composed of k labels, there is an
algorithm solving it which performs O(δk) operator calls in time O(δk lg lg σ),
where δ is the minimum number of operation performed by a non-deterministic
algorithm to solve the query.

Proof (sketch). Suppose that x is initialized to the root of the tree and that α
is initialized to the first label of the query. If we consider the nodes in pre-order,
and introduce the bogus node ∞ that matches all labels and is a successor to
all nodes, our algorithm proceeds as follow:

1. If x =∞, exit;
2. If k labels are matched, output x, set it to the next node matching α, and

go to 1; Otherwise, set α to the next label from Q in cyclic order;
3. If x has an ancestor labeled α, go to 2;
4. If x has a descendant labeled α, set it to the first such descendant, and

go to 2; Otherwise, set x to the next node matching α, and go to 1.

This algorithm cycles through the labels in the query set, maintains in x the
lowest node of the current potential match, counts how many labels are currently
matched, and eventually outputs the nodes matching the query.

The pre-order rank of successive nodes pointed to by x is strictly increasing
at each update, so that at any time, all pre-order predecessors of x have been
considered and have been output when adequate. Every k iterations of the loop
the algorithm considered at least as many nodes as a non-deterministic algorithm
would have in a single operation: it takes at most k steps to eliminate as many
potential result nodes as a non-deterministic algorithm, which can “guess” which
operation to perform to eliminate the largest number of potential result nodes.

When the pre-order rank of x reaches its final value, all nodes have been con-
sidered (hence the correctness), and the algorithm has performed 2δk operator
calls where a non-deterministic algorithm would have performed at least δ (hence
the complexity result). 	


We now prove that the number of operator calls performed by the above algo-
rithm is optimal for deterministic algorithms:

Lemma 1. Consider any deterministic algorithm Alg solving unordered path-
subset queries, and δ ≥ 1, k ≥ 2, n ≥ δ(2k+1) + 1, σ ≥ 2k + 1, and t ≥ n.
There is a random distribution D on multi-labeled trees of O(n) objects and O(σ)
labels, associated with O(t) pairs, and an unordered path-subset query composed
of k labels which can be solved by a non-deterministic algorithm in at most O(δ)
operations on any multi-labeled trees from D, such that Alg performs Ω(δk)
operator calls on average to solve instances from D.
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Proof (sketch). We define a distribution D on multi-labeled trees with δ branches
of 2k + 1 nodes such that any non-deterministic algorithm can show that the
unordered path-subset query composed of labels {1, . . . , k} has no match in δ op-
erations. We prove the lower bound by showing that no deterministic algorithm
can check that this query has no match in less than δk operations on average. 	

The result on deterministic algorithms from Lemma 1 combines trivially with the
Yao-von Neumann principle [11, 12, 14] to prove a lower bound on the complexity
of any randomized algorithm:

Theorem 5. Consider any randomized algorithm RandAlg solving unordered
path-subset queries, and δ ≥ 1, n ≥ δ(2k+1) + 1, k ≥ 2, σ ≥ 2k + 1, and t ≥ n.
There is a Multi-Labeled tree of O(n) nodes and O(σ) labels, associated in O(t)
pairs, and an unordered path-subset query composed of k labels which can be
solved by a non-deterministic algorithm in at most O(δ) operations, such that
RandAlg performs on average Ω(δk) operator calls to answer the query.

The proofs of these results is similar to their counterparts on the intersection
problem [3]. In particular, Theorems 4 and 5 show that a deterministic algorithm
performs as well as any randomized algorithm for unordered path-subset queries,
in terms of the number of operator calls.

4 Conclusion

We considered succinct data structures for binary relations, labeled trees and
multi-labeled trees, and their application to search algorithms in those struc-
tures. Our results are threefold:

– first, we give two succinct encodings for binary relations using asymptotically
optimal space and efficiently supporting in different time trade-offs the rank
and select operators on the rows and columns of the relation;

– second, we give a new representation for labeled trees, that we combine with
binary relations to represent multi-labeled trees;

– Third, we show that those encodings have applications to conjunctive queries
in binary relations and unordered path-subset queries in multi-labeled trees,
such as XML documents or file-system indexes.

Obvious research prospects are to extend the range of operators supported (e.g.
labeled child queries), and to apply similar encodings to other types of queries
(e.g. ordered sub-path, Twig Pattern and XPath queries).
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Abstract. The Range-Minimum-Query-Problem is to preprocess an ar-
ray such that the position of the minimum element between two spec-
ified indices can be obtained efficiently. We present a direct algorithm
for the general RMQ-problem with linear preprocessing time and con-
stant query time, without making use of any dynamic data structure. It
consumes less than half of the space that is needed by the method by
Berkman and Vishkin. We use our new algorithm for RMQ to improve
on LCA-computation for binary trees, and further give a constant-time
LCE-algorithm solely based on arrays. Both LCA and LCE have impor-
tant applications, e.g., in computational biology. Experimental studies
show that our new method is almost twice as fast in practice as previ-
ous approaches, and asymptotically slower variants of the constant-time
algorithms perform even better for today’s common problem sizes.

1 Introduction

The problem of finding the lowest common ancestor (LCA) of a pair of nodes
in a tree has attracted much attention in the past three decades, starting with
Aho et al. [1]. It is not only algorithmically beautiful, but also has numerous
applications, most importantly in the area of string processing and computa-
tional biology, where LCA is often used in conjunction with suffix trees. There
are several variants of the problem (see [2]), the most prominent being the one
where the tree is static and known in advance, and there are several queries to be
answered on-line. In this case it makes sense to spend some time on preprocessing
the tree in order to answer future queries faster. In their seminal paper [2], Harel
and Tarjan showed that an intrinsic preprocessing in time linear in the size of the
tree is sufficient to answer LCA-queries in constant time. Their algorithm was
later simplified by Schieber and Vishkin [3], but remained rather complicated.

A major breakthrough in practicable constant-time LCA-computation was
made by Berkman and Vishkin [4], and again, in a simplified presentation, by
Bender et al. [5, 6]. The key idea for this algorithm is the connection between
LCA-queries on trees and range minimum queries on arrays (RMQs). Basically,
an RMQ asks for the position of the minimum element between two specified in-
dices, and this problem was shown to be linearly equivalent to the LCA-problem

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 36–48, 2006.
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by Gabow et al. [7], in the sense that both problems can be transformed into each
other in time linear in the size of the input. The reduction from LCA to RMQ
is in fact a reduction to a restricted version of RMQ, where consecutive array
elements differ by exactly 1. The authors give an algorithm for this restricted
version of RMQ, which is then used to answer LCA-queries.

However, RMQs are not only of interest because they can be used to answer
LCA-queries, but have their own right to exist. A recent trend in text indexing
tries to substitute the powerful but rather space-consuming suffix tree by alter-
native array-based data structures, most prominently the suffix array, discovered
independently by Gonnet et al. [8] and by Manber and Myers [9]. While this data
structure supports string searches in time almost as good as suffix trees, Kasai et
al. [10] and Abouelhoda et al. [11] went one step further and showed that the ad-
dition of another array to the suffix array, namely the LCP-array, is sufficient to
simulate full tree traversals of the suffix tree. It is thus possible to change many
(but not all) algorithms based on suffix trees such that they operate on arrays
only. One important exception to this are algorithms that rely on constant-time
LCA-retrieval, such as computing longest common extensions of strings (LCEs),
and all algorithms based on constant-time LCE-computations.

It is well-known that LCA-queries on the leaves of a suffix tree correspond to
RMQs on the LCP-array. So an algorithm that solves the RMQ-problem would
make it possible to re-formulate many algorithms based on suffix trees and LCA-
retrieval such that they operate on arrays only. Unfortunately, the LCP-array
does not exhibit the nice property that subsequent elements differ by exactly
one, so the algorithm for the restricted RMQ-problem cannot immediately be
used for this purpose. Gabow et al. [7] give an algorithm to reduce the general
RMQ-problem to the LCA-problem by transforming the array into a special kind
of tree. Their method, explained in more detail in Sect. 2.2, has two major draw-
backs: First, it doubles the size of the input, and second, even more importantly,
it relies on dynamic structures (trees) during the preprocessing. This resembles
the suffix-tree/suffix-array duality: It is possible to infer the array from the tree;
nevertheless, direct construction algorithms for the array are well studied.

Our paper overcomes this very dilemma by presenting the first1 direct algo-
rithm for the general RMQ-problem with linear preprocessing time and constant
query time, without making use of any dynamic data structure (Sect. 3). It is also
less space-consuming than previous approaches, as it uses only 4n+O(

√
n logn)

words of extra space, a major improvement compared with the 9n+O(
√
n log2 n)

words plus the space for the tree used by the currently best algorithm. (Both O-
constants are small.) In Sect. 4, we stress the impact of our new method by show-
ing that it leads to improvements in the LCA-computation for binary trees, and
further to the first constant-time LCE-algorithm solely based on arrays. In Sect.
5, we show that our RMQ-method is faster in practice than previous constant-
time approaches (and therefore also the methods from Sect. 4). We will also see
that for today’s common problem sizes it makes more sense to use methods that
answer long queries in constant time, but short queries in time logarithmic in

1 By the time of writing we were unaware of another direct algorithm for RMQ [12].
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the query length. These asymptotically slower RMQ-algorithms are slightly less
space consuming than the constant-time approaches, and also faster in practice.

2 Definitions and Previous Results

The Range Minimum Query (RMQ) problem is defined as follows: given an
array A[1, n] of elements from a totally ordered set (with order relation “≤”),
rmqA(i, j) returns the index of a smallest element in A[i, j], i.e., rmqA(i, j) =
argmink∈{i,...,j}{A[k]}. (The subscript A will be omitted if the context is clear.)
The most naive algorithm for this problem searches the array from i to j each
time a query is presented, resulting in O(n) query time. As mentioned in the
introduction, we consider the variant where A is first preprocessed in order to
answer future queries faster. Following the notation from [6], we say that an
algorithm with preprocessing time p(n) and query time q(n) has complexity
〈p(n), q(n)〉. Thus, the naive method described above would be 〈O(1), O(n)〉,
because it requires no preprocessing.

The following definition [13] will be central for both our algorithm and that
of [4].

Definition 1. A Cartesian Tree of an array A[l, r] is a binary tree C(A) whose
root is a minimum element of A, labeled with the position i of this minimum.
The left child of the root is the Cartesian Tree of A[l, i− 1] if i > l, otherwise it
has no left child. The right child is defined similarly for A[i + 1, r].

Note that C(A) is not necessarily unique if A contains equal elements. To over-
come this problem, we impose a strong total order “≺” on A by defining A[i] ≺
A[j] iff A[i] < A[j], or A[i] = A[j] and i < j. The effect of this definition is just
to consider the ’first’ occurrence of equal elements in A as being the ’smallest’.
Defining a Cartesian Tree over A using the ≺-order gives a unique tree Ccan(A),
which we call the Canonical Cartesian Tree. Note also that this order results in
unique answers for the RMQ-problem, because the minimum is unique.

In [6] an algorithm for constructing Ccan(A) is given as follows. Let Ccan
i (A) be

the Canonical Cartesian Tree for A[1, i]. Then Ccan
i+1(A) is obtained by climbing up

from the rightmost leaf of Ccan
i (A) to the root, thereby finding the position where

A[i+1] belongs. To be precise, let v1, . . . , vk be the nodes of the rightmost path
in Ccan

i (A) with labels l1, . . . , lk, respectively, where v1 is the root and vk is the
rightmost leaf. Let m be defined such that A[lm] ≤ A[i+1] and A[lm′ ] > A[i+1]
for all m < m′ ≤ k. To build Ccan

i+1(A), create a new node w with label i+1 which
becomes the right child of vm, and the subtree rooted at vm+1 becomes the left
child of w. This process inserts each element to the rightmost path exactly once,
and each comparison removes one element from the rightmost path, resulting in
a total O(n) construction time to build Ccan(A).

2.1 An 〈O(n log n), O(1)〉-Algorithm for RMQ

We briefly present a simple method [6] to answer RMQs in constant time using
O(n log n) space. This algorithm will be used to answer ’long’ RMQs both in our
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algorithm and that of [4]2. The idea is to precompute all RMQs whose length
is a power of two. For every 1 ≤ i ≤ n and every 1 ≤ j ≤ �logn� compute
the position of the minimum in the sub-array A[i, i + 2j − 1] and store the
result in M [i][j]. Table M occupies O(n logn) space and can be filled in optimal
time by using the formula M [i][j] = arg mink∈{M [i][j−1],M [i+2j−1 ][j−1]}{A[k]}. To
answer rmq(i, j), select two overlapping blocks that exactly cover the interval
[i, j], and return the position where the overall minimum occurs. Precisely, let
l = �log(j − i)�. Then rmq(i, j) = argmink∈{M [i][l],M [j−2l+1][l]}{A[k]}.

2.2 The 〈O(n), O(1)〉-Algorithm for RMQ by Berkman and Vishkin

This section describes the solution to the general RMQ-problem as a combination
of the results obtained in [4] and [7]. We follow the presentation from [6].
±1RMQ is a special case of the RMQ-problem, where consecutive array ele-

ments differ by exactly 1. The solution to the general RMQ-problem given in [4]
(from now on called Berkman-Vishkin algorithm) starts by reducing RMQ to
±1RMQ as follows: given an array A[1, n] to be preprocessed for RMQ, build
Ccan(A) as shown above. Then perform a Euler Tour3 in this tree, storing the
labels of the visited nodes in an array E[1, 2n− 1], and their respective heights
in H [1, 2n− 1]. Further, store the position of the first occurrence of A[i] in the
Euler Tour in a representative array R[1, n]. The Cartesian Tree is not needed
anymore once the arrays E, H and R are filled, and can thus be deleted. The
paper then shows that rmqA(i, j) = E[±1rmqH(R[i], R[j])]. Note in particular
the doubling of the input when going from A to H ; i.e., H has size n′ := 2n− 1.
We now sketch the solution to the ±1RMQ-problem.

To solve ±1RMQ on H , partition H into blocks of size log n′

2 .4 Define two
arrays A′ and B of size 2n′

log n′ , where A′[i] stores the minimum of the ith block
in H , and B[i] stores the position of this minimum in H . Now A′ is prepro-
cessed using the algorithm from Sect. 2.1, occupying O( 2n′

log n′ log 2n′

log n′ ) = O(n)
space. This preprocessing enables out-of-block queries (i.e., queries that span
over several blocks) to be answered in O(1). It remains to show how in-block-
queries are handled. This is done with the so-called Four-Russians-Trick [15]
where one precomputes the answers to all possible queries when the number of
possible instances is sufficiently small. The authors of [6] noted that due to the
±1-property there are only O(

√
n′) blocks to be precomputed: we can virtually

subtract the initial value of a block from each element without changing the an-
swers to the RMQs; this enables us to describe a block by a ±1-vector of length
21/2 log n′−1 = O(

√
n′). For each such block precompute all 1

2
log n′

2 ( log n′

2 +1) pos-
sible RMQs and store them in a table P of total size O(

√
n′ log2 n′) = O(n). To

index table P , precompute the type of each block and store it in array T [1, 2n′

log n′ ].

2 The original description in [4] used a slightly more complicated algorithm, which is,
however, equivalent to the one presented here.

3 The name “Euler Tour” is derived from the Euler Tour-technique [14], and is not to
be confused with a Eulerian circuit.

4 For a simpler presentation we omit floors and ceilings from now on.
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The block type is simply the binary number obtained by comparing subsequent
elements in the block, writing a 0 at position i if H [i + 1] = H [i] + 1 and 1
otherwise. Table 1 summarizes the tables needed for the algorithm and their
sizes (ignore the last column for now).

Now, to answer rmq(i, j), if i and j occur in different blocks, compute (1) the
minimum from i to the end of i’s block using arrays T and P , (2) the minimum of
all blocks between i’s and j’s block using the precomputed queries on A′ stored in
table M , and (3) the minimum from the beginning of j’s block to j, again using
T and P . Finally, return the position where the overall minimum occurs, possibly
employing B. If i and j occur in the same block, just answer an in-block-query
from i to j. In both cases, the time needed for answering the query is constant.

3 An Improved 〈O(n), O(1)〉-Algorithm for RMQ

Our aim is to solve the general RMQ-problem without constructing the Carte-
sian Tree first; in fact, without employing any dynamic data structure such as
trees. We also wish to find a solution that does not double the input array, as
the Berkman-Vishkin algorithm does. The key to our solution is the following
theorem. (From now on, we assume that the ≺-relation is used for answering
RMQs, such that the answers become unique.)

Theorem 1. Let A and B be two arrays, both of size n. Then rmqA(i, j) =
rmqB(i, j) for all 1 ≤ i ≤ j ≤ n if and only if Ccan(A) = Ccan(B).

Proof. It is easy to see that rmqA(i, j) = rmqB(i, j) for all 1 ≤ i ≤ j ≤ n
iff the following three conditions are satisfied: (i) The minimum under “≺”
occurs at the same position m, i.e., argminA = arg minB = m. (ii) ∀1 ≤
i ≤ j < m : rmqA[1,m−1](i, j) = rmqB[1,m−1](i, j). (iii) ∀m < i ≤ j ≤ n :
rmqA[m+1,n](i, j) = rmqB[m+1,n](i, j). Due to the definition of the Canoni-
cal Cartesian Tree, points (i)–(iii) are true if and only if the root of Ccan(A)
equals the root of Ccan(B), and Ccan(A[1,m − 1]) = Ccan(B[1,m − 1]), and
Ccan(A[m + 1, n]) = Ccan(B[m + 1, n]). This is true iff Ccan(A) = Ccan(B). 	


It is well known that the number of binary trees with n nodes is Cn, where
Cn = 1

n+1

(2n
n

)
= 4n/(

√
πn3/2)(1 + o(1)) is the nth Catalan Number.

Lemma 1. It is possible to precompute the answers to all possible range mini-
mum queries on arrays of size s in a table P of size O(4s

√
s).

Proof. Because the Cartesian Tree is a binary tree with s nodes, table P has
O( 4s

s3/2 ) rows for each possible type of block. For each type we need to precompute
rmq(i, j) for all 1 ≤ i ≤ j ≤ s, so the number of columns in P is O(s2). 	


We now come to the description of our 〈O(n), O(1)〉-algorithm for the general
RMQ-problem. Like the ±1RMQ-algorithm presented in Sect. 2.2 it is an appli-
cation of the Four-Russians-Trick. However, Lemma 1 allows us to apply the trick
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Table 1. Additional space needed by the 〈O(n), O(1)〉-algorithms for RMQ (in words)

Array/Table Berkman-Vishkin our algorithm
E,H, R 2(2n−1)+n=5n−2 (arrays not needed)
A′, B, T 3 2n

log(2n)/2=12n/ log(2n) 3 n
log(n)/4=12n/ log n

M 4n+4n/log(2n)−4n log log(2n)/log(2n) 4n+8n/log n−4n log log n/log n

P
√

n log2 n/(8
√

2)(1+o(1))
√

n log1/2 n/(4
√

π)(1+o(1))
total (simpl.) 9n + O(

√
n log2 n) 4n + O(

√
n log n)

to any array (not only to those with the ±1-property), which leads to substan-
tial improvements. Start by partitioning the array A into blocks B1, . . . , Bn/s

of size s := log n
4 . Define two arrays A′ and B of size n/s = 4n

log n , where A′[i]
stores the minimum of block Bi, and B[i] stores the position of this minimum
in A. Now A′ is preprocessed using the algorithm from Sect. 2.1, occupying
O( 4n

log n log 4n
log n ) = O(n) space. Then precompute the answers to all possible

queries on arrays of size s and store the results in a table P . According to
Lemma 1, this table occupies O(4(log n)/4( log n

4 )1/2) = O(n) space. Finally, com-
pute the type of each block in A and store these values in array T [1, 4n

log n ]. As
this is not as obvious as in Sect. 2.2, it is explained in detail in the following
subsection. A query rmq(i, j) is now answered exactly as explained in the last
paragraph of Sect. 2.2, namely by comparing at most three minima, depending
on the blocks where i and j occur. Again, the time for answering a query is
constant, leading to the 〈O(n), O(1)〉 time bounds stated before. See Table 1 for
a comparison of the two methods (space for C(A) not included).

3.1 Computing the Block Types

In order to index table P , it remains to show how to fill array T ; i.e., how to
compute the types of the blocks Bi occurring in A in linear time. Thm. 1 implies
that there are only Cs different types of arrays of size s, so we are looking for a
surjection

type:As→{0, . . . , Cs − 1}, and type(Bi)=type(Bj) iff Ccan(Bi)=Ccan(Bj), (1)

where As is the set of arrays of size s. The reason for requiring that Bi and
Bj have the same Canonical Cartesian Tree is given by Thm. 1 which tells us
that in such a case both blocks share the same RMQs. The most naive way to
calculate the type would be to actually construct the Cartesian Tree of each
block, and then use an inverse enumeration of binary trees [16] to compute its
type. This, however, would counteract our aim to avoid dynamic data structures.
The algorithm in Fig. 1 shows how to compute the block type directly. It makes
use of the so-called ballot numbers Cpq [16], defined by

C00 = 1, Cpq = Cp(q−1) +C(p−1)q, if 0 ≤ p ≤ q �= 0, and Cpq = 0 otherwise. (2)

It can be proved that a closed formula for Cpq is given by q−p+1
q+1

(
p+q

p

)
[16], which

immediately implies that Css equals the s’th Catalan number Cs. If we look at
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Input: block Bj of size s
Output: type(Bj)

let rp be an array of size s + 11

rp[1] ← −∞2

q ← s, N ← 03

for i ← 1, . . . , s do4

while rp[q + i − s] > Bj [i] do5

N ← N + C(s−i)q6

q ← q − 17

end8

rp[q + i + 1 − s] ← Bj [i]9

end10

return N11

Fig. 1. An algorithm to compute the
type of a block
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Fig. 2. The infinite graph arising from
the definition of the ballot numbers. Its
vertices are

�
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�
�

�
�p q to

�
�

�
�(p − 1) q if p >

0 and to
�
�

�
�p (q − 1) if q > p.

the infinite directed graph shown in Fig. 2 then Cpq is clearly the number of
paths from

�
�

�
	p q to

�
�

�
	0 0 , because of (2). This interpretation will be important

for the proof of the following

Theorem 2. The algorithm in Fig. 1 correctly computes the type of a block Bj

of size s in O(s) time, i.e., it computes a function satisfying the conditions given
in (1).

Proof. (Sketch.) Intuitively, the algorithm simulates the algorithm for construct-
ing Ccan(Bj) given in Sect. 2. First note that array rp[1, s+1] simulates the stack
containing the labels of the nodes on the rightmost path of the partial Canonical
Cartesian Tree Ccan

i (Bj), with q + i − s pointing to the top of the stack (i.e.,
the rightmost leaf), and rp[1] acting as a ’stopper’. Now let li be the number of
times the while-loop (lines 5–8) is executed during the ith iteration of the outer
for-loop. Note that li equals the number of elements that are removed from the
rightmost path when going from Ccan

i−1(Bj) to Ccan
i (Bj). Because one cannot re-

move more elements from the rightmost path than one has inserted, and each
element is removed at most once, we have

∑i
k=1 lk ≤ i for all 1 ≤ i ≤ s. Thus,

the sequence l1, . . . , ls corresponds to a path from
�
�

�
	s s to

�
�

�
	0 0 in Fig. 2 (and

vice versa): in step i, go li steps upwards and one step to the left, and after
step s go upwards until reaching

�
�

�
	0 0 . The current position in the graph is�

�
�
	(s− i + 1) q , so every time one makes an upward step, N is incremented by

the number of paths that have been ’skipped’ by going upwards (line 6). This is
exactly C(s−i)q, the value of the cell to the left of the current one. The effect of
this incrementation is that paths going from the current position to the left are
assigned lower numbers than paths going upwards.
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The proof is completed by noting that a Canonical Cartesian Tree can be
uniquely described by l1, . . . , ls satisfying

∑i
k=1 lk ≤ i for all 1 ≤ i ≤ s. 	


4 Applications

This section sketches two easy (but non-trivial) new results on LCA and LCE
that can be obtained with our RMQ-algorithm. Apart from yielding simpler and
less space-consuming methods, we will see in Sect. 5 that one can also expect
improvements in running times.

4.1 A Space Saving Algorithm for LCA on Binary Trees

The LCA-problem [1] is formally defined as follows: given a rooted tree T with
n nodes and two vertices v and w, find the deepest node lcaT (v, w) which is
an ancestor of both v and w. Again, we consider the variant where T is static
and the queries are posed on-line. As mentioned in the introduction, the RMQ-
and the LCA-problem are closely related. In [7], it has been shown that an LCA-
query on T basically corresponds to a ±1RMQ-query on the heights of the nodes
visited during an Euler-Tour in T . Because the size of an Euler-Tour is exactly
2n− 1, this leads to an input doubling. We show in this section that using the
algorithm presented in Sect. 3 overcomes this problem for binary trees.

Let T be a rooted binary tree with n nodes. First perform an inorder tree
walk in T and store it in an array I[1, n]. Further, store the heights of each
node in H [1, n], i.e., H [i] is the height of node I[i] in T . Finally, let R be the
inverse array of I, i.e., I[R[i]] = i. It is then easy to see that lcaT (v, w) =
I[rmqH(R[v], R[w])]: the elements in I between R[v] and R[w] are exactly the
nodes encountered between v to w during an inorder tree walk in T , so the range
minimum query returns the position k in H of the shallowest such nodes. As the
LCA of v and w must be encountered between v and w during the inorder tree
walk, lca(v, w) is given by I[k].

The extra space needed is 7n + O(
√
n logn) words: 4n + O(

√
n logn) words

from Table 1 for the RMQ-preprocessing, plus 3n words for the arrays I,H and
R. This is an improvement compared with the 9n+O(

√
n log2 n) words needed

if one were to use the LCA-algorithm presented in [4]. We note that our result
could also be generalized to arbitrary trees; the space reduction, however, is only
relevant if the number of internal nodes is relatively close to the number of leaves.

4.2 An Improved Algorithm for Longest Common Extensions

The problem of longest common extensions is defined for a static string t of
size n: given two indices i and j, lcet(i, j) returns in O(1) the length of the
longest common prefix of t’s suffixes starting at position i and j; i.e., lces(i, j) =
max{k : ti,...,k = tj,...,k}.5 The problem has numerous applications in string

5 LCE is often defined for two strings t′ and t′′ s.th. i is an index in t′ and j in t′′. This
can be transformed to our definition by setting t = t′#t′′, where # is a new symbol.



44 J. Fischer and V. Heun

matching, e.g., for tandem repeats [17, 18], approximate tandem repeats [19],
and inexact pattern matching [20, 21]. The easiest solution [22] to LCE com-
bines suffix trees with constant-time LCA-retrieval: build a suffix tree T for
t and preprocess it for LCA-queries. Then lce(i, j) is given by the height of
node lca(vi, vj), where vi and vj are the leaves corresponding to suffix i and j,
respectively.

The crucial point to observe is that the LCA-queries are only posed on the
leaves of the suffix tree T for t. It is well-known [22,11] that there is a one-to-one
correspondence between the leaves of T and the elements of the corresponding
suffix array [8,9] SA, and also between the heights of T ’s internal nodes and the
LCP-array LCP for SA. Basically, SA describes the order of the suffixes of t, and
LCP stores the lengths of the longest common prefixes of t that are consecutive
in SA. This gives us all the ingredients we need for our new LCE-algorithm:
compute SA and its inverse SA−1 for t.6 Further, compute the LCP-array for t
in linear time [10,24] and store it in LCP. (SA is not further needed at this point
and can thus be deleted.) Then prepare LCP for RMQs as presented in Sect. 3.
It is now easy to see that lce(i, j) = rmqLCP(SA−1[i] + 1, SA−1[j]).

Note that this is the first algorithm that solves the LCE-problem without
using trees of any form.7 Apart from SA−1 and LCP, the space needed is 4n +
O(
√
n logn) words. Compare this with 9n + O(

√
n log2 n) words plus the space

for the Cartesian Tree that would be needed if one were to preprocess LCP
for RMQ using the Berkman-Vishkin algorithm (not to talk about the solution
based on suffix trees).

5 Practical Considerations

We now wish to evaluate the practical performance of our new algorithm by
comparing it with the Berkman-Vishkin algorithm. We further include three
non-〈O(n), O(1)〉-algorithms in our evaluation:

1. An algorithm that divides the array into blocks of size log n
2 and prepro-

cesses the block-minima for the out-of-block queries (i.e., it creates table
A′, B, T and M). The in-block-queries are handled naively (i.e., table P is
not created). Call this method 〈O(n), O(log n)〉2.

2. The same as above with block size log n
4 . Call this method 〈O(n), O(log n)〉4.

3. The naive 〈O(1), O(n)〉-algorithm that requires no preprocessing.

We performed all tests on an Athlon XP3000 with 2GB of RAM under Linux. All
programs were written in C++ and compiled using the same compiler options.
All our figures are averages over 5 repetitions of each experiment.

6 There are fast algorithms that construct SA and its inverse with only o(n) extra
space, e.g., [23].

7 While this has the consequence that the algorithms [17,19,20,21] can be implemented
without trees, it is not immediately obvious how to do this for [18] because it uses
the tree structure also for representing the tandem repeats.
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Fig. 3 shows the time spent on preprocessing by all methods except the naive
one, because the latter does no preprocessing. As expected, the Berkman-Vishkin
method is the slowest, which is due to the explicit construction of the Carte-
sian Tree. The preprocessing times for the other three methods are within the
same order of magnitude, where our method is slightly slower than the two
〈O(n), O(log n)〉-algorithms, as expected.
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The next test was to evaluate the influence of the query length on the query
time. We took a random array of length n = 107 and posed 106 random RMQs
on this array. Fig. 4 shows the average query time for all five methods, and there
are several points to note.

– As expected, the 〈O(1), O(n)〉-algorithm behaves linearly in the query length
(note the logarithmic x-axis). It is very fast for short queries (up to length
100), but out of the questions for longer queries.

– Our 〈O(n), O(1)〉-algorithm is about twice as fast as the one by Berkman
and Vishkin.

– The two methods with O(log n) query time are even slightly faster than our
constant-time method. This is because quite some arithmetic is necessary to
answer the in-block-queries in constant time. With block size log 107

2 ≈ 11
the overhead for this is much too big.

– For all methods except the naive one the query time levels off for very long
queries. We can only speculate that this is due to caching phenomena.

In a last test we checked up on the influence of the array length n on the query
time. We performed separate tests for short and long random queries, where short
means to be of length logn/2 such that only in-block-queries are to be handled.
Long queries were of length n/100. The largest arrays that we were able to handle
on our computer were of length ≈ 6× 107 for both tests. (Because of the input-
doubling, the largest array length for the Berkman-Vishkin method was≈ 3×107

for both tests.) See Fig. 5(a)–(b) for the results. In (a), the naive method is the
best, for the same reasons as given before. The other four methods show the
same performance as in Fig. 4. For the long queries in (b), the naive method
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was excluded for obvious reasons. Again, the two 〈O(n), O(log n)〉-algorithms
perform better than the 〈O(n), O(1)〉-methods, but our method is about twice
as fast as the Berkman-Vishkin algorithm. It is interesting to see that both in
(a) and (b) all methods exhibit a significant increase in running time at some
point. This happens at roughly n = 105, whereas the Berkman-Vishkin method
has this increase earlier. The effect can most likely be explained by the second-
level-cache of the processor. Because of the input-doubling in the Berkman-
Vishkin algorithm the cache size is reached earlier for this method. In summary,
all our tests show that for practical applications with arrays up to length 108

or so it is advisable to use the 〈O(n), O(log n)〉2-algorithm. Unfortunately, our
computer is not large enough to test when our algorithm becomes faster than
the 〈O(n), O(log n)〉-algorithms.
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Fig. 5. The influence of different array lengths on the query time (w/o preprocessing)

6 Summary and Discussion

We have seen a new method to answer range minimum queries in constant time
after a linear preprocessing step. The key to our algorithm was the strong con-
nection between Cartesian Trees and RMQs, reflected in the employment of the
Catalan- and ballot numbers. This led to substantial improvements over previ-
ous RMQ-algorithms, namely a space reduction of more than 50%, the complete
absence of dynamic data structures, and a boost in query time. We have also
seen how our method leads to space reductions in the computation of lowest
common ancestors in binary trees, and to an improved algorithm for the compu-
tation of longest common extensions in strings. On the practical side, we have
seen that it is sometimes wiser to spend a little bit less effort in preprocessing,
because even for large problem sizes (arrays up to length 108) asymptotically
slower algorithms may perform faster in practice.

We finally note that our approach can be combined with the ideas from [25] to
give the first succinct data structure for constant time RMQ, in the sense that
the extra space needed is only O(n) bits. We will elaborate on this in future work.
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Abstract. This paper revisits the problem of indexing a text S[1..n] to
support searching substrings in S that match a given pattern P [1..m]
with at most k errors. A naive solution either has a worst-case matching
time complexity of Ω(mk) or requires Ω(nk) space. Devising a solu-
tion with better performance has been a challenge until Cole et al. [5]
showed an O(n logk n)-space index that can support k-error matching in
O(m+occ+logk n log log n) time, where occ is the number of occurrences.
Motivated by the indexing of DNA, we investigate in this paper the fea-
sibility of devising a linear-size index that still has a time complexity
linear in m. In particular, we give an O(n)-space index that supports
k-error matching in O(m + occ + (log n)k(k+1) log log n) worst-case time.
Furthermore, the index can be compressed from O(n) words into O(n)
bits with a slight increase in the time complexity.

1 Introduction

In this paper, we consider the indexing problem for k-approximate matching:
given an integer k ≥ 0 and a text S[1..n] over a finite alphabet Σ, we want to
build an index for S such that for any query pattern P [1..m], we can report
efficiently all locations in S that match P with at most k errors. The number of
errors is measured in terms of either the Hamming distance (number of character
substitutions) or the edit distance (number of character substitutions, insertions
or deletions). The major concern is how to achieve efficient matching without
using a large amount of space for indexing. Typical applications include the
indexing of DNA or protein sequences for biological research.

To support exact matching (i.e., k = 0), suffix trees and suffix arrays are the
most well-known indexes. Suffix trees [15,12] occupy O(n) space and achieve the
optimal matching time, i.e., O(m+ occ), where occ is the number occurrences of
P in S.1 For suffix arrays [11], the space requirement is also O(n) space (but with
a smaller constant), and the matching time is O(m+ occ+ log n). Recently, two

1 Unless otherwise stated, the space complexity is measured in terms of the number
of words, where a word can store O(log n) bits.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 49–59, 2006.
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compressed solutions, namely, compressed suffix arrays [7] and FM-index [6],
have been proposed; they requires O(n) bits only and the matching time is
O(m + occ logε n), where ε > 0.

Indexing a string for approximate matching is a challenging problem. Even
the special case where only one error is allowed (i.e., k = 1) has attracted a
lot of attention. A simple solution is to use the suffix tree of S and repeatedly
search for every 1-error modification of the query pattern; this solution uses
O(n) space and the matching time is O(m2 + occ) [4]. With a bigger index of
size O(n log n), the matching time complexity has been improved tremendously
by a chain of results to O(m logn log logn+occ) [1], O(m log logn+occ) [2], and
finally O(m + occ + logn log logn) [5]. It is also known that indexes using O(n)
space takes O(m log n + occ) time [8] and O(m log logn + occ) time [9] for 1-
error matching. These two indexes can also be compressed to O(n) bits, and the
1-error matching time is O(m log2 n+occ logn) and O((m log logn+occ) logε n),
respectively, where ε < 1.

To cater for k = O(1) errors, one can perform a brute-force search on an one-
error index (i.e., repeatedly modify the pattern at different k − 1 positions and
search for one-error matches); the matching becomes very inefficient, involving a
factor of mk in the time complexity. Alternatively, one can improve the matching
time by including all possible erroneous substrings into the index; yet this seems
to require Ω(nk) space. It has been open whether there exists an index with
performance better than a navie solution. The breakthrough is due to Cole et
al. [5], who are able to avoid brute-force matching of a pattern with a moderate
increase in the index size. Precisely, their index occupies O(dk

k! n logk n) space and
supports k-error matching in O(m+ occ+ ck

k! logk n log logn) time for Hamming
distance, where d and c are some constants. The term occ is replaced with occ ·3k

for edit distance. This solution gives an obvious improvement to the matching
efficiency. The space requirement is acceptable for many applications, but it may
be too demanding for indexing DNA sequences or webpages. 2

In this paper, we focus on indexes that use only O(n) words or O(n) bits
for k-error matching, and we hope that the time complexity can be better than
O(mk). Prior to our work, indexes using O(n) words to answer a k-error query
takes O((cm)k logn + occ)) time [8] or takes O((cm)k log logn + occ)) time [9].
Indexes using O(n) bits have a slightly worse time complexity [8,9]. See Table 1
for a summary of results. The main results of this paper are as follows.

(i) We give an O(n)-word index that supports k-error matching in O(m+ occ+
(c logn)k(k+1) log logn) time, where c is a constant. Furthermore, if the pattern
is known to be long (precisely, Ω(logk+1 n)), the matching time can be improved
to O(m + occ + (c logn)2k+1 log logn). The term occ becomes occ · k33k if edit
distance is in concern.

2 For example, consider k = 2, the index requires O(n log2 n) words, which means
tens of gigabytes of memory for a text of a few million characters. Indexing a human
chromosome or genome (typically a few hundred million to a few billion characters)
is not feasible.
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Table 1. Known results for k-error matching. Results given in this paper are marked
with †. c and ε are positive constants.

Space k = 1
O(n log2 n) words O(m log n log log n + occ) [1]
O(n log n) words O(m log log n + occ) [2]

O(m + occ + log n log log n) [5]
O(n) words O(min{n, m2} + occ) [4]

O(m log n + occ) [8]
O(m log log n + occ) [9]
O(m + occ + log3 n log log n) †

O(n) bits O(m log2 n + occ log n) [8]
O((m log log n + occ) logε n) [9]
O((m + occ + log4 n log log n) logε n) †

Space k ≥ 2
O(n logk n) words O(m + occ + 1

k! (c log n)k log log n) [5]
O(n) words O(min{n, mk+1} + occ) [4]

O((cm)k log n + occ) [8]
O((cm)k log log n + occ) [9]
O(m + occ + (c log n)k(k+1) log log n) †

O(n) bits O((cm)k log2 n + occ log n) [8]
O(((cm)k log log n + occ) logε n) [9]
O((m + occ + (c log n)k(k+2) log log n) logε n) †

This index also admits a simple tradeoffbetween space and time. I.e., the match-
ing can be speeded up if more space is used. Roughly speaking, for any h ≤ k, if
O(n logk−h+1 n) space is used, then a k-error query can be answered in O(m +
occ + ck2

logmax{kh,k+h} n log logn) time. For example, choosing h = 3 gives an
O(n logk−2 n)-word index with matching time O(m + occ + ck log3k n log logn).

(ii) The O(n)-word index can be compressed to occupy O(n) bits only, with k-
error matching time increasing to O((m + occ + (c logn)k(k+2) log logn) logε n),
where ε < 1. In particular, when k = 1, the O(n)-bit index achieves matching in
O((m + occ + log4 n log logn) logε n) time.

Other related results. Note that the above results concern worst-case perfor-
mance. The literature also contains several interesting results on average-case
performance (see, e.g., [13, 10, 3]).

2 An O(n)-Word Index for k-Error Matching

This section considers Hamming distance only and presents an O(n)-word index
for a text S[1..n]. Given any pattern P [1..m], the index finds all substrings of
S matching P within k errors, in O(m + occ + polylog n) time. We call these
substrings the k-error matches of P .
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The index handles long patterns and short patterns separately. Intuitively,
short patterns can be handled easily. For example, a pattern of length logn can
be handled in polylog n time even with the naive Ω(mk) time methods. The
main novelty of our index is a check-point technique for handling long patterns:
we define some locations of S to be check-points. Special indexing are done for
suffixes and prefixes of S terminating at these check-points. For long patterns,
their k-error matches in S will certainly contain some check-points, so the special
indexing at the check-points suffices for finding the matches efficiently.

We now describe how to handle long patterns. Consider a text S[1..n]. Let
β be a positive integer, which will be fixed later to k3k logk+1 n. Intuitively, a
pattern is long if its length is at least β. For each a = β, 2β, 3β, . . ., we call S[a]
a check-point.

Observation 1. Let P [1..m] be a pattern with m ≥ β. For any k-error match
S[j1..j2] of P , there exists an integer a, j1 ≤ a ≤ j2 such that S[a] is a check-
point and 0 ≤ a− j1 ≤ β − 1.

Furthermore, let i = a− j1 + 1. There exist integers k1, k2 ≥ 0, such that (1)
S[a..n] has a prefix matching P [i..m] with k1 errors, (2) S[1..a− 1] has a suffix
matching P [1..i− 1] with k2 errors, and (3) k1 + k2 ≤ k.

Let TAIL be the set of suffixes of S beginning at a check-point, i.e., TAIL
= {S[a..n] | a = β, 2β, . . .}. Similarly, let HEAD be the set of prefixes of S
ending just before a check-point, i.e., HEAD = {S[1..a − 1] | a = β, 2β, . . .}.
Observation 1 suggests finding the k-error matches of P as follows.

Algorithm 1. k-MATCH(P ): finds all k-error matches of P in S, for |P | ≥ β.
For each i = 1, . . . , β, cut P into P [1..i − 1] and P [i..m]. Try all possible
k1, k2 ≥ 0 such that k1 + k2 ≤ k, and perform the following.

Step 1. Find all S[a..n] ∈ TAIL that have a prefix matching P [i..m] with exactly
k1 errors. Let taili,k1 be the set of these suffixes.

Step 2. Find all S[1..b] ∈ HEAD that have a suffix matching P [1..i − 1] with
exactly k2 errors. Let headi,k2 be the set of these prefixes.

Step 3. For each S[a..n] ∈ taili,k1 and S[1..b] ∈ headi,k2 , we call them a con-
necting pair if a = b + 1. For each connecting pair, we report a k-error match
of P starting at S[a − i + 1].

We first prove the correctness of the algorithm. Details of the implementation
are given in the coming subsections.

Lemma 1. Let P [1..m] be a pattern with m ≥ β. k-MATCH(S, P ) finds all
k-error matches of P in S.

Proof. For each k-error match S[j1..j2] of P , Observation 1 states that there is
a check-point S[a] contained in S[j1..j2] and 0 ≤ a− j1 ≤ β − 1.

Consider aligning P [1..m] with S[j1..j2]. The suffix S[a..n] has a prefix match-
ing P [i′..m] with k′1 errors, where i′ = a− j1 +1 and k′1 is some integer between
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0 and k. Thus, S[a..n] will be included in taili′,k′
1
. Similarly, S[1..a− 1] will be

included in headi′,k′
2
, where k′2 is some integer between 0 and k, and k′1 +k′2 ≤ k.

They form a connecting pair, so S[j1..j2] will be reported.

There are only n/β suffixes and prefixes in TAIL and HEAD, respectively, so we
can build more complicated data structures to support the above steps efficiently,
while maintaining a small space requirement. In the following subsections, we
present the actual data structures. Then, we will give analysis for the total space
and time complexity of the index.

2.1 Indexes for Finding Taili,k1 and Headi,k2

We want to find taili,k1 efficiently for any pattern P [1..m], i = 1, . . . , β and k1 =
0, . . . , k. We do it by storing an �-error-tree [5] for TAIL, for each � = 0, . . . , k.
The performance guarantee provided by an �-error tree is stated in the following
lemma.

Lemma 2. [5] Let Z be any collection of suffixes of a text S[1..n]. For any
integer � ≥ 0, an �-error-tree for Z has the following properties.

1. The �-error tree is a collection of trees with totally O(|Z|3� log� n) nodes.
Each leaf represents a suffix in Z and at most O(3� log� n) leaves represent
the same suffix.

2. The �-error tree takes O(|Z|3� log� n)-word space.
3. For any pattern Q[1..m′], there exist O(6� log� n) nodes in the �-error-tree,

such that each leaf under the nodes represents a distinct suffix in Z that has
a prefix matching Q with exactly � errors. It takes O(6� log� n log logn) time
to find these nodes, after preprocessing all suffixes of Q with the suffix tree
of S in totally O(m′) time.

For each � = 0, 1, . . . , k, We store an �-error tree for TAIL, calling them T-error-
tree0, T-error-tree1, . . ., T-error-treek. Furthermore, we store a suffix tree for S.

For any i and k1, the above lemma implies that there exist O(6k1 logk1 n)
nodes in T-error-treek1 such that the leaves under them represent the distinct
suffixes in taili,k1 . We called these nodes the covering nodes for taili,k1 . For time
efficiency, we will not find taili,k1 explicitly, instead we only find the covering
nodes to represent taili,k1 implicitly. Using the error-tree data structures, we
have the following performance on finding the covering nodes.

Lemma 3. We can build an O(n + n/β × 3k logk n)-word data structure for
TAIL. For any pattern P [1..m], we preprocess P in O(m) time. Then, for any
i = 1, . . . , β and k1 = 0, . . . , k, we can find O(6k1 logk1 n) covering nodes for
taili,k1 in T-error-treek1 in O(6k1 logk1 n log logn) time.

Proof. The suffix tree of S takes O(n) words and T-error-tree0, T-error-tree1,
. . . , T-error-treek take totally

∑k
�=0 O(n/β × 3� log� n) = O(n/β × 3k logk n)

words.
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Given any P [1..m], we preprocess all suffixes of P with the suffix tree of
S in totally O(m) time. It implies preprocessing all suffixes of P [i..m] with
the suffix tree. Thus, finding the covering nodes for taili,k1 can be done in
O(6k1 logk1 n log logn) time using T-error-treek1.

Note that there can be more than one set of covering nodes for taili,k1 , and any set
of covering nodes is sufficient for our algorithm to find the k-error matches of P .

The case for finding headi,k2 is symmetric. For each � = 0, 1, . . . , k, we store
an �-error-tree for HEAD, calling them H-error-tree0, . . ., H-error-treek. We also
store the suffix tree for the reverse of S. Finding covering nodes for headi,k2 , for
any i and k2 takes O(6k2 logk2 n log logn) time, after an O(m) time preprocessing
of P with the suffix tree for the reverse of S.

2.2 Indexes for Finding Connecting Pairs

Consider certain i, k1 and k2 where k1 + k2 ≤ k. Assume that taili,k1 is found
implicitly, represented by a set of covering nodes U in T-error-treek1. Similarly,
assume that headi,k2 is represented by a set of covering nodes W in H-error-
treek2 . To find the k-error matches of P , we want to find all suffixes S[a..n] ∈
taili,k1 and prefixes S[1..b] ∈ headi,k2 that are connecting pairs, i.e., a = b + 1.

We observe that this can be done as follows. We preprocess T-error-treek1 with
H-error-treek2. For each leaf in T-error-treek1 representing a suffix S[a..n] and for
each leaf in H-error-treek2 representing a prefix S[1..b], we draw an imaginary
edge between them if a = b + 1. Then, to find the connecting pairs between
taili,k1 and headi,k2 , we try each pair of u ∈ U and w ∈ W and perform the
following EdgeReport(u,w) query: Given u ∈ U and w ∈ W , find all leaf pairs
(x, y) such that x and y are descendents of u and w, respectively, and x, y are
connected by an imaginary edge.

While T-error-treek1 is a collection of trees, we can always convert it into a
single tree by linking all trees to a new root. Similarly, we convert H-error-treek2

into a single tree. Then, we store a tree-cross-product data structure [2] for T-
error-treek1 and H-error-treek2 to support the EdgeReport(u,w) query efficiently,
which has the following performance.

Lemma 4. [2] Let T1 = (V1, E1) and T2 = (V2, E2) be two trees. Let V = V1∪V2
and let I ⊆ V1×V2 be a set of imaginary edges connecting some nodes in V1 and
V2. We can build an O(|I| log |V |)-word index for T1 and T2 such that for any
u ∈ V1 and w ∈ V2, the EdgeReport(u,w) query takes O(log log |V |+ occ′) time,
where occ′ is the number of imaginary edges reported.

For each pair of error-trees T-error-treek1 and H-error-treek2, where k1 +k2 ≤ k,
we create the imaginary edges and build the tree-cross-product data structure.
It allows us to find the connecting pairs efficiently. We assume that taili,k1 and
headi,k2 are represented by O(6k1 logk1 n) and O(6k2 logk2 n) covering nodes in
the corresponding error-trees, respectively, which is the case during the execution
of the Algorithm k-MATCH.
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Lemma 5. We can store an O(k×n/β×3k logk+1 n)-word data structure for the
error-trees. Then, for any i, k1 and k2 with k1+k2 ≤ k, we can find all connecting
pairs between taili,k1 and headi,k2 in O(6k1+k2 logk1+k2 n log logn + occ′) time,
where occ′ is the number of connecting pairs found.

Proof. Consider T-error-treek1 and H-error-treek2, where k1+k2 = c for some c ≤
k. There are O(n/β×3k1 logk1 n) leaves in T-error-treek1. For each leaf represent-
ing a suffix S[a..n], the prefix S[1..a−1] is represented by at most O(3k2 logk2 n)
leaves in H-error-treek2. So, the number of imaginary edges between the two
error-trees is O(n/β × 3k1+k2 logk1+k2 n), and the tree-cross-product data struc-
ture takes O(n/β × 3c logc+1 n) words. For any c, there are at most k + 1
pairs of possible (k1, k2), and we store tree-cross product data structures for
c = 0, 1, . . . , k, so the total space needed is

∑k
c=0 O(k × n/β × 3c logc+1 n) =

O(k × n/β × 3k logk+1 n) words.
For any taili,k1 and headi,k2 , where k1 + k2 ≤ k, let U and W be the cor-

responding set of covering nodes. Finding the connecting pairs is done by per-
forming an EdgeReport(u, v) query for each u ∈ U and w ∈ W . There are
O(6k1 logk1 n × 6k2 logk2 n) queries, and the total query time is O(6k1+k2 ×
logk1+k2 n log logn + occ′) time.

2.3 Total Time and Space Complexity

With Lemma 3 and 5, we can analyse the space and time complexity of our data
structure.

Theorem 1. We can build an O(n + k × n/β × 3k logk+1 n)-word index for
S[1..n]. For any pattern P [1..m], m ≥ β, we can find all k-error matches of
P in S in O(m + occ + βk6k logk n log logn) time, where occ is the number of
matches.

Proof. We only need to store the data structures specified in Lemma 3 and 5,
so the total space is O(n + k × n/β × 3k logk+1 n) words.

To find the k-error matches of P , we perform an O(m) time preprocess-
ing of P , as required by Lemma 3. Then, we iterate for i = 1, 2, . . . , β and
c = 0, 1, . . . , k. For each i and c, there are at most k + 1 pairs of k1, k2 ≥ 0
such that k1 + k2 = c. Finding the covering nodes for taili,k1 and headi,k2 takes
O(6k1 logk1 n log logn + 6k2 logk2 n log logn). Finding the connecting pairs be-
tween taili,k1 and headi,k2 takes O(6k1+k2 logk1+k2 n log logn+ occ′) time, where
occ′ is the number of connecting pairs found. Thus, for any fixed i and c, the
runtime is O(k × 6c logc n log logn + occ′) time.

We try i from 1 to β and c from 0 to k, so the total time complexity is
O(m+ β×

∑k
c=0 k× 6c logc n log logn+ occ) O(m+ βk6k logk n log logn+ occ).

By putting β = k3k logk+1 n, we obtain an O(n)-word index for handling long
patterns. For short patterns, we can use the O(n)-word data structure of Lam et
al. [9] which find the k-error matches of a pattern P [1..m] in O(|Σ|kmk log logn+
occ) time, where |Σ| is the size of the alphabet.
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Corollary 1. For any constant k, we can build an O(n)-word index for S[1..n].
For any pattern P [1..m], finding the k-error matches of P in S takes O(m +
occ + (c log n)max{k(k+1),2k+1} log logn) time.

Proof. We put β = k3k logk+1 n to Theorem 1 to obtain an O(n)-word index.
We also store the O(n)-word data structure of Lam et al. [9].

For pattern of length at least k3k logk+1 n, finding the k-error matches takes
O(m + occ + k218k log2k+1 n log logn) time. For pattern of length less than
k3k logk+1 n, finding the k-error matches takes O(occ + |Σ|kmk log logn) =
O(occ + |Σ|kkk3k2

logk(k+1) n log log n) time.

Reducing the polylog n term in matching time. The polylog n term in the
matching time is biggest for patterns with length slightly less than k3k logk+1 n,
in which we use the brute-force method to obtain a runtime ofO(occ+|Σ|kkk3k2×
logk2+k n log logn). We can reduce the polylog n term by a small trick. To ease
the discussion, we remove the constant factors |Σ| and k from the asymptotic
analysis.

We improve the matching time for patterns of length between O(logk n)
and O(logk+1 n) by choosing a smaller value of β. In particular, we choose
β to be O(logk n), but we only build an data structure for finding (k − 1)-
error matches. By Theorem 1, the index takes only O(n) words. To find the
k-error matches, we explicitly try different positions on the pattern and mod-
ify that position with a different character. Then, we search for (k − 1)-error
matches for each of the modified patterns, which will be the k-error matches of
the pattern. This gives a runtime of O(m × (m + β logk−1 n log logn + occ)) =
O(log2k+2 n+ log3k n log logn+ occ× logk+1 n). The multiplicative term for occ
can be removed by careful book-keeping to avoid reporting the same occurrence
for multiple times. It reduces the matching time from O(occ+logk2+k n log logn)
to O(occ+ max{log2k+2 n, log3k n log logn}), for patterns of length O(logk n) to
O(logk+1 n).

We can continue to apply this technique for other range of pattern length,
and it can reduce the polylog n term in the matching time to logk2/2+O(1)k n in
the worst case.

3 Tradeoff Between Space and Time

Our data structure allows a tradeoff between space and time. We notice that
the value β controls the number of check-points in S, which is equivalent to the
number of suffixes of S on which special indexes are built. Choosing a smaller
β generates more check-points and increases the index size, but it allows pat-
terns of shorter length to be handled and reduces the matching time. On the
other hand, choosing a bigger β reduces the number of check-points such that
we can even obtain an O(n)-bit data structure for k-error matching, at the
cost of increasing the matching time. This section presents the results for this
tradeoff.
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3.1 Improved Searching with More Space

We choose β = k3k logh n, where h is any integer, 0 ≤ h ≤ k. Note that a
smaller h generates more check-points and bigger index size. By Theorem 1, it
gives an O(n logk−h+1 n)-word index, which finds the k-error matches of P [1..m],
m ≥ k3k logh n, in O(m + occ + k218k logh+k n log logn) time.

For patterns of length less than k3k logh n, we use the O(n)-word data structure
of Lam et al. [9], which gives a matching time of O(|Σ|kkk3k2

loghk n log logn +
occ).

Theorem 2. For any constant h and k such that 0 ≤ h ≤ k, we can build an
index for S[1..n] using O(n logk−h+1 n) space. For any pattern P [1..m], we can
find all k-error matches of P in S in O(m+occ+ck2

(logn)max{hk,h+k} log logn)
time where occ is the number of occurrences found and c is some constant.

3.2 Reducing to O(n)-Bit Space

We can choose β = k3k logk+2 n. Then, the error-trees and the tree-cross-product
data structures takes O(n)-bit space. We can replace the suffix tree of S by a
compressed suffix tree [14], which supports each of the suffix tree operations
in O(logε n) time. Thus, the preprocessing of P takes O(m logε n) time. The
matching time for pattern of length at least k3k logk+2 n is O(m logε n + occ +
k218k log2k+2 n log log n).

For patterns of length less than k3k logk+2 n, we use the O(n)-bit data struc-
ture of [9], which gives a matching time of O((|Σ|kkk3k2

logk2+2k n log logn +
occ) logε n).

Theorem 3. For any constant k, we can build an index for S[1..n] using O(n)-
bit space. For any pattern P [1..m], we can find all k-error matches of P in S

in O((m + occ + (c logn)max{k2+2k,2k+2} log log n) logε n) time where occ is the
number of occurrences reported, c is some constant, and ε > 0.

4 k-Error Matching in Edit Distance

This section considers edit distance, and an error is an insertion, deletion or
substitution. We give an O(n)-word data structure for S[1..n] which supports
finding the k-error matches of P in S. Precisely, given P [1..m], it finds all starting
positions j such that S[j..n] has a prefix matching P with at most k errors, in
O(m+ k33kocc+ polylog n) time, where occ is the number of starting positions
found.

Similar to the case of Hamming distance, we handle long patterns by the
check-point technique, while short patterns are handled by simple brute force
methods. We define S[a] to be a check-point for a = β, 2β, . . ., where β will be
set later to k5k logk+1 n.
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Observation 2. Let P [1..m] be a pattern with m ≥ β + k. For any k-error
match S[j1..j2] of P , there exists an integer a, j1 ≤ a ≤ j2 such that S[a] is a
check-point and 0 ≤ a− j1 ≤ β − 1.

Furthermore, there exist integers i, 1 ≤ i ≤ β + k and k1, k2 ≥ 0, such that
(1) S[a..n] has a prefix matching P [i..m] with k1 errors, (2) S[1..a − 1] has a
suffix matching P [1..i− 1] with k2 errors, and (3) k1 + k2 ≤ k.

Define HEAD and TAIL as before. Observation 2 suggests the following
algorithm.

Algorithm 2. k-EDIT(P ), find starting positions of k-error matches of P in S,
|P | ≥ β + k.

For each i = 1, . . . , β + k, cut P into P [1..i − 1] and P [i..m]. Try all possible
k1, k2 ≥ 0 such that k1 + k2 ≤ k, and perform the following.

Step 1. Find all S[a..n] ∈ TAIL that have a prefix matching P [i..m] with exactly
k1 errors. Let taili,k1 be the set of these suffixes.

Step 2. Find all S[1..b] ∈ HEAD that have a suffix matching P [1..i − 1] with
exactly k2 errors. Let headi,k2 be the set of these prefixes.

Step 3. For each S[a..n] ∈ taili,k1 and S[1..b] ∈ headi,k2 , we call them a con-
necting pair if a = b + 1. For each connecting pair, we find all j1 such that
S[j1..a − 1] matches P [1..i − 1] with exactly k2 errors, and we report each j1
as an answer.

To find taili,k1 and headi,k2 efficiently for different i, k1 and k2, we store
another type of error-trees by Cole et al. [5] for TAIL and HEAD, which work
for edit distance. We call them edit-trees to avoid confusion. Basically, an edit-
tree is similar to an error-trees, which is also built for a collection Z of suffixes
of S. Given a pattern Q[1..m′], an �-edit tree returns the nodes such that the
leaves under the nodes represent all suffixes in Z that has a prefix matching Q
with exactly � errors (edit distance). However, an edit-tree may give duplicated
answers, i.e., there may be different leaves under these nodes representing the
same suffix in Z.

We build T-edit-tree0, . . ., T-edit-treek for TAIL and H-edit-tree0, . . ., H-edit-
treek for HEAD. We also store the suffix trees for S and the reverse of S. Finally,
we build the tree-cross-product data structures for the pair T-edit-treek1 and H-
edit-treek2 , for every k1, k2. These data structures can support the Algorithm
k-EDIT efficiently.

We can analyse the space and time complexity of the data structures similar
to that in Section 2 and we obtain the following theorem. There is a k33k factor
for occ because when we find taili,k1 for some i, k1, the edit-trees may return the
same suffix for multiple times, leading to duplication in the output.

Theorem 4. We can build an O(n + k × n/β × 5k logk+1 n)-word index for
S[1..n]. For any pattern P [1..m], m ≥ β, we can find all j such that S[j..n] has
a prefix matching P with at most k errors (in edit distance), in O(m+k33kocc+
βk6k logk n log logn) time, where occ is the number of answers found.
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By putting β = k5k logk+1 n, and handling short patterns by Lam et al. [9] we
obtain an O(n)-word index which finds the k-error matches in O(m+ k33kocc+
polylog n) time.
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Abstract. Suffix trees are the key data structure for text string match-
ing, and are used in wide application areas such as bioinformatics and
data compression. Sparse suffix trees are kind of suffix trees that repre-
sent only a subset of suffixes of the input string. In this paper we study
word suffix trees, which are one variation of sparse suffix trees. Let D
be a dictionary of words and w be a string in D+, namely, w is a se-
quence w1 · · · wk of k words in D. The word suffix tree of w w.r.t. D is
a path-compressed trie that represents only the k suffixes in the form
of wi · · · wk. A typical example of its application is word- and phrase-
level search on natural language documents. Andersson et al. proposed
an algorithm to build word suffix trees in O(n) expected time with O(k)
space. In this paper we present a new word suffix tree construction algo-
rithm with O(n) running time and O(k) space in the worst cases. Our
algorithm is on-line, which means that it can sequentially process the
characters in the input, each by each, from left to right.

1 Introduction

Suffix trees have played a very central role in combinatorial pattern matching
as they enable us to solve a multitude of important problems efficiently [3, 8].
To give some examples of applications, suffix trees are utilized in data com-
pression [13, 16, 10] and in bioinformatics such as motif finding [14], regulatory
elements discovery [5], and fast protein classification [7]. Suffix trees are fairly
useful since they can be constructed in linear time and space with respect to the
input string length [19, 15, 18].

On the other hand, there have been great demands to deal with a common
case where only certain suffixes of the input string are relevant. Suffix trees that
contain only a subset of all suffixes are called sparse suffix trees.

The ‘sparsity’ of the suffix tree varies with the application: In [12] Kärkkäinen
and Ukkonen proposed the evenly spaced sparse suffix tree which contains every
i-th suffix for some fixed positive integer i. Their contribution is an algorithm
which allows the original full text to be searched, by using the evenly spaced
sparse suffix tree. Clifford and Sergot [6] introduced distributed suffix trees whose
idea is to partition the original suffix tree into a constant number of subtrees
and construct each of them in linear time, in parallel. Their suffix tree is thus
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helpful to index huge genome sequence databases. Also, sparse suffix trees for
a set of arbitrary suffixes are used in the core of pattern discovery algorithms
from biological sequences [11, 9].

Another type of sparse suffix trees is word suffix trees [4]. Let D be a dictionary
of words and w be a string in D+, namely, w is a sequence w1 · · ·wk of k words
in D. The word suffix tree of w w.r.t. D is a tree structure which represents only
the k suffixes in the form of wi · · ·wk. One typical application of word suffix trees
is a word- and phrase-level index for documents written in a natural language.
Note that normal suffix trees report any occurrences of a keyword in the text
string, which may cause unwanted matchings (e.g., an occurrence of “other” in
“mother” is possibly retrieved).

This paper investigates word suffix tree construction. The most intuitive so-
lution is to build a normal suffix tree using O(n) time and space, then to prune
it so that only the leaves corresponding to the k suffixes remain. However, this
approach apparently wastes extra space, as the size of the resulting tree is only
O(k). To index large text strings efficiently, we need to handle a restricted sit-
uation where only O(k) computational space is available. Still, this is a rather
challenging task, as traditional linear suffix tree construction algorithms heavily
rely on the fact that all suffixes are to be inserted in the tree. On the other hand,
it is no more true for word suffix trees.

In [2] Andersson et al. took a first step in this problem: they presented an
algorithm to build word suffix trees with O(k) working space in O(n) expected
running time. This present paper takes a further step and puts a period to this
problem - our algorithm constructs word suffix trees with O(k) working space
in O(n) running time in the worst cases. Remark that this is optimal, since
the resulting tree requires O(k) space, and we have to read the whole input
string at least once and it takes O(n) time. Our algorithm is based on, and is a
generalization of, Ukkonen’s on-line suffix tree construction algorithm introduced
in [18]. In addition, our algorithm can be seen as a practical solution to efficient
construction of general sparse suffix trees.

The rest of the paper is organized as follows. In Section 2 we introduce some
definitions and notations. In Section 3 we define word suffix tries and propose
an on-line construction algorithm for them. Section 4 presents a word suffix
tree construction algorithm, which is the main subject of this paper. Finally,
conclusions and further discussions are given in Section 5.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. A finite sequence of symbols
is called a string. We denote the length of a string u by |u|. The empty string
is denoted by ε, that is, |ε| = 0. Let Σ∗ be the set of strings over Σ, and let
Σ+ = Σ∗\{ε}. Strings x, y, and z are said to be a prefix, substring, and suffix
of the string u = xyz, respectively. A prefix, substring, and suffix of a string u
are said to be proper if they are not u. Let Prefix(u) and Suffix(u) be the set of
prefixes and suffixes of string u, respectively. Let Prefix (S) =

⋃
u∈S Prefix(u) for
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a set S of strings. The i-th symbol of a string u is denoted by u[i] for 1 ≤ i ≤ |u|,
and the substring of a string u that begins at position i and ends at position j
is denoted by u[i..j] for 1 ≤ i ≤ j ≤ |u|.

Definition 1 (Prefix property). A set L of strings is said to have the prefix
property if no string in L is a proper prefix of another string in L.

Let D = Σ∗ · #. Then D is a set of strings each followed by #, and D is
called a dictionary. We assume that any string w is an element of D+. This is a
very natural assumption, since for example in the European languages the blank
character can be regarded as the special character #, and any text is an element
of D+.

A factorization of string w ∈ D+ w.r.t. D is a list w1, . . . , wk of strings in
D such that w = w1 · · ·wk. Note that this factorization is always unique, since
D = Σ∗ ·# clearly satisfies the prefix property because of # not being in Σ. Now,
let SuffixD(w) = {wi · · ·wk | 1 ≤ i ≤ k+1}. Remark that SuffixD(w) is a subset
of Suffix(w) which consists only of the original string w and the suffixes which
immediately follow # in w (including the empty suffix ε intended by wk+1wk).

3 Word Suffix Trie

In this section, we present our word suffix trie construction algorithm which will
be a basis of our word suffix tree construction algorithm to be given later as the
main topic of this paper.

3.1 Definition

Definition 2 (Word suffix trie). The word suffix trie of a string w ∈ D+

w.r.t. D, denoted by WSTrieD(w), is a trie which represents SuffixD(w).

Fig. 1 compares the normal suffix trie and the word suffix trie for string w, where
Σ = {a, b}, D = Σ∗ ·#, and w = ab#ab#a#.

It is easy to see that there is a natural one-to-one correspondence between
the nodes of WSTrieD(w) and the strings in Prefix(SuffixD(w)). Any string u
in Prefix (SuffixD(w)) can be written as u = xy such that x ∈ D∗ and y is a
proper prefix of some string in D. It should be stated that the choice of x and
y is unique for each u. Hereafter, we represent a node of WSTrieD(w) with an
ordered pair 〈x, y〉, as mentioned above.

3.2 Word Suffix Trie Construction Algorithm

Suffix Link. Ukkonen [18] used suffix links for on-line construction of normal
suffix tries. Here we give a new definition of suffix links that is suitable for on-line
word suffix trie construction.

For dictionary D = Σ∗ ·#, we consider the smallest DFA MD which accepts
D. Clearly it has a unique final state with no outgoing edges (see the left of
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#a b # a #
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Fig. 1. The normal suffix trie of w = ab#ab#a# on the upper, and the word suf-
fix trie of w w.r.t. D = {a, b}∗ · # on the lower. Note that the normal suffix tree
represents all the suffixes of w, while the word suffix tree represents only the suffixes
ab#ab#a#, ab#a#, a#, ε ∈ SuffixD(w).

Σ

# a # b # a #

#

b a

#

1 2 3 4 5 6 7 8 9

11 10

#

Σ

Fig. 2. To the left is the smallest DFA MD accepting D = {a, b}∗ · #, and to the right
is WSTrieD(w) for w = ab#ab#a#, with MD and its suffix links (broken arrows)
attached. Nodes 4, 5, 6, 7, 8, 9, 10, and 11 are those in Group 1 of Definition 3, and
nodes 1, 2, and 3 are those in Group 2.

Fig. 2). Then we attach MD to the word suffix trie, replacing the unique final
state of MD by the root of the word suffix trie. Now we define the suffix links of
word suffix tries as follows:

Definition 3 (Suffix links of word suffix trie). Let D = Σ∗ ·# and MD be
the smallest DFA that accepts D. For each node s = 〈x, y〉 of WSTrieD(w),

1. if x ∈ D+, the suffix link from s goes to node 〈x′, y〉 such that x′ ∈ D∗ and
x = hx′ for some h ∈ D;

2. otherwise (if x = ε), the suffix link from s goes to the initial state of MD.

Fig. 2 shows the smallest DFA MD which accepts D = {a, b}∗ · #, and
WSTrieD(w) for w = ab#ab#a# with its suffix links.
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Algorithm. Fig. 3 shows a pseudo code of our on-line algorithm to build word
suffix tries, with the help of DFA MD and suffix links of Definition 3. Observe
that procedure Update is identical to that of Ukkonen’s on-line normal suffix trie
construction algorithm of [18]. The only change is the initialization steps of the
main routine where we set the root of the trie to the final state of MD and the
suffix link of the root to the initial state of MD. This simple modifications make
a difference in the resulting data structures. A snapshot of on-line construction
of WSTrieD(w) with the running example is shown in Fig. 4.

Input: w = w[1..n] ∈ D+ and auxiliary DFA MD.
Output: Word suffix trie of w w.r.t. D.
{

root = the final state of MD;
slink(root) = the initial state of MD;
top = root;
for (i = 1; i ≤ n; i + +) top = Update(top,w[i]);

}

node Update(top, c) {
newtop = CreateNewNode();
create a new edge top

c−−→ newtop;
prev = newtop;
for (t = slink(top); no c-edge from t; t = slink(t)) {

new = CreateNewNode();
create a new edge t

c−−→ new;
slink(prev) = new;
prev = new;

}
slink(prev) = the initial node of the c-edge from t;
return newtop;

}

Fig. 3. Word suffix trie construction algorithm. For any node v, slink(v) represents the
node to which the suffix link of v goes. Remark that function Update is identical to
that of Ukkonen’s normal suffix trie construction algorithm [18]. The initialization step
using the auxiliary DFA MD changes the algorithm so that it builds word suffix tries.

For the correctness of the algorithm of Fig. 3, it suffices to show the following
lemma:

Lemma 1. Let w ∈ D+, w1, . . . , wk be a unique factorization of w w.r.t. D.
Let j be an integer with 0 ≤ j ≤ |w|, and u be the prefix of length j of w. Let
u = w1 · · ·w�v such that v is a proper prefix of w�+1. After the j-th call of the
Update operation, we have a trie representing the strings

{wi · · ·w� | 1 ≤ i ≤ � + 1} · v.
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Fig. 4. A snapshot of on-line construction of WSTrieD(w) with w = ab#ab#a# and
D = {a, b} ·#. The update with the last # is shown in three steps, where we get three
new nodes and edges.

The suffix link of the node 〈wi · · ·w�, v〉 goes to the node 〈wi+1 · · ·w�, v〉, if i ≤ �;
and otherwise, goes to the state δ(q0, v) of MD, where δ and q0 are, respectively,
the state-transition function and the initial state of MD.

Proof. By induction on j = |u|. When |u| = 0, the lemma trivially holds. We
now consider |u| > 0. When v �= ε, let v = v′b with v′ ∈ Σ∗ and b ∈ Σ. By
the induction hypothesis, after the (j − 1)-th call of Update , we have a trie
representing

{wi · · ·w� | 1 ≤ i ≤ � + 1} · v′,
and the suffix link of node 〈wi · · ·w�, v

′〉 goes to node 〈wi+1 · · ·w�, v
′〉, if i ≤ �;

and otherwise, goes to the state δ(q0, v′) of MD. At the j-th call, the variable top
is set to the node 〈w1 · · ·w�, v

′〉 and the node 〈w1 · · ·w�, v
′b〉 is created (variable

newtop). In the iteration of the for loop, we traverse the suffix links starting at
the node 〈w1 · · ·w�, v

′〉. For each i = 2, . . . , �, the node 〈wi · · ·w�, v
′b〉 is created,

if it does not exist. Note that the iteration is guaranteed to halt since the suffix
links lead us to the state δ(q0, v′). During the iteration, the suffix links of the
newly created nodes 〈wi · · ·w�, v

′b〉 are set to the nodes 〈wi+1 · · ·w�, v
′b〉, if i ≤ �;

and to the state δ(q0, v′b), otherwise. Thus the lemma holds for the case v �= ε.
Similarly, we can prove the case v = ε. 	


Remark 1. Our word suffix trie construction algorithm of Fig. 3 generalizes
Ukkonen’s normal suffix trie construction algorithm [18]. Assume just for now
D = Σ, and consider a DFA which accepts Σ with only two states that are a
single initial state and a single final state. Then this DFA plays the same role
as the auxiliary ‘⊥’ node used in Ukkonen’s algorithm, and thus our algorithm
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builds normal suffix tries. The same discussion applies to the word suffix tree
construction algorithm to be given in the next section.

4 Word Suffix Tree

In the previous section, we presented our on-line algorithm that constructs word
suffix tries. The drawback is, however, that the size of a word suffix trie can be
quadratic in the input string length. In this section, we consider the word suffix
tree whose size is bounded by O(k), where k is the number of words in string w
w.r.t. dictionary D. We then propose a new algorithm to build a word suffix tree
in O(n) time with O(k) space, where n = |w| andw = w1 · · ·wk. The advantage of
our algorithm to the one by Andersson et al. [2] is that our algorithm runs in O(n)
time in the worst cases, while their algorithm runs in O(n) time on the average.

4.1 Definitions

Definition 4 (Word suffix tree). The word suffix tree of a string w ∈ D+

w.r.t. D, denoted by WSTreeD(w), is a path-compressed trie which represents
SuffixD(w).

For any strings x, y, let lcp(x, y) denote the longest common prefix of x and y.
Let

I = {lcp(wi · · ·wk, wj · · ·wk) | 1 ≤ i �= j ≤ k + 1} and,
E = {wi · · ·wk | wi · · ·wk /∈ Prefix(wj · · ·wk) for any 1 ≤ j < i ≤ k}.

Then, there is a one-to-one correspondence between the strings in I and the
internal nodes (including the root) of WSTreeD(w), and there is a one-to-one
correspondence between the strings in E and the leaves of WSTreeD(w). Here-
after, we sometimes refer to any node s of WSTreeD(w) as the corresponding
string in I ∪ E.

Fig. 5 compares the normal suffix tree and the word suffix tree for string
w = ab#ab#a#, where Σ = {a, b} and D = Σ∗ ·#.

4.2 Word Suffix Tree Construction Algorithm

Note that |I| + |E| = O(k), which means that the size of WSTreeD(w) is also
O(k). Since WSTreeD(w) is path compressed, the edges of WSTreeD(w) are
labeled by substrings of w rather than single characters. By implementing these
substring labels with pointers to w, WSTreeD(w) can be finally implemented
in O(k) space. The time cost for word suffix tree construction is Ω(n) due to
the need of scanning the whole string w. Thus, the final goal is to construct
WSTreeD(w) in O(n) time with O(k) space.
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Fig. 5. The normal suffix tree of w = ab#ab#a# on the upper, and the word suffix
tree of w w.r.t. D = {a, b}∗ · # on the lower.

Suffix Link. The suffix links of WSTreeD(w) are a key to achieve the above
goal. Recall that any node s of WSTrieD(w) is regarded as a unique ordered
pair 〈x, y〉, such that x ∈ D∗ and y is a proper prefix of some string in D. We
apply the same notion to the nodes of WSTreeD(w). Also, we use the auxiliary
DFA MD that accepts D in the same way.

Definition 5 (Suffix links of word suffix tree). Let D = Σ∗ ·# and MD be
the smallest DFA that accepts D. For each node s = 〈x, y〉 of WSTreeD(w),

1. if s ∈ I and x ∈ D+, the suffix link from s goes to node 〈x′, y〉 such that
x′ ∈ D∗ and x = hx′ for some h ∈ D;

2. if s ∈ I and x = ε, the suffix link from s goes to the initial state of MD;
3. otherwise (if s ∈ E), the suffix link from s is undefined.

The suffix links of those in Group 3 in the above definition remain undefined, as
they are never used in our construction algorithm to be shown later. See Fig. 6

a b # a #

#

b # a

#

1 2 5 9

11 10

#

Σ

Fig. 6. The word suffix tree with auxiliary DFA MD and suffix links (broken arrows),
where w = ab#ab#a# and D = {a, b}∗ · #. Note that the suffix links of nodes 9, 10,
and 11, which are those in Group 3 of Definition 5, are missing, as they are never used
in the construction algorithm.
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Input: w = w[1..n] ∈ D+ and auxiliary DFA MD.
Output: Word suffix tree of w[1..n] w.r.t. D.
{

root = the final state of MD; slink(root) = the initial state of MD;
(s, k) = (root, 1);
for (i = 1; i ≤ n; i + +) {

oldr = nil;
while (CheckEndPoint(s, (k, i − 1), w[i]) == false) {

if (k ≤ i − 1) r = SplitEdge(s, (k, i − 1));
else r = s;
t = CreateNewNode();

create a new edge r
(i,∞)−−−−−→ t;

if (oldr �= nil) slink(oldr) = r;
oldr = r;
(s, k) = Canonize(slink(s), (k, i − 1));

}
if (oldr �= nil) slink(oldr) = s;
(s, k) = Canonize(s, (k, i));

}
}

boolean CheckEndPoint(s, (k, p), c) {
if (k ≤ p) { /* (s, (k, p)) is implicit. */

let s
(k′,p′)−−−−−→ s′ be the w[k]-edge from s;

return (c == w[k′ + p − k + 1]);
} else return (there is a c-edge from s);

}

(node,integer)-pair Canonize(s, (k, p)) {
if (k > p) return (s, k); /* (s, (k, p)) is explicit. */

find the w[k]-edge s
(k′,p′)−−−−−→ s′ from s;

while (p′ − k′ ≤ p − k) {
k+= p′ − k′ + 1; s = s′;

if (k ≤ p) find the w[k]-edge s
(k′,p′)−−−−−→ s′ from s;

}
return (s, k);

}

node SplitEdge(s, (k, p)) {
let s

(k′,p′)−−−−−→ s′ be the w[k]-edge from s;
r = CreateNewNode();

replace this edge by edges s
(k′,k′+p−k)−−−−−−−−−→ r and r

(k′+p−k+1,p′)−−−−−−−−−−−→ s′;
return r;

}

Fig. 7. Word suffix tree construction algorithm
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for the word suffix tree with the auxiliary DFA MD and suffix links, using the
running example.

Algorithm. A pseudo-code of our algorithm to build word suffix trees is sum-
marized in Fig. 7. It simulates construction of word suffix tries in O(n) time and
with O(k) space. Fig. 8 shows a snapshot of on-line construction of WSTreeD(w)
with the running example.
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Fig. 8. A snapshot of on-line construction of WSTreeD(w) with w = ab#ab#a# and
D = {a, b}∗ · #. The update with the last # is shown in three steps. The star mark
denotes the location represented by (s, (k, i−1)) in the algorithm of Fig. 7, from which
a new edge is possibly created.

The main result of this paper follows:

Theorem 1. The algorithm of Fig. 7 builds word suffix trees in linear time (on
a fixed alphabet).

Proof. Since the algorithm is a time and space economical simulation of the
word suffix trie construction algorithm of Fig. 3, the correctness follows from
Lemma 1.

We now prove the linearity of the algorithm. Consider the location, referred
to as (s, (k, i− 1)), which represents the substring w[k − �..i− 1] where � is the
length of the string represented by the node s. One iteration of the while loop
in the main routine alters s into slink (s) and therefore decreases the length of
the substring by at least one. We note that Canonize never alters the substring
represented by (s, (k, p)) although it might update s and k. On the other hand,
the length of the substring is increased by at most one at each iteration of the for
loop in the main routine. Thus, the total number of iterations of the while loop
in the main routine is linearly proportional to the input string length. We have
only to estimate the total cost of all executions of Canonize . We note that the
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value of variable k changes only by an execution of Canonize, and monotonically
increases. The cost of one execution of Canonize is proportional to the number
of iterations of the while loop in it plus one, which is linear with respect to the
number of times the variable k is increased during the iterations. The total cost
of all executions of Canonize is therefore proportional to the number of times
k is increased in the execution of the algorithm. Since the length of the string
w[k..i − 1] is increased by at most one at each iteration of the for loop in the
main routine, the number of times k is increased is linear with respect to the
input string length. 	


5 Conclusions and Further Discussions

We have presented a new on-line algorithm for constructing word suffix trees.
The algorithm is very simple and runs in linear time even in the worst cases,
whereas the one proposed by Anderson et al. runs in linear time on the average.

The simplicity of our algorithm is due to the use of DFA MD accepting a dic-
tionary D. The idea comes from the synchronization technique introduced in [17]
in which similar DFA are embedded onto the Aho-Corasick pattern matching
machines [1] so that they process multi-byte character texts in a byte-by-byte
manner without extra work for avoiding false matches.

Lastly, our algorithm can be seen as a practical solution to efficient construc-
tion of general sparse suffix trees. Let w ∈ Σ∗ and Pos be a set of positions of
suffixes we want to store in the sparse suffix tree. Let |w| = n and |Pos| = k.
For any position i in Pos, we insert the special character # at position i− 1 of
the original string w. Note that the length of the modified string w′ is at most
twice as that of the original string w, and therefore the word suffix tree for w′

can be constructed with O(k) space in O(n) time. To search for pattern p ∈ Σ∗

of length m, we skip any # in the word suffix tree of w′. This way the matching
can be done correctly, and in O(m) time.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333–340, 1975.

2. A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words. Algorithmica,
23(3):246–260, 1999.

3. A. Apostolico. The myriad virtues of subword trees. Combinatorial Algorithms on
Words, F12:85–96, 1985.

4. R. Baeza-Yates and G. H. Gonnet. Efficient text searching of regular expressions.
In Proc. 16th International Colloquium on Automata, Languages and Program-
ming (ICALP’89), volume 372 of Lecture Notes in Computer Science, pages 46–62.
Springer-Verlag, 1989.

5. H. Bannai, S. Inenaga, A. Shinohara, M. Takeda, and S. Miyano. Efficiently finding
regulatory elements using correlation with gene expression. Journal of Bioinfor-
matics and Computational Biology, 2(2):273–288, 2004.



On-Line Linear-Time Construction of Word Suffix Trees 71

6. R. Clifford and M. Sergot. Distributed and paged suffix trees for large ge-
netic databases. In Proc. 14th Ann. Symp. on Combinatorial Pattern Match-
ing (CPM’03), volume 2676 of Lecture Notes in Computer Science, pages 70–82.
Springer-Verlag, 2003.

7. B. Dorohonceanu and C. G. Nevill-Manning. Accelerating protein classification
using suffix trees. In Proc. 8th International Conference on Intelligent Systems for
Molecular Biology (ISMB’00), pages 128–133. AAAI Press, 2000.

8. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.
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Abstract. Designing external memory data structures for string data-
bases is of significant recent interest due to the proliferation of biological
sequence data. The suffix tree is an important indexing structure that
provides optimal algorithms for memory bound data. However, string
B-trees provide the best known asymptotic performance in external mem-
ory for substring search and update operations. Work on external mem-
ory variants of suffix trees has largely focused on constructing suffix trees
in external memory or layout schemes for suffix trees that preserve link
locality. In this paper, we present a new suffix tree layout scheme for
secondary storage and present construction, substring search, insertion
and deletion algorithms that are competitive with the string B-tree. For
a set of strings of total length n, a pattern p and disk blocks of size B,
we provide a substring search algorithm that uses O(|p|/B+logB n) disk
accesses. We present algorithms for insertion and deletion of all suffixes
of a string of length m that take O(m logB(n + m)) and O(m logB n)
disk accesses, respectively. Our results demonstrate that suffix trees can
be directly used as efficient secondary storage data structures for string
and sequence data.

1 Introduction

The suffix tree data structure is widely used in text processing, information
retrieval, and computational biology. It is especially useful when there are no
word or sentence structures, such as in biological sequences, for which the suffix
tree is uniquely suited for indexing and querying. With the continued explosion
in the size of biological sequence databases, there is growing interest in string
indexing schemes in general, and disk-based suffix trees in particular.

The suffix tree of a set of strings is a compacted trie of all suffixes of all the
strings. Since the introduction of this data structure by Weiner [15], several linear
time algorithms for in-memory construction of suffix trees have been designed:
notable ones include McCreight’s linear space algorithm [11], Ukkonen’s on-line
algorithm [13], and Farach’s algorithm for integer alphabets [4]. To extend the
scale of data that can be handled in-memory, Grossi and Vitter [9] developed
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compressed suffix trees and suffix arrays. In the last few years, there has been
significant research on disk-based storage of suffix trees for exploiting their util-
ity on ever growing sequence databases. Many algorithms and strategies have
been proposed to reduce the number of disk accesses during the construction of
suffix trees [1, 2, 5, 10, 12]. Of these, only Farach et al. provided a construction
algorithm for secondary storage that achieves the optimal worst case bound of
Θ

(
n
B log M

B

n
B

)
disk accesses (where M is the size of main memory).

While these algorithms and techniques focused on suffix tree construction in
secondary storage, the problems of searching and updating suffix trees (inser-
tion/deletion of all suffixes of a string) on disks have not received as much atten-
tion. An interesting solution is provided by Clark and Munro [3] that achieves
efficient space utilization. This is used to obtain a bound on disk accesses for sub-
string search as a function of the height of the tree. In the worst case, the height
of a suffix tree can be proportional to the length of the text indexed, although it
is rarely the case and Clark and Munro’s approach provides good experimental
performance. To date, algorithms with provably good worst-case performance
for substring searches and updates for suffix trees in secondary storage are not
known. To overcome these theoretical limitations, Ferragina and Grossi have
proposed the string B-tree data structure [6, 7]. String B-trees provide the best
known bounds for the worst-case number of disk access required for queries and
updates. It is not known if the same performance bounds can be achieved with
suffix trees. The unbalanced nature of suffix trees appears to be a major obstacle
to designing efficient disk-based algorithms.

In this paper, we propose a new suffix tree layout scheme, and present al-
gorithms with provably good worst-case bounds on disk accesses required for
search and update operations, while maintaining our layout. Let n denote the
number of leaves in the suffix tree, and B denote the size of a disk block. We
provide algorithms that

– search for a pattern p in O(|p|/B + logB n) disk accesses,
– insert (all suffixes of) a string of length m in O(m logB(n+m)) disk accesses,

and
– delete (all suffixes of) a string of length m in O(m logB n) disk accesses.

Since suffix tree construction can be achieved by starting from an empty tree
and inserting strings one after another, the number of disk accesses needed for
suffix tree construction is O(n logB n). Our results provide the same worst-case
performance as string B-trees, thus showing that suffix trees can be stored on
disk and searched as efficiently as string B-trees.

The rest of the paper is organized as follows: In Section 2 we present our layout
scheme. The scheme partitions the suffix tree such that the number of partitions
encountered on any root to leaf path is bounded by logB n. This is a crucial fea-
ture that helps in overcoming problems caused by the unbalanced nature of suffix
trees. Section 3 contains our algorithm for substring search using the proposed
layout. Algorithms for inserting and deleting a new string are discussed in Sec-
tion 4. Section 5 contains further discussion and Section 6 concludes the paper.
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Fig. 1. The suffix tree of the string AABBAABBABAB$. The number in an internal
node is the number of leaves in its subtree. A partitioning is shown with C = 3. Two
example partitions of rank zero are circled with dashed lines, and two of rank one
with dotted lines.

2 Suffix Tree Disk Layout

Consider a set S of strings of total length n and a fixed size alphabet Σ. Without
loss of generality, we assume that the last character of each string is a special
character $ /∈ Σ, and the remaining characters are drawn from Σ. Let s ∈ S
be a string of length m. We use s[i] to denote the i-th character of s. Let s[i..j]
denote the substring s[i]s[i + 1] . . . s[j]. The i-th suffix of s, s[i..m], is denoted
by si. The suffix tree of the set of strings S, abbreviated ST , is a compacted trie
of all suffixes of all strings in S. Another commonly used notation is to use the
term generalized suffix tree when dealing with multiple strings and reserve the
term suffix tree when dealing with a single string. For convenience, we use the
term suffix tree to denote either case.

For a node v in ST , the string depth of v is the total length of all edge labels
on the path from the root to v. The number of leaves in the subtree under v is
referred to as size(v). If v is a leaf node then size(v) = 1. The rank of node
v, denoted rank(v), is i if and only if Ci ≤ size(v) < Ci+1, for some integer
constant C of choice. Nodes u and v belong to the same partition if all nodes
on the undirected path between u and v have the same rank. It is easy to see
that the entire suffix tree is partitioned into disjoint parts. Figure 1 shows an
example of a suffix tree, and some of its partitions.

The rank of a partition P is the same as the rank of the nodes in P , i.e.
rank(P) = rank(v) for any v in P . Node v in P is a leaf in P if and only if none
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Fig. 2. Illustration of partitions and skeleton partition trees

of v’s children in ST belong to P . Node u is termed the root of P if and only if
u’s parent is not a node in P . Figure 2(a) shows an example of a partition.

Lemma 1. There are at most C − 1 leaves in a partition.

Proof. Let P be a partition that has C′ ≥ C leaves, and node u be its root. Since
size(u) ≥ Ci · C′ ≥ Ci · C = Ci+1, rank(u) > rank(P), a contradiction. 	


Node v in P is a branching node if two or more of its children are in P . All other
nodes are referred to as non-branching nodes. From Figure 2(a) we see that a
partition P need not be a compacted trie. For each partition P , a compacted
trie is constructed containing the root node of P , all branching nodes and all the
leaves. Furthermore, only the first character of each edge label is stored. This
resulting compacted trie is referred to as the skeleton partition tree of P , or TP .
Figure 2(b) shows the skeleton partition tree of the partition in Figure 2(a).

Lemma 2. For a partition P, the number of nodes in TP is at most 2C − 2.

Proof. By Lemma 1 there are at most C − 1 leaf nodes in a skeleton partition
tree. Therefore, there can be at most C − 2 branching nodes. In addition, the
root node may or may not be a branching node. So the total number of nodes
in a skeleton partition tree is at most 2C − 2 = O(C). 	
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While Lemma 2 shows that the size of TP is bounded by O(C), it gives no
bound on the size of P . The worst case number of nodes in partition P of rank
i is Ci+1 − Ci, corresponding to a chain of Ci+1 − Ci nodes in ST where the
bottom node has a subtree with Ci leaves and all other nodes have an additional
leaf child each. Note that TP in this case has only two nodes, the top and bottom
nodes of the chain. So TP can be viewed as an additional data structure built
on top of P in order to traverse P effectively. A node u in ST appearing in a
partition P is described as uP ; similarly, its appearance in TP is described as
uT . The information stored in uT and uP are different, because uT ’s function is
to help navigate TP to locate a part of P , while uP is used to navigate from one
partition to another in ST . Any disk block can contain either skeleton partition
trees, part of a partition, or some of the input strings, but not a mixture of them.

Let uT and vT be nodes in TP such that uT is the parent of vT . All the
non-branching nodes between uP and vP (including uP , vP ) form a linked list.
Since uP is a branching node, it will be the head of multiple such linked lists.
Also, uP will be the tail of another linked list. For storage efficiency, we require
each node in P to be stored in exactly one linked list. So uP is not stored as
the head (first node) of the linked list from uP to vP , but rather as the tail (last
node) in the linked list that ends at uP . Note if uP is the root of a partition, it
is stored by itself. Since the linked list between uP and vP does not contain uP
we refer to this linked list as LL(uP , vP ].

To summarize, our layout scheme first divides the suffix tree into partitions.
All the nodes in a partition are further divided into linked lists. The skeleton
partition tree allows us to find any of the linked lists in a partition efficiently. All
links in our data structure are bidirectional for navigation. We will now describe
the augmenting information needed to efficiently perform the search operation.

The function of a skeleton partition tree TP is to allow the identification
of a LL(uP , vP ] in P , such that one of the nodes in LL(uP , vP ] has a child
pointer to the next partition we need to load for our search. Let vT be a child of
uT in TP .

– Store in vT the first character of the first edge label on the path from uT to
vT in ST , and refer to this character as first char(vT ).

– Store in vT a pointer ptr LL(vT ) to the tail (last node) of LL(uP , vP ].
– Store in uT a pointer ptr LL(uv) to the head (first node) of LL(uP , vP ].
– Store in uT the string depth of uT in ST , denoted as string depth(uT ).
– Store in uT (s, rep suff(uT )), such that srep suff(uT ) is a suffix represented

by one of the leaves in ST under uT .

For each node uP we store the following information:

– String depth of uP , also denoted as string depth(uP).
– For each child w of u in the suffix tree, store in uP a pointer to wT . Note

that this pointer is stored irrespective of if w is in the same partition as u.
Also store the first character of the edge label from uP to wT in the suffix
tree. We call this character LL first char(uw).
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3 Substring Search

Given a pattern p and the suffix tree for a set of strings S, the substring matching
problem is to locate a position i and a string s ∈ S such that s[i..i+ |p| − 1] = p
where |p| is the length of p, or conclude that it is impossible to find such a
match. In a suffix tree we match p character by character with edge labels of
the suffix tree until we can proceed no longer, or until all p’s characters have
been exhausted in which case a match is found. To search for a pattern p in
a suffix tree with our proposed layout, we will traverse the tree partition by
partition. The search begins with the partition containing the root node of ST .
Let � be a counter that is initialized to zero. The following steps are performed
and repeated for each partition P we encounter.

1. Load TP into the main memory.
2. Start from the root r of TP and travel down TP as follows. Suppose we are at

node uT , and let vT be a child of uT . If first char(vT )=p[string depth(uT )+
1] then travel to vT and repeat this process. Stop if no such vT can be found,
or when uT is a leaf node in TP , or p is exhausted.

3. Suppose the previous step stopped at node vT . Compare the substring
s[rep suff(vT )+ �..rep suff(vT )+ min {string depth(vT ), |p|}] with the sub-
string p[�..min {string depth(vT ), |p|}]. Let lcp be the number of characters
matched, set � = � + lcp.

4. Repeat Steps 2 and 3 until the first node wT such that string depth(wT ) ≥ �
is located. Let uT be the parent of wT in TP , and load LL(uP , wP ] by using
the pointer at uT . Start from the first node u′

P of LL(uP , wP ], locate the
first node u′′

P in LL(uP , wP ] such that string depth(u′′
P) ≥ �. So far the

process is similar to the search of PAT-tree proposed by Gonnet et al [8].
5. Suppose we stopped at node uP , there are three cases:

(a) If string depth(uP) = � and � = |p|, then a match is found at node u
and the search is stopped.

(b) Else if string depth(uP) = � but � �= |p|, i.e. the mismatch occurred
immediately after that uP . Find LL first char(uw) = p[� + 1] and use
the pointer to wT to find the next partition. If no match is found we
terminate the search and report no match for p in s.

(c) Otherwise if string depth(uP) > �, then we also terminate the search
and report no match for p in S.

Using the two-level memory structure proposed by Vitter and Shriver [14], we
assume the size of a disk block is B. Since each node requires constant amount
of space, the number of nodes a disk block can hold is Θ(B).

Lemma 3. Given a string s of length n, and a pattern p of length |p|. The
number of disk accesses needed to locate p in the suffix tree of s is O(|p|/B +
logB n).

Proof. We choose C such that the skeleton partition tree can fit in one disk
block. Since the number of nodes in a skeleton partition tree is at most 2C−2 by
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Lemma 2 and each node requires constant space C = Θ(B). For each partition
P its TP is stored in one disk block, so Steps 1 and 2 can be done with one
disk access for each partition. Since the search goes through at most O(logB n)
partitions, the total disk accesses for these steps is O(logB n). Over the course
of the entire search process, Step 3 makes at most O(|p|) character comparisons,
and requires O(|p|/B + logB n) disk accesses because both p and the substring
being compared are stored contiguously on disk. By similar reasoning Step 4
requires O(|p|/B+logB n) disk accesses because the number of nodes loaded for
all linked lists combined is less than |p|. Finally all the information needed for
Step 5 is stored with the node, and no additional disk access is needed. Therefore,
the total number of disk accesses is O(|p|/B + logB n). 	


Note that one occurrence of the pattern in the given set of strings can be found
by identifying the first node uT at or below the position after matching all char-
acters of p, and retrieving the representative suffix (s, rep suff(uT )). The algo-
rithm can be extended to return all occurrences of the pattern p using O(|p|/B+
logB n + occ

B ) disk accesses where occ denotes the number of occurrences.

4 Updating the Suffix Tree

A dynamic suffix tree must support insertion, deletion, and modification of
strings. Since a modification operation can be viewed as a deletion followed
by an insertion, we concentrate our discussion on the insertion and deletion op-
erations. During insertion and deletion the size of a node may be changed. In
order to facilitate the calculation of size, we choose C = 2. By Lemma 1, if
C = 2 then each partition only has one leaf, and is now a path. The skeleton
partition tree contains only two nodes, the root and the leaf, denoted R and L,
respectively. With C = 2, it can be easily verified that all the leaves of ST are
in a partition of their own.

Note that the bound of asymptotic number of disk accesses for substring
search in Lemma 3 is obtained using C = Θ(B). This result can be achieved
even when C = 2 by packing multiple skeletal partition trees into the same disk
block as outlined in Lemma 5.

4.1 Insertion

In order to insert a string s into an existing suffix tree with O(n) nodes, the suf-
fixes of s are inserted into the suffix tree one by one. Therefore we first introduce
the procedure to insert a suffix of s into the suffix tree. When a suffix is inserted
into the suffix tree a leaf is added, and an internal node may also be added. For
every node u in the suffix tree on the path from the root of the suffix tree to the
newly inserted leaf node v, size(u) is increased by one. Because of this change,
rank(u) may also increase by one, which will change the partition P . However,
the number of nodes that have to be moved to another partition is limited.
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Lemma 4. The insertion of a new suffix into the suffix tree may increase the
rank of a node by 1 only if it is an ancestor of the new leaf and is the root node
of its partition. The ranks of all other nodes are unaffected.

Proof. If a node is not an ancestor of the new leaf, its size and hence its rank
does not change. The size of each node that is an ancestor of the newly inserted
leaf will increase by one. Consider a node v that is an ancestor of the new leaf.
Suppose v is not the root of a partition and let r denote the root of the partition
containing v. If rank(v) were to increase, then size(v) = Ci − 1 just before the
insertion. Since r is an ancestor of v, then size(r) > size(v)⇒ size(r) ≥ Ci, so
r could not have been in the same partition as v, a contradiction. 	


While Lemma 4 applies for any choice of C, we choose C = 2 as described in
the beginning of the section. While the size of many nodes will change after an
insertion, it is not necessary to keep track of the correct size of all nodes at all
times. It is enough to only have the correct size for the root R of all partitions.
Since we have chosen C = 2 and as stated before each partition P is now a path
in ST , i.e. P has no branching nodes. So the linked list between RP and LP can
now contain the node RP as its head, without fear of duplication. The linked
list under the new definition is referred to as LL[RP ,LP ]. We alter slightly the
information stored with RT and LT to facilitate the insertion operation.

– In RT , size(RT ) contains the number of leaves in the suffix tree under RP .
– Since RT has only one child, the pointer to the head of LL[RT ,LT ] is now

ptr LL(RT ). The pointer ptr LL(LT ) still points to the tail of LL[RT ,LT ].
– The definition for string depth(v), first char(v) and (s, rep suff(v)), where

v is either RT or LT , remain unchanged from before.

The insertion algorithm is applied iteratively to each partition it encounters.
Each iteration is divided into two stages. In the first stage we find the appropriate
place to insert the new leaf and add a new internal node if necessary. In the
second stage we update the partition if the root needs to be moved to another
partition. Assume that the size parameters are correct for RT of each partition.
Suppose we are at partition P , perform Steps 1 to 4 of the search algorithm
described in Section 3. Assume after Step 4, the search algorithm stops at a
node uP . One of the following three scenarios will apply.

1. An internal node w needs to be inserted between R and its parent v in parti-
tion P ′, and the new leaf attached to wP . In this case size(w) = size(RT )+1
and its rank can be calculated accordingly. Based on its rank one of the fol-
lowing cases is true.
(a) The new node w has the same rank as RT , so it is the new root of P .

Put wP as the head of LL[wP ,LP ], set pointer ptr LL(wP ) to wP .
(b) The new node w is in a partition by itself, then a new partition is made

containing only w. Pointers in vP′ and RP are updated accordingly.
(c) The new node wP is in the same partition P ′ as vP′ . Node w is inserted

after vP′ in LL[RP′ ,LP′ ] and update the tail pointer stored in LT .
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2. Else if string depth(uP) = l but l �= |p|, i.e., the mismatch occurred imme-
diately after that uP . Find LL first char(uw) = p[l+1] and use the pointer
to wT to find the next partition. If no match is found then node uP is where
the new leaf should be attached. In either case increment size(RP) by one.

3. Otherwise if string depth(uP) > l, then a new internal node wP is inserted
between uP and its parent vP ∈ LL[RP ,LP ], the new leaf is attached to wP
and size(RP) is incremented by one.

It is easy to verify that the size parameter is correctly set at the end of this
stage. From Lemma 4 we know that for each partition P encountered during the
insertion, only the root may need to be moved. If so first remove the first node of
LL[RP ,LP ] by changing ptr LL(RP ) to point at the next node in LL[RP ,LP ].
The next node becomes the new root of P , so update the values we stored for
RP . All these values can be found except for the new size(RP). Let r be the
old root of P , then size(RP) = size(r)−

∑k
i=1 size(vi), where vi is a child of r.

The sizes of vi’s are known because they are roots of different partitions. The
old root r will either become a partition on its own or become a part of the
partition of its parent. In the former case, carry out the procedures in 1b), and
the procedure in 1c) should be followed in the latter case.

For a partition P , LL[RP ,LP ] may not be able to fit in one disk block. When
a disk block becomes full, a new disk block is opened. The second half of the
linked list on the current block is copied to the new block. The nodes of the
second half of the linked list could be scattered across the disk block.

Lemma 5. The number of disk accesses needed for the insertion of a suffix is
O(m/B + logB n), where m is the length of the suffix.

Proof. Assume the number of nodes that can be contained in a block is O(B)
and B = 2k. Under the new scheme each skeleton partition tree contains only
two nodes. For a partition P with rank rank(P), we calculate a block rank(P) =
�rank(P)/k�. For partitions P ′ and P ′′, without lost of generality assume RP′′

is a child of v ∈ P ′. If block rank(P ′) = block rank(P ′′) we put TP′ and TP′′ on
the same disk block. So each time a new disk block containing skeleton partition
trees is loaded the block rank decreases by one, so O(logB n) disk accesses are
sufficient for loading all blocks containing the skeleton partition trees needed by
the algorithm.

Let RP′ be a child of RP in ST such that block rank(P ′) = block rank(P).
We store in RT of P a pointer to RT of partition P ′, and the first character
of the edge label. Therefore, we can find a partition P ′′ in the same disk block
as P , using Step 2 of the substring search algorithm. Then use rep suff at P ′′

to decided how to navigate through all the skeleton partition trees on the same
disk block. Thus the complexity is the same as search. 	


To speed up insertion of all suffixes of a string, suffix links are used. For nodes
u, v ∈ ST there is a suffix link from u to v, denoted SL(u) = v, if the concatena-
tion of the edge labels from the root to u and v are aβ and β, respectively. We
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first briefly introduce McCreight’s suffix tree construction algorithm [11], then
show how these ideas can be used in our layout scheme.

To insert a string s of length m into a suffix tree of size n, the suffixes of s
are inserted into the suffix tree one by one. Suppose we have just inserted suffix
si as a leaf, if a new internal node w is created to attach the leaf representing
si, then go to w’s parent and let l be the length of the edge label between w
and its parent. Otherwise go to the parent of the leaf and let l = 0. Assume
we are at node u now, take the suffix link from node u to v. Compare only the
first character of each edge label with the appropriate characters of s and skip
down, repeat this until l characters have been skipped. If we are inside an edge
label, insert a new internal node w′, attach the leaf representing si+1 to w′ and
set SL(w) = w′. Otherwise suppose we are at a node w′. Set SL(w) = w′ and
continue down from w′ by comparing appropriate characters of s with the edge
labels, until a place to insert si+1 is found.

If we maintain a suffix link for each node uP to vP , then we can follow the
above algorithm to insert suffixes one by one in our layout. To skip the l charac-
ters takes at most O(l/B+logB(n+m)) disk accesses. After the insertion of each
suffix, for each partition P encountered on the path from the root of ST to the
new leaf, the size of RP is incremented by one, and RP is moved to another par-
tition if necessary. Updating all of these partitions takes at most O(logB(n+m))
number of disk accesses. Therefore the total number of disk accesses required
for inserting all suffixes of a string of length m is O(m logB(n + m)).

4.2 Maintaining Suffix Links

In our string insertion and deletion algorithms, suffix links need to be maintained
for each node uP . This can be accomplished by maintaining bidirectional suffix
links such that when uP is moved, all nodes vP′ with SL(vP′) = uP can be
identified and updated. We note that the string depth of a node in ST never
changes. So for nodes uP , vP in LL[RP ,LP ] such that uP is the parent of vP ,
we can leave enough space between uP and vP for future insertions. The amount
of space is proportional to the length of the edge label between uP and vP . This
way the suffix links will only change when a node is moved to another partition.
The complexity of searching, insertion and deletion is not affected. Ferragina
and Grossi [7] have proposed three approaches to maintain their succ pointers,
which can also be applied to maintain the suffix links in our approach.

4.3 Deletion

The deletion process is analogous to the insertion process. Similar to Lemma 4
only the leaf of a partition may need to be moved to another partition for each of
the partitions encountered during the deletion process. In places where size(u)
is incremented by one in the insertion process, size(u) should be decremented
by one. Since some of the strings will be deleted, the (s, rep suff(uT )) entries
may no longer be valid for uT that is an ancestor of a deleted leaf. In this case
after the deletion of a leaf we traverse upwards in the tree, and replace the
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(s, rep suff(uT )) entries with the suffixes represented by a sibling of the deleted
leaf, or (s, rep suff(vT )) where vT is a sibling of the deleted leaf.

5 Discussion

In our layout scheme, it is possible that many skeletal partition trees may be
small and not occupy a full disk block. Even though a skeletal partition tree
can have as many as C − 2 nodes, it can also have as few as just two nodes.
For example, the suffix tree of the string An$ has Θ(n) number of disk blocks
with only one node. Note that this is true even if a large value of C such as
Θ(B) is chosen. Choosing C = Θ(B) ensures optimal number of disk accesses
for substring search, even if many disk blocks are sparsely occupied. This is an
interesting contrast with the suffix tree layout of Clark and Munro [3] where the
focus is on succinct representation of suffix trees to conserve secondary storage,
but this scheme does not provide optimal worst case bound for substring search.
Our scheme provides such guarantees despite not trying to minimize the number
of disk blocks for suffix tree storage.

While not needed for ensuring asymptotic performance when C = Θ(B), we
can and should pack as many skeletal partition trees into a single disk block
for efficient storage. This packing is always beneficial and has no harmful side
effects. If C is chosen to be small, such packing is necessary to obtain optimal
disk accesses as outlined in the proof of Lemma 5.

The main advantage of our approach is that it provides the same performance
guarantees as string B-trees without sacrificing the structure of suffix trees. This
will make it easier to co-exist with the large number of applications that already
use suffix trees as the underlying data structure. One limitation of our approach
is that it is applicable only to constant sized alphabets while string B-trees do
not have this limitation. Traversing any root to leaf path in string B-tree incurs
the same number of disk accesses. This number is potentially different for each
path in our layout with the worst-case asymptotic performance same as for string
B-trees. Each disk access in our algorithm increases the number of characters
matched with p, and this may not be true for string B-tree. Thus, searching for
a pattern p takes O(min{p, p/B+logB n}) number of disk access, where n is the
number of characters indexed.

6 Conclusions

In this paper, we present a new suffix tree layout scheme for secondary storage
and provide algorithms with provably good worst-case performance for search
and update operations. The performance of our algorithms matches what can be
obtained by the use of string B-trees, a data structure specifically designed to
efficiently support string operations on secondary storage. Suffix trees are exten-
sively used in biological applications. As our scheme provides how to efficiently
store and operate on them in secondary storage that is competitive with the
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best available alternatives, the research presented provides justification for us-
ing suffix trees in secondary storage as well. It is important to compare how the
presented algorithms compare in practice with other storage schemes developed
so far (those with and without provable bounds on disk accesses), and such work
remains to be carried out.
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Abstract. Protein structure analysis is one of the most important re-
search issues in the post-genomic era, and faster and more accurate query
data structures for such 3-D structures are highly desired for research on
proteins. This paper proposes a new data structure for indexing protein
3-D structures. For strings, there are many efficient indexing structures
such as suffix trees, but it has been considered very difficult to design such
sophisticated data structures against 3-D structures like proteins. Our in-
dex structure is based on the suffix trees and is called the geometric suffix
tree. By using the geometric suffix tree for a set of protein structures, we
can search for all of their substructures whose RMSDs (root mean square
deviations) or URMSDs (unit-vector root mean square deviations) to a
given query 3-D structure are not larger than a given bound. Though
there are O(N2) substructures, our data structure requires only O(N)
space where N is the sum of lengths of the set of proteins. We propose
an O(N2) construction algorithm for it, while a naive algorithm would
require O(N3) time to construct it. Moreover we propose an efficient
search algorithm. We also show computational experiments to demon-
strate the practicality of our data structure. The experiments show that
the construction time of the geometric suffix tree is practically almost
linear to the size of the database, when applied to a protein structure
database.

1 Introduction

Analyzing 3-D structures of proteins is very important in molecular biology and
more and more protein structures are solved today with the aid of state-of-the-
art technologies such as nuclear magnetic resonance (NMR) techniques, as seen
in the increasing number of PDB [4] entries: 35,813 on March 28, 2006. It is said
that structurally similar proteins tend to have similar functions even if their
amino acid sequences are not similar to each other. Thus it is very important to
find proteins with similar structures (even in part) from the growing database
to analyze protein functions.

Structure similarity search methods for protein structure databases can be
classified into two types. One is by comparing each database entry with the
query. There are many comparison algorithms for protein structures [10], and
the results could be very accurate, but it will require enormous amount of time
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to apply against very large databases. The other approach is by indexing with
some important features of structures [1, 3, 6, 5, 8, 12]. In ordinary, these meth-
ods can search queries more efficiently, but with less accuracy than the pair-
wise comparison-based methods. The accuracy of comparison of two protein
structures is often measured by RMSD (root mean square deviation) [2, 9, 17]
or sometimes by URSMD (unit-vector root mean square deviation) [7, 15]; see
section 2.1 for more details. But it has been considered too difficult to design
indexing structures that strictly consider the RMSD or the URMSD.

In this paper, we propose a new data structure called the geometric suffix
tree that succeeds in finding all the substructures whose RMSD or URMSD to
a query is not larger than some given bound. As the name implies, our data
structure is very similar to the famous suffix tree for character strings: The
edges in the ordinary suffix tree represent substrings of texts, while the edges in
the geometric suffix tree represent 3-D substructures of protein 3-D structures.
The geometric suffix tree can be stored in O(N) space where N is the sum of
the lengths of the proteins in the database. We propose an O(N2) construction
algorithm for it, though it takes O(N3) time if we construct the data structure
naively. Furthermore, the experiments will show that the construction time of
the geometric suffix tree is almost linear to the size of the database in practice,
when applied to a protein structure database. Moreover, we propose an efficient
search algorithm for substructure queries. This data structure is also useful for
finding structural motifs, clustering substructures, and so on.

Organization of this paper is as follows. In section 2, we explain related work
as preliminaries. In section 3, we describe definitions of two data structures:
the geometric trie and the geometric suffix tree, where the geometric trie is the
basis for the geometric suffix tree. In sections 4 and 5, we explain algorithms for
constructing the data structure and algorithms for searching queries. In section 6,
we demonstrate experimental results. In section 7, we conclude our results.

2 Related Work

2.1 RMSD and URMSD

A protein is a chain of amino acids. Each amino acid has one unique carbon atom
named Cα, and we often use the coordinates of the Cα atom as the representative
position of the amino acid. The set of Cα atom positions of all the amino acids in
a protein is called the backbone of the protein, and is often used to ease protein
structure analysis in previous work. The backbone is topologically linear, but it
forms a geometrically very complex structure in the 3-D space. In this paper, we
consider the backbone as the target to index.

The most popular and basic measure to determine geometric similarity be-
tween two sets of points like the positions of backbone atoms is the RMSD
(root mean square deviation) [2, 9, 17], if we know which atom in one structure
corresponds to which atom in the other. The measure describes the similarity
of two structures when one of the point sets is rotated and translated reason-
ably. Let the two sets of points to be compared be P = {p1,p2, . . . ,pn} and
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Q = {q1, q2, . . . , qn}, where pi and qj are coordinates in the 3-D space, and we
consider pi corresponds to qi for each i. The RMSD is the minimum value of
{(
∑n

i=1 ‖pi − (R · qi + v)‖2)/n}1/2 over possible rotation matrices R and trans-
lation vectors v, where ‖ · ‖ denotes the norm. Let R̂(P,Q) and v̂(P,Q) be R
and v that minimizes the value. We call

∑n
i=1 ‖pi − (R̂(P,Q) · qi + v̂(P,Q))‖2

the MSSD (minimum sum squared distance) of P and Q.
It is known that v̂(P,Q) =

∑n
i=1 (pi − R̂(P,Q) · qi)/n, i.e., the distance is

minimized when the centroids of the two point sets are translated to the same
point. Hence, if both of the point sets are translated so that their centroids
are located at the origin of the coordinates, the RMSD/MSSD problem is re-
duced to a problem of finding R that minimizes f(R) =

∑n
i=1 ‖pi − R · qi‖2.

We can find R̂(P,Q) in linear time by using singular value decomposition
(SVD) [2, 17] as follows. Let H =

∑n
i=1 pi · qt

i. Then f(R) can be described as∑n
i=1 (pt

ipi + qt
iqi)−trace(R·H), and trace(RH) is maximized when R = V UT ,

where UΛV is the SVD of H . Hence R̂(P,Q) can be obtained in constant time
from H (see [13] for SVD algorithms). Note that there are rare degenerate
cases where det(V UT ) = −1, which means that V UT is a reflection matrix.
We ignore the degenerate cases in this paper. In this way, we can compute the
RMSD/MSSD values in O(n) time.

The URMSD (unit-vector root mean square deviation) [7, 15] is a variation of
the RMSD. The RMSD is sometimes influenced badly by very distant pairs of
points, and the URMSD is designed to avoid such influence. It is the minimum
value of {(

∑n−1
i=1 ‖p′

i − R · q′
i‖2)/(n − 1)}1/2 over possible rotation matrices R,

where p′
i = (pi+1 − pi)/‖pi+1 − pi‖ and q′

i = (qi+1 − qi)/‖qi+1 − qi‖. Let
Ř(P,Q) be R that minimizes the value. We call

∑n−1
i=1 ‖p′

i − Ř(P,Q) · q′
i‖2 the

UMSSD (unit-vector minimum sum squared distance). The URMSD/UMSSD
can be computed with the same strategy in O(n) time, i.e., by computing the
SVD of H ′ =

∑n
i=1 p′

i · (q′
i)

t.

2.2 Suffix Trees

The suffix tree [11, 14, 16, 19, 20] of a string S ∈ Σn is the compacted trie of
all the suffixes of S+ = S$ where $ is a character such that $ /∈ Σ. This data
structure can be stored in O(n) space and moreover is known to be buildable
in O(n) time. Each leaf represents a suffix of the string S+, and each node
represents some substring. This data structure is very useful for various problems
in sequence pattern matching. Using it, we can query a substring of length m in
O(m) time, we can find frequently appearing substrings in a given sequence in
linear time, we can find a common substring of many sequences in linear time,
and so on [14].

Not much work has been done for applying this data structure to biomolecular
structures. The PSIST [12] is the only index data structure for protein structures
based on the suffix trees as far as we know. It converts local features of the amino
acid chain (i.e., some feature vectors computed from only several adjacent atoms)
into some alphabets and constructs suffix trees over the converted alphabet se-
quences, without considering global similarity measures like the RMSD or the
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URMSD at all. For RNA (secondary) structures, the s-suffix tree [18], a general-
ization of the suffix tree, can be used for mining some interesting RNA structures
from sequence databases, but it cannot be applied to protein 3-D structures.

3 Geometric Suffix Tree Data Structure

In this section, we describe the definition of the geometric suffix tree. Before
defining the geometric suffix tree, we define a data structure called the geometric
trie for a set of protein structures.

Consider a set of n protein structures represented by the sequence of their Cα

atom coordinates. Let Wi be the i-th structure, where the 3-D coordinates of the
j-th Cα atom is denoted as w

(i)
j , and let �i be the length of Wi (i.e., number of

Cα atoms). Let Wi[j..k] denote {w(i)
j ,w

(i)
j+1, . . . ,w

(i)
k }, which means a structure

formed by the (k− j + 1) atoms from the j-th atom to the k-th atom in Wi. We
call it a substructure of Wi. Moreover, we call Wi[1..j] a prefix substructure of
Wi. Conversely, Wi[j..�i] is called a suffix substructure. From now on, we define
two versions of the geometric trie: one based on the RMSD/MSSD (which we call
the RMSD Geometric trie (RGT)) and the other based on the URMSD/UMSSD
(which we call the URMSD geometric trie (UGT)). The geometric trie for the set
of protein structures is defined as a rooted tree data structure that has following
features:

1. All the internal nodes (nodes other than the leaves) except for the root have
more than one child, while the root has only one child. (It corresponds to
the fact that a structure with only one atom is always the same structure.)
The trie has n leaves, each of which corresponds to one protein structure,
and no two leaves correspond to the same structure. Let leaf(i) denote the
leaf that corresponds to Wi.

2. All the internal edges (i.e., edges that end at internal nodes) and some
external edges (i.e., edges that end at leaves) correspond to a substructure of
some protein. If the corresponding substructure of edge e is P (e) = Wi[j..k],
we represent it with only three values: i, j, and length(e) = k − j + 1. Let
length(e) = 0 if e is an external edge without a corresponding substructure.
We call the value length(e) the edge length of e. Let the depth(v) be the
sum of all the edge lengths on the path from the root to v, which we call the
depth of v.

3. Add to the three values that represent its corresponding substructure, each
edge with a corresponding substructure has information of a rotation matrix
R(e) and a translation vector v(e). R(e) and v(e) must satisfy the condition
in the items 4 and 5.

4. Let S(e) be a 3-D structure obtained by rotating P (e) with R(e) and trans-
lating it with v(e) after that. We call S(e) the ‘edge structure’ of e. Note
that S(e) (not P (e)) corresponds to the substring represented by an edge in
an ordinary suffix tree for alphabet strings. The ‘node structure’ S(x) for a
node x is defined as a structure that can be obtained by concatenating ‘edge
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structures’ of the edges on the path from the root to the node x. For any
leaf v = leaf(i) and its node structure S(v), the MSSD (in case of RGTs, or
the UMSSD in case of UGTs) between any prefix substructure of S(v) and
the prefix substructure of Wi of the same length must not be larger than
some given fixed bound b. (Note that b is unrelated to the RMSD/URMSD
bound d used in the next section for searching structures.)

5. For an edge e = (v, w) with some corresponding substructure P (e), the
‘branching structure’ str(e) is defined as a structure that is obtained by
adding the coordinates of the first atom of S(e) (i.e., S(e)[1]) after the
coordinates sequence S(v). For any internal node v with more than one
outgoing edge with corresponding substructures, the MSSD (for RGTs, or
the UMSSD for UGTs) between str(e1) and str(e2) must be larger than b,
where e1 and e2 are arbitrary two of the edges.

Fig. 1. A geometric trie for two protein 3-D structures

As there are only O(n) nodes/edges in the trie and we need only O(1) mem-
ory for each edge/node, the total memory space to store the geometric trie is
only O(n). Note that the data structure is not unique for a fixed set of protein
structures. Figure 1 shows an example of the geometric trie constructed for two
structures P and Q. In the figure, we consider the MSSD of P [1..7] and Q[1..7] is
not larger than b, while the MSSD between P [1..8] and Q[1..8] is larger than b.

Now we can define the geometric suffix tree: The geometric suffix tree for a set
of proteins is the geometric trie for all the suffix substructures of all the proteins
in the set. It is easy to see that we need O(N) space to store the geometric suffix
tree, where N is the sum of the lengths of the proteins.

4 Constructing Geometric Suffix Trees

In this section, we describe how to construct the geometric tries and the geo-
metric suffix trees. Given a set of n protein structures Wi and some given MSSD
(for RGTs or UMSSD for UGTs) bound b, we can construct the geometric trie
by adding structures one by one as follows:
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Algorithm 1. At first, construct a tree with only the root node. For each protein
structure Wi, set the root node to v and do the following.

1. From among a set of v’s outgoing edges with some corresponding substruc-
tures, find an edge e such that the MSSD (for RGTs, or the UMSSD for
UGTs) between Wi[1..depth(v) + 1] and str(e) is smaller than b. If there
is more than one such edge, choose an arbitrary one (or preferably the one
with the smallest MSSD (or UMSSD)). If no such edge exists, go to step 2.
Otherwise go to step 3.

2. Add a new outgoing edge e′ = (v, w) to v, and let the new leaf w correspond
to Wi. Let P (e′) be Wi[depth(v) + 1..�i]. If v is the root, let R(e′) be the
identity matrix and let v(e′) be a zero vector. Otherwise, in case of RGTs, let
R(e′) be R̂(S(v),Wi[1..depth(v)]), and let v(e′) be v̂(S(v),Wi[1..depth(v)]).
In case of UGTs, let R(e′) be Ř(S(v),Wi[1..depth(v)]), and let v(e′) be
(S(v)[depth(v)]−R(e′) ·Wi[depth(v)]). Notice that, in both cases, R(e′) and
v(e′) represents alignment between S(v) and Wi[1..depth(v)]. Then stop.

3. Let w be the node where the edge e ends. Find the longest prefix substruc-
tures of S(w) and Wi whose MSSD (for RGTs, or UMSSD for UGTs) is
not larger than b, and let the length be �. If � < depth(w) go to step 4. If
� = depth(w) and � < �i, set w to v and go to step 1. Otherwise, add a new
outgoing edge (w, u) with no corresponding substructure, and let the new
leaf u correspond to the structure Wi. Then stop.

4. Insert a new node u between v and w. Let e1 = (v, u) and let e2 = (u,w). Let
P (e1) be the prefix substructure of P (e) of length (�−depth(v)), and P (e2) be
the suffix substructure of P (e) of length (depth(w)− �). Let R(e1) and R(e2)
be the same matrix as R(e), and v(e1) and v(e2) be the same vector as v(e).
Add a new outgoing edge e′′ = (u, x) to u, and let the new leaf x correspond
to the structure Wi. If � = �i, let e′′ have no corresponding substructure.
Otherwise, let the corresponding substructure P (e′′) be Wi[�+1..�i]. In case
of RGTs, let R(e′′) be R̂(S(u),Wi[1..�]) and let v(e′′) be v̂(S(u),Wi[1..�]).
In case of UGTs, let R(e′′) be Ř(S(u),Wi[1..�]) and let v(e′′) be (S(u)[�]−
R(e′′) ·Wi[�]). Then stop.

With the same algorithm, we can construct the geometric suffix tree: Just
consider that Wi is the i-th suffix substructure.

Recall that it takes O(�) time to compute the MSSD or the UMSSD (and the
rotation matrix and the translation vector related to it) between two structures
of size �. Thus, if we execute the algorithm naively, we would need O((�i +n) ·�i)
time to add Wi to the tree, because there are at most n branches on the path
from the root node to some leaf. Accordingly, we need O(

∑n
i {(�i +n) · �i}) time

for constructing the geometric trie. It means that the above algorithm requires
O(N3) time to construct the geometric suffix tree, where N is the sum of all the
structure lengths. From now on we present how to reduce it to O(N2).

We reduce the computation time by proposing an incremental MSSD/UMSSD
computation technique. Recall that the MSSD of two protein structures
P [1..j] and Q[1..j] can be obtained by computing the SVD of H =
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i=1 (pi − cP ) · (qi − cQ)t where cP and cQ are the centroids of P and Q. H

can be computed in constant time if we are given fP (j) =
∑j

i pi, fQ(j) =
∑j

i qi,
and g(j) =

∑j
i pi · qt

i, as H = g(j)− {fP (j) · (fQ(j))t}/j. Add to these values,
we need hP (j) =

∑j
i=1 pt

ipi and hQ(j) =
∑j

i=1 qt
iqi to compute the MSSD or

RMSD values in constant time. Notice that all of these can be computed incre-
mentally in constant time from fP (j − 1), fQ(j − 1), g(j − 1), hP (j − 1), and
hQ(j−1). It means that we can add the structure Wi to the tree in O(�i+n) time,
and accordingly we can construct the RGT in O(N + n2) time. In conclusion,
we can construct the RMSD-based geometric suffix tree in O(N2) time.

Similarly, we can compute the UMSSD of two protein structures P [1..j]
and Q[1..j] in constant time if we are given g′(j) =

∑j
i=1 p′

i · (q′
i)

t, h′
P (j) =∑j

i=1 (p′
i)

tp′
i, and h′

Q(j) =
∑j

i=1 (q′
i)

tq′
i. We can easily see that these can also

be computed from g′(j − 1), h′
P (j − 1) and h′

Q(j − 1) in constant time. There-
fore we conclude that the UGTs and the URMSD-based geometric suffix trees
can be constructed in the same time bound as the RGTs and the RMSD-based
geometric suffix trees: We can construct the UGTs in O(N + n2) time, and the
URMSD-based geometric suffix trees in O(N2) time.

5 Geometric Suffix Tree Applications

There are two important features on the RMSD/MSSD (or URMSD/UMSSD)
measures. One is that the MSSD (or UMSSD) of two structures P and Q (of
the same length) is always larger than or equal to that of P ′ and Q′, where P ′

and Q′ are any same-length prefix substructures of P and Q. The other is that
there is a triangle inequality c ≤ a+ b where a is the RMSD (URMSD) between
P and Q, b is that between Q and R, and c is that between R and P , for any
set of three structures P , Q, and R of same lengths.

Using these features, all maximal substructures whose RMSD (or URMSD)
to a query Q[1..m] is within some bound d can be computed efficiently as fol-
lows. Let ‘representative structure’ mean any prefix substructure of the ‘node
structure’ of any node in the geometric suffix tree. First, we find all the maximal
representative substructures whose RMSD (or URMSD) to the query Q is within√

b/m+d by just doing a depth-first or breadth-first search from the root, where
b is the MSSD (or UMSSD) bound used for constructing the geometric suffix
tree. Let E be the set of edges to which the collected representative substruc-
tures correspond. After that, find all the leaves that are descendants of the edges
in E. As the suffixes that correspond to the collected leaves are candidates of
the answer substructures (and there are no candidates elsewhere), check their
RMSDs (or URMSDs) one by one.

Ordinary suffix trees have tremendous number of applications in string pattern
matching [14]. Like them, applications of the geometric suffix trees are not lim-
ited to the database search. A long representative structure whose corresponding
edge has many descendants is a repeated structure in a protein structure, which
could have some meaning. By constructing the geometric suffix tree for several
functionally-related protein structures, we could find structural motifs. We could
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further use this fundamental data structure for designing more complicated com-
binatorial pattern matching algorithms on protein structures, such as structural
alignment algorithms, clustering/classification algorithms and functional predic-
tion algorithms.

6 Experimental Results

In this section, we demonstrate the performance of the geometric suffix trees
through experiments on a Sun Fire 15K super computer with 288 GB memory
and 96 UltraSPARC III Cu CPUs running at 1.2GHz. Note that we used only
one CPU for each experiment. As a data for experiments, we used a set of 228
myoglobin or myoglobin-related PDB data files containing 275 protein structures.
The total number of amino acids in the protein set is 41,719.

Table 1 shows the computation time for constructing the RMSD-based geo-
metric suffix trees against databases of different sizes, setting 400Å2 to the MSSD
bound. In the experiment (1), we used all the 275 proteins to index. In the ex-
periments (2)-(5), we used different subsets of them. The ‘#sequence(#a.a.)’
column shows the numbers of sequences and amino acids contained in the pro-
tein sets. The ‘Time’ column shows the computation time, while the ‘GST Size’
column shows the numbers of nodes in the constructed geometric suffix trees.
According to the table, the computation time is almost linear to the size of the
databases, though the theoretical time bound is O(N2). It is reasonable as there
should be some reasonable upper bound on protein lengths.

Next, we examined the query speed on the RMSD-based geometric suffix
trees with different MSSD bounds. Table 2 shows the results, where ‘b = . . .’
denotes the MSSD bound in Å2. We used two protein substructures of the same
length as queries: In experiment (a), we used as a query a substructure from

Table 1. Time for constructing the geometric suffix trees (b = 400Å2)

Database #sequence (#a.a.) Time (sec) GST Size
(1) Entire database 275 (41,719) 53.15 57,241
(2) Subset A 198 (30,061) 36.37 41778
(3) Subset B 111 (16,983) 17.68 25,942
(4) Subset C 54 (8,267) 7.91 13,050
(5) Subset D 20 (3,069) 2.89 4,855

Table 2. Query time (sec) on the geometric suffix trees with various MSSD bounds

Queries b = 1 b = 100 b = 400 b = 900 b = 1600 b = 2500 #found

(a) d = 1.0Å 1.63 0.56 0.39 0.43 0.60 0.87 19
d = 5.0Å 11.70 5.08 5.66 6.55 6.63 6.63 217

(b) d = 1.0Å 1.63 0.73 0.48 0.33 0.19 0.21 0
d = 5.0Å 16.13 7.83 7.93 8.00 7.58 7.20 0
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the 20th amino acid to the 69th amino acid of a myoglobin’s structure obtained
from the PDB entry named 103M. In experiment (b), we used a protein that
is unrelated to myoglobins: A substructure from the 20th amino acid to the
69th amino acid of a rhodopsin’s structure obtained from the PDB entry named
1F88. In both experiments, we examined query time by setting two different
RMSD bounds: d = 1.0Å and d = 5.0Å. In the table, the ‘#found’ column
shows the numbers of found substructures similar to the query. According to the
experiments, the query is very fast when the RMSD bound for the query is small
in both experiments. Note that we can observe similar phenomenon on ordinary
suffix trees: It is known that the inexact matching on suffix trees is (not) efficient
when there is (not) a small edit distance limit.

7 Concluding Remarks

We proposed a new data structure called the geometric suffix tree for indexing
the protein 3-D structures. The data structure can be stored in O(N) space where
N is the database size, and we presented an O(N2) construction algorithm for it.
Moreover, we showed through experiments that we can build the data structure
in quasi-linear time in practice. We also showed that we can search for queries
very efficiently with the geometric suffix tree.

It is an open problem whether we can improve the theoretical time bound
for building the geometric suffix tree. We are now working on utilizing this data
structure for further combinatorial matching problems and machine learning
problems on protein structures. We suppose this work is just the beginning.
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Abstract. Many algorithms for motif finding that are commonly used
in bioinformatics start by sampling r potential motif occurrences from n
input sequences. The motif is derived from these samples and evaluated
on all sequences. This approach works extremely well in practice, and is
implemented by several programs. Li, Ma and Wang have shown that a
simple algorithm of this sort is a polynomial-time approximation scheme.
However, in 2005, we showed specific instances of the motif finding prob-
lem for which the approximation ratio of a slight variation of this scheme
converges to one very slowly as a function of the sample size r, which
seemingly contradicts the high performance of sample-based algorithms.
Here, we account for the difference by showing that, for a variety of dif-
ferent definitions of “strong” binary motifs, the approximation ratio of
sample-based algorithms converges to one exponentially fast in r. We
also describe “very strong” motifs, for which the simple sample-based
approach always identifies the correct motif, even for modest values of r.

1 Introduction

Motif finding is a combinatorial abstraction of the very important problem of reg-
ulatory sequence detection in bioinformatics. In motif finding, n discrete input se-
quences, each of length m, are given, as is a parameter L, called the motif length.
The most common goal is to find a contiguous substring of length L in each input
sequence, minimizing some function of these substrings (called the motif occur-
rences). One objective function is found in the Consensus-Pattern problem:

Definition 1 (Consensus-Pattern). Given are n sequences, s1, . . . , sn, each
of length m, over a finite alphabet Σ, and a parameter L. Find a contiguous
subsequence xi of length L from each sequence, and a consensus sequence x of
these subsequences, minimizing

∑
i=1...n dH(xi, x), where dH(x, y) is the Ham-

ming distance between two strings.

While this problem is NP-hard, there is a simple sample-based polynomial-time
approximation scheme for it. For a given value of r, the algorithm considers
all samples of r substrings of length L from the n sequences. A motif derived
from each such sample is then evaluated on all sequences, and the best motif is
chosen. This algorithm was shown by Li et al. [4] to have approximation ratio of
1 + O(1/

√
r) for constant-size alphabets. The algorithm also has O(L(nm)r+1)

runtime, which is polynomial if r is a constant.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 94–105, 2006.
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This bound is not especially useful, since the approximation ratio converges
to one only very slowly with increasing r. Yet, sample-based algorithms with
small values of r are very successful in practice for both motif finding in the
abstract and for regulatory sequence detection [2, 5, 6, 9]. One might imagine
that the bounds shown by Li et al. are weak, and the simple PTAS actually has
a much stronger guarantee. However, in 2005 we showed [1] that this is very
likely not the case. For a simple variation of the Li et al. PTAS (where the only
difference is whether the sampling is without replacement or with replacement),
we identified a collection of instances of the problem for which the approximation
ratio is 1+Θ(1/

√
r), suggesting that in order to achieve an approximation ratio

of 1 + ε, one needs a sample size of r = Θ(1/ε2), which is highly impractical.
Still, the instances of Consensus-Pattern for which we proved our previ-

ous bounds are very weak motifs. They are binary instances of Consensus-
Pattern; in each position of the motif instances, just over half of the entries
are the symbol zero, and just under half are the symbol one. Such motifs are
likely uninteresting, as they are no stronger than what we might expect to find
if we considered random binary noise.

We might prefer to consider motifs bounded away from uniform noise. For
such “strong” motifs, we can do much better: we show here that for various
definitions of strong motifs, the approximation ratio of the algorithm approaches
one exponentially fast as a function of r. In particular, for strong motifs, the
approximation ratio is at most 1 + O(f−r), for a function f that depends only
on the strength of the motif, instead of the approximation ratio of 1 +Θ(1/

√
r)

shown for the general case.
Here, we show such theorems for a variety of different definitions of “strong”

motifs. First, we consider binary motifs where at least a 1
2 + ε fraction of all

positions in the motif occurrences matches a given consensus of length L. While
occasionally, the sampling PTAS can have bad performance on such an instance,
we prove that for randomly chosen instances, the expected approximation ratio
converges to one exponentially fast as a function of the sample size r. If we
instead require consistently strong binary motifs, where each position of the
motif has at least (1

2 + ε)n matches in the motif occurrences, we can prove that
the PTAS performs well even in the worst case. In fact, for very strong consistent
motifs, the PTAS will always find the correct answer, even for small r.

Our results document that while for arbitrary instances of motif finding, the
simple sample-based PTAS may have poor convergence properties, for the kinds
of motifs that people care about, the approximation ratio converges exponen-
tially fast to the correct answer.

2 Background

The Consensus-Pattern problem, for an alphabet Σ, can be answered by
enumerating all |Σ|L possible choices of the consensus pattern, and finding the
best matches to each possible pattern, but such an enumeration is not effi-
cient. Instead, one type of efficient heuristic for this problem first enumerates a
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polynomial number of candidate consensus patterns, and then finds the best
match to each candidate in each of the n sequences, in O(nmL) time per
candidate.

One set of candidates is all L-letter substrings of the input strings; there are
(m−L+1)n of them, yielding an algorithm with O(L(nm)2) runtime. Or, we can
expand this idea to consider the result of looking at a sample of r substrings of
the input. For each such sample, we compute a candidate motif as a consensus of
the sample by identifying the most common letter at each position of the motif,
breaking ties arbitrarily.

In this paper, we consider two algorithms based on this idea. The first uses
samples with replacement, implying that a single substring can occur in the
sample multiple times. There are ((m− L + 1)n)r such samples; if we try all of
them, this yields an algorithm with O(L(nm)r+1) runtime. We will refer to this
as the PTAS algorithm. Li et al. [4] have shown that this simple algorithm is
indeed a polynomial-time approximation scheme (a PTAS): the approximation
ratio of the algorithm converges to one as the sample size r grows. Unfortunately,
the convergence rate they could prove is very slow: they show the approximation
ratio is at most 1 + 4|Σ|−4√

e(
√

4r+1−3) .

We will also study a slight modification of the PTAS, in which we consider
only samples without replacement. We will refer to it as the SWOR algorithm,
for “sampling without replacement”. In our previous work [1], we gave specific
instances of the problem for which the approximation ratio of the SWOR algo-
rithm is 1 + Θ(1/

√
r) as a function of r. We conjectured that the same lower

bound also holds for PTAS, which asymptotically matches the upper bound of
Li et al.

2.1 Notation and Observations

To simplify our analysis, we will always assume that the input sequences s1, . . . ,
sn consist solely of the optimal motif occurrences, that is, m = L. While
Consensus-Pattern is trivial in these cases, since the optimal motif is the
consensus string of the input sequences, both PTAS and SWOR are still well-
defined and may not always optimize the objective function. In fact, we showed
in our earlier work [1] that if one of these algorithms is run on just the motif oc-
currences themselves, it will do no better than if run on longer sequences. Upper
and lower bounds on the approximation ratio that we show for such instances
are still applicable to longer sequences.

We will assume that the sequence alphabet Σ is the set {0, 1}; all of our results
here are for binary motifs. If m = L, we can always transform the instance of
the problem so that the optimal motif is the string 0L, by relabelling characters
in each column that has more ones than zeros. We will use this transformation
in some of our results.

Finally, we note that since PTAS always explores more samples than SWOR,
its approximation ratio is always at least as good as that of SWOR. There-
fore, any upper bound for the approximation ratio of SWOR also applies to
PTAS.
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2.2 Concentration Bounds

Most of our bounds are obtained by applying the Hoeffding bound [3], which
gives concentration bounds on the sum of independent random variables, and
an extension of it to certain classes of dependent variables due to Panconesi and
Srinivasan [8]. In this section, we summarize the probabilistic bounds we use.
We begin with the following variant of the Hoeffding bound from McDiarmid’s
survey [7, p. 199]; a similar bound can be found in [3, Theorem 1].

Theorem 1 (Hoeffding’s bound [7]). Let X1, . . . , Xn be independent random
variables, with 0 ≤ Xk ≤ 1 for each k. Let X =

∑
Xk, let μ = E[X ], let p = μ/n

and let q = 1− p. Then for any 0 ≤ t < q,

Pr[X − μ ≥ nt] ≤
((

p

p + t

)p+t (
q

q − t

)q−t
)n

.

Panconesi and Srinivasan [8] have extended the Hoeffding bound to sums of
dependent variables that satisfy certain conditions.

Theorem 2. Let X1, . . . , Xn be (not necessarily independent) binary random
variables with Pr[Xk = 1] = p for each k. If for every subset A of {1, . . . , n} and
for every k /∈ A,

Pr

⎡⎣Xk = 1

∣∣∣∣∣∣
∧
j∈A

(Xj = 1)

⎤⎦ ≤ Pr[Xk = 1], (1)

then Hoeffding’s bound from Theorem 1 also holds for X =
∑

Xk.

Proof. This is an application of Panconesi and Srinivasan’s framework [8] for
Chernoff-Hoeffding bounds of sums of dependent variables. Binary variables sat-
isfying equation (1) are 1-correlated in the notation of Panconesi and Srinivasan.
For such variables, we can apply the Hoeffding bounds directly, as though the
variables were independent.

In particular, let X̂1, . . . , X̂n be independent random variables with Pr[Xk =
1] = p. The variables X =

∑
k Xk and X̂ =

∑
k X̂k have the same expectation,

μ = np, and equation (1) implies that Pr [∧j∈A(Xj = 1)] ≤
∏

j∈A Pr(X̂i = 1).
Thus, these random variables satisfy the conditions of Theorem 3.2 in [8], and
we obtain

Pr[X − μ ≥ εμ] ≤ E[ehX̂ ]
eh(1+ε)μ ,

where ε and h are positive real numbers. As in the proof of Hoeffding’s bound
in McDiarmid [7, p. 199], we can prove E[ehX̂ ] ≤ (1−p+peh)n. By substituting
ε = t/p, we obtain

Pr[X − μ ≥ tn] ≤
(
e−h(p+t)(1− p + peh)

)n

;

setting eh to (p+t)(1−p)
p(1−p−t) , we obtain the desired result. 	
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Note that independent variables satisfy equation (1) with equality, so Theorem 1
is a special case of Theorem 2.

We will consider dependent binary random variables that are zero with some
probability p > 0.5 and we will be interested in the probability that fewer than
yn of the random variables are zero for some 0.5 ≤ y < p. Theorem 1 can be
easily applied to this case, as is shown in the following lemma.

Lemma 1. Let X1, . . . , Xn be binary random variables with Pr[Xk = 0] = p for
each k, where p ≥ 0.5. If these variables satisfy the condition of Theorem 2, and

1− p ≤ y < p then Pr[
∑

k Xk ≥ (1 − y)n] ≤ βy
n, where βy =

(
1−p
1−y

)1−y (
p
y

)y

.

Proof. The expectation of the variable X =
∑

k Xk is μ = (1 − p)n. By
Theorem 2, we easily obtain desired inequality:

Pr[X ≥ (1− y)n] = Pr[X − μ ≥ (p− y)n]

≤
((

1− p

1− p + (p− y)

)1−p+(p−y) (
p

p− (p− y)

)p−(p−y)
)n

= βy
n. 	


Note that in the previous lemma, βy < 1 for all p and y such that 0 < y <
p < 1. Therefore the probability that fewer than yn out of n variables are zeroes
decreases exponentially as a function of n. For y = 0.5 we obtain the following
special case.

Lemma 2. Let X1, . . . , Xn be binary random variables with Pr[Xk = 0] = p for
each k, where p ≥ 0.5 + ε. If these variables satisfy the condition of Theorem 2
then Pr[

∑
k Xk ≥ n/2] ≤ αn, where α =

√
4p(1− p).

3 Strong Motifs

We begin our analysis by considering motifs for which we know the number of
zeros and ones in the motif instance. We do not necessarily fix the optimal motif
to be 0L.

Definition 2 (Strong motifs of fixed content). A strong motif of fixed
content p is a binary motif embedded into n sequences, where the total number
of zeros in all n occurrences is pnL.

Theorem 3. For any value of r and p > 0.5, the worst-case approximation ratio
of both PTAS and SWOR on strong motifs of fixed content at least p is the same
as on arbitrary motifs.

Proof. Consider the worst-case motif for a particular algorithm and value of r.
Let p′ be the number of zeros in this motif. If p > p′, we pad such an instance with
enough columns, filled entirely with zeros, to make an instance of Consensus-
Pattern that has at least pnL zeros. We have simply expanded the value of L.
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The overall score of both the motif found by the algorithm and of the optimal
motif is exactly the same as if we had not padded the instance with the extra
columns. 	


We have previously shown [1] that for any value of r, we can produce an instance
of Consensus-Pattern for which SWOR has approximation ratio at least 1 +
Θ(1/

√
r). This bound therefore transfers also to strong motifs of fixed content.

Thus, this definition of strong motifs does not give any better upper bound on
the approximation ratio of the PTAS for motif finding than we had previously.
The reason is that we allow many columns that are intensely weak and many
columns that are very strong. In Section 4, we study motifs with more consistency
among columns.

In the remainder of this section, we show that despite this negative result
there are few bad instances of strong motifs, and if we choose a random strong
motif of fixed content, the expected approximation ratio is much lower than in
the worst case.

3.1 Randomly Chosen Strong Motifs

A random motif of fixed content p is an instance of the problem chosen uniformly
from all

(
nL
pnL

)
instances of the problem with exactly pnL zeros and (1 − p)nL

ones. In such motifs, the zeros and ones may not be distributed uniformly, so
some columns may contain more ones than zeroes. We call such columns bad
columns ; all other columns are good columns.

To analyze the expected approximation ratio of PTAS or SWOR on such ran-
domly chosen motif, we divide all instances into bad instances and good instances.
Bad instances have more than Lαr/2 bad columns, where α =

√
4p(1− p).

Lemma 3 shows that such instances are exponentially rare, and do not influence
the expected approximation ratio much. Good instances have at most Lαr/2 bad
columns. In Lemma 4, we will show that for such instances, the approximation
ratio is low.

Lemma 3. The probability that a random binary motif of fixed content p is a
bad instance is at most αr/2.

Proof. Let Xi,j be a binary random variable representing the symbol in row i
and column j of the motif instance. For a given column j, let the number of ones
be Xj =

∑
i Xi,j . Column j is bad if Xj is more than n/2. Each one in a column

reduces the probability of others, so the variables corresponding to this column
satisfy the conditions of Lemma 2, so Pr[Xj > n/2] ≤ αn. Since n ≥ r, this
probability is also at most αr. By linearity of expectation, the expected number
of bad columns is at most Lαr.

Since a bad motif contains more than Lαr/2 bad columns, we are bounding
the probability that the number of bad columns is more than α−r/2 times its
mean. This can be no greater than 1/α−r/2, by the Markov inequality. 	


Lemma 4. The expected cost of a motif returned by PTAS (or SWOR) on a
randomly chosen good instance is less than nL

(
1−p+2pαr

1−αr/2

)
.
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Proof. Let Xj be a random variable representing the number of ones in column j.
Consider a random sample without replacement of r rows. Let Yj be the number
of ones in column j of this sample. The consensus of the sample is one when
Yj ≥ r/2. Finally, let Aj be the score of the consensus character of this random
sample in column j.

We want to bound E[Aj |G], where G is the event that the motif instance is
good. Since Aj is always non-negative, this conditional expectation is at most
E[Aj ]/Pr[G]. In Lemma 3 we have shown that Pr[G] ≥ 1− αr/2.

Consider the event Zj that column j is good and the random sample has
consensus zero. As for Lemma 3, Lemma 2 gives that Pr[Xj > n/2] ≤ αr , and
Pr[Yj ≥ r/2] ≤ αr . Therefore the probability of Zj is at least 1− 2αr.

In the case of the event Zj , we are skewed towards having more zeroes than
expected, and therefore

E[Aj |Zj] = E[Xj |Zj ] ≤ E[Xj ] = n(1− p).

If we are not in Zj , the cost of the column is at most n. Therefore, the expected
cost of a single column is

E[Aj |G] ≤ Pr[Zj] ·E[Aj |Zj] + Pr[Z̄j ] · E[Aj |Z̄j ]
Pr[G]

≤ (1 − 2αr)n(1 − p) + 2αrn

1− αr/2 = n · 1− p + 2pαr

1− αr/2

By linearity of expectation, the expected cost over all columns is at most
L · E[Aj |G], and at least one sample in the SWOR algorithm must give us a
motif which has at most this cost. 	


With this in mind, we can bound the performance of the PTAS for random
motifs of fixed content p.

Theorem 4. When applied to a random motif of fixed content p > 0.5+ ε, both
PTAS and SWOR have expected approximation ratio at most 1+αr/2 · 18−16p+2p2

1−p2

for sufficiently large r, where α =
√

4p(1− p).

Proof. For sufficiently large r, αr/2 is at most (1 − p)/2. For good instances,
the number of ones in good columns is at least Ln(1 − p − αr/2), which gives
a non-negative lower bound on the optimal motif cost. Therefore, according
to Lemma 4, the approximation ratio for such instances can be bounded by

1−p+2pαr

(1−αr/2)(1−p−αr/2) .
We have previously shown [1] that any sampling algorithm has approximation

ratio no more than 2 on all instances. We will use this upper bound for bad
instances. This gives an overall bound of no greater than 1−p+2pαr

(1−αr/2)(1−p−αr/2) +

2αr/2. Rearranging, we obtain the upper bound 1+αr/2 · 4−3p−5αr/2+4αr/2p+2αr

(1−αr/2)(1−p−αr/2) .

For sufficiently large r, αr/2 ≤ (1− p)/2, and we obtain the desired bound. 	
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This theorem shows that if either PTAS or SWOR is applied to a random strong
motif of fixed content p > 0.5, the expected approximation ratio is 1 +O(αr/2).
This bound converges exponentially quickly to one as a function of r.

As a function of p, the bound on the approximation ratio is decreasing, as
long as p > 0.5 and r ≥ 4. This property will be important in the next section.

3.2 Strong Motifs of Fixed Expected Content

Perhaps more natural as a model of random motifs is the case where each of
the L positions in all n sequences is chosen independently of all others, with
probability p.

Definition 3 (Strong motif of fixed expected content). A strong motif
of fixed expected content p is a random motif where each position is zero with
probability p, and one with probability 1− p independently of other positions.

This stochastic model can generate bad instances of the problem again, but it
is very rare that such instances occur, and we can again always bound their
approximation ratio by 2, so their contribution to the expected approximation
ratio is small.

Theorem 5. For strong binary motifs of expected content p > 0.5, where p is a
fixed constant, the expected approximation ratio of the PTAS and SWOR is at
most 1 + O(γr), for some constant γ < 1 that depends on p, but not r.

Proof. Let q = 1/4+p/2. According to Lemma 1, for a strong motif of expected
content p > 1/2, the probability that the actual motif generated has fewer than
qnL zeros is less than βq

nL, where βq is less than one. This is certainly less than
βq

r, since nL ≥ r. For these weak motifs, we use the upper bound of 2 on the
approximation ratio.

The remaining instances are strong motifs of content at least q. We can treat
the process as first picking the motif content π ≥ q, then picking a random
motif of that fixed content. For a fixed content π, we can apply the bound
given in Theorem 4. Since this bound decreases with increased strength of the
motif, we can use the upper bound obtained with Theorem 4 for content q for
all values of π. Therefore the overall approximation ratio of the algorithm is at
most 1 + αq

r/2 · 18−16q+2q2

1−q2 + 2βq
r/2, αq =

√
4q(1− q), for sufficiently large r,

and by setting γ =
√

max{αq, βq}, we obtain the desired bound. 	


3.3 Many Motifs Are Weak

We finish this section by noting that for any value of r, we can pick an instance
size n for which in fact most motifs are weak, and for which we conjecture
that the PTAS has poor convergence. If we let p = 0.5, and sample from the
distribution of all binary motifs with expected content p, then all motif instances
are equiprobable, so theorizing about the common behaviour of the algorithm
also applies to common motif instances. A random motif of this content with
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n = r2 sequences is expected to have a constant fraction of columns in which the
fraction of zeros in the column is between 1/2 + 1/

√
r and 1/2 + 2/

√
r; that is,

a significant fraction of the columns will be weak to the point where a random
sample without replacement of r motif instances has a constant probability of
picking the incorrect symbol for that column. Further, the expected cost of a
random motif will be of the order of (1/2 + Θ(1/

√
r))nL.

A random sample (without replacement) will incorrectly assign the symbols
in a constant fraction of the motif’s columns, giving an expected cost increase on
the order of Θ(1/

√
r)nL over the optimum, and an overall approximation ratio

of 1 + Ω(1/
√
r). We conjecture that this bound applies to all samples, and that

the overall performance of the best sample is also 1 + Ω(1/
√
r).

4 Consistently Strong Motifs

In the previous section, we were not able to guarantee a good performance of the
PTAS in the worst case. This was because some instances of strong motifs may
have contained many columns with approximately the same number of zeros and
ones. Here, we study the performance of the PTAS on consistently strong motifs,
where each motif column has a large number of zeros in it.

Definition 4 (Consistently strong motif). A consistently strong motif of
content p > 0.5 is a binary motif embedded into n sequences, where each column
of the motif has at least pn zeros.

We first note the performance of the algorithms PTAS and SWOR on a single
column of a consistently strong binary motif.

Lemma 5. Suppose that we choose a random sample of r rows (with or without
replacement) from a motif instance in which a particular column has pn zeros
and (1−p)n ones, for p > 0.5. The expected cost of the consensus character of the
sample in this column is at most n((1−p)(1−αr)+αr), where α =

√
4p(1− p).

Proof. First, we want to bound the probability that the random sample without
replacement has fewer zeroes than ones in this column, in which case the con-
sensus character will be one. This situation satisfies conditions of Lemma 2 and
the probability that at least half of the sample will be ones is at most αr.

Note that for any constant p > 0.5 + ε, for some positive ε, this bound on the
probability of erring in a single column converges to zero exponentially fast in r.
Therefore, such samples will not have much influence on the expected cost, and
we can bound their cost from above by n. The cost of a sample with consensus
zero is exactly n(1 − p). Therefore, the expected cost is at most n[(1 − p)(1 −
αr) + αr]. 	


Theorem 6. For sufficiently large r, both PTAS and SWOR, applied to a con-
sistently strong motif of content p > 0.5, have approximation ratio at most
1 + αr · p

1−p , where α =
√

4p(1− p).
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Proof. Let pi be the content of zeros of the i-th column of the motif. According
to Lemma 5, the expected cost e(pi) of the i-th column is at most n((1−pi)(1−
αpi

r)+αpi
r), where αpi =

√
4pi(1− pi). The optimal cost of the same column is

o(pi) = n(1−pi). From the linearity of expectation, the expected approximation
ratio of a consensus of a random sample of r rows over all columns of the motif
is R =

∑L
i=1 e(pi)∑
L
i=1 o(pi)

.
Note, that for sufficiently large r (in particular, r > 2/(2p− 1)), the function

e(p′)/o(p′) is decreasing with increasing value of p′ for p′ ≥ p. Therefore, e(pi) ≤
e(p)o(pi)/o(p), and thus

R ≤ e(p)/o(p) ≤ n((1− p)(1− αr) + αr)
n(1− p)

= 1 + αr · p

1− p
.

At least one sample must achieve this bound, by the first moment principle.
Since SWOR examines all samples without replacement, the sample found by
SWOR achieves the bound. 	


If p > 0.5 + ε for some constant ε > 0, then this ratio converges exponentially
quickly to one.

4.1 Very Strong Consistent Motifs

We finish by noting that some motifs are so strong that the PTAS is guaranteed
to find them exactly.

We saw in the proof of Lemma 5 that we can bound the probability of making
an error for any column, when we sample r motif instances of that column. If
the column has frequency pi of zeros, the error probability was at most αpi

r,
where αpi =

√
4pi(1 − pi).

If we have a motif whose columns are strong enough so that the sum of the
αpi

r is at most one, the standard union bound gives that the probability that
at least one sample column has more ones than zeros is less than 1. Thus, there
must exist a sample of r motif instances whose consensus is exactly the correct
L-letter-long motif. Since the PTAS is exhaustive, we will examine this sample,
and it will be found by the algorithm.

In particular, a motif strong enough that the value of αpi
r is always less than

1/L will always be found by the PTAS.

Theorem 7. The PTAS always finds the correct motif when its input is a con-

sistently strong binary motif of length L with probability p ≥ 1
2 +
√

1−L−2/r

2 .

Proof. This is shown by noting that 1
2 +
√

1−L−2/r

2 is the root in the range (0.5, 1]
of (4p(1−p))r/2 = 1/L, corresponding to the value where αp goes below 1/L. 	


This value quickly shrinks for values of r that are not especially large: for a
length 10 binary motif, if all columns are at least 80% zeroes, examining all
samples of size 11 is certain to find the true motif, while samples of size 5 are
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all that is needed for motifs of that length where p = 0.9. Indeed, for a fixed
value of L, if the motif is consistently strong with probability at least 0.5+ f(r),
where f(r) is a specific function that is only O(1/

√
r), the PTAS will find the

optimal motif.
For random motifs, the situation is not as good; obviously, a random motif

with probability p might turn out not to be strong. But, for p large enough,
the probability of producing a motif that is weak enough that the algorithm
has positive probability of failing can easily be estimated, and again converges
exponentially rapidly to zero as a function of p or of r, for a fixed motif length L.

5 Conclusion and Open Problems

We have shown a variety of characterizations of “strong” binary instances of
Consensus-Pattern for which the simple sampling-based polynomial-time ap-
proximation scheme of Li et al [4] has an approximation ratio guarantee that
converges to one exponentially fast as a function of r, the sample size. This
result is in contrast with our previous work, which showed specific instances
of Consensus-Pattern for which a variation of the Li et al. PTAS can only
achieve 1 + Θ(1/

√
r) approximation ratio.

The difference is quite significant; to achieve 1 + ε approximation ratio us-
ing the general bound requires samples of size Ω(1/ε2), giving runtimes of
O(L(nm)Ω(1/ε2)), whereas for strong motifs we show that a sample size of
O(log(1/ε)) is sufficient.

Our bounds apply to random binary motifs of specific strength, or to those for
which the probability that any specific position is a zero is fixed to be a constant
bounded above 0.5. While it is possible to obtain a difficult-to-solve instance of
the problem by chance, such instances are exponentially rare, and as such, do
not affect the algorithm’s behaviour significantly.

Finally, we show that for strong instances, small samples can guarantee that
the motif found is optimal. While the bounds achieved are not practical, this
again suggests that motif finding is an easy problem when applied to strong
instances, and only hard when applied to irrelevant, weak problem instances.

Open problems. How tight are the bounds for very strong consistent motifs given
in Section 4.1? Can we find specific strong instances of Consensus-Pattern
for which the sample-based PTAS finds a wrong motif and for which the value
of r is close to the one shown in the theorem, or is the bound very loose?

In all our theorems, we have considered only binary alphabet. Our results ex-
tend to non-binary alphabets; however, we still require that one of the alphabet
symbols has frequency more than 0.5. The problem of regulatory sequence detec-
tion is most commonly applied to DNA and protein sequences, and it makes sense
to consider instances in which the most common letter in each column is signifi-
cantly more common than other letters, but still does not achieve frequency more
than 0.5. To prove exponential convergence for such instances likely requires a
variation on the Chernoff-Hoeffding bounds for multi-outcome variables.
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Abstract. The problem of clustering fingerprint vectors with missing
values is an interesting problem in Computational Biology that has been
proposed in [6]. In this paper we show some improvements in closing
the gaps between the known lower bounds and upper bounds on the
approximability of variants of the biological problem. Moreover, we have
studied two additional variants of the original problem. We prove that
all such problems are APX-hard even when each fingerprint contains
only two unknown positions and we present a greedy algorithm that has
constant approximation factors for these variants. Despite the hardness
of these restricted versions of the problem, we show that the general
clustering problem on an unbounded number of missing values such that
they occur for every fixed position of an input vector in at most one
fingerprint is polynomial time solvable.

1 Introduction

High-throughput approaches for the examination of microbial communities are
becoming increasingly important, especially after the oligonucleotide fingerprint-
ing strategy has found wide application, allowing the identification of thousands
of cDNA clones [3, 4, 5, 8, 9]. After the rDNA clone libraries are constructed, the
clones are classified by individual hybridization experiments on DNA microar-
rays with a series of short DNA oligonucleotides into clone types or operational
taxonomic units (OTUs), where an OTU is a set of DNA clones sharing the same
set of oligonucleotides that have successfully hybridized. Once classified, the nu-
cleotide sequence of representative clones from each OTU can then be obtained
by DNA sequencing to provide phylogenetic descriptions of the microorganisms.
One of the key features of this strategy is that after a comprehensive database
correlating hybridization patterns with nucleotide sequence data has been com-
piled, little additional rDNA clone sequencing will be required, resulting in sig-
nificant reduction of cost and effort. The effectiveness of this general strategy
has been demonstrated in the biotechnology arena, where it is currently being
used to screen and identify millions of cDNA clones [3].
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The oligonucleotide fingerprinting method is commonly used to study DNA
clone libraries. Such method naturally leads to a combinatorial problem where
for each oligonucleotide we are given a fingerprint over the alphabet {0, 1, N},
where the values 0 or 1 represent respectively that a hybridization has happened
or not with a certain clone, while the value N stands for the fact that we are
unable to determine if the hybridization has happened or not (typically this is
due to the fact that there are two control signals, and the values between those
two control signals suggest that both of the two possible outcomes are equally
likely to have happened).

Some combinatorial problems naturally arise, most notably the Cluster-
ing with Missing Values (CMV) problem. An instance of CMV (and of all
problems studied in this paper) is a set F of n vectors with values in {0, 1, N},
called fingerprint vectors (in short fingerprint); in all instances of the problems
that we will study, all fingerprints have the same length l, that is they all con-
tain exactly l elements. Two fingerprint vectors f1 = 〈f1[1], f1[2], . . . , f1[l]〉 and
f2 = 〈f2[1], . . . , f2[l]〉 are compatible if for any position i where they differ, one of
f1[i] and f2[i] is equal to N . A resolved vector r = 〈r[1], . . . , r[l]〉 of a fingerprint
vector f = 〈f [1], . . . , f [l]〉 is a vector over alphabet {0, 1} such that for each
1 ≤ i ≤ l, if f [i] �= N then f [i] = r[i]. If a resolved vector r and a fingerprint f
are compatible, r is said to be a resolution of f or to resolve f , this means that
r is obtained by replacing each occurrence of N in f with 0 or 1. The expected
output is a partition P of F , P = {P1, . . . , Pk}, such that in each set Pi of P
there are only pairwise compatible fingerprints.

We will also analyze the effect of a parameter, the maximum number of Ns
allowed in a fingerprint, and we will denote by p such parameter. As already
stated above, an instance of CMV consists of a set F of fingerprints, and we
would like to find a minimum-size partition of F where each pair of fingerprints
in a set are compatible. Equivalently we want to find a minimum-size set R
of resolved fingerprints such that each input fingerprint is resolved by some
fingerprint in R.

Unfortunately the problem is NP-hard [6], therefore it is important to find
some restrictions under which the problem becomes tractable. For instance it is
possible to restrict the problem to instances where each input fingerprint contains
at most p Ns, and we will call such problem CMV(p). It is already known that
CMV(2) is NP-hard[7], while CMV(1) can be solved in polynomial-time[6], so for
all interesting values of p we have to concentrate on developing approximation al-
gorithms. CMV(p) is known to be approximable within factor 2p [6] and min(1+
lnn, 2+p ln l)[7]. In this paper we strengthen the NP-hardness result proving that
CMV(2) is APX-hard, that is it cannot be approximated within an arbitrarily
small (1 + ε)-approximation polynomial-time algorithm unless P=NP [2].

Moreover, we will study two related optimization problems introduced in [7],
namely: Inside Clustering with p missing values (IEC(p)), where we want
to find a partition P maximizing the sum

∑k
i=1

(|Pi|
2

)
; Outside Clustering

with p missing values (OEC(p)), where we want to find a partition P minimiz-
ing the number of compatible pairs of fingerprints belonging to different sets of P .
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Notice that, as observed in [7], an exact solution to IEC(p) is also an exact
solution to OEC(p) and vice versa. For these two problems, we will present a
fixed-parameter approximation algorithm whose running time is O(2pn3l), where
p is the maximum number of Ns in a fingerprint and show that our algorithm
achieves 2 and 1

2 -approximation factors for IEC and OEC respectively.
On the other side, we prove lower bounds on the approximability of both

IEC(p) and OEC(p), showing that such problems are APX-hard. Finally, we
show that the restriction of CMV to instances where, for each given position,
missing values occur in at most one fingerprint vector, leads to a polynomial
time solution.

2 A Fixed-Parameter Approximation Algorithm for IEC
and OEC

In this section we present a fixed-parameter approximation algorithm for both
IEC and OEC problems, where the parameter is the maximum number p of
Ns appearing in a fingerprint. The algorithm we present has a time complexity
O(2pn3l). We are able to provide two different analyses, one for each problem,
showing that we achieve a 2-approximation ratio for IEC and a 1

2 -approximation
ratio for OEC; the analysis for OEC is omitted due to space constraints.

Given a set F of fingerprints, in O(2pnl) time we are able to compute the set
R = {r1, . . . , r|R|} of all possible resolved vectors that are compatible with at
least one fingerprint in F . (Note that |R| ≤ 2pn.) Given a resolved vector r, we
denote by s(r, F ) the set of fingerprints in F that are resolved by r. The degree
of a resolved vector r, denoted by d(r), is defined as |s(r, F )|. Since each resolved
fingerprint is compatible with at most n fingerprints in F , computing all such
sets s(r, F ) can be done in O(|R|nl) = O(2pn2l) time.

The algorithm constructs a partition Π of F greedily as follows: initially let Π
be an empty partition and let U be equal to F . At each iteration the algorithm
computes the sets R of resolved vectors of U and s(ri, U) for all ri ∈ R. Then
it finds the resolved vector r of maximum degree, adds s(r, U) as a set of the
solution Π and removes all fingerprints in s(r, U) from U . The algorithm iterates
until U is empty.

Notice that the algorithm computes a sequence 〈r1, . . . , rk〉 of maximum de-
gree resolved vectors, one at each iteration. At the i-th iteration the algorithm
builds a set Si of the solution Π containing all fingerprints that are compatible
with ri and that have not been assigned to a set of the solution during one of
the previous iterations. For ease of analysis, we will denote by Ui the set of fin-
gerprints that have not been assigned to a set of Π at the beginning of the i-th
iteration. Consequently, U1 = F , Ui+1 = Ui \ Si, for 1 ≤ i < k, where k is the
number of sets in the final solution. Then, the algorithm computes the partition
Π = {S1, . . . , Sk}. The optimal partition for both IEC and OEC is denoted by
Opt = {O1, . . . , Oh}, where h can be different from k.

The analysis of the time complexity of the algorithm is simple, the running
time at each iteration is dominated by the O(2pn2l) time required to compute
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the sets R and s(ri) for all ri ∈ R, moreover at each iteration at least one
fingerprint is removed from U , therefore at most n iterations are required, for
an overall O(2pn3l) time complexity.

The value of the approximate solution Π is the number of pairs of compat-
ible fingerprints co-clustered by Π and is denoted by V (Π). More precisely,
V (Π) =

∑|Π|
i=1 |P (Si)|, where P (Si) is the set of distinct pairs of fingerprints

in Si. Generalizing such notion, we denote by P (Π) the set of all the pairs co-
clustered in the partition Π , that is P (Π) = ∪|Π|

i=1P (Si). Let W ⊆ U be a subset
of fingerprints, we denote by P (Π,W ) the set of pairs (x, y) in P (Π) such that
at least one of x, y is in W .

By definition, the value of the optimal solution is |P (Opt)|; our goal will be to
show that |P (Opt)| ≤ 2|P (Π)|. We introduce some sets as follows: P (Opt, 1) =
P (Opt, S1), and P (Opt, i + 1) = P (Opt, Si+1) \

⋃
1≤j≤i P (Opt, j) for 1 ≤ i <

k. A fundamental property is that {P (Opt, i) : 1 ≤ i < k} is a partition of
P (Opt). Indeed, since Π = {S1, . . . , Sk} is a partition of F , then P (Opt) =⋃

P (Opt, Si). Let (x, y) be a pair of P (Opt). W.l.o.g. we can assume that x ∈ Si,
y ∈ Sj , with i ≤ j. Then (x, y) ∈ P (Opt, Si) and (x, y) does not belong to
any P (Opt, z) with z > i, therefore (x, y) ∈ P (Opt, i). Consequently the sets
P (Opt, i) form a partition of P (Opt), and the value of the optimal solution is
equal to

∑
i |P (Opt, i)|.

In order to prove that |P (Opt)|≤ 2|P (Π)|, it suffices to show that |P (Opt, i)|≤
2|P (Si)| for 1 ≤ i ≤ k. In fact all pairs in P (Opt, i) must belong to Ui × Ui, by
definition of P (Opt, i). Each fingerprint x in Ui is in the same set of the optimal
solution with at most |Si| − 1 other fingerprints of Ui, otherwise the algorithm
would not have chosen Si at the i-th iteration as a maximum set of compatible
fingerprints. By definition of P (Opt, i), there are at most |Si|(|Si| − 1) pairs of
compatible fingerprints in P (Opt, i), which completes the proof, since in Si there
are exactly |Si|(|Si| − 1)/2 pairs of compatible fingerprints.

3 APX-Hardness of CMV(2)

In this section we will prove that CMV(2) is APX-hard via an L-reduction from
minimum vertex cover on cubic graphs (MVCC) (for details on L-reduction see
[2]), which is known to be APX-hard [1]. In particular, we will combine two
L-reductions: (1) from minimum vertex cover on a graph G to minimum vertex
cover on a graph gadget CG; (2) from minimum vertex cover on a graph gadget
CG to CMV(2).

First Reduction. Let G = (V,E) be a cubic graph, the MVCC problem asks
for the subset V ′ ⊆ V of minimum cardinality, such that for each edge (i, j) ∈ E
at least one of i, j belongs to V ′. Let |V | = n and |E| = m. We reduce MVCC to
minimum vertex cover on graph gadgets. Next we define the graph gadget asso-
ciated with G. For each vertex vi ∈ V we define a vertex gadget V Gi consisting
of 5 vertices ci1 , ci2 , ci3 , ci4 , ci5 as in Fig. 1. Three vertices, ci1 , ci4 , ci5 are called
docking vertices. Observe that the minimum vertex cover of a vertex gadget



110 P. Bonizzoni et al.

i1
c

i5
c

i4
c

i2
c

i3
c j3

c

j2
c

j4
c

j5
c

j1
c

VG
i e e

e e

ij1 ij 2

3
ij ij 4

Fig. 1. Vertex gadgets V Gi and V Gj , edge gadget EGij

consists of 2 vertices, ci2 , ci3 , and we denote this vertex cover as type 1. Observe
that there is a vertex cover of V Gi consisting of the 3 docking vertices ci1 , ci4 ,
ci5 , and we denote this cover as type 2. For each edge (vi, vj) we define an edge
gadget EGi,j joining vertex gadgets V Gi, V Gj in two of their docking vertices,
such that each docking vertex is associated with exactly one edge of G. An im-
portant observation is that if C is a vertex cover of the graph gadget, then we can
compute in polynomial time a vertex cover C′ that is not larger than C, and such
that C′ consists only of vertex covers of type 1 and type 2 and more precisely, for
each pair of adjacent vertex gadgets at least one has a vertex cover in C′ of type 2.

Indeed, if a vertex gadget does not have a cover of type 1, then we can sub-
stitute this cover with one of type 2, obtaining a solution not larger than the
original one.

Theorem 1. There is a cover C of G of size k if and only if there is a cover
CG of the graph gadget of size 3k + 2(n− k) + 2m.

Second Reduction. Now we reduce minimum vertex cover on graph gadgets
to CMV(2). The idea in our reduction is that it is possible to assign a resolved
vector to each vertex and a fingerprint to each edge of a graph gadget CG. The
instance of CMV(2) consists of the set of fingerprints FCG associated with the
graph gadget CG, and all interesting solutions will pick their resolved vectors
from those assigned to the vertices. More precisely, we construct the set FCG in
such a way that each fingerprint assigned to an edge (x, y) will be resolved by
one of the resolved vectors assigned to x or y.

Recall that n denote the number of vertex gadgets. Each fingerprint in FCG

consists of n blocks of 7 positions, and each resolved vector associated with a
vertex in V Gi consists only of 0s block, except for the i-th block. Given vertex cx,
then rx denotes the resolved vector associated with cx while rx〈i〉 denotes the i-
th block of rx. Given the resolved vectors associated with the vertices of V Gi, we
define the i-th block of each of such vectors as follows: ri1〈i〉 = 1110000, ri2 〈i〉 =
1111100, ri3 〈i〉 = 1110011, ri4〈i〉 = 1001100, ri5〈i〉 = 1000011. For example, the
resolved vector ri4 of the i-th vertex gadget ci4 is 07(i−1)100110007(n−i).

The vertices belonging exclusively to an edge gadget will have two blocks
that are not completely made of 0s. More precisely, let V Gi and V Gj be two
adjacent vertex gadgets, then only the i-th and the j-th blocks of the resolved
vectors r(ei,j,1), r(ei,j,2), r(ei,j,3), r(ei,j,4) associated with the vertices of the
edge gadgets EGij do not completely consist of 0s.
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Assume that ei,j,1, ei,j,3 are adjacent to a docking vertex of V Gi, cix , and that
ei,j,2, ei,j,4 are adjacent to a docking vertex of V Gj , cjy . Moreover, observe that
each resolved vector associated with a docking vertex has exactly 3 positions
set to 1. Let 1, x1, x2 be the positions in the i-th block of cix set to 1, where
1 < x1 < x2 ≤ 7. Let 1, y1, y2 be the positions in the j-th block of cjy set to
1, where 1 < y1 < y2 ≤ 7. The i-th and j-th block of r(ei,j,1), r(ei,j,2), r(ei,j,3),
r(ei,j,4) are defined as follows: r(ei,j,1〈i〉) has value 1 in positions 1 and x1, while
r(ei,j,1〈j〉) has value 1 in position y1; r(ei,j,3〈i〉) has value 1 in positions 1 and
x2, while r(ei,j,3〈j〉) has value 1 in position y2; r(ei,j,2〈i〉) has value 1 in position
x1, while r(ei,j,2〈j〉) has value 1 in positions 1 and y1; r(ei,j,4〈i〉) has value 1 in
position x2, while r(ei,j,4〈j〉) has value 1 in positions 1 and y2; any other position
of i-th and j-th block is set to zero for r(ei,j,1), r(ei,j,2), r(ei,j,3) and r(ei,j,4).
For any other position not in the i-th or j-th block, the resolved vectors r(ei,j,1),
r(ei,j,2), r(ei,j,3) and r(ei,j,4), are set to 0. Denote with R the set of resolved
vectors associated with vertices of the gadget graph.

Now we define the instance of the problem, that is the set of fingerprints FCG

associated with the edges of the graph gadget. Given e = (x, y) an edge of the
graph gadget and vx, vy the resolved vectors associated with vertices x and y,
we associate with e the fingerprint fe by using the following rule:

fe[t] := vx[t] for each position t such that vx[t] = vy[t], and fe[t] := N
otherwise.

For example, let ri1 , ri2 be two resolved vectors associated with V Gi and recall
that the i-th block of these vectors is ri1 〈i〉 = 1110000, ri2〈i〉 = 1111100. Let e
be the edge having ci1 and ci2 as endpoints, it follows that fe, the fingerprint
associated with e, has i-th block equal to 111NN00, and all other blocks set to
0. Since two resolved vectors associated with an edge of the gadget graph have
Hamming distance 2, each fingerprint in FCG has exactly two positions with
value N . A fundamental property of FCG is the following:

Lemma 1. Two fingerprints fi, fj in FCG have a common resolution if and only
if the edges of the gadget graph associated to such fingerprints share a common
vertex v. The resolved vector associated to v is the only common resolution of
fi, fj.

Proof. Let us prove the only if part of the Lemma, as the other direction is
immediate. Let fi be a fingerprint encoding edge ei = (i1, i2) and let fj be
a fingerprint encoding edge ej = (j1, j2). There is at least one pair of resolved
vectors in R associated with the endpoints of ei and ej having Hamming distance
at least 4; assume w.l.o.g. those vectors are r(i1) and r(j1). Note that none of
r(i1) and r(j1) can be a common resolution for both fi and fj. Any resolution
r∗i of fi different from r(i1) and r(i2), has Hamming distance 1 from r(i1), hence
r∗i has Hamming distance at least 3 from r(j1), thus it can not be a resolution
of fj . Similarly, any resolution r∗j of fj different from r(j1) and r(j2) can not be
a resolution of fi. Hence fi and fj have a common resolution only if r(i2) and
r(j2) are the same vector, that is they encode the same vertex. 	
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As a consequence of Lemma 1, if C is a vertex cover of the graph gadget, then
we can define a solution S of CMV(2) over FCG as the sets sv of fingerprints
resolved by a vector r(v) associated with a vertex v in the cover, that is such a
solution is of size |C|.

To prove the converse, let us consider a solution S for CMV(2) over instance
FCG. If a fingerprint is resolved by a vector v not associated with a vertex of the
gadget graph, then this resolution is not shared by any other fingerprint of the
instance. Thus, we can replace v with a resolved vector associated with a vertex
of the graph, obtaining a solution S′ for CMV(2) that has at most the same size
of the solution S. Consequently, we can assume that the solution of CMV(2)
consists only of sets associated with resolved vectors in R. By Lemma 1, it is
immediate that the set of vertices associated to resolved vectors taken in the
solution S′ of CMV(2) over FCG is a vertex cover of the gadget graph. By the
above two observations, it follows that the graph gadget CG has a vertex cover of
size k if and only if the instance FCG of CMV(2) has a solution of size k. It is im-
mediate to notice that both reductions in this section are actually L-reductions.

4 APX-Hardness of IEC(2)

In the following section we prove that IEC(2) is APX-hard via an L-reduction
from Maximum Independent Set on Cubic Graphs (MIS), which is known to be
APX-hard [1]. Let G = (V,E) be a cubic graph, the MIS problem asks for the
subset V ′ ⊆ V of maximum cardinality, such that vertices in V ′ are not adjacent.
Let G = (V,E) be an instance of MIS, the reduction builds an instance FG of
IEC(2) associating with each vertex vi ∈ V a set of fingerprints Fi and with each
e = (vi, vj) ∈ E a fingerprint fi,j .

More precisely, a set Fi of 9 fingerprints is associated with each vertex vi ∈ V .
Such fingerprints are constructed, similarly as in the reduction of Section 3,
from a set of resolved vectors. Indeed, we define a set of 8 resolved vectors,
Ri = {rij |1 ≤ j ≤ 8}, that are the possible resolutions of the fingerprints in Fi.
We will show that all interesting solutions of IEC(2) over instance Fi will pick
their resolved vectors from Ri. We introduce a graph, called compatibility graph
and denoted as CGi (see Fig. 2), such that vertices of CGi are the resolved
vectors in Ri, while each edge (riu , riv ) of CGi is associated to a fingerprint in
Fi, that is compatible with the resolved vectors riu and riv .
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Fig. 2. Compatibility graphs CGi and CGj
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Three vertices of CGi, ri1 , ri3 and ri8 are called docking vertices and are the
resolved vectors that are compatible with fingerprints associated with edges of
the instance graph G of MIS. More precisely, given edge (vi, vj) of G, a fingerprint
denoted by fi,j is associated with (vi, vj) and it is represented by an edge Ei,j

incident on a docking vertex rix of CGi and docking vertex rjy of CGj (see
Fig. 2), respectively. The fingerprint fi,j is constructed as being compatible with
rix and rjy .

The graph consisting of all compatibility graphs CGi and the edges Ei,j is
denoted as CG.

Given G = (V,E) the instance of MIS, with |V | = n and |E| = m, then set
Ri is defined as follows. Each resolved vector consists of n blocks of 5 positions,
where the t-th block of resolved vector rx is denoted by rx〈t〉. Then, ri1 〈i〉 =
11000, ri2 〈i〉 = 11010, ri3 〈i〉 = 10010, ri4 〈i〉 = 11100, ri5〈i〉 = 10110, ri6〈i〉 =
11110, ri7〈i〉 = 11011, ri8〈i〉 = 10100. Assume w.l.o.g. that the vertex vi is
adjacent to vj , vh, vk. Then each of the docking vertices of CGi, ri1 , ri3 and
ri8 , is adjacent to a docking vertex of CGj , CGh and CGk. More precisely, we
assume w.l.o.g. that ri1 is adjacent to a docking vertex of CGj , ri3 is adjacent
to a docking vertex of CGh, ri8 is adjacent to a docking vertex of CGk. Thus,
ri1〈j〉 = 10000, ri3 〈h〉 = 10000, ri8〈k〉 = 10000; for any other position not in i-th
block, the resolved vectors in Ri have value 0.

Given the set R of all resolved vectors of graph CG, then we construct the set
FG of fingerprints instance of IEC(2) as in the second reduction of Section 3 by
applying the same rule. More precisely, given fu,v the fingerprint associated to
(ru, rv), then for each position t, fu,v[t] := ru[t] if ru[t] = rv[t], and fu,v[t] := N
otherwise.

By construction, two resolved vectors associated with adjacent vertices in CG
have at most Hamming distance 2, thus each fingerprint in FG has at most
2 positions with value N . Moreover, observe that fingerprints fi2,7 , fi6,4 and
fi6,5 associated with edges (ri2 , ri7), (ri6 , ri4 ) and (ri6 , ri5 ) respectively, have
exactly one position with value N , since the resolved vectors associated with the
endpoints of such edges have Hamming distance 1. The set of fingerprints FG

has the following nice properties.

Lemma 2. Let S be a solution of IEC(2) over instance FG, then there is a
solution S′ having at most the same cost and such that each resolved vector of
the solution is a resolved vector in R.

Lemma 3. Two fingerprints fx, fy ∈ FG are compatible if and only if they are
associated with two edges of graph CG incident on a common vertex v. The
resolved vector associated to v is the only common resolution of fx, fy in R.

By the above results, we can restrict to a solution where each set sv (where
v is a vertex of the gadget) contains fingerprints that are resolved by a vector
rv ∈ R and we say that fingerprints in sv are assigned to rv. A solution of
IEC(2) is computed assigning the fingerprints in FG to the resolved vectors in
R. A fingerprint associated with edge (rx, ry) of CGi is assigned to exactly one
of rx and ry . Hence a solution of IEC(2) corresponds to assign each edge of CG
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(a fingerprint fx) to one of its endpoints in CG (resolved vectors compatible
with fx). Two edges are co-clustered if they are assigned to the same vertex.
Hence the measure of a solution is the number of pairs of co-clustered edges.

In the following, to simplify the notation, we denote each edge of graphCGwith
the fingerprint associated with it. In particular, note that fij will denote edge Eij .

By using Lemma 3, we will show that for a solution of IEC(2) over fingerprints
Fi associated with a compatibility graph CGi, we can restrict to two possible
cases. In Solution A all the edges are assigned to ri2 , ri4 and ri5 . Three edges
are assigned to each of these vertices, thus 9 pairs of compatible fingerprints
are co-clustered by solution A. In Solution B all the edges except for edge fi27

(that is edge (ri2 , ri7)) are assigned to ri1 , ri3 , ri6 and ri8 . One pair of edges is
assigned to each of these vertices, while fi27 is assigned to either ri2 or ri7 and
it is not co-clustered with other edges. Thus 4 pairs of compatible fingerprints
are co-clustered by solution B.

The following lemma is easily proved using Lemma 3.

Lemma 4. A solution A of IEC(2) over Fi has the same cost of every solution
Z over Fi ∪ fi,j ∪ fi,h ∪ fi,k that extends solution A over Fi.

Next we show that the optimal solution for Fi ∪ fi,j ∪ fi,h ∪ fi,k corresponds
to have solution B for Fi and assign each edge in {fi,j, fi,h, fi,k} to a distinct
docking vertex of CGi. For each edge fx in {fi,j , fi,h, fi,k}, 2 pairs of co-clustered
edges in Fi ∪ fx are gained in solution B assigning the edge to a docking vertex
of CGi. Hence 10 pairs of edges are co-clustered in the extended solution B. We
denote such a solution by B∗. By Lemma 4, the following result holds.

Lemma 5. The optimal solution of IEC(2) over instance Fi ∪ fi,j ∪ fi,h ∪ fi,k

is B∗.

By Lemma 5, it follows that any solution over instance Fi∪fi,j∪fi,h∪fi,k different
from B∗ is not better than every solution extending solution A. Moreover, since
each edge fi,j can be assigned to either rix or rjy , two adjacent compatibility
graphs cannot both have a solution B∗. Hence the problem of maximizing the
number of co-clustered pairs of fingerprints consists of building an independent
set I of compatibility graphs, as stated in the following result.

Theorem 2. Let G be an instance of MIS. Then, there exists an independent
set V ′ of size k in G if and only if exists a solution S of IEC(2) over instance
FG that co-clusters at least 10k + 9(n− k) pairs of compatible fingerprints.

For each cubic graph |E| = 3
2 |V | and there exists an independent set of size at

least |V |/4, hence the above reduction is an L-reduction.

4.1 APX-Hardness of OEC(2)

Observe that the L-reduction described above implies the APX-hardness also of
OEC(2). Indeed considering the set of fingerprints associated with a component
graph CGi and with edges EGi,j , EGi,h, EGi,k, we can have 19 compatible
pairs of fingerprints. The best solution for this set of fingerprints is solution B∗,
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which co-clusters 10 pairs of compatible fingerprint vectors and thus it does not
co-cluster 19 − 10 = 9 pairs of compatible fingerprints. Solution A does not
co-cluster 19 − 9 = 10 pairs of compatible fingerprints and no other solution
different from solution B∗ is better than solution A. Hence the L-reduction for
OEC(2) follows directly from the L-reduction for IEC(2).

5 A Polynomial Time Algorithm for Restricted CMV

In this section we will present a polynomial-time algorithm for solving the CMV
problem in the case where for each position of a fingerprint vector, there is at
most one fingerprint in F with a N symbol in such position (notice that the
number of Ns in each fingerprint is unbounded).

Let F be an instance of CMV, in [6] it has been shown that the CMV problem
is equivalent to Minimum Cliques partition on a graph G = (F,E) whose
vertices are the input fingerprints and where the pair (fi, fj) is an edge of G if
and only if fi and fj are compatible (that is they can be resolved by a same
fingerprint). Since in each position there is only one fingerprint with N in such
position, we are able to prove some properties of the graph G, namely: (i) any
cycle in G induces a clique, (ii) any two maximal cliques share at most one
vertex, (iii) given two maximal cliques K1, K2 sharing the vertex vk, all paths
connecting a vertex in K1−{vk} with a vertex in K2−{vk} pass through vk. Due
to space constraints we will prove only (i) since the other two properties follow
from (i). Assume to the contrary that Ct = {fi1 , fi2 , . . . fit} is a cycle of G that
does not induce a clique (notice that t ≥ 4), w.l.o.g. we can assume that (fi1 , fiu)
(with 2 < u < t) is not an edge of G. Then fi1 and fiu are not compatible, that
is for a certain position z, fi1 [z] = 0 and fiu [z] = 1. Moreover in G there are two
vertex-disjoint paths from fi1 to fiu , where each edge in the paths consisting of
pair of compatible fingerprints and thus in both paths there must be a fingerprint
with an N in position z. Since the paths are vertex disjoint, there must be two
distinct fingerprints with an N in position z, contradicting the assumption that
for each position only one fingerprint contains an N in that position.

Exploiting property (i) we are able to prove that there exists a vertex v of G
belonging to exactly one maximal clique K of G (let us call such a vertex private).
Assume to the contrary that such vertex does not exists, then consider two maxi-
mal cliques adjacent if they share a common element. Starting from any maximal
cliques, visit all maximal cliques of G in a depth-first-like search (picking one
of the not visited maximal cliques adjacent to the current one). If the currently
visited maximal clique contains a private vertex, the search halts. By hypothesis
the procedure visits all maximal cliques in a connected component of G, with-
out finding a private vertex. Let Klast be the last maximal clique visited by the
procedure, it is immediate to note that the procedure visited at least another
maximal clique before Klast, let Klast−1 be the parent of Klast in the search tree.

Since Klast is maximal, then it contains at least two vertices, and since the
procedure halts all vertices in Klast − Klast−1 belong to maximal cliques that
have been already visited. This implies that in the depth-first search tree there
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is a back edge, and consequently there is a cycle of G including vertices of both
Klast −Klast−1 and Klast−1 −Klast. By property (i), there is a clique including
Klast ∪Klast−1, contradicting the maximality of Klast, Klast−1.

The algorithm simply finds such a maximal clique K containing a private
vertex, adds K to the current clique cover, and removes all vertices of K from G
updating G. The algorithm iterates until G contains no vertex. The correctness
of the algorithm follows from a simple observation: each vertex must be covered
in some solution, therefore each private vertex must be covered by one clique.
Clearly covering all private vertices of K with K is an optimal choice, therefore
let us consider a non-private vertex w ∈ K. If in an optimal solution w is covered
by a clique different from K, then w can be covered by K without increasing
the total number of cliques in the solution, hence K is an optimal solution.

The polynomial time complexity of the algorithm is a consequence of the fol-
lowing two observations. Two compatible fingerprints have exactly one common
resolved vector (which is trivially computable), hence a maximal clique of graph
G consists of all fingerprints sharing the same common resolved vector. Secondly,
by a simple counting argument there are at most

(
n
2

)
maximal cliques.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theo-
retical Computer Science, 237(1–2):123–134, 2000.

2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation: Combinatorial optimization problems
and their approximability properties. Springer-Verlag, 1999.

3. R. Drmanac. cDNA screening by array hybridization. Meth. in Enzym., 303:165–
178, 1999.

4. S. Drmanac and R. Drmanac. Processing of cDNA and genomic kilobase-size clones
for massive screening mapping and sequencing by hybridization. Biotechn., 17:328–
336, 1994.

5. S. Drmanac, N. Stavropoulos, I. Labat, J. Vonau, B. Hauser, M. Soares, and R. Dr-
manac. Gene-representation cDNA clusters defined by hybridization of 57 419 clones
from infant brain libraries with short oligonucleotide probes. Genomics, 37:29–40,
1996.

6. A. Figueroa, J. Borneman, and T. Jiang. Clustering binary fingerprint vectors with
missing values for DNA array data analysis. Journal of Computational Biology,
11(5):887–901, 2004.

7. A. Figueroa, A. Goldstein, T. Jiang, M. Kurowski, A. Lingas, and M. Persson.
Approximate clustering of fingerprint vectors with missing values. In Proc. 11th
Computing: The Australasian Theory Symposium (CATS), volume 41 of CRPIT,
pages 57–60, 2005.

8. L. Valinsky, G. Della Vedova, T. Jiang, and J. Borneman. Oligonucleotide finger-
printing of rRNA genes for analysis of fungal community composition Applied and
Environmental Microbiology, 68(12): 5999–6004, 2002.

9. L. Valinsky, G. Della Vedova, A. Scupham, S. Alvey, A. Figueroa, B. Yin, R. Hartin,
M. Chrobak, D. Crowley, T. Jiang, and J. Borneman. Analysis of bacterial microbial
community composition by oligonucleotide fingerprinting of rRNA genes. Applied
and Environmental Microbiology, 68(7): 3243–3250, 2002.



Tiling an Interval of the Discrete Line

Olivier Bodini and Eric Rivals

L.I.R.M.M.
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Abstract. We consider the problem of tiling a segment {0, . . . , n} of
the discrete line. More precisely, we ought to characterize the structure
of the patterns that tile a segment and their number. A pattern is a
subset of N. A tiling pattern or tile for {0, . . . , n} is a subset A ∈ P(N)
such that there exists B ∈ P(N) and such that the direct sum of A
and B equals {0, . . . , n}. This problem is related to the difficult question
of the decomposition in direct sums of the torus Z/nZ (proposed by
Minkowski). Using combinatorial and algebraic techniques, we give a new
elementary proof of Krasner factorizations. We combinatorially prove
that the tiles are direct sums of some arithmetic sequences of specific
lengths. Besides, we show there are as many tiles whose smallest tilable
segment is {0, . . . , n} as tiles whose smallest tilable segment is {0, . . . , d},
for all strict divisors d of n. This enables us to exhibit an optimal linear
time algorithm to compute for a given pattern the smallest segment that
it tiles if any, as well as a recurrence formula for counting the tiles of a
segment.

1 Introduction

Tilings are intriguing in many regards. Their structure, i.e., the way in which the
tiles are assembled, may be remarkably complex. As a matter of fact, a theorem
from Berger [3] states that, given a set of patterns, determining whether this set
tiles the plane by translation is undecidable. This result lets us think there exist
sets of tiles that tile the plane only in complex ways. Indeed, Penrose and others
[15, 5] demonstrated there exist aperiodic sets of tiles (aperiodic means that it
tiles the plane, but that none of its tilings admits an invariant by translation).
However, some related questions remain open. The smallest known aperiodic
set of tiles contains 13 tiles and it is unknown whether there is one with only
one non necessarily connected tile. Over and above that, it is undetermined
whether the tiling of the plane with one non connected pattern is decidable.
Nevertheless, an interesting result from Beauquier-Nivat [1] states that if the
pattern is connected the problem is decidable, and if there exists a tiling, there
is also a (doubly)-periodic tiling (i.e., one that is invariant by two non-collinear
vectors).

Even when restricted to bounded regions of the plane, tiling problems remain
difficult combinatoric questions on which little is known. Numerous articles re-
port on specific cases. Among others, the problem of tiling a connected region
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(respectively, a simply connected region) by dominos is polynomial [19] (resp.,
linear [20]). But, if generalized to a region that is non necessarily simply con-
nected, the problem of tiling by rectangles of size 1 × 3 and 3 × 1 becomes
NP-complete [2].

Regarding these difficulties, it is natural to focus on tiling problems for the
discrete line Z. These problems are related to additive number theory, which
studies the decompositions of sets of numbers in sums of sets of numbers. A
major theorem in this field is the decomposition of integers in sums of 4 squares
(Lagrange’s theorem), which is written 4C = N where C :=

{
n2 : n ∈ N

}
. Let

us also mention Golbach’s conjecture (in a letter to L. Euler, 1742), which asks
whether any even integer is the sum of two primes (2N = P + P where P designs
the set of primes).

Indeed in additive number theory, tiling the discrete line with a tile is equiv-
alent, given a set A (representing the tile), to finding a set B (representing the
positions of the tile’s translations) such that the function f(a, b) := a+ b is one-
to-one from A×B into Z. In this case, we denote it A⊕B = Z. A classical result
[12] states that in this case, there always exists a positions set B that is periodic
(i.e., for which there is an integer k such that B + k = B). As an immediate
corollary, one obtains the decidability of the tiling of the discrete line by a single
pattern. Despite that, its algorithmic complexity remains open although a lot of
efforts have been dedicated to study bases for the integers [6, 21]. Moreover, the
periodicity of the positions set B raises the question of the characterization of
sets A and B such that A⊕B = Z/nZ. This problem formulated by Minkowski
more than hundred years ago is still mainly unsolved despite the last progresses
made by Hajòs [9, 10, 17, 18].

In this work, we focus on the characterization of sets A and B satisfying
A ⊕ B =

[[
n
]]
, where

[[
n
]]

denotes the interval {0, ..., n − 1}. This question has
been addressed in the literature as the Krasner factorization [11]. Two differ-
ent constructions of Krasner factorizations have been described in the literature
as special cases of Hajós factorizations and used in code theory [13, 7]. In a
first part (Sections 2 and 3), we demonstrate using techniques from word the-
ory that if A ⊕ B =

[[
n
]]

then either A or B tiles
[[
d
]]
, for d a proper divisor

of n. For any n ∈ N, let us say a tile is n-specific if its smallest tilable seg-
ment is

[[
n
]]
. More precisely, we exhibit a bijection between n-specific tiles and

d-specific tiles for all strict divisors d of n. This result yields a simple formula
to count the tilings of

[[
n
]]
. The obtained sequence that for each n gives the

number of tilings of
[[
n
]]

is described in the Encyclopedia of Integer Sequences
[16] (http://www.research.att.com/˜njas/sequences/) by Zumkeller without re-
lationship neither to tilings theory, nor to word combinatorics. Besides, we prove
a theorem on the size of the smallest tilable segment in function of the tile’s diam-
eter. This solves in a specific case a conjecture of Nivat stating that the smallest
torus Z/nZ that can be tiled by a pattern of diameter d satisfies n ≤ 2d. More-
over, we exhibit a linear time algorithm to decide whether a pattern tiles at least
one interval of Z (Section 4).
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In a second part (Section 4), using more algebraic techniques, we demonstrate
that any tile of

[[
n
]]

can be decomposed in irreducible tiles (i.e., tiles that are
not sums of smaller tiles), which we characterize explicitly. This is in fact a new
proof of Krasner factorizations. This combinatorial proof may help developping
the theory in the general framework. Furthermore, we know for any n how many
irreducible tiles there are. Note that to fit in the page limit, all proofs have been
removed from this extended abstract.

1.1 Definitions and Notation

Subsets of N and Polynomials. Let N, resp. Z, be the set of non-negative
integers, resp. of integers, and P(N) the set of finite subsets of N. We denote
the set of polynomials with coefficients in {0, 1} by {0, 1} [X ]. We define the
mapping ρ that to a finite subset of N associates a polynomial of {0, 1} [X ] by:

ρ : P(N)→ {0, 1} [X ]
A −→ PA(X) :=

∑
a∈A Xa

Clearly, ρ is one-to-one. For all A ∈ P(N), we denote by c (A) its minimal
element, by d (A) its maximal element, and by # (A) its cardinality. d (A) is also
the degree of PA.

Let A,B ∈ P(N) and k ∈ N. The following operations on sets have correspon-
dents for polynomials:

union: PA∪B = PA + PB if and only if A ∩B = ∅,
difference: PA\B = PA − PB if and only if B ⊂ A,
translation: if one denotes A+k := {a+k : a ∈ A}, then PA+k(X) = Xk ·PA.

We introduce a notation for the direct sum. Let us denote by A�B the union
with repetition for all b ∈ B of the translates A + b. In general, this union is
a multi-set on N, i.e., PA	B := P	b∈BA+b =

∑
b∈B PA+b is a polynomial with

integral coefficients that are eventually strictly greater than 1. If there exists
C ∈ P(N) such that C = A � B, then we denote it by C = A ⊕ B. In this
case, PA	B := PA⊕B = PAPB and it belongs to {0, 1} [X ]. In other words, we
investigate the case where the sum is stable in P(N), or where the product of
polynomials is stable in {0, 1} [X ]. One says that a polynomial is irreducible in
{0, 1} [X ] if it cannot be factorized in {0, 1} [X ]. When transposed to subsets of
N, A is irreducible means it is impossible to decompose A in a non trivial direct
sum (i.e., other than {0} ⊕A).

Besides, we say A is a prefix of B if and only if A ⊂ B and ∀i ∈ B, i ≤
d (A)⇒ i ∈ A (i.e., B∩ [[d(A)]] = A). By convention, one admits that ∅ is prefix
of any other subset of N. We denote by

[[
k
]]

the finite interval of N of length k
whose minimal element is 0, i.e., the interval [0, k − 1]. We use the word segment
as an alternate for interval.

In the sequel, for any finite subset A of N, we assume that c (A) = 0 (this is
always true up to a translation). We call A a pattern or motif. For a pattern A,
d (A) is also termed diameter.



120 O. Bodini and E. Rivals

2 Properties of the Direct Sum

In this section, we investigate the properties of the direct sum that are useful to
study the tilings of an interval. Note that the propositions hereunder are true
for subsets of N, but not necessarily for multi-sets on N.

Proposition 1 (Sums of prefixes). Let A,B,B′, C, C′ be subsets of N such
that A �= ∅ and C is prefix of C′. Then, together A ⊕ B = C and A ⊕ B′ = C′

imply that B is prefix of B′.

Proposition 2 (Sum of a partition). Let A,B,D be subsets of N such that
D ⊆ A and A⊕B be a subset of N. Let us denote by �AD the complement of D
in A. Then (D ⊕B) and

(
�AD ⊕B

)
partition A⊕B.

This proposition is not verified when A ⊕ B is multi-set on N that is not a
subset of N. For multi-sets, we have the following property: Let C,D be such
that A = C

⊎
D, then (C ⊕B)

⊎
(D⊕B) = A⊕B. In general it is not true that

(C ⊕B) ∩ (D ⊕B) = ∅, even if C ∩D = ∅.
We state two propositions of simplification.

Proposition 3 (Difference of intervals). Let A,B,C be subsets of N and
m,n ∈ N. If A ⊕ B =

[[
m
]]

and A ⊕ C =
[[
n
]]

with n ≥ m, then there exists
D ⊂ N such that A⊕D =

[[
n−m

]]
and D := �CB −m.

Example 1. Set A := {0, 2}, B := {0, 1, 4, 5} and B′ := {0, 1, 4, 5, 8, 9}. One
has A ⊕ B =

[[
8
]]

and A ⊕ B′ =
[[
12

]]
, i.e., m := 8 and n := 12. Let D :=

�CB −m = {8, 9} − 8 = {0, 1}, one obtains A⊕D =
[[
4
]]

=
[[
n−m

]]
.

Proposition 4 (gcd of intervals). Let A,B be subsets of N and m,n ∈ N. If
M ⊕ A =

[[
n
]]

and M ⊕ B =
[[
m
]]
, then there exists C ∈ N such that M ⊕ C =[[

gcd(n,m)
]]
.

Proposition 5 (Multiple of an interval). Let A,B be subsets of N and n ∈ N
such that A⊕B =

[[
n
]]
. Then, for all l ∈ N, A⊕

(
⊕l−1

i=0(B + in)
)

=
[[
ln
]]
.

Note that if # (A) is prime, then A can be decomposed only in the direct sum
of the neutral element and itself. We close with an elementary property.

Proposition 6. For any A ∈ P(N), one has # (A) ≤ d (A) + 1 and both mem-
bers are equal if and only if A =

[[
d (A)

]]
.

3 Tiling an Interval of the Discrete Line

In this section, let n ∈ N be an integer and f be a finite subset of N such that
d (f) < n. We use the following notation:

– for any x < y, we denote f ∩ [x, y] by f [x, y], and f ∩ [x, y[ by f [x, y[;
– for any 0 ≤ x ≤ d (f), let us denote by f [x] the subset {i ∈ f : i < x}.
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Definition 1 (Tiling, dual). Let n ≥ 0 and f be a pattern such that d (f) < n.
We say that f tiles

[[
n
]]

if and only if there exists f̂n, a subset of N, such that
f ⊕ f̂n =

[[
n
]]
. We call f̂n the dual of f for n. The element of f̂n are also called

the translation positions for f .

For a given n, the dual is unique. The notion of dual is idempotent: the dual
of the dual of f is f itself, and f̂n also tiles

[[
n
]]
. We say that a pattern f that

tiles
[[
n
]]

is trivial if f := [0, n− 1] =
[[
n
]]

or f := {0}. We define a notion of
self-period for a pattern. Without loss of generality, we assume that 0 belongs
to f ∩ f̂n (which is true up to a translation).

Definition 2 (Self-period of a pattern). Let n ∈ N, f be a pattern such
that d (f) < n and p be an integer such that 0 ≤ p ≤ d (f). We say that p is a
self-period of f for length n if and only if for any i ∈ [0, n− p[ one has

i ∈ f ⇔ (i + p) ∈ f .

In other words, f[0,n-p[ + p = f[p,n[. For length n, we denote by Πn(f) the set
of self-periods of f , and by πn(f) its smallest non null self-period.

Definition 3 (Completely self-periodic). We say that a pattern is com-
pletely self-periodic for length n if and only if it is an arithmetic sequence. I.e.,
if and only if one has j ∈ f ⇔ (∃i ∈

[
0, �n/c�

]
: j = ic), where c denotes the

common difference.

Note that if a pattern f is completely self-periodic then its common difference
is its smallest non-null period, πn(f). We choose the word ”self-period” to avoid
confusion with the notion of a tiling’s period mentioned in the introduction.
However, for the sake of simplicity, we use the word period instead of self-period
in the sequel, since the context prevents ambiguity. Furthermore, let us point
out the connection between the notions of a pattern self-periodicity and of word
periodicity.

Example 2. Consider n := 12. The pattern f := {0, 1, 4, 5, 8, 9} has periods
0, 4, and 8. So, π12(f) = 4 and Π12(f) = {0, 4, 8}. It can be decomposed in
{0, 1, 4, 5, 8, 9} = {0, 1} ⊕ {0, 4, 8}. These patterns, {0, 1} and {0, 4, 8} are com-
pletely periodic for lengths 2 and 12 resp., with smallest period 1 and 4 resp.
Pattern f tiles

[[
12

]]
; its dual for n := 12 is f̂12 := {0, 2}, it tiles

[[
4
]]
,
[[
8
]]

and[[
12

]]
. It is true that # (f)×#

(
f̂12

)
= 6× 2 = 12.

3.1 Properties of Patterns That Tile an Interval

Let f be a pattern. In the sequel, we assume that f tiles
[[
n
]]
. First, we list some

elementary properties of f .

Proposition 7. Let f be a pattern that tiles
[[
n
]]
. First, # (f) × #

(
f̂n

)
= n,

and second, d (f) + d
(
f̂n

)
= n − 1. Thus, we have either d (f) > d

(
f̂n

)
, or

d (f) < d
(
f̂n

)
.
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Now, let us state a simple and useful property. It follows from the positivity of
the pattern’s elements and from the properties of the direct sum.

Proposition 8. For any x ∈
[[
n
]]
, one has [0, x] ⊆ f [0, x]⊕ f̂n.

In a tile, let us call a block a maximal set of consecutive positions. E.g., in
f := {0, 1, 4, 5, 8, 9} the blocks are {0, 1}, {4, 5}, and {8, 9}. A block contains at
least an element and may be a singleton.

Now observe the following simple fact: the gap between the first and second
block can only be tiled by translations of the first block (and of course of the
whole tile). We show below that this implies first, that all blocks have the same
length, and second that the first block tiles periodically the interval between 0
and the start position of the second block.

Proposition 9. Let f be a pattern that tiles
[[
n
]]
. Assume f comprises k > 1

blocks; then f is completely specified by the length and starting positions of its k
blocks denoted respectively, (bi)1≤i≤k and (li)1≤i≤k. W.l.o.g. b1 = 0, and for all
i one has li > 0. Then:

1. the block length divides b2, i.e., l1 divides b2, and f̂n[b2] = ∪b2/l1
j=0 {jl1}.

2. all blocks have the same length, i.e., for all 1 ≤ i ≤ k, li = l1.

A corollary of the previous proposition is that the distance between any consec-
utive block is a multiple of the block length and is larger than b2. We can now
state a theorem showing that a tile f admits a non null smallest self period.

Theorem 1. A tile f admits a smallest non-null period πn(f).

Let us show that the smallest non null period of a non trivial tile is smaller than⌊
n/2

⌋
. Next proposition demonstrates that this period divides n.

Proposition 10. Let f be a pattern that tiles
[[
n
]]

and such that d (f) > d
(
f̂n

)
.

Then: πn(f) ≤
⌊
n/2

⌋
.

Lemma 1. Let f be a pattern that tiles
[[
n
]]

and satisfies d (f) > d
(
f̂n

)
. Thus,

πn(f) divides n and f [πn(f)] ⊕ f̂n =
[[
πn(f)

]]
.

The next corollary follows from the patterns’ properties and from Lemma 1.

Corollary 2. If f tiles
[[
n
]]

and d (f) > d
(
f̂n

)
then d

(
f̂n

)
< πn(f).

By Proposition 5, we have that any tile of
[[
n
]]

also tiles
[[
ln
]]

for any integer
l > 0. We deduce the next corollary from Lemma 1 and Proposition 5.

Corollary 3. Let f be a pattern and d be the smallest integer such that f tiles[[
d
]]
. If d > 0, then the

[[
ld
]]
, for l ∈ N, are all the intervals f can tile.
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Theorem 4. Let n be an integer. Among the patterns f that tile
[[
n
]]
, it exists

a one-to-one mapping that, to any pattern f such that d (f) ≤ n/2, associates
a pattern that tiles

[[
d
]]

for d a divisor of n. This bijection associates to such a
pattern f its dual f̂n.

One obtains a canonical decomposition of patterns tiling
[[
n
]]

in irreducible pat-
terns. Indeed, Theorem 4 allows us to write any tile f of

[[
n
]]

as the direct sum of
i/ a completely periodic pattern for length n (with period a divisor strict of n)
and ii/ one or more patterns that tiles

[[
d
]]
, with d a strict divisor of n, and are

completely periodic for length d. This decomposition result is also a corollary of
Theorem 7 (section 4).

3.2 Numbers of Tiles of an Interval

Let n ∈ N such that n > 0. We denote by Ξn the set of tiles of
[[
n
]]
. Let Δn be

the subset of patterns in Ξn whose diameter is smaller than or equal to
⌊
n/2

⌋
(i.e., those who tile

[[
d
]]

for d a strict divisor of n), and let Ψn be the complement
of Δn in Ξn (i.e., those patterns with diameter strictly greater than

⌊
n/2

⌋
). By

definition, one has Ξn = Δn ∪ Ψn. We denote the cardinalities of these sets by
ξn, δn, and ψn, respectively.

Theorem 5. Let n ∈ N be an integer such that n > 1. One has ξ1 = 1 and

ξn = 1 +
∑

d∈N : d|n, d �=n

ξd . (1)

Corollary 6. If n > 1 is prime then Δn = Ψ1, Ψn = {
[[
n
]]
}, Ξn = {{0},

[[
n
]]
},

δn = ψn = 1 and ξn = 2.

The values of ξn for n > 0 are those of Sequence entry A067824 in [16], and (1)
corresponds to the recurrence relation given for this sequence by Zumkeller.

Let us denote by μ(n) the Moebius function. This function satisfies μ(n) =
(−1)r if n = p1p2...pr for distinct primes pj and μ(n) = 0 whenever n is di-
visible by a square. The Moebius inversion states that f(n) =

∑
d|n g(d) ⇔

g(n) =
∑

d|n μ(n
d )f(d). Using this property, we can easily obtain the following

new induction for ξn : ξn = 1−
∑

d|n;d �=n μ(n
d )(2ξd − 1).

4 Algebraic Approach

4.1 Polynomials Decomposition

Let us denote by C the set of super-composite integers, i.e., all integers whose
prime factorization contains at least two different primes. It is known that Xn−1
admits a unique decomposition (up to the order of its factors) in irreducible el-
ements of Z[X ]. Indeed, Z[X ] is a factorial ring (unique factorization domain).
This decomposition is Xn − 1 =

∏
d|n Φd, where Φd is the d-th cyclotomic poly-

nomial [14]. We use the following properties of cyclotomic polynomials.
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Proposition 11

• The degree of Φd is ϕ(d), where ϕ is Euler’s function.
• Φd(1) = p if d is a power of a prime p and Φd(1) = 1 otherwise.
• The polynomial Φd belongs to {0, 1} [X ] if and only if d /∈ C.

As ρ is a bijection, it induces a one-to-one correspondence between the pairs
(A,B) ∈ P(N)×P(N) such that A⊕B =

[[
n
]]
, and the pairs (P,Q) ∈ ({0, 1} [X ]×

{0, 1} [X ]) such that P (X)Q(X) = 1 + · · ·+ Xn−1. Moreover, as 1 + · · ·+ Xn−1

is factorizable in
∏

d|n,d �=1 Φd(X), there exists a partition of {d|n, d �= 1} in D1

and D2 such that P (X) =
∏

d∈D1
Φd(X) and Q(X) =

∏
d∈D2

Φd(X). Finally,
We can notice that if P is in {0, 1} [X ] and P (X)Q(X) = 1 + · · ·+ Xn−1 then
the polynomial Q is not necessarily in {0, 1} [X ]. We have the following counter-
example : (1 + X2 + X3 + X5)(1 + X −X3 + X5 + X6) = 1 + · · ·+ X11−1.

4.2 Results

Lemma 2. Let P1, . . . , Pk be polynomials of {0, 1} [X ] such that
∏k

i=1 Pi belongs
to {0, 1} [X ]. For each subsequence Ps1 , . . . , Pst , with 1 ≤ s1, . . . , st ≤ k, one has∏t

i=1 Psi ∈ {0, 1} [X ].

For all n ∈ N, we call total valuation of n, denoted by νn, the sum of the
powers in the prime factorization of n. We call factorial sequence of n, a sequence
u0, u1, . . . , us such that u0 := 1, us := n, and ui+1/ui is a prime number. Observe
that all factorial sequences of n have νn + 1 terms. From a factorial sequence
of n, we can build a sequence of decomposition (Dui−1,ui)1≤i≤s with Dui−1,ui :=
{d|ui : d � ui−1}. For conciseness, for all D ∈ P(N) we write ΦD :=

∏
d∈D Φd.

Lemma 3. Let n, p ∈ N with p prime. ΦDn,pn belongs to {0, 1} [X ] and is irre-
ducible in {0, 1} [X ].

Theorem 7 (Krasner Factorizations). Each factorization of 1 + · · ·+ Xn−1

in irreducible elements in {0, 1} [X ] has the following form
∏

1≤i≤s ΦDui−1,ui

where (Dui−1,ui)1≤i≤s is a sequence of decomposition of n, and reciprocally.
Moreover, for all 1 ≤ i ≤ s, ΦDui−1 ,ui

(1) is a prime factor of n.

Note that the factorization may not be unique.

Example 3. For n := 12, the factorial sequences are: (1, 2, 4, 12), (1, 2, 6, 12),
and (1, 3, 6, 12). The associated sequences of decomposition are ({2}, {4}, {3, 6,
12}), ({2}, {3, 6}, {4, 12}), ({3}, {2, 6}, {4, 12}). We obtain that the irreducible
factors of 1 + · · ·+ Xn−1 in {0, 1} [X ] are Φ2, Φ3, Φ4, Φ3Φ6, Φ2Φ6, Φ3Φ6Φ12,
Φ4Φ12.

Theorem 8. The number vn of irreducible factors of 1 + · · ·+ Xn−1 in {0, 1} [X ]
equals

∑
d|n #{prime factors of d} .
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The pattern associated with the polynomial ΦDd,dp
is the arithmetic sequence

starting in 0, of common difference d, and having p terms. This gives the precise
structure of all tiles of a segment.

A reciprocal polynomial is a polynomial such that P (X) = XnP (1/X), where
n is the degree of P .

Corollary 9. Let f be a pattern which tiles an interval. The associated polyno-
mial, Pf , is reciprocal.

Theorem 10. Let f be a pattern which tiles an interval. Then, the length of the
smallest nonempty interval it tiles is smaller than twice the diameter of f , i.e.,
than 2d (f).

Theorem 10 shows that Nivat’s conjecture on the upper bound of the tiling
periodicity (also mentioned in [4]) is true for the special cases considered here.

Theorem 11. Let f be a pattern. Algorithm 1 decides in O(d (f)) time whether
there is n ∈ N such that f tiles

[[
n
]]

and gives the decomposition of f in completely
self-periodic tiles.

In Algorithm 1, we use a procedure call CompNextBlock (or CNB for short) that
computes all information needed about the next block in the tile. This procedure
uses a global variable to scan blocks from left to right in the tile. It stores in a
block object the following information: length (lg), distance to previous block or
0 for the first block (dist). Note that the distance is the length of the space that
separates two successive blocks. At the last block, dist is set to −1.

In fact, the algorithm computes the decomposition of the tile in completely
self-periodic tiles. It scans the blocks, checks their length, and deduce the level
of periodicity they belong to. The information on each level is stored in a Level
object: characteristic distance between the last block of previous level and the
first block of this level, period, number of repeats, overall length (this is the
product of the number of repeats time the period). Other variables are: Lev:
table of levels; ilev: index of the current level; pdist: previous distance between
two consecutive blocks; fB: first block; nB: current block;

Two cases arise with the distance. Either the distance between the current
consecutive blocks is the same as the previous one, then the periodicity remains
the same and we have to scan a new copy (repeat) of the current level. Or the
distance increases, then the current blocks marks the beginning of a new level of
periodicity. Once a periodicity level has been scanned, the variable Lev stores its
complete description. A level of periodicity corresponds to a prefix of f . To any
given level corresponds a prefix of f̂n such that it sums with that level tiles the
whole level length. Let us denote that by Lev[i]⊕ pi(f̂n), where pi(f̂n) denotes
the prefix of f̂n that tiles Lev[i].lg. The start of a higher level is detected when
the inter-block distance increases strictly. The additional space left since the end
of the last periodicity level has to be a multiple of Lev[i].lg, such that it can
be filled with translates of Lev[i] ⊕ pi(f̂n). The higher level, say i + 1 starts
necessarily with replicates of all previous periodicity levels. The line ”read all
previous level” scans these replicates with the descriptions stored in Lev.
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Algorithm 1. Computes the least interval tiled by f if any and returns −1
otherwise. If f is a tile, the levels of periodicity computed by the algorithm gives
the decomposition of f in completely self-periodic tiles.
Data: a pattern f
Result: the minimal n ∈ N such that f tiles

[[
n
]]

if it exists, and −1 otherwise
if (d (f) + 1 = # (f)) then return #(f);if (# (f) = 2) then return 2d (f);
fB := CNB(f); // compute the first block ;
if (fB.lg � #(f)) then return (−1); // check if 1st block length divides #(f);
nB := CNB(f); ilev := 0; pdist := 0; // compute next Block; init ilev and pdist;
while (nB.dist ≥ 0) do

// check the block length and that the distance increases;
if (nB.lg � fB.lg) or (nB.dist < pdist) then return (−1);
// if current distance is larger than previous one: start of a new level ;
if (nB.dist > pdist) then

ilev + +;
if (ilev = 1) then

// First level ;
// check if the block length divides the distance between blocks;
if (fB.lg � nB.dist) then return (−1);
// init current level: period = space length + block length;
Lev[ilev].dist := nB.dist;
Lev[ilev].period := nB.dist + fB.lg;
Lev[ilev].nbrep := 1;

else
// Higher level ;
// update the nbrep of prev level and compute its length;
Lev[ilev − 1].nbrep + +; Lev[ilev − 1].ComputeLg();
// check if previous level period divides the distance difference between the 2
levels;
if (Lev[ilev].period � (nB.dist − Lev[ilev − 1].dist)) then return (−1);
// init current level: period = previous level’s length + distances’ difference;
Lev[ilev].dist := nB.dist;
Lev[ilev].period := Lev[ilev − 1].lg + (nB.dist − Lev[ilev − 1].dist);
Lev[ilev].nbrep := 1;
pdist := nB.dist;
Read all lower levels until nB.dist > Lev[ilev − 1].dist; if it fails return (−1);

else
// update currently scanned level ;
Lev[ilev].nbrep + +;
if (ilev �= 1) then Read all lower levels until nB.dist > Lev[ilev − 1].dist; if it
fails return (−1);

if (ilev = 1) then
// only in case of 1st level: compute new block and update variables;
pdist := nB.dist; nB := CNB(f);

// increment nb of repeats of current level and compute its length;
Lev[ilev].nbrep + +; Lev[ilev].ComputeLg();
return Lev[ilev].lg; // the interval tiled by f is Lev[ilev].lg;
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Example 1. Let f := [0, 6]∪ [21, 27]∪ [42, 48]∪ [126, 132]∪ [147, 153]∪ [168, 174]∪
[504, 510]∪[525, 531]∪[546, 552]∪[630, 636]∪[651, 657]∪[672, 678], with # (f) = 84
and d (f) = 678. Then Algorithm 1 will find out that the smallest n such that f
tiles

[[
n
]]

is n = 1008 and will decompose f as follows:

f =
[[
7
]]
⊕ {0, 21, 42, 126, 147, 168, 504, 525, 546, 630, 651, 672}

=
[[
7
]]
⊕ {0, 21, 42}⊕ {0, 126, 504, 630}

=
[[
7
]]
⊕ {0, 21, 42}⊕ {0, 126} ⊕ {0, 504} .

The algorithm infers 4 levels of periodicity: the first block
[[
7
]]
, which has period

1 and is not explicitely store in Lev, and then the following three levels:

Lev[1].dist = 14 Lev[1].period = 21 Lev[1].nbrep = 3 Lev[1].lg = 63
Lev[2].dist = 77 Lev[2].period = 126 Lev[2].nbrep = 1 Lev[2].lg = 252
Lev[3].dist = 329 Lev[3].period = 504 Lev[3].nbrep = 1 Lev[3].lg = 1008.

The dual of f for n = 1008 is f̂n = {0, 7, 14}⊕ {0, 63}⊕{0, 252}, which can also
be infered from the length and number of repeats of the periodicity levels.

5 Conclusion

This work characterizes the tilings of an interval as direct sums of arithmetic
sequences. Counting results obtained also show that, surprisingly, the number
of patterns that tile a segment of length n depends, not on the prime factors
of n, but only on the list of their powers. E.g., segments of respective lengths
n1 := 5 × 72 × 24 and n2 := 13× 32 × 114 (n1 and n2 have both (1, 2, 4) as list
of powers), have the same number of tiles. Moreover, for any positive integer
n we show that the number of polynomials p with coefficients in {0, 1} that
divide xn−1 and such that (xn−1)/p(x− 1) has all coefficients in {0, 1} equals
the number of tiles of

[[
n
]]
. This invalidates the conjecture mentioned in the

Encyclopedia of Integer Sequences [16] that these two sequences, A107736 and
A067824, are different. Finally, we exhibit a linear time algorithm to recognize
a tile and find the smallest n for which it tiles

[[
n
]]
. This complexity is otpimal.

The regular structure of the tiles of a segment contrasts sharply with the
singular structure of those tiling the torus Z/nZ. Indeed for this problem, there
exists irregular sets A and B such that A⊕B = Z/nZ [8]. However, our results
exhibit a relation between tilings, words and polynomials that opens promising
directions for the tiling by a single pattern of the discrete plane or of special cases
of the torus. Let us mention that Theorem 7 can easily be extended to higher
dimensions. As a matter of fact, one can characterize a pattern that tiles a d-
dimensional rectangle n1× . . .×nd as the cartesian product of d one-dimensional
patterns, each tiling a segment of length ni respectively (with 1 ≤ i ≤ d). This
work also shed light on the complementarity of combinatorial and algebraic
approaches for tiling problems.

Acknowledgments. We are grateful to O. Gandouet for reading the manuscript
and to F. Philippe for constructive comments.
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Abstract. In computational biology, an important problem is to iden-
tify a word of length k present in each of a given set of sequences. Here,
we investigate the problem of calculating the probability that such a
word exists in a set of r random strings. Existing methods to approxi-
mate this probability are either inaccurate when r > 2 or are restricted
to Bernoulli models. We introduce two new methods for computing this
probability under Bernoulli and Markov models. We present generaliza-
tions of the methods to compute the probability of finding a word of
length k shared among q of r sequences, and to allow mismatches. We
show through simulations that our approximations are significantly more
accurate than methods previously published.

1 Introduction

Many algorithms in biological sequence analysis are based on the identification of
words that are present as substrings of a given set of DNA or protein sequences.
Variants on this problem are used for identifying regulatory motifs in a set of co-
regulated genes [20, 22], and for selecting seeds for sequence alignment [1, 2, 13].
These applications rely on the ability to estimate the statistical significance of
the length of the common substring found: how surprising is it that a set of r
strings of length n contain a common substring of length k?

The problem we consider in this paper is the following:

Common Substring in Random Strings (CSRS)
Given: A random process P generating r independent strings S1, . . . , Sr

of length n over the alphabet Σ, and a substring length k,
Find: The probability that the r random strings S1, . . . , Sr contain a
common substring w of length k.

Various authors have studied his problem or its equivalent formulation as
the longest common substring problem (see Section 2), but available methods
are not accurate for finite length random sequences generated by a non-uniform
Bernoulli or Markov process. In this article, we present a new approximation
to the Common Substring in Random Strings (CSRS) problem and show that
� Partially supported by the André Courtemanche Fellowship in Bioinformatics.

�� Partially supported by the National Science and Eng. Research Council of Canada.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 129–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



130 E. Blais and M. Blanchette

this new approximation is more accurate than previously published methods for
the same problem. Moreover, we generalize our approach to solve the problems
where matches are required in only q of the r strings, and where inexact matches
are allowed.

The article is organized as follows. We review related work in Section 2. In
Section 3, we present a model for solving the CSRS problem approximately using
an assumption of independence between words. In Section 4, we present a second
simplifying assumption of independence and show how the model obtained by
combining both simplifying assumptions can compute approximations to CSRS
in polynomial time (relative to k) for strings generated by Bernoulli and Markov
processes. In Section 5, we present important generalizations for biological prob-
lems. Finally, in Section 6, we show through a set of Monte-Carlo simulations
that our approach is quite accurate under all models considered.

2 Related Work

The probability that r strings contain a common aligned substring of length
k can be determined by characterizing the length of the longest head run in
a sequence of biased coin flips. This problem was examined by Feller [8] who
provides a method for computing this probability with generating functions.
The same problem was later studied by Erdős and Rényi [6] and Erdős and
Révész [7] who provide tight asymptotic bounds on the distribution of the longest
head run.

Arratia and Waterman [3, 4] generalize the results of Erdős and Rényi to
examine the distribution of the longest common (unaligned) substring in two
random strings. Karlin and Ost [12] provide further improvements on the bounds
for the asymptotic behaviour of the longest common word in multiple random
strings for a wide range of random processes.

Naus and Sheng [14] show that while the Karlin and Ost asymptotic equa-
tions provide very accurate approximations to CSRS on two random strings, the
quality of the same equations deteriorates as the number of strings increases.
They also provide refinements to the Karlin and Ost equations for the special
case where the random strings are generated by a Bernoulli process, and show
that those refinements offer very good approximations to the CSRS problem
when the strings are generated by a uniform Bernoulli process. As we will show
in Section 6, the quality of those approximations is not as good for strings gen-
erated by non-uniform Bernoulli processes, and their methods do not generalize
to strings generated by Markov processes.

In a parallel effort, Guibas and Odlyzko [10] and many others since provide
approximations and exact results for the distribution of the number of occur-
rences of a given word in a random text (see for instance [15, 18, 19] and the
references therein). Those results allow us to compute the probability that a
given word is a common substring to random strings. In the next section, we
show how to apply these results to the computationi of the probability that a
set of random strings contain any word as a common substring.
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3 The Independent Words Model

Let ξw represent the event that the word w occurs in a random string S generated
by a Bernoulli or Markov process. The value of P (ξw) can be computed with the
help of generating functions:

Theorem 1 (Régnier [18]). The probability P (ξw) that a string w of length
k is found as a substring of the random string S of length n generated by a
Bernoulli process or a stationary Markov process is

P (ξw) = [sn]
(

1
1− s

· P (w)sk

P (w)sk + Aw(s)(1 − s)

)
, (1)

where Aw(s) is the autocorrelation polynomial of w (see [18]) and P (w) is the
stationary probability of observing w at a given position in S.

There are various methods to implement numerical computations of P (ξw).
Régnier proposes a method to compute the value of P (ξw) in O(log n) time [18].
The partial fractions method of Feller can also compute highly accurate approx-
imations to P (ξw) in O(k) time [8].

The computation of P (ζ), where ζ represents the event that some word of
length k occurs in all r random strings S1, . . . , Sr, is more problematic. Since the
strings S1, . . . , Sr are generated independently, we have P (ζ) = P (∪w∈Σkξ r

w ).
To compute P (ζ) exactly, we would need to account for the dependence between
all the events ξw. However, as we will show in Section 6, we can get a very good
approximation to P (ζ) even when we assume the independence of the events ξw.
We therefore present the single assumption for the Independent Words Model:

Assumption 1. For every words w �= w′, we assume that the events ξw and
ξw′ are independent.

With this assumption, computing the value of P (ζ) is now straightforward.

Proposition 1. When Assumption 1 holds, the probability P (ζ) of observing a
substring of length k in each of the r random strings S1, . . . , Sr generated by a
Bernoulli or Markov process is

P (ζ) = 1−
∏

w∈Σk

(
1− P (ξw)r

)
. (2)

Equation (2) can be implemented directly to provide an accurate approximation
to P (ζ). However, since it requires the enumeration of every word w of length k
in the alphabet Σ of size σ, its running time is exponential in k, taking Ω(σk)
time even when a constant-time approximation algorithm is used to compute
P (ξw). In the next section, we present alternative algorithms for computing the
approximation to P (ζ) in time polynomial in k.
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4 The Double Independence Model

To develop efficient approximations to P (ζ), we want to reduce the number of
terms that need to be enumerated during the computation. Already, we may
note that some words have the same probability P (ξw) of occurring in a random
string. In fact, we can significantly augment the number of words that share the
same probability P (ξw) with a second simplifying assumption.

Assumption 2. For every position i �= j in S, we assume that the probability
that the events representing occurrences of the word w at position i and j are
independent.

The Assumption 2 gives the following approximation for P (ξw):

Proposition 2. When Assumption 2 is valid, the probability P (ξw) of observing
a word w of length k in a random string S of length n is

P̃ (ξw) = 1−
(
1− P (w)

)n−k+1
, (3)

where P (w) is the stationary probability of observing the word w at a given
position in S.

The approximation P̃ (ξw) has two advantages: it is the same for many different
words, and can be computed in O(1) time. However, we should be aware that
it is not an accurate approximation to P (ξw) for many words. Specifically, the
probability P (ξw) for words that have high self-overlap (e.g. AAAAAA or CTCTCT)
is very poorly approximated by Proposition 2 [22]. Nevertheless, we will show in
Section 4.3 that it is easy to correct this error in polynomial time.

We refer to the modified CSRS problem in which Assumptions 1 and 2 are
valid as the Double Independence Model. In Sections 4.1 and 4.2, we show how
the Double Independence Model can be used to obtain polynomial time algo-
rithms for the computation of P (ζ) when the random string S is generated by
a Bernoulli process or a Markov process, respectively.

4.1 Bernoulli Process

When the random string S is generated by a Bernoulli process, each character
of S is generated independently and takes the value x ∈ Σ with probability px.
Under the double independence model, words that share the same composition,
as defined below, will have the same probability P̃ (ξw) of occurring in S.

Definition 1. The Bernoulli composition of a string w is the multiset γ of
characters in w.

Example 1. The Bernoulli composition of the string w = ACCATA is the multiset
γ = {A, A, A, C, C, T}.

We define Pγ to be equal to the probability P̃ (ξw) for any word w with composi-
tion γ. We also define Nγ(x) as the number of copies of the character x in γ. We
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let Ω(γ) represent the number of words w with composition γ, and we represent
the set of all possible Bernoulli compositions for words of length k with Ck. We
then obtain the following theorem.

Theorem 2. Let S1, . . . , Sr represent r random strings of length n generated
independently by a Bernoulli process over the alphabet Σ. When Assumptions
1 and 2 hold, the probabilty P (ζ) that the strings S1, . . . , Sr share a common
substring of length k is defined by

P (ζ) = 1−
∏

γ∈Ck

(
1− P r

γ

)Ω(γ)
, (4)

where the probability that a word w with composition γ is found in a random
string Si is Pγ = 1 − (1 −

∏
α∈Σ p

Nγ(α)
α )n−k+1 and the number of words that

have the composition γ is

Ω(γ) =
k!∏

α∈Σ Nγ(α)!
. (5)

Proof. The equation for Pγ follows directly from Proposition 2, by noting that
the probability P (w) of observing a word w with composition γ in a given posi-
tion in S is P (w) =

∏
α∈Σ p

Nγ(α)
α . The number Ω(γ) of words with composition

γ is equal to the number of distinct strings that can be formed from the symbols
in γ, i.e. the multinomial coefficient in (5) [8]. The final result in (4) follows from
Proposition 1 and the observation that every word w of length k is represented
in exactly one composition γ in Ck. 	


To implement the result from Theorem 2 in an efficient algorithm, we need an
efficient method to enumerate all the Bernoulli compositions in Ck. This can be
done through a simple recursive algorithm or by using the iterative algorithm of
Nijenhuis and Wilf [16]. Either of these approaches uses a constant amount of
computation to generate each composition. Assuming a constant alphabet size,
the values of Pγ and Ω(γ) can both be computed in O(1) time, and the total
running time of a simple algorithm that implements Theorem 2 is O(|Ck|). Since
the number of Bernoulli compositions in Ck is equal to the number of different
compositions of the integer k into a maximum of σ parts, we get |Ck| =

(
k+σ−1

σ−1

)
∈

O(kσ−1) and the computation of P (ζ) can be done in O(kσ−1) time.

Uniform Bernoulli Process. In the special case where the random strings
S1, . . . , Sr are generated by a uniform Bernoulli process, the value P̃ (ξw) is
identical for every word w ∈ Σk. In this case, the probability P (ζ) can be
computed in constant time with

P (ζ) = 1−
(
1−

(
1−

(
1− 1/σk

)n−k+1
)r)σk

. (6)

This result is equivalent to the derivation obtained by Naus and Sheng [14] in
their Equation (10) under the same special case of uniform Bernoulli processes.
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4.2 Markov Process

Biological sequences rarely follow a Bernoulli model, but have been shown to
be accurately modeled by low-order Markov models [20, 22]. To be applicable
in a biological context, our probability calculations have to be accurate and
tractable under such models. In this section, we present an algorithmic approach
to approximate P (ζ) in polynomial time for 1st order Markov models. With
minor changes, the approach described below can also be extended to mth order
Markov models, for any fixed m ≥ 1 [5].

Let S represent a random string generated by a stationary 1st order Markov
process. For x, y ∈ Σ, the probability that the ith character of S takes the value
y is px→y, where x is the value of the (i − 1)th character in S. The stationary
probability of observing the value y at the position i in S if we do not know the
values of any other character in S is pΛ→y, where Λ is a special start character.
We now define the concept of Markov composition of a word to identify words
that will share the same probability P̃ (ξw) of occurring in S.

Definition 2. The 1st order Markov composition of a string w is the multiset γ
of transitions between consecutive characters in w, along with a transition from
the start state Λ to the first character in w.

Example 2. The 1st order Markov composition of the strings AACAT and ACAAT
is γ = {(Λ→ A), (A→ A), (A→ C), (A→ T), (C→ A)}.

We let Pγ be equal to P̃ (ξw) for any word w with the Markov composition γ, we
let Nγ(x, y) represent the multiplicity of the transition (x→ y) in the multiset γ,
and we let Ω(γ) represent the number of words with the composition γ. Defining
C1

k to be the set of all 1st order Markov compositions for words of length k, we
get the following result for P (ζ).

Theorem 3. Let S1, . . . , Sr represent r random strings of length n generated
independently by a 1st order Markov process over the alphabet Σ. When As-
sumptions 1 and 2 hold, the probabilty P (ζ) that the strings S1, . . . , Sr share a
common substring of length k is defined by

P (ζ) = 1−
∏

γ∈C1
k

(
1− P r

γ

)Ω(γ)
, (7)

where the probability that a word w with composition γ is found in a random

string Si is Pγ = 1 −
(
1 −

∏
(x,y)∈{Σ,Λ}×Σ p

Nγ(x,y)
x→y

)n−k+1
and the number

Ω(γ) of words that have the composition γ is defined below in Theorem 4.

Proof. The result again follows directly from Propositions 1 and 2. 	


To compute an approximation of P (ζ) with Theorem 3, we still need to define a
method for determining Ω(γ) and for iterating efficiently through the different
Markov compositions in C1

k. We first turn to the problem of evaluating Ω(γ),
and introduce a new structure that will help us in this task.
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Fig. 1. (A) The 1st order Markov graph for the composition of the words AACAT and
ACAAT, and (B) two distinct Eulerian trails that both represent the word GTGT

Definition 3. The 1st order Markov composition graph Gγ for the Markov
composition γ is the directed multigraph Gγ = {Vγ , Eγ}, where Vγ contains one
vertex for every character in Σ ∪ {Λ} and Eγ contains one edge for every tran-
sition in γ.

Example 3. The 1st order Markov composition graph for the composition of the
strings AACAT and ACAAT is shown in Fig. 1A.

An Eulerian trail on the graph Gγ is a walk through the graph where we traverse
each edge in Eγ exactly once. Each Eulerian trail on Gγ corresponds to a word
w with composition γ, so we use some results on the enumeration of Eulerian
trails on a directed multigraph to compute the number Ω(γ) of words with the
composition γ.

Theorem 4. The number of words with the Markov composition γ is

Ω(γ) =
cγ ·

∏
v∈Vγ

(d(v) − 1)!∏
(u,v)∈V 2

γ
M(u, v)!

, (8)

where Gγ = {Vγ , Eγ} is the Markov composition graph of γ, cγ is the cofactor of
Gγ (see [11]), d(v) is the out-degree of the vertex v, and M(u, v) is the number
of edges going from u to v in Eγ .

Proof. By the BEST theorem [21], the total number of Eulerian trails in the
graph Gγ is cγ ·

∏
v∈Vγ

(d(v) − 1)! (see [11]). This number overestimates the
number of distinct words with composition γ since two trails that represent the
same word are counted separately if the edges between two vertices u, v ∈ Vγ

are taken in different order (see Fig. 1 for an example). The result in (8) follows
from the fact that there are

∏
(u,v)∈V 2

γ
M(u, v)! different ways to order the edges

in a Eulerian trail without affecting the sequence of vertices in the trail. 	


We now turn to the problem of efficiently enumerating all the different Markov
compositions in C1

k. To do this, we first present the definition of canonical words.

Definition 4. A word w with Markov composition γ is canonical if and only if
no other word with composition γ is lexicographically inferior to w.
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Example 4. As we saw in Example 2, the words AACAT and ACAAT share the same
1st order Markov composition. Since AACAT <lex ACAAT and there are no other
words with the same composition, the word AACAT is canonical while the word
ACAAT is not.

We can enumerate the canonical word for each Markov composition using the
following proposition.

Proposition 3. The word w of length k with the 1st order Markov composition
γ and ending with the character z is canonical if and only if its prefix of length
k−1 is canonical and all the transitions in γ that go from z to another character
are present in lexicographic order in w.

We can enumerate all the canonical words of length k with a recursive algorithm
by enumerating every canonical word of length k − 1 and using Proposition 3
to determine which characters can be appended to these words. There are at
most |C1

k | canonical words for each length l ≤ k, and the test for each potential
character to append can be accomplished in O(k) time, so the entire recursive
enumeration algorithm runs in O(k2|C1

k |) time, assuming a constant alphabet
size. The complexity of computation for Pγ and Ω(γ) also depends only on the
alphabet size, so they can both be computed in O(1) time when the alphabet size
is constant. There are (σ+1)·σ different transitions possible in 1st order Markov
models, so the size of |C1

k | ∈ O(kσ2
), and the running time of an algorithm that

implements Theorem 3 is O(k2|C1
k |) ∈ O(kσ2+2).

4.3 Correcting for Auto-correlation

The basic period of a word w is the smallest positive integer i such that the word
w overlaps with a copy of itself shifted by i positions to the right. Words with a
small basic period are also the ones for which P̃ (ξw) gives a poor approximation.
LetWk,c represent the set of all words of length k with a basic period of at most
c. A simple method for improving the approximation of P (ζ) obtained with (4)
or (7) is to enumerate all the words w in Wk,c and to replace the inaccurate
approximation P̃ (ξw) with the better approximations P (ξw) for these words.
Specifically, we let

P (ζ) = 1−
∏

γ∈Cm
k

(
1− P r

γ

)Ω(γ) ·
∏

w∈Wk,c

(
1− P (ξw)r

1− P̃ (ξw)r

)
. (9)

There are O(σc) words over the alphabet Σ of size σ, and the computation of
P (ξw), as we saw in Section 3, can be accomplished in O(k). Therefore, the
correction for the auto-correlation presented in (9) adds a factor of O(kσc) to
the running time of the algorithm. In practice, c does not need to be large to
provide significant improvements to the estimates obtained with (4) or (7). In
Section 6, we show that even a correction with c = 1 is enough to provide a
significant improvement in accuracy.
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5 Generalizations

The approach for solving the CSRS problem presented in this article can be
generalized to handle many variations on the CSRS problem. For instance, we
can immediately see that the above framework can be modified to handle random
strings S1, . . . , Sr that are generated by different random processes and have
different lengths n1, . . . , nr. We present two other useful generalizations below.

Common Substrings in q of r Random Strings. A common modification
to the CSRS problem is to ask for the probability P (ζq,r) that q of the r random
strings S1, . . . , Sr share a common substring. The equation for P (ζq,r) can be
obtained with the following straightforward modification of (2):

P (ζr,s) = 1−
∏

w∈Σk

(
1−

r∑
j=q

(
r

j

)
P (ξw)j(1 − P (ξw))r−j

)
. (10)

A similar modification can also be applied to (4) and (7) for Bernoulli and
Markov processes, respectively, with the running time of their corresponding
algorithms increasing only by a factor of r.

Allowing Imperfect Matches. In many biologically realistic situation, one
may want to allow a small number δ of mismatches in each occurrence of a word
w in the random strings S1, . . . , Sr [17]. Let Δ(w, δ) represent the set of words
that have at most δ mismatches to w. The probability that a word w occurs with
at most δ mismatches in each of the strings S1, . . . , Sr is

P (ξw,δ) = 1−
∏

w′∈Δ(w,δ)

(
1− P (ξw′)

)
. (11)

This result can again be incorporated in (2), (4) and (7). The number of words
in Δ(w, δ) is

∑
i=0...δ

(
k
i

)
(σ−1)i ∈ O(kδ) when the size σ of the alphabet is con-

stant, so the running time of algorithms that incorporate (11) is exponential in k.
However, δ is generally quite small in practice so the algorithm remains practical.

6 Results

We tested the accuracy of our approximations for P (ζ) against a set of hit-or-
miss Monte-Carlo simulations. For each configuration of parameters tested, we
generated 1,500,000 independent sets of r random strings of length n and counted
what fraction of the sets contained a common substring of length k. The number
of trials was selected to give a maximum error of the true probability P (ζ) of
±0.0005, 99 times out of 100, according to the normal error bounds [9].

In Table 1, we compare different approximations to P (ζ) under a non-uniform
Bernoulli model that simulates the distribution of nucleotides in the human
genome (pA, pT ≈ 0.30, and pC , pG ≈ 0.20). For the different values of r we
selected the string lengths n that give P (ζ) ≈ 0.05 and P (ζ) ≈ 0.01 to observe
the quality of the approximations over the most significant range for statistical
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Table 1. Approximations for the probability of observing a common substring of length
k = 6 in r random strings of length n generated by the Bernoulli model representing
the human genome (pA = 0.2962, pC = 0.2037, pG = 0.2035, pT = 0.2966)

r n (2) (4) (9) K.O. N.S.(a) N.S.(b) Simulation

2 18 0.0490 0.0491 0.0490 0.0368 0.0367 0.0600 0.0386
4 197 0.0497 0.0500 0.0497 0.0585 0.0322 0.0521 0.0477
6 467 0.0499 0.0508 0.0502 0.1041 0.0164 0.0543 0.0490
8 727 0.0500 0.0514 0.0505 0.2458 0.0075 0.0576 0.0493

10 958 0.0501 0.0519 0.0509 0.6065 0.0034 0.0609 0.0495

2 11 0.0107 0.0107 0.0107 0.0080 0.0079 0.0126 0.0088
4 131 0.0100 0.0101 0.0100 0.0111 0.0062 0.0104 0.0096
6 346 0.0099 0.0101 0.0100 0.0176 0.0029 0.0107 0.0098
8 569 0.0100 0.0103 0.0101 0.0384 0.0012 0.0113 0.0099

10 774 0.0100 0.0104 0.0102 0.1034 0.0005 0.0119 0.0100

Table 2. (A) Approximations for P (ζ) in the 1st order Markov model representing
the human genome, when k = 6. (B) Approximation for P (ζ) when allowing imperfect
matches (k = 8, δ = 1) in the human Bernoulli model.

r n (2) (7) (9) Simulation

2 17 0.0496 0.0497 0.0495 0.0388
4 175 0.0495 0.0522 0.0493 0.0474
6 410 0.0497 0.0549 0.0493 0.0486
8 633 0.0500 0.0607 0.0494 0.0493

10 828 0.0502 0.0674 0.0494 0.0493

2 10 0.0088 0.0088 0.0088 0.0073
4 117 0.0101 0.0105 0.0101 0.0098
6 304 0.0100 0.0113 0.0099 0.0099
8 494 0.0100 0.0128 0.0099 0.0099

10 666 0.0100 0.0148 0.0098 0.0099

A

r n (2), (11) Simulation

2 9 0.0451 0.0176
4 68 0.0502 0.0417
6 187 0.0502 0.0452
8 315 0.0496 0.0446

10 436 0.0504 0.0443

2 8 0.0115 0.0050
4 47 0.0098 0.0085
6 141 0.0098 0.0091
8 251 0.0099 0.0090

10 358 0.0100 0.0088

B

analysis. As the results in Table 1 show, the approximation (2) obtained with
the Independent Words Model is very accurate when r > 2 and converges to the
true value of P (ζ) as the number of strings increases. The approximation (4)
obtained with the Double Independence Model also offers a good approximation
to P (ζ), although the correction of P (ξw) for words with a basic period of 1
provided by (9) improves the approximation significantly. The table also shows
that the approximation of Karlin and Ost (K.O.: (2.12) in [12]) and the first ap-
proximation of Naus and Sheng (N.S.(a): (8) in [14]) diverge significantly from
the true value of P (ζ) when there are r > 2 strings. The alternative approxi-
mation of Naus and Sheng that incorporates exact results (N.S.(b): (14) in [14])
diverges more slowly from the value of P (ζ) as the number of strings increases,
but is still not as accurate as our approximations.
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We also tested our approximations on a 1st order Markov model that approx-
imates the human genome. As we see in Table 2A, the Independent Model again
offers an accurate approximation to P (ζ). However, in this case the approxima-
tion of the Double Independence Model diverges from the true value of P (ζ) as
the number of strings increases and highlights the importance of the correction
of Section 4.3. With the correction of P (ξw) for words with a basic period of 1,
we see a significant improvement in the approximation accuracy.

In Table 2B, we show the results of the approximation for P (ζ) for words of
length k = 8 when a mismatch is allowed (δ = 1) for each occurrence of a word
in a string, under the Bernoulli model of the human genome described above. We
see that the approach described in (11) provides an acceptable approximation
to the true value of P (ζ) in this model, although the values diverge slowly as
the number of strings increases.

7 Discussion and Future Work

We propose two new methods for approximating the probability P (ζ) that r
random strings contain a common substring of length k. The approximation
obtained under the Independent Words Model offers an accurate estimate for
P (ζ) when r > 2 and works well on both the Bernoulli and Markov models.
The approximations obtained under the Double Independence Model are also
quite accurate when the correction for auto-correlation proposed in Section 4.3
is applied, and can be computed in polynomial time (relative to k). Both methods
are shown to be more accurate than previously published approaches on random
strings generated by a non-uniform Bernoulli model.

Over all the configurations of parameters tested, we find that our approxima-
tions are always slightly conservative. This is to be expected, since the most im-
portant dependency that is ignored with Assumption 1 is the positive correlation
between the events ξw and ξw′ for words w and w′ that overlap each other. Impor-
tantly, the fact that our estimates are always conservative means that a user who
applies our approximation to assess the significance of a common substring will
never be mislead into thinking that a result is more significant than it actually is.

The approach presented in this article lends itself to a number of biologically
important generalizations, in particular those allowing for the substrings to be
found in only a subset of the strings and allowing for imperfect matches.

There are many areas in which the research presented in this article could
be further developed. Significantly, theoretical bounds on the error induced by
the assumptions in our models would be very useful. Development of new meth-
ods that weaken the assumptions presented in this article could also lead to
interesting and more accurate approximation algorithms.
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Abstract. A new problem in phylogenetic inference is presented, based
on recent biological findings indicating a strong association between
reversals (aka inversions) and repeats. These biological findings are for-
malized here in a new mathematical model, called repeat-annotated phy-
logenetic trees (RAPT). We show that, under RAPT, the evolutionary
process — including both the tree-topology as well as internal node
genome orders — is uniquely determined, a property that is of major
significance both in theory and in practice. Furthermore, the repeats are
employed to provide linear-time algorithms for reconstructing both the
genomic orders and the phylogeny, which are NP-hard problems under
the classical model of sorting by reversals (SBR).

1 Introduction

Phylogenetic inference and ancestral genome order reconstruction are important
problems in evolutionary, genetic, and bioinformatic studies. In these problems
one seeks to reconstruct the phylogeny of a given set of organisms as well as the
genomic order (i.e., the order of the genomic segments) of their ancestors; see
for example Figures 1a and 1c. Here, a one-to-one mapping of the orthologous
segments of the two strains Xanthomonas campestris pathovar campestris ATCC
33913 (X. campestris) and 8004 (X. campestris 8004) is presented schematically.
These bacteria cause black rot disease in crucifers such as Brassica (cabbage) and
Arabidopsis (mustard), which results in severe losses in agricultural yield world-
wide. This figure suggests that 3 reversals have affected the two bacteria since
their divergence. However, during the speciation of which of the two bacteria
have these reversals occurred and what is the ancestral genomic order?

Using current methods, reconstructing ancestral genomic order involves solv-
ing a multiple sorting by reversals (SBR) problem. In SBR, which has been
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{c} {a, b}

(d)

Fig. 1. Inferring the order of genomic segments in the ancestor of the bacteria X.
campestris and X. campestris 8004. (a) The comparative mapping is the result of
applying MAGIC [1] to the considered organisms. MAGIC was run with its default
parameters, except for discarding segments of length smaller than 10000bp. The lines
in the figure represent corresponding rearrangement-free segments (i.e., segments that
did not undergo rearrangements) in the two bacteria (since the genomes are circular,
the square drawing should be wrapped into a torus). The mapping suggests that 3
reversals have occurred since the divergence of the two bacteria, in agreement with the
observations made by Qian et al. [2]. (b) Incorporating the repeats that were obtained
by applying Repseek [3] to each genome. The repeats are represented by dashed lines
and marked by −a, a, −b, b, and −c, c. All the segments ±a, ±b, and ±c have a
high translated sequence similarity (at the amino acid level) to the insertion sequence
IS1478. (c) The phylogeny and the permutations corresponding to the mapping in (a).
The permutation of X. campestris 8004 is chosen to be the identity permutation. One
cannot infer the ancestral genomic order or decide during the speciation of which of the
bacteria the reversals have occurred. (d) Applying the new approach which consists of
including the repeats in the permutations and using them to annotate the edges in the
phylogeny.

thoroughly examined over the last two decades [5, 6, 7, 8, 9, 10, 11, 12], one rep-
resents the one-to-one orthologous mappings as permutations and the inversion
mutations as reversal operations. The goal of the SBR optimization problem
is to find a phylogeny and corresponding reversal scenarios along its branches
with the minimum number of reversals. In SBR, however, the ancestral genomic
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order cannot be implied based solely on the comparison of a pair of genomes,
as is needed for the bacteria pair in Figure 1a. Moreover, adding one more or-
ganism to enable the deduction of the ancestral order makes this task NP-hard
[13]. Nonetheless, this problem was addressed by both exhaustive search and
heuristic techniques [14, 15].

The ancestral genome order reconstruction problem described above extends
to reconstructing large phylogenetic trees over multiple input leaves (including
or excluding the recovery of genomic order in internal nodes). Current phylo-
genetic inference methods, based on different biological evidence ranging from
phenotypic morphologies to various genotypic mutations — including point mu-
tations (distance-based, maximum-likelihood, and parsimony approaches), gene
insertions and deletions (the Dollo parsimony approach), and genome rearrange-
ments (distance-based and parsimony approaches) — are computationally hard.
Moreover, current approaches often yield many alternative solutions; choosing
the most sound phylogeny among them has very important biological conse-
quences, but is yet a very challenging task.

In this paper we investigate a new approach to phylogenetic inference and
ancestral genome order reconstruction. The new approach is inspired by a recent
biological discovery regarding the role of repeats, i.e., short genomic sequences
that are highly similar to each other, in inducing reversals (or recombinations
in general). Several studies indicate a strong association between repeats and
recombination events. As reviewed in [4] , repeats cause rearrangements, either
by a mechanism of illegitimate recombination, or by a mechanism of homologous
recombination. Moreover, these findings demonstrate that most of the repeats
engaged in reversals correspond to mobile DNA elements, i.e., regions of DNA
that selfishly duplicate and move into new sites. Hence, these repeats are usually
found only in the organism affected by the reversals; see, e.g., [2] . This new and
important information regarding the repeats became accessible recently with the
availability of many sequenced genomes and its automatic generation is made
possible by the development of accurate comparative genome mapping methods,
see, e.g., [1, 2]. The new data motivates the enhancement of previous phylogenetic
models with additional information in the form of repeat “footprints”, in order to
make their predictions more realistic and increase their potential for producing
biologically relevant insights.

Qian et al. [2] demonstrate an initial utilization of repeats in the task of ances-
tral genome order reconstruction of the Xanthomonas campestris bacteria. They
have identified two identical IS1478-related insertion sequences (corresponding to
the repeat pair −b, b in Figure 1b) spanning a putative recombination site. More-
over, they predicted a rearrangement scenario for transforming one genome to
the other — see http://www.genome.org/content/vol0/issue2005/images/
data/gr.3378705/DC1/SI Fig 2.gif for a detailed (and vivid) animation of
their prediction. We continue their analysis by applying our approach to the
very same data: in Figures 1b and 1d we incorporate the information regarding
the repeats into the mapping. In addition to the repeat pair reported by Qian
et al., we identify two more pairs spanning two putative recombination sites.
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According to the repeats, one inversion occurred during the speciation of X.
campestris, while two inversions occurred during the speciation of X. campestris
8004. Given this information, deducing the ancestral genomic order is straight-
forward, as shown in Figure 1d.

The above example demonstrates how repeats can be utilized to uniquely de-
termine the order of the ancestral genomic segments — based solely on pairwise
genomic comparisons. Furthermore, it shows that the “repeat footprints” aid in
the efficient computation of ancestral genomic orders. To generalize these obser-
vations, in Section 2 we formalize the biological assumptions introduced above
into a theoretical evolutionary model. In Section 3 we study the pairwise case
and present two important results: uniqueness of the solutions and simplification
of the computation. In Section 4 we show that these two results scale up to the
more general case of multiple genomes. For a formal overview of the combinato-
rial results of this paper we refer the reader to Section 2.1. Due to space limi-
tations, this extended abstract contains only a high-level overview of our results.
The full version of this manuscript, including all lemmas and their proofs as well
as additional figures can be found at http://magicmapping.sourceforge.net/
download/repeatPhylos.pdf.

2 A Formal Model Based on Repeats

The model described in this paper is based on the following biological
assumptions:

1. Reversals are usually induced by inverted repeat pairs, i.e., repeats having
opposite orientations [4] .

2. Repeats engaged in reversals — corresponding mostly to mobile DNA ele-
ments — are easily identified on the borders of reversed genomic segments,
and are present only in the affected organism [2].

3. The information mapping each repeat to its pair-mate is part of the input1.
4. Each repeat has a very low probability for causing a reversal that remains

fixed in the population [1]. Therefore, in our model we assume that each
repeat causes up to one reversal.

Note that though the above assumptions may not capture the great variety found
in real biological problems, it is easy to check if a given set of input genomes
follows these assumptions. Furthermore, as demonstrated by the theoretical re-
sults listed in Section 2.1, the assumptions above offer a solid basis for potential
future extensions and enhancements.

Based on Assumption 3, the input to our problem comprises sequences, re-
ferred to as repmaps, of both permutation elements, belonging to a set N , and
paired repeats, belonging to a set R. Each permutation element appears exactly
once in the repmap, while each repeat appears exactly twice. In addition to the
1 This information can be obtained using techniques similar to those standardly used

for preparing permutations.
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s = g10 −a −b g12 b −c g3 c −d −g5 d a

s′ = 1 −a −8 −b 7 b −6 −c 5 c −4 −d 3 d −2 a 9
(a)

S′ = 1 −a 2 −d 3 d 4 −c 5 c 6 −b 7 b 8 a 9

S = g10 −a −d −g5 d −c g3 c −b g12 b a

(b)

s∗ = 1 −a −b [4] b −c 3 c −d 2 d a
1 −a −b −4 b −c [3] c −d 2 d a
1 −a −b −4 b −c −3 c −d [2] d a
1 −a [−b −4 b −c −3 c −d −2 d] a

S∗ = 1 −a −d 2 d −c 3 c −b 4 b a

(c)

s∗|N = 1 [4 3] 2
1 −3 [−4 2]
1 [−3 −2] 4

S∗|N = 1 2 3 4

(d)

Fig. 2. Calculating the ancestor assignment (a-b) and comparing a legal scenario to an
SBR scenario (c-d). (a) Example of transforming a repmap s to a normalized repmap
s′. The correspondence between the permutation elements of s and those of s′ is drawn
as edges connecting between the respective elements. The permutation elements in s
are given over a different alphabet. (b) Determining the ancestor in normalized format
S′ and in input format S from s′. In both (c) and (d) we assume that the ancestor
S is known. We rename s and S to s∗ and S∗ to enable running SBR on them and
we compare a legal scenario (c) to an SBR scenario (d). The reversals are denoted
by brackets. Note that the reconstructed scenarios are different, since one of them is
guided by fulfilling the constraints imposed by the repeats, while the other aims to
minimize the number of reversals. If s∗ is a normalized repmap then a scenario is legal
iff it is SBR.

permutation elements (represented by numbers) and based on Assumption 1,
the repeats (represented by lowercase characters) are also signed.

Given a repmap s, two repeat elements si, sj ∈ R are considered a pair if
|si| = |sj | (i.e., their absolute values are equal). If they have opposite signs
(si = −sj) we refer to them as an inverted repeat pair ; otherwise they are called
a direct repeat pair. The set of repeats appearing in s is denoted by R(s) =
{|si|, si ∈ R} and referred to as the repeat set. We denote the restriction of s to
the permutation elements in N by s|N and refer to it as the induced permutation.
The restriction of s to the repeat elements is denoted by s|R and is referred to
as the repeat subsequence.

Example. Consider the repmap s = 1 a −4 −a −b 3 2 −b 5 . Here, +a,−a is an
inverted repeat pair, while −b,−b is a direct repeat pair. Moreover, we have
R(s) = {a, b}. The induced permutation is s|N = 1 −4 3 2 5 , and the repeat
subsequence is given by s|R = a −a −b −b .

The next three definitions are intended to formalize the biological assumptions
(1-4) into a mathematical model of an evolutionary process. The first definition
is based on Assumption 1, as follows.
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Definition 1 (Legal Reversal). Let s = s1, . . . , sn be a repmap and let ρ =
ρ(i, j) for 1 < i < j < n be a reversal affecting the subsequence si, . . . , sj in
s. The reversal ρ is called legal if it is bordered by an inverted repeat pair, i.e.,
if si−1 = −sj+1 (see Figure 2c). We say then that ρ fulfills the repeat pair
si−1, sj+1.

The next two definitions are both based on Assumptions 2 and 4.

Definition 2 (Legal Scenario). Given a reversal sequence � = ρ1, . . . , ρm

affecting s, we say that � is a legal scenario relative to a subset of repeat pairs
R ⊆ R(s) if ∀i ∈ {1, . . . ,m}, ρi is a legal reversal when acting on s · ρ1 · · ·ρi−1
and if � fulfills each repeat in R exactly once (see Figure 2c). If R = R(s), we
refer to � simply as a legal scenario. If R �= R(s) is obvious from the context,
we refer to � as a partially legal scenario.

Definition 3 (RAPT). Given a repmap S (ancestor), a Repeat-Annotated Phy-
logenetic Tree originating in S (see Figure 3) is a triplet (T, f, g), where T = (V,E)
is a directed tree with root vr ∈ V such that all the inner nodes (except perhaps the
root) are of degree ≥ 3, f : V → (R ∪ N)∗ maps assignments (i.e., repmaps) to
the nodes, and g : E → 2R(S) maps labels to the edges, such that:

1. The edge labels are a partition of R(S), i.e., for every two edges e, e′ ∈ E :
g(e) ∩ g(e′) = ∅ and

⋃
e∈E g(e) = R(S).

2. The assignments to the nodes fulfill the following two requirements:
(a) The assignment to the root vr equals S, that is f(vr) = S.
(b) Assuming u ∈ V is the immediate parent of v ∈ V and that e ∈ E

is the edge connecting them, we require that g(e) ⊂ R(f(u)) and that
there exists a legal scenario ρ1, . . . , ρm with respect to g(e) such that
(f(u) · ρ1 · · · ρm)|N = f(v)|N (Definition 2).

3. The repeat set R(s) of a leaf repmap s contains only repeats that engaged in
reversals at some point during the history of s, i.e., R(s) = g(path(vr, s)).

2.1 The Main Results of This Paper

In this paper we study the following problems: Can one reconstruct an unknown
RAPT (T, f, g) given, as input, a set L of the corresponding leaf repmaps? More
specifically, does L uniquely determine the RAPT? Are the legal scenarios linking
the assignments in the RAPT nodes unique? Furthermore, can one efficiently
reconstruct the unknown RAPT and the corresponding scenarios? Herein we
summarize the answers to these questions.

First, in Section 3, we consider the basic case in which the tree T of the RAPT
contains a single leaf and a single ancestor. Since in this case both the tree T
and the labels g are trivially determined, our results pertain to both the scenario
and the ancestral assignment reconstructions, as follows:

Uniqueness: We show that the ancestral assignment is uniquely determined
(Section 3.1). This result is surprising given the ambiguity of the scenarios.

Complexity: We give a linear-time algorithm for reconstructing the ancestor
(Section 3.2). Contrary to the classical SBR problem, our algorithm utilizes
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1−a−d 2 d−c 3 c−b 4 b a

1−a−b−4 b−c−3 c−d−2 d a

{a}

1−a−4−c 3 c−d 2 d a

{c, d}

1−a−b 4 b−3−2 a

{b}

(a)

∅

{a}
{a}

{a, c, d}
{c, d}

{a, b}
{b}

(b)

Fig. 3. An example of a RAPT (a) and the corresponding set-trie (b). The set-trie is
obtained from the RAPT by preserving both the tree topology as well as the edge labels
of the RAPT, while discarding the node assignments. The virtual node assignments of
the set-trie are determined from the edge labels — see Definition 5.

the constraints introduced by the repeats to calculate the unique ancestor. This
algorithm is then employed to solve the problem of reconstructing a plausible
legal scenario, by a reduction to SBR (Section 3.2).

Next, in Section 4, the multiple leaf RAPT is studied. Based on the results
obtained for the single leaf case, it is straightforward to show that, in the multiple
leaf case, the tree topology T , the edge labels g, and the leaf repmaps L both
uniquely determine the induced permutations in the inner node assignments
and also enable their reconstruction in linear-time. Hence, the complexity and
uniqueness issues are reduced to the pair (T, g). To investigate the latter, we
introduce a new data structure, which is an abstraction of such (T, g) pairs,
called set-tries (see Figure 3), which are trie-like structures over sets instead of
words (Section 4.1). In terms of this abstraction, our results can be formulated
as follows:

Uniqueness: We show that the leaf set collection uniquely determines the under-
lying set-trie.

Complexity: We give a linear-time algorithm to efficiently reconstruct set-tries
from an input leaf set collection.

3 The Single Leaf RAPT

Throughout this section, we assume without loss of generality that the repmaps
are given in an easy to handle format, as follows. Consider a repmap (ancestor)
S to which a legal scenario � was applied and denote the result by s = S · �
(the notation of S denoting the ancestor and s denoting the descendant is used
consistently throughout this section). We assume that S (and hence s) starts and
ends with a permutation element (otherwise it can be padded). In addition, we
assume that S (and hence s) does not contain successive permutation elements
(or otherwise they can be united to form a single new permutation element).
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−−−−−−−→normalize

−−
−−
−−
−−
→

�

−−−−−−−−→

�′

−−
−−
−−
−→

�

−−−−−−−→

�′

−−−−−−−→calculate

S S′

s s′

Fig. 4. Given that s = S · ρ, it
is convenient to consider S′, the
sorted normalization of S, and s′ =
S′ · ρ: Proving that a legal sce-
nario �′ acting on s′ is also an SBR
scenario implies the uniqueness of
the ancestor. Calculating s′ directly
from s enables the reconstruction of
S in linear-time. Finally, finding an
SBR scenario sorting s′|N gives a
legal scenario on s.

Whereas uniting successive permutation
elements into a single element is straightfor-
ward, dealing with successive repeat elements
in the input sequence is more challenging.
For instance, having successive repeats im-
plies that the corresponding breakpoints may
have been reused (the issue of breakpoint
reuse has been repeatedly debated in the lit-
erature and is currently controversial). From
a modeling point of view, however, successive
repeats distinguish the RAPT problem from
the SBR problem: when they are present in
a repmap, its set of legal scenarios (see Defi-
nition 2) and the set of SBR scenarios [5] of
its induced permutation are not necessarily
the same, as demonstrated in Figure 2. This
is due to the fact that SBR aims to minimize
the number of reversals, whereas RAPT is
driven by the objective of fulfilling the con-

straints imposed by the repeats. Still, for a subset of the repmaps, both sets of
legal and SBR scenarios are equal. We refer to these special repmaps as “nor-
malized” and define them below. Normalized repmaps serve as stepping stones
for our study; see Figures 2 and 4.

Definition 4 (Normalized Repmap). A repmap S is a normalized repmap
if between every two repeats in it there is a permutation element from N .

3.1 Asserting Uniqueness of Ancestor

In this section we prove that all legal scenarios lead to the same ancestral repmap.
This result is surprising, given the richness of the set of all legal scenarios . We
first consider the special subclass of normalized repmaps. In this subclass, the
proof of uniqueness involves a breakpoint counting argument, showing that all
legal scenarios are optimal sorting scenarios (namely SBR scenarios). Next, we
extend the uniqueness claim from the subset of normalized repmaps to the gen-
eral repmap case. The proof here is achieved by transforming any given repmap
to a corresponding normalized one and by asserting that this transformation
indeed preserves the uniqueness property.

Theorem 1 (Uniqueness). Let S be a repmap, � a legal scenario, and s = S ·�.
Then, all legal scenarios affecting s result in the same correct ancestor S.

3.2 Algorithms for Ancestor and Scenarios Reconstruction

Given a repmap s = S · �, where S and � are unknown, we present a linear-time
algorithm for reconstructing S and a sub-quadratic algorithm for reconstructing
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a possible legal scenario �′, where, by Theorem 1, S = s · �′. The reconstruc-
tion of the ancestor in linear-time is made possible by utilizing the constraints
introduced by the repeats and the strong connection established between the re-
peats and their surroundings in normalized repmaps. In fact, we first show how
to transform s to a normalized repmap s′ for which the ancestor S′ is sorted2

based only on the repeat subsequence s|R (see Figure 4). Then we simply rename
the matching elements from S′ to obtain S (see Figure 2b). The transformation
to a normalized format is done based on the repeats in s and without knowing
the ancestor repmap S.

After computing the ancestor S, we solve the problem of finding a legal sce-
nario transforming s to S in sub-quadratic time by a reduction to SBR. In the
general case, as exemplified in Figures 2c and 2d, applying SBR to s|N may yield
illegal scenarios. This is due to the fact that SBR aims to minimize the number
of reversals, while RAPT is driven by the objective of fulfilling the constraints
imposed by the repeats. However, this barrier is overcome here by transform-
ing a repmap to its normalized format, which intuitively uses O(|s|) additional
“virtual” permutation elements to simulate the constraints imposed by the re-
peats (see Figures 2a and 2b). Thus, to reconstruct a legal scenario, we apply
SBR algorithms to the permutation elements of s′ and S′ and show that the
resulting scenario is legal on s. Note that whereas reconstructing the ancestor in
linear-time is made possible thanks to the constraints introduced separately by
each repeat pair, calculating a legal scenario is complicated by the interaction
between the constraints introduced by the different repeat pairs.

Reconstructing the Unique Ancestral Repmap S. Reconstructing the an-
cestral repmap S can be näıvely achieved by applying some of the techniques
demonstrated in [6, 12] to the overlap graph constructed over the repeat pairs.
This approach, however, yields a quadratic-time algorithm for both reconstruct-
ing the ancestor and finding a legal scenario.

Here, we present a different approach (with lower complexity) for tackling
the problem. Let S be an ancestral repmap, � a legal scenario affecting S, and
s = S · �. Consider a transformation of S yielding a normalized sorted repmap
S′, and let s′ = S′ · �. According to the above and since all the transforma-
tions are reversible, calculating s′ from s can be done by the following series of
transformations: s −→ S −→ S′ −→ s′. However, since S is unknown, this path
is intractable. Yet, surprisingly, calculating s′ from s can alternatively be done
based on the repeat sequence s|R and without knowing S. Intuitively, this can
be explained as follows. Since s′ is normalized, the locations of the permutation
elements are constrained by the locations of the repeats. Moreover, each permu-
tation element is constrained by the repeat next to it. Thus, the position of a
permutation element can be determined from local information (the position of
a single repeat) in constant time, and the whole repmap can be reconstructed in
linear-time. Note that the above transformation implies that the diagram having
S, S′, s, and s′ as its vertices is commutative (Figure 4).
2 Note that, unlike the previous section, here we can no longer assume without loss

of generality that S is sorted.
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Example. Consider the sequence s and the corresponding sequence s′ in Fig-
ure 2a and suppose that we wish to recover s′ based on s|R. The first and second
elements in s′ are easily fixed, since s′ must always start with 1 and the second
element in s′ always equals to the repeat appearing in the second position of
s. Fixing the third element in s′ is more challenging. For that, we consider the
second element in both s and s′, i.e., the repeat −a, and its corresponding pair-
mate — the repeat a. Since S′ is sorted and normalized, once the repeat pair
{−a, a} got fulfilled while transforming S′ to s′, the surroundings of both repeats
remain contiguous. In particular, the permutation element 2, which appears di-
rectly after the repeat −a in S′ (see Figure 2b) must appear in the surrounding
of the repeat a in s′; its exact position (i.e., before or after the repeat) is deter-
mined based on two factors: whether the repeat pair is inverted or direct, and
whether the preceding permutation element 1 appears before the repeat −a or
after it. In this example, since the repeat pair is inverted and since the preceding
permutation element 1 appears before the repeat −a, the permutation element
2 must precede the repeat a in s′. The sign of the permutation element 2 is
determined via a similar consideration.

Theorem 2 (Time Complexity). Given a repmap s = S · �, one can recon-
struct the ancestor S in linear time (O(|s|)).

Reconstructing a Legal Scenario. Unlike the ancestor repmap reconstruc-
tion, the scenario reconstruction involves look-ahead to avoid conflicts between
repeat pairs. This problem is best demonstrated by an example.

Example. Consider the following repmap: 1 a −b −2 −a −c −4 b 3 c . Suppose
we were first to fulfill the inverted repeat pair b and −b. Such a choice would
turn the other two repeat pairs (a and c) into direct-repeat pairs. Thus, we reach
a deadlock without getting a legal scenario.

As demonstrated in the above example, choosing a legal reversal sequence that
avoids deadlocks is a delicate matter. We address this problem by utilizing the
fact that we can calculate the normalized repmaps s′ and S′ in linear-time (Sec-
tion 3.2). When both repmaps are known, we show that an SBR reversal se-
quence sorting s′|N (to S′|N ) corresponds to a legal scenario transforming s to
S. Currently, the best algorithm for solving SBR works in sub-quadratic time
[9]. Hence, we get a sub-quadratic algorithm for reconstructing a legal scenario.

Theorem 3 (Time Complexity). Given a repmap s = S · �, where both the
repmap S and the legal scenario � are unknown, one can reconstruct a legal
scenario transforming s to S in O(n

√
n logn) time, where n = |s|.

4 The Multiple Leaf RAPT and Set-Tries

In this section we show that the leaf assignments L = {s1, . . . , sq} uniquely
determine the underlying RAPT (T, f, g) up to (and not including) repeats in
the inner nodes, i.e., they dictate the tree topology, the induced permutations
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in inner node assignments, and the edge labels. We then describe a linear-time
algorithm for reconstructing this information from the given input.

The proof of uniqueness is developed in two stages: first, the RAPT is re-
duced to a new auxiliary data structure called a set-trie (see Section 4.1 and
Figure 3), which encodes partial information (tree topology and edge labels).
Using this reduction, we show that both the tree topology and the edge labels
are uniquely determined and can be reconstructed in linear-time based on the
repeat sets {R(s) : s ∈ L} of the leaf assignments. Finally, the application of
Theorems 1 and 2 to the above findings leads to the conclusion that the induced
permutations in the inner node assignments are uniquely determined and can
be reconstructed in linear-time based on the tree topology, the edge labels, and
the leaf assignments.

4.1 Set-Tries and Monotonic Collections

Word-tries are well-known data structures, commonly used in text compression
and database search [16]. They are used to store the information about the
contents of each node in the path from the root to the node rather than in the
node itself, thus grouping words with a common prefix along similar paths. Here
we introduce a new data structure which, similarly to word-tries, is also based on
a tree topology and path-encoding, however, the leaves of the new data structure
correspond to sets instead of words (or sequences), as defined below.

Definition 5 (Set-tries). Let A = {A1, . . . , Ak} be a collection of finite sub-
sets of N. A set-trie st over A is a pair st = (T, g), where T = (V,E) is a
directed tree with a root vr such that all the inner nodes (except perhaps the
root) are of degree ≥ 3 and g : E → 2N are labels to the edges. In the follow-
ing discussion we assume that assignments to the nodes f : V → 2N are also
given. The labels g and the “virtual” assignments f need to fulfill the following
requirements:

1. f(vr) = ∅ and f is 1 : 1 from the leafs of T to A . Given that u ∈ V is an
ancestor of v ∈ V , we require that f(v) = f(u)∪g(path(u, v)). In particular,
this requirement implies ∀v ∈ V − {vr} : f(v) = g(path(vr, v)).

2. ∀e, e′ ∈ E, e �= e′ : g(e) ∩ g(e′) = ∅. Thus, the node assignments are deter-
mined by the edge labels and vice versa.

Figure 3 gives an example of a set-trie and its derivation from a RAPT. We
observe the following monotonicity property of set collections corresponding to
leafs of set-tries.

Definition 6 (Monotonic Set Collection). A set collection A is monotonic
if, for any three sets A,B,C ∈ A , either A ∩B ⊆ A ∩ C or A ∩C ⊆ A ∩B.

Theorem 4 (Time Complexity). Given a monotonic collection A , a set-trie
over A can be constructed in linear-time (Θ(|A |)).
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Abstract. We investigate combinatorial enumeration problems related
to subsequences of strings; in contrast to substrings, subsequences need
not be contiguous. For a finite alphabet Σ, the following three problems
are solved. (1) Number of distinct subsequences: Given a sequence
s ∈ Σn and a nonnegative integer k ≤ n, how many distinct subse-
quences of length k does s contain? A previous result by Chase states
that this number is maximized by choosing s as a repeated permutation
of the alphabet. This has applications in DNA microarray production.
(2) Number of ρ-restricted ρ-generated sequences: Given s ∈ Σn

and integers k ≥ 1 and ρ ≥ 1, how many distinct sequences in Σk contain
no single nucleotide repeat longer than ρ and can be written as sr1

1 . . . srn
n

with 0 ≤ ri ≤ ρ for all i? For ρ = ∞, the question becomes how many
length-k sequences match the regular expression s1*s2* . . . sn*. These
considerations allow a detailed analysis of a new DNA sequencing tech-
nology (“454 sequencing”). (3) Exact length distribution of the
longest increasing subsequence: Given Σ = {1, . . . , K} and an in-
teger n ≥ 1, determine the number of sequences in Σn whose longest
strictly increasing subsequence has length k, where 0 ≤ k ≤ K. This has
applications to significance computations for chaining algorithms.

1 Introduction

In contrast to substrings, subsequences have received less attention as objects in
pattern matching; yet certain aspects of recent technologies emerging in the life
sciences, such as short oligonucleotide microarrays or massive short range DNA
sequencing by the so-called 454 approach, directly lead to subsequence enu-
meration problems. The present paper studies a selection of them and presents
applications in molecular biology.

A string of length n over a finite alphabet Σ contains (n + 1)n/2 = Θ(n2)
(nonempty) substrings, but 2n subsequences (including the empty string), mak-
ing enumerative combinatorics on subsequences potentially more difficult. For a
fixed length 1 ≤ k ≤ n, there are n− k + 1 substrings and

(
n
k

)
subsequences of

length k. Note that not all of these need to be different.
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In Section 2 we present an algorithm that needs O(k(n + |Σ|)) arithmetic
operations to count the number Ck(s) of distinct length-k subsequences in s.
When we compute Ck(s) exactly, the size of these numbers is O(k log |Σ|) bits,
so arithmetic operations cannot be assumed to take constant time in the RAM
model of computation; however, if we are satisfied with computing them with
constant precision, we can make this assumption. Therefore we specify running
times in numbers of arithmetic operations. The ability to count the number of
distinct subsequences contained in a sequence has applications to DNA microar-
ray production, which we outline also in Section 2.

For the next problem, we generalize the notion of subsequence and say that t
is generated by s if it consists of a concatenation of runs (repetitions) of selected
characters from s. This allows, for example, to determine the number of length-k
sequences that match the regular expression s1*s2* . . . sn*, where a* matches
an arbitrary number of (including zero) occurrences of a ∈ Σ. If we additionally
restrict the run lengths to be bounded by a constant ρ ≥ 1, the question of
determining how many length-k strings are generated by a given string s is
of interest for evaluating a new massively parallel DNA sequencing technology
(“454 sequencing”, [1]). Section 3 presents an efficient counting algorithm and
computational results. The results of Sections 2 and 3 can be summarized as

Theorem 1. The number of distinct subsequences and the number of ρ-restricted
ρ-generated length-k sequences from a sequence of length n over an alphabet Σ can
be computed with O(k(n + |Σ|)) arithmetic operations.

Finally, we are interested in the distribution of the longest (strictly) increasing
subsequence of s ∈ Σn over an ordered alphabet Σ := {1, . . . ,K}. We say
that t is an increasing subsequence of s of there exists an integer 1 ≤ k ≤ n
and indices 1 ≤ j1 < j2 < · · · < jk ≤ n such that t = sj1sj2 . . . sjk

and
sj1 < sj2 < · · · < sjk

. Let I(s) be the set of all increasing subsequences of s, and
let LIS(s) := maxt∈I(s) |t| be the length of the longest increasing subsequence.

Our goal is to determine the distribution of Ln := LIS(S), where S is a ran-
dom length-n sequence. Recently, the analogous problem has been completely
solved on uniform random permutations; there are exact results for finite n and
asymptotic results for n → ∞ provided by the Baik-Deift-Johansson Theorem,
e.g., the expected length is 2

√
n + Θ(n1/6), the standard deviation is Θ(n1/6),

and the limiting distribution of (Ln− 2
√
n)/n1/6 is completely known. A review

of these results on permutations and additional results on weakly increasing
subsequences on words appears in [2]. So far there seem to exist no exact nor
asymptotic results on strictly increasing subsequences in words. Our contribu-
tion is a method that needs O(nK2K) arithmetic operations on O(n logK)-bit
numbers to compute the exact distribution (in terms of absolute numbers). We
thus have the following fixed-parameter tractability (FPT) result (see [3] for an
introduction to the terminology).

Theorem 2. For given string length n and parameter alphabet size K, the de-
cision problem whether there are at least T ≥ 0 sequences in s ∈ {1, . . . ,K}n
with L(s) = k for any 1 ≤ k ≤ K is FPT.
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2 The Number of Distinct Subsequences

Let Σ be a finite alphabet of size σ; w.l.o.g. we assume Σ = {1, . . . , σ}. Further,
let s ∈ Σn and an integer 1 ≤ k ≤ n be given. We write t � s to indicate
that t is a subsequence of s, i.e., there exist indices 1 ≤ i1 < i2 < i|t| ≤ n
such that si1si2 . . . si|t| = t. Our goal is to determine the cardinality Ck(s) of
Sk(s) := {t ∈ Σk : t � s }, i.e., the number of distinct length-k subsequences in
s. To compute Ck(s) efficiently, we derive a recurrence on the number of distinct
subsequences of given length in a given prefix of s that end with a specified
character. We drop the dependence on Σ and s in the notation and define

Sm,j := {t ∈ Σm : t � s1 . . . sj}, Cm,j := |Sm,j |.

We refine this definition by conditioning on the last character a ∈ Σ:

Sm,j [a] := {t ∈ Σm : t � s1 . . . sj and tm = a}, Cm,j [a] := |Sm,j [a]|.

Note that S0,j = {ε} (the set consisting of the empty string) for all j, but
S0,j [a] = {} for all a ∈ Σ, so 1 = C0,j �=

∑
a∈Σ C0,j [a] = 0. However, for m > 0,

we do have Cm,j =
∑

a∈Σ Cm,j [a] for all j.
For two sets S and T of strings over Σ, let S ◦ T := {st : s ∈ S, t ∈ T }.
The goal is thus to compute Ck(s) = Ck,n =

∑
a∈Σ Ck,n[a]. The following

lemma presents a structural equation for Sm,j [a], which leads to a recurrence on
Cm,j [a] in Lemma 2.

Lemma 1. Let 1 ≤ m ≤ j. Then

Sm,j[a] =

{
Sm,j−1[a] if sj �= a,

Sm−1,j−1 ◦ {a} if sj = a.

Proof. Assume first that sj �= a. The inclusion Sm,j−1[a] ⊂ Sm,j [a] is trivial. We
prove that Sm,j [a] ⊂ Sm,j−1[a]: Take t ∈ Sm,j[a]. Since sj �= a, it follows that t
is already a subsequence of a shorter prefix of s, i.e., t ∈ Sm,j−1[a].

Now assume that sj = a. By appending an a to each t ∈ Sm−1,j−1 (regardless
of its last character), we obtain a distinct string ta ∈ Sm,j [a], thus Sm−1,j−1 ◦
{a} ⊂ Sm,j [a]. Conversely, every string in Sm,j [a] can be written as ta with some
t ∈ Sm−1,j−1. 	


Lemma 2. We have C0,0 = 1 and C0,0[a] = 0 for all a ∈ Σ. Further, Cm,j = 0
if m > j. For 1 ≤ m ≤ j, we have

Cm,j [a] =

{
Cm,j−1[a] if sj �= a,

Cm−1,j−1 if sj = a.

Proof. Immediate by taking cardinalities in Lemma 1 and noting that concate-
nation translates to multiplication of set cardinalities. 	
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Bernoulli String Model. The fraction of length-k sequences contained in s (or
covered by s) is thus Ck,n/σ

k. We can generalize Lemma 2 to a Bernoulli or i.i.d.
random string model, where the probability or weight of each length-k string is
equal to the product of its (possibly unequal) character frequencies. Hence, let
π := (πa)a∈Σ be a non-degenerate probability distribution on Σ, i.e., πa > 0 for
all a ∈ Σ and

∑
a∈Σ πa = 1. Let Pk(t1 . . . tk) :=

∏k
j=1 πtj be the probability of

generating t1 . . . tk in k steps. It follows that
∑

t∈Σk Pk(t) = 1 for all k ≥ 1 and
Pk+1(ta) = Pk(t) · πa for t ∈ Σk and a ∈ Σ.

Let us define Wk(s) := Pk(Sk(s)) as the weighted fraction of length-k sequence
space covered by s. For m ≤ k and j ≤ |s| = n, define

Wm,j := Pm(Sm,j) =
∑

t∈Sm,j[a]

Pm(t), Wm,j [a] := Pm(Sm,j [a]).

Lemma 3. W0,0 = 1 and W0,0[a] = 0 for all a ∈ Σ. Further, Wm,j = 0 if
m > j. For 1 ≤ m ≤ j, we have

Wm,j [a] =

{
Wm,j−1[a] if sj �= a,

Wm−1,j−1 · πa if sj = a.

Proof. Immediate by applying Pm(·) resp. Pm−1(·) to Lemma 1. 	


A straightforward implementation of the recurrence would need O(nk|Σ|) arith-
metic operations. It is possible to remove the factor |Σ| in a careful imple-
mentation: Figure 1 presents an algorithm to compute Wk(s) in O(k(n + |Σ|))
operations. The memory requirements are O(k|Σ|) if only Wk(s) is desired or
O(k(n+ |Σ|)) if the whole array Wm(s1 . . . sj), 1 ≤ m ≤ k, 1 ≤ j ≤ n, is desired.

Application to DNA microarray production. DNA oligonucleotide microarrays
(“DNA chips”) are a tool to monitor the activity level of many genes in cells of
living organisms. A DNA chip is a plastic or glass slide containing many spots,
each consisting of many copies of a known oligomer (a 25-mer for Affymetrix
GeneChips R©, which we consider here), also called probe, attached to the chip.
During production, the probes are synthesized on the chip in parallel on a
nucleotide-by-nucleotide-basis. In each synthesis step, the same nucleotide is
appended to all probes that have been selectively activated to receive it. Activa-
tion occurs by exposure to light, enabling the chemical synthesis reaction. Thus
each synthesis step is specified by (1) a nucleotide (a character from the DNA
alphabet {A,C,G,T}) and (2) a mask, i.e., an index set of the probes to which the
nucleotide is appended. The sequence of nucleotides used in the synthesis process
is called the deposition sequence. Each probe is a subsequence of the deposition
sequence, so the deposition sequence is a common supersequence of all probes.

Given a set of probe sequences (in practice up to 106 probes can fit on a
single chip), one can try to find the shortest deposition sequence, i.e., the short-
est common supersequence of all probes (see [4] for bounds on its length and
heuristic algorithms). In practice, good deposition sequences can be found but
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Input: Alphabet Σ with probability distribution π, string s ∈ Σn, integer 1 ≤ k ≤ n
Output: Wk(s) or the whole array Wm(s1 . . . sj) for m = 1, . . . , k, j = 1, . . . , n

// Initialize arrays W, V and Vsum
W[m, j] ← 0 for m ← 1, . . . , k, j ← 1, . . . , n // optional: stores Wm,j

V[m, a] ← 0 for m ← 1, . . . , k, a ∈ Σ // stores Wm,j [a] for current value of j
Vsum[m] ← 0 for m ← 1, . . . , k // stores Wm,j for current value of j

for j ← 1, . . . , n
c ← sj // the current character
for m ← min{j, k}, . . . , 3, 2

// Update V and Vsum s.th. V[m, a] = Wm,j [a] (a ∈ Σ); Vsum[m] = Wm,j :
// (only the c-entry needs to be updated, saving a factor of |Σ|)
Vsum[m] ← Vsum[m] − V[m, c]
V[m, c] ← Vsum[m − 1] · πc

Vsum[m] ← Vsum[m] + V[m, c]
end for m
// Finally, treat the case m = 1 specially:
if V[1, c] = 0 then V[1, c] ← πc; Vsum[1] ← Vsum[1] + πc; end if
// Invariant: Here Vsum[m] = Wm(s1 . . . sj) = Wm,j for m = 1, . . . , k
W[m, j] ← Vsum[m] for m ← 1, . . . , k // optional: set j-th column of W:

end for j
return Vsum[k] // optional: return array W

Fig. 1. An algorithm with O(k(n+|Σ|)) operations to compute the π-weighted fraction
Wk(s) of length-k strings that are subsequences of s. The array W is not needed when
only Wk(s) is required: after step j, the j-th column of W is equal to Vsum.

not proved optimal in a reasonable amount of time. Therefore one can approach
the question differently and ask for a deposition sequence that is as “universal”
as possible, i.e., that contains the largest number of distinct subsequences. We
thus ask for

C∗
k(n, |Σ|) = max

s∈Σn
Ck(s) and Best∗k(n, |Σ|) = {s ∈ Σn : Ck(s) = C∗

k (n,Σ)}.

A result due to P.J. Chase [5] from 1976 (long before the invention of microar-
rays) states that precisely the repeated permutations of the alphabet form the
set Best∗k(n, |Σ|) with the consequence that this set does not depend on k.

Definition 1. For a finite alphabet Σ of size σ, a string s of length n is called
a repeated permutation of Σ if there exists a permutation π = π1 . . . πσ of the
characters in Σ such that s = πcπ1 . . . πm, where the number of full cycles is
c := �n/σ� and the number of remaining characters m := n mod σ satisfies
0 ≤ m < σ.

In fact, any sequence that is not a repeated permutation contains strictly fewer
subsequences of (some) smaller length. Even though this result appears intuitive,
it is nontrivial to prove and apparently does not follow directly from the recur-
rence in Lemma 2; Chase used induction on the longest sequence prefix that is
a repeated permutation to prove optimality.
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Fig. 2. Left: Fraction of 25-mers covered by a repeated permutation of varying length
from 25 to 100: From the deposition sequence s∗ of length 74 used for GeneChipR©

production, 98.45% of all 25-mers can be synthesized. Right: Assuming that each syn-
thesis step costs 1/100 (such that using 100 steps implies a cost of 1), the graph shows
the covered fraction per cost. The “best value” is obtained for a repeated permutation
s$ with 72 steps or 18 full cycles (W25(s$) = 96.34%, 100 W25(s$)/72 = 1.338), but s∗

is almost as cost-effective (100 W25(s∗)/74 = 1.3304) and has higher coverage 98.45%.

The Affymetrix GeneChip R© technology uses a repeated permutation of length
74, such as s∗ := (ACGT)18AC, to synthesize 25-mers. Figure 2 (left) shows the
fraction of 25-mers contained in repeated permutations of increasing length: s∗

covers a fraction of 98.45% of all 25-mers. Elongating s∗ further quickly results in
diminishing returns; for example, adding one additional nucleotide would result
in 99.04% of the 25-mers being covered. It is unknown to the author why the
length of 74 was chosen, but we offer the following hypotheses: The sequences
not covered by s∗ have somewhat extremal properties. For example, many of
them contain runs of a repeated nucleotide. We may assume that such oligos are
rarely used on microarrays because of undesirable thermodynamic properties,
so s∗ may cover in fact all oligos that are ever chosen to be placed on a chip.
For another argument consider Figure 2 (right): In practice, each synthesis step
has a certain cost (mask production, chemicals, time, etc.). Assuming that the
production cost of a chip is proportional to the number of synthesis steps, we
see that using a deposition sequence of length 74 offers both high coverage in
absolute terms and close to optimal coverage per money.

3 The Number of ρ-Restricted ρ-Generated Sequences

We consider a variation of the previous problem, where we modify the notion of
subsequence: We allow that each character from s, which we call the generating
sequence, may produce a whole run (up to a specified length ρ) of this character.
Thus we write t �ρ s if there exist n numbers 0 ≤ ri ≤ ρ for i = 1, . . . , n, with
|t| =

∑
i ri, such that t = sr1

1 sr2
2 . . . srn

n . We say that t is ρ-generated by s. For
ρ = 1, we get the usual notion of subsequence. Note that t�ρ s implies |t| ≤ ρ|s|.
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Motivated by the 454 DNA sequencing technology (see below), we are only
interested in counting sequences that do not contain a single character run longer
than ρ; so we define Σk

ρ as the set of all length-k strings over Σ that do not
contain aρ+1 as a substring for any a ∈ Σ and call them the ρ-restricted strings.

The set of ρ-restricted length-k strings ρ-generated by s is denoted by

Sk(s; ρ) := {t ∈ Σk
ρ : t �ρ s}.

It is important to note that a2ρ �ρ aba, but a2ρ /∈ Σ2ρ
ρ , so a2ρ /∈ S2ρ(aba; ρ).

Therefore Sk(s; 1) is different from Sk(s) as defined in the previous section.
For the generating sequence s = (s1, . . . , sn), we may assume that si �= si+1

for all i = 1, . . . , n− 1, i.e., s ∈ Σn
1 , since repetitions in the generating sequence

do not allow to generate additional ρ-restricted sequences.
We set Ck(s; ρ) := |Sk(s; ρ)| and Wk(s; ρ) := Pk(Sk(s; ρ)). Assuming s and ρ

fixed, we define for 1 ≤ m ≤ k, 0 ≤ j ≤ n and a ∈ Σ the auxiliary quantities

Sm,j[a] := {t ∈ Σm
ρ : t �ρ s1 . . . sj and tm = a}, Sm,j [a] :=

⋃
b�=a

Sm,j[b],

Cm,j[a] := |Sm,j [a]|, Cm,j [a] := |Sm,j[a]|,
Wm,j [a] := Pm(Sm,j [a]), Wm,j [a] := Pm(Sm,j [a]),

with the boundary cases S0,j [a] = {} and S0,j[a] = {ε}. The structural recurrence
for Sm,j[a] is slightly more complicated than in the previous section, since we
need to express Sm,j [a] as a disjoint union to determine its cardinality.

Lemma 4. Let 1 ≤ m ≤ j. Then

Sm,j[a] =

{
Sm,j−1[a] if sj �= a,⋃min{ρ,m}

r=1 (Sm−r,j−1[a] ◦ {ar}) if sj = a,

where the union is disjoint.

Proof. The case sj �= a is proved as in Lemma 1.
For sj = a, appending ar to any t ∈ Sm−r,j−1[a] for any “run length” 1 ≤ r ≤

min{ρ,m} clearly results in a distinct string in Sm,j [a]. Note that any run length
in t is bounded by r by assumption, and in tar by construction since t does not
end with a. This shows ∪min{ρ,m}

r=1 Sm−r,j−1[a]◦{ar} ⊂ Sm,j [a]. Conversely, every
string in Sm,j [a] can be written uniquely as tar, where r ≤ ρ and r ≤ m and
t ∈ Sm−r,j−1[a] (possibly the empty string). Because of the uniqueness of the
above decomposition, the union is disjoint. 	

Lemma 4 immediately allows us to count Ck(s; ρ) and to determine Wk(s; ρ).
We only give the Bernoulli string model version for Wk(s; ρ) here.

Lemma 5. We have W0,j [a] = 1 and W0,j [a] = 0 for all a ∈ Σ, j ≥ 0. For
m ≥ 1 and j ≥ 1, we have

Wm,j [a] =

{
Wm,j−1[a] if sj �= a,∑min{m,ρ}

r=1 Wm−r,j−1[a] · πr
a if sj = a.

The desired result is Wk(s) = Wk,n[a] + Wk,n[a] for any a ∈ Σ.
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Remarks:
1. The recurrence in Lemma 5 can be implemented to run in O(k(n + |Σ|))

arithmetic operations by remembering appropriate partial sums.
2. Using ρ = ∞ answers the question how many strings of length k match

the regular expression s1*s2* . . . sn*, where a* matches zero or an arbitrary
number of occurrences of a ∈ Σ. In Section 2, we effectively determined how
many strings of length k match the regular expression s1?s2? . . . sn?, where
a? matches zero or one occurrence(s) of a ∈ Σ.

3. It is reasonable to conjecture that again a repeated permutation s∗ maxi-
mizes Ck(s; ρ) over all s ∈ Σn, but this is so far not rigorously proved.

4. Even for arbitrarily large n and optimal s∗ ∈ Σn, we have Ck(s; ρ)/|Σk| ≤
|Σk

ρ |/|Σk| → 0 as k →∞, because the probability that a length-k sequence
contains a run longer than ρ approaches 1 as k →∞.

Analysis of 454 Sequencing. Recently, the company “454 Life Sciences” has
developed a massively parallel DNA sequencing technology (simply called “454
sequencing”). We refer the reader to [1] and www.454.com for more detailed
information. Several copies of an organism’s genome are randomly cut into DNA
fragments; a part of the sequence of each fragment is determined in parallel,
and finally the fragment sequences can assembled to retrieve the whole genomic
sequence if each position of the genome is covered by enough fragments. Many
copies of one single fragment type are attached to a microscopic bead; each bead
is held in place in a different well of the reaction carrier (70 mm × 75 mm).
A typical reaction carrier has 1.6 million wells, from which typically 200, 000
different high-quality fragment reads can be obtained.

The fragments are sequenced by synthesizing the complementary (A ↔ T,
C↔ G) DNA strand to each fragment in several steps. Initially, the complemen-
tary strand of each fragment is empty but ready for extension at its starting
point. Then, e.g., in an A-step, T-nucleotides are flooded over the reaction car-
rier, and Ts are incorporated into complementary strands in those wells where
the next character in the fragment sequence is A. Successful elongation of the
complementary strand results in a flash of light from the corresponding wells.
The light emission pattern is detected with a CCD camera for all wells in par-
allel. If a fragment contains a consecutive run (homopolymer) of As, all of their
counterpart Ts are incorporated in a single step and the light intensity is propor-
tional to the run length. This works reliably only up to a certain length ρ = 8,
which was the reason for introducing ρ-restricted strings above. Sequences that
contain longer homopolymers cannot be reliably sequenced.

Sequencing steps for different nucleotides are repeated in a cyclic pattern
for c cycles, e.g., (ACGT)c. This process cannot go on forever because the sig-
nal/noise ratio deteriorated over time. Public information (as of February 2005)
at www.454.com states that high-quality sequencing of on average 100-base reads
is achieved in 42 cycles of TACG. It has also been attempted to use 84 and 168
cycles for high-quality reads of 200 and 400 bases, respectively.

The key issue is that the fraction of length-k DNA sequences that can be
reliably sequenced by this technology in n steps is precisely given by Wk(s; ρ),
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Fig. 3. Left: Fraction Wk of 454-sequenceable length-k DNA sequences by using a
repeated permutation of the alphabet for c ∈ {21, 42, 84, 168} cycles, ρ = 8. Right:
Length distribution of the reliably sequenceable initial fragment of a random DNA
sequence, for c and ρ as before. Vertical lines mark the expected lengths.

where ρ = 8 and s is a repeated permutation of the DNA alphabet. Assuming a
uniform distribution πa = 1/4 for each a ∈ Σ, we thus determine which fraction
Wk((ACGT)c; 8) of length-k DNA sequences for 1 ≤ k ≤ 550 can be reliably
sequenced in c ∈ {21, 42, 84, 168} full cycles.

The results are visualized in Figure 3 (left). The longest sequence lengths for
which the sequenceable fraction exceeds 99% are kmax = 48, 101, 209, and 427
for c = 21, 42, 84, and 168 cycles. 85.8% of length-50 sequences are sequenceable
in 21 cycles, 94.0% of length-100 sequences in 42 cycles, 98.55% of length-200
sequences in 84 cycles, and 99.48% of length-400 sequences in 168 cycles.

A different perspective is shown in Figure 3 (right): If T is any (potentially
infinite) random sequence according to the uniform distribution, a certain finite
prefix will be reliably sequenced by the generating sequence s = (ACGT)c. Let
Lc(T ) denote the length of this prefix for c cycles. The figure shows the distribu-
tion of Lc for c ∈ {21, 42, 84, 168} cycles, which is obtained as follows. The proba-
bility that sequencing ends after k steps or later is Wk ≡Wk(s; ρ). Therefore, the
probability that the read ends exactly after k steps is P(Lc = k) = Wk −Wk+1.
The figure also shows that the expected sequence read length E[Lc] for 21 (42, 84,
168) cycles is 55.4 (111.4, 223.1, 446.3), which exceeds the company-guaranteed
values of 50 (100, 200, 400) by more than 10%. To guarantee these expected read
lengths, only 19 (37.75, 75.5, 150.75) cycles, i.e., 76 (151, 302, 603) steps would
in fact be necessary on random sequences.

4 Longest Increasing Subsequence Length Distribution

We consider an ordered alphabet Σ := {1, . . . ,K} and a string s ∈ Σn, and
equip Σn with a Bernoulli probability measure Pn given by a probability vector
π = (π1, . . . , πK), such that Pn(s) =

∏n
j=1 πsj . Several algorithms (e.g., [6, 2])

compute the length LIS(s) of the longest increasing subsequence in s.
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Our counting method is based on the patience sorting algorithm, which scans
s from left to right and keeps track of a subset κ ⊂ [K] := {1, . . . ,K} whose
cardinality after j steps is equal to LIS(s1 . . . sj). We write 2[K] for the power
set of {1, . . . ,K}. Initially, we set κ0 = {} and in step j = 1, . . . , n, κj is
computed in O(logK) operations as κj := u(κj−1, sj) from the update function
u : 2[K] × [K]→ 2[K]; (κ, c) "→ κ+, defined as follows:

– If c ∈ κ, do nothing, i.e., set κ+ := κ.
– If c /∈ κ and κ contains no element > c, add c, i.e., set κ+ := κ ∪ {c}.
– If c /∈ κ and there exists k ∈ κ with k > c, find the smallest such k and

decrease it to c, i.e., set κ+ := κ \ {k} ∪ {c}.

A proof that |κj | = LIS(s1, . . . , sj) and an explanation in terms of stacks of
cards is found in [2]. The running time is seen to be O(n logK). To avoid running
patience sorting for all Kn sequences separately, we condition on κ: Let κj(t) be
the final set κj in patience sorting when it is applied to t ∈ Σj . We set
Sj(κ) := {t ∈ Σj : κj(t) = κ}, Cj(κ) := |Sj(κ)|, Wj(κ) := Pj(Sj(κ)).

It follows that for 0 ≤ k ≤ K,
Sn(k) :=

⋃
κ⊂[K],
|κ|=k

Sj(κ), Cn(k) :=
∑

κ⊂[K],
|κ|=k

Cj(κ), Wj(k) :=
∑

κ⊂[K],
|κ|=k

Wj(κ)

are the set, number, and weighted fraction of length-n sequences with LIS = k,
respectively. The following lemma presents a structural equation between Sj(κ)
and Sj−1(κ′), where κ′ is an update-preimage under u.

Lemma 6. For j = 0, we have S0({}) = {ε}, C0({}) = 1, W0({}) = 1, and for
κ ∈ 2[K], κ �= {}, we have S0(κ) = {}, C0(κ) = 0, W0(κ) = 0. For 1 ≤ j ≤ n
and κ ∈ 2[K],

Sj(κ) =
⋃

(κ′,c)∈u−1(κ)

Sj−1(κ′) ◦ {c},

Cj(κ) =
∑

(κ′,c)∈u−1(κ) Cj−1(κ′), and Wj(κ) =
∑

(κ′,c)∈u−1(κ) Wj−1(κ′) · πc.

Proof. The equations for Cj and Wj follow immediately from the one for Sj

(obviously the union is disjoint), which in turn is a trivial consequence of the
correctness of the patience sorting algorithm (i.e., of the update function). 	


Lemma 6 implies a “pull”-type dynamic programming algorithm for computing
Wn(k), which has the disadvantage that the update rules must be read “back-
wards”, i.e., for given κ, we need to determine the pairs (κ′, c) with κ = u(κ′, c).
It is easier to implement a “push”-type algorithm that pushes the information for
all (κ, c) forward to the corresponding κ+ = u(κ, c). This is shown in Figure 4.

Application: Significance Computations for Chaining Algorithms. In biological
sequence analysis, the following problem arises in several situations (e.g., when
attempting to classify proteins or to detect cis-regulatory modules): Certain
biological sequences (the family members) are characterized by the appearance
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Input: Alphabet size K, distribution π = (π1, . . . , πK), sequence length n
Output: Wn(k) for 0 ≤ k ≤ K as array w[0..K]
W’[{}] ← 1 and W’[κ] ← 0 for κ ∈ 2[K] with |κ| ≥ 1 // Initialize array W’[κ] to W0(κ)
for j ← 1, . . . , n

W[κ] ← 0 for κ ∈ 2[K] // reset array W to zero
// Invariant here: W’[κ] = Wj−1(κ) and W[κ] ≡ 0
for κ ∈ 2[K]; for c ∈ Σ

κ+ ← u(κ, c)
W[κ+] ← W[κ+] + W’[κ] · πc

end for c; end for κ
W’ ← W // Invariant: W[κ] = W’[κ] = Wj(κ)

end for j
w[k] ← 0 for k ← 0, . . . , K

w[|κ|] ← w[|κ|] + W[κ] for all κ ∈ 2[K]

return w

Fig. 4. Push-type dynamic programming algorithm to compute the length distribution
of the longest increasing subsequence for alphabet size K with character distribution
π = (π1, . . . , πK) and sequence length n. Subsets κ can be encoded as bit-vectors and
represented as integers in the range from 0 to 2K − 1.

of sequence motifs (e.g., substrings, regular expressions, or sequence profiles)
in a certain order. Let there be K distinct motifs and assume that true family
members usually contain all of them in the correct order 1, . . . ,K. However, in
some family members some motifs may not be present or detected. To decide
whether a sequence should be classified as a family member, in a first step, all
motif occurrences are tabulated. Then the best chain of motifs is found in a
second “chaining” step. We assume that the quality of a chain is its length, so
we classify a sequence as a family member if the longest increasing sequence of
motif indices reaches a threshold t. To find a statistically significant value of t,
we determine the frequency pt of length-t chains in random sequences.

We assume that the motifs are chosen in such a way that each one occurs
with low frequency 0 < fk # 1 in random sequences. If also f :=

∑K
k=1 fi # 1,

motif occurrences can be treated as a Poisson process along a random sequence
of length m: If N is the total number of motif occurrences, then E[N ] = λ :=
m · f , and the distribution of N can be well approximated as Poisson(λ) with
P(N = n) = exp(−λ) · λn/n!. Given that a motif occurs at some position, it is
motif k with probability πk := fk/f .

It follows that the probability of observing an increasing motif sequence of
length k in such a random sequence is given by WPoisson(λ)(k) :=

∑∞
n=0 exp(−λ)·

λn/n! · Wn(k). The p-value associated to a threshold length t is then pt =∑K
k=t WPoisson(λ)(k). Now t can be chosen such that pt is reasonably small.
For example, for K = 6 distinct motifs that each appear once in 100 positions

on average and sequence length m = 100, we have λ = 6 motif occurrences on av-
erage. The Poisson mixture distribution WPoisson(λ)(k) :=

∑∞
n=0 exp(−λ)λn/n! ·

Wn(k) is shown on the left side of Figure 5, the pt-values on the right side:
Thresholds of 5 and 6 imply p5 = 0.0165 and p6 = 0.0006, respectively.
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Fig. 5. Left: Length distribution of longest increasing subsequences for alphabet size
K = 6 and random sequence length N ∼ Poisson(6). Right: Associated p-values.

Concluding Remarks. There is considerable literature about subsequence com-
binatorics (exact and asymptotic counting) on permutations, but there are few
results on words, despite the fact that these have interesting practical conse-
quences, as we have shown. Subsequence combinatorics contains a number of
interesting problems., e.g., it remains open to prove that indeed the repeated per-
mutations maximize the number of distinct ρ-restricted ρ-generated sequences.
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Abstract. Given a set of leaf-labeled trees with identical leaf sets, the
well-known Maximum Agreement SubTree problem (MAST) consists
of finding a subtree homeomorphically included in all input trees and
with the largest number of leaves. Its variant called Maximum Com-
patible Tree (MCT) is less stringent, as it allows the input trees to
be refined. Both problems are of particular interest in computational
biology, where trees encountered have often small degrees.

In this paper, we study the parameterized complexity of MAST and
MCT with respect to the maximum degree, denoted D, of the input trees.
While MAST is polynomial for bounded D [1, 6, 3], we show that MAST
is W[1]-hard with respect to parameter D. Moreover, relying on recent ad-
vances in parameterized complexity we obtain a tight lower bound: while
MAST can be solved in O(NO(D)) time where N denotes the input length,
we show that an O(No(D)) bound is not achievable, unless SNP ⊆ SE. We
also show that MCT is W[1]-hard with respect to D, and that MCT cannot
be solved in O No(2D/2) time, unless SNP ⊆ SE.

1 Introduction

Throughout this paper, IN denotes the set of non-negative integers and, for all
n ∈ IN, the set {1, 2, . . . , n} is denoted [1, n].

1.1 Agreement Subtree and Compatible Tree

Trees. All trees considered in this paper are rooted evolutionary trees, i.e. trees
representing the evolutionary history of a set of species. Such trees are unordered,
bijectively leaf-labeled and their internal nodes have at least two children each.
Labels are species under study and the branching pattern of the tree describes
the way in which speciation events lead from ancestral species to more recent
ones.

Leaf labels. For convenience, we will identify the leaves with their labels when
the tree is understood. Let T be a (rooted evolutionary) tree. The leaf label set
of T is denoted L(T ). We say that T is a tree on L(T ). The size of a tree is the
cardinality of its leaf set.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 165–176, 2006.
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Degree. The (outer) degree of a node in T is the number of its children. The
maximum degree of T , denoted Δ(T ), is the largest degree over all nodes of T .

Parenthetical notation. Parenthetical notation is a convenient way to represent
evolutionary trees. Given d non-empty trees T1, T2, . . . , Td with pairwise disjoint
leaf sets, 〈T1, T2, . . . , Td〉 denotes the tree whose root has degree d and admits
as child subtrees T1, T2, . . . , Td.

Restriction. For each subset X ⊆ L(T ), the (topological) restriction of T to
X is denoted T |X . Informally, T |X is the tree on X displaying the branching
information of T relevant to X .

Restriction is formally defined by induction as follows. On the one hand, for
each leaf tree �, �|{�} = � and �|∅ is the empty tree. On the other hand, a tree
T of size at least two can be written as T = 〈T1, T2, . . . , Td〉 with d ≥ 2: if X
is a subset of L(Ti) for some i ∈ [1, d] then T |X = Ti|X ; otherwise, T |X is the
tree on X whose root admits as child subtrees all non empty trees of the form
Ti|(L(Ti) ∩X) with i ∈ [1, d].

MAST and MCT. Let T be a collection of trees on a common leaf set.

Agreement subtree. An agreement subtree of T is a tree T such that, ∀Ti ∈ T , T =
Ti|L(T ). The Maximum Agreement SubTree problem (MAST) consists of
finding an agreement subtree of T of largest size. In phylogenetics, the maximum
size of an agreement subtree of T is a useful measure of the similarity of the trees
in T [7]. From the point of view of the MAST problem, a node ν of degree d in
an input evolutionary tree represents the simultaneous creation of d descendant
from the ancestral species represented by ν. As such events are rare if d > 2,
the trees that people want to calculate maximum agreement subtree for have
usually small maximum degrees.

Compatible tree. Let T and T ′ be two trees on a common leaf set. We say that
T refines T ′ if T ′ can be obtained by collapsing a selection of edges of T . A tree
compatible with T is a tree T such that, ∀Ti ∈ T , T refines Ti|L(T ). Obviously,
agreement implies compatibility. The converse is usually false for collections
including at least a non-binary tree. The Maximum Compatible Tree problem
(MCT) consists of finding a tree of largest size compatible with T . The MCT
problem is more relevant than the MAST problem when comparing reconstructed
evolutionary trees [9, 8]. From the point of view of MCT, a non-binary node is
usually interpreted as a lack of decision with respect to the relative grouping
of its children rather than as a multi-speciation event. As data sequences are
getting longer and phylogenetic methods more accurate, the maximum degree
of indecision in reconstructed trees is expected to decrease to a small constant.

Previous Results. MAST is polynomial on two trees (see [12] for the latest
algorithm) but becomes NP-hard on three input trees [1]. MCT is NP-hard on
two trees even if one of them is of maximum degree three [10] (see also [9]).
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Consider now the general setting of an arbitrary number, denoted k, of input
trees. Let T = {T1, T2, . . . Tk} be the input collection. Let n be the cardinality of
the common leaf set of the Ti’s, let d := mink

i=1 Δ(Ti) and let D := maxk
i=1 Δ(Ti).

Above, we argued about the relevance of solving MAST and MCT on bounded
maximum degree trees. Three different algorithms were proposed to solve MAST
in polynomial time for bounded d [1, 6, 3]. The fastest of these algorithms [6, 3]
run in O(nd + kn3) time.

Besides, MCT can be solved in O(4kDnk) time [8]. Hence, for bounded k,
MCT is FPT in D. The same result holds for MAST. Let p be a bound on the
number of leaves to be removed from the input set of leaves so that the input
trees agree, resp. are compatible. Then MAST, resp. MCT, can be solved in
O(min{3pkn, αp + kn3}) time, where α a constant less than 3 [2]. Thus, both
problems are FPT with respect to p.

Our Contribution. We prove that both MAST and MCT are W[1]-hard with
respect to D. Furthermore, let ϕ : IN → IN be an arbitrary recursive function.
Note that the input T is of size Õ(kn). We prove the following.

(R1). MAST cannot be solved in ϕ(D)(kn)o(D) time, unless SNP ⊆ SE.
(R2). MCT cannot be solved in ϕ(D)(kn)o(2D/2) time, unless SNP ⊆ SE.

Recall that SE [11] is the class of problems solvable in subexponential time and
that SNP [13] contains many NP-hard problems. Hence, the inclusion SNP ⊆ SE
is unlikely. According to result (R1), the O(nd +kn3) time algorithms for MAST
[6, 3] are somehow optimum. Results (R1) and (R2) are proved in sections 2 and 3
respectively.

1.2 Parameterized Complexity

In order to clearly prove our intractability results, we recall the main concepts of
parameterized complexity [5], together with some recent results. We also intro-
duce the notions of linear FPT-reduction and weak fixed-parameter tractability.

Let Σ be a finite alphabet. The set of all finite words over Σ is denoted Σ�

and, for each word x ∈ Σ�, |x| denotes the length of x. A parameterized (decision)
problem is a subset P ⊆ IN×Σ�. For each instance (k, x) ∈ IN×Σ�, k represents
the parameter. A yes-instance of P is an element of P and a no-instance of P is
an element of (IN ×Σ�)− P .

Fixed-Parameter Tractability and Weak Fixed-Parameter Tractability.
An algorithm A solves the parameterized problem P if, for each input (k, x) ∈
IN×Σ�, A can decide whether (k, x) is a yes-instance of P . The parameterized
problem P is fixed-parameter tractable (FPT) if there exists an algorithm solving
P , and whose running time is bounded by ϕ(k)|x|O(1) on each input (k, x) ∈
IN×Σ�, where ϕ : IN→ IN is recursive. The parameterized problem P is weakly
fixed-parameter tractable (WFPT) if there exists an algorithm solving P , and
whose running time is bounded by ϕ(k)|x|o(k) on each input (k, x) ∈ IN × Σ�,
where ϕ : IN→ IN is recursive.
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FPT-Reduction and Linear FPT-Reduction. Let P , Q ⊆ IN×Σ� be two
parameterized problems and let f : IN×Σ� → IN×Σ�.

We say that f is a (many-to-one, strongly uniform) FPT-reduction from P
to Q if there exist recursive functions g : IN × Σ� → Σ� and ϕ, γ : IN → IN
satisfying, for all (k, x) ∈ IN×Σ�:

1. f(k, x) is computable in ϕ(k)|x|O(1) time,
2. f(k, x) ∈ Q iff (k, x) ∈ P , and
3. f(k, x) = (γ(k), g(k, x)).

Moreover, if γ is at most linearly increasing (i.e. if γ(k) = O(k) as k →∞) then
we say that f is a linear FPT-reduction from P to Q.

FPT-reductions compose, and preserve fixed-parameter tractability. Linear
FPT-reductions compose, and preserve weak fixed-parameter tractability. Note
that our notion of linear FPT-reduction is slightly different from the one given
by Chen, Huang, Kanj and Xia [4].

Independent Set. Formally, an (undirected) graph is an ordered pair G =
(V,E) where V is a finite set of vertices and where E a set of 2-subsets of
V . The elements of E are the edges of G. The elements of an edge are called
its endpoints. An independent set of G is a subset I ⊆ V such that, for each
edge e ∈ E, at least one of its endpoint is not in I. The problem of finding an
independent set of maximum cardinality in a given input graph plays a central
role in computational complexity theory, as well as its decision version:

Name: Independent Set (IS)
Instance: A positive integer k and a graph G = (V,E).
Question: Is there an independent set of G of cardinality k?

The version of IS parameterized by k is denoted IS[k]. This problem is not
believed to be FPT as it is complete under FPT-reductions for the class W[1]
[5]. Moreover, IS[k] is not WFPT either, unless SNP ⊆ SE [4].

2 Parameterized Complexity of MAST

The decision version of MAST is called Agreement SubTree (AST). The AST
problem is: given an integer q ≥ 1 and a finite collection T of trees on a common
leaf set, decide whether there is an agreement subtree of T of size q. We denote
by AST[D] the version of AST parameterized by D := maxT∈T Δ(T ). In this
section we prove: that AST[D] is W[1]-hard, and Result (R1) stated at the end
of Section 1.1. According to Section 1.2, it is sufficient to linearly FPT-reduce
AST[D] to IS[k] (Theorem 1 below).

For each integer p ≥ 1, we introduce the following problem:

Name: Partitioned Independent Set with multiplicity p (PISp)
Instance: An integer k ≥ 1, a graph G = (V,E), and k independent sets
V1, V2, . . . , Vk of G of equal cardinality partitioning V .
Question: Is there an independent set I of G such that I∩Vi has cardinality
p for all i ∈ [1, k]?
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The version of PISp parameterized by k is denoted PISp[k]. IS[k] is reduced to
AST[D] going through PIS1[k]. In the next section, the decision version of MCT
is reduced to IS going through PIS2.

Lemma 1. IS[k] linearly FPT-reduces to PIS1[k].

Proof. Reduce IS[k] to PIS1[k] in the same way as Pietrzak reduces Clique to
Partitioned Clique [14]. Each instance (k,G) of IS is transformed into an
instance (k, G̃, Ṽ1, Ṽ2, . . . , Ṽk) of PIS1 where G̃ and the Ṽi’s are as follows.

Let V be the vertex set of G. G̃ is the graph on V × [1, k] whose edge set is
given by: for all (u, i), (v, j) ∈ V × [1, k], {(u, i), (v, j)} is an edge of G̃ iff i is
distinct from j, and either {u, v} is an edge of G or u = v. For each i ∈ [1, k],
let Ṽi := V × {i}.

Validity of our reduction. Each Ṽi is an independent set of G̃ with the
same cardinality as V , and the Ṽi’s partition the vertex set V × [1, k] of G̃.
Hence, (k, G̃, Ṽ1, Ṽ2, . . . , Ṽk) is an instance of PIS1[k]. Moreover, it is clear that
(k, G̃, Ṽ1, Ṽ2, . . . , Ṽk) is computable in polynomial time from (k,G). It remains to
check that (k,G) is a yes-instance of IS iff (k, G̃, Ṽ1, Ṽ2, . . . , Ṽk) is a yes-instance
of PIS1.

• Assume there exists an independent set Ĩ of G̃ such that Ĩ ∩ Ṽi is a singleton
for all i ∈ [1, k]. For each i ∈ [1, k], let vi ∈ Vi such that (vi, i) is the unique
element of Ĩ ∩ Ṽi. The set I := {v1, v2, . . . , vk} is an independent set of G of
cardinality k.
• Conversely, assume that there exists an independent set I of G of cardinality

k. Arbitrarily number the elements of I, i.e. write I as I = {v1, v2, . . . , vk}.
The set Ĩ := {(v1, 1), (v2, 2), . . . , (vk, k)} is an independent set of G̃ and
Ĩ ∩ Ṽi = {(vi, i)} is a singleton for all i ∈ [1, k]. 	


In order to clearly prove Theorem 1, we first introduce some useful vocabulary.

Definition 1. Let T and T ′ be two trees and let L be a subset of L(T )∩L(T ′).
We say that T and T ′ disagree on L if T |L and T ′|L are distinct.

Assume that L(T ) ⊆ L(T ′). If there exists a subset L ⊆ L(T ) such that T and T ′

disagree on L then T is not a restriction of T ′. Conversely, if T is a not restriction
of T ′ then T and T ′ disagree on some 3-subset of L(T ) [3]. This explains the
central role played by 3-leaf sets of disagreement in the proofs of lemmas 2 and 3
below. Note that given three distinct leaf labels a, b and c, there are exactly four
distinct trees on {a, b, c}: the non-binary tree 〈a, b, c〉, and the three binary trees
〈〈b, c〉 , a〉, 〈〈a, c〉 , b〉 and 〈〈a, c〉 , b〉.

Theorem 1. IS[k] linearly FPT-reduces to AST[D].

Proof. According to Lemma 1, it suffices to linearly FPT-reduce PIS1[k] to
AST[D]. Each instance (k,G, V1, V2, . . . , Vk) of PIS1 is transformed into an
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instance (q, T ) of AST where q := k and where T is a collection of trees de-
scribed below. Without loss of generality, we can assume that all Vi’s (i ∈ [1, k])
have cardinality at least 3 and that k is at least 3.

The collection T . We construct a collection T of gadget trees whose leaf set is
the vertex set V := V1 ∪ V2 ∪ . . . ∪ Vk of G.

For each i ∈ [1, k], compute an arbitrary binary tree Bi on Vi. The tree on
V whose root admits B1, B2, . . . , Bk as child subtrees is denoted by C: C =
〈B1, B2, . . . , Bk〉. Every tree of T defined below can be obtained by modifying
the positions of exactly two leaves of C.

For all a, b ∈ V with a �= b, Ca,b denotes the tree on V obtained from C,
by first removing its leaves a and b, and then re-grafting both of them as new
children of the root. Formally, Ca,b is the tree

〈B1|(V1 − {a, b}), B2|(V2 − {a, b}), . . . , Bk|(Vk − {a, b}), a, b〉 .

We set C := {C} ∪ {Ca,b : a, b ∈ V, a �= b}.

Remark 1. There exist at most two indices i such that Bi|(Vi−{a, b}) is distinct
from Bi, and since Vi has cardinality at least 3, Bi|(Vi − {a, b}) is a non-empty
tree for all i.

Let E be the edge set of G: G = (V,E). For each edge e = {a, b} ∈ E, Se denotes
the tree on V obtained from C, by first removing its leaves a and b, and then
re-grafting 〈a, b〉 as a new child of the root. Formally, Se is the tree

〈B1|(V1 − e), B2|(V2 − e), . . . , Bk|(Vk − e), 〈a, b〉〉 .

The collection of trees T is defined as T := C∪{Se : e ∈ E} (see Figure 1): C is the
control component of our gadget and the Se’s (e ∈ E) are its selection components.

Lemma 2 (Control). Let T be a tree with leaf labels in V . Statements (i) and
(ii) below are equivalent.

(i). T is an agreement subtree of C of size k.
(ii). T = 〈c1, c2, . . . , ck〉 for some (c1, c2, . . . , ck) ∈ V1 × V2 × · · · × Vk.

Proof. Let (c1, c2, . . . , ck) ∈ V1 × V2 × · · · × Vk. Distinct ci’s appear in distinct
child subtrees of the root of C, resp. of Ca,b. Hence, 〈c1, c2, . . . , ck〉 is a restriction
of C, resp. of Ca,b. This proves that (ii) implies (i). It remains to show that (i)
implies (ii).

Assume (i): T is an agreement subtree of C of size k.

• We first prove that T has height 1. By contradiction, suppose that T has
height at least 2. Then, one can find three distinct leaves a, b, c ∈ L(T ) such
that T |{a, b, c} = 〈〈a, b〉 , c〉. (Indeed, there exists an internal node ν of T
which is not the root of T . Pick a leaf c which is not a descendant of ν and
two descendant leaves a and b of ν.) However, Ca,b|{a, b, c} = 〈a, b, c〉, and
thus T and Ca,b disagree on {a, b, c}: contradiction.
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aa bb cc dd ee ff gg hh ii jj kk ll

B1 B2 B3 C

a ab bc cd de ef fg gh hi ij jk kl l

Ci,k S{c,f}

Fig. 1. Some of the gadget trees encoding an instance (k, G, V1, V2, . . . , Vk) of PIS1[k]
where k = 3, V1 = {a, b, c, d}, V2 = {e, f, g, h}, V3 = {i, j, k, l} and {c, f} is an edge
of G

Since T has height 1, there exist k distinct leaf labels c1, c2, . . . , ck ∈ V such
that T = 〈c1, c2, . . . , ck〉.

• We now show that distinct cj ’s belong to distinct Vi’s. By contradiction,
assume there exist i, j1, j2 ∈ [1, k] with j1 �= j2, and such that cj1 and
cj2 both belong to Vi. Since k is at least 3, one can find j ∈ [1, k] distinct
from j1 and j2. If cj ∈ Vi then C|{cj1 , cj2 , cj} = Bi|{cj1 , cj2 , cj} and if cj /∈
Vi then C|{cj1 , cj2 , cj} = 〈〈cj1 , cj2〉 , cj〉. In both cases, C|{cj1 , cj2 , cj} is a
binary tree unlike to T |{cj1 , cj2 , cj}. Thus, C and T disagree on {cj1 , cj2 , cj}:
contradiction.

Up to a permutation of the ci’s, one has (c1, c2, . . . , ck) ∈ V1 × V2 × · · · × Vk.
This proves (ii) and concludes the proof of Lemma 2. 	


Lemma 3 (Selection). Let e ∈ E be an edge of G and let (c1, c2, . . . , ck) ∈
V1 × V2 × · · · × Vk. The tree 〈c1, c2, . . . , ck〉 is a restriction of Se iff at least an
endpoint of e is not in {c1, c2, . . . , ck}.

Proof. The “if part” is easy. Let us now show the “only if” part.
Assume that 〈c1, c2, . . . , ck〉 is a restriction of Se and that e ⊆ {c1, c2, . . . , ck}.

Let ci1 and ci2 be the two endpoints of e: e = {ci1 , ci2}. Since k is at least 3,
there exists i ∈ [1, k] such that ci is distinct from ci1 and ci2 . Se|{ci1 , ci2 , ci} =
〈〈ci1 , ci2〉 , ci〉, and thus Se disagrees with 〈c1, c2, . . . , ck〉 on {ci1 , ci2 , ci}: contra-
diction. This concludes the proof of Lemma 3. 	


Validity of our reduction. It is clear that (q, T ) is computable in polynomial time
from (k,G, V1, V2, . . . , Vk). Moreover, the root of C has degree k, the root of Ca,b

has degree k + 2, the root of Se has degree k + 1, and any non-root internal
node of a tree in T has degree 2. Hence, the maximum degree D of all trees in
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T is equal to k + 2: D = O(k). Eventually, it follows from lemmas 2 and 3 that:
(k,G, V1, V2, . . . , Vk) is a yes-instance of PIS1 iff (q, T ) is a yes-instance of AST.

• Indeed, assume there exists an agreement subtree T of T of size q = k.
The tree T is of the form T = 〈c1, c2, . . . , ck〉 for some (c1, c2, . . . , ck) ∈
V1 × V2 × · · · × Vk by Lemma 2. Furthermore, the set I := {c1, c2, . . . , ck} is
an independent set of G by Lemma 3, and for every i ∈ [1, k], I ∩ Vi = {ci}
is a singleton.
• Conversely, assume that there exists an independent set I of G such that

I ∩ Vi is a singleton for all i ∈ [1, k]. Hence, there exists (c1, c2, . . . , ck) ∈
V1 × V2 × · · · × Vk such that I = {c1, c2, . . . , ck}. The tree 〈c1, c2, . . . , ck〉 is
both:
– an agreement subtree of C (Lemma 2), and
– an agreement subtree of {Se : e ∈ E} (Lemma 3).

Therefore, 〈c1, c2, . . . , ck〉 is an agreement subtree of T of size q. 	


3 Parameterized Complexity of MCT

The decision version of MCT is called Compatible Tree (CT). The CT
problem is: given an integer q ≥ 1 and a finite collection T of trees on a
common leaf set, decide whether there is a tree of size q compatible with T .
We denote by CT[2�D/2�] the version of CT parameterized by 2�D/2� where
D := maxT∈T Δ(T ). In this section, IS[k] is linearly FPT-reduced to CT[2�D/2�]
in order to obtain: the W[1]-hardness of the version of CT parameterized by D,
and Result (R2) stated at the end of Section 1.1. PIS2 is used as an intermediate
problem.

Lemma 4. IS[k] linearly FPT-reduces to PIS2[k].

Proof. According to Lemma 1, it suffices to linearly FPT-reduce PIS1[k] to
PIS2[k]. We rely on a padding argument. Each instance (k,G, V1, V2, . . . , Vk)
of PIS1 is transformed into an instance (k, G̃, Ṽ1, Ṽ2, . . . , Ṽk) of PIS2 where G̃

and the Ṽi’s are as follows.
Let V := V1 ∪ V2 ∪ . . . ∪ Vk be the vertex set of G and let E be its edge set:

G = (V,E). Informally, G̃ is obtained by adding k isolated vertices to G, and
each Ṽi is obtained by adding a single one of these new vertices to Vi. More
formally, let a1, a2, . . . , ak be k pairwise distinct elements not belonging to
V . We construct G̃ := (V ∪ {a1, a2, . . . , ak}, E), and Ṽi := Vi ∪ {ai} for each
i ∈ [1, k].

Validity of our reduction. It is clear that (k, G̃, Ṽ1, Ṽ2, . . . , Ṽk) is an instance of
PIS2 computable in polynomial time from (k,G, V1, V2, . . . , Vk). It remains to
check that (k,G, V1, V2, . . . , Vk) is a yes-instance of PIS1 iff (k, G̃, Ṽ1, Ṽ2, . . . , Ṽk)
is a yes-instance of PIS2.
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• Assume that there exists an independent set I of G such that I ∩ Vi is a
singleton for every i ∈ [1, k]. Then Ĩ := I∪{a1, a2, . . . , ak} is an independent
set of G̃, and Ĩ ∩ Ṽi is a doubleton for all i ∈ [1, k].

• Conversely, assume that there exists an independent set Ĩ of G̃ such that
Ĩ ∩ Ṽi is a doubleton for every i ∈ [1, k]. For each i ∈ [1, k], pick an element
vi in Ĩ ∩ Ṽi distinct from ai. The set I := {v1, v2, . . . , vk} is an independent
set of G, and I ∩ Vi = {vi} is a singleton for all i ∈ [1, k]. 	


Remark 2. It is easy to see that the mapping (k,G, V1, V2, . . . , Vk) "−→
(k, G̃, Ṽ1, Ṽ2, . . . , Ṽk), defined in the proof of Lemma 4 is a linear FPT-reduction
from PISp[k] to PISp+1[k] for any integer p ≥ 1. Since IS[k] linearly FPT-reduces
to PIS1[k] (Lemma 1), an induction on p ensures that IS[k] linearly FPT-reduces
to PISp[k] for any integer p ≥ 1.

In order to linearly FPT-reduce IS to CT, we introduce some useful notations
in definitions 2, 3 and 4.

Definition 2. Let T be a tree on [1, n], and let T1, T2, . . . , Tn be non-empty
trees with pairwise disjoint leaf sets. The tree on L(T1) ∪ L(T2) ∪ . . . ∪ L(Tn),
obtained by replacing each leaf i in T by Ti, is denoted T [T1, T2, . . . , Tn].

For instance, let T := 〈〈1, 2〉 , 〈3, 〈4, 5〉〉 , 6〉 and let T1, T2, T3, T4, T5, T6
be non-empty trees with pairwise disjoint leaf sets: T [T1, T2, T3, T4, T5, T6] =
〈〈T1, T2〉 , 〈T3, 〈T4, T5〉〉 , T6〉.

Definition 3. For each integer n ≥ 1, Rn denotes the binary tree on [1, n],
defined recursively as follows: R1 = 1, and if n is at least 2, then Rn = 〈Rn−1, n〉.

According to Definition 3, one has R2 = 〈1, 2〉, R3 = 〈〈1, 2〉 , 3〉, R4 =
〈〈〈1, 2〉 , 3〉 , 4〉, R5 = 〈〈〈〈1, 2〉 , 3〉 , 4〉 , 5〉, R4[a, b, c, d] = 〈〈〈a, b〉 , c〉 , d〉, . . .

Property 1. Let v1, v2, . . . , vn be n pairwise distinct labels. A tree with leaf la-
bels in {v1, v2, . . . , vn} is compatible with

{
Rn[v1, v2, . . . , vn], Rn[vn, . . . , v2, v1]

}
iff it is of size at most two.

Definition 4. Let k be a positive integer. Hk denotes a binary tree on [1, k] of
minimum height $log k%. For each i, j ∈ [1, k], Hi,j

k denotes the tree on [1, k]
obtained from Hk by collapsing all internal edges on the path connecting i and
j. The least common ancestor of i and j in Hi,j

k is denoted λi,j
k .

Property 2. All internal nodes in Hi,j
k are of degree 2, except maybe λi,j

k whose
degree is at most 2 $log k%.

Theorem 2. IS[k] linearly FPT-reduces to CT[2�D/2�].

Proof. According to Lemma 4, it suffices to linearly FPT-reduce PIS2[k] to
CT[2�D/2�]. Each instance (k,G, V1, V2, . . . , Vk) of PIS2[k] is transformed into
an instance (q, T ) of CT where q := 2k and where T is a collection of trees
described below.
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The collection T . We construct a collection T of gadget trees on the vertex set
V := V1 ∪ V2 ∪ . . .∪ Vk of G. Let n be such that Vi has cardinality n for every i ∈
[1, k]. For each i ∈ [1, k], arbitrarily order Vi, i.e. write Vi as Vi =

{
v1

i , v
2
i , . . . , v

n
i

}
;

Bi := Rn[v1
i , v

2
i , . . . , v

n
i ] and B̃i := Rn[vn

i , . . . , v
2
i , v

1
i ] encode Vi.

Let C := Hk[B1, B2, . . . , Bk] and let C̃ := Hk[B̃1, B̃2, . . . , B̃k] (see Figure 2):
C and C̃ are the control components of our gadget.

Bi

v1
1 v2

1 v3
1 v4

1 v1
2 v2

2 v3
2 v4

2 v1
3 v2

3 v3
3 v4

3 v1
4 v2

4 v3
4 v4

4 v1
5 v2

5 v3
5 v4

5

C

H5

v1
1v2

1v3
1v4

1 v1
2v2

2v3
2v4

2 v1
3v2

3v3
3v4

3 v1
4v2

4v3
4v4

4 v1
5v2

5v3
5v4

5

C̃

H5

B̃i

Fig. 2. The trees C and C in the case of k = 5 and n = 4

Let E be the edge set of G: G = (V,E). For each edge e = {vr
i , v

s
j} ∈ E,

compute the tree Se obtained from Hi,j
k [B1, B2, . . . , Bk] by first removing its

leaves vr
i and vs

j , and then re-grafting
〈
vr

i , v
s
j

〉
as a new child subtree of λi,j

k (see
Figure 3). The Se’s (e ∈ E) are the selection components of our gadget.

The collection of trees T is defined as T := {C, C̃} ∪ {Se : e ∈ E}.
Property 3 below is easily deduced from Property 1.

Property 3 (Control). Let T be a tree with leaf labels in V . Statements (i) and
(ii) below are equivalent.

(i). T is a tree of size q, compatible with {C, C̃}.
(ii). T is of the form T = Hk[〈a1, b1〉 , 〈a2, b2〉 , . . . , 〈ak, bk〉] where, for each

i ∈ [1, k], ai and bi are two distinct elements of Vi.

Property 4 (Selection). Let e ∈ E be an edge of G and let T be a tree of size q

compatible with {C, C̃}. Then, T refines Se|L(T ) iff at least an endpoint of e is
not in L(T ).
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Bi

v1
1 v2

1v3
1 v4

1 v1
2 v2

2 v3
2 v4

2 v1
3 v2

3 v3
3 v4

3 v1
4 v2

4 v3
4v4

4 v1
5 v2

5 v3
5 v4

5

S{v2
1 ,v3

4}

H
1,4
5

λ
1,4
5

Fig. 3. The tree S{v2
1 ,v3

4} in the case of k = 5 and n = 4

It is clear that (q, T ) is computable in polynomial time from (k,G, V1,

V2, . . . , Vk). Moreover, both C and C̃ are binary, and all internal nodes in Se

have degree 2, except maybe λi,j
k whose degree is at most 2 $log k%+1 (see Prop-

erty 2). Hence, the maximum degree D of all trees in T is at most 2 $log k%+1, and
thus 2�D/2� = O(k). Eventually, it remains to show that: (k,G, V1, V2, . . . , Vk) is
a yes-instance of PIS2 iff (q, T ) is a yes-instance of AST.

• Assume that there exists a tree T of size q compatible with T . Let I :=
L(T ): for every i ∈ [1, k], I ∩ Vi is a doubleton by Property 3, and I is an
independent set of G by Property 4.
• Conversely, assume that there exists an independent set I of G such that

I ∩ Vi is a doubleton for all i ∈ [1, k]. For each i ∈ [1, k], let ai and bi be
the two elements of I∩Vi. The tree T := Hk[〈a1, b1〉 , 〈a2, b2〉 , . . . , 〈ak, bk〉] is
compatible with {C, C̃} according to Property 3. Furthermore, T is also com-
patible with {Se : e ∈ E} according to Property 4. We have thus exhibited
a tree T of size q compatible with T .

Remark 3. 2�D/2� = O(k) is enough to obtain Result (R2). But, our construction
does not ensure that 2�D/2� is a function of k only. Hence, our reduction is not
exactly an FPT-reduction yet. Anyway, this can be easily repaired. Collapse
2 $log k% − 1 consecutive internal edges in B1 to obtain a tree B′

1 of maximum
degree 2 $log k%+ 1 and add to T the tree C′ := Hk[B′

1, B2, . . . , Bk]. 	
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Abstract. Macro-evolutionary processes (e.g., gene duplication and
loss) have rarely been incorporated into gene phylogeny reconstruction
methods. Durand et al. [5] have proposed a polynomial time dynamic
programming algorithm to find the gene family tree that optimizes a
macro-evolutionary criterion which is the weighted sum of the number of
gene duplications and losses. The complexity of this algorithm is O(nm2)
where n is the number of species and m is the maximum number of copies
of the gene in a species. In this paper, we propose an improved algorithm
with time complexity of O(nm) for solving this problem. We also show,
that the problem can be solved in O(n) if unit costs are considered for
both loss and duplication.

1 Introduction

One of the main goals of evolutionary biology is the reconstruction of the evo-
lutionary history of the current species. Based on the assumption of common
ancestors, this history can be represented as a tree, called a phylogenetic tree.
The internal nodes correspond to ancestral species and the leaves are the cur-
rent species. With the rise of molecular biology, DNA sequences of genes have
been available. These sequences can be treated as characters from which one can
estimate phylogenetic trees (see, for example, [7, 8, 15]). However determining
which genes are comparable can be a problematic. There exists a large number
of related genes that have evolved through the process of gene duplication. Once
a gene has been duplicated, each copy can evolve distinct variations. Distinct
copies of the same gene are called paralogues. As a result, a single species may
contain none, one, or several copies of what was a single gene in an ancestor. In
order to build a tree which reflects the evolution of species containing a given
gene, it is essential to know which copies of the gene are the comparable ones.
The tree explaining the evolution of a set of genes is called gene tree and the tree
describing the evolution of species is the species tree. The gene trees and species
tree may be different in topology because they present evolutionary relations of
different entities. This is mainly due to the gene duplications and losses which
are known also as the main macro-evolutionary events.

A combination of two types of events should be considered in the determi-
nation of the evolutionary history of a gene family: micro-evolutionary events
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(sequence evolution) and macro-evolutionary events (e.g., gene duplication and
loss). A good review of the past models considering both micro- and macro-
evolutionary operations can be found in [5]. The term tree reconciliation was
introduced by Goodman et al. [9] for mapping a gene tree to a species tree.
Algorithms and combinatorial properties of the reconciliated trees have been ex-
tensively studied (see for example [2, 6, 10, 11, 12, 13, 14, 16]). Arvestad et al. [1]
have proposed a Bayesian approach for consideration of both macro- and micro-
evolutionary events in a unified model. A good estimation of the parameters in
the Bayesian approach needs large datasets. The expensive computation time is
another problem of the Bayesian approach. On the other hand, as stated in [5]
a unified Bayesian model is a strength when both sequence evolution and gene
duplication and loss can be modeled by neutral stochastic process which is not
the case for the data under strong selective pressure.

In a recent work on unified models, Durand et al. in [5] have developed a hybrid
(two-phase) approach to gene tree reconstruction that incorporates sequence evo-
lution, gene duplication and gene loss for the reconstruction of phylogenies. This
unified approach is mainly based on a dynamic programming algorithm they
propose to find all most parsimonious phlyogenies w.r.t a macro-evolutionary
model of gene duplication and loss. The number of members of the gene family
in each species is given in the input; the output is a tree (or trees) with fewest
duplications and losses required to explain the data. Note that the existence of
a polynomial time algorithm for this problem is interesting because most of the
problems in phylogeny reconstruction are NP-Hard [3, 4]. In the first phase of
the hybrid approach, only the micro-evolutionary events are considered and a
tree is constructed using the sequence evolution operations. The regions of the
tree which are not strongly supported by the sequence data are refined with
respect to a macro-evolutionary parsimony model in the second phase of the
approach. The parts of the tree with strong support are left intact. The macro-
evolutionary events are used only for explaining the areas where the sequence
data cannot resolve the topology, so the total search space is reduced. As a
result, this method considers both types of events with modest computational
requirements.

In this paper, we suggest a faster algorithm for the macro-evolutionary phy-
logeny problem defined in [5] which improves the overall time of reconstruction
of the tree considering micro- and macro-evolutionary events. The worst case
running time of our algorithm is a factor of m smaller than the previous worst
case, where m is the maximum number of the gene copies in a species. Note that
an improvement of O(m) is important because a gene family (like, e.g. kinases)
can have a large number of duplicates. We will focus on the combinatorial prop-
erties of the structure of optimal histories of the macro-evolutionary phylogeny
problem. Using these properties, we propose an improved algorithm for solving
this problem.

The paper is organized as follows: in Section 2, we describe the model and
present the formal definition of the problem. In Section 3, we present some
combinatorial properties of the optimal answers which will be useful for our
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algorithm design. In Section 4, we propose an improved algorithm for solving
the macro-evolutionary phylogeny problem. We show that our improvement can
be even more in the case of the unit cost duplication and loss events. Finally
Section 5, goes to the conclusions.

2 Problem Description

As stated in the introduction, a single current species may have zero, one, or
several copies of what was a single gene in an ancestor. The macro-evolutionary
phylogeny problem tries to explain these different multiplicities of the genes in
the current species by duplications and losses. Note that as the sequence infor-
mation (sequence evolution) is not considered in this model, only the number
of present genes of each species and the species tree is enough for the compu-
tations. There are infinitely many different histories which can be considered to
generate the given numbers of copies of a gene in the current species. But here
we will be interested by the histories which use the fewest number of losses and
duplications for explaining the data.

The optimization criterion is based on the cost of duplication and loss. Let
the cost of a duplication be denoted by cδ and the cost of a loss be denoted by
cλ. The D/L score of a gene tree is cλL+ cδD, the weighted sum of the number
of duplications, D, and the number of of losses, L, in the tree.

Each history can be represented as a species tree, where each node is annotated
with its multiplicity; that is the number of gene copies extant in the species
associated with that node. The multiplicity of the root must be one, while the
multiplicity of the leaves, denoted m1, ...,ms are specified in the input. One
should note that each duplication operation, increases the number of gene copies
in the species by one. Similarly, each loss decreases the number of gene copies of
the species associated to a node. Another way to see the problem is to consider
for each node the number of gene copies which it has received from its parent
node and the number of genes it passes to its children. Suppose that i gene
copies exist in species x and it passes j copies to each of its children. If j > i,
j− i duplications are needed to explain this change. When j < i, i− j losses are
needed to explain this part of the tree. Finally, if i = j, the minimal cost event
can be a speciation (without any loss or duplication).

In Figure 1(a), a species tree together with multiplicities of a given gene in
the current species is given. In Figure 1.b and 1.c, two macro-evolutionary histo-
ries are considered for this species tree. The tree (1.b) explains the data by one
duplication and one loss while the tree (1.c) uses two duplications. If cλ > cδ

then tree (1.c) is the optimal history. If cλ < cδ then tree (1.b) is the opti-
mal history. Finally if cλ = cδ both trees are optimal histories of this species
tree.

The formal definition of the macro-evolutionary phylogeny problem as defined
in [5] is as follows:
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a)

HumanMouse

Frog

m=2m=1

m=2

b)
1

2 2

22
2

1 2

c)
1

1 2

1 1

11
2

Fig. 1. a) A species tree with three species and multiplicities for each species; b) an
annotation of the species tree with the number of gene copies: one duplication at root
and one loss in mouse; c) another alternative of annotation (history): two duplications
in human and in frog. Depending on the costs of duplication and loss, the optimal
history for tree (a) may be tree (b) or (c) or both of them.

Macro-evolutionary Phylogeny Problem
Input: A rooted species tree, TS with s leaves; a list of multiplicities m1, ...,ms,
where ml is the number of gene family members found in species l; weights cλ

and cδ.
Output: The set of all rooted gene trees {TG} with Σs

l=1ml leaves such that
D/L Score of TG is minimal.

As mentioned above, the output can be represented only by annotation of the
species tree by the number of gene copies in different nodes and number of genes
a node passes to its children. Through this paper we use the entering number of
genes for a given subtree rooted at v to denote the number of genes that node v
has received from its parent. The entering number of genes for root in a history
should be one.

In [5] the authors propose a dynamic programming approach for solving the
macro-evolutionary phylogeny problem. The idea is to consider all possible mul-
tiplicities for each internal node. The algorithm fills a table Cost[v, i, j] for this
aim which is the minimum D/L score for the subtree rooted at v where v has i
entering copies and it passes j gene copies to each of its children. The table en-
tries are computed for any node v of the tree and any two numbers 1 ≤ i, j ≤ m
where m is the maximum multiplicity for a leaf of the tree. Once this table is
filled recursively, reconstructing the gene trees using this table is immediate.
The complexity of the dynamic programming part (and the whole algorithm)
is O(nm2) for giving one optimal history and O(nm2 + nmk) for reporting k
optimal histories.

In this work we show that one can compute faster the optimal histories with-
out filling the dynamic programming table Cost[v, i, j]. In Section 3, we study
the properties the minimal generating cost function for the optimal histories.
This leads us to an algorithm which runs O(m) times faster than the previ-
ous algorithm. Then we show that this complexity can still be improved by an
additional factor of O(m) for the unit duplication/loss function (cλ = cδ = 1).
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3 Properties of Optimal Histories

In this Section, we study the properties of function g(x, T ) defined as follows:

Definition 1. For a given tree T and a given list of multiplicities for its leaves,
g(x, T ) is defined to be the minimum D/L score for duplication/loss history of
tree T where the root of the tree T has x entering copies of genes.

In an optimal history, in a given node there either is no event or a first duplication
(or loss) event is followed by an optimal history. If we denote the left and the
right subtree of tree T by TL and TR respectively, then we have:

g(x, T ) = min

⎧⎨⎩
g(x + 1, T ) + cδ (1)
g(x− 1, T ) + cλ (2)
g(x, TL) + g(x, TR) (3)

(1)

Note that as the costs are positive (cδ, cλ > 0), for a sufficiently large N ,
g(x, TL)+g(x, TR) is smaller than g(x+N, T )+Ncδ and g(x−N, T )+Ncλ. This
shows that the recurrences are finite for any tree T and integer x because TL

and TR are smaller than T . The following inequalities are the immediate result
of this Equation (1):

g(x, T ) ≤ g(x + k, T ) + k.cδ

g(x, T ) ≤ g(x− k, T ) + k.cλ
(2)

Let us define the optimal generating set of entering genes number for a tree as
follows:

Definition 2. For a given tree T and a given list of multiplicities for its leaves,
OPT (T ) is defined as the set of all integers x such that for any integer x′,
g(x, T ) ≤ g(x′, T ). This optimal cost itself is denoted by opt(T ).

The following inequality relates the optimal cost of a tree with the optimal costs
of its children.

Lemma 1. Let T be a binary tree and TL (resp. TR) be its left (resp. right)
subtree.We have opt(T ) ≥ opt(TL) + opt(TR).

This is due to the fact that the optimal history of T includes a generation of TL

and a generation of TR as a part of it. The proof is easy and is omitted.
We will prove that OPT (T ) is an integer interval (a set of consecutive integer

numbers) for any tree T . We denote the integer interval {x, x+1, ..., y} by [x, y]
for any x ≤ y.

Proposition 1. For any tree T with given input multiplicities for the leaves,
OPT (T ) is an integer interval.

Proposition 1, states that the function g(x, T ) is minimum in an integer interval
[x1, x2] which is denoted by OPT (T ). We show that the function g(x, T ), is
strictly decreasing for x ≤ x1 and strictly increasing for x ≥ x2.
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Proposition 2. Let T be a binary tree with given multiplicities for leaves and let
OPT (T ) be [x1, x2]. The function g(x, T ) is strictly decreasing for all x smaller
than x1 and strictly increasing for all x larger than x2.

We will also show that g(x, T ) is a convex function, which is Δg(x, T ) = g(x +
1, T )− g(x, T ) is an increasing function.

Proposition 3. Let T be a binary tree with given multiplicities for leaves.
g(x, T ) is a convex function.

These three propositions together show that the general structure of function
g(x, T ) is like the function given in Figure 2.

 
Optimal Interval

 Strictly increasingStricly decreasing

x

g(x,T)

Fig. 2. The general structure of g(x, T ). In range (−∞,+∞), g(x,T ) is firstly strictly
decreasing then it takes its minimum on an interval (which may be just one point) and
then it is strictly increasing. The function is convex; Δg(x,T ) is increasing. For large
values of x, we have Δg(x,T ) = cλ. For sufficiently small values of x, Δg(x,T ) = −cδ.

We also show that for sufficiently large values of x, we have Δg(x, T ) = cλ.
If would be convenient to extend the definition of function g(x, T ) for negative
values of x 1; then for sufficiently small values of x, we have Δg(x, T ) = −cδ.

Rather than proving the above three propositions separately, we prove them
all together by induction on the size of the tree.

Proof: The proof is done by induction on the size of the tree. As the base
step, let us consider a tree T which has one leaf with multiplicity p. In this case
it is easy to verify that

g(x, T ) =

⎧⎨⎩0 if x = p
(p− x).cδ if x < p
(x− p).cλ if x > p

All the three propositions are true for this function. Now suppose that the three
propositions are true for any tree with strictly less than k leaves (k > 1), and
1 This is obviously only a theoretical extension because the number of genes cannot

be negative.
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consider a tree T with k leaves. Both left and right subtrees of T which are
denoted by TL and TR have less than k leaves so the three propositions are true
for them by induction hypothesis.

Consider an interval I of integers where g(x, TL) is non-decreasing and
g(x, TR) is non-increasing. The main part of the proof is that we show:

∀x ∈ I : g(x, T ) = g(x, TL) + g(x, TR) (3)

We prove this by contradiction. Suppose (3) is not true: there exists x in I, such
that g(x, T ) < g(x, TL) + g(x, TR). By (1), without loss of generality we sup-
pose that g(x, T ) = g(x+ 1, T ) + cδ. Remember that the number of consecutive
duplications in a node in optimal generation is finite; there exists u such that
g(x, T ) = g(x+ u, T ) + ucδ and g(x+ u, T ) = g(x+ u, TL) + g(x+ u, TR). So we
have:

g(x + u, T ) + ucδ < g(x, TL) + g(x, TR)
⇒ g(x + u, TL) + g(x + u, TR) + ucδ < g(x, TL) + g(x, TR)
⇒ ucδ < g(x, TL)− g(x + u, TL)︸ ︷︷ ︸

≤0

+ g(x, TR)− g(x + u, TR)︸ ︷︷ ︸
≤u.cδ

⇒ ucδ < ucδ

In the case that g(x, T ) = g(x − 1, T ) + cλ < g(x, TL) + g(x, TR), similar
contradiction can be obtained and this completes the proof of (3). Symmetrically
if g(x, TL) is decreasing and g(x, TR) is increasing in an interval equality (3) is
correct. As a consequent of this equality, g(x, T ) is convex in the interval I
(because the sum of two convex functions is convex). Note that if the optimal
generating interval for TL and TR are [l1, l2] and [r1, r2] respectively, then in the
interval I = [min{l1, r1},max{l2, r2}], the equality (3) is correct (see Fig. 3).

Now let us consider the interval I+ = [max{l2, r2}+ 1,+∞). In this interval
both g(x, TL) and g(x, TR) are strictly increasing by the induction hypothesis.
It is easy to verify that the function g(x, T ) < g(x+ 1, T ) + cδ and so g(x, T ) is
equal to the minimum of g(x−1, T )+cλ and g(x, TL)+g(x, TR). If for all values
of x in this interval we have g(x, T ) = g(x, TL) + g(x, TR) then g(x, T ) becomes
strictly increasing and convex as the sum of two strictly increasing and convex
functions. Otherwise, consider the first value of x0 in the interval I+ such that
g(x0, T ) = g(x0 − 1, T ) + cλ < g(x0, TL) + g(x0, TR). By the way we defined
x0, we have g(x0 − 1, T ) = g(x0 − 1, TL) + g(x0 − 1, TR). Consequently, we have
Δg(x0 − 1, TL) + Δg(x0 − 1, TR) > cλ. On the other hand g(x, TL) and g(x, TR)
are convex and so Δg(x, TL) and Δg(x, TL) are increasing. So,

∀x ≥ x0 : g(x, T ) = g(x− 1, T ) + cλ (4)

The function g(x, T ) is strictly increasing and convex for any x ≥ x0, so
g(x, T ) is convex and strictly increasing for any x in I+. Similarly, we can show
in an interval I− where both g(x, TL) and g(x, TR) are strictly decreasing, g(x, T )
is strictly decreasing and convex.
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In order to complete the proof we need to consider the different possible config-
urations of g(x, TL) and g(x, TR). Figure 3 shows the three possible arrangements
of the optimal intervals of the two functions.

a)

1 2 3 4 5

b)

1 2 3 4 5

c)

1 2 3 4 5

Fig. 3. Different possible configurations of g(x,TL) and g(x,TR)

In all three cases intervals 1 and 5 refer to the I− and I+ in the proof. Interval
2 and interval (3,4) refer to the interval I in the proof. The proof of the convexity
in the exchange points of these intervals is easy and is omitted. It is also easy to
show (by Lemma 1) that in cases (a) and (b) the optimal interval of T is inteval 3.
In case (c) the optimal interval is an interval which is included in interval 3. 	


4 Algorithm

In this section we present an algorithm for computation of the optimal D/L score
histories for a given tree with multiplicities for the leaves. Algorithm 1, fills the
table g[x, T ] (corresponding to function g(x, T )) for any 1 ≤ x ≤ m and for all
subtrees of T . g(x, T ) is not computed for non positive values of x because it
is not biologically meaningful. On the other hand an optimal solution has never
more than m genes present in a species so there is no need to compute g(x, T )
for x > m.

Algorithm 1. GenCost(tree T)
1. if T is a leaf then

1.1 for i ← 1 to m do
1.1.1 if i ≥ label(T ) then g[i, T ] ← (i − label(T )) × cλ

1.1.2 if i < label(T ) then g[i, T ] ← (label(T ) − i) × cδ

1.2 exit
2. GenCost(TL); GenCost(TR);
3. [l1, l2] ← OPT (TL); [r1, r2] ← OPT (TR)
4. t1 ← min{l1, r1}; t2 ← max{l2, r2}
5. for i ← t1 to t2 do g[i, T ] ← g[i, TL] + g[i, TR]
6. for i ← t2 + 1 to m do g[i, T ] ← min{g[i − 1, T ] + cλ, g[i, TL] + g[i, TR]}
7. for i ← t1 − 1 downto 1 do g[i, T ] ← min{g[i + 1, T ] + cδ, g[i, TL] + g[i, TR]}

Fig. 4. Algorithm 1 fills table g[x, T ] from leaves to the root

The correctness of the algorithm is a result of the proof of the propositions
given in Section 3. The complexity of the algorithm is O(mn) where n is the
number of species and m is maximum number of gene copies in a species.
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Once table g has been determined by Algorithm 1, finding one (or all) optimal
D/L score history is easy. Starting with g[1, T ] at each step one checks how g
is minimized (i.e. which of the lines in recurrences 1 is minimizing g(x, T )); if
minimization is done by the first (or second) line, a duplication (or loss) will be
reported at this node and recursively the computation of the optimal answer for
g(x+ 1, T ) (or g(x− 1, T )) is continued. In the case g(x, T ) is minimized by the
recurrence 1.3, without giving any more events for the node T , one adds to the
output an optimal history of g(x, TL) and g(x, TR).

The total complexity of our algorithm will be O(mn) for computing one op-
timal answer and O(mn + nk) for computing k optimal answers if the number
of optimal answers is not smaller than k. Note that multiple optimal histories
correspond to the nodes and values of x such that g is minimized by two lines
of recurrences 1.

In practice depending on the values of cδ and cλ this complexity can be im-
proved. Let cδ and cλ be two positive integers such that gcd(cλ, cδ) = 1. The func-
tion g(x, T ) is convex and the Δg(x, T ) is an increasing function; on the other
hand −cδ ≤ Δg(x, T ) ≤ cλ. This suggests to store and update the function g just
by computing the points that (Δg) changes its value from x to x + 1. This will
reduce the complexity of the algorithm to O(cn) where c = cδ+cλ. The total com-
plexity of the algorithm for generating k optimal histories is O(n(min{m, c}+k)).
A special case when cδ = cλ is commented below:

Unit Loss/Duplication Costs. When cδ = cλ = 1, function g(x, T ) becomes
very simple. If OPT (T ) = [k1, k2], g(x, T ) is constant in [k1, k2], increasing with
step 1 for x ≥ k2 and decreasing with step -1 for x ≤ k1. As stated above
the complexity of the algorithm will become O(nk) for finding k optimal trees.
The optimal intervals can be computed easily in this case. Let us define the ⊗
operation on integer intervals as follows:

Definition 3. For any two integer intervals [a1, a2] and [b1, b2] where a1 ≤ b1,
the ⊗ intersection of these integer intervals is denoted by [a1, a2] ⊗ [b1, b2] and
is defined as follows:

1) if b2 ≤ a2 then [a1, a2]⊗ [b1, b2] := [b1, b2]
2) if b1 ≤ a2 < b2 then [a1, a2]⊗ [b1, b2] := [b1, a2]
3) if a2 ≤ b1 then [a1, a2]⊗ [b1, b2] := [a2, b1]

The following proposition which is a result of Propositions 1 to 3 can be used as
a basis of an algorithm for the unit costs macro-evolutionary problem.

Proposition 4. Let T be a binary tree , with more than one leaf, let TL and TR

denote the left and the right subtrees of the root of the tree T ; OPT (T ) can be
computed as follows:

OPT (T ) := OPT (TL)⊗OPT (TR).
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5 Conclusion

In this paper, we have studied some combinatorial properties of the optimal
D/L histories for a given species tree and the number of gene copies found in
each species. Based on these properties we proposed an improved algorithm for
finding the optimal histories in O(m) order faster than the previous algorithm.
We also showed that the improvement of the algorithm is O(m2) for the case of
unit cost duplication/loss function. For a gene family like kinases with hundreds
of duplicates, this improvement is important.

The macro-evolutionary phylogeny problem has been shown to be useful
and interesting in order to build phylogenies based on both macro and micro-
evolutionary processes (see [5]). The current work, improves the running time of
such unified models which is essential for making large phylogenies.
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Abstract. Pattern Matching with Properties (Property Matching, for
short), involves a string matching between the pattern and the text, and
the requirement that the text part satisfies some property.

It is straightforward to do sequential matching in a text with prop-
erties. However, indexing in a text with properties becomes difficult if
we desire the time to be output dependent. We present an algorithm
for indexing a text with properties in O(n log |Σ| + n log log n) time for
preprocessing and O(|P | log |Σ|+ toccπ) per query, where n is the length
of the text, P is the sought pattern, Σ is the alphabet, and toccπ is the
number of occurrences of the pattern that satisfy some property π.

As a practical use of Property Matching we show how to solve Weighted
Matching problems using techniques from Property Matching. Weighted
sequences have been introduced as a tool to handle a set of sequences that
are not identical but have many local similarities. The weighted sequence is
a “statistical image” of this set, where we are given the probability of every
symbol’s occurrence at every text location. Weighted matching problems
are pattern matching problems where the given text is weighted.

We present a reduction from Weighted Matching to Property Match-
ing that allows off-the-shelf solutions to numerous weighted matching
problems including indexing, swapped matching, parameterized match-
ing, approximate matching, and many more. Assuming that one seeks the
occurrence of pattern P with probability ε in weighted text T of length
n, we reduce the problem to a property matching problem of pattern P
in text T ′ of length O(n( 1

ε
)2 log 1

ε
).

1 Introduction

One of the technical problems that pattern matching has had to deal with is
that of matching a pattern in a text with properties. The idea is that the pattern
matching itself is insufficient, but the particular text substring that is matched
also needs to satisfy a desired property. Some examples come from molecular
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biology, where it has long been a practice to consider special genome areas by
their structure.

It is straightforward (as we show later) to solve sequential pattern matching
with properties since the intersection of the properties and matching can be done
in linear time. However, the problem becomes more complex when it is required
to index a text with properties. The classical pattern matching problem is that
of finding all occurrences of pattern P = p1p2 · · · pm in text T = t1t2 · · · tn, where
T and P are strings over alphabet Σ. In the indexing problem we are given a
large text that we want to preprocess in a manner that allows fast solution of
the following queries: ”Given a (relatively short) pattern P find all occurrences
of P in T in time proportional to |P | and the number of occurrences”.

The indexing problem and its many variants have been central in pattern
matching and information retrieval. However, when it comes to indexing a text
with properties, intersecting the pattern with the properties may give a worst
case that is not output-dependent.

In this paper we give a precise definition of pattern matching with proper-
ties and provide a data structure that preprocesses the text in O(n log |Σ| +
n log logn) time and supports queries in O(|P | log |Σ| + toccπ) time per query,
where n is the text length, P is the sought pattern, |Σ| is the alphabet, and
toccπ is the number of occurrences of P that satisfy some property π. These are
almost the same bounds that exist in the literature for ordinary indexing.

We now turn to an apparently unrelated problem. Among the challenges that
the pattern matching field is currently grappling with are those of motif dis-
covery, and local alignment. Recently, the concept of weighted sequences was
introduced as a suggested method of satisfying the above needs. A weighted se-
quence is essentially what is also called in the biology literature Position Weight
Matrix (PWM for short) [5]. The weighted sequence of length m is a |Σ|×m ma-
trix that reports the frequency of each symbol in finite alphabet Σ (nucleotide,
in the genomic setting) for every possible location.

Iliopoulos et al. [4] considered building very large Position Weight Matrices
that correspond, for example, to complete chromosome sequences that have been
obtained using a whole-genome shotgun strategy. By keeping all the information
the whole-genome shotgun produces, it should be possible to identify information
that was previously undetected after being faded during the consensus step. This
concept is true for other applications where local similarities are thus encoded.
It is therefore necessary to develop adequate algorithms on weighted sequences,
that can be an aid to the application researchers for solving various problems
they are liable to encounter.

It turns out that handling weighted sequences is algorithmically challeng-
ing [4] even for simple tasks such as exact matching. It is certainly desirable to
be able to answer more ambitious questions, such as scaled weighted matching,
swapped weighted matching, parameterized weighted matching as well as to index
a weighted sequence.

We develop a general framework that allows solving all the problems men-
tioned above. In particular this presents the first known algorithms for
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problems such as scaled matching, swapped matching and parameterized match-
ing in weighted sequences. Since most current methods for handling weighted
matching use techniques that are not conductive to indexing (e.g., convolutions),
it is surprising that our framework also enables indexing weighted sequences with
the same query time as in the non-weighted case.

These results are all enabled by a reduction of weighted matching to property
matching. This reduction creates an ordinary text of length O(n(1

ε )2 log 1
ε ) for

the weighted matching problem of length n text and desired probability ε. Since
the outcome of the reduction is an ordinary text with a property, then all pattern
matching problems that can be solved in ordinary text and pattern can have their
weighted versions solved with the time degradation of the reduction.

The indexing problem for weighted text becomes a problem of indexing an
ordinary (longer) text with properties. We can now use the indexing text with
properties result to solve weighted indexing as well.

2 Property Matching – Definitions

For a string T = t1 · · · tn, we denote by Ti···j the substring ti · · · tj . The suffix
Ti···n is denoted by T i, and the suffix tree of T is denoted by ST (T ). The leaf
corresponding to T i in ST (T ) is denoted by leaf(T i). The label of an edge e in
ST (T ) is denoted by label(e).

For a node u in the suffix tree of a string T , we denote by STu the subtree of
the suffix tree rooted by u. The label of u is the concatenation of the labels of
the edges on the path from the root of the suffix tree to u, in the order they are
encountered, and is denoted by label(u).

We are now ready to define a property for a string.

Definition 1. A property π of a string T = t1 · · · tn is a set of intervals π =
{(s1, f1), . . . , (st, ft)} where for each 1 ≤ i ≤ t it holds that: (1) si, fi ∈ {1, . . . , n},
and (2) si ≤ fi. The size of property π, denoted by |π|, is the number of intervals
in the property (or in other words - t).

We assume that the properties are given in standard form as defined below.

Definition 2. A property π for a string of length n is said to be in standard
form if: (1) it is in explicit form, (2) for any 1 ≤ i ≤ n, there is at most one
(sk, fk) ∈ π such that sk = i, and (3) s1 < s2 < · · · < s|π|.

3 General Pattern Matching with Properties

This section defines the notion of general pattern matching with properties.
following definition.

Definition 3. Given a text T = t1 · · · tn with property π, pattern P = p1 · · · pm,
and a definition of a matching α, we say that P α-matches Ti···j under property
π if P α-matches Ti···j, and there exists (sk, fk) ∈ π such that sk ≤ i and j ≤ fk.
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The following definition will assist us in solving property matching problems.

Definition 4. For a property π of a string T = t1 · · · tn, the end location of 1 ≤
i ≤ n, denoted by end(i), is defined to be the maximal fk such that (sk, fk) ∈ π
and sk ≤ i ≤ fk. If no such fk exists, we say that end(i) = NIL.

Note that end(i) can easily be calculated for all locations i in T in time O(n)
(recall that π is given in standard form). Now, given a text T = t1 · · · tn and a
pattern P = p1 · · · pm, if there exists an algorithm for an α-matching problem
that runs in time O(gα(n,m)), then given a text T with property π, and pattern
P , we can find all Ti···j that α-match P in time O(gα(n,m)+n) = O(gα(n,m)).

However, the above reduction does not suffice for the property indexing prob-
lem (defined below). Before explaining why, we first provide a formal definition
of the property indexing problem.

Definition 5. Property Indexing Problem (PIP) Given a text string T =
t1 · · · tn with property π, preprocess T such that on-line queries of the form ”find
all locations where a pattern string P occurs in T under π” can be answered in
time proportional to the size of the pattern (rather than the text) and the output.

The problem with the PIP is that known indexing data-structures do not suffice.
For example, given a suffix tree for T , we can find all of the occurrences of P
in T in time O(P log |Σ| + tocc) where tocc is the number of the occurrences.
However, tocc is not the number of occurrences of P in T under π; it includes
also the occurrences of P in T that are not occurrences under π. We could solve
this problem by also preprocessing end(i) for all locations i in T as we did before.
However, this would require scanning all of the occurrences of P in T (taking
O(tocc) time), and we would like to answer indexing queries in time dependent
on toccπ, where toccπ is the number of occurrences of P in T under π, which
might be much smaller than tocc. Also, keep in mind that we want a solution
that takes minimal preprocessing time, and requires only linear space. This is
the problem addressed by our new data-structure.

In the next sections we will define our data-structure, show how it is con-
structed in time O(n log |Σ| + n log logn), and finally, show how an indexing
query can be answered in time O(m log |Σ|+ toccπ).

4 The Property Suffix Tree

We now define the data-structure used for solving the PIP. The data-structure
we present is based on the suffix tree - thus, we name it the Property Suffix Tree,
or PST for short. The construction is for a text T = t1 · · · tn with property π.
The idea is based on a lemma that we provide following the next definition.

Definition 6. For a string T with property π and a node u in the suffix tree
of T , we denote by Sπ

u the maximal set of locations {i1, · · · , i�} ⊆ {1, · · · , n}
such that for every ij ∈ Sπ

u we have that: (1) leaf(T ij) is in STu, and (2) if
end(ij) �= NIL then end(ij)− ij > |label(u)|.
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Lemma 1. Let T be a string with property π, and let u and v be two nodes in
the suffix tree of T such that v is u’s parent, then Sπ

u ⊆ Sπ
v .

Proof. The proof follows from definition 6. For any location ij ∈ Sπ
u we know

leaf(T ij) is in STu, thus it is also in STv. We also know that end(ij) − ij >
|label(u)|. Being that |label(u)| > |label(v)|, we have that end(ij)−ij > |label(u)|
> |label(v)|. Due to the maximality of Sπ

v , it must be that ij ∈ Sπ
v . 	


Corollary 1. For a string T with property π, the path from the root of ST (T )
to leaf(T i) can be split into the following two paths: (1) the path consisting of
all nodes u such that i ∈ Sπ

u , and (2) the path consisting of all nodes u such that
i /∈ Sπ

u .

Definition 7. Consider the two paths from Corollary 1, and the ith suffix of T .
Let v be the deepest node on the first path. The location of i in the PST of T is
defined as follows. If end(i)− i = |label(v)|−1 then loc(i) = v. Otherwise, loc(i)
is the edge connecting the two paths.

The idea behind the PST is to move each suffix T i in ST (T ) up to loc(i). We will
later show why this solves the PIP. We now define the PST using an overview
construction. First, we construct ST (T ) using, for example, [6]. Then, for every
suffix T i find loc(i), and maintain a list of locations for each edge e consisting
of all i such that e = loc(i) and for each node u consisting of all i such that
u = loc(i). We denote these lists by suf(e) and suf(u) respectively. Next, we
mark each node u in ST (T ) such that either suf(u) is not an empty list, or u is
connected to some edge e where suf(e) is not an empty list, or u is an ancestor
of a marked node. Now, we delete all of the nodes that are not marked, and
compress non branching paths in the remaining tree to one edge (like we do in
suffix trees). Of course, during the compression of a path into an edge, we must
concatenate all of the suf(u) and suf(e) for all nodes u and edges e on the path,
except for the last node. The concatenation of all of those lists forms the list of
locations loc(e′) for the new edge e′ that will replace the non-branching path.
Finally, we will be interested in ordering suf(e) for the remaining edges in order
to allow efficient querying. This will be explained later.

Note that except for the stage in which we construct suf(e) and suf(u) for
the edges e and nodes u in ST (T ) and the ordering of the lists of locations, the
rest of the algorithm can be easily implemented to take O(n log |Σ|) by building
a suffix tree and using a constant number of depth-first searches (DFS). Also
note that the size of the data structure is clearly linear in the size of T . Thus, it
remains to show how to construct suf(e) and suf(u) for the edges e and nodes u
in ST (T ), and how to order them while allowing us to answer queries efficiently.
This is explained in the next two subsections.

4.1 Constructing Lists of Locations

We now show how to construct suf(e) and suf(u) for every edge e and every
node u in ST (T ). In the following subsection we show how to order suf(e) in a
way that will allow efficient querying.
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In order to find loc(i) for every suffix T i, we use the weighted ancestor queries
that were presented in [3], and improved upon in [1]. The weighted ancestor
problem is defined as follows:

Definition 8. Let T be a rooted tree where each node u has an associated value
value(u) from an ordered universe U such that if v is the parent of u then
value(v) < value(u). The weighted ancestor problem is given a query of the
form WA(u, i) where u is a node in T and i ∈ U , return the node v that is the
lowest ancestor of u such that value(v) < i.

Clearly, if we set the value of a node u to be |label(u)|, then given a leaf leaf(T i),
the answer to the query WA(leaf(T i), end(i)− i) will either give us a node that
is loc(i), or a node that is connected to the edge that is loc(i). In the later case,
we can easily find loc(i) in O(log |Σ|) time. In [1] the weighted ancestor prob-
lem was solved for suffix trees taking O(n) preprocessing time, and O(log logn)
query time. Thus, we can find loc(i) for all T i’s in O(n(log logn+log |Σ|)) time.
However, the suffixes on the edges are not ordered in a way that would allow
efficient indexing queries. We cannot simply order the suffixes by descending
loc(i) − i because this would require sorting, and would take too much time
(we would need to sort the locations on every edge in the tree according to the
appropriate values). To solve this problem, we show in Subsection 4.2 how to
preprocess a set of n′ elements in O(n′) time such that given a value whose
rank1 in the set is k, we can find all of the elements less than or equal to that
value in O(k) time. In Subsection 4.3 we will show how this helps us answer
indexing queries efficiently. Thus, we will run this algorithm on every edge in
the tree, taking a total of linear time. Finally, the time required for constructing
the PST is O(n log |Σ| + n log logn). Note that for constant size alphabets we
are dominated by the n log logn factor.

4.2 Ordering the Suffixes on an Edge

As we previously mentioned, we require a scheme such that given a set of n′

elements we can preprocess those elements in O(n′) time such that given a value
whose rank in the set is k, we can find all of the elements less than or equal
to that value in O(k) time. To solve this algorithm we use the fact that finding
the median of a set of numbers can be done in linear time (e.g., by [2]). The
preprocessing is as follows. First find the median of the set, and separate the
set to the set of values smaller than the median, and the set of the values that
greater than the median (for simplicity, we assume all values are distinct). For
the set of items with value greater than the median, we put them in an array
of size n′, in the second part of the array. We recursively do the same for the
elements less than the median, each time putting the items greater than the
median in the left most part of the unfilled array, until we reach a set of size
one, and we put the remaining element in the first location in the array. Note
that the time required is O(

∑log n′

i=0
n′

2i ) = O(n′).
1 The rank of a value in a set is the number of elements in the set less than or equal

to the value.
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Now, given a query value t with rank k, we proceed as follows. We begin by
comparing t with the first location. If t is smaller, than we output an empty
set. If t is larger, we output the first element as part of the output and continue
on to scan the next two elements in the array. If they are both less than or
equal to t, we output them both, and continue on to the next four elements.
We continue on such that at the ith iteration, if all of the 2i−1 elements are less
than or equal to t, we output them all, and continue to the next 2i items. This
continues until we reach some item whose value is less than t. Say this happens
at iteration number i′. In such a case, we continue to scan all of the 2i′−1 items
of the iteration, outputting only those items with value less than or equal to t,
and then we are done.

Clearly, we output all elements that are less than or equal to t, as once we find
an element that is greater than t in the i′ iteration, we know that all the rest of the
elements in the array (located after the 2i′−1 elements of the current iteration)
have value greater than t (this follows directly from the way we arranged the
array, dividing it around the median). Moreover, the running time is O(k) as
if we stop at iteration i′, this means we output at least

∑i′−1
i=1 2i−1 = Ω(2i′

),
and the running time is at most

∑i′

i=1 2i−1 = O(2i′
). Finally, note that the same

type of technique can be used if we are interested in finding all the elements that
have value larger or equal to t. We will actually be interested in this version of
the problem for ordering the suffixes on the edges.

4.3 Answering Indexing Queries

In this section we describe how to answer indexing queries in O(m log |Σ| +
toccπ). But first, for a node u in the PST we denote by PSTu the subtree of the
PST rooted by u. The indexing query is answered as follows. We first begin by
searching the PST like we search a suffix tree, until we reach a node or an edge.
If we reach a node u, we run a DFS on PSTu, outputting suf(w) and suf(e′)
for every node w and every edge e′ in PSTu. If when searching we reach an edge
e = (u, v) where we match the first � characters of label(e), then we first output
suf(w) and suf(e′) for every node w and every edge e′ in PSTv using a DFS,
and we also output every location i in suf(e) such that end(i)−i > |label(u)|+�.
In order to accomplish the second part, we use the scheme from Subsection 4.2.
it remains to show that the additional amount of time spent (i.e. except for
the search part that takes O(m log |Σ|)) is linear in the size of the output. This
follows from the following lemma.

Lemma 2. Let PST (T ) be the PST of a string T under property π. Then in the
subtree of any node in PST (T ), the size of the subtree is linear in the number of
locations in the union of suf(w) and suf(e′) for every node w and every edge
e′ in the subtree.

Theorem 1. The PIP can be solved in O(n log |Σ| + nlog logn) preprocessing
time, using linear space, where the query time is O(m log |Σ|+ toccπ).
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In the following sections we consider weighted matching problems and show
a general framework for solving weighted matching problems using property
matching.

5 Weighted Matching – Definitions

Definition 9. A weighted sequence T = t1 · · · tn over alphabet Σ is a sequence
of sets ti, i = 1, · · · , n. Every ti is a set of pairs (sj , πi(sj)), where sj ∈ Σ and
πi(sj) is the probability of having symbol sj at location i. Formally,

ti =

⎧⎨⎩(sj , πi(sj)) | sj �= sl for j �= l, and
∑

j

πi(sj) = 1

⎫⎬⎭ .

Definition 10. Given a pattern P = p1 · · · pm over alphabet Σ, we say that the
solid pattern P (or simply pattern P) occurs at location i of a weighted text T
with probability of at least ε if

∏m
j=1 πi+j−1(pj) ≥ ε, where ε is a given parameter

which we call the threshold probability.

Notice that all characters having probability of appearance less than ε are not of
interest to us, since any pattern using such a character will also have probability
of appearance less than ε, which is below the threshold probability. Therefore,
we are only interested in characters having probability of appearance of at least
ε. We call such characters heavy characters.

Definition 11. Given 0 < ε ≤ 1, we classify each location i, 1 ≤ i ≤ n, in
the text into the following three categories: (1) Solid positions where there is
one (and only one) character at location i with probability of appearance exactly
1, (2) Leading positions where there is at least one character at location i with
probability of appearance greater than 1− ε (and less than 1), and (3) Branching
positions where all characters at location i have probability of appearance at most
1− ε.

Notice that if ε ≤ 1
2 , then at every solid and leading position there is only one

heavy character since only one character can have probability of appearance
greater than 1 − ε ≥ 1

2 , whereas in a branching position there maybe several
heavy characters. However, if ε > 1

2 there are no heavy characters in a branching
position since all characters have probability of appearance of at most 1− ε < ε.

In the following section we define the notions of Maximal Factors and Ex-
tended Maximal Factors and show how they are used in the reduction from
weighted matching to property matching.

6 Maximal Factors and Extended Maximal Factors

A weighted pattern matching problem is a pattern matching problem where the
text is weighted. The idea behind our framework is to create a regular text from
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the weighted text in a way that we can run regular pattern matching algorithms
on the regular text while ensuring that the occurrences appear with probability
of at least ε. In order to do so, we first define the notion of maximal factor.

Definition 12. Let T = t1 · · · tn be a weighted text and let X = x1 · · ·xl be a
string. We denote πi(X) = πi(x1) × · · · × πi+l−1(xl). Given 0 < ε ≤ 1, we say
that a string, X, is a maximal factor of T starting at location i if the following
conditions hold: (1) πi(X) ≥ ε, (2) if i > 1, then πi−1(sj) × πi(X) < ε for all
sj ∈ Σ, and (3) if i + l ≤ n, then πi(X)× πi+l(sj) < ε for all sj ∈ Σ.

In other words, a maximal factor starting at location i is a string that when
aligned to location i has probability of appearance at least ε. However, if we
extend the string by even one character to the right and align it to location i or
if we extend the string by even one character to the left and align it to location
i− 1, then the probability appearance of the string drops below ε.

A straightforward approach for transforming the weighted text T to a regular
text would be to simply find all the maximal factors of the text and concatenate
them to a new regular text T’ (of course we will need some kind of a delimiter
character to separate between the factors). The advantage of this approach is
that every pattern that appears in T’ appears also in T with probability of at
least ε, since a maximal factor has probability of appearance at least ε and so
have all of its substrings. Unfortunately, this approach does not suffice. It can
be shown (due to lack of space details are omitted) that the total length of all
maximal factors of a weighted text T = t1 · · · tn could be at least Ω(n2), which
is rather large. Therefore, we define the notion of extended maximal factor, and
show a better upper bound on the total length of all extended maximal factors.
In order to define the extended maximal factor we use the Leading to Solid
Transformation.

Definition 13. The Leading to Solid Transformation of a weighted sequence
T = t1 · · · tn denoted LST(T), is a weighted sequence T ′ = t′1 · · · t′n such that:

t′i =

⎧⎨⎩
ti if i is a solid or a branching position
{(σ, 1)} if i is a leading position and σ is a heavy character
φ if i is a leading position and there are no heavy characters

In essence, LST (T ) is the same as T, where all leading positions become solid.
The only exception is when all characters in a leading position are not heavy,
thus, we ignore that location (set to by φ) and treat each part of LST (T ) divided
by φ separately. For the rest of this paper, we assume LST (T ) has no φ’s.

Notice that this transformation is uniquely defined, since either ε ≤ 1
2 in which

case there is one (and only one) character with probability > 1 − ε, thus, it is
also the only heavy character at that location or ε > 1

2 in which case at every
location there is at most one heavy character.

Another important observation is that the size of LST (T ) is linear in the size
of T and can easily be built in linear time. The LST transformation leads us to
the following definition.
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Definition 14. Given 0 < ε ≤ 1 and a weighted text T , we say that a string
X is an extended maximal factor of T starting at location i if X is a maximal
factor of LST (T ) starting at location i.

We now prove a few properties on maximal factors and extended maximal fac-
tors, that will help us in bounding the total length of all extended maximal
factors of a weighted text.

Lemma 3. Given 0 < ε ≤ 1 and a weighted text T , there are at most � 1ε � heavy
characters at a branching position.

Definition 15. Given 0 < ε ≤ 1 and a weighted text T , we say that a maximal
factor X = x1 · · ·xl passes by location i of T , if X starts at location i′ such that
i′ ∈ [i− l + 1, i].

Lemma 4. Given 0 < ε ≤ 1 and a weighted text T , a maximal factor of T
passes by at most O(1

ε log 1
ε ) branching positions.

Definition 16. Given 0 < ε ≤ 1 and a weighted text T , we say that location i is
a starting location of T , if either i = 1 or i > 1 and ti−1 is not a solid position.

Observe that a maximal factor of T always starts at a starting location, otherwise
it could be extended to the left with solid positions without decreasing the
probability of appearance, which contradicts the maximality of the factor.

The following lemma bounds the number of maximal factors starting from
a starting location in a weighted text T , such that T has no leading positions.
The fact that T has no leading positions implies that this is true for LST (T ) of
any weighted text T , and thus actually bounds the number of extended maximal
factors starting from any location in T .

Lemma 5. Given 0 < ε ≤ 1 and a weighted text T such that T has no leading
positions, there are at most � 1ε � maximal factors starting at a starting location.

Lemma 6. Given 0 < ε ≤ 1 and a weighted text T such that T has no leading
positions, the number of maximal factors passing by each location i in the text
is at most O((1

ε )2 log 1
ε ).

The following theorem bounds the total length of all extended maximal
factors.

Theorem 2. Given 0 < ε ≤ 1 and a weighted text T , the total length of all
extended maximal factors of T is at most O(n(1

ε )2 log 1
ε ).

Proof. This follows immediately from Lemma 6. 	

The following lemma shows that this analysis is tight up to a logarithmic factor.

Lemma 7. Given 0 < ε ≤ 1 and a weighted text T , the total length of all
extended maximal factors of T is Ω(n(1

ε )2).

In the next section we show how to efficiently find all extended maximal factors
of a weighted sequence.
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7 Finding All Extended Maximal Factors in a Weighted
Sequence

Let T = t1 · · · tn be a weighted sequence such that {s1
i , s

2
i , · · · , ski

i } is the set of
characters appearing at location i with positive probability, and {α1

i , α
2
i , · · · , αki

i }
is the matching set of probabilities of the sj

i ’s.
We present a simple brute-force algorithm that given a weighted text T and

a threshold probability ε, outputs all extended maximal factors in T . The algo-
rithm first calculates T ′ ← LST (T ) in linear time (as mentioned above). Then,
starting from each starting location i in T ′, we begin by extending all possible
substrings from location i that appear with probability of at least ε. Each time
we check if some string that we have extended so far can be extended even more
to the right. Once we cannot extend a string, it is outputted (of course, using
delimiters between consecutive outputs of substrings).

Noting that finding LST (T ) from T can be done in linear time, it is easy to
see that the running time of this algorithm is linear in the size of the output,
i.e. linear in the total length of all extended maximal factors. By combining this
result with theorem 1, the corollary follows.

Corollary 2. Given a constant threshold 0 < ε ≤ 1 and a weighted text T , the
total length of all extended maximal factors of T is linear in the length of T ,
and can be found in linear time.

In the following section we show how to solve weighted matching problems by
reducing weighted matching problems to property matching problems.

8 Solving Weighted Matching Problems

Weighted matching problems are regular pattern matching problems where the
text is weighted, and an we say that a pattern appears in the text if the prob-
ability of appearance of the pattern is above some threshold probability ε. We
now show how to reduce this problem to the Property Matching Problem.

Given a weighted string T , we find the string of the extended maximal factors
of T as was described in section 7. Denote this string by T̂ . T̂ is a regular string,
but each location has an associated probability that comes from the original
location of that letter in T (the delimiters are said to have probability 0). Thus,
we can define a property as the set of all intervals (sk, fk) where the product of
the probabilities from location sk to location fk is at least ε, and the product
of the probabilities from location sk − 1 to location fk and from location sk to
location fk + 1 is less than ε. Clearly, if a pattern matches T̂ at some location
under the defined property, then the pattern weight matches T at some location.
Note that this location can be found simply by saving for each location in T̂ the
original location in T that it came from (that will be the match location).
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This reduction immediately gives us the following.
Corollary 3. Weighted matching problems can be solved in the same running
times as property matching except for an O((1

ε )2 log 1
ε ) degradation, where ε is

the threshold probability.
Finally, we can also solve the indexing problem for weighted strings using the
reduction above in O(n(1

ε )2 log 1
ε log |Σ|+ n(1

ε )2 log 1
ε (log log 1

ε + log logn)) pre-
processing time, and O(|P | log |Σ|+toccπ) query time, where toccπ is the number
of occurrences of P in T with probability at least ε.

9 Concluding Remarks

We remark that our framework for solving weighted matching problems yields
solutions to hitherto unsolved problems in weighted matching, such as scaled
matching, swapped matching, parameterized matching and indexing, as well as
efficient solutions to others such as exact matching and approximate matching.

Furthermore, we note that in practice, when dealing with weighted matching
problems, ε is usually considered as a constant. Thus, solving problems such as
exact matching, scaled matching, swapped matching, parameterized matching,
approximate matching and many more on weighted sequences can be done, using
our framework, in the same running times as the best known algorithms for the
non-weighted versions, while weighted indexing can be done in O(n(log |Σ| +
log logn)) preprocessing time and O(|P | log |Σ| + toccπ) query time for text of
length n, where toccπ is the number of occurrences of pattern P in T with
probability of at least ε.
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Abstract. The rapidly growing need for analysis of digitized images
in multimedia systems has lead to a variety of interesting problems in
multidimensional pattern matching. One of the problems is that of scaled
matching, finding all appearances of a pattern, proportionally enlarged
according to an arbitrary real-sized scale, in a given text.

The best known algorithm for this problem uses techniques from dic-
tionary matching to solve the problem in O(nm3+n2m log m) time using
O(nm3 +n2) space, where the text is a two-dimensional n×n array and
the pattern is a two-dimensional m × m array.

We present a new approach for solving the scaled matching problem
improving both the running times and the space requirements. Our al-
gorithm runs in O(n2m) time and uses O(n2) space. This time includes
the preprocessing (O(m3) time and O(m2) space), since the problem is
only defined for m ≤ n.

1 Introduction

Wide advances in technology, e.g. computer vision, multimedia libraries, and
web searches in heterogeneous data, point to a glaring lack of a theory of mul-
tidimensional matching.

The last decade has seen some progress in this direction. Issues arising from
the digitization process were examined by Landau and Vishkin [11]. Once the
image is digitized, one wants to search it for various data. A whole body of
literature examines the problem of seeking an object in an image.

In reality one seldom expects to find an exact match of the object being sought,
henceforth referred to as the pattern. Rather, it is interesting to find all text
locations that “approximately” match the pattern. Various types of differences
that make up these “approximations” were considered in the literature. The
earliest work dealt with local errors - introduced by differences in the digitization
process, noise, and occlusion (the pattern partly obscured by another object).
Pattern matching with rotation - the pattern image appearing in the text in a
different angle, has been also extensively researched [9, 8, 7].

The pattern matching with scaling problem is concerned with seeking all occur-
rences of the pattern in all sizes. Amir, Landau and Vishkin showed in 1992 that

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 200–210, 2006.
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all occurrences of a given rectangular pattern in a text can be found in all discrete
scales in linear time. By discrete scales we mean natural numbers, i.e. the pattern
scaled to sizes 1, 2, 3, . . .. The algorithm was linear for fixed bounded alphabets,
but was not linear for unbounded alphabets. This result was improved in [5].

The early attempt to handle real scales was done for one dimensional text and
pattern [2]. A satisfactory rigorous definition of scaling in an “exact matching”
sense of combinatorial pattern matching was presented in [3]. The running time
and space of the algorithm presented there are O(nm3+n2m logm) and O(nm3+
n2), respectively. An improved algorithm for the one dimensional case appeared
in [4].

In this paper we improve the results of the two-dimensional scaled matching
with real scales problem. Our algorithm runs in O(n2m) time and uses O(n2)
space. The authors apologize for the lack of proofs for some lemmas. They could
not be included for lack of space and will appear in the journal version.

2 Preliminaries and Definitions

Definition 1. Let T be a two-dimensional n× n array over some alphabet Σ.

1. The unit pixels array for T (T 1X) consists of n2 unit squares, called pixels
in the real plane (2. The corners of the pixel T [i, j] are (i− 1, j − 1), (i, j −
1), (i − 1, j), and (i, j). Hence the pixels of T form a regular n × n array
that covers the area between (0, 0), (n, 0), (0, n), and (n, n). Point (0, 0) is
the origin of the unit pixel array. The center of each pixel is the geometric
center point of its square location. Each pixel T [i, j] is identified with the
value from Σ that the original array T had in that position. We say that the
pixel has a color or a character from Σ. See Figure 1 for an example of the
grid and pixel centers of a 7× 7 array.

2. Let r ∈ (, r ≥ 1. The r-ary pixels array for T (T rX) consists of n2 r-
squares, each of dimension r × r whose origin is (0, 0) and covers the area
between (0, 0), (nr, 0), (0, nr), and (nr, nr). The corners of the pixel T [i, j]
are ((i− 1)r, (j − 1)r), (ir, (j − 1)r), ((i− 1)r, jr), and (ir, jr). The center of
each pixel is the geometric center point of its square location.

Notation: Let r ∈ (. ‖r‖ denotes the rounding of r, i.e. ‖r‖=
{
�r� if r − �r�<.5;
$r% otherwise.

Definition 2. Let T be an n× n text array, P be an m×m pattern array over
alphabet Σ, and let r ∈ (, 1 ≤ r ≤ n

m . We say that there is an occurrence of P
scaled to r at text location (i, j) if the following conditions hold:

Let T 1X be the unit pixels array of T and P rX be the r-ary pixel arrays of P .
Translate P rX onto T 1X in a manner that the origin of P rX coincides with location
(i−1, j−1) of T 1X . Every center of a pixel in T 1X which is within the area covered
by (i− 1, j− 1), (i− 1, j− 1+mr), (i− 1+mr, j− 1) and (i− 1+mr, j− 1+mr)
has the same color as the r-square of P rX in which it falls.

The colors of the centers of the pixels in T 1X which are within the area covered
by (i−1, j−1), (i−1, j−1+mr), (i−1+mr, j−1) and (i−1+mr, j−1+mr)
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define a ‖mr‖ × ‖mr‖ array over Σ. This array is denoted by P s(r) and called
P scaled to r.

Understanding, and properly using, the shift from the continuous to the discrete
and back are key to the efficiency of our algorithms. To this effect we need the
following functions.

Definition 3. Let k be a discrete length of a pattern prefix in any dimension,
i.e. the number of consecutive rows starting from the pattern’s beginning, or the
length of a row prefix. Let r ∈ ( be a scale, and let N be the natural numbers.
We define the function D : N ×( → N as follows: D(k, r) = ‖kr‖.

We would like to define an “inverse” function D−1 : N ×N → ( with the prop-
erty D−1(k,D(k, r)) = r. However, this is not possible since D is not injective.
Lemma 1, which follows from the definition, below tells us that for a fixed k
there is a structure to the real numbers r that are mapped to the same element
D(k, r), namely, they form an interval [r1, r2).

Lemma 1. Let r1, r2 ∈ (, k ∈ N such that D(k, r1) = D(k, r2) and let r ∈ (,
r1 < r < r2. Then D(k, r) = D(k, r1).

Definition 4. Let k, � ∈ N . Define

L−1(k, �) =
{

1 if k = �;
(�−0.5)

k otherwise.
and R−1(k, �) = (�+0.5)

k .

It is easy to see that L−1(k, �) = min{r ∈ (|D(k, r) = �} and that R−1(k, �) =
min{r ∈ (|D(k, r) = � + 1}.

The L−1 and R−1 functions are designed to give a range of scales whereby a
pattern sub-range of length k may scale to a sub-range of scale �. The following
claim follows from the definition.

Lemma 2. Let P be an m ×m pattern and T an n × n text. Let k ≤ m and
� ≤ n, and let [L−1(k, �), R−1(k, �)) be the range of scales defined by L−1 and
R−1. Then the difference in number of rows (or number of columns) between
P s(r1) and P s(r2), for any two r1, r2 ∈ [L−1(k, �), R−1(k, �)) can not exceed m+2.

For a scaled pattern occurrence α of an m×m pattern with scale rα, we denote
the length of the scaled pattern by mα, which is exactly ‖m ·rα‖. In other words,
the scaled pattern is of size mα ×mα.

Below, we present an O(n2m) algorithm for finding all scaled occurrences of
an m×m pattern in an n× n text, but first we deal with the simple case where
the pattern P of size m × m consists of a single character, i.e P [x, y] = σ for
every x = 1, . . . ,m and y = 1, . . . ,m for some σ ∈ Σ. In this case we can simply
solve the scaled matching problem in linear time in the size of the text using
subrow repetition queries and subcolumn repetition queries (see section 4).

For the rest of this paper, we will ignore this simple case and assume that at
least one row of the pattern has at least two characters or at least one column of
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the pattern has at least two characters. Furthermore, we can always assume that
at least one row has at least two characters, since the case where one column
has at least two characters can be reduced to the first case by inverting the
pattern (and the text) along the main diagonal such that the upper-right corner
is swapped with the lower-left corner.

The following theorem and corollaries prove properties of scaling that are used
by our algorithm.

Theorem 1. If ‖rαx‖ < ‖rβx‖ then ‖rα(x + y)‖ − ‖rαx‖ ≤ ‖rβ(x + y)‖ −
‖rβx‖+ 1, where 1 ≤ rα, rβ are real numbers and x, y are natural numbers.

Proof: Using the fact that rz − 0.5 ≤ ‖rz‖ < rz + 0.5 and that rα < rβ we get
the following inequality: ‖rα(x + y)‖ − ‖rαx‖ ≤ rα(x + y) + 0.5 − rαx + 0.5 =
rαy + 1 < rβy + 1 = rβ(x + y)− 0.5− rβx− 0.5 + 2 ≤ ‖rβ(x + y)‖ − ‖rβx‖+ 2,
and since ‖rα(x+ y)‖−‖rαx‖ and ‖rβ(x+ y)‖−‖rβx‖ are integers the theorem
follows. 	


Corollary 1. Let α and β be two scaled occurrences of a pattern P of size
m×m. Now suppose we split P vertically to a prefix of m′ columns and a suffix
of m−m′ columns, then if the scaled prefix of α is smaller than the scaled prefix
of β, the scaled suffix of α can be larger than the scaled suffix of β by at most 1.

Proof: Follows directly from Theorem 1. 	


Corollary 2. Let T be a text and P an m × m pattern such that the following
holds:

1. P appears in T at least k times with pattern occurrences α1, . . ., αk.
2. α1, . . .,αk all begin within the same row (α1 is the leftmost,αk is the rightmost).
3. Each occurrence of α1, . . ., αk overlaps with all the other occurrences, but

no occurrence fully contains another occurrence.
4. The occurrences are ordered monotonically, i.e. either mα1 < . . . < mαk

or
mα1 > . . . > mαk

Then k = O(m).

3 Algorithm Layout

Our algorithm is based on the alphabet independent exact two dimensional
matching algorithm of Amir, Benson and Farach [1]. We now present the layout
of the algorithm, which consists of four stages.

Stage 1. The scale elimination stage. The goal of this stage is to get an estimate
on the size of the scale that can appear at each location. In the end
of this stage we get, for each location (i, j) in the text T , an interval
[rl

i,j , r
h
i,j) such that if there is an occurrence of the pattern scaled to

some scale r, then r ∈ [rl
i,j , r

h
i,j).
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Stage 2. The candidate consistency stage. Unlike the consistency stage in [1],
in this stage we check for consistency only between candidates within
the same row. The comparison it is done considering only the scale
rl
i,j at each location (i, j) in the text, using a preprocessed witness

table.
Stage 3. The candidate verification stage. As in [1], a wave is employed to

verify which of the non-conflicting sources are indeed starts of pattern
appearances. This wave is done for each row separately, using the
solution for the Maximal Interval Problem that will be defined and
solved in the final version.

Stage 4. The occurrence recognition stage. In this stage, we find all occurrences
of the pattern at all the locations in the text with all possible scales
(not only scales rl

i,j as in stages 2 and 3).

Each stage is done in O(n2m) time using at most O(n2) space, where the text
is of size n × n and the pattern is of size m × m. In the following section, we
explain in detail how each stage is implemented.

4 Algorithm Implementation

4.1 Scale Elimination Stage

Definition 5. Let P be an m×m pattern array. We say that a row 1 < x ≤ m
is a row border of P if Px differs from Px−1, where Pl is the l’th row of P .

Similarly, we say that column 1 < y ≤ m is a column border of P if P y

differs from P y−1, where P l is the l’th column of P .

Observe that the scale of a pattern P appearing at location (i, j) of a text T is
fully dependent on the location of the (row and column) borders of P in T with
respect to location (i, j). Finding all the borders of an m × m pattern can be
easily done in O(m2), however, finding all the borders for every locations in the
text is more involved. In order to find the borders more efficiently, we use the
subrow/subcolumn repetition queries.

Definition 6. A subrow repetition query is defined as follows: Given an n× n
matrix T ,

Input: Location [i, j] and a natural number �.
Ouput: The number of times the substring T [i, j], T [i, j + 1], ..., T [i, j + � − 1]

repeats itself starting at column j in rows i, i + 1, . . . of T .

The subcolumn repetition query is defined similarly on the columns. In [6] a
method was presented that preprocesses an n × n text matrix in time O(n2)
and subsequently allows answering every subrow (subcolumn) repetition query
in O(1) time. We also use inverse subrow repetition queries, similarly defined
and solved.
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Let P y be some column in P , y > 1, we say that a row x supports y if P [x, y] �=
P [x, y − 1]. Row x is said to be a pivot row of P if x is the highest row that
supports column y′, where P y′

is the rightmost column border in P . The Esti-
mate Scale(T,P) subroutine (details in the journal version) finds for each location
in T all the borders of P in T that matches that location. Then, the borders in P
are compared with the borders in T to give a scale estimate for each location.

Corollary 3. The Scale Elimination Stage can be done in O(n2m) time using
O(n2) space.

4.2 Candidate Consistency Stage

A candidate is a location in the text where the pattern may occur. We note that
in this stage we consider only scale rl

i,j for each location (i, j). The reason is that
all scales in the range [rl

i,j , r
h
i,j) share the same borders. Thus, if there is a scale

r ∈ [rl
i,j , r

h
i,j) such that P rX appears at location (i, j) then P rl

i,jX must also

appear at location (i, j) since P rl
i,jX is a subpattern of P rX (it is the smallest

and agrees both on the border and the characters). We will deal with all other
scales in the range [rl

i,j , r
h
i,j) at the occurrence recognition stage.

We say that two candidates are consistent if they expect the same text charac-
ters in their region of overlap. The idea of this stage is to perform duels between
candidates and eliminate candidates that are not consistent. The duels are done
only between candidates within the same row, using a special witness table.

Two candidates are consistent if they expect the same characters in their
overlap region. In this stage we perform duels between candidates within the
same row and eliminate candidates that are not consistent.

Witness Table Construction. We describe the witness table construction for
the case that the overlapping candidate from the right is of scale greater than
or equal to the scale of the candidate from the left. The opposite case is similar.

Let P be an m ×m pattern, and let y1, . . . , yt be the column borders of P .
The construction of the witness table for P is as follows. For each column c
consider the suffix of P starting from c (i.e. columns c, c + 1, . . . ,m), denoted
by suff (P, c), and the borders within suff (P, c), denote by xc1 , xc2 , . . . , xck

and
yc1 , yc2 , . . . , ycl

.
Now, assume there is a candidate α at location (i, j) in the text of scale rα

such that there is another candidate, β, at location (i, j′), j′ > j of scale rβ ≥ rα,
such that column j′ is overlapping the scaled column c of α. Then, it is clear that
the two candidates agree on the overlap, iff the upper-left area of P scaled to
rβ agrees with suff (P, c) scaled to rα both on the borders and on the characters
between the borders (see Figure 2).

Denote the borders of suff (P, c) by SB(P, c) and the matching borders of
the upper left area of P by PB(P, c). Now, for each column c, naively search for
matching borders and characters in the upper left area of P . If matching borders
and characters are found, we mark column c as a consistent column, and save
PB(P, c) and SB(P, c). Otherwise, we save the location of the conflict, denoted
by conflict loc(c).
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Observe, that SB(P, c+1) ⊆ SB(P, c) for every column 1 ≤ c < m. Therefore,
instead of storing all the PB(P, c) and SB(P, c) for every column c, we will only
store SB′(P, c) which is defined to be SB(P, c) \ SB(P, c + 1) for c < m and
SB(P,m) for c = m. Similarly, we define and store only the PB′(P, c) for every
column c in P .

Corollary 4. The Witness Table can be constructed in O(m3) time using O(m2)
space.

The Dueling Order. Before we begin the actual dueling we perform a pre-
dueling step where we compare PB(P, c) and SB(P, c) for every 1 < c < m and
for every candidate in the row. All candidates that do not match the borders
are eliminated. Now, when we want to compare two overlapping candidates all
we need to do is check if they are consistent or conflicting candidates using
the witness table. Thus, performing a duel takes O(1) time, with additional
O(m) work for each candidate for the pre-dueling step, which is done using the
PB′(P, c) and SB′(P, c).

For this subsection, we assume there are no inclusions between the candidates
within the same row. Subsection 4.2 handles inclusions between candidates.

The dueling stage for row i is done as follows. Denote by CCL(i) the consistent
candidates list for row i in the text. At the beginning, CCL(i) is empty. Then,
we start adding candidates to CCL(i) by traversing all the candidates in row
i from right to left, such that at each step, all the candidates in CCL(i) are
consistent with each other.

The following subroutine determines if a candidate α should be added to
CCL(i) or be eliminated, assuming all candidates to the right of α are either in
CCL(i) or eliminated. Note that FRL(β) of a candidate β is defined to be the
first (non-eliminated) candidate to the right of β such that it is larger in size than
β, i.e. mβ < mFRL(β), and is overlapping β. If no such candidate exist, FRL(β)
is set to NIL. In the journal version we will describe how to find FRL in O(1)
time, where updates are done in O(m) time when a candidate is eliminated.

AddToCCL(α)

0. Let B = {β1, β2, . . . , βk} ⊆ CCL(i) be the candidates overlapping α, ordered
from left to right.

1. leftmost ← 1, last success ← NIL
2. β ← βleftmost

3. if β /∈ B - return TRUE
4. duel α with β
5. if α and β agree on the overlap then:

(a) if mα ≤ mβ - return TRUE
(b) if mα > mβ : Set last success ← β, β ← FRL(β) and goto step 3

6. if α and β do not agree on the overlap then:
(a) if α is eliminated - return FALSE
(b) if β is eliminated then:

i. if β = βleftmost then leftmost← leftmost+ 1 and goto step 2
ii. else β ← FRL(last success) and goto step 3
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Lemma 3. If AddToCCL(α) returns TRUE, then α is consistent with all the
candidates in CCL(i).

Denote a successful duel to be a duel where the two candidates agree on the
overlap.

Lemma 4. Each candidate performs at most O(m) successful duels.

Corollary 5. The total running time of the candidate consistency stage is
O(n2m) using O(n2) space.

Handling Inclusions. At this point we assume there are at least two column
borders in the pattern, otherwise, we can skip the dueling step and simply verify
each candidate in O(m) time using subrow and subcolumn repetition queries.

Lemma 5. Let α be a scaled occurrence of an m ×m pattern P . Then, α has
O(m) occurrences, within the same row, fully contained in α. Furthermore, all
of them are of distance of O(m) from α.

Note that we do not need to duel between candidates such that one contains
the other, since we know they share the same borders and thus expect the same
characters. So before the actual dueling is done, after the pre-dueling step, we
perform a scan for inclusions. We traverse the candidates in the current row from
left to right, each candidate needs to checks only in the first O(m) locations from
it (by Lemma 5).

Once a candidate has found candidates that are included within him, the
included candidates are removed from the candidates list, and the containing
candidate, marked as such, saves those candidates in a private list. After this
step is done, there are no inclusions between the candidates within the same
row, thus, we can perform the dueling in the order described in Subsection 4.2.

When comparing the including candidate α with other candidates (not in-
cluded in α), α is considered as a ”representative” of the candidates included in
α, such that if a candidate is consistent with α, it is also consistent with all the
candidates included in α. On the other hand, if a candidate is inconsistent with
α it might be consistent with other candidates in α. Thus, if α is eliminated, we
cannot just eliminate all candidates in α.

To handle the case of α being eliminated, we define a tree-like hierarchy
between α and the candidates contained in α, so that if α is eliminated, new
candidates will ”appear” and be the ”representatives” of the rest. We use the
following lemma to define the hierarchy.

Lemma 6. Let α be a candidate containing the candidates β1, . . . , βk, where β1
is the leftmost and βk is the rightmost. Then, there are two possibilities:

1. β1 contains β2, . . . , βk.
2. β1 and another candidate βi contains the rest, i.e., every candidate within
{β2, . . . , βk}\{βi} is either contained in β1 or in βi (or in both). In addition
β1 does not contain βi and vice versa.
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We define the hierarchy tree as follows. The root of the tree is, of course, α.
α has one or two children, the left child is β1 and (in the case 2) the right child
is βi, defined in Lemma 6. If α has two children, then the rest of the candidates
are divided such that all candidates that are contained in βi are in βi’s subtree,
and the rest are in β1’s subtree. Since each child has a containing relation with
the other candidates in it’s subtree, we can recursively define the inner-hierarchy
just like α’s hierarchy.

Finally, when a containing candidate is eliminated, the child/children become
the root/s of the ”containing hierarchy”, and thus, each root becomes a separate
”representative” of a ”containing hierarchy”.

The only thing left is to show is how the appearance of new candidates,
when a containing candidate is eliminated, fits in the dueling-order defined in
Subsection 4.2. There are two issues to address. The first is the case where a
new candidate is contained in another candidate. In order to solve this problem,
each new candidate checks O(m) location to the left (defined by Lemma 5) to
see if it is contained or not. If a containing candidate is found, the new candidate
searches the containing candidate’s tree for its new location. This whole process
takes O(m) time and is done at most twice per eliminated candidate.

The second issue is the updating of the FRL values. Whenever a new can-
didate appears, it searches for the FRL exactly the same way the initial FRL
values are set, by traversing an FRL series. Corollary 2 guarantees this series
is of length O(m). Then, the new candidate searches the FRL−1 list to find
the right location in the list, which again takes O(m) time (detailed proof of
this will appear in the journal version). We note that the updating of the FRL
values pointing to α when α is eliminated, is done exactly as the updating when
a regular candidate is eliminated.

In summary, the additional work done to handle inclusions for each row con-
sists of an inclusion scan, which takes O(n) time, building the containing hier-
archy, which could take up to O(k2) time for k candidate, and since k = O(m),
gives a total of O(nm) time per row, and the updating of new inclusions and
new FRL values which can take up to O(m) time per eliminated candidate. All
together, the additional work done is O(nm) time per row, O(n2m) for the whole
consistency stage, using O(n2) additional space.

4.3 Candidate Verification Stage

In the candidate verification stage we verify that each candidate left has exactly
the character values it expects within its bounds. Since all the candidates left
are consistent, we do not need to check overlapping areas more than once. The
verification stage, just like the consistency stage, is done for each row separately.

The verification for row i is done by traversing candidates in the row, and for
each candidate at location (i, j), compare the characters at column j starting
from row i, with the scaled column that one of the candidates that contains
location (i, j) is expecting.

However, we must verify each column with the largest candidate α overlap-
ping that column. After we verify the column against α, we save the number of
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characters that the text and α agree on, starting from location (i, j) and going
down. In order to find the largest candidate that is overlapping every column,
we use the Maximal Interval Problem, which will be formally defined and solved
in the journal version. The intervals are [j, j + mrl

i,j
− 1] for every candidate at

location (i, j). Notice that finding the largest candidates that is containing col-
umn j is exactly the problem of finding the largest interval containing location
j within this set of intervals. Finding the maximal interval for each location in
the row is done in O(n) time and space.

The actual verification is done for each row in O(m) time using subcolumn
repetition queries. The ouput is stored in an array V , such that V [j] contains
the number of characters the text and the overlapping candidate at column j
agree on until the first mismatch (or the end of the column).

Finally, each candidate (i, j) is verify separately, by performing a Range Min-
imum Query on V with the interval [j, j + mrl

i,j
− 1]. If the result is at least

mrl
i,j

, then the candidate is successfully verified, and we know that there is a
pattern occurrence at location (i, j) in the text with scaled of rl

i,j . Otherwise,
there are no pattern occurrences at location (i, j) in the text. We note the Range
Minimum Query problem is well known in the literature and can be solved in
O(1) time per query, using linear time for preprocessing (e.g. [10]).

Corollary 6. The Candidate Verification Stage can be done in O(n2m) time
using O(n2) space.

4.4 Occurrence Recognition Stage

At the candidate consistency and candidate verification stages we’ve considered
only the rl

i,j scales for every location (i, j). As mentioned above, the reason is
because all scales in the range [rl

i,j , r
h
i,j) share the same borders, and thus, there

is a pattern occurrence at location (i, j) only if there is a pattern occurrence at
location (i, j) with scale rl

i,j .
At this stage, we traverse all locations in the text where a pattern occurrence

was found with scale rl
i,j for each location (i, j). Then, we check if there are any

other pattern occurrences of size larger than mrl
i,j
×mrl

i,j
that also appear at

location (i, j). Note that we only search for scales in the range [rl
i,j , r

h
i,j).

Since all occurrences at location (i, j) share the same borders, (a) Lemma 2
guarantees that there are no more than m + 2 different occurrences and (b) if
we know that a k × k occurrence α appears at location (i, j), all we need to do
in order to confirm that there is also a (k+1)× (k+1) occurrence, is to check if
the last column of α is equal the next column on the right, the last row is equal
to the next row on the bottom and the character in (i+ k− 1, j+ k− 1) is equal
to the one in (i + k, j + k).

Thus, we can begin checking occurrences starting at size (mrl
i,j

+1)×(mrl
i,j

+1)
up until size of (mrl

i,j
+ m + 1) × (mrl

i,j
+ m + 1), each time comparing a row

a column and a character, which can be done in O(1) time using subrow and
subcolumn repetition queries. The corollary follows.
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Corollary 7. The Occurrence Recognition Stage can be done in O(m) time per
text location, O(n2m) time for the entire text and using O(n2) space.
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Abstract. In the context of non-coding RNA (ncRNA) multiple struc-
tural alignment, Davydov and Batzoglou introduced in [7] the problem
of finding the largest nested linear graph that occurs in a set G of linear
graphs, the so-called Max-NLS problem. This problem generalizes both
the longest common subsequence problem and the maximum common
homeomorphic subtree problem for rooted ordered trees.

In the present paper, we give a fast algorithm for finding the largest
nested linear subgraph of a linear graph and a polynomial-time algorithm
for a fixed number (k) of linear graphs. Also, we strongly strengthen the
result of [7] by proving that the problem is NP-complete even if G is
composed of nested linear graphs of height at most 2, thereby precisely
defining the borderline between tractable and intractable instances of the
problem. Of particular importance, we improve the result of [7] by show-
ing that the Max-NLS problem is approximable within ratio O(log mopt)
in O(kn2) running time, where mopt is the size of an optimal solution. We
also present O(1)-approximation of Max-NLS problem running in O(kn)
time for restricted linear graphs. In particular, for ncRNA derived linear
graphs, an 1

4 -approximation is presented.

1 Introduction

Non-coding RNA, unlike regular genes, are not translated to proteins, but per-
form a variety of catalytic, structural and regulatory functions; transfer RNA,
ribosomal RNA and spliceosomal RNA are textbook examples. The RNA se-
quences consist of four kinds of nucleotides: A (adenine), C (cytosine), G (gua-
nine) and U (uracil). RNA sequences tend to fold, forming secondary and tertiary
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structures, stabilized by bonds between nucleotides. Three kinds of such bonds
are most frequent: A–U, G–C and U–G.

The structural stability and function of ncRNA genes are largely determined
by the formation of stable secondary structures through complementary bases
(see [18] for a detailed introduction to RNA secondary structures). Much re-
search work has been done on the structural comparison of ncRNA sequences
[2, 3, 4, 7, 13, 14]. Davydov and Batzoglou proposed in [7] a new model for struc-
tural alignment of multiple ncRNA sequences, based on finding the largest com-
mon secondary structure. The problem of computing the largest common sec-
ondary structure for the given set of k ncRNA sequences can be solved using the
stochastic context-free grammars, in O(n3k) time complexity [12].

In this paper, we focus on the problem of secondary structure alignment for
multiple ncRNA sequences. We follow a general model presented in [7], where
ncRNA sequences are modelled by linear graphs and the common secondary
structure is modelled using the maximum common nested linear subgraphs
(Max-NLS problem). Unfortunately this problem is NP-complete, but can be
approximated within O(log2 n) factor in O(k · n5) running time [7]. The au-
thors proposed to approximate Max-NLS with maximum level linear subgraphs
(Max-LLS problem).

This paper is organized as follows. Section 2 presents some preliminaries. We
give in Section 3 a fast and simple dynamic programming algorithm for finding
a nested linear graph in a linear graph, and present in Section 4 a polynomial-
time algorithm for a fixed number of linear graphs. Section 5 strongly refines
the hardness result of [7] by giving a tight description of the borderline between
NP-completeness and P. We present in Section 6 a faster algorithm for the
Max-NLS problem and in Section 7 we improve the approximation ratio of [7]. Fi-
nally, Section 8 deals with the Max-NLS problem, for restricted linear graphs. Due
to space constraints, several details and proofs are not presented in this paper.

2 Preliminaries

Basic familiarity with graph-theoretic terminology is assumed. For a graph G, we
denote by V(G) the set of vertices and by E(G) the set of edges. The order and
the size of G stand for |V(G)| and |E(G)|, respectively. A linear graph of order n
is a vertex-labeled graph where each vertex is labeled by a distinct integer from
{1, 2, . . . , n}. In case of linear graphs, we write an edge between vertices i and j,
i < j, as the pair (i, j). Two edges of a graph are called independent if they do
not share a vertex. A linear graph G is called edge-independent if it is composed
of independent edges, i.e., G is a matching.

Of particular interest are the relations between independent edges [17]. Let
e = (i, j) and e′ = (i′, j′) be two independent edges in a linear graph G. We
write (i) e < e′ if i < j < i′ < j′, (ii) e � e′ if i′ < i < j < j′, and (iii)
e � e′ if i < i′ < j < j′. Two edges e and e′ are said to be R-comparable for
some R ∈ {<,�, �} if eR e′ or e′ R e. Observe, that any two independent edges
are R-comparable for some R ∈ {<,�, �}. An edge-independent linear graph
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G is called an R-comparable linear graph for some non-empty R ⊆ {<,�, �}
if any two distinct edges in G are R-comparable for some R ∈ R. Let G be a
linear graph. The width (resp. height) of G is the size of a maximum cardinality
{<}-comparable (resp. {�}-comparable) subset of E(G).

We now define the notion of occurrence of one linear graph in another. Let
G1 and G2 be two linear graphs. The graph G1 is said to occur in G2 (or G1
is called a subgraph of G2) if one can obtain G1 from G2 (regardless of precise
vertex labels) by a sequence of edge and vertex deletions. More formally, the
deletion of vertex i consists in (1) the deletion of all the edges incident to vertex
i, (2) the deletion of vertex i and (3) the relabeling of all vertices j > i to j − 1.

For the purpose of ncRNA multiple structural alignment, convenient graphs
are needed [7]. A linear graph is non-crossing if it does not contain two edges e
and e′ such that e � e′. A {<,�}-comparable linear graph is also called a nested
linear graph. A {�}-comparable subgraph of a linear graph G is called a nested
loop. Let (i, j) be the outermost edge of a nested loop in G. Value j − i is called
the diameter of the nested loop.

Nested linear graphs can be viewed as collections of trees. Each edge in the
nested linear graph corresponds to a node in a tree — e is the parent of e′ iff
e′ � e and there is no such edge e′′ that e′ � e′′ � e. Each �-maximal edge in
the nested linear graph is a root of some tree.

To shorten notation, a nested linear graph G of size n can be represented by a
Dyck word of semi-length n over the alphabet A = {a, b}. By abuse of notation,
we continue to write G for the corresponding Dyck word. A nested linear graph
G is flat if it can be written as G = ah1bh1 ah2bh2 . . . ahkbhk for some positive
integers h1, h2, . . . , hk. A flat linear graph is called level if it can be written as
G = (ahbh)w for some positive integers h and w.

For a given linear graph G we can consider its level subgraphs of given height
and maximum width. The relation between the height and the maximum width
of level subgraphs is called level signature of the linear graph. More formally,
level signature of G is a function s : N→ N such, that: (i) s(h) is the maximum
width of a level subgraph of G with height h; (ii) if G has no level subgraph of
height h, then s(h) = 0.

Fig. 1. Maximum level subgraphs of G with height 2 (on the left), and height 3 (on
the right). The level signature of the graph is: s(1) = 5, s(2) = 4, s(3) = 3, s(4) = 0.

Genomic sequences can be naturally viewed as linear graphs. A sequence
of nucleotides S = (a1, a2, . . . , an) corresponds to a linear graph whose ver-
tices are the nucleotides and there is an edge between two nucleotides iff there
can be a bond between them. In this paper we also investigate more abstract
correspondence. Let S = (a1, a2, . . . , an) be a sequence over some fixed fi-
nite alphabet Σ, and let ξ ⊆ Σ2 be a fixed symmetrical relation. A linear
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graph derived from S, denoted as Gξ(S), is such a linear graph of order n,
in which there is an edge (p, q) iff p �= q and ap ξ aq. Throughout this paper
we assume that Σ and ξ are fixed. We will call linear graphs derived from se-
quences over Σ, restricted linear graphs (RLG). Clearly, for ΣRNA = {A,U,G,C}
and ξRNA = {(A,U), (U,A), (U,G), (G,U), (G,C), (C,G)} we get RLG modelling
ncRNA sequences.

Let G = {G1, G2, . . . , Gk} be a set of linear graphs. The Max-NLS problem is to
find a maximum size common nested linear subgraph of Gi ∈ G. We denote it by
Max-NLS(G1, . . . , Gk). Nested linear subgraphs and Max-NLS problem have been
introduced in [7] to represent possible structural alignments of ncRNA. Nested
linear subgraphs correspond to different structural alignments of a sequence
of nucleotides, and the edges of a nested linear subgraph correspond to bonds
stabilising the structure of ncRNA, as shown in fig. 2.

A A U U A U G C

A U

A

U U

A

G C

Fig. 2. Example of linear graph for sequence AAUUAUGC, its Max-NLS and corre-
sponding bonds between nucleotides

The Max-LLS problem is to find a maximum size common level linear subgraph
of G1, . . . , Gk (denoted by Max-LLS(G1, . . . , Gk)). Level linear subgraphs have
been used to approximate Max-NLS problem in [7]. The MNL(G) problem is to
find a maximum size nested loop in G. Nested loops and the MNL problem have
been used to model ncRNA structural alignments in [4]. The authors also present
O(n2) algorithm for computing MNL.

3 Finding a Maximum Size Nested Linear Graph in a
Linear Graph

Felsner et al. considered in [8] the matching problem regardless of a precise
pattern definition. In this context, they introduced the concept of circle trape-
zoid graphs (CT-graphs), a class of graphs that contains trapezoid graphs, circle
graphs and circular-arc graphs as subclasses, and proved that, given a CT-graph
G with m = |E(G)|, a maximum size nested subgraph of G can be found in
O(m2) time. On the other hand the Max-NLS(G) can be computed in O(n3)
time [16], where n = |V(G)|.

In this brief section, we improve that result for linear graphs by giving a simple
dynamic programming algorithm for finding a maximum size nested subgraph
of a linear graph in O(n2 + nm) time and O(n2) space. For each pair (i, j) with
1 ≤ i < j ≤ n, let Gi,j denote the subgraph of G induced by the vertices i, . . . , j.
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We denote by N−(j) the set of vertices N−(j) = {q : q < j ∧ (q, j) ∈ E(G)}. For
1 ≤ i < j ≤ n, let opt[i, j] denote the maximum size of a nested subgraph of the
linear graph Gi,j (for i ≥ j we have opt[i, j] = 0). For 1 ≤ i < j ≤ n, opt[i, j]
can be obtained using the following formula:

opt[i, j] = max

{
opt[i, j − 1] ,
1 + opt[i, q − 1] + opt[q + 1, j − 1] : q ∈ N−(j) ∧ q ≥ i

The maximum nested subgraph of Gi,j either does not not take vertex j, in which
case opt[i, j] = opt[i, j − 1], or it takes an edge (q, j) ∈ E(G) with i ≤ q < j.

Using dynamic programming, the array opt can be computed in O(n2 + nm)
time, since computation of each opt[i, j] requires O(|N−(j)|) steps.

4 A Polynomial-Time Algorithm for Fixed |G|
According to [11], given a linear graph G1 of size m1 and a nested linear graph G2
of size m2, an occurrence of G2 in G1 can be found inO(m2 logm2+m1m2) time.
Valiente proposed in [15] a dynamic programing algorithm for finding the largest
nested linear graph that occurs in two nested linear graphs (see also [19]). In
this section, we give a O(m2k logk−2 mk log logmk) time dynamic programming
algorithm, where m = max{|E(Gi)| : Gi ∈ G} and k = |G|, for finding the largest
nested linear graph that occurs in a fixed number of linear graphs.

We need some additional definitions and notations. We use the notions of
trapezoid diagrams and d-trapezoid diagrams introduced in [6] and [9], respec-
tively. Assume d is a non-negative integer and let L1, L2, . . . , Ld+1 be d+1 paral-
lel lines indexed by their ordering in the plane. A graph G is called a d-trapezoid
graph [8, 5] if there exist families of intervals Tu = {Ii

u = [liu, r
i
u] : liu, r

i
u ∈ Li, 1 ≤

i ≤ d+1}, u ∈ V(G), satisfying {u, v} ∈ E(G) if and only if Qu∩Qv �= ∅, where
Qx denotes the closed polygon (l1x, l2x, . . . , ld+1

x , rd+1
x , rd

x, . . . , r
1
x). We refer to the

family TG = {Tu : u ∈ V(G)} to as the d-trapezoid diagram of G. Note that
0-trapezoid graphs are precisely interval graphs [10], 1-trapezoid graphs are the
usual trapezoid graphs [6], and d-trapezoid graphs are comparability graphs of
posets with interval dimension at most d + 1 [9].

Based on a geometric representation of 1-trapezoid graphs by boxes in the
plane, Felsner et al. [8] designed an optimal O(n logn) algorithm for finding
a maximum weighted independent set on such graphs. Of particular impor-
tance, they proved that the ideas behind the weighted independent set for
trapezoid graphs carry over to higher dimension leading to a O(n logd n) time
algorithm for d-trapezoid graphs of order n. This has been improved in [1]
to O(n logd−1 n log logn) time. We now turn to defining an irreflexive, tran-
sitive and anti-symmetric relation � on TG. Let G be a d-trapezoid graph
and TG = {Tu : u ∈ V(G)} be the corresponding d-trapezoid diagram. Let
Tu = {Ii

u = [liu, ri
u] : liu, ri

u ∈ Li, 1 ≤ i ≤ d + 1} and Tv = {Ii
v = [liv, ri

v] : liv, ri
v ∈

Li, 1 ≤ i ≤ d + 1} be two d-trapezoids of TG. We say that the d-trapezoid
Tu is strictly contained in Tv, written Tu � Tv, if liv < liu and ri

u < ri
v for all

1 ≤ i ≤ d + 1.
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Let G = {G1, G2, . . . , Gk} be an instance of the Max-NLS problem. We as-
sociate to G an (k − 1)-trapezoid diagram as follows. For each 1 ≤ i ≤ k,
the graph Gi is associated to Line Li, and for each (x, y) ∈ E(Gi) we define
an interval Ii

x,y = [x, y] on line Li. We denote by IGi the set of all inter-
vals on Li that are associated to the graph Gi, i.e., IGi = {Ii

x,y : (x, y) ∈
E(Gi)}. The (k− 1)-trapezoid diagram induced by G, written T [G], is defined as
follows:

∀I1 ∈ IG1 , ∀I1 ∈ IG2 , . . . , ∀Ik ∈ IGk
, {I1, I2, . . . , Ik} ∈ T [G] .

Clearly, |T [G]| =
∏

Gi∈G |E(Gi)|. Having disposed of these preliminaries, we now
turn to presenting our algorithm, referred hereafter to as Algorithm nested-linear-
subgraph, for finding the largest nested linear graph G that occurs in a family of
linear graphs G. The basic idea is to associate to each (k−1)-trapezoid T ∈ T [G]
a weight ω(T ) denoting the maximum size of a nested linear graph that occurs
in the family of linear graphs induced by T and all (k−1)-trapezoids strictly in-
cluded in T . This is done in turn by dynamic programming according to a linear
extension of (T [G],�). We need the following subroutine: Given an (n − 1)-
trapezoid diagram T and a function ω : T → N+, we refer to the algorithm for
finding a maximum weighted disjoint subset of T (in terms of disjoint induced
closed polygons) as max-weighted-independent-set(T , ω) [8, 1]. A more schematic
description of Algorithm nested-linear-subgraph(G = {G1, G2, . . . , Gk}) is given
below:

begin1

Compute the (k − 1)-trapezoid diagram T [G] induced by G2

Compute any linear extension Φ of (T [G],�)3

foreach T ∈ T [G] do ω(T ) := 04

foreach T ∈ T [G] with respect to Φ do5

T ′ := {T ′ : T ′ � T }.6

T ′′ := max-weighted-independent-set(T ′, ω)7

ω(T ) := 1 +
∑

T ′′∈T ′′ ω(T ′′)8

end9

T ∗ := max-weighted-independent-set(T [G], ω)10

return
∑

T∈T ∗ ω(T )11

end12

Proposition 1. TheMax-NLSproblem is solvable inO(m2k logk−2 mk log logmk)
time, where m = max{|E(Gi)| : Gi ∈ G} and k = |G|.

This result gains in interest if we compare Proposition 1 to the related LAPCS
problem restricted to two nested arc-annotated sequences, i.e., the
LAPCS(Nested, Nested) problem, restricted to unary alphabet, which has been
proved to be NP-complete in [13] (only two nested arc-annotated sequences,
and hence two linear graphs here).
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5 Hardness Results

It is proved in [7] that the Max-NLS problem is NP-complete even when re-
stricted to edge-independent linear graphs. We sharply strengthen this result
by showing that the problem is hard even for flat linear graphs of height at
most 2. Observe that our result gives a precise borderline between tractable
and intractable instances of the Max-NLS problem (the problem is indeed triv-
ially polynomial-time solvable for nested linear graphs of height at most 1: find
the stability of |G| associated interval graphs and return the maximum stability
found). Our result is a two-step procedure. We begin by proving the NP-hardness
of a new list problem, i.e., the Longest Common Sublist problem. Next, we give
a polynomial-time reduction from the Longest Common Sublist problem to prove
that the Max-NLS problem is NP-complete even when restricted to simple in-
stances solely composed of flat linear graphs of height at most 2.

We need new additional notations. When L is a list of integers, we denote
by len(L) the length of L and by L[i] the value of the i-th integer in L, 1 ≤
i ≤ len(L). A sublist of L is any list obtained from L by dropping some of the
elements in L. Clearly, L admits 2len(L) sublists. We can now state formally the
Longest Common Sublist decision problem.

Longest Common Sublist

Instance: Lists of positive integers L1, L2, . . . , Lk, and a positive integer m.
Question: Are there lists L̃1, L̃2, . . . , L̃k, where L̃i is a sublist of Li, 1 ≤ i ≤ k,
and len(L̃1) = len(L̃2) = . . . = len(L̃k) = �, such that

∑
1≤j≤� min{L̃i[j] :

1 ≤ i ≤ k} ≥ m ?

Proposition 2. The Longest Common Sublist problem is NP-complete even if
all integer values in the lists are either 1’s or 2’s.

Most of the interest in the Longest Common Sublist problem stems from the
following proposition.

Proposition 3. The Max-NLS problem for flat linear graphs of height at most
2 is NP-complete.

Proof. Let an instance of the Longest Common Sublist problem - where all integer
values in the lists are either 1’s or 2’s - be given by n lists of positive integers
L1, L2, . . . , Lk, and by a positive integer m. We construct a corresponding set G
of k linear graphs as follows (we abbreviate in a natural way a nested linear graph
G of size m to a Dyck word of semi-length m over the alphabet A = {a, b}).
For each list Li, 1 ≤ i ≤ k, we add to G the nested linear graph Gi defined
by Gi = aLi[1]bLi[1] aLi[2]bLi[2] . . . aLi[len(Li)]bLi[len(Li)] .. It is easily seen that G
is composed of k flat linear graphs of height at most 2 since all integer values
in the lists are either 1’s or 2’s, and that our construction can be carried on in
polynomial-time.
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Suppose that there exist lists L̃1, L̃2, . . . , L̃k, where L̃i is a sublist of Li, 1 ≤
i ≤ k, and len(L̃1) = len(L̃2) = . . . = len(L̃k) = �, such that

∑
1≤j≤� min{L̃i[j] :

1 ≤ i ≤ k} ≥ m. Let L̃ be the list of length � defined by L̃[j] = min{L̃i[j] :
1 ≤ i ≤ k} for 1 ≤ j ≤ �. Now, consider the flat linear graph Gsol defined by
Gsol = aL̃[1]bL̃[1] aL̃[2]bL̃[2] . . . aL̃[�]bL̃[�]. It can be easily verified that Gsol is a
flat linear graph of size

∑
1≤j≤� min{L̃i[j] : 1 ≤ i ≤ n} ≥ m that occurs in each

Gi ∈ G.
Conversely, suppose that there exists a linear graph Gsol of size at least m

that occurs in each Gi ∈ G. Since G is composed of flat linear graphs, Gsol is a
flat linear graph. Therefore, Gsol can be written Gsol = az1bz1 az2bz2 . . . az�bz�

for some non-negative integers z1, z2, . . . , z�, and z1 +z2 + . . .+z� ≥ m. Consider
the list of positive integers L̃ of length � defined by L̃[j] = zj for 1 ≤ j ≤ �.
Clearly

∑
1≤j≤� L̃[j] = z1 + z2 + . . .+ z� ≥ m. By construction, for all 1 ≤ i ≤ k,

there exists a sublist L̃i of Li of length � such that L̃i[j] ≥ L̃[j]. 	


Here below we offer a reformulation of Proposition 3 that may be of independent
interest.

Proposition 4. Finding the largest common homeomorphic subtree in a set of
ordered rooted trees of height at most 3 is an NP-complete problem.

6 Max-LLS Problem

Max-LLS problem was defined in [7], where it was used to approximate Max-NLS.
The algorithm proposed in [7] to solve Max-NLS problem for k linear graphs of
order n has O(k · n5) time complexity. In this section, we present an algorithm
solving this problem in O(k · n2) time. For this and the following section, let
G1, . . . , Gk be given linear graphs of order n. First, for each Gi we compute its
level signature. Then we compute minimum of k level signatures. This minimum
gives us the shape of Max-LLS(G1, G2, . . . , Gk). Knowing its shape, we can then
reconstruct it.

For each Gi its level signature is computed in three steps. First, we compute an
array MNLi describing sizes of maximum nested loops for all fragments of Gi. Let
G′

i,p,q be a linear subgraph of Gi induced by vertices p, . . . , q. For 1 ≤ p < q ≤ n,
MNLi[p, q] is the size of MNL(G′

i,p,q) (for p ≥ q we have MNLi[p, q] = 0). If (p, q) ∈
E(Gi) then MNLi[p, q] = max(MNLi[p+1, q], MNLi[p, q−1],MNLi[p+1, q−1]+1),
otherwise MNLi[p, q] = max(MNLi[p + 1, q], MNLi[p, q − 1]). Clearly, MNLi can
be computed in O(n2) time using dynamic programming.

Next, we compute an array1 NLWi containing minimum diameter of nested
loops of given size starting at given position. For 1 ≤ p ≤ n and 1 ≤ h ≤ n

2 ,
NLWi[p, h] is the minimum such integer, that vi,p, . . . , vi,p+NLWi[p,h] contains a
nested loop of size h (or 0 if such an integer does not exist).

1 We assume that all arrays are implicitly initialized with zeros.
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for h = 1 to
⌊

n
2

⌋
do1

for p = n− 1 downto 1 do2

if NLWi[p + 1, h] > 0 then NLWi[p, h] = NLWi[p + 1, h] + 13

else if MNLi[p, n] ≥ h then NLWi[p, h] = n− p;4

while NLWi[p, h] > 1 ∧MNLi[p, p + NLWi[p, h]− 1] ≥ h do5

NLWi[p, h] = NLWi[p, h]− 16

end7

end8

end9

Let us have a closer look at the inner while loop. Please note that, for
given p and h, if NLWi[p, h] > 0 and NLWi[p + 1, h] > 0 then the while loop
performed NLWi[p + 1, h] − NLWi[p, h] + 1 iterations. If NLWi[p, h] > 0 and
NLWi[p+ 1, h] = 0 then the while loop performed n− p−NLWi[p, h] iterations.
Otherwise NLWi[p, h] = 0 and the while loop performed no iterations. Hence,
the total number of iterations made by this loop for given h is not greater than
n− 1− NLWi(1, h) ≤ n. Therefore, the running time of this step is O(n2).

Finally, for 1 ≤ p ≤ n, we compute as SIGi[p, h] the level signature of G′
i,p,n

for height h. It can be done in O(n2) time, using dynamic programming and the
following formula:

SIGi[p, h] =

{
SIGi[p + NLWi[p, h] + 1, h] + 1, if NLWi[p, h] > 0
0 otherwise

Obviously, the level signature of Gi for height h is in SIGi[1, h] and the total
time complexity of all three steps is O(n2). The level signature SIG of common
level subgraphs of G1, G2, . . . , Gk equals SIG[h] = mini=1,...,k SIGi[1, h], and the
size of the maximum common level subgraph is equal maxh=1,...,�n

2 � h · SIG[h].
The actual maximum common level subgraph can be reconstructed basing on
its height and from arrays SIGi, NLWi and MNLi, in O(kn) time.

7 Approximation of Max-NLS

In [7], the authors prove that the optimal solution for Max-LLS problem gives
O(log2 mopt)-approximation for Max-NLS problem (where mopt is the size of the
optimal solution for Max-NLS). The proof from [7] consists of two steps: first
Max-NLS problem is reduced to the problem of finding a maximum flat linear
subgraph, and then it is further reduced to Max-LLS. In this section, we show how
to reduce Max-NLS problem to Max-LLS directly, achieving O(logmopt) approx-
imation ratio. Please note, that we study here exactly the same approximation,
but we prove a better approximation ratio.

Theorem 1. Let G1, . . . , Gk be given linear graphs of order n, mopt and hopt

be respectively the size and the height of Max-NLS(G1, . . . , Gk), and l be the size
of Max-LLS(G1, . . . , Gk). Then we have: mopt ≤ Θ(log hopt) · l ≤ Θ(logmopt) · l.
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Proof. Let T be a collection of trees representing Max-NLS(G1, . . . , Gk). Ob-
viously, T contains mopt nodes. For each such node v, by l(v) we will denote
the height of the subtree rooted in v, and by path(v) we will denote a fixed
path of length l(v) starting in v and ending in some leaf of the subtree rooted
in v. For all leaves we have l(v) = 1. Please note, that path(v) represents a
nested loop of l(v) edges. By L(h) we will denote the set of nodes in T of
height h, L(h) = {v : l(v) = h}. Clearly,

∑hopt

i=1 |L(i)| = mopt. We also define
S(h) = {path(v) : v ∈ L(h)}. Let us observe that S(h) represents a set of nested
loops that form a level linear subgraph with width |L(h)|, height h and size
s(h) = h · |L(h)|. Let hmax be such a height, for which s(h) is maximum. Clearly,
s(hmax) ≤ l. For any i = 1, . . . , hopt, we have |L(i)| ≤ s(hmax)

i ≤ l
i .

mopt =
hopt∑
i=1

|L(i)| ≤
hopt∑
i=1

l

i
= l ·

hopt∑
1

1
i
≤ Θ(log hopt) · l ≤ Θ(logmopt) · l 	


This bound is asymptotically tight. The family of trees defined in [7] gives
Θ(logmopt) approximation factor.

8 Max-NLS Problem for Restricted Linear Graphs

In this section we deal with Max-NLS problem, for restricted linear graphs. We
will show for this problem an O(1)-approximation algorithm running in O(kn)
time. For this section, let S = (a1, . . . , an) ∈ Σn be a given sequence of charac-
ters, and #p(X) denote the number of characters p in sequence X .

For p, q ∈ Σ, by MNL(p,q)(S) we will denote MNL of a subgraph of Gξ(S)
containing only such edges (i, j), that ai = p and aj = q. In other words, we
focus only on edges whose left endpoints are at characters p and right endpoints
are at characters q. By MNLξ(S) we will denote the maximum nested loop among
all MNL(p,q)(S) for (p, q) ∈ ξ.

Theorem 2. MNLξ(S) can be computed in O(n) time.

Proof. The following two arrays: l[i, p] = #p(a1, . . . , ai), r[i, p] = #p(ai, . . . , an)
(for 1 ≤ i ≤ n, p ∈ Σ) can be computed in O(n) time. The |E(MNLξ(S))| can
be obtained using the following formula:

|E(MNLξ(S))| = max
i∈1,...,n−1, (p,q)∈ξ

min(l[i, p], r[i + 1, q]).

Since the size of ξ is O(1), the total running time of this algorithm is O(n). 	


Lemma 1. Let (p, q) ∈ ξ. If #p(S) ≥ l and #q(S) ≥ l then |E(MNLξ(S))| ≥ l
2 .

Proof. One can note, that there exists a 1 ≤ i ≤ n−1 such that #p(a1, . . . , ai) =
#q(ai+1, . . . , an) = c. There are two cases:

– If c ≥ l
2 , then obviously |E(MNL(p,q))| ≥ c ≥ l

2 .
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– If c < l
2 , then we have #q(a1, . . . , ai) ≥ l − c and #p(ai+1, . . . , an) ≥ l − c.

Hence |E(MNL(q,p))| ≥ l − c ≥ l
2 . 	


Theorem 3. Let d be the number of such unordered pairs {p, q}, that (p, q) ∈ ξ.
For given k sequences Si ∈ Σn, Max-NLS(Gξ(S1), . . . ,Gξ(Sk)) can be approxi-
mated using MNLξ within factor 1

2d and in O(kn) time complexity.

Proof. For each Si we can calculate MNLξ(Si) in O(n) time. Then we choose
such 1 ≤ j ≤ k for which |E(MNLξ(Sj))| is minimum and MNLξ(Sj) is our
approximation. Clearly MNLξ(Sj) is a common subgraph of Gξ(S1), . . . ,Gξ(Sk),
and the overall complexity of this algorithm is O(kn).

Let Sj = (a1, . . . , an) and let e = |E(Max-NLS(Gξ(Sj)))|. It is enough to
show, that |E(MNLξ(Sj))| ≥ e

2d . We label each edge (r, s) in Max-NLS(Gξ(Sj))
with an unordered pair {ar, as}. Since there are at most d different labels on e
edges, there exists such a pair of characters (p, q) ∈ ξ, that there are at least e

d
edges labeled with {p, q}. Hence #p(Sj) ≥ e

d and #q(Sj) ≥ e
d . Using lemma 1,

we have that |E(MNLξ(Sj))| ≥ e
2d . 	


It also proves that the approach presented in [7], where general linear graphs
were used to model structural alignment of ncRNA, is too abstract. The set
of nucleotides is definitely finite. Taking this into account can lead to faster
algorithms or better approximation ratios.

For the ncRNA sequences, from the theorem 3 we can achieve an approxima-
tion ratio 1

6 (since there are three possible kinds of unordered bonds in ξRNA).
However, the lower bound on the approximation ratio can be improved, using
properties of relation ξRNA, to 1

4 .

Proposition 5. For given k sequences Si ∈ Σn
RNA, Max-NLS(GξRNA(S1), . . . ,

GξRNA(Sk)) can be approximated using MNL within factor 1
4 .

9 Conclusion

In this paper, we have investigated the problem of structural alignment of mul-
tiple ncRNA sequences. The problem have been modeled in the graph theoret-
ical framework, where ncRNA correspond to linear graphs and their structural
alignments correspond to nested linear subgraphs. We described a polynomial-
time algorithm for fixed k, and gave improved approximability results, O(log n)-
approximation algorithm running in O(kn2) time for arbitrary linear graphs and
O(1)-approximation of Max-NLS problem running in O(kn) time for restricted
linear graphs. In particular, for ncRNA derived linear graphs, an
1
4 -approximation is presented.

In conclusion, we mention some interesting directions for future works. First,
the approximation aspect of the Max-NLS problem has to be improved. In partic-
ular, is the Max-NLS problem approximable to within some constant? Second, we
do believe that investigating generalizations of the Max-NLS problem involving
more complex structures is of particular importance from both a theoretical and
a practical computational biology point of view (bi-secondary structures seem
to be an interesting starting point).
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Abstract. This paper presents the first polynomial time algorithm for
finding common RNA substructures that include pseudoknots and sim-
ilar structures. While a more general problem is known to be NP-hard,
this algorithm exploits special features of RNA structures to match RNA
bonds correctly in polynomial time. Although the theoretical
upper bound on the algorithm’s time and space usage is high, the data-
driven nature of its computation enables it to avoid computing unneces-
sary cases, dramatically reducing the actual running time. The algorithm
works well in practice, and has been tested on sample RNA structures
that include pseudoknots and pseudoknot-like tertiary structures.

1 Introduction

Features in biomolecules are frequently discovered by comparing sequences. Ri-
bonucleic acid (RNA) strands, however, have structures formed largely from
bonds between pairs of bases from the sequences, and can have common struc-
tures that affect their function but do not show significant sequence similarity.
In order to find common features and relationships, we need to compare RNA
molecules by their structure and find common substructures.

We can view RNA structures at their most basic as a set of pairs of ordered
sequence positions, using arcs between sequence positions to represent those
bases that are bonded. There are some known fundamental structures in RNA,
such as stems formed from sets of adjacent bonds, and these can group bonds
together. However, we want to be able to look for arbitrary common substruc-
tures, and so this work will operate at the bond level. This approach is therefore
complementary to the high level based structural comparison presented in [1].

A bond structure X is a substructure of a bond structure Y if the positions
of X can be mapped onto positions of Y while preserving both the sequence
order and the bonds. Finding common substructures for two sets of ordered
pairs is NP-complete in general, and remains NP-complete even if restricted
to RNA pair-bonds where each position can participate in at most one pair
[6, 13]. Solutions for these problems must thus use nonpolynomial algorithms,
approximation techniques, or address restricted types of structures.

RNA structures are usually divided into two types by the permitted relation-
ships between pairs of bonds (h, l) and (i, j) with respect to the sequence order,
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a) nested structure b) pseudoknot

Fig. 1. Knot-free and Pseudoknot structures, both folded and unfolded
.

as illustrated in Figure 1. Knot-free bond structures restrict the pairwise bond
relationships to those that either nest (h < i < j < l) or simply occur in se-
quence (h < l < i < j). Bonds that cross with respect to the sequence order
(h < i < l < j), on the other hand, form pseudoknot substructures, and are
more difficult to predict and to compare, especially when there are additional
substructures contained within a complex pseudoknot. Previous polynomial-time
algorithms for finding common substructures [2, 12] were restricted to structures
without pseudoknots, and thus could not handle many known RNA structures.

This work investigates specific restrictions that fit most known RNA struc-
tures, including those with pseudoknots, and presents an algorithm that finds
the maximum common substructure for two RNA structures in polynomial time.
While the theoretical worst-case running time and space is large, a computation-
reducing technique is used to make the algorithm feasible and effective.

2 Background

In our search for common structural features, we can initially restrict our ob-
jective to finding, for two given structures, a common substructure that has the
largest number of arcs that link its positions.

Our basic problem Maximum Common Ordered Substructure is:

Input: structures S1 and S2,
where S1 is the arc structure for a sequence of n1 positions

and S2 is the arc structure for a sequence of n2 positions,
so S1 ⊆ {1..n1} × {1..n1} and S2 ⊆ {1..n2} × {1..n2}.

Output: substructure Sc, maximizing |Sc|
where Sc ⊆ {1..nc} × {1..nc} for some positive integer nc, such that:
∃ one-to-one functions f1 : {1..nc} → {1..n1} and f2 : {1..nc} → {1..n2}

where ∀i, j∈ {1..nc}, i<j if and only if f1(i) < f1(j) and f2(i) < f2(j)
and if (i, j) ∈ Sc, then (f1(i), f1(j)) ∈ S1 and (f2(i), f2(j)) ∈ S2

If there are no additional restrictions on arcs, this problem is the same as
the general contact map overlap problem used to compare protein structures
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[8]. It is also similar to the problem of finding the longest arc-preserving com-
mon subsequence (LAPCS) [6]; though it differs in maximizing arcs rather than
positions matched, and in allowing arcs to be broken, Maximum Common Or-
dered Substructure does inherit some of the clique-based hardness results
from LAPCS.

A variety of results for these related contact map overlap [8, 9], RNA [2, 6, 13],
and 2-interval matching problems [11] delineate the known feasible and infeasible
cases for Maximum Common Ordered Substructure. The general problem
as given above without any further restrictions is NP-complete [6, 8].

Restrictions on the structures are defined based on the allowed relationships
between two arcs, (h, l) and (i, j) with h ≤ i, from the same structure. We
consider the arcs to be directed, with h < l and i < j. Arcs can:

– share an endpoint: where h = i, l = i, or l = j.
– precede : where l < i, so the interval of one arc occurs before the other
– nest : where h < i < j < l, so the interval of one arc is contained entirely

within the other
– cross : where h < i < l < j, so the intervals overlap

Polynomial time algorithms exist for finding known substructures in restricted
models that do not permit nested arcs [9] or do not permit crossing arcs [11].

A pair-bond structure would allow preceding, nesting, and crossing, but not
endpoint sharing, since RNA bases generally participate in at most one bond
each. A knot-free pair-bond structure would further prohibit crossing. Results
for these restrictions show that the maximum common ordered substructure
problem for two general pair-bond structures is NP-hard [6, 13], and for two
knot-free pair-bond structures can be solved in O(n4) time and space [2].

The hardness results for pair-bond structures, however, use constructions with
arbitrarily crossing arcs that do not resemble actual RNA structures. Almost all
RNA structures can be divided, or 2-coloured, into two layers of arcs such that
each layer’s arcs only cross arcs from the other layer [8, 4]. Work on contact
maps has shown that if each input structure is the union of two such layers, the
problem is still NP-hard [8]. However, this variation also allows endpoint sharing
between arcs from different layers, which would not occur for RNA. If the input is
restricted to 2-colourable pair-bond structures, prohibiting all endpoint sharing,
then the problem’s status is still unknown.

3 Becoming Specific to RNA Structures

As mentioned in Section 2, hardness results for the more general variants of the
maximum common ordered substructure problem have constructions with little
resemblance to actual RNA structures. We therefore need to consider additional
restrictions that still allow pseudoknots but are consistent with the characteris-
tics of known RNA structures.

First, we will restrict our structures to 2-colourable pair-bond structures,
where arcs must have different colours if they cross. This restriction disallows
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3-knots, substructures that have 3 mutually crossing arcs, as shown in
Figure 2(a). This restriction enables us to avoid the hardness constructions of
[6, 13] which depend on arbitrary k-knots that do not occur in practice [4].

a) a three-knot b) interleaved left-right endpoints

Fig. 2. Excluded cases

Furthermore, while we are operating at the bond level, bonds occur in groups;
interleaving the right endpoints of one set of bonds with the left endpoints of
another set does not occur in examined structures, nor would it be biochemically
stable. In order to prevent overlap between the segments of RNA containing sets
of arcs, we also disallow these interleaved endpoints as shown in Figure 2(b).

All structures consistent with these restrictions can be decomposed into, and
assembled from, sets of segments and linked segment pairs (LSPs). An indepen-
dent segment of an RNA structure is a set of consecutive positions such that no
position is linked with an arc to any position outside the segment. Structures
without pseudoknots can be decomposed into independent segments. Pseudoknot
structures, however, need to allow arcs to link out of segments. The restrictions
we have adopted as to how they can cross limit these arcs to coherent groups
that link a segment to specific other segments to the left and right. Linking
a non-independent segment to the segment that contains the remaining other
endpoints of its arcs provides sufficient context to compute the optimal result
of the linked pair. LSPs and segments can then be assembled into independent
segments and larger LSPs, as illustrated in Figure 3.

Fig. 3. Merging Linked Segment Pairs

4 Breaking Down Structures

4.1 Decomposition Overview

In the work of Bafna et al. on matching knot-free RNA structures, mapping an
arc between two structures decomposes the remaining parts of each structure
into two independent segments [2]. For pesudoknotted structures, the segments
remaining could still have arcs linking them, and thus could not be considered
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independently; we need to consider them together as a linked segment pair (LSP).
Mapping an arc that is part of an LSP breaks the remaining substructures down
further, into one or two LSPs and potentially an additional segment. Note that
unlike techniques that require the structure to have been previously parsed [1],
these breakdowns are computed along with the optimal mapping.

Breaking a structure into its substructures only occurs when one of its arcs
is mapped to a similarly-situated arc in the other structure. We can therefore
visualize the common decomposition of the two structures as if it was a single
structure. The following subsections examine what decomposition cases could
occur, and give the recurrences that show how the independent segments and
LSPs decompose into smaller structures. Note that that gaps between the two
segments of an LSP will have one or more associated arcs between the gap and
the region after the LSP. The use of LSP cases is restricted to situations that
have at least one arc linking the segments.

4.2 Matching Segments

For matching segment (i1, j1) from S1 to segment (i2, j2) from S2, we can follow
the recurrences from [2], and maximize the results of:

s1: value of matching segment (i1, j1 − 1) to (i2, j2)
s2: value of matching segment (i1, j1) to (i2, j2 − 1)
s3: if j1 links to k1 and j2 links to k2:

1+ (value of matching segment (i1, k1 − 1) to (i2, k2 − 1)) +
(value of matching segment (k1 + 1, j1 − 1) to (k2 + 1, j2 − 1))

To match pseudoknots, we add an additional case; if j1 links to k1, j2 links to
k2, and in both cases the arc (k, j) is crossed by arcs linking segments (i, k− 1)
and (k + 1, j − 1):

s4: 1+ (value of matching LSP (i1, k1−1, k1+1, j1−1) to (i2, k2−1, k2+1, j2−1))

4.3 Matching Linked Segment Pairs

To match LSP (h1, l1, i1, j1) to LSP (h2, l2, i2, j2), we maximize the results of the
following cases, based on the different possibilities for the current last position
in each LSP.

Cases for Unmatched and Unlinked Positions
The first cases are analogous to the initial segment cases, where terminal posi-
tions are not matched.

b) create an LSP from a pair of segments (case s4)a) split into two independent segments (case s3)

jkjk

Fig. 4. Cases for matching segments
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a1: value of matching LSP (h1, l1, i1, j1 − 1) to LSP (h2, l2, i2, j2)
a2: value of matching LSP (h1, l1, i1, j1) to LSP (h2, l2, i2, j2 − 1)
a3: (value of matching segment (h1, l1) to (h2, l2)) +

(value of matching segment (i1, j1) to(i2, j2))

This third case, if used together with the last segment case, enables a new
LSP to be made from the right segments of corresponding LSPs.

Cases Mapping Arcs That Are Within the Right LSP Segment
If there are matching arcs that link j1 to k1 and j2 to k2, and i1 ≤ k1 < j1,
i2 ≤ k2 < j2 (so both arcs are within the right segment of the LSP):

a4: 1+ (value of matching LSP (h1, l1, k1 +1, j1−1) to (h2, l2, k2 +1, j2−1)) +
(value of matching segment (i1, k1 − 1) to (i2, k2 − 1))

a5: 1+ (value of matching LSP (h1, l1, i1, k1 − 1) to (h2, l2, i2, k2 − 1)) +
(value of matching segment (k1 + 1, j1 − 1) to (k2 + 1, j2 − 1))

b) continuing LSP (case a5)a) finishing one LSP, starting another (case a4)

k jilhh l i jk

Fig. 5. Cases for matching LSPs if arc is within right side

Cases Mapping Arcs That Cross the Gap to the Left LSP Segment
If there are matching arcs that link j1 to k1 and j2 to k2, and h1 ≤ k1 ≤ l1,
h2 ≤ k2 ≤ l2 (so both arcs cross to the left segment of the LSP):

a6: 1+ (value of matching LSP (h1, k1 − 1, k1 + 1, l1) to (h2, k2 − 1, k2 + 1, l2))
+
(value of matching segment (i1, j1 − 1) to (i2, j2 − 1))

a7: 1+ (value of matching LSP (k1 + 1, l1, i1, j1 − 1) to (k2 + 1, l2, i2, j2− 1)) +
(value of matching segment (h1, k1 − 1) to (h2, k2 − 1))

a8: 1+ (value of matching segment (h1, k1 − 1) to (h2, k2 − 1)) +
(value of matching segment (k1 + 1, l1) to (k2 + 1, l2)) +
(value of matching segment (i1, j1 − 1) to (i2, j2 − 1))

We do not attempt to match LSPs (h, k−1, i, j−1) since it would form a three-
knot with the arc linking k to j and the arc that produced the gap between l
and i. Any of these cases matching LSPs should be restricted to situations where
there are arcs present in the LSP.

Additionally, if both (h, k−1, k+1, l) and (k+1, l, i, j−1) are potential LSPs
in both structures, then we apply the following crossed-LSPs case:

a9: 1+ maxk1<s1<l1, k2<s2<l2 [ (value of matching LSPs (h1, k1 − 1, s1 + 1, l1)
to (h2, k2 − 1, s2 + 1, l2)) +
(value of matching LSPs (k1 + 1, s1, i1, j1 − 1) to (k2 + 1, s2, i2, j2 − 1)) ]
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h jilk

h jilk h

d) merging crossed LSPs (case a9)

b) continuing existing LSP (case a7)a) filling existing LSP, starting another (case a6)

k l i jh

c) breaking into segments (case a8)

sk l i j

Fig. 6. Cases for matching LSPs if arc crosses to left side

Some of these cases do allow for some instances of three-knots or interleaved
endpoints; however, they do not allow arbitrary instances of them.

5 Implementation

These recurrences and the likely overlap between them suggest the use of dy-
namic programming to store the intermediate computation results for use and
reuse, as is done for the algorithm for knot-free structures [2].

An iterative dynamic approach has significant problems. The mutual depen-
dence of the independent segment and LSP recurrences poses difficulties in de-
termining a suitable computation order. The tables will be extremely large,
with one 4-dimensional table for the independent segment recurrence and one
8-dimensional table for the LSP recurrence; each of these is far too large to
allocate in its entirety for sizes for many RNA comparisons, eg. n = 1000.

However, many potential cases will not be consistent with the data. Many
intervals are not legitimate segments in a structure, many pairs of intervals are
not valid occurring LSPs, and many of the valid substructures from each input
structure cannot be matched to each other. We need to allow the input data to
drive the computation, restricting the cases computed and the space allocated
based on the segments and LSPs consistent with the data.

For these reasons, the recurrences have been implemented as a recursive algo-
rithm using memoization. The tables are progressively allocated dimension by
dimension to avoid allocating space for entire hyperplanes of the table if there
are no results consistent with the data that will be stored in the hyperplane.

In the following algorithm, note that the link() function encodes arcs, so that
(i, link(i)) will represent the arc between i and its unique partner link(i).

Each table has the first level allocated, and the recursion is started by calling
doublepair(0, n1 − 1, 0, n2 − 1) where n1 is the number of positions in RNA
structure S1, and n2 is the number of positions in RNA structure S2.
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doublepair(i1, j1, i2, j2) :
if table4[i1, j1, i2, j2] exists and contains a value

return that value
else

calculate the maximum of the applicable segment cases (s1..s4).
for each level (j1, i2, j2) of the table, in order

if the level does not exist
allocate this level from previous index to link(i1 − 1)

or link(i2 − 1) as applicable
save maximum value in table4[i1, j1, i2, j2]

quadpair(h1, l1, i1, j1, h2, l2, i2, j2) :
if table8[h1, l1, i1, j1, h2, l2, i2, j2] exists and contains a value

return that value
else

calculate the maximum of the applicable LSP cases (a1..a9).
for each level (l1, i1, j1, h2, l2, i2, j2) of the table, in order

if the level does not exist
allocate this level from previous index to link(h1 − 1)

or link(h2 − 1) as applicable
save maximum value in table8[h1, l1, i1, j1, h2, l2, i2, j2]

The rest of the allocation is done progressively, layer by layer. The link(i−1)
and link(h − 1) values are used to reduce the size of the hyperplane allocated
to no more than needed. The initial position (i for segments, h for LSPs) can
only increase when its previous value is the initial endpoint of a mapped arc. For
independent segments, the final endpoint of this arc will be after the end of the
segment, so we know that all segments that start at position i will end before
position link(i − 1), and can limit the size of our table allocation accordingly.
A similar situation is true for LSPs; all possible LSPs that start at h must end
before link(h− 1), and this constrains the values for the indices l, i, and j.

In the worst case, if the algorithm needed to compute every index combination,
it would require O(n8) space. Since case a9 is quadratic, this would lead to a
worst-case running time ∈ O(n10). However, the measures discussed above allows
the data characteristics to greatly reduce the index combinations computed. The
use of case a9 is also very limited in any RNA structure.

Testing reveals that this data-driven approach does drastically reduce the
space and time needed to feasible amounts.

6 Testing Results

To determine the feasibility and the effectiveness of this algorithm, it was im-
plemented in C and tested on three types of RNA data: 16S ribosomal RNA
(H. sapiens and D. melanogaster)[5]; segments of mosaic viral RNA (tobacco
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RNA type # of bonds mapped locations calculated recursive calls
16S rRNA 335 4.9 ×108 1.3 ×109

viral RNA 52 6.2 ×106 2.2 ×107

RNase P 109 1.8 ×108 6.7 ×108

Fig. 7. Computations for RNA structure test cases

mosaic[7], turnip yellow mosaic and chimera [10]); and Ribonuclease P (H. in-
fluenza and B. pertussis)[3]. All types contain multiple pseudoknots and have
other structures contained within pseudoknots. For all cases, the algorithm was
able to find the correct common substructures including all pseudoknots.

These experiments showed that structures of up to 400 arcs could be compared
using this algorithm in 4Gb of space. The proportion of the worst-case space used
by the algorithm’s execution on these cases was approximately 10−14, a very signif-
icant reduction due to the data-driven and space-limiting approach. The amount
of space used, however, was not completely related to the number of arcs, due to
space usage being data-driven; some structures, particularly those of RNase P,
were more complex and required more calculations than larger simpler structures.

7 Conclusion

This algorithm finds common RNA substructures that can include pseudoknots
and pseudoknot type structures, and shows that this problem can be solved in
polynomial time. Although the theoretical worst case resource usage is high, this
is reduced severely by memoization and careful memory management, and test
results show that this algorithm finds useful patterns in RNA structures. Using
a compressed RNA bond structure will increase the usability of this algorithm.

While this algorithm shows that the maximum common substructure for two
RNA structures can be found in polynomial time for most RNA structures,
some open problems still remain. This algorithm and the NP-completeness of
matching 2-colourable structures leaves open the problem of finding maximum
common substructures for two 2-colourable pair-bond structures. Also, there are
some rare exceptions to the restrictions adopted for this algorithm, including
rare 3-way bonds, that should be investigated.

As this algorithm is simply maximizing the number of common bonds, there
also need to be extensions of this work to adapt it more thoroughly to RNA
structures, using weights and structural information to produce common sub-
structures that will be most relevant to RNA.
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Abstract. In the motif finding problem one seeks a set of mutually
similar subsequences within a collection of biological sequences. This
is an important and widely-studied problem, as such shared motifs in
DNA often correspond to regulatory elements. We study a combinatorial
framework where the goal is to find subsequences of a given length such
that the sum of their pairwise distances is minimized. We describe a
novel integer linear program for the problem, which uses the fact that
distances between subsequences come from a limited set of possibilities.
We show how to tighten its linear programming relaxation by adding an
exponential set of constraints and give an efficient separation algorithm
that can find violated constraints, thereby showing that the tightened
linear program can still be solved in polynomial time. We apply our
approach to find optimal solutions for the motif finding problem and
show that it is effective in practice in uncovering known transcription
factor binding sites.

1 Introduction

A central challenge in post-genomic biology is to reconstruct the regulatory net-
work of an organism. A key step in this process is the discovery of regulatory
elements. A common approach finds novel sites by searching for a set of mutually
similar subsequences within DNA sequences. These subsequences, when aligned,
form motifs, and are putative binding sites for a shared transcription factor. The
effectiveness of identifying regulatory elements in this manner has been demon-
strated when considering sets of sequences identified via shared co-expression,
orthology and genome-wide location analysis (e.g., [19, 8, 11]).

Numerous problem formalizations and computational approaches have been
developed for motif finding (see [21], and references therein). Probabilistic ap-
proaches typically maximize the information content of the chosen motif instances
(e.g., [10, 3, 7]). Combinatorial methods either enumerate all allowed motifs or at-
tempt to optimize some measure based on sequence similarity (e.g., [13, 12]). Here,
we take a combinatorial approach and model the motif finding problem as that of
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finding the gapless local multiple sequence alignment of fixed length that mini-
mizes a sum-of-pairs (SP) distance measure. Such a formulation provides a rea-
sonable scheme for assessing motif conservation [15, 18]. The problem is equivalent
to that of finding a minimum weight clique of size p in a p-partite graph (e.g., [16]).
For general notions of distance, this problem is NP-hard to approximate within
any reasonable factor [4]. The problem and its variants remain NP-hard in the
context of biological sequences [1, 22], though in the motif finding setting, where
the distances obey the triangle inequality, constant-factor approximation algo-
rithms exist [2]. Nevertheless, the ability to find the optimal solution in practice is
preferable.

We introduce and extensively explore a mathematical programming approach
to motif finding. We propose a novel integer linear programming (ILP) formu-
lation of the motif finding problem that uses the discrete nature of the distance
metric imposed on pairs of subsequences. Considering its linear programming
(LP) relaxation, we show that while it is weaker than an alternative LP for-
mulation for motif finding [23], an exponentially-sized class of constraints can
be added to make the two formulations equivalent. We then show that it is not
necessary to explicitly add all these constraints by giving a separation algorithm,
based on identifying minimum cuts in a graph constructed to model the ILP,
that identifies violated constraints and thus permits a polynomial-time solution
to the tightened LP.

We test the effectiveness of our approach in identifying DNA binding sites
of E. coli transcription factors. We demonstrate that our new ILP framework
is able to find optimal solutions often an order of magnitude faster than the
previously known mathematical programming formulation, and that its per-
formance in identifying motifs is competitive with a widely-used probabilistic
Gibbs-sampling approach [20]. Finally, we note that in practice the LP relax-
ations often have integral optimal solutions, making solving the LP sufficient in
many cases for solving the original ILP.

2 Formal Problem Specification

We are given p sequences, which are assumed without loss of generality to each
have length N ′, and a motif length �. In our formulation, the goal is to find a sub-
sequence si of length l in each sequence i so as to minimize the sum of the pairwise
distances between the subsequences. Here, the distance between two substrings
si and sj is computed as the Hamming distance between them (HD(si, sj)),
and thus our goal is to choose the substrings such that

∑
i<j HD(si, sj) is

minimized.
The problem can be reformulated in graph-theoretic terms. For p input se-

quences, we define a complete, weighted p-partite graph, with a part Vi for each
sequence. In Vi, there is a node for every window of length � in sequence i. Thus
there are N := N ′− �+ 1 nodes in each Vi, and the vertex set V = V1 ∪ · · · ∪Vp

has size Np. For every pair u and v in different parts there is an edge (u, v) ∈ E .
Letting seq(u) denote the subsequence corresponding to node u, the weight wuv
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on edge (u, v) equals HD(seq(u), seq(v)). The goal is to choose a node from
each part so as to minimize the weight of the induced subgraph.

3 Integer Programming Formulations

Original integer linear programming formulation. We first give the integer
linear programming formulation presented in [23] for solving the motif finding
problem. In this ILP formulation, there is a variable Xu for each node u in the
graph described above. The variable Xu is set to 1 if node u is chosen, and 0
otherwise. Additionally, there is one variable Xuv for each edge in the graph
(Xuv is the same as Xvu). These edge variables are set to 1 if both end points of
the edge are chosen. In the integer program, all variables are constrained to take
values from {0, 1}. The following ILP is easily seen to model the above graph
problem:

Minimize
∑

{u,v}∈E wuv ·Xuv

subject to∑
u∈Vi

Xu = 1 for i = 1, . . . , p∑
u∈Vi

Xuv = Xv for i = 1, . . . , p and v ∈ V \ Vi

Xu, Xuv ∈ {0, 1}

(IP1)

The first set of constraints ensures that one node is chosen from each part, and
the second set requires that an edge is chosen if its end points are. This ILP is
the same as the ILP formulation for side-chain positioning presented in [9].

Fig. 1. Schematic of IP2. Adjacent to a
node u ∈ Vi there are at most |D| cost
bins for each position j > i, each as-
sociated with a variable Yujc. For each
cost c there are the nodes v ∈ Vj for
which wuv = c (stars).

More compact integer linear pro-
gram. We now introduce an alternative
ILP that better exploits the structure of
the combinatorial problem. In particu-
lar, we use the fact that there are typ-
ically only a small number of possible
pairwise distances. For example, in the
case of Hamming distances, edge weights
can only take on � + 1 different values.
We can take advantage of the small num-
ber of possible weights and the fact that
the edge variables of IP1 are only used
to ensure that if two nodes u and v are
chosen in the optimal solution then wuv

is added to the cost of the clique. In our
new ILP formulation, we no longer have
edge variables Xuv. Instead, in addition
to the node variables Xu, we have a vari-
able Yujc for each node u, each position j such that u /∈ Vj , and each edge
weight c. These Y variables model groupings of the edges by cost into cost bins,
as shown in Fig. 1. The intuition is that Yujc is 1 if node u and some node v ∈ Vj

are chosen such that wuv = c.
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Formally, let D be the set of possible edge weights and let W = {(u, j, c) :
c ∈ D,u ∈ V, j ∈ 1, . . . p and u �∈ Vj} be the set of triples over which the Yujc

variables are indexed, and let part(u) = i if u ∈ Vi. Then the following ILP
models the motif-finding graph problem:

Minimize
∑

(u,j,c)∈W :part(u)<j c · Yujc

subject to∑
u∈Vi

Xu = 1 for i = 1, . . . , p (IP2a)∑
c∈D Yujc = Xu for j ∈ 1, . . . , p and u ∈ V \ Vj (IP2b)∑
v∈Vj :wuv=c Yvic ≥ Yujc for (u, j, c) ∈ W s.t. u ∈ Vi and i < j (IP2c)

Xu, Yujc ∈ {0, 1} (IP2)

As in IP1, the first set of constraints forces a single node to be chosen in each
part. The second set of constraints makes certain that if a node u is chosen, for
each j, one of its “adjacent” cost bins must also be chosen (Fig. 1). The third set
of constraints ensures that Yujc can be selected only if some node v ∈ Vj , such
that wuv = c, is also selected. We discard variables Yujc if there is no v ∈ Vj

such that wuv = c. Fig. 1 gives a schematic drawing of these constraints.

Lemma 1. IP2 correctly models the sum-of-pairs motif finding problem.

Proof. For any choice of p-clique {u1, . . . , up} of weight γ =
∑

i<j wuiuj , a
solution of cost γ to IP2 can be found by taking Xui = 1 for i = 1 . . . , p, and
taking Yuijc = 1 for all 1 ≤ j ≤ p such that wuiuj = c. This solution is feasible,
and between any pair of positions i, j it contributes cost wuiuj ; therefore, the
total cost is γ. On the other hand, consider any solution (X,Y ) to IP2 of objective
value γ. Consider the clique formed by the nodes u such that Xu = 1. Between
every two positions i < j, the constraints (IP2a) and (IP2b) imply that exactly
one Yujc and one Yvic′ are set to 1 for some u ∈ Vi and v ∈ Vj and costs c, c′.
Constraint (IP2c) corresponding to (u, j, c) with Yujc on its right-hand side can
only be satisfied if the sum on its left-hand side is 1, which implies c = c′ = wuv.
Thus, a clique of weight γ exists in the motif-finding graph problem. �

Advantages of IP2. In practice, IP2 has many fewer variables than IP1.
Letting d = |D|, the number of kinds of weights, IP2 has Np((p − 1)d + 1)
variables in the case that a Yujc variable exists for every allowed choice of (u, j, c),
while IP1 has Np(N(p− 1)/2+1) variables. If d < N/2, the second IP will have
fewer variables. In general, d is expected to be much smaller than N : while
N could reasonably be expected to grow large as longer and longer sequences
are considered, d is constrained by the geometry of transcription factor binding
and will remain small. Also, in practice, it is likely that many Yujc variables
are removed because seq(u) does not have matches of every possible weight in
each of the other sequences. On the other hand, IP2, will have O(d) times more
constraints than IP1, with the number of constraints being p+Np(p−1)(d/2+1)
for IP2, and p+Np(p−1) for IP1. However, the decrease in variables of IP2 tends
to be more dramatic than the increase in the number of constraints, resulting in
faster execution times (see Computational Results and Fig. 3).
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4 Linear Programming Relaxations

The typical approach to solving an ILP is to solve as a subproblem the linear
program relaxation derived from the ILP by dropping the requirement that the
variables be in {0, 1}, and instead requiring only that the variables lie in the
continuous range [0, 1]. While finding a solution to the ILP is computationally
difficult, its relaxed LP can be solved in polynomial-time. If the solution to
the relaxed LP is integral, then we have found a solution to the original ILP.
Alternatively, if the solution to the LP is fractional, then branch and bound or
other techniques can be used to obtain optimal solutions to the ILP.

The LP relaxation of IP1, which we refer to as LP1, is stronger than the LP re-
laxation of IP2. Because tighter LP relaxations are often more useful subroutines
for finding optimal integer solutions, we first present a natural (though exponen-
tial) class of constraints that, if added to the LP relaxation of IP2, makes the
two formulations equivalent. We refer to this fully constrained relaxation of IP2
as LP2. Later we give a separation algorithm for finding violated constraints,
and thereby show that LP2 can still be solved in polynomial-time.

Additional constraints. Focus on a pair of positions i and j. In IP1 the edge
variables between Vi and Vj explicitly model the bipartite graph between those
two positions. In IP2, however, the bipartite graph is only implicitly modeled
by an understanding of which Y variables are compatible to be chosen together.
We study this implicit representation by considering the bipartite compatibility
graph Cij between two positions i and j. Intuitively, we have a node in this
compatibility graph for each Yujc and Yvic, and there is an edge between the
nodes corresponding to Yujc and Yvic if wuv = c. These two Y variables are
compatible in that they can both be set to 1 in IP2. More formally, Cij =
(Aij , Aji, F ), where Aij = {(u, j, c) : u ∈ Vi, c ∈ D} is the set of indices of
Y variables adjacent to nodes in Vi, going to position j, and Aji is defined
analogously, going in the opposite direction. The edge set F is defined in terms
of the neighbors of a triple (u, j, c). Let N (u, j, c) = {(v, i, c) : u ∈ Vi, (v, i, c) ∈
Aji and wuv = c} be the neighbors of (u, j, c). They are the indices of the Yvic

variables adjacent to position j going to position i so that the edge {u, v} has
weight c. There is an edge in F going between (u, j, c) and each of its neighbors.
We call c the cost of triple (u, j, c). All this notation is summarized in Fig. 2(a).

In any feasible integral solution, if Yujc = 1, then some Yvic for which (v, i, c) ∈
N (u, j, c) must also be 1. Extending this insight to subsets of the Yujc variables
yields a class of constraints that will ensure that the resulting LP formulation
is as tight as LP1. That is, choose any set of Yujc variables adjacent to position
i. Their sum must be less than or equal to the sum of the Y variables for their
neighbors. Formally, if Qij ⊆ Aij , then let N (Qij) =

⋃
(u,j,c)∈Qij

N (u, j, c) be
the set of indices that are neighbors to any vertex in Qij . If Qij ⊆ Aij then
N (Qij) ⊆ Aji. The following constraint is true in IP2 for any such Qij :∑

(u,j,c)∈Qij

Yujc ≤
∑

(v,i,c)∈N (Qij)

Yvic . (1)



238 C. Kingsford, E. Zaslavsky, and M. Singh

(a) (b)

Fig. 2. (a) Mapping for the compatibility graph Cij . The two columns of circles repre-
sent nodes in Vi and Vj . Solid lines adjacent to each circle represent the Yujc or Yvic

variables associated with the node. Aij and Aji (dotted boxes) are the sets of these
variables associated with the pair of graph parts i and j. The function N (u, j, c) maps
a variable Yujc to a set of compatible Yvic variables (squiggly lines). N (u, j, c) is shown
assuming that v and w are the only nodes in Vj that have cost c with u. (b) Flow
network Cc

ij between positions i and j. Nodes r and s are a source and sink. Each
solid node corresponds to a Y variable. The edges between Aji and Aij have infinite
capacity, while those entering s or leaving r have capacity equal to the value of the Y
variable to which they are adjacent. The shading gives an r – s cut.

Notice that the set of constraints (IP2c) is of the form (1), taking Qij to be the
singleton set {(u, j, c)}.

Theorem 1. If for every pair i < j, constraints of the form (1) are added
to IP2 for each Q ⊆ Aij s.t. all triples in Q are of the same cost, the resulting
LP relaxation LP2 has the same optimal solution as that of the relaxation LP1
of IP1.

Proof. It is clear that the LP relaxation LP2 described in Theorem 1 is no
stronger than LP1 as any solution to LP1 can be converted to a solution of LP2
by making the node variable weights the same and putting the weight of edge
variables Xuv onto Yujc and Yvic, where wuv = c. This solution to LP2 will
satisfy all the constraints in the theorem, and be of the same objective value.

The rest of the proof will involve showing that for any feasible solution for
LP2, there is a feasible solution for LP1 with the same objective value, thereby
demonstrating that the optimal solution to LP2 is not weaker than the optimal
solution to LP1. In particular, fix a solution (X,Y ) to LP2 with objective value γ.
We need to show that for any feasible distribution of weights on the Y variables
a solution to LP1 can be found with objective value γ.

In order to reconstruct a solution X̂ for LP1 of objective value γ, we will set
X̂u = Xu, using the values of the node variables Xu in the optimal solution
to LP2. We must assign values to X̂uv to complete the solution. Recall the
compatibility graph Cij . Because all edges in Cij are between nodes of the same
cost, Cij is really |D| disjoint bipartite graphs Cc

ij , one for each cost. Let Ac
ij∪Ac

ji
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be the node set for the subgraph Cc
ij for cost c. Each edge in a subgraph Cc

ij

corresponds to one edge in the graph G underlying LP1. Conversely, each edge
in G corresponds to exactly one edge in one of the Cc

ij graphs (if edge {u, v}
has cost c1, it corresponds to an edge in Cc1

ij ). We will thus proceed by assigning
values to the edges in the various Cc

ij , and this will yield values for the X̂uv.
If y(A) :=

∑
(u,j,c)∈A Yujc, by the sets of constraints (IP2a) and (IP2b),

y(Aij) = y(Aji) = 1. Since the constraints (1) are included with Q = Ac
ij

for each cost c, by the pigeonhole principle, y(Ac
ij) = y(Ac

ji) for every cost c.
Thus, for each subgraph Cc

ij , the weight placed on the left half equals the weight
placed on the right half. We will consider each induced subgraph Cc

ij separately.
We modify Cc

ij as follows to make it a capacitated flow network. Direct the
edges of Cc

ij so that they go from Ac
ij to Ac

ji, and set the capacities of these edges
to be infinite. Add source and sink nodes {r, s} and edges directed from r to
each node in Ac

ij and edges from each node in Ac
ji to s. Every edge adjacent to

r and s is also adjacent to some node representing a Y variable; put capacities
on these edges equal to the value of the adjacent Y variable (see Fig. 2(b)).

The desired solution to LP1 can be found if the weight of the nodes (Y
variables) in each compatibility subgraph can be spread over the edges. That is,
a solution to LP1 of weight γ can be found if, for each pair (i, j) and each c,
there is a flow of weight y(Ac

ij) from r to s in the flow network. The assignment
to X̂uv will be the flow crossing the corresponding edge in the Cc

ij of appropriate
cost. In the following lemma, we show that the set of constraints described in
the theorem ensure that the minimum cut in the flow network is ≥ y(Ac

ij), and
thus there is a flow of the required weight. The proof of this fact is quite similar
to those of other flow feasibility problems found in [5], and we omit it here.
Together with the lemma we have shown LP1 and LP2 to be equivalent. �

Lemma 2. The minimum cut of the flow network described in the proof of The-
orem 1 (and shown in Fig. 2(b)) is y(Ac

ij).

4.1 Separation Algorithm

Despite the exponential number of constraints, it is possible to solve LP2 in
polynomial time by the ellipsoid algorithm [6] provided that there exists a sep-
aration algorithm that finds a violated constraint, if one exists, in polynomial
time or reports that no constraints are violated. The next lemma gives such an
algorithm, formalizing the intuition in the proof of Theorem 1, by which all con-
straints are satisfied in a compatibility graph only if a large enough maximum
flow exists. Otherwise, the minimum cut identifies a violated constraint.

Theorem 2. There is a polynomial-time algorithm that can find a violated con-
straint in LP2 or report that none exists.

Proof. Because each constraint in (1) involves variables of a single cost, if (1) is
violated for some set Q, then Q is a subset of an Ac

ij for some i, j, c, and so we
can consider each subgraph Cc

ij independently. The proof of Theorem 1 shows
that there is a violated constraint of the form (1) between i, j involving variables
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of cost c if and only if the maximum flow in Cc
ij is less than y(Ac

ij). Thus, the
minimum cut can be found for each triple i, j, c, and, if a triple i, j, c is found
where the minimum cut is less than y(Ac

ij), one knows that a violated constraint
exists between positions i and j with Q ⊂ Ac

ij .
The minimum cut can then be examined to determine the violated constraint

explicitly. Let {r} ∪A ∪B be the minimum r – s cut in Cc
ij , with A ⊆ Ac

ij and
B ⊆ Ac

ji. Such a cut is shaded in Fig. 2(b). Let m be the capacity of this cut, and
assume, because we are considering a triple i, j, c that was identified as having
a violated constraint, that y(Ac

ij) > m. For ease of notation let Ā = Ac
ij \ A

and B̄ = Ac
ji \ B. Because m < ∞ there are no edges going from A to B̄, and

hence two things hold: (1) m = y(B) + y(Ā) and (2) N (A) ⊆ B, and therefore
y(N (A)) ≤ y(B). Chaining these facts together, we have

y(A) = y(Ac
ij)− y(Ā) > m− y(Ā) = y(B) ≥ y(N(A)) ,

Thus, the set A is a set for which the constraint of the form (1) is violated. �

5 Computational Results

We apply our LP formulation to find binding sites for E. coli transcription fac-
tors, and we show that in practice our LP formulation results in significantly
faster running times than the previous simpler linear program. Moreover, in or-
der to demonstrate that our formulation of the motif finding problem results
in biologically relevant solutions, we show that our approach identifies binding
sites as well as a widely-used probabilistic technique [20].

Test Sets. We present results on identifying the binding sites of 39 E. coli
transcription factors (see Table 1). We construct our data set from the data
of [17, 14] in a fashion similar to [15]. In short, we remove all sites for sigma-
factors, duplicate sites, as well as those that could not be unambiguously located
in the genome. Data sets for all factors with only two sites remaining were
discarded as uninteresting for motif finding; datasets for ihf and crp are omitted

Table 1. Sizes for the 39 problems considered: number of sequences (p), motif length
(�), and total number of nodes in the underlying graph (n)

TF � p n TF � p n TF � p n TF � p n TF � p n

ada 31 3 810 dnaA 15 8 2381 galR 16 7 2188 metJ 16 15 5754 phoB 22 14 4618
araC 48 6 1715 fadR 17 7 2122 gcvA 20 4 1234 metR 15 8 3312 purR 26 20 5856
arcA 15 13 4790 farR 10 3 873 glpR 20 11 3829 modE 24 3 934 soxS 35 13 4004
argR 18 17 5960 fis 35 18 5371 hipB 30 4 1084 nagC 23 6 1870 torR 10 4 2198
cpxR 15 9 2614 flhCD 31 3 810 hns 11 5 1485 narL 16 10 3301 trpR 24 4 1108
cspA 20 4 1410 fnr 22 12 3705 lexA 20 19 5554 ntrC 17 5 1516 tus 23 5 1390
cysB 40 3 783 fruR 16 11 4082 lrp 25 14 4090 ompR 20 9 3057 tyrR 22 17 5258
cytR 18 5 1695 fur 18 9 3182 malT 10 10 3410 oxyR 39 4 1048
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due to size considerations. For each transcription factor considered, we gather
at least 300 base pairs of genomic sequence upstream of the transcription start
sites of the regulated genes. In the cases where the binding site is located further
upstream, we extend the sequence to include the binding site. This results in
graphs with up to 20 parts and 5, 960 nodes. The motif length for each dataset
was chosen based on the length of the consensus binding site, determined from
other biological studies and ranging between 11 and 48. The transcription factors,
the length of their binding site, and the number of DNA sequences considered
are shown in Table 1.

Methodology. We first solve the LP relaxation of IP2. If the solution is not
integral, we find and add violated constraints and re-solve. We have observed
that certain classes of constraints of the form (1) are powerful in practice, and
so we consider these first:

1. Qij = Ac
ij for every i < j, c.

2. Qij = {(u, j, c) : c ∈ D} for every i < j, u ∈ Vi.

In addition, we consider the above constraints with i > j. We iterate, adding all
violated constraints of the above types and re-solving, until all such constraints
are satisfied. While in theory this heuristic approach may lead to a solution that
is not as tight as that of LP1, in all cases considered, we find that adding this
particular set of constraints is sufficient for making LP2 as tight as LP1. More-
over, in practice, this heuristic approach will be faster than using the ellipsoid
method [6] with our separation algorithm and, we show below, is usually faster
than solving LP1.

LP1 was solved using two different simplex variants. In the first (primal
dualopt), the primal problem was solved using the dual simplex algorithm.
In the second (dual primalopt), the dual problem was solved using the primal
simplex algorithm. LP2 was always solved using the dual simplex method applied
to the primal problem so that we could use the optimal basis of the previous
iteration as a starting point for the next, setting the dual variables for the added
constraints to be basic. This strategy eliminates the need to re-solve using an
arbitrary starting solution and provides a significant speedup.

The linear and integer programs were specified with Ampl and solved using
CPLEX 7.1. All experiments were run on a public 1.2 GHz SPARC workstation
using a single processor. All the timings reported are in CPU seconds. Any
problem taking longer than five hours was aborted. Interestingly, only 3 of the
34 problems solvable in less than five hours were not integral. Since the problem
is NP-complete, this is somewhat surprising. This suggests that handling non-
integral cases may not be as pressing as one would think.

Performance of the LP relaxations. We solved LP1 and LP2 relaxations
for the transcription factors listed in Table 1. Fig. 3 plots the running times, ma-
trix sizes, defined as the number of constraints times the number of variables,
and speed-up factors of LP2 over LP1. For five problems, each LP failed to find
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Fig. 3. (a) Speed-up factor of LP2 over LP1. A triangle indicates problems for which
LP1 did not finish in less than five hours. An asterisk (far right) marks the problem
for which LP2 did not finish in less than five hours, but LP1 did. (b) Running times
in seconds for LP2 (log scale). (c) Ratio of matrix sizes for LP2 to LP1.

a solution in the allotted five hours; these are omitted from the figure. In most
cases, the initial set of constraints was sufficient to get a solution at least as good
as that obtained by LP1. Six problems required additional constraints to LP2 to
make their solutions as tight. The problems flhCD, torR, and hu required two iter-
ations of adding violated constraints, ompR required three, oxyR four, and nagC
five. Running times reported in Fig. 3(b) are the sum of the initial solve times and
of all the iterations. Fig. 3(c) plots (size of LP2)/(size of LP1). As expected, the
size of the constraint matrix is typically smaller for LP2. While in four cases the
matrix for LP2 is larger, often it is < 50% the size of the matrix for LP1.

When comparing the running times of LP2 with those of LP1, the speed-up
factor is computed as min{primal dualopt LP1, dual primalopt LP1}/LP2,
that is, using the better running time for LP1. For all but one of the datasets,
a significant speed-up when using LP2 is observed, and an order of magnitude
speed-up is common, as shown in Fig. 3(a). For nine problems, while LP2 was
solved, neither simplex variant completed in < 5 hours when solving LP1. For
these problems, the timing for LP1 was set at five hours, giving a lower bound
on the speed up. For one problem, cytR, the reverse was true and LP2 did
not finish within five hours, while LP1 successfully solved the problem. For
this dataset, the timing for LP2 was taken to be five hours, giving an upper
bound.
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Fig. 4. Difference between nPC values ob-
tained using the ILP approach and Gibbs
Motif Sampler [20]; data sets with identical
motifs are omitted. Bars above zero indi-
cate that ILP performs better.

We also compared the perfor-
mance of our approach, measured
by the nucleotide performance coef-
ficient (nPC ) [21], in identifying ex-
isting transcriptionfactor binding sites
to that of Gibbs Motif Sampler [20].
The nPC measures the degree of over-
lap between known and predicted mo-
tifs, and is defined as nTP/(nTP +
nFN +nFP ), where nTP, nFP, nTN,
nFN refer to nucleotide level true
positives, false positives, true nega-
tives and false negatives respectively.
We compare the nPC values for the
two methods in Fig. 4. Each bar in
the chart measures the difference in
nPC between the ILP approach and
Gibbs Motif Sampler, omitting those transcription factor datasets for which
the found motifs are identical. Of the 30 problems for which the integral
optimal was found using LP2, the sum-of-pairwise hamming distances measure
more accurately identifies the biologically known motif in seven cases, with nPC
0.11 better on average. In 20 cases, the two methods find equally good solu-
tions. In the remaining 3 cases, Gibbs sampling does better, with nPC 0.08
better on average. Since the Gibbs sampling approaches have comparable per-
formance to other stochastic motif finding methods [21] and most combinatorial
methods are restricted by the lengths of the motifs considered, our ILP frame-
work provides an effective alternative approach for identifying DNA sequence
motifs.

6 Conclusions

We introduced a novel ILP for the motif finding problem that works well in
practice. There are many interesting avenues for future work. While the under-
lying graph problem is similar to that of [4, 9], one central difference is that
the edge weights satisfy the triangle inequality. In addition, edge weights in
the graph are not independent, as each node represents a subsequence from a
sliding window. Incorporating these features into the ILP may lead to further
advances in computational methods for motif finding. It would also be useful
to extend the basic formulation presented here to find multiple co-occurring
or repeated motifs (as supported by many widely-used packages). Finally, we
note that graph pruning and decomposition techniques (e.g., [16, 23]) may al-
low mathematical programming formulations to tackle problems of considerably
larger size.
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Abstract. Local similarity is an important tool in comparative analy-
sis of biological sequences, and is therefore well studied. In particular,
the Smith-Waterman technique and its normalized version are two estab-
lished metrics for measuring local similarity in strings. In RNA sequences
however, where one must consider not only sequential but also struc-
tural features of the inspected molecules, the concept of local similarity
becomes more complicated. First, even in global similarity, computing
global sequence-structure alignments is more difficult than computing
standard sequence alignments due to the bi-dimensionality of informa-
tion. Second, one can view locality in two different ways, in the sequential
or structural sense, leading to different problem formulations.

In this paper we introduce two sequentially-local similarity metrics
for comparing RNA sequences. These metrics combine the global RNA
alignment metric of Shasha and Zhang [16] with the Smith-Waterman
metric [17] and its normalized version [2] used in strings. We generalize
the familiar alignment graph used in string comparison to apply also
for RNA sequences, and then utilize this generalization to devise two
algorithms for computing local similarity according to our two suggested
metrics. Our algorithms run in O(m2n lg n) and O(m2n lg n+n2m) time
respectively, where m ≤ n are the lengths of the two given RNAs. Both
algorithms can work with any arbitrary scoring scheme.

1 Introduction

Ribonucleic acids (RNAs) are polymers consisting of the four nucleotides Ade-
nine, Cytosine, Guanine, and Uracil, which are linked together by their phos-
phodiester bonds. Bases which are part of the nucleotides form hydrogen bonds
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Fig. 1. Three different ways of viewing an RNA sequence. In (a), a schematic 2-
dimensional description of an RNA folding. In (b), a linear representation of the RNA.
In (c), the RNA as a rooted ordered tree.

within the same molecule leading to structure formation. These hydrogen bonds
are referred to as base pairs, and the set of all base pairs is called the secondary
structure of the RNA. The role of RNA in biological systems was largely under-
estimated for a long time. Today, RNA enjoys increasing attention due to recent
developments such as the discovery of ribozymes (RNA-molecules with enzy-
matic properties), and the observation that non-coding RNA molecules play an
enormous role in cell control. As an example, research on non-coding RNAs has
been elected as the scientific breakthrough of 2002 by the readers of Science [6].

One major challenge of research on RNAs is to find common patterns since
these suggest functional similarities in the inspected molecules. For this purpose,
one has to investigate not only sequential features, but also structural features
for the following reasons. First, a major fraction of the function of an RNA is
determined by its secondary structure [15]. Second, it is known that the structure
of an RNA is often more conserved than its sequence during evolution [4]. Thus,
two RNA sequences with their corresponding secondary structure are aligned
using both sequential and structural information for scoring the alignment.

There have been quite a few approaches for defining alignments in terms of
RNAs. The first one is due to the seminal paper of Shasha and Zhang [16] which
represented RNA sequences as rooted ordered trees, and defined editing opera-
tions on trees which correspond to editing operations on RNA sequences. In this
way, an alignment of two RNA sequences corresponds to a sequence of editing op-
erations on two corresponding trees, and any tree editing algorithm can be used
to compute the optimal alignment of two RNAs. Furthermore, this approach al-
lows base pairs to be considered as whole entities, meaning that one can require
any base pair to either be deleted (resulting in a removal of two nucleotides)
or be aligned against another base pair in the opposite RNA. Since [16], there
have been attempts at extending either the set of edit operations on trees [1, 11],
or the set of allowed RNA alignments [13], in order to model certain biological
mutations that weaken and ultimately break bonds between base pairs. Usually,
these extensions introduce an increase in the time complexities of the algorithms
required to compute them.

In RNA sequences, as in many other biological applications, searching for local
similarities is at least as important as determining global similarity. In contrast,
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most RNA sequence-structure alignment methods are global. To our knowledge,
there are only a few exceptions for this, namely [3, 5, 7, 10, 18]. These can be
divided roughly into two main categories, depending on the exact notion of
locality under consideration. The first category of [3, 7, 18] defines locality in the
structural sense, thus allowing large gaps in the sequences not to be considered
as relevant in the alignment score. The second category of [5, 10] defines locality
in the sequential sense, thus extending the well understood notion of locality in
strings to RNA sequences.

In this paper we introduce two sequentially-local metrics for RNA local align-
ment. The first one is a natural extension of the Smith-Waterman metric used
in strings [17]. The second one is a a normalized variant of the first metric,
where one divides the alignment score of two local regions by the sum of their
lengths. This metric was suggested for string comparison by [2], and was dealt
also in [9].

Our Results: We give two algorithms for computing the optimal local align-
ment score of two RNA sequences of lengths m and n, m ≤ n. The first algorithm
computes in O(m2n lg n) time the optimal local alignment score according to our
extension of the Smith-Waterman metric. The second one computes the optimal
normalized local alignment score in O(m2n lgn + n2m) time. Both algorithms
work with any arbitrary scoring scheme.

Roadmap: The rest of this paper is organized as follows. We next introduce no-
tations and terminology that will be used throughout the paper. Following this,
in Section 2, we discuss the notion of alignment for RNA sequences. In Section 3,
we discuss local alignment and introduce two new local similarity metrics that
we will be dealing with throughout the paper. Section 4 then describes an adap-
tation of the familiar alignment graph used in string comparison to an alignment
graph for RNA sequences. This adapted graph is then used in Section 5 to de-
sign two algorithms that compute the local alignment score between a pair RNA
sequences according to our two suggested metrics. Due to space limitations, all
proofs are omitted from this version of the paper.

Notations: An RNA sequence R is an ordered pair (S,A), where S = s1 · · · s|S|
is a string over the alphabet Σ = {A,C,G,U}, and A ⊆ {1, . . . , |S|}×{1, . . . , |S|}
is the set of hydrogen bonds between bases of R (i.e. the secondary struc-
ture). Any base in R can bond with at most one other base, therefore we have
∀ (i′1, i1), (i′2, i2)∈ A, i′1 = i′2 ⇔ i1 = i2. Furthermore, following Zuker [19, 20], we
assume a model where the bonds in A are non crossing, i.e. for any (i′1, i1), (i

′
2, i2)∈

A, we cannot have i′1 < i′2 < i1 < i2 nor i′2 < i′1 < i2 < i1. We refer to a bond
(i′, i) ∈ A, i′ < i, as an arc, and i′ and i are referred to as the left and right
endpoints of this arc. Also, we let |R| denote the number of nucleotides in R,
i.e. |R| = |S|.

We will require a notion similar to that of a substring for RNA sequences.
Therefore, for any 1 ≤ i′ ≤ i ≤ |R|, we let R[i′, i] = (S[i′, i], A[i′, i]), the
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consecutive subsequence of R, be the RNA with S[i′, i] = Si′ · · ·Si and A[i′, i] =
A∩{i′, . . . , i}×{i′, . . . , i}. If (i′, i) ∈ A, then we say that arc (i′, i) wraps R[i′, i].
Also, for convenience purposes, we slightly abuse notation and let R[i + 1, i] =
(∅, ∅) denote the empty RNA for any 1 ≤ i ≤ |R|. Note that arcs of R with
one endpoint in R[i′, i] are absent in R[i′, i]. These arcs are said to be broken in
R[i′, i]. A position l ∈ {i′, ..., i} is considered an arc endpoint in R[i′, i], even if
it is an arc endpoint of an arc which is broken in R[i′, i].

This paper deals with comparing two RNA sequences. We denote these two
RNAs by R1 = (S1, A1) and R2 = (S2, A2) throughout the paper, and we set
|R1| = |S1| = n and |R2| = |S2| = m. Furthermore, we assume m ≤ n.

2 RNA Alignment

As in the case of strings, RNA alignment is analogous to the edit distance of
two RNAs, i.e. the minimum number of edit operations necessary in order to
transform one RNA into the other [16]. The edit operations defined for RNA
molecules are similar to those defined for strings, except that here we can per-
form editing operations on arcs as well as on unpaired nucleotides. The allowed
edit operations are therefore insertion, deletion, and relabeling of arcs and nu-
cleotides on either one of the given RNAs. Defining separate operations on arcs
and unpaired nucleotides captures the notion of arcs and unpaired bases being
different entities.

An alignment of R1 and R2 is another way of viewing a sequence of edit
operations on these two RNAs. Formally, it is defined as follows:

Definition 1 (Alignment). An alignment A of R1 and R2 is a subset of
{1, . . . , n} ∪ {−} × {1, . . . ,m} ∪ {−} satisfying the following conditions:

– (−,−) /∈ A.
– ∀(i, j) ∈ A ∩ {1, . . . , n} × {1, . . . ,m} : i and j appear exactly once in A.
– ∀(i′, j′), (i, j) ∈ A ∩ {1, . . . , n} × {1, . . . ,m} : i′ < i ⇐⇒ j′ < j. That is,

any two pairs in A are non-crossing.
– ∀(i, j) ∈ A∩{1, . . . , n}× {1, . . . ,m} : i is a left (resp. right) arc endpoint in
R1 ⇐⇒ j is a left (resp. right) arc endpoint in R2.

– ∀(i′, i) ∈ A1, (j′, j) ∈ A2 : (i′, j′) ∈ A ⇐⇒ (i, j) ∈ A. That is, the left
endpoints of any pair of arcs are aligned against each other in A iff their
right endpoints are also aligned against each other in A.

In terms of editing operations, a pair (i, j) ∈ A ∩ {1, . . . , n} × {1, . . . ,m} corre-
sponds to relabeling the ith nucleotide (unpaired or not) ofR1 so it would match
the jth nucleotide of R2, while pairs (i,−) and (−, j) corresponds to deleting
the ith and jth nucleotides in R1 and R2. The first three conditions in the above
definition require any position in R1 and R2 to be aligned, and that (−,−) /∈ A,
since (−,−) does not correspond to any valid edit operation. The next condition
enforces the order of the subsequences to be preserved in A, and the last two
conditions restrict any arc to be either deleted or aligned against another arc in
the opposite RNA.
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Let Σ′ = Σ ∪ {−}. A scoring scheme δ = (δ1, δ2) for alignments of R1 and
R2 is an ordered pair of two separate scoring functions δ1 : Σ′ ×Σ′ −→ Z and
δ2 : Σ′2×Σ′2 −→ Z, one which measures the quality of aligning a single unpaired
nucleotide of R1 against another unpaired nucleotide of R2, and the other for
measuring the quality of aligning pairs of arcs of the two RNA sequences. Hence
δ2((S1[i′], S1[i]), (−,−)) denotes, for example, the deletion of the arc (i′, i) ∈ A1.
We assume the scoring scheme is a similarity metric, and so a high score is given
for aligning similar arcs or similar unpaired nucleotides, while different penalties
are given in all other possible cases.

For brevity of notation, let us write δ1(i, j) to denote the value δ1(S1[i], S2[j]) if
i, j �= −, and δ1(S1[i],−) (resp. δ1(−, S2[j])) if j (resp. i) is the blank symbol ‘−’.
Also, we write δ2(i′, i, j′, j) instead of δ2((i′, i), (j′, j)). The score of an alignment
A of R1 and R2 with respect to δ is given by:

δ(A) =
∑

(i,j)∈A, i,j are not
arc endpoints

δ1(i, j) +
∑

(i′,j′),(i,j)∈A,
(i′,i)∈A1∧(j′,j)∈A2

δ2(i′, i, j′, j).

Definition 2 (OPTδ(R′
1, R′

2)). Given two RNA sequences R′
1 and R′

2 and
a scoring scheme δ = (δ1, δ2), OPTδ(R′

1,R′
2) denotes the highest score of any

alignment of R′
1 and R′

2 with respect to δ.

2.1 RNA Alignment Via Ordered Tree Editing

The non crossing formation formed by the arcs in both R1 and R2 conveniently
allows representing these RNAs as rooted ordered trees [16]. Each arc (i, i′) is
identified with a set of ordered children which are all unpaired bases i′′ such that
i < i′′ < i′, and arcs (l, l′) such that i < l < l′ < i′ (see Figure 1). In [16], Shasha
and Zhang suggested an algorithm for computing the edit distance between two
ordered trees. Their algorithm was later improved by Klein [14] to anO(m2n lg n)
algorithm, where m ≤ n denote the number of nodes in the two trees. (Recently,
Demaine et al. [8] presented anO(m2n(1+lg n

m )) improvement to this algorithm.
Using their algorithm improves the results of this paper to O(m2n(1 + lg n

m ))
time for the Smith-Waterman metric, and O(n2m) for the normalized metric).

Not by chance, the edit operations defined for trees are analogous to the
ones defined for RNA sequences. For this reason, any tree editing algorithm
can be used to determine the global alignment score of two RNAs, with the
slight modification that a penalty of ∞ is assigned for relabeling a node which
corresponds to an unpaired nucleotide by a label corresponding to a base pair,
and vise versa. Furthermore, as a side effect of the recursions used in [14, 16],
these algorithms compute the optimal alignment between every pair of rooted
subtrees of the two given trees, assuming this alignment matches the roots
of the two subtrees. In our setting, this means that δ2(i′, i, j′, j) + OPTδ(R1
[i′ + 1, i− 1],R2[j + 1, j − 1]) is computed between all pairs of arcs (i′, i) ∈ A1
and (j′, j) ∈ A2 in a single execution of either algorithms. The importance of
this property will become apparent later on.
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Definition 3 (OPT arc
δ (R1[i′, i], R2[j′, j])). For a pair of arcs (i′, i) ∈ A1

and (j′, j) ∈ A2, we set OPT arc
δ (R1[i′, i],R2[j′, j])=δ2(i′, i, j′, j)+OPTδ(R1[i′+

1, i− 1],R2[j + 1, j − 1]).

3 Local Alignment

While the metric described in the previous section is suitable for measuring
global similarity of two RNA sequences, in many applications two RNAs may
not be very similar when both considered as a whole, but may contain many
regions of high similarity. The goal is then to extract a pair of regions, one
from each RNA, which admits a strong degree of similarity. This is known as
local similarity. In the following section we introduce two metrics for measuring
local similarity between RNA sequences. These metrics are extensions of the
Smith-Waterman [17] and normalization [2] techniques used for strings.

A local alignment ofR1 andR2, one which corresponds to a pair of contiguous
regions in the RNAs, is an alignment of two consecutive subsequences R1[i′, i]
and R2[j′, j]. Note that the last condition of Definition 1 implies that any arc
endpoint of a broken arc in each subsequence must be aligned with the blank
symbol ‘−’. However, we need to distinguish between this situation and a deletion
of an unpaired nucleotide. Therefore, we use δ2(l′,−,−,−) (resp. δ2(−, l,−,−))
to denote the cost of aligning the left (resp. right) endpoint of a broken edge
(l′, l) in R1[i′, i] against ‘−’, and symmetrically, δ2(−,−, l′,−) and δ2(−,−,−, l)
are used to denote the costs of aligning the endpoints of a broken edge (l′, l)
in R1[i′, i] against ‘−’. Furthermore, we require that the total cost of aligning
the left and right endpoints of a broken edge (in two different alignments) be
equal to the cost of deleting this edge. That is, δ2(l′,−,−,−) + δ2(−, l,−,−) =
δ2(l′, l,−,−) and δ2(−,−, l′,−) + δ2(−,−,−, l) = δ2(−,−, l′, l).

3.1 Standard Local Alignment

The well known Smith-Waterman [17] technique for computing local similarity
between strings has been extensively studied in the literature. It is defined as the
highest scoring alignment between any pair of substrings of the input strings. The
simplicity of this definition has gained it wide applicability in many biological
settings [12]. In our terms, it is defined by:

max

{
OPTδ(R1[i′, i],R2[j′, j])

∣∣∣∣∣ 1 ≤ i′ ≤ i ≤ |R1|,
1 ≤ j′ ≤ j ≤ |R2|

}
.

We refer to the Smith-Waterman metric as the standard local alignment score
of R1 and R2. The computational problem corresponding to this metric is then
defined as follows:

Definition 4 (The standard local alignment problem). Given two RNA
sequences R1 = (S1, A1) and R2 = (S2, A2), determine the standard local align-
ment score of R1 and R2.
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3.2 Normalized Local Alignment

According to [2], the Smith-Waterman technique has two weaknesses that make
it non optimal as a local similarity measure. The first weakness is called the
mosaic effect. This term describes the algorithm’s inability to discard poorly
conserved intermediate segments, although it can discard poor prefixes or suffixes
of a segment. The second weakness is known as the shadow effect. This term
describes the tendency of the algorithm to lengthen long alignments with a high
score rather than shorter alignments with a lower score and a higher degree of
similarity.

One way to overcome these weaknesses is to normalize the alignment score
of two substrings by dividing it with their total length [2]. In our terms, the
normalized alignment score of R1 and R2 is defined by:

max

⎧⎨⎩ OPTδ(R1[i, i′],R2[j, j′])
|R1[i, i′]|+ |R2[j, j′]|

∣∣∣∣∣
1 ≤ i ≤ i′ ≤ |R1|,
1 ≤ j ≤ j′ ≤ |R2|,
OPTδ(R1[i, i′],R2[j, j′]) ≥ I

⎫⎬⎭ .

Where I ∈ N is an integer regulating the minimum score (before normalization)
of solution alignments, predefined according to the application at hand. Note
that this additional parameter is necessary for preventing trivial solutions (e.g.
a single match) from being optimal.

Definition 5 (The normalized local alignment problem). Given two RNA
sequences R1 = (S1, A1) and R2 = (S2, A2), and an integer I, determine the
normalized local alignment score of R1 and R2.

4 An Alignment Graph for RNA Sequences

We next present an adaptation of the alignment graph that is used to describe
string alignment [12], to an alignment graph that describes alignments of RNA
sequences. Later, in Section 5, this adapted graph will be utilized for computing
the local similarity score of R1 and R2 according to our two suggested met-
rics. We begin with a brief description of the alignment graph used for strings,
and then proceed to explain in further detail the modifications necessary for
our case.

Let S1 and S2 be two strings over any given alphabet, and δ1 be a given scoring
function over this alphabet. The alignment graph for S1 and S2 is a weighted
directed graph with (|S1|+ 1)(|S2|+ 1) vertices, each indexed by a distinct pair
(i, j) ∈ {0, . . . , |S1|} × {0, . . . , |S2|}. For each vertex (i, j), the alignment graph
contains a directed edge from (i, j) to each of the vertices (i, j+1), (i+1, j), and
(i+1, j+1), provided these vertices exist. These edges are called the horizontal,
vertical, and diagonal edges of (i, j) respectively, and their weights are given
by δ1(−, j), δ1(i,−), and δ1(i, j). In this way, the alignment graph captures the
standard dynamic programming used in string alignment.

The central property of the alignment graph of S1 and S2 is that any path
from say (i′, j′) to (i, j) corresponds to an alignment between S1[i′ + 1, i] and
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Fig. 2. Four different situations that occur when aligning RNA sequences

S2[j′ + 1, j] with a score which equals the total sum of weights of the edges in
the path. Conversely, any alignment between S1[i′ + 1, i] and S2[j′ + 1, j] with
score w has a corresponding w-weighted path in the alignment graph.

Theorem 1 ([12]). An alignment of S1[i′, i] and S2[j′, j] has optimal score iff
it corresponds to the heaviest path from (i′, i) to (j′, j).

Let us now consider alignments of RNA sequences. The main difference when
aligning RNA sequences is that now we must consider arcs and unpaired nu-
cleotides as different entities which must be aligned separately. There are four
different cases that we should each address accordingly:

– Case 1. Corresponds to arc deletions and is depicted in Figure 2(a). Note
that the path in the figure deletes the left and right endpoints in both arcs of
the RNAs, and therefore it corresponds to deleting the two arcs. Note that
this would also be the case even if the path had passed through the diagonal
edge that corresponds to aligning the right endpoints of the arcs.

– Case 2. Corresponds to alignments which break arcs and is depicted in
Figure 2(b). Such alignments must be penalized accordingly.

– Case 3. Corresponds to alignments in areas which do not contain arcs. In
contrast to the previous case, these types of alignments do not break any
arcs, and therefore they should not be penalized.

– Case 4. Corresponds to alignments which align arcs against each other.
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Note that there are also alignments which combine the first two cases, by deleting
one arc and breaking the other.

We now turn to describe the necessary modifications for adapting the align-
ment graph to RNA sequence-structure alignment. We begin by focusing on the
first three cases in the example above. The last case will be dealt with sepa-
rately. For a given i ∈ {1, . . . , n}, we refer to the set of all edges connecting a
pair of vertices in {(i− 1, j), (i, j) | 0 ≤ j ≤ m} as the ith row of the alignment
graph. Hence, the ith row corresponds to all edges that represent an edit oper-
ation which involves the ith position of R1. The jth column, j ∈ {1, . . . , n}, is
defined symmetrically to be the set of all edges connecting pairs of vertices in
{(i, j − 1), (i, j) | 0 ≤ j ≤ m}.

Consider some position i in R1, along with the ith row corresponding to this
position in the alignment graph. If i is not an arc endpoint, then no modifications
are necessary on this row, since all editing operations on i are equivalent to those
in strings. Otherwise, when i is an endpoint, we wish to model the three cases
discussed above. For this, we first remove all diagonal edges. This is done to
ensure that i is not aligned against any position in R2, as we are only concerned
with arc deletions at the moment. Following this, we set the weights of all vertical
edges to the penalty of breaking the arc of which i is an endpoint of. If i a left
endpoint, we set these weights to δ2(i,−,−,−), and otherwise we set them to
δ2(−, i,−,−). This takes care of the second case described above. All other edges
in the row, i.e. the horizontal edges, are left untouched. For a position j in R2
the modifications are symmetric. Here the weights of the horizontal edges are
modified, while the vertical edges remain unmodified. We mention that all our
modifications could be done on the scoring scheme (by adding additional letters
to the alphabet which represent different types of arc endpoints) rather then on
the alignment graph.

After applying the above modifications to each column and row which corre-
sponds to arc endpoints, we obtain the grid part of our adapted alignment graph.

Lemma 1. Paths in the grid part are in bijective correspondence with align-
ments of consecutive subsequences of R1 and R2 in which all arcs are deleted.

What is left now, is to take care of alignments which align arcs against each other,
i.e. the last case in the example above. Consider a path, as in Figure 2(d), that
corresponds to an alignment which aligns (i′, i) ∈ A1 against (j′, j) ∈ A2. This
path must pass through the nodes (i′−1, j′−1) and (i, j) in the alignment graph
(the two intersections of the shaded rows and columns). This means that this
path consists of a prefix which ends at (i′−1, j′−1), a middle part from (i′−1, j′−
1) to (i, j), and a suffix which starts at (i, j). As was explained in Section 2.1,
the optimal score of the middle part is given by OPT arc

δ (R1[i′, i],R2[j′, j]), and
it is computed in the preprocessing step. Therefore, if this path is optimal, its
weight equals OPT arc

δ (R1[i′, i],R2[j′, j]) plus the combined weights of the suffix
and prefix. We represent the middle part of any optimal path that aligns (i′, i)
against (j′, j) by adding a single edge from (i′−1, j′−1) to (i, j) in the alignment
graph, and setting its weight to OPT arc

δ (R1[i′, i],R2[j′, j]) accordingly. We refer
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to this new edge as a shortcut edge, and we add such shortcut edges for each
pair of arcs in R1 and R2.

Theorem 2. An alignment of R1[i′ + 1, i] and R2[j′ + 1, j] is optimal iff it
corresponds to the heaviest path from (i′, i) to (j′, j) in the alignment graph of
R1 and R2.

5 Local Alignment Algorithms

We next describe two algorithms for computing local similarity of R1 and R2
according to the two metrics defined in Section 3. For simplicity, we focus only on
computing the score of an optimal alignment rather than computing an actual
alignment. One can easily obtain the latter within the same time and space
bounds in both algorithms.

As a consequence of Theorem 2, computing optimal local alignments of R1
andR2 reduces to computing locally optimal paths in the alignment graph ofR1
and R2. Therefore, both our algorithms initially construct the alignment graph
of R1 and R2, and then perform all computations on this graph. For any edge
in the alignment graph, from say (i′, j′) to (i, j), we let w((i′, j′), (i, j)) denote
the weight of the edge. For any vertex (i, j) in the graph, we let Nin(i, j) denote
the set of vertices with an edge to (i, j), that is, the set of in-neighbors of (i, j).

5.1 Standard Local Alignment Algorithm

For computing the standard local alignment score of R1 and R2, we define
s(i, j) to be the weight of the heaviest path, including the empty one, that ends
at vertex (i, j). Note that by Theorem 2, this value equals the highest scoring
alignment achievable by any pair of consecutive substrings R1[i′, i] and R2[j′, j]
with i′ ∈ {1, . . . , i} and j′ ∈ {1, . . . , j}. Therefore, the maximum s(i, j) over all
(i, j) ∈ {1, . . . , n} × {1, . . . ,m} equals the standard local alignment score of R1
and R2.

Lemma 2. The recursion below correctly computes s(i, j):

s(i, j) = max

{
s(i′, j′) + w((i′, j′), (i, j)) where (i′, j′) ∈ Nin(i, j)
0

Time Complexity: Using standard dynamic programming, once the alignment
graph ofR1 andR2 is constructed, we can compute s(i, j) for every i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m} in O(nm) time, since the in-degree of every vertex is at most
three. The preprocessing step takes O(m2n lgn) time [14], and therefore our
suggested algorithm solves the standard local alignment problem inO(m2n lgn+
nm) = O(m2n lg n) time.
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5.2 Normalized Local Alignment Algorithm

We next present an algorithm for computing the normalized local alignment
score of R1 and R2. This algorithm works by computing all optimal (in terms of
length) local alignments of any possible score, and which end at any possible pair
of positions in R1 and R2. For this purpose, it is convenient to slightly abuse the
graph-theoretic notion of path lengths, and define the length of any path from
(i′, j′) to (i, j) in the alignment graph as the value Δ((i′, j′), (i, j)) = j′−j+i′−i
rather than the number of edges in this path. In other words, the length of
any path from (i′, j′) to (i, j) is defined to be the combined lengths of the two
consecutive subsequences R1[i′ + 1, i] and R2[j′ + 1, j].

For computing the normalized local alignment score of R1 and R2, we define
sk(i, j) to be the length of the shortest path that ends at vertex (i, j) and has
weight equal to k, or ∞ if no such path exists. Note that the normalized score
of such a path is given by k/sk(i, j).

Lemma 3. The recursion below correctly computes sk(i, j):

sk(i, j) = min

{
sk′

(i′, j′) + Δ((i′, j′), (i, j))

∣∣∣∣∣ (i′, j′) ∈ Nin(i, j),
k′ = k − w((i′, j′), (i, j))

}
.

Notice that if our scoring scheme contains values which are not constant, we
could use a similar recursion in which the roles of lengths and scores are re-
versed. This is done by defining sk(i, j) to be the weight of the heaviest length k
path that ends at vertex (i, j). The advantage of defining sk(i, j) as in the pre-
sentation above is that one can stop the computation once a satisfying solution
is found.

Time Complexity: Let δmin and δmax be the minimum and maximum score
of a single edit operation in our given scoring scheme δ = (δ1, δ2). Notice that
|(m + n)δmax| and −|(m + n)δmin| are upper and lower bounds on the global
alignment score of R1 and R2. Set k̂ = |(m + n)δmax| and ǩ = −|(m + n)δmin|.
Using standard dynamic programming, once the alignment graph of R1 and R2
is constructed, we can compute sk(i, j) for every i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
and k ∈ {ǩ, . . . , k̂}, in O(nm(k̂− ǩ)) time, which is O(n2m) assuming δmax and
δmin are both constants. Also, The bounds on k follow from the integrality of
the scoring scheme. Note that if either δmax or δmin are not constants, or if the
scoring scheme is not integral, we can use the alternative definition of sk(i, j)
given above to obtain the same complexity bounds. With a preprocessing stage
ofO(m2n lgn) time [14], our suggested algorithm therefore solves the normalized
local alignment problem in O(m2n lgn + n2m) time.
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Abstract. We prove that sorting by reciprocal translocations can be
done in O(n3/2 log(n)) for an n-gene genome. Our algorithm is an
adaptation of the Tannier et. al algorithm for sorting by reversals. This
improves over the O(n3) algorithm for sorting by reciprocal transloca-
tions given by Bergeron et al.

1 Introduction

In this paper we study the problem of sorting by reciprocal translocations (ab-
breviated SRT). Reciprocal translocations exchange non-empty tails between two
chromosomes. Given two multi-chromosomal genomes A and B, the problem of
SRT is to find a shortest sequence of reciprocal translocations that transforms A
into B. SRT that was first introduced by Kececioglu and Ravi [7] and was given
a polynomial time algorithm by Hannenhalli [3]. Bergeron, Mixtacki and Stoye
[2] pointed to an error in Hannenhalli’s proof of the reciprocal translocation dis-
tance formula and consequently in Hannenhalli’s algorithm. They presented a
new O(n3) algorithm, which to the best of our knowledge, is the only extant
correct algorithm for SRT1.

Reversals (or inversions) reverse the order and the direction of transcription
of the genes in a segment inside a chromosome. Given two uni-chromosomal
genomes π1 and π2, the problem of sorting by reversals (abbreviated SBR) is
to find a shortest sequence of reversals that transforms π1 into π2. Tannier,
Bergeron and Sagot [9] presented an elegant algorithm for SBR that can be
implemented in O(n3/2

√
log(n)) using a clever data structure by Kaplan and

Verbin [6]. This is currently the fastest algorithm for SBR.
In this paper we prove that SRT can be solved in O(n3/2

√
log(n)) for an n-

gene genome. Our algorithm for SRT is similar to the algorithm by Tannier et al
[9] for SBR. The paper is organized as follows. The necessary preliminaries are
given in Sect. 2. In Sect. 3 we give a linear time reduction from SRT to a simpler
restricted subproblem. In Sect. 4 we prove the main theorem and present the al-
gorithm for the restricted subproblem. In Sect. 5 we describe an O(n3/2

√
log(n))

1 Li et al. [8] gave a linear time algorithm for computing the reciprocal translocation
distance (without producing a shortest sequence). Wang et al. [10] presented an
O(n2) algorithm for SRT. However, the algorithms in [8, 10] rely on an erroneous
theorem of Hannenhali and hence provide incorrect results in certain cases.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 258–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An O(n3/2 log(n)) Algorithm for Sorting by Reciprocal Translocations 259

implementation of the algorithm. Due to space constraints, most proofs are
omitted.

2 Preliminaries

This section provides a basic background for the analysis of SRT. It follows
to a large extent the nomenclature and notation of [3, 5, 2]. In the model we
consider, a genome is a set of chromosomes. A chromosome is a sequence of
genes. A gene is identified by a positive integer. All genes in the genome are
distinct. When it appears in a genome, a gene is assigned a sign of plus or
minus. For example, the following genome consists of 8 genes in two chromo-
somes: A = {(1,−3,−2, 4,−7, 8), (6, 5)}. The reverse of a sequence of genes
I = (x1, . . . , xl) is −I = (−xl, . . . ,−x1). A reversal reverses a segment of genes
inside a chromosome. Two chromosomes, X and Y , are identical if either X = Y
or X = −Y . Therefore, flipping chromosome X into −X does not affect the
chromosome it represents.

A signed permutation π = (π1, . . . , πn) is a permutation on the integers
{1, . . . , n}, where a sign of plus or minus is assigned to each number. If A is
a genome with the set of genes {1, . . . , n} then any concatenation πA of the
chromosomes of A is a signed permutation of size n.

Let X = (X1, X2) and Y = (Y1, Y2) be two chromosomes, where X1, X2,
Y1, Y2 are sequences of genes. A translocation cuts X into X1 and X2 and Y
into Y1 and Y2 and exchanges segments between the chromosomes. It is called
reciprocal if X1,X2, Y1 and Y2 are all non-empty. There are two ways to perform
a translocation on X and Y . A prefix-suffix translocation switches X1 with Y2
resulting in: (X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1,−X1). A prefix-prefix translo-
cation switches X1 with Y1 resulting in: (X1, X2), (Y1, Y2)⇒ (Y1, X2), (X1, Y2).
Note that we can mimic a prefix-prefix (respectively, prefix-suffix) translocation
by a flip of one of the chromosomes followed by a prefix-suffix (respectively,
prefix-prefix) translocation. As was demonstrated by Hannenhalli and Pevzner
[4], a translocation on A can be simulated by a reversal on πA in the following
way: (. . . , X1, X2, . . . , Y1, Y2, . . . ) ⇒ (. . . , X1,−Y1, . . . ,−X2, Y2, . . . ). The type
of translocation depends on the relative orientation of X and Y in πA (and not
on their order): if the orientation is the same, then the translocation is prefix-
suffix, otherwise it is prefix-prefix. The segment between X2 and Y1 may contain
additional chromosomes that are flipped and thus unaffected.

For a chromosome X = (x1, . . . , xk) define Tails(X) = {x1,−xk}. Note that
flipping X does not change Tails(X). For a genome A1 define Tails(A1) =⋃

X∈A1
Tails(X). For example: Tails({(1,−3,−2, 4,−7, 8), (6, 5)}) = {1,−8, 6,

−5}. Two genomes A1 and A2 are co-tailed if Tails(A1) = Tails(A2). In par-
ticular, two co-tailed genomes have the same number of chromosomes. Note
that if A2 was obtained from A1 by performing a reciprocal translocation then
Tails(A2) = Tails(A1). Therefore, SRT is defined only for genomes that are co-
tailed. For the rest of this paper the word “translocation” refers to a reciprocal
translocation and we assume that the given genomes, A and B, are co-tailed.
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2.1 The Cycle Graph

Let N be the number of chromosomes in A (equivalently, B). We shall always
assume that both A and B contain genes {1, . . . , n}. The cycle graph of A and
B, denoted G(A,B), is defined as follows. The set of vertices is

⋃n
i=1{i0, i1}. For

every two genes, i and j, where j immediately follows i in some chromosome of
A (respectively, B) add a black (respectively, grey) edge (i, j) ≡ (out(i), in(j)),
where out(i) = i1 if i has a positive sign in A (respectively, B) and otherwise
out(i) = i0, and in(j) = j0 if j has a positive sign in A (respectively, B) and
otherwise in(j) = j1. There are n − N black edges and n − N grey edges in
G(A,B). A grey edge (i, j) is external if the genes i and j belong to different
chromosomes of A, otherwise it is internal.

Every vertex in G(A,B) has degree 2 or 0, where vertices of degree 0 (iso-
lated vertices) belong to Tails(A) (equivalently, Tails(B)). Therefore, G(A,B)
is uniquely decomposed into cycles with alternating grey and black edges. An
adjacency is a cycle with two edges.

2.2 The Overlap Graph

Place the vertices of G(A,B) along a straight line according to their order in πA.
Now, every grey edge can be associated with an interval of vertices of G(A,B).
Two grey edges overlap if the intersection of their intervals is not empty but
none contains the other. The overlap graph of A and B w.r.t. πA, denoted
OV (A,B, πA), is defined as follows. The set of vertices is {(i1, i2) : (i1, i2) is
a grey edge in G(A,B)}. Two vertices are connected if their corresponding grey
edges overlap. We shall use the word “component” for a connected component
of the overlap graph. The set of components of OV (A,B, πA) can be computed
in linear time using an algorithm by Bader, Moret and Yan [1].

A vertex in an overlap graph is external if its corresponding edge is external,
otherwise it is internal. Note that the internal/external state of a vertex in
OV (A,B, πA) does not depend on πA (the partition of the chromosomes is known
from A). A component of OV (A,B, πA) is external if at least one of the vertices
in it is external, otherwise it is internal. A component is trivial if it corresponds
to an adjacency and hence always internal. A vertex in the overlap graph is
oriented if its corresponding edge connects two genes with different signs in πA,
otherwise it is unoriented.

The span of a component M is an interval of genes I(M) = [i, j] ⊂ πA, where
i = arg min{π−1

A (i1), π−1
A (i2) | (i1, i2) ∈ M} and j = arg max{π−1

A (j1), π−1
A (j2)

| (j1, j2) ∈M}. Clearly, I(M) is independent of πA iff M is internal. Therefore,
the set of internal components in OV (A,B, πA) is independent of πA.

2.3 The Forest of Internal Components

(M1, . . . ,Mt) is a chain of components if I(Mj) and I(Mj+1) overlap in exactly
one gene for j = 1, .., t − 1. For a chain of components C = (M1, . . . ,Mt) de-
fine I(C) =

⋃t
j=1 I(Mj). The forest of internal components, denoted F (A,B),

is defined as follows. The vertices of F (A,B) are (i) the non-trivial internal
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components and (ii) every maximal chain of internal components that contains
at least one non-trivial component. Let M and C be two vertices in F (A,B)
where M corresponds to a component and C to a chain. M → C is an edge of
F (A,B) if M ∈ C. C → M is an edge of F (A,B) if I(C) ⊂ I(M) and I(M) is
minimal. We will refer to a component that is a leaf in F (A,B) as simply a leaf.

2.4 The Reciprocal Translocation Distance

Let c(A,B) denote the number of cycles in G(A,B). Let T (A,B) and L(A,B) de-
note the number of trees and leaves in F (A,B) respectively. Obviously T (A,B) ≤

L(A,B). Define fr(A,B) =

⎧⎪⎨⎪⎩
2 if T (A,B) = 1 and L(A,B) is even
1 if L(A,B) is odd
0 otherwise (T (A,B) �= 1 and L(A,B) is even)

Theorem 1. [2, 3] The reciprocal translocation distance between A and B is
dr(A,B) = n−N − c(A,B) + L(A,B) + fr(A,B)

Let Δc denote the change in the number of cycles after performing a transloca-
tion on A. Then Δc ∈ {−1, 0, 1} [3]. A translocation is proper if Δc = 1 and bad
if Δc = −1. A translocation ρ is valid if dr(A · ρ,B) = dr(A,B) − 1. A translo-
cation is safe if it does not create any new non-trivial internal component. As
was demonstrated by Bergeron et al. [2] a safe translocation might be invalid if
the set of leaves is not empty. However, if there are no leaves, then a safe proper
translocation is necessarily valid. We define SRTNL as a special case of SRT
when there are no leaves (i.e. T (A,B) = L(A,B) = 0).

3 A Linear Reduction of SRT to SRTNL

A translocation is bad iff it cuts two black edges, b1 and b2, that belong to
different cycles [3]. Note that there are two bad translocations, either prefix-
prefix or suffix-prefix, cutting the black edges b1 and b2. A leaf M is eliminated
by performing a (bad) translocation that cuts one black edge incident to a grey
edge in M and one black edge in another chromosome of A. Observe that in this
case all the ancestors of M in F (A,B) are eliminated as well. Let L(X) denote
the number of leaves in chromosome X . Let NL(A,B) denote the number of
chromosomes of A containing at least one leaf. A translocation ρ is separating
if NL(A,B) = 1 but NL(A · ρ,B) > 1. It is easy to see that a translocation is
separating only if it cuts a black edge between two leaves.

Lemma 1. [2] There is a sequence of safe proper translocations that sorts all ex-
ternal components (i.e., after performing the sequence, every edge in an external
component becomes an adjacency).

Lemma 2. [2] Let S = (ρ1, . . . , ρk) be a sequence of safe proper translocations
that sorts all external components. If NL(A,B) = 1 but T (A,B) > 1 then S
contains a separating translocation ρl. Moreover, S′ = ρ1, . . . , ρl is a sequence
of valid translocations and NL(A · ρ1 · · ·ρl, B) > 1.
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Lemma 3. [3] Suppose that the following conditions are satisfied: (i) NL(A,B)
= 1, (ii) L(A,B) ≥ 2, and (iii) either L(A,B) is odd or T (A,B) = 1. Let ρ be
a (prefix-prefix) translocation that eliminates the second leaf from the left in A.
Then ρ is valid and if L(A · ρ,B) ≥ 2 then NL(A · ρ,B) ≥ 2.

Lemma 4. All the bad translocations in the algorithm in Fig. 1 are valid.

(1) if NL = 1 and L ≥ 2 :
(a) if T > 1 and L is even:

(i) Solve SRTNL on the set of external components until NL �= 1.
(b) else: eliminate the second leaf from the left by a prefix-prefix translocation.

(2) Let Q1 be a queue of the chromosomes containing exactly one leaf.
Let Q2 be a queue of the chromosomes containing more than one leaf.

(3) while L > 0 (Invariant: L=1 or NL ≥ 2)
(a) if L = 1: eliminate the single leaf by a prefix-prefix translocation.
(b) else:

(i) For i = 1, 2
1. if Q2 �= ∅ then Xi ← pop(Q2), otherwise Xi ← pop(Q1).
2. if L(Xi) = 2 then li ← the second leaf from the left in Xi,

otherwise li ← the single leaf in Xi.
(ii) Eliminate l1 and l2 by a prefix-prefix translocation.
(iii) For i = 1, 2: if L(Xi) > 1 then push(Xi, Q2). if L(Xi) = 1 then

push(Xi, Q1).
(4) Solve SRTNL on A.

Fig. 1. A generic algorithm for solving SRT using an algorithm for SRTNL

The generic algorithm in Fig. 1 and the preceding lemmas imply:

Theorem 2. SRT is linearly reducible to SRTNL.

4 An Algorithm for SRTNL

In this section we present an algorithm for SRTNL. We first define an extension
of the overlap graph and then prove the algorithm’s correctness. Fig. 3 provides
examples of the graphs used.

4.1 The Overlap Graph with Chromosomes

A chromosome X and an edge e overlap if X contains exactly one of the two end-
points of e. Hence, if edge e overlaps chromosome X of A then e must be an exter-
nal grey edge. We define the overlap graph with chromosomes, OV CH(A,B, πA)
based on OV (A,B, πA) as follows. We add to OV (A,B, πA) a vertex for each
chromosome of A. In order to prevent confusion, we will refer to the new ver-
tices as “chromosomes” and reserve the word “vertex” for the original vertices
of OV (A,B, πA) (that correspond to edges). A vertex and a chromosome are
connected if the corresponding grey edge overlaps the chromosome. There are
no edges between chromosomes.



An O(n3/2 log(n)) Algorithm for Sorting by Reciprocal Translocations 263

Let H = OV CH(A,B, πA) and let v be any vertex in H . Denote by N(v) ≡
N(v,H) the set of vertices that are neighbors of v, including v itself (but not
including chromosome neighbors). Denote by CH(v) ≡ CH(v,H) the set of chro-
mosomes that are neighbors of v in H . Hence if v is external then |CH(v)| = 2,
otherwise CH(v) = ∅.

Every external grey edge e defines one proper translocation that cuts the black
edges incident to e. (Out of the two possibilities of prefix-prefix or prefix-suffix
translocations, exactly one would be proper). For an external vertex v denote
by ρ(v) the proper translocation that the corresponding grey edge defines on
A. Two external vertices v1 and v2 in H are equivalent if they define the same
translocation, i.e. ρ(v1) ≡ ρ(v2). Let H · ρ(v) = OV CH(A · ρ(v), B, πA). Given
two sets S1 and S2 define S1

⊕
S2 = (S1

⋃
S2) \ (S1

⋂
S2).

Lemma 5. Let v be an oriented external vertex in H. Then H · ρ(v) is ob-
tained from H by the following operations. (i) Complement the subgraph in-
duced by N(v) and flip the orientation of every vertex in N(v). (ii) For every
vertex u ∈ N(v) such that the endpoints of u and v share at least one com-
mon chromosome, update the edges between u and CH(u)

⋃
CH(v) such that

CH(u) = CH(u)
⊕

CH(v).

Two overlap graphs with chromosomes are equivalent if one can be obtained
from the other by a sequence of chromosome flips. For a chromosome X let ρ(X)
denote a flip of chromosome X in πA. Let H · ρ(X) = OV CH(A,B, πA · ρ(X)).

Lemma 6. H ·ρ(X) is obtained from H by complementing the subgraph induced
by the set {u : X ∈ CH(u)} and flipping the orientation of every vertex in it.

4.2 The Main Theorem and Algorithm

In this section we give the main theorem and algorithm. Our algorithm is for-
mally very similar to the algorithm for SBR presented in [9]. Instead of per-
forming reversals on oriented edges in [9], we perform translocations on external
edges. Despite of the great similarity between the algorithms our validity proof
is completely new. We analyze an overlap graph with chromosomes of a multi-
chromosomal genome, while [9] analyze the overlap graph of a uni-chromosomal
genome. Like [9], we perform operations defined by oriented vertices (i.e. translo-
cations). However, in our case these vertices must also be external. If an external
vertex is unoriented, we can turn it into an oriented vertex by a flip of a chro-
mosome. Hence, we consider two types of operations in our analysis.

A sequence of vertices S = (v1, . . . , vk) from H is legal if vj is external
in H · ρ(v1) · · · ρ(vj−1) for j = 1, .., k. For a legal sequence S define ρ(S) =
ρ(v1) · · ·ρ(vk). A legal sequence S is total if H ·ρ(S) contains only trivial compo-
nents. For H1, an overlap graph with chromosomes, let IN(H1) and EXT (H1)
denote the sets of vertices that are in non-trivial internal components and ex-
ternal components respectively. If S is a maximal legal sequence of vertices in
H then EXT (H · ρ(S)) = ∅. If in addition S is not total then IN(H · ρ(S)) �= ∅.
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Theorem 3. Let S = (v1, . . . , vk) be a maximal legal but not total sequence of
vertices in H. Let IN = IN(H · ρ(S)). Let vl be the first vertex in S satisfying
IN(H · ρ(v1, . . . , vl)) = IN , i.e. ρ(vl) is the last unsafe translocation in ρ(S).
Let S1 = (v1, . . . , vl−1) and S2 = (vl, . . . , vk). Then every maximal sequence of
vertices S′ = (w1, . . . , wm) in IN that satisfies (i) (S1, S

′) is legal and (ii) vl

is not an adjacency in H · ρ(S1, S
′) also satisfies: (iii) S′ is not empty and (iv)

(S1, S
′, S2) is a maximal legal sequence. Moreover, all the translocations in ρ(S2)

are safe.

Proof. Let v = vl, H0 = H · ρ(S1) and IN0 = EXT (H0) ∩ IN . Then IN0 �= ∅
and none of the vertices in IN0 is equivalent to v in H0 (otherwise it would
be an adjacency in H · ρ(S) and hence not in IN). Hence S′ is not empty. Let
A0 = A · ρ(S1) and CH(v) = {X,Y }. We choose π0 to be a concatenation of
the chromosomes in A0 in which X and Y are the first two chromosomes. We
can assume w.l.o.g. that H = OV CH(A,B, π0), hence H0 = OV CH(A0, B, π0).
For j = 1, ..,m let Hj = H0 · ρ(w1, . . . , wj). Let INj = EXT (Hj)

⋂
IN . Then

for j = 1, . . . ,m: (i) wj ∈ INj−1 and (ii) wj is not equivalent to v in Hj−1. Let
EXT = EXT (H0 · ρ(v)). The following conditions hold for Hj when j = 0 (see
Fig. 4-(a)):

(1) The subgraphs of Hj · ρ(v) and H0 · ρ(v) that are induced by EXT are
equivalent.

(2) Every w ∈ INj satisfies: CH(w) = CH(v) = {X,Y }.
(3) If v is oriented then N(v)

⋂
IN = INj.

(4) All the possible edges exist between N(v)
⋂

EXT and INj.
(5) There are no edges between IN \ INj and vertices outside IN .
(6) There are no edges between EXT \N(v) and vertices outside EXT .

We shall prove below that in Hm v is external and that all the above conditions
are satisfied. The first condition ensures that (S1, S

′, S2) is legal. The rest of the
conditions ensure that Hm · ρ(v) satisfies: (i) there are no external vertices in
IN and (ii)there are no edges between EXT and vertices outside EXT . Hence
(S1, S

′, S2) is maximal and every translocation in ρ(vl+1, . . . , vk) is safe. ρ(vl)
is safe in Hm since S′ is maximal. Therefore, all the translocations in ρ(S2) are
safe.

Assume that v is external in Hj and that the all above conditions hold for a
certain j. Since these conditions are true for every graph that is equivalent to Hj

we can assume that v is oriented. We now prove, using an induction on j, that
these conditions are satisfied for every Hi, i ∈ {1, . . . ,m} in which v is external,
and that v is external in Hm.

Case 1: wj+1 is oriented in Hj . Let Hj+1 = Hj · ρ(wj+1) (see Fig. 4-(b)).
Then INj+1 = N(v,Hj)

⊕
N(wj+1, Hj). INj+1 �= ∅, otherwise v is an isolated

internal vertex in Hj+1 and hence equivalent to wj+1 in Hj . Hence m ≥ j + 2.

Case 1.a: wj+2 is oriented in Hj+1. Let Hj+2 = Hj+1 · ρ(wj+2) (see Fig. 4-(c)).
Clearly, v is external in Hj+2. Let M = N(v,Hj)

⋂
EXT . Then N(wj+2, Hj+1)
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EXT = N(wj+1, Hj)

⋂
EXT = M . Hence the subgraphs of Hj+2 and Hj

that are induced by M are identical and the first condition is satisfied in Hj+2.

Case 1.b: wj+2 is unoriented in Hj+1. Let H ′
j+1 = Hj+1 · ρ(X) (H ′

j+1 and
Hj+1 are equivalent) (see Fig. 4-(d)). Hence wj+2 is oriented in H ′

j+1. Note that
v is an internal vertex in H ′

j . Let M ′ = N(wj+1, H
′
j+1)

⋂
EXT . Let Hj+2 =

H ′
j+1 · ρ(wj+2) (see Fig. 4-(e)). v is an oriented external vertex in Hj+2 and

N(v,Hj+2)
⋂

EXT = M ′. Therefore, the two subgraphs of Hj+2 · ρ(v) (see
Fig. 4-(f)) and H ′

j+1 (see Fig. 4-(d)) that are induced by EXT are identical. The
subgraphs of Hj+1 and Hj · ρ(v) that are induced by EXT are also identical.
Hence, the first condition is satisfied.

Looking at Figs. 4-(c) and 4-(e) it is easy to verify that the rest of the condi-
tions are also satisfied for Hj+2.

Case 2: wj+1 is unoriented in Hj . We define the three subsets of vertices
M1,M2,M3 ⊂ EXT in Hj as follows:

(1) M1 is the set of neighbors of wj+1 (equivalently, v) that are either internal
or external but does not overlap chromosome X .

(2) M2 is the set of neighbors of wj+1 (equivalently, v) that overlap chromosome
X . Hence M1

⋃
M2 = N(v,Hj)

⋂
EXT .

(3) M3 is the set of vertices that overlap chromosome X but are not neighbors
of wj+1 (equivalently, v).

For an illustration of Hj see Fig. 4-(g). Let H ′
j = Hj · ρ(X) (see Fig. 4-(h)).

In H ′
j : wj+1 is an oriented external vertex and is not a neighbor of v. Let

Hj+1 = H ′
j · ρ(wj+1) (see Fig. 4-(i)). Obviously, v remains intact in Hj+1. Let

H ′
j+1 = Hj+1 · ρ(X) (see Fig. 4-(j)). Then, the subgraphs of H ′

j+1 · ρ(v) (see
Fig. 4-(k)) and Hj · ρ(v) that are induced by M1, M2 and M3 are equivalent
(Compare the subgraph induced by EXT in Hj in Fig. 4 (g) with the subgraph
induced by EXT in H ′

j+1 · ρ(v) · ρ(X) in Fig. 4 (l)). Hence the first condition
is satisfied. Looking at Fig. 4-(i), it is easy to verify that conditions (2)-(6) hold
for Hj+1. 	


The algorithm in Fig. 2 builds a sequence of translocations by a repeated appli-
cation of Theorem 3. It greedily removes external edges from an allowed subset
and performs the corresponding translocations (step (2).(a)). When the allowed
subset contains only internal edges, the algorithm repeats the last translocations
in a reverse order (thereby cancelling them) until another edge in the allowed
subset becomes external (step (2).(b)). Every translocation in the algorithm is
applied at most twice and so the algorithm performs at most 2n translocations.

5 An O(n3/2
√

log(n)) Time Implementation of the
Algorithm

The algorithm in Fig. 2 can be implemented in O(n2) time in a relatively simple
manner. We provide below an O(n3/2

√
log(n)) algorithm. The implementation

follows closely the ideas of [6] and [9].
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(1) Let V be the set of edges in G(A, B) that are in non-trivial components.
Set S1 = S2 = ∅

(2) while V �= ∅:
(a) while there exists an external edge v ∈ V in G(A, B):

(i) Remove v from V .
(ii) if v is not equivalent to the first element in S2:

1. Append ρ(v) to S1
2. A ← A · ρ(v)

(b) while all the edges in V are internal:
(i) Let ρ be the last translocation in S1

(ii) Remove ρ from S1
(iii) Prepend ρ to S2
(iv) A ← A · ρ

(3) return (S1, S2)

Fig. 2. An algorithm for SRTNL

Assume w.l.o.g. that πB is the identity permutation. Then every grey edge is
of the form (i, i + 1). We identify a grey edge (i, i + 1) by i and refer to (i + 1)
as the remote end of i. The data structure we use for maintaining the genome A
is as follows.

1. A doubly linked list of O(
√

n
log(n) ) blocks. We partition πA into continuous

blocks such that the size of every block is at least 1
2

√
n log(n) and at most

2
√

n log(n).
2. A balanced search tree for every block. The tree contains the edges in the

block ordered by the positions of their remote ends. We use balanced trees
that support split and concatenate operations in logarithmic time, such as
red-black trees or 2-4 trees. We use T [v] to denote the subtree rooted at v
and containing all its descendants.

3. An n-array of block pointers. The ith entry in the array points to the block
containing i.

We add the following fields to the above data structure.

1. For each edge we keep an external-bit. If the external-bit is on then the edge
is external, otherwise it is internal.

2. For each block we keep the following fields: (i) a counter of external edges
in V , (ii) a counter of chromosomes’ left tails, and (iii) a reverse-flag. If the
reverse-flag of a block is on then the order and signs of the elements in the
block are reversed.

3. For every subtree T [v] of each block’s search tree we keep the following fields
in its root v: (i) counters of external and internal edges in V , (ii) a direction-
flip-flag and (iii) an external-flip-flag. If the external-flip-flag of a vertex v
is on then in T [v] the external-bits of all the elements are flipped and the
counters of internal and external elements from V exchange their values. If
the direction-flip-flag of a vertex v is on then in T [v] the order of the elements
is reversed.
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(7,8), (11,12)

(9,10), (10,11)(1,2), (2,3)

Chromosome 1 Chromosome 2

chain

unoriented external oriented external

9190 8180 1201211001016160 7071 111110

(a) G(A1, B1)

oriented internal

component

(c) F (A1, B1)

(8,9)

(b) OV CH(A1, B1, πA1)

chromosome

unoriented internal

3031 5051 404121201011

chromosome 2

chromosome 1

(3,4) (6,7)(5,6)(7,8)

(2,3)(1,2)

(11,12)

(10,11)(9,10)

Fig. 3. Auxiliary graphs for A1 = {(1, −2, 3, −6, 7, −11, 10, −9, −8, 12), (5, 4)}, B1 =
{(1, . . . , 4), (5, . . . , 12)} (πA1 = (1, −2, 3, −6, 7, −11, 10, −9, −8, 12, 5, 4))

We can clear the direction-flip-flag of a node by reversing the order of its
children and flipping the direction-flip-flag in each of them. We can clear the
external-flip-flag in a node by exchanging the values of the counters of external
and internal edges in V , flipping the external-flip-flag in each of its children and
flipping the external-bit of the element residing at the node. One can view this
procedure as “pushing down” the flags. An direction-flip-flag and an external-
flip-flag that are on are “pushed down” whenever T [v] is searched.

We implement the algorithm using the above data structures. A search for
an external edge in V is done as follows. We traverse the list of blocks until we
reach a block that contains external edges from V . We then search the tree of
the block for an external edge i. We locate element i+1 (the remote end of edge
i) using the n-array and a search of its block.

Let ρ be a translocation on A operating on the chromosomes X = (X1, X2)
and Y = (Y1, Y2). Then ρ is performed in O(

√
n log(n)) time as follows:

(1) Split at most six blocks so that each of the four segments X1, X2, Y1 and Y2
corresponds to a union of blocks. If ρ is a prefix-prefix translocation exchange
the blocks of X1 and Y1. Otherwise, reverse the order and flip the reverse-flags
of the blocks of X2 and Y1 and then exchange the blocks of X2 and Y1.

(2) We now have to modify the trees of each block to reflect the order and
direction changes. This is done as follows. Traverse all the blocks and for
each block:
(a) Let T be the balanced search tree of the block. If ρ is a translocation on

an edge i in V and i is contained in the block: decrease by 1 the counters
of external edges in V of the block and of every node in T that contains
i in its subtree.
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complemented s.g. {X, Y }
(c) Hj+2

M
EXT

X

unoriented internal

unoriented external

ININj+1

oriented external
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s.g. {X, Y }

full cut (all edges exist)

cut

complemented cut

indicator for overlap with X

INj+2M′
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EXT IN

v
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INj

INj+2
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v

v

(f) Hj+2 · ρ(v)
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X
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INEXT
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M3

M2

M1
INj+1

(l) H′
j+1 · ρ(v) · ρ(X)

M3

INj+1

(i) Hj+1 = H′
j · ρ(wj+1)

X

X

v

INj
IN

(k) H′
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INM1

M2

EXT

X

X

v

X

X

M1

M2

M3

IN
INj

v

EXT

M2

M3

INj+1
M1

v

EXT IN

Fig. 4. Illustrations for the proof of Theorem 3

(b) Split T into at most seven subtrees such that each of the segments X1,
X2, Y1 and Y2 has a corresponding subtree.

(c) If the block corresponds to a segment of X1, X2, Y1 and Y2 flip the
external-flip-flag at the roots of two subtrees according to Table 1.

(d) If ρ is a prefix-prefix translocation, exchange the subtrees of X1 and Y1.
Otherwise, exchange the subtrees of X2 and Y1 and flip the direction-
flip-flags of both.

(e) Concatenate the seven subtrees into T .
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Table 1. The subtrees for which the external-flip-flag is flipped as a function of translo-
cation type and block type

Block X1 X2 Y1 Y2

prefix-prefix X2, Y2 X1, Y1 X2, Y2 X1, Y1

prefix-suffix X2, Y1 X1, Y2 X1, Y2 X2, Y1

(3) If necessary, concatenate small blocks and split large blocks such that the
size of each block is at least 1

2

√
n log(n) and at most 2

√
n log(n).

Theorem 4. SRTNL can be solved in O(n3/2
√

log(n)). 	
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Abstract. For two strings a, b, the longest common subsequence (LCS)
problem consists in comparing a and b by computing the length of their
LCS. In a previous paper, we defined a generalisation, called “the all
semi-local LCS problem”, for which we proposed an efficient output rep-
resentation and an efficient algorithm. In this paper, we consider a re-
striction of this problem to strings that are permutations of a given set.
The resulting problem is equivalent to the all local longest increasing sub-
sequences (LIS) problem. We propose an algorithm for this problem, run-
ning in time O(n1.5) on an input of size n. As an interesting application of
our method, we propose a new algorithm for finding a maximum clique in
a circle graph on n nodes, running in the same asymptotic time O(n1.5).
Compared to a number of previous algorithms for this problem, our ap-
proach presents a substantial improvement in worst-case running time.

1 Introduction

Given two strings a, b of lengths m, n respectively, the longest common subse-
quence (LCS) problem consists in comparing a and b by computing the length
of their LCS. In [14], we defined a generalisation, called “the all semi-local LCS
problem”, where each string is compared against all substrings of the other
string, and all prefixes of each string are compared against all suffixes of the
other string. In the same paper we introduced a relatively simple geometric
framework, allowing to represent the problem’s output by a data structure of
size O(m + n), and to query an individual output length efficiently. We also
proposed an efficient all semi-local LCS algorithm.

In this paper, we consider an important special case of string comparison,
where each of the strings a, b consists of distinct characters. Without loss of
generality, we may assume that m = n, and that both strings are permutations
of a given totally ordered set of size n. The all semi-local LCS problem on permu-
tations is equivalent to finding the length of the longest increasing subsequence
(LIS) in every substring of a given string. We propose an algorithm for this
problem, running in time O(n1.5).

A related problem of computing the complete LIS in every substring of a fixed
size is studied in papers [1, 6]. In particular, paper [6] gives an algorithm that
runs in time proportional to the size of the output (i.e. the combined length of

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 270–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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all the output LIS), which can be as high as Θ(n2). In contrast, our algorithm
only computes the lengths instead of complete LIS; however, this is done for
substrings of every possible size.

A circle graph is defined as an intersection graph of a set of chords in a circle.
It has long been known that the maximum clique problem on a circle graph
on n nodes is solvable in polynomial time [9]. The best existing algorithms for
this problem [13, 10, 12, 3] run in time O(n2) when the graph is dense. As an
interesting application of our method, we propose a new algorithm for finding a
maximum clique in a circle graph on n nodes, running in time O(n1.5). This is
a substantial improvement in running time for dense circle graphs.

2 Problem Statement and Notation

We consider strings of characters from a fixed finite alphabet, denoting string
concatenation by juxtaposition. Given a string, we distinguish between its con-
tiguous substrings, and not necessarily contiguous subsequences. Special cases of
a substring are a prefix and a suffix of a string. For two strings a = α1α2 . . . αm

and b = β1β2 . . . βn of lengths m, n respectively, the longest common subsequence
(LCS) problem consists in computing the LCS length of a and b, and the longest
increasing subsequence (LIS) problem consists in computing the LIS length of a
(assuming a given total order on the alphabet characters).

We consider a generalisation of the LCS problem, which we introduced in [14]
as the all semi-local LCS problem. It consists in computing the LCS lengths on
substrings of a and b as follows:

• the all string-substring LCS problem: a against every substring of b;
• the all prefix-suffix LCS problem: every prefix of a against every suffix of b;
• symmetrically, the all substring-string LCS problem and the all suffix-prefix

LCS problem, defined as above but with the roles of a and b exchanged.

A string where all the characters are distinct will be called a permutation. The
all string-substring LCS problem, when restricted to permutations, can be easily
seen to be equivalent to the all local LIS problem, i.e. the problem of computing
the LIS length in every substring of a.

For a string a, we denote by Σ(a) the set of characters appearing in a at least
once. For a set of characters S, we denote by a/S the substring of a obtained by
deleting all characters not contained in S.

In addition to standard integer indices Z = {. . . ,−2,−1, 0, 1, 2, . . .}, we use
odd half-integer indices Ẑ = {. . . ,− 5

2 ,−
3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 , . . .}. For two numbers i,

j, we write i � j if j − i ∈ {0, 1}, and i � j if j − i = 1. We denote

[i : j] = {i, i + 1, . . . , j − 1, j} 〈i : j〉 =
{
i + 1

2 , i + 3
2 , . . . , j −

3
2 , j −

1
2

}
.

3 Problem Analysis

For completeness, in this section we restate (without motivation and proofs) the
necessary definitions and results from [14]. In the following section, we give the
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Fig. 1. A grid dag and a maximum-weight path

proof of the key lemma, a significant part of which was omitted from [14] due to
space restrictions.

Definition 1. Let m,n ∈ N. A grid dag G is a weighted dag, defined on the set
of nodes vi,j, i ∈ [0 : m], j ∈ [0 : n]. For all i ∈ [1 : m], j ∈ [1 : n]:

• horizontal edge vi,j−1 → vi,j and vertical edge vi−1,j → vi,j are both always
present in G and have weight 0;
• diagonal edge vi−1,j−1 → vi,j may or may not be present in G; if present, it

has weight 1.

Given an instance of the all semi-local LCS problem, its corresponding grid dag
is an m × n grid dag, where the diagonal edge vi−1,j−1 → vi,j is present, iff
αi = βj . Figure 1 shows the grid dag corresponding to strings a = “baabcbca”,
b = “baabcabcabaca” (an example borrowed from [2]).

Definition 2. Given an m × n grid dag G, its extension G+ is an infinite
weighted dag, defined on the set of nodes vi,j, i, j ∈ Z and containing G as a
subgraph. For all i, j ∈ Z:

• horizontal edge vi,j−1 → vi,j and vertical edge vi−1,j → vi,j are both always
present in G+ and have weight 0;
• when i ∈ [1 : m], j ∈ [1 : n], diagonal edge vi−1,j−1 → vi,j is present in G+

iff it is present in G; if present, it has weight 1;
• otherwise, diagonal edge vi−1,j−1 → vi,j is always present in G+ and has

weight 1.

An infinite dag that is an extension of some (finite) grid dag will be called an
extended grid dag. When dag G+ is the extension of dag G, we will say that G
is the core of G+. Relative to G+, we will call the nodes of G core nodes.
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Fig. 2. A grid dag and some critical points

Definition 3. Given an m × n grid dag G, its extended score matrix is an
infinite matrix defined by

A(i, j) = maxweight(v0,i � vm,j) i, j ∈ Z (1)

where the maximum is taken across all paths between the given endpoints in the
extension G+. If i = j, we have A(i, j) = 0. By convention, if j < i, then we let
A(i, j) = j − i < 0.

In Figure 1, the highlighted path has weight 5, and corresponds to the value
A(4, 11) = 5, equal to the LCS length of string a and substring b′ = “cabcaba”.

Definition 4. An odd half-integer point (i, j) ∈ Ẑ2 is called A-critical, if

A
(
i + 1

2 , j −
1
2

)
� A

(
i− 1

2 , j −
1
2

)
= A

(
i + 1

2 , j + 1
2

)
= A

(
i− 1

2 , j + 1
2

)
Corollary 1. Let i, j ∈ Ẑ. For each i (respectively, j), there exists exactly one
j (respectively, i) such that the point (i, j) is A-critical.

Figure 2 shows the grid dag of Figure 1 along with some of the critical points.
More precisely, it shows all the critical points (i, j), where i, j ∈ 〈0 : n〉. Each
such critical point is represented by a curve1 originating between the nodes
v0,i− 1

2
and v0,i+ 1

2
, and terminating between the nodes vm,j− 1

2
and vm,j+ 1

2
.

Definition 5. Point (i0, j0) dominates2 point (i, j), if i0 < i and j < j0.

Theorem 1. For an arbitrary integer point (i0, j0) ∈ Z2, let dA(i0, j0) denote
the number of (odd half-integer) A-critical points it dominates. We have

A(i0, j0) = j0 − i0 − dA(i0, j0)

1 For the purposes of this illustration, the specific layout of the curves between their
endpoints is not important.

2 The standard definition of dominance requires i < i0 instead of i0 < i. Our definition
is more convenient in the context of the LCS problem.
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In Figure 2, critical points dominated by point (4, 11) are represented by curves
whose both endpoints fit between the two vertical lines, corresponding to index
values i = 4 and j = 11. Note that there are exactly two such curves, and that
A(4, 11) = 11− 4− 2 = 5.

Recall that outside the core, the structure of an extended grid graph is trivial:
all possible diagonal edges are present in the non-core subgraph. This gives rise
to an additional property: when i < −m or j > m + n, point (i, j) is A-critical
iff j − i = m. We will call such A-critical points trivial. It is easy to see that
an A-critical point (i, j) is non-trivial, iff either both v0,i− 1

2
and v0,i+ 1

2
, or both

vm,j− 1
2

and vm,j+ 1
2
, are core nodes.

Corollary 2. There are exactly m + n non-trivial A-critical points.

Theorem 2. For an extended score matrix A, there exists a data structure which

• has size O
(
(m + n) log(m + n)

)
;

• can be built in time O
(
(m + n) log(m + n)

)
, given the set of all non-trivial

A-critical points;
• allows to query an individual element of A in time O

(
log(m + n)2

)
.

The above theorem uses the range tree, a very simple data structure due to Bent-
ley [4]. Time and memory asymptotics given in the theorem can be improved by
using a more advanced data structure due to JaJa et al. [11]; however, Theorem 2
is sufficient for our current purposes.

4 Longest Common Subsequences in Permutations

Similarly to the efficient algorithm for the all semi-local LCS problem described
in [14], we follow a divide-and-conquer approach in our new algorithm. String a
is recursively partitioned into substrings. Consider a partitioning a = a1a2 into
a concatenation of two substrings of length m1, m2, where m1 + m2 = m. Let
A, B, C denote the extended score matrices for the all semi-local LCS problems
comparing respectively a1, a2, a against b. In every recursive call our goal is,
given matrices A, B, to compute matrix C efficiently. We call this procedure
merging. All three matrices are assumed to be in the geometric representation
introduced in Section 3.

By Theorem 1, matrices A, B, C can each be represented by the sets of
respectively m1 +n, m2 +n, m+n non-trivial critical points. Our new algorithm
is based on a novel merging procedure introduced in [14].

Lemma 1. Given subproblems with score matrices A, B, C as described above,
the sets of A- and B-critical points can be merged into the set of C-critical points
in time O

(
m + n1.5

)
and memory O(m + n).

For a function f and a predicate P defined on a variable i, notation “anyi:P (i)f(i)”
will denote the value f(i), where index i is chosen arbitrarily from the set
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{i : P (i)}. This is analogous to the use of “mini:P (i) f(i)” to denote the minimum
of a function on a given index set3.

Proof (Lemma 1). Our goal is to compute the set of all non-trivial C-critical
points. Without loss of generality, we may assume that 2m1 = 2m2 = m, and
that n is a power of 2 (otherwise, appropriate padding can be applied to the
input). We will compute non-trivial C-critical points in two stages:

1. points (i, k) ∈ 〈−m,−m
2 〉 × 〈0,

m
2 + n〉 ∪ 〈−m

2 , n〉 × 〈
m
2 + n,m + n〉;

2. points (i, k) ∈ 〈−m
2 , n〉 × 〈0,

m
2 + n〉.

It is easy to see that every non-trivial C-critical point (i, j) is computed in either
the first or the second stage. Informally, each C-critical point in the first stage is
obtained as a direct combination of an A-critical and a B-critical point, exactly
one of which is trivial. All A-critical and B-critical points remaining in the
second stage are non-trivial, and determine collectively the remaining C-critical
points. However, in the second stage the direct one-to-one relationship between
C-critical points and pairs of A- and B-critical points need not hold.

We now give a formal description of both stages of the algorithm.

First stage. Let i ∈ 〈−m,−m
2 〉, j = i+ m

2 . Recall that (i, j) is a trivial A-critical
point. It is straightforward to check that for all k, (i, k) is C-critical, iff (j, k)
is B-critical. Therefore, all m/2 C-critical points in 〈−m,−m

2 〉 × 〈0,
m
2 + n〉 can

be found in time O(m+n). Analogously, all m/2 C-critical points in 〈−m
2 , n〉×

〈m2 +n,m+n〉 can also be found in time O(m+n). The overall memory cost of
the first stage is O(m + n).

Second stage. By Definition 3 and Theorem 1, computing all non-trivial C-
critical points is equivalent to determining the set of values

dC(i, k) = min
j

(
dA(i, j) + dB(j, k)

)
(2)

where

i ∈ [−m : n] j ∈
[
−m

2 : m
2 + n

]
k ∈ [0 : m + n]

However, in this stage, we only need to consider

i ∈
[
−m

2 : n
]

j ∈ [0 : n] k ∈
[
0 : m

2 + n
]

Observe that none of the A- (respectively, B-) critical points considered in the
first stage can be dominated by a point (i, j) (respectively, (j, k)) in the current
range of i, j, k. Hence, critical points considered in the first stage cannot con-
tribute to the current stage. We can therefore simplify the problem by eliminating
all half-integer indices i ∈ 〈−m : n〉, j ∈

〈
−m

2 : m
2 +n

〉
, k ∈ 〈0 : m+n〉, that cor-

respond to triples i, j, k considered in the first stage. This results in m half-integer
3 In fact, “min” (or “max”) can always be used instead of “any” on a finite index set;

however, such usage could be misleading when “any” happens to be sufficient.
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index values being removed from each of the three ranges. We now renumber the
remaining indices i, k, so that their new range becomes i, k ∈ 〈0 : n〉. The index
order is preserved by the renumbering, so the dominance relation is not affected.
We already have j ∈ 〈0 : n〉 after elimination, therefore index j need not be
renumbered. The index elimination and renumbering can be done in time O(m).

In the new index numbering, we will refer to the remaining critical points as
Ā-, B̄- and C̄-critical. Let dĀ, dB̄, dC̄ , denote the values defined analogously to
dA, dB, dC by the remaining critical points in the new index ranges4. From (2),
we now have

dC̄(i, k) = min
j

(
dĀ(i, j) + dB̄(j, k)

)
i, j, k ∈ [0 : n] (3)

We proceed by partitioning the square index pair range 〈0 : n〉2 recursively
into regular half-sized square blocks. For each block, we establish the number of
C̄-critical points contained in it, and perform further recursive partitioning of
the block as long as this number is greater than 0.

Consider an h× h block

〈i0 − h : i0〉 × 〈k0 : k0 + h〉

The C̄-critical points in this block will be determined by Ā-critical points in
〈i0 − h : i0〉 × 〈0 : n〉, and B̄-critical points in 〈0 : n〉 × 〈k0 : k0 + h〉. We call
such Ā- and B̄-critical points relevant. For the current block, there are exactly
h relevant Ā-critical and exactly h relevant B̄-critical points.

For any j ∈ [0 : n], let δĀ(j) (respectively, δB̄(j)) denote the number of
relevant Ā-critical (respectively, B̄-critical) points in 〈i0 − h : i0〉 × 〈0 : j〉 (re-
spectively, 〈j : n〉 × 〈k0 : k0 + h〉):

δĀ(j) = dĀ(i0 − h, j)− dĀ(i0, j) δB̄(j) = dB̄(j, k0 + h)− dB̄(j, k0)

Sequence δĀ is non-strictly monotonically increasing from δĀ(0) = 0 to δĀ(n) =
h. Sequence δB̄ is non-strictly monotonically decreasing from δB̄(0) = h to
δB̄(n) = 0.

As the block size h gets smaller, sequences δĀ, δB̄ contain fewer and fewer
distinct values. We represent these sequences compactly by storing, for every
d ∈ [−h : h], the values

ΔĀ(d) = any δĀ(j) ΔB̄(d) = any δB̄(j)

M(d) = min
(
dĀ(i0, j) + dB̄(j, k0)

)
where “any” and “min” are taken across all j : δĀ(j)− δB̄(j) = d. When the set
of such j is empty, the corresponding values ΔĀ(d), ΔB̄(d), M(d) are undefined

4 The procedure of the second stage can also be carried out directly on values dA,
dB, dC across the original index ranges, without performing the first stage and the
subsequent index elimination and renumbering. However, in this case the time cost
of merging will increase from O m + n1.5 to O (m + n)1.5 .



LCS in Permutations and Maximum Cliques in Circle Graphs 277

and omitted from further computations. Sequence ΔĀ is non-strictly monoton-
ically increasing from ΔĀ(−h) = 0 to ΔĀ(h) = h (ignoring the undefined val-
ues). Sequence ΔB̄ is non-strictly monotonically decreasing from ΔB̄(−h) = h
to ΔB̄(h) = 0 (again ignoring the undefined values). Sequences ΔĀ, ΔB̄ can be
computed in time O(h) by a single scan of the set of relevant Ā- and B̄-critical
points. Sequence M is computed at the top level of recursion in time O(n) by a
scan of all Ā- and B̄-critical points (all of which are relevant at the top recur-
sion level). In lower levels of recursion, sequence M is recomputed in time O(h)
by a procedure that will be described below. From sequences ΔĀ, ΔB̄, M , the
following values can be found in time O(h):

dC̄(i0, k0) = minM(d)

dC̄(i0 − h, k0) = min
(
ΔĀ(d) + M(d)

)
dC̄(i0, k0 + h) = min

(
M(d) + ΔB̄(d)

)
dC̄(i0 − h, k0 + h) = min

(
ΔĀ(d) + M(d) + ΔB̄(d)

)
where “min” is taken across all d ∈ [−h : h] for which ΔĀ(d), ΔB̄(d), M(d)
are defined. The number of C̄-critical points in the current block can then be
determined as

dC̄(i0 − h, k0 + h)− dC̄(i0 − h, k0)− dC̄(i0, k0 + h) + dC̄(i0, k0)

If the above value is non-zero, the recursion proceeds by partitioning the cur-
rent block of size h into four subblocks of size h/2. The sets of relevant Ā- and
B̄-critical points are split accordingly, each into two subsets (not necessarily of
equal size). Let i′0 ∈

{
i0, i0 − h

2

}
, k′0 ∈

{
k0, k0 + h

2

}
, and consider each of the

four half-sized subblocks
〈
i′0 − h

2 : i′0
〉
×

〈
k′0, k

′
0 + h

2

〉
. Let δ′

Ā
, δ′

B̄
, M ′ denote the

sequences defined for the current subblock analogously to sequences δĀ, δB̄, M
for the parent block. For every d ∈ [−h : h], let

Δ∗
Ā(d) = any δ′Ā(j) Δ∗

B̄(d) = any δ′B̄(j)

where “any” is taken across all j : δĀ(j)− δB̄(j) = d. When the set of such j is
empty, Δ∗

Ā
(d), Δ∗

B̄
(d) are undefined. Sequence Δ∗

Ā
is non-strictly monotonically

increasing from Δ∗
Ā
(−h) = 0 to Δ∗

Ā
(h) = h/2 (ignoring the undefined values).

Sequence Δ∗
B̄

is non-strictly monotonically decreasing from Δ∗
B̄

(−h) = h/2 to
Δ∗

B̄
(h) = 0 (again ignoring the undefined values). Similarly to ΔĀ, ΔB̄ , se-

quences Δ∗
Ā
, Δ∗

B̄
can be computed in time O(h) by a single scan of the set of

relevant Ā- and B̄-critical points. In each of the four subblocks, values M ′(d′)
for all d′ ∈

[
−h

2 : h
2

]
can now be obtained from sequence M by

M ′(d′) = minM(d) for i′0 = i0, k′0 = k0

M ′(d′) = min
(
Δ∗

Ā(d) + M(d)
)

for i′0 = i0 − h
2 , k′0 = k0

M ′(d′) = min
(
M(d) + Δ∗

B̄(d)
)

for i′0 = i0, k′0 = k0 + h
2

M ′(d′) = min
(
Δ∗

Ā(d) + M(d) + Δ∗
B̄(d)

)
for i′0 = i0 − h

2 , k′0 = k0 + h
2
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where “min” is taken across all d : Δ∗
Ā
(d)−Δ∗

B̄
(d) = d′ for which Δ∗

Ā
(d), Δ∗

B̄
(d),

M(d) are defined. Note that sequence M ′ is obtained purely from the sequences
δ′
Ā
, δ′

B̄
and M ; in particular, evaluation of functions dĀ, dB̄ is not required. For

each of the four subblocks, every value M(d) contributes to exactly one value
M ′(d′), therefore the above computation can be done in time O(h).

The base of the recursion is h = 1. At this point, we establish all 1× 1 blocks
containing a C̄-critical point, which is equivalent to establishing the C̄-critical
points themselves. The merging is completed.

The recursion tree has maximum degree 4, height logn, and n leaves corre-
sponding to non-trivial C̄-critical points.

Consider the top-to-middle levels of the recursion tree. As we move down
from the top to the middle level, in each level the maximum number of nodes
increases by a factor of 4, and the maximum amount of computational work per
node decreases by a factor of 2. Hence, the maximum amount of work per level
increases in geometric progression, and is dominated by the middle level log n

2 .
Consider the middle-to-bottom levels of the recursion tree. Since the tree has

n leaves, each level contains at most n nodes. As we move down from the mid-
dle to the bottom level, in each level the maximum amount of computational
work per node still decreases by a factor of 2. Hence, the maximum amount of
work per level decreases in geometric progression, and is again dominated by the
middle level log n

2 .
Thus, the computational work in the whole recursion tree is dominated by

the maximum amount of work in the middle level log n
2 . This level has at most

n nodes, each requiring at most O(n)/2
log n

2 = O
(
n1/2

)
work. Therefore, the

overall computation cost of the recursion is at most n ·O
(
n1/2

)
= O

(
n1.5

)
.

The main recursion tree canbe evaluated depth-first, so that the overallmemory
cost is dominated by the top level of the main recursion, running in memory O(n).

In summary, the first stage takes time and memory O(m + n). The second
stage takes time and memory O(m+ n) for index elimination and renumbering,
and then time O(n1.5) and memory O(n) for the recursion. Therefore, we have
the total time and memory cost as claimed. 	

We now describe our new algorithm for the all semi-local LCS problem on per-
mutations. In contrast with the algorithm of [14], which works by partitioning
both input strings recursively in alternate order, here we only need to partition
the first input string. Instead of partitioning the second string, we reduce it in
every recursive step by removing “redundant” characters not appearing in the
corresponding part of the first string.

Algorithm 1 (All semi-local LCS in permutations).
Input: permutations a, b of length n over a set of n characters.
Output: all semi-local LCS matrix on a, b, represented by 2n non-trivial critical
points.
Description. Without loss of generality, we assume that n is a power of 2.
The computation proceeds recursively, partitioning string a into a concatenation
a = a1a2 of two strings of length n/2. Each of the strings a1, a2 is a permutation
over a set of n/2 characters.
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Let the matrices A, B, C be defined as above. Each of the matrices A, B
can be represented by 3n/2 critical points. Note that for all i ∈ 〈0 : n〉, point
(i, i) is A-critical, iff βi+ 1

2
�∈ Σ(a1). There are exactly n/2 such critical points.

The remaining n A-critical points can be obtained by solving recursively the all
semi-local LCS problem on strings a1 and b′ = b/Σ(a1), both of which are per-
mutations over character set Σ(a1) = Σ(b′) of size n/2. Similarly, n/2 B-critical
points can be obtained immediately, and the remaining n B-critical points can
be obtained by solving recursively the all semi-local LCS problem on strings a2
and b′′ = b/Σ(a2).

Given a current partitioning, the corresponding sets of critical points are
merged by Lemma 1. Note that we now have two nested recursions: the main
recursion of the algorithm, and the inner recursion of Lemma 1.

The base of the main recursion is n = 1.
Cost analysis. Consider the main recursion tree. The computational work in
the tree is dominated by the top recursion level. In that level, we sort the input
strings a, b in time O(n logn), after which the substrings b′, b′′ can easily be
computed in linear time. The merging of score matrices by Lemma 1 takes time
O(n1.5), and therefore dominates the rest of the computation.

The main recursion tree can be evaluated depth-first, so that the overall mem-
ory cost is dominated by the top level of the main recursion, running in memory
O(n). 	


5 Maximum Cliques in Circle Graphs

A circle graph [8] is defined as the intersection graph of a set of chords in a circle,
i.e. the graph where nodes correspond to the chords, and two nodes are adjacent
iff the corresponding chords intersect. The interval model of a circle graph is
obtained by cutting the circle at an arbitrary point and laying it out on a line,
so that the chords become intervals. The original circle graph is isomorphic to
the overlap graph of its interval model, i.e. the graph where nodes correspond to
the intervals, and two nodes are adjacent iff the corresponding intervals intersect
but do not contain one another.

It has long been known that many problems which are NP-hard for general
graphs are solvable in polynomial time on circle graphs. It is also known that
the maximum clique and the maximum independent set problems on a circle
graph are related to string comparison problems (see e.g. [3]). As an interesting
application of our new method for permutation string comparison, we propose
a new algorithm for finding a maximum clique in a circle graph.

As the input, the algorithm takes an interval model of a circle graph G on
n nodes. Without loss of generality, we may assume that the set of interval
endpoints is [1 : 2n]. The interval model is represented by a permutation a =
α1 . . . α2n of size 2n, where for each left (respectively, right) endpoint i ∈ [1 : 2n],
αi is the corresponding right (respectively, left) endpoint. Note that for all i < j,
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an interval with left endpoint i does not contain an interval with left endpoint j,
iff αi < αj . Various alternative representations of interval models (e.g. the ones
used in [13, 3]) can be converted to this representation in linear time.

In the interval model, a clique corresponds to a set of pairwise intersecting
intervals, none of which contains another interval from the set. Recall that in-
tervals in the line satisfy the Helly property: if all intervals in a set intersect
pairwise, then they all intersect at a common point. In our context, we only
need to consider odd half-integer indices 〈1 : 2n〉 as intersection points.

Consider a clique in G. Let k + 1
2 , where k ∈ [1 : 2n − 1], be a common

intersection point of the intervals representing the clique, guaranteed to exist
by the Helly property. Let id = (1, 2, . . . , 2n) denote the identity permuta-
tion. From the observations above, it follows that the clique corresponds to
a common subsequence of a prefix of a of length k and a suffix of id of length
2n−k. Consequently, the maximum clique can be found by solving the all prefix-
suffix LCS problem, which is one of the constituents of the all semi-local LCS
problem.

Algorithm 2 (Maximum clique in circle graph).
Input: interval model of circle graph G, represented by string a of size 2n.
Output: maximum-size clique of G, represented by the set of (say) left end-
points of the corresponding intervals.
Description. We run Algorithm 1 on the input permutation a and the identity
permutation id , obtaining the set of 4n non-trivial critical points. We then build
the data structure of Theorem 2 for querying semi-local LCS lengths of a, id .
Let a(k) (respectively, id (k)) denote the prefix of a of length k (respectively, the
suffix of id of length 2n − k). For each k ∈ [1 : 2n − 1], we query the LCS
length of a(k) and id (k). The maximum of the 2n− 1 returned values gives the
size of the maximum clique in G, and the corresponding value k + 1

2 gives a
common intersection point of the clique intervals. The intervals in the clique can
now be obtained by running a standard LIS algorithm (see e.g. [7, 5]) on string
a(k)/Σ(id (k)).
Cost analysis. The cost of running Algorithm 1 is O(n1.5). The combined cost
of all the prefix-suffix queries is O

(
n(logn)2

)
. The cost of running the final LIS

algorithm is O(n logn). The resulting total running time is O(n1.5). 	


6 Conclusions

We have proposed an efficient algorithm for the all semi-local LCS problem on
permutations, running in time O(n1.5). As a consequence, our algorithm provides
a significant worst-case improvement over existing algorithms for the maximum
clique problem in a circle graph. Several output-sensitive algorithms exist for the
latter problem. Therefore, our method has an advantage only when the input
circle graph is dense, resulting in a large maximum clique. It is possible that our
method can be extended to provide an improved output-sensitive algorithm for
sparse circle graphs.
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Another interesting question is whether our method can be extended to other
related problems on circle graphs, in particular the weighted clique problem and
the maximum independent set problem, or to other types of graphs, e.g. interval
and circular-arc graphs.
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Abstract. In this paper we present a new technique for worst-case
analysis of compression algorithms which are based on the Burrows-
Wheeler Transform. We deal mainly with the algorithm purposed by
Burrows and Wheeler in their first paper on the subject [6], called bw0.
This algorithm consists of the following three steps: 1) Compute the
Burrows-Wheeler transform of the text, 2) Convert the transform into
a sequence of integers using the move-to-front algorithm, 3) Encode the
integers using Arithmetic code or any order-0 encoding (possibly with
run-length encoding).

We prove a strong upper bound on the worst-case compression ratio
of this algorithm. This bound is significantly better than bounds known
to date and is obtained via simple analytical techniques. Specifically, we
show that for any input string s, and μ > 1, the length of the compressed
string is bounded by μ · |s|Hk(s) + log(ζ(μ)) · |s| + gk where Hk is the
k-th order empirical entropy, gk is a constant depending only on k and
on the size of the alphabet, and ζ(μ) = 1

1μ + 1
2μ + . . . is the standard zeta

function. As part of the analysis we prove a result on the compressibility
of integer sequences, which is of independent interest.

Finally, we apply our techniques to prove a worst-case bound on the
compression ratio of a compression algorithm based on the Burrows-
Wheeler transform followed by distance coding, for which worst-case
guarantees have never been given. We prove that the length of the com-
pressed string is bounded by 1.7286 · |s|Hk(s) + gk. This bound is better
than the bound we give for bw0.

1 Introduction

In 1994, Burrows and Wheeler [6] introduced the Burrows-Wheeler Transform
(BWT), and two new lossless text-compression algorithms that are based on this
transform. Following [15], we refer to these algorithms as bw0 and bw0RL. A well
known implementation of these algorithms is bzip2 [18]. This program typically
shrinks an English text to about 20% of its original size while gzip only shrinks
to about 26% of the original size (see Table 1 and also [1] for detailed results).
In this paper we refine and tighten the analysis of bw0. For this purpose we
introduce new techniques and statistical measures. We believe these techniques
may be useful for the analysis of other compression algorithms, and in predicting
the performance of these algorithms in practice.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 282–293, 2006.
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The algorithm bw0 compresses the input text s in three steps.

1. Compute the Burrows-Wheeler Transform, ŝ, of s. We elaborate on this stage
shortly.1

2. Transform ŝ to a string of integers ṡ = mtf(ŝ) by using the move to front
algorithm. This algorithm maintains the symbols of the alphabet in a list
and encodes the next character by its index in the list (see Section 2).

3. Encode the string ṡ of integers by using an order-0 encoder, to obtain the
final bit stream bw0(s) = order0(ṡ). An order-0 encoder assigns a unique
bit string to each integer independently of its context, such that we can
decode the concatenation of these bit strings. Common order-0 encoders are
Huffman code or Arithmetic code.

The algorithm bw0RL performs an additional run-length encoding (RLE) pro-
cedure between steps 2 and 3. See [6, 15] for more details on bw0 and bw0RL,
including the definition of run-length encoding which we omit here.

Next we define the Burrows-Wheeler Transform (bwt). Let n be the length of
s. We obtain ŝ as follows. Add a unique end-of-string symbol ‘$’ to s. Place all the
cyclic shifts of the string s$ in the rows of an (n+1)×(n+1) conceptual matrix.
One may notice that each row and each column in this matrix is a permutation
of s$. Sort the rows of this matrix in lexicographic order (‘$’ is considered smaller
than all other symbols). The permutation of s$ found in the last column of this
sorted matrix, with the symbol ‘$’ omitted, is the Burrows-Wheeler Transform,
ŝ. See an example in Figure 1. Although it may not be obvious at first glance,
bwt is an invertible transformation, given that the location of ‘$’ prior to its
omission is known to the inverting procedure. In fact, efficient methods exist for
computing and inverting ŝ in linear time (see for example [16]).

The bwt is effective for compression since in ŝ characters with the same con-
text2 appear consecutively. This is beneficial since if a reasonably small context
tends to predict a character in the input text s, then the string ŝ will show local
similarity – that is, symbols will tend to recur at close vicinity.

Therefore, if s is say a text in English, we would expect ŝ to be a string with
symbols recurring at close vicinity. As a result ṡ = mtf(ŝ) is an integer string
which we expect to contain many small numbers. (Note that by “integer string”
we mean a string over an integer alphabet). Furthermore, the frequencies of the
integers in ṡ are skewed, and so an order-0 encoding of ṡ is likely to be short.
This, of course, is an intuitive explanation as to why bw0 “should” work on
typical inputs. As we discuss next, our work is in a worst-case setting, which
means that we give upper bounds that hold for any input. These upper bounds
are relative to statistics which measure how “well-behaved” our input string
is. An interesting question which we try to address is which statistics actually
capture the compressibility of the input text.
1 For compatibility with other definitions, we actually need to compute the bwt of

s in reversed order, that is from right to left. This does not change our results and
does not effect the compression ratio significantly (see [10] for a discussion on this),
so we ignore this point from now on.

2 The context of length k of a character is the string of length k preceding it.
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Fig. 1. The Burrows-Wheeler transform for the string s = mississippi. The matrix on
the right has the rows sorted in lexicographic order. ŝ is the last column of the matrix,
i.e. ipssmpissii, and we need to store the index of the symbol ‘$’, i.e. 6, to be able to
get the original string.

Introductory Definitions. minus .1em Let s be the string which we compress,
and let Σ denote the alphabet (set of symbols in S). Let n = |s|, and h = |Σ|.
Let nσ be the number of occurrences of the symbol σ in s. Let Σk denote the set
of strings of length k over Σ. Let Σ∗ =

⋃
k≥0 Σ

k denote the set of all (finite)
strings over Σ. For a compression algorithm a we denote by a(s) the output of
a on a string s. The zeroth order empirical entropy of the string s is defined as
H0(s) =

∑h−1
i=0

ni

n log n
ni

. (All logarithms in the paper are to the base 2. In this
context, we define 0 log(n/0) = 0, for any n). For any word w ∈ Σk, let ws denote
the string consisting of the characters following all occurrences ofw in s. The value
Hk(s) = 1

n

∑
w∈Σk |ws|H0(ws) is called the k-th order empirical entropy of the

string s. In [15] these terms, as well as bwt, are discussed in greater depth.
We also use the zeta function, ζ(μ) = 1

1μ + 1
2μ + . . ., and the truncated zeta

function ζh(μ) = 1
1μ + . . . + 1

hμ . We denote by [h] the integers {0, . . . , h− 1}.
History and Motivation. Define the compression ratio of a compression
algorithm to be the average number of bits it produces per character in s. It is
well known that the zeroth order empirical entropy of a string s, H0(s), is a lower
bound on the compression ratio of any order-0 compressor [7, 12]. Similarly, the
k-th order empirical entropy of a string s, denoted by Hk(s), gives a lower bound
on the compression ratio of any encoder, that to encode a character x, is allowed
to use only the k characters preceding x (the context of length k of x). For this
reason the compression ratio of compression algorithms is traditionally compared
to Hk(s), for various values of k. Another widely used statistic is H∗

k (s), called
the modified k-th order empirical entropy of s. This statistic is slightly larger
than Hk, yet it still provides a lower bound on the bits-per-character ratio of
any encoder that is based on a context of k characters. We do not define H∗

k

here, as we present bounds only in terms of Hk. See [15] for more details on H∗
k .
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In 1999, Manzini [15] gave the first worst-case upper bounds on the compres-
sion ratio of several bwt-based algorithms. In particular, Manzini bounded the
total bit-length of the compressed text bw0(s) by the expression

8 · nHk(s) + (0.08 + Corder0) · n + logn + g′k . (1)

for any k ≥ 0. Here Corder0 is a small constant, defined in Section 2, which
depends on the parameters of the Order-0 compressor which we are using, and
g′k = hk(2h logh + 9) is a constant that depends only on k and h. Manzini also
proved an upper bound of 5 ·nH∗

k (s)+ g′′k on the bit-length of bw0RL(s), where
g′′k is another constant that depends only on k and h.

In 2004, Ferragina, Giancarlo, Manzini and Sciortino [10] introduced a bwt-
based compression booster. They show a compression algorithm such that the
bit-length of its output is bounded by

1 · nHk(s) + Corder0n + logn + g′′′k . (2)

(This algorithm follows from a general compression boosting technique. For de-
tails see [10]). As mentioned above this result is optimal, up to the Corder0n +
logn + g′′′k term. The upper bounds of this algorithm and its variants based on
the same techniques are theoretically strictly superior to those in [15] and to
those that we present here. However, implementations of the algorithm of [10]
by the authors and another implementation by Manzini [14], give the results
summarized in Table 1. These empirical results surprisingly imply that while
the algorithm of [10] is optimal with respect to nHk in a worst-case setting, its
compression ratio in practice is comparable with that of algorithms with weaker
worst-case guarantees. This seems to indicate that achieving good bounds with
respect to Hk does not necessarily guarantee good compression results in prac-
tice. This was the starting point of our research. We looked for tight bounds on
the length of the compressed text, possibly in terms of statistics of the text that
might be more appropriate than Hk.

We define a new statistic of a text s, which we call the local entropy of s, and
denote it by le(s). This statistic was implicitly considered by Bentley et al. [4],
and by Manzini [15]. We also define l̂e(s) = le(ŝ). That is the statistic l̂e(s) is
obtained by first applying the Burrows-Wheeler transform to s and then comput-
ing the statistic le of the result. These statistics are theoretically oriented and
we find their importance to be two-fold. First they may highlight potential weak-
nesses of existing compression algorithms and thereby mark the way to invent bet-
ter compression algorithms. Second, they may be useful in understanding current
algorithms and proving better worse-case upper bounds for them.

Our Results. In this paper we tighten the analysis of bw0 and give a tradeoff
result that shows that for any constant μ > 1 and for any k, the length of the
compressed text is upper-bounded by the expression

μ · nHk(s) + (log ζ(μ) + Corder0) · n + logn + μgk . (3)

Here gk = 2k log h + hk · h log h. In particular, for μ = 1.5 we obtain the bound
1.5 · nHk(s) + (1.5 +Corder0) · n+ logn+ 1.5gk. For μ = 4.45 we get the bound
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Table 1. Results (in bytes) of running various compressors on the non-binary files from
the Canterbury Corpus [1]. The gzip results are taken from [1]. The column bw0 shows
the results of our implementation (in C++) of the bw0 algorithm, using Huffman
encoding as the order-0 compressor. The column marked [14] gives results from a
preliminary implementation of the booster-based compression algorithm supplied to us
by Manzini. The columns Booster(HC) and Booster(RHC) are our implementations of
the compression booster of [10]. Ferragina et al. [10] suggest two methods to implement
it: One using the algorithm HC, and one using the algorithm RHC (the interested reader
is referred to [10]).

File Name size gzip bzip2 bw0 [14] Booster(HC) Booster(RHC)
alice29.txt 152089 54181 43196 48915 47856 74576 79946
asyoulik.txt 125179 48819 39569 44961 42267 59924 61757

cp.html 24603 7965 7632 8726 8586 16342 16342
fields.c 11150 3122 3039 3435 3658 10235 10028

grammar.lsp 3721 1232 1283 1409 1369 2297 2297
lcet10.txt 426754 144562 107648 127745 116861 166043 177682

plrabn12.txt 481861 194551 145545 168311 154950 172471 183855
xargs.1 4227 1748 1762 1841 1864 2726 2726

4.45 · nHk(s) + (0.08 + Corder0) · n + logn + 4.45gk, thus surpassing Manzini’s
upper bound (1). Our proof is considerably simpler than Manzini’s proof of (1).

We prove this bound using two basic observations on the statistic le that we
define. Thereby we bypass some of the technical hurdles in the analysis of [15].
Our analysis actually proves a considerably stronger result. We show that the
size of the compressed text is bounded by

μ · le(ŝ) + (log ζ(μ) + Corder0) · n + logn . (4)

Empirically, this seems to give estimates which are quite close to the actual
compression, as seen in Table 2.

In order to get our upper bounds we prove in Section 3 a result on compression
of integer sequences, which may be of independent interest.

Here is an overview of the rest of the paper.

1. We prove a result on compressibility of integer sequences in Section 3.
2. We define the statistic l̂e in Section 2 and show its relation to Hk in Section

4.
3. We use the last two contributions to give a simple proof of the bound (3) in

Section 4.
4. We give a tighter upper bound for bw0 for the case that we are working over

an alphabet of size 2 in Section 4.1.
5. We outline a further application of our techniques to prove a worst-case

bound on the compression of a different BWT-based compressor, which runs
BWT, then the so-called distance-coder (see [5, 2]), and finally an order-0
encoder. The upper bounds proved are strictly superior to those proved for
bw0. This can be found in Section 5.
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Table 2. Results of computing various statistics on the non-binary files from the
Canterbury Corpus [1]. Numbers are in “bits” since the theoretical bounds in the
literature are customarily calculated in bits. The column denoted by H0(ṡ) gives the
result of the algorithm bw0 assuming an optimal order-0 compressor. The final three
columns show the bounds given by the Equations (4), (3), and (1). The difference
between the column of H0(ṡ) and the column marked (4) shows that our bound (4)
is quite tight in practice. It should be noted that in order to get the bound of (4) we
needed to minimize the expression in Equation (4) over μ. To get the bound of (3) and
(1) we needed to calculate the values of the corresponding equations for all k and pick
the best one.

File Name size H0(ṡ) LE(ŝ) (4) (3) (1)
alice29.txt 1216712 386367 144247 396813 766940 2328219
asyoulik.txt 1001432 357203 140928 367874 683171 2141646

cp.html 196824 67010 26358 69857.6 105033.2 295714
fields.c 89200 24763 8855 25713 43379 119210

grammar.lsp 29768 9767 3807 10234 16054 45134
lcet10.txt 3414032 805841 357527 1021440 1967240 5867291

plrabn12.txt 3854888 1337475 528855 1391310 2464440 8198976
xargs.1 33816 13417 5571 13858 22317 64673

Due to space limitation, many proofs are omitted. They can found in the full
version of the paper.

2 Preliminaries

Our analysis does not use the definitions of Hk and bwt directly. Instead, it
uses the following observation of Manzini [15], that Hk(s) is equal to a linear
combination of H0 of parts of ŝ, the Burrows-Wheeler transform of s.

Proposition 1 ([15]). Let s̃ be the string obtained from ŝ by deleting the occur-
rences in ŝ of the first k characters of s. (Note that these characters can appear
in arbitrary positions of ŝ). There is a partition s̃ = s̃1 . . . s̃t, with t ≤ hk, such
that:

|s|Hk(s) =
t∑

i=1

|s̃i|H0(s̃i) . (5)

Now we define the move to front (mtf) transformation, which was introduced
in [4]. mtf encodes the character s[i] = σ with an integer equal to the number
of distinct symbols encountered since the previous occurrence of σ in s. More
precisely, the encoding maintains a list of the symbols ordered by recency of
occurrence. When the next symbol arrives, the encoder outputs its current rank
and moves it to the front of the list. Therefore, a string over the alphabet Σ
is transformed to a string over [h] (note that the length of the string does not
change).3

3 In order to completely determine the encoding we must specify the status of the
recency list at the beginning of the procedure. Here and in the future we usually
ignore this fact.
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mtf has the property that if the input string has high local similarity, that
is if symbols tend to recur at close vicinity, then the output string will consist
mainly of small integers. We define the local entropy of a string s to be le(s) =∑n

i=1 log(mtf(s)[i] + 1). That is, le is the sum of the logarithms of the move-
to-front values plus 1. For example, for a string “aabb” and initial list where ‘b’
is first and ‘a’ is second, le(s) = 2 because the mtf values of the second a and
the second b are 0, and the mtf values of the first a and the first b are 1. We
define l̂e(s) = le(ŝ).

Note that le(s) is the number of bits one needs to write the sequence of inte-
gers mtf(s) in binary. Optimistically, this is the size we would like to compress
the text to. Of course, one cannot decode the integers in mtf(s) from the con-
catenation of their binary representations as these representations are of variable
lengths.

The statistics H0(s) and Hk(s) are normalized in the sense that they represent
lower bounds on the bits-per-character rate attainable for compressing s, which
we call the compression ratio. However, for our purposes it is more convenient
to work with un-normalized statistics. Thus we define our new statistic le to be
un-normalized. We define the statistics nH0 and nHk to be the un-normalized
counterparts of the original statistics, i.e. (nH0)(s) = n ·H0(s) and (nHk)(s) =
n ·Hk(s).

Let f : Σ∗ → R+ be an (un-normalized) statistic on strings, for example f
can be nHk or le.

Definition 2. A compression algorithm A is called (μ,C)-f -competitive if for
every string s it holds that |A(s)| ≤ μf(s) + Cn + o(n), where o(n) denotes a
function g(n) such that limn→∞

g(n)
n = 0.

Throughout the paper we refer to an algorithm called “order0”. By this we
mean any order-0 algorithm, which is assumed to be a (1, Corder0)-nH0-
competitive algorithm. For example, CHuffman = 1 and CArithmetic ≈ 10−2 for a
specific time-efficient implementation of Arithmetic code [17, 19]. Furthermore,
one can implement arithmetic code so that it is (1, 0)-nH0-competitive, that is
the bit-length of the compressed text is bounded by nH0(s)+O(log n). Thus we
can use Corder0 = 0 in our equations. This implementation of arithmetic coding
is interesting theoretically, but is not time-efficient in practice.

We will often use the following inequality, derived from Jensen’s inequality:

Lemma 3. For any k ≥ 1, x1, . . . , xk > 0 and y1, . . . , yk > 0 it holds that∑k
i=1 yi log xi ≤

(∑k
i=1 yi

)
· log

(
k
i=1 xiyi

k
i=1 yi

)
.

In particular this inequality implies that if one wishes to maximize the sum of
logarithms of k elements under the constraint that the sum of these elements is
S, then one needs to pick all of the elements to be equal to S/k.
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3 Optimal Results on Compression with Respect to SL

In this section we look at a string s of length n over the alphabet [h]. We
define the sum of logarithms statistic: sl(s) =

∑n
i=1 log(s[i] + 1). Note that

le(s) = sl(mtf(s)). We show that in a strong sense the best sl-competitive
compression algorithm is an order-0 compressor. In the end of this section
we show how to get good le-competitive and l̂e-competitive compression
algorithms.

The problem we deal with in this section is related to the problem of universal
encoding of integers. In the problem of universal encoding of integers [9, 4] the
goal is to find a prefix-free encoding for integers, U : Z+ → {0, 1}∗, such that for
every x ≥ 0, |U(x)| ≤ μ log(x+1)+C. A particularly nice solution for this is the
Fibonacci encoding [3, 11], for which μ = logφ 2 * 1.4404 and C = 1+logφ

√
5 *

2.6723 (here φ is the golden ratio, φ = (1 +
√

5)/2). An additional solution for
this problem was proposed by Elias [9]. This is an optimal solution, in the sense
described in [13]. For more information on universal encoding of integers see the
(somewhat outdated) survey paper [13].

Clearly a universal encoding scheme with parameters μ and C gives an (μ,C)-
sl-competitive compressor. However, in this section we get a better competitive
ratio, taking advantage of the fact that our goal is to encode a long sequence
over [h], while allowing an o(n) additive term.

An Optimal (μ,C)-SL-Competitive Algorithm. We show, using a tech-
nique based on Lemma 3, that the algorithm order0 is (μ, log ζ(μ) +Corder0)-
sl-competitive for any μ > 1. In fact, we prove a somewhat stronger
theorem:

Theorem 4. For any constant μ > 0, the algorithm order0 is (μ, log ζh(μ) +
Corder0)-sl-competitive.

Proof. Let s be a string of length n over alphabet [h]. Clearly it suffices to prove
that for any constant μ > 0, nH0(s) ≤ μsl(s) + n log ζh(μ).

From the definition of H0 it follows that nH0(s) =
∑h−1

i=0 ni log n
ni

, and from

the definition of sl we get that sl(s) =
∑n

j=1 log(s[j] + 1) =
∑h−1

i=0 ni log(i +

1). Therefore, it suffices to prove that
∑h−1

i=0 ni log n
ni
≤ μ

∑h−1
i=0 ni log(i + 1) +

n log ζh(μ).
Pushing the μ into the logarithm and moving terms around we get that it

suffices to prove that
∑h−1

i=0 ni log n
ni(i+1)μ ≤ n log ζh(μ).

Defining pi = ni

n and dividing the two sides of the inequality by n we get that
it suffices to prove that

∑h−1
i=0 pi log 1

pi(i+1)μ ≤ log ζh(μ).

Using Lemma 3 we obtain that
∑h−1

i=0 pi log 1
pi(i+1)μ =

∑
0≤i≤h−1

pi �=0
pi log 1

pi(i+1)μ

≤ log
(∑

0≤i≤h−1
pi �=0

pi
1

pi(i+1)μ

)
= log

(∑
0≤i≤h−1

pi �=0

1
(i+1)μ

)
≤ log ζh(μ). 	


In particular we get the following corollary.
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Corollary 5. For any constant μ > 1, the algorithm order0 is (μ, log ζ(μ) +
Corder0)-sl-competitive.

One also gets the following analogous result with respect to L̂E:

Corollary 6. For any constant μ > 0, the algorithm bw0 is (μ, log ζh(μ) +
Corder0)-l̂e-competitive

A Lower Bound for SL-Competitive Compression. Theorem 4 shows that
for any μ > 0 there exists an (μ, log ζh(μ) + Corder0)-sl-competitive algorithm.
We now show that for any fixed values of μ and h there is no algorithm with a
better competitive ratio. Note that the lower bound that we get does not include
the constant Corder0.

Theorem 7. Let μ > 0 be some constant. For any C < log ζh(μ) there is no
(μ,C)-sl-competitive algorithm.

4 The Entropy Hierarchy

In this section we show that the statistics nHk and l̂e form a hierarchy, which
allows us to percolate upper bounds down and lower bounds up. Specifically, we
show that for each k,

l̂e(s) ≤ nHk(s) + O(1) (6)

where the O(1) term depends on k and h (recall that h is the size of the alphabet).
The known entropy hierarchy is

. . . ≤ nHk(s) ≤ . . . ≤ nH2(s) ≤ nH1(s) ≤ nH0(s) . (7)

Which in addition to (6) gives us:

l̂e(s) . . . 	 . . . ≤ nHk(s) ≤ . . . ≤ nH2(s) ≤ nH1(s) ≤ nH0(s) . (8)

(O(1) additive terms are hidden in the last formula).
Thus any (μ,C)-l̂e-competitive algorithm is also (μ,C)-nHk-competitive. To

establish this hierarchy we need to prove two properties of le: that it is at most
nH0 + o(n), and that it is convex (in a sense which we will define).

Some of the following claims appear, explicitly or implicitly, in [4, 15]. We
specify them in a form that would help to understand the rest of the analysis.

Manzini [15] gave the following corollary of a theorem of Bentley et al. [4].

Lemma 8 ([15], Lemma 5.4). le(s) ≤ nH0(s) + h log h.

In addition, we need the following lemma about le.

Lemma 9. Let s be a string of length n and let s′ be a string obtained by deleting
exactly one character from s. Then le(s) ≤ le(s′) + 2 logh.

We now prove that le is a convex statistic. That is, one cannot gain much by
stopping mtf in the middle and restarting it with a different recency list.
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Lemma 10 (LE is a convex statistic, implicitly stated in [15]). Let s =
s1 . . . st. Then le(s) ≤

∑
i le(si)

(For the last lemma, and for the lemmas before it, we define the initial state
of the recency list of le as the worst possible state. If we define it differently,
we might incur an additive term of th log h in the last lemma. This would not
significantly change our bounds).

From these Lemmas one can derive the hierarchy result:

Theorem 11. For any k ≥ 0 and any string s, |s|Hk(s) ≥ l̂e(s) − 2k log h −
hk · h logh.

Using Corollary 6 together with Theorem 11 allows us to derive the main result
of this paper:

Theorem 12. For any k ≥ 0 and for any constant μ > 0, the algorithm
bw0 is (μ, log ζh(μ) +Corder0)-nHk-competitive (on strings from an alphabet of
size h).

4.1 An Upper Bound and a Conjecture About BW0

In the case where the alphabet size is 2 we were able to prove an improved upper
bound for bw0:

Theorem 13. bw0 is (2, Corder0)-nH0-competitive for texts over an alphabet
of size 2.

We believe that this upper bound is true in the general setting. Specifically, we
leave the following conjecture as an open problem.

Conjecture 1. bw0 is (2, Corder0)-nHk-competitive.

5 A (1.7286, Corder0)-nHk-Competitive Algorithm

In this section we analyze the bwt with distance coding compression algorithm,
bwdc. This algorithm was invented but not published by Binder (see [5, 2]), and
is described in a paper of Deorowicz [8]. The distance coding procedure, dc, will
be described shortly. The algorithm bwdc compresses the text by running the
Burrows-Wheeler Transform, then the distance-coding procedure, and then an
Order-0 compressor. It also adds to the compressed string auxiliary information
consisting of the positions of the first and last occurrence of each character. In
this section we prove that bwdc is (1.7286, Corder0)-nHk-competitive.

First we define a transformation called dist: dist encodes the character
s[i] = σ with an integer equal to the number of characters encountered since
the previous occurrence of the symbol σ. Therefore, dist is the same as mtf,
but instead of counting the number of distinct symbols between two consecutive
occurrences of σ, it counts the number of characters. In dist we disregard the
first occurrence of each symbol.
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The transformation dc converts a text (which would be in our case the
Burrows-Wheeler transform of the original text) to a sequence of integers by
applying dist to s and disregarding all zeroes.4 It follows that dc produces one
integer per block of consecutive occurrences of the same character σ. This integer
is the distance to the previous block of consecutive occurrences of σ. It is not
hard to see that from dc(s) and the auxiliary information we can recover s.

As a tool for our analysis, let us define a new statistic of texts, ld. The
ld statistic is similar to le, except that it counts all characters between two
successive occurrences of a symbol, instead of disregarding repeating symbols.
Specifically, ld(s) =

∑
i log(dist(s)[i] + 1). For example, the ld value of the

string “abbbab” is log 4 + log 2 = 3. From the definition of ld and dc, it is easy
to see that sl(dc(s)) = ld(s).

We can now state the following theorem.

Theorem 14. For any k ≥ 0 and for any constant μ > 1, the algorithm bwdc
is (μ, log(ζ(μ) − 1) + Corder0)-nHk-competitive.

To prove Theorem 14 we follow the footsteps of the proof of Theorem 12 outlined
in Sections 3 and 4, where we use dc instead of mtf, and ld instead of le. The
term log(ζ(μ) − 1) appears instead of log ζ(μ) because the summations in the
proof of Theorem 4 now start at i = 1 instead of at i = 0 (this is because we
omitted all zeroes, so all characters of the alphabet are in this case at least 1).

Let μ0 ≈ 1.7286 be the real number such that ζ(μ0) = 2. Substituting μ = μ0
gives:

Corollary 15. For any k ≥ 0, the algorithm bwdc is (μ0, Corder0)-nHk-
competitive.

In the full version of this paper we also show that this approach cannot yield
better results. Namely, we prove that for any μ < μ0, there is no (μ, 0)-ld-
competitive algorithm, so we have a matching lower bound for Corollary 15.
We show that this lower bound holds even if the alphabet size is 2. We leave
as an open problem to determine whether there is a matching lower bound for
Theorem 14, or it can be improved.

6 Conclusions and Further Research

We leave the following idea for further research: In this paper we prove that the
algorithm bw0 is (μ, log ζ(μ))-l̂e-competitive. On the other hand, Ferragina et
al. [10] show an algorithm which is (1, 0)-nHk-competitive. A natural question
to ask is whether there is an algorithm that achieves both ratios. Of course, one
can just perform both algorithms and use the shorter result. But the question
is whether a direct simple algorithm with such performance exists. We are also

4 This is a simplified version of [8]. Our upper bound applies to the original version
as well, since the original algorithm just adds a few more optimizations that may
produce an even shorter compressed string.
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curious as to whether the insights gained in this work can be used to produce a
better BWT-based compression algorithm.
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Abstract. In recent work, Sadakane and Grossi [SODA 2006] intro-
duced a scheme to represent any sequence S = s1s2 . . . sn, over an alpha-
bet of size σ, using nHk(S) + O( n

logσ n
(k log σ + log log n)) bits of space,

where Hk(S) is the k-th order empirical entropy of S. The representation
permits extracting any substring of size Θ(logσ n) in constant time, and
thus it completely replaces S under the RAM model. This is extremely
important because it permits converting any succinct data structure re-
quiring o(|S|) = o(n log σ) bits in addition to S, into another requiring
nHk(S) + o(n log σ) (overall) for any k = o(logσ n). They achieve this
result by using Ziv-Lempel compression, and conjecture that the result
can in particular be useful to implement compressed full-text indexes.

In this paper we extend their result, by obtaining the same space and
time complexities using a simpler scheme based on statistical encoding.
We show that the scheme supports appending symbols in constant amor-
tized time. In addition, we prove some results on the applicability of the
scheme for full-text self-indexing.

1 Introduction

Recent years have witnessed an increasing interest on succinct data structures,
motivated mainly by the growth over time on the size of textual information.
This has triggered a search for less space-demanding data structures bounded
by the entropy of the original text. Their aim is to represent the data using as
little space as possible, yet efficiently answering queries on the represented data.
Several results exist on the representation of sequences [11, 16], trees [13, 3, 4],
graphs [13], permutations and functions [12, 14], texts [5, 7, 6, 9], etc.

Several of those succinct data structures are built over a sequence of symbols
S[1, n] = s1s2 . . . sn, from an alphabet A of size σ, and require only o(|S|) =
o(n log σ) additional bits in addition to S itself (S requires n log σ bits1). A
more ambitious goal is a compressed data structure, which takes overall space
proportional to the compressed size of S and still is able to recover any substring
of S and manipulate the data structure.

A very recent result by Sadakane and Grossi [18] gives a tool to convert any
succinct data structure on sequences into a compressed data structure. More
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precisely, they show that S can be encoded using nHk(S) + O( n
logσ n (k log σ +

log logn)) bits of space2, where Hk(S) is the k-th order empirical entropy of
S [10]. (Hk(S) is a lower bound to the space achieved by any statistical com-
pressor based on k-th order modeling.) Their structure permits retrieving any
substring of S of Θ(logσ n) symbols in constant time. Under the RAM model of
computation this is equivalent to having S in explicit form.

In particular, for sufficiently small k = o(logσ n), the space is Hk(S) +
o(n log σ). Any succinct data structure that requires o(n log σ) bits in addition
to S can thus be replaced by a compressed data structure requiring nHk(S) +
o(n log σ) bits overall, where any access to S is replaced by an access to the novel
structure. Their scheme is based on Ziv-Lempel encoding.

In this paper we show how the same result can be achieved by much simpler
means. We present an alternative scheme based on semi-static k-th order model-
ing plus statistical encoding, just as a normal semi-static statistical compressor
would process S. By adding some extra structures, we are able of retrieving any
substring of S of Θ(logσ n) symbols in constant time. Although any statistical
encoder works, we obtain the best results (matching exactly those of [18]) using
Arithmetic encoding [1]. Furthermore, we show that we can append symbols to S
without changing the space complexity, in constant amortized time per symbol.

In addition, we study the applicability of this technique to full-text
self-indexes. Compressed self-indexes replace a text T [1, n] by a structure re-
quiring O(nH0(T )) or O(nHk(T )) bits of space. In order to provide efficient
pattern matching over T , many of those structures [5, 15, 6] achieve space pro-
portional to nHk(T ) by first applying the Burrows-Wheeler Transform [2] over
T , S[1, n] = bwt(T ), and then struggling to represent S in efficient form. An
additional structure of o(|S|) bits gives the necessary functionality to implement
the search. One could thus apply the new structure over S, so that the overall
structure requires nHk(S) + o(|S|) bits. Yet, the relation between Hk(S) and
Hk(T ) remains unknown. In this paper we move a step forward by proving a
positive result: H1(S) ≤ Hk(T ) logσ+o(1) for small k = o(logσ n). Thus we can,
for example, achieve essentially the same result of the Run-Length FM-Index [9]
just by using the new structure on S, without the involved techniques they use.

Several indexes, however, compress S = bwt(T ) by means of a wavelet tree
[7] on S, wt(S). This is a balanced tree storing several binary sequences. Each
such sequence B can be represented using |B|H0(B) bits of space. If we call
nH0(wt(S)) the overall resulting space, it turns out that nH0(wt(S)) = nH0(S).
A natural idea advocated in [18] is to use a k-th order representation for the
binary sequences B, yielding space nHk(wt(S)). Thus the question about the
relationship between Hk(wt(S)) and Hk(S) is raised. In this paper we exhibit
examples where either is larger than the other. In particular, we show that when
moving from wt(S) to S, the k-th order entropy grows at least by a factor of
Θ(log k).

2 The term k log σ appears as k in [18], but this is a mistake [17]. The reason is that
they take from [8] an extra space of the form Θ(kt+t) as stated in Lema 2.3, whereas
the proof in Theorem A.4 gives a term of the form kt log σ + Θ(t).
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2 Background and Notation

Hereafter we assume that S[1, n] = S1,n = s1s2 . . . sn is the sequence we wish
to encode and query. The symbols of S are drawn from an alphabet A =
{a1, . . . , aσ} of size σ. We write |w| to denote the length of sequence w.

Let B[1, n] be a binary sequence. Function rankb(B, i) returns the number of
times b appears in the prefix B[1, i]. Function selectb(B, i) returns the position
of the i-th appearance of b within sequence B. Both rank and select can be
computed in constant time using o(n) bits of space in addition to B [11].

2.1 The k-th Order Empirical Entropy

The empirical entropy resembles the entropy defined in the probabilistic setting
(for example, when the input comes from a Markov source). However, the empir-
ical entropy is defined for any string and can be used to measure the performance
of compression algorithms without any assumption on the input [10].

The empirical entropy of k-th order is defined using that of zero-order. This
is defined as

H0(S) = −
∑
a∈A

na
S

n
log2(

na
S

n
) (1)

with na
S the number of occurrences of symbol a in sequence S. This definition

extends to k > 0 as follows. Let Ak be the set of all sequences of length k
over A. For any string w ∈ Ak, called a context of size k, let wS be the string
consisting of the concatenation of characters following w in S. Then, the k-th
order empirical entropy of S is

Hk(S) =
1
n

∑
w∈Ak

|wS |H0 (wS) . (2)

The k-th order empirical entropy captures the dependence of symbols upon
their context. For k ≥ 0, nHk(S) provides a lower bound to the output of
any compressor that considers a context of size k to encode every symbol of
S. Note that the uncompressed representation of S takes n log σ bits, and that
0 ≤ Hk(S) ≤ Hk−1(S) ≤ . . . ≤ H1(S) ≤ H0(S) ≤ log σ.

Note that a semi-static k-th order modeler that yields the probabilities p1, p2,
. . . , pn for the symbols s1, s2, . . . , sn, will actually determine pi ≈ P (si|si−k . . .

si−1) using the formula pi = n
si
wS

|wS | , where w = si−k . . . si−1. It is not hard to see,
by grouping all the terms with the same w in the summation [10, 7], that

−
n∑

i=k+1

pi log pi = nHk(S). (3)

2.2 Statistical Encoding

We are interested in the use of semi-static statistical encoders in this paper.
Thus, we are given a k-th order modeler as described above, which will yield
the probabilities p1, p2, . . . , pn for each symbol in S, and we will encode the
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successive symbols of S trying to use −pi log pi bits for si. If we reach exactly
−pi log pi bits, the overall number of bits produced will be nHk(S)+O(k logn),
according to Eq. (3).

Different encoders provide different approximations to the ideal−pi log pi bits.
The simplest encoder is probably Huffman coding [1], while the best one, from
the point of view of the number of bits generated, is Arithmetic coding [1].

Given a statistical encoder E and a semi-static modeler over sequence S[1, n]
yielding probabilities p1, p2, . . . , pn, we call E(S) the bitwise output of E for
those probabilities, and |E(S)| its bit length. We call fk(E,S) = |E(S)| −
(−

∑
1≤i≤n pi log pi) the extra space in bits needed to encode S using E, on

top of the entropy of the model. For example, the wasted space of Huffman en-
coding is bounded by 1 bit per symbol, and thus fk(Huffman, S) < |S| (tighter
bounds exist but are not useful for this paper [1]). On the other hand, Arithmetic
encoding approaches −pi log pi as closely as desired, requiring only at most two
extra bits to terminate the whole sequence [1, Section 5.2.6 and 5.4.1]. Thus
fk(Arithmetic, S) ≤ 2. Again, we can relate the model entropy of p1, p2, . . . , pn

with the empirical entropy of S using Eq. (3), achieving that, say, Arithmetic
coding encodes S using at most nHk(S) + O(k logn) + 2 bits.

Arithmetic coding essentially expresses S using a number in [0, 1) which lies
within a range of size P = p1 · p2 · · · pn. We need − logP = −

∑
log pi bits

to distinguish a number within that range (plus two extra bits for technical
reasons). Thus each new symbol si, which appears within its context npi times,
requires − log pi bits to be encoded. This totalizes −n

∑
pi log pi + 2 bits.

There are usually some limitations to the near-optimality achieved by Arith-
metic coding in practice [1]. One is that many bits are required to manipulate
P , which can be cumbersome. This is mainly alleviated by emitting the most
significant bits of the final number as soon as they are known, and thus scaling
the remainder of the number again to the range [0, 1) (that is, dropping the
emitted bits from our number). Still, some symbols with very low probability
may require many bits. To simplify matters, fixed precision arithmetic is used
to approximate the real values, and this introduces a very small (yet linear) in-
efficiency in the coding. In our case, we never run into this problem because, as
seen later, we do not encode any sequence that requires more than log n

2 bits. As
soon as those bits are not precise enough to represent the encoding, we switch
to plain symbol-wise encoding.

Another limitation applies to adaptive encoding, where some kind of aging
technique is used to let the model forget symbols that have appeared many
positions away in the sequence. In our case this does not apply, as we use semi-
static encoding. Finally, we notice that we run into no efficiency problems at all
at decoding time, as we will use the log n

2 -bit compressed stream as an index to
a precomputed table that will directly yield the uncompressed symbols.

2.3 Implementing Succinct Full-Text Self-indexes

A succinct full-text index provides fast search functionality using a space pro-
portional to that of the text itself. A less space-demanding index, in particular,
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using space proportional to that of the compressed text is known as a compressed
full-text index.Those indexes that contain sufficient the information to recreate
the original text are known as self-indexes. An example of the latter is the FM-
index family [5, 6, 9] based on the Burrows-Wheeler Transform (BWT) [2]. The
BWT of a text T , T bwt = bwt(T ), is a reversible transformation from strings
to strings. For this paper, it is enough to say that T bwt is a permutation of the
characters of T which is easier to compress by local optimization methods [10].

Full-text indexes need essentially to perform symbol rank queries over T bwt:
Occc(T bwt, i) is the number of occurrences of character c in T bwt[1, i]. This can be
done in constant time for very small alphabets [5], but to handle larger alphabets
[6] a tool called the wavelet tree [7] of S = T bwt is used.

Given a sequence S[1, n] the wavelet tree wt(S) [7] built on S is a perfect bi-
nary tree of height $log σ%, built on the alphabet symbols, such that the root rep-
resents the whole alphabet and each leaf represents a distinct alphabet symbol.
If a node v represents alphabet symbols in the range Av = [i, j], then its left child
vl represents Avl = [i, i+j

2 ] and its right child vr represents Avr = [ i+j
2 + 1, j].

We associate to each node v the subsequence Sv of S formed by the characters
in Av. However, sequence Sv is not really stored at the node. Instead, we store a
bit sequence Bv telling whether characters in Sv go left or right, that is, Bv

i = 1
iff Sv

i ∈ Avr .
The wavelet tree of S requires nH0(S) + O(n log logn/ logσ n) bits of space.

3 A New Entropy-Bound Succinct Data Structure

Given a sequence S[1, n] over an alphabet A of size σ, we encode S into a
compressed data structure S′ within entropy bounds. To perform all the original
operations over S under the RAM model, it is enough to allow extracting any
b = 1

2 logσ n consecutive symbols of S, using S′, in constant time.

3.1 Data Structures for Substring Decoding

We describe our data structure to represent S in essentially nHk(S) bits, and to
permit the access of any substring of size b = � 12 logσ n� in constant time. This
structure is built using any statistical encoder E as described in Section 2.2.

Structure. We divide S into blocks of length b = � 12 logσ n� symbols. Each
block will be represented using at most b′ = � 12 logn� bits (and hopefully less).
We define the following sequences indexed by block number i = 0, . . . , �n/b�:

– Si = S[bi + 1, b(i + 1)] is the sequence of symbols forming the i-th block
of S.

– Ci = S[bi − k + 1, bi] is the sequence of symbols forming the k-th order
context of the i-th block (a dummy value is used for C0).

– Ei = E(Si) is the encoded sequence for the i-th block of S, initializing the
k-th order modeler with context Ci.

– �i = |Ei| is the size in bits of Ei.
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– Ẽi =
{
Si if �i > b′

Ei otherwise , is the shortest sequence among Ei and Si.

– �̃i = |Ẽi| ≤ min(b′, �i) is the size in bits of Ẽi.

The idea behind Ẽi is to ensure that no encoded block is longer than b′ bits
(which could happen if a block contains many infrequent symbols). These special
blocks are encoded explicitly.

Our compressed representation of S stores the following information:

– W [0, �n/b�]: A bit array such that

W [i] =
{

0 if �i > b′

1 otherwise ,

with the additional o(n/b) bits to answer rank queries over W in constant
time [11].

– C[1, rank(W, �n/b�)]: C[rank(W, i)] = Ci, that is, the k-th order context for
the i-th block of S iff �i ≤ b′, with 1 ≤ i ≤ �n/b�.

– U = Ẽ0Ẽ1 . . . Ẽ�n/b�: A bit sequence obtained by concatenating all the
variable-length Ẽi.

– T : Ak × 2b
′
−→ 2b: A table defined as T [α, β] = γ, where α is any context

of size k, β represents any encoded block of b′ bits at most, and γ represents
the decoded form of β, truncated to the first b symbols (as less than the b′

bits will be usually necessary to obtain the b symbols of the block).
– Information to answer where each Ẽi starts within U . We group together

every c = $logn% consecutive blocks to form superblocks of size Θ(log2 n)
and store two tables:
• Rg[0, �n/(bc)�] contains the absolute position of each superblock.
• Rl[0, �n/b�] contains the relative position of each block with respect to

the beginning of its superblock.

3.2 Substring Decoding Algorithm

We want to retrieve q = S[i, i+ b− 1] in constant time. To achieve this, we take
the following steps:

1. We calculate j = i div b and j′ = (i + b− 1) div b.
2. We calculate h = j div c, h′ = (j+1) div c and u = U [Rg[h]+Rl[j], Rg[h′]+

Rl[j + 1]− 1], then
– if W [j] = 0 then we have Sj = u.
– if W [j] = 1 then we have Sj = T [C[rank(W, j)], u′], where u′ is u padded

with b′ − |u| dummy bits.
We note that |u| ≤ b′ and thus it can be manipulated in constant time.

3. If j′ �= j then we repeat Step 2 for j′ = j + 1 and obtain Sj′ . Then, q =
Sj [i− jb + 1, b] Sj′ [1, i− jb] is the solution.

Lemma 1. For a given sequence S[1, n] over an alphabet A of size σ, we can
access any substring of S of b symbols in O(1) time using the data structures
presented in Section 3.1.
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3.3 Space Requirement

Let us now consider the storage size of our structures.

– We use the constant-time solution to answer the rank queries [11] over W ,
totalizing 2n

logσ n (1 + o(1)) bits.
– Table C requires at most 2n

logσ nk log σ bits.

– Let us consider table U . |U | =
∑�n/b�

i=0 |Ẽi| ≤
∑�n/b�

i=0 |Ei| = nHk(S) +
O(k logn) +

∑�n/b�
i=0 fk(E,Si), which depends on the statistical encoder E

used. For example, in the case of Huffman coding, we have fk(Huffman, Si) <
b, and thus we achieve nHk(S) + O(k log n) + n bits. For the case of Arith-
metic coding, we have fk(Arithmetic, Si) ≤ 2, and thus we have nHk(S) +
O(k logn) + 4n

logσ n bits, as described in Section 2.2.

– The size of T is σk2b′
b log σ = σk n1/2 log n

2 bits.
– Finally, let us consider tables Rg and Rl. Table Rg has $n/(bc)% entries of size
$logn%, totalizing 2n

logσ n bits. Table Rl has $n/b% entries of size $log(b′c)%,
totalizing 4n log log n

logσ n bits.

By considering that any substring of Θ(logσ n) symbols can be extracted in
constant time by applying O(1) times the procedure of Section 3.2, we have the
final theorem.

Theorem 1. Let S[1, n] be a sequence over an alphabet A of size σ. Our data
structure uses nHk(S) + O( n

logσ n (k log σ + log logn)) bits of space for any k <

(1−ε) logσ n and any constant 0 < ε < 1, and it supports access to any substring
of S of size Θ(logσ n) symbols in O(1) time.

Note that, in our scheme, the size of T can be neglected only if k < (1
2−ε) logσ n,

but this can be pushed as close to 1 as desired by choosing b = 1
s logσ n for

constant s ≥ 2.

Corollary 1. The previous structure takes space nHk(S) + o(n log σ) if k =
o(logσ n).

These results match exactly those of [18], once one corrects their k to k log σ
as explained. Note that we are storing some redundant information that can
be eliminated. The last characters of block Si are stored both within Ẽi and
as Ci+1. Instead, we can choose to explicitly store the first k characters of all
blocks Si, and encode only the remaining b − k symbols, Si[k + 1, b], either in
explicit or compressed form. This improves the space in practice, but in theory
it cannot be proved to be better than the scheme we have given.

4 Supporting Appends

We can extend our scheme to support appending symbols, maintaining the
same space and query complexity, with each appended symbol having constant
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amortized cost. Assume our current static structure holds n symbols. We use
a buffer of n′ = n/ logn symbols where we store symbols explicitly. When the
buffer is full we use our entropy-bound data structure (EBDS, Section 3) to
represent those n′ symbols and then we empty the buffer. We repeat this until
we have logn EBDS. At this moment we reencode all the structures plus our
original n symbols, generating a new single EBDS, and restart the process with
2n symbols.

Data structures. We describe the additional structures needed to append
symbols to the EBDS.

– BF [1, n′] is the sequence of at most n′ = n/ logn uncompressed symbols.
– APi is the i-th EBDS, with 0 ≤ i ≤ N . N ≤ logn is the number of EBDS we

currently have. We call ASi the sequence APi represents. AP0 is the original
EBDS. So |AS0| = n and |ASi| = n/ logn, i > 0.

Substring decoding algorithm. We want to retrieve q = S[i, i + b − 1]. To
achieve this, we take the following steps:

– We algebraically calculate the indexes 0 ≤ t ≤ t′ ≤ N+1 where the positions
i (for t) and i + b− 1 (for t′) belong; N + 1 represents BF . The case when
part of q belongs to BF is trivially solved because the symbols are explicitly
represented in BF .

– If t = t′ we obtain q as in Section 3.2. Otherwise, we calculate the local
indexes toff and t′off where q starts in structure APt and finishes in APt′ ,
respectively. We decode q1 as the last n′ − toff + 1 ≤ b symbols of APt and
q2 as the first t′off ≤ b symbols of APt′ . Finally, we obtain q = q1q2.

Construction time. after we reencode everything we have that n/2 symbols
have been reencoded once, n/4 symbols twice, n/8 symbols 3 times and so on.
The total number of reencodings is

∑
i≥1 n

i
2i = 2n. On the other hand, we are

using a semi-static statistical encoder, which takes O(1) time to encode each
symbol. Thus each symbol has a worst-case amortized appending cost of O(1).

Space requirement. Let us now consider the storage of the appended struc-
tures.

– Table BF requires n/ logσ n bits
– Each APi is an EBDS, using |ASi|Hk(ASi) + O( |ASi|

logσ |ASi| (k log σ + log log
|ASi|)) bits of space.

Lemma 2. The space requirement of all APi, for 0 ≤ i ≤ N , is∑log n
i=0 |APi| ≤ |S AS1 . . . ASN |Hk(S AS1 . . . ASN )+O( n

logσ n (k log σ+log logn))

+O(σk+1 log2 n) + O(k log2 n) bits, where n = |S| ≤ |S AS1 . . . ASN |/2.

Proof. Consider summing any two entropies (recall Eqs. (1) and (2)).
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|AS1|Hk(AS1) + |AS2|Hk(AS2) =
=

∑
w∈Ak |wAS1 |H0(wAS1) +

∑
w∈Ak |wAS2 |H0(wAS2)

≤
∑

w∈Ak

(
log

( |wAS1 |
|na1

AS1
|,|na2

AS1
|,...,|naσ

AS1
|
)

+ log
( |wAS2 |
|na1

AS2
|,|na2

AS2
|,...,|naσ

AS2
|
))

+

O(σk+1 logn)
≤

∑
w∈Ak log

( |wAS1 |+|wAS2 |
|na1

AS1
|+|na1

AS2
|,|na2

AS1
|+|na2

AS2
|,...,|naσ

AS1
|+|naσ

AS2
|
)

+ O(σk+1 log n)

≤ |AS1AS2|Hk(AS1AS2) + O(σk+1 logn) + O(k logn)

where O(σk+1 logn) comes from the relationship between the zero-order entropy
and the combinatorials, and O(k logn) comes from considering the symbols in the
border between AS1 and AS2. Note that σk+1 logn = o(n) if k < (1− ε) logσ n.
Then the lemma follows by adding up the N ≤ logn EBDSs.

Theorem 2. The structure of Theorem 1 supports appending symbols in con-
stant amortized time and retains the same space and query time complexities,
being n the current length of the sequence.

5 Application to Full-Text Indexing

In this section we give some positive and negative results about the application
of the technique to full-text indexing, as explained in the Introduction. We have
a text T [1, n] over alphabet A and wish to compress a transformed version X of
T with our technique. Then, the question is how does Hk(X) relate to Hk(T ).

5.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform, S = bwt(T ), is used by many compressed
full-text self-indexes [5, 6, 9]. We have introduced it in Section 2.3.

We show that there is a relationship between the k-th order entropy of a text
T and the first order entropy of S = bwt(T ). For this sake, we will compress S
with a first-order compressor, whose output size is an upper bound to nH1(S).

A run in S is a maximal substring formed by a single letter. Let rl(S) be the
number of runs in S. In [9] they prove that rl(S) ≤ nHk(T )+ σk for any k. Our
first-order encoder exploits this property, as follows:

– If i > 1 and si = si−1 then we output bit 0.
– Otherwise we output bit 1 followed by si in plain form (log σ bits).

Thus we encode each symbol of S by considering only its preceding symbol.
The total number of bits is n + rl(S) log σ ≤ n(1 + Hk(S) log σ + σk log σ

n ). The
latter term is negligible for k < (1 − ε) logσ n, for any 0 < ε < 1. On the other
hand, the total space obtained by our first-order encoder cannot be less than
nH1(S). Thus we get our result:

Lemma 3. Let S = bwt(T ), where T [1, n] is a text over an alphabet of size σ.
Then H1(S) ≤ 1+Hk(T ) log σ+o(1) for any k < (1− ε) logσ n and any constant
0 < ε < 1.
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We can improve this upper bound if we use Arithmetic encoding to encode the
0 and 1 bits that distinguish run heads. Their zero-order probability is p =
Hk(T ) + σk

n , thus the 1 becomes −p log p− (1 − p) log(1 − p) ≤ 1. Likewise, we
can encode the run heads si up to their zero-order entropy. These improvements,
however, do not translate into clean formulas.

This shows, for example, that we can get (at least) about the same results of
the Run-Length FM-Index [9] by compressing bwt(T ) using our structure.

5.2 The Wavelet Tree

Several FM-Index variants [9, 6] use wavelet trees to represent S = bwt(T ),
while others [7] use them for other purposes. As explained in Section 2.3, wt(S)
is composed of several binary sequences. By compressing each such sequence B
to |B|H0(B) bits, one achieves nH0(S) bits overall. The natural question is, thus,
whether we can prove any bound on the overall space if we encode sequences B
to |B|Hk(B) bits. We present next two negative examples.

– First we show a case where Hk(S) < Hk(wt(S)). We choose S =
(ak

3a
k
1a

k
0a

k
2a

k
0)n, then

wt(S) =

................................................................................................................................................................

................................................................................................................................................................

10

ν1 = (1k0k0k)n ν2 = (1k0k)n

ν0 = (1k0k0k1k0k)n

a2a3a0a1

Let us compute Hk(S) according to Section 2.1. Note that H0(wS) = 0 for
all contexts except w = ak

0 , where wS = a2(a3a2)n−1$, being “$” a sequence
terminator. Thus |wS | = 2n and H0(wS) = − n

2n log n
2n −

n−1
2n log n−1

2n −
1
2n log 1

2n = 1 + O( log n
n ). Therefore Hk(S) * 2

5k .

On the other hand, Hk(wt(S)) =
∑2

i=0 Hk(νi) *
2
5k

log k︸ ︷︷ ︸
ν0

+
1
3k

+
log k
3k︸ ︷︷ ︸

ν1

, as

Hk(ν2) * 0.
Therefore, in this case, Hk(S) < Hk(wt(S)), by a Θ(log k) factor.

– Second, we show a case where Hk(S) > Hk(wt(S)). Now we choose S =
(ak

0a
k
3a

k
0a

k
2)n, then

wt(S) =

................................................................................................................................................................

................................................................................................................................................................

10

ν1 = (0k0k)n ν2 = (1k0k)n

ν0 = (0k1k0k1k)n

a2a3a0a1

In this case, Hk(S) * 2
4k and Hk(wt(S)) =

∑2
i=0 Hk(νi) = O( log n

n ). Thus
Hk(S) > Hk(wt(S)) by a factor of Θ(n/(k logn)).
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Lemma 4. The ratio between the k-th order entropy of the wavelet tree
representation of a sequence S, Hk(wt(S)), and that of S itself, Hk(S), can
be at least Ω(log k). More precisely, Hk(wt(S))/Hk(S) can be Ω(log k) and
Hk(S)/Hk(wt(S)) can be Ω(n/(k logn)).

What is most interesting is that Hk(wt(S)) can be Θ(log k) times larger than
Hk(S). We have not been able to produce a larger gap. Whether Hk(wt(S)) =
O(Hk(S) log k) remains open.

6 Conclusions

We have presented a scheme based on k-th order modeling plus statistical en-
coding to convert any succinct data structure on sequences into a compressed
data structure. This structure permits retrieving any string of S of Θ(logσ n)
symbols in constant time. This is an alternative to the first work achieving the
same result [18], which is based on Ziv-Lempel compression. We also show how
to append symbols to the original sequence within the same space complexity
and with constant amortized cost per appended symbol. This method also works
on the structure presented in [18].

We also analyze the behavior of this technique when applied to full-text self-
indexes, as advocated in [18]. Many compressed self-indexes achieve space pro-
portional to nHk(T ) by first applying the Burrows-Wheeler Transform [2] over
T , S[1, n] = bwt(T ). In this paper, we show a relationship between the en-
tropies of H1(S) and Hk(T ). More precisely, H1(S) ≤ Hk(T ) log σ + o(1) for
small k = o(logσ n). On the other hand, several indexes represent S = bwt(T )
as a wavelet tree [7] on S, wt(S). We show in this paper that Hk(wt(S)) can
be at least Θ(log k) times larger than Hk(S). This means that, by applying the
new technique to compress wavelet trees, we have no guarantee of compressing
the original sequence more than nmin(H0(S), O(Hk(T ) log k)). Yet, we do have
guarantees if we compress S directly.

There are several future challenges on k-th order entropy-bound data struc-
tures: (i) making them fully dynamic (we have shown how to append symbols);
(ii) better understanding how the entropies evolve upon transformations such
bwt or wt; (iii) testing them in practice.

Acknowledgment. We thank K. Sadakane and R. Grossi for providing us
article [18] and for confirming the correctness of Footnote 2.
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Veli Mäkinen1,� and Gonzalo Navarro2,��

1 Department of Computer Science, University of Helsinki, Finland
vmakinen@cs.helsinki.fi

2 Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Abstract. Given a sequence of n bits with binary zero-order entropy
H0, we present a dynamic data structure that requires nH0 + o(n) bits
of space, which is able of performing rank and select, as well as in-
serting and deleting bits at arbitrary positions, in O(log n) worst-case
time. This extends previous results by Hon et al. [ISAAC 2003] achieving
O(log n/ log log n) time for rank and select but Θ(polylog(n)) amortized
time for inserting and deleting bits, and requiring n + o(n) bits of space;
and by Raman et al. [SODA 2002] which have constant query time but a
static structure. In particular, our result becomes the first entropy-bound
dynamic data structure for rank and select over bit sequences.

We then show how the above result can be used to build a dy-
namic full-text self-index for a collection of texts over an alphabet of
size σ, of overall length n and zero-order entropy H0. The index requires
nH0 + o(n log σ) bits of space, and can count the number of occurrences
of a pattern of length m in time O(m log n log σ). Reporting the occ
occurrences can be supported in O(occ log2 n log σ) time, paying O(n)
extra space. Insertion of text to the collection takes O(log n log σ) time
per symbol, which becomes O(log2 n log σ) for deletions. This improves a
previous result by Chan et al. [CPM 2004]. As a consequence, we obtain
an O(n log n log σ) time construction algorithm for a compressed self-
index requiring nH0 + o(n log σ) bits working space during construction.

1 Introduction and Related Work

The study of compressed data structures aims to represent classical structures
like trees, graphs, text indexes, etc., in the smallest possible space without chal-
lenging the functionality of the structure; the original operations should be sup-
ported efficiently without decompressing the whole structure.

One of the most commonly appearing structures are the rank and select
dictionaries for bit vectors: rank(A, i) gives the number of bits set up to position
i in bit vector A = a1a2 · · · an, ak ∈ {0, 1}; select(A, j) is the inverse, giving the
position i containing the j-th bit set in A. We study the dynamic version of
these dictionaries, where one can insert or delete a bit at any position.
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Dynamic rank and select dictionaries have been studied before [13, 9], as a
special case of so-called Searchable Partial Sums with Indels problem. The best
current result [9] requires n + o(n) bits of space, O(logb n) time for rank and
select, and O(b) amortized time for insert and delete, for b = Ω(polylog(n)).

In this paper we improve some aspects of this result by achieving O(log n)
worst-case time complexity for all the operations, over a data structure that re-
quires nH0+o(n) bits of space, where 0 ≤ H0 ≤ 1 is the binary zero-order entropy
of A. This space has been previously achieved only for static data structures [14],
with constant time for rank and select but no support for updates. Ours is the
first entropy-bound dynamic data structure answering rank and select queries.
Moreover, our result works under weaker assumptions on the RAM model than
the previous results on dynamic settings.

The indexed string matching problem is that of, given a long text T [1, n]
over an alphabet Σ of size σ, building a data structure called full-text index
on it, to solve two types of queries: (a) Given a short pattern P [1,m] over
Σ, count the occurrences of P in T ; (b) locate those occ positions in T . There
are several classical full-text indexes requiring O(n logn) bits of space which
can answer counting queries in O(m log σ) time (like suffix trees [1]) or O(m +
logn) time (like suffix arrays [11]). Both locate each occurrence in constant
time once the counting is done. Similar complexities are obtained with modern
compressed data structures [6, 8, 7], requiring space nHk(T )+o(n logσ) bits (for
some small k), where Hk(T ) ≤ log σ is the k-th order empirical entropy of T .1

These indexes are often called entropy-compressed self-indexes refering to their
space requirement and to their ability to work without the text.

The main building block in entropy-compressed self-indexes is function rank,
or more precisely, its generalization to non-binary sequences: rankc(A, i) counts
the number of times symbol c appears in a given sequence A up to position i.
Our dynamic entropy-compressed binary rank structure can be extended into
a dynamic entropy-compressed symbol rank structure using wavelet trees [8].
This dynamic structure takes nH0 + o(n log σ) bits of space, where H0 is the
empirical zero-order entropy of the sequence. It supports the same operations as
binary rank with O(log σ) slowdown in queries. Plugging this structure in the
dynamic self-index of Chan, Hon, and Lam [4], we obtain a dynamic entropy-
compressed self-index occupying nH0 + o(n log σ) bits on a text collection of
overall length n. Our structure can count the number of occurrences of a pat-
tern of length m in time O(m log n log σ). Insertion of a text to the collection
takes O(log n log σ) time per symbol. Deletion takes O(log2 n log σ) time. These
operations are O(log σ) times slower than with the original index of Chan et al.,
but we obtain a significant space saving: Their index takes O(nσ) bits while ours
takes O(n log σ) bits in general.

As a consequence, we obtain an O(n log n log σ) time construction algorithm
for a compressed self-index called succinct suffix array (SSA) [10] requiring
nH0 + o(n log σ) bits working space during construction (the same as the final
structure). This is the first construction algorithm for a FM-index [6] variant,

1 In this paper log stands for log2.
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whose working space depends on the entropy. For another self-index called LZ-
index [12], there is a recent entropy-bound construction algorithm [2].

2 Definitions

To simplify notation, we ignore roundings. When refering to number of bits, we
use simply logn to refer to �(logn) + 1�. That is, log logn bits means actually
�(log�(log n)+1�)+1� bits. Similarly (logn)/2 is the integer nearest to �(logn)+
1�/2, and so on.

We assume our sequence A = a1 . . . an to be drawn from an alphabet {0, 1, . . .
σ − 1}. Let nc denote the number of occurrences of symbol c in A, i.e., nc =
|{i | ai = c}|. Then the zero-order empirical entropy is defined as H0(A) =∑

0≤c<σ
nc

n log n
nc

.
We assume a random access machine with word size w; typical arithmetic

operations on w-bit integers are assumed to take constant time. We make the
standard assumption that logn = Θ(w) (in the full version, we show that this
can be weakened to logn = O(w) without changing the results).

We study the following problems:
The Dynamic Sequence with Indels problem is to maintain a (virtual) sequence
A = a1 . . . an, ai ∈ {0, 1, . . . , σ − 1}, supporting the operations:

– rankc(A, i) returns the number of occurrences of symbol c in a1 · · · ai;
– selectc(A, j) returns the index i containing j-th occurrence of c;
– insert(A, c, i) inserts c ∈ {0, 1, . . . σ − 1} between ai and ai+1; and
– delete(A, i) deletes ai from the sequence.

The Dynamic Bit Vector with Indels problem is a restriction of the above to
alphabet {0, 1}. Then we use short-hand notation rank(A, i) = rank1(A, i) and
select(A, i) = select1(A, i). Notice that rank0(A, i) = i− rank1(A, i), but same
does not apply for select0(A, j); we consider this case separately.

3 Previous Results

3.1 Entropy-Bound Structures for Bit Vectors

Raman et al. [14] proposed a data structure to solve rank and select queries
in constant time over a static bit vector A = a1 . . . an with binary zero-order
entropy H0. The structure requires nH0 + o(n) bits.

The idea is to split A into superblocks S1 . . . Sn/s of s = log2 n bits. Each
superblock Si is in turn divided into 2 logn blocks Bi(j), of t = (logn)/2 bits
each, thus 1 ≤ j ≤ s/t. Each such block Bi is said to belong to class c if it has
exactly c bits set, for 0 ≤ c ≤ t. For each class c, a universal table Gc of

(
t
c

)
entries is precomputed. Each entry corresponds to a possible block belonging to
class c, and it stores all the local rank answers for that block. Overall all the Gc

tables add up 2t =
√
n entries, and O(

√
n polylog(n)) bits.

Each block Bi(j) of the sequence is represented by a pair Di(j) = (c, o), where
c is its class and o is the index of its corresponding entry in table Gc. A block
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of class c thus requires log(c + 1) + log
(

t
c

)
bits. The first term is O(log logn),

whereas all the second terms add up nH0 + O(n/ log n) bits. To see this, note
that log

(
t
c1

)
+ log

(
t
c2

)
≤ log

( 2t
c1+c2

)
, and that nH0 ≥ log

(
t(n/t)

c1+...+cn/t

)
. The pairs

Di(j) are of variable length and are all concatenated into a single sequence.
Each superblock Si stores a pointer Pi to its first block description in the

sequence (that is, the first bit of Di(1)) and the rank value at the beginning
of the superblock, Ri = rank(A, (i − 1)s). P and R add up O(n/ logn) bits. In
addition, Si contains s/t numbers Li(j), giving the initial position of each of its
blocks in the sequence, relative to the beginning of the superblock. That is, Li(j)
is the position of Di(j) minus Pi. Similarly, Si stores s/t numbers Qi(j) giving
the rank value at the beginning of each of its blocks, relative to the beginning
of the superblock. That is, Qi(j) = rank(A, (i − 1)s + (j − 1)t)− Ri. As those
relative values are O(log n), sequences L and Q require O(n log logn/ logn) bits.

To solve rank(A, p), we compute the corresponding superblock i = 1 + �p/s�
and block j = 1 + �(p − (i − 1)s)/t�. Then we add the rank value of the cor-
responding superblock, Ri, the relative rank value of the corresponding block,
Qi(j), and complete the computation by fetching the description (c, o) of the
block where p belongs (from bit position Pi +Li(j)) and performing a (precom-
puted) local rank query in the universal table, rank(Gc(o), p−(i−1)s−(j−1)t).

The overall space requirement is nH0 +O(n log logn/ logn) bits, and rank is
solved in constant time. We do not cover select because it is not necessary to
follow this paper.

3.2 Dynamic Structures for Bit Vectors

Hon et al. [9] show how to handle a bit vector A = a1 . . . an in n + o(n) bits of
space, so that rank and select can be solved in O(logb n) time, while insertions
and deletions to the sequence can be handled in O(b) amortized time, for any
parameter b = Ω(polylog(n)). Hence, they provide a solution to the Dynamic
Bit Vector with Indels problem. Their main structure is a weight-balanced B-tree
(WBB) [5, 13].

Our goal is to obtain nH0 + o(n) bits of space and O(log n) worst-case time
for all the operations above. We build over a simplified version of their structure,
which uses standard balanced trees and achieves O(log n) time and O(n) bits of
space [4]. We assume red-black trees in the following, as we later use the property
of constant number of rotations to rebalance the tree.

Consider a balanced binary tree on A whose left-most leaf contains bits
a1a2 · · · alog n, second left-most leaf contains bits alog n+1alog n+2 · · · a2 log n, and
so on. Each node v contains counters p(v) and r(v) telling the number of posi-
tions stored and the number of bits set in the subtree rooted at v, respectively.
Note that this tree, with all its logn-size pointers and counters, requires O(n)
bits.

To perform rank(A, i), we enter the tree to find the leaf containing position i.
We start with rank ← 0. If p(left(v)) ≥ i we enter the left subtree, otherwise we
enter the right subtree with i← i−p(left(v)) and rank ← rank+ r(left(v)). In
O(log n) time we reach the desired leaf and complete the rank query in O(log n)
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time by scanning the bit sequence corresponding to that node. For select we
proceed similarly, except that the roles of p() and r() are reversed. For select0
the computation is analogous.

Insertions and deletions are handled by entering to the correct leaf like in rank,
and replacing its bit-sequence with the new content. Then the p(v) and r(v) coun-
ters in the path from the leaf to the root are changed accordingly. To keep the tree
balanced, the leaves can be split and merged on updates: When a leaf is updated
to contain 2 logn bits, it is split into two leaves each containing logn bits. When a
leaf is updated to contain (log n)/2 bits, it is merged with its sibling. If this merg-
ing produces a leaf with more than 2 logn− 1 bits, this leaf is again split into two
equal-size halves. After splitting and merging, the tree needs to be rebalanced and
the counters updated in the nodes on the way to the root.

To obtain n + o(n) bits of space instead of O(n), we can use the superblock-
block hierarchy from the previous section: The tree is built on the superblocks,
i.e., each leaf corresponds to a log2 n-length superblock of A. A precomputed
table G is used to answer rank queries for each (logn)/2-length bit-sequence.
Then one can scan through the log2 n-length superblock summing up rank an-
swers to each (log n)/2-length block in constant time until reaching the block
containing the query position. The remaining bits can be read one-by-one to
complete the rank query inside a superblock in O(log n) time. Answering select
is similar. The problem, however, is that we cannot allocate 2 log2 n space for a
superblock that will hold only log2 n bits, as otherwise we could spend as much
as 2n bits for the blocks. To obtain n + o(n) space one must force very tight
usage of the leaf space: spending (1 + ε) log2 n bits, for any constant ε > 0, is
forbidden. This is problematic because bit insertions on a leaf would cause an
overflow propagation to the next leaves that cannot be fixed with a constant
number of block splits. The complete solution is quite involved, and we present
it in the next sections, already coupled with the technique to achieve nH0 +o(n)
bits (the reader can easily simplify it to obtain the n + o(n) bits solution that
already improves [9] in some aspects). We must also pay attention to the case
where logn changes.

4 Dynamic Entropy-Bound Structures for Bit Vectors

We design a data structure to represent a bit sequence A = a1 . . . an of binary
zero-order entropy H0, using nH0+o(n) bits of space and performing operations
rank, select, insert and delete all in O(log n) time. Hence, we show that the
Dynamic Bit Vector with Indels problem can be solved using less than Θ(n)
space on compressible sequences, without sacrificing the logarithmic time bound
on the operations.

4.1 High-Level Hierarchy

We maintain the universal tables Gc as in Section 3.1, but this time they store
only the explicit content of the blocks. This still requires O(

√
n polylog(n)) bits

of space.
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We also divide A into blocks and superblocks, except that this time su-
perblocks do not span a constant amount of bits of A, but of its (compressed)
representation. That is, each superblock S will maintain s = f(n) logn bits (for
some f(n) = O(polylog(n)) to be determined later), and this will correspond to
as many (complete) blocks as can be represented with s bits considering their
D, L, and Q entries. Blocks are still of t = (log n)/2 bits. Since each L and Q
value requires O(log logn) bits, and a D entry may require up to t+O(log logn)
bits, a superblock may handle from O(f(n)) to O(f(n) log n/ log logn) blocks.
Similarly, a block can have up to O(log n) unused space, because the next block
does not fit in it. This unused space adds up O(n/f(n)) bits overall. Otherwise
the space usage is the same as in the static case.

4.2 Operations Inside a Superblock

A rank(Si, p) query inside a superblock is handled in O(log n) time by adding
the corresponding Qi(j) entry to rank(Gc(o), p′), where j = 1 + �p/t�, p′ =
p − (j − 1)t, and (c, o) is found at position Li(j) in the memory area of the
superblock. Here, rank(Gc(o), p′) is computed in O(log n) time by a bitwise scan
over Gc(o). A select(Si, p) query is solved in time O(log n) by binary searching
Qi for the largest rank value not exceeding p, and then a bitwise scan for query
select(Gc(o), p′). Computation for select0 is analogous.

To insert a bit q at position p of Si, we essentially recompute the superblock
by brute force. However, we must be careful so as to work only O(f(n)) time per
superblock. For example, we cannot decompress, modify, and then recompress
the superblock because that way we could work O(f(n) log n/ log logn) time (as
the uncompressed superblock can be up to O(f(n) log2 n/ log logn) bits long).

We first determine the block j where the insertion is to take place, that is,
j = 1+�p/t�. All the Di(1 . . . j−1), Li(1 . . . j), and Qi(1 . . . j) entries are direcly
copied into a new memory area where the updated representation of Si is to be
built. On a RAM machine this copying can be done in O(f(n)) time.

Modifying each block in constant time. The block Di(j) = (c, o) to mod-
ify starts at position Li(j) within the superblock. We use Gc(o) to obtain the
uncompressed content of this block. Let B = b1 . . . bt be the bits of this block,
and let p′ = p − (j − 1)t be the position to insert the bit q within B. Thus we
compute B′ = b1 . . . bp′−1qbp′+1 . . . bt−1 and save bt for later. To compress B′ in
constant time we use another universal table H , which is indexed by numbers
of t bits and stores, at each entry, the c and o value of the corresponding binary
vector. H requires O(

√
n polylog(n)) bits, and gives H(B′) = (c′, o′) in constant

time. This description Di(j)′ = (c′, o′) is appended at the updated copy of Si

we are constructing.
We must now take care of the remaining blocks to the right. We have a bit bt

that fell off B. In addition we must shift the values Li to the right by |o′| − |o|
and Qi by q − bt. To perform all this propagation in O(f(n)) time, we use yet
another universal table J(b, l, q, x), where b is a bit to insert at the beginning
of the next block, l = O(polylog(n)) is the next Li value, q = O(polylog(n)) is
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the next Qi value, and x is the sequence of the first t bits of Di(j + 1 . . .). If
J(b, l, q, x) = (D′, L′, Q′, b′, l′, q′), this means that, if we decode from x as many
integral blocks as we can, append bit b at the beginning, and recode them, we
obtain sequence D′. Their corresponding positions, starting in l, are encoded in
L′, and their corresponding ranks, starting at q, are encoded in Q′. Furthermore,
bit b′ falls off at the end of D′, the next Li value should be l′, and the next Qi

value should be q′. Another table V (x) = r′ tells us how many bits we could use
from x, so we can advance in the processing of sequence Di by r′ bits.

Therefore, after having modified the j-th block, we start by assigning r =
Li(j) and obtain J(bt, Li(j)+ |o′|− |o|, Qi(j)+ q− bt, Di[r . . .]) and V (Di[r . . .]).
Then we copy D′, L′, and Q′ to the updated version of Si we are building, and
continue with J(b′, l′, q′, Di[r+ r′ . . .]) and V (Di[r+ r′ . . .]), until processing the
whole superblock. At the end, we rewrite S with its updated version. Note that
we still have one overflown bit.

Tables J and V require O(
√
n polylog(n)) bits, and they process Θ(log n) bits

of the superblock in constant time (each two applications it must be possible to
process at least t bits of Di), plus the time necessary to write the modified
superblock. As there are O(f(n) logn) bits in the superblock, we can process
the whole superblock in O(f(n)) time using J and V , plus the size of the new
superblock measured in Θ(log n)-size chunks.

Let us consider how much can the superblock grow by the insertion of a
single bit. If a new block is started, we need O(log logn) more bits. In addition,
the D entry of a block may grow because its (c, o) descriptor changes. The
maximum value of log

(
t

c+1

)
− log

(
t
c

)
is log t, achieved when c = 0. Propagated

over O(f(n) log n/ log logn) blocks, the sequence of D values might be increased
by O(f(n) logn) bits. This is as large as a whole superblock, and means that
a single bit insertion might double the size of the superblock in some extreme
cases. For example, if the sequence is (0t1t)r, all the c values will be 0 or t,
and the o indexes will be empty, thus we will store f(n) logn/ log logn blocks
in the superblock. If we now insert a 1 at the beginning of the sequence, each o
descriptor becomes log t = O(log logn) bits wide, which adds up f(n) logn extra
bits. Still, the new superblock is also O(f(n) log n) size and can be output using
J and V in O(f(n)) time.

Overflow to the next superblock. At the end of the operation, it might
be that the new sequence does not fit within the s bits allocated to the su-
perblock. If so, we take out as many blocks as necessary from the end of the
superblock, so as to move them to the beginning of the next superblock. We
have seen that we might have to move up to O(f(n) log n) bits. In addition we
must insert the excess bit at the next superblock (after the blocks we are moving,
if any).

The process completely rewrites the next superblock S′. We move the over-
flowing D, L and Q entries to the beginning of S′, but the L and Q values moved
must be shifted. This has to be done by chunks of Θ(log n) bits using a universal
table to ensure O(f(n)) overall time. Then we must insert the carry bit at the be-
ginning of the original entries of S′, which in addition must be shifted to account
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for the blocks moved from the overflowing superblock. This can be carried out in
O(f(n)) time using tables J and V . Yet, this bit insertion may produce another
O(f(n) log n)-bits overflow, in addition to the original O(f(n) log n) bits. The
exponential growth is avoided because we can create a new superblock as soon
as we have enough overflown bits. The propagation can thus be carried out in
O(f(n)) time per superblock rewritten/created. Yet, we still need a mechanism
to prevent that the propagation continues too far.

Limiting the propagation of overflows. Every f(n) superblocks we permit
the formation of a partial superblock, which reserves f(n) logn bits but might
be partially full, and in addition permits having at the end an underfilled block
(with less than t bits). This partial block needs some care to be correctly handled,
such as padding it with dummy bits to obtain a representation in G, taking care
of its real length, and so on. Partial superblocks waste O(n/f(n)) bits overall,
and ensure that we never traverse more than f(n) superblocks in the overflow
process. Thus the overall insertion work is O(f(n)2).

To ensure the desired density of partial superblocks, we first check whether
there is a partial superblock among the next 2f(n) superblocks. If there is one,
we carry out the propagation up to it. Otherwise, we propagate f(n) superblocks
and create a new partial superblock. In both cases we work over O(f(n)) su-
perblocks, and guarantee that every partial superblock is f(n) superblocks away
from any other. We note that partial superblocks may end up overflowing, at
which point they are not considered partial anymore. We can create a new par-
tial superblock immediately following it, as it is already ensured that the new
partial superblock is far away from others.

Note that, when a partial superblock overflows, its last block can still be
partial. This is not a real problem, because we are creating next a new partial
superblock containing that partial block at the end, plus sufficient complete
blocks from the end of the overflowing superblock.

Controlling the underflow. For deletions we proceed similarly, using a table
J ′ very similar to J : J ′ deletes the first bit of the blocks represented by x and
adds bit b at their end. The bit b we give to J ′ is obtained in constant time using
G, as the first bit of Di[r + V (x)...]. Also, we ensure that superblocks are as
full as possible. If some space is left at the end of the superblock, we check that
the first blocks from the next superblock can be moved back, and propagate the
underflow similarly as the overflows. If we reach a partial superblock, no further
propagation of underflows is necessary. If after 2f(n) attempts we do not reach
a partial superblock, we permit the underflow at the f(n)-th superblock and
declare it partial. On the other hand, a partial superblock that gets empty must
be deleted.

Note that, because of the changes in |o| widths, an insertion can actually
produce an underflow and a deletion can produce an overflow. This is not prob-
lematic. Overall (still not considering how to manage superblocks), we have
O(n/f(n)) extra space and O(f(n)2) insertion/deletion time. We can choose,
for example, f(n) =

√
logn to obtain O(log n) time and O(n/

√
logn) space.
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4.3 Global Rank and Select

We have seen how to perform rank and select inside a superblock in O(log n)
time. To perform the global rank and select we can use the balanced tree on
the superblocks as explained in Section 3.2. Finding the correct superblock takes
O(log n) time, hence the whole query takes O(log n) time.

Inserting and deleting bits from this tree requires rewriting the p() and r()
values from the affected superblock(s) through the root. Creation and deletion
of superblocks and internal tree nodes is easily handled together with the main-
tenance of r() and p(). We note, however, that we permit that a single update
affects O(f(n)) superblocks. Once the leaf to be inserted or deleted is located,
the red-black tree needs constant time to rebalance, so this adds up O(f(n))
time per insertion. As for propagating the red-black coloring and updating the
r() and p() values through the root, note that those O(f(n)) superblocks are
contiguous in the tree and therefore their total number of ancestors do not ex-
ceed f(n) + O(log n) = O(log n). It is not hard to organize the updates to work
O(log n) time overall.

4.4 Changing log n

Our result so far assumes that logn stays constant during the operations. This
value fixes the superblock/block hierarchy and the global preprocessed tables.
This assumption can be removed in two ways: (1) performing a global rebuild
whenever logn changes; (2) maintaining partial structures ready for values
(logn) −1, logn, and (logn)+1 (which we call the previous, current, and next).

Approach (1) is easy to implement. We can rebuild all structures in O(n)
time when necessary to accommodate the new value of logn. Amortized over all
insertions and deletions, this costs only O(1) time per operation.

Approach (2) is more complex but is inspired on a standard mechanism to
convert amortized complexity into worst-case complexity. The idea is to split the
current elements among the previous, current, and next structures, so that the
first elements are in previous, the last are in next, and current holds the middle
elements. It is trivial to run rank and select queries on this split structure.
Initially, all the elements are in current, and the other two are empty. Upon an
insertion, the size of next must grow by 2 and previous must shrink by 1 unless
it is already empty; a deletion must cause the opposite effect; and current acts
as a variable-size buffer.

To achieve this, let us denote x → y or x ← y the movement of one el-
ement among structures, for x, y ∈ {p, c, n}, e.g. p ← c means moving the
first element of current to previous. If the source structure is empty, the move-
ment is just ignored. Then, we insert (delete) in the proper structure and then,
depending on where the insertion (deletion) point lies, we move elements as
follows:

– previous: p→ c, p→ c, c→ n, c→ n (c← n, c← n, p← c, p← c).
– current: p→ c, c→ n, c→ n (c← n, c← n, p← c).
– next: p→ c, c→ n (c← n, p← c).



Dynamic Entropy-Compressed Sequences and Full-Text Indexes 315

It is easy to see that, after n net insertions, next will hold all the 2n elements,
and that after n/2 net deletions, prev will hold all the n/2 remaining elements.
This is true even if the insertions and deletions are intermixed. When next holds
all the elements, it becomes current and the new previous and next structures are
empty; similarly when previous holds all the elements. At those points, precisely,
logn has changed its value. The space requirement is still nH0 + o(n).

The only remaining problem is that we do not have time to build the new G,
J , etc. tables, as we would need them immediately available to handle the new
next or previous structure. For this sake, we maintain all the time 5 versions of
those tables, for (logn) − 2 . . . (logn) + 2. As we move to (logn) + 1, we have
immediately available the required tables for (logn), (log n) + 1 and (logn) + 2.
The construction of the tables for (logn) + 3 is easily spread during the next
O(
√
n polylog n) insertions, building just a new cell at the time. These insertions

are much less than the necessary to make log n grow again. If, instead, logn
shrinks back, we just abandon the partial table construction. Thus we achieve
the following result:

Theorem 1. The Dynamic Bit Vector with Indels problem can be solved using
nH0 +O(n/

√
logn) bits of space supporting the operations rank, select, insert,

and delete in O(log n) worst-case time.

5 Extensions and Applications

5.1 General Alphabets

Theorem 1 can be extended to the Dynamic Sequence with Indels problem using
wavelet trees [8]. The wavelet tree is a balanced binary tree built on the alphabet
symbols, containing bit vectors in its internal nodes. When these node bit vectors
are preprocessed for the Dynamic Bit Vector with Indels problem (taking some
care on the sub-linear terms [7]), we obtain the following result.

Theorem 2. The Dynamic Sequence with Indels problem can be solved using
nH0 + o(n log σ) bits of space supporting the operations rank, select, insert,
and delete, in O(log n logσ) worst-case time. Here H0 is the zero-order entropy
of the sequence and σ its alphabet size.

5.2 Dynamic Full-Text Indexes

Chan, Hon, and Lam [4] show how to use a solution to Dynamic Sequence with
Indels problem to obtain a dynamic full-text index. The idea is to simulate the
backward search algorithm of Ferragina and Manzini [6]: After preprocessing a
text T , the backward search algorithm finds the number of occurrences of a given
pattern P in T in O(|P |) steps. One step essentially makes two rank queries to
the Burrows-Wheeler transform [3] of T , A = bwt(T ). We note H0(A) = H0(T )
as the transform is a permutation.



316 V. Mäkinen and G. Navarro

They [4] show that one can dynamically maintain a collection of texts, by
keeping a data structure supporting rank, insert and delete on the Burrows-
Wheeler transform of the concatenation of the texts in the collection (symbol 0
is reserved for separating two texts). We can as a black box replace their COUNT
structure (that takes O(nσ) bits, supporting the operations in O(log n) time)
with the structure in Theorem 2 to obtain the following result.

Theorem 3. A dynamic collection of texts C = {T1, T2, . . . , Tm}, where each
Ti ∈ {1, 2, . . . σ − 1}∗, can be maintained in nH0(C) + o(n log σ) bits supporting
counting of occurrences of a pattern P in O(|P | log n log σ) time, inserting a text
T in O(|T | logn log σ) time, and deleting a text T in O(|T | log2 n log σ) time.
Here n is the length of concatenation C = 0T10T2 · · · 0Tm of C, and H0(C) =
H0(C). We assume that C starts initially empty.

The index can be extended to support reporting the occurrences using the MARK
structure of [4]. This structure takes O(n) bits, and with our rank structure can
be used to report each occurrence in O(log2 n log σ) time.

As a consequence, we obtain an O(n log n log σ) time construction algorithm
for a compressed self-index requiring nH0 + o(n log σ) bits working space during
construction: This is obtained by just inserting text T to the empty collection.
This index can be converted to a more efficient static self-index, like a succinct
suffix array [10], within the same time bound. The static structure requires the
same nH0 + o(n log σ) bits, but the counting of pattern occurrences can then be
done in O(|P |) time if σ = O(polylog(n)), and O(|P | log σ/ log logn) in general.

6 Conclusions

We have introduced the first entropy-bound dynamic data structure answering
rank and select queries on bit arrays. We can represent a vector of n bits with
zero-order entropy H0 using nH0 + o(n) bits of space, so that we can answer
rank and select queries, as well as inserting and deleting bits, in O(log n) worst-
case time. This improves in several aspects the best existing solution to the
Searchable Partial Sums with Indels Problem [9] for the case of bit sequences:
we achieve logarithmic worst-case bounds for insertions and deletions (previous
solution achieved Θ(polylog(n)) amortized time) and require less than n bits
on compressible sequences. We apply these results to compressed full-text self-
indexing, achieving the first FM-index-like structure that can be built within
zero-order entropy space. This index permits insertion and deletion of texts with
better bounds than previous solutions [4].

Our result works under weaker assumptions on the RAM model than the pre-
vious results on dynamic settings. We assumed log n = Θ(w) to simplify matters;
in the full version, this assumption will be loosened to logn = O(w). This com-
plicates the memory allocation, as we can not e.g. represent tree pointers in
O(log n) bits, when logn = o(w). However, our results remain unchanged under
the weaker model.
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The succinct suffix array (SSA) constructed using the dynamic index can
currently only count the pattern occurrences, unless paying O(n) bits extra
space for the MARK structure of [4]. We plan to study whether this could be
improved to o(n) bits. We plan also to study general searchable partial sums,
and larger alphabets with multiary wavelet trees [7] to improve the time bounds
in Theorem 2 by a log logn factor.
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Abstract. The LZ-index is a compressed full-text self-index able to rep-
resent a text T1...u, over an alphabet of size σ = O(polylog(u)) and
with k-th order empirical entropy Hk(T ), using 4uHk(T ) + o(u log σ)
bits for any k = o(logσ u). It can report all the occ occurrences of a
pattern P1...m in T in O(m3 log σ + (m + occ) log u) worst case time. Its
main drawback is the factor 4 in its space complexity, which makes it
larger than other state-of-the-art alternatives. In this paper we present
two different approaches to reduce the space requirement of LZ-index.
In both cases we achieve (2 + ε)uHk(T ) + o(u log σ) bits of space, for
any constant ε > 0, and we simultaneously improve the search time to
O(m2 log m+(m+ occ) log u). Both indexes support displaying any sub-
text of length � in optimal O(�/ logσ u) time. In addition, we show how
the space can be squeezed to (1 + ε)uHk(T ) + o(u log σ) to obtain a
structure with O(m2) average search time for m 
 2 logσ u.

1 Introduction and Previous Work

Given a sequence of symbols T1...u (the text) over an alphabet Σ of size σ, and
given another (short) sequence P1...m (the search pattern) over Σ, the full-text
search problem consists in finding all the occ occurrences of P in T .

Applications of full-text searching include text databases in general, which
typically contain natural language texts, DNA or protein sequences, MIDI pitch
sequences, program code, etc. A central goal of modern text databases is to
provide fast access to the text using as little space as possible. Yet, these goals are
opposed: to provide fast access we must build an index on the text, increasing
the space requirement. The main motivation of using little space is to store
the indexes of very large texts entirely in main memory. This can compensate
for significant CPU time to access them. In recent years there has been much
research on compressed text databases, focusing on techniques to represent the
text and the index using little space, yet permitting efficient text searching.

A concept related to text compression is the k-th order empirical entropy of
a sequence T , denoted Hk(T ) [9]. The value uHk(T ) is a lower bound to the
� Supported in part by CONICYT PhD Fellowship Program (first author) and Fonde-
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number of bits needed to compress T using any compressor that encodes each
symbol considering only the context of k symbols that precede it in T . It holds
0 � Hk(T ) � Hk−1(T ) � · · · � H0(T ) � log σ (log means log2 in this paper).

The current trend on compressed text databases is compressed full-text self-
indexing. A self-index allows searching and retrieving any part of the text with-
out storing the text itself. A compressed index requires space is proportional
to the compressed text size. Then a compressed full-text self-index replaces the
text with a more space-efficient representation of it, which at the same time
provides indexed access to the text. This is an unprecedented breakthrough in
text indexing and compression. Some compressed self-indexes are [16, 4, 7, 5].

The LZ-index [14] is another compressed full-text self-index, based on the
Ziv-Lempel [18] parsing of the text. If the text is parsed into n phrases by the
LZ78 algorithm, then the LZ-index takes 4n logn(1 + o(1)) bits of space, which
is 4 times the size of the compressed text, i.e. 4uHk(T )+ o(u log σ) bits, for any
k = o(logσ u) [8, 4]. The LZ-index answers queries in O(m3 log σ+(m+occ) logn)
worst case time. The index can also reproduce a context of length � around an
occurrence found (and in fact any sequence of phrases) in O(� log σ) time, or
obtain the whole text in time O(u log σ).

However, in practice the space requirement of LZ-index is relatively large
compared with competing schemes: 1.2–1.6 times the text size versus 0.6–0.7
and 0.3–0.8 times the text size of CS-Array [16] and FM-index [4], respectively.
Yet, the LZ-index is faster to report and to display the context of an occurrence.
Fast displaying of text substrings is very important in self-indexes, as the text
is not available otherwise.

In this paper we study how to reduce the space requirement of LZ-index, using
two different approaches. The first one, a navigational scheme approach, consists
in reducing the redundancy among the different data structures that conform
the LZ-index. These data structures allow us moving among data representa-
tions. In this part we define new data structures allowing the same navigation,
yet reducing the original redundancy. In the second approach we combine the
balanced parentheses representation of Munro and Raman [13] of the LZ78 trie
with the xbw transform of Ferragina et al. [3], whose powerful operations are
useful for the LZ-index search algorithm.

Despite these approaches are very different, in both cases we achieve (2 +
ε)uHk(T )+o(u logσ) bits of space, for any constant ε > 0, and we simultaneously
improve the search time to O(m2 logm + (m + occ) log n) (worst case). In both
cases we also present a version requiring (1 + ε)uHk(T ) + o(u log σ) bits, with
average search time O(m2) if m 
 2 logσ n. In all cases, the worst case time to
display a context of length � around any occurrence found is optimal O(�/ logσ u).

Note that, just as LZ-index, our data structures are the only compressed full-
text self-indexes of size O(uHk(T )) able of spending O(log n) time per occur-
rence reported, if σ = Θ(polylog(u)). Other data structures achieving the same
or better complexity for reporting occurrences either are of size O(uH0(T )) bits
[16], or they achieve it for constant-size alphabets [4], or for quite large alpha-
bets (log σ = Θ(log n)) [7, Theorem 4.1]. The case σ = O(polylog(u)), which
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represents moderate-size alphabets, is very common in practice and does not
fit in the above cases. Our data structures are not competitive against schemes
requiring about the same space [7, 5] for counting the number of occurrences of
P in T . Yet, in many practical situations, it is necessary to report the occur-
rence positions as well as displaying their contexts. In this aspect, LZ-index is
superior.

2 The LZ-Index Data Structure

Assume that the text T1...u has been compressed using the LZ78 [18] algorithm
into n+ 1 phrases1 T = B0 . . . Bn, such that B0 = ε (the empty string); ∀k �= �,
Bk �= B�; and ∀k 
 1, ∃� < k, c ∈ Σ, Bk = B� · c. To ensure that Bn is not
a prefix of another Bi, we append to T a special symbol “$” �∈ Σ, assumed to
be smaller than any other symbol. We say that i is the phrase identifier corre-
sponding to Bi, 0 � i � n. The following data structures conform the LZ-index
[14]:

LZTrie: The trie of all the phrases B0 . . . Bn. Given the properties of LZ78
compression, this trie has exactly n + 1 nodes, each corresponding to a string.
RevTrie: The trie of all the reverse strings Br

0 . . . B
r
n. In this trie there could

be internal nodes not representing any phrase. We call these nodes “empty”.
Node: A mapping from phrase identifiers to their node in LZTrie.
Range: A data structure for two-dimensional searching in the space [0 . . . n]×
[0 . . . n]. We store the points {(revpos(Br

k), pos(Bk+1)), k ∈ 0 . . . n − 1}, where
revpos is the lexicographic position in {Br

0 . . . B
r
n} and pos is the lexicographical

position in {B0 . . . Bn}. For each such point, the corresponding k value is stored.
Each of these four structures requires n logn(1 + o(1)) bits of space if they

are represented succinctly, for example, using the balanced parentheses repre-
sentation [13] for the tries. For Range, a data structure of Chazelle [2] permits
two-dimensional range searching in a grid of n pairs of integers in the range
[0 . . . n] × [0 . . . n], answering queries in O((occ + 1) logn) time, where occ is
the number of occurrences reported, and requiring n logn(1 + o(1)) bits. As
n log u = uHk(T ) + O(kn log σ) � u log σ for any k [8], the final size of the
LZ-index is 4uHk(T ) + o(u log σ) bits for k = o(logσ u). The succinct represen-
tation given in the original work [14] implements (among others) the operations
parent(x) (which gets the parent of node x) and child(x, α) (which gets the child
of node x with label α ∈ Σ) both in O(log σ) time for LZTrie, and O(log σ)
and O(h log σ) time respectively for RevTrie, where h is the depth of node x
in RevTrie. The operation ancestor(x, y), which is used to ask if node x is an
ancestor of node y, is implemented in O(1) time both in LZTrie and RevTrie.
These operations are basically based on rank/select operations on bit vectors.
Given a bit vector B1...n, we define the function rank0(B, i) (similarly rank1)
as the number of 0s (1s) occurring up to the i-th position of B. The function
select0(B, i) (similarly select1) is defined as the position of the i-th 0 (1) in B.
1 According to [18],

√
u � n � u

logσ u
; thus, n log u � u log σ always holds.
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These operations can be supported in constant time and requiring n+ o(n) bits
[11], or H0(B) + o(n) bits [15].

Let us consider now the search algorithm for a pattern P1...m [14]. We dis-
tinguish three types of occurrences of P in T , depending on the phrase
layout:

1. The occurrence lies inside a single phrase (there are occ1 occurrences of
this type). Given the properties of LZ78, every phrase Bk containing P is formed
by a shorter phrase B� concatenated to a symbol c. If P does not occur at the
end of Bk, then B� contains P as well. We want to find the shortest possible
phrase B in the LZ78 referencing chain for Bk that contains the occurrence
of P . This phrase B finishes with the string P , hence it can be easily found
by searching for P r in RevTrie in O(m2 log σ) time. Say we arrive at node v.
Any node v′ descending from v in RevTrie (including v itself) corresponds to
a phrase terminated with P . Thus we traverse and report all the subtree of
the LZTrie node corresponding to each v′. Occurrences of type 1 are located in
O(m2 log σ + occ1) time;
2. The occurrence spans two consecutive phrases, Bk and Bk+1, such
that a prefix P1...i matches a suffix of Bk and the suffix Pi+1...m matches a
prefix of Bk+1 (there are occ2 occurrences of this type): P can be split at any
position, so we have to try them all. The idea is that, for every possible split,
we search for the reverse pattern prefix in RevTrie and for the pattern suffix in
LZTrie. Now we have two ranges, one in the space of reversed strings (phrases
finishing with the first part of P ) and one in that of the normal strings (phrases
starting with the second part of P ), and need to find the phrase pairs (k, k + 1)
such that k is in the first range and k + 1 is in the second range. This is what
the range searching data structure is for. Occurrences of type 2 are located in
O(m3 log σ + (m + occ2) logn) time; and
3. The occurrence spans three or more phrases, Bk . . . B�, such that
Pi...j = Bk+1 . . . B�−1, P1...i−1 matches a suffix of Bk and Pj+1...m matches a
prefix of B� (there are occ3 occurrences of this type): For this part, the LZ78 al-
gorithm guarantees that every phrase represents a different string. Hence, there
is at most one phrase matching Pi...j for each choice of i and j. This fact severely
limits the number of occurrences of this class that may exist, occ3 = O(m2). The
idea is to identify maximal concatenations of phrases Pi...j = Bk . . . B� contained
in the pattern, and thus determine whether Bk−1 finishes with P1...i−1 and B�+1
starts with Pj+1...m. If this is the case we can report an occurrence. We first
search for every pattern substring in LZTrie, in O(m2 log σ) time. Then, the
O(m2) maximal concatenations of phrases are obtained in O(m2 logm) worst
case time and O(m2) time on average. Finally, each of those maximal concate-
nations is verified in O(m log σ) time using operation parent for Bk. Overall,
occurrences of type 3 are located in O(m3 log σ) time.

Note that each of the occ = occ1 + occ2 + occ3 possible occurrences of P lies
exactly in one of the three cases above. Overall, the total search time to report
the occ occurrences of P in T is O(m3 log σ + (m + occ) logn). Finally, we can
uncompress and display the text of length � surrounding any occurrence reported
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in O(� log σ) (as long as this context spans an integral number of phrases) time,
and uncompress the whole text T in O(u log σ) time.

3 LZ-Index as a Navigation Scheme

In the practical implementation of LZ-index [14, see Tech.Report], the Range
data structure is replaced by RNode, which is a mapping from phrase identifiers
to their node in RevTrie. Now occurrences of type 2 are found as follows: For
every possible split P1...i and Pi+1...m of P , assume the search for P r

1...i in RevTrie
yields node vrev, and the search for Pi+1...m in LZTrie yields node vlz . Then, we
check each phrase k in the subtree of vrev and report it if Node[k + 1] descends
from vlz. Each such check takes constant time. Yet, if the subtree of vlz has less
elements, we do the opposite: Check phrases from vlz in vrev, using RNode. Unlike
when using Range, now the time to solve occurrences of type 2 is proportional
to the smallest subtree size among vrev and vlz, which can be arbitrarily larger
than the number of occurrences reported. That is, by using RNode we have
no worst-case guarantees at search time. However, the average search time for
occurrences of type 2 is O(n/σm/2). This is O(1) for long patterns, m 
 2 logσ n.
The RNode data structure requires uHk(T )+ o(u logσ) bits, and so this version
of LZ-index also requires 4uHk(T ) + o(u log σ) bits, for any k = o(logσ u).

Both LZTrie and RevTrie use originally the balanced parentheses represen-
tation [13], in which every node, represented by a pair of opening and closing
parentheses, encloses its subtree. When we replace Range by RNode structure,
the result is actually a “navigation” scheme that permits us moving back and
forth from trie nodes to the corresponding preorder positions2, both in LZTrie
and RevTrie. The phrase identifiers are common to both tries and permit moving
from one trie to the other.

Figure 1 (left) shows the navigation scheme. Dashed arrows are asymptotically
“for free” in terms of memory, since they are followed by applying rank on the
corresponding parentheses structure. The other four arrows are in fact the four
main components in the space usage of the index: Array of phrase identifiers in
LZTrie (ids) and in RevTrie (rids), and array of LZTrie nodes for each phrase
(Node) and RevTrie nodes for each phrase (RNode). The structure is symmetric
and we can move from any point to any other.

The structure, however, is redundant, in the sense that the number of arrows
is not minimal. We start by defining the following reduced scheme for LZ-index:

LZTrie: The Lempel-Ziv trie, implemented with the following data structures:
- par0...2n and lets: The tree shape of LZTrie according to the dfuds repre-

sentation [1], which requires 2n + n$log σ%+ o(n) + O(log log σ) bits to support
the operations parent(x), child(x, α), subtree size (including the root of the sub-
tree), and node degree, all of them in O(1) time. It also supports the operation

2 In the representation [13], the preorder position of a node is the number of opening
parentheses before the one representing the node. This is rank0 at the node position
in the bit sequence representing the parentheses, if bit 1 represents ‘)’.
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child(x, i) in constant time, which gets the i-th child of node x. To get this repre-
sentation, we perform a preorder traversal on the trie, and for every node reached
we write its degree in unary using parentheses (for example, 3 reads ‘((()’ and
it is writen ‘0001’), What we get is almost a balanced parentheses representation
(we only need to add a fictitious ‘(’ at the beginning of the sequence). A node
of degree d is represented by the position of the first of the (d + 1) parentheses
corresponding to the node. Given a node in this representation, say at position
i, its preorder position can be computed by rank1(par, i). Given a preorder po-
sition p, the corresponding node is computed by select1(par, p) + 1. With this
representation we can compute all the operations required by LZTrie [14] in
O(1) time, including ancestor(x, y) 3. The symbols labeling the arcs of the trie
are represented implicitly. We denote by lets(i) the symbol corresponding to the
node at position select0(par, i) + 1 (i.e., the symbol with preorder position i),
which is computed in constant time.

- ids0...n: The array of LZ78 phrase identifiers in preorder. We use the rep-
resentation of Munro et al. [12] for ids such that the inverse permutation ids−1

can be computed in O(1/ε) time, requiring (1 + ε)n logn bits4.

RevTrie: The PATRICIA tree [10] of the reversed LZ78 phrases, which is im-
plemented with the following data structures

- rpar0...2n′ and rlets: The RevTrie structure represented using dfuds [1],
compressing empty unary paths and thus ensuring n′ � 2n nodes, because empty
non-unary nodes still exist. The space requirement is 2n′ + n′$log σ% + o(n′) +
O(log log σ) bits to support the same functionalities as LZTrie. - B0...n′ : A bit
vector supporting rank and select queries, and requiring n′(1 + o(1)) bits [11].
The j-th bit of B is 1 iff the node with preorder position j in rpar is not an
empty node, otherwise the bit is 0. Given a position p in rpar corresponding to
a RevTrie node, the corresponding bit in B is B[rank1(rpar, p)].

- R0...n: A mapping from RevTrie preorder positions to LZTrie preorder po-
sitions defined as R[i] = ids−1(rids[i]). R is implemented using the succinct
data structure for permutations of Munro et al. [12], requiring (1 + ε)n logn
bits to represent R and compute R−1 in O(1/ε) worst-case time. Given a po-
sition i in rpar corresponding to a RevTrie node, the corresponding R value is
R[rank1(B, rank1(rpar, i))].

- skips0...n′ : The PATRICIA tree skips of the nodes in preorder, using log log u
bits per node and inserting empty unary nodes when the skip exceeds logu. In
this way, one out of logu empty unary nodes could be explicitly represented.
In the worst case there are O(u) empty unary nodes, of which O(u/ log u)
are explicitly represented. This adds O(u/ log u) to n′, which translates into
O(u(log σ+log log u)

log u ) = o(u log σ) bits overall.
Fig. 1 (right) shows the resulting navigation scheme. The search algorithm

remains the same since we can map preorder positions to nodes in the new rep-

3 As ancestor(x, y) ≡ rank1(par,x) � rank1(par, y) � rank1(par, x) +
subtreesize(par,x) − 1.

4 This data structure ensures that one finds the inverse after following the permutation
O(1/ε) times.
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Fig. 1. The original (left) and the reduced (right) navigation structures over index
components

resentation of the tries (and vice versa), and we can simulate rids[i] = ids[R[i]],
RNode[i] = select1(rpar,R−1(ids−1(i))) + 1, and Node[i] = select1(par, ids−1

(i)) +1, all of which take constant time.
The space requirement is (2+ε)n logn+3n logσ+2n log log u+8n+o(u logσ) =

(2+ε)n logn+o(u log σ) bits if log σ = o(log u). As n log u = uHk(T )+O(kn log σ)
for any k [8], the space requirement is (2 + ε)uHk(T ) + o(u log σ) bits, for any
k = o(logσ u). The child operation on RevTrie can now be computed inO(1) time,
versus theO(h log σ) time of the original LZ-index [14]. Hence, the occ occurrences
of P can be reported in O(m2

ε + n
εσm/2 ) average time, for 0 < ε < 1.

Reducing Further. To simplify notation, given a LZTrie node with preorder
position R[i], suppose that operation parent(R[i]) gives the preorder position of
its parent.

Definition 1. We define function ϕ as ϕ(i) = R−1(parent(R[i])).

That is, let ax (a ∈ Σ) be the i-th string in RevTrie. Then, ϕ(i) = j, where
the j-th string in RevTrie is x. Thus ϕ is a suffix link function in RevTrie. As
xRa must be a LZTrie phrase, by the LZ78 parsing it follows that xR is also a
LZTrie phrase and thus x is a RevTrie phrase. Hence, every non-empty node
in RevTrie has a suffix link.

Let us show how to compute R using only ϕ. We define array L1...n such that
L[i] = lets(R[i]). As L[i] is the first character of the i-th string in RevTrie, we
have that L[i] � L[j] whenever i � j, and L can be divided into σ runs of equal
symbols. Thus L can be represented by an array L′ of σ log σ bits and a bit vector
LB of n + o(n) bits, such that LB[i] = 1 iff L[i] �= L[i− 1], for i = 2 . . . n, and
LB[1] = 0 (this position belongs to the text terminator “$”). For every i such
that LB[i] = 1, we store L′[rank1(LB, i)] = L[i]. Hence, L[i] can be computed
as L′[rank1(LB, i)] in O(1) time. To simplify the notation assume that, given a
LZTrie position R[i], operation child(R[i], α) yields the LZTrie preorder position
belonging to the child (by symbol α) of the node corresponding to R[i].

Lemma 1. Given 0 � i � n, the value R[i] can be computed by the following
recurrence:

R[i] =
{
child(R[ϕ(i)], L[i]) if i �= 0
0 if i = 0
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Proof. R[0] = 0 holds from the fact that the preorder position corresponding
to the empty string, both in LZTrie and RevTrie, is 0. To prove the other
part we note that if x is the parent in LZTrie of node y with preorder posi-
tion R[i], then the symbol labeling the arc connecting x to y is L[i]. That is,
child(parent(R[i]), L[i]) = R[i]. The lemma follows from this fact and replacing
ϕ(i) by its definition (Def. 1) in the recurrence. 	

As in the case of function Ψ of Compressed Suffix Arrays [16], we can prove the
following lemma for function ϕ, which is the key to compress R.

Lemma 2. For every i < j, if lets(R[i]) = lets(R[j]), then ϕ(i) < ϕ(j).

Proof. Let strr(i) denote the i-th string in the lexicographically sorted set of
reversed strings. Note that strr(i) < strr(j) iff i < j. If i < j and lets(R[i]) =
lets(R[j]) (i.e., strr(i) and strr(j) start with the same symbol, as their reverses
end with the same symbol), then strr(ϕ(i)) < strr(ϕ(j)) (as strr(ϕ(i)) is strr(i)
without its first symbol), and thus ϕ(i) < ϕ(j). 	

Corollary 1. ϕ can be partitioned into at most σ strictly increasing sequences.

As a result, we replace R by ϕ, LB and L′, and use them to compute a given value
R[i]. According to Lemma 1, we can represent ϕ using the idea of Sadakane [16],
requiring nH0(lets) + O(n log log σ) bits and allowing to access ϕ(i) in constant
time, and hence we replace the n logn-bit representation of R by the nH0(lets)+
O(n log log σ) + n + O(σ log σ) + o(n) bits representation of ϕ, LB and L′.

The time to compute R[i] is now O(|strr(i)|), which actually corresponds to
traversing LZTrie from the root with the symbols of strr(i) in reverse order.
But we can store εn values of R in an array R′, plus a bit vector RB of n+ o(n)
bits indicating which values of R have been stored, ensuring that R[i] can be
computed in O(1/ε) time and requiring εn logn extra bits. To determine the R
values to be explicitly stored, for each LZTrie leaf we traverse the upward path
to the root, marking one out of O(1/ε) nodes, and stopping the procedure for
the current leaf when we reach the root or when we reach an already marked
node. If the node to mark is at preorder position j, then we set RB[R−1(j)] = 1.
After we mark the positions of R to be stored, we scan RB sequentially from
left to right, and for every i such that RB [i] = 1, we set R′[rank1(RB , i)] = R[i].
Then, we free R since R[i] can be computed by:

R[i] =
{
child(R[ϕ(i)], L′[rank1(LB, i)]) if RB[i] = 0
R′[rank1(RB , i)] if RB[i] = 1

Note that the same structure used to compute R−1 before freeing R can be used
under this scheme, with cost O(1/ε2) (recall footnote 6).

Theorem 1. There exists a compressed full-text self-index requiring (1 + ε)
uHk(T ) + o(u log σ) bits of space, for σ = O(polylog(u)), any k = o(logσ u)
and any constant 0 < ε < 1, and able to report the occ occurrences of a pat-
tern P1...m in a text T1...u in O(m2

ε2 + n
ε2σm/2 ) average time, which is O(m2) if

m 
 2 logσ n. It can also display a text substring of length � in O(�(1 + 1
ε logσ � ))

worst-case time.
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The bound O(�(1 + 1
ε logσ � ) in the displaying time holds from the fact that we

perform � parent operations, and we must pay O(1/ε) to use ids−1 each time we
pass to display the next (previous) phrase, which in the (very) worst case is done
O(�/ logσ �) times. We still assume that these � symbols form whole phrases.

We can get worst case guarantees in the search process by adding Range, the
two-dimensional range search data structure defined in Section 2. Occurrences
of type 2 can now be solved in O(m2 + (m + occ) logn) time.

Theorem 2. There exists a compressed full-text self-index requiring (2 + ε)
uHk(T ) + o(u log σ) bits of space, for σ = O(polylog(u)), any k = o(logσ u)
and any constant 0 < ε < 1, and able to report the occ occurrences of a pat-
tern P1...m in a text T1...u in O(m2(logm + 1

ε2 ) + (m + occ) log n + occ
ε ) =

O(m2 logm + (m + occ) log n) worst-case time. It can also display a text sub-
string of length � in O(�(1 + 1

ε logσ �)) worst-case time.

4 Using the xbw Transform to Represent LZTrie

A different idea to reduce the space requirement of LZ-index is to use the xbw
transform of Ferragina et al. [3] to represent the LZTrie. This succinct repre-
sentation supports the operations parent(x), child(x, i), and child(x, α), all of
them in O(1) time and using 2n logσ + O(n) bits of space. The representation
also allows subpath queries, a very powerful operation which, given a string s,
returns all the nodes x such that s is a suffix of the string represented by x. We
represent LZ-index with the following data structures:

Balanced parentheses LZTrie: The trie of the Lempel-Ziv phrases, storing
- par : The balanced parentheses representation [13] of LZTrie. In order to

index the LZTrie leaves with xbw, we have to add a dummy child to each. In
this way, the trie has n′ � 2n nodes. The space requirement is 4n+ o(n) bits in
the worst case if we use the Munro and Raman representation [13]. We use the
bit 0 to represent ‘(’ and 1 to represent ‘)’. In this way, the preorder position of
a node is computed by a rank0 query, and the node corresponding to a preorder
position by a select0 query, both in O(1) time.

- ids : The array of LZ78 phrase identifiers in preorder, represented by the data
structure of Munro et al. [12], such that we can compute the inverse permutation
ids−1 in O(1/ε) time, requiring (1 + ε)n logn bits.
xbw LZTrie: The xbw representation [3] of the LZTrie, where the nodes are
lexicographically sorted according to their upward paths in the trie. We store

- Sα : The array of symbols labeling the arcs of the trie. In the worst case
LZTrie has 2n nodes (because of the dummy leaves we add), and then this array
requires 2n logσ bits.

- Slast : A bit array such that Slast[i] = 1 iff the corresponding node in LZTrie
is the last child of its parent. The space requirement is 2n(1 + o(1)) bits.
Pos: A mapping from xbw positions to the corresponding preorder positions.
In the worst case there are 2n such positions, and so the space requirement is
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2n log (2n) bits. We can reduce this space to εn log (2n) bits by storing in an
array Pos′ one out of O(1/ε) values of Pos, such that Pos[i] can be computed
in O(1/ε) time. We need a bit vector PosB of 2n(1 + o(1)) bits indicating which
values of Pos have been stored. Assume we need compute Pos[i], for a given
xbw position i. If PosB [i] = 1, then such value is stored at Pos′[rank1(PosB , i)].
Otherwise, we simulate a preorder traversal in xbw from node at xbw position
i, until PosB[j] = 1, for a xbw position j. Once this j is found, we map to
the preorder position j′ = Pos′[rank1(PosB , j)]. If d is the number of steps
in preorder traversal from xbw position i to xbw position j, then j′ − d is the
preorder position corresponding to the node at xbw position i. We also need to
compute Pos−1, which can be done in O(1/ε2) time under this scheme, requiring
εn log (2n) extra bits if we use the representation of [12].
Range: A range search data structure in which we store the point k (belonging
to phrase identifier k) at coordinate (x, y), where x is the xbw position of phrase
k and y is the preorder position of phrase k + 1. We use the data structure of
Chazelle [2] requiring n logn(1 + o(1)) bits, as for the original LZ-index.

The total space requirement is (2+ε)n logn(1+o(1))+2n log σ+(8+ε)n+o(n)
bits, which is (2+ε)uHk(T )+o(u logσ) bits if log σ = o(log u) and k = o(logσ u).

We depict now the search algorithm for pattern P . For occurrences of type
1, we perform a subpath query for P to obtain the interval [x1, x2] in the xbw
of LZTrie corresponding to all the nodes whose phrase ends with P . For each
position i ∈ [x1, x2], we can get the corresponding node in the parentheses
representation using select0(par, Pos[i]), and then we traverse the subtrees of
these nodes and report all the identifiers found, as done with the usual LZ-index.

To solve occurrences of type 2, for every possible partition P1...i and Pi+1...m

of P , we traverse the xbw from the root, using operation child(x, α) with the
symbols of Pi+1...m. Once this is found, say at xbw position i, we switch to
the preorder tree (parentheses) using select0(par, Pos[i]), to get the node vlz

whose subtree has the preorder interval [y1, y2] of all the nodes that start with
Pi+1...m. Next we perform a subpath query for P1...i in xbw, and get the xbw
interval [x1, x2] of all the nodes that finish with P1...i (we have to replace xr ←
rank1(Slast, xr) to avoid counting the same node multiple times, see [3]). Then,
we search structure Range for [x1, x2]× [y1, y2] to get all phrase identifiers k such
that phrase k finishes with P1...i and phrase k + 1 starts with Pi+1...m.

For occurrences of type 3, one could do mostly as with the original LZTrie
(navigating the xbw instead), so as to find all the nodes equal to substrings
of P in O(m2) time. Then, for each maximal concatenation of phrases Pi...j =
Bk+1 . . . B�−1 we must check that phrase B� starts with Pj+1...m and that phrase
Bk finishes with P1...i−1. The first check can be done in constant time using
ids−1. As we have searched for all substrings of P in the trie, we know the
preorder interval of descendants of Pj+1...m, thus we check whether the node at
preorder position ids−1(�) belongs to that interval. The second check can also
be done in constant time, by determining whether k is in the xbw interval of
P1...i−1 (that is, Bk finishes with P1...i−1). The xbw position is Pos−1(ids−1(k)).
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To display the text around an occurrence, we use ids−1 to find the preorder
position of the corresponding phrase, and then we use parent on the parentheses
to find the symbols in the upward path. To know the symbol, we have to use
Pos−1 to go to the xbw position and read Sα.

For the search time, occurrences of type 1 cost O(m + occ/ε), type 2 cost
O(m2 + m/ε + m(occ + logn)), and type 3 cost O(m2(logm + 1

ε2 )). Thus, we
have achieved Theorem 2 again with radically different means. The displaying
time is O(�/ε2), but it can also become O(�(1 + 1

ε logσ � )) if we store the array of
symbols in the balanced parentheses LZTrie, which adds o(u log σ) bits of space.
We can get a version requiring (1+ε)uHk(T )+o(u log σ) bits and O(m2) average
reporting time if m 
 2 logσ n (as in Theorem 1) if we solve occurrences of type
2 similarly as we handled occurrences of type 3, and dropping Range.

5 Displaying Text Substrings

LZ-index is able to report occurrences in the format (k, offset), where k is the
phrase in which the occurrence starts and offset is the distance between the
beginning of the occurrence and the end of the phrase. However, we can re-
port occurrences as text positions by adding a bit vector V1...u that marks the
n phrase beginnings. Then rank1(V, i) is the phrase number i belongs to, and
select1(V, j) is the text position of the j-th phrase. Such V can be represented
with H0(V ) + o(u) � n log (u/n) + o(u) � n log log u + o(u) = o(u log σ) bits
[15]. We can also add, to both proposed indexes, an operation for displaying a
subtext Ti...i+�−1 for any given position i, in optimal O(�/ logσ u) time.

A compressed data structure [17] to display any text substring of length
Θ(logσ u) in constant time, turns out to have similarities with LZ-index. We
take advantage of this similarity to plug it within our index, with some modi-
fications, and obtain improved time to display text substrings. They proposed
auxiliary data structures of o(u log σ) bits to LZTrie to support this operation
efficiently. Given a position i of the text, we first find the phrase including the
position i by using rank1(V, i), then find the node of LZTrie that corresponds to
the phrase using ids−1. Then displaying a phrase is equivalent to outputting the
path going from the node to the root of LZTrie. The auxiliary data structure,
of size O(n log σ) = o(u log σ) bits, permits outputting the path by chunks of
Θ(logσ u) symbols in O(1) time per chunk. In addition, we can now display not
only whole phrases, but any text substring within this complexity. The reason
is that any prefix of a phrase is also a phrase, and it can be found in constant
time by using a level-ancestor query [6] on the LZTrie.

We modify this method to plug into our indexes. In their original method
[17], if more than one consecutive phrases have length less than (logσ u)/2 each,
their phrase identifiers are not stored. Instead the substring of the text including
those phrases are stored without compression. This guarantees efficient display-
ing operation without increasing the space requirement. However this will cause
the problem that we cannot find patterns including those phrases. Therefore in
our modification we store both the phrases themselves and their phrase identi-
fiers. The search algorithm remains as before. To decode short phrases we can
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just output the explicitly stored substring including the phrases. For each phrase
with length at most (logσ u)/2, we store a substring of length log u containing
the phrase. Because there are at most O(

√
u) such phrases, we can store the sub-

strings in O(
√
u log u) = o(u) bits. These auxiliary structures work as long as

we can convert a phrase identifier into a preorder position in LZtrie in constant
time. Hence they can be applied to all the data structures in Sections 3 and 4.

Theorem 3. The indexes of Theorem 1 and Theorem 2 (and those of Section 4)
can be adapted to display a text substring of length � surrounding any text posi-
tion in optimal O( �

logσ u ) worst case-time.
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Abstract. We present algorithms for finding a longest common
increasing subsequence of two or more input sequences. For two sequences
of lengths m and n, where m ≥ n, we present an algorithm with an
output-dependent expected running time of O((m +n�) log log σ +Sort)
and O(m) space, where � is the length of an LCIS, σ is the size of the
alphabet, and Sort is the time to sort each input sequence. For k ≥ 3
length-n sequences we present an algorithm which improves the previous
best bound by more than a factor k for many inputs. In both cases, our al-
gorithms are conceptually quite simple but rely on existing sophisticated
data structures. Finally, we introduce the problem of longest common
weakly-increasing (or non-decreasing) subsequences (LCWIS), for which
we present an O(m + n log n)-time algorithm for the 3-letter alphabet
case. For the extensively studied longest common subsequence problem,
comparable speedups have not been achieved for small alphabets.

1 Introduction

Algorithms that search for the longest common subsequence (LCS) of two input
sequences or the longest increasing subsequence (LIS) of one input sequence date
back several decades.

Formally, given two sequences A = (a1, . . . , an) and B = (b1, . . . , bm) with
elements from an alphabet Σ and with m ≥ n, a common subsequence of A and B
is a subsequence (aj1 = bκ1 , aj2 = bκ2 , . . . aj�

= bκ�
), where j1 < j2 < · · · < j�

and κ1 < κ2 < · · · < κ�. Given one sequence A = (a1, . . . , an) where the ai’s are
drawn from a totally ordered set, an increasing subsequence of A is a subsequence
(aj1 , aj2 , . . . , aj�

) such that j1 < j2 < · · · < j� and aj1 < aj2 < · · · < aj�
.
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A classic algorithm by Wagner and Fischer [12] solves the LCS problem us-
ing dynamic programming in O(mn) time and space. Hirschberg [7] reduced
the space complexity to O(n), using a divide-and-conquer approach. The fastest
known algorithm by Masek and Paterson [9] runs in O(n2/ logn) time. Faster
algorithms are known for special cases, such as when the input consists of per-
mutations or when the output is known to be very long or very short. Hunt and
Szymanski [8] studied the complexity of the LCS problem in terms of match-
ing index pairs, i.e., they defined r to be the number of index-pairs (i, j) with
ai = bj (such a pair is called a match) and designed an algorithm that finds
the LCS of two sequences in O(r log n) time. For a survey on the LCS problem
see [2].

Fredman [5] showed how to compute an LIS of a length-n sequence in opti-
mal O(n logn) time. When the input sequence is a permutation of {1, . . . , n},
Hunt and Szymanski [8] designed an O(n log logn)-time solution, which was later
simplified by Bespamyatnikh and Segal [3]. The expected length of a longest in-
creasing subsequence of a random permutation has been shown (after successive
improvements) to be 2

√
n− o(

√
n); for a survey see [1].

Note that after sorting both input sequences we can in linear time remove
symbols that do not appear in both sequences and rename the remaining symbols
to the alphabet {1, 2, . . . , σ}. We can therefore assume that this preprocessing
stage was performed and hence the size of the alphabet, σ, is at most n. In the
following we let SortΣ (m) denote the time required to sort a length-m input
sequence drawn from the alphabet Σ.

Recently, Yang et al. [14] combined the two concepts and defined a com-
mon increasing subsequence (CIS) of two sequences A and B, i.e., an increasing
sequence that is a subsequence of both A and B. They designed a dynamic pro-
gramming algorithm that finds a longest CIS (an LCIS, for short) of A and B
using Θ(mn) time and space.

Subsequently, Chan et al. [4] obtained an upper bound of O(min{r log σ,
mσ + r} log logm + SortΣ (m)). The number of matches r is in the worst case
Ω(mn), but in some important cases it is much smaller. For instance, when A
and B are permutations of {1, . . . , n} then r = O(n). They then proceeded to
generalize their algorithm to find an LCIS of k ≥ 3 length-n sequences. They
show that this can be done in O(min{kr2, kr log σ logk−1 r} + kSortΣ (n)) time,
where r is again the number of matches, i.e., k-coordinate vectors that contain
an index from each input sequence, all with the same symbol.

1.1 Our Results

In this paper we present three new upper bounds for the LCIS problem. The first
is an output-dependent algorithm which runs in O((m+n�) log log σ+SortΣ (m))
expected time and O(m) worst-case space, where � is the length of an LCIS.
Whenever n = Ω(log log σ + SortΣ (m)/m) and either m = Ω(n log log σ) or
� = o(n/ log logn), it is faster than Yang et al.’s Θ(mn)-time algorithm.
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Table 1. Parameters of the LCIS/LCWIS problems

Symbol Meaning
m,n Lengths of input sequences (we assume m ≥ n).

� Length of the LCIS/LCWIS.
k Number of input sequences.
σ Size of the alphabet (number of different symbols).
r Number of matches in the input sequences.

Table 2. Previous and new results. The new upper bounds apply to both LCIS and
LCWIS.

Previous Results New

k = 2 O(mn) [14] O((m + n�) log log σ + SortΣ (m))

O(min{r log σ, mσ + r} log log m O(m) when σ = 2
+SortΣ (m)) [4] O(m + n log n) when σ = 3

k ≥ 3 O(min{kr2, kr log σ logk−1 r} O(min{kr2, r logk−1 r log log r}
+kSortΣ (n)) [4] +kSortΣ (n))

For a strictly-increasing subsequence we have � ≤ σ. However, in the weakly-
increasing (i.e. non-decreasing) variant, the length of the output can be arbitrar-
ily larger than the size of the alphabet. We show that a longest common weakly
increasing subsequence (LCWIS) can be found in linear time for an alphabet of
size two and in O(m + n logn) time for an alphabet of size three. These results
are interesting because they pinpoint what seems to be a fundamental difference
between the LCS and LWCIS problems. The approach we use cannot be applied
to LCS, and to date, comparable speedups have not been achieved for LCS with
small alphabets.

Finally, we consider the case of k ≥ 3 length-n sequences. The upper bound of
Chan et al. is achieved by two algorithms; the first is a simple O(kr2+kSortΣ (n))
time algorithm and the second is a more complex implementation of the same
approach, which runs in O(kr log σ logk−1 r + kSortΣ (n)) time. We describe an
algorithm which is significantly simpler than the latter and obtain a running
time of O(min{kr2, r logk−1 r log log r} + kSortΣ (n)).

Table 1 provides a list of the symbols used in the paper and Table 2 summa-
rizes the previous and new results.

The rest of the paper is organized as follows. In Section 2 we describe a
dynamic programming algorithm that uses a data structure based on van Emde
Boas trees and runs in expected O((m + n�) log log σ + SortΣ (m)) time and
O(m) space. In Section 3 we present our results on LCWIS with small alphabets,
which use different techniques. Finally, in Section 4 we describe how to use a
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data structure by Gabow et al. [6] to obtain an algorithm for finding an LCIS
or LCWIS of k ≥ 3 sequences, which is simpler and faster than Chan et al.’s
algorithm.

2 An Output-Dependent Upper Bound

2.1 Bounded Heaps

In our output-dependent algorithm we need to access items that carry two integer
parameters: priorities and keys. The basic query will be for the highest-priority
element amongst all those whose keys are below a given threshold. We use a data
structure, subsequently called a bounded heap (BH), that supports the following
operations:

– Insert(H, k, p, d): Insert into the BH H the key k with priority p and asso-
ciated data d.

– DecreasePriority(H, k, p, d): If the BH H does not already contain the key
k, perform Insert(H, k, p, d). Otherwise, set this key’s priority to min{p, p′},
where p′ is its previous priority.

– BoundedMin(H, k): Return the item that has minimum priority among all
items in H with key smaller than k. If H does not contain any items with
key smaller than k, return “invalid”.

The priority search tree (PST) of McCreight [10] supports each of these oper-
ations in O(log n) time. However, the PST also allows deletions, which the BH
is not required to support. Using van Emde Boas trees, we obtain a faster BH
for integer keys:

Lemma 1. There exists an implementation of bounded heaps that requires O(n)
space and supports each of the above operations in O(log logn) amortized time,
where keys are drawn for the set {1, . . . , n}.

Proof (sketch). The data structure applies standard techniques, such as those
described in Section 3 of [6]. We rely on the fact that a snapshot of the heap,
at any point in time, can be represented as a decreasing step function. More
precisely, let BM (s) be the value that would be returned by a BoundedMin(H, s)
query. Then BM (s) ≤ BM(s′) whenever s > s′, i.e., the function BM is non-
increasing in s (see Figure 1).

key k 1 2 3 4 5 6 7 8 9 10
priority 7 10 6 8 5 3 2 4 1 9
BM (k) ∞ 7 7 6 6 5 3 2 2 1

Fig. 1. Example of BM values
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Assume that the keys are s1, s2, . . . with si ≤ si+1 for all i. To answer
BoundedMin queries, it suffices to maintain a search structure that contains
the BM (si) value for every si at which the function BM changes, i.e., BM (si) <
BM (si−1). Then, we answer a BoundedMin(s) by searching the data structure
for the largest key which is at most s and returning its BM value. With a van
Emde Boas tree [11] as search structure, this takes O(log logn) time. The im-
plementation of Insert and DecreasePriority are described in the full version of
this paper. 	


2.2 An O((m + n�) log log σ + SortΣ(m)) Time Algorithm

Our output-dependent algorithm for the LCIS problem begins with a preprocess-
ing step, where it removes from each sequence all elements that do not appear in
the other sequence; this is easy after the sequences are sorted. For every remain-
ing element s, it generates a sorted list Occs that contains ∞ and the indices of
all occurrences of s in B.

Then, in n iterations the algorithm identifies common increasing subsequences
(CISs) of increasing lengths: In iteration i it identifies length-i CISs (using the
results of iteration i− 1). More precisely, for every element aj in A, it identifies
the minimum index κ in B such that there is a length-i CIS which ends at aj in
A and at bκ in B. The index κ is stored in Li[j].

To compute the array L1[1 . . . n], the algorithm traverses A and for each aj ,
sets L1[j] to be the minimum index in the list Occaj , i.e., the earliest occur-
rence of aj in B. Note that due to the preprocessing, there exists such an index
in B.

For i > 1, the ith iteration proceeds as follows. The algorithm traverses A
again, and for every aj, it checks whether aj (together with some bκ) can extend
a length-(i− 1) CIS to a length-i CIS, and if so, identifies the minimum such κ.
For this purpose, the algorithm maintains a bounded heap H. When it begins
processing aj ,H contains all elements at ∈ {a1, . . . , aj−1} for which Li−1[t] �=∞.
The key of at in H is at itself and its priority is Li−1[t], i.e., the minimum index
of the endpoint in B of a length-(i − 1) CIS which ends, in A, at index t. The
algorithm queries H to find the leftmost endpoint (in B) of a length-(i− 1) CIS,
which contains only elements smaller than aj . Let κ′ be this endpoint. Then,
Li[j] is set to the first occurrence of aj in B which lies behind κ′; we prove
that this is the leftmost endpoint in B of a length-i CIS which ends, in A, at
aj . A formal description of the algorithm is given in the full version of this
paper.

We emphasize thatH is built anew for every single pass. The only information
saved between different scans of A and B is maintained in the arrays Li.

The arrays Link1,Link2, . . . are used to save the information we need in order
to construct the LCIS: Whenever we detect that the index pair (j, κ) can extend
a length-(i − 1) CIS which ends at the index pair (j′, κ′), we set Link i[j] = j′.
Finally, if there is a length-(i− 1) CIS which ends at aj , then aj is inserted into
H with priority Li−1[aj ]; it may later be extended into a length-i CIS by some
aj′ with j′ > j.



Faster Algorithms for Computing LCIS 335

Correctness. The correctness of the algorithm relies on the following lemma,
which states that if there is a solution then the algorithm finds it. It is straight-
forward to show that the algorithm will not produce an invalid sequence.

Lemma 2. Let A and B be two sequences that have a length-� CIS which ends
in A at index j and in B at index κ. Then at the end of the iteration in which
i = �, L�[j] ≤ κ.

Proof. By induction on �. For � = 1, the claim is obvious. Assume that it holds
for any length-(�− 1) CIS and that we are given A and B which have a length-�
CIS c1, . . . , c� that is located in A as aj1 , . . . , aj�

and in B as bκ1 , . . . , bκ�
.

By the induction hypothesis, at the end of the i = �−1 iteration, Li−1 contains
entries that are not equal to ∞. Hence, the algorithm will proceed to perform
iteration i = �. Again by the induction hypothesis, L�−1[j�−1] ≤ κ�−1.

Since aj�−1 < aj�
, it is guaranteed that when j = j�, H contains an item with

key aj�−1 , priority κ′ ≤ κ�−1, and d = (j�−1, κ
′). So the BoundedMin operation

will return a valid value. If the value returned is (j�−1, κ�−1), then the smallest
occurrence of a� in B after κ�−1 is not beyond κ�. So the algorithm will set
L�[j�] ≤ κ�. On the other hand, if the value returned is not (j�−1, κ�−1), then it
is (j�−1, κ

′) for some κ′ ≤ κ�−1. Since aj′ < a�, again we get that the smallest
occurrence of a� in B after κ�−1 is not beyond κ�. So the algorithm will set
L�[j�] ≤ κ�. 	


Time complexity. The preprocessing phase takes O(SortΣ (m)) time, to sort
each of the sequences A and B. The construction of the Occs’s takes O(m) time.

The array A is traversed O(�) times. During each traversal, O(n) operations
are performed on the bounded heap, each of which takes O(log log σ) amortized
time, and the Occs lists are queried at most n times. We now sketch a possible
implementation of the Occs lists.

We partition the range {1, . . . ,m} into m/σ blocks of σ consecutive locations
and for every 1 ≤ i ≤ m/σ we denote by bi the block containing locations
(i − 1)σ + 1, . . . , iσ. For each i and each s ∈ Σ we create a data structure
that represents occurrences of s in the block bi and is based on Willard’s y-fast
tries [13]. In addition, for each block we store the first occurrence of s succeeding
the block. To answer a query in Occs, we first identify the block containing the
query point in constant time. We then search for the smallest index larger than
the query point in the y-fast trie for this block in time O(log log σ). If we found
one, we are done. Otherwise, we return the first s succeeding the block, using
the stored information. Initializing the m y-fast tries with a total of m elements
takes O(m log log σ) expected time. Note that this initialization step needs to be
carried out only once.

In total, the main loop takes O(m + n� log log σ) time. Finally, Constructing
the LCIS takes O(�) time. We get that the total expected running time of the
algorithm is O((m + n�) log log σ + SortΣ (m)).

Space complexity. As for space complexity, note that in the main loop we
only use Li−1 and Li. Therefore, we do not need to save the previous L’s. In
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order to construct the LCIS, the algorithm as described requires O(n�) space for
the Link arrays.

However, we can reduce the space complexity to O(m) with the technique de-
veloped by Hirschberg [7] for LCS. First, we run the algorithm once to compute �
(without constructing the Link arrays). Then we run a recursive version of the
algorithm that construct the LCIS. The top recursive level invokes the usual al-
gorithm, except that this time we remember only some of the Link information:
Each match in the second half of a CIS knows the location in A and B of the
��/2�-th match of the CIS that it was appended to. This information is found
in the ��/2�-th iteration of the main loop and propagated by the later iterations
while the L arrays are constructed. Then, we know for every LCIS the location
(i, j) in A and B of the middle match. We select one LCIS and recursively run the
same algorithm to find the length-��/2�− 1 LCIS of (a1, . . . , ai−1) (b1, . . . , bj−1)
and the length-$�/2% LCIS of (ai+1, . . . , an) and (bj+1, . . . , bm). The base case is
when we look for a constant-size LCIS. Then we run the original algorithm in
linear space. To achieve that the time complexity remains unchanged we need
to limit the work done processing B during the recursion. For the preprocessing
for the outermost recursion we need time SortΣ (m). For the remaining recur-
sive calls we do not need to sort the arrays again and the preprocessing time is
O(m). The computation of a middle match considers at most matches involving
n� entries from B. These entries in B can be marked during the computation
of the middle match, and only this subsequence of B is provided to the recur-
sive calls. The thinning of B is done before each recursive call. Let T (m,n, �)
be the running time of the recursion on two sequences of lengths n and m
with a length-� LCIS and m ≤ n�. Assume that the middle match is (n1,m1).
Then T (m,n, �) ≤ n� log log σ + n� + T (m1, n1, �/2) + T (m2, n2, �/2), where
n1 +n2 +1 = n and m1 +m2 +1 ≤ m. This recurrence solves to O(n� log log σ).
The total running time becomes O((m + n�) log log σ + SortΣ (m)). It is easy to
see that the amount of space we need is O(m).
In conclusion, we have shown:

Theorem 1. An LCIS of two sequences of lengths m and n with m ≥ n can be
found in O((m + n�) log log σ + SortΣ (m)) expected time and O(m) worst-case
space where � is the length of the output and SortΣ (m) is the time required to
sort a length-m input sequence.

3 Weakly Increasing Subsequences

We now turn to longest common non-decreasing or weakly increasing subse-
quences (LCWIS) for small alphabets. By simply replacing < by ≤ in the
BoundedMin operation in our algorithm for the LCIS problem, it is straight-
forward to verify that the algorithm solves the LCWIS problem in O((m +
n�) log log σ + Sort(m)) time. But while the LCIS problem can be solved in
linear time for alphabets of bounded size t, simply because the length of the
solution is then also bounded by t, it is not clear how this fact should carry over
to LCWIS, where the output size need not relate to t at all.
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We show how to solve LCWIS for the 2– and the 3-letter alphabet in linear
respectively O(m+n logn) time. This is in contrast to the classic LCS problem,
where already the 2-letter case seems to be essentially as hard as the general
problem. In fact, it seems that LCWIS behaves very different from both LCIS
and LCS.

3.1 Preprocessing

Let us use as our alphabet the Greek letters Σ = {α, β, γ} in their standard
order: α < β < γ. For both tasks, the 2-letter and 3-letter cases, we prepare
arrays NumA,α,NumB,α,NumA,β, . . .,NumB,γ that count the number of αs, βs and
γs, respectively, in prefixes of A and B. For example, NumA,γ [9] contains the
number of γs in A up to position 9 (inclusively). We also create arrays PosA,α

through PosB,γ , which provide us with the position of the ith occurrence of α, β,
or γ in A or B. These arrays can clearly be prepared in O(m) time.

3.2 The 2-Letter Case Is Simple

After the preprocessing, the 2-letter case becomes trivial. For each i, where
0 ≤ i ≤ min{NumA,α[n], NumB,α[m]}, we determine the position of the ith α in
A and B and then the number of βs that come after those positions in the two
sequences. This gives us, for every i, the length of an LCWIS of type αiβ∗. The
longest of them over all i are the LCWISs of the two sequences. The total time
is O(m).

3.3 The Three-Letter Case—Split Diagrams

The näıve extension of the above approach to three letters would have to deal
with a quadratic number of tentative exponent pairs (i, j) for subsequences of
type αiβjγ∗. We somehow need to avoid the testing of all such pairs. The basis
of our near-linear-time algorithm for a 3-letter alphabet are what we like to call
“split-diagrams,” a data structure that stores information about parts of the
given sequences in a compact way.

Assume we were only interested in subsequences of A that have all their αs
up to some fixed position s and all their γs strictly after s. Likewise, we only
consider subsequences in B with all αs up to some position t and all γs after
that. We shall see that under these conditions, with a fixed split between αs and
γs, it is possible to find an LCWIS in linear time.

Say, we try and see how long a sequence we can build if we started with
exactly i many αs. We determine the ith pair of αs from the left and then count
the number of βs in A and B up to the split (s, t). There are p = NumA,β[s] −
NumA,β[PosA,α[i]] such βs in A and q = NumB,β [t]− NumB,β[PosB,α[i]] in B.

Assume p ≤ q for the moment. For the three values i, p, q, we define a
piecewise-linear function fs,t

i consisting of a slope-1 segment from (0, i + p) to
(q − p, i + q) and a horizontal extension from that point to infinity as shown in
the left diagram of Figure 2.
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i + p

i + q

0 q − p

fs,t
i

Fig. 2. Split diagrams

What is the purpose of this function? Assume we tried to find a long common
subsequence by matching exactly j many γs in the two sequences. We would
align these j pairs as far to the right as possible in order to gain as many βs as
possible. So count the number of βs between position s and the leftmost matched
γ in A and likewise in B. Say, there are x such βs in A and y in the respective
part of B. We can now use our function fs,t

i to obtain the length of an LCWIS
of type αiβ∗γj: Compute the surplus z = x− y of unmatchable βs in A on the
right (assuming x ≥ y for the moment) and read off the function value of fs,t

i

for that argument. The value fs,t
i (z) tells us exactly how long a subsequence we

can build to the left of the split if we throw in a surplus of z βs into A.
For example, with no extra βs from the right, we only get min(p, q) = p many

pairs of βs, which together with the i αs yield a sequence of length fs,t
i (0) =

i + p. If we have q − p free βs on the right, we could get a sequence of length
f(q − p) = i + q. More βs would not bring an advantage, which is expressed
in the stagnation of the function f beyond q − p. The case q > p, which we
had originally excluded for cleaner presentation, is simply covered by a function
f̄s,t

i , defined in the obvious way to handle free βs on the right of the split in
sequence B.

Of course, we have not gained anything yet from the function fs,t
i . The trick

is now to draw the functions fs,t
i for all values of i into one diagram. Their point-

wise maximum fs,t, the upper envelope of their plots, indicated in the right of
Figure 2, gives us the best possible length to the left of the split for any surplus
of βs from the right.

Lemma 3. Amongst all subsequences that have all their αs to the left and all
γs to the right of a fixed split (s, t), we can find an LCWIS in linear time.

In order to turn the split technique into a fast algorithm for the general case,
where we do not have any pre-knowledge about good splits, we will have to
refine it a little further. If we know that there is an LCWIS with many βs, we
can apply Lemma 3 immediately.
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Theorem 2. For two length-n sequences over three letters α < β < γ, we can
find an LCWIS that contains at least rn many βs (r ∈ (0, 1)) in O(n/r2) time.

Proof. Put a marker every rn positions in A and also in B. Test all $1/r%2
candidate splits at marker pairs. Any α∗β�rn�β∗γ∗ subsequence must cover at
least one of those pairs with its β-section. Hence we will find it. 	


3.4 A Hierarchy of Splits

In the general case, when we need to make sure that we identify subsequences
with only a few βs, we need a few tricks to further reduce the number of
splits. To this end, first note that we may restrict attention to splits (s, t) that
are given by left-aligned α-matches: The collection S of all splits of the form
(PosA,α[i], PosB,α[i]) suffices to find an LCWIS.

Note that S comes with a natural linear order since no two of its splits cross
and hence, |S| = O(n). Yet, if we drew a complete split diagram for every
split in S, we would still face a quadratic running-time. To reduce the work,
we avoid drawing complete diagrams for all splits but spread information over
splits. Therefore, assign levels to the splits in S: let the level of the ith split
(counting from left) be the index of the least significant bit equal to one in the
binary representation of i. This scheme has the nice property that between any
two splits on the same level there lies another split on a higher level.

Conceptually, our algorithm proceeds in two sweeps over the sequences. In
the first sweep it constructs a split diagram for each of the splits in S. However,
not all left-side configurations are entered into all diagrams. For each integer i,
match the first i αs from A and B and enter the corresponding functions into
the split diagram of the closest split (s, t) to the right on each level. This means
that the effect of starting with exactly i αs is entered into O(log |S|) = O(log n)
diagrams. After all diagrams are prepared, the algorithm makes a second sweep
of the sequences forming all right-aligned matches of γs. For each such partial
subsequence we then query the split diagrams for the closest split to the left on
each level to obtain the maximum length of an LCWIS with these many γs. A
formal description of the algorithm is given in the full version of this paper.

The two sweeps can be implemented to run in O(m+n log n) time as follows.
During the first sweep we simply create a list of O(n log n) quadruples (i, p, q, s)
that represent the contents of the O(n) splitters: s is the identity of a splitter and
(i, p, q) are the parameters that define one of the functions illustrated in the left
of Figure 2. Similarly, during the second sweep we construct a list of O(n log n)
quadruples (i, p, q, s) where (i, p, q) is a query and s is the splitter on which it is
to be performed. After bucket-sorting each list, all queries can be answered by
a simultaneous linear scan of the lists.

Theorem 3. We can find an LCWIS of two three-letter sequences of lengths m
and n, with m ≥ n, in O(m + n logn) time.
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4 Multiple Sequences

In this section we consider the problem of finding an LCIS of k length-n se-
quences, for k ≥ 3. We will denote the sequences by A1 = (a1

1, . . . , a
1
n), A2 =

(a2
1, . . . , a

2
n), . . ., Ak = (ak

1 , . . . , a
k
n). A match is a vector (i1, i2, . . . , ik) of indices

such that a1
i1

= a2
i2

= · · · = ak
ik

. Let r be the number of matches. Chan et al. [4]
showed that an LCIS can be found in O(min(kr2, kr log σ logk−1 r)+kSortΣ (n))
time (they present two algorithms, each corresponding to one of the terms in
the min). We present a simpler solution which replaces the second term by
O(r logk−1 r log log r).

We denote the ith coordinate of a vector v by v[i], and the alphabet symbol
corresponding to the match described by a vector v will be denoted s(v). A
vector v dominates a vector v′ if v[i] > v′[i] for all 1 ≤ i ≤ k, and we write
v′ < v. Clearly, an LCIS corresponds to a sequence v1, . . . , v� of matches such
that v1 < v2 < · · · < v� and s(v1) < s(v2) < · · · < s(v�).

To find an LCIS, we use a data structure by Gabow et al. [6, Theorem 3.3],
which stores a fixed set of n vectors from {1, . . . , n}k. Initially all vectors are
inactive. The data structure supports the following two operations:

1. Activate a vector with an associated priority.
2. A query of the form “what is the maximum priority of an active vector that

is dominated by a vector p ?”

A query takes O(logk−1 n log logn) time and the total time for at most n
activations is O(n logk−1 n log logn). The data structure requires O(n logk−1 n)
preprocessing time and space.

Each of the r matches v = (v1, . . . , vk) corresponds to a vector. The priority of
v will be the length of the longest LCIS that ends at the match v. We will consider
the matches by non-decreasing order of their symbols. For each symbol s of the
alphabet, we first compute the priority of every match v with s(v) = s. This
is equal to 1 plus the maximum priority of a vector dominated by v. Then, we
activate these vectors in the data structure with the priorities we have computed;
they should be there when we compute the priorities for matches v with s(v) > s.

The algorithm applies to the case of a common weakly-increasing subsequence
by the following modification: The matches will be considered by non-decreasing
order of s(v) as before, but within each symbol also in non-decreasing lexico-
graphic order of v. For each match, we compute its priority and immediately
activate it in the data structure (so that it is active when considering other
matches with the same symbol). The lexicographic order ensures that if v > v′

then v′ is in the data structure when v is considered.

Theorem 4. An LCIS or LCWIS of k length-n sequences can be computed in
O(r logk−1 r log log r) time, where r counts the number of match vectors.

5 Outlook

The central question about the LCS problems is, whether it can be solved in
O(n2−ε) time in general. It seems that with LCIS we face the same frontier. Our
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new algorithms are fast in many situations, but in general, we do not obtain
subquadratic running-time, either.

On the other hand, LCWIS seems to behave very different from the other two
problems. Our result shows that it behaves somewhat like a mixture of LCS and
LCIS. While already the 2-letter problem is unsolved for LCS, finite alphabets
are trivial for LCIS. With LCWIS now, we present near-linear-time solutions for
alphabets with up to three letters, while it is unclear whether similar results can
be obtained for all finite alphabets.
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Abstract. Let s = s1..sn be a text (or sequence) on a finite alphabet
Σ. A fingerprint in s is the set of distinct characters contained in one of
its substrings. Fingerprinting a text consists of computing the set F of
all fingerprints of all its substrings and being able to efficiently answer
several questions on this set. A given fingerprint f ∈ F is represented by
a binary array, F , of size |Σ| named a fingerprint table. A fingerprint,
f ∈ F , admits a number of maximal locations (i, j) in S, that is the
alphabet of si..sj is f and si−1, sj+1, if defined, are not in f . The total
number of maximal locations is L ≤ n|Σ|+1. We present new algorithms
and a new data structure for the three problems: (1) compute F ; (2)
given F , answer if F represents a fingerprint in F ; (3) given F , find all
maximal locations of F in s. These problems are respectively solved in
O((L+n) log |Σ|), Θ(|Σ|), and Θ(|Σ|+K) time - where K is the number
of maximal locations of F .

1 Introduction

We consider a finite ordered alphabet, Σ, and s = s1..sn a sequence of n letters,
si ∈ Σ. The set of all sequences over Σ is denoted Σ∗. The rank of each letter
α in Σ is given by fΣ(α) that ranges between 0 and |Σ| − 1. A sequence v ∈ Σ∗

is a factor or substring of s if s = uvw. The fingerprint, C(s), of a sequence s is
the set of distinct letters in s. By extension, Cs(i, j) is the set of distinct letters
in si..sj . A fingerprint is represented below by a binary table of F of size |Σ|. If
s contains the character α, F [α]← 1, otherwise F [α]← 0.

Definition 1. Let C be a set of letters of Σ. A maximal location of C in s =
s1..sn is an interval [i, j], 1 ≤ i ≤ j ≤ n, such that

(1) Cs(i, j) = C; (2) if i > 1, si−1 �∈ Cs(i, j); (3) if j < n, sj+1 �∈ Cs(i, j)

We denote by F the number of distinct fingerprints and by L the number of max-
imal locations of all fingerprints of F . In this paper, given a sequence s, we are
interested in three main algorithmic problems: 1. Compute the set F of all finger-
prints in s; 2. Given a fingerprint table F , find if F represents a fingerprint in F
or not; 3. Given a fingerprint table F , find all the maximal locations of F in s.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 342–353, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Efficient answers to these questions have many applications in information
retrieval, computational biology and natural language processing [1]. The input
alphabet Σ is considered to be the alphabet of the input sequence, thus |Σ| ≤ n.
The best actual algorithms solve Problem 1 in Θ(min{n|Σ| log |Σ|, n2}) time.
The bound Θ(n|Σ| log |Σ|) is that of the algorithm of Tsur in [4] that we present
in detail. The Θ(n2) bound is obtained using the algorithm of Didier also pre-
sented in [4], although this algorithm was first presented with O(n2 logn) and
Ω(n2) time complexities in [3]. The logn gain between these two versions has
been obtained using a lowest common ancestor algorithm (LCA). Problem 2
is solved in O(|Σ| log n) time and Problem 3 in O(|Σ| logn + n) time in [1, 4].
Surprisingly enough, and this a strong motivational factor for this paper, these
complexities are independent of the sizes of F and L, although many sequence
families have few fingerprints or few maximal locations.

In this paper we present new algorithms and a new tree structure for solving
these three problems. Problem 1 is solved in O((|L|+ n) log |Σ|) time. As |L| ≤
n|Σ|+ 1, our algorithm is, at worst, as efficient as that of Tsur, but much more
efficient on many sequence families. It can however be slower than that of Didier
when |Σ| = Ω(n/ logn). Although, even in this case, the real complexity of our
algorithm depends of the number of maximal locations that can be much less
than n|Σ|+1. Our algorithm also has the advantage of being simple to implement
in its real worst case complexity. Problem 2 is optimally solved in Θ(|Σ|) using
a new tree structure, improving the fastest algorithm by logn. Finally, Problem
3 can be solved either in Θ(|Σ|+ K) time - where K is the number of maximal
locations of F - using Θ(|F| log |Σ|+ |L|) space. To maintain continuity with the
previous approaches, our algorithms improve a naming technique introduced in
[1] and [4]. The paper is organized as follows. The original naming technique is
presented first in Section 2. In Section 3 we present our new naming algorithm.
In the next Section 4 we detail our tree data structure and the algorithmic
improvements it permits. We do not provide any proof in this extended abstract.
The interested reader should refer to [5] for details.

2 Fingerprints and Naming Technique

In this section we recall the naming technique introduced in [1] and then im-
proved by Tsur in [4]. The naming technique is used to give a unique name to
each fingerprint of a substring of s. We first describe the naming technique and
then we explain how to use it to name all fingerprints of s.

Naming Technique. We assume for simplicity, but without loss of generality,
that |Σ| is a power of two. We consider a stack of log |Σ| + 1 arrays on top
of each other. Each level is numbered from 0. The lowest, called the fingerprint
table, contains |Σ| names that might be only [0] or [1]. Each other array contains
half the number of names that the array it is placed on. The highest array only
contains a single name that will be the name of the whole array. Such a name is
called a fingerprint name. Fig 1 shows a simple example with |Σ| = 8.
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[7]
[5] [6]

[2] [2] [3] [4]
[1] [0] [1] [0] [1] [1] [0] [0]

Fig. 1. Naming example

The names in the fingerprint table are only [0] or [1] and are given. Each cell,
c, of an upper array represents two cells of the array it is placed on, and thus
a pair of two names. The naming is done in the following way: for each level
going from the lowest to the highest, if the cell represents a new pair of names,
give this pair a new name and assign it to the cell. If the pair has already been
named, place this name into the cell. In the example in Fig. 1, the name [2] is
associated to ([1], [0]) the first time this pair is encountered. The second time,
this name is directly retrieved.

Naming All Fingerprints. A change in the lowest level of this array, that is
changing a [1] to a [0] or a [0] to a [1] causes, at most, log |Σ|+ 1 changes in the
names on the path from the modified cell to the root. This property is used in the
original algorithm of [1]. Their idea is to enumerate all fingerprints containing
a fixed number k of different characters by shifting two indices 1 ≤ i ≤ j ≤ |s|
on the sequence. The algorithm first identifies a pair (i0 = 1, j0) such that
si0 ..sj0 contains exactly k distinct characters. This fingerprint is named using
the previous technique. Then the two indices are shifted to (i1, j1) that points
the beginning and the end of the next substring containing exactly k different
characters and with a different fingerprint than the previous one. The key point
of the algorithm of [1] is that this new fingerprint only differs from the previous
one in two positions in the lowest array. Updating the array of names thus
requires, at most, 2 log |Σ| + 2 changes. Complexity. Each change in the name
array requires checking whether a pair of names has already received a name
or not. At each level there are, at most, n new names, and thus searching for
the pair can be done in logn time using a balanced tree. For each value of k,
initializing the array of names requires O(|Σ| log |Σ|) time. Then each new pair
(at most n when reading the sequence) requires, at most, 2 global changes in the
whole array, each requiring O(log |Σ| logn). Thus, for each value of k, building
the names requires O(n log |Σ| logn) time and as k = 1..|Σ|, the whole algorithm
takes O(n|Σ| log |Σ| logn) time.

In [4] Tsur presented a faster algorithm to build all names. The algorithm
still performs |Σ| iterations in a similar way to the previous one, but fills the
names level by level. The list of changes in each level over the whole sequence is
recorded in an ordered list. This list is sorted using an O(n) sort algorithm (for
instance radix sort) and new names are given according to this sort. These new
names are placed in the original list (the order of this list is important) that is
used to build the initial list of the next level. A pseudo-code of the main part of
the algorithm (slightly modified) can be found in [5].
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We number the level from 1, the lowest, to log |Σ|+1. For each k, 1 ≤ k ≤ |Σ|,
the initialization of the ordered list L1 at level 1 is performed by reading the
sequence. This list records the changes at level 1. In order to build it, we move two
pointers on the sequence in exactly the same way as in the previous algorithm.
When the first pair (i0 = 1, j0) is encountered, the values in the fingerprint table
A (the array of level 1) is registered in L1 under the form of pairs {A[i], i} for
i = 0..|Σ|−1. The two pointers are then moved and for each new pair of pointers
there are only two modifications in the array A. For each such modification, if
A changed in position j, 0 ≤ j ≤ |Σ| − 1, this change is recorded by adding
{A[j], j} to the end of L1. At the end of this process, the ordered list L1 records
all changes to be performed at level 1.

This initial list is then used to compute all names of the cells in the second
level. A table, FT , of |Σ| names temporary records the pair of names to be
coded. A list L′

1 of pairs of names is built in the following way. The first |Σ|
elements of L1 are read to initialize FT . The list L′

1 is initialized with |Σ|/2
pairs built by reading FT . Then, the remaining of the list L1 is read and for
each new element {[a], j} (1) the table FT is changed in position j by FT ← [a]
and (2) the pair {(FT [2�j/2�], FT [2�j/2�+ 1]), j/2} if added to the end of L′

1.
This means that in cell j/2 of the second level a name has to be given to the
name pair (FT [2�j/2�], FT [2�j/2�+ 1]).

At this point L′
1 records the list of changes to be made in the cells at level 2

and the pairs of names that must receive a name. The pairs in this list are then
sorted in lexicological order (through a radix sort) and a new name is assigned to
each distinct pair of names (n1, n2). A new list L2 is built from L′

1 (keeping the
initial order of L′

1 and thus of L1) by replacing each pair with its new name. For
instance, if {([1], [0]), 1} was in the list L′

1 and if the pair ([1], [0]) received the
new name [2], then L2 now contains {[2], 1}. The list L2 is the input at level 2 and
the same process is repeated to obtain the names in the third level, and so on.
The last list Llog |Σ|+1 contains the names of all fingerprints containing exactly
k distinct characters in the original sequence. Complexity. The initialization of
L1 is Θ(n) time. Then a linear sort of at most Θ(n) elements is performed for
every level. As there are log |Σ| + 1 levels, the process is Θ(n log |Σ|) time. As
k = 1..|Σ|, the whole complexity is Θ(n|Σ| log |Σ|) time. This saves logn over
the previous algorithm.

3 New Algorithm to Compute All Fingerprints

The faster algorithm of Section 2 is Θ(n|Σ| log |Σ|) time. This complexity is
independent of the number of maximal locations, L, although this is one of
the main parameters of the fingerprinting problem. The naming algorithm we
present depends on L and its complexity is O((L + n) log |Σ|) time. As L is, at
most, n|Σ| + 1, but is much less on many sequence families, our algorithm is
faster than or as efficient as previous ones.

Moreover, the fingerprint tree we present in the next section permits efficient
searching for a given fingerprint to appear in the sequence. However, it requires
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Fig. 2. A (schematic) step of algorithm Fingerprint changes that is the first phase
for computing all fingerprints. We add the character a in table TN1.

all fingerprint names to be globally built on the same name subsets, which is
not the case of the names generated by the two algorithms of Section 2. It also
requires these names to be sorted in the lexicographical order of their fingerprint
tables. We present in this section a new naming algorithm that fulfills these
requirements.

The main idea of the second algorithm of Section 2 is to record the changes
in the fingerprint tables before computing names. We reuse this approach but
we (a) process the whole sequence once before computing all names and (b)
record only changes corresponding to maximal locations. Point (a) is achieved
by keeping for each position i in the sequence a virtual list of all fingerprint tables
of substrings si..sj , i ≤ j ≤ n, beginning in i. This list is virtual in the sense
that instead of keeping a list of fingerprint tables we only record all changes in
the fingerprint table in i. At the beginning all fingerprint tables are considered
empty, that is full of |Σ| zeros. Point (b) consists in considering only positions
that correspond to maximal locations.

Our algorithm runs in two phases. The first phase identifies on the sequence
the fingerprints that must be encoded. The second phase builds names for all
these fingerprints. The sequence is thus read once.

We assume that without loss of generality below the input sequence does not
contain two consecutive repeating characters. Such a sequence is named simple.
The segments of repeating characters (say α) of any input sequence can be
reduced to a unique occurrence of α. The two sequences have the same sets,
F , and the same set, L, up to small changes in the bounds. These changes
can, however, be simply retrieved in Θ(1) per maximal location. The reducing
algorithm is Θ(n). This technical trick really simplifies the algorithms we present
by removing many straightforward technical cases.
First Phase. Let s = s1..sn be a sequence of characters over Σ. For each
character α ∈ Σ we define Rα

s as the indice in s of the rightmost occurrence
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Fingerprint changes(s = s1..sn)
1. Let TN1[1..n] a table of n lists
2. TN1[i] are all initialized to an empty list
3. L ← (0)
4. For i=1..n Do
5. α ← si

6. add {[1], fΣ(α)} on top of TN1[i]
7. j ← top element of L
8. While j > 0 and sj �= α Do
9. add {[1], fΣ(α)} on top of TN1[j]
10. j ← previous element in L
11. End of while
12. If j > 0 Then /* there is a indice of an α in L */
13. remove j from L
14. End of if
15. add i on top of L
16. End of for

Fig. 3. Computing all fingerprint changes as a first phase of the new naming procedure

of α in s, and we fix Rα
s = 0 if there is no such occurrence. We define the last

occurrence list Ls as being the sorted list (in increasing order) of all indices in
s of character last occurrences. We add an arbitrary 0 (if not already there)
before all indices; Notice that the last indice of Ls must be n. Thus, formally,
Ls = (0, Rα1

s , Rα2
s , . . . , Rαk

s = n).
Suppose now that Cs(i, j) is known for all pairs 1 ≤ i ≤ j ≤ |s|. When

concatenating a letter α to s, we aim to compute all Csα(i, j) for 1 ≤ i ≤ j ≤ |sα|.

Lemma 1. Let s = s1..sn, si, α ∈ Σ and Ls = (0, Rα1
s , Rα2

s , . . . , Rαk
s = n).

The following properties hold:

1. For all pairs 1 ≤ i ≤ j ≤ n, Csα(i, j) = Cs(i, j).
2. Let z such that Ls[l − 1] < z ≤ Ls[l], 0 < l ≤ k. Then Csα(z, |sα|) =

Cs(Ls[l], |s|) ∪ {α}.
3. If Rα

s > 0, let 0 < z ≤ Rα
s . Then Csα(z, |sα|) = Cs(z, |s|).

The first phase of the algorithm reads the sequence s one character after the other.
Assume that we have already read and processed the characters up to position j.
For each position k = 1..j a list encodes the series of fingerprint changes to code
for C(k, j). We read the character α = sj+1. According to lemma 1 the algorithm
goes down the indice list of last character occurrences until either (a) the same
character α is encountered (points 2 and 3 of lemma 1), or (b) the beginning of the
list is reached (point 2 of lemma 1). For each indice i touched in this list, we add the
character α to the list representingC(i, j) in order to obtain C(i, j+1). The list of
last occurrences is then updated by removing the indice of the previous occurrence
of α and adding j + 1 as the new indice of α. The first phase of the algorithm is
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called Fingerprint changes and its pseudo-code is given in Figure 3. A step of
the algorithm is shown in Figure 2.

Second Phase. The second phase is based on the second algorithm of section
2. It remains to name all fingerprints appearing as a prefix of each list in TN1.
This is done with the algorithm Name all lists for which the pseudo-code is
given in Figure 4. In a similar way to the second algorithm of Section 2, log |Σ|
iterations are performed for each fingerprint array level.

In each iteration, each list in TNk is read to build a corresponding list of
cell changes in level k + 1 (lines 5-19). A new list table TN ′

k is thus built and
records all these new lists. The pair of names in TN ′

k are sorted altogether in
lexicographic order through a radix sort (line 23). A new name is then given to
each different pair (line 24). A new list table TNk+1 is then built by copying
TN ′

k, but replacing each name pair with its new name (line 25). This list is the
input list of the next iteration of the general loop (lines 2-27).

Name all lists(TN1[1..n] initial table of fingerprint changes)
1. ninit1 ← [0]
2. For k = 1.. log |Σ| Do
3. FTk ← name table of size |Σ|/2k−1 all initialized to ninitk

4. Let TN ′
k[1..n] be a table of n lists.

5. For i = 1..n Do
6. initialize TN ′

k[i] to the empty list
7. L ← first element of TNk[i]
8. While L exists Do
9. {[a], j} ← L
10. FTk[j] ← [a]
11. add {(FTk[2�j/2�], FTk[2�j/2� + 1]), j/2} to end of TN ′

k[i]
12. L ← next element in TNk[i]
13. End of while
14. L ← first element of TNk[i]
15. While L exists Do
16. {[a], j} ← L
17. FTk[j] ← ninitk

18. L ← next element in TNk[i]
19. End of while
20. End of for
21. Sl ← list of all cell pairs in TN ′

k

22. add the pair (ninitk, ninitk) to Sl
23. sort Sl in lexicographical order
24. give new names for each different pair in Sl
25. build TNk+1 by copying TN ′

k but replacing each pair by its new name
26. ninitk+1 ← name of the pair (ninitk, ninitk)
27. End of for

Fig. 4. Naming all fingerprints in all lists of TN1
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Special care is required for the initialization process of the temporary table
FT of size |Σ|/2k−1. The table is initialized once (line 3) and reinitialized after
coding each list of cell changes in TN ′

k. However, for complexity issues, this re-
initialization is performed in an amount of time proportional to the size of this
list by simply erasing the changes that have been made (lines 14-19).

The result of the first iteration of the Name all lists algorithm on the TN1
table is given in Figure 5.

{([1],[0]),0}

{([1],[0]),1}

1 2

{([1],[0]),1}

{([1],[0]),0}

3

{([1],[0]),0}

{([1],[0]),1}

{([1],[0]),2}

{([1],[1]),2}

{([1],[0]),3}

{([1],[1]),0}

{([1],[1]),3}

{([1],[1]),1}

4

{([1],[0]),1}

{([1],[0]),2}

{([1],[1]),2}

{([1],[0]),3}

{([0],[1]),0}

{([1],[1]),3}

{([1],[1]),1}

{([1],[1]),0}

5

{([1],[0]),2}

{([1],[1]),2}

{([1],[0]),3}

{([0],[1]),0}

{([1],[1]),3}

{([0],[1]),1}

{([1],[1]),0}

6

{([0],[1]),2}

{([1],[0]),3}

{([0],[1]),0}

{([1],[1]),3}

{([0],[1]),1}

{([1],[1]),0}

7

{([1],[0]),3}

{([0],[1]),0}

{([1],[1]),3}

8

{([0],[1]),0}

{([0],[1]),3}

{([1],[1]),3}

Fig. 5. First columns of the table TN1 of lists of cell changes

The last sort of the table TNlog |Σ| records the fingerprint names. The
Name all lists algorithm obviously insures that these names are sorted in
the lexical order of their fingerprint tables.

Lemma 2. Let s = s1..sn, si, α ∈ Σ and Ls = (0, Rα1
s , Rα2

s , . . . , Rαk
s = n). Let

z be the indice of Rα
s in Ls. Then for all indices l in Ls such that l > z, interval

[l + 1..|s|] is a maximal location. If z = 0, [1..|s|] is also a maximal location.

Theorem 1. Our algorithm names all distinct fingerprints of s in O((L + n)
log |Σ|) time.

It remains to prove that L is bounded by n(|Σ|+ 1).

Proposition 1. The number L of maximal locations is bounded by n(|Σ|+ 1).

Corollary 1. Our naming algorithm is Θ(n|Σ| log |Σ|) worst case time.

Computing all Maximal Locations. In order to efficiently solve problem 3,
we associate each fingerprint name with its maximal locations. Our approach is to
compute the maximal locations during the first phase of the previous algorithm
and maintain them through the second phase.

Proposition 2. Let s = s1..sn and [i, j], 0 < i ≤ j ≤ n, be a maximal location
in s of a fingerprint f ; let w = s1..sj and Lw = (0, Rα1

w , Rα2
w , . . . , Rαk

w = j).
There exits a unique p in Lw such that f = C(p + 1, j) = ∪R

αh
w >p {αh}.

We modify the algorithm Fingerprint changes to associate each new max-
imal location with its alphabet that is to be coded in the second phase of the
naming. Each time a new j (line 7) except the first one is encountered at it-
eration i (lines 4-16), the maximal location (insured by lemma 2) [j + 1, i − 1]
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is associated with its alphabet, which is, according to proposition 2, the last
but one element in the column corresponding to the indice after j in Ls1...si−1 .
Notice that according to proposition 2 a final iteration of the loop i (lines 4-16)
is required to compute the maximal locations appearing at the end of the se-
quence. In this last iteration, the maximal location [j + 1, n] is associated with
the last element in the column corresponding to the indice after j in Ls1...sn . This
technical add-on could also be fixed by adding a last virtual character to the in-
put sequence. After the first phase, names are built using the Name all lists
algorithm, slightly modified for keeping track in all cell change lists of the asso-
ciated maximal locations. A last phase is necessary to group the set of maximal
locations of each fingerprint name.

4 Fingerprint Tree

Once the fingerprints have been named by one of the two algorithms of Section
2, searching for a given fingerprint to appear in the sequence can be carried out
in O(|Σ| log n) time by a similar process to that in the first algorithm, that is,
filling the level from bottom to top and checking for each cell if a name has
already been given to a pair of cells [1].

This searching could be made O(|Σ|) expected time using perfect hashing on
name pairs [2] of each level. The hash tables would require O(F log |Σ|)) expected
memory space and could be built in O(F log |Σ|)) expected time. However, in
the worst case, these hash tables could require O(F2 log |Σ|)) memory space and
be built in O(F2 log |Σ|)) time.

We propose another approach for solving this problem in O(|Σ|) worst case
time, requiring in the worst case O(F) additional memory space and O(F log |Σ|)
additional preprocessing time. For these purposes we present a new tree structure
of size O(F) that permits searching for a given fingerprint in O(|Σ|) time. This
tree can be built in O(F log |Σ|) time. The searching phase requires the names to
be given from the same set of names for all the k = 1..|Σ| iterations. Therefore,
the names in this tree cannot be generated using one of the first algorithms of
Section 2. The construction itself requires the fingerprint names to be sorted
in the lexicographical order of their corresponding fingerprint tables, which is a
property of the naming algorithm we presented. The fingerprint tree is a binary
tree in which each fingerprint name is a leaf. Edges are labeled with a triplet
{DT, l, r} where DT is either (i) a single name [1] or [0] if one of l or r is equal
to 1 and the other to 0; or (ii) a pair of names (nl, nr) and 1 ≤ l ≤ |Σ| and
1 ≤ r ≤ |Σ| two lengths. The pair of names (nl, nr) is related to l and r by being
the lowest pair of consecutive names at the same level that cover the segment
from the beginning of l to the end of r in the name array of one of the leaves in
the subtree. Figure 6 shows an edge label.

Building the Tree. We denote by name tree the tree formed by recursively
developing all name pairs deriving from a given name.

Definition 2. Let F1 and F2 be two fingerprint tables. The Longest Common
Prefix (lcp) of F1 and F2 is the longest equal sub-table beginning F1 and F2.
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rl

nl(
n r )

Fig. 6. Label of a transition. The pair (nl, nr) is the lowest consecutive pair of names
covering the segments l and r.

By extension, we denote the lcp of two fingerprint names the lcp of the fingerprint
tables they encode. Let n1 . . . nF be the fingerprint names whose fingerprint
tables are sorted in lexicographic order (requirement). The construction of the
tree is done in O(F log |Σ|) time in three phases. (i) Compute for every two
consecutive names ni, ni+1 their lcp in LCP [i, i + 1]. (ii) Build a skeleton of
the tree containing all necessary nodes but in which each edge is labeled by an
interval [k..l]. This interval denotes that the label of the edge must code for the
interval [k..l] in any fingerprint table of the leaves in the subtree starting at this
edge. (iii) Build the label of each edge. We now detail these three steps.

Computing the Lcp. We begin with the two given names and a current lcp fixed
to |Σ|. The lcp of two fingerprint names can be computed by simultaneously
going down each name tree. At each step of the algorithm we compare two
names. If these names are equal, the resulting lcp is the current lcp. Otherwise,
each name corresponds to two other names (unless they are [0] or [1]). If their
first name (the left part) is equal, then the lcp is the size of this left part (current
lcp /2) plus the lcp of the second (right part). Otherwise the lcp is the current
lcp plus the lcp of the first part. A pseudo-code of a recursive version of the
algorithm can be found in [5].

Lemma 3. Let n1 and n2 be two fingerprint names. The lcp of n1 and n2 can
be computed in O(log |Σ|) time.

The table LCP is built by F − 1 iterations of algorithm lcprec. The whole com-
plexity of this first phase is thus O(F log |Σ|) time.

Building a Skeleton Tree. We build a skeleton of the fingerprint tree by adding
a branch and a leaf for each name ni. This construction is illustrated in Fig. 7.

The initial tree is a single root. This branch is plugged at depth LCP [i− 1, i]
to the branch previously built for the name ni−1. This is done by going up in
the tree from the last leaf created for ni−1 (denoted L(ni1)) to the root. On this
path, we isolate the first node q with depth d less than or equal to LCP [i− 1, i].
If d is exactly LCP [i − 1, i], then we just plug a new branch to q. Otherwise
we create a new node p with depth LCP [i − 1, i] that becomes a new child of
q. This node p now has two children, one corresponding to the previous subtree
of q. The other is the new branch that is terminated with the new leaf L(ni)
from where the next step begins. A pseudo-code of this construction is given in
Fig. 8. In this code, the depth of any L(ni) is fixed to |Σ|.
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L(n  )

L(n  )

L(n  )

L(n  )

L(n  )

L(n  )

L(n  )

L(n  )

L(n  )1

1

2

3

1

L(n  )2

1

2

4

3

Fig. 7. Building the skeleton of the fingerprint tree. Backward dashed edges illustrate
searching for the position of the new branch.

Build skeleton tree(n1 . . . n|F|, LCP )
1. depth(root) ← 0
2. branch L(n1) on root
3. current ← root
4. prev ← L(n1)
5. For i = 2..|F| Do
6. While depth(current) > LCP [i − 1, i] Do
7. prev ← current
8. current ← father(current)
9. End of while
10. If depth(current) = LCP [i − 1, i] Then
11. branch L(ni) on current
12. Else
13. cut the edge (current, prev) with newnode
14. depth(newnode) ← LCP [i − 1, i]
15. branch L(ni) on newnode
16. current ← newnode
17. End of if
18. prev ← L(ni)
19. End of for

Fig. 8. Computing the skeleton tree

The complexity of building the skeleton tree is O(F) time since each node is
at most visited twice, once when created and at most once when going up the
nodes to search for the position of the new branch.

Building Edge Labels. Once the skeleton tree has been built, each node has a
depth associated. Each edge from node q to node p corresponds to the segment
[depth(q)+1..depth(p)] in each fingerprint array of each leaf in the subtree. This
segment permits efficient coding of each edge in O(log |Σ|) time. Coding all edges
of the fingerprint tree thus requires O(F log |Σ|) time.

Searching for a Fingerprint in the Tree. The coding of each edge of the
fingerprint tree has an important property for the time complexity of the search.

Lemma 4. Let {(nl, nr), l, r} be the label of an edge in a fingerprint tree. The
level of the pair of consecutive names (nl, nr) is O(log(l + r)).
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([5],[3])

[0]

([2],[2])

[1]

([5],[3])

[0]

([2],[2])

[1] [0]

([5],[3])

[0]

([2],[2])

[1] [0]

([5],[3])

[0]

([2],[2]) [1]

Fig. 9. Decoding the edge label {(5, 3), 3, 1}

This property permits the decoding of an edge of the fingerprint tree in a time
proportional to the length of this edge. The idea is to traverse the tree formed
by the pair of names in a prefix order. Figure 9 illustrates this traversal. As the
height of this tree is logarithmic in the length of the segment, the total complexity
of decoding an edge {(nl, nr), l, r} is O(l + r) time. Therefore, searching in the
fingerprint tree for a fingerprint given in the form of a fingerprint table of length
|Σ| is O(|Σ|) time. The algorithmic results of this section can be stated in the
following theorem.

Theorem 2. Building a fingerprint tree takes Θ(|F| log |Σ|) time and space.
Searching for a given fingerprint, F , in this tree takes Θ(|Σ|) time.

Considering the maximal locations of a given fingerprint F , two main options
exist. The first is to search for the maximal locations once F is known to appear
in the sequence. This can be performed by reading the sequence in Θ(n) time
[1]. No extra memory requirement is necessary. The second is to attach to each
leaf in the tree the set of its maximal locations computed using the modified
naming algorithm of 3. This allows searching for all maximal locations of F in
Θ(|Σ| + K) time, where K is the number of maximal locations of F . An extra
Θ(L) memory is, however, necessary to record all the maximal locations.
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Abstract. Two strings parameterize match if there is a bijection that
transforms the first string character by character into the second string.
This problem has been studied in both one and two dimensions but the
research has been centered on developing algorithms with good worst-
case performance. We present algorithms that solve this problem in sub-
linear time on average for moderately repetitive patterns.

1 Introduction

In the parameterized matching problem a text and a pattern is given and the
task is to find all substrings of the text that can be transformed into the pat-
tern by using a bijection on the alphabet. This problem was first considered by
Baker [5] with an application to software maintenance. Another application of
parameterized matching is plagiarism detection [11].

Later the parameterized matching problem has been investigated in two di-
mensions by Amir et al. [1] and Hazay et al. [14]. This two-dimensional problem
has a fairly obvious application in image searching. Parameterized matching can
find an image even if its color map has been changed. Other related work includes
parameterized matching of multiple patterns [16], parameterized matching with
mismatches [13] and approximate parameterized search [7].

Previous research of parameterized matching has been centered in developing
algorithms with good worst-case performance. Some effort to develop an algo-
rithm fast on average was made by Baker [6] who developed an algorithm based
on the famous Boyer-Moore algorithm [8] but the average case complexity was
not analyzed. In fact the algorithm uses a linear preprocessing with respect to
the length of the text and thus loses the good average case complexity of the
Boyer-Moore algorithm.

In this paper we introduce new algorithms that are sublinear on average. We
present practical solutions for both the one-dimensional and two-dimensional
parameterized matching problems. We analyze the time complexities of the al-
gorithms for random texts and moderately repetitive patterns, and present ex-
perimental results for certain interesting classes of patterns.

2 Definitions

Let S and S′ be equal size strings of characters drawn from the alphabet Σ. S
and S′ parameterize match (or p-match for short) if there exists a bijection π such
� Work by Jorma Tarhio was supported by Academy of Finland.

M. Lewenstein and G. Valiente (Eds.): CPM 2006, LNCS 4009, pp. 354–364, 2006.
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that for each i S[i] = π(S′[i]). So strings ’abac’ and ’bcba’ p-match because the
bijection π(a) = c, π(b) = a, π(c) = b transforms ’bcba’ into ’abac’. On the other
hand strings ’aabb’ and ’acbb’ do not p-match because a bijection cannotmapboth
’a’ and ’c’ to ’a’ and thus there is no bijection that can transform ’aabb’ to ’acbb’.

Let us now define the parameterized matching problem. In the one dimensional
case, we are given a text T [1..n] and a pattern P [1..m] in alphabet Σ and the task
is to find all substrings of the text that p-match with the pattern. In the two-
dimensional case the input is a text T of size n×n and a pattern P of size m×m.
The task then is to find all those m×m substrings of the text that p-match to P .

Two disjoint alphabets were used in the original definition of the parameter-
ized matching problem by Baker. One of the alphabets was a fixed alphabet like
in the standard string matching problem and the other one was a parameterized
alphabet like our Σ. Both the pattern and the text could contain characters
from both alphabets but characters from the fixed alphabet were required to
match exactly. We decided to use only the parameterized alphabet because that
is natural for the two dimensional problem of image search and we wished to
give a unified treatment to both the one dimensional and two dimensional cases.

Many of the algorithms make use of so called predecessor strings. A string S
is transformed into a predecessor string as follows. If a character in position i
has occurred earlier in the string in position j the position i in the predecessor
string contains i− j. Otherwise the predecessor string contains 0. For example
the string ’aabac’ is transformed into 0-1-0-2-0. Now it can be fairly easily seen
that if two strings p-match, their predecessor strings match exactly [5].

Another way to transform the two strings so that the transformed strings
will match exactly if the original strings p-matched, is to transform them into
restricted growth functions (RGF) [19]. A string is transformed into a RGF by
replacing all occurrences of the first occurring character with 1, the second one
with 2 and so on. We call the resulting string the RGF string. For example the
string ’aabac’ is transformed into 1-1-2-1-3. The properties of restricted growth
functions have been studied previously. In [19] it is shown that there are bn

different RGFs of length n where bn is the n:th Bell number. Kreher and Stinson
[19] also give an algorithm for ranking RGFs.

To classify the repetitiveness of a pattern we introduce the concept of q-
repetitiveness. A pattern is q-repetitive if for all substrings of length q there is a
character that occurs at least twice in the substring. Thus the pattern “aaaa” is
2-repetitive while the pattern “aabb” is 3-repetitive but not 2-repetitive because
the substring “ab” contains no repetition. Similarly a two-dimensional pattern is
q-repetitive if for all substrings of size q × q there is a character that occurs at
least twice in the substring.

3 Earlier Solutions

3.1 One-Dimensional Algorithms

In her original paper Baker [5] gave a suffix tree based algorithm for finding
parameterized matches. The algorithm first preprocesses both the text and the
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pattern by transforming them into predecessor strings. After this preprocessing
the problem can almost be solved by conventional exact string matching algo-
rithms. The only remaining problem is that if we are considering a window on
the text, the predecessor pointers might point to positions outside the window.
Baker proposed modifications to the suffix tree construction algorithm that take
care of this problem. The construction of the suffix tree was further improved
by Kosaraju [18] and Cole and Hariharan [9].

In addition Baker [6] has proposed a Boyer-Moore based algorithm. Also this
algorithm preprocesses both the text and the pattern into predecessor strings.
Baker then uses a modification of the TurboBM algorithm [10] for finding the
p-matches. The algorithm has a good worst case performance but because of the
preprocessing the sublinearity of the Boyer-Moore type algorithms is lost unless
several searches are made with the same text.

Amir et al. [2] have proposed an algorithm for the p-matching problem based
on the Knuth-Morris-Pratt algorithm [17] for standard string matching. They
also prove that their algorithm is optimal if the alphabet is unbounded.

3.2 Two-Dimensional Algorithms

The two-dimensional parameterized matching problem was first considered by
Amir et al. [1] in the context of function matching. They give an algorithm
that preprocesses the text into a predecessor representation suitable for two-
dimensional strings and then apply a conventional two-dimensional algorithm.
Hazay et al. [14] give another algorithm for two-dimensional parameterized
matching that is based on the “duel-and-sweep” paradigm. Both of these al-
gorithms are quite complicated and neither one of them has been implemented
as far as we know.

4 Our Algorithms

In this section we develop Boyer-Moore type algorithms that do not preprocess
the text and thus the preprocessing does not prevent average case sublinearity.
Our algorithms use q-grams to achieve longer shifts. The use of q-grams is a well
known technique to improve the efficiency of the exact Boyer-Moore-Horspool
(BMH) algorithm [15] in case of small alphabets, see e.g. [3].

In this section we first describe the one-dimensional algorithm with several
variations and then we discuss the two-dimensional algorithm.

4.1 Three One-Dimensional Algorithms

Our one-dimensional algorithms are derived from the Horspool variant of the
Boyer-Moore algorithm. In the BMH algorithm the text is processed in windows
of size m. The last character of the window is read first. If it does not match the
last character of the pattern the window is shifted based on it. Otherwise the
window is checked for a match after which a shift is made. In the parameterized
matching problem the last character alone never tells that there cannot be a
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match and even the last two characters usually do not indicate that the window
cannot match the pattern. Therefore we form a q-gram of the last q characters
of the window and make the shift based on it.

The preprocessing phase of the BMH algorithm constructs the shift table
which is consulted in the matching phase to find out the length of the shift
based on the last character of the text window. The shift is calculated so that
after the shift the last character of the previous window will be aligned with the
last occurrence of that character in the pattern.

In the parameterized matching problem the shifts are made based on the last
q-gram of the window and we wish to make a shift that aligns it with the last
q-gram of the pattern that p-matches it. As described in Section 2 two strings
p-match if their predecessor strings match or equally if their RGF strings match.
Thus we wish to index the table with the predecessor or RGF strings. An obvious
solution is using the rank of the RGF strings as indexes. We call this algorithm
Parameterized Boyer-Moore-Horspool with RGF or PBMH-RGF for short.

The problem with this approach is that calculating the rank of an RGF takes
quite a lot of time and this needs to be done for each inspected window. Another
alternative for calculating the indexes is to transform the q-grams into predeces-
sor strings and then reserving enough bits for each character of the predecessor
strings in the index. The first character of the predecessor string is always 0
so we need not reserve any space for it. The second character is either 0 or 1
because the character in the original string is either the same as the first or not.
The third character is 0, 1 or 2 with similar reasoning. This means that the last
bit of the index is reserved for the second character of the predecessor strings,
the next two bits are reserved for the third character, and so on. We call this
algorithm Fast Parameterized Boyer-Moore-Horspool or FPBMH for short. This
approach wastes some space but the indexes are much faster to calculate. The
RGF approach needs a table of size bq where bq is the q:th Bell number while
the FPBMH algorithms needs a table of size 2s where s =

∑q
i=2$log2 i%. Table 1

shows the number of entries in the shift table for both approaches for different
values of q.

In a random text the distribution of the predecessor strings is very steep. The
most common predecessor string of length q, 0q, has a high probability if the
alphabet is reasonably large while the least common predecessor string, 01q−1,
has a probability close to 0. This means that we might need to use quite large
q-grams which is a problem for FPBMH. On the other hand hashing the q-grams
cleverly might let us use even larger q-grams than the PBMH-RGF algorithm can

Table 1. The number of entries in the shift table for PBMH-RGF, FPBMH and
PBMH-Hash for various values of q

Algorithm q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10
PBMH-RGF 2 5 15 52 203 877 4,140 21,147 115,975
FPBMH 2 8 32 256 2,048 16,384 131,072 2,097,152 33,554,432
PBMH-Hash 2 4 7 11 16 22 29 37 46
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handle. We tried hashing the q-grams by transforming them first to predecessor
strings and then adding up all the positions of the predecessor string. With this
hashing scheme the most common q-gram is the only one hashed to 0 and thus
the hashing might even out the distribution of the q-grams. This modification
of the algorithm called PBMH-Hash needs a table of size q(q− 1)/2+1. Table 1
includes the space requirement for this approach also.

4.2 A Two-Dimensional Algorithm

The two-dimensional algorithm is based on the two-dimensional string matching
algorithm by Tarhio [20] which is an extension of the BMH algorithm. In the
algorithm by Tarhio the text is divided into $(n−m)/m%+1 strips each of which
has m columns. Each strip is then searched for an occurrence with a BMH like
algorithm and each potential match is verified with the trivial algorithm.

In each position the character at the lower righthand corner is investigated. If
this character occurs in the lowest row of the pattern, there is a potential match
which has to be verified. These are found with the help of two tables, M and N .
M [x] is the column where the character x occurs first in the lowest row of the
pattern and N links the occurrences of x in the lowest row of the pattern. The
pattern is shifted down the strip with another table D. D[x] is the occurrence
of x that is closest to the lowest row of the pattern but not in the last row. If x
does not appear in the pattern, D[x] is m.

The algorithm can be modified to read several characters and calculate the
shifts based on all these characters. If we read q×q characters (a two-dimensional
q-gram), the text will then be divided into $(n−m)/(m− q+1)%+1 strips each
containing m− q + 1 columns.

This algorithm which uses q-grams can fairly easily be extended to parame-
terized matching in a similar fashion as the BMH algorithm was extended for
one-dimensional parameterized matching. The resulting algorithm proceeds ex-
actly like the algorithm by Tarhio but the read q-grams are transformed into
predecessor strings and these are then used to index the tables. As with the one-
dimensional case, there are several ways to transform the predecessor strings into
indexes. We implemented the transformation the same way as in the FPBMH
algorithm.

5 Analysis

We first analyze the worst and average case complexity of the one-dimensional
algorithms and then turn to the two-dimensional case. When analyzing the av-
erage case complexity we assume the standard random string model where each
character of the text is chosen independently and uniformly.

5.1 The One-Dimensional Algorithms

The preprocessing phase of the algorithms consists of initializing the shift table
which takes time proportional to the number of entries in the table. In addition
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to preprocess the pattern we need to keep track of where the different symbols
of the alphabet occurred previously and thus the preprocessing of the q-grams
of the pattern takes O(σ + mq) time where σ is the size of the alphabet. As
stated earlier the number of entries in the shift table is bq for PBMH-RGF, 2s for
FPBMH and q(q−1)/2+1 for PBMH-Hash where bq is the q:th Bell number and
s =

∑q
i=2$log2 i%. Therefore the preprocessing phases of PBMH-RGF, FPBMH

and PBMH-Hash have time complexities O(bq +σ+mq), O(qq−1 +σ+mq), and
O(q2 + σ + mq) respectively.

The matching phases of PBMH-RGF and FPBMH algorithms have the same
time complexities. The only difference in the algorithms is in handling of the
q-grams but both algorithms do this in O(q) time and thus the resulting com-
plexities will be the same. The hashing in the PBMH-Hash algorithm slightly
changes the time complexity of the algorithm but the difference is negligible.

In the worst case the one-dimensional algorithms find a match in each position.
This means that for each window the whole window is read and compared to
the pattern so the worst case complexity of the algorithms is O(nm).

Let us then analyze the average case complexity. In order to do that we
need to consider the probability distribution of the different predecessor strings
corresponding to random q-grams. Let σ denote the size of the alphabet and
let z be the number of zeros in the given predecessor string. Each of the zeros
presents a different character in the original string and each non-zero element
of the predecessor string is defined by the zeros. Then the probability that the
given predecessor string matches a random string is:

P (z, q) =
σ!

σq · (σ − z)!

The probability of a window to be checked is the probability that the last
q-gram of the window p-matches the last (or m − q:th) q-gram of the pattern.
Thus the expected number of checked windows is

C = (n−m + 1) · P (zm−q, q)

where zm−q is the number of zeros in the last q-gram of the pattern. Now if we
can choose q so that zm−q < q the probability P (zm−q, q) is low enough and
there are only a few checked windows so the scanning time will dominate.

Let us now turn to analyzing the scanning time. We estimate the expected
length of shift in the algorithm with

S ≥ (m− q + 1) · (1−P (zmax, q))m−q +
m−q∑
i=1

i ·P (zm−q−i, q) · (1−P (zmax, q))i−1

where zmax is the maximum number of zeros in the q-grams of the pattern. Note
that this estimate for S is not quite accurate because the consecutive overlapping
q-grams of the pattern are not independent. However the difference from the
accurate value is insignificant.

If we now choose q to be the smallest q such that the pattern is q-repetitive,
the probability P (zmax, q) will be low enough. Then the expected length of shift
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approaches the value m − q + 1 so on average O((qn)/(m − q + 1)) characters
are read. Furthermore if q < (m + 1)/2 the algorithm is sublinear on average.

Note that all patterns are not q-repetitive for any q < (m+ 1)/2 and in these
cases we cannot guarantee the sublinearity of the algorithm. However parame-
terized matching is most often applied to searching for repetitive patterns so in
most practical cases the sublinearity can be guaranteed.

The above analysis holds also if we have both a fixed and a parameterized
alphabet. In fact the fixed alphabet makes the problem easier. In this case a
sufficient condition for sublinearity is that each q-gram of the pattern contains
repetition or at least one character from the fixed alphabet.

5.2 The Two-Dimensional Algorithm

Let us first consider the complexity of the preprocessing phase. The two-dimen-
sional algorithm uses the strategy of the FPBMH algorithm when calculating
the indexes of the shift table. Thus the number of entries in the shift table is 2s

where s =
∑q2

i=2$log2 i%. As with the one-dimensional algorithms we also need to
keep track of the previous occurrences of the alphabet symbols and thus a table
of size σ is needed for that. The time complexity of the preprocessing phase of
the two-dimensional algorithms is thus O((q2)q2−1 + σ + m2q2).

The worst case for the two-dimensional algorithm occurs when all positions
of the text match. The worst case time complexity is then clearly O(n2m2).

For the average case complexity we will need to estimate the number of
checked windows. There are a total of (n−m + 1)2 windows so on average

C = (n−m + 1)2 · P (zm−q,m−q, q
2)

of them are checked where zm−q,m−q is the number of zeros in the q-gram of the
pattern that starts at position (m−q,m−q). If zm−q,m−q < q2 , P (zm−q,m−q, q

2)
is low enough and there will only be a few checked windows. Therefore the
scanning time will dominate.

Let us next consider the expected length of shift, S. The estimate is very
similar to the one-dimensional case:

S ≥ (m− q + 1) · (1− P (zmax, q
2))(m−q)·(m−q+1)

+
m−q∑
i=1

i · P ( min
1≤x≤m−q+1

zm−q−i,x, q
2) · (1− P (zmax, q

2))(i−1)·(m−q+1)

where zmax is the maximum number of zeroes in the predecessor strings corre-
sponding to any of the q-grams of the pattern. As with the one-dimensional case,
if we now choose q to be the smallest value such that the pattern is q-repetitive,
zmax < q2, P (zmax, q

2) is low enough and S approaches m− q+1. So on average
O((n−m)/(m−q+1) ·q2n/(m−q+1)) = O(q2n2/(m−q)2) characters are read.
Therefore if the pattern is q-repetitive for a suitable q then the algorithm will
be sublinear on average. Again some patterns are not q-repetitive for a suitable
q and in these cases the sublinearity of the algorithm cannot be guaranteed.
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6 Experimental Results

The analysis predicts that the value of q should be chosen to be the smallest q
such that the pattern is q-repetitive. To validate this we ran our algorithms with
several patterns and a randomly generated text with alphabet size 256. Figures
1, 2 and 3 show the proportion of read characters and the runtime for some
patterns. The proportion of read characters is calculated as lookups divided by
the length of the text so for a sublinear algorithm this value is less than one.
All these tests were run on a computer with a 1.0 GHz AMD Athlon processor,
512 MB of memory and 256 kB on-chip cache. The computer was running Linux
2.4.22. The algorithms were written in C and compiled with gcc 3.2.2.

Figure 1 shows that choosing a larger q with a highly repetitive pattern does
not make the algorithms perform faster. Using 2-grams already guarantees long
enough shifts and thus assembling larger q-grams just wastes time. Figure 2
presents a completely different scenario. Here the pattern is not q-repetitive
for any q and as can be seen we cannot choose large enough q to guarantee the
sublinearity of the algorithms. In Figure 3 the situation is something in between.
The pattern is 3-repetitive but not 2-repetitive. As can be seen the value q = 3
is optimal in this situation and using larger q-grams only makes the algorithms
do more work.

Table 2 shows a runtime comparison of our one-dimensional algorithms and a
Boyer-Moore-Horspool algorithm (PBMH) which we use as a reference method.
The PBMH algorithm preprocesses the text into a predecessor string and then
matches the pattern against the text. The preprocessing of the text is included
in the figures but the preprocessing of the pattern is not. As can be seen our
algorithms are faster when the pattern contains a substantial amount of rep-
etition. However when the pattern contains no repetition the algorithm that
preprocesses the text is faster.

To demonstrate the performance of our algorithms in a more realistic scenario
we ran some tests with DNA data. The text was a chromosome from the fruit
fly genome (20 MB) and the patterns were chosen randomly from the text. Our
algorithms were fastest when using 6-grams. Figure 4 shows the averages over
50 runs. As can be seen our algorithms have characteristics typical to Boyer-
Moore based algorithms. With longer patterns the shifts get longer and thus the
algorithms are faster.

We ran also some tests with the two-dimensional algorithm. We used two
different texts. One was a randomly generated text where the characters were
drawn from an alphabet of 256 characters. The other one was a picture of a map
from the photo archive of Gimp-Savvy.com [12]. We examined the proportion of
read characters for three different patterns of size 8× 8. The first one contained
repetitions of one character. The second pattern contained no repetitions and
the third contained a map symbol which contains some repetition. Table 3 shows
the results of the tests run with the two-dimensional algorithm using 3-grams.
As can be seen the algorithm performs well when the text or the pattern contains
repetitions.



362 L. Salmela and J. Tarhio

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  6  8  10  12  14

P
ro

po
rt

io
n 

of
 r

ea
d 

ch
ar

ac
te

rs

q

PBMH-RGF
FPBMH
PBMH-Hash

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 2  4  6  8  10  12

R
un

tim
e 

(s
)

q

PBMH-RGF
FPBMH
PBMH-Hash

(a) (b)

Fig. 1. Proportion of read characters (a) and runtime (b) for the pattern
“aaaaaaaaaaaaaaaa” in a random text
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Fig. 2. Proportion of read characters (a) and runtime (b) for the pattern
“qwertyuiopsadfgh” in a random text
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Fig. 3. Proportion of read characters (a) and runtime (b) for the pattern “aassddssaa”
in a random text
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Table 2. Runtime comparison of the one-dimensional algorithms in a random text

Algorithm P=aaaaaaaaaaaaaaaaaa P=qwertyuiopasdfgh P=aassddssaa
PBMH 0.08 s 0.29 s 0.08 s
PBMH-RGF 0.02 s 0.74 s 0.04 s
FPBMH 0.01 s 0.58 s 0.03 s
PBMH-Hash 0.02 s 0.70 s 0.03 s
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Fig. 4. Proportion of read characters (a) and runtime (b) for a text of DNA data and
patterns of varying length. Our algorithms used 6-grams in these tests.

Table 3. Proportion of read characters for two different texts and several different
patterns. All the patterns are of size 8 × 8.

Text Single-character pattern Pattern with no repetitions Pattern with repetitions
Random 0.25 7.90 0.25
Map 1.14 0.25 0.33

7 Conclusions and Further Work

We have presented practical Boyer-Moore type algorithms for one and two-
dimensional parameterized matching. We have showed that these algorithms
are sublinear on average for q-repetitive patterns and confirmed this analysis
with experiments.

Parallel to our work and independently of us Fredriksson and Mozgovoy [11]
have also developed sublinear algorithms for one-dimensional parameterized
matching. Their algorithms are based on the shift-or [4] and backward DAWG
matching (BDM) [10] algorithms. As further work we need to compare our al-
gorithms also with these algorithms.

The analysis assumes the random string model which might not be applicable
especially with two-dimensional texts which are typically images. It is very char-
acteristic of such data that the probability of two nearby characters being the
same is very high. We need to further investigate these typical characteristics of
texts and analyze our algorithms in this context. We also need to make further
tests on real data to confirm the usefulness of our algorithms.
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Abstract. Weighted sequences have been recently introduced as a tool
to handle a set of sequences that are not identical but have many local sim-
ilarities. The weighted sequence is a “statistical image” of this set, where
the probability of every symbol’s occurrence at every text location is given.

We address the problem of approximately matching a pattern in such
a weighted sequence. The pattern is a given string and we seek all loca-
tions in the set where the pattern occurs with a high enough probability.
We define the notion of Hamming distance and edit distance in weighted
sequences and give efficient algorithms for computing them. We compute
two versions of the Hamming distance in time O(n

√
m log m), where n

is the length of the weighted text and m is the pattern length. The edit
distance is computed in time O(nm) and O(nm2), depending on the edit
distance definition used. Unfortunately, due to space considerations, the
edit distance details are left to the journal version.

We also define the notion of weighted matching in infinite alpha-
bets and show that exact weighted matching can be computed in time
O(s log2 s), where s is the number of text symbols having non-zero prob-
ability. The weighted Hamming distance over infinite alphabets can be
computed in time min(O(kn

√
s + s3/2 log2 s), O(s4/3m1/3 log s)).

1 Introduction

Recently, a new pattern matching paradigm was introduced. Weighted sequences
was initially motivated by trying to reconcile the differences between the genomic
sequences of different individuals. The great effort of the genome project, that is
now winding down, has been to construct a “consensus sequence” of the human
genome. Individual human genomes are very similar therefore such a “generic”
consensus sequence can be achieved. Nevertheless, clearly no two individuals have
the same DNA sequence. Several methods have been proposed for dealing with
this polymorphism. One proposed idea is that of the Position Weight Matrix
(PWM for short) [14]. The PWM is a more precise encoding that takes into
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account the relative frequency of each nucleotide. The weighted sequence of length
m (the PWM of a set of strings of length m) is a |Σ| ×m matrix that reports
the frequency of each symbol in finite alphabet Σ (nucleotide, in the genomic
setting) for every possible location.

Originally, PWM sequences were used for relatively short sequences, e.g. bind-
ing sites or sequences resulting of multiple alignments. Iliopoulos et al. [11, 9, 3, 10]
considered building very large Position Weight Matrices that correspond, for ex-
ample, to complete chromosome sequences that have been obtained using a whole-
genome shotgun strategy [15]. By keeping all the information the whole-genome
shotgun produces, it should be possible to ferret out information that has been
previously undetected after being faded during the consensus step. This concept
is true for other applications where local similarities are thus encoded. It is there-
fore necessary to develop adequate algorithms on weighted sequences, that can be
an aid to the application researchers for solving various problems they are liable
to encounter.

In this paper we develop algorithms for approximate search on weighted se-
quence. We handle the case of Hamming distance (edit distance is deleted from
this paper due to page limits). In approximate matching it is assumed that there
are errors in the data and matches with a small number of errors are sought. In
classical pattern matching it usually does not matter if the assumption is that the
text is error-free and the errors are all in the pattern or vice-versa, since there is
a symmetry in most edit operations. It turns out that in weighted matching (as
in, e.g., hypertext matching [2]) there is a distinction between cases. Assuming
mismatch errors in the weighted text, there is always an approximate match at
every location, depending on the number of errors. However, assuming a “clean”
text and mismatch errors in the pattern, there may be locations where a match
can not ever be found, no matter what the cost. We show efficient algorithms
for computing the Hamming distance at every location for both models.

The contributions of this paper are as follows.

1. We formalize two possible definitions for Hamming distance in weighted se-
quences. Since we are dealing with a new paradigm, this formalism is very
important. Special care should be given for a definition that captures natural
traits that will be useful in applications.

2. We provide the first efficient algorithms for computing the Hamming distance
on weighted sequences. Our algorithms run in time O(n

√
n logm), where

the length of the weighted text is |Σ|n and the length of the pattern is
m. This algorithm is achieved via a non-trivial bounded divide-and-conquer
algorithm, coupled with some insights we prove on weighted sequences.

3. We formalize two possible definitions for edit distance in weighted sequences,
and provide dynamic programming algorithms for the edit distance. One de-
finition leads to a O(nm), algorithm and the other has a O(nm2) algorithm.
This treatment is left for the journal version due to page limitations.

4. We define weighted matching over infinite alphabets and provide the first ef-
ficient algorithm to solve the problem. Our algorithm runs in time O(s log2 s)
and uses superimposed coding techniques.
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5. We provide the first known efficient algorithms for computing Hamming
distance of a pattern in a weighted text over infinite alphabet. Our algorithm
runs in time min(O(kn

√
s + s3/2 log2 s), O(s4/3m1/3 log s)).

2 Preliminaries

Definition 1. A weighted sequence T = t0, ..., tn over alphabet Σ is a sequence
of sets ti, i = 0, ..., n. Every ti is a set of pairs (sj , πi(sj)), where sj ∈ Σ and
πi(sj) is the probability of having symbol sj in location i. Formally,

ti = {(si, πi(sj)) | sj �= s� for j �= �, and
∑

j

πi(sj) = 1}.

For a finite alphabet Σ = {a1, ..., a|Σ|} we can view a weighted sequence as a
|Σ| × n matrix T of numbers in [0, 1], where T [j, i] = πi(aj). For the rest of this
paper we assume a finite fixed alphabet Σ.

Definition 2. P = p0, ..., pm is a solid sequence over alphabet Σ if pi ∈ Σ, i =
0, ...,m.

We say that solid pattern P (or simply pattern P ) occurs in location i of
weighted text T with probability at least α if

∏m
j=0 πj(pj) ≥ α.

Definition 3. The exact weighted matching problem is defined as follows:

INPUT: Weighted text T over alphabet Σ, solid pattern P over alphabet Σ, and
probability α ∈ [0, 1].
OUTPUT: All locations i in T where pattern P occurs with probability at least α.

Using convolutions, as introduced by Fischer and Paterson [8], as well as the
observation that Solid pattern P occurs in location i of weighted text T with
probability at least α if

∑m
j=0 log πj(pj) ≥ logα. we can efficiently solve the exact

weighted matching problem in time O(|Σ|n logm) = O(n logm). The idea is to
use the Fast-Fourier-Transform (FFT) [6] to compute the sum of the log proba-
bilities for every pattern symbol separately. This can be done in time O(n logm),
in a computational model with word size O(logm).

We are now ready for the Hamming distance in weighted sequences problem.

3 Hamming Distance – Error in Text

Computing the Hamming distance between two (solid) strings assumes that a
number of symbols were replaced. The Hamming distance is the number of these
replaced symbols. In the case of weighted subsequences it makes a difference
where these symbols were replaced. The simpler case, which we consider in this
section, assumes replacement in the text. The assumption is that some text
symbols are erroneous and, in fact, there should have been a probability 1 for
the symbol that happens to match the pattern, rather than the probabilities
that appear in the text.

Note that by this definition, allowing enough mismatches can guarantee a
match at every location, no matter how close to 1 we choose α.
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Definition 4. The Weighted Hamming Distance with Mismatches in the Text
problem is the following:

INPUT: Weighted text T over alphabet Σ, solid pattern P over alphabet Σ, and
probability α ∈ [0, 1].
OUTPUT: For every location i in T , the minimum k such that if k text probabil-
ities were changed to 1 then pattern P would occur at location i with probability
at least α.

There does not seem to be a natural way to use the powerful constraint that the
numbers in the weighted text are probabilities. However, it seems like we can
solve the problem without it. We reduce the weighted Hamming distance with
mismatches in the text problem to the minimum ignored mask bits problem. The
idea is to consider a text whose elements are non-positive numbers, and a pattern
which is a mask, i.e. its symbols are 0’s and 1’s. Suppose we are interested in
finding out, for each text location i, the sum of the text numbers that are aligned
with 1’s in the pattern.

Clearly this is a simple convolution of the pattern and text. However, we add
a complication, we also have a non-positive integer α and for every text location
i we seek the smallest number of mask bits that, if set to 0, would make the sum
of text numbers that are aligned with (the remaining) 1’s in the pattern, be no
less than α.

We formally define the problem.

Definition 5. The Minimum Ignored Mask Bits problem is the following:
INPUT: Solid text T of length n + 1 whose elements are non-positive integers,
solid pattern P of length m + 1 over alphabet {0, 1}, and integer α ≤ 0.
OUTPUT: For every location i in T , the minimum k such that if k pattern bits
are changed from 1 to 0, and M ′ is the pattern resulting from those k changes,
then

∑m
j=0 T [i + j]M [j] ≥ α.

Claim. The weighted Hamming distance with mismatches in the text problem
is linearly reducible to the minimum ignored mask bits problem.

Proof: Given weighted text T in matrix format, where the value in T [i, j] is
log πj(si), let solid text T ′ be a linear listing of matrix T in column-major order,
i.e. T ′ = T [1, 0], T [2, 0], T [3, 0], ..., T [|Σ|, 0],
T [1, 1], T [2, 1], T [3, 1], ..., T [|Σ|, 1], ...,
T [1, n], T [2, n], T [3, n], ..., T [|Σ|, n]. Let M be a string of length |Σ|(m + 1) over
{0, 1} where M is the concatenation of strings B(p0), B(p1), ...B(pm). B(a) is
defines as follows. Let a = s�, where Σ = {s1, s2, ..., s|Σ|}. Then B(a) is a bit
string of length Σ, where the �-th element is 1 and all other elements are 0.

Example: If Σ={A,B,C,D} and P = BBAD, then M = 0100 0100 1000 0001.

Clearly, the reduction is linear. It is also clear that turning a 1 bit in the mask M
to 0, is equivalent to changing the probability in the text position corresponding
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to it to 1. Thus a solution to the minimum ignored mask bits problem will
provide the solution to the weighted Hamming distance with mismatches in the
text problem. 	


Algorithm’s Idea
We consider two limited cases and show an easy efficient solution for each of
them. Subsequently, we use a bounded divide-and-conquer strategy, that splits a
general input into the two straightforward cases, and thus solves each separately.

The first special case is one where the domain of numbers appearing in the
text is bounded, i.e. there are only r different numbers that can appear as text
elements.

Since we are interested in finding the smallest number k of mask 1 bits that,
when turned to 0 will make the sum greater than α, and since all numbers are
non-positive, the following observation is crucial to the algorithm:

Observation 1. For any location i where
∑r

j=1 Si,j < α, the solution to the
minimum ignored mask bits problem can be found by sequentially adding num-
bers that participate in the sum starting from the ones that contribute least to
decreasing it, i.e. the largest (n1). Stop adding them when the remaining sum is
no longer less than α.

This elimination would normally require O(m) work per location. However, since
there are only r different values, and we know how many instances of each value
participate in the sum at location i (Si,j/nj), we can do this in time O(r) per
location.

Algorithm’s Time: O(rn logm)
A second special case we consider is when there is no bound on the number of
different text elements, but we do know that for every text substring of length
m there are at most r elements greater than α. This means that for location i,
there is no point in even considering all elements except those r.

Algorithm’s Time: O(nr)
We are now ready to present our divide-and-conquer algorithm. Assume first,
that the text length is at most 2m. This is a standard assumption and can be
made without loss of generality (see e.g. [1]). We now sort all text elements and
split them into r blocks of size at most 2|Σ|mr each.

The idea is to use Algorithm Bounded Alphabet on the blocks, and Algorithm
Bounded Relevant Numbers to find the border of the numbers participating in
the sum within the block that tips under α. This can be done with a twist on
Abrahamson’s idea and produce the final algorithm.

Algorithm’s Time: The time for this algorithm is O(rf(m)) +O(mm
r ), where

f(m) is the time it takes to compute the block information. We do it by convo-
lutions, as in Algorithm Bounded Alphabet so f(m) = m logm. The optimal r
is then the one where r =

√
m

log m .. Thus the algorithm’s time is O(n
√
m logm).



370 A. Amir et al.

4 Hamming Distance – Error in Pattern

The situation currently addressed is one where the weighted text is assumed
to be error-free. The pattern, however, may have replacemet errors, i.e. it is
possible that the “true” pattern symbol was replaced by another. This situation
is different in a number of ways from the one considered in section 3.

The first difference between the two Hamming distance definitions is the fol-
lowing. The errors in the text definition can guarantee a match at every location,
no matter how close to 1 we choose α. This is done simply by allowing enough
mismatches. At the worst case m+ 1 mismatches give a probability of 1. This is
not the case if we assume errors in the pattern.

We formally define our problem.

Definition 6. The Weighted Hamming Distance with Mismatches in the Pat-
tern problem is the following:

INPUT: Weighted text T over alphabet Σ, solid pattern P over alphabet Σ, and
probability α ∈ [0, 1].

OUTPUT: For every location i in T , the minimum k such that if k pattern
symbols were replaced to create new pattern P ′ then pattern P ′ would occur at
location i with probability at least α.

The difficulty presented by this definition is that we put the weight of change on
the pattern, rather than the text. When a text is changed, by definition 4, that
change improves the product of every match that this text location participates
in. However, a pattern change may improve the probability in one occurrence
but actually make it worse in another.

One may be tempted to say that even when a match is defined on the pat-
tern, we can still tell which probability is always best for a given text location
- the maximum probability at that location. This maximum probability will ac-
tually improve (or at least will never hurt) the probability of any location that
it participates in. Perhaps, then, it is possible to sort the text by largest to
smallest product improvement. Then it may be possible that the algorithm in
section 4 could still be modified to find the largest possible sum of log proba-
bilities and check if it is good enough. The idea would be the following. First
make a replacement in the text location that introduces the largest unmatched
text probability. Use that replacement only if it is necessary. Proceed by intro-
ducing the next largest, etc. The problem is that replacing elements in sorted
order from largest to smallest does not guarantee the smallest number of re-
placements.

The following lemma does guarantee an order of replacement. Assume that
the weighted text is given in matrix format T where T [j, i] = πi(aj), where
Σ = {a1, ..., a|Σ|, and πi(aj) is the probability of having symbol aj at text
location i. Let max(T [∗, i]) denote the value max{T [j, i] | j = 1, ..., |Σ|}.
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Lemma 1. Consider text element T [j, i] where max(T [∗,i])
T [j,i] is the largest. Let P be

a pattern where aj ∈ P . Then the largest increase in the product of probabilities
as a result of a single symbol replacement occurs by replacing every aj in the
pattern that matches text location i by a�, where T [�, i] ≥ T [j, i], j = 1, ..., |Σ|.

Proof: Let q be the product of probabilities at location i. Assume that the
pattern has aj at location i + �, � ≤ m, but that symbol ah has the largest text
probability at location i + �. Then replacing aj by ah would cause the product
of the probabilities at location i to be (q/T [j, i+ �])T [h, i+ �]. This means that
the largest change will occur when T [j,i+�]

T [h,i+�] is largest. 	


Conclude: Let T [j, i] be such that max(T [∗,i])
T [j,i] is the largest. If we replace text

location [j, i] by the value max(T [∗, i]), the result will be equivalent to replacing
every aj in the pattern that matches text location i by a�, where T [�, i] ≥
T [j, i], j = 1, ..., |Σ|. This leads to the idea that if we replace text elements by
descending order of max(T [∗,i])

T [j,i] (where necessary) we will guarantee the minimum
number of replacements at every location.

Algorithm’s Idea: Sort all 2m|Σ| text elements in non-increasing order of
the ratio max(T [∗,i])

T [j,i] . As in section 3, split the text elements into O( m√
m log m

)
groups of size O(

√
m logm). For each text location i calculate the probabilities

O( m√
m log m

) times. In the first time calculate the probability of the pattern in
the text without replacements. In the second time calculate the probability of
the pattern with replacing every element in the group of highest ratios. In the
jth time, calculate the pattern probability with replacing every element in the
j − 1 highest ratio groups.

Each such calculation can be done by FFT in time O(n logm). In addition,
we can calculate by FFT the number of replacements done in each location for
the groups involved. Finally, in a manner similar to the one shown in section 3,
we can fine tune the exact number of replacements for each text location i in
time O(n

√
m logm).

A detailed description of the algorithm will appear in the journal version.

5 Weighted Matching over Infinite Alphabets

The original motivation of weighted sequence matching was from computational
biology, where the alphabets are quite small (size 4 for DNA and RNA, and
size 20 for amino acids). Nevertheless, from a conceptual point of view, nothing
prohibits the alphabet from being very large, or even infinite. The techniques
for weighted matching need to be completely different over infinite alphabets,
since we may no longer assume that all symbols appear as inputs. Rather, we
only input the symbols whose probability is non-zero.

Our formal definition of weighted matching (Definition 1) did not assume a fi-
nite alphabet. We now provide an efficient algorithm for exact weighted matching
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over infinite alphabets. The key observation for our efficient algorithm utilizes
subset matching. Subset matching was defined by Cole and Hariharan [4], as a
tool to solve the tree pattern matching problem [12, 7] but meanwhile has proven
to be an interesting problem in and of itself. The input of the problem is a text
array of n sets totaling s elements and a pattern array of m sets totaling s′

elements. There is a match of the pattern in a text location if every pattern set
is a subset of the corresponding text set. Formally,

Definition 7. The Subset Matching Problem is defined as follows.
INPUT: Text T = T1, T2, ..., Tn of sets Ti ⊆ Σ, i = 1, ..., n and pattern P =
P1, P2, ..., Pm of sets Pi ⊆ Σ, i = 1, ...,m, where Σ is a given alphabet.
OUTPUT: All locations i, 1 ≤ i ≤ n−m+1 where ∀� = 1, ...,m, P� ⊆ Ti+�−1.

Algorithm’s Idea: Observe that in every text location where the pattern ap-
pears with non-zero probability, there is a subset-matching of the pattern. The
algoritm’s main idea is, then, to first find the subset matching of the pattern
in the text and then calculate the probabilities of those locations. In order to
accomplish that all the non zero probabilities will be mapped to a vector with
size linear in the number of non-zeros. This mapping will be done using shifting
where each symbol is assigned a different shift. The same shifting will be used
in both the text and the pattern, thus wherever there is a singleton in the text
which aligned with a singleton in the pattern in the positions where a subset
matching was found it is guaranteed to be be the same character.

Algorithm Outline
1. Perform subset matching
2. Linearize the input to a vector of probabilities, and calculate the probability of
the pattern

appearing in each text location
end Algorithm Outline

Step 1: Ignore the probabilities and consider only the symbols that have a non
zero probability. This results in a set of symbols for each text location. Now run
Cole and Hariharan’s subset matching algorithm [5].

Time Complexity: O(s log s) where s is the total number of characters.

Step 2: Create a vector of probabilities from the text. This is done by assigning
for each alphabet symbol σ a number that sets the shift of this letter. This means
that for each location i where σ has a non zero probability, this probability will
appear at the new vector at location i + shift(σ). Each vector location where
more than one value is assigned is referred to as a multiple location and is
assigned a 0. Every position where only one value was assigned is referred to as
a singleton and is assigned the log-probability the symbol assigned to it.

Using the same shift values we create a vector of the same size from the
pattern. In the vector representing the pattern each symbol that appears as a
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singleton in the pattern is replaced by a 1. Multiples are replaced by a 0. After
a convolution of the text vector with the pattern vector each location holds the
sum of all the probabilities where a singleton in the text was aligned with a
singleton in the pattern.

Lemma 2. For the locations where a subset matching is found, each singleton
location in the text vector which is aligned with a singleton in the pattern vector,
contains the probability of the letter which appeared as singleton in the pattern
vector.

Proof: In a situation where a subset matching occurs, clearly the pattern symbol
is shifted to the same location as its equivalent text symbol. In a singleton text
matched with a singleton pattern, if there the subset match forces the fact that
the text symbol equals the pattern symbol and we do not need to verify it. For
the same reason, it is impossible for a pattern multiple to be matched with a
text singleton when there is a subset match, since all pattern elements should
be matched at least with the appropriate text symbols. 	


Corollary 1. After convolving the text vector with the pattern vector, all the non
zero probabilities which appeared as singletons are calculated for all locations.

As a result of the corollary we can now zero the calculated probabilities of the
text singletons and repeat the process using different shifts until all the non zero
probabilities become zero. Our solution is the sum of the results. At the end of
this process each location where there is a subset match holds the log of the
probability of the pattern appearing at this location.

The question we still need to address is how many such rounds are necessary
until all the non zeros probabilities appears as singletons at least once.

Lemma 3. O(log s) rounds are guaranteed to complete the process in the worst
case. The appropriate shift functions can be computed in time O(s log2 s), where
s is the number of text symbols with non-zero probabilities.

Proof: The lemma can be proven using superimposed coding as in Cole and
Hariharan [5]. A complete proof will be provided in the journal version. 	


Time Complexity: The shift functions can be computed in time O(s log2 s).
For each shift function we perform a convolution which takes O(s log s) time.
There are O(log s) such convolutions, thus the total time of this step is O(s log2s).

6 Hamming Distance in Weighted Matching over Infinite
Alphabets

We present an algorithm for the case of errors in the text. The case of errors in
the pattern is similar.

The main idea of the algorithm is to combine the algorithm devised for
the Hamming distance over finite alphabet with the algorithm devised for the
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weighted matching over infinite alphabet. The difficulty in applying the shift-
ing technique in the Hamming distance case is that now the property that two
aligned singletons must originat from the same character no longer applies. We
show two ways of overcoming this problem: one with running time dependent on
the number of errors and one with running time independent of the number of er-
rors. Both algorithms use the bounded divide-and-conquer technique. We divide
the sorted list of probabilities into blocks. For each text location we calculate the
sum of probabilities and the number of matches for each block. Subsequently we
add the log probabilities from the largest down until the probability is smaller
than the input. The number of errors (the Hamming distance) is the size of the
pattern minus the number of matches.

We combine the two algorithms to achieve the minimal running time of the
two solutions.

6.1 Algorithm 1

The first algorithm solves the problem in the shifting technique by checking for
each block separately if there was a match. This is done for each block by re-
placing each empty position in the shifted text with don’t care and matching the
shifted pattern with the new text. If a match exist then the sum of probabilities
for this block is correct. If there is no match then we need to use brute force. This
means checking each character in this block against the character appearing in
the aligned position in the pattern.

Algorithm Outline
1. Sort the probabilities in the weighted sequence
2. Divide the sorted list of probabilities into blocks of size

√
s

3. For each block calculate the sum of probabilities (using the shifting technique).
4. For each text position and each block: If there is a subset match use the result
calculated in the previous stage, else use brute force.
5. For each text position add blocks probabilities from the largest down until the
sum goes below the input threshold.
6. For each text position add probabilities within the last block until the sum
goes below the input threshold.
end Algorithm Outline

Time: O(kn
√
s + s3/2 log2 s)

Where k is the average number of blocks per text position, where a match does
not exist.

6.2 Algorithm 2

The second algorithm handles the problem in the shifting technique by dividing
the symbols into frequent and non-frequent characters and dealing with each type
of characters separately.
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Definition 8. Let P be a pattern of length m. A pattern symbols is frequent if
it occurs in the pattern at least m2/3 times, otherwise it is rare.

For each block and each frequent character, the sum of probabilities is calculated
using convolution. Also the number of matches is calculated using convolution
where we replace the probabilities in the text with ones. Since there are at most
m1/3 frequent characters and s1/3 blocks, the time complexity for the frequent
characters is O(s4/3m1/3 log s).
For the non-frequent characters, brute force is used to calculate the sum of
probabilities and the number of matches. Since each non-frequent character can
appear up to m2/3 times in the pattern the time complexity for the non-frequent
characters is O(sm2/3) < O(s4/3m1/3).

Algorithm Outline
1. Sort the probabilities in the weighted sequence
2. Divide the sorted list of probabilities into blocks of size s2/3

3. For each block calculate the sum of probabilities and count the number of
matches of the non-frequent characters using brute force.
4. For each block calculate the sum of probabilities and count the number of
matches of the frequent characters using convolution.
5. For each text position add blocks probabilities from the largest down until the
sum goes below the input threshold.
6. For each text position add probabilities within the last block until the sum
goes below the input threshold.
end Algorithm Outline

Time Complexity: O(s4/3m1/3 log s).

6.3 Combining the Algorithms

In order to obtain the minimal running time of both algorithm we start with
first algorithm without doing the brute force part and check the average number
of blocks per text location where a match was not found. If this number is not
too large then we will proceed with the first algorithm and use brute force to
calculate the sum of probabilities for these blocks and eventually the Hamming
distance. If the number is too large, then we will use the second algorithm.

7 Conclusion and Open Problems

This paper defined the concept of approximate weighted distances, both in terms
of Hamming distance and edit distance. We also presented efficient algorithms
for these definitions. The algorithms are efficient in the sense that there are
no known faster algorithms for edit distance in solid strings (by definition 1)
or for finding the masked Hamming distance for solid strings. Further research
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directions would be to find efficient algorithms for the k-mismatches or k-error
problems in weighted sequences.
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Abstract. Given an ordered labeled forest F (“the target forest”) and
an ordered labeled forest G (“the pattern forest”), the most similar
subforest problem is to find a subforest F ′ of F such that the distance
between F ′ and G is minimum over all possible F ′. This problem gener-
alizes several well-studied problems which have important applications
in locating patterns in hierarchical structures such as RNA molecules’
secondary structures and XML documents. In this paper, we present
efficient algorithms for the most similar subforest problem with forest
edit distance for three types of subforests: simple substructures, sibling
substructures, and closed subforests.

1 Introduction

An ordered labeled tree is a rooted tree in which the left-to-right ordering among
nodes is fixed and each node is labeled by a symbol from a given alphabet. An
ordered labeled forest is a sequence of ordered labeled trees. Ordered labeled
trees and forests are useful data structures for hierarchical data representation;
for example, XML documents are essentially ordered labeled trees [2] and RNA
molecules’ secondary structures without pseudoknots can be represented by or-
dered labeled forests [4, 7, 11] (see Fig. 1(a)–(c) for an example). Below, we
refer to ordered labeled trees and ordered labeled forests as trees and forests,
respectively.

In this paper, we study the following problem which we call the most similar
subforest problem: Given a forest F (“the target forest”) and a forest G (“the
pattern forest”), find a subforest of F which is the most similar to G. There
are many ways to define “subforest” and “most similar”; here, we consider three
alternative definitions of “subforest” and show how to solve all the resulting
problems efficiently when the forest edit distance [13, 16] is used to measure
similarity. Our techniques combine and extend the techniques of [4] and [16].

The most similar subforest problem generalizes several other problems. For
example, in the well-studied forest inclusion problem, the objective is to deter-
mine whether a given forest G can be obtained from another given forest F by
only deleting nodes from F , and if so, finding the smallest subforest of F in
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which G is included (this problem and a constrained variant have been studied
in, e.g., [15, 8]). However, in case G is not included in F , one might still need
to find a subforest F ′ of F such that G is very similar to F ′, or to measure
how far from being included in F the pattern forest G is. This is precisely “the
most similar subforest problem”. As another example, consider the string pat-
tern problem: given two strings S and T , find a most similar (using edit distance)
substring of S to T . This problem has many applications to Stringology [3] and
Bioinformatics [12]. Since a string can be represented by a tree in which all non-
leaf nodes have exactly one child, the string pattern problem is just a special
case of the most similar subforest problem. 1

2 Preliminaries

Throughout this paper, we use the following notation and definitions.
Let F be any given forest. Denote the number of nodes in F by |F |, and define

deg(F ) (the degree of F ) as the maximum number of children over all nodes in F ,
and dp(F ) (the depth of F ) as the number of edges on the longest path from a
root node in F to a leaf of F . The set of leaves in F is referred to as L(F ). For
any node i ∈ F , define p(i) as the parent of i, and denote the label of i by label(i).
Any i1, i2 ∈ F are siblings if they have the same parent; if i1 �= i2 also holds then
i1 and i2 are proper siblings. To simplify the presentation, we assume that the
roots of the trees in F share an imaginary parent node, denoted by p(F ), which
is considered to belong to F and which is labeled by a special symbol ‘,’. Define
the key nodes of F as the set K(F ) = {p(F )∪i | i ∈ F has a left proper sibling}.
Clearly, it holds that |K(F )| ≤ |L(F )| (Lemma 6 in [16]).

Assume without loss of generality that the nodes of F are numbered according
to the order in which they are visited by a left-to-right postorder traversal of F .
Then, for any i1, i2 ∈ F , define i1 : i2 as the set of nodes whose numbers are
greater than or equal to i1 and less than or equal to i2. For any siblings i1 and i2
with i1 ≤ i2, define i1 · · i2 as the set of nodes consisting of i1, i2, and every
node which is both a right sibling of i1 and a left sibling of i2 (if i1 > i2, define
i1 · · i2 = ∅). Finally, for any i ∈ F , refer to the leftmost and rightmost siblings
of i by b(i) and e(i), respectively, and define m(i) as the smallest numbered
node in the subtree rooted at i (note that by the left-to-right postordering of
the nodes, m(i) will always be the leftmost leaf in this subtree).

Forest edit distance [13, 16]: Define the following three edit operations on F :
–Relabel: Change the label of any node in F .
–Delete: Delete any node i from F by making all of i’s children (if any) become

children of p(i) and then removing node i and the edge between i and p(i).
– Insert: Insert a new node with any label into F (the inverse operation of

delete).
1 In fact, the running time of our algorithm for finding a most similar simple substruc-

ture in Section 3.1 with parameters |L(F )| = 1 and |L(G)| = 1 matches the fastest
known algorithm for the string pattern problem.
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See, e.g., [1,4,5,13,14,16] for examples of these operations. Next, define an edit
mapping M between two forests F and G as a set of pairs (i, j), where i ∈ F and
j ∈ G, such that for any two pairs (i1, j1), (i2, j2) ∈M , the following properties
are satisfied: (1) i1 = i2 if and only if j1 = j2; (2) i1 is an ancestor of i2 if and
only if j1 is an ancestor of j2; and (3) i1 < i2 if and only if j1 < j2. For any
(i, j) ∈ M , we say that node i is linked with node j in M . Let M be an edit
mapping between F and G. Define its left-linked set as MF = {i | (i, j) ∈ M}
and its left-unlinked set as RF = F \MF , and define its right-linked set MG

and right-unlinked set RG analogously. An edit mapping M between F and G
uniquely determines a sequence of delete and relabel operations on F and G such
that the resulting forests F ′ and G′ are identical. More precisely, every i∈RF

means “delete node i from F”, every j∈RG means “delete node j from G”, and
every (i, j)∈M with label(i)�=label(j) means “relabel i with the label of j”.

From here on, we assume that the nodes in the input forests F are G are
labeled by a fixed alphabet Σ where , /∈ Σ (recall that the symbol ‘,’ is already
in use). Moreover, we assume that ‘−’ is a special blank symbol not in Σ and that
we are given a fixed distance function γ : (Σ∪{,,−})×(Σ∪{,,−})→ (, where
( is the set of real numbers and where for any a, b ∈ Σ, it holds that γ(a, a)≤0,
γ(a, b)≥0 if a �=b, γ(a,−)≥0, γ(−, b)≥0, and γ(−,−)>0. We also assume that
γ(a, ,) = 0, γ(,, b) = 0, γ(,, ,) = 0, γ(,,−) ≥ 0, γ(−, ,) ≥ 0. For any i ∈ F
and j ∈ G, define f(i) = label(i) and g(j) = label(j). Then, for any i ∈ F and
j ∈ G, the distance between i and j is defined as γ(i, j)=γ(f(i), g(j)). Finally,
define the cost of an edit mapping M as:

δ(M) =
∑

(i,j)∈M

γ(f(i), g(j)) +
∑

i∈RF

γ(f(i),−) +
∑

j∈RG

γ(−, g(j)).

An optimal edit mapping between two forests F and G is an edit mapping with
the minimum cost: min{δ(M)} over all possible M . This cost is called the forest
edit distance between F and G, and is denoted by δ(F,G).

Subforest definitions: Let F be a forest. We define the following types of
subforests of F . For any node i in F , the subtree of F rooted at i is the subtree
consisting of i and all descendants of i, and is denoted by F [i]. For any siblings
i1, i2, the set of subtrees rooted at i1 · · i2 forms a closed subforest of F (see
also [4]). A simple substructure of F is any connected subgraph of F , and a
sibling substructure of F is a set of disjoint simple substructures of F whose
roots are siblings (not necessarily consecutive) in F . Finally, given any subset S
of the nodes in F , the restricted subforest F‖S is defined as the forest obtained
from F by deleting all nodes not in S. To illustrate these definitions, consider the
forest F in Fig. 1(c) and the subforests of F shown in Fig. 1(d). Here, F1=F‖S
is a restricted subforest for S = {3, 5, 6, 9, 13, 22, 31}, F2 is a simple substructure
of F , F3 is a closed subforest of F , and F4 is a sibling substructure of F .

We say that a most similar subforest (using any one of the above definitions
for “subforest”) of a forest F to a forest G is a subforest F ′ of F that minimizes
the forest edit distance δ(F ′, G) over all possible F ′. The most similar subforest
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Fig. 1. (a) A segment of the primary structure of the cherry small circular viroid-like
RNA molecule (accession number Y12833, GI:2347024) [10], (b) its secondary structure,
(c) a forest representation F of the secondary structure (see, e.g., [4,7,11] for details),
and (d) various types of subforests of F . The so-called Hammerhead motif [10], which
corresponds to the pattern specified by subforest F2, is marked in bold.

problem is: given two forests F and G, find a most similar subforest of F to G
(again, using any one of the above definitions for “subforest”).

Our contributions: In this paper, we show how to solve the most similar
subforest problem efficiently, where “subforest” means “simple substructure”,
“sibling substructure”, or “closed subforest”. The time and space complexities
of our algorithms are summarized in the next table.

Finding a Complexity Section
most similar:
Simple O(|F |·|G|·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}) time, 3.1
substructure O(|F |·|G|) space
Sibling O(|F |·|G|·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}) time, 3.2
substructure O(|F |·|G|) space
Closed O(|F |·|G|·|L(F )|·min{|L(G)|, dp(G)}) time, 3.3
subforest O(|F |·|G| + |L(F )|·dp(F )·|G| + |F |·|L(G)|·dp(G)) space

Related results: Tai [13] gave the first algorithm for computing the forest edit
distance between two given forests F and G. Zhang and Shasha [16] gave a more
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efficient algorithm for this problem running in O(|F | · |G| ·min{|L(F )|, dp(F )} ·
min{|L(G)|, dp(G)}) time and O(|F |·|G|) space. (Actually, these papers assumed
F and G to be trees, but it is simple to extend their methods to forests.) More
recently, Klein [9], Chen [1], and Touzet [14] have developed algorithms that are
faster for certain kinds of inputs. Zhang and Shasha’s algorithm [16] computes
δ(F [i], G[j]) for all i ∈ F , j ∈ G, and can therefore find a subtree rooted at a
node in F which is the most similar to G, i.e., a most similar rooted subtree,
but none of the algorithms from [1,9,13,14,16] can be used directly to efficiently
find, e.g., a most similar simple substructure of F to G (the number of simple
substructures of F may be exponential in |F |, so it is not practical to try them
all separately).

An alternative measure of the similarity between two forests is the forest
alignment distance (see [7] for a formal definition). Although the edit distance
and alignment distance are equivalent for strings, they are not equivalent for
trees and forests [7]. The algorithm of Jiang et al. [7] for computing the forest
alignment distance runs in O(|F | · |G| ·(deg(F )+deg(G))2) time, and its running
time was improved for similar inputs in [5]. Note that the algorithm of Jiang et al.
computes an optimal global alignment between F and G, meaning that all nodes
of F and G contribute to the cost of the final solution. Recently, Höchsmann et
al. [4] gave an algorithm for computing an optimal local alignment between F
and G which finds a closed subforest F ′ of F and a closed subforest G′ of G
having the minimum forest alignment distance; a more efficient algorithm for
this problem (running in O(|F | · |G| · (deg(F ) + deg(G))2) time and O(|F | ·
|G| · (deg(F ) + deg(G))) space) along with some extensions to other types of
subforests were given in [6]. Höchsmann et al. [4] also considered the problem
of finding a closed subforest F ′ of F which minimizes the alignment distance
to G (i.e., the analogue of our “most similar closed subforest problem” but using
alignment distance instead of edit distance), which they called the small-in-large
closed subforest similarity problem, and showed how to solve it in O(|F | · |G| ·
deg(F ) ·deg(G) · (deg(F )+deg(G))) time and O(|F | · |G| ·deg(F ) ·deg(G)) space.

3 Algorithms for the Most Similar Subforest Problem

In this section, we present efficient algorithms for a finding a most similar subfor-
est (simple substructure, sibling substructure, and closed subforest, respectively)
of F to G. As a preprocessing step to all our algorithms below, we calculate and
store K(F ),K(G), L(F ), and L(G) according to their postorders in auxiliary
arrays in linear time. Moreover, m(i) for all i ∈ F , i ∈ G are also precomputed.

3.1 An Algorithm for Finding a Most Similar Simple Substructure

We first introduce some additional terminology. Let F be a forest. Define a new
edit operation called the cut operation on F as follows: for any node i in F ,
cutting node i means removing the entire subtree F [i] (along with the parent
edge of i if i is not a root node) from F at cost 0. Note that the cut operation
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differs from the previously defined delete operation since it removes all the nodes
in a subtree of F and is for free. For any two nodes u and v in F with u �= v,
we say that u and v are consistent if u is not a descendant of v and v is not a
descendant of u. A set C of nodes from F is consistent if every pair of nodes in C
is consistent. Denote the set of all consistent sets of nodes in F by C(F ), and for
any C ∈ C(F ), let F -C be the forest obtained from F by cutting all nodes in C.

Suppose F ′ is a simple substructure of F rooted at a node i. By definition, F ′

is a connected subgraph of F [i], which means that F ′ can be obtained from F [i]
by cutting all nodes in some (possibly empty) consistent set. We have:

Lemma 1. Let i be a node in a forest F . F ′ is a simple substructure of F rooted
at i if and only if F ′ = F [i]- C for some C ∈ C(F [i]).

To locate a most similar simple substructure of F to G, we look for a most
similar simple substructure of F [i] to G among all i ∈ F . By Lemma 1, this
is equivalent to finding a C ∈ C(F [i]) such that δ(F [i] - C, G) is minimized
since the cut operations do not contribute to the total cost of an edit mapping
between F [i] and G. (Observe that we are only allowed to cut nodes in F , and
not in G by the problem definition.) For any given forests F ′ and G′, define
Ψ(F ′, G′) = minC∈C(F ′){δ(F ′ - C, G′)}. Then the goal of our algorithm is to
compute mini∈F Ψ(F [i], G). Below, we extend the techniques of [16] to derive
some useful recurrences for computing certain values of Ψ .

First of all, it is easy to show that:

Lemma 2. Ψ(∅, ∅) = 0; Ψ(F, ∅) = 0; Ψ(∅, G) =
∑

j∈G γ(−, g(j)).

Proof. The first case is obvious since there is no cost for the empty mapping
between two empty forests. For the second case, suppose F = 〈T1, . . . , Tt〉. We
know that F - {r(T1), . . . , r(Tt)}) = ∅, where r(T ) for any tree T refers to the
root of T , so Ψ(F, ∅) = δ(∅, ∅) = 0. In the third case, we cannot cut any nodes,
so Ψ(∅, G) =

∑
j∈G γ(−, g(j)). 	


Next, because of the left-to-right postordering of the nodes, we have F [i] =
F‖m(i):i and G[j] = G‖m(j):j . To compute Ψ(F [i], G[j]), we compute Ψ(F‖m(i):x,
G‖m(j):y) for all x ∈ {m(i), . . . , i} and y ∈ {m(j), . . . , j}. Intuitively, when
considering nodes x and y, if the subtree F [x] is very dissimilar to G[y] then
it will be better to cut x (i.e., remove the entire subtree F [x] at once at no
additional cost), in which case F‖m(i):x becomes just F‖m(i):m(x)−1. On the
other hand, if F [x] is similar to G[y] then x and y should be linked, or one of x
and y should be deleted, and then the remaining parts of F [x] and G[y] linked.

Lemma 3. For any i ∈ F , j ∈ G, x ∈ {m(i), . . . , i}, and y ∈ {m(j), . . . , j},

Ψ(F‖m(i):x, G‖m(j):y) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ψ(F‖m(i):m(x)−1, G‖m(j):y);
Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x),−);
Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y));
Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1)+

Ψ(F‖m(x):x−1, G‖m(y):y−1) + γ(f(x), g(y)).
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Proof. Let C ∈ C(F‖m(i):x) be a consistent set that minimizes δ(F‖m(i):x - C,
G‖m(j):y), i.e., such that δ(F‖m(i):x-C, G‖m(j):y) = Ψ(F‖m(i):x, G‖m(j):y), and
let M be an optimal edit mapping between F‖m(i):x-C and G‖m(j):y. Consider
nodes x and y and the set C:

– x ∈ C: In this case, x is cut and so the whole subtree F [x] is removed at no
cost. We get Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):m(x)−1, G‖m(j):y).

– x �∈ C: In this case, x is either deleted or linked with a node in G‖m(j):y,
and analogously for node y. There are three possible subcases:
• x �∈ MF : Then x is deleted from F‖m(i):x in the optimal solution given

by M , so Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x),−).
• y �∈ MG: Then y is deleted from G‖m(j):y in the optimal solution given

by M , so Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y)).
• x ∈ MF and y ∈ MG: Then nodes x and y are linked in the optimal

solution given by M . We get Ψ(F‖m(i):x, G‖m(j):y) = Ψ(F‖m(i):m(x)−1,
G‖m(j):m(y)−1) + Ψ(F‖m(x):x−1, G‖m(y):y−1) + γ(f(x), g(y)). 	


To simplify the implementation of the algorithm described below, rewrite the
recurrence relation in Lemma 3 as follows so that Ψ(F‖m(i):x, G‖m(j):y) can be
computed without needing to access the value of Ψ(F‖m(x):x−1, G‖m(y):y−1).

Lemma 4. For any i ∈ F , j ∈ G, x ∈ {m(i), . . . , i}, and y ∈ {m(j), . . . , j},
1. if m(i) = m(x) and m(j) = m(y) then:

Ψ(F‖m(i):x, G‖m(j):y) = min

⎧⎪⎪⎨⎪⎪⎩
Ψ(F‖m(i):m(x)−1, G‖m(j):y);
Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x),−);
Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y));
Ψ(F‖m(i):x−1, G‖m(j):y−1) + γ(f(x), g(y)).

2. else:

Ψ(F‖m(i):x, G‖m(j):y)= min

⎧⎪⎪⎨⎪⎪⎩
Ψ(F‖m(i):m(x)−1, G‖m(j):y);
Ψ(F‖m(i):x−1, G‖m(j):y) + γ(f(x),−);
Ψ(F‖m(i):x, G‖m(j):y−1) + γ(−, g(y));
Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) + Ψ(F [x], G[y]).

Proof. We prove this lemma by showing that the new recurrences are equivalent
to the one in Lemma 3. Note that in both cases, only the fourth term inside the
min-bracket differs from Lemma 3.

1. Since m(i) = m(x) and m(j) = m(y), we have {m(i), . . . ,m(x)−1} = ∅ and
{m(j), . . . ,m(y)− 1} = ∅, and hence Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) = 0.

2. The definition of Ψ implies that Ψ(F‖m(i):x, G‖m(j):y) ≤ Ψ(F‖m(i):m(x)−1,
G‖m(j):m(y)−1) + Ψ(F [x], G[y]). Thus, inserting the right-hand side of this
inequality into the min-expression in Lemma 3 does not affect its value,
i.e., Ψ(F‖m(i):x, G‖m(j):y) = min{. . . , Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) +
Ψ(F [x], G[y])} where . . . denotes the four terms in Lemma 3. Now, by case 1
above, Ψ(F [x], G[y]) ≤ Ψ(F‖m(x):x−1, G‖m(y):y−1) + γ(f(x), g(y)), so the
fourth term in the new min-expression is redundant and can be deleted. 	
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Main loop:
Input: A target forest F and a pattern forest G.
1: Ψ(∅, ∅) := 0.
2: for i1 := 1, . . . , |K(F )|} do
3: for j1 := 1, . . . , |K(G)| do
4: i := K(F )[i1]; j := K(G)[j1]; Call Compute Psi(i, j).
5: return mini∈F Ψ(F [i], G).

Procedure Compute Psi(i, j):
1: for x := m(i), . . . , i do Ψ(F‖m(i):x, ∅) := 0.
2: for y := m(j), . . . , j do Ψ(∅, G‖m(j):y) := Ψ(∅, G‖m(j):y−1) + γ(−, g(y)).
3: for x := m(i), . . . , i do
4: for y := m(j), . . . , j do
5: Calculate Ψ(F‖m(i):x, G‖m(j):y) according to Lemma 4.

Algorithm 1. Algorithm for finding a most similar simple substructure of F to G

For each i ∈ F , define A(i) (the nearest key node ancestor of i) as follows. If
i ∈ K(F ) then let A(i) = i; otherwise, let A(i) be the nearest ancestor of i which
belongs to K(F ). Define A(j) for any node j ∈ G analogously. We have:

Lemma 5. For any i ∈ F , m(i) = m(A(i)). For any j ∈ G, m(j) = m(A(j)).

We now describe the main algorithm (Algorithm 1) of this subsection. It calcu-
lates the minimum cost of an edit mapping between a simple substructure of F
and G. The main loop considers all pairs of indices i ∈ K(F ) and j ∈ K(G)
in bottom-up order, and for each such pair of indices (i, j), it calls a procedure
named Compute Psi to obtain Ψ(F‖m(i):x, G‖m(j):y) for all x ∈ {m(i), . . . , i}
and y ∈ {m(j), . . . , j} based on Lemmas 2 and 4. Finally, Algorithm 1 returns
mini∈F Ψ(F [i], G). The next theorem proves the correctness of this approach.

Theorem 1. Algorithm 1 correctly computes the cost of an optimal solution.

Proof. The correctness of all computed values follows from Lemmas 2 and 4. Let
x be a node in F such that the cost of an optimal solution is given by Ψ(F [x], G).
We need to prove that the algorithm is guaranteed to compute Ψ(F [x], G) even
if x �∈ K(F ). Observe that Ψ(F [x], G) = Ψ(F‖m(x):x, G) = Ψ(F‖m(A(x)):x, G) by
Lemma 5, and that x ∈ {m(A(x)), . . . , A(x)} because m(A(x)) = m(x) ≤ x and
x ≤ A(x). Since A(x) ∈ K(F ) by the definition of A(x) and since p(G) ∈ K(G),
the algorithm will always compute Ψ(F [x], G). 	


Theorem 2. Algorithm 1 can be implemented to run in O(|F |·|G|·min{|L(F )|,
dp(F )}·min{|L(G)|, dp(G)}) time and O(|F |·|G|) space.

Proof. Store Ψ(F [i], G[j]) for every i ∈ F and j ∈ G as soon as it is computed in
a table M1 of size |F |·|G|. Also, allocate (|F |+1)·(|G|+1) additional space M2 for
Compute Psi to temporarily store the computed values of Ψ(F‖m(i):x, G‖m(j):y)
for all x ∈ {m(i) − 1, . . . , i} and y ∈ {m(j) − 1, . . . , j} for its current (i, j).
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(M2 is reused by successive calls to Compute Psi.) In total, the space complexity
is O(|F | · |G|).

To analyze the running time of this implementation, we first show that Step 5
in Compute Psi (evaluating the expression in Lemma 4) for any Ψ(F‖m(i):x,
G‖m(j):y) always takes O(1) time. Whenever Step 5 is performed, the values
of Ψ(F‖m(i):m(x)−1, G‖m(j):y), Ψ(F‖m(i):x−1, G‖m(j):y), Ψ(F‖m(i):x, G‖m(j):y−1),
Ψ(F‖m(i):x−1, G‖m(j):y−1), and Ψ(F‖m(i):m(x)−1, G‖m(j):m(y)−1) are already
stored in M2. Therefore, we can directly evaluate the expression in O(1) time if
m(i) = m(x) and m(j) = m(y). If m(i) < m(x) or m(j) < m(y), we also need
Ψ(F [x], G[y]) in O(1) time. This value has already been computed and stored
in M1 because m(i) < m(x) implies m(i) < m(A(x)) by Lemma 5 which in turn
implies A(x) < i, and m(j) < m(y) similarly implies A(y) < j; since at least one
of these two conditions is true, the algorithm will have called Compute Psi(A(x),
A(y)) previously and hence already have computed Ψ(F [x], G[y]). Thus, Step 5
in Compute Psi takes O(1) time, which means that the algorithm’s total running
time is O(

∑
i∈K(F )

∑
j∈K(G) |F [i]| · |G[j]|). By Lemma 7 in [16], this sum can be

rewritten as O(|F | · |G| ·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}). The theorem
follows. 	


We remark that Algorithm 1 computes the cost of an optimal solution. Standard
traceback techniques can be applied to also return a corresponding optimal edit
mapping within the same asymptotic running time and space bounds.

3.2 An Algorithm for Finding a Most Similar Sibling Substructure

An algorithm for finding a most similar sibling substructure of F to G is given
here. It is based on Algorithm 1 since finding a most similar sibling substructure
is closely related to finding a most similar simple substructure, as shown next.

Suppose that F ′ = 〈T1, . . . , Ts〉 is a most similar sibling substructure of F
to G, where {T1, . . . , Ts} are simple substructures of F with roots {i1, . . . , is},
and where F ′ is non-empty. Then {i1, . . . , is} are siblings in F . Let S(i1) be the
set consisting of i1 and all siblings of i1 in F , and define C = S(i1)\ {i1, . . . , is}.
Note that C is a consistent set, i.e., C ∈ C(F ), using the notation from Sec-
tion 3.1. Consider the closed subforest F‖m(b(i1)):e(i1). It is clear that F ′ is also
a most similar sibling substructure of F‖m(b(i1)):e(i1) to G. (This claim comes
from cutting all nodes belonging to C from F‖m(b(i1)):e(i1) at zero cost.) So
δ(F ′, G) = Ψ(F‖m(b(i1)):e(i1), G), and the problem turns into finding the mini-
mum of Ψ(F‖m(b(i1)):e(i1), G) over all i1 ∈ F . By the left-to-right postordering
of the nodes, this is equivalent to computing mini∈F Ψ(F‖m(i):i−1, G). 2

We modify the implementation of Algorithm 1 given in the proof of
Theorem 2 as follows. Allocate O(|F |) extra space M3 to also store the values of
Ψ(F‖m(i):i−1, G) for all i ∈ F as they are computed. Then, change Step 5 of the
main loop to return the value mini∈F Ψ(F‖m(i):i−1, G) (found by checking M3)
instead. Clearly, the asymptotic time and space complexities are the same as for
2 In contrast, recall from Section 3.1 that finding a most similar simple substructure

is equivalent to computing mini∈F Ψ(F‖m(i):i, G).
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Algorithm 1. To prove the correctness of the modified algorithm, we show that
all values of Ψ(F‖m(i):i−1, G) for i ∈ F are indeed computed. Let i be any node
in F . Recall that A(i) is the nearest key node ancestor of i. Then m(i) = m(A(i))
by Lemma 5, and i ≤ A(i) and A(i) ∈ K(F ). According to the proof of The-
orem 2, for any k ∈ K(F ), the algorithm will compute Ψ(F‖m(k):x, G) for all
x ∈ {m(k), . . . , k}. Now, select k = A(i) and x = i− 1. We obtain:

Theorem 3. Given a target forest F and a pattern forest G, we can find a
most similar sibling substructure of F to G over all sibling substructures of F in
O(|F |·|G|·min{|L(F )|, dp(F )}·min{|L(G)|, dp(G)}) time and O(|F |·|G|) space.

3.3 An Algorithm for Finding a Most Similar Closed Subforest

We now provide an algorithm for finding a most similar closed subforest of F
to G. The algorithm of [16] as well as Algorithm 1 from Section 3.1 are not
suitable for this variant of the problem because if i1 and i2 are siblings in F with
i1 < i2, i1 ∈ K(F ) then the value of δ(F‖m(i1):i2 , G) is not calculated, whereas
F‖m(i1):i2 = F [i1 · · i2] might in fact be a most similar closed subforest of F
to G. Therefore, we develop a different technique in this subsection. The proofs
of Lemma 6, Lemma 7, and Theorem 4 below are similar to those of Lemma 2,
Lemmas 3–4, and Theorems 1– 2, respectively, and have been omitted due to
space constraints.

For any forest F , any leaf l ∈ L(F ), and any node x ∈ F , write l . x if l
is a descendant of x in F , and l �. x otherwise. Since m(x) is precomputed, we
can immediately test if l . x simply by checking if m(x) ≤ l ≤ x is true. The
next lemmas state how to efficiently calculate δ(F‖l:x, G‖m(j):y) where l ∈ L(F ),
x ∈ {l, . . . , |F |}, j ∈ K(G), and y ∈ {m(j), . . . , j}.
Lemma 6. δ(∅, ∅)=0; δ(F, ∅)=

∑
i∈F γ(f(i),−); δ(∅, G)=

∑
j∈Gγ(−, g(j)).

Lemma 7. For any l ∈ L(F ), j ∈ K(G), x ∈ {l, . . . , |F |}, y ∈ {m(j), . . . , j},
δ(F‖l:x, G‖m(j):y) is equal to the minimum of the following three values:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(F‖l:x−1, G‖m(j):y) + γ(f(x),−);
δ(F‖l:x, G‖m(j):y−1) + γ(−, g(y));⎧⎪⎪⎨⎪⎪⎩

δ(F‖l:x−1, G‖m(j):y−1) + γ(f(x), g(y)), if l . x and m(j) . y;
δ(∅, G‖m(j):m(y)−1) + δ(F‖l:x, G[y]), if l . x and m(j) �. y;
δ(F‖l:m(x)−1, ∅) + δ(F [x], G‖m(j):y), if l �. x and m(j) . y;
δ(F‖l:m(x)−1, G‖m(j):m(y)−1) + δ(F [x], G[y]), if l �. x and m(j) �. y.

Now we are ready to describe Algorithm 2 for finding a most similar closed sub-
forest of F to G. Its overall structure resembles that of Algorithm 1. For each
leaf l ∈ L(F ) and node j ∈ K(G), it calls a procedure named Compute Delta
which uses Lemma 7 to calculate δ(F‖l:x, G‖m(j):y) for all x ∈ {l, . . . , |F |} and
y ∈ {m(j), . . . , j}. To enable each evaluation of Lemma 7 to be performed in O(1)
time, the algorithm temporarily stores the computed values of δ(F‖l:x, G‖m(j):y)
for all x ∈ {l, . . . , |F |} and y ∈ {m(j), . . . , j} until the next call to Compute Delta
using O(|F | · |G|) space; on the other hand, all computed values of the form
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Main loop:
Input: A target forest F and a pattern forest G.
1: δ(∅, ∅) := 0.
2: for l1 := |L(F )|, . . . , 1 do
3: for j1 := 1, . . . , |K(G)| do
4: l := L(F )[l1]; j := K(G)[j1]; Call Compute Delta(l, j).
5: return min{δ(F‖m(i1):i2 , G) | i1, i2 are siblings in F}.

Procedure Compute Delta(l, j):
1: for x := l, . . . , |F | do δ(F‖l:x, ∅) := δ(F‖l:x−1, ∅) + γ(f(x), −).
2: for y := m(j), . . . , j do δ(∅, G‖m(j):y) := δ(∅, G‖m(j):y−1) + γ(−, g(y)).
3: for x := l, . . . , |F | do
4: for y := m(j), . . . , j do
5: Calculate δ(F‖l:x, G‖m(j):y) according to Lemma 7.

Algorithm 2. Algorithm for finding a most similar closed subforest of F to G

δ(F [x], G[y]), δ(F [x], G‖m(j):y) with m(j) . y, and δ(F‖l:x, G[y]) with l . x
are stored throughout the entire execution of the algorithm using an additional
O(|F |·|G|+ |F |·|K(G)|·dp(G) + |L(F )|·dp(F )·|G|) space. Finally, the algorithm
returns min{δ(F‖m(i1):i2 , G) | i1 and i2 are siblings in F}.
Theorem 4. Given a target forest F and a pattern forest G, we can find a most
similar closed subforest of F to G over all closed subforests of F in O(|F |·|G|·
|L(F )|·min{|L(G)|, dp(G)}) time and O(|F |·|G|+ |L(F )|·dp(F )·|G|+ |F |·|L(G)|·
dp(G)) space.

4 Concluding Remarks

It is straightforward to generalize our algorithms to find a subforest F ′ of F and
a subforest G′ of G that are the most similar for any combination of the types
of subforests considered above. For example, if both F ′ and G′ should be simple
substructures then we can modify Algorithm 1 to allow nodes in G to be cut too.

An open question is: Is it possible to extend the algorithms in this paper to
other types of subforests? For example, one might consider gapped subforests
(introduced in [6]), where a gapped subforest of F is obtained by removing from
any closed subforest F ′ of F a set C of closed subforests such that no two closed
subforests in C have the same parent in F ′.
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Abstract. Imposing constraints is an effective means to incorporate
biological knowledge into alignment procedures. As in the PROSITE
database, functional sites of proteins can be effectively described as reg-
ular expressions. In an alignment of protein sequences it is natural to
expect that functional motifs should be aligned together. Due to this
motivation, in CPM 2005 Arslan introduced the regular expression con-
strained sequence alignment problem and proposed an algorithm which
can take time and space up to O(|Σ|2 |V |4n2) and O(|Σ|2 |V |4n), respec-
tively, where Σ is the alphabet, n is the sequence length, and V is the
set of states in an automaton equivalent to the input regular expression.
In this paper we propose a more efficient algorithm solving this prob-
lem which takes O(|V |3 n2) time and O(|V |2 n) space in the worst case.
If |V | = O(log n) we propose another algorithm with time complexity
O(|V |2 log |V | n2). The time complexity of our algorithms is independent
of Σ, which is desirable in protein applications where the formulation of
this problem originates; a factor of |Σ|2 = 400 in the time complex-
ity of the previously proposed algorithm would significantly affect the
efficiency in practice.

1 Introduction

Sequence alignment is one of the most fundamental problems in computational
biology. Due to its importance, it has been extensively studied in the past (see,
e.g., [1]). As biological knowledge and predictions grow, it is often desirable
if one can incorporate more information into the alignment procedure in hope
that the alignment result can be more biologically meaningful and reasonable.
In particular, when the input sequences share some properties, one then expects
that the resulting alignment should not violate these properties. Such kind of
preservation is in its nature a satisfaction of properly defined constraints. Due
to this need, Tang et al. [2] defined the constrained sequence alignment problem
(CSA for short). They considered the alignment of RNase sequences which share
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a conserved sequence of residues H, K, H. It is expected that the alignment re-
sult should have these conserved residues aligned together. A constraint is then
defined in [2] as a sequence of characters. The problem requires that the align-
ment result must contain a sequence of columns, with length the same as the
constraint, such that each character in the constraint appears in exactly one of
these columns and that each column consists solely of a character. The goal is
to find the best such alignment.

Later, Chin et al. [3] proposed an efficient algorithm for the pairwise version of
CSA, along with a 2-approximation algorithm for the multiple alignment version
with scoring function satisfying triangle inequality. Tsai et al. [4] generalized the
definition of a constraint from a sequence of characters to a sequence of strings
(patterns), and the occurrences of each pattern in the sequences need not be
identical to the pattern specified in the input. Instead, the Hamming distances
between each pattern and its occurrences need only to be within a user-specified
threshold. This formulation enables the user to align sequences so that some
known motifs are required to be aligned together. Lu and Huang [5] then reduced
the memory requirement of the algorithm in [4], which significantly improves the
applicability of the tool.

As indicated by Arslan [6], it is well known that proteins with similar func-
tions often share some motifs. The PROSITE database [7] collects biologically
significant sites and motifs of proteins. In particular, these motifs can be conve-
niently represented as regular expressions. In addition, IUPAC code [8] is also
commonly used to represent motifs for both nucleic acids and amino acids se-
quences, and can also be expressed in regular expressions. Hence an alignment
tool able to incorporate patterns in regular expressions would be useful. To fulfill
this need, Arslan introduced the regular expression constrained sequence align-
ment problem (RECSA for short) [6]. A feasible solution of RECSA is an align-
ment containing a run of contiguous columns corresponding to two substrings,
one for each input sequence, such that both substrings match the regular ex-
pression. The following example, constructed by Arslan [6], clearly illustrates
the definition and its difference with a standard alignment without constraint:

T G F P S V G K T K D D - - - - A

| | | | | | | |
T - F - S V A - - K D D D G K S A

T - - - G F P S V G K T K D D A

| |
T F S V A K D D D G K S - - - A

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

In all examples given in this section, a match of identical symbols is scored
1 and all other cases are scored 0. The alignment shown left is an optimal
alignment without constraint, while that shown in the right is an optimal con-
strained alignment. The constraint R is (G + A)ΣΣΣΣGK(S+ T), the P-loop motif.
The starred columns “support” the satisfaction of constraint R: both GFPSVGKT
and AKDDDGKS match R. For more descriptions about biological applications of
RECSA, the reader is referred to Arslan’s paper [6].

There are well-established algorithms to convert R into an ε-free NFA A (see,
e.g., [9]). In [6], R is converted into A first. Then a weighted finite automaton
M is constructed from A to accept all alignments satisfying R. Automaton M
is essentially a product machine of A. Each state in M corresponds to a pair
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of states in A. The alphabet of M corresponds to edit operations, which is
represented as a pair of symbols in Σ- = Σ ∪ {-}. The transitions in M and
their relationship with those in A are illustrated in the following simple example,
where R = a:

q0� � q1
a

� (q0, q0) (q1, q0)

(q0, q1) (q1, q1)

�

� �
�
�

(a, -)

(-, a) (a, a) (-, a)

(a, -)

�
Σ- ×Σ-

Shown left is A and shown right is M . Given a sequence of edit operations, or
equivalently an alignment, as input to M , some states in M can be reached
from the initial state (q0, q0). For example, given

[
t-
ta

]
, state (q0, q1) is reached1,

while given
[
t-c
tat

]
, no state is reached. In particular, given a feasible constrained

alignment satisfying R, for example
[
ta-
tac

]
, state (q1, q1), the final state of M

in the example, is reached; the self loop on the final state is added for this
purpose. As in a standard dynamic programming alignment algorithm, Arslan’s
algorithm iterates over index pairs (i1, i2). On each (i1, i2), a corresponding
Mi1,i2 is maintained. Each state (p, q) of Mi1,i2 contains the score of an opti-
mal alignment of S1[1..i1] and S2[1..i2] such that (p, q) can be reached if the
alignment is given to Mi1,i2 as input; such (p, q) is called active in [6]. If no
such alignment exists for a state (p, q) of Mi1,i2 , its corresponding score is set
to −∞ and it is not active. Given an additional input symbol (a, b) ∈ Σ- ×Σ-,
the active states in Mi1,i2 may change, and the scores are updated by adding
the score of the current input symbol (edit operation). The resulting weighted
automaton is denoted by M

(a,b)
i1,i2

. The score updating rule in Arslan’s algorithm

is Mi1,i2 = max
{
M

(S1[i1],-)
i1−1,i2

,M
(-,S2[i2])
i1,i2−1 ,M

(S1[i1],S2[i2])
i1−1,i2−1

}
, where the maximum

operation applied on the three weighted automata yields a weighted automaton
with each state scored by the maximum score from the corresponding states
in the three automata. In the above example, for the score of an optimal con-
strained alignment of S1 and S2, one simply looks up the score stored in state
(q1, q1) in Mn,n.

In [6], the score stored in the initial state of Mi1,i2 is always 0. It can be
observed, however, that this makes the algorithm in [6] applicable only to cases
where there exists only one substring matching R in each of S1 and S2. For
example, suppose that R = a, S1 = attac and S2 = ttatc; two matches of R
can be found in S1. The optimal constrained alignment is

[
a

-
t

t

t

t

a

a
-
t

c

c

]
with a

score of 4, but the solution output by the algorithm in [6] would be
[ - - a t t a c

t t a t - - c

]
with a score of 3, since the alignment before the satisfaction of the constraint
is ignored if the initial state always has a score of 0. Certainly, once this point
1 The transitions alone cannot achieve this; for example, on input t-

ta
, M actually

“dies” upon seeing (t, t) rather than keep moving to (q0, q1). This is achieved by
some auxiliary manipulations in [6].
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is noticed, it can be easily patched by, e.g., adding a self loop labeled by all
possible edit operations to the initial state so that the initial state always keeps
the score of an optimal alignment without any constraint.

To update the active states and the scores, all transitions in M are examined
by the algorithm in [6]. Let V be the set of states in A. There can be up to
|Σ| transitions from a state of A to another. Hence the number of transitions
in A can be up to O(|Σ| |V |2), and that in M can be up to O(|Σ|2|V |4) since
M is made by a product of A. In addition, O(n) copies of M are maintained
throughout in [6], hence the space complexity can be up to O(|Σ|2|V |4n). In
[6] it is not mentioned how to reconstruct the optimal alignment. The stated
space complexity is for the computation of the optimal score. Here we make the
dependence on the alphabet size explicit since in protein applications for which
RECSA is originally formulated, |Σ|2 is 400 which would significantly affect the
efficiency.

The critical information in M is the scores on the states; storing the entire
M is unnecessary. In this paper, we directly use a matrix to store scores. The
matrix is implemented using a simple array and can be easily manipulated. Time
and space complexity of our algorithm are respectively bounded by O(|V |3n2)
and O(|V |2n) in the worst case; we also mention how the optimal alignment
can be reconstructed within this space bound. When |V | = O(logn), which is
not remote since in general R is much shorter than the input sequences, we
propose another algorithm to take advantage of operations on O(log n)-lengthed
data, which takes constant time in the standard unit-cost RAM model (or the
operations can be implemented by using auxiliary tables of size O(n); the details
are omitted). The resulting time complexity is O(|V |2 log |V |n2) in this case.
Although M is not used in our algorithm, it serves as a conceptual framework
facilitating our presentation. From now on, we assume that the initial state of
M has a self loop labeled with all possible edit operations.

In the next section we make some notions introduced in this section precise.
In Sec. 3 our algorithms are formally presented. In the last section concluding
remarks are given.

2 Preliminaries

For convenience throughout this paper we assume that |S1| = |S2| = n. An edit
operation can be defined to be a symbol in Σ- × Σ-, where Σ- = Σ ∪ {-}.
An edit operation is written as either a pair (a, b) or a column vector [ a

b ] in
this paper. Define ρ : Σ∗

- → Σ∗ to be the “removing spaces” operator, e.g.,
ρ(a-tc-g) = atcg. A sequence A =

[ a1
b1 · · ·

am

bm

]
of edit operations is called an

alignment of S1 and S2 if ρ(a1 · · · am) = S1 and ρ(b1 · · · bm) = S2. Let γ be a
real-valued scoring function defined on sequences of edit operations satisfying

γ(
[ a1

b1 · · ·
am

bm

]
) ={

0 if m = 0, i.e., if it is an empty alignment;
γ(

[ a1
b1 · · ·

am−1
bm−1

]
) + γ(

[ am

bm

]
) otherwise.



Efficient Algorithms for Regular Expression CSA 393

Let R be a regular expression over alphabet Σ. The goal of RECSA is to find a
maximum-scored alignment A =

[ a1
b1 · · ·

am

bm

]
of S1 and S2 such that there exist

�1 and �2 with both ρ(a�1 · · ·a�2) and ρ(b�1 · · · b�2) matching R.
Let A = (Q,Σ, δ, q0, F ) be an ε-free NFA equivalent to R, which can be

constructed manually or by any established algorithm. Then δ(p, ε) = δ(p, -) =
{p} for all p ∈ Q. We also define δ(Q′, a) to be

⋃
p∈Q′ δ(p, a), where Q′ ⊆ Q and

a ∈ Σ. In this paper we use Q and V interchangeably. Following the notations
in [6], M = (QM , ΣM , δM , qM

0 , FM ), where QM = Q × Q, ΣM = Σ- × Σ-,
qM
0 = (q0, q0) and FM = F × F . Transition function δM is defined as

δM ((p, q), (a, b)) =

{
δ(p, a)× δ(q, b) if (p, q) �∈ FM ∪ {(q0, q0)};
δ(p, a)× δ(q, b) ∪ {(p, q)} otherwise.

Function δM can be naturally extended to be defined on the cross product of QM

and the set of all possible alignments. A state (p, q) of Mi1,i2 is active iff there
exists some alignment A of S1[1..i1] and S2[1..i2] such that (p, q) ∈ δM (qM

0 ,A).
Each state (p, q) in Mi1,i2 has a score Wi1,i2(p, q) assigned to it. If (p, q) is
active, then Wi1,i2(p, q) is the score of an optimal alignment A of S1[1..i1] and
S2[1..i2] such that (p, q) ∈ δM (qM

0 ,A). Otherwise no such alignment exists and
Wi1,i2(p, q) = −∞.

3 The Algorithms

In this section we present two algorithms, the first for the general case and the
second for the case that |V | = O(log n).

3.1 The General Case

Recall that automaton Mi1,i2 accepts alignments of S1[1..i1] and S2[1..i2] satis-
fying the regular expression constraint. Also recall that once we have Wn,n(p, q)
for all p, q ∈ Q, the optimal score of aligning S1 and S2 with the constraint satis-
fied can be easily found by max(p,q)∈F×F Wn,n(p, q). Hence if we can compute all
Wi1,i2 then the problem is solved. There is a simple relationship among Wi1,i2 ,
Wi1−1,i2 , Wi1,i2−1 and Wi1−1,i2−1 which allows one to compute Wi1,i2 based on
the other three. Define

W
(a,b)
i1,i2

(p, q) = max
(p′,q′):(p,q)∈δM ((p′,q′),(a,b))

Wi1,i2(p
′, q′) + γ(a, b)

Then for i1, i2 ≥ 1, the relationship can be stated as follows:

Wi1,i2(p, q) = max{W (S1[i1],-)
i1−1,i2

(p, q),W (-,S2[i2])
i1,i2−1 (p, q),W (S1[i1],S2[i2])

i1−1,i2−1 (p, q)} (1)

Let A =
[ a1

b1 · · ·
am

bm

]
be the best alignment of S1[1..i1] and S2[1..i2] such that

(p, q) ∈ δM (qM
0 ,A) and that (am, bm) = (S1[i1], -). It can be shown that γ(A) =

W
(S1[i1],-)
i1−1,i2

(p, q), or W
(S1[i1],-)
i1−1,i2

(p, q) = −∞ if such A does not exist. Indeed, if
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such A does not exist, then for any alignment A′ of S1[1..i1 − 1] and S2[1..i2]
with (p′, q′) ∈ δM (qM

0 ,A′), or equivalently, for any Wi1−1,i2(p′, q′) > −∞ with A′

corresponding to this score, we must have (p, q) �∈ δM ((p′, q′), (S1[i1], -)), since
otherwise A′

[
S1[i1]
-

]
is an alignment of S1[1..i1] and S2[1..i2] such that (p, q) ∈

δ(qM
0 ,A′

[
S1[i1]
-

]
), a contradiction. Taking the convention that max∅ = −∞ it

follows that W (S1[i1],-)
i1−1,i2

(p, q) = −∞. Now if suchA exists, let A′ =
[ a1

b1 · · ·
am−1
bm−1

]
.

There must exist (p′, q′) ∈ δM (qM
0 ,A′) such that (p, q) ∈ δM ((p′, q′), (S1[i1], -)).

Clearly γ(A′) = max(p′,q′):(p,q)∈δM ((p′,q′),(S1[i1],-)) Wi1−1,i2(p′, q′) otherwise A
cannot be the best alignment as stated. Therefore γ(A) = γ(A′)+ γ(S1[i1], -) =
W

(S1[i1],-)
i1−1,i2

(p, q), as desired. The other two cases can be analyzed similarly, and
hence (1) follows.

The algorithm in [6] is based on (1).2 On each (i1, i2), weighted automaton
Mi1,i2 , whose transitions are the same as those in M , is constructed such that
state (p, q) in Mi1,i2 carries the score Wi1,i2(p, q). Given Mi1−1,i2 , M

(S1[i1],-)
i1−1,i2

can
be computed, which is also a weighted automaton where state (p, q) carries the
score W

(S1[i1],-)
i1−1,i2

(p, q); M (-,S2[i2])
i1,i2−1 and M

(S1[i1],S2[i2])
i1−1,i2−1 are similarly defined. Then

Mi1,i2 is computed as

max{M (S1[i1],-)
i1−1,i2

,M
(-,S2[i2])
i1,i2−1 ,M

(S1[i1],S2[i2])
i1−1,i2−1 }

which is a weighted automaton where state (p, q) has score as defined in the right
hand side of (1). To compute M

(S1[i1],-)
i1−1,i2

from Mi1−1,i2 , in [6] each transition of
Mi1−1,i2 is examined a constant number of times so that for each (p, q) the score
W

(S1[i1],-)
i1−1,i2

(p, q) can be computed. Automata M
(-,S2[i2])
i1,i2−1 and M

(S1[i1],S2[i2])
i1−1,i2−1 are

computed in the same way, and Mi1,i2 can then be computed easily.
As mentioned before, given two states q′ and q, there can be up to |Σ| tran-

sitions from q′ to q. Let E be the set of “label-free” arcs in A, i.e. (q′, q) ∈ E
iff q ∈ δ(q′, a) for some a ∈ Σ. In particular, there can be at most one “label-
free” arc from state q′ to q. Hence there can be up to O(|Σ||V |2) transitions
in A and O(|Σ|2|V |4) transitions in M . Since the structure of M is duplicated
on each (i1, i2), it takes O(|Σ|2|E|2n2) time in the worst case to do this du-
plication. Asymptotically this is equivalent to O(|E|2n2), but in practice |Σ|
can affect the efficiency significantly, hence we make the dependence explicit. In
[6] it is not mentioned how M is implemented. The time taken by the compu-
tation of Mi1,i2 from Mi1−1,i2 , Mi1,i2−1 and Mi1−1,i2−1 is also O(|Σ|2|E|2n2)
in the worst case if M is implemented directly as an adjacency list, in which
case the whole adjacency list needs to be examined not to miss any (p′, q′) with
(p, q) ∈ δM ((p′, q′), (a, b)).

Clearly it is not necessary to maintain the whole machine structure on each
(i1, i2). The relevant information is the scores Wi1,i2(p, q). On each (i1, i2) we
use table Li1,i2 to store Wi1,i2 . In addition, to handle the transitions we need not

2 In [6], (1) is stated in terms of weighted automata Mi1,i2 etc.; the algorithm is then
based on the computation of M

(S1[i1],-)
i1−1,i2

, etc., as we now describe.
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use δM directly; the use of δ is sufficient. We construct a table T to represent δ:
T [q′, a; q] = 1 if q ∈ δ(q′, a), and T [q′, a; q] = 0 otherwise. This construction is
easy, taking O(|Σ||V |2) time and space if automaton A is originally represented
as an adjacency list. The computation of Li1,i2 [p, q] = Wi1,i2(p, q) can then be
improved, and is detailed as follows.

For (i1, i2) fixed, first we consider the computation of W
(S1[i1],S2[i2])
i1−1,i2−1 (p, q),

which is

max
(p′,q′):(p,q)∈δM ((p′,q′),(S1[i1],S2[i2]))

Wi1−1,i2−1(p′, q′) + γ(S1[i1], S2[i2])

In terms of δ instead of δM , this can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩
maxp′,q′:p∈δ(p′,S1[i1]) and q∈δ(q′,S2[i2]) Wi1−1,i2−1(p′, q′) + γ(S1[i1], S2[i2])

if (p, q) �∈ FM ∪ {(q0, q0)};
maxp′,q′:p∈δ(p′,S1[i1]) and q∈δ(q′,S2[i2]) or (p′,q′)=(p,q) Wi1−1,i2−1(p′, q′)+

γ(S1[i1], S2[i2]) otherwise.

Hence clearly the use of δ suffices. This immediately enables us to compute
L

(S1[i1],S2[i2])
i1−1,i2−1 [p, q], expected to equate W

(S1[i1],S2[i2])
i1−1,i2−1 (p, q) and initialized to be

−∞, for all p, q ∈ V as follows, assuming the correctness of Li1−1,i2−1[p, q]:

for p, q ∈ V do
for p′ ∈ V with T [p′, S1[i1]; p] = 1 and q′ ∈ V with T [q′, S2[i2]; q] = 1 do

L
(S1[i1],S2[i2])
i1−1,i2−1 [p, q]←

max{L(S1[i1],S2[i2])
i1−1,i2−1 [p, q], Li1−1,i2−1[p′, q′] + γ(S1[i1], S2[i2])};

end for
end for
for p, q ∈ V with (p, q) ∈ (F × F ) ∪ {(q0, q0)} do

L
(S1[i1],S2[i2])
i1−1,i2−1 [p, q]←

max{L(S1[i1],S2[i2])
i1−1,i2−1 [p, q], Li1−1,i2−1[p, q] + γ(S1[i1], S2[i2])};

end for

However, this takes Θ(|V |4) time which results in a worse algorithm than that
in [6]. Upon rearranging,

for p′, p ∈ V with T [p′, S1[i1]; p] = 1 do
for q′, q ∈ V with T [q′, S2[i2]; q] = 1 do
· · · � The same inner loop code as above

end for
end for
· · · � Deals with the case (p, q) ∈ (F × F ) ∪ {(q0, q0)}

This now takes |V |2 +
∑

p∈V deg(p)× |V |2 +O(|E|2) = O(|E| |V |2) time, where
E is the set of “label-free” arcs obtained from A and deg(p) is the indegree of
p in graph (V,E). This, again, does not improve the algorithm in [6]. We take
a further step to separate the computation in two steps. Let L be a temporary
table with all entries L[p, q] initialized to be −∞.
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for p′, p ∈ V with T [p′, S1[i1]; p] = 1 do
for q′ ∈ V do

L[p, q′]← max{L[p, q′], Li1−1,i2−1[p′, q′] + γ(S1[i1], S2[i2])};
end for

end for
for q′, q ∈ V with T [q′, S2[i2]; q] = 1 do

for p ∈ V do
L

(S1[i1],S2[i2])
i1−1,i2−1 [p, q]← max{L(S1[i1],S2[i2])

i1−1,i2−1 [p, q], L[p, q′]};
end for

end for
· · · � Deals with the case (p, q) ∈ (F × F ) ∪ {(q0, q0)}

To see the correctness, observe that in the first part L[p, q′] is computed to be

max
p′:p∈δ(p′,S1[i1])

Li1−1,i2−1[p′, q′] + γ(S1[i1], S2[i2])

In the second part L(S1[i1],S2[i2])
i1−1,i2−1 [p, q] is computed to be maxq′:q∈δ(q′,S2[i2]) L[p, q′],

which in turn is

max
p′:p∈δ(p′,S1[i1]),q′:q∈δ(q′,S2[i2])

Li1−1,i2−1[p′, q′] + γ(S1[i1], S2[i2])

as desired. The time taken by the above code segment is O
(∑

p∈V deg(p)× |V |
)
,

which is O(|E| |V |).
The computation of L(S1[i1],-)

i1−1,i2
is easier. By definition, W (S1[i1],-)

i1−1,i2
(p, q) is

max
(p′,q′):(p,q)∈δM ((p′,q′),(S1[i1],-))

Wi1−1,i2(p
′, q′) + γ(S1[i1], -)

In terms of δ, this is simply{
maxp′:p∈δ(p′,S1[i1]) Wi1−1,i2(p

′, q) + γ(S1[i1], -), if (p, q) �∈ FM ∪ {(q0, q0)};
maxp′:p∈δ(p′,S1[i1]) or p′=p Wi1−1,i2(p′, q) + γ(S1[i1], -), otherwise.

This can be implemented as follows:

for p′, p ∈ V with T [p′, S1[i1]; p] = 1 do
for q ∈ V do

L
(S1[i1],-)
i1−1,i2

[p, q]← max{L(S1[i1],-)
i1−1,i2

[p, q], Li1−1,i2 [p′, q] + γ(S1[i1], -)};
end for

end for
for p, q ∈ V with (p, q) ∈ (F × F ) ∪ {(q0, q0)} do

L
(S1[i1],-)
i1−1,i2

[p, q]← max{L(S1[i1],-)
i1−1,i2

[p, q], Li1−1,i2 [p, q] + γ(S1[i1], -)};
end for

which again takes O(|E| |V |) time. The computation of L(-,S2[i2])
i1,i2−1 is the same.

Now we consider the boundary cases when i1 = 0 or i2 = 0. It is clear
that W0,0(q0, q0) = 0 and that W0,0(p, q) = −∞ for (p, q) �= qM

0 since the only
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alignment of S1[1..0] = ε and S2[1..0] = ε is an empty alignment, with a score
of 0 by the definition of γ, and from qM

0 we can only reach qM
0 given an empty

alignment as input to M . In addition, it can be seen that

Wi1,i2(p, q) =

{
W

(S1[i1],-)
i1−1,0 (p, q) if i1 > 0 and i2 = 0,

W
(-,S2[i2])
0,i2−1 (p, q) if i2 > 0 and i1 = 0,

which can be implemented as mentioned before. In [6], the weights for all the
states (p, q) �= (q0, q0) in Mi1,0 for i1 > 0 or in M0,i2 for i2 > 0 are all set to
−∞, which, without appropriate assumptions on γ (e.g. triangle inequality; no
such assumption is made in [6]), would lead to a failure of considering possible
optimal constrained alignments like

[
c

-
-
t

]
where R = c + t, S1 = c and S2 = t.

Now that L
(S1[i1],S2[i2])
i1−1,i2−1 , L

(S1[i1],-)
i1−1,i2

and L
(-,S2[i2])
i1,i2−1 can be computed, by (1)

it is easy to compute Li1,i2 in O(|V |2) time for a fixed (i1, i2). Graph (V,E) is
connected if considered undirected, hence |V | = O(|E|). Therefore the total time
of our algorithm is O(|V | |E|n2).

To reconstruct the optimal constrained alignment, first recall that in a fea-
sible constrained alignment A =

[ a1
b1 · · ·

am

bm

]
of S1 and S2, there exist �1 and

�2 such that δ(q0, ρ(a�1 · · ·a�2)) ∩ F �= ∅ and δ(q0, ρ(b�1 · · · b�2)) ∩ F �= ∅. We
may regard A as composed of three parts: an optimal unconstrained align-
ment of ρ(a1 · · · a�1−1) and ρ(b1 · · · b�1−1), that of ρ(a�1 · · · a�2) and ρ(b�1 · · · b�2)
and that of ρ(a�2+1 · · ·am) and ρ(b�2+1 · · · bm). Let j1 = |ρ(a1 · · · a�1−1)|, j′1 =
|ρ(a1 · · · a�2)|, j2 = |ρ(b1 · · · b�1−1)| and j′2 = |ρ(b1 · · · b�2)|. Clearly if we know j1,
j′1, j2 and j′2 then the constrained alignment A can be constructed in O(n)
space by using Hirschberg’s celebrated divide-and-conquer algorithm [10] to
align S1[1..j1] and S2[1..j2], align S1[j1 + 1..j′1] and S2[j2 + 1..j′2], and align
S1[j′1 + 1..n] and S2[j′2 + 1..n]. For this purpose we compute matrices ηi1,i2

1
and ηi1,i2

2 for each (i1, i2). Let A =
[ a1

b1 · · ·
am

bm

]
be the alignment implied by

Li1,i2 [p, q]. If (p, q) ∈ F × F , then ηi1,i2
1 [p, q] stores (j1, j2) and ηi1,i2

2 [p, q] stores
(j′1, j′2) such that p ∈ δ(q0, S1[j1 + 1..j′1]) and q ∈ δ(q0, S2[j2 + 1..j′2]), where
S1[j1 + 1..j′1] = ρ(a�1 · · · a�2) and S2[j2 + 1..j′2] = ρ(b�1 · · · b�2) for some �1 and
�2. If (p, q) �∈ F × F , then ηi1,i2

1 [p, q] stores (j1, j2) such that p ∈ δ(q0, S1[j1 +
1..i1]) and q ∈ δ(q0, S2[j1 + 1..i2]), where S1[j1 + 1..i1] = ρ(a�1 · · ·am) and
S2[j2 + 1..i2] = ρ(b�1 · · · bm) for some �1; η

i1,i2
2 [p, q] simply stores (i1, i2). Note

that when computing Li1,i2 we can determine the value of (am, bm); for example
(am, bm) = (S1[i1], -) if Li1,i2 [p, q] = L

(S1[i1],-)
i1−1,i2

[p, q].
To see how to compute these values we assume that (am, bm) = (S1[i1], -);

the other two cases are similar. Let (p′, q) ∈ δ(qM
0 ,

[ a1
b1 · · ·

am−1
bm−1

]
) be such that

L
(S1[i1],-)
i1−1,i2

[p, q] = Li1−1,i2 [p′, q] + γ(S1[i1], -); (p′, q) can be determined during

the computation of L
(S1[i1],-)
i1−1,i2

[p, q]. Consider first that (p, q) �∈ F × F . Then
ηi1,i2
2 [p, q] = (i1, i2). If (p′, q) = (q0, q0), then clearly we can set ηi1,i2

1 [p, q] =
(i1 − 1, i2). If (p′, q) �= (q0, q0) then we can set ηi1,i2

1 [p, q] = ηi1−1,i2
1 [p′, q] since if

(j1, j2) = ηi1−1,i2
1 [p′, q] then p′ ∈ δ(q0, S1[j1+1..i1−1]) and q ∈ δ(q0, S2[j2+1..i2])

where S1[j1 + 1..i1 − 1] = ρ(a�1 · · · am−1) and S2[j2 + 1..i2] = ρ(b�1 · · · bm−1) for
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some �1. Since (p, q) �= (q0, q0) and (p, q) �∈ F ×F , (p, q) ∈ δM ((p′, q), (S1[i1], -))
iff p ∈ δ(p′, S1[i1]). Hence p ∈ δ(q0, S1[j1 + 1..i1]) and q ∈ δ(q0, S2[j2 + 1..i2])
with S1[j1 +1..i1] = ρ(a�1 · · · am) and S2[j2 +1..i2] = ρ(b�1 · · · bm). Now consider
(p, q) ∈ F×F . When (p, q) = (p′, q), then we simply set ηi1,i2

1 [p, q] = ηi1−1,i2
1 [p′, q]

and ηi1,i2
2 [p, q] = ηi1−1,i2

2 [p′, q]. When (p, q) �= (p′, q), then ηi1,i2
1 [p, q] is set in the

same way as before, while ηi1,i2
2 [p, q] is set to (i1, i2).

Therefore ηi1,i2
1 and ηi1,i2

2 can be set without difficulty. For the boundary
case, all entries in η0,0

1 and η0,0
2 are simply set to (0, 0). With the knowledge of

ηn,n
1 [p, q] and ηn,n

2 [p, q] where (p, q) = arg max(p′,q′)∈F×F{Ln,n[p′, q′]}, an opti-
mal constrained alignment of S1 and S2 can then be constructed in linear space.

When computing Li1,i2 all those Li′
1,i′

2
with i′1 ≤ i1 − 2 are not necessary.

Similar arguments are also applicable to ηi1,i2
1 and ηi1,i2

2 . Each of these matri-
ces has O(|V |2) entries. Given ηn,n

1 and ηn,n
2 , the reconstruction of an optimal

constrained alignment takes O(n) space (and O(n2) time so the time complexity
stated before is not affected). Therefore the space complexity of our algorithm is
O(|V |2 n). On the other hand, since 2n copies of weighted automata are main-
tained, giving only the score of an optimal constrained alignment, the space
complexity of the algorithm in [6] is O(|Σ|2|E|2n), which is less satisfactory.

3.2 An Algorithm for Short Regular Expression Constraints

In general R is much shorter than S1 and S2. The number of states in the
automaton A equivalent to R may hence also be small relative to n. Here we
present another algorithm which can be combined with the algorithm presented
in the last subsection to yield a more efficient algorithm when |V | = O(log n).
Under this assumption, we represent each T [q, a] (regarded as a vector containing
entries T [q, a; p] for all p ∈ V ) by a bit vector of length |V |; such a bit vector
now takes O(1) space to store. For brevity we only show the computation of
L

(S1[i1],-)
i1−1,i2

. The other cases can be handled similarly.

1: for q ∈ V do
2: Compute array X such that Li1−1,i2 [X [j], q] ≥ Li1−1,i2 [X [j + 1], q];
3: Initialize bit vector Y and array Z, both with length |V |, to be all 0;
4: for j = 1 to |V | do
5: p′ ← X [j];
6: T ′ ← T [p′, S1[i1]]⊗ Ȳ ; � T ′ is a temporary bit vector, ⊗ is the

bitwise AND operator and Ȳ is the bitwise complement of Y
7: t← ‖T ′‖1; � The number of bits with value 1 in T ′

8: for c← 1 to t do
9: Z[λ[T ′]]← p′; � λ[T ′] is the position of the leftmost bit with

value 1 in T ′

10: Set bit λ[T ′] of T ′ to 0;
11: end for
12: Y ← Y ⊕ T ′;
13: end for
14: for p ∈ V with Z[p] �= 0 do
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15: L
(S1[i1],-)
i1−1,i2

[p, q]← Li1−1,i2 [Z[p], q] + γ(S1[i1], -);
16: end for
17: end for

Now we discuss the correctness of the above code segment. For convenience
bit vectors are also treated as sets in our discussion that follows. Fix state q ∈ V
of the outmost loop. Entry Z[p] of array Z, if Z[p] �= 0, is used to keep

argmax
p′
{Li1−1,i2 [p

′, q] : p ∈ δ(p′, S1[i1])}

On the jth execution of line 12, vector Y stores the set
⋃j

j′=1 δ(X [j′], S1[i1])
of states, i.e., Y [p] = 1 iff p ∈ δ(X [j′], S1[i1]) for some j′ ≤ j. Vector T ′ when
initialized in line 6 keeps the set of states in δ(X [j], S1[i1]) that are not in Y ,
hence if j′ < j, we have that p ∈ T ′ implies p �∈ δ(X [j′], S1[i1]). In particular,
since Li1−1,i2 [X [j], q] ≥ Li1−1,i2 [X [j + 1], q], p ∈ T ′ implies that

Li1−1,i2 [X [j], q] = max{Li1−1,i2 [X [j′], q] : j ≤ j′ ≤ |V | and p ∈ δ(X [j′], S1[i1])}
= max{Li1−1,i2 [X [j′], q] : 1 ≤ j′ ≤ |V | and p ∈ δ(X [j′], S1[i1])}
= max{Li1−1,i2 [p

′, q] : p ∈ δ(p′, S1[i1])}

If for some p, it does not belong to any T ′ throughout the computation, then no
state p′ with p ∈ δ(p′, S1[i1]) exists; leaving Z[p] = 0 in this case is correct. As
lines 7–11 implements statement “For each p ∈ T ′ set Z[p] ← X [j],” it is now
clear that Z is correctly computed. The correctness of the above code segment
then follows.

We now analyze the time complexity of the above code segment. Line 2 takes
O(|V |2 log |V |) total time. Line 3 takes O(|V |2) total time. Lines 5–7 take O(1)
time for each iteration, hence take O(|V |2) time in total. For a fixed q, line 8
is executed O(|V |) times since the T ′ for a specific value of j is disjoint from
all those corresponding to other values of j. Hence the total time taken by lines
8–11 is O(|V |2). Lines 12 and 14–16 also take O(|V |2) total time. Put this code
segment into the complete algorithm, the overall time complexity for solving
RECSA is O(|V |2 log |V |n2). Therefore by combining the algorithm presented in
the last subsection, we can solve RECSA in time O(min{|V | log |V |, |E|}|V |n2).

We summarize our results as the following theorem.

Theorem 1. RECSA can be solved in O(|V | |E|n2) time and O(|V |2n) space.
If |V | = O(log n), then it can be solved in O(min{|E|, |V | log |V |} |V |n2) time
and O(|V |2n) space.

4 Conclusion and Discussion

In this paper we proposed two efficient algorithms solving the regular expres-
sion constrained sequence alignment problem. The time and space complex-
ity of our first algorithm are respectively O(|V | |E|n2) and O(|V |2 n). When
|V | = O(log n) we are able to solve RECSA in O(min{|E|, |V | log |V |} |V |n2)
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time. These compare favorably with the time and space complexity in [6] which
are respectively O(rn2) and O(rn), where r is the number of transitions in M
and r = O(|Σ|2 |E|2). When aligning protein sequences a factor of |Σ|2 may
impair the efficiency seriously. In addition to the asymptotic improvements, our
algorithms are also easy to implement and due to the use of simple arrays less
redundancy is involved in practice. In [6] it is not stated how to reconstruct an
optimal constrained alignment. We propose a space efficient method to recon-
struct it without affecting the above stated space complexity.

In practice it is important to have an algorithm to align multiple sequences
with the given regular expression constraint satisfied. In [6] it is suggested to
extend the structure of weighted finite automata to support multiple sequences.
However the size of such automata grows exponentially with the number of se-
quences, becoming an exponential multiplicative factor to the exponential time
complexity of a multiple sequence alignment procedure. Hence a reasonable pro-
gressive algorithm of RECSA for multiple sequences is still in demand.
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Abstract. This paper addresses the problem of multiple pattern match-
ing for motifs encoded by Position Weight Matrices. We first present an
algorithm that uses a multi-index table to preprocess the set of motifs,
allowing a dramatically decrease of computation time. We then show
how to take benefit from simlar motifs to prevent useless computations.

1 Introduction

Weighted pattern matching has attracted a lot of interest recently. We deal
here more particularly with the problem of finding weighted patterns in a non-
weighted text. This situation occurs in computational biology for example, when
searching for transcription factor binding sites modelled by Position Weight Ma-
trices [12]. Large public databases of PWMs are available, such as Transfac [14]
and Jaspar [7]. The usage of PWMs goes with global bioinformatics strategies
that help to elucidate regulation mechanisms: comparative genomics, identifi-
cation of over-represented motifs, identification of correlation between binding
sites,. . . Most of these methods rely on long-range exhaustive scannings for large
predefined sets of PWMs (see [13, 6, 3] for recent examples). Brute force approach
is no longer appropriate for this task, and there is a need for efficient algorithms.

In this article, we address the problem of searching for PWM occurrences in
long sequences with a large initial set of PWMs. In Section 3, we first present
a general algorithm for that question with no further assumption on the set of
matrices. The foundation of this algorithm is to preprocess the matrices and to
store the scores in a multi-index table. We show how to build and to use this
table in a optimal way with respect to the data set.

In Section 4, we investigate the multiple PWM matching problem for similar
matrices. The idea is to take benefit from the mutual information content in
the set of matrices, and eliminate useless computations. This gives rise to two
filtering algorithms. Filtering may be lossless or approximate.

2 Position Weight Matrices

The objects we deal with are weighted patterns: each character symbol is as-
signed a score dependent of the position in the pattern. Such weighted patterns
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are indeed simple non-branching weighted automata. They are known as Posi-
tion Weight Matrices (PWMs for short), or equivalently Position Specific Scoring
Matrices (PSSMs) in computational biology. We adopt this terminology here.

Definition 1 (Position Weight Matrix). Let Σ be a finite alphabet and let
n be a positive natural number. A Position Weight Matrix (for short PWM) of
length n is a matrix indexed by {1, . . . , n} ×Σ with integer coefficient values.

Note that we consider here Position Weight Matrices composed of integer co-
efficients. In full generality, PWMs can contain real coefficients when they are
defined as entropy matrices or log odd matrices. But in practice such matrices
are rounded to integer matrices or equivalently decimal matrices.

Given a PWM M , we write M(i, x) for the coefficient indexed by i in {1, . . . , n}
and x in Σ. We also use slices of PWMs: M [i..j] denotes the submatrix of M ob-
tained by selecting only positions from i to j, for all character symbols. By con-
vention, if i > j, then M [i..j] is an empty matrix.

Definition 2 (Score). Let M be a PWM of length n and let u be a string of
Σn. The score of M on u is defined as

Score(u,M) =
n∑

i=1

M(i, ui)

where ui denotes the character symbol at position i in u. Given a sequence S of
length greater than n, we write Score(S, i,M) for the score of M on the factor
of length n beginning at position i in S.

Definition 3 (PWM matching problem). Let S be a sequence, M be a
PWM and α be a score cutoff. The PWM matching problem consists in find-
ing all positions i in S such that Score(S, i,M) is greater than α.

The score distribution of the PWM can be assigned a P-value function, which
gives the statistical significance of an occurrence according to its score [2, 11]. In
this article, we use the P-value as an internal parameter to speed up the compu-
tation of the score. This is an unusual application. To give a formal definition of
the P-value, one needs to model the background sequence properly. We assume
here that the positions in the sequence are independently and identically dis-
tributed. All results can be extended to more sophisticate random sources, such
as Markov models [5]. But we think that in this context the gain is poor.

Definition 4 (P-value). Let M be a PWM and let α be a score threshold. The
P-value Pvalue(M,α) is the probability that the background model can achieve
a score equal to or greater than α.

In other words, the P-value is the proportion of strings (with respect to the
background model) whose score is greater than the cutoff. The P-value can be
computed with time complexity linear in the length of the PWM. The algorithm
uses probability generating functions or directly dynamic programming. The P-
value for the ith column of the matrix is deduced from the previous position i−1
as follows.
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Pvalue(M [1..0], α) =
{

1 if α ≤ 0
0 otherwise

Pvalue(M [1..i]), α) =
1
σ

∑
x∈Σ

Pvalue(M [1..i− 1], α−M(i, x)) (1)

Throughout this paper, σ denotes the cardinality of the alphabet Σ.

3 The Multiple PWM Matching Problem

We present a simple algorithm for the PWM matching problem in presence of
a large set of PWMs. This algorithm takes advantage of the fact that PWMs
are permanent objects that are known in advance. So it is likely to preprocess
PWMs to speed up the search process. We combine two complementary strate-
gies: pruning the columns of the PWMs and precomputing partial scores in a
multi-index table. We first describe the method for a single matrix. The exten-
sion to a larger number of PWMs is straightforward and is presented in the third
part of this section.

3.1 Pruning the PWM

The first idea comes from the structure of the PWMs and of the underlying
motif. The score depends on the entirety of the PWM. But in most cases the
information contained in a subset of the columns is sufficient to conclude to
the absence of occurrence without inspecting all columns of the matrix. One
can anticipate from partial scores that the final score will be lower than the
predetermined cutoff. For example, for the PWM M of Figure 1 associated to
the score threshold α = 1, every word starting with the prefix bbb cannot be an
occurence for M whatever the remaining part of the word is. The score of bbb
is −3. It cannot be compensated for by the two last columns, whose maximal
cumulated score is 2. In this context, it is not necessary to inspect the last two
columns of M to be able to conclude that there is no occurrence of the PWM.

a 2 1 0 -2 1

b -2 -1 0 1 0

Fig. 1. Example of PWM

For each position of the PWM, we consider the minimal score that should be
reached to be able to have an occurrence of the PWM. We call this threshold
the Greater lower bound score.

Definition 5 (Greater lower bound). Let M be a PWM of length n with a
score threshold α. Let i be a position in {1, . . . , n}. The greater lower bound for
i in M , denoted GLB(M, i, α), is the largest value v such that for each u ∈ Σn−i,
v + Score(u,M [i + 1..n]) < α.
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Lemma 1. Let M be a PWM of length n with a score threshold α. Let i be a
position in {1, . . . , n}. The greater lower bound for i in M equals

GLB(M, i, α) = α−
n∑

j=i+1

max{M(j, x); x ∈ Σ}.

Proof. By definition 2, the score system is additive and the score of M [i+ 1..n]
is majored by

∑n
j=i+1 max{M(j, x); x ∈ Σ}.

According to Definition 4, we are able to measure the probability of the set of
prefixes of length i that can lead to an occurrence of M : it equals

Pvalue(M [1..i], GLB(M, i, α)).

It means that when searching for occurrences of M , the probability to have to go
beyond the position i is Pvalue(M [1..i], GLB(M, i, α)). This probability decreases
with increasing values of i and increasing values of α.

PWM Matching Problem with Pruning
Input: a PWM (M, α) of length n, a string u of length n
Output: is Score(u, M) greater than α ?
s ← 0
for i ∈ {1, . . . n} and s ≥ GLB(M, i − 1, α) do

s ← s + M(i, ui)
return (s ≥ α)

For a given matrix M of length n, the average number of visited columns is
n−1∑
i=0

Pvalue(M [1..i], GLB(M, i, α)).

Figure 2 shows the gain in the computation time yielded by the application of
the pruning rule on a large number of PWMs retrieved from Transfac [14] and
Jaspar [7] databases.
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Fig. 2. Evaluation of the impact of the pruning strategy on Jaspar and Transfac verte-
brate matrices (602 matrices in total). The horizontal axis indicates the mean runtime
gain compared with the classical brute-force algorithm (in percentage) for one matrice.
The vertical axis indicates the number of matrices for each value. The average gain,
for the whole set of matrices, is 33.85%.
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3.2 Preprocessing of the PWM

We now show that it is possible to further speed up the computation of the
score using an index table. Let M be a position weight matrix of length n on
the alphabet Σ. This matrix induces a mapping from Σn to ZZ. So its score
distribution is determined by σn values. Of course, for real-life PWMs, n is too
large to store exhaustively all scores on Σn. The solution we propose here consists
in dividing the matrix into a set of smaller tractable submatrices {M1, . . . ,Ml},
that are made of contigous slices of M . For each such small submatrix, it is
possible to precompute all possible scores for all possible strings and store them
exhaustively in an index table. The problem of designing this series of index
tables is thus defined by the following parameters:

– the number l of submatrices,
– an increasing sequence of positions i1 = 1, . . . , ik, . . . , il+1 = n + 1.

The sequence of positions determines the bounds of the submatrices: Mk =
M [ik..ik+1 − 1]. Each submatrix Mk is associated an index table Tk whose size
is σik+1−ik : for each word u ∈ Σik+1−ik , we define Tk(h(u)) = Score(u,Mk),
where h is a hash function associating to each word of Σ∗ a natural number in
lexicographic ordering in a classical way. The final result is obtained using the
additivity property of the definition 2. For each u ∈ Σn,

Score(u,M) =
l∑

k=1

Tk(h(u(ik..ik+1 − 1))) (2)

A full example of the construction of the index table for a PWM of length 5 is
visible in Figure 3.

3.3 Construction of the Optimal Index Table for an Arbitrary Set
of PWMs

The construction of the index table for a single matrix can easily be modified to
handle a set of PWMs: each cell of the index table Tk is a vector that contains
the partial score of each PWM. More formally, letM be a set of PWMs and let
tn be the number of matrices of length n in M. The index table is defined as
previously by

– the number l of submatrices,
– an increasing sequence of positions i1 = 1, . . . , ik, . . . il+1 = n + 1.

The difference is that the size of each subtable Tk is σik+1−ik
∑ik+1−1

y=ik
ty.

The index table can also be combined with the pruning strategy described in
Section 3.1: pruning applies at each position corresponding to borders of subta-
bles. So the objective is to choose the number and the size of the subtables that
minimize the average runtime taking into account the structure of the PWMs.
For that purpose, we use Definition 5 and Lemma 1.
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Matrix M
a 2 1 0 -2 1
b -2 -1 0 1 0

↗

↘

Submatrix M1

a 2 1 0
b -2 -1 0

Submatrix M2

a -2 1
b 1 0

→

→

Index subtable T1

0 : aaa 3
1 : aab 3
2 : aba 1
3 : abb 1
4 : baa -1
5 : bab -1
6 : bba -3
7 : bbb -3

Index subtable T2

0 : aa -1
1 : ab -2
2 : ba 2
3 : bb 1

Fig. 3. Example of construction of the index table for a PWM of length 5, with alphabet
Σ = {a, b}. The matrix M is divided into two submatrices, M1 of length 3 and M2 of
length 2. The table T1 stores all precomputed scores for M1 on {a, b}3, and, similarly
all scores for M2 on {a, b}2 are stored in T2. The correspondence between {a, b}∗ and
the positions in the tables is performed with the hash function h. For instance, the
final score of abbab is obtained as the sum of T1(h(abb)) = T1(3) = 1 and T2(h(ab)) =
T2(1) = −2: it is −1.

Given e the maximal memory space capacity, we write φ(j, e) for the average
number of accesses for positions [1..j].

φ(0, e) =
{

0, if e ≥ 0
+∞, if e < 0 (3)

φ(j, e) = min
0≤i<j

{φ(i, e− σj−i

j∑
y=i+1

ty) +
∑

M∈M
Pvalue(M [1..i], GLB(M, i, α))}

The last case corresponds to the main case, with the creation of an index
table for the slice [i+ 1..j]. In this equation, by convention if the length of M is
smaller than i, then Pvalue(M [1..i], GLB(M, i, α)) equals 0. The allocated mem-
ory space for this new table is σj−i

∑j
y=i+1 ty and, according to the analysis of

subsection 3.1, it requires Pvalue(M [1..i], GLB(M, i, α)) accesses in average. The
final value is obtained with φ(m, e), where m is the length of the longest PWM
of M and e is the available memory space. φ can be computed by dynamic
programming, and the associated optimal structure is then recovered by tracing
back. The following pseudo-code algorithm recapitulates the steps of the pre-
processing of the set of PWMS. Figure 4 gives an example of the optimal index
table for the set of PWMs coming from the databases Transfac vertebrates and
Jaspar.
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Fig. 4. The histogram represents the distribution of sizes of Transfac and Jaspar matri-
ces (602 matrices in total). The optimal index table for this set of matrices is composed
of four subtables: 1..8, 9..16, 17..23 and 24..30. The number of matrices in each subtable
is respectively 602, 502, 100 and 20. After pruning with lemma 1, the corresponding
average number of accesses is respectively 602, 216, 18 and 1. The second figure gives
the computation time of our algorithm (dotted line) compared to the brute-force algo-
rithm (solid line). The available memory size was 256MB. The second diagram shows
that our algorithm is eight times faster than the brute-force one.

Preprocessing of the PWMs

Input: a set M of PWMs, a natural number e for the available memory space
Output: the optimal index table for M and e

for each (M, α) ∈ M do
for i = 1 to length(M) do

Compute Pvalue(M [1..i], GLB(M, i, α)) with Lemma 1 and Equation 1
m ←max{length(M); M ∈ M}
Compute φ(m,e) with Equation 3 and deduce the optimal cutting {i1, . . . , il}
for k = 1 to l do

for each u ∈ Σik+1−ik do
for each M ∈ M do

Tk(h(u))[M ] ← Score(u, M [ik..ik+1 − 1])

The computation time for the greater lower bound for the set of all matrices
Pvalue(M [1..i], GLB(M, i, α)) is in O(

∑
M∈M length(M)). At first sight, the time
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computation for φ is in O(m2). But for bounded values of e, the difference j − i
should also be bounded by logσ(e). So the whole computation can be done
within O(logσ(e)). It remains to fill up the tables : this can be done in time
O(lσmax{ik+1−ik,1≤k≤l}|M|). Once the table index is set up, the score of each
PWM is computed with Equation 2. In this formula, the summation is stopped
as soon as the partial score is smaller than the associated greater lower bound
for the score cutoff.

4 The PWM Matching Problem for Similar Matrices

In the previous section, we designed an efficient algorithm for scanning a sequence
given a set of arbitrary PWMs. If the PWMs encode for binding sites specific to a
family of transcription factors, they may look similar. Figure 5 shows an example
of four similar matrices extracted from Transfac. In this case, the occurrences of
the PWMs are correlated. Similarity may also come from redundancy between
databases. [9, 10, 8] proposed several correlation measures between two matrices.
The distance is used to group matrices into clusters. The clusters are then used
to analyse transcription factor sites themselves, to compare with a new matrix
or to eliminate redundancy between databases. [10] also suggested to use clusters
to speed-up the PWM matching problem. Indeed, a representative matrix may
be defined for each cluster. The occurrences for all matrices are then deduced
from the occurrences of the representative matrix. Nevertheless no method is
given and moreover no measure was proposed in order to control prediction
errors when a representative matrix is used to predict the occurrences of all the
matrices. In this section, we address a new issue of the PWM matching problem
when given a set of similar matrices.

4.1 Similar Matrices

The two algorithms are based on the common idea that if PWMs are similar, we
may design a filtering matrix that helps to decide if a matrix M of the set has an
occurence for a given position of the sequence, without computing the score of
M systematically. For that task, we need to align all PWMs. Here the process of
alignment is to put in correspondence similar columns of the matrices by shifting
them, without introducing gaps. Each pairwise alignment induces a frameshift
between two PWMs. In full generality, finding the best alignment is NP-hard:
it is an alternative formulation of the maximal k−clique on a k−partite graph
problem [1, 4]. Nevertheless, here involved matrices are very similar. We thus
assume that the matrices have the following property.

Definition 6 (Consistent PWMs). Let M be a set of PWMs. M is consis-
tent if for each triplet of distinct PWMs M,N,O, the best alignment between
M and N and the best alignment between M and O allow to deduce the best
alignment between N and O.

In the context of consistent matrices, obtaining the optimal alignment is straight-
forward: choose a reference matrix and compute the optimal frameshift of each
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matrix against this reference matrix. From now on, we consider only sets of con-
sistent matrices. Once the matrices are aligned, it is likely to assume that the
PWMs all have the same length: it is enough to fill missing columns by vectors
of 0. For sake of simplicity, we assume that the matrices are aligned and of the
same length in the remaining of this article.

Fig. 5. Four matrices of the EGR-1 family extracted from Transfac. This is a typical
case where a filtering matrix can be used. Matrices are very similar and obtaining the
alignment is straightforward. Here there is no frameshift.

The choice of the filtering matrix strongly depends on the set of initial PWMs
and of the properties we expect for the algorithm. We list here some examples
of filtering matrices for a set {M1, . . . ,Mk}:
– arithmetical mean PWM:

∀x ∈ Σ, ∀i ∈ 1..length(M), M(i, x) =
k

j=1

Mj(i, x)/k

– minimum PWM:
∀x ∈ Σ, ∀i ∈ 1..length(M), M(i, x) = min{M1(i, x), . . . , Mk(i, x)}

– maximum PWM:
∀x ∈ Σ, ∀i ∈ 1..length(M), M(i, x) = max{M1(i, x), . . . , Mk(i, x)}

4.2 Lossless Filtering

The first algorithm for similar PWMs is an exact algorithm. Given a filtering
matrix and a set of matrices with associated score cutoffs, we define the uncer-
tainty threshold that allows us to decide from the filtering matrix score whether
or not a PWM of the set has a chance to have a score greater than its score
cutoff.

Definition 7 (Uncertainty threshold). Let M and N be two PWMs. The
uncertainty threshold between M and N , denoted U(M,N), is defined as the
smallest positive natural number x such that

∀u ∈ Σn ∀α ∈ IN Score(u,N) ≤ α− x⇒ Score(u,M) ≤ α

Lemma 2. U(M,N) =
∑n

i=1 maxx∈Σ (N(i, x)−M(i, x)).

The first filtering algorithm can now be designed. For each position of the se-
quence, for each matrix Mi, we use the score of the filtering matrix N and the
uncertainty threshold between Mi and N to decide whether or not the score of
Mi has to be computed.
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Lossless Filtering PWM Matching Algorithm

Input: a sequence S, a set of PWMs {(M1, α1), . . . , (Mk, αk)}
Output: all occurrences of M1, . . . , Mk in S

Define a filtering matrix N for {(M1, α1), . . . , (Mk, αk)}
for j = 1 to p compute U(Mj , N)
for each position i in the sequence S do

Compute s ← Score(S, i, N) with Equation 2
for j = 1 to p do

if s > αj − U(Mj , N)
then compute Score(S, i, Mj)

Equation 1 and Lemma 1 allow us to compute a priori the average proportion
of positions in the sequence where it is necessary to compute explicitly the score
of the PWM Mj (last line of the algorithm) : this is Pvalue(N,αj −U(Mj, N)).
For example, with the four matrices of Figure 5 and a score cutoff corresponding
to a P-value of e−5, if we define the filtering matrix as the arithmetical mean
matrix, the average proportion of computations for M00243, M00244, M00245,
M00246 is 3%, 2.3%, 2.1% and 3.5% respectively. The computation of the filtering
matrix on a random sequence of length 106 gives rise to 105351 computations of
the score of one of the four matrices, that is 2, 7%, compared to the brute-force
algorithm.

4.3 Approximate Algorithm

The similarity between matrices may also be exploited to design an approximate
algorithm for the PWM matching problem. The algorithm computes only the
score of the filtering matrix and if an occurrence exists for the filtering matrix
at position i we conclude that each matrix of the set occurs at position i. The
algorithm becomes very simple.

Approximate Filtering PWM Matching Algorithm

Input: a sequence S, a set of PWMs {(M1, α1), . . . , (Mk, αk)}
Output: estimation of all occurrences of M1, . . . , Mk by all occurences of a filtering
matrix N in S

Define a filtering matrix N and a score threshold α for {(M1, α1), . . . , (Mk, αk)}
for each position i in the sequence S do

Compute Score(S, i, N) with Equation 2

In this approximate algorithm, the choice of the filtering matrix determines
the sensitivity and the selectivity of the estimation. To evaluate the relevance
of the filtering matrix, we need to be able to bound the error induced by the
approximation in a more accute way than with the uncertainty threshold. For
that we define false positive and false negative occurrences.

Definition 8 (False positives and false negatives). Let M and N be two
PWMs with respective score threshold α1 and α2.
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– u is a false positive occurrence for N if Score(u,M) ≥ α1 and Score(u,N)
< α2,

– u is a false negative occurrence for N if Score(u,M) < α1 and Score(u,N)
≥ α2.

We write FP (M,N,α1, α2) for the proportion of false positive occurrences, and
FN(M,N,α1, α2) for the proportion of false negative occurrences (assuming that
the sequences are independently and identically distributed).

For example, for the three definitions of filtering matrix given in subsection 4.1,
we have the following behaviour.

– the minimal matrix with cutoff α = max {α1, . . . , αk} guarantees that there
is no false positive occurrence,

– the maximal matrix with cutoff α = min {α1, . . . , αk} guarantees that there
is no false negative occurrence,

– the arithmetical mean matrix yields balanced results between false positive
and false negative occurrences.

The following lemma shows that it is possible to compute FP and FN exactly,
and to control the error induced by the filtering matrix.

Lemma 3. FP (M,N,α1, α2) = l(length(M), α1, α2) where the function l is
defined recursively as follows.

l(0, s1, s2) =
{

1 if s1 ≥ 0 and s2 < 0
0 otherwise

l(i, s1, s2) =
∑

x∈Σ l(i− 1, s1 −M(x, i), s2 −N(x, i))

FN(M,N,α1, α2) = l′(length(M), α1, α2) where the function l′ is defined re-
cursively as follows.

l′(0, s1, s2) =
{

1 if s1 < 0 and s2 ≥ 0
0 otherwise

l′(i, s1, s2) =
∑

x∈Σ l′(i− 1, s1 −M(x, i), s2 −N(x, i))

This Lemma implies that FP and FN can be computed by dynamic program-
ming by recurrence on i. On the example of Figure 5, the rate of FP and FN
are 19% and 21% respectively with the arithmetical mean as the filtering matrix
and a P-value of e−5 for the score cutoff.

5 Conclusion

We proposed an efficient algorithm for the PWM matching problem in presence
of a large set of PWMs, which is eight times faster than the brute-force algorithm.
We also investigated the problem of PWM matching for similar matrices. In this
perspective, we formulated exact relationships between the set of occurrences of
PWMs, that allow to estimate the redundancy of the occurrences. We believe
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that these results are of a more general interest, and may be used in larger
contexts for assessing the significance of multiple occurrences. This question
arises frequently when studying regulatory sequences and putative transription
factor binding sites. Another vertue of this analysis is that it helps to cope with
redundant occurrences in a very efficient way. Redundancy between PWMs is
a common problem when one works with public databases [9]. The classical
approach is to eliminate overlapping binding sites afterwards using empirical
similarity rules. Lemma 3 makes it possible to detect redundant PWMs prior to
the searching phase, and to control the overlapping rate.
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Brodal, Gerth Stølting 330
Brown, Daniel G. 94

Chan, Ho-Leung 49
Chencinski, Eran 188, 200
Chung, Yun-Sheng 389

Della Vedova, Gianluca 106
Dondi, Riccardo 106

Evans, Patricia A. 223

Fischer, Johannes 36

Golynski, Alexander 24
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