
A Bialgebraic Review of Deterministic Automata,
Regular Expressions and Languages

Bart Jacobs

Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

B.Jacobs@cs.ru.nl http://www.cs.ru.nl/B.Jacobs

To Joseph Goguen on the occasion of his 65th birthday

Abstract. This papers reviews the classical theory of deterministic automata and
regular languages from a categorical perspective. The basis is formed by Rutten’s
description of the Brzozowski automaton structure in a coalgebraic framework.
We enlarge the framework to a so-called bialgebraic one, by including algebras
together with suitable distributive laws connecting the algebraic and coalgebraic
structure of regular expressions and languages. This culminates in a reformulated
proof via finality of Kozen’s completeness result. It yields a complete axioma-
tisation of observational equivalence (bisimilarity) on regular expressions. We
suggest that this situation is paradigmatic for (theoretical) computer science as
the study of “generated behaviour”.

1 Introduction

In the early seventies Joseph Goguen described automata within a categorical perspec-
tive (see for instance [11,12,13]), together with colleagues Arbib and Manes [1]. This
paper fits in that tradition, using a more modern, bialgebraic setting, where algebra
meets coalgebra. A bialgebra is a combined algebra and coalgebra F (X) → X →
G(X) on a common carrier (or state space) X , satisfying a certain compatibility re-
quirement wrt. a distributive law connecting the two functors F,G. These bialgebras
found application within the abstract, combined description of operational and denota-
tional semantics started explicitly by Turi and Plotkin [35,34]—and more implicitly by
Rutten and Turi [32]. This is now an active line of work [26,20,5,18].

Goguen has always shown an interest in methodological and philosophical issues
surrounding computing. The work in this paper also lends itself to such reflections. It is
often claimed that data processing is the subject of the discipline of computer science.
We think it is more to the point to describe the subject of computer science as generated
behaviour. This is the behaviour that can be observed on the outside, for instance via a
screen or printer. It arises in interaction with the environment, as a result of the computer
executing instructions.

This behaviouristic approach allows us to understand the relation with natural sci-
ences: biology is about “spontaneous” behaviour, and physics concentrates on lifeless
natural phenomena, without autonomous behaviour. The generated behaviour that we
claim to be the subject of computer science arises by a computer executing a program

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 375–404, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www.cs.ru.nl/B.Jacobs

376 Bart Jacobs

according to strict operational rules. The behaviour is typically observed via the com-
puter’s I/O. Abstractly, the program can be understood as an element in an inductively
defined set P of terms. This set thus forms a suitable initial algebra F (P) → P , where
the functor F captures the signature of the operations for forming programs. The oper-
ational rules for the behaviour of programs are described by a coalgebra P → G(P),
where the functor G captures the kind of behaviour that can be displayed—such as
deterministic, or with exceptions. We see that in abstract form, generated computer be-
haviour amounts to the repeated evaluation of an (inductively defined) coalgebra struc-
ture on an algebra of terms. Hence the bialgebras that form the basic structures used in
this paper are at the heart of computer science.

One of the big challenges of computer science is to develop techniques for effec-
tively establishing properties of generated behaviour. Often such properties are for-
mulated positively as wanted, functional behaviour. But these properties may also be
negative, like in computer security, where unwanted behaviour must be excluded. How-
ever, an appropriate logical view about program properties within the combined alge-
braic/coalgebraic setting has not been fully elaborated yet.

A distributive law is a natural transformation FG ⇒ GF that describes (in the
current setting) the proper interaction of term-formation and computational behaviour.
The basic observation of [35,34], further elaborated [5], is that such natural transforma-
tions correspond to specification formats for operational rules on (inductively defined)
programs. A bialgebra is an algebra-coalgebra pair satisfying a compatibility require-
ment wrt. a given distributive law. These bialgebras, as already claimed, form very
fundamental structures in computing, because they combine algebraic structure with
the associated computational behaviour. The compatibility requirement entails elemen-
tary properties like: observational equivalence (i.e. bisimulation wrt. the coalgebra) is a
congruence (wrt. the algebra).

This paper concentrates on deterministic automata, regular expressions and lan-
guages. They form the very basic structures in computer science (see for instance [28])
which are studied early on in standard curricula in computing. The main contribution
of this paper is the demonstration that these classic structures fit perfectly in the bialge-
braic framework. In fact, they may be considered as a paradigmatic example. The paper
does not contain new results on regular expressions / automata / languages as such, but
on the way they can (or should) be organised. The proper mathematical language for
this organisation is categorical. The reader is assumed to be familiar with basic notions
like functor, natural transformation, (co)monad and adjunction, such as can be found in
any introductory text on category theory. Our investigations take place in the category
Sets of ordinary sets and functions. We are well aware that many results generalise to
other categories, but we do not always strive for the highest level of generality.

There is already a large body of algebraic work on regular expressions, automata
and languages, for instance within the context of regular algebras [9]. The coalge-
braic perspective on this topic was introduced by Rutten [30,33,31], who demonstrated
its fruitfulness especially for proving equalities via coinduction (using bisimulations).
Rutten’s work exploits the automaton structure on regular expressions introduced by
Brzozowski [8,9]. Here we go a step further by developing the bialgebraic (combined
algebraic-coalgebraic) perspective. This involves a number of new technical results:

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 377

– a general mechanism for obtaining distributive laws and bialgebras for determinis-
tic automata in Section 3;

– a description of the free algebra and Brzozowski coalgebra structure on regular
expressions as a bialgebra wrt. a (categorical) GSOS law in Subsection 4.3;

– a new proof of Kozen’s completeness result [23,24] for regular expressions and
languages in Section 5, by describing the coalgebra of regular expressions mod-
ulo equations as a final object. This shows that Kozen’s axioms and rules give a
complete axiomatisation of observational equivalence (bisimilarity) on regular ex-
pressions.

Throughout the paper we heavily rely on previous work, notably [35,31,24].
We expect that the bialgebraic picture that is emerging constitutes a paradigm which

also applies to many more computational models (as already suggested in [35]). After
all, regular expressions are extremely elementary, and capture only a very limited form
of computation. Hence the bialgebraic paradigm is still in need of further instantiation,
confirmation, and elaboration.

2 Deterministic Automata as Coalgebras

This section collects some standard facts about deterministic automata, described as
coalgebras, in order to determine the setting and fix the notation.

We use two arbitrary sets A and B, where the elements of A may be understood as
letters of an alphabet, and the elements of B as outputs. A deterministic automaton
with A as input and B as output set consists of two functions:

δ:X −→ XA for transition ε:X −→ B for output

acting on a state space X . The transition function δ maps a state x ∈ X and an input
letter a ∈ A to a successor state x′ = δ(x)(a) ∈ X . In that case one may write
x

a−→ x′. The output function ε gives for a state x ∈ X the associated observable
output ε(x) ∈ B.

The one-step transition function δ can be extended to a multiple-step transition func-
tion δ�. The latter takes a state x ∈ X and a sequence σ ∈ A� of inputs to a successor
state obtained by consecutively executing the steps in σ.

X
δ�

�� XA�

defined as

{
δ�(x)(〈〉) = x

δ�(x)(a · σ) = δ�(δ(x)(a))(σ)
(1)

This extended transition function δ� gives rise to the multiple-step transition notation:
x

σ−→∗ x′ stands for x′ = δ�(x)(σ), and means that x′ is the (non-immediate) succes-
sor state of x obtained by applying the inputs from the sequence σ ∈ A�, from left to
right.

The behaviour beh(x):A� → B of a state x ∈ X is then obtained as the function
that maps a finite sequence σ ∈ A� of inputs to the observable output

beh(x)(σ) = ε(δ�(x, σ)) ∈ B (2)

378 Bart Jacobs

The transition and output functions δ and ε of a deterministic automaton can be
combined into a tuple 〈δ, ε〉:X → XA × B forming a coalgebra of the functor D =
DA,B given by U �→ UA × B. A coalgebra homomorphism from

(〈δ1, ε1〉:X1 →
XA

1 × B
)

to
(〈δ2, ε2〉:X2 → XA

2 × B
)

consists of a function h:X1 → X2 between
the underlying state spaces satisfying:

D(f) ◦ 〈δ1, ε1〉 = 〈δ2, ε2〉 ◦ f,
That is, fA ◦ δ1 = δ2 ◦ f and ε1 = ε2 ◦ f . Or, more concretely, f(δ1(x)(a)) =
δ2(f(x))(a) and ε1(x) = ε2(f(x)), for all x ∈ X and a ∈ A.

This describes morphisms in a category CoAlg(D). The following result, occur-
ring for example in [2,29,16], is simple but often useful. It gives an explicit description
of the final object in the category CoAlg(D). The proof is easy, and left to the reader.

Proposition 1. The final coalgebra of the functor D = (−)A × B for deterministic
automata is given by the set of behaviour functionsBA�

, with structure:

BA�
〈D,E〉

�� (BA�)A ×B

given by:

D(ϕ)(a) = λσ ∈ A�. ϕ(a · σ) and E(ϕ) = ϕ(〈〉). �

As is well-known—after Lambek—the structure map of a final coalgebra is an iso-
morphism. The carrier BA�

of the final coalgebra collects all possible behaviours of
deterministic automata. Two special cases are worth mentioning explicitly.

Example 1. Consider the above final coalgebra BA� ∼=−→ (
BA�)A × B of the deter-

ministic automata functor D = (−)A ×B.

1. When A is a singleton set 1 = {0}, so that A� = N, the resulting functor D =
(−)×B captures stream coalgebrasX → X ×B. Its final coalgebra is the set BN

of infinite sequences (streams) of elements of B, with (tail, head) structure,

BN

∼= �� BN ×B given by ϕ �−→ (λn ∈ N. ϕ(n+ 1), ϕ(0))

2. When B = 2 = {0, 1} describing final (or accepting) states of the automaton, the
final coalgebra BA�

is the set L(A) = P(A�) of languages over the alphabet A,
with structure:

L(A)
∼= �� L(A)A × 2 given by L �−→ (λa ∈ A.D(L)(a), E(L))

where D(L)(a) is the so-called a-derivative, introduced by Brzozowski [8], and
defined as:

D(L)(a) = {σ ∈ A� | a · σ ∈ L},
and where E(L) = 1 ⇐⇒ 〈〉 ∈ L.
Given an arbitrary automaton X → XA × {0, 1} of this type, the resulting be-
haviour map beh:X → P(A�) thus describes the language beh(x) ⊆ A� ac-
cepted by this automaton with x ∈ X considered as initial state.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 379

Both these final coalgebras BN and L(A) = P(A�) are studied extensively by
Rutten, see [30,33,31]. One of the things that he emphasises is the use of bisimulation as
a reasoning principle. Here we only sketch the main points, for deterministic automata.

Definition 1. Consider two coalgebras 〈δ1, ε1〉:X1 → XA
1 × B and 〈δ2, ε2〉:X2 →

XA
2 × B. A bisimulation between them is a relation R ⊆ X1 ×X2 on the underlying

state spaces that satisifies for all x1 ∈ X1, x2 ∈ X2,

R(x1, x2) =⇒
{
ε1(x1) = ε2(x2), and

R(δ1(x1)(a), δ2(x2)(a)), for all a ∈ A.

We write y1 ↔ y2 and call y1, y2 bisimilar if there is a bisimulation R with R(y1, y2).

Bisimilarity expresses observational equality, that is, equality as far as one can ob-
serve with the available (coalgebraic) operations. This explains the following result.

Proposition 2. In the situation of the previous definition one has: y1 ↔ y2 if and only
if beh〈δ1,ε1〉(y1) = beh〈δ2,ε2〉(y2).

Proof. The implication (⇒) is easy, since if y1 ↔ y2, say via a bisimulation R with
R(y1, y2), then by induction, R(δ�

1(y1)(σ), δ�
2(y2)(σ)), for each σ ∈ A�. This yields

beh〈δ1,ε1〉(y1) = ε1(δ�
1(y1)(σ)) = ε2(δ�

2(y2)(σ)) = beh〈δ2,ε2〉(y2). For the reverse
implication (⇐) one uses that the relation {(x1, x2) | beh〈δ1,ε1〉(x1) = beh〈δ2,ε2〉(x2)}
is a bisimulation. This follows directly because the beh maps are homomorphisms. �

States are thus bisimilar if and only if they are equal when mapped to the final coal-
gebras. Bisimulations provide a means to prove equations via “single-step” arguments.
This makes coinductive reasoning similar to ordinary inductive approaches. See [15]
for an abstract account of the underlying dualities.

Here is a very simple example—already using the regular algebra structure on lan-
guages from Example 3 later on. For each letter a ∈ A one has (1 + a)∗ = a∗ in L(A).
This can be proven via the bisimulation R = {〈(1 + a)∗, a∗〉} ∪ {〈∅, ∅〉}.

At some stage we shall need the modal “eventually” operator ♦. Let 〈δ, ε〉:X →
XA ×B be an arbitrary coalgebra / automaton. For a predicate (or subset) P ⊆ X we
define ♦(P) ⊆ X as the set of all states that are reachable from P :

♦(P) = {δ�(x)(σ) | x ∈ P, σ ∈ A�}.

For a single state we write ♦(x) for ♦({x}). Note that ♦(P) is a subcoalgebra / sub-
automaton, because it is by construction closed under transitions. It may be described
as the least invariant containing P , see [17]. The greatest invariant �(P) contained in
P is the predicate {x | ∀σ ∈ A�. δ�(x)(σ) ∈ P}.

3 Structured Output Sets and Distributive Laws

In [31, Section 9] the situation is studied where the output set B of a coalgebra X →
XA×B is a semiring. This generalises the situations studied in [31] of final coalgebras

380 Bart Jacobs

of real-valued streams (B = R) and languages (B = 2). It is shown that the sum and
multiplication operations on B can be extended to the final coalgebras involved.

Here we go a step further and assume an algebra structure β:T (B) → B, for a
monad T :Sets → Sets with unit η: id ⇒ T and multiplication μ:T 2 ⇒ T . Semirings
then form a special case, see Subsection 3.4. We show how this T -algebra structure
on the output set B induces a distributive law TD ⇒ DT , and a strengthened form
of coinduction using “T -automata”, following the approach of [36,5]. We shall give
several illustrations involving different types of automata, for various concrete monads.
These investigations go a bit beyond what is strictly needed for deterministic automata
and regular languages.

To start, we recall that for an arbitrary monad T and functor G acting on the same
category, a distributive law λ:TG⇒ GT is a natural transformation that interacts ap-
propriately with the monads unit η and multiplication μ. This means that the following
two diagrams commute.

GX
ηGX ��

G(ηX) ����������� TGX

λX
��

T 2GX

μGX

��

T (λX)
�� TGTX

λTX �� GT 2X

G(μX)
��

GTX TGX
λX

�� GTX

Example 2. The next two illustrations will be used frequently. They both involve the
so-called strength map.

1. For each functor T on the category Sets and for each set X there is a natural
transformation st:T (−)X ⇒ (−)X T . It is usually called strength, and given as
map T (Y X) → (TY)X by the formula:

st(u)(x) = T
(
λh ∈ Y X . h(x)

)
(u).

In case T happens to carry a monad structure, the strength map becomes a distribu-
tive law. The above two diagrams then translate into:

Y X
ηY X ��

(ηY)X ����
��

��
��

� T (Y X)

st
��

T 2(Y X)
T (st)

��

μY X

��

T
(
(TY)X

) st �� (T 2Y)X

(μY)X

��
(TY)X T (Y X)

st
�� (TY)X

(The diligent reader may have noticed that strength is also natural in the functor,
in the sense that for a natural transformation σ:F ⇒ G one has stGX,Y ◦ σY X =
(σY)X ◦ stFX,Y .)
One useful point about strength for monads is that it allows pointwise construction
of algebras on function spaces: if α:T (Y) → Y is an Eilenberg-Moore algebra,
then so is αX ◦ st:T (Y X) → (TY)X → Y X .

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 381

2. We have formulated the notion of a distributive law for a monad and a functor.
There are several “obvious” variations, for instance for a functor and a comonad.
The next example again involves strength, and is related to the final coalgebra con-
struction in Proposition 1.
To start, let (M, ·, e) be an arbitrary monoid. It gives rise to a functor (−)M :Sets →
Sets that turns out to be a comonad. The counit EX :XM → X uses the monoids
unit in EX(ϕ) = ϕ(e), and the comultiplication CX :XM → (XM)M works via
the monoids multiplication in CX(ϕ) = λa ∈M.λb ∈M.ϕ(a · b).
We claim that for an arbitrary functor F , there is a distributive law F (−)M ⇒
(−)M F over the comonad (−)M . This law is again given by strength, and satisfies
the following two “dual” properties.

F (XM) st ��

F (EX) �����
���

���
�

(FX)M

EFX

��

F (XM) st ��

F (CX)
��

(FX)M

CFX
��

F (X) F
(
(XM)M

)
st

�� (F (XM))M

stM
�� ((FX)M

)M
Why is all this relevant? Well, the final coalgebra structure described in Proposi-
tion 1 arises in this manner via the (free) monoid (A�, ·, 〈〉) of strings with con-
catenation: its observation map E:BA� → B is precisely the above counit EB ,
and its transition map D:BA� → (BA�

)A arises from the comultiplication CB ,
via restriction to singleton sequences: D(ϕ)(a)(σ) = C(ϕ)(〈a〉)(σ). The fact that
strength forms a distributive law will be used in the proof of Proposition 4 below.

As stated in the beginning of this section, we assume an Eilenberg-Moore algebra
β:T (B) → B. By definition it satisfies the algebra laws β ◦ η = id and β ◦ T (β) =
β ◦ μ. Then we can define a distributive law of the monad T over the automata functor
D = (−)A ×B from the previous section, namely:

TD ��λ DT with components T (XA ×B)
λX �� (TX)A ×B

This law is obtained as composite:

T (XA ×B)
〈T (π1), T (π2)〉 �� T (XA) × TB

st × β �� (TX)A ×B

The next result summarises what we have found so far.

Proposition 3. Each Eilenberg-Moore algebra T (B) → B induces a distributive law
λ:TD ⇒ DT for the deterministic automata functor D = (−)A ×B. �

When we have an arbitrary monad T , functor G, and a distributive law λ:TG ⇒
GT the relevant associated notion is that of a λ-bialgebra: a pair of maps:

TX
a �� X

b �� GX

382 Bart Jacobs

where:

– a is an Eilenberg-Moore algebra;
– a and b are compatible via λ, which means that the following diagram commutes.

TX

T (b)
��

a �� X
b �� GX

TGX
λX

�� GTX

G(a)
��

A map of λ-bialgebras, from (TX a−→ X
b−→ GX) to (TY c−→ Y

d−→ GY) is
a map f :X → Y that is both a map of algebras and of coalgebras: f ◦ a = c ◦ T (f)
and d ◦ f = G(f) ◦ b.

The next two results are standard, see for e.g. [5,18], and are given without proof.

Lemma 1. Assume a distributive law λ:TG ⇒ GT , and let ζ:Z
∼=−→ GZ be a final

coalgebra. It carries an Eilenberg-Moore algebra obtained by finality in:

GTZ �����������
G(α)

GZ

TGZ

λZ

��

TZ

T (ζ) ∼=
��

������������
α Z

∼= ζ

��

The resulting pair (TZ α−→ Z
ζ−→ GZ) is then a final λ-bialgebra. �

Lemma 2. In presence of a distributive law λ:TG ⇒ GT , there exists a bijective
correspondence between GT -coalgebras e:X → GTX (also called equations) and

λ-bialgebras (T 2X
μX−→ TX

d−→ GTX) with free algebra μX .

Moreover, let (TY a−→ Y
b−→ GY) be a λ-bialgebra. Then there is a bijective

correspondence between “solutions of e” f :X → Y in:

GTX
GT (f)

�� GTY
G(a)��

GY

X

e

��

f
�� Y
b

��

and λ-bialgebra maps g:TX → Y —for the associated equations and λ-bialgebras. �

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 383

Proposition 4. The assumed algebra β:TB → B induces on the carrier BA�

of the
final D-coalgebra from Proposition 1 another T -algebra via a pointwise construction,
namely,

β̂
def
=
(
T (BA�

)
st �� (TB)A� βA�

�� BA�
)

so that E:BA� → B is a homomorphism of algebras. This β̂ is the unique coalgebra
homomorphism from Lemma 1,

DT (BA�

) �����������
D(β̂) D(BA�

)

TD(BA�

)

λBA�

��

T (BA�

)

T (〈D,E〉) ∼=
��

������������
β̂

BA�

∼= 〈D,E〉

��

using the distributive law from Proposition 3. Hence, this β̂ together with the final

coalgebra forms the final λ-bialgebra: T (BA�

)
β̂−→ BA� 〈D,E〉−→ D(BA�

).

Proof. According to Lemma 1 it suffices to prove that β̂ is a homomorphism of coalge-
bras. Here we use that strength is a distributive law as described in Example 2.(2).

D(β̂) ◦ λ ◦ T (〈D,E〉)
= D(βA� ◦ st) ◦ 〈st ◦ T (π1), β ◦ T (π2)〉 ◦ T (〈D,E〉)
= 〈(βA�

)A ◦ stA ◦ st ◦ T (D), β ◦ T (E)〉
= 〈(βA�

)A ◦ D ◦ st, β ◦ E ◦ st〉
= 〈(βA�

)A ◦ D, β ◦ E〉 ◦ st

= 〈D,E〉 ◦ βA� ◦ st

= 〈D,E〉 ◦ β̂. �
The coinduction principle associated with a final λ-bialgebra is called λ-coinduc-

tion in [5]. In the current situation, with the functor D for deterministic automata, the
principle yields a strengthened form of coinduction for “T -automata”.

Theorem 1. For each T -automaton 〈δ, ε〉:X → D(TX) = (TX)A × B—where B
carries a T -algebra β:TB → B—there is a unique map beh:X → BA�

making the
following diagram commute.

(TX)A ×B = DTX DT (beh)
�� DT (BA�

)
D(β̂)��

D(BA�

)

X

〈δ, ε〉

��

beh
�� BA�

〈D,E〉��

384 Bart Jacobs

Proof. This result is a direct consequence of Lemmas 1 and 2, but we like to give the
concrete construction, as in the proof of Proposition 1. First we define an extension
δ�:X → (TX)A�

of δ like in (1) by induction:

δ�(x)(〈〉) = η(x) δ�(x)(a · σ) = μ
[
st
(
T (δ�)

(
δ(x)(a)

))
(σ)
]
.

Then we can define the required map as:

beh =
(
X

δ�
�� (TX)A� (Tε)A�

�� (TB)A� βA�

�� BA�
)
. �

In the remainder of this section we shall investigate several instantiations of the
monad T in the results above.

3.1 The Identity Monad and Deterministic Automata

If we take T = id, with β = id as identity algebra we get λ = id and β̂ = id, so that
λ-coinduction is just the ordinary form of coinduction for deterministic automata.

3.2 The Powerset Monad and Non-deterministic Automata

In the above context we now consider the situation where the monad T is the powerset
monad P and where the output set B is 2 = {0, 1}. An Eilenberg-Moore algebra of
P is a complete lattice (see e.g. [25, Chapter VI.2, Exerice 1]), i.e. a poset with joins
(and hence also meets) of all subsets. Since 2 = P(1), we have a free monad structure⋃

:P(2) → 2 given by union. The strength map st:P(Y X) → P(Y)X is st(u)(x) =
{f(x) | f ∈ u}. The resulting distributive law, say λP :PD ⇒ DP , is given by:

P(XA × 2)
λPX �� P(X)A × 2

U
� �� 〈λa ∈ A. {f(a) | ∃b. (f, b) ∈ U}, ∃f. (f, 1) ∈ U〉

The final coalgebra is in this case the set 2A�

= P(A�) = L(A) of languages over
the “alphabet”A, see Example 1 (ii). The induced algebra structure P(L(A)) → L(A)
is simply union

⋃
.

The λP -coinduction principle from Theorem 1 tells how a state x of a non-deter-
ministic automaton is mapped to the associated language (that is accepted starting from
x as initial state):

P(X)A × 2 = DP(X) ���������� DPL(A)
D(
⋃

)��
DL(A) = L(A)A × 2

X

��

������������ L(A)

∼=
��

This was first noted in [5, Corollary 4.4.6].

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 385

3.3 The Multiset Monad and Weighted Automata

It is well-known that the Kleene-star or list monadX �→ X� has monoids as Eilenberg-
Moore algebras. The monad M for commutative monoids is given by multisets:

M(X) = {ϕ ∈ N
X | ϕ has finite support},

where the support of ϕ is the set supp(ϕ) = {x ∈ X | ϕ(x) �= 0}. Such a ϕ can thus be
represented as finite sum n1x1 + · · · + nkxk of elements xi ∈ X with “multiplicities”
ni = ϕ(xi) ∈ N. The action M(f) on such a representation is then simply n1f(x1) +
· · · + nkf(xk). The unit of this monad is x �→ 1x and multiplication is n1ϕ1 + · · · +
nkϕk �→ λx ∈ X.n1ϕ1(x) + · · · + nkϕk(x).

An M-automaton 〈δ, ε〉:X → M(X)A×2 is then a so-called weighted automaton.
For a state x ∈ X and letter a ∈ A there may then be several result states xi in the
outcome δ(x)(a) = n1x1 + · · · + nkxk, each with a particular “weight” ni.

The set 2 forms a commutative monoid via finite disjunctions �,∨—and also via
conjunctions. The disjunctions induce a commutative monoid structure on L(A) given
by union of languages. Since this is an idempotent monoid, the structure of multiplici-
ties is ignored when a state is mapped to the associated language.

3.4 The Semiring Monad

A basic observation is that there is a distributive law of monads π: (−)� ◦ M ⇒ M ◦
(−)� between the list and multiset monads. It is given by multiplication in N:

M(X)� πX �� M(X�)

〈ϕ1, . . . , ϕn〉 � �� ∑{ϕ1(x1) · · ·ϕn(xn)〈x1, . . . , xn〉 | xi ∈ supp(ϕi)}

= λ〈y1, . . . , ym〉 ∈ X�.

{
0 if m �= n

ϕ1(y1) · · ·ϕn(yn) otherwise.

With some perseverance one can prove that π is a natural transformation that commutes
appropriately with the monad structures.

It is a standard result that in presence of a distributive law like π: (−)� ◦ M ⇒
M ◦ (−)� the composite M ◦ (−)� is again a monad, see for instance [6,19,4].
Moreover, the multiset monad M can be lifted to a monad M on the category of (−)�-
algebra (monoids), such that the algebras of the composite monad M ◦ (−)� are the
same as M-algebras. This functorM maps a monoid (X, ·, 1) to (M(X), •, η(1)) with
multiplication • given by:

ϕ • ψ =
∑{ϕ(x)ψ(y)(x · y) | x ∈ supp(ϕ), y ∈ supp(ψ)}.

An Eilenberg-Moore algebra (M(X), •, η(1)) → (X, ·, 1) for the monad M con-
sists of a commutative monoid m:M(X) → X whose structure map m preserves the
monoid structure. Such an algebra of the composite monad is thus a semiring. There-
fore we call the monad the semiring monad, and write it as S(X) = M(X�).

386 Bart Jacobs

Rutten [31, Section 9] explicitly considers deterministic automata X → XA × B
where the set B is a semiring, i.e. carries an Eilenberg-Moore algebra S(B) → B.
This includes his main examples B = R and B = 2. In those cases the final coalgebra
BA�

is also a semiring, via pointwise construction. Theorem 1 yields for a “semiring”
automatonX → S(X)A × 2 a mappingX → L(A) to languages over A.

3.5 The Language Monad

The language monad L(X) = P(X�) can be constructed similarly to the semiring
monad S(X) = M(X�), namely via a distributive law. The algebras of the language
monad are Kleene algebras with arbitrary joins, also known as unital quantales, see [18]
for more information. Theorem 1 then yields behaviours for states of “language au-
tomata” X → L(X)A ×B. They resemble alternating automata [27].

4 Regular Expressions

As is well-known, regular expressions are built up from constants 0, 1, letters a ∈ A
from a given alphabetA, sum s+ t, composition s · t and Kleene-star s∗. These opera-
tions form an algebra of the functor:

R(X) = 1 + 1 + (X ×X) + (X ×X) +X

where we ignore the alphabet for a moment—because it will turn up in the associated
monad below. The initial algebra of this functor R is not so interesting: it consists of
the (closed) terms that can be obtained from 0, 1 via +, ·, (−)∗. Notice that at this stage
there are no equations involved. They will appear in the next section.

Example 3. For an arbitrary set U , the set of languages L(U) = P(U�) over U carries
an R-algebra structure R(L(U)) → L(U). It is given by the familiar definitions

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zero term case: 0 �−→ ∅
one term case: 1 �−→ {〈〉}

sum case: (L1, L2) �−→ L1 ∪ L2

product case: (L1, L2) �−→ {σ1 · σ2 | σi ∈ Li}
star case: L �−→ ⋃

n∈N
Ln.

since a single (algebra) map R(L(U)) → L(U) jointly describes five maps of the
form 1 → L(U), 1 → L(U), L(U) × L(U) → L(U), L(U) × L(U) → L(U) and
L(U) → L(U), giving the individual operations of regular algebra.

For the special case where U = ∅ we get an algebra structure on L(∅) = P(∅�) =
P(1) = 2. This structure R(2) → 2 uses 0,∨ and 1,∧ as additive and multiplicative
monoids, and the constant map x �→ 1 as star operation.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 387

Usually one considers regular expressions over an alphabetA. It means that the let-
ters a ∈ A are used as atoms to build up regular expressions. This can be done via the
free monad R∗ generated by R. It is defined on a setA as the initial algebra of the func-
tor X �→ A + R(X). We shall sometimes write ReA for the carrier R∗(A) of regular
expressions over A, or simply Re if the alphabet A is clear from the context. This set
Re is built up inductively from 0, 1, a ∈ A using the regular operations +, ·, (−)∗.

We thus have an initiality isomorphism [ηA, τA]:A + R(Re) ∼=−→ Re, where the
map τA:R(R∗(A)) → R∗(A) is the free R-algebra on A. The extension map σ:R ⇒
R∗ is then given by σ = τ ◦ R(η).

The next result collects the basics about this situation.

Lemma 3. In the situation described above:

1. The functorA �→ R∗(A) is a monad, whose category of Eilenberg-Moore algebras
is isomorphic to the category of R-algebras. The multiplication of this monad is
defined by initiality in:

R∗A+ R(R∗R∗A
)

∼=[η, τ]
��

��������
id + R(μA) R∗A+ R(R∗A)

[id, τ]
��

R∗R∗A �������������
μA

R∗A

2. The R-algebra on 2 from Example 3 yields a distributive law λ:R∗D ⇒ DR∗ for
the deterministic automaton functor D = (−)A × 2.

Proof. The first point is standard, and the second is a special case of Proposition 3. �
With this result, an R-algebra from Example 3, say r:R(L(U)) → L(U) corre-

sponds to a unique Eilenberg-Moore algebra r:R∗(L(U)) → L(U) with r ◦ σ = r.
Especially for U = ∅ this yields an algebra R∗(2) → 2 that will be used in (4) below.
The multiplication μ maps a term s(t1, . . . , tn) built up from other terms t1, . . . , tn as
atoms, to the term s[t1, . . . , tn] obtained by substituting these ti into s.

Example 4. The standard interpretation of the set ReA regular expressions over an al-
phabet A in the set L(A) of languages over A may be understood as the unique homo-
morphism of algebras:

R∗R∗A

μA

��

��������
R∗([[−]]) R∗(L(A)

)

��
ReA = R∗A ����������

[[−]]
L(A)

with [[η(a)]] = {〈a〉}.

The Eilenberg-Moore algebra on L(A) arises from the R-algebra from Example 3.
Freeness of μA and the inclusion {〈−〉}:A→ L(A) does the rest.

Usually one does not make a clear distinction between an expression like s = 1 +
a∗ba∗ ∈ ReA and its interpretation [[s]] = 1 ∪ a∗ba∗ ∈ L(A). Here however, we like
to keep the two apart, and use an explicit interpretation function [[−]].

388 Bart Jacobs

4.1 Two Questions

Given this basic set-up, we ask ourselves the following two questions.

1. Is there a coalgebra/automaton structure 〈D,E〉 on regular expressions such that
the above interpretation [[−]] is also a homomorphism of coalgebras, as in:

R∗R∗A

μA

��

R∗([[−]]) �� R∗(L(A)
)

��
ReA = R∗A

��
〈D,E〉 ??

[[−]]
�� L(A)

∼= 〈δ, ε〉
��

(R∗A)A × 2
[[−]]A × 2

�� L(A)A × 2

(3)

2. Is this diagram a map between two κ-bialgebras, for a suitable distributive law κ.

We address this matter in the next two subsections. The first question can be answered
positively, and involves Brzozowski’s “derivative” and “non-empty word” operations on
regular expressions from [8,9]. The second question will be solved by a special kind of
distributive law, following the so-called GSOS format. It puts the concrete construction
of Brzozowski in the general framework developed in [35].

4.2 Regular Expressions as Coalgebras

From a coalgebraic perspective the most interesting part of regular expressions is that
they form a deterministic automaton 〈D,E〉: Re → ReA × 2 = D(R∗(A)).

The output operation E: Re → 2 is obtained by freeness as the unique map in

R∗(Re)

μ
��

��������
R∗(E) R∗(2)

��
Re ����������

E
2

with E(η(a)) = 0 (4)

where the algebra structure R∗(2) → 2 is as described before Example 4. Commutation
of the diagram (4) yields the equationsE(0) = 0, E(1) = 1, E(s+ t) = E(s) ∨ E(t),
E(s · t) = E(s) ∧ E(t) and E(s∗) = 1. This operationE describes what is sometimes
called the empty word property.

Since the values of E(s) ∈ 2 are either 0 or 1, we shall often treat E(s) as a term in
Re.

By induction on the structure of a term s ∈ Re one checks the first bi-implication:

E(s) = 1 ⇐⇒ 〈〉 ∈ [[s]] ⇐⇒ (ε ◦ [[−]])(s) = 1

Hence ε ◦ [[−]] = E, which is one part of the lower square in (3).

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 389

The “derivative” operation D: Re → ReA is more complicated. It is due to Brzo-
zowski [8], see also [9]. We shall use the common notation Da(s) for the successor
term D(s)(a). The derivative is defined by the following clauses (or rules).

Da(0) = 0 Da(s+ t) = Da(s) +Da(t)

Da(1) = 0 Da(s · t) = Da(s) · t+ E(s) ·Da(t)

Da(b) =

{
1 if b = a

0 otherwise.
Da(s∗) = Da(s) · s∗.

(5)

Is this a proper inductive definition? The problem is in the clause for composition,
where the term t is used in the subterm Da(s) · t in original form. Similarly for s in
the star case. Hence we cannot use an inductive/freeness definition like for E in (4).
We have to use recursion to deal with the additional parameter. The remainder of this
subsection elaborates the required formulation of recursion.

A categorical analysis of strengthened induction principles for a functor F is given
in [36] in terms of distributive laws between F and a comonad—dual to the approach
underlying Theorem 1. We shall use this approach in the current situation where F is
the functorA+R(−) for regular expressions described in the beginning of this section
and the comonad is simply (−) × D for a set D, with coalgebra Δ = 〈id, id〉. We
concentrate on the result, and refer to [36] for the distributive law involved.

Theorem 2 (Recursion following [36]). An initial algebra α:F (D) ∼=−→ D satisfies
the following strengthened induction property: for each map f :F (X ×D) → X there
is a unique map h:D → X making the following diagram commute.

F (D ×D)
F (h×D)

�� F (X ×D)

f

��

F (D)
F (Δ)

��

α ∼=��
D

h
�� X

Proof. We shall give a direct proof, ignoring the distributivity properties involved. Let
f :F (X×D) → X therefore be given. Write f ′ = 〈f, α ◦ F (π2)〉:F (X×D) → X×
D. It gives by initiality rise to a unique map k:D → X ×D with k ◦ α = f ′ ◦ F (k).
Then π2 ◦ k = id by uniqueness of algebra maps α → α. Hence we take h = π1 ◦ k.

�

With this theorem the derivative operation D: Re → ReA can be obtained by re-
cursion from a map [f1, f2]:A+ R(ReA × Re) → ReA in:

A+ R(Re
)

∼=[η, τ]
��

����������
id + R(〈D, id〉)

A+ R(ReA × Re
)

[f1, f2]
��

Re ���������������
D

ReA

(6)

390 Bart Jacobs

The map f1:A → ReA is defined as f1(a) = λb ∈ A. if b = a then 1 else 0. And
f2:R(ReA × Re) → ReA is given by the following cases.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zero term case: 0 �−→ λa ∈ A. 0

one term case: 1 �−→ λa ∈ A. 0

sum case: (〈ϕ1, s1〉, 〈ϕ2, s2〉) �−→ λa ∈ A.ϕ1(a) + ϕ2(a)

product case: (〈ϕ1, s1〉, 〈ϕ2, s2〉) �−→ λa ∈ A.ϕ1(a) · s2 + E(s1) · ϕ2(a)

star case: (ϕ, s) �−→ λa ∈ A.ϕ(a) · s∗.

Commutation of the diagram (6) now yields the appropriate clauses (5) for the derivative
function. Further, by induction on s ∈ Re one proves:

[[D(s)(a)]] = D([[s]])(a) as in Example 1 (ii)

= {σ ∈ A� | a · σ ∈ [[s]]}.

This means that [[−]] is a homomorphism of both algebras and coalgebras in (3). This
settles our first question from Subsection 4.1. In particular, the operational seman-
tics ([[−]] as coalgebra homomorphism) is compositional (i.e. is an algebra homomor-
phism).

We now turn to the second question from Subsection 4.1.

4.3 Regular Expressions as Bialgebras

Since the derivative operation D: Re → ReA is defined by recursion (instead of in-
duction), the distributive laws and bialgebras described in Section 3 do not work in this
situation. Interestingly, the so-called GSOS format does work. It has been developed
in syntactic form for process calculi [7,14], and formulated categorically in [35]. We
follow the latter approach—see also [5]. The main point is that these GSOS laws have
an extra parameter—like in recursion.

Definition 2. For a monad T and functor G, a GSOS law is a distributive law of the
form λ:T (G× id) ⇒ (G× id)T with π2 ◦ λ = T (π2).

A λ-model, or GSOS model, for such a GSOS law λ, consists of an Eilenberg-
Moore algebra a:TX → X and a coalgebra b:X → GX on the same state space,

such that the pair TX
a−→ X

〈b,id〉−→ GX ×X is a λ-bialgebra; equivalently, such that
the following diagram commutes.

TX

T (〈b, id〉)
��

a �� X
b �� GX

T (GX ×X)
π1 ◦ λ

�� GTX

Ga

��

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 391

The formulation of GSOS law that we use is not quite the same as in [35]. The
latter handles the special case where the monad T is free, i.e. of the form F ∗. The
next result shows that this special case of our definition is equivalent to the “natural
transformation” formulation used in [35].

Proposition 5. Let F be an arbitrary endofunctor with associated free monad F ∗.
There is a bijective correspondence between:

GSOS laws F ∗(G× id) ��λ (G× id)F ∗
====================================
natural transformations F (G× id) ��

ρ GF ∗

We use an overline-notation λ �→ λ, ρ �→ ρ for this correspondence, in both directions.

Correspondingly, F ∗X a→ X
b→ GX is a λ-model (as in Definition 2) if and only

if the following diagram commutes.

FX

F (〈b, id〉)
��

a ◦ σ �� X
b �� GX

F (GX ×X)
λ

�� GF ∗X

Ga

��

In view of this result, we shall often also call a natural transformation F (G× id) ⇒
GF ∗ a GSOS law.

Proof. We only describe the constructions, and leave the details to the interested read-
ers. For the correspondence between GSOS laws and natural transformations, first as-
sume a GSOS law λ:F ∗(G×id) ⇒ (G×id)F ∗. It gives rise to a natural transformation:

λX =
(
F (GX ×X) σ �� F ∗(GX ×X)

λX �� GF ∗X × F ∗X
π1 �� GF ∗X

)

Conversely, for ρ:F (G×id) ⇒ GF ∗ we define a distributive law ρ = 〈ρ1, ρ2〉:F ∗(G×
id) ⇒ (G × id)F ∗ where ρ2 = F ∗(π2) and ρ1 is defined by recursion (following
Theorem 2) in:

(
(GX ×X) +

F
(
F ∗(GX ×X)

)
)

[η, τ] ∼=
��

���������
id + F (〈ρ1, id〉)

(
(GX ×X) +

F
(
GF ∗X × F ∗(GX ×X)

)
)

[Gη ◦ π1, Gμ ◦ ρ ◦ F (id × F ∗(π2))]

��
F ∗(GX ×X) ������������������

ρ1
GF ∗X

392 Bart Jacobs

The equivalence with respect to models amounts for F ∗X a→ X
b→ GX to:

F ∗X

F ∗(〈b, id〉)
��

a �� X
〈b, id〉�� (G× id)X FX

F (〈b, id〉)
��

a ◦ σ �� X
b �� GX

iff

F ∗(GX ×X)
λ

�� (G× id)F ∗X

Ga× a

��

F (GX ×X)
λ

�� GF ∗X

Ga

��

The direction from left to right is straightforward, and the reverse direction requires the
use of uniqueness in recursion. �

Example 5. The regular expression functor R(X) = 1+1+(X×X)+(X×X)+X
and the deterministic automaton functor D(X) = XA × 2 are connected via a GSOS
law:

R(XA × 2 ×X)
ρX �� R∗(X)A × 2

0 � zero �� (λa ∈ A. 0, 0)

1 � one �� (λa ∈ A. 0, 1)

〈(ϕ1, b1, x1), (ϕ2, b2, x2)〉 � plus �� (λa ∈ A.ϕ1(a) + ϕ2(a), b1 ∨ b2)

〈(ϕ1, b1, x1), (ϕ2, b2, x2)〉 � product �� (λa ∈ A.ϕ1(a) · x2 + b1 · ϕ2(a), b1 ∧ b2)

(ϕ, b, x) � star �� (λa ∈ A.ϕ(a) · x∗, 1).

One recognises the clauses/rules for D and E as described in the previous subsection.
Their format can thus be expressed via a GSOS law; see [5] for more information about
such correspondences. We shall illustrate that this law is fundamental, in the sense that
it induces familiar structure (and associated results) on regular expressions.

There are a number of general results about GSOS laws that put our running exam-
ple in perspective. We shall concentrate on these results first, and return to the example
of regular expressions at the end of this subsection. The next two results are the ana-
logues for GSOS laws of Lemmas 1 and 2. The proof of the second one uses a form of
recursion for Eilenberg-Moore algebras.

Lemma 4. If we have a GSOS law λ:T (G× id) ⇒ (G× id)T , then a final coalgebra
ζ:Z ∼=−→ GZ induces a final λ-model with algebraα:TZ → Z defined by coinduction:

GTZ ��������� Gα
GZ

T (GZ × Z)
π1 ◦ λ

��

TZ ����������
α

T (〈ζ, id〉) ��

Z

∼= ζ

��

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 393

Proof. By uniqueness one obtains that α is an Eilenberg-Moore algebra. By construc-
tion the pair (α, ζ) is a λ-model. It is final because for an arbitrary λ-model TX

a→
X

b→ GX the induced coalgebra map X → Z is also an algebra map—again proven
by uniqueness. �

Lemma 5. Given a GSOS law λ:T (G × id) ⇒ (G × id)T there is a bijective corre-
spondence between GT -coalgebras and λ-models with free algebra:

“equations” X
e �� GTX

================================
λ-models TTX μ

�� TX
d

�� GTX

and also between corresponding solutions and bialgebra maps.

Proof. The proof relies on the following “recursion” version of freeness for Eilenberg-
Moore algebras: for each f :X → Y and a:T (Y × TX) → Y there is a unique map g
in:

T 2X

μ
��

��������
T (〈g, id〉)

T (Y × TX)

a
��

TX ����������
g Y

with g ◦ η = f (7)

provided that a satisfies a ◦ η = π1 and a ◦ μ = a ◦ T (〈a, μ ◦ T (π2)〉). The proof of
this property is much like the proof of Theorem 2 and left to the reader.

We only describe the correspondence between equations and GSOS models, and
leave the rest to the interested reader. Given e:X → GTX define e via (7) in:

T 2X

μ
��

��������
T (〈e, id〉)

T (GTX × TX)

Gμ ◦ π1 ◦ λ
��

TX ����������
e

GTX

with e ◦ η = e

By construction this forms a λ-model. In the reverse direction, given d:TX → GTX

one takes d = d ◦ η:X → GTX . Then e = e ◦ η = e. And d = d follows by
uniqueness, using that (μ, d) is a GSOS model: Gμ ◦ π1 ◦ λ ◦ T (〈d, id〉) = d ◦ μ. �

Remark 1. 1. If we apply the construction of the previous lemma starting from a law
ρ:F (G × id) ⇒ GF ∗ like in Proposition 5, then the GSOS model F ∗F ∗X

μ−→
F ∗X d−→ GF ∗X associated with an equation e:X → GF ∗X can be described
via recursion (like in Theorem 2) as:

394 Bart Jacobs

X + F (F ∗X)

∼=[η, τ]
��

������������
id + F (〈d, id〉)

X + F (GF ∗X × F ∗X)

[e,Gμ ◦ ρ]
��

F ∗X �����������������
d

GF ∗X

This will be used later.
2. In [35, Proposition 5.1] it is shown that a (GSOS) law ρ:F (G×id) ⇒ GF ∗ induces

a lifting of the free monad F ∗ to the category CoAlg(G). The construction uses
the previous point: it takes a coalgebra b:X → GX to the coalgebra-part of the
bialgebra corresponding to the equation G(η) ◦ b:X → GF ∗X .

With all these general GSOS results in place we are finally in a position to analyse
the situation of regular expressions and languages, using the GSOS law from Exam-
ple 5.

Theorem 3. 1. The “equation” A→ D(R∗(A)) that is given by the two maps

A �� R∗(A)A A �� 2
a � �� λb ∈ A. if b = a then 1 else 0 a � �� 0

corresponds by Lemma 5 to the free algebra and Brzozowski automaton structure
on the set Re = R∗(A) of regular expressions:

R∗(Re)
μ �� Re

〈D,E〉
�� ReA × 2

2. The final D-coalgebra L(A) ∼=−→ L(A)A × 2 of languages yields by Lemma 4 the
final bialgebra:

R∗(L(A)) �� L(A)
∼= �� L(A)A × 2

with the standard algebra of regular expressions.
3. The interpretation [[−]]: Re → L(A) introduced via freeness in (3) can also be

obtained as beh: Re → L(A) by finality using the previous two points.
4. Bisimilarity between regular expressions is a congruence: s ↔ s′ and t ↔ t′

implies s+ t↔ s′ + t′, s · t↔ s′ · t′ and s∗ ↔ s′∗.

Proof. 1. Let’s write e:A → ReA × 2 for the equation. We need to check that the
Brzozowski structure 〈D,E〉 from Subsection 4.2 fits in the description in Re-
mark 1.(1), i.e. that the following diagram commutes,

A+ R(Re)

∼=[η, τ]
��

id + R(〈〈D,E〉, id〉)
�� A+ R(ReA × 2 × Re)

[e, (μA × id) ◦ ρ]
��

Re 〈D,E〉
�� ReA × 2

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 395

where ρ is as described in Example 5. This diagram commutes because the Brzo-
zowski structure 〈D,E〉 precisely follows the GSOS law ρ.

2. Similarly we need to show that the standard interpretation α:R(L(A)) → L(A)
yields a commuting diagram in Lemma 4. This means that 〈δ, ε〉 ◦ α = (αA× id) ◦
ρ ◦ R(〈〈δ, ε〉, id〉), which can be checked easily—where 〈δ, ε〉 is the final coalgebra
structure on L(A).

3. Obvious, since [[−]] is also a map of coalgebras.
4. The bisimilarity relation ↔ � Re×Re is the equaliser e at the bottom row below,

because of Proposition 2 and because [[−]] = beh by the previous point.

R∗(↔) d ��

���
�
�
�

R∗(Re) ×R∗(Re)

μ× μ

��

R∗([[−]]) ◦ π1 ��

R∗([[−]]) ◦ π2

�� R∗(L(A))

��
↔ ��

e
�� Re × Re

[[−]] ◦ π1 ��

[[−]] ◦ π2

�� L(A)

The map d = 〈R∗(π1 ◦ e),R∗(π2 ◦ e)〉 induces an algebra structure on the
relation ↔, as indicated. This makes ↔ a congruence. �

The map [[−]]: Re → L(A) defined by initiality is by construction “compositional”,
in the sense that it preserves the operations. This map describes what may be called the
denotational semantics of regular expressions. In contrast, the map beh: Re → L(A)
obtained by finality describes the operational semantics, because it is induced by the
dynamical (coalgebra) structure on regular expressions. The equality of denotational
[[−]] and operational beh semantics in point 3 of the previous theorem says in particular
that the operational semantics is compositional, so that for instance the behaviour of a
sum expression is the sum of the behaviours of the two summands. Many coincidences
of operational and denotational semantics are described in more concrete form in [3].

5 Regular Expressions with Equations

An equational logic for regular expressions is formulated by Kozen in [23], for which a
completeness theorem is proved. An alternative proof of completenes (again by Kozen)
is given in [24]. Here we shall give a coalgebraic review of the situation, which leads to
a third completeness proof. It is similar, but shorter, than the proof in [24].

Throughout this section we fix a finite alphabetA. We shall indicate where we need
this finiteness (in Definition 4).

The definition of Kleene algebra from [23] involves a particular formulation of the
rules for the star operation. It requires for an algebra [0, 1,+, ·, (−)∗]:R(Y) → Y that
(Y, 0, 1,+, ·) is an idempotent semiring in which the star axioms and rules in point 2
below hold.

One can also turn the set Re of regular expressions into a Kleene algebra via a
suitable quotient. For clarity we shall use a special symbol

.= ⊆ Re × Re for the least
relation satisfying the next three points.

396 Bart Jacobs

1. (Re,+, 0, ·, 1) is an idempotent semiring, i.e.

– (Re,+, 0) is an idempotent commutative monoid, in which one defines a par-
tial order by s ≤ t ⇐⇒ s+ t

.= t.
– (Re, ·, 1) is a monoid, where · preserves the additive monoid structure +, 0 in

both arguments: s · (t+ r) .= (s · t) + (s · r) and (t+ r) · s .= (t · s) + (r · s),
and also s · 0 .= 0 and 0 · s .= 0.

2. The star inequalities and rules:

1 + s · s∗ ≤ s∗ 1 + s∗ · s ≤ s∗
s+ t · x ≤ x

t∗s ≤ x

s+ x · t ≤ x

s · t∗ ≤ x

3. Axioms and rules making
.= a congruence, i.e. an equivalence relation preserved

by the operations: s
.= s′ and t

.= t′ implies s + t
.= s′ + t′, s · t .= s′ · t′ and

s∗ = s′∗.

We shall write Re/
.= for the set of regular expressions modulo

.=. By construction it
forms a Kleene algebra. As usual, we often simply write s for the equivalence class
[s] = {t ∈ Re | t .= s} ∈ Re/ .=.

Of the many results that can be derived in Kleene algebras we shall need the fol-
lowing ones.

Lemma 6. In an arbitrary Kleene algebra one has:

1. 1 + s · s∗ = s∗;
2. s · x = x · t implies s∗ · x = x · t∗.

And each term s ∈ Re satisfies s ≥∑a∈A a ·Da(s) + E(s).

Proof. The inequality 1 + s · s∗ ≤ s∗ is one of the star axioms. And s∗ ≤ 1 + s · s∗ is
obtained by applying a star rule to the inequality 1 + s · x ≤ x for x = 1 + s · s∗.

For the second point it suffices to show: if s · x ≤ x · t then s∗ · x ≤ x · t∗. The
latter can be obtained via a star rule from x + s · (x · t∗) ≤ x · t∗, which follows from
the assumption s · x ≤ x · t.

The final inequality s ≥ ∑
a∈A a · Da(s) + E(s) is obtained by induction on the

structure of s ∈ Re. �

The following two standard lemmas (see e.g. [9,24,31]) must be made explicit first.

Lemma 7. 1. The derivative operation on regular expressions preserves equality, i.e.
satisfies s

.= t =⇒ Da(s) .= Da(t), for each letter a. Similarly, s
.= t =⇒ E(s) =

E(t).
The Brzozowski coalgebra structure 〈D,E〉: Re → ReA × 2 thus restricts to
〈D,E〉: (Re/ .=) → (Re/ .=)A × 2, making the quotient map [−]: Re � Re/ .=
a homomorphism of coalgebras.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 397

2. If s
.= t then [[s]] = [[t]], i.e. s, t yield the same languages. Hence the diagram (3)

of bialgebras can be further refined by taking images:

R(Re)

μ
��

�� R(Re/ .=)

��

�� R(Lr(A))

��

�� R(L(A))

��
Re

〈D,E〉
��

�� �� Re/ .=

〈D,E〉
��

��
[[−]] �� Lr(A)

��

�� �� L(A)

∼= 〈δ, ε〉
��

ReA × 2 �� (Re/ .=)A × 2 �� Lr(A)A × 2 �� L(A)A × 2

(8)

where Lr(A) is the subset of regular (also called rational) languages obtained as
interpretation [[s]] of a regular expression s.

The completeness result of [24] states that the (restricted) homomorphism [[−]] in
the middle of (8) is an isomorphism, see Theorem 4 below.

Proof. By induction on the length of derivations of
.=. �

The derivative operation D: Re → ReA yields a multiple derivative D�: Re →
ReA�

like in (1). Similarly we get D�: Re/ .=→ (Re/ .=)A�

for expressions modulo
equations. We shall also use the subscript notation in these situations (and drop the
star), so that Dσ(s) = D�(s)(σ) with cases D〈〉(s) = s and Da·σ(s) = Dσ(Da(s)).

Lemma 8. Expressions modulo equations have only finitely many successors: for each
term/state s ∈ Re the set ♦(s) = {Dσ(s) | σ ∈ A�} ⊆ Re/ .= of successors of s in the
coalgebra Re/ .=→ (Re/ .=)A × 2 is finite.

Proof. The basic terms are easy, since ♦(0) = {Dσ(0) | σ ∈ A�} = {0}, ♦(1) =
{1, 0} and ♦(a) = {a, 1, 0}. For the compound terms one first proves the following
equations.

Dσ(s+ t) .= Dσ(s) +Dσ(t)

Dσ(s · t) .= Dσ(s) · t+
∑

τ ·ρ=σ;ρ�=〈〉
E(Dτ (s)) ·Dρ(t)

Dσ(s∗) .= Dσ(1) +Dσ(s) · s∗ +
∑

τ ·ρ=σ;τ,ρ�=〈〉
E(Dτ (s)) ·Dρ(s∗).

These equations are obtained by induction on the length of σ ∈ A�.
If we now write #♦(s) ∈ N for the number of elements of ♦(s), then:

#♦(0) = 1 #♦(s+ t) ≤ #♦(s) · #♦(t)

#♦(1) = 1 #♦(s · t) ≤ #♦(s) · 2#♦(t)

#♦(a) = 3 #♦(s∗) ≤ #♦(s) · 2#♦(s).

Hence we can conclude that each subset ♦(s) ⊆ Re/ .= is finite. �

398 Bart Jacobs

Next we shall define a category in which the Brzozowski automaton on Re/ .= lives.

Definition 3. We write DetAutfb for the category of deterministic automata with finite

behaviour. Objects are coalgebras 〈δ, ε〉:X → XA × 2 such that for each state x ∈ X
the set of successors ♦(x) = {δ�(x)(σ) | σ ∈ A�} ⊆ X is finite. Maps in DetAutfb
are the usual homomorphisms of coalgebras.

(Notice that we leave the set A of inputs implicit in the notation.)

It is not hard to see that if
(
X → XA × 2

) f
�
(
Y → Y A × 2

)
is a surjective

coalgebra homomorphism whereX → XA×2 is in DetAutfb, then so is Y → Y A×2.
The reason is that f(δ�(x)(σ)) = δ�(f(x))(σ), and so ♦(f(x)) ⊆ f [♦(x)]. Hence the
automaton structure Lr(A) → Lr(A)A × 2 from (8) is also in the category DetAutfb,
via the surjection [[−]]: Re/ .=� Lr(A).

A basic property of Kleene algebras is that an inequality x ≥ s · x + t has a least
solution s∗t, via the star rule and via s∗ · t ≥ s · (s∗ · t)+ t. Even stronger, the latter is
actually an equality, since s · (s∗ · t)+ t

.=
(
s · s∗ + 1

) · t .= s∗ · t.
This can be generalised to equations in multiple variables, using the standard fact

that square matrices in Kleene algebras form again Kleene algebras, and can be used to
solve equations, see [23, Section 3]. A system of n equations:

xi = si1x1 + · · · + sinxn + ti

has a least solution that can be described as vector S∗ · T where

S =

⎛
⎜⎜⎝
s11 · · · s1n

...

sn1 · · · snn

⎞
⎟⎟⎠ and T =

⎛
⎜⎜⎝
t1
...

tn

⎞
⎟⎟⎠

describe the equation as −→x = S · −→x + T and the star operation S∗ is in the Kleene
algebra of n× n matrices.

Definition 4. Let 〈δ, ε〉:X → XA × 2 be an arbitrary coalgebra with finite behaviour
(i.e. an object of DetAutfb). With each state x ∈ X we associate a term �x� ∈ Re/ .=
in the following way.

By assumption ♦(x) is finite, say ♦(x) = {x1, x2, . . . , xn} where x1 = x. An
n × n transition matrix Sx = (sij) and an output vector Tx = (ti) over Re/ .= are
constructed with elements

sij =
∑{a ∈ A | δ(xi)(a) = xj} and ti = ε(xi).

We then take �x� ∈ Re/ .= to be the first element of the least solution S∗
x · Tx of the

associated equations. More formally, as vector product, �x� = (1 0 . . . 0) · S∗
x · Tx.

The sum
∑

in this definition exists because we have assumed that the alphabetA is
finite. The sum over an empty set is 0, as usual. Notice that the ordering of the elements
in ♦(x) is not relevant.

One can understand S as a big square matrixX×X → Re/ .= defined by (x, x′) �→∑{a | δ(a)(x) = x′} like in [24]. The matrix Sx in the definition is then the restriction
of S to {x1, . . . , xn} ⊆ X .

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 399

Lemma 9. The mapping x �→ �x� is a homomorphism of coalgebras.

Proof. Consider x = x1 ∈ X as in Definition 4. We need to show:

E(�x�) = ε(x) and D(�x�)(a) = �δ(x)(a)�.

We notice that the vector of solutions in Re/ .= can be described as
−−→�xi�. Hence

�x1� .= s11 · �x1� + · · · + s1n · �xn� + ε(x1),

where each sij is a sum of atoms/letters from A. Thus:

E(�x�) = E(s11 · �x1� + · · · + s1n · �xn� + ε(x1))

=
(
E(s11) ∧ E(�x1�)

) ∨ · · · ∨ (E(s1n) ∧ E(�xn�)
) ∨ E(ε(x1))

=
(
0 ∧ E(�x1�)

) ∨ · · · ∨ (0 ∧ E(�xn�)
) ∨ ε(x1)

= ε(x1)

D(�x�)(a) = D(s11 · �x1� + · · · + s1n · �xn� + ε(x1))(a)

= D(s11 · �x1�)(a) + · · · +D(s1n · �xn�)(a)

= D(s11)(a) · �x1� + E(s11) ·D(�x1�)(a) + · · ·+
D(s1n)(a) · �xn� + E(s1n) ·D(�xn�)(a)

= D(s11)(a) · �x1� + · · · +D(s1n)(a) · �xn�
= �xi� if δ(x)(a) = xi

= �δ(x)(a)�. �

By finality this homomorphism �−� yields a commuting diagram:

Re/ .=
[[−]] �� Lr(A) � � �� L(A)

X

�−�
��

beh

���������������������������������

In particular, when X = Lr(A), we see that �−� is a section of [[−]].

Corollary 1. The coalgebra Lr(A) → Lr(A)A × 2 is final in the category DetAutfb.

Proof. Given a coalgebra X → XA × 2 in DetAutfb there is a composition of ho-
momorphisms [[−]] ◦ �−� :X → Re/ .=→ Lr(A). If we have two homomorphisms
f, g:X → Lr(A), then by postcomposition with the inclusion Lr(A) ↪→ L(A) we
get two homomorphisms to the final (−)A × 2 coalgebra—which must thus be equal.
Hence also f = g. �

At this stage we can obtain Kleene’s theorem [21], as point 2 below. Point 1 is [31,
Theorem 10.1].

400 Bart Jacobs

Corollary 2. 1. A languageL ∈ L(A) is regular—i.e. belongs to Lr(A) ↪→ L(A)—if
and only if the set of derivatives ♦(L) is finite.

2. A language L ∈ L(A) is regular if and only if it is accepted by a finite automaton
(i.e. an automaton with a finite state space).

Proof. 1. If L ∈ Lr(A), then ♦(L) is finite because Lr(A) is in DetAutfb. Con-
versely, if ♦(L) is finite, then ♦(L) can be considered as a subcoalgebra ♦(L) ↪→
L(A) that belongs to DetAutfb. Hence it factors as ♦(L) ↪→ Lr(A).

2. If L is regular, then ♦(L) is itself a finite automaton (by 1) with initial state L ∈
♦(L) whose behaviour beh(L) ∈ Lr(A) is L itself. Conversely, if L ∈ L(A) is
beh(x) for an initial state x ∈ X of a finite automaton, then ♦(x) is finite, so
L = beh(x) ∈ Lr(A) because Lr(A) is final in DetAutfb. �
The next two lemmas and their proofs are reformulations of results in [24].

Lemma 10. If f :X → Y is a homomorphism in DetAutfb, then �f(x)� = �x�.

Proof. If ♦(x) = {x1, . . . , xn} where x1 = x, then ♦(f(x)) = {f(x1), . . . , f(xn)}.
The latter set may be smaller than the former. We shall consider the following three
square matrices S, f̂ , Sf : {1, . . . , n}2 → Re/ .=.

Sij =
∑{a | xi

a−→ xj}(
Sf
)
ij

=
∑{a | f(xi)

a−→ f(xj)}
(
f̂
)
ij

=

{
1 if f(xi) = f(xj)

0 otherwise.

Then there is an equality of matrix products:(
S · f̂)

ij
=
∑

k Sik · (f̂)kj

=
∑{∑{a | xi

a−→ z} | z ∈ ♦(x) ∧ f(z) = f(xj)}
=
∑{a | ∃z ∈ ♦(x). xi

a−→ z ∧ f(z) = f(xj)}
=
∑{a | f(xi)

a−→ f(xj)}
=
∑{a | ∃z ∈ ♦(x). f(z) = f(xi) ∧ f(z) a−→ f(xj)}

=
∑{∑{a | f(z) a−→ f(xj)} | z ∈ ♦(x) ∧ f(z) = f(xi)}

=
∑

k(f̂)ik · (Sf)kj

=
(
f̂ · Sf

)
ij
.

Lemma 6 (2) now yields S∗ · f̂ = f̂ · (Sf)∗. If we write T for the vector of elements
ε(xi) = ε(f(xi)), then f̂ · T = T , since(

f̂ · T)
i

=
∑

k(f̂)ik · Tk =
∑{ε(xk) | f(xk) = f(xi)}

=
∑{ε(xi) | f(xk) = f(xi)} = ε(xi) = Ti.

Hence:

�x� = (1 0 . . . 0) · S∗ · T = (1 0 . . . 0) · S∗ · f̂ · T
= (1 0 . . . 0) · f̂ · (Sf)∗ · T
= (f̂11, . . . , f̂1n) · (Sf)∗ · T
=
∑{�f(xi)� | f(xi) = f(x1)} = �f(x)�.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 401

The last equation holds even though Sf may be “too big” a matrix, describing too
many equations. These additional equations however are repeated equations, which do
not influence the least solution. �

Lemma 11. The homomorphism �−�: Re/ .=→ Re/ .= is the identity.

Proof. We first establish the following points.
1. �s� ≤ s, for s ∈ Re/ .=;
2. �1� .= 1 and �0� .= 0;
3. s ≤ t implies �s� ≤ �t�;
4. s ≤ �s�.

The first and fourth point then yield the required result.
As to the first point, for s ∈ Re/ .= we obtain �s� via the recipe in Definition 4,

namely by considering the successor states/derivatives ♦(s) = {s1, . . . , sn} and the
associated transition matrix. By Lemma 6 these terms s1, . . . , sn satisfy the defining
inequality for �si�, so that �si� ≤ si, since �si� is the least solution.

The term 1 has one successor, namely 0. The associated single equation, following
Definition 4, is x = 1, which has as (least) solution �1� .= 1. Similarly �0� .= 0.

For the third point we consider the productX = Re/ .= ×Re/ .= as state space with
two coalgebra structures 〈D,E1〉, 〈D,E2〉:X → XA × 2, where

D(s, t)(a) = (Da(s), Da(t)) E1(s, t) = E(s) E2(s, t) = E(t).

The projections πi:X → Re/ .= are then homomorphisms from 〈D,Ei〉 to 〈D,E〉.
Hence Lemma 10 applies. Given elements s, t ∈ Re/ .=, let S = S(s,t) be the tran-
sition matrix associated with (s, t) ∈ X , and T1, T2 be the associated output vec-
tors determined by the output functions E1, E2 respectively. Thus, if s ≤ t, then
E1(s, t) ≤ E2(s, t) and similarly for all successors of (s, t)—because D and E are
order preserving. Hence T1 ≤ T2, and thus:

�s� = �π1(s, t)� = �(s, t)� wrt. 〈D,E1〉
= (1 0 . . . 0) · S∗ · T1

≤ (1 0 . . . 0) · S∗ · T2

= �(s, t)� wrt. 〈D,E2〉
= �π2(s, t)�
= �t�.

For the fourth point we proceed like in [24] and prove the stronger statement ∀t ∈
Re. s · �t� ≤ �s · t� by induction on s. We are then done by taking t = 1, using point 2.

– 0 · �t� .= 0 .= �0� .= �0 · t�.
– 1 · �t� .= �t� .= �1 · t�.
– �b · t� ≥∑a∈A a ·Da(�b · t�) + E(�b · t�) by Lemma 6

.=
∑

a∈A a · �Da(b · t)� + E(b · t) by Lemma 9
.= b · �t� by point 2.

402 Bart Jacobs

– (s1 + s2) · �t� .= s1 · �t� + s2 · �t�
≤ �s1 · t� + �s2 · t� by induction hypothesis

≤ �s1 · t+ s2 · t� by point 3.
.= �(s1 + s2) · t�.

– (s1 · s2) · �t� .= s1 · (s2 · �t�)

≤ s1 · �s2 · t� by induction hypothesis

≤ �s1 · (s2 · t)� by induction hypothesis
.= �(s1 · s2) · t�.

– Finally, s∗ · �t� ≤ �s∗ · t� is obtained by applying the star rule to:

�t� + s · �s∗ · t� ≤ �t� + �s · (s∗ · t)� by induction hypothesis

≤ �t+ s · (s∗ · t)� by point 3.
.= �(1 + s · s∗) · t�
.= �s∗ · t� by Lemma 6. �

Theorem 4 (Completeness [23,24]). The Brzozowski coalgebra Re/ .=→ Re/ .=A ×2
is final in DetAutfb. Hence the (bialgebra) homomorphism [[−]]: Re/ .=→ Lr(A) is an
isomorphism.

Proof. Each object X → XA × 2 in DetAutfb yields a homomorphism �−�:X →
Re/ .= by Lemma 9. Suppose we have two homomorphisms f, g:X → Re/ .=, then by
Lemmas 10 and 11 we have:

f = idRe/
.
= ◦ f (11)= �−� ◦ f (10)= �−� (10)= �−� ◦ g (11)= idRe/

.
= ◦ g = g.

Final object are unique up-to-isomorphism, so the coalgebra homomorphism [[−]] =
beh: Re/ .=→ Lr(A) is an isomorphism by Corollary 1. �

Another way to formulate this result is: Kozen’s axioms and rules give a complete
axiomatisation of bisimilarity for regular expressions. Indeed, for s, t ∈ Re,

s↔ t⇐⇒ beh(s) = beh(t) by Proposition 2

⇐⇒ [[s]] = [[t]] by Theorem 3.(3)

⇐⇒ [s] = [t] by Theorem 4, where [−]: Re � Re/ .=

⇐⇒ s
.= t.

This gives a perfect bialgebraic match, where the equational logic on the algebra-side
completely captures the observational equivalence on the coalgebra-side. Similar such
results occur for instance within a line of work [10] in process algebra.

A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages 403

6 Conclusions

We have illustrated the effectiveness of the bialgebraic approach introduced by Turi and
Plotkin [35] by showing how it neatly connects the elementary and classic structures of
computer science, namely regular expressions, automata and languages. It thus forms a
framework for what we consider to be the essence of computing: generated behaviour
via matching algebra-coalgebra pairs. This framework may even guide developments
in settings which are more complicated and possibly less well-developed, like extended
regular expressions [22], or timed and probabilistic automata and their languages.

Acknowledgements

Thanks are due to Ichiro Hasuo for helpful discussions and for his valuable comments
on the first draft of this paper.

References

1. M.A. Arbib and E.G. Manes. Foundations of system theory: Decomposable systems. Auto-
matica, 10:285–302, 1974.

2. M.A. Arbib and E.G. Manes. Algebraic Approaches to Program Semantics. Texts and
Monogr. in Comp. Sci.,. Springer, Berlin, 1986.

3. J.W. de Bakker and E. Vink. Control Flow Semantics. MIT Press, Cambridge, MA, 1996.
4. M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revised and

corrected version available from URL:
www.cwru.edu/artsci/math/wells/pub/ttt.html.

5. F. Bartels. On generalised coinduction and probabilistic specification formats. Distributive
laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam, 2004.

6. J. Beck. Distributive laws. In B. Eckman, editor, Seminar on Triples and Categorical Ho-
molgy Theory, number 80 in Lect. Notes Math., pages 119–140. Springer, Berlin, 1969.

7. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journ. ACM, 42(1):232–
268, 1988.

8. J.A. Brzozowski. Derivatives of regular expressions. Journ. ACM, 11(4):481–494, 1964.
9. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

10. W. Fokkink. On the completeness of the equations for the Kleene star in bisimulation. In
M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software Technology, number
1101 in Lect. Notes Comp. Sci., pages 180–194. Springer, Berlin, 1996.

11. J.A. Goguen. Minimal realization of machines in closed categories. Bull. Amer. Math. Soc.,
78(5):777–783, 1972.

12. J.A. Goguen. Realization is universal. Math. Syst. Theor., 6(4):359–374, 1973.
13. J.A. Goguen. Discrete-time machines in closed monoidal categories. I. Journ. Comp. Syst.

Sci, 10:1–43, 1975.
14. J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as a con-

gruence. Inf. & Comp., 100(2):202–260, 1992.
15. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Inf.

& Comp., 145:107–152, 1998.
16. B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones, C. Lengauer, and

H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages 83–103.
Kluwer Acad. Publ., 1996.

404 Bart Jacobs

17. B. Jacobs. Exercises in coalgebraic specification. In R. Crole R. Backhouse and J. Gibbons,
editors, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction,
number 2297 in Lect. Notes Comp. Sci., pages 237–280. Springer, Berlin, 2002.

18. B. Jacobs. Distributive laws for the coinductive solution of recursive equations. Inf. & Comp.
204(4), 2006, pages 561–587. Earlier version in number 106 in Elect. Notes in Theor. Comp.
Sci.

19. P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc.,
7:294–297, 1975.

20. M. Kick. Bialgebraic modelling of timed processes. In P. Widmayer et al., editor, Interna-
tional Colloquium on Automata, Languages and Programming, number 2380 in Lect. Notes
Comp. Sci., pages 525–536. Springer, Berlin, 2002.

21. S.C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon
and J. McCarthy, editors, Automata Studies, number 34 in Annals of Mathematics Studies,
pages 3–41. Princeton University Press, 1956.

22. S. Koushik and G. Rosu. Generating optimal monitors for extended regular expressions. In
Runtime Verification (RV’03), number 89(2) in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2003.

23. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Inf. & Comp., 110(2):366–390, 1994.

24. D. Kozen. Myhill-nerode relations on automatic systems and the completeness of Kleene al-
gebra. In A. Ferreira and H. Reichel, editors, Symposium on Theoretical Aspects of Computer
Science, number 2010 in Lect. Notes Comp. Sci., pages 27–38. Springer, Berlin, 2001.

25. S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.
26. M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and co-

pointed endofunctors, monads and comonads. In H. Reichel, editor, Coalgebraic Methods
in Computer Science, number 33 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2000.

27. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theor. Comp. Sci.,
54(2/3):267–276, 1987.

28. D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 1–55. Elsevier/MIT Press, 1990.

29. H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct. in
Comp. Sci., 5:129–152, 1995.

30. J. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorigi and
R. de Simone, editors, Concur’98: Concurrency Theory, number 1466 in Lect. Notes Comp.
Sci., pages 194–218. Springer, Berlin, 1998.

31. J. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata,
and power series. Theor. Comp. Sci., 308:1–53, 2003.

32. J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency. In J.W.
de Bakker, W.P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency, number
803 in Lect. Notes Comp. Sci., pages 530–582. Springer, Berlin, 1994.

33. J.J.M.M. Rutten. Automata, power series, and coinduction: Taking input derivatives se-
riously (extended abstract). In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors,
International Colloquium on Automata, Languages and Programming, number 1644 in Lect.
Notes Comp. Sci., pages 645–654. Springer, Berlin, 1999.

34. D. Turi. Functorial operational semantics and its denotational dual. PhD thesis, Free Univ.
Amsterdam, 1996.

35. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Logic in Computer
Science, pages 280–291. IEEE, Computer Science Press, 1997.

36. T. Uustalu, V. Vene, and A. Pardo. Recursion schemes from comonads. Nordic Journ.
Comput., 8(3):366–390, 2001.

	Introduction
	Deterministic Automata as Coalgebras
	Structured Output Sets and Distributive Laws
	Regular Expressions
	Regular Expressions with Equations
	Conclusions

