
From OBJ to Maude and Beyond

José Meseguer

University of Illinois at Urbana-Champaign, USA

Dedicated to Joseph Goguen on his 65th Birthday

Abstract. The OBJ algebraic specification language and its Eqlog and
FOOPS multiparadigm extensions are revisited from the perspective of
the Maude language design. A common thread is the quest for ever more
expressive computational logics, on which executable formal specifica-
tions of increasingly broader classes of systems can be based. Several
recent extensions, beyond Maude itself, are also discussed.

1 Introduction

Joseph and I met for the first time in San Francisco on February 25, 1977 at
the First (and last!) International Symposium on Category Theory Applied to
Computation and Control [80]. We wrote our first paper together in 1977 [57].
We worked very closely together at SRI from 1980 to 1988, when the bulk of
our joint published work appeared, and, after his departure to Oxford and his
subsequent return to San Diego, we have continued collaborating in various ways.
In honoring him as a friend, colleague, and mentor of those early years, I want
to reflect on some great things we did together at SRI from the perspective of
how they have influenced the work that other colleagues and I have done on
Maude in the 1990s and in the present decade. Since Maude itself is evolving
and expanding in different directions, my reflections, will not only look at the
past, but will also try to sketch what those directions, leading beyond Maude
itself, look like. My views are necessarily subjective and partial, and my memory
too; but that does not prevent me from trying to recollect things as best as I
can, and from taking full responsibility for my own words and actions.

One common thread of our joint work at SRI was the OBJ language. Joseph
and I worked on OBJ1 with David Plaisted [63], and then, in the annus mirabilis
1983–84, with Kokichi Futatsugi and Jean-Pierre Jouannaud on OBJ2 [47]. Then
came OBJ3 [53], the most ambitious and far-reaching language design and im-
plementation on which we worked with Claude and Hélène Kirchner, Patrick
Lincoln, Aristide Mégrelis, and Timothy Winkler. A long paper combining in
some way the OBJ2 and OBJ3 ideas appeared later [65], within an entire book
dedicated to the OBJ experience [66]. I try to explain in this paper how not only
OBJ, but also the Eqlog [59] and FOOPS [61] multiparadigm extensions of OBJ,
on which Joseph and I also worked together at SRI, have influenced Maude. But
to make better sense of all this, I think that it may be worthwhile to first present
my own perspective on the specification language design challenges that we have

K. Futatsugi et al. (Eds.): Goguen Festschrift, LNCS 4060, pp. 252–280, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From OBJ to Maude and Beyond 253

been trying to meet all along, and which have motivated the design of each of
these languages.

1.1 System Specification Vs. Property Specification

In discussing different uses of logic in computer science, considerable confusion
can arise from lack of relevant distinctions. One that I have repeatedly found
useful to clarify some key issues is the distinction between system specification
and property specification. In a system specification we are after an unambiguous
specification of a given system and how it actually works. In its most useful form,
a system specification is executable and therefore provides an executable model
of the system. Such specifications are enormously useful, since a system design
can then be tested and analyzed in various ways, and it is possible to refine,
sometimes even automatically, such an executable model into an actual system
implementation.

By contrast, when specifying properties of a system we are not necessarily
after an executable model of our system. Instead, we assume it, as either al-
ready given or to be developed later, and specify such properties in a typically
nonexecutable manner: for example in first-order logic, higher-order logic, or
some temporal logic. That is, the properties we specify have an intended model,
namely the system design captured by a system specification, and we are in-
terested in verifying by different methods that the intended model satisfies the
properties stated in our property specification.

1.2 System Specification in Computational Logics

The above distinction brings us to the heart of a real problem: how can we
formally, that is using logical and mathematical methods, verify a property if
the system specification we have is informal, that is, if it does not precisely
define a mathematical model of our system? This is indeed a genuine problem.
Having a formal grammar is a necessary but insufficient condition: we also need
a formal semantics. This is where the rub comes with system specifications based
on conventional programming languages. For some such languages nobody has
managed so far to give a complete formal semantics and therefore the only
unambiguous “specifications” of some languages are their different compilers,
which may exhibit different behaviors. Here is where computational logics can
render an invaluable service. A computational logic can either:

1. be used as a declarative programming language with a precise mathematical
semantics to directly express system specifications; or

2. be used to give a precise mathematical semantics to a conventional program-
ming language, so that a system specified by a program in such a language
will indirectly acquire a precise mathematical meaning in the computational
logic.

254 José Meseguer

I have not yet defined what I mean by a computational logic. The simplest
practical answer is: a logic that you can implement as a programming language.
That is, you can define and implement a programming language whose programs
are exactly theories in the given logic and whose program execution is logical de-
duction. You then call such a language a declarative programming language.
The point is that from the earliest times of computability theory, logical for-
malisms and mathematical definitions of computability have gone hand in hand.
For example, Herbrand-Gödel computable functions are defined by equational
theories; and Church computability is defined in terms of the lambda calculus.
Over time, this has given rise to various declarative programming languages. For
example, pure Prolog is a declarative programming language associated to Horn
logic; pure ML and Haskell are declarative programming languages associated to
the typed lambda calculus; OBJ is a declarative programming language based on
order-sorted equational logic; and Maude is a declarative programming language
based on rewriting logic.

One can always blur the above distinctions, but this is not very helpful. For
example, there is always the Quixotic and amusing possibility of declaring that
everything is a logic!, including, say, C++, thus arriving at a toothless notion
of “logic”. The opportunities for confusion and obscurantism are indeed endless;
but such verbal games are for the most part a waste of time. Furthermore, it
is possible to give meta-logical requirements for declarative programming lan-
guages that cut through silly verbal games of this kind: Joseph and I gave such
requirements in terms of institutions in [60]; and I gave more detailed require-
ments in terms of general logics in [85].

1.3 The Quest for More Expressive Computational Logics

A lot of water has gone under the bridges since the 1930s. Founding computa-
tion on a theory of recursive functions was a great achievement at its time and
is still very useful today; but it is clearly a limited theory, and we know it. There
is, for example, no meaningful way of thinking of internet computations as de-
finable by recursive functions. Massive changes in the nature of computing and
emergence of entirely new applications do not make older computational logics
and declarative languages incorrect or useless; but they can make them limited,
relegated to specific niches. If a wider, more general applicability beyond such
niches is desired, computational logics are typically in need of either generaliza-
tion or replacement. One good example is functional programming, which is of
course a very elegant and powerful way of programming functional applications.
It is certainly possible to add bells and whistles to a functional language, for
example by grafting a process calculus on top of it, so as to make it suitable for
nonfunctional applications such as distributed computing. But what is the logic
of such a centaur? The fact that it can be given a semantics, just as Java can,
proves nothing, since the real issue is whether the resulting language remains
declarative in the precise sense of programs being theories in a logic, for a decent
meta-theoretic notion of logic, and computation being deduction in such a logic.

From OBJ to Maude and Beyond 255

Therefore, to preserve the declarative nature of a language, when extending
it to cover new application areas, one should think primarily of how its under-
lying logic can be extended, and only secondarily about the extended syntax:
declarative language design is primarily a task of logic design. The design space
is therefore the space, in fact the category, of logics. But there are tight design
constraints and tradeoffs that require good judgment. Not all logics are compu-
tational; and having a recursively enumerable set of deducible formulas is not a
sufficient condition: first-order logic has that, but it is hopeless as a program-
ming language. The logic has to remain lean and mean in order to allow efficient
implementations as a programming language, and not just as a theorem prover.
Yet, the whole point of an extension is to make the logic more expressive. How
to achieve both goals in an optimal way is the challenge.

OBJ and its extensions are a good case in point. As algebraic specifica-
tion/equational programming languages, OBJ2 [47] and OBJ3 [53,65] were ar-
guably the most expressive such languages in the 1980s. But they were, by the
very nature of their underlying order-sorted equational logic [62] and their as-
sociated operational semantics [52,70], functional languages. Extending OBJ in
a multiparadigm way was a task that Joseph and I undertook in the mid 1980s,
resulting in two new language designs: Eqlog [59], and FOOPS [61]. Eqlog uni-
fied functional/equational programming and Horn-logic programming; its logic
design task was to embed order-sorted equational logic and Horn logic without
equality into a suitable Horn logic with equality [60]. FOOPS unified equa-
tional/functional programming, Horn-logic programming, and object-oriented
programming. Although an underlying model-theoretic semantics was given,
based on algebraic data types with hidden sorts and behavioral equivalence be-
tween them in the sense of [58,94], FOOPS fell short of having an underlying logic
with modules as theories and computation as deduction. This was remedied later,
by theoretical developments presenting various proposals for a hidden or “ob-
servational” equational logic [50,51,56,55,122,64,68,11,10,9,115,116,117,30,120].
In hindsight, one can view CafeOBJ [46], BOBJ [54] and BMaude [96] as full-
blooded declarative languages that achieve in a more satisfactory way many of
the FOOPS goals.

1.4 Rewriting Logic and Maude

With rewriting logic [87,88,13] and Maude [86,90,18,19], several of us undertook
the task of unifying within a single declarative language: (i) equational/functional
programming; (ii) object-oriented programming; and (iii) concurrent/distributed
programming. That (iv) Horn-logic programming was also naturally embeddable
in this framework was clear from the early stages of this project [89,90], but at
the operational semantics level this required a generalization of narrowing that
was achieved later [132,133]. Three more insights emerged over time as part of
different research collaborations: (v) that real-time and hybrid systems could be
naturally specified in rewriting logic [108]; (vi) that higher-order type theory
was naturally embeddable in rewriting logic [130]; and (vii) that probabilistic

256 José Meseguer

systems were likewise expressible in a natural probabilistic extension of rewrit-
ing logic and could be simulated within rewriting logic itself [73,4]. In spite of
being multiparadigm in all the above (i)–(vii) ways, rewriting logic remains re-
markably lean and mean: it is a very simple formalism and, thanks to Steven
Eker, has a very high-performance Maude implementation. Modules are indeed
theories in the logic, and nothing more. Computation is deduction, and theories
have initial models [88,13], which give semantics to modules and support in-
ductive reasoning. Furthermore, operational properties such as termination can
be usefully formulated and verified by adopting this logical/deductive viewpoint
[36,79]

2 From Order-Sorted to Membership Equational Logic

Rewriting logic contains membership equational logic [92] as a sublogic. In
Maude’s language design this is reflected in its sublanguage of functional mod-
ules, for equational theories with initial semantics, and of functional theories
for equational theories with “loose” semantics. Therefore, in relating OBJ and
Maude the first task at hand is relating their corresponding equational logics.

One key reason why OBJ2 and OBJ3 were so expressive was their order-
sorted type theory. That one should use types to make any reasonable sense of
algebraic specifications goes without saying. But the problem with many-sorted
equational logic is that it does not deal well with partiality. Many simple oper-
ations, such as selectors in data structures or just simple arithmetic operations,
are partial. To the embarrassment of many-sorted specifications, simple trade
examples, such as the perennial stacks or the rational numbers, cannot be given
elegant many-sorted specifications: the top of the empty stack or division by zero
raise their ugly heads and require ugly ad-hoc solutions.

The appeal of order-sorted equational logic [62] is that, by allowing the ex-
pressive power of subtypes (subsorts), many partial functions become total on
appropriate subsorts. Furthermore, function symbols can be subsort overloaded,
which is very convenient in practice. But there are limits to the kind of partiality
expressible by typing means alone, which are those available in order-sorted al-
gebra. When the definedness of a function depends on semantic conditions such
as, for example, the fact that for the concatenation of two paths in a graph to
be defined the target node of the first must coincide with the source node of
the second, order-sorted equational logic is not enough. This was understood
early on, and led to formulating notions of unconditional [49] or conditional [52]
sort constraints ; but how to extend order-sorted equational logic so as to fully
account for conditional sort constraints remained an open question.

The appeal of membership equational logic (MEL) [92] is that it gives a full
account of partiality, and even a systematic, functorial way of relating partial
and total specifications [92,95]. Furthermore, as shown in [92], it embeds in a
conservative way the “right” version of order-sorted equational logic, one that
solves several anomalies, including the lack of pushouts of theory morphisms,
in the version given in [62]. But does membership equational logic remain lean

From OBJ to Maude and Beyond 257

and mean? The relevant facts are that it: (i) has a well-developed operational
semantics by rewriting (see the systematic study [12], which also deals with many
other automated deduction techniques); (ii) enjoys a high-performance Maude
implementation; (iii) is a quite simple logic; and (iv) has initial and free models
[92], on which inductive proof methods and inductive theorem proving tools can
be based [12,20]. From these facts it seems fair to conclude that the answer is
definitely yes.

In summary, therefore, we can view OBJ3 as a sublanguage of Maude’s func-
tional sublanguage. The generalization from OBJ3 to Maude is further stressed
by the fact that Maude supports order-sorted notation as convenient syntactic
sugar for membership equational logic axioms. In membership equational logic
atomic propositions are either equations t = t′, or memberships t : s, stat-
ing that term t has sort s. A subsort declaration s < s′ is then just syntactic
sugar for a conditional axiom x : s ⇒ x : s′. Similarly, an order-sorted opera-
tor declaration f : s1 . . . sn −→ s is syntactic sugar for the conditional axiom
x1 : s1 ∧ . . . ∧ xn : sn ⇒ f(x1, . . . , xn) : s.

A membership equational theory is a pair (Σ, H) with Σ a signature speci-
fying the kinds, sorts, and function symbols, and with H a set of Horn clauses
involving both equations and memberships. Kinds classify potentially meaning-
ful expressions, and sorts within a kind classify actually defined expressions.
Terms having a kind but not a sort correspond to undefined or error expres-
sions. For example, 2/0 is in the Number kind but has no sort. For execution
purposes we typically impose some requirements on such a theory. First of all,
its Horn clauses H may be decomposed as a union E ∪ A, with A a set of
equations that we will reason modulo (for example, A may include associativity,
commutativity and/or identity axioms for some of the operators in Σ). Second,
the remaining Horn clauses E are typically required to be Church-Rosser1 mod-
ulo A, so that we can use the conditional equations in E as equational rewrite
rules modulo A. Third, for some applications it is useful to make the equational
rewriting relation2 context-sensitive [76,77]. This can be accomplished by spec-
ifying a function μ : Σ −→ IN∗ assigning to each function symbol f ∈ Σ (with,
say, n arguments) a list μ(f) = i1 . . . ik of argument positions , with 1 ≤ ij ≤ n,
which must be fully evaluated (up to the context-sensitive equational reduc-
tion strategy specified by μ) in the order specified by the list i1 . . . ik before
applying any equations whose lefthand sides have f as their top symbol. For
example, for f = if then else fi we may give μ(f) = {1}, meaning that the first
argument must be fully evaluated before the equations for if then else fi are

1 See [12] for a detailed study of equational rewriting concepts and proof techniques
for mel theories.

2 As we shall see, in a rewrite theory R rewriting can happen at two levels: (1) equa-
tional rewriting with (possibly conditional) equations E; and (2) non-equational
rewriting with (possibly conditional) rewrite rules R. These two kinds of rewriting
are different. Therefore, to avoid confusion I will qualify rewriting with equations as
equational rewriting.

258 José Meseguer

applied3. Therefore, for execution purposes we can specify a membership equa-
tional theory as a triple (Σ, E∪A, μ), with A the axioms we rewrite modulo, and
with μ the map specifying the context-sensitive equational reduction strategy.
A Maude functional module is then, essentially, a specification of the form fmod
(Σ, E ∪ A, μ) endfm.

3 Rewriting Logic: From OBJ to Maude

As already mentioned, the whole point of rewriting logic [87,88,13] and Maude
[86,90,18,19] was to unify within a single logic and associated declarative lan-
guage: (i) equational/functional programming; (ii) object-oriented programming;
and (iii) concurrent/distributed programming. For this unification, a purely
equational/functional framework would be clearly unsuitable4 The challenge
therefore was to find a lean and mean superlogic of equational logic in which
this unification could take place.

A related challenge was to make some sense of the quite diverse menagerie
of concurrency models that were around, often competing with each other as
the “right” model of concurrency. A key strategy in this competition game was
to produce, sometimes quite complicated, translations from other models, ad-
duced as proof of universality of the proposed model. Implicit in this strategy
was the belief that, given enough time, the right model, capable of expressing
all the relevant concurrency concepts would emerge. This search for the Holy
Grail of concurrency is certainly a chivalrous one; but I find serious grounds
for being skeptical about its success. The main difficulty is that concurrency
encompasses a very wide range of phenomena: there are concurrent functional
programs, concurrent grammars, dataflow networks, actors, Petri nets of various
ilks and colors, various synchronous and asynchronous process calculi, neural
networks, and so on. Although translations between some of these models are
possible, the fact that in this way some concurrency features can simulate others,
perhaps in a complex way, is not particularly helpful.

In my view, what was missing was a computational logic for concurrency that
could serve as a semantic framework in which different concurrency models could

3 As in OBJ2–3, in Maude maps μ specifying context-sensitive equational reduction
strategies are called evaluation strategies [47,40,18], and μ(f) = i1 . . . ik is speci-
fied with the strat keyword followed by the string (i1 . . . ik 0), with 0 indicating
evaluation at the top of the function symbol f . For an in-depth study of the rela-
tionship between OBJ/Maude evaluation strategies and context-sensitive rewriting
see [76,77].

4 The key point is that concurrency and nondeterminism cannot be directly modeled
in an equational/functional framework, which typically assumes determinism in the
form of a Church-Rosser property. Therefore, one needs special devices to model
some concurrency aspects indirectly. Two good examples of indirectly modeling con-
currency within a purely functional framework are the ACL2 semantics of the JVM
using a scheduler [101], and the use of lazy data structures in Haskell to analyze
cryptographic protocols [7].

From OBJ to Maude and Beyond 259

be naturally unified without requiring any translations. That is, in a logic one
can define quite different theories which have associated models. The logic then
allows one to understand in a unified way all such models as models in the same
logic; but there is plenty of room for diversity between them. Furthermore, once
we understand that a logical framework of this kind can give us an enormous
range of possibilities for naturally expressing different concurrency phenomena,
we realize that we can have a general framework without in any way needing a
general model, whatever that means.

Is rewriting logic a suitable general framework in exactly this sense? The
answer is necessarily an empirical one, and can never be claimed to be definitive.
But the amount of positive evidence gathered up to now, thanks to the research
of different people and covering indeed a very wide range of concurrency models,
is in my view very strong. The key point is the naturalness and directness with
which different concurrency models can be expressed as rewrite theories. It is
not a matter of complicated encodings : typically the original representations of
a model and those of its associated rewrite theory are isomorphic. Since all this
is a matter carefully documented in many papers and in several rewriting logic
surveys, I will not go over the, indeed quite large, body of work backing the view
that rewriting logic is a very expressive general framework for concurrency. I refer
the reader to the survey paper [82]; and for an explanation of how rewriting logic
unifies and improves upon other semantic frameworks such as algebraic semantics
and structural operational semantics (SOS) to the more recent papers [97,98].

3.1 Rewrite Theories: Their Execution and Formal Analysis

A rewrite theory is a tuple R = (Σ, E ∪ A, μ, R, φ), with: (1) (Σ, E ∪ A, μ) a
membership equational theory with “modulo” axioms A and context-sensitive
equational reduction strategy μ; (2) R a set of labeled conditional rewrite rules
of the general form

r : (∀X) t −→ t′ if (
∧

i

ui = u′
i) ∧ (

∧

j

vj : sj) ∧ (
∧

l

wl −→ w′
l) (1)

where the variables appearing in all terms are among those in X , terms in each
rewrite or equation have the same kind, and in each membership vj : sj the
term vj has kind [sj]; and (3) φ : Σ −→ P(IN) a mapping assigning to each
function symbol f ∈ Σ (with, say, n arguments) a set φ(f) = {i1, . . . , ik},
1 ≤ i1 < . . . < ik ≤ n of frozen argument positions5 under which it is forbidden
to perform any rewrites.

Intuitively, R specifies a concurrent system, whose states are elements of the
initial algebra TΣ/E∪A specified by (Σ, E∪A), and whose concurrent transitions
are specified by the rules R, subject to the frozenness requirements imposed by φ.
5 In Maude, φ(f) = {i1, . . . , ik} is specified by declaring f with the frozen attribute,

followed by the string (i1 . . . ik). Although originated by a quite different moti-
vation, frozen operators have some similarities with notions such as “non-coherent
operators” in CafeOBJ [46], and “non-congruent” operators in BOBJ [54].

260 José Meseguer

The frozenness information is important in practice to forbid certain rewritings.
For example, when defining the rewriting semantics of a process calculus, one
may wish to require that in prefix expressions α.P the operator . is frozen
in the second argument, that is, φ(.) = {2}, so that P cannot be rewritten
under a prefix. Note that a rewrite theory R = (Σ, E ∪ A, μ, φ, R) specifies two
kinds of context-sensitive rewriting requirements: (1) equational rewriting with
E modulo A is made context-sensitive by μ; and (2) non-equational rewriting
with R is made context-sensitive by φ. But the maps μ and φ impose different
types of context-sensitive requirements: (1) μ(f) specifies a list of arguments
where we are allowed to rewrite with equations in E; and (2) φ(f) specifies
arguments where we are forbidden to rewrite with the rules R. The maps μ and
φ substantially increase the expressive power of rewriting logic, because various
order-of-evaluation and context-sensitive requirements, which would have to be
specified by explicit rules in a formalism like SOS, become implicit and are
encapsulated in μ and φ.

For execution purposes a rewrite theory R = (Σ, E∪A, μ, R, φ) should satisfy
some basic requirements that are assumed to hold for Maude system modules.
Such modules are specifications of the form mod (Σ, E ∪ A, μ, R, φ) endm. First,
in the membership equational theory (Σ, E∪A, μ), E should be ground Church-
Rosser modulo A – for A a set of equational axioms for which matching modulo
A is decidable – and ground terminating modulo A, up to the context-sensitive
strategy μ6. Second, the rules R should be coherent with E modulo A [136];
intuitively, this means that, to get the effect of rewriting in equivalence classes
modulo E ∪ A, we can always first simplify a term with the equations in E to
its canonical form modulo A, and then rewrite with a rule in R. Finally, the
rules in R should be admissible [18], meaning that in a conditional rewrite rule
of the form (1), besides the variables appearing in t there can be extra variables
in t′, provided that they also appear in the condition and that they can all be
incrementally instantiated by either matching a pattern in a “matching equation”
or performing breadth first search in a rewrite condition (see [18] for a detailed
description of admissible equations and rules).

Computation in Maude is then deduction with the inference rules of rewriting
logic (see [13]) that are efficiently implemented by the Maude engine under the
above executability assumptions. Specifically, equivalence classes modulo E ∪A
are represented by their unique canonical forms modulo A. That is, Maude per-
forms equational rewriting to reach a canonical form with the equations in E
modulo A by means of the reduce command. This is entirely analogous to OBJ’s
reduce command for equational specifications, but applies now to more general
theories. It also supports two variants of fair rewriting with the rules R modulo
A which, in combination with equational rewriting and under the coherence as-
sumption, achieves the effect of rewriting with R in (E ∪A)-equivalence classes.
These two commands are the rule-fair rewrite command; and the rule and po-

6 μ-termination is a weaker requirement than termination [77]; the interactions be-
tween context-sensitive rewriting and the Church-Rosser property are somewhat
subtle [75,78].

From OBJ to Maude and Beyond 261

sition fair frewrite command which, for object-based systems (see Section 3.3)
is also object and message fair. Furthermore, the context-sensitive requirements
provided by μ and φ are always respected. Since the rules R need not be confluent
and may be highly nondeterministic, the rewrite and frewrite commands give
just one execution path among many others. This is still very useful for execution
and simulation purposes, but for analysis purposes Maude’s search command
supports a systematic breadth-first exploration of all rewrite paths until states
matching a specified pattern and satisfying specified semantic conditions are
reached. For example, we may want to know whether the concurrent system
specified by our rewrite theory satisfies a given invariant (say, is deadlock-free).
We can then search for a reachable state satisfying the negation of the given
invariant. Within the practical limitations of time and memory, the search com-
mand then gives us a semi-decision procedure for the failure of such invariants,
regardless of the in general infinite number of reachable states of our systems.
Furthermore, for systems whose sets of reachable states are finite, Maude also
provides a decision procedure for the satisfaction of linear-time temporal logic
(LTL) properties. This is achieved through its built-in MODEL-CHECKER module
which, in the experiments that we have evaluated [41,42], performs explicit-state
on-the-fly model checking of LTL formulas with efficiency comparable to that of
the SPIN model checker [69].

3.2 Module Algebra: The Power of Reflective Thinking

One of the most powerful features of OBJ2 and OBJ3 was the possibility of
defining parameterized modules having semantic requirements for their instan-
tiation specified in the form of parameter theories. Such modules could then be
instantiated by means of views (theory interpretations) in the typical pushout
construction way of Clear [14]. They could also be renamed, and instantiations
and renamings could be composed in very expressive module expressions (see
[47,65]). This supported a very powerful discipline of parameterized program-
ming that inspired similar mechanisms in ML and in module interconnection
languages such as LILEANNA [135]. In hindsight, however, there were two lim-
itations. The first was that it took in practice a long time (several years of hard
work) to properly implement this part of the language. Indeed, it proved to
be the most complex and sophisticated component of OBJ3’s LISP-based imple-
mentation. The second limitation, much less apparent to us at the time, was that
OBJ’s module algebra, while very powerful, was a closed algebra, in the sense of
offering a fixed repertoire of theory operations. Of course, one could have imag-
ined other operations, but this would have required both a new metatheory and
big implementation efforts.

An important breakthrough at the theoretical level was the formulation of a
general axiomatic notion of reflective logic by Manuel Clavel and myself in [23],
followed by a series of papers, a Ph.D. thesis, and a book, showing that several
conditional and unconditional versions of rewriting logic, as well as membership
equational logic and many-sorted Horn logic with equality, are indeed reflective
[24,15,16,25,26]. Intuitively, a logic is reflective if it can represent its metalevel

262 José Meseguer

at the object level in a sound and coherent way. Specifically, rewriting logic can
represent its own theories and their deductions by having a finitely presented
rewrite theory U that is universal, in the sense that for any finitely presented
rewrite theory R (including U itself) we have the following equivalence

R 	 t → t′ ⇔ U 	 〈R, t〉 → 〈R, t′〉,

where R and t are terms representing R and t as data elements of U . Since U
is representable in itself, we can achieve a “reflective tower” with an arbitrary
number of levels of reflection.

Reflection is a very powerful property: it allows defining rewriting strategies
by means of metalevel theories that extend U and guide the application of the
rules in a given object-level theory R [24,16,83]; it is efficiently supported in the
Maude implementation by means of descent functions [17], implemented in the
built-in META-LEVEL module; it can be used to build a variety of theorem proving
and theory transformation tools [15,20,21,27]; and it can also be used to prove
metalogical properties about families of theories in rewriting logic, and about
other logics represented in the rewriting logic (meta-)logical framework [5,22,6].

From the module algebra point of view, the key advantage is that the univer-
sal theory U , and the META-LEVEL module that implements key descent functions
for it, have a sort Module whose terms represent finitary rewrite theories. This
means that theories become data that can be manipulated within the logic in
a declarative way. Similar sorts, defining data types for parameterized modules
and for views, can likewise be easily defined in extensions of the META-LEVEL
module. In this way, Francisco Durán and I showed that many powerful theory
composition operations endowing Maude with a module algebra can be defined
within the logic [37,32,39]. Furthermore, the module algebra so defined now be-
comes easily extensible. For example, the notion of parameterized module, and
the way in which module instantiation can be defined does not necessarily have
to follow a pushout-like pattern. Different forms of parameterization, understood
as new metalevel functions, can be easily defined. For instance, it is very easy to
define in the Full Maude extension of Maude a TUPLE(n) module that for each
nonzero natural number n provides a parameterized module of n-tuples [32].
Indeed, reflection has allowed considerable flexibility in easily defining and ex-
perimenting with different module composition operations before implementing
some of them in the underlying Core Maude system, as has been recently done
in Maude 2.2. Furthermore, Full Maude itself has been an excellent basis for
building other Maude extensions such as Real-Time Maude (see Section 4.1), a
strategy language for Maude [83], and the Maude termination tool (MTT) [36].

More generally, reflection has made it quite easy to build an environment of
formal analysis tools for Maude. Such tools, by their very nature, manipulate
and analyze rewrite theories. By reflection, a rewrite theory R becomes a term
R in the universal theory, which can be efficiently manipulated by the descent
functions in the META-LEVEL module. As a consequence, Maude formal tools
have a reflective design and are built in Maude as suitable extensions of the
META-LEVEL module. They include the following:

From OBJ to Maude and Beyond 263

– the Maude Church-Rosser Checker, and Knuth-Bendix and Coherence Com-
pletion tools [20,38,34,33]

– the Full Maude module composition tool [32,39]
– the Maude Predicate Abstraction tool [118]
– the Maude Inductive Theorem Prover (ITP) [16,20,27]
– the Real-Time Maude tool [109] (discussed in Section 4.1)
– the Maude Sufficient Completeness Checker (SCC) [67]
– the Maude Termination Tool (MTT) [36].

3.3 Object-Oriented Modules

A declarative treatment of the object paradigm was also a key goal from the very
beginning of rewriting logic [86], and was more fully realized as part of Maude’s
language design in [90]. Of course, since concurrent programming was also a key
goal, the point was to have a declarative way to specify and program concur-
rent object systems. This declarative approach, by using subsort overloading and
proposing a key distinction between class inheritance and module inheritance
solved also an old chestnut in concurrent object-oriented programming, namely
the so-called inheritance anomaly [91].

The essential idea is extremely simple. We view the state of a concurrent
object system as a “soup” of objects and messages. Mathematically, such a
soup is modeled as a multiset, built up from the objects and the messages by
means of a multiset union operator that is associative and commutative and
has the empty multiset as its identity element. Concurrent interactions between
objects, and between objects and messages, are then described by means of
rewrite rules that transform a fragment of such a soup into a new fragment. By
rewriting logic’s congruence rule [88], many such rewrites can of course take place
concurrently within the soup. Rules whose lefthand sides involve a single object
and at most one message are called asynchronous and essentially correspond
to the Actor model of computation [3,1]. Rules whose lefthand sides involve
more than one object are called synchronous, because such objects have to come
together synchronously in order for the interaction to take place.

More generally, the soup describing the distributed state of an object system
needs not be “flat” but may instead be a “soup of soups” with arbitrary nesting
depth. For example, the Internet is a network of networks and a soup of soups
in exactly this sense. This structuring is very useful, for example for security
and management/monitoring purposes. Carolyn Talcott and I modeled this in
rewriting logic by means of our “Russian dolls” model of concurrent object re-
flection [100]. The “dolls” in question are meta-objects, which may contain in
their belly a whole soup of other (meta-) objects, and so on “all the way down.”
In this way, all kinds of mechanisms for concurrent meta-object reflection can
be naturally axiomatized, programmed, and reasoned about [100]. The Russian
dolls model is also useful in clarifying the relationship between object-oriented
reflection and logical reflection in the sense of Section 3.2. Some object-oriented
reflection mechanisms do not need logical reflection: the hierarchical nesting
of dolls (meta-object nesting) is enough to express them. But more powerful

264 José Meseguer

concurrent object reflection mechanisms may use both the nesting of dolls and
logical reflection. For example, the mobility features of Mobile Maude [35] use
both meta-object reflection and logical reflection.

In Maude, concurrent object systems are specified in object-oriented mod-
ules [90,37,32,18]. Such modules provide syntactic sugar supporting all the usual
object-oriented concepts: objects, object attributes, messages, object classes, and
multiple class inheritance. Furthermore, they can be parameterized with param-
eter theories just like any other Maude module. Semantically, all this useful
syntactic sugar can be stripped away, so that a Maude object-oriented module is
semantically equivalent to an ordinary rewrite theory, that is, to a corresponding
Maude system module into which it can be desugared. Operationally, however,
knowledge of the existence of objects and messages within a multiset represent-
ing a distributed object state is used by Maude’s frewrite command to support
a rule, position, and object and message fair rewriting strategy. In conjunction
with Maude 2.2’s built-in internet sockets feature [19], this provides a very simple
and elegant way of doing declarative internet programming in Maude, because
there is no need whatsoever for writing any complicated thread scheduling code,
which is typically needed when a conventional language is used.

4 Beyond Maude

How general and expressive is rewriting logic? The best way to find out is by
pushing its limits. What follows is a progress report on how, through several
research collaborations, some of us have been extending rewriting logic and its
range of applications beyond those of Maude itself so as to encompass: (i) real-
time and hybrid systems; (ii) probabilistic systems; (iii) deduction with logical
variables; (iv) higher-order specifications; and (v) behavioral specifications.

4.1 Real-Time Maude

In many reactive and distributed systems, real-time properties are essential to
their design and correctness. Therefore, the question of how systems with real-
time features can be best specified, analyzed, and proved correct in the semantic
framework of rewriting logic is an important one. This question has been inves-
tigated by several authors from two perspectives. On the one hand, an extension
of rewriting logic called timed rewriting logic has been investigated, and has been
applied to some examples and specification languages [71,105,125]. On the other
hand, Peter Ölveczky and I have found a simple way to express real-time and hy-
brid system specifications directly in rewriting logic [106,108]. Such specifications
are called real-time rewrite theories and have rules of the form

r : {t} δ−→ {t′} if C

with δ a term denoting the duration of the transition (where the time domain
can be chosen to be either discrete or dense), {t} representing the whole state of

From OBJ to Maude and Beyond 265

a system, encapsulated with { }, and C an equational condition. Peter Ölveczky
and I have shown that, by making the clock an explicit part of the state, these
theories can be desugared into semantically equivalent ordinary rewrite theories
[106,108,109]. That is, in the desugared version we can model the state of a real-
time or hybrid system as a pair ({t}, τ), with {t} the current state, and with τ
the current global clock time. Then the above rule becomes desugared as

r : ({t}, τ) −→ ({t′}, τ + δ) if C

Rewrite rules can then be either instantaneous rules, that take no time and only
change some part of the state t, or tick rules, that advance the global time of
the system according to some time expression δ and may also change the state
t. When time is dense, tick rules may be nondeterministic, in the sense that the
time δ advanced by the rule is not uniquely determined, but is instead a para-
metric expression (however, this time parameter is typically subjected to some
equational condition C). In such cases, tick rules need a time sampling strategy
to choose suitable values for time advance. Besides being able to show that a
wide range of known real-time models (including, for example, timed automata,
hybrid automata, timed Petri nets, and timed object-oriented systems) can be
naturally expressed in a direct way in rewriting logic (see [108]), an important
advantage of our approach is that one can use an existing implementation of
rewriting logic to execute and analyze real-time specifications. Because of some
technical subtleties, this seems difficult for the alternative of timed rewriting
logic, although a mapping into our framework does exist [108].

Real-Time Maude [102,107,109,110] is a specification language and a formal
tool built in Maude by reflection. It provides special syntax to specify real-time
systems, and offers a range of formal analysis capabilities. The Real-Time Maude
2.1 tool [109,112] systematically exploits the underlying Maude efficient rewrit-
ing, search, and LTL model checking capabilities to both execute and formally
analyze real-time specifications. Reflection is crucially exploited in the Real-Time
Maude 2.1 implementation. On the one hand, Real-Time Maude specifications
are internally desugared into ordinary Maude specifications by transforming their
meta-representations. On the other, reflection is also used for execution and anal-
ysis purposes. The point is that the desired modes of execution and the formal
properties to be analyzed have real-time aspects with no clear counterpart at
the Maude level. To faithfully support these real-time aspects a reflective trans-
formational approach is adopted: the original real-time theory and query (for
either execution or analysis) are simultaneously transformed into a semantically
equivalent pair of a Maude rewrite theory and a Maude query [109,112]. One im-
portant concern about the search and model checking analyses thus performed
by Real-Time Maude is their completeness. Note that not all state-time pairs are
visited, but only those allowed by the given time sampling strategy. For dense
time it is even impossible to visit all times. Fortunately, under simple conditions
on the specification, that are indeed satisfied by almost all examples that have
been analyzed in Real-Time Maude, the analyses are indeed complete: if the tool
finds no counterexamples, the given property holds [111].

266 José Meseguer

In practice, Real-Time Maude executions and analyses are quite efficient.
They allow scaling up to highly nontrivial specifications and case studies. In
fact, both the naturalness of Real-Time Maude to specify large nontrivial real-
time applications (particularly for distributed object-oriented real-time systems)
and its effectiveness in simulating and analyzing the formal properties of such
systems have been demonstrated in a number of substantial case studies, includ-
ing: (1) the AER/NCA suite of active network protocols [102,104,113]; (2) the
NORM multicast protocol [74]; (3) the OGDC wireless sensor network algorithm
[134,114]; and (4) the CASH adaptive scheduling algorithm [103]. Real-Time
Maude is freely available from http://www.ifi.uio.no/RealTimeMaude. It is a
mature and quite efficient tool, and its source code, a tool manual, examples,
case studies, and papers are all available in its web page.

4.2 PMaude and SHYMaude

Many systems are probabilistic in nature. This can be due either to the uncer-
tainty of the environment in which they must operate, such as message losses
and other failures in an unreliable environment, or to the probabilistic nature of
some of their algorithms, or to both. In general, particularly for distributed sys-
tems, both probabilistic and nondeterministic aspects may coexist, in the sense
that different transitions may take place nondeterministically, but the outcomes
of some of those transitions may be probabilistic in nature. To specify systems of
this kind, rewrite theories have been generalized to probabilistic rewrite theories
in [72,73,4]. Rules in such theories are probabilistic rewrite rules of the form

r : t(x) → t′(x, y) if C (x) with probability y := πr(x)

where the first thing to observe is that the term t′ has new variables y disjoint
from the variables x appearing in t. Therefore, such a rule is nondeterministic;
that is, the fact that we have a matching substitution θ for the variables x such
that θ(C) holds does not uniquely determine the next state fragment: there can
be many different choices for the next state, depending on how we instantiate
the extra variables y in t′. In fact, we can denote the different such next states
by expressions of the form t′(θ(x), ρ(y)), where θ is fixed as the given match-
ing substitution, but ρ ranges along all the possible substitutions for the new
variables y. The probabilistic nature of the rule is expressed by the notation:
with probability y := πr(x), where πr(x) is a probability distribution which
may depend on the matching substitution θ. We then choose the values for y, that
is, the substitution ρ, probabilistically according to the distribution πr(θ(x)).

The fact that the probability distribution may depend on the substitution θ
can be illustrated by means of a simple example. Consider a battery-operated
clock. We may represent the state of the clock as a term clock(T,C), with T a
natural number denoting the time, and C a positive real denoting the amount
of battery charge. Each time the clock ticks, the time is increased by one unit,
and the battery charge slightly decreases; however, the lower the battery charge,
the greater the chance that the clock will stop, going into a state of the form

http://www.ifi.uio.no/RealTimeMaude

From OBJ to Maude and Beyond 267

broken(T,C’). We can model this system by means of the probabilistic rewrite
rule

rl [tick]: clock(T,C) => if B then clock(s(T),C - (C / 1000))

else broken(T,C - (C / 1000))

fi

with probability B := BERNOULLI(C / 1000) .

that is, the probability of the clock breaking down instead of ticking normally de-
pends on the battery charge, which is here represented by the battery-dependent
bias of the coin in a Bernoulli trial. Note that here the new variable on the rule’s
righthand side is the Boolean variable B, corresponding to the result of toss-
ing the biased coin. As shown in [72], probabilistic rewrite theories can express a
wide range of models of probabilistic systems, including continuous-time Markov
chains [131], probabilistic non-deterministic systems [119,123], and generalized
semi-Markov processes [48]; they can also naturally express probabilistic object-
based distributed systems [73,4], including real-time ones. Yet another class of
probabilistic models that can be simulated by probabilistic rewrite theories is
the class of object-based stochastic hybrid systems discussed in [99].

The PMaude language [73,4] is an experimental specification language whose
modules are probabilistic rewrite theories. Note that, due to their nondetermin-
ism, probabilistic rewrite rules are not directly executable. However, probabilistic
systems specified in PMaude can be simulated in Maude. As explained in [4,93],
this is accomplished by transforming a PMaude specification into a correspond-
ing Maude specification in which actual values for the new variables appearing
in the righthand side of a probabilistic rewrite rule are obtained by sampling
the corresponding probability distribution functions using standard techniques
based on random number generation and Maude’s built-in COUNTER and RANDOM
modules.

In general, provided that sampling for the probability distributions used in a
PMaude module is supported in the underlying infrastructure, we can associate
to it a corresponding Maude module. We can then use this associated Maude
module to perform Monte Carlo simulations of the probabilistic systems thus
specified. As explained in [4], provided all nondeterminism has been eliminated
from the original PMaude module7, we can then use the results of such Monte
Carlo simulations to perform a statistical model checking analysis of the given
system to verify certain properties. For example, for a PMaude specification of a
7 The point is that, as explained above, in general, given a probabilistic rewrite theory

and a term t describing a given state, there can be several different rewrites, perhaps
with different rules, at different positions, and with different matching substitutions,
that can be applied to t. Therefore, the choice of rule, position, and substitution is
nondeterministic. To eliminate all nondeterminism, at most one rule at exactly one
position and with a unique substitution should be applicable to any term t. As ex-
plained in [4], for many systems, including probabilistic real-time object-oriented sys-
tems, this can be naturally achieved, essentially by scheduling events at real-valued
times that are all different, because we sample a continuous probability distribution
on the real numbers.

268 José Meseguer

TCP/IP protocol variant that is resistant to Denial of Service (DoS) attacks, we
may wish to establish that, even if an attacker controls 90% of the network band-
width, it is still possible for the protocol to establish a connection in less than
30 seconds with 99% probability. Properties of this kind, including properties
that measure quantitative aspects of a system, can be expressed in the QATEX
probabilistic temporal logic [4], and can be model checked using the VeStA tool
[124]. See [2] for a substantial case study specifying a DoS-resistant TCP/IP
protocol as a PMaude module, performing Monte Carlo simulations by means of
its associated Maude module, and formally analyzing in VeStA its properties, ex-
pressed as QATEX specifications, according to the methodology just described.
More recently, several object-based stochastic hybrid system case studies have
been specified in an extension of both PMaude and Real-Time Maude called
SHYMaude [99] and have been simulated in Maude. Relevant formal properties
for each case study, expressed as QATEX specifications, have been statistically
model checked in VeStA using Monte Carlo simulations performed in Maude
[99].

4.3 Narrowing: Eqlog Revisited

Narrowing is a symbolic procedure like rewriting, except that rules, instead
of being applied by matching a subterm, are applied by unifying the lefthand
side with a nonvariable subterm. Traditionally, narrowing has been used as a
method to solve equations in a confluent and terminating equational theory. In
rewriting logic, Prasanna Thati and I have generalized narrowing to a procedure
for symbolic reachability analysis [132]. That is, instead of solving equational
goals ∃x. t = t′, we solve reachability goals ∃x. t −→ t′, stating that there
is an instance of t from which we can reach by rewriting with rules R modulo
equations E an instance of t′.

For arbitrary rewrite theories narrowing, though sound, is not a complete
procedure [132]. However, for large classes of theories of interest, including theo-
ries specifying distributed object systems, narrowing is complete and provides a
complete semidecision procedure for solving reachability problems [132]. Further
recent work on narrowing with rewrite theories focuses on: (1) generalizing the
procedure to so-called “back-and-forth narrowing,” so as to ensure completeness
under very general assumptions about the rewrite theory R [133]; and (2) effi-
cient lazy strategies to restrict as much as possible the narrowing search space
[45].

Narrowing with rewrite theories has important applications to the analysis of
cryptographic protocols. A relevant point is that, since narrowing with a rewrite
theory R = (Σ, E, R) is performed modulo the equations E, this allows more
sophisticated analyses than those performed under the usual Dolev-Yao “perfect
cryptography assumption.” It is well-known that protocols that had been proved
secure under this assumption can be broken if an attacker uses knowledge of
the algebraic properties satisfied by the underlying cryptographic functions. In
rewriting logic we can specify a cryptographic protocol with a type of rewrite
theory R = (Σ, E, R) for which narrowing is complete, and can model those

From OBJ to Maude and Beyond 269

algebraic properties as equations in E. Very recent work in this direction by
Escobar, Meadows and myself [44,43] uses rewriting logic and narrowing to give
a precise rewriting semantics to the inference system of one of the most effective
analysis tools for cryptographic protocols, namely the NRL Protocol Analyzer
[84].

Equational narrowing is a special case of rewriting logic narrowing, namely
the case where we solve reachability goals of the form ∃x. equal(t, t′) −→ true
using the equations E as rewrite rules and adding the extra rule equal(x, x) −→
true. Furthermore, Horn logic with equality can be conservatively embedded in
rewriting logic [89,81]. Indeed, in this embedding narrowing with the resulting
rewrite theory is complete and agrees with SLD resolution modulo the equations
E. This means that we reencounter our old friend Eqlog within the broader
perspective of rewriting logic narrowing.

4.4 The Open Calculus of Constructions

Rewriting logic is an expressive logical framework, in which many other logics
can be naturally represented [81]. Furthermore, by exploiting its reflective fea-
tures in conjunction with the inductive nature of initial models, it has also good
properties as a meta-logical framework, so that we can not only represent logics,
but can also reason within the framework about their meta-logical properties
[5,6].

But how good and general is it anyway? For example, how does it compare
with the higher-order type theory formalisms that have been proposed by dif-
ferent authors as logical frameworks? Mark-Oliver Stehr and I tried to give an
answer to this question using transitivity of representation mappings. If we could
show that a higher-order type theory can be easily and naturally represented in
rewriting logic in a conservative way, then any representation of a logic into such
a type theory would automatically yield one in rewriting logic by composition.
This would not be the simplest representation of that logic that one could define
directly in rewriting logic, but it would prove that anything one can represent in
the higher-order framework can likewise be represented in rewriting logic. Even
so, some people might still be skeptical. Maybe you did it for Martin-Löf type
theory, but how do I know that you can also do it for the Calculus of Construc-
tions? All this could be dragged ad nauseam. So, what Mark-Oliver and I did in
[130] was to specify a single parametric map (using parameterization in Maude)
faithfully representing pure type systems (PTS) [8] into rewriting logic. Since
pure type systems encompass a large class of type theories with simple types,
type parameters, and type families, including the lambda cube, our skeptical
colleagues would now have to come up with more exotic type theories outside
the PTS general fold. At the meta-logical framework level, a careful comparison
with higher-order type theories used for that purpose was given by David Basin,
Manuel Clavel and myself in [6].

In fact, Mark-Oliver and I defined in [130] several representation mappings for
pure type systems at different levels of abstraction. The more abstract, textbook-
like representation mapped isomorphically the textbook syntax of pure type sys-

270 José Meseguer

tems. But in order to give a more computational representation that would take
care automatically of all the binding and substitution paraphernalia, we also
gave a more concrete representation using Mark-Oliver’s CINNI calculus of ex-
plicit substitutions [126] and showed it equivalent to the textbook one. Similarly,
typing inference systems were represented in Maude in a computational way by
means of rewrite rules [130]. This more concrete representation map was used
by Mark-Oliver in his thesis [127] to implement in Maude his Open Calculus
of Constructions (OCC) [127,128,129]. Since the Coquand-Huet calculus of con-
structions (CC) [28] is one of the instances of pure type systems, one could of
course obtain an implementation of CC in Maude that way. But Mark-OIiver
went considerably further. One of the sore points with higher-order type theories
is their very limited and awkward way of dealing with equalities : an equational
reasoning system like Maude can perform millions of equational deduction steps
automatically in a second; but to represent such deduction steps within a given
constructive type theory one needs to justify each of those equality steps con-
structively. By generating proof objects for the deductions of an external tool,
for example for membership equational logic deduction [121], one can partly
get around the problem. But Mark-Oliver’s solution was more radical. By drop-
ping the constructive interpretation and allowing simple set-theoretic models for
OCC, he solved this problem directly: equality steps are allowed inside OCC,
even modulo axioms like associativity and commutativity. Furthermore, OCC
distinguishes several notations for equality, making clear whether they can be
handled automatically by equational simplification, or need to be performed by
explicit deduction steps. Likewise, a notation for relations representing rewrite
rules in the rewriting logic sense is also provided. All this means that OCC can
be viewed as a natural conceptual unification of the Calculus of Constructions
and of rewriting logic. In particular, Maude can be naturally regarded as a sub-
language of OCC. As shown in [127,128,129], all the nice reasoning capabilities
of the Calculus of Constructions, including its extensions with inductive and
co-inductive principles, can be represented in OCC, that can carry out highly
nontrivial proof tasks [127,128,129].

4.5 BMaude

In some sense, Maude, and languages like CafeOBJ [46] and BOBJ [54] that
support hidden logic and behavioral equivalence, push the envelope in differ-
ent directions of the specification language design space. Yet, there is a natural
question about how these languages are all related. For example, both Maude
and those languages have equational logic sublanguages. CafeOBJ itself provided
some answer to this question in the form of the CafeOBJ “cube” of institutions
[46], in which equational logic, hidden equational logic, and rewriting logic are
related and unified. But the unification of rewriting logic and hidden logic pro-
posed in [29] and used in [46,31] has some limitations regarding its model theory,
and the matter seems to deserve further research.

While leaving open the issue of whether a more satisfactory unification of
hidden logic and rewriting logic can be found, what Grigore Roşu and I did

From OBJ to Maude and Beyond 271

in [96] was to develop a hidden/behavioral extension of membership equational
logic called behavioral membership equational logic. We were interested in this
extension because of theoretical and practical reasons. Theoretically, the greater
generality and expressiveness of MEL over, say, order-sorted equational logic re-
sulted in a more expressive behavioral logic. Practically, the reflective features of
Maude make it easy to develop an extension of Maude called BMaude in which
theories in behavioral membership equational logic can be specified as modules,
and to support deduction in such modules by behavioral rewriting [120,122].
Work ahead in this direction includes passing from the present theoretical foun-
dations and BMaude language design to a prototype implementation, and finding
a more general behavioral extension of rewriting logic itself.

5 Conclusions

Science is a dialogue. This gets somewhat distorted by the unidirectional charac-
ter of publications, including this one; and by the impossibility of making always
explicit the many influences shaping our ideas. This festive occasion provides an
opportunity for reflecting, with gratitude, on such influences; and for looking in
hindsight at the road already traveled, and forward to the ways ahead. I have
tried to do a little of all this from a limited and subjective perspective, but one
that I am at least very familiar with: some of the ways in which the OBJ, Eqlog,
and FOOPS ideas have influenced Maude. And some of the directions in which
the current Maude ideas are expanding.

One way to wrap all this up is with a picture describing the relationship
between the different languages I have been discussing. I call it a language ge-
nealogy. Solid lines describe language inclusions (or near inclusions). Dashed
lines describe a weaker relationship, namely one of influence between different
languages. Not all influences are reflected in the picture: to avoid too much clut-
tering, only those that I think are more direct are depicted. One point to bear in
mind is that some of these languages are currently under construction, or even
in their design phase. For example, only a first prototype of PMaude exists at
present, and BMaude and SHYMaude are only language designs at this point.
Acknowledgments. In this paper I have reflected on some of the ways in
which Joseph’s ideas have influenced mine. But there are many others, both
scientific and nonscientific: so much so that an actual enumeration would be
both impossible and futile. It is with deep gratitude that I wish to thank Joseph,
not only for his ideas and his example, but above all for his friendship. I have
already mentioned by name all the colleagues who were involved in the OBJ1–3
collaborations. To all of them I also extend my sincere thanks.

Furthermore, although the references make all this clear, I want to point out
that: (1) the work on Maude is joint work with all the members of the Maude
team at SRI, UIUC, and the Universities of Madrid and Málaga; (2) the work
on Maude tools is joint work with Manuel Clavel, Francisco Durán, Santiago
Escobar, Joseph Hendrix, Salvador Lucas, Claude Marché, Hitoshi Ohsaki, Peter
Ölveczky, Miguel Palomino, Ralf Sasse, and Xavier Urbain; (3) the work on real-

272 José Meseguer

PMaude

SHYMaude�����������
Real-Time Maude

SHYMaude�����������

Full Maude

PMaude�����������
Full Maude

Real-Time Maude�����������

Maude

Full Maude��

Maude

OCC �������������

OBJ

Maude��

OBJ

Eqlog��������
OBJ

CafeOBJ�������������������������
OBJ

ML ��� � � � � � �

ML

Coq���
�
�

Coq

OCC			
	

	
	

OBJ

FOOPS

Eqlog

FOOPS�������������������

FOOPS

CafeOBJ���
�

�
�

�
Maude

CafeOBJ

FOOPS

BOBJ���
�

�
�

�

CafeOBJ BOBJ�����

OBJ

BOBJ�������������������������������

Maude

BMaude����������������������

BOBJ

BMaude���
�

�
�

CafeOBJ

BMaude���
�

�
�

Fig. 1. A language genealogy (→ inclusion; - - > influence)

time rewrite theories is joint work with Peter Ölveczky at the University of Oslo;
(4) the work on probabilistic rewrite theories and on stochastic hybrid systems is
joint work with Gul Agha, Nirman Kumar, Koushik Sen, and Raman Sharykin
at UIUC; (6) the work on OCC is entirely Mark-Oliver Stehr’s; and (7) BMaude
and its foundations are joint work with Grigore Roşu at UIUC. Several of these
collaborators have also given me very useful comments to improve the final
version of this paper.

This research has been supported by Grants ONR N00014-02-1-0715 and NSF
CNS 05-24516, and by a bilateral CNRS-UIUC research project on “Rewriting
calculi, logic and behavior.”

References

1. G. Agha. Actors. MIT Press, 1986.

2. G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati.
Formal modeling and analysis of DoS using probabilistic rewrite theories. In
Proc. Workshop on Foundations of Computer Security (FCS’05) (Affiliated with
LICS’05), 2005.

3. G. Agha and C. Hewitt. Concurrent programming using actors. In A. Yonezawa
and M. Tokoro, editors, Object-Oriented Concurrent Programming, pages 37–53.
MIT Press, 1988.

4. G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language
for probabilistic object systems. In 3rd Workshop on Quantitative Aspects of
Programming Languages (QAPL’05), 2005.

From OBJ to Maude and Beyond 273

5. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework.
In S. Kapoor and S. Prasad, editors, FST TCS 2000, pages 55–80. Springer LNCS,
2000.

6. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework.
ACM Transactions on Computational Logic, 5:528–576, 2004.

7. D. Basin and G. Denker. Maude versus Haskell: an experimental comparison in
security protocol analysis. In K. Futatsugi, editor, Proc. 3rd. Intl. Workshop on
Rewriting Logic and its Applications, volume 36. ENTCS, Elsevier, 2000.

8. S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of con-
structions and other systems in barendregt’s cube. Technical Report, Carnegie-
Mellon University and Università di Torino, 1988.

9. G. Bernot, M. Bidoit, and T. Knapik. Observational specifications and the indis-
tinguishability assumption. Theoretical Comp. Science, 139(1-2):275–314, 1995.

10. N. Berregeb, A. Bouhoula, and M. Rusinowitch. Observational proofs with critical
contexts. In Proceedings of FASE’98, volume 1382 of LNCS. Springer, 1998.

11. M. Bidoit and R. Hennicker. Observer complete definitions are behaviourally
coherent. In OBJ/CafeOBJ/Maude at Formal Methods’99, pages 83–94. Theta,
1999.

12. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

13. R. Bruni and J. Meseguer. Generalized rewrite theories. In J. Baeten, J. Lenstra,
J. Parrow, and G. Woeginger, editors, Proceedings of ICALP 2003, 30th Inter-
national Colloquium on Automata, Languages and Programming, volume 2719 of
Springer LNCS, pages 252–266, 2003.

14. R. Burstall and J. A. Goguen. The semantics of Clear, a specification language. In
D. Bjorner, editor, Proceedings of the 1979 Copenhagen Winter School on Abstract
Software Specification, pages 292–332. Springer LNCS 86, 1980.

15. M. Clavel. Reflection in general logics and in rewriting logic, with applications to
the Maude language. Ph.D. Thesis, University of Navarre, 1998.

16. M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications, 2000.

17. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer. Met-
alevel computation in Maude. Proc. 2nd Intl. Workshop on Rewriting Logic and
its Applications, ENTCS, Vol. 15, North Holland, 1998.

18. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

19. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.2). December 2005, http://maude.cs.uiuc.edu.

20. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving
tools by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic
Formal Method. Elsevier, 2000. http://maude.cs.uiuc.edu.

21. M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal
meta-tool. In J. Wing and J. Woodcock, editors, FM’99 — Formal Methods,
volume 1709 of Springer LNCS, pages 1684–1703. Springer-Verlag, 1999.

22. M. Clavel, F. Durán, and N. Mart́ı-Oliet. Polytypic programming in Maude.
ENTCS 36, Elsevier, 2000. Proc. 3rd. Intl. Workshop on Rewriting Logic and its
Applications.

23. M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In
G. Kiczales, editor, Proceedings of Reflection’96, San Francisco, California, April
1996, pages 263–288, 1996. http://jerry.cs.uiuc.edu/reflection/.

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
http://jerry.cs.uiuc.edu/reflection/

274 José Meseguer

24. M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Appli-
cations, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

25. M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 285:245–288, 2002.

26. M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational
logic, many-sorted equational logic, Horn logic with equality, and rewriting logic.
In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2002.

27. M. Clavel and M. Palomino. The ITP tool’s manual. Universidad Complutense,
Madrid, April 2005, http://maude.sip.ucm.es/itp/.

28. T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76:95–120, 1988.

29. R. Diaconescu. Hidden sorted rewriting logic. In J. Meseguer, editor, Proc. First
Intl. Workshop on Rewriting Logic and its Applications, volume 4 of Electronic
Notes in Theoretical Computer Science. Elsevier, 1996.

30. R. Diaconescu and K. Futatsugi. Behavioral coherence in object-oriented algebraic
specification. Journal of Universal Computer Science, 6(1):74–96, 2000.

31. R. Diaconescu and K. Futatsugi. Logical foundations of CafeOBJ. Theoretical
Computer Science, 285:289–318, 2001.

32. F. Durán. A reflective module algebra with applications to the Maude language.
Ph.D. Thesis, University of Málaga, 1999.

33. F. Durán. Coherence checker and completion tools for Maude speci-
fications. Manuscript, Computer Science Laboratory, SRI International,
http://maude.cs.uiuc.edu/papers, 2000.

34. F. Durán. Termination checker and Knuth-Bendix completion tools for Maude
equational specifications. Manuscript, Computer Science Laboratory, SRI Inter-
national, http://maude.cs.uiuc.edu/papers, 2000.

35. F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude. In
Agent Systems, Mobile Agents, and Applications, ASA/MA 2000, volume 1882 of
Springer LNCS, pages 73–85. Springer-Verlag, 2000.

36. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termina-
tion of membership equational programs. In P. Sestoft and N. Heintze, editors,
Proc. of ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation, PEPM’04, pages 147–158. ACM Press, 2004.

37. F. Durán and J. Meseguer. An extensible module algebra for Maude. Proc. 2nd
Intl. Workshop on Rewriting Logic and its Applications, ENTCS, Vol. 15, North
Holland, 1998.

38. F. Durán and J. Meseguer. A Church-Rosser checker tool for Maude equational
specifications. Manuscript, Computer Science Laboratory, SRI International,
http://maude.cs.uiuc.edu/papers, 2000.

39. F. Durán and J. Meseguer. On parameterized theories and views in Full Maude
2.0. In K. Futatsugi, editor, Proc. 3rd. Intl. Workshop on Rewriting Logic and its
Applications. ENTCS 36, Elsevier, 2000.

40. S. Eker. Term rewriting with operator evaluation strategy. Proc. 2nd Intl. Work-
shop on Rewriting Logic and its Applications, ENTCS, Vol. 15, North Holland,
1998.

41. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2002.

http://maude.sip.ucm.es/itp/
http://maude.cs.uiuc.edu/papers
http://maude.cs.uiuc.edu/papers
http://maude.cs.uiuc.edu/papers

From OBJ to Maude and Beyond 275

42. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker
and its implementation. In Model Checking Software: Proc. 10th Intl. SPIN Work-
shop, volume 2648, pages 230–234. Springer LNCS, 2003.

43. S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system
for the NRL protocol analyzer and its meta-logical properties. Submitted for
publication, 2005.

44. S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system
for the NRL protocol analyzer: Grammar generation. In Proc. FMSE’05, Formal
Methods in Security Engineering (Alexandria, Virginia, Nov. 2005), pages 1–12.
ACM Press, 2005.

45. S. Escobar, J. Meseguer, and P. Thati. Natural narrowing for general term rewrit-
ing systems. In Rewriting Techniques and Applications, 16th Intl. Conference RTA
2005, volume 3467, pages 279–293. Springer LNCS, 2005.

46. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series, 1998.

47. K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In B. Reid, editor, Proceedings of 12th ACM Symposium on Principles of Pro-
gramming Languages, pages 52–66. ACM, 1985.

48. P. Glynn. The role of generalized semi-Markov processes in simulation output
analysis, 1983.

49. J. Goguen. Order sorted algebra. Technical Report Semantics and Theory of
Computation Report 14, UCLA, 1978.

50. J. Goguen. Types as theories. In Topology and Category Theory in Computer
Science, pages 357–390. Oxford, 1991.

51. J. Goguen and R. Diaconescu. Towards an algebraic semantics for the object
paradigm. In Proceedings of WADT, volume 785 of LNCS. Springer, 1994.

52. J. Goguen, J.-P. Jouannaud, and J. Meseguer. Operational semantics of order-
sorted algebra. In W. Brauer, editor, Proceedings, 1985 International Conference
on Automata, Languages and Programming, volume 194 of Springer LNCS, pages
221–231. Springer-Verlag, 1985.

53. J. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer, and T. Winkler.
An introduction to OBJ3. In J.-P. Jouannaud and S. Kaplan, editors, Proceedings,
Conference on Conditional Term Rewriting, Orsay, France, July 8-10, 1987, pages
258–263. Springer LNCS 308, 1988.

54. J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proceedings,
15th International Conference on Automated Software Engineering (ASE’00). In-
stitute of Electrical and Electronics Engineers Computer Society, 2000. Grenoble,
France, 11-15 September 2000.

55. J. Goguen and G. Malcolm. Hidden coinduction: Behavioral correctness proofs
for objects. Mathematical Structures in Computer Science, 9(3):287–319, 1999.

56. J. Goguen and G. Malcolm. A hidden agenda. J. of TCS, 245(1):55–101, 2000.
57. J. Goguen and J. Meseguer. Correctness of recursive flow diagram programs. In

Proc. 6th Symp. Math. Found. Comp. Sci., pages 580–595. Springer LNCS 53,
1977.

58. J. Goguen and J. Meseguer. Universal realization, persistent interconnection
and implementation of abstract modules. In M. Nielsen and E. M. Schmidt,
editors, Proceedings, 9th International Conference on Automata, Languages and
Programming, pages 265–281. Springer LNCS 140, 1982.

59. J. Goguen and J. Meseguer. Equality, types, modules and (why not?) generics
for logic programming. Journal of Logic Programming, 1(2):179–210, 1984.

276 José Meseguer

60. J. Goguen and J. Meseguer. Models and equality for logical programming. In
H. Ehrig, G. Levi, R. Kowalski, and U. Montanari, editors, Proceedings TAP-
SOFT’87, volume 250 of Springer LNCS, pages 1–22. Springer-Verlag, 1987.

61. J. Goguen and J. Meseguer. Unifying functional, object-oriented and relational
programming with logical semantics. In B. Shriver and P. Wegner, editors, Re-
search Directions in Object-Oriented Programming, pages 417–477. MIT Press,
1987.

62. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

63. J. Goguen, J. Meseguer, and D. Plaisted. Programming with parameterized ab-
stract objects in OBJ. In D. Ferrari, M. Bolognani, and J. Goguen, editors, Theory
and Practice of Software Technology, pages 163–193. North-Holland, 1983.

64. J. Goguen and G. Roşu. Hiding more of hidden algebra. In Proceeding of FM’99,
volume 1709 of LNCS, pages 1704–1719. Springer, 1999.

65. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: Algebraic Specification in Action,
pages 3–167. Kluwer, 2000.

66. J. A. Goguen and G. Malcolm, editors. Software Engineering with OBJ: Alge-
braic Specification in Action, volume 2 of Advances in Formal Methods. Kluwer
Academic Publishers, Boston, 2000. ISBN 0-7923-7757-5.

67. J. Hendrix, M. Clavel, and J. Meseguer. A sufficient completeness reasoning tool
for partial specifications. In Rewriting Techniques and Applications, 16th Intl.
Conference RTA 2005, volume 3467, pages 165–174. Springer LNCS, 2005.

68. R. Hennicker and M. Bidoit. Observational logic. In Proceedings of AMAST’98,
volume 1548 of LNCS, pages 263–277. Springer, 1999.

69. G. Holzmann. The Spin Model Checker - Primer and Reference Manual. Addison-
Wesley, 2003.

70. C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ3. In
T. Lepistö and A. Salomaa, editors, Proceedings, 15th Intl. Coll. on Automata,
Languages and Programming, Tampere, Finland, July 11-15, 1988, pages 287–301.
Springer LNCS 317, 1988.

71. P. Kosiuczenko and M. Wirsing. Timed rewriting logic with application to
object-oriented specification. Technical report, Institut für Informatik, Univer-
sität München, 1995.

72. N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories:
Unifying models, logics and tools. Technical Report UIUCDCS-R-2003-2347, CS
Dept., University of Illinois at Urbana-Champaign, May 2003.

73. N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model of prob-
abilistic distributed object systems. Proc. of Formal Methods for Open Object-
Based Distributed Systems, FMOODS 2003, Springer LNCS Vol. 2884, 2003.

74. E. Lien. Formal modeling and analysis of the NORM multicast protocol in Real-
Time Maude. Master’s thesis, Dept. of Linguistics, University of Oslo, April 2004.
http://wo.uio.no/as/WebObjects/theses.woa/wo/0.3.9.

75. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. J. Functl. and Log. Progr., 1(4):446–453, 1998.

76. S. Lucas. Termination of on-demand rewriting and termination of obj programs.
In Proc. PPDP’01, pages 82–93. ACM, 2001.

77. S. Lucas. Termination of rewriting with strategy annotations. In Proceedings of
LPAR 2001, volume 2250 of LNAI, pages 669–684. Springer-Verlag, 2001.

http://wo.uio.no/as/WebObjects/theses.woa/wo/0.3.9

From OBJ to Maude and Beyond 277

78. S. Lucas. Context-sensitive rewriting strategies. Inf. Comput., 178(1):294–343,
2002.

79. S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters, 95(4):446–453, 2005.

80. E. Manes, editor. Proceedings of the First International Symposium on Category
Theory Applied to Computation and Control, San Francisco, California, February
25–26 1974. Springer LNCS Vol. 25, 1975.

81. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
2nd. Edition, pages 1–87. Kluwer Academic Publishers, 2002. First published as
SRI Tech. Report SRI-CSL-93-05, August 1993.

82. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.
Theoretical Computer Science, 285:121–154, 2002.

83. N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for
Maude. In N. Mart́ı-Oliet, editor, Proc. 5th. Intl. Workshop on Rewriting Logic
and its Applications, pages 417–441. ENTCS, Vol. 117, Elsevier, 2004.

84. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

85. J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium’87, pages
275–329. North-Holland, 1989.

86. J. Meseguer. A logical theory of concurrent objects. In ECOOP-OOPSLA’90 Con-
ference on Object-Oriented Programming, Ottawa, Canada, October 1990, pages
101–115. ACM, 1990.

87. J. Meseguer. Rewriting as a unified model of concurrency. In Proceedings of the
Concur’90 Conference, Amsterdam, August 1990, pages 384–400. Springer LNCS
458, 1990.

88. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

89. J. Meseguer. Multiparadigm logic programming. In H. Kirchner and G. Levi,
editors, Proc. 3rd Intl. Conf. on Algebraic and Logic Programming, pages 158–
200. Springer LNCS 632, 1992.

90. J. Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Di-
rections in Concurrent Object-Oriented Programming, pages 314–390. MIT Press,
1993.

91. J. Meseguer. Solving the inheritance anomaly in concurrent object-oriented pro-
gramming. In O. M. Nierstrasz, editor, Proc. ECOOP’93, pages 220–246. Springer
LNCS 707, 1993.

92. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS
1376, 1998.

93. J. Meseguer. A rewriting logic sampler. In Proc. International Colloquium on
Theoretical Aspects of Computing ICTAC05 (Hanoi, Vietnam, October 2005),
volume 3722 of LNCS, pages 1–28. Springer, 2005.

94. J. Meseguer and J. Goguen. Initiality, induction and computability. In M. Ni-
vat and J. Reynolds, editors, Algebraic Methods in Semantics, pages 459–541.
Cambridge University Press, 1985.

95. J. Meseguer and G. Roşu. A total approach to partial algebraic specification. In
Proc. ICALP’02, pages 572–584. Springer LNCS 2380, 2002.

96. J. Meseguer and G. Roşu. Towards behavioral Maude: Behavioral membership
equational logic. In Proc. CMCS’02. Elsevier ENTCS, 2002.

278 José Meseguer

97. J. Meseguer and G. Roşu. Rewriting logic semantics: From language specifications
to formal analysis tools. In Proc. Intl. Joint Conf. on Automated Reasoning
IJCAR’04, Cork, Ireland, July 2004, pages 1–44. Springer LNAI 3097, 2004.

98. J. Meseguer and G. Roşu. The rewriting logic semantics project. In Proc. SOS
2005. Elsevier ENTCS, 2005.

99. J. Meseguer and R. Sharykin. Specification and analysis of distributed object-
based stochastic hybrid systems. In Hybrid Systems, HSCC 2006, pages 460–475.
Springer LNCS 3927, 2006.

100. J. Meseguer and C. Talcott. Semantic models for distributed object reflection.
In Proceedings of ECOOP’02, Málaga, Spain, June 2002, pages 1–36. Springer
LNCS 2374, 2002.

101. J. Moore, R. Krug, H. Liu, and G. Porter. Formal models of Java at the JVM level
– a survey from the ACL2 perspective. In Proc. Workshop on Formal Techniques
for Java Programs, in association with ECOOP 2001, 2002.

102. P. C. Ölveczky. Specification and Analysis of Real-Time and Hybrid Sys-
tems in Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000.
http://maude.csl.sri.com/papers.

103. P. C. Ölveczky and M. Caccamo. Formal simulation and analysis of the CASH
scheduling algorithm in Real-Time Maude. In Proc. FASE 2006, LNCS 3922,
pages 357–372. Springer, 2005.

104. P. C. Ölveczky, M. Keaton, J. Meseguer, C. Talcott, and S. Zabele. Specification
and analysis of the AER/NCA active network protocol suite in Real-Time Maude.
In Proc. of FASE’01, 4th Intl. Conf. on Fundamental Approaches to Software
Engineering, volume 2029 of Springer LNCS, pages 333–348. Springer-Verlag,
2001.

105. P. C. Ölveczky, P. Kosiuczenko, and M. Wirsing. An object-oriented algebraic
steam-boiler control specification. In J.-R. Abrial, E. Börger, and H. Langmaack,
editors, The Steam-Boiler Case Study Book, pages 379–402. Springer-Verlag, 1996.
Vol. 1165.

106. P. C. Ölveczky and J. Meseguer. Specifying real-time systems in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Appli-
cations, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

107. P. C. Ölveczky and J. Meseguer. Real-Time Maude: a tool for simulating and
analyzing real-time and hybrid systems. volume 36. ENTCS, Elsevier, 2000. Proc.
3rd. Intl. Workshop on Rewriting Logic and its Applications.

108. P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science, 285:359–405, 2002.

109. P. C. Ölveczky and J. Meseguer. Real-Time Maude 2.1. In N. Mart́ı-Oliet, editor,
Proc. 5th. Intl. Workshop on Rewriting Logic and its Applications, pages 285–314.
ENTCS, Vol. 117, Elsevier, 2004.

110. P. C. Ölveczky and J. Meseguer. Specification and analysis of real-time systems
using Real-Time Maude. In T. Margaria and M. Wermelinger, editors, Fundamen-
tal Approaches to Software Engineering (FASE 2004), volume 2984 of Springer
LNCS, pages 354–358. Springer-Verlag, 2004.

111. P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time
Maude. In G. Denker and C. Talcott, editors, Proc. 6th. Intl. Workshop on
Rewriting Logic and its Applications. ENTCS, Elsevier, 2006.

112. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 2006. To appear.

http://maude.csl.sri.com/papers

From OBJ to Maude and Beyond 279

113. P. C. Ölveczky, J. Meseguer, and C. L. Talcott. Specification and
analysis of the AER/NCA active network protocol suite in Real-Time
Maude. Technical Report UIUCDCS-R-2004-2467, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2004. Available at
http://www.ifi.uio.no/RealTimeMaude.

114. P. C. Ölveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sen-
sor network algorithms in Real-Time Maude. In The 14th International Workshop
on Parallel and Distributed Real-Time Systems (WPDRTS) 2006. IEEE Com-
puter Society Press, 2006.

115. P. Padawitz. Swinging data types: Syntax, semantics, and theory. In Proceedings,
WADT’95, volume 1130 of LNCS, pages 409–435. Springer, 1996.

116. P. Padawitz. Towards the one-tiered design of data types and transition systems.
In Proceedings of WADT’97, volume 1376 of LNCS, pages 365–380. Springer,
1998.

117. P. Padawitz. Swinging types = functions + relations + transition systems. The-
oretical Computer Science, 243:93–165, 2000.

118. M. Palomino. A predicate abstraction tool for Maude. Manuscript, Universidad
Complutense, 2005, http://maude.sip.ucm.es/˜miguelpt/papers/pa-tool.pdf.

119. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, 1994.

120. G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
121. G. Roşu, S. Eker, P. Lincoln, and J. Meseguer. Certifying and synthesizing mem-

bership equational proofs. In Proc. FM’03, volume 2805, pages 359–380. Springer
LNCS, 2003.

122. G. Roşu and J. Goguen. Hidden congruent deduction. In Automated Deduction
in Classical and Non-Classical Logics, volume 1761 of LNAI. Springer, 2000.

123. R. Segala. Modelling and Verification of Randomized Distributed Real Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

124. K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In 17th conference on Computer Aided Verification (CAV’05), volume
3576 of LNCS, pages 266–280, Edinburgh, Scotland, 2005. Springer.

125. L. Steggles and P. Kosiuczenko. A timed rewriting logic semantics for SDL: a
case study of the alternating bit protocol. Proc. 2nd Intl. Workshop on Rewriting
Logic and its Applications, ENTCS, Vol. 15, North Holland, 1998.

126. M.-O. Stehr. CINNI - a generic calculus of explicit substitutions and its appli-
cation to lambda-, sigma- and pi-calculi. ENTCS 36, Elsevier, 2000. Proc. 3rd.
Intl. Workshop on Rewriting Logic and its Applications.

127. M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving —
Towards a Unified Language based on Equational Logic, Rewriting Logic, and
Type Theory. Doctoral Thesis, Universität Hamburg, Fachbereich Informatik,
Germany, 2002. http://www.sub.uni-hamburg.de/disse/810/.

128. M.-O. Stehr. The Open Calculus of Constructions: An equational type theory
with dependent types for programming, specification, and interactive theorem
proving (Part I). Fundamenta Informaticae, 68(1–2):131–174, 2005.

129. M.-O. Stehr. The Open Calculus of Constructions: An equational type theory
with dependent types for programming, specification, and interactive theorem
proving (Part II). Fundamenta Informaticae, 68(3):249–288, 2005.

130. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic: Specifying
typed higher-order languages in a first-order logical framework. In Essays in
Memory of Ole-Johan Dahl, pages 334–375. Springer LNCS Vol. 2635, 2004.

http://www.ifi.uio.no/RealTimeMaude
http://maude.sip.ucm.es/~miguelpt/papers/pa-tool.pdf
http://www.sub.uni-hamburg.de/disse/810/

280 José Meseguer

131. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994.

132. P. Thati and J. Meseguer. Symbolic reachability analysis using narrowing and
its application to the verification of cryptographic protocols. In N. Mart́ı-Oliet,
editor, Proc. 5th. Intl. Workshop on Rewriting Logic and its Applications, pages
153–182. ENTCS, Vol. 117, Elsevier, 2004.

133. P. Thati and J. Meseguer. Complete symbolic reachability analysis using back-
and-forth narrowing. In Proceedings of CALCO 2005, volume 3629 of LNCS,
pages 379–394. Springer, 2005.

134. S. Thorvaldsen and P. C. Ölveczky. Formal modeling and analysis
of the OGDC wireless sensor network algorithm in Real-Time Maude.
http://www.ifi.uio.no/RealTimeMaude/OGDC, 2005.

135. W. Tracz. Parametrized programming in LILEANNA. In Proc. 1993
ACM/SIGAPP Symp. on Applied Computing (SAC ’93), pages 77–86, 1993.

136. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 2002.

http://www.ifi.uio.no/RealTimeMaude/OGDC

	Introduction
	From Order-Sorted to Membership Equational Logic
	Rewriting Logic: From OBJ to Maude
	Beyond Maude
	Conclusions

